
deep learning

kDimensions

a visual introduction to

meor amer

Deep learning is the algorithm powering the current renaissance of artificial
intelligence (AI). And its progress is not showing signs of slowing down. A
McKinsey report estimates that by 2030, AI will potentially deliver $13 trillion to
the global economy, or 16% of the world's current GDP. This opens up exciting
career opportunities in the coming decade.

But deep learning can be quite daunting to learn. With the abundance of learning
resources in recent years has emerged another problem—information overload.

This book aims to compress this knowledge and make the subject approachable.
By the end of this book, you will be able to build a visual intuition about deep
learning and neural networks.

about this book

If you are new to deep learning, or machine learning in general.

If you already know some background about deep learning but want to gain
further intuition.

who should read this book

My journey into AI began in 2010 after my son was born with a limb difference. I
became interested in machine learning for prosthetics and did an MSc at
Imperial College London majoring in neurotechnology.

I have also worked in the telecoms data analytics space, serving clients in over 15
countries.

Above all, I am passionate about education and how we learn. I am currently
working on projects that explore ways to create alternative learning experiences
using visuals, storytelling, and games.

email: contact@kdimensions.com

about the author

This book uses a visuals-first approach. Each page of this book begins with a
visual and is supported by concise text.

This book doesn’t include math derivations and code examples. There are some
parts where basic math is involved, but generally it is kept to a minimum.

book format

https://www.linkedin.com/in/meoramer/

table of contents

Introductio�

� Prediction & Decision�

� Machine Learning�

� Deep Learning�

� Algorithm�

� Data�

� Computation�

� Roadmap�

� Key Concepts

Foundation�

� A Neuron�

� Weighted Sum�

� Weights and Biases�

� Activation�

� Data�

� Dataset�

� Training�

� Testing

1 - Linear Regressio�

� Introduction�

� Goal and Dataset�

� Predict-Measure-Feedback-Ad

just�

� Weighted Sum and Activation�

� Loss Function�

� Mean Squared Error�

� Minimizing Loss�

� Gradient�

� Gradient Descent�

� Learning Rat�

� Epoch�

� Cost and Metric�

� Performance

2 - Non-Linear Regressio�

� Introduction�

� Goal and Dataset�

� Architecture�

� Predict�

� Measure�

� Feedback�

� Computation graph

4

6

12

13

14

15

19

20

22

24

25

27

30

34

38

40

43

45

50

52

58

59

64

68

73

76

81

83

86

93

99

102

108

112

114

117

� Backpropagation�

� Adjust�

� Performance�

� Linear activation�

� Linearity�

� Non-linearity�

� Relu activation�

� Performance�

� Activation functions

3 - Binary Classificatio�

� Introduction�

� classification vs. regression�

� Goal and Dataset�

� Architecture�

� Sigmoid activation�

� Binary cross entropy�

� Accuracy�

� Performance�

� Confusion Matrix�

� Precision-Recall�

� F1 Score

4 - Multi-class Classificatio�

� Introduction�

� Goal and Dataset�

� One-hot Encoding�

� Architecture�

� Softmax Activation�

� Categorical Cross Entropy�

� Performance�

� Improving performance�

� Hyperparameters�

� Data Techniques

The Bigger Pictur�

� Neural Networks�

� Feedforward�

� Convolutional�

� Recurrent�

� Generative Adversarial�

� other Architectures�

� Conclusion�

� Key Concepts Revisite�

� suggested resources

119

129

135

137

139

141

142

145

148

150

152

153

156

158

166

169

170

174

176

177

180

181

183

184

188

195

197

202

210

217

219

225

230

232

233

234

235

4

Prediction is a key ingredient in decision-making under uncertainty. — Prediction Machines book.

Much that goes on in our lives involves some form of prediction. These
predictions differ in one way, namely, how sure we are of them. In some tasks,
they don't feel like predictions because we feel so sure about them. In some
others, we know next to nothing about them, so they become mere guesses.

All of this depends on how simple a task is and, more importantly, how much
experience we have with it.

To illustrate this, let's look at some examples.

prediction and decision

introduction

experience prediction decision

5

Let's take the example of language translation. As we listen to someone speaking,
we are predicting what the person means. The more experience we have with this
language, the better our prediction becomes, and the better our decision, that is
our reply, becomes.

Take another example in a business setting. Our experience dealing with
customers can help us see patterns in their behavior, so we’ll notice if they are
likely to churn.

As for driving, the more miles we clock, the more skilled we become and the
more adept we are at evaluating our surroundings.

examples

introduction

prediction decision

what is the
person saying?

language
translation

driving

customer
service

reply

is that an
obstacle?

steer

will the

customer churn?

discount

6

In many of these tasks, machine learning can handle the prediction on our behalf.

In recent years, the adoption of machine learning has accelerated. Many
industries and verticals are already deploying use cases that automate predictions
using machine learning.

In the machine’s world, the experience comes in the form of data. Just as we learn
from experience, the machine learns from data.

That is what machine learning is all about—learning from the data and turning it
into predictions.

what is machine learning?

introduction

data prediction decision

7

In fact, machine learning can even handle the decision part. In some domains,
most notably self-driving cars, we are not far from seeing full automation
becoming the norm.

But in most other domains, this is still far from reality. For this reason, the focus
of this book is on the prediction part.

And indeed, it is upon us to ensure healthy technological progress, where people
can thrive with the help of machines rather than being inhibited by them. That's
the sweet spot that we are collectively trying to find.

machine learning in the real world

introduction

8

So, what is the value of having machines that can make predictions on our
behalf?

In the book Prediction Machines, the authors argued for a few reasons why
prediction machines are so valuable, the first being that ‘they can often produce
better, faster, and cheaper predictions than humans can’.

the value of machine learning

introduction

accuracy

s
p

e
e

d

$$$

$

prediction

9

The cheaper the cost of prediction, the more tasks we can take on. The world is
full of challenges waiting to be solved. Machine learning enables us to scale our
efforts in ways that have not been possible before, presenting us with the
opportunity to take on these challenges.

accelerating human progress

introduction

cost

...

prediction

10

Some may worry that this will spell the end of most jobs, and rightly so. But
looking at the bigger picture, there will in fact be even more job opportunities.

The World Economic Forum’s The Future of Jobs Report 2020 estimates that by
2025, 85 million jobs may be displaced. But on the other hand, 97 million new
roles may emerge. This already takes into account the economic slowdown due to
the pandemic, and still, the net effect is positive.

Job roles will evolve, and the machine’s role is to serve us so we can pursue more
creative and challenging endeavors.

evolution in roles

introduction

before after

...

11

We can think of prediction automation in three phases.

The first, that is without automation, is relying on human judgment, either based
on data or experience.

The second is using a rules-based system. We translate our experience into rules
that software can understand and execute based on data as inputs.

The third is machine learning, which uses data to create its own rules, guided by
the goal defined by humans.

As the data and rules become more complex, it makes sense to use machine
learning. Otherwise, it may not be cost-effective to do so.

When to use machine learning?

introduction

MACHINE LEARNING

RULES-BASED SYSTEM

HUMAN 
JUDGMENT

RULES

COMPLEXITY

DATA

COMPLEXITY

12

Within machine learning, there are various types of algorithms. Think of
machine learning algorithms as competing techniques to get the best out of the
data. Some algorithms are better in certain aspects, but there’s not one that's the
best in all departments.

Deep learning is a type of algorithm that's adaptable to varying complexities of
data and rules.

It’s not necessarily the most accurate, but it's extremely adaptable. And this
comes from its modular and flexible form, which will become evident throughout
this book.

what is deep learning?

introduction

classicAl machine learning

RULES

COMPLEXITY

DATA

COMPLEXITY

deep learning

13

In fact, deep learning has revived the push toward Artificial Intelligence (AI) over
the past decade.

The progress is gathering pace now is because of three main reasons. The first is
the algorithm, which in truth, has been around for many decades.

But that alone is not enough.

algorithm

introduction

algorithm

14

The second reason is data.

The impetus came from the Internet and followed by social media, smartphones,
digital transformation, and a long list of other waves of innovation. They produce
new forms of data that we've never seen before, generated in large volumes.

This data contains invaluable information that we can now extract with the help
of algorithms.

data

introduction

data

15

The third reason is computational power.

Machine learning involves performing a significant amount of mathematical
computation on the data. In deep learning, this is multiplied many times over.
The standard Central Processing Unit (CPU) architecture is not capable of
handling this task efficiently.

Enter the Graphics Processing Units (GPU). Originally designed for games, it has
emerged as the perfect solution for deep learning.

This is a hot area of research as we speak. Even more efficient hardware designs
are yet to come.

computation

introduction

computation

 queue queue

GPUcPU

16

Together, these three factors are the driving forces behind today’s rapid advances
in deep learning.

the driving forces

introduction

data

computation

algorithm

17

Today, there are widespread applications in computer vision, natural language
processing, business automation, and beyond. And it is just the beginning.

applications

introduction

tree

pole
tree

car

it’s a great daY

i don’t like mondays

positive

negative

sentence sentiment

computer

vision

natural

language

processing

...

18

By the end of this book, you will be able to build a visual intuition about deep
learning and neural networks.

This book doesn’t cover mathematical proofs and code examples. As you advance
your learning further, these are the domains you should progress into. They will
provide you with the depth you need to be successful in this field.

what can you expect from this book?

introduction

visuals

code

math

c
o

m
p

r
e

s
s

io
n

d
e

p
t

h

focus oF

this book

19

We'll see how deep learning works via four tasks - linear regression, non-linear
regression, binary classification, multi-class classification.

They are correspondingly split into four chapters, in which new concepts are
introduced one at a time and built upon the previous ones. Therefore, it is
recommended that you read the chapters in sequence.

On either side of these four chapters, we'll have a short section for foundations
and a final section where we take a brief look beyond those covered in the four
chapters.

roadmap

introduction

algorithm

ta
s

k

LInear

regression

foundations

the bigger
picture

1

2

1

3

4

non-linear

regression

binary

classification

multi-class

classification

20

Here is a summary of the key concepts that we’ll explore in this book. As you go
through the book, it'll be useful to return to this page from time to time to keep
track of what you have learned.

Let’s begin!

key concepts

introduction

predict

weighted sum

activation

measure

cost

metrics

feedback

gradients

backpropagation

adjust

weights

biases

neural network

neurons

layers

architecture

task

linear

non-linear

regression

classification

Data

features

target

training

testing

21foundations

algorithm

t
a
s
k

LInear

regression

foundations

non-linear

regression

binary

classification

multi-class

classification

foundations

22

We have so far used the term deep learning, but from now on, we’ll use neural
network instead. These terms are used interchangeably and refer to the same
thing. But as we start to go into the inner workings, neural network is a more
natural term to use.

To begin our journey, let's start with a neuron. The neuron is the smallest unit and
the building block of a neural network.

A neuron takes a set of inputs, performs some mathematical computations, and
gives an output.

A Neuron

foundations

23

The inputs and outputs are numbers, either positive or negative. In this example,
the neuron takes two inputs. However, there is no limit to the number of inputs a
neuron can take.

inputs

foundations

24

The first computation that a neuron performs is the weighted sum. It multiplies
each input by its corresponding weight. Then all the inputs are summed and a
term called bias is added.

weighted sum

foundations

z = w1x1 + w2x2 + b

+ =

=

=

weight bias weighted

sum

input

x1 w1

x2 w2

b z

25

These weights and biases are called the parameters of the neural network.

These adjustable parameters are the medium through which a neural network
learns, which we'll explore in detail in this book.

weights and biases

foundations

weight

weight

bias

26

Here we have a neuron with two inputs, 3.0 and 2.0. Given different weight
values, it will correspondingly output different values.

Example

foundations

2.0 1.5

3.0 0.5 1.5

3.0

4.5 1.0 5.5

+ =

=

=

2.0 1.0

3.0 -0.5 -1.5

2.0

0.5 -2.0 -1.5

+ =

=

=

example #1

example #2

27

The second computation performed by the neuron is called an activation. This is
done by taking the output of the weighted sum and passing it through an
activation function.

activation

foundations

weighted sum activation

z a

x1

x2

y

28

The activation function gives the neural network the ability to express itself. This
will not make much sense now but will become clear by the end of this book.

There are a few common activation functions. To start with, here we have a linear
activation function. It’s as basic as it gets - it simply outputs the same input it
receives. Plotted on a chart, it gives a straight-line relationship between the input
and the output.

linear activation

foundations

29

Let’s do a quick recap. When inputs are passed through a neuron, it performs a
sequence of computations.

First it performs a weighted sum by multiplying each input by its corresponding
weight, summing them, and finally adding a bias term.

Then it performs an activation via an activation function, which in our case, is a
linear function.

Recap

foundations

weighted
sum

activation

z a

30

Neural networks are nothing without data. Let’s now turn our attention to data
and what it brings.

Data

foundations

31

Data is to the neural network as experience is to humans.

A machine learning algorithm, in this case a neural network, uses data to find
useful patterns and relationships. It uses these insights to learn and update itself.

Learning

foundations

32

Data can come in many different forms. The most obvious form of data is the
tabular format. This is an example of structured data, where each data point and
its properties can be deciphered in a straightforward manner.

But data can come in other forms too.

Types of data

foundations

 xxx xx xxxxxx x xx
xx x xxx x xx xxxx.
xxx, x xxx.

 x xxx xxxx, x xx
xxxxx xx, xxxx x xx x.
xxx x xx xx xxx x xx
xx xx.

unstructured

data

semi-structured

data

xx : {

 xx : x,

 x : xxxxx,

 xxx : {

 xx : xxx,

 xxxx : xx,

 }

}

structured

data

xx x x

x xx x

xx x x

33

In fact, most of the data around us are in the unstructured form. According to
projections from IDC, 80 percent of worldwide data will be unstructured by 2025.

And indeed, most of the exciting innovations in deep learning today come from
unstructured data, such as text, images, videos, and so on.

Sources of data

foundations

34

Now let’s look at how we should prepare a dataset for the neural network.

A dataset is composed of many data points. A data point is a single observation
that we collect and record.

a dataset

foundations

35

Let's take the example of hotel room rates, a dataset we'll use throughout this
book.

Each data point represents a hotel. Here we have a hotel with a distance of 1.5
miles from the city center and a guest rating of 3.6 stars.

Example

foundations

distance
(Mi) rating

1.5 3.6

36

These two pieces of information are called features. Features describe the
properties of a data point.

Each data point in a dataset is described with the same features, of course with
different values, making each of them unique.

From now on, we'll refer to these two features as distance and rating for short.

Features

foundations

features

distance

(mi) rating

37

Recall that the goal of a neural network is to make predictions.

In this example, we want to predict the average daily room rate (or price for short)
for any given hotel. This means, given the two features earlier, we want to predict
how much each hotel will cost.

The is called the target. In other resources, you may also find the term label being
used.

Target

foundations

target

price

($)

38

We'll give the neural network enough data points containing the features and
target values, which it will learn from.

A machine learning task where we specify the target is called supervised learning,
which will be our focus in this book.

training

foundations

dist
(Mi)

...

rating

0.8

PRICE
($)

1472.7

1.5 1363.6

19.4 2094.8

39

We have just described a process called training.

During training, the neural network learns from the data and updates its
parameters. By this point, we'll have a trained model.

In short, given a dataset containing features and target, we get a model.

That is why the training process is sometimes also called ‘fitting the model to the
data’.

Training

foundations

features

model

target

training

40

Once the training is complete, we need a way to know how the model is
performing.

For this, we'll keep a portion of the dataset for testing.

Testing

foundations

training

data

test

data

41

During testing, we'll provide the neural network with just the features, without
the target. Now that it’s already trained, it’s job is to predict the target values.

In the coming four chapters, we'll revisit these training and testing steps.

testing

foundations

TESTiNG

target

features

model

421 - linear regression

algorithm

t
a

s
k

LInear

regression

1

non-linear

regression

binary

classification

multi-class

classification

1 - linear regression

43

Now let's look at how the neural network works. We'll start with its simplest
possible version—a network with only one neuron and one input!

a single-neuron neural network

1 - linear regression

44

We'll lay the necessary foundation in this chapter and use that in the subsequent
chapters when we start building larger neural networks.

the plan

1 - linear regression

45

Let's revisit the dataset from the previous chapter, which contains a list of hotels
in a city.

Our goal is to predict the average daily room rate for a given hotel (i.e. price)
based on the features.

In this chapter, we'll use only one of the features—the distance from the city
center (i.e. distance).

the goal

1 - linear regression

city
center distance

$$$ $ $$

46

This is what the dataset looks like. It contains twelve data points, one feature,
and one target.

The distance and price values are continuous values—numeric values that can take
any value within a range.

the dataset

1 - linear regression

distance

(mi)

price

($)

0.5
1.1
1.6
2.4
3.5
4.6
6.2
9.5
0.3
0.7
4.9
8.5

146.00
149.00
140.00
134.00
127.00
110.00
112.00
81.00

156.00
168.00
116.00
99.00

47

This is a type of task called regression. In regression tasks, the target value to be
predicted is a continuous value.

We’ll split the dataset into the training and testing datasets and train the model
using the training data.

Ultimately, we want the model to give good predictions for the four test data
points.

regression

1 - linear regression

dist. price

?
DIstance

9.5

149
p

r
ic

e

????

8

4

48

By visual inspection, it’s clear that there is a straight-line relationship between
the feature and the target. This is called linear regression.

This is the relationship that we want our single-neuron network to capture. Let’s
see if it can do that.

learning

1 - linear regression

DIstance

p
r

ic
e

9.5

149

49

We'll take the first eight data points as training data and leave the other four for
testing later.

training data

1 - linear regression

training

data

distance

(mi)

price

($)

0.5
1.1
1.6
2.4
3.5
4.6
6.2
9.5

146.00
149.00
140.00
134.00
127.00
110.00
112.00
81.00

50

We can think of training a neural network as a four-step cycle: Predict - Measure -
Feedback - Adjust.

One cycle represents one training round. This is repeated for a number of rounds
until the neural network becomes good at the task it’s training for.

None of this will make sense to you yet, but that's exactly what we’ll learn about
next!

Also note that these four terms were chosen for this book to make it easy for
someone new to deep learning. In other resources, you will find other terms used
(e.g. forward instead of predict, backward instead of feedback, update instead of
adjust). They refer to the same concepts.

the four steps of training

1 - linear regression

predict

measureadjust

feedback

51

In the first step of the cycle, predict, we'll pass the training data through the
neuron.

predict

1 - linear regression

predict

52

Recall that this means going through two steps of computations - weighted sum
and activation, one data point at a time.

neuron computations

1 - linear regression

weighted sumfeature activation

... z a

53

We’ve already seen that the number of weights of a neuron is equal to the number
of inputs. The inputs are the dataset’s features. And since we have only one
feature, there is going to be only one input, and hence, one weight.

We also saw that on top of that, a neuron has one bias value.

We’ll assign initial values for these parameters, in which there are a number of
initialization techniques we can choose from. These techniques help the neural
network learn more effectively compared to simply assigning random initial
values. However, this book doesn’t cover this topic as it is quite mathematically
involved.

parameter count

1 - linear regression

weighted sum

z
weight

bias

54

For this task, we'll stick to the linear activation function.

activation

1 - linear regression

activation

3

3

a

55

By now, we will have the neuron successfully outputting eight values. They
represent the prices that the neuron predicted.

The problem, however, is that the neuron hasn't learned anything yet. As a result,
its predictions will be completely wide of the mark.

output

1 - linear regression

weighted sum activation predicted values

...z a

56

But how do we actually know if the neuron's prediction is good or bad?

This is when we move to the second step, measure, where we'll quantify its
performance.

measure

1 - linear regression

measure

57

Since we know the actual value of the target, we can quantify the performance by
computing the difference between the predicted and actual prices. This is called
the error value.

error value

1 - linear regression

predicted

value

actual

value

error

58

This brings us to one of the most crucial parts of designing a neural
network—choosing its loss function.

While the parameters are the dials that the network adjusts to reach its goal, the
loss function is the goal itself.

The loss function comes in various forms and it all depends on the nature of the
task. This will become clearer in Chapters 3 and 4, where we'll use other kinds of
loss functions.

loss function

1 - linear regression

loss function

parameters

59

The loss function we’ll use for this task is called the mean squared error, or MSE
for short. Each of the eight error values is squared to get the squared error. Then
they are averaged to get the MSE.

mean squared error

1 - linear regression

...

...

...

predicted
values

squared

error

mean squared

error

error

60

The MSE is a measure of error. That means the smaller the MSE, the better the
network is doing.

In other words, the neuron's goal is to minimize its loss over many training
rounds.

minimize loss

1 - linear regression

...

...mean

squared error

mean

squared error

prediction prediction

distance
p

r
ic

e
distance

p
r

ic
e

61

Recall that a neural network learns by adjusting its parameters - weights and
biases. Let's first focus on weights since this is where most of the learning takes
place. We’ll come back to biases later.

We want to find out how changing the weights affects the loss.

weight vs. loss

1 - linear regression

loss function

weight

62

At this point, the neuron hasn't learned anything yet. And learning is exactly
what is going to happen in the third step, feedback.

feedback

1 - linear regression

feedback

63

We have established that the neuron’s goal is to minimize the training loss by
adjusting its parameters.

This is the essence of learning in a neural network. Let’s find out how this works.

learning

1 - linear regression

64

Let's start with one training cycle and plot the loss (i.e. MSE) on a chart.

Now, we want to bring this MSE down to be as close to zero as possible. What we
need is to find the weight value that gets us there. But how do we do this?

minimizing loss

1 - linear regression

weight

loss

65

As a loss function, the MSE gives us a very desirable property. If we tried plotting
all possible weight values and the corresponding MSEs, we'd get a U-shaped
curve. This comes from the squaring effect of the MSE.

the loss curve

1 - linear regression

weight

loss

66

Its width and position may vary, but its shape will always be the same - there is a
single point where the curve reaches its minimum. And that is what we are after!

minimum point

1 - linear regression

weight

loss

67

And that is our goal - to get the neuron to find the weight value that will bring
the MSE to its minimum.

In practice, we won't be able to get exactly to the lowest point. But we can get
very close, and that’s good enough for most tasks.

goal

1 - linear regression

weight

loss

68

The next question then is, how does the neuron know by how much to adjust its
weight? The answer is to find the weight gradient.

A gradient is the derivative of an output with respect to its input. In our case, the
output is the loss function, while the input is the weight. In Chapter 2, we’ll find
gradients of the loss function with respect to other types of inputs, so it’s worth
keeping this in mind.

We won’t go deep into the math, but let’s understand why this is useful for the
neural network.

gradient

1 - linear regression

weight

loss

69

The gradient is a measure of the steepness of the curve of the loss function. And
where we are now, it's very steep. The steeper the curve, the greater the gradient.

A large gradient indicates that the weight is still far from the optimal value, so
we’ll need to adjust it by some amount.

Steepness

1 - linear regression

70

But why is this so? To better understand, let's pretend that we've succeeded in
finding the ideal weight value that brings the loss to the bottom of the curve.

The gradient here is zero, which means that we no longer need to adjust the
weight.

MINIMUM gradient

1 - linear regression

71

Notice that as we decrease the weight from its initial position to the bottom of
the curve, the gradient continues to decrease until it reaches zero.

This is the first property of the weight gradient - its magnitude.

The magnitude of the gradient informs the neuron how far its prediction is from
the actual. And by the same token, it also informs how much the neuron needs to
adjust its weights.

magnitude

1 - linear regression

72

The second property of the weight gradient is its direction.

Suppose the starting weight is on the other side of the curve. This causes the sign
of the gradient to become negative.

This indicates that the gradient is too small rather than high. Instead of
decreasing, we'll need to increase the weight to reach the bottom of the curve.

Therefore, the sign of the weight gradient informs the neuron about the direction
of weight adjustment.

direction

1 - linear regression

73

The magnitude and direction of the weight gradient are the two types of
feedback returned to the network.

As the network goes through multiple training cycles, we want the weight to
move down the curve toward its minimum point.

For this reason, this method is called gradient descent.

gradient descent

1 - linear regression

dw

0 +-

74

We’ve seen that the weight gradient is the derivative of the loss function with
respect to the weight. We won’t go into the mathematical proof, but the result is
the input value multiplied by the error. We’ll represent the weight gradient as dw
for short.

The final gradient to be passed back to the network is the average gradient from
all the training data points.

weight gradient

1 - linear regression

dw = input error

input error

75

We have now reached the fourth and final step of the training cycle, adjust. In this
step, the neuron will adjust its weight according to the gradient that it receives.

adjust

1 - linear regression

adjust

76

If the gradient is a positive value, the previous weight is reduced commensurate
to the magnitude. On the other hand, if the gradient is negative, the previous
weight is increased.

Here we introduce another term called the learning rate, represented by alpha for
short. It is a value multiplied by the gradient before making the weight
adjustment.

learning rate

1 - linear regression

wnew wprev

dw

wnewwprev

dw

+-

wnew = wprevious - alpha dw

77

We want the gradient descent process to be a smooth one. And to ensure that, we
need to apply the learning rate. It is usually a very small number that scales the
gradient down. In our task, we’ll use 0.08.

Without the learning rate, the descent may become unstable, or worse, never
reach the bottom of the curve.

Choosing the right values is an art in and of itself. Too small and the neuron
learns too slowly. Too high and the neuron never finds the minimum point.

The role of learning rate

1 - linear regression

without

learning rate

with

learning rate

78

Let’s now bring the bias parameter into the discussion.

The weight’s role is to adjust the shape of the prediction line or curve.
Meanwhile, the bias’ role is to adjust the position of the function, shifting it up or
down.

bias

1 - linear regression

distance

bias

weight

p
r

ic
e

79

We get the bias gradient db by taking the derivative of the loss function with
respect to the bias. Without going into the mathematical proof, the result is the
error value itself.

The final gradient to be passed back to the network is the average gradient from
all the training data points.

BIAS GRADIENT

1 - linear regression

dw = input error

input error

error

db = error

80

As in the weight, the bias gradient is multiplied by the learning rate before
making the bias adjustment.

adjust

1 - linear regression

bnew bprev

db

bnewbprev

db

+-

bnew = bprevious - alpha db

81

This completes one round of training, also called an epoch.

epoch

1 - linear regression

predict
training data

measureadjust

feedback

...

training

...

82

We'll repeat the four steps for 100 epochs. And once we've gone through all the
epochs, training will be complete!

complete training

1 - linear regression

...

of Epochs

of training data
 # of training data

83

During the measure step of the cycle, we actually measure two things after each
epoch.

The first is cost. Cost is simply the average loss value over the training data
points (i.e. the MSE). So far, we’ve only used the term loss for simplicity, but cost
is the more precise term. In practice though, it’s not uncommon to see these two
terms used interchangeably.

The second is metric. For this task, it’s also equivalent to the MSE. It may not
make sense now why we need two measures for the same thing, but it will
become apparent when we get to Chapters 3 and 4, where the cost and metric are
different.

cost and metric

1 - linear regression

cost

metric

measure

... ...

84

In other words, the cost is an internal performance measure - that is, for the
algorithm.

Conversely, the metric is an external performance measure - that is, for the
human.

performance measure

1 - linear regression

cost

internal

metric

external

85

Over many epochs, we can see that the MSE continues to improve and converge
toward zero.

monitoring

1 - linear regression

epochs

m
s

e

cost metric

epochs100

m
s

e

100

86

At the end of the 100 epochs, we have a trained model that gives a respectable
MSE of 16.4.

Plotting the predicted values on a chart gives us a linear regression line that’s
defined by the learned parameters.

Note that the MSE can only go to zero if the actual training data are perfectly
aligned along a straight line. In this case, they aren’t.

training performance

1 - linear regression

DIstance

p
r

ic
e

actual

prediction - training data

mse = 16.4

predicted

9.5

149

87

Measuring the performance of a model based on training data is a good indicator
of success, but it is far from the true measure. The reason is that we are
measuring its performance based on the data it has seen.

We need to measure its performance based on data it has never seen. For this, we
use the four test data points that we set aside.

testing

1 - linear regression

test

data

distance

(mi)

price

($)

0.3
0.7
4.9
8.5

156.00
168.00
116.00
99.00

88

For the test data, we don’t need to go through all four steps of the cycle. We only
need the predict and measure steps.

In predict, we pass through the features (distance) through the neural network and
get the prediction (price) at the other end.

In measure, we compute the metric (the MSE) of the prediction. The cost is
internal to the model and it’s used only during training, so we won’t need to
consider that.

testing

1 - linear regression

testing

predict

metric

measure

test data

89

We get an MSE that is substantially worse than that of the training data.
Examining this visually, this is because the test data are more sporadic compared
to the training data. This indicates a slightly different distribution of the test
data compared to the training data.

However, for this amount of data, we can’t really confirm that, and this
performance is fine.

In general, the performance with the test data will inevitably not be at the same
level as with the training data. But our job is to get them as close as possible.

test performance

1 - linear regression

DIstance

p
r

ic
e

prediction - test data

actual

predicted

mse = 144.5

8.5

168

90

And that's the end of our first example. If you're familiar with linear regression,
you might be wondering why we're taking all the trouble to use a neural network
to build a linear regression model?

You are right! There are other simpler algorithms that would have achieved the
same outcome.

But this is where the similarity ends. In the following chapters, we'll start to
build complexities and non-linearities, which is when the neural network shines.

This chapter is all about building a foundational understanding of neural
networks via a simple example. In the coming chapters, we'll continue to build on
it.

linear regression

1 - linear regression

DIstance

p
r

ic
e

91

Let’s do a recap of the four-step training cycle: Predict - Measure - Feedback -
Adjust.

In predict, the dataset is passed through the neuron to generate predictions.

In measure, we measure the cost, that is how far are the predictions from the
actual values.

In feedback, we compute the parameter gradients and feed them back to the
neuron.

Finally, in adjust, we increase or decrease the parameters based on the gradients.

Repeat through many epochs and we get a trained model.

recap

1 - linear regression

predict

measureadjust

feedback

922 - non-linear regression

algorithm

t
a

s
k

LInear

regression

2

non-linear

regression

binary

classification

multi-class

classification

2 - non-linear regression

93

In the last chapter, our single-neuron neural network had the task of modeling a
linear relationship.

In practice, however, we are more likely to encounter non-linear relationships.
The datasets will be more complex. Instead of one, there will be many features at
play.

A single neuron won't be able to handle these scenarios.

non-linearity

2 - non-linear regression

feature

ta
r

g
e

t

94

This is when we need a proper neural network.

A neural network consists of its building blocks - neurons. These neurons learn
uniquely at the individual level and synergistically at the collective level.

neural network

2 - non-linear regression

95

Neural networks come in various configurations called architectures.

In its basic architecture, a neural network consists of layers. Each layer has its
own number of neurons, or units.

layers and units

2 - non-linear regression

layers

units

96

The lines represent the flow of data. Each neuron receives inputs from all the
neurons in the preceding layers. Then it sends its output to all neurons in the
next layer.

data flow

2 - non-linear regression

layers

units

97

The neurons and connections can make the neural network look complicated, so
let's break it down and look at a couple of examples.

Example 1: Neuron A receives three inputs directly from the data and sends its
output to 3 neurons in the next layer.

Example 2: Neuron E receives three, which are the outputs of neurons A, B, and
C in the previous layer, and sends its output to one neuron in the next layer.

example

2 - non-linear regression

a e

a

b

c

d

e g

f

98

Regardless of how many inputs and outputs a neuron is connected to, or in which
layer the neuron is located, it goes through the same set of
computations—weighted sum and activation.

Take Neuron B, for example. It takes three inputs, computes the weighted sum on
these inputs, and then performs the activation. The output of the activation is
then passed to three neurons in the next layer.

neuron computations

2 - non-linear regression

a

b

c

d

e g

f

weighted sum activation

z a

99

Let's now build the neural network architecture we need for this task.

Before that, we’ll define the goal for this task, which is the same as in Chapter
1—to predict a hotel’s average daily room rates (i.e. price).

the goal

2 - non-linear regression

city
center distancecity
center distance

$$$ $ $$

100

The difference is this time, we have two features instead of one. Here, we bring
back the rating feature that we left out in Chapter 1.

Another difference is the size of the dataset. We had only 12 data points in
Chapter 1. For this task, we are adding 20 more, making up a total of 32 data
points. We'll use 24 for training and 8 for testing.

The result is, instead of linear, our task now becomes a non-linear regression task.
Let's see why this is so.

the dataset

2 - non-linear regression

price ($)Dist (MI) Rating

training

data

(24)

test

data

(8)

1.6

3.5

4.6

4.9

6.5

9.5

11.3
14.6
17.5
18.7
19.5
19.8
0.3
0.5
1.1
1.2
2.7
3.8

19.4
7.3

0.2
0.2
0.5
0.7
0.8
1.5

2.4

3.5

4.6

6.2

8.5

9.7

2.6

4.2

2.8

3.8

2.4

2.1

2.9
3.8
4.6
3.8
4.4
3.6
4.6
4.2
3.5
4.7
2.7
4.1

4.8
4.6

3.5
4.8
3.7
4.3
2.7
3.6

4.7

3.5

4.2

3.6

3.1

3.7

140.00

116.00

106.00

116.00

92.00

81.00

75.00
108.00
166.00
188.00
211.00
207.00
156.00
162.00
149.00
145.00
123.00
118.00

209.00
82.00

157.00
155.00
146.00
168.00
147.00
136.00

134.00

127.00

110.00

112.00

99.00

92.00

