
100

The difference is this time, we have two features instead of one. Here, we bring
back the rating feature that we left out in Chapter 1.

Another difference is the size of the dataset. We had only 12 data points in
Chapter 1. For this task, we are adding 20 more, making up a total of 32 data
points. We'll use 24 for training and 8 for testing.

The result is, instead of linear, our task now becomes a non-linear regression task.
Let's see why this is so.

the dataset

2 - non-linear regression

price ($)Dist (MI) Rating

training

data

(24)

test

data

(8)

1.6

3.5

4.6

4.9

6.5

9.5

11.3
14.6
17.5
18.7
19.5
19.8
0.3
0.5
1.1
1.2
2.7
3.8

19.4
7.3

0.2
0.2
0.5
0.7
0.8
1.5

2.4

3.5

4.6

6.2

8.5

9.7

2.6

4.2

2.8

3.8

2.4

2.1

2.9
3.8
4.6
3.8
4.4
3.6
4.6
4.2
3.5
4.7
2.7
4.1

4.8
4.6

3.5
4.8
3.7
4.3
2.7
3.6

4.7

3.5

4.2

3.6

3.1

3.7

140.00

116.00

106.00

116.00

92.00

81.00

75.00
108.00
166.00
188.00
211.00
207.00
156.00
162.00
149.00
145.00
123.00
118.00

209.00
82.00

157.00
155.00
146.00
168.00
147.00
136.00

134.00

127.00

110.00

112.00

99.00

92.00

101

The data points we used in Chapter 1 are on the left side of this curve. As we add
more hotels to the dataset, we find that the dynamic changes. In the beginning,
the farther we get from the city center, the cheaper the prices become. This is
expected because there will be a higher demand for hotels closer to the center.
But there is a point in the middle where the room rates get more expensive the
further away we get. The reason is that these are the resort-type hotels that
charge similar, if not higher, prices.

This dataset no longer has a linear relationship. The distance-price relationship
now has a bowl shape, which is non-linear. This is what we want our neural
network to produce.

the dataset

2 - non-linear regression

 training data
p

r
ic

e

211

19.8

DIstance

102

We have seen that a neural network consists of layers. A typical neural network,
like the one we are building, has one input layer and one output layer. Everything
in between is called the hidden layer.

layers

2 - non-linear regression

input hidden

layers

output

103

Let's get started with the architecture.

The number of inputs is equal to the number of features, which means we'll have
two inputs.

input layer

2 - non-linear regression

distance

rating

104

We'll have one hidden layer consisting of three units of neurons.

The choice of the number of layers and units depends on the complexity of the
data and the task. In our case, we have a small dataset, so this configuration is
sufficient.

What do hidden layers do? A hidden layer transforms the information it receives
from the previous layer into useful forms. Guided by the goal of the task, it looks
for patterns and signals and decides which ones are important.

This cascades across the layers and up to the output layer, which will have
received a summarized and relevant piece of information to aid its predictions.

hidden layer

2 - non-linear regression

105

We complete the neural network by adding one unit of neuron in the output
layer, whose job is to output the predicted prices.

output layer

2 - non-linear regression

106

As for the parameters, recall that each neuron has weights equal to the number of
its inputs and one bias.

So, in our case, we have a total of nine weights and four biases. And as in Chapter
1, we'll assign initial values for these parameters.

weights and biases

2 - non-linear regression

weights

biases

107

Now that the data and architecture are in place, it's time to start training.

Recall the four-step cycle: Predict - Measure - Feedback - Adjust.

training

2 - non-linear regression

predict
training data

measureadjust

feedback

...

training

...

108

Let’s begin with the first step, predict.

predict

2 - non-linear regression

predict

109

Recall that in this step, each data point is passed through the neural network and
prediction is generated on the other side.

Now that we have more neurons, the weighted sum and activation computations
will take place at each neuron. Let’s look at a couple of examples.

predict

2 - non-linear regression

z a

z a

z a

z a

110

The first example is the first neuron in the hidden layer. It takes the original
data’s features as inputs, performs the weighted sum, and adds a bias value. Then
it goes through a linear activation function, which returns the same output as the
input.

example 1

2 - non-linear regression

z = x1w1 + x2w2 + b

a = z

weighted sum activation

z a

111

The second example is the neuron in the output layer. It takes the three outputs
of the previous layer as inputs. As in the first example, it then performs the
weighted sum, adds a bias, and performs the linear activation.

example 2

2 - non-linear regression

z = x1w1 + x2w2 + x3w3 + b

a = z

weighted sum activation

z a

112

In the second step, measure, we quantify the performance of the prediction.

measure

2 - non-linear regression

measure

113

This is still a regression task, so we can use the same loss function as in Chapter
1—the MSE.

Averaging the squared error over all twenty-four training data points gives us the
MSE.

measure

2 - non-linear regression

predicted

value

actual

value

error loss

(squared

error)

114

The third step, feedback, is where it gets interesting. Here, we’ll find a lot more
things going on compared to the single-neuron case.

This part of the book will be quite dense. For this, it is helpful to keep in mind
the goal of this step, which is to find the parameter gradients so the neural
network can adjust its parameters.

Let’s dive into it.

feedback

2 - non-linear regression

feedback

115

We'll start with the output layer and move backward to the input layer. Again, for
simplicity, we'll focus on the weights for now and come back to the biases later.

feedback

2 - non-linear regression

loss

116

In Chapter 1, with a single-neuron network, we computed the weight gradient
based on the loss (MSE). But what really happened under the hood? Let’s now see
how the loss was fed back to the neural network.

single neuron

2 - non-linear regression

loss

dw

117

Keeping to the single-neuron example for now, we can picture the flow of data
using a computation graph. It provides a way to visualize how information
traverses the neural network.

Here we have the forward computation graph, which represents the predict step
of the training cycle.

Note that the graph you are seeing is a slightly simplified version, sufficient to
aid our discussion.

forward computation graph

2 - non-linear regression

a

i

w

z

weighted sum

input

weight

activation

118

Meanwhile, the backward computation graph represents the feedback step. Here,
we find new terms representing the activation gradient (da) and the weighted
sum gradient (dz). They have been there all along, but for simplicity, were not
shown in the earlier examples.

We need these other gradients to arrive at dw. The concept is called the chain rule.
We won't cover the math, but the idea is this: We can compute a particular
gradient if we know the gradient adjacent to it. Here, we can compute da from
the loss value, which means we can compute dz, which means we can compute
dw.

In fact, whenever error was mentioned in Chapter 1, it was referring to dz, which
is the gradient adjacent to dw.

backward computation graph

2 - non-linear regression

a

da

i

w

z

lossdz

dw

da

i

w
lossdz

weighted sum

input

weight

activation

dw = input errordw = input error
 = input dz

119

Let’s return to this chapter’s neural network. The backward computation graph is
shown here for all four neurons. Starting from the loss value, information flows
back to all neurons so that each weight receives its gradient, dw.

In deep learning, this process is called backpropagation.

This graph looks pretty complex, so let’s pick one example.

backpropagation

2 - non-linear regression

az
dz da

da

dw

dw

da

da

dw

dwdz

dz

dz
a

w

w

w

dw

z

a

...

... z

az

ii

ii

w

w

z

loss

120

In this example, we’ll focus on two weight gradients, red and blue, involving two
neurons, A and B.

Tracing the lines along the graph, we obtain the red dw by multiplying the input
data i by neuron A’s dz.

Meanwhile, we obtain the blue dw by multiplying neuron A’s output (which
becomes neuron B’s input) by neuron B’s dz.

You may be wondering, how did we know the formula for dw in the first place,
and what about the formulas for dz and da? Unfortunately, we won’t cover them
in this book, but if you are curious, do check out other resources to understand
the math derivations.

example

2 - non-linear regression

ii

w

az
dz dada

dw

dz

a

w
dw

i

w

zz

az

a

w

zz

A B

A

b

dw = input dz

121

Let's take a closer look at the magnitude of the weight gradients, starting with
the neuron in the output layer.

Inspecting the formula shows that the larger the input, the larger the
corresponding weight gradient. But what does this mean?

magnitude

2 - non-linear regression

dw1 dw2 dw3

 input1 dz input2 dz input3 dz

input1

input2

input3
lossdz

dw = input dz

122

This means that the larger inputs have a greater influence on the output value,
and thus on the prediction outcome. Therefore, this formula enables the network
to assign the larger weight adjustments to inputs that make the bigger difference.

We can also think of this in terms of error contribution.

Suppose input #1 is the largest. This tells us that input #1 is the one that
contributed the most toward the error. So, we want to tell input #1 to make the
biggest weight adjustment, and we do that by giving it the biggest weight
gradient.

error contribution

2 - non-linear regression

lossweight

inputs

dzdw

#1

#2

#3

123

Recall that weight gradients have both magnitude and direction. As the gradients
backpropagate, their directions can change too.

If either the input or dz is negative, then the weight gradient will be negative.

direction

2 - non-linear regression

dw1

input1 dz-

-dw1

input1 dz+

+

124

A negative weight gradient means that the network will need to increase its
weight instead.

If you recall the gradient descent discussion in Chapter 1, a negative value causes
the gradient to flip its shape.

negative gradient

2 - non-linear regression

weight loss

inputs

dzdw

125

The same principle applies to the rest of the neural network. Backpropagation
continues until all the weights have received their gradients.

The good news is, in practice, there are well-established deep learning
frameworks such as PyTorch and Tensorflow that handle all the tedious
computations on our behalf!

Nevertheless, the value of understanding how it all works is immense.

repeat for the whole network

2 - non-linear regression

dwdw

126

Now let’s firm up our understanding of how backpropagation works. Suppose we
had a larger network with a few more hidden layers.

example with a bigger network

2 - non-linear regression

dw

127

Take this neuron in the middle for example. It has just received the da gradients
from its outputs. But what does it do with them?

example neuron

2 - non-linear regression

da

128

The first thing it does is to sum up these da values. This represents the net
gradient coming from the three outputs.

As per the chain rule, da gives rise to dz.

And then, we get the dw for each input by multiplying dz by the inputs.

Example neuron

2 - non-linear regression

weight

inputs

dw

+

-

+

sum dadz

129

The fourth step, adjust, is where we perform the weight adjustments.

adjust

2 - non-linear regression

adjust

130

As in Chapter 1, we can now adjust the nine weights according to the gradients
that they receive.

weight adjustment

2 - non-linear regression

wnew = wprevious - alpha dw

131

Let’s now bring the bias term back into the picture. As before, the formula for the
bias gradient db is simply equal to the error, which we now know is given by dz.

bias

2 - non-linear regression

db = dz = error

az
dz dada

dw

dz

db db

a

w b
dw

i

w b

zz

132

The neural network can now adjust the biases based on their gradients.

bias adjustment

2 - non-linear regression

bnew = bprevious - alpha db

133

We'll repeat the training cycle for 800 epochs. This task requires more epochs
compared to Chapter 1. This is because of the non-linearity, which will take a
longer time to learn than a linear case.

EPOCHS

2 - non-linear regression

...... ...

of Epochs

of training data
 # of training data

134

With all the details, it's easy to lose sight of the goal. It's a good time to remind
ourselves that all this boils down to finding the optimal weights that give the
most accurate predictions.

Now that training is complete, the neural network should have learned enough to
produce decent predictions.

Revisiting our goal

2 - non-linear regression

error

weights biases

135

However, this doesn’t seem to be the case. The MSE of the training data is very
poor. Meanwhile, when plotted, the predictions seem as good as random. It
appears that the neural network hasn’t learned much!

training performance

2 - non-linear regression

predicted

actual

training data
p

r
ic

e

mse = 923.8211

19.8

DIstance

136

The same is true with the test data. The predictions don’t seem anywhere close to
the actual values.

So, where did this go wrong?

TEST performance

2 - non-linear regression

test data

predicted

actual

p
r

ic
e

mse = 1090.9211

19.8

DIstance

137

The answer lies in the activation function that we used. All neurons were using
linear activation.

activation function

2 - non-linear regression

linear

activation

3 input

o
u

t
p

u
t

3

a

138

As we’ve seen, a linear activation function returns exactly the same value of the
input it receives.

linear activation

2 - non-linear regression

input

o
u

t
p

u
t

-3.0 2.0-1.5 0

data in data out

linear

-3.0 2.0-1.5

139

It can be shown mathematically that if all neurons in the hidden layer are using
linear activation, they make no difference to the output. It doesn’t matter how
many neurons there are. It is effectively the same as having no hidden layer,
which is equivalent to what we had in Chapter 1.

For this reason, our neural network was unable to capture the non-linearities in
the data.

linearity

2 - non-linear regression

140

Returning to our earlier plot of training predictions, it may not appear that the
results were linear.

But indeed, they were. If we were to plot the predictions on a 3D chart, we would
see them falling on a linear 2D plane.

linear plane

2 - non-linear regression

DIstancerating

p
r

ic
e

141

The solution to our problem is to introduce non-linearity in the hidden layers.
With non-linearity, having hidden layers now makes a huge difference.

The more layers and neurons the neural network has, the more complex
relationships in the data it can capture.

non-linearity

2 - non-linear regression

142

To add the much-needed non-linearity, we turn to an activation function called
the rectified linear unit (ReLU). It is an activation function used widely in neural
networks today. It’s a simple change from the linear function, but it serves its
purpose and does its job very well.

For any positive input, the ReLU activation outputs the same value, just like the
linear activation.

The difference is for the negative inputs. If the input is negative, the ReLU
activation will output zero.

relu activation function

2 - non-linear regression

relu

activation

3

3

input

o
u

t
p

u
t

a

143

The ReLU effectively works like a gate - it turns on whenever the input is above
zero and turns off otherwise. As simple as it may look, it enables the neuron to
have a pretty powerful ability—a choice.

With linear activation, it doesn't matter whether it thinks a piece of information
is important or not, it just lets it through.

But with ReLU, every neuron can make a difference. It can now choose to only
‘activate’ when the input is positive.

choice

2 - non-linear regression

input

o
u

t
p

u
t

-3.0 2.0-1.5 2.000 0

data in data out

relu

144

We'll now replace the linear activation functions in the hidden layer with ReLU.

In the output layer, it’s fine to keep the linear activation for this task. In the next
chapter, we'll see a task where we do need to change the activation function in
the output layer.

reconfigure

2 - non-linear regression

linear

relu

relu

relu

145

This time, it looks like we are heading in the right direction. The MSE of the
training predictions is much better now.

training performance

2 - non-linear regression

test data

predicted

actual

p
r

ic
e

mse = 100.4

predicted

actual

training data
p

r
ic

e

mse = 50.8

19.8

211

DIstance

146

And the MSE of the test predictions is not too bad either. As in Chapter 1, we can
bring it closer to the training MSE by having more data points and ensuring that
the training and test distributions are similar.

TEST performance

2 - non-linear regression

test data

predicted

actual

p
r

ic
e

mse = 100.4

predicted

actual

test data
p

r
ic

e

mse = 100.4211

19.8

DIstance

147

If we want to, we can further improve the performance by adding more layers and
units.

As we add more neurons, the neural network will be able to increase the
granularity of its predictions, resulting in a prediction curve that is smoother and
more well-defined.

more neurons

2 - non-linear regression

...

more layers and units

148

There are many other types of activation functions. Some of the more commonly
used ones are shown here. Each activation function allows the neural network to
exhibit a different kind of quality compared to the others.

We'll look at another type, sigmoid, in the next chapter.

activation functions

2 - non-linear regression

...

linear relu

sigmoid tanh

input

o
u

t
p

u
t

input

o
u

t
p

u
t

input

o
u

t
p

u
t

input

o
u

t
p

u
t

1493 - binary classification

algorithm

t
a

s
k

LInear

regression

3

non-linear

regression

binary

classification

multi-class

classification

3 - binary classification

150

We have seen how the neural network performs regression tasks. In this chapter,
we'll see how it performs another type of task—classification.

While regression is about predicting continuous values, classification is about
predicting groups.

classification

3 - binary classification

1.45 car

tree

regression classification

151

There is an endless list of deep learning use cases in the real world that involve
classification. The classic examples are image classification in computer vision
and sentiment analysis in natural language processing (NLP).

classification use cases

3 - binary classification

it’s a great daY

i don’t like mondays

positive

negative

sentence sentiment

computer

vision

natural

language

processing

...

tree not tree

152

The good news is, as we move from regression to classification, the basic
principles of the neural network remain the same.

In fact, there are only two major differences to note. The first is the type of
activation function and the second is the type of loss function. We’ll learn more
about them in this chapter.

classification vs. regression

3 - binary classification

activation

function

loss

function

a

153

We'll use the same dataset as in Chapter 2 with one difference—we have replaced
the target with a new one.

Let's suppose that we are tracking the hotels with the highest demand,
segregating them from those which are not. This is represented by the new target
called hot which has two possible values - yes and no.

The target is no longer a continuous variable but is a categorical variable instead.
Categorical variables have a known, fixed number of values, or more precisely,
classes. Unlike continuous variables, these classes do not imply any order (for
example, whether one class is better than the other).

the dataset

3 - binary classification

hotDist (MI) Rating

training

data

(24)

test

data

(8)

1.6

3.5

4.6

4.9

6.5

9.5

11.3
14.6
17.5
18.7
19.5
19.8
0.3
0.5
1.1
1.2
2.7
3.8

19.4
7.3

0.2
0.2
0.5
0.7
0.8
1.5

2.4

3.5

4.6

6.2

8.5

9.7

2.6

4.2

2.8

3.8

2.4

2.1

2.9
3.8
4.6
3.8
4.4
3.6
4.6
4.2
3.5
4.7
2.7
4.1

4.8
4.6

3.5
4.8
3.7
4.3
2.7
3.6

4.7

3.5

4.2

3.6

3.1

3.7

0

0

0

0

0

0

0
0
1
1
1
1
1
1
1
1
0
0

1
0

1
1
1
1
0
1

1

1

0

0

0

0

154

Recall that for regression, we wanted to model the line (for a single-feature
scenario) or plane (for a two-feature scenario) where the predicted values would
fall on.

As for classification, we want to model the classification boundary that separates
the classes. For classification, it’s more common to use the term label instead of
target, so we will use that term from now on.

Here is shown the plot of the actual class for each training data point. Also
shown is an example of a hand-drawn boundary that separates the two classes.
This is what we want our neural network to produce.

the dataset

3 - binary classification

 training data

distance

r
a

t
in

g

yes

hot

no

155

Our task is called a binary classification task because the outcome will be either
one or the other - yes or no.

Before we can proceed with training, we need to convert the labels into a
numeric format. For this purpose, we'll assign discrete values 1 for yes and 0 for
no.

binary classification

3 - binary classification

hot

YES
YES
YES
YES
no
...

...
YES

YES

YES
no

hot

1
1
1
1
0

...

...
1

1

1
0

156

Let's start building the neural network architecture that we need for this task.

We'll stick with the same number of layers and units as in the previous task. The
activation function in the hidden layer also remains unchanged as ReLU.

input & hidden layers

3 - binary classification

relu

relu

relu

157

In fact, the overall architecture remains the same.

The only difference is in the output, where we’ll replace the linear activation
function with a new one called sigmoid. Let’s take a look at how it works.

output layer

3 - binary classification

relu

relu sigmoid

relu

hot

158

Since the labels are discrete numbers of 0s and 1s, we must set up the neural
network so that the predictions return either 0 or 1 and nothing else.

We can’t achieve that with the current configuration. This is because the linear
activation outputs continuous values instead of discrete.

A sigmoid function solves this problem by squeezing its input into a value
between 0 and 1.

sigmoid activation function

3 - binary classification

1

0.5

0 input

o
u

t
p

u
t

159

Regardless of how large or small the input is, this function ensures that it is
converted into a number between 0 and 1.

sigmoid activation function

3 - binary classification

input

o
u

t
p

u
t

-3.0 2.0-1.5 0.880.05

1

0 0.18

data in data out

sigmoid

160

For this reason, we'll use the sigmoid activation function in the output layer.

output layer

3 - binary classification

sigmoid

activation

3 input

o
u

t
p

u
t

0.95

a

161

This still leaves us with a small problem. We can now convert the output to fall
between 0 and 1, but what we need is a value of either 0 or 1. The output has to be
discrete.

For this, we can add an extra computation step to convert the output to 1 if it's
greater than 0.5, and to 0 if it's less than 0.5.

discretize

3 - binary classification

input

o
u

t
p

u
t

input

o
u

t
p

u
t

162

Why does this work? We can think of the output of the sigmoid activation as
representing a probability.

For example, if the output is 0.88, the neural network is indicating that the label
has a higher probability of being 1. And if the output is 0.12, it has a higher
probability of being 0.

probability

3 - binary classification

0.85

0 1

0.10

0 1

163

But how can we implement this concept? The answer is the loss function.

Recall that the loss function defines the goal of the neural network, and as a
result, dictates how it behaves.

We have covered the first difference between regression and classification—the
activation function. Now we'll look at the second one—designing the loss
function.

loss function

3 - binary classification

loss function

164

For regression, we chose MSE as the loss function because it gives us a desirable
property of a single minimum point on the loss curve. We call this a convex loss
function.

It turns out however (we won't cover the math here) that using an MSE in a
binary classification task will result in a non-convex loss function. It means that
there will be more than one location along the loss curve where a local minimum
exists, making it difficult for the neural network to find its true, or global
minimum.

For this reason, we'll need to use a different type of loss function.

convex and non-convex

3 - binary classification

convex non-convex

165

Our goal is to output a prediction of 1 when the actual value is 1 and a prediction
of 0 when the actual value is 0.

That is, to get a prediction of 1, we want the sigmoid’s output to be as close to 1
as possible, and vice versa for 0.

the goal

3 - binary classification

sigmoid

output

actual

value

sigmoid

output

our

GOAL

OUR

GOAL

actual

value

0

1

166

The loss function we'll be using is called the binary cross entropy. This function
fulfills our need to have a convex loss curve.

The plots here depicts the shape of this loss function, with each class having its
own loss curve.

When the actual class is 1, we want the sigmoid output to be as close to 1 as
possible, correspondingly pushing the loss toward its minimum. And when the
actual class is 0, we want the sigmoid output to be as close to 0 as possible,
pushing the loss toward its minimum.

loss function

3 - binary classification

10 sigmoid

output

loss

10 sigmoid

output

loss

when actual

class = 1

when actual

class = 0

our

goal

our

goal

167

From here, we can perform the weight updates using the same gradient descent
approach as in Chapters 1 and 2.

gradient descent

3 - binary classification

when true

value = 1

when true

value = 0

168

We are now in a position to train the neural network. The training cycle follows
the same four steps as in the previous chapters.

training

3 - binary classification

predict

measureadjust

feedback

169

There is one last change, which is the metric to measure performance.

In the regression task, we used the MSE both as the cost and the metric.

In a classification task, we need to use a different metric to better reflect the
performance of the model. We'll use accuracy, which gives us the percentage of
correct predictions over all predictions.

accuracy

3 - binary classification

actual

value

Y

Y

N

N

N

y

predicted

value

correct?

...

accuracy =

1

0

0

1

0

1

1

1

0

00

00

metric

total correct

total predictions

170

Using the accuracy metric, we can see that the model does pretty well on the
training dataset.

The plot also shows the decision boundary of our trained neural network,
representing the predictions.

training performance

3 - binary classification

accuracy = 92%

training data

distance

r
a

t
in

g

actual

yes

no

predicted

171

The prediction on the test data also shows a respectable performance, given the
limited number of data points.

test performance

3 - binary classification

test data

distance

r
a

t
in

g

accuracy = 88%

actual

yes

no

predicted

172

As in the regression task, we can further improve the performance by adding
more layers and units.

The plot here shows the decision boundary after modifying the neural network to
contain two hidden layers with five and ten units of neurons each. The
granularity of its predictions increased, resulting in a more well-defined and
accurate prediction curve.

a bigger network

3 - binary classification

2 hidden layers, 5 & 10 units each

distance

r
a

t
in

g 2 hidden layers, 5 & 10 units each

training data

accuracy = 100%

actual

yes

no

predicted

173

Accuracy is often used as the measure of classification performance because it is
simple to compute and is easy to interpret.

However, it can become misleading in some cases. This is especially true when
dealing with imbalanced data, which is when certain classes contain way more
data points than the rest.

Let's take the example of predicting fraud credit card transactions. Suppose we
have a dataset of 100 data points, of which only 7 are fraud cases. If we simply
predicted all the outputs to be 0, we would still manage to get an accuracy value
of 93%! Clearly something isn’t right.

when accuracy becomes inaccurate

3 - binary classification

1
1

1
1

1
1
1

1
1
1

1
1

93%

0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

actual

value

predicted

value

correct?

...

95

93
94

91
92

100

98
99

96
97

5

3
4

1
2

90
89

6

...

n

n
n

n
n

y

n
y

n
n

y

y
y

y
y

y
y

y

......

accuracy = =
total correct

total predictions

174

The confusion matrix provides a way to measure performance in a balanced way. It
shows the count of predictions falling into one of the following�

� True Negative (TN): when both the actual and predicted values are 0�
� False Positive (FP): when the actual value is 0 but the predicted value is 1�
� False Negative (FN): when the actual value is 1 but the predicted value is 0�
� True Positive (TP): when both the actual and predicted values are 1.

For our example, 0 represents the not fraud class while 1 represents the fraud
class.

confusion matrix

3 - binary classification

1

1

0

0

true

positive

false

negative

false

positive

predicted value
a

c
t

u
a

l
v

a
lu

e

true

negative

175

Applied to the credit card fraud dataset, we get 90, 3, 5, and 2 respectively for TN,
FP, FN, and TP.

applied to data

3 - binary classification

tpfn

390

25

fptn

1
1

1
1

1
1
1

1
1
1

1
1

0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

true

value

predicted

value

correct?

...

95

93
94

91
92

100

98
99

96
97

5

3
4

1
2

90
89

6

...

n

n
n

n
n

y

n
y

n
n

y

y
y

y
y

y
y

y

......

1

1

0

0

predicted value

a
c

t
u

a
l

v
a

lu
e

176

From here, we can compute two types of metrics: precision and recall.

The reason for the curiously high accuracy was the dominance of the true
negatives, diluting the rest. With precision and recall, we remove the focus on
these true negatives and instead give all the attention to the other three
categories.

We can see from the precision and recall scores that they offer a more reliable
performance indicator than accuracy.

precision and recall

3 - binary classification

precision

=

recall

=

2
tp

3
fp

2
tp

+

fn

5

2
tp

2
tp

+

1

1

0

0

tp

3

2

fp

1

1

0

0

tpfn
25

40%

29%

177

However, we still need to strike a balance between precision and recall.

To illustrate its importance, suppose the model from the credit card fraud
prediction achieved high recall and low precision. This would lead to a high
number of false positives. This is good for detecting as many fraud cases as
possible, but comes at the expense of flagging non-fraud cases as frauds.

Conversely, if the model achieved high precision and low recall, this would result
in a high number of false negatives. This is good for correctly classifying the
non-fraud cases but will miss out on real fraud cases.

We can address this problem with the F1 Score, which provides a balanced
emphasis on precision and recall.

f1 Score

3 - binary classification

High precision

low recall

low precision

high recall

f1 score

precision * recall
2 *

precision + recall

178

Going back to our hotels dataset, we get an accuracy score that’s comparable
with precision and recall, indicating that our dataset is balanced.

performance

3 - binary classification

precisionaccuracy recall

83%88% 91%

tpfn

211

101

fptn

1

1

0

0

predicted value

a
c

t
u

a
l

v
a

lu
e

training data

1794 - multi-class classification

algorithm

t
a

s
k

LInear

regression

4

non-linear

regression

binary

classification

multi-class

classification

4 - multi-class classification

180

In the last chapter, our task was to predict between two possible classes. But
what if we had a label with more than two classes?

Such a task is called multi-class classification. To make the neural network work
for this type of task, we'll need to modify its architecture slightly. This is what
this chapter is about.

binary vs. multi-class classification

4 - multi-class classification

carcar /
Not car

bus

motorbike

bicycle

binary

classification

multi-class

classification

181

We’ll use the same dataset as Chapter 3 and again, have a new label called
category. Suppose there's a certification agency that classifies hotels into three
categories—gold, silver, and bronze.

Our goal is to predict the category for a given hotel based on the features.

The label is a categorical variable, which means that order is not implied. Though
the class names suggest that some order may exist, we just want to classify them
without worrying about which class is better than which.

the dataset

4 - multi-class classification

categoryDist (MI) Rating

training

data

(24)

test

data

(8)

1.6

3.5

4.6

4.9

6.5

9.5

11.3
14.6
17.5
18.7
19.5
19.8
0.3
0.5
1.1
1.2
2.7
3.8

19.4
7.3

0.2
0.2
0.5
0.7
0.8
1.5

2.4

3.5

4.6

6.2

8.5

9.7

2.6

4.2

2.8

3.8

2.4

2.1

2.9
3.8
4.6
3.8
4.4
3.6
4.6
4.2
3.5
4.7
2.7
4.1

4.8
4.6

3.5
4.8
3.7
4.3
2.7
3.6

4.7

3.5

4.2

3.6

3.1

3.7

Bronze

Silver

Bronze

Bronze

Bronze

Bronze
Silver
Gold

Silver
Gold

Silver
Gold
Gold

Silver
Gold

Bronze
Silver

Gold
Bronze

Silver
Gold

Silver
Gold

Bronze
Silver

Gold

Silver

Silver
Silver
Silver

Bronze

Bronze

182

Here is shown the plot of the actual class for each training data point, along with
an example of hand-drawn boundaries separating the three classes. This is what
we want our neural network to produce.

the dataset

4 - multi-class classification

 training data

distance

r
a

t
in

g

gold

category

silver

bronze

183

First, we need to convert the classes into a numeric format. Since we have more
than two classes this time, converting them into 0s and 1s won’t work.

We need to use a method called one-hot encoding. Here, we create a new column
for each class. Then we treat each column as a binary classification output,
assigning the value 1 for yes and 0 for no.

Note that if we also had features of the categorical type, we would apply the same
method. Suppose we had a feature called view with possible values of pool, garden,
and none. This will translate into three one-hot encoded features, one for each
class.

one-hot encoding

4 - multi-class classification

category

silver
gold

silver
gold

Bronze
...

...
gold

silver

gold
gold

0
1
0
1
0

...

1

1
0
1
0
0

...

0

0
0
0
0
1

...

0

...
0 1 0

1 0 0
1 0 0

gold silver bronze

184

We'll start building the neural network with the input layer, where there are no
changes from the previous chapter.

We'll also retain the same number of hidden layers and units, and keep ReLU as
the activation function.

neural network architecture

4 - multi-class classification

relu

relu

relu

185

As for the output layer, we need to make some changes. A single-neuron output
only works for binary classification.

For multi-class classification, we need to have the same number of neurons as
classes. Each neuron represents one class, and its output is mapped to the
corresponding one-hot encoded column. To understand this, let’s look at some
examples.

neural network architecture

4 - multi-class classification

relu

relu

relu

186

Here we have the labels of the first five data points—silver, gold, silver, gold, and
bronze.

Take the first data point as an example. For the silver class, the neural network
should ideally predict 0, 1, and 0 for the first, second, and third neurons.

In short, for each data point, the neuron of the actual class should output 1 while
other neurons should output 0.

output values

4 - multi-class classification

1 0 1 0 0

0 1 0 1 0

#1 #2 #3 #4 #5

0 0 0 0 1

gold

silver

bronze

187

There is also a change in the activation functions in the output layer. We'll
introduce a new function called softmax.

output layer activation

4 - multi-class classification

relu

relu

relu

softmax

softmax

softmax

188

The softmax activation performs a two-step computation on its input:
exponentiation and normalization.

softmax activation function

4 - multi-class classification

softmax

activation

exponent normalize
a

189

In the first step, it turns the input into its exponent.

exponent

4 - multi-class classification

exponent

3 input

o
u

t
p

u
t

20.1

190

The effect of exponentiation is to transform any number into a positive number.
Additionally, it amplifies the large inputs more than the small ones.

exponent

4 - multi-class classification

input

o
u

t
p

u
t

-3.0 2.0-1.5 7.390.050 0.22

data in data out

exponent

191

To understand how the second step, normalization, works, we need to look at the
layer as a whole.

Here we have the three units of neurons, one for each class.

the full layer

4 - multi-class classification

softmax

softmax

softmax

gold

silver

bronze

192

Each neuron performs the exponentiation on its input, which then becomes the
input for the normalization step.

exponent

4 - multi-class classification

exponent

193

In the normalization step, each input is divided by the sum of all inputs. This
becomes the output of the neural network.

As a result, the sum of all outputs will always be 1. This is a useful outcome
because we can now treat the outputs as probability values, as we did in Chapter
3.

normalIZE

4 - multi-class classification

+ + = 1

normalize

+ +

+ +

+ +

194

Let’s take an example where the actual class is silver. And suppose that each
neuron’s softmax activation produces 0.5, 0.2, and 0.3.

Treating them as probabilities, we assign 1 to the neuron with the largest output
and 0 to the other neurons.

In this example, the predicted class does not match the actual class. This brings
us to the next discussion - the loss function.

example prediction

4 - multi-class classification

gold

silver

bronze

predictionactual

0

0

1

0.5

0.3

0.2

1

0

0

195

The loss function we’ll be using is called categorical cross entropy. It is essentially
the same as the binary cross entropy loss function we used in Chapter 3, but a
generalized version. The categorical cross entropy works for any number of
classes, unlike its binary counterpart.

loss function

4 - multi-class classification

10 sigmoid

output

loss

The

goal

196

Let’s look at an example. Here, the actual class is silver. So, we want the neural
network to output the highest probability at the second neuron.

In one of the earlier training epochs, we can see that the output at the second
neuron is 0.3, which isn’t very good. This results in a high loss value.

In one of the later epochs, this neuron produces an output of 0.6. This indicates
an improvement, which is reflected in the decreasing loss value.

loss function example

4 - multi-class classification

predicted actual

0.2 0

0.3 1

0.5 0 0.3

0.52

predicted actual

0.1 0

0.6 1

0.3 0 0.6

0.22

...

loss

loss

197

Using the accuracy metric, we can see that the model does pretty well on the
training dataset.

The plot also shows the decision boundary of our trained neural network,
representing the predictions.

training performance

4 - multi-class classification

accuracy = 96%

training data

distance

r
a

t
in

g

gold
actual

silver

bronze

predicted

198

The prediction on the test data also shows a respectable performance, given the
limited number of data points.

test performance

4 - multi-class classification

test data

distance

r
a

t
in

g

accuracy = 75%

gold
actual

silver

bronze

predicted

199

As in Chapter 3, we can further improve the performance by adding more layers
and units.

The plot here shows the decision boundaries after modifying the neural network
to contain two hidden layers with five and ten units of neurons each. The
granularity of its predictions increased, resulting in a more well-defined and
accurate prediction curve.

a bigger network

4 - multi-class classification

2 hidden layers, 5 & 10 units each

accuracy = 100%

training data

distance

r
a

t
in

g

gold
actual

silver

bronze

predicted

200

The confusion matrix for this task is now expanded to a 3-by-3 matrix. The
diagonal cells account for the correct predictions for each class, while the
remaining cells account for the incorrect predictions.

confusion matrix

4 - multi-class classification

truefalse

predicted value
a

c
t

u
a

l
v

a
lu

e

false

falsetrue false

silvergold bronze
s

il
v

e
r

b
r

o
n

z
e

g
o

ld

falsefalse true

201

For multi-class classification, each class will have its own set of precision and
recall metrics. Here we have an example for the gold class.

precision and recall

4 - multi-class classification

precision (gold)

recall (gold)

false

true

gold

c
a

t

false

falsetrue

true

false+ +

falsetrue false

gold

g
o

ld

falsetrue

true

false+ +

202

And with that, our fourth and final task is complete.

For the remainder of this chapter, we’ll look at various ways to improve our
prediction results. We can divide them into two groups—hyperparameters and
data.

First, let’s look at hyperparameters. You may not have noticed, but we have
covered some of them in the four tasks. Now let’s take a closer look.

hyperparameters

4 - multi-class classification

203

Recall that parameters—weights and biases—are learned by the neural network
during training.

parameters

4 - multi-class classification

parameters

204

On the other hand, hyperparameters are parameters that cannot be learned by
the neural network. Instead, we need to provide them.

Choosing the right hyperparameters requires experience and is both an art and a
science. They are no less important in successfully training a neural network.

There are many types of hyperparameters, so let’s cover some of the key ones.

hyperparameters

4 - multi-class classification

hyperparameters

205

This is obvious, but one of the most important hyperparameters is the size of the
neural network itself.

We change the size by increasing or decreasing the number of layers and units in
each layer. A larger network is capable of handling more complex tasks and data.

size

4 - multi-class classification

layers

units

206

Another hyperparameter is the type of activation function in each neuron.

This depends on the nature of the task, but ReLU is typically used in the hidden
layers, or at least is a good option to start with.

As for the output layer, this largely depends on the task, for example, whether it’s
a regression or classification task.

activation function

4 - multi-class classification

activation functions

207

In all of our tasks, we have kept to a learning rate (or alpha) of 0.08. This value
was chosen simply by trial and error, and there is no reason not to change it in
other scenarios.

As discussed earlier, we don’t want the learning rate to be too large or too small.
Too big and learning will be erratic. Too small and learning will be slow.

learning rate

4 - multi-class classification

too

big

too

small

just

right

bnew = bprevious - dbalpha

wnew = wprevious - dwalpha

208

We chose 100 epochs for Chapter 1 and 800 epochs for Chapters 2, 3, and 4 by
trial and error.

An alternative approach is to set a very large epoch and configure training to stop
automatically once certain performance criteria are met. This is called early
stopping.

Finding the right epoch for a task is important because too many epochs can lead
to the model ‘learning too much', including unwanted noise in the data. On the
other hand, too few epochs can lead to the model not capturing enough
information from the data.

number of epochs

4 - multi-class classification

...

of Epochs

of training data
 # of training data

209

In our tasks, we had a maximum of twenty-four training data points, which we
trained as a full batch. However, in a typical training dataset, the number of data
points is so large that we need to split them into mini batches. This
hyperparameter is called the batch size. In the diagram above, the batch size is
four.

This brings us to the other way to improve our prediction results—by working on
the data.

batch size

4 - multi-class classification

predict

...

...

...

...
mini batch

size

210

We'll look at a few data techniques that we can use to improve our predictions.

data techniques

4 - multi-class classification

211

Let’s expand on the concept of mini batches.

We perform mini batching for a number of reasons. One of them is hardware
limitation. For a very large dataset, we cannot fit the data points all at once into
the computer’s memory. The solution is to split them into mini batches.

Another reason is performance. Let’s see why this is so.

mini batch

4 - multi-class classification

predict

...

...

...

...
minI batch

size

212

Recall that in the fours tasks, the model performed parameter adjustments after
an entire epoch is complete. This is called full batch gradient descent.

At the other extreme, the model may also perform updates at every data point.
This is called stochastic gradient descent.

Mini batch gradient descent is somewhere in between. For example, a batch size of
four means that the model performs the updates after every four training data
points.

Mini Batch

4 - multi-class classification

current

update

next

update

current

update

next

update

current

update

next

update

current epoch next epoch

stochastic

mini batch

full batch

213

How do these options affect performance?

Imagine having a huge dataset where each epoch takes a tremendous amount of
time to complete. With full batch gradient descent, the time between parameter
updates will be too long.

Conversely, stochastic gradient descent brings the advantage of fast feedback
loops. However, since each update is based on only one data point, learning
becomes erratic and unstable.

The mini batch gradient descent captures the best of both worlds, offering a
balance between speed and stability.

BALANCE

4 - multi-class classification

stability

s
p

e
e

d

stochastic

full batch

mini batch

214

Let’s move on to the next technique. Sometimes overfitting can occur in training,
where the model is too attuned to the training data and performs poorly on new
data points. This is especially true when the training dataset is small.

One way to address this is to use K-fold cross validation. Here, we cycle through
the training-test data split over many training rounds such that by the end, every
data point will have been used for training.

The performance metrics are then averaged over the number of rounds.

k-fold cross validation

4 - multi-class classification

training
rounds

training data test data

215

In all our tasks, for simplicity, we have split the dataset into two sets—training
and test. However, in practice, it is common to split them into three sets—the
other one being the validation set.

In this case, the role of the test set as we’ve been using will be replaced by the
validation set.

This means we can set aside the test set until the model is fully ready. This offers
a more accurate way to measure performance since these are fresh data points
that the model has never seen.

validation set

4 - multi-class classification

training

data

test

data

validation

data

216the bigger picture

algorithm

t
a

s
k

LInear

regression

the bigger
picture

non-linear

regression

binary

classification

multi-class

classification

the bigger picture

217

In this final chapter, we’ll take a brief tour of deep learning architectures beyond
what’s been covered so far.

Let’s start with the feedforward neural network. This is the quintessential version of
neural networks, and it is the version we used in the four tasks. It’s called
feedforward because information flows through the layers only in the forward
direction.

feedforward neural networks

the bigger picture

218

We had a small network with only two inputs, but we can expand it to be as big as
we need it.

Take a look at this MNIST dataset. It is an image dataset where each data point
contains an image of a handwritten number. This is a multi-class classification
task to predict the number based on the image. The features are the individual
pixels (28 x 28), while the label is a number between 0 and 9.

There are 784 features, which means that 784 inputs are going into the first
hidden layer. Additionally, such a task will require even more hidden layers with
a substantial number of neurons in each.

feedforward neural networks

the bigger picture

...
...

...

28

1

2

784

28 28 = 784

28

219

Now let’s look at another type - the convolutional neural network (CNN), typically
used for image data.

The idea with this architecture is, instead of feeding all inputs to all neurons, we
group neurons into smaller sets called filters. These filters don’t take the inputs
all at once. Instead, they scan through the small sections of the inputs
sequentially.

convolutional neural networks

the bigger picture

...

...

filters

convolution

220

The scanning effect makes it perfect for image data. It takes advantage of the fact
that in images, a pixel has a stronger relationship with its surrounding pixels
than with pixels far away.

These filters learn uniquely at the individual level and synergistically at the
collective level.

convolutional neural networks

the bigger picture

convolutional NN

#1

#2

#3

feedforward NN

221

This process is repeated over several layers, and the result is a compressed
version of the data. This information is finally fed into a standard layer to
produce the prediction.

convolutional neural networks

the bigger picture

222

Let’s look at some use cases of the CNN. The first is image classification, where
the task is to predict the class of an image. It’s the same type of task as the
MNIST example, but with a different architecture.

image classification

the bigger picture

image classification

tree not tree

223

Another use case is object detection. It involves both classification and regression.

As for classification, this time each image could contain more than one class.
Here is an example where we have four objects belonging to one of three classes.

As for regression, the task is to predict the position on the image where these
objects are located.

object detection

the bigger picture

tree

pole

tree

car

object detection

224

Another use case is semantic segmentation. This task is similar to image
classification, except that classification is performed at the pixel level instead of
at the image level.

The result is a finer definition of object boundaries on the image.

semantic segmentation

the bigger picture

semantic segmentation

225

Let’s take a look at another architecture - the recurrent neural network (RNN). This
architecture is designed to work with data types with a sequence element, such as
text, music, and time-series data.

This diagram depicts one building block of the RNN. It has two inputs. The first
input is the data from the current step of a sequence, while the other input is the
output of the previous step’s RNN block.

recurrent neural networks

the bigger picture

data

previous

cell

next

cell

226

By chaining these blocks together, we can pass information from each step of the
sequence to the end of the network.

recurrent neural networks

the bigger picture

data sequence

227

Let’s take a use case - text classification. Here we have an example of sentiment
analysis, where the task is to predict the sentiment in a sentence.

Using an RNN architecture allows us to capture the essence of each word in a
sentence, which together forms the meaning of the entire sentence.

text classification

the bigger picture

it’s a great day

positive

i don’t like mondays

negative

text classification

228

Another use case is machine translation. Here, the RNN generates many outputs
instead of one.

Take a look at this example of a translation of a short phrase from English to
French.

machine translation

the bigger picture

my name

m’appelleje

machine translation

229

Another interesting use case is text generation. Here, we can train the neural
network to predict the next word, given a sequence of words.

We can repeat this for as many words as we want. This means we can train it to
generate a complete sentence, an essay, or even an entire book!

text generation

the bigger picture

text generation

I am having

lunch

230

When it comes to generating new outputs, there is another architecture called
the Generative Adversarial Networks (GAN).

Given a training dataset, the GAN can create new data points that follow the
same distribution but yet distinct from the original.

The GAN consists of two competing neural networks, the generator and the
discriminator. The generator’s role is to generate new examples that look as real as
possible, while the discriminator’s role is to determine if they are real.

generative adversarial networks

the bigger picture

classification

discriminator

generator

new data

real / not real

231

The architecture is designed so that both networks will keep improving after
each training round. As more examples are given, the discriminator becomes
increasingly good at detecting the real ones. At the same time, the generator’s
output will become more and more similar to the real ones.

generative adversarial networks

the bigger picture

new

 data

real

 data

real

/

not
real

generator

discriminator

232

There are many other architectures out there, and new ones continue to emerge.
It is an exciting area of research where breakthroughs keep on coming.

other architectures

the bigger picture

transformer

graph

autoencoder

. . .

233

Deep learning has immense potential to address some of the world’s toughest
challenges. Of course, it is not the solution to all problems, but it has proven its
versatility and is making an impact in various industries and verticals.

By and large, it is still a relatively new technology. The opportunities are wide
open for us to innovate and create solutions that make the world a better place.

conclusion

the bigger picture

234

We have now reached the end of the book. Let’s now return to this summary of
the key concepts that we have covered. It is a good time to revisit them and
review your understanding about deep learning.

key concepts Revisited

the bigger picture

predict

weighted sum

activation

measure

cost

metrics

feedback

gradients

backpropagation

adjust

weights

biases

neural network

neurons

layers

architecture

task

linear

non-linear

regression

classification

Data

features

target

training

testing

If you are ready to go further into your deep learning journey and are looking to
get hands-on practice, here are some books that I suggest for you to check out�

� Grokking Deep Learning by Andrew W. Trask [Manning Publications�
� Neural Networks and Deep Learning by Michael Nielsen [Free Online�
� Math for Deep Learning by Ronald T. Kneusel [No Starch Press�
� Deep Learning with PyTorch by Eli Stevens, Luca Antiga, and Thomas

Viehmann [Manning Publications�
� Python Machine Learning by Sebastian Raschka and Vahid Mirjalili [Packt

Publishing�
� Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien

Géron [O'Reilly Media�
� Grokking Machine Learning by Luis G. Serrano [Manning Publications�
� Deep Learning with Python by François Chollet [Manning Publications�
� Deep Learning Illustrated by Jon Krohn, Grant Beyleveld, and Aglaé Bassens

[Addison-Wesley Professional�
� Deep Learning: A Visual Approach by Andrew Glassner [No Starch Press�
� Generative Deep Learning by David Foster [O'Reilly Media]

I just wanted to mention that there are way more resources out there than listed
here. You can treat this as a starting point but by no means an exhaustive list of
resources.

suggested resources

Thank you so much for reading my book! I hope you have enjoyed reading it.

If you have received value from it, I'd be so grateful to receive a short testimonial
from you, to be displayed on the book's product website. It's the best gift I can
get from a reader. And it will go a long way to support me in my endeavor.

You can do so by clicking on the button below.

If you have any other questions or feedback, do send them over to
contact@kdimensions.com.

Meor Amer

thank you

Leave a Testimonial

235

https://forms.gle/gJr1UzXrg5FjEWxF9

kDimensions

@kdimensions1

