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The difference is this time, we have two features instead of one. Here, we bring 
back the rating feature that we left out in Chapter 1.


Another difference is the size of the dataset. We had only 12 data points in 
Chapter 1. For this task, we are adding 20 more, making up a total of 32 data 
points. We'll use 24 for training and 8 for testing.


The result is, instead of linear, our task now becomes a non-linear regression task. 
Let's see why this is so.

the dataset

2 - non-linear regression

price ($)Dist (MI) Rating

training

data


(24)

test

data


(8)

1.6

3.5

4.6

4.9

6.5

9.5

11.3
14.6
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18.7
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19.8
0.3
0.5
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1.2
2.7
3.8

19.4
7.3

0.2
0.2
0.5
0.7
0.8
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3.5

4.6
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2.6
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3.8

2.4

2.1

2.9
3.8
4.6
3.8
4.4
3.6
4.6
4.2
3.5
4.7
2.7
4.1

4.8
4.6

3.5
4.8
3.7
4.3
2.7
3.6

4.7

3.5

4.2

3.6

3.1

3.7

140.00

116.00

106.00

116.00

92.00

81.00

75.00
108.00
166.00
188.00
211.00
207.00
156.00
162.00
149.00
145.00
123.00
118.00

209.00
82.00

157.00
155.00
146.00
168.00
147.00
136.00

134.00

127.00

110.00

112.00

99.00

92.00
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The data points we used in Chapter 1 are on the left side of this curve. As we add 
more hotels to the dataset, we find that the dynamic changes. In the beginning, 
the farther we get from the city center, the cheaper the prices become. This is 
expected because there will be a higher demand for hotels closer to the center. 
But there is a point in the middle where the room rates get more expensive the 
further away we get. The reason is that these are the resort-type hotels that 
charge similar, if not higher, prices.


This dataset no longer has a linear relationship. The distance-price relationship 
now has a bowl shape, which is non-linear. This is what we want our neural 
network to produce.

the dataset

2 - non-linear regression
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We have seen that a neural network consists of layers. A typical neural network, 
like the one we are building, has one input layer and one output layer. Everything 
in between is called the hidden layer.



layers

2 - non-linear regression

input hidden

layers

output
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Let's get started with the architecture.


The number of inputs is equal to the number of features, which means we'll have 
two inputs.



input layer

2 - non-linear regression

distance

rating
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We'll have one hidden layer consisting of three units of neurons.



The choice of the number of layers and units depends on the complexity of the 
data and the task. In our case, we have a small dataset, so this configuration is 
sufficient.


What do hidden layers do? A hidden layer transforms the information it receives 
from the previous layer into useful forms. Guided by the goal of the task, it looks 
for patterns and signals and decides which ones are important. 


This cascades across the layers and up to the output layer, which will have 
received a summarized and relevant piece of information to aid its predictions.

hidden layer

2 - non-linear regression
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We complete the neural network by adding one unit of neuron in the output 
layer, whose job is to output the predicted prices.

output  layer

2 - non-linear regression



106

As for the parameters, recall that each neuron has weights equal to the number of 
its inputs and one bias. 


So, in our case, we have a total of nine weights and four biases. And as in Chapter 
1, we'll assign initial values for these parameters.



weights and biases

2 - non-linear regression

weights

biases
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Now that the data and architecture are in place, it's time to start training.



Recall the four-step cycle: Predict - Measure - Feedback - Adjust.

training

2 - non-linear regression

predict
training data

measureadjust

feedback

...

training

...
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Let’s begin with the first step, predict.

predict

2 - non-linear regression

predict
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Recall that in this step, each data point is passed through the neural network and 
prediction is generated on the other side. 


Now that we have more neurons, the weighted sum and activation computations 
will take place at each neuron. Let’s look at a couple of examples. 

predict

2 - non-linear regression

z a

z a

z a

z a
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The first example is the first neuron in the hidden layer. It takes the original 
data’s features as inputs, performs the weighted sum, and adds a bias value. Then 
it goes through a linear activation function, which returns the same output as the 
input.

example 1

2 - non-linear regression

z = x1w1 + x2w2 + b

a = z

weighted sum activation

z a
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The second example is the neuron in the output layer. It takes the three outputs 
of the previous layer as inputs. As in the first example, it then performs the 
weighted sum, adds a bias, and performs the linear activation.


example 2

2 - non-linear regression

z = x1w1 + x2w2 +  x3w3 + b

a = z

weighted sum activation

z a
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In the second step, measure, we quantify the performance of the prediction.

measure

2 - non-linear regression

measure
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This is still a regression task, so we can use the same loss function as in Chapter 
1—the MSE.


Averaging the squared error over all twenty-four training data points gives us the 
MSE.




measure

2 - non-linear regression

predicted

value
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value

error loss

(squared


error)
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The third step, feedback, is where it gets interesting. Here, we’ll find a lot more 
things going on compared to the single-neuron case. 


This part of the book will be quite dense. For this, it is helpful to keep in mind 
the goal of this step, which is to find the parameter gradients so the neural 
network can adjust its parameters.


Let’s dive into it.

feedback

2 - non-linear regression

feedback
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We'll start with the output layer and move backward to the input layer. Again, for 
simplicity, we'll focus on the weights for now and come back to the biases later.

feedback

2 - non-linear regression

loss
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In Chapter 1, with a single-neuron network, we computed the weight gradient 
based on the loss (MSE). But what really happened under the hood? Let’s now see 
how the loss was fed back to the neural network.

single neuron

2 - non-linear regression

loss

dw
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Keeping to the single-neuron example for now, we can picture the flow of data 
using a computation graph. It provides a way to visualize how information 
traverses the neural network. 


Here we have the forward computation graph, which represents the predict step 
of the training cycle.


Note that the graph you are seeing is a slightly simplified version, sufficient to 
aid our discussion.

forward computation graph

2 - non-linear regression
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Meanwhile, the backward computation graph represents the feedback step. Here, 
we find new terms representing the activation gradient (da) and the weighted 
sum gradient (dz). They have been there all along, but for simplicity, were not 
shown in the earlier examples.


We need these other gradients to arrive at dw. The concept is called the chain rule. 
We won't cover the math, but the idea is this: We can compute a particular 
gradient if we know the gradient adjacent to it. Here, we can compute da from 
the loss value, which means we can compute dz, which means we can compute 
dw.


In fact, whenever error was mentioned in Chapter 1, it was referring to dz, which 
is the gradient adjacent to dw.

backward computation graph

2 - non-linear regression
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Let’s return to this chapter’s neural network. The backward computation graph is 
shown here for all four neurons. Starting from the loss value, information flows 
back to all neurons so that each weight receives its gradient, dw.


In deep learning, this process is called backpropagation. 


This graph looks pretty complex, so let’s pick one example.

backpropagation

2 - non-linear regression
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In this example, we’ll focus on two weight gradients, red and blue, involving two 
neurons, A and B.


Tracing the lines along the graph, we obtain the red dw by multiplying the input 
data i by neuron A’s dz.


Meanwhile, we obtain the blue dw by multiplying neuron A’s output (which 
becomes neuron B’s input) by neuron B’s dz.


You may be wondering, how did we know the formula for dw in the first place, 
and what about the formulas for dz and da? Unfortunately, we won’t cover them 
in this book, but if you are curious, do check out other resources to understand 
the math derivations.

example

2 - non-linear regression
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Let's take a closer look at the magnitude of the weight gradients, starting with 
the neuron in the output layer.


Inspecting the formula shows that the larger the input, the larger the 
corresponding weight gradient. But what does this mean?

magnitude

2 - non-linear regression

dw1 dw2 dw3

 input1   dz input2   dz input3   dz
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This means that the larger inputs have a greater influence on the output value, 
and thus on the prediction outcome. Therefore, this formula enables the network 
to assign the larger weight adjustments to inputs that make the bigger difference.


We can also think of this in terms of error contribution. 


Suppose input #1 is the largest. This tells us that input #1 is the one that 
contributed the most toward the error. So, we want to tell input #1 to make the 
biggest weight adjustment, and we do that by giving it the biggest weight 
gradient.



error contribution

2 - non-linear regression
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Recall that weight gradients have both magnitude and direction. As the gradients 
backpropagate, their directions can change too.


If either the input or dz is negative, then the weight gradient will be negative.




direction

2 - non-linear regression

dw1

input1   dz-

-dw1

input1   dz+

+
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A negative weight gradient means that the network will need to increase its 
weight instead.


If you recall the gradient descent discussion in Chapter 1, a negative value causes 
the gradient to flip its shape.


negative gradient

2 - non-linear regression

weight loss

inputs

dzdw
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The same principle applies to the rest of the neural network. Backpropagation 
continues until all the weights have received their gradients.


The good news is, in practice, there are well-established deep learning 
frameworks such as PyTorch and Tensorflow that handle all the tedious 
computations on our behalf! 


Nevertheless, the value of understanding how it all works is immense.


repeat for the whole network

2 - non-linear regression

dwdw
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Now let’s firm up our understanding of how backpropagation works. Suppose we 
had a larger network with a few more hidden layers.

example with a bigger network

2 - non-linear regression

dw
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Take this neuron in the middle for example. It has just received the da gradients 
from its outputs. But what does it do with them? 


example neuron

2 - non-linear regression

da
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The first thing it does is to sum up these da values. This represents the net 
gradient coming from the three outputs.


As per the chain rule, da gives rise to dz.


And then, we get the dw for each input by multiplying dz by the inputs.


Example neuron

2 - non-linear regression
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The fourth step, adjust, is where we perform the weight adjustments.

adjust

2 - non-linear regression

adjust
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As in Chapter 1, we can now adjust the nine weights according to the gradients 
that they receive.

weight adjustment

2 - non-linear regression

wnew = wprevious - alpha   dw
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Let’s now bring the bias term back into the picture. As before, the formula for the 
bias gradient db is simply equal to the error, which we now know is given by dz.

bias

2 - non-linear regression
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The neural network can now adjust the biases based on their gradients.

bias adjustment

2 - non-linear regression

bnew = bprevious - alpha   db
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We'll repeat the training cycle for 800 epochs. This task requires more epochs 
compared to Chapter 1. This is because of the non-linearity, which will take a 
longer time to learn than a linear case. 

EPOCHS

2 - non-linear regression

...... ...

# of Epochs


# of training data
 # of training data
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With all the details, it's easy to lose sight of the goal. It's a good time to remind 
ourselves that all this boils down to finding the optimal weights that give the 
most accurate predictions.


Now that training is complete, the neural network should have learned enough to 
produce decent predictions.

Revisiting our goal

2 - non-linear regression

error

weights biases
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However, this doesn’t seem to be the case. The MSE of the training data is very 
poor. Meanwhile, when plotted, the predictions seem as good as random. It 
appears that the neural network hasn’t learned much!

training performance
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The same is true with the test data. The predictions don’t seem anywhere close to 
the actual values. 


So, where did this go wrong?

TEST performance
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The answer lies in the activation function that we used. All neurons were using 
linear activation.

activation function

2 - non-linear regression
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As we’ve seen, a linear activation function returns exactly the same value of the 
input it receives.


linear activation
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It can be shown mathematically that if all neurons in the hidden layer are using 
linear activation, they make no difference to the output. It doesn’t matter how 
many neurons there are. It is effectively the same as having no hidden layer, 
which is equivalent to what we had in Chapter 1. 


For this reason, our neural network was unable to capture the non-linearities in 
the data.


linearity

2 - non-linear regression
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Returning to our earlier plot of training predictions, it may not appear that the 
results were linear. 


But indeed, they were. If we were to plot the predictions on a 3D chart, we would 
see them falling on a linear 2D plane.

linear plane

2 - non-linear regression
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The solution to our problem is to introduce non-linearity in the hidden layers. 
With non-linearity, having hidden layers now makes a huge difference.


The more layers and neurons the neural network has, the more complex 
relationships in the data it can capture.



non-linearity

2 - non-linear regression
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To add the much-needed non-linearity, we turn to an activation function called 
the rectified linear unit (ReLU). It is an activation function used widely in neural 
networks today. It’s a simple change from the linear function, but it serves its 
purpose and does its job very well.



For any positive input, the ReLU activation outputs the same value, just like the 
linear activation. 


The difference is for the negative inputs. If the input is negative, the ReLU 
activation will output zero.

relu activation function
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The ReLU effectively works like a gate - it turns on whenever the input is above 
zero and turns off otherwise. As simple as it may look, it enables the neuron to 
have a pretty powerful ability—a choice.


With linear activation, it doesn't matter whether it thinks a piece of information 
is important or not, it just lets it through.


But with ReLU, every neuron can make a difference. It can now choose to only 
‘activate’ when the input is positive.

choice
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We'll now replace the linear activation functions in the hidden layer with ReLU.


In the output layer, it’s fine to keep the linear activation for this task. In the next 
chapter, we'll see a task where we do need to change the activation function in 
the output layer.



reconfigure

2 - non-linear regression
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This time, it looks like we are heading in the right direction. The MSE of the 
training predictions is much better now.

training performance
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And the MSE of the test predictions is not too bad either. As in Chapter 1, we can 
bring it closer to the training MSE by having more data points and ensuring that 
the training and test distributions are similar.

TEST performance
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If we want to, we can further improve the performance by adding more layers and 
units. 


As we add more neurons, the neural network will be able to increase the 
granularity of its predictions, resulting in a prediction curve that is smoother and 
more well-defined.

more neurons

2 - non-linear regression

...

more layers and units
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There are many other types of activation functions. Some of the more commonly 
used ones are shown here. Each activation function allows the neural network to 
exhibit a different kind of quality compared to the others. 


We'll look at another type, sigmoid, in the next chapter.

activation functions

2 - non-linear regression

...

linear relu

sigmoid tanh

input

o
u

t
p

u
t

input

o
u

t
p

u
t

input

o
u

t
p

u
t

input

o
u

t
p

u
t



1493 - binary classification

algorithm

t
a

s
k

LInear

regression

3

non-linear

regression

binary

classification

multi-class

classification

3 - binary classification



150

We have seen how the neural network performs regression tasks. In this chapter, 
we'll see how it performs another type of task—classification.


While regression is about predicting continuous values, classification is about 
predicting groups.


classification

3 - binary classification
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There is an endless list of deep learning use cases in the real world that involve 
classification. The classic examples are image classification in computer vision 
and sentiment analysis in natural language processing (NLP).

classification use cases
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The good news is, as we move from regression to classification, the basic 
principles of the neural network remain the same. 


In fact, there are only two major differences to note. The first is the type of 
activation function and the second is the type of loss function. We’ll learn more 
about them in this chapter.


classification vs. regression
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We'll use the same dataset as in Chapter 2 with one difference—we have replaced 
the target with a new one.


Let's suppose that we are tracking the hotels with the highest demand, 
segregating them from those which are not. This is represented by the new target 
called hot which has two possible values - yes and no.


The target is no longer a continuous variable but is a categorical variable instead. 
Categorical variables have a known, fixed number of values, or more precisely, 
classes. Unlike continuous variables, these classes do not imply any order (for 
example, whether one class is better than the other).

the dataset

3 - binary classification
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Recall that for regression, we wanted to model the line (for a single-feature 
scenario) or plane (for a two-feature scenario) where the predicted values would 
fall on.


As for classification, we want to model the classification boundary that separates 
the classes. For classification, it’s more common to use the term label instead of 
target, so we will use that term from now on.


Here is shown the plot of the actual class for each training data point. Also 
shown is an example of a hand-drawn boundary that separates the two classes. 
This is what we want our neural network to produce.

the dataset
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Our task is called a binary classification task because the outcome will be either 
one or the other - yes or no.


Before we can proceed with training, we need to convert the labels into a 
numeric format. For this purpose, we'll assign discrete values 1 for yes and 0 for 
no. 

binary classification
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Let's start building the neural network architecture that we need for this task. 


We'll stick with the same number of layers and units as in the previous task. The 
activation function in the hidden layer also remains unchanged as ReLU.

input & hidden layers

3 - binary classification

relu
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relu
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In fact, the overall architecture remains the same.


The only difference is in the output, where we’ll replace the linear activation 
function with a new one called sigmoid. Let’s take a look at how it works.

output layer
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Since the labels are discrete numbers of 0s and 1s, we must set up the neural 
network so that the predictions return either 0 or 1 and nothing else. 


We can’t achieve that with the current configuration. This is because the linear 
activation outputs continuous values instead of discrete.


A sigmoid function solves this problem by squeezing its input into a value 
between 0 and 1.

sigmoid activation function
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Regardless of how large or small the input is, this function ensures that it is 
converted into a number between 0 and 1.

sigmoid activation function
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For this reason, we'll use the sigmoid activation function in the output layer.


output layer
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This still leaves us with a small problem. We can now convert the output to fall 
between 0 and 1, but what we need is a value of either 0 or 1. The output has to be 
discrete.



For this, we can add an extra computation step to convert the output to 1 if it's 
greater than 0.5, and to 0 if it's less than 0.5.

discretize
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Why does this work? We can think of the output of the sigmoid activation as 
representing a probability. 


For example, if the output is 0.88, the neural network is indicating that the label 
has a higher probability of being 1. And if the output is 0.12, it has a higher 
probability of being 0.



probability
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But how can we implement this concept? The answer is the loss function.


Recall that the loss function defines the goal of the neural network, and as a 
result, dictates how it behaves.


We have covered the first difference between regression and classification—the 
activation function. Now we'll look at the second one—designing the loss 
function.



loss function
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loss function
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For regression, we chose MSE as the loss function because it gives us a desirable 
property of a single minimum point on the loss curve. We call this a convex loss 
function.


It turns out however (we won't cover the math here) that using an MSE in a 
binary classification task will result in a non-convex loss function. It means that 
there will be more than one location along the loss curve where a local minimum 
exists, making it difficult for the neural network to find its true, or global 
minimum.


For this reason, we'll need to use a different type of loss function.


convex and non-convex
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convex non-convex
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Our goal is to output a prediction of 1 when the actual value is 1 and a prediction 
of 0 when the actual value is 0.


That is, to get a prediction of 1, we want the sigmoid’s output to be as close to 1 
as possible, and vice versa for 0.

the goal
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The loss function we'll be using is called the binary cross entropy. This function 
fulfills our need to have a convex loss curve. 


The plots here depicts the shape of this loss function, with each class having its 
own loss curve. 


When the actual class is 1, we want the sigmoid output to be as close to 1 as 
possible, correspondingly pushing the loss toward its minimum. And when the 
actual class is 0, we want the sigmoid output to be as close to 0 as possible, 
pushing the loss toward its minimum.

loss function
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From here, we can perform the weight updates using the same gradient descent 
approach as in Chapters 1 and 2.

gradient descent
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We are now in a position to train the neural network. The training cycle follows 
the same four steps as in the previous chapters.

training
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There is one last change, which is the metric to measure performance.


In the regression task, we used the MSE both as the cost and the metric.


In a classification task, we need to use a different metric to better reflect the 
performance of the model. We'll use accuracy, which gives us the percentage of 
correct predictions over all predictions.
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Using the accuracy metric, we can see that the model does pretty well on the 
training dataset.


The plot also shows the decision boundary of our trained neural network, 
representing the predictions.
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The prediction on the test data also shows a respectable performance, given the 
limited number of data points.

test performance
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As in the regression task, we can further improve the performance by adding 
more layers and units. 


The plot here shows the decision boundary after modifying the neural network to 
contain two hidden layers with five and ten units of neurons each. The 
granularity of its predictions increased, resulting in a more well-defined and 
accurate prediction curve.

a bigger network
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Accuracy is often used as the measure of classification performance because it is 
simple to compute and is easy to interpret.


However, it can become misleading in some cases. This is especially true when 
dealing with imbalanced data, which is when certain classes contain way more 
data points than the rest.


Let's take the example of predicting fraud credit card transactions. Suppose we 
have a dataset of 100 data points, of which only 7 are fraud cases. If we simply 
predicted all the outputs to be 0, we would still manage to get an accuracy value 
of 93%! Clearly something isn’t right.
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The confusion matrix provides a way to measure performance in a balanced way. It 
shows the count of predictions falling into one of the following�

� True Negative (TN): when both the actual and predicted values are 0�
� False Positive (FP): when the actual value is 0 but the predicted value is 1�
� False Negative (FN): when the actual value is 1 but the predicted value is 0�
� True Positive (TP): when both the actual and predicted values are 1.


For our example, 0 represents the not fraud class while 1 represents the fraud 
class.

confusion matrix
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Applied to the credit card fraud dataset, we get 90, 3, 5, and 2 respectively for TN, 
FP, FN, and TP. 

applied to data
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From here, we can compute two types of metrics: precision and recall. 


The reason for the curiously high accuracy was the dominance of the true 
negatives, diluting the rest. With precision and recall, we remove the focus on 
these true negatives and instead give all the attention to the other three 
categories.


We can see from the precision and recall scores that they offer a more reliable 
performance indicator than accuracy.
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However, we still need to strike a balance between precision and recall.


To illustrate its importance, suppose the model from the credit card fraud 
prediction achieved high recall and low precision. This would lead to a high 
number of false positives. This is good for detecting as many fraud cases as 
possible, but comes at the expense of flagging non-fraud cases as frauds.


Conversely, if the model achieved high precision and low recall, this would result 
in a high number of false negatives. This is good for correctly classifying the 
non-fraud cases but will miss out on real fraud cases.


We can address this problem with the F1 Score, which provides a balanced 
emphasis on precision and recall. 
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Going back to our hotels dataset, we get an accuracy score that’s comparable 
with precision and recall, indicating that our dataset is balanced.
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In the last chapter, our task was to predict between two possible classes. But 
what if we had a label with more than two classes?


Such a task is called multi-class classification. To make the neural network work 
for this type of task, we'll need to modify its architecture slightly. This is what 
this chapter is about.
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We’ll use the same dataset as Chapter 3 and again, have a new label called 
category. Suppose there's a certification agency that classifies hotels into three 
categories—gold, silver, and bronze.


Our goal is to predict the category for a given hotel based on the features.


The label is a categorical variable, which means that order is not implied. Though 
the class names suggest that some order may exist, we just want to classify them 
without worrying about which class is better than which.


the dataset
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Here is shown the plot of the actual class for each training data point, along with 
an example of hand-drawn boundaries separating the three classes. This is what 
we want our neural network to produce.
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First, we need to convert the classes into a numeric format. Since we have more 
than two classes this time, converting them into 0s and 1s won’t work.


We need to use a method called one-hot encoding. Here, we create a new column 
for each class. Then we treat each column as a binary classification output, 
assigning the value 1 for yes and 0 for no. 


Note that if we also had features of the categorical type, we would apply the same 
method. Suppose we had a feature called view with possible values of pool, garden, 
and none. This will translate into three one-hot encoded features, one for each 
class.

one-hot encoding
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We'll start building the neural network with the input layer, where there are no 
changes from the previous chapter.


We'll also retain the same number of hidden layers and units, and keep ReLU as 
the activation function.



neural network architecture
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As for the output layer, we need to make some changes. A single-neuron output 
only works for binary classification.



For multi-class classification, we need to have the same number of neurons as 
classes. Each neuron represents one class, and its output is mapped to the 
corresponding one-hot encoded column. To understand this, let’s look at some 
examples. 


neural network architecture
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Here we have the labels of the first five data points—silver, gold, silver, gold, and 
bronze.


Take the first data point as an example. For the silver class, the neural network 
should ideally predict 0, 1, and 0 for the first, second, and third neurons. 


In short, for each data point, the neuron of the actual class should output 1 while 
other neurons should output 0.

output values
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There is also a change in the activation functions in the output layer. We'll 
introduce a new function called softmax.

output layer activation
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The softmax activation performs a two-step computation on its input: 
exponentiation and normalization.

softmax activation function
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In the first step, it turns the input into its exponent.

exponent

4 - multi-class classification

exponent

3 input

o
u

t
p

u
t

20.1



190

The effect of exponentiation is to transform any number into a positive number. 
Additionally, it amplifies the large inputs more than the small ones.

exponent
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To understand how the second step, normalization, works, we need to look at the 
layer as a whole.


Here we have the three units of neurons, one for each class. 

the full layer
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Each neuron performs the exponentiation on its input, which then becomes the 
input for the normalization step.

exponent

4 - multi-class classification

exponent



193

In the normalization step, each input is divided by the sum of all inputs. This 
becomes the output of the neural network.


As a result, the sum of all outputs will always be 1. This is a useful outcome 
because we can now treat the outputs as probability values, as we did in Chapter 
3. 


normalIZE
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Let’s take an example where the actual class is silver. And suppose that each 
neuron’s softmax activation produces 0.5, 0.2, and 0.3. 


Treating them as probabilities, we assign 1 to the neuron with the largest output 
and 0 to the other neurons.


In this example, the predicted class does not match the actual class. This brings 
us to the next discussion - the loss function.


example prediction
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The loss function we’ll be using is called categorical cross entropy. It is essentially 
the same as the binary cross entropy loss function we used in Chapter 3, but a 
generalized version. The categorical cross entropy works for any number of 
classes, unlike its binary counterpart.

loss function
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Let’s look at an example. Here, the actual class is silver. So, we want the neural 
network to output the highest probability at the second neuron.


In one of the earlier training epochs, we can see that the output at the second 
neuron is 0.3, which isn’t very good. This results in a high loss value.


In one of the later epochs, this neuron produces an output of 0.6. This indicates 
an improvement, which is reflected in the decreasing loss value. 

loss function example
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Using the accuracy metric, we can see that the model does pretty well on the 
training dataset.


The plot also shows the decision boundary of our trained neural network, 
representing the predictions.
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The prediction on the test data also shows a respectable performance, given the 
limited number of data points.

test performance
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As in Chapter 3, we can further improve the performance by adding more layers 
and units. 


The plot here shows the decision boundaries after modifying the neural network 
to contain two hidden layers with five and ten units of neurons each. The 
granularity of its predictions increased, resulting in a more well-defined and 
accurate prediction curve.

a bigger network
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The confusion matrix for this task is now expanded to a 3-by-3 matrix. The 
diagonal cells account for the correct predictions for each class, while the 
remaining cells account for the incorrect predictions.

confusion matrix
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For multi-class classification, each class will have its own set of precision and 
recall metrics. Here we have an example for the gold class.

precision and recall
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And with that, our fourth and final task is complete.


For the remainder of this chapter, we’ll look at various ways to improve our 
prediction results. We can divide them into two groups—hyperparameters and 
data.


First, let’s look at hyperparameters. You may not have noticed, but we have 
covered some of them in the four tasks. Now let’s take a closer look.

hyperparameters
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Recall that parameters—weights and biases—are learned by the neural network 
during training.

parameters
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On the other hand, hyperparameters are parameters that cannot be learned by 
the neural network. Instead, we need to provide them.


Choosing the right hyperparameters requires experience and is both an art and a 
science. They are no less important in successfully training a neural network.


There are many types of hyperparameters, so let’s cover some of the key ones.




hyperparameters
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This is obvious, but one of the most important hyperparameters is the size of the 
neural network itself. 


We change the size by increasing or decreasing the number of layers and units in 
each layer. A larger network is capable of handling more complex tasks and data.
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Another hyperparameter is the type of activation function in each neuron.


This depends on the nature of the task, but ReLU is typically used in the hidden 
layers, or at least is a good option to start with.


As for the output layer, this largely depends on the task, for example, whether it’s 
a regression or classification task.



activation function
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In all of our tasks, we have kept to a learning rate (or alpha) of 0.08. This value 
was chosen simply by trial and error, and there is no reason not to change it in 
other scenarios. 


As discussed earlier, we don’t want the learning rate to be too large or too small. 
Too big and learning will be erratic. Too small and learning will be slow. 
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We chose 100 epochs for Chapter 1 and 800 epochs for Chapters 2, 3, and 4 by 
trial and error.


An alternative approach is to set a very large epoch and configure training to stop 
automatically once certain performance criteria are met. This is called early 
stopping. 


Finding the right epoch for a task is important because too many epochs can lead 
to the model ‘learning too much', including unwanted noise in the data. On the 
other hand, too few epochs can lead to the model not capturing enough 
information from the data. 


number of epochs 
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In our tasks, we had a maximum of twenty-four training data points, which we 
trained as a full batch. However, in a typical training dataset, the number of data 
points is so large that we need to split them into mini batches. This 
hyperparameter is called the batch size. In the diagram above, the batch size is 
four.


This brings us to the other way to improve our prediction results—by working on 
the data.
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We'll look at a few data techniques that we can use to improve our predictions.

data techniques
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Let’s expand on the concept of mini batches.


We perform mini batching for a number of reasons. One of them is hardware 
limitation. For a very large dataset, we cannot fit the data points all at once into 
the computer’s memory. The solution is to split them into mini batches.


Another reason is performance. Let’s see why this is so.
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Recall that in the fours tasks, the model performed parameter adjustments after 
an entire epoch is complete. This is called full batch gradient descent.


At the other extreme, the model may also perform updates at every data point. 
This is called stochastic gradient descent.


Mini batch gradient descent is somewhere in between. For example, a batch size of 
four means that the model performs the updates after every four training data 
points.
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How do these options affect performance?


Imagine having a huge dataset where each epoch takes a tremendous amount of 
time to complete. With full batch gradient descent, the time between parameter 
updates will be too long. 


Conversely, stochastic gradient descent brings the advantage of fast feedback 
loops. However, since each update is based on only one data point, learning 
becomes erratic and unstable.


The mini batch gradient descent captures the best of both worlds, offering a 
balance between speed and stability.
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Let’s move on to the next technique. Sometimes overfitting can occur in training, 
where the model is too attuned to the training data and performs poorly on new 
data points. This is especially true when the training dataset is small.


One way to address this is to use K-fold cross validation. Here, we cycle through 
the training-test data split over many training rounds such that by the end, every 
data point will have been used for training. 


The performance metrics are then averaged over the number of rounds.

k-fold cross validation
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In all our tasks, for simplicity, we have split the dataset into two sets—training 
and test. However, in practice, it is common to split them into three sets—the 
other one being the validation set. 


In this case, the role of the test set as we’ve been using will be replaced by the 
validation set.


This means we can set aside the test set until the model is fully ready. This offers 
a more accurate way to measure performance since these are fresh data points 
that the model has never seen.

validation set
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In this final chapter, we’ll take a brief tour of deep learning architectures beyond 
what’s been covered so far.


Let’s start with the feedforward neural network. This is the quintessential version of 
neural networks, and it is the version we used in the four tasks. It’s called 
feedforward because information flows through the layers only in the forward 
direction. 

feedforward neural networks

the bigger picture
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We had a small network with only two inputs, but we can expand it to be as big as 
we need it. 


Take a look at this MNIST dataset. It is an image dataset where each data point 
contains an image of a handwritten number. This is a multi-class classification 
task to predict the number based on the image. The features are the individual 
pixels (28 x 28), while the label is a number between 0 and 9. 


There are 784 features, which means that 784 inputs are going into the first 
hidden layer. Additionally, such a task will require even more hidden layers with 
a substantial number of neurons in each.
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Now let’s look at another type - the convolutional neural network (CNN), typically 
used for image data.


The idea with this architecture is, instead of feeding all inputs to all neurons, we 
group neurons into smaller sets called filters. These filters don’t take the inputs 
all at once. Instead, they scan through the small sections of the inputs 
sequentially.

convolutional neural networks
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The scanning effect makes it perfect for image data. It takes advantage of the fact 
that in images, a pixel has a stronger relationship with its surrounding pixels 
than with pixels far away. 


These filters learn uniquely at the individual level and synergistically at the 
collective level.
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This process is repeated over several layers, and the result is a compressed 
version of the data. This information is finally fed into a standard layer to 
produce the prediction.

convolutional neural networks
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Let’s look at some use cases of the CNN. The first is image classification, where 
the task is to predict the class of an image. It’s the same type of task as the 
MNIST example, but with a different architecture.
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Another use case is object detection. It involves both classification and regression.


As for classification, this time each image could contain more than one class. 
Here is an example where we have four objects belonging to one of three classes.


As for regression, the task is to predict the position on the image where these 
objects are located.
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Another use case is semantic segmentation. This task is similar to image 
classification, except that classification is performed at the pixel level instead of 
at the image level.


The result is a finer definition of object boundaries on the image.

semantic segmentation
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Let’s take a look at another architecture - the recurrent neural network (RNN). This 
architecture is designed to work with data types with a sequence element, such as 
text, music, and time-series data.


This diagram depicts one building block of the RNN. It has two inputs. The first 
input is the data from the current step of a sequence, while the other input is the 
output of the previous step’s RNN block.
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By chaining these blocks together, we can pass information from each step of the 
sequence to the end of the network.
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Let’s take a use case - text classification. Here we have an example of sentiment 
analysis, where the task is to predict the sentiment in a sentence. 


Using an RNN architecture allows us to capture the essence of each word in a 
sentence, which together forms the meaning of the entire sentence.

text classification
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it’s a great day

positive

i don’t like mondays

negative

text classification
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Another use case is machine translation. Here, the RNN generates many outputs 
instead of one. 


Take a look at this example of a translation of a short phrase from English to 
French. 

machine translation
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my name

m’appelleje

machine translation
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Another interesting use case is text generation. Here, we can train the neural 
network to predict the next word, given a sequence of words. 


We can repeat this for as many words as we want. This means we can train it to 
generate a complete sentence, an essay, or even an entire book!

text generation
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text generation

I am having

lunch
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When it comes to generating new outputs, there is another architecture called 
the Generative Adversarial Networks (GAN).


Given a training dataset, the GAN can create new data points that follow the 
same distribution but yet distinct from the original.


The GAN consists of two competing neural networks, the generator and the 
discriminator. The generator’s role is to generate new examples that look as real as 
possible, while the discriminator’s role is to determine if they are real.

generative adversarial networks
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The architecture is designed so that both networks will keep improving after 
each training round. As more examples are given, the discriminator becomes 
increasingly good at detecting the real ones. At the same time, the generator’s 
output will become more and more similar to the real ones.

generative adversarial networks
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There are many other architectures out there, and new ones continue to emerge. 
It is an exciting area of research where breakthroughs keep on coming.

other architectures

the bigger picture

transformer

graph

autoencoder

. . .
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Deep learning has immense potential to address some of the world’s toughest 
challenges. Of course, it is not the solution to all problems, but it has proven its 
versatility and is making an impact in various industries and verticals.


By and large, it is still a relatively new technology. The opportunities are wide 
open for us to innovate and create solutions that make the world a better place.



conclusion

the bigger picture
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We have now reached the end of the book. Let’s now return to this summary of 
the key concepts that we have covered. It is a good time to revisit them and 
review your understanding about deep learning.

key concepts Revisited
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predict

weighted sum

activation

measure

cost

metrics

feedback

gradients

backpropagation

adjust

weights

biases

neural network

neurons

layers

architecture

task

linear

non-linear

regression

classification

Data

features

target

training

testing



If you are ready to go further into your deep learning journey and are looking to 
get hands-on practice, here are some books that I suggest for you to check out�

� Grokking Deep Learning by Andrew W. Trask [Manning Publications�
� Neural Networks and Deep Learning by Michael Nielsen [Free Online�
� Math for Deep Learning by Ronald T. Kneusel [No Starch Press�
� Deep Learning with PyTorch by Eli Stevens, Luca Antiga, and Thomas 

Viehmann [Manning Publications�
� Python Machine Learning by Sebastian Raschka and Vahid Mirjalili [Packt 

Publishing�
� Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien 

Géron [O'Reilly Media�
� Grokking Machine Learning by Luis G. Serrano  [Manning Publications�
� Deep Learning with Python by François Chollet [Manning Publications�
� Deep Learning Illustrated by Jon Krohn, Grant Beyleveld, and Aglaé Bassens 

[Addison-Wesley Professional�
� Deep Learning: A Visual Approach by Andrew Glassner [No Starch Press�
� Generative Deep Learning by David Foster [O'Reilly Media]


I just wanted to mention that there are way more resources out there than listed 
here. You can treat this as a starting point but by no means an exhaustive list of 
resources.



suggested resources

Thank you so much for reading my book! I hope you have enjoyed reading it.


If you have received value from it, I'd be so grateful to receive a short testimonial 
from you, to be displayed on the book's product website. It's the best gift I can 
get from a reader. And it will go a long way to support me in my endeavor.


You can do so by clicking on the button below.




If you have any other questions or feedback, do send them over to 
contact@kdimensions.com.


Meor Amer

thank you

Leave a Testimonial
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https://forms.gle/gJr1UzXrg5FjEWxF9


kDimensions

@kdimensions1


