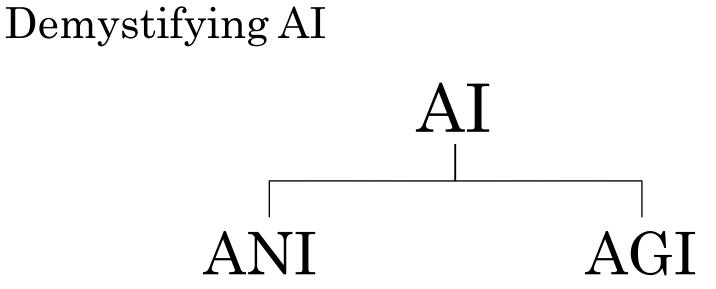
#### Introduction


AI value creation by 2030 \$13 trillion

| Retail                              | \$0.8T |
|-------------------------------------|--------|
| Travel                              | \$480B |
| Transport & Logistics               | \$475B |
| Automotive & Assembly               | \$405B |
| Basic Materials                     | \$300B |
| Advanced Electronics/Semiconductors | \$291B |
| Healthcare Systems and Services     | \$267B |
| High Tech                           | \$267B |
| Telecom                             | \$174B |
| Oil & Gas                           | \$173B |
| Agriculture                         | \$164B |

[Source: McKinsey Global Institute.]







(artificial narrow intelligence)

E.g., smart speaker, self-driving car, web search, AI in farming and factories (artificial general intelligence)

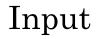
Do anything a human can do

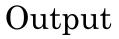


## What you'll learn

- What is AI?
  - Machine Learning
  - Data
  - What makes an AI company
  - What machine learning can and cannot do
  - Optional: Intuitive explanation of Deep Learning
- Building AI projects
- Building AI in your company
- AI and society







**Andrew Ng** 

## What is AI

Machine Learning

#### Supervised Learning









| Input (A)         | Output (B)             | Application         |
|-------------------|------------------------|---------------------|
| email             | spam? (0/1)            | spam filtering      |
| audio             | text transcripts       | speech recognition  |
| English           | Chinese                | machine translation |
| ad, user info     | click? (0/1)           | online advertising  |
| image, radar info | position of other cars | Self-driving car    |
| image of phone    | defect? (0/1)          | visual inspection   |
|                   |                        |                     |

| Wh          | y Now?         |                   |
|-------------|----------------|-------------------|
|             |                | large neural net  |
|             |                | medium neural net |
| nance       |                | small neural net  |
| performance |                | traditional AI    |
|             |                |                   |
|             | amount of data | →                 |





Andrew Ng

## What is AI

What is data

### Example of a table of data (dataset)

| house<br>(square feet)                     | # of<br>bedrooms | price (1000\$)    |
|--------------------------------------------|------------------|-------------------|
| 523                                        | 1                | 100               |
| $\begin{array}{c c} 645\\ 708 \end{array}$ | $\frac{1}{2}$    | $\frac{150}{200}$ |
| 1034                                       | $\frac{2}{3}$    | 300               |
| 2290                                       | 4                | 350               |
| 2545                                       | 4                | 440               |

| image | label   |
|-------|---------|
| C. C. | cat     |
| O O   | not cat |
|       | cat     |
|       | not cat |

"Google cat"



#### Acquiring data

- Manual labeling









- From observing user behaviors

| user ID | time             | price (\$)                       | purchased |
|---------|------------------|----------------------------------|-----------|
| 4783    | Jan 21 08:15.20  | $7.95 \\ 10.00 \\ 9.50 \\ 12.90$ | yes       |
| 3893    | March 3 11:30.15 |                                  | yes       |
| 8384    | June 11 14:15.05 |                                  | no        |
| 0931    | Aug 2 20:30.55   |                                  | yes       |

| machine                                                | temperature<br>(°C) | pressure<br>(psi)        | machine<br>fault |
|--------------------------------------------------------|---------------------|--------------------------|------------------|
| $\begin{array}{c} 17987 \\ 34672 \\ 08542 \end{array}$ | $60 \\ 100 \\ 140$  | $7.65 \\ 25.50 \\ 75.50$ | N<br>N<br>V      |
| 98536                                                  | 140 $165$           | 125.00                   | Ŷ                |

- Download from websites / partnerships

#### Use and mis-use of data

Don't throw data at an AI team and assume it will be valuable.



Andrew Ng

#### Data is messy

- Garbage in, garbage out
- Data problems
  - Incorrect labels
  - Missing values
- Multiple types of data

images, audio, text

| house<br>(square feet) | # of<br>bedrooms | price<br>(1000\$)                           |
|------------------------|------------------|---------------------------------------------|
| $523\\645$             | 1                | $\begin{array}{c} 100 \\ 0.001 \end{array}$ |
| 708                    | unknown          | 200                                         |
| 1034<br>unknown        | $\frac{3}{4}$    | unknown<br>350                              |
| 2545                   | unknown          | 440                                         |





**Andrew Ng** 

## What is AI

The terminology of AI

### Machine learning vs. data science

| Home   | size                                        | # of          | # of      | newly     | price                                     |
|--------|---------------------------------------------|---------------|-----------|-----------|-------------------------------------------|
| prices | (square feet)                               | bedrooms      | bathrooms | renovated | (1000\$)                                  |
| P      | $\begin{array}{c} 523 \\ 645 \end{array}$   | 1<br>1        | $2 \\ 3$  | N<br>N    | $\begin{array}{c} 100 \\ 150 \end{array}$ |
|        | 708                                         | 2             | 1         | N         | 200                                       |
|        | 1034                                        | 3             | 3         | Y         | 300                                       |
|        | $\begin{array}{c} 2290 \\ 2545 \end{array}$ | $\frac{4}{4}$ | 4 5       | N<br>Y    | $\frac{350}{440}$                         |

Homes with 3 bedrooms are more expensive than homes with 2 bedrooms of a similar size.

Running AI system (e.g., websites / mobile app)

Newly renovated homes have a 15% premium.

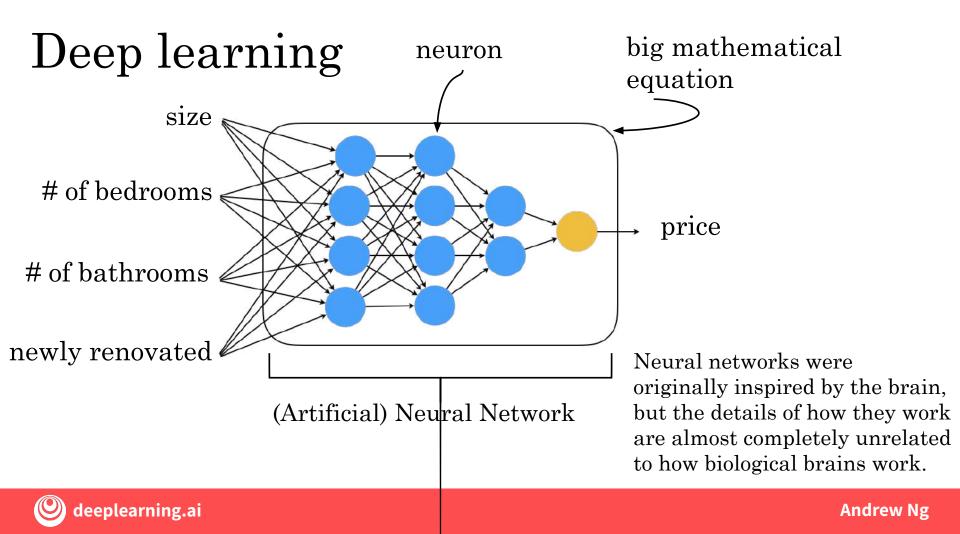


**Andrew Ng** 

### Machine learning vs. data science

Machine learning

"Field of study that gives computers the ability to learn without being explicitly programmed."


-Arthur Samuel (1959)

Data science

Science of extracting knowledge and insights from data.







### AI has many tools

- Machine learning and data science
- -Deep learning / neural network
- -Other buzzwords: Unsupervised learning, graphical models, planning, knowledge graph, ...





## What is AI

What makes an AI company?

**Andrew Ng** 

### A lesson from the rise of the Internet

#### <u>Internet Era</u>

#### Shopping mall + website ≠ Internet company

- A/B testing
- Short iteration time
- Decision making pushed down to engineers and other specialized roles

#### <u>AI era</u>

Any company + deep learning ≠ AI company

- Strategic data acquisition
- Unified data warehouse
- Pervasive automation
- New roles (e.g., MLE) and division of labor

#### **AI** Transformation

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communication





**Andrew Ng** 

## What is AI

What machine learning can and cannot do

### Supervised Learning

| Input (A)         | Output (B)             | Application         |
|-------------------|------------------------|---------------------|
| email             | spam? (0/1)            | spam filtering      |
| audio             | text transcripts       | speech recognition  |
| English           | Chinese                | machine translation |
| ad, user info     | click? (0/1)           | online advertising  |
| image, radar info | position of other cars | Self-driving car    |
| image of phone    | defect? (0/1)          | visual inspection   |

Anything you can do with 1 second of thought, we can probably now or soon automate.



# What machine learning today can and cannot do

The toy arrived two days late, so I wasn't able to give it to my niece for her birthday. Can I return it?

"Refund request"

Input text Refund/ Support/ Shipping

Oh, sorry to hear that. I hope your niece had a good birthday. Yes, we can help with....



### What happens if you try?

<u>Input (A)</u> User email <u>Output (B)</u> 2-3 paragraph response

1000 examples

"My box was damaged."

"Where do I write a review?"

"What's the return policy?"

"When is my box arriving?"

Thank you for your email.

Thank you for your email.

Thank you for your email.

Thank yes now your....



Andrew Ng

#### What makes an ML problem easier

1. Learning a "simple" concept

2. Lots of data available







Andrew Ng

## What is AI

More examples of what machine learning can and cannot do

#### Self-driving car

#### Can do



#### Cannot do







#### $\operatorname{stop}$


hitchhiker

bike turn left signal

Data
 Need high accuracy



#### X-ray diagnosis



#### Can do

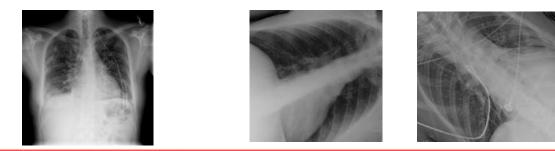
Diagnose pneumonia from ~10,000 labeled images

#### Cannot do

Diagnose pneumonia from 10 images of a medical textbook chapter explaining pneumonia



#### Strengths and weaknesses of machine learning


ML tends to work well when:

- 1. Learning a "simple" function
- 2. There is lots of data available

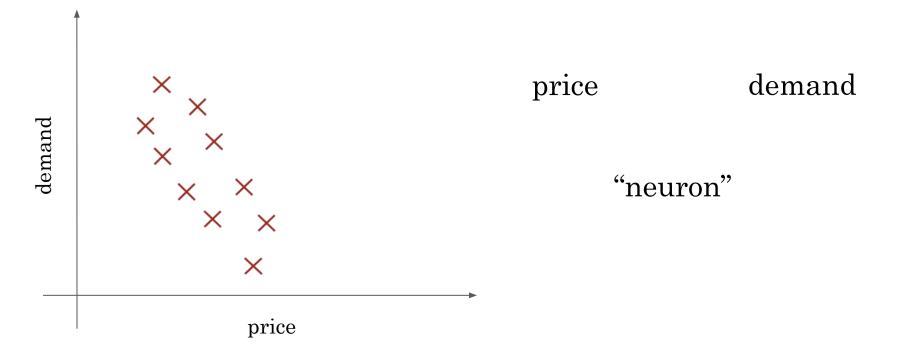
ML tends to work poorly when:

1. Learning complex functions from small amounts of data

2. It is asked to perform on new types of data that it learned from








Andrew Ng

## What is AI

Non-technical explanation of deep learning I (optional)

### Demand prediction





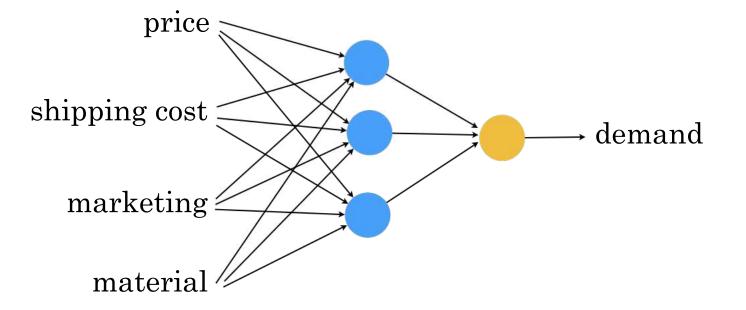
Andrew Ng

### Demand prediction

price

shipping cost

marketing


#### material





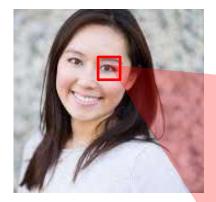
Andrew Ng

### Demand prediction



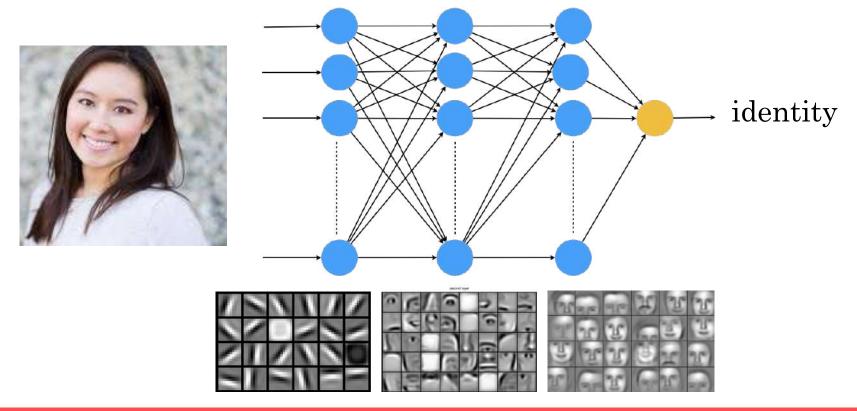







Andrew Ng

## What is AI


Non-technical explanation of deep learning II (optional)

#### Face recognition



| 30  | 32  | 22  | 12  | 10  | 10  | 12  | 33  | 35  | 30  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 12  | 11  | 12  | 234 | 170 | 176 | 13  | 15  | 12  | 12  |
| 234 | 222 | 220 | 230 | 200 | 222 | 230 | 234 | 56  | 78  |
| 190 | 220 | 186 | 112 | 110 | 110 | 112 | 180 | 30  | 32  |
| 49  | 250 | 250 | 250 | 4   | 2   | 254 | 200 | 44  | 6   |
| 55  | 250 | 250 | 250 | 3   | 1   | 250 | 245 | 25  | 3   |
| 189 | 195 | 199 | 150 | 110 | 110 | 182 | 190 | 199 | 55  |
| 200 | 202 | 218 | 222 | 203 | 200 | 200 | 208 | 215 | 222 |
| 219 | 215 | 220 | 220 | 222 | 214 | 215 | 210 | 220 | 220 |
| 220 | 220 | 220 | 220 | 221 | 220 | 221 | 220 | 220 | 222 |

#### Face recognition





# **Copyright Notice**

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>



Building AI Projects

Starting an AI project

# Starting an AI project

- Workflow of projects
- Selecting AI projects
- Organizing data and team for the projects



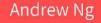


Building AI Projects

Workflow of a machine learning project

### Example: Speech recognition










Amazon Echo / Alexa Google *Home*  Apple Siri Baidu *DuerOS* 



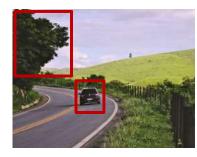


### Key steps of a machine learning project

Echo / Alexa

- 1. Collect data
- 2. Train model Iterate many times until good enough
  - 3. Deploy model Get data back Maintain / update model




### Key steps of a machine learning project

### Self-driving car

1. Collect data



- 2. Train model Iterate many times until good enough
- 3. Deploy model Get data back Maintain / update model







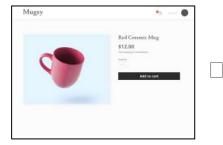
#### image

#### position of other cars





# Building AI Projects


Workflow of a data science project

### Example: Optimizing a sales funnel

#### Visit website



#### Product page



#### Shopping cart



#### Checkout

| Mugsy   | 1 (E. 1) (B. 1)                                |
|---------|------------------------------------------------|
|         | or your purchase!<br>r the order confirmation. |
| Continu | e to homepage                                  |





### Key steps of a data science project

#### Optimizing a sales funnel

- 1. Collect data
- 2. Analyze data

| User ID | Country     | Time            | Webpage     |
|---------|-------------|-----------------|-------------|
| 2009    | Spain       | 08:34:30 Jan 5  | home.html   |
| 2897    | USA         | 13:20:22 May 18 | redmug.html |
| 4893    | Philippines | 22:45:16 Jun 11 | mug.html    |

Iterate many times to get good insights

3. Suggest hypotheses/actions Deploy changes Re-analyze new data periodically



### Key steps of a data science project

| Manufacturing line Final<br>Mix clay Shape mug Add glaze Fire kiln inspection |                   |            | Clay<br>Batch<br># | Supplier                   | Mixing<br>time<br>(minutes)    |
|-------------------------------------------------------------------------------|-------------------|------------|--------------------|----------------------------|--------------------------------|
| Mix clay Shape hiug Add glaze Fil                                             |                   | Inspection | 001                | ClayCo                     | 35                             |
|                                                                               |                   |            | 034                | GooClay                    | 22                             |
|                                                                               |                   |            | 109                | BrownStuff                 | 28                             |
| 1. Collect data                                                               | Mug<br>Batch<br># | Country    | Humidity           | Temperature<br>in kiln (F) | Duration<br>in kiln<br>(hours) |
| 2. Analyze data                                                               | 301               | Spain      | 0.002%             | 1410°                      | 22                             |
| Iterate many times to get good insight.<br>3. Suggest hypotheses/actions      |                   | USA        | 0.003%             | 1520°                      | 24                             |
| Deploy changes<br>Re-analyze new data periodically                            | 303               | Malaysia   | 0.002%             | 1420°                      | 22                             |
|                                                                               |                   |            |                    |                            |                                |



Andrew Ng

# Building AI Projects

#### Every job function needs to learn how to use data



#### Data science



#### Optimize sales funnel

# Red Ceramic Mug

## . Check your email for the order confirmation.

#### Machine learning

| Name   | Title   | Company<br>size | Email  | Priority |
|--------|---------|-----------------|--------|----------|
| Tayler | CEO     | 3050            | tay@a  | high     |
| Janet  | Manager | 230             | jan@b  | medium   |
| David  | Intern  | 30              | dave@c | low      |

#### Automated lead sorting



### Manufacturing line manager

#### Data science

Mix clay







Final



#### Optimize sales funnel





inspection





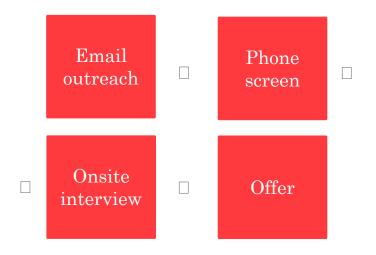
Machine learning



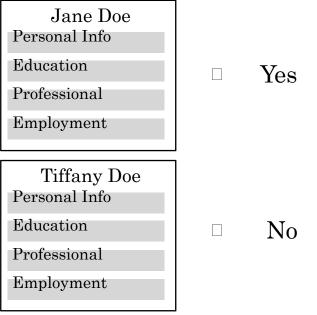
ok

ok

defect


#### Automated visual inspection




Fire kiln

### Recruiting

#### Data science



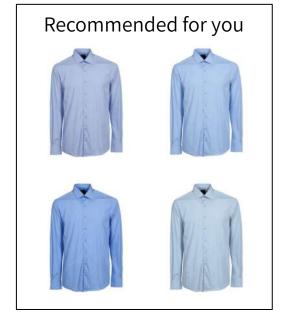
### Machine learning



#### Optimize recruiting funnel



Automated resume screening


### Marketing

#### Data science



#### A/B testing

#### Machine learning



Customized product recommendation



### Agriculture

#### Data science



Crop analytics

#### Machine learning



#### Precision weed killing







# Building AI Projects

How to choose an AI project I

### AI knowledge and domain knowledge

What AI can do Things valuable for your business





### Brainstorming framework

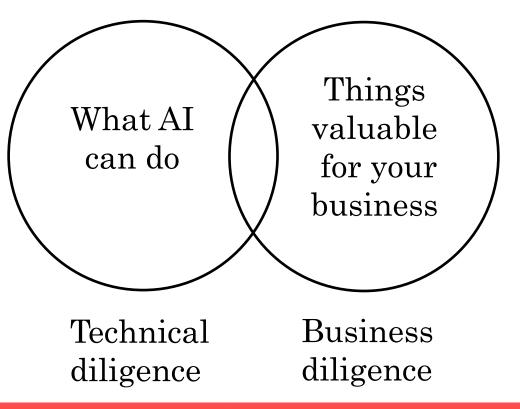
- Think about optimizing tasks rather than automating jobs. E.g., call center routing, radiologists.
- What are the main drivers of business value?
- What are the main points in your business?



### You can make progress even without big data

- Having more data almost never hurts.
- Data makes some businesses (like web search) defensible.
- But with small datasets, you might still make progress.








# Building AI Projects

How to choose an AI project II

Due diligence on project





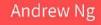
### Due diligence on project

#### Technical diligence

- Can AI system meet desired performance
- How much data is needed
- Engineering timeline

#### Business diligence

- Lower costs
- Increase revenue


- current business
- Launch new product or new business business



### Build vs. buy

- ML projects can be in-house or outsourced
- DS projects are more commonly in-house
- Some things will be industry standard avoid building those.







Building AI Projects

Working with an AI team

### Specify your acceptance criteria



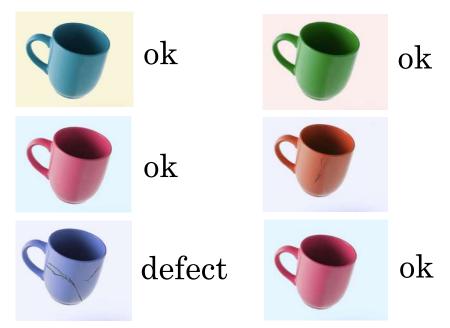
Goal: detect defects with 95% accuracy

Provide AI team a dataset on which to measure their performance



### How AI teams think about data

#### Training set




Test set ok ok defect



### Pitfall: Expecting 100% accuracy

#### Test set



- Limitations of ML
- Insufficient data
- Mislabeled data
- Ambiguous label







Andrew Ng

# Building AI Projects

Technical tools for AI teams (optional)

### **Open-source** frameworks

Machine learning frameworks:

- TensorFlow
- PyTorch
- Keras
- MXNet
- CNTK
- Caffe
- PaddlePaddle
- Scikit-learn
- R
- Weka

Research publications

Arxiv

### Open source repositories:

• GitHub



### CPU vs. GPU

CPU: Computer processor (Central Processing Unit)



#### **GPU:** Graphics Processing Unit



#### Cloud vs. On-premises





# **Copyright Notice**

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>



Building AI in Your Company

Introduction

### Building AI in your company

- Case studies of complex AI products
- Roles in an AI team
- AI Transformation Playbook
- Taking your first step





# Building AI in Your Company

Case study: Smart speaker

#### Smart speaker









Amazon Echo / Alexa

| Google |
|--------|
| Home   |

Apple Siri

Baidu *DuerOS* 

#### "Hey device, tell me a joke"



## "Hey device, tell me a joke"

Steps to process the command:

- 1. Trigger word/wakeword detection Audio "Hey device"? (0/1)
- 2. Speech recognition Audio
- 3. Intent recognition
- 4. Execute joke

learning.ai



Intent

recognition

joke? time? music? call?



Execution

Trigger word detection Speech recognition

🕖 dee

#### "Hey device, set timer for 10 minutes"

Steps to process the command:

- 1. Trigger word/wakeword detection Audio "Hey device"? (0/1)
- 2. Speech recognition Audio "set timer for 10 minutes"
- **3**. Intent recognition
- 4. a) Extract duration

"Set timer for 10 minutes"

"Let me know when 10 minutes is up"

b) Start timer with set duration

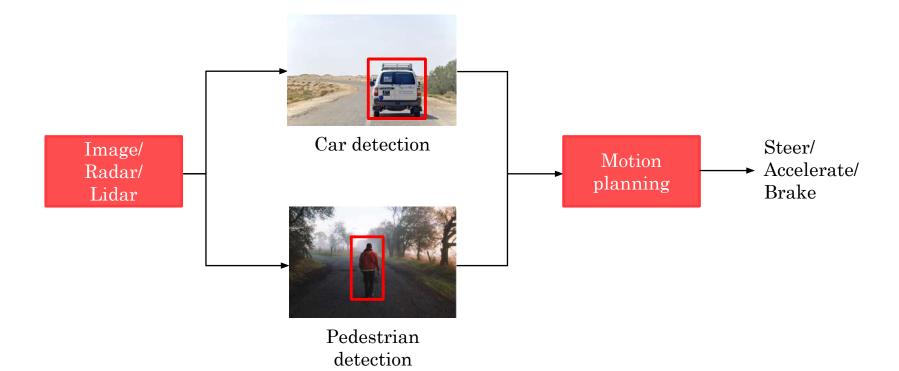
"set timer for 10 minutes" timer

## Other functions

- Play music
- Volume up/down
- Make call
- Current time
- Units conversion
- Simple question

#### Key steps:

- 1. Trigger/wakeword detection
- 2. Speech recognition
- 3. Intent recognition
- 4. Specialized program to execute command






Building AI in Your Company

Case study: Self-driving car

#### Steps for deciding how to drive









1. Car detection



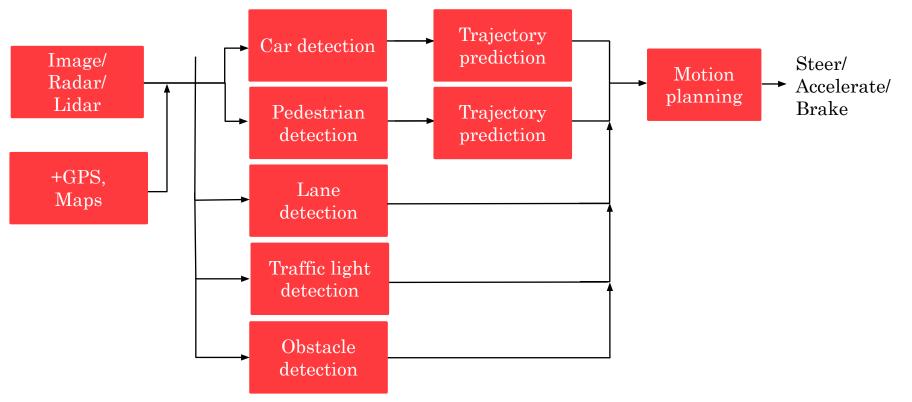


2. Pedestrian detection





3. Motion planning










### Steps for deciding how to drive









# Building AI in Your Company

Example roles of an AI team


#### Example roles

- Software Engineer
  - E.g., joke execution, ensure self-driving reliability, ...
- Machine Learning Engineer

#### Applied ML Scientist

- Machine Learning Researcher
  - Extend state-of-the-art in ML





## Example roles

- Data Scientist
  - Examine data and provide insights
  - Make presentation to team/executive
- Data Engineer
  - Organize data

```
1 MB (megabyte)
1,000 MB = GB (gigabyte)
1,000,000 MB = TB (terabyte)
1,000,000,000 MB = PB (petabyte)
```

- Make sure data is saved in an easily accessible, secure and cost effective way
- AI Product Manager
  - Help decide what to build; what's feasible and valuable

#### Getting started with a small team

- 1 Software Engineer, or
- 1 Machine Learning Engineer/Data Scientist, or
- Nobody but yourself





# Building AI in Your Company

AI Transformation Playbook (Part I)

## AI Transformation Playbook

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communications



#### 1. Execute pilot projects to gain momentum

- More important for the initial project to succeed rather than be the most valuable
- Show traction within 6-12 months
- Can be in-house or outsourced



#### 2. Build an in-house AI team

#### **BU=** Business Unit

AI function can be under CTO, CIO, CDO, etc. or a new CAIO



# 3. Provide broad AI training

| Role                                           | What they should learn                                                                                                                  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Executives and senior business<br>leaders      | <ul><li>What AI can do for your enterprise</li><li>AI strategy</li><li>Resource allocation</li></ul>                                    |  |  |
| Leaders of divisions working on AI<br>projects | <ul> <li>Set project direction (technical and<br/>business diligence)</li> <li>Resource allocation</li> <li>Monitor progress</li> </ul> |  |  |
| AI engineer trainees                           | <ul> <li>Build and ship AI software</li> <li>Gather data</li> <li>Execute on specific AI projects</li> </ul>                            |  |  |

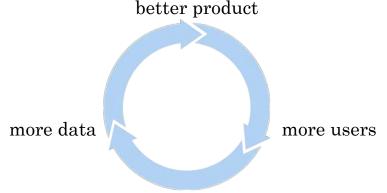
The smart CLO knows they should *curate* rather than *create* content





# Building AI in Your Company

AI Transformation Playbook (Part II)


## AI Transformation Playbook

- 1. Execute pilot projects to gain momentum
- 2. Build an in-house AI team
- 3. Provide broad AI training
- 4. Develop an AI strategy
- 5. Develop internal and external communications



### 4. Develop an AI strategy

- Leverage AI to create an advantage specific to your industry sector
- Design strategy aligned with the "Virtuous Cycle of AI"





## 4. Develop an AI strategy

- Consider creating a data strategy

   Strategic data acquisition
   Unified data warehouse
- Create network effects and platform advantages

   In industries with "winner take all" dynamics,

   AI can be an accelerator



#### 5. Develop internal and external communications

- Investor relations
- Government relations
- Customer/user education
- Talent/recruitment
- Internal communications

Detailed AI Transformation Playbook: https://landing.ai/ai-transformation-playbook/





Building AI in Your Company

AI pitfalls to avoid

# AI pitfalls to avoid

#### Don't:

• Expect AI to solve everything

• Hire 2-3 ML engineers and count solely on them to come up with use cases

#### Do:

- Be realistic about what AI can and cannot do given limitations of technology, data, and engineering resources
- Pair engineering talent with business talent and work crossfunctionally to find feasible and valuable projects



# AI pitfalls to avoid

#### Don't:

- Expect the AI project to work the first time
- Expect traditional planning processes to apply without changes
- Think you need superstar AI engineers before you can do anything

#### Do:

- Plan for AI development to be an iterative process, with multiple attempts needed to succeed
- Work with AI team to establish timeline estimates, milestones, KPIs, etc.
- Keep building the team, but get going with the team you have





Building AI in Your Company

Taking your first step in AI

## Some initial steps you can take

- Get friends to learn about AI -This course
  - -Reading group
- Start brainstorming projects -No project is too small
- Hire a few ML/DS people to help
- Hire or appoint an AI leader (VP AI, CAIO, etc.)
- Discuss with CEO/Board possibilities of AI Transformation -Will your company be much more valuable and/or more effective if it were good at AI?



Andrew Ng

# Building AI in Your Company

Survey of major AI application areas (optional)

# **Computer Vision**

• Image classification/Object recognition -Face recognition

register

- Object detection
- Image segmentation
- Tracking









cat



new







## Natural Language Processing

- Text classification
  - Sentiment recognition
- Information retrieval - E.g., web search
- Name entity recognition
- Machine translation

Email

Product description

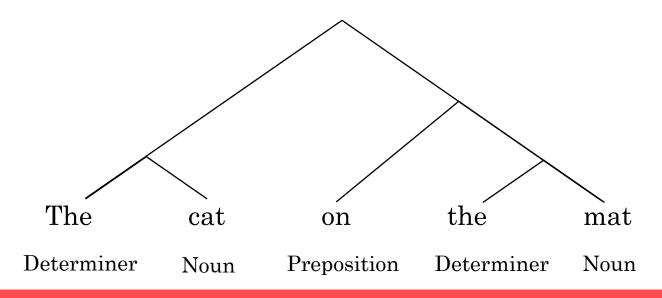
"The food was good"

"Service was horrible"

Spam/Non-Spam

Product category




<sup>(Queen Elizabeth II]</sup> knighted Sir Paul McCartney for his services to music at the Buckingham Palace

AIは、新たな電気だ AI is the new electricity

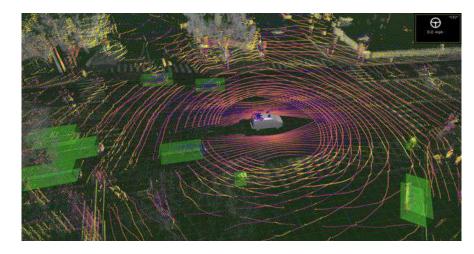



#### Natural Language Processing

• Others: parsing, part-of-speech tagging








- Speech recognition (speech-to-text)
- Trigger word/wakeword detection
- Speaker ID
- Speech synthesis (text-to-speech, TTS) The quick brown fox jumps over the lazy dog.



#### Robotics

- Perception: figuring out what's in the world around you
- Motion planning: finding a path for the robot to follow
- Control: sending commands to the motors to follow a path





#### General machine learning

• Unstructured data (images, audio, text)



#### • Structured data

| House size    | # of                                 | Price    | Clay batch | Supplier   | Mixing time |
|---------------|--------------------------------------|----------|------------|------------|-------------|
| (square feet) | bedrooms                             | (1000\$) | #          |            | (minutes)   |
| 523           | $\begin{array}{c}1\\1\\2\end{array}$ | 100      | 001        | ClayCo     | 35          |
| 645           |                                      | 150      | 034        | GooClay    | 22          |
| 708           |                                      | 200      | 109        | BrownStuff | 28          |





# Building AI in Your Company

Survey of major AI techniques (optional)

Unsupervised learning

Clustering Potato chip sales price per packet  $\times \times \times \times$ # of packets

Given data (without any specific desired output labels), find something interesting about the data



Finding cats from unlabeled YouTube videos



## Transfer learning

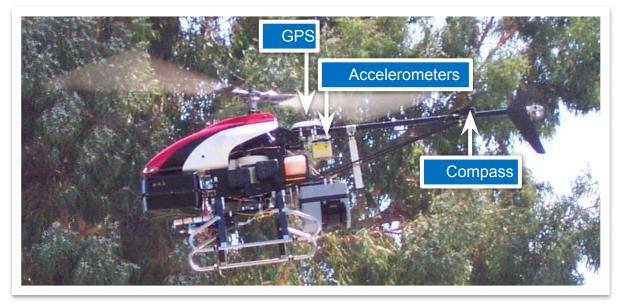
### Car detection



Golf cart detection



100,000 images


100 images

### Learn from task A, and use knowledge to help on task B





## Reinforcement learning



Use a "reward signal" to tell the AI when it is doing well or poorly. It automatically learns to maximize its rewards.



## **Reinforcement learning**



Use a "reward signal" to tell the AI when it is doing well or poorly. It automatically learns to maximize its rewards.



### GANs (Generative Adversarial Network)

Synthesize new images from scratch



[Source: Karras et al. (2018). Progressive Growing of GANs for Improved Quality, Stability, and Variation]





### Knowledge Graph

Jan 3, 2019 - Ada Lovelace, in full Ada King, countess of Lovelace, original name Augusta Ada Byron,

| All Images Books News Videos More Settings Tool                                                                                              |                                                                                                                                                                                            |       |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                              | ols                                                                                                                                                                                        |       |
| ada lovelace                                                                                                                                 | \$ a                                                                                                                                                                                       |       |
| All Images Books Videos News More Settings                                                                                                   | s Tools                                                                                                                                                                                    |       |
| About 9,260,000 results (0.35 seconds)                                                                                                       |                                                                                                                                                                                            |       |
| Ada Lovelace - Wikipedia<br>https://en.wikipedia.org/wiki/Ada Lovelace -                                                                     |                                                                                                                                                                                            | 1     |
| Augusta Ada King, Countess of Lovelace * an English mathematician and writer, chiefly k<br>her work on Charles Babbage's proposed mechanical | rknown for                                                                                                                                                                                 |       |
| Resting place: Church of St. Mary Magdalene, Spouse(s): William King-Noel, 1st Earl o                                                        | of A Contraction of A Contraction                                                                                                                                                          |       |
| Known for: Mathematics, computing                                                                                                            |                                                                                                                                                                                            |       |
| Charles Babbage - Analytical Engine - William King-Noel, 1st Earl of - Lady Byron                                                            |                                                                                                                                                                                            |       |
| Ada Lovelace: Founder of Scientific Computing                                                                                                |                                                                                                                                                                                            | e in  |
| https://www.sdsc.edu/ScienceWomen/lovelace.html *                                                                                            | Ada Lovelace                                                                                                                                                                               |       |
| ADA BYRON, COUNTESS OF LOVELACE Ada Byron was the daughter of a brief married                                                                |                                                                                                                                                                                            |       |
| between the Romantic poet Lord Byron and Anne Isabelle                                                                                       |                                                                                                                                                                                            |       |
| People also ask                                                                                                                              | Augusta Ada King, Countess of Lovelace was an English mait<br>and writer, chiefly known for her work on Charles Babbage's p<br>mechanical general-purpose computer, the Analytical Engine. | ropos |
| What is Ada Lovelace famous for?                                                                                                             | Sorn: December 10, 1815, London, United Kingdom                                                                                                                                            |       |
|                                                                                                                                              | Died: November 27, 1852, Marylebone, United Kingdom     Spouse: William King-Noel, 1st Earl of Lovelace (m. 1835-18                                                                        |       |
| What did Ada Lovelace invent and what impact it had?                                                                                         |                                                                                                                                                                                            | (27   |
| What did Ada Lovelace invent and what impact it had?<br>When did Ada Lovelace invent the computer?                                           | Children: Anne Blunt, 15th Baroness Wentworth, MORE                                                                                                                                        | 52)   |
|                                                                                                                                              |                                                                                                                                                                                            | 52)   |

10

| Ada Lovelace |                                        |  |
|--------------|----------------------------------------|--|
| Born         | Dec 10, 1815                           |  |
| Died         | Nov 27, 1852                           |  |
| Bio          | English<br>mathematician and<br>writer |  |

| Northern Rooster Hotel |                   |
|------------------------|-------------------|
| Address                | 45 Rooster St, LA |
| Phone                  | (650) 555-3992    |
| Wifi                   | yes               |
| Pool                   | no                |



## **Copyright Notice**

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>



AI and Society

Introduction

## AI and society

- AI and hype
- Limitations of AI

-Bias

-Adversarial attacks

- AI, developing economies, and jobs
- Conclusion



AI and Ethics



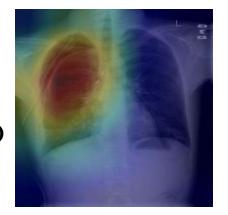
Andrew Ng

# AI and Society

A realistic view of AI

### Goldilocks rule for AI

- Too optimistic: Sentient / super-intelligent AI killer robots coming soon
- Too pessimistic: AI cannot do everything, so an AI winter is coming
- Just right: AI can't do everything, but will transform industries



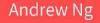

### Limitations of AI

- Performance limitations
- Explainability is hard (but sometimes doable)



Right-sided Pneumothorax (collapsed lung)




[Rajpurkar et al. (2018). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning.] [Wang et al. (2017). ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE CVPR] [Images source: NIH Clinical Center Image dataset: <u>https://nihcc.app.box.com/v/ChestXray-NIHCC</u>]

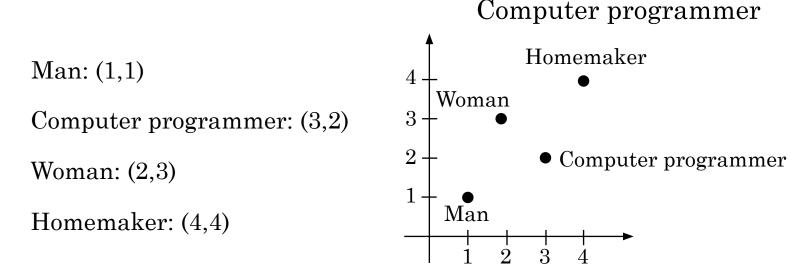


### Limitations of AI

- Biased AI through biased data
- Adversarial attacks on AI








AI and Society

**Discrimination / Bias** 

### AI learning unhealthy stereotypes

- Man : Woman as Father : Mother
- Man : Woman as King : Queen
- Man : Computer programmer as Woman : Homemaker



Bolukbasi et al. (2016). Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings.



### Why bias matters

- Hiring tool that discriminated against women
- Facial recognition matching dark skinned individuals to criminal mugshots
- Bank loan approvals
- Toxic effect of reinforcing unhealthy stereotypes



### Combating bias

- Technical solutions:
  - E.g., "zero out" the bias in words
  - Use less biased and/or more inclusive data
- Transparency and/or auditing processes
- Diverse workforce
  - Creates less biased applications







Andrew Ng

# AI and Society

Adversarial attacks on AI

### Adversarial attacks on AI



Hummingbird

### Minor perturbation



Hammer



Hare

Minor perturbation



Desk



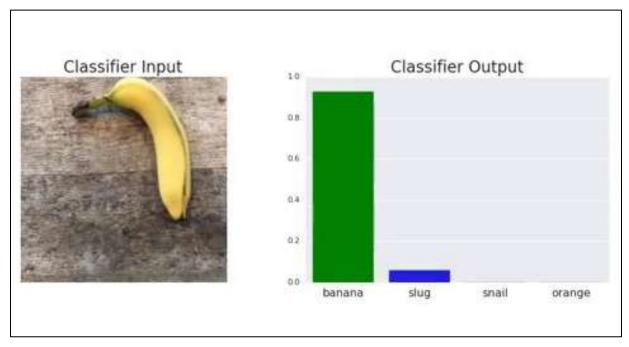
### Physical attacks



"Milla Jovovich"



#### Fails to see stop sign




Banana





### Physical attacks



[Sharif et al. (2016). Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition.] [Eykholt et al. (2018). Physical Adversarial Examples for Object Detectors.] [Brown et al. (2018). Adversarial Patch.]



### Adversarial defenses

- Defenses do exist, but incur some cost
- Similar to spam vs. anti-spam, we may be in an arms race for some applications







Andrew Ng

# AI and Society

Adverse uses of AI

### Adverse uses of AI

- DeepFakes
  - Synthesize video of people doing things they never did
- Undermining of democracy and privacy - Oppressive monitoring of individuals
- Generating fake comments
- Spam vs. anti-spam and fraud vs. anti-fraud





## AI and Society

AI and developing economies

### Developing economies

### "leapfrog"

-Mobile phones -Mobile payments -Online education





### How developing economies can build AI

- US and China are leading, but all AI communities are still immature
- Focus on AI to strengthen a country's vertical industries
- Public-private partnerships to accelerate development



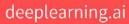


# AI and Society

AI and jobs

### AI's impact on jobs worldwide

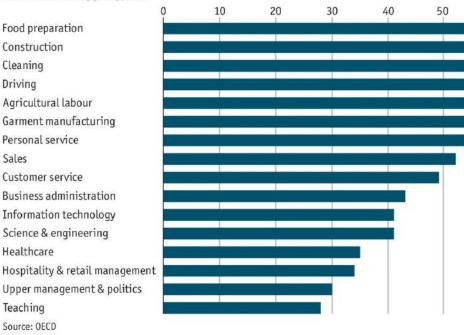
### Jobs replaced by 2030


### Jobs created by 2030

## $400\text{--}800\,\mathrm{mil}$

## $555-890 \mathrm{\ mil}$

[Source: McKinsey Global Institute.]






### AI's impact on jobs worldwide

#### Automated for the people

Automation risk by job type, %



[Image credit: Economist.com] [Nedelkoska, L. and G. Quintini. (2018). Automation, skills use and training. OECD Social, **Employment** and Migration Working Papers, No. 202.]

60

Economist.com

Driving

Sales



### Some solutions

- Conditional basic income: provide a safety net but incentivize learning
- Lifelong learning
- Political solutions





AI for Everyone

Conclusion

### What you've learned

- What is AI?
- Building AI projects
- Building AI in your company
- AI and society

### Keep learning!

- Online courses, books, blogs, ...
- deeplearning.ai mailing list







