

Course Development Team

Head of Programme : Assoc Prof James Tan Swee Chuan

Course Developer(s) : Dr Karl Wu Ka Yui

Technical Writer : Maybel Heng, ETP

Video Production : Mohd Jufrie Bin Ramli, ETP

© 2021 Singapore University of Social Sciences. All rights reserved.

No part of this material may be reproduced in any form or by any means without

permission in writing from the Educational Technology & Production, Singapore

University of Social Sciences.

ISBN 9789814873925

Educational Technology & Production

Singapore University of Social Sciences

463 Clementi Road

Singapore 599494

How to cite this Study Guide (APA):

Wu, K. Y. (2021). ANL252 Python for data analytics (study guide). Singapore University of

Social Sciences.

Release V1.0

Build S1.0.5, T1.5.21

Table of Contents

Table of Contents

Course Guide

1. Welcome.. CG-2

2. Course Description and Aims.. CG-3

3. Learning Outcomes.. CG-5

4. Learning Material... CG-6

5. Assessment Overview.. CG-8

6. Course Schedule.. CG-10

7. Learning Mode.. CG-11

Study Unit 1: Introduction to Python Programming

Learning Outcomes... SU1-2

Overview... SU1-3

Chapter 1: Python Programming Environment.. SU1-4

Chapter 2: Basic Arithmetic and Variables.. SU1-14

Chapter 3: Print and Input... SU1-22

Chapter 4: If-elif-else-Conditions.. SU1-34

Chapter 5: Loops.. SU1-44

Summary... SU1-58

Formative Assessment.. SU1-59

References... SU1-68

i

Table of Contents

Study Unit 2: Data Types and Functions

Learning Outcomes... SU2-2

Overview... SU2-3

Chapter 1: Tuples, Lists, Dictionaries... SU2-4

Chapter 2: Integrated Methods and Functions... SU2-48

Chapter 3: User-defined Functions... SU2-62

Chapter 4: Modules, Packages and Libraries.. SU2-67

Summary... SU2-74

Formative Assessment.. SU2-75

References... SU2-87

Study Unit 3: Arrays and Plots

Learning Outcomes... SU3-2

Overview... SU3-3

Chapter 1: Introduction to JupyterLab... SU3-4

Chapter 2: Array Management with NumPy.. SU3-14

Chapter 3: Plotting with Matplotlib.. SU3-29

Summary... SU3-38

Formative Assessment.. SU3-39

References... SU3-49

Study Unit 4: Data Management

Learning Outcomes... SU4-2

ii

Table of Contents

Overview... SU4-3

Chapter 1: Import Data... SU4-4

Chapter 2: Data Selection... SU4-12

Chapter 3: Merge DataFrames... SU4-26

Chapter 4: Missing Data and Outliers.. SU4-38

Chapter 5: Data Modification... SU4-55

Summary... SU4-65

Formative Assessment.. SU4-66

References... SU4-77

Study Unit 5: Data Analytics in Python

Learning Outcomes... SU5-2

Overview... SU5-3

Chapter 1: Introduction to Scikit-Learn.. SU5-4

Chapter 2: Clustering.. SU5-35

Chapter 3: Decision Trees... SU5-53

Summary... SU5-74

Formative Assessment.. SU5-75

References... SU5-85

Study Unit 6: Basic SQL in Python

Learning Outcomes... SU6-2

Overview... SU6-3

Chapter 1: Introduction to SQL and SQLite3.. SU6-4

iii

Table of Contents

Chapter 2: Data Query.. SU6-18

Chapter 3: Joining Tables.. SU6-34

Chapter 4: Grouping Data.. SU6-48

Chapter 5: Editing Data.. SU6-56

Summary... SU6-73

Formative Assessment.. SU6-74

References... SU6-84

iv

List of Tables

List of Tables

Table 1.1 Python Arithmetic Operators.. SU1-15

Table 1.2 Types of Variable in Python... SU1-20

Table 1.3 List of Some Escape Sequences Available in Python............................ SU1-28

Table 1.4 Examples of Relational Operation.. SU1-34

Table 1.5 List of Relational Operators... SU1-35

Table 1.6 List of Logical Operators.. SU1-36

Table 1.7 List of Some Common Exceptions.. SU1-53

Table 2.1 Built-in Functions of Python.. SU2-48

Table 2.2 Built-in Methods of Python.. SU2-51

Table 2.3 Some Common Packages for Data Analytics in Python...................... SU2-73

Table 3.1 Most Common NumPy Functions.. SU3-22

Table 4.1 Most Common Data File Formats and the Corresponding Reader in

pandas... SU4-5

Table 5.1 Most Common Algorithms Available in scikit-learn.............................. SU5-4

Table 5.2 Parameters of the KMeans Estimator... SU5-38

Table 5.3 Parameters of the DecisionTreeClassifier and

DecisionTreeRegressor Estimators... SU5-57

Table 5.4 Parameters of the plot_tree Function... SU5-69

Table 6.1 List of Some Available Modes of the open() Function........................ SU6-6

v

List of Tables

Table 6.2 Operators in the WHERE Clause... SU6-24

Table 6.3 List of Aggregate Functions in SQL... SU6-48

vi

List of Figures

List of Figures

Figure 1.1 Python Website: Download the Latest Version..................................... SU1-4

Figure 1.2 Python Installation on Windows: Check the Box to Add Python to

PATH... SU1-5

Figure 1.3 Download Website of Atom for Windows... SU1-6

Figure 1.4 Finding Python in the Start Menu.. SU1-7

Figure 1.5 Python Interpreter... SU1-7

Figure 1.6 Searching for Windows PowerShell and Command Prompt.............. SU1-8

Figure 1.7 Launching Python in Windows PowerShell.. SU1-9

Figure 1.8 Execute a Simple Python Code.. SU1-10

Figure 1.9 Quit the Python Interpreter.. SU1-10

Figure 1.10 Writing Python Code with Atom.. SU1-11

Figure 1.11 A Comment Line in Python... SU1-12

Figure 1.12 Executing a Python Scripts written in Atom Using

PowerShell.. SU1-12

Figure 1.13 Simple Calculations with Python.. SU1-14

Figure 1.14 Assigning Values to Variables for Operations................................... SU1-19

Figure 1.15 Checking Variable Type.. SU1-21

Figure 1.16 Simple Use of the print() Function.. SU1-22

Figure 1.17 Printing Variables and Their Calculations... SU1-23

vii

List of Figures

Figure 1.18 Printing Formatted String... SU1-24

Figure 1.19 Output of Incomplete String Formatting Syntax.............................. SU1-24

Figure 1.20 Simple Usage of the .format() Method... SU1-25

Figure 1.21 Multiple Usage of .format() Method... SU1-25

Figure 1.22 Syntax Error Caused by Quotation Marks within a string.............. SU1-26

Figure 1.23 Printing Quotation Marks within a String... SU1-27

Figure 1.24 Printing Quotation Marks using Escape Sequence........................... SU1-27

Figure 1.25 Erroneous Line Breaks within a String... SU1-27

Figure 1.26 Line Breaks Created by Escape Sequence \n..................................... SU1-28

Figure 1.27 Example of Using input() Function.. SU1-31

Figure 1.28 Convert Input Value to Integer and Float.. SU1-32

Figure 1.29 if-Statement Example with True Condition................................... SU1-39

Figure 1.30 if-Statement Example with False Condition................................. SU1-39

Figure 1.31 if-else-Statement Example... SU1-40

Figure 1.32 Example of if-elif-else-Statement.. SU1-42

Figure 1.33 Repeating the Same Code for Two Individuals to Enter.................. SU1-45

Figure 1.34 Entering Names and Scores Repeatedly by while-Loops.............. SU1-46

Figure 1.35 Entering Names and Scores Repeatedly by for-Loops................... SU1-49

Figure 1.36 Breaking from Loops Using break.. SU1-51

Figure 1.37 Using Exception for Error Handling... SU1-54

Figure 1.38 Using while-loop for User Input If Error Occurs............................ SU1-55

viii

List of Figures

Figure 1.39 The Complete Example Program of Study Unit 1............................ SU1-57

Figure 2.1 Definition of Tuples... SU2-5

Figure 2.2 Subsetting Tuples... SU2-6

Figure 2.3 Subsetting of Tuples with Negative Indices.. SU2-7

Figure 2.4 Subsetting Tuples with "Open End" Indexing....................................... SU2-8

Figure 2.5 Erroneous Modification of Tuples... SU2-9

Figure 2.6 Erroneous Adding of Elements to Tuples.. SU2-9

Figure 2.7 Concatenation of Two Tuples... SU2-10

Figure 2.8 Adding Elements to Tuples by Concatenation.................................... SU2-10

Figure 2.9 Length of Tuples and Index Out of Range... SU2-12

Figure 2.10 Subsetting the Last Element of Tuples.. SU2-12

Figure 2.11 Printing Tuple Elements by for-Loops.. SU2-14

Figure 2.12 Creating Lists in Python... SU2-15

Figure 2.13 Subsetting Lists.. SU2-16

Figure 2.14 Editing Single Item in a List.. SU2-18

Figure 2.15 Editing Multiple Items in a List... SU2-19

Figure 2.16 Replacing More Values than the Specified Indices........................... SU2-19

Figure 2.17 Concatenating Lists... SU2-21

Figure 2.18 Concatenating Lists with Different Data Types................................. SU2-22

Figure 2.19 Merging Two Lists by Keeping Them as Lists in the New

One.. SU2-23

ix

List of Figures

Figure 2.20 Extracting Elements from a Merged List.. SU2-24

Figure 2.21 Printing List Elements Line by Line to the Screen............................ SU2-26

Figure 2.22 Printing Elements of Multiple Lists Using Formatted String.......... SU2-27

Figure 2.23 Rearranging Data Storage in Lists... SU2-28

Figure 2.24 Printing Data of a List Using Formatted String................................ SU2-30

Figure 2.25 User’s Input to a List.. SU2-31

Figure 2.26 Defining a Dictionary.. SU2-36

Figure 2.27 Extracting Value from a Dictionary... SU2-37

Figure 2.28 Extracting Keys and Values from a Dictionary................................. SU2-38

Figure 2.29 Store Keys and Values from a Dictionary in Lists............................. SU2-38

Figure 2.30 Print All the Keys from a Dictionary Line by Line........................... SU2-39

Figure 2.31 Print All the Keys and Values from a Dictionary Line by Line....... SU2-39

Figure 2.32 Extracting Items from a Dictionary... SU2-40

Figure 2.33 Print Items from a Dictionary after Converting it to a List.............. SU2-41

Figure 2.34 Change One Value in a Dictionary.. SU2-42

Figure 2.35 Add Items to Every Dictionary Key and Convert Values to

Lists... SU2-43

Figure 2.36 Print Items from a Dictionary after Converting to Lists Using for-

loops.. SU2-43

Figure 2.37 Changing a key of a Dictionary... SU2-44

Figure 2.38 Adding a New Key to a Dictionary.. SU2-45

x

List of Figures

Figure 2.39 Merging Two Dictionaries Using the v3.5+ Option.......................... SU2-46

Figure 2.40 Merging Two Dictionaries Using the v3.9+ Option.......................... SU2-46

Figure 2.41 Computing Statistics of a Dictionary’s Values................................... SU2-50

Figure 2.42 Replacing Double Spacing by Single Spacing................................... SU2-57

Figure 2.43 Capitalise Each Word in Strings.. SU2-58

Figure 2.44 Switching Surname and First name in Strings.................................. SU2-59

Figure 2.45 Sorting Dictionary by Its Keys... SU2-60

Figure 2.46 Defining Functions.. SU2-64

Figure 2.47 Sorting Dictionary Using User-Defined Functions........................... SU2-65

Figure 2.48 Integrate Entire Package in a Program... SU2-69

Figure 2.49 Integrate One Module from a Package... SU2-70

Figure 2.50 Installing Package “numpy” with pip.. SU2-71

Figure 2.51 Installing Package “matplotlib” with pip3.. SU2-72

Figure 3.1 The Official Website for Jupyter.. SU3-5

Figure 3.2 Start Installing JupyterLab... SU3-6

Figure 3.3 Installation of Jupyter Completed... SU3-6

Figure 3.4 Starting the JupyterLab... SU3-7

Figure 3.5 Start-Up Page of JupyterLab.. SU3-8

Figure 3.6 Blank Python Script... SU3-8

Figure 3.7 Running a Python Script in JupyterLab... SU3-9

Figure 3.8 Inserting a New Cell in JupyterLab.. SU3-9

xi

List of Figures

Figure 3.9 Functions Included in the Edit Menu of JupyterLab.......................... SU3-10

Figure 3.10 Saving Python Program in JupyterLab... SU3-11

Figure 3.11 Changing the Cell Type in JupyterLab... SU3-11

Figure 3.12 Editing a Markdown Cell in JupyterLab.. SU3-12

Figure 3.13 A Finalised Markdown Cell with a Comment in JupyterLab.......... SU3-12

Figure 3.14 A Finalised Markdown Cell with Ordinary Text in

JupyterLab.. SU3-13

Figure 3.15 Installing Package “numpy”.. SU3-15

Figure 3.16 Creating an Array with NumPy.. SU3-16

Figure 3.17 Subsetting a Column from a NumPy Array...................................... SU3-18

Figure 3.18 Subsetting a Sub-Array from a NumPy Array.................................. SU3-19

Figure 3.19 Creating a Boolean Mask of a NumPy Array.................................... SU3-19

Figure 3.20 Subsetting a NumPy Array Based on a Boolean Mask.................... SU3-20

Figure 3.21 Extracting Information on the Characteristics of a NumPy

Array... SU3-21

Figure 3.22 Calculate Column Statistics of a NumPy Array................................ SU3-27

Figure 3.23 Importing “matplotlib.pyplot” into the Program............................. SU3-31

Figure 3.24 Program for Creating a Line Plot.. SU3-32

Figure 3.25 Line Plot Generated by “matplotlib.pyplot”..................................... SU3-32

Figure 3.26 Creating Data Array for Subsequent Plotting................................... SU3-34

Figure 3.27 Program for Creating a Histogram... SU3-34

xii

List of Figures

Figure 3.28 Historam Generated by “matplotlib.pyplot”..................................... SU3-35

Figure 3.29 Program for Creating a Scatter Plot.. SU3-36

Figure 3.30 Scatter Plot Generated by “matplotlib.pyplot”................................. SU3-37

Figure 4.1 Importing Data with pandas.. SU4-9

Figure 4.2 Printing Entire Imported Dataset.. SU4-9

Figure 4.3 Printing the Head and Tail of the Imported Dataset by

display().. SU4-10

Figure 4.4 Select Columns from a DataFrame by Variable Names..................... SU4-13

Figure 4.5 Select a Single Column from a DataFrame and Save it as NumPy

Array... SU4-13

Figure 4.6 Select Rows from a DataFrame by Random Row Indices.................. SU4-14

Figure 4.7 Setting the Values of a Column as Row Index.................................... SU4-16

Figure 4.8 Resetting Row Index of a DataFrame... SU4-16

Figure 4.9 Setting a NumPy Array as Row Index... SU4-17

Figure 4.10 Selecting Rows by Single Row Label.. SU4-18

Figure 4.11 Selecting Rows by Multiple Row Labels.. SU4-18

Figure 4.12 Selecting Cells Using Indices... SU4-20

Figure 4.13 Selecting Cells Using Row and Column Labels................................ SU4-21

Figure 4.14 Selecting Cells by Row Indices and Column Labels......................... SU4-21

Figure 4.15 Selecting Cells by Row Labels and Column Indices......................... SU4-22

Figure 4.16 Selecting Cells by a Boolean Mask.. SU4-23

xiii

List of Figures

Figure 4.17 Selecting Cells by Chaining Two Boolean Masks.............................. SU4-24

Figure 4.18 Selecting Cells by Chaining Multiple Boolean Masks...................... SU4-25

Figure 4.19 Concatenating Two Datasets with Different Rows but Identical

Variables... SU4-26

Figure 4.20 Appending Two DataFrames... SU4-27

Figure 4.21 Concatenating Two Datasets with Different Columns but Identical

Observations.. SU4-29

Figure 4.22 Outer Join Two Datasets with Some Common Variables................. SU4-29

Figure 4.23 Inner Join Two Datasets with Some Common Variables.................. SU4-30

Figure 4.24 Outer Join Two Datasets with Some Common Observations.......... SU4-31

Figure 4.25 Inner Join Two Datasets with Some Common Observations........... SU4-31

Figure 4.26 Outer Join Two Datasets with Different Shapes................................ SU4-32

Figure 4.27 Inner Join Two Datasets with Different Shapes................................. SU4-32

Figure 4.28 Concatenating Two DataFrames with Different Shapes by Outer

Join... SU4-34

Figure 4.29 Concatenating Two DataFrames with Different Shapes by Inner

Join... SU4-35

Figure 4.30 Concatenating Two DataFrames with Same Variables by

Rows.. SU4-35

Figure 4.31 Concatenating Two DataFrames with Same Observations by

Columns.. SU4-36

Figure 4.32 Declaring Specific Strings as Missing Values While Importing

Data... SU4-40

xiv

List of Figures

Figure 4.33 Counting the Number of Missing Values in Each Variable............. SU4-43

Figure 4.34 Identifying Observations with Missing Values................................. SU4-44

Figure 4.35 Selecting Observations with Missing Values from a

DataFrame.. SU4-44

Figure 4.36 Dropping Observations with Missing Values Using .drop()

Method.. SU4-47

Figure 4.37 Dropping Observations with Missing Values Using .dropna()

Method.. SU4-48

Figure 4.38 Replacing Missing Values by 0 in the Entire DataFrame................. SU4-49

Figure 4.39 Replacing Missing Values by “Unknown” in Specific

Columns.. SU4-50

Figure 4.40 Computing Criteria for Outlier Detection in a Numeric

Variable... SU4-52

Figure 4.41 Selected Outlier Observations from a DataFrame............................. SU4-53

Figure 4.42 Selected Non-Outlier Observations from a DataFrame.................... SU4-54

Figure 4.43 Sorting a DataFrames by Two Variables... SU4-56

Figure 4.44 Discretising a Numeric Variable into Bins... SU4-58

Figure 4.45 Computing the Mean of All Numeric Columns for Grouped

Data... SU4-60

Figure 4.46 Computing the Mean of Selected Columns for Grouped Data....... SU4-60

Figure 4.47 Log-Transformation of a Numeric Variable....................................... SU4-62

Figure 4.48 Standardisation of a Numeric Variable.. SU4-63

Figure 4.49 Normalisation of a Numeric Variable... SU4-64

xv

List of Figures

Figure 5.1 Importing Modules and Functions from scikit-learn........................... SU5-7

Figure 5.2 Removing Missing Data from DataFrame... SU5-11

Figure 5.3 Listing Out Unique Categories of a Variable....................................... SU5-12

Figure 5.4 Creating a Dictionary with Old and New Category Labels............... SU5-13

Figure 5.5 Reducing the Number of Categories for a Categorical Variable....... SU5-13

Figure 5.6 Reducing the Number of Categories for a Categorical Variable....... SU5-14

Figure 5.7 Cross Tabulation of Two Categorical Variables................................... SU5-16

Figure 5.8 Numeric Labels of a Categorical Variable.. SU5-17

Figure 5.9 Discretising an Ordered Numeric Categorical Variable..................... SU5-18

Figure 5.10 Selecting Relevant Variables... SU5-20

Figure 5.11 Renaming Selected Variables.. SU5-20

Figure 5.12 Creating Dummy Variables from Categorical Variables.................. SU5-22

Figure 5.13 Selecting Numeric Variables for Normalisation................................ SU5-25

Figure 5.14 Normalising Numeric Variables.. SU5-26

Figure 5.15 Concatenating Normalised Variables with the Original

DataFrame.. SU5-26

Figure 5.16 Training Dataset after Split from the Original DataFrame............... SU5-29

Figure 5.17 Testing Dataset after Split from the Original DataFrame................. SU5-29

Figure 5.18 Saving the Row Indices in Python Lists... SU5-31

Figure 5.19 Slicing Training and Testing Datasets for the Independent and the

Target Variables... SU5-32

xvi

List of Figures

Figure 5.20 Training Dataset for the Target Variable... SU5-32

Figure 5.21 Testing Dataset for the Target Variable... SU5-33

Figure 5.22 Training Dataset for the Independent Variables................................ SU5-33

Figure 5.23 Testing Dataset for the Independent Variables.................................. SU5-33

Figure 5.24 Dataset for the Dependent Variable.. SU5-34

Figure 5.25 Dataset for the Independent Variables... SU5-34

Figure 5.26 Create a DataFrame with Only Normalised Input Variables........... SU5-41

Figure 5.27 Calculating Inertia for the Elbow Method... SU5-42

Figure 5.28 Elbow Method to Determine the Optimal Number of

Clusters... SU5-42

Figure 5.29 Fitting K-Means Clustering.. SU5-43

Figure 5.30 Predicting Classification of the Data... SU5-43

Figure 5.31 Converting the Cluster Index Array to pandas DataFrame............. SU5-46

Figure 5.32 Merging the Original DataFrame with the Cluster Index................ SU5-46

Figure 5.33 Cross-Tabulation of income and the Predicated

Classification.. SU5-46

Figure 5.34 Cross-Tabulation of workclass and the Predicated

Classification.. SU5-47

Figure 5.35 Cross-Tabulation of education and the Predicated

Classification.. SU5-47

Figure 5.36 Cross-Tabulation of race and the Predicated Classification........... SU5-48

xvii

List of Figures

Figure 5.37 Cross-Tabulation of Numeric Variables and the Predicated

Classification.. SU5-48

Figure 5.38 Calculating the Silhouette Coefficient.. SU5-49

Figure 5.39 Reducing the Dimensionality of the Input Variable

DataFrame.. SU5-50

Figure 5.40 Selecting PCA Data Based on the Predicted Classification.............. SU5-51

Figure 5.41 Plotting of the K-Means Clustering Result.. SU5-51

Figure 5.42 Create a DataFrame without the Normalised Input Variables........ SU5-64

Figure 5.43 Fitting Decision Trees.. SU5-64

Figure 5.44 Predicting Classification of Training and Testing Datasets.............. SU5-65

Figure 5.45 Prediction Performance on Training Data.. SU5-67

Figure 5.46 Prediction Performance on Testing Data.. SU5-67

Figure 5.47 Confusion Matrix... SU5-68

Figure 5.48 Preparing Labels for Tree Plot... SU5-71

Figure 5.49 Plotting Decision Tree with tree.plot_tree................................ SU5-71

Figure 5.50 Decision Tree Plot.. SU5-72

Figure 6.1 Importing sqlite3 and pandas.. SU6-5

Figure 6.2 Program to Input Data into a .csv File... SU6-9

Figure 6.3 Interface to Input Data in JupyterLab.. SU6-10

Figure 6.4 Print the Records in a .csv File to the Screen Line by Line................ SU6-11

Figure 6.5 Establish a Connection between Python and a Database.................. SU6-13

xviii

List of Figures

Figure 6.6 Import a.csv file Dataset as a pandas DataFrame............................... SU6-14

Figure 6.7 Export pandas DataFrame to Database by SQL.................................. SU6-14

Figure 6.8 Select a Table from the Database... SU6-16

Figure 6.9 Fetch One Record for Printing... SU6-16

Figure 6.10 Fetch All Records for Printing... SU6-16

Figure 6.11 Re-Fetch Records after Applying fetchone() or

fetchall().. SU6-17

Figure 6.12 Extract Column Names of a Table by the .description

Attribute... SU6-19

Figure 6.13 Generate Variable List of a Table... SU6-19

Figure 6.14 Execute an SQL Statement Stored in a String Variable..................... SU6-20

Figure 6.15 Convert the Result of an SQL Query to a pandas DataFrame......... SU6-21

Figure 6.16 Sort Students by Their Birthdays and Nationalities......................... SU6-23

Figure 6.17 Select only Analytics Students from the Table students............... SU6-26

Figure 6.18 Select only Analytics Students with ID number between 5 And

10.. SU6-26

Figure 6.19 Select only Analytics Students with ID number not between 5 And

10.. SU6-27

Figure 6.20 Select Analytics Students not from Singapore or China.................. SU6-27

Figure 6.21 Select Analytics Students with First Names that Start with

“M”.. SU6-28

Figure 6.22 Select Analytics Students with First Names that Contain “ar”....... SU6-28

xix

List of Figures

Figure 6.23 Select Analytics Students with First Names that End with “s”....... SU6-28

Figure 6.24 Select Analytics Students with First Names that Start with “M” and

End with “l”.. SU6-29

Figure 6.25 Select Analytics Students with Last Names that Have the Pattern

“Ta_”.. SU6-29

Figure 6.26 Select Students with No Birthday Record.. SU6-29

Figure 6.27 Select Students with Non-Missing Birthday Records....................... SU6-30

Figure 6.28 Select Data of Non-Analytics Students from Certain Columns of a

Table.. SU6-31

Figure 6.29 Concatenate Items of a Tuple to a String... SU6-31

Figure 6.30 Select Certain Columns of a Table by a Variable List String............ SU6-32

Figure 6.31 Create a New Table Called grades in the Database........................ SU6-36

Figure 6.32 Contents of the Table grades... SU6-36

Figure 6.33 Inner Join the Tables students and grades by the ON

Keyword... SU6-37

Figure 6.34 Inner Join the Tables students and grades by the USING

Keyword... SU6-38

Figure 6.35 Left Join the Tables students and grades..................................... SU6-40

Figure 6.36 Sort the Left Joined Table by the Course Code and the Students’ Last

Name... SU6-41

Figure 6.37 Select Records with Missing Data in grade...................................... SU6-41

Figure 6.38 Cross Join the Tables students and grades.................................. SU6-43

Figure 6.39 Generate Variable List from Both Tables with Aliases...................... SU6-45

xx

List of Figures

Figure 6.40 Outer Join the Tables students and grades (1)............................ SU6-46

Figure 6.41 Outer Join the Tables students and grades (2)............................ SU6-46

Figure 6.42 Count the Number of Students in Each Programme........................ SU6-49

Figure 6.43 Sort the Nationalities of the Students by Their Counts.................... SU6-50

Figure 6.44 Group the Students by their Study Programmes and

Nationalities... SU6-50

Figure 6.45 Calculate Average Grade of Students from Different

Birthyears... SU6-52

Figure 6.46 Calculate Average Grade of Different Programmes in Different

Courses... SU6-53

Figure 6.47 Selected Courses with NumStudents >= 5 Grouped by Study

Programme... SU6-53

Figure 6.48 Listing Students with AverageGrade >= 40................................ SU6-54

Figure 6.49 Insert Multiple New Records for a Student into the Table

grades... SU6-57

Figure 6.50 Insert a New Record into the Table students without Variable

List... SU6-57

Figure 6.51 Update the Value of a Selected Record in the Variable Grade........ SU6-59

Figure 6.52 Delete Records with ID Number >=22 from the Table

grades... SU6-61

Figure 6.53 Add a New Column called email to the Table students............. SU6-63

Figure 6.54 The Table students after a New Column email Being

Added... SU6-63

xxi

List of Figures

Figure 6.55 Update Values in the Column email... SU6-64

Figure 6.56 Rename the Column from email to Email...................................... SU6-65

Figure 6.57 Add a New Column Called Name to the Table students.............. SU6-66

Figure 6.58 Concatenate Last Name and First Name as a New Variable........... SU6-67

Figure 6.59 Create a New Table named students2.. SU6-67

Figure 6.60 Query Data from students and Insert Them Into

students2.. SU6-68

Figure 6.61 Output of students2 after Inserting the Data..................................... SU6-68

Figure 6.62 Check on Existing Tables in the Database.. SU6-71

Figure 6.63 Dropping Table students from the Database................................. SU6-71

Figure 6.64 Renaming students2 to student... SU6-72

Figure 6.65 Commit Changes of the Database to Physical File and Close

Connection... SU6-72

xxii

List of Lesson Recordings

List of Lesson Recordings

Introduction to Python Programming... SU1-4

Basic Arithmetic and Variables in Python.. SU1-14

Print and Input in Python... SU1-22

If-elif-else-Conditions in Python.. SU1-34

Loops in Python.. SU1-44

Python Tuples.. SU2-4

Python Lists... SU2-14

Python Dictionaries.. SU2-35

Integrated Methods and Functions in Python... SU2-48

User-defined Functions in Python... SU2-62

Modules, Packages and Libraries in Python.. SU2-67

Introduction to JupyterLab.. SU3-4

Array Management with NumPy.. SU3-14

Plotting with matplotlib.. SU3-29

Import Data in pandas... SU4-4

Data Selection in pandas... SU4-12

Merge DataFrames in pandas... SU4-26

Missing Data and Outliers in pandas DataFrames... SU4-38

xxiii

List of Lesson Recordings

Data Modification in pandas.. SU4-55

Introduction to Scikit-Learn.. SU5-4

Data Preparation for Analytics Algorithms of scikit-learn (1/2)........................... SU5-9

Data Preparation for Analytics Algorithms of scikit-learn (2/2)........................... SU5-9

Introduction and Fitting of K-Means Clustering by scikit-learn......................... SU5-35

Explore & Evaluate K-Means Clustering Models by scikit-learn........................ SU5-44

Introduction and Fitting of Decision Trees by scikit-learn................................... SU5-53

Evaluate Decision Trees by scikit-learn... SU5-66

Introduction to SQL.. SU6-4

Data Query with SQL.. SU6-18

Join Tables with SQL.. SU6-34

Group Data with SQL.. SU6-48

Edit Data with SQL.. SU6-56

xxiv

Course
Guide

Python for Data Analytics

ANL252 Course Guide

1. Welcome

Presenter: Dr Karl Wu Ka Yui

This streaming video requires Internet connection. Access it via Wi-Fi to
avoid incurring data charges on your personal mobile plan.

Click here to watch the video. i

Click here for the transcript.

Welcome to the course ANL252 Python for Data Analytics, a 5 credit unit (CU) course.

This Study Guide will be your personal learning resource to take you through the course

learning journey. The guide is divided into two main sections – the Course Guide and

Study Units.

The Course Guide describes the structure for the entire course and provides you with an

overview of the Study Units. It serves as a roadmap of the different learning components

within the course. This Course Guide contains important information regarding the

course learning outcomes, learning materials and resources, assessment breakdown and

additional course information.

i https://d2jifwt31jjehd.cloudfront.net/ANL252/IntroVideo/ANL252_Intro_Video.mp4

CG-2

https://d2jifwt31jjehd.cloudfront.net/ANL252/IntroVideo/ANL252_Intro_Video.mp4
https://d2jifwt31jjehd.cloudfront.net/ANL252/others/ANL252_ANL252_introVideo_script_v1_0.pdf
https://d2jifwt31jjehd.cloudfront.net/ANL252/IntroVideo/ANL252_Intro_Video.mp4

ANL252 Course Guide

2. Course Description and Aims

The course provides foundational knowledge and skills of Python programming, which

enables students to develop programs for data preparation, data management, and data

visualisation to carry out data analytics tasks such as clustering, decision tree, etc. Students

also acquire skills to explore and find patterns in datasets using ready-to-use Python codes

that can be modified to suit individual needs. Furthermore, this course introduces the

application of SQL for querying data from database within any Python code for data

analytics purposes. Since this course is designed to help students with little prior exposure

to programming, it will focus on breadth rather than depth.

Course Structure
This course is a 5-credit unit course presented over six weeks.

There are six Study Units in this course. The following provides an overview of each Study

Unit.

Study Unit 1 – Introduction to Python Programming

This unit takes the first steps in Python programming, including variables, data types,

operators, formatted printing, and user input. It also introduces the conditional statement

and loops, two types of control flow that change the behaviour of a program dynamically.

Study Unit 2 – Data Types and Functions

This unit establishes three compound built-in data types in Python: tuples, lists, and

dictionaries. Compound data structures organise and store data in a way that they can

be accessed and worked with efficiently. The type of the compound data also defines

the relationship between the data and the operations that can be performed on them.

Furthermore, this unit covers the application of functions, methods, packages, and

modules and how they can be integrated in the program.

CG-3

ANL252 Course Guide

Study Unit 3 – Arrays and Plots

This study unit introduces two Python packages: NumPy and matplotlib. NumPy is

the fundamental package for efficient scientific computing with Python. The students

first learn to create and subset NumPy arrays, before getting on to generate statistics

on the data stored in an array by the integrated NumPy functions. Furthermore, this

unit illustrates the use of the matplotlib package for data visualisation, including the

functionality for plotting and customising basic charts of data analytics.

Study Unit 4 – Data Management

This unit establishes the pandas DataFrame as the key data structure for analytics in

Python. It demonstrates the process of creating Python programs for importing data

from external sources, indexing, and querying data from a DataFrame. It also focuses

on merging multiple DataFrames efficiently, identifying and dealing with missing data

and outliers, sorting, grouping, and transforming data, as well as discretising numeric

variables to bins.

Study Unit 5 – Data Analytics in Python

This unit covers the application of k-means clustering and decision trees in Python

programming using the scikit-learn library. The specific preparation of DataFrames due

to the different requirements of the analytics algorithms is discussed in the first step,

followed by the implementation of the two techniques in Python programs, including

parameter settings, presentation, and visualisation of the results.

Study Unit 6 – Basic SQL in Python

This unit describes the usage of SQL to query data from databases in Python programs.

The students learn how to create flexible SQL statements for data query such as selecting

data, sorting data, grouping data, merging tables, and modifying data using Python

programming skills. Another focus of this unit is to use Python coding to present and

convert output of data query as pandas DataFrames for further analytical process.

CG-4

ANL252 Course Guide

3. Learning Outcomes

Knowledge & Understanding (Theory Component)

By the end of this course, you will be able to:

• Differentiate the various aspects of Python programming.

• Discuss how Python manages packages, modules, functions, etc.

• Explain the operations on arrays and datasets.

Key Skills (Practical Component)

By the end of this course, you will be able to:

• Design Python programmes for performing data analytics.

• Employ logic control flows in Python programmes.

• Prepare data for analysis using Python programming.

• Analyse data using appropriate tools and techniques with Python programming.

CG-5

ANL252 Course Guide

4. Learning Material

To complete the course, you will need the following learning material(s):

Required Textbook(s)
Shaw, Z. A. (2017). Learn python 3 the hard way. Addison-Wesley Professional.

If you are enrolled into this course, you will be able to access the eTextbooks here:

To launch eTextbook, you need a VitalSource account which can be created via

Canvas (iBookStore), using your SUSS email address. Access to adopted eTextbook is

restricted by enrolment to this course.

Recommended Study Material(s) for Learning Activities (Optional)

Website(s):
The Python documentation. https://docs.python.org/

JupyterLab Documentation. https://jupyterlab.readthedocs.io/en/stable/

NumPy user guide. https://numpy.org/

matplotlib pyplot overview. https://matplotlib.org/stable/api/pyplot_summary.html

pandas documentation. https://pandas.pydata.org/pandas-docs/stable/index.html

CG-6

https://online.vitalsource.com/books/9780134693903/pageid/0
https://docs.python.org/
https://jupyterlab.readthedocs.io/en/stable/
https://numpy.org/
https://matplotlib.org/stable/api/pyplot_summary.html
https://pandas.pydata.org/pandas-docs/stable/index.html

ANL252 Course Guide

scikit learn API reference. https://scikit-learn.org/stable/modules/classes.html

Learn Python. tutorialspoint. https://www.tutorialspoint.com/python/

Python Tutorial, SQL Tutorial. https://www.w3schools.com/

SQLite Tutorial. https://www.sqlitetutorial.net/

CG-7

https://scikit-learn.org/stable/modules/classes.html
https://www.tutorialspoint.com/python/
https://www.w3schools.com/
https://www.sqlitetutorial.net/

ANL252 Course Guide

5. Assessment Overview

The overall assessment weighting for this course is as follows:

Assessment Description Weight Allocation

Pre-Course Quiz 01 2%

Pre-Class Quiz 01 2%

Assignment 1

Pre-Class Quiz 02 2%

Assignment 2 Tutor-Marked Assignment 18%

Assignment 3 Group-Based Assignment 20%

Participation Participation during

Seminar

6%

Examination End-of-Course

Assignment

50%

TOTAL 100%

The following section provides important information regarding Assessments.

Continuous Assessment:

There will be continuous assessment in the form of one pre-course quiz, two pre-

class quizzes, one tutor-marked assignment (TMA) and one group-based assignment

(GBA). In total, this continuous assessment will constitute 50 percent of overall student

assessment for this course. The assignments are compulsory and are non-substitutable.

These assignments will test conceptual understanding of both the fundamental and

CG-8

ANL252 Course Guide

more advanced concepts and applications that underlie Python programming and its

application in data analytics. It is imperative that you read through your Assignment

questions and submission instructions before embarking on your Assignment.

Examination:

The end-of-course assignment will constitute the other 50 percent of overall student

assessment and will test the ability in applying Python programming to solve data

analytics related tasks such as data management and data analysis. All topics covered in

the course outline will be examinable. To prepare for the exam, you are advised to review

Specimen or Past Year Exam Papers available on Learning Management System.

Passing Mark:

To successfully pass the course, you must obtain a minimum passing mark of 40 percent

for the combined continuous assessments. That is, students must obtain at least a mark of

40 percent for the combined assessments and also at least a mark of 40 percent for the end-

of-course assessment. For detailed information on the Course grading policy, please refer

to The Student Handbook (‘Award of Grades’ section under Assessment and Examination

Regulations). The Student Handbook is available from the Student Portal.

Non-graded Learning Activities:

Activities for the purpose of self-learning are present in each study unit. These learning

activities are meant to enable you to assess your understanding and achievement of the

learning outcomes. The type of activities can be in the form of Formative Assessment,

Quiz, Review Questions, Application-Based Questions or similar. You are expected to

complete the suggested activities either independently and/or in groups.

CG-9

ANL252 Course Guide

6. Course Schedule

To pace yourself and monitor your study progress, pay special attention to your

Course Schedule. It contains study-unit-related activities including Assignments, Self-

Assessments, and Examinations. Please refer to the Course Timetable on the Student

Portal for the most current Course Schedule.

Note: Always make it a point to check the Student Portal for announcements and

updates.

CG-10

ANL252 Course Guide

7. Learning Mode

The learning approach for this course is structured along the following lines:

a. Self-study guided by the study guide units. Independent study will require at

least 3 hours per week.

b. Working on assignments, either individually or in groups.

c. Classroom Seminars (3 hours each session, 6 sessions in total).

iStudyGuide

You may be viewing the interactive StudyGuide (iStudyGuide), which is the mobile-

friendly version of the Study Guide. The iStudyGuide is developed to enhance your

learning experience with interactive learning activities and engaging multimedia. You

will be able to personalise your learning with digital bookmarking, note-taking, and

highlighting of texts if your reader supports these features.

Interaction with Instructor and Fellow Students

Flexible learning—learning at your own pace, space, and time—is a hallmark at SUSS,

and we strongly encourage you to engage your instructor and fellow students in online

discussion forums. Sharing of ideas through meaningful debates will help broaden your

perspective and crystallise your thinking.

Academic Integrity

As a student of SUSS, you are expected to adhere to the academic standards stipulated

in the Student Handbook, which contains important information regarding academic

policies, academic integrity, and course administration. It is your responsibility to read

and understand the information outlined in the Student Handbook prior to embarking on

the course.

CG-11

ANL252 Course Guide

CG-12

Study
Unit 1

Introduction to Python
Programming

ANL252 Introduction to Python Programming

Learning Outcomes

By the end of this unit, you should be able to:

1. Differentiate the various aspects of Python programming

2. Employ logic control flows in Python programmes

SU1-2

ANL252 Introduction to Python Programming

Overview

This study unit introduces the Python programming environment and the writing of

Python programs with some foundation elements. We will also learn how to create

different types of variables and how to assign values to them for further operations. Since

input and output belong to the core of any computer program, we will learn how to create

user input and construct formatted strings for printing as well. Also, we will cover the

construction of Boolean expressions as conditional statements to control the behaviour

of the program. Eventually, we will find out how to create finite loops to repeat routine

instructions iteratively.

SU1-3

ANL252 Introduction to Python Programming

Chapter 1: Python Programming Environment

Lesson Recording

Introduction to Python Programming

1.1 Installation of Python and Atom
Visit the URL https://www.python.org/downloads/ and click on “Download Python

[Version]”, where [Version] is the latest version number of Python (Version 3.9.0 is the

latest version when this Study Guide was being developed).

Figure 1.1 Python Website: Download the Latest Version

In this Study Guide, we will standardise the operating system to Windows 10. Users of

Linux/UNIX, Mac OS X or other operating systems can find equivalent applications to

execute the same steps. After downloading the installer and double-clicking on it, the

following window will then appear:

SU1-4

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU01CH01_H4_0_V1_0/presentation_html5.html
https://www.python.org/downloads/

ANL252 Introduction to Python Programming

Figure 1.2 Python Installation on Windows: Check the Box to Add Python to PATH

Note that when installing Python on Windows, ensure that the box “Add Python [Version]

to PATH” as in Figure 1.2 is checked.

Furthermore, we will need Atom as our editor for composing Python scripts. Though

we can also execute Python codes without writing them in an editor, it is much more

convenient to do so. We can download Atom text editor at https://atom.io:

SU1-5

https://atom.io/

ANL252 Introduction to Python Programming

Figure 1.3 Download Website of Atom for Windows

We can select the operating system that we prefer for the Atom installer. Press the

“Download” button and install Atom by executing the installer after the download has

completed.

Read

Read the following two sections of the textbook on installing Python 3 on mac OS or

Windows:

Exercise 0. The Setup (Windows)

Exercise 0. The Setup (maxOS)

1.2 Writing and Executing Python Programs
After the installations, we can start writing our Python program. One simple way is to

write and run in Python directly, which we can find in the start menu:

SU1-6

ANL252 Introduction to Python Programming

Figure 1.4 Finding Python in the Start Menu

Figure 1.5 Python Interpreter

Once we see the “>>>” prompt, we can type in our Python command and let the Python

interpreter execute it by pressing ENTER once the syntax is completed.

Another way to run Python is to call it from a terminal app. For this, we will need Windows

PowerShell or Command Prompt to open it. Type “PowerShell” or “Command Prompt”

in the “Search Windows” box on the task bar:

SU1-7

ANL252 Introduction to Python Programming

Figure 1.6 Searching for Windows PowerShell and Command Prompt

For simplicity, we will use Windows PowerShell in the following. Type “python” in

PowerShell and then press ENTER:

SU1-8

ANL252 Introduction to Python Programming

Figure 1.7 Launching Python in Windows PowerShell

Once the Python interpreter has been started, we can see a very similar screen layout as

shown in Figure 1.5. Now we can type in our Python code and immediately see the output

once we have pressed ENTER. For instance, if we would like to do a simple calculation

such as 2 + 7, we simply type in this equation and press ENTER. Python will interpret

what we have typed in and print the result in the next line.

SU1-9

ANL252 Introduction to Python Programming

Figure 1.8 Execute a Simple Python Code

After we have finished executing our Python programs, we can quit Python by entering

quit() and then press ENTER. We will return to the prompt of the operating system

same as what we had seen before we started Python.

Figure 1.9 Quit the Python Interpreter

SU1-10

ANL252 Introduction to Python Programming

Apart from interactively working with the Python interpreter, we can also let Python run

our own program scripts. These scripts are text files saved with the extension .py. In these

script files, we put all the Python codes to be executed in a batch, instead of typing in and

executing the syntax line by line like in the interpreter.

One obvious advantage of using a script file is that in most of the cases, we may intend

to do a couple of calculations and data manipulation steps before asking Python to return

the final output to us. Some of these executions could be quite inconvenient, or perhaps

even impossible, if we must run them line by line.

We will use Atom as the editor to compose our Python scripts in the first part of this study

guide, and then execute these scripts using the python command in PowerShell.

Now, we open Atom and write our first program.

Figure 1.10 Writing Python Code with Atom

Another advantage of writing Python code in a script is that we can add comments to it.

Comments are lines in a script that will not be executed by Python. We can use comments

to explain the procedures that the Python code is executing. Including comments is

SU1-11

ANL252 Introduction to Python Programming

important since they will make it more readable and understandable for future editing or

debugging, and simplify the overall maintenance of the program.

Comments in Python scripts start with a hash (#). After the hash, we can type in our

explanations or descriptions of the referred syntaxes. Comments can be placed as a

complete single line or after a line of syntax. If we need multiple lines for our comments,

we will have to start every comment line with a hash.

Figure 1.11 A Comment Line in Python

After editing the Python commands in a script using Atom, we can save the script as

a .py text file. Different from the Python interpreter, we need to use the print() function

explicitly to generate an output to the screen while Python is executing the script.

In the PowerShell, we need to change to the directory where we have saved the Python

script and then run the script by executing the following command:

python filename.py

Note that filename is the file name of our Python script.

Figure 1.12 Executing a Python Scripts written in Atom Using PowerShell

Figure 1.12 shows us how PowerShell presents the output of a Python script. Since our

program asks Python to print out the result of the addition 2 + 7, the Python interpreter

will execute the arithmetic operation in the background and return the value to the

function print() for output. After Python has executed the whole script, it will return

to the prompt of the operating system.

SU1-12

ANL252 Introduction to Python Programming

Read

Read the following section of the textbook on examples of composing and executing

Python scripts:

Exercise 1 A Good First Program (Windows)

Exercise 1 A Good First Program (macOS)

SU1-13

ANL252 Introduction to Python Programming

Chapter 2: Basic Arithmetic and Variables

Lesson Recording

Basic Arithmetic and Variables in Python

2.1 Arithmetic Operators
Before we start writing more sophisticated programs, we shall first go one step backwards

and familiarise ourselves with the most origin function of a computer: calculation. Python

can be powerful in many ways, but we can also use it for very trivial tasks such as adding

two numbers together. In Figure 1.8 and Figure 1.12, we instruct Python to carry out a

simple addition 2 + 7 for us. Similarly, we can also command Python to do other basic

arithmetic operations.

Figure 1.13 Simple Calculations with Python

The following Python arithmetic operators are available for mathematical calculations:

SU1-14

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU01CH02_H4_0_V1_0/presentation_html5.html

ANL252 Introduction to Python Programming

Table 1.1 Python Arithmetic Operators

Operator Function Example

+ Addition Adds values on either

side of the operator

10 + 20 = 30

- Subtraction Subtracts right-hand

operand from left-hand

operand

10 – 20 = -10

* Multiplication Multiplies values

on either side of the

operator

10 * 20 = 200

/ Division Divides left-hand

operand by right-hand

operand

20 / 10 = 2

% Modulus Divides left-hand

operand by right-hand

operand and returns

remainder

20 % 10 = 0

** Exponent Performs exponential

(power) calculation on

operators

10 ** 20 =

10,000,000,000,000,

000,000

// Floor Division The division of

operands where the

result is the quotient

in which the digits

9 // 2 = 4

9.0 // 2.0 = 4.0

-11 // 3 = -4

SU1-15

ANL252 Introduction to Python Programming

Operator Function Example

after the decimal point

are removed. But if

one of the operands is

negative, the result is

floored, i.e., rounded

away from zero

(towards negative

infinity)

-11.0 // 3 = -4.0

(Source: https://www.tutorialspoint.com/python/python_basic_operators.htm)

Same as normal mathematics, the exponent operator has higher priority than the operators

of multiplication or division, which in turn will be calculated prior to the addition or

subtraction operators. Furthermore, we can add parentheses to our equation to indicate

that those terms within a parenthesis should have the highest priority in the calculation.

Note that mathematical functions such as the square root, the logarithm, the exponential,

or the trigonometrical functions are not included in basic Python. If we want to include

these functions in our calculation, we will need to import packages such as “math” or

“NumPy” in our code. We will discuss how to import and call functions from external

libraries or packages in Study Unit 2.

And then there are other operators in Basic Python such as relational operators, logical

operators, etc. We will also discuss them at a later stage of this study unit.

SU1-16

https://www.tutorialspoint.com/python/python_basic_operators.htm

ANL252 Introduction to Python Programming

Read

Read https://www.tutorialspoint.com/python/python_basic_operators.htm for

more about basic operators in Python.

2.2 Variables
In most of the situations, we wish to write programs that help us automate routine

operations without adjusting our programs according to the actual needs. For instance, we

may not always want to add 2 and 7 together. Instead, we would prefer to let the computer

add up any pair of arbitrary numbers for us, and we can choose these numbers depending

on the situation. As a result, we would like to keep our program as general as possible by

using variables instead.

In python, we define a variable by its name which is an arbitrary combination of characters

(A-Z, a-z), underscores (_) and numbers (0-9). Subsequently, we assign a value to the

variable and let Python operate with it. And we can change the value of the defined

variable at any stage of our program.

To assign a value to a variable, all we need to do is:

variable = value

Remember that it is important to put the variable left of the equal sign (=) and the value

right of it. If we switched their positions, it would be equivalent to assigning a name to

a number. This would result in a syntax error, and Python will stop executing the rest of

the program at once.

SU1-17

https://www.tutorialspoint.com/python/python_basic_operators.htm

ANL252 Introduction to Python Programming

In Python, the name of a variable can be short (e.g., x, y, z) or more descriptive (e.g., age,

carname, total_volume). But there are certain rules which we must follow when we

create our variable names.

• A variable name must start with a letter or an underscore (_).

• A variable name cannot start with a number.

• A variable name can only contain alpha-numeric characters and underscores (A-z,

0-9, and _).

• Variable names are case-sensitive (age, Age and AGE are three different variables).

(Source: https://www.w3schools.com/python/python_variables.asp)

Here are some examples of valid variable names:

myvar = 10

my_var = 10

my_var = 10

myVar = 10

MYVAR = 10

_myvar2 = 10

Here are some examples of invalid variable names:

2myvar = 10

my-var = 10

my var = 10

Once values are assigned to variables, we can use them for any arithmetic operations as

introduced in Chapter 2.1 for numeric values.

SU1-18

https://www.w3schools.com/python/python_variables.asp

ANL252 Introduction to Python Programming

Example (Students’ score): Suppose we have the exam scores of two students, 30 and

65, and we would like to store them in two variables, score1 and score2, for some

mathematical operations. Subsequently, we can conduct arithmetic operations with

these variables.

Figure 1.14 Assigning Values to Variables for Operations

Read

Read the following section of the textbook on examples of creating and using variables

in Python:

Exercise 4 Variables and Names

2.3 Types of Variable and Expressions
In Python, there are different types of variable that we can work with. In the previous

section, we assign numeric values to variables which makes them numeric variables.

Nevertheless, there are also different types of numeric variable. Here are some main types

of variable available in Python:

SU1-19

ANL252 Introduction to Python Programming

Table 1.2 Types of Variable in Python

Type Description Example

Integer The value of an integer variable must be an integer,

a value without decimal point. It can be both

positive and negative.

a = 5

Float The value of a float variable can be an arbitrary

numeric value with a floating point.

b = 10.5

String The value of a string variable can contain any

letters in both cases, special characters as well as

numbers. Note that if numbers are assigned to a

string variable, no mathematical operations can be

applied on it.

To assign a value to a string variable, the value

must be written between a pair of quotation marks

(it can be single or double quotation mark, but it

must be consistent for the same value).

c = "John"

d = "Tan"

Furthermore, two strings can be concatenated by

being “added up”.

c + d =

"JohnTan"

Boolean (Bool) The value of a Boolean variable can be either True

or False.

e = True

In the following, we will use the general term expression for variables or when they are

linked with operators. For instance, a + b is an expression and not a variable, unless

we define c = a + b in our program where c is then a new variable. However, we

would rather refer to expressions in our program directly since we do not always define

new variables for calculation steps in between.

SU1-20

ANL252 Introduction to Python Programming

To check the type of a variable, we can use the type() function on any variable in our

program.

type(variable_name)

Python will then print the variable type such as “int” (for integer), “float” (for float), or

“str” (for character string) to the screen.

Example (Cont’d): In Figure 1.14, we assign 30 and 65 to the two variables, score1

and score2, respectively. We can use the type() function to check their variable

type.

Figure 1.15 Checking Variable Type

We can see that Python returns <class 'int'> as the screen output. The

information we are enquiring is put in the single quotation marks like int in this case.

As a result, we can see that both score1 and score2 are integer variables.

Read

Read the Python documentation (https://docs.python.org/3/library/

stdtypes.html#numeric-types-int-float-complex) for more about the different

operations on numeric data types.

SU1-21

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

ANL252 Introduction to Python Programming

Chapter 3: Print and Input

Lesson Recording

Print and Input in Python

3.1 Printing
Writing programs is not only to automate routine operations by the computer. It is also

of interest to show the results, information, or messages to the user while the Python

program is running. We can use the print() function to generate screen output for the

user to read.

print("My String")

All we need to do here is to put the text within a pair of quotation marks and pack

everything inside the print() function. While the program is being executed, Python

will then extract the content within the quotation marks and print it onto the screen.

Figure 1.16 Simple Use of the print() Function

The print function is not only limited to print pre-defined strings. We often wish to print

out the result of a calculation, as shown in Figure 1.8 and Figure 1.12, or the value of a

variable, or the result of a calculation based on variables as well.

SU1-22

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU01CH03_H4_0_V1_0/presentation_html5.html

ANL252 Introduction to Python Programming

Example (Cont’d): Suppose we would like Python to print the exam score of student1,

score1, and the sum of the two scores, score1 + score2, onto the screen.

Figure 1.17 Printing Variables and Their Calculations

3.2 String Formatting
In the last command of Figure 1.17, we ask Python to first execute the mathematical

operation score1 + score2, and then print it out to the user. Basically, there is nothing

wrong with this screen output, it only looks a bit “cold” and rather not interactive. To

make such an output to look more like a statement addressing to the user, we can mix

a statement with variables or expressions in our printing string to become a formatted

string for printing.

print(f"My String {expression1} {expression2} …")

The print-command is almost identical to the one for normal printing. The only

difference here is to put an “f” before the open quotation mark. Subsequently, we can

place the variables or expressions that we would like to print anywhere within the text

and wrap it within a pair of curly brackets {}.

Example (Cont’d): Suppose we would like to print the scores of the two students as

well as their sum in a sentence such as “Our scores are 30 and 65. The total score is

95”. We can use the following code to create this screen output.

SU1-23

ANL252 Introduction to Python Programming

Figure 1.18 Printing Formatted String

Unlike the entire argument within the quotation marks, every expression written inside

the curly brackets of a formatted string will be evaluated before being printed onto the

screen. In Figure 1.18, the expressions score1, score2 and score1 + score2 will be

evaluated first. That is, Python will execute the print() function with the value assigned

to these expressions and not with the expressions as part of the string.

Example (Cont’d): If the variables or expressions were not put inside some curly

brackets as a formatted string, the expressions score1, score2, and score1 +

score2 would be treated as ordinary strings and printed just as how they were

written. And if the “f” were forgotten at the beginning of the argument in the

print() function, Python would interpret the missing of the “f” as an instruction to

print the entire text within the quotation mark without evaluating the expressions in

the curly brackets first. Since the curly brackets are part of the string in the print()

function, they will be printed as well.

Figure 1.19 Output of Incomplete String Formatting Syntax

We can also use the .format() method for string formatting. Note that the .format()

method only takes one expression in its argument.

SU1-24

ANL252 Introduction to Python Programming

print("My String {}".format(expression))

For the .format() method, we need to place the curly brackets at the position within

the string where we would like to print our expression.

Example (Cont’d): We can print the total score of the two students at the end of a

statement such as “The total score is 95.” by using the .format() method.

Figure 1.20 Simple Usage of the .format() Method

Figure 1.21 shows us how the printing string can be extended in order to get the same

output as in Figure 1.18. But the syntax is much longer here.

Figure 1.21 Multiple Usage of .format() Method

Nevertheless, the .format() method can also be useful if we have one variable to

be printed at the end of our statement.

SU1-25

ANL252 Introduction to Python Programming

Read

Read the following section of the textbook on printing formatted strings:

Exercise 5 More Variables and Printing

Read the following two sections of the textbook on printing formatted strings using

the .format() method:

Exercise 6 Strings and Text

Exercise 7 More Printing

3.3 Escape Sequences
Escape sequences are used to print special characters that are invisible such as ENTER, or

characters that can cause syntax error such as single (') or double quotation marks (").

Suppose we would like to include a quote within a string for the screen output.

Figure 1.22 Syntax Error Caused by Quotation Marks within a string

In Figure 1.22, the string in the print() function ends with the second quotation mark.

Everything subsequent to it will be interpreted as part of the code. Since the word

“alarming” is neither a Python command nor a variable, Python simply interprets it as an

erroneous syntax. One way to avoid this error is to use single quotation marks for either

the citation quote or the string definition.

SU1-26

ANL252 Introduction to Python Programming

Figure 1.23 Printing Quotation Marks within a String

Another way is to use the escape sequence \" within the string instead of switching

between single and double quotation marks.

Figure 1.24 Printing Quotation Marks using Escape Sequence

Escape sequences are also useful when line breaks should be inserted within a string. By

adding the escape sequence “\n” at the position within the string, the subsequent part of

the string will be printed in the next line of the output screen.

Example (Cont’d): Now we would like to print the first and the second sentences in

Figure 1.18 in two separate lines. However, we would create a syntax error if we just

placed a line break in our Python script.

Figure 1.25 Erroneous Line Breaks within a String

SU1-27

ANL252 Introduction to Python Programming

Figure 1.25 illustrates that Python treats such a line break within a string as a syntax

error. The reason is that the string in the print() function must be closed by a

quotation mark in the same line. Instead of closing the first line directly and start a

new print() function in the second line to solve this problem clumsily, we can add

an escape sequence \n into the string:

Figure 1.26 Line Breaks Created by Escape Sequence \n

The following list contains some useful escape sequences available in Python:

Table 1.3 List of Some Escape Sequences Available in Python

Escape Sequences Description Example

\newline Backslash and newline

ignored

>>> print("line1 \

Line2")

line1 line2

\\ Backslash (\) >>> print("\\")

\

\' Single quote (') >>> print("\'")

'

\" Double quote (") >>> print("\"")

SU1-28

ANL252 Introduction to Python Programming

Escape Sequences Description Example

"

\n ENTER or line break >>> print("line1 \n

line2")

line1

line2

\b Backspace (BS) >>> print("line1 \b

line2")

line1 line2

\t Horizontal Tab (TAB) >>> print("line1 \t

line2")

line1 line2

\v Vertical Tab (VT) >>> print("line1

\vline2")

line1

line2

(Source: https://www.python-ds.com/python-3-escape-sequences)

SU1-29

https://www.python-ds.com/python-3-escape-sequences

ANL252 Introduction to Python Programming

Read

Read the following two sections of the textbook on using escape sequence in printing

formatted strings as in Figure 1.8:

Exercise 9 Printing, Printing, Printing

Exercise 10 What Was That?

3.4 Input
While a program script is being executed, it requires values to be assigned to the variables

in order to proceed in its instructions. So far, we have discussed the possibility to assign

values to the variables in the script. That means, the values are fixed when the program

started to run. However, in most of the cases, those values are unknown and can only be

assigned while the program is running, mostly based on the input of the user. In Python,

we can use the input() function to ask the user to enter the value for a variable.

variable = input("My String")

The whole syntax will be put on the right-hand side of an equal sign so that Python can

assign the user input to the variable that is defined on the left-hand side of the same equal

sign.

Unlike the print() function, Python requires the user to type in something and then

press ENTER to complete the execution of the input() function. Same as the print()

function, we can instruct Python to print a string to the screen within the input()

function. Usually, this string should be a question and/or some instructions to inform the

user what they shall input here. Furthermore, we are also allowed to mix the assigned

SU1-30

ANL252 Introduction to Python Programming

values of some variables with the instruction text to become a formatted string that will

be printed on the screen for the subsequent input.

Example (Cont’d): Instead of pre-assigning values to the variables, we will ask the

user to enter his/her name and his/her score. Subsequently, we will print out his/

her score by addressing his/her name and embed his/her score in a sentence such as

“Your score is …”.

Figure 1.27 Example of Using input() Function

In Python, the value assigned by the user within an input() function will be stored as

string. If the input should be an integer or a number with a floating point, we can convert

the input using:

variable = int(input("My String"))
variable = float(input("My String"))

The functions int() and float() are used to convert a string variable to become an

integer or a float variable. (Conversely, there is the str() function to convert an integer

or a float variable into a string variable.)

SU1-31

ANL252 Introduction to Python Programming

Example (Cont’d): Since the score of a student must be an integer within 0 and 100,

we can convert it to an integer by embedding the input() function within an int()

function. At the same time, we add a new question to ask the student for his/her

CGPA and convert it to a float variable.

Figure 1.28 Convert Input Value to Integer and Float

The syntax introduced above is to put the input() function inside the int() and

float() functions and construct the instruction within a single line. Nevertheless, we

can also separate these commands into two lines without changing the behaviour of the

program:

variable = input("My String")
variable = int(variable)

These lines are certainly applicable to the float() function as well. It is noteworthy

that if the user enters a value that is not a number, the int() or float() functions will

interpret it as a syntax error and stop executing the code immediately. It is therefore a good

programming habit to build in certain control mechanism for any user input command in

SU1-32

ANL252 Introduction to Python Programming

our code. We will discuss the construction of such control mechanism in Chapter 5 of this

study unit.

Read

Read the following two sections of the textbook on getting the user input:

Exercise 11 Asking Questions

Exercise 12 Prompting People

SU1-33

ANL252 Introduction to Python Programming

Chapter 4: If-elif-else-Conditions

Lesson Recording

If-elif-else-Conditions in Python

4.1 Boolean Expressions
To automate a routine by a computer program, we usually need to let the program

“decide” what to execute in the next step based on some conditions. For instance, the user

can choose to stay or quit the program after certain operations have been completed.

Before introducing the if-elif-else-conditions that Python uses to decide how the

program should behave after a certain stage of the code, we need to get ourselves

familiarised with the Boolean expressions first. As introduced in Chapter 2.3, Boolean

variables have only two possible values: True and False. So, the basic concept of the

conditional control flow is to evaluate whether a Boolean expression is True or not first,

and then carry out either set of instructions depending on the evaluation.

A Boolean expression can be the result of a single relational operation or a combination

of multiple relational operations linked by logical operators. Here are some relational

operation examples:

Table 1.4 Examples of Relational Operation

Relational Operation Result

1 == 1 True

3 > 2 True

SU1-34

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU01CH04_H4_0_V1_0/presentation_html5.html

ANL252 Introduction to Python Programming

Relational Operation Result

0 <= -5 False

a + b < 10 False if a + b >= 10

In the above examples, the first two operations are obviously True since they correspond

to the mathematical relationship between the left-hand and the right-hand sides of the

equations. Note that if we want to check whether two expressions are identical, we will

have to use the double equal sign (==) instead of the ordinary equal sign (=) since the

single equal sign is used to assign a value to a variable. So, if we wrote 1 = 1 instead

of 1 == 1, a syntax error would return since Python would interpret our intention to be

assigning a value to a number, which we know is not allowed from Chapter 2.2.

Below is a list of relational operators that we can use in Python.

Table 1.5 List of Relational Operators

Operator Description Example

== True if the values of two operands are

equal.

(10 == 20) is False.

!= True if values of two operands are not

equal.

(10 != 20) is True.

<> True if values of two operands are not

equal (Similar to the != operator).

(10 <> 20) is True.

> True if the value of left operand is greater

than the value of right operand.

(10 > 20) is False.

SU1-35

ANL252 Introduction to Python Programming

Operator Description Example

< True if the value of left operand is less

than the value of right operand.

(10 < 20) is True.

>= True if the value of left operand is

greater than or equal to the value of right

operand.

(10 >= 20) is False.

<= True if the value of left operand is

less than or equal to the value of right

operand.

(10 <= 20) is True.

(Source: https://www.tutorialspoint.com/python/python_basic_operators.htm)

A Boolean expression can also be a combination of multiple relational operations,

connected by the logical operators. Below is a list of logical operators in Python.

Table 1.6 List of Logical Operators

Operator Description Example

and If both the operands are True, then the

condition becomes True.

(10 > 0 and 20 >

0) is True.

or If any of the two operands are non-zero,

then the condition becomes True.

(10 > 0 or 20 > 0)

is True.

not Used to reverse the logical state of its

operand.

not(10 > 0 or 20 >

0) is False.

(Source: https://www.tutorialspoint.com/python/python_basic_operators.htm)

SU1-36

https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm

ANL252 Introduction to Python Programming

The use of a single logical operation is usually quite straightforward as the operators

are designed in a way that it just simply matches our spoken language. However, it

could become quite confusing if we combine these operators in a Boolean expression. For

instance, the following Boolean expressions are equivalent:

(a or b) and c <==> (a and c) or (b and c)

(a and b) or c <==> (a or c) and (b or c)

not(a or b) <==> (not a) and (not b)

not(a and b) <==> (not a) or (not b)

These are just a few examples and can be extended endlessly. It is utmost important to get

familiarised on how to create Boolean expressions using relational and logical operators.

Any failure in combining these operators could lead to unexpected behaviour of our

program. The only, and most effective way here is to practise them with Python since we

can check on the result directly.

Read

Read the following two sections of the textbook on Boolean expressions:

Exercise 27 Memorising Logic

Exercise 28 Boolean Practice

SU1-37

ANL252 Introduction to Python Programming

4.2 Conditional Statements
The result of a Boolean expression can serve as the condition that changes the behaviour

of a program dynamically by embedding it in an if-conditional statement:

if condition:
 instructions

In the if-condition, Python will execute the syntaxes in the instructions if the condition is

True. However, if the condition is False, Python will simply skip these lines and proceed

with the subsequent code lines. Note that it is mandatory to put the colon directly behind

the condition, and the instructions must be indented so that Python can interpret them as

part of the if-block.

SU1-38

ANL252 Introduction to Python Programming

Example (Cont’d): If the score of a student is below 40, we will show a message on

the screen to tell him/her that he/she failed in the exam.

Figure 1.29 if-Statement Example with True Condition

Figure 1.29 illustrates what Python does if the condition is True. On the other hand,

if a student scores more than 40, nothing will be printed based on the Python script.

Figure 1.30 if-Statement Example with False Condition

Figure 1.30 shows how Python skips all the instructions in the if-block since the

condition is False.

If we intend to let Python execute another set of instructions if the condition is False,

and not just skip the if-block, we can add an else-statement to the if-block:

SU1-39

ANL252 Introduction to Python Programming

if condition:
 instructions 1
else:
 instructions 2

Same as the if-condition, we must add a colon to the else-statement and the instructions

following it must be indented as well.

Example (Cont’d): If the score of a student is below 40, we will show a message on

the screen to tell him/her that he/she failed in the exam. Otherwise, we will show a

message to tell him/her that he/she passed.

Figure 1.31 if-else-Statement Example

Figure 1.31 shows that if the condition is False, Python will execute those

instructions following the else-statement.

SU1-40

ANL252 Introduction to Python Programming

If the construction of the condition allows more than two outcomes, we may need a third

or fourth if-blocks, etc. In this case, we can use the if-elif-else-block:

if condition 1:
 instructions 1
elif condition 2:
 instructions 2
else:
 instructions 3

Note that an if-elif-else-block does not necessarily need an else-statement. But

we should ensure that the conditions being checked by the if-statement and the elif-

statements must cover all possible outcomes, unless we are certain that only those

possibilities are being uncovered which do not need any instructions to follow up.

In the example in Figure 1.30, the program is only constructed to separate students into

two categories: Pass and fail. It will then print the statement to the user accordingly.

Suppose we also give grades to evaluate the performance of the students, we can

categorise the scores using if-conditions.

If we construct an if-block to categorise a numeric variable, we should ensure that the

Boolean expressions do not overlap. For instance, if grade A is assigned when the score

is between 80 and 100, then 80 should not be included in the condition for getting grade

B. The logical operator and should be used to indicate the interval for each category since

both conditions, namely that the value of the numeric variable must be larger than the

lower bound, as well as smaller than the upper bound of the interval, must be fulfilled

simultaneously.

In the example shown in Figure 1.32, the else-statement has also been omitted since all

possible outcomes of the variable score have been covered by the if-block. Nevertheless,

we can also use the else-statement instead of the whole elif-condition for grade A if we

are confident to do so. Just be cautious that in this case, if certain possibilities were not

SU1-41

ANL252 Introduction to Python Programming

covered, no instructions would be carried out from the if-block, and the behaviour of the

subsequent part of the program may be affected.

Example (Cont’d): We will print the grade to the student according to his/her exam

score. If a student scores between 80 and 100, his/her grade will be A; and if his/her

score is between 80 and 60, he/she will get a B; a score between 50 and 60 is equivalent

to grade C; grade D will be given if a student scores between 40 and 50 and any score

below 40 belongs to grade F.

Figure 1.32 Example of if-elif-else-Statement

Lastly, the print() function is not indented here. As a result, Python interprets it as

the part of the code that should be executed after the entire if-block and not as part

of the instructions following the last condition (elif score1 >= 80 and score1

<= 100:).

SU1-42

ANL252 Introduction to Python Programming

Read

Read the following three sections of the textbook on conditional statements for control

flow:

Exercise 29 What If

Exercise 30 Else and If

SU1-43

ANL252 Introduction to Python Programming

Chapter 5: Loops

Lesson Recording

Loops in Python

5.1 While-Loops
In the student score example, we construct a program in which the name and the mark

of one student can be entered. In the early stage of our example, we had scores of two

students. If we had to enter their names and then assign a grade to each of them, we would

have to repeat the codes in Chapters 2, 3 and 4 twice.

SU1-44

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU01CH05_H4_0_V1_0/presentation_html5.html

ANL252 Introduction to Python Programming

Figure 1.33 Repeating the Same Code for Two Individuals to Enter

Usually, we have more than two students in one class. In order not to expand our codes

endlessly and make it clumsy and unreadable, we can construct a loop in our program to

repeat the instructions that will be applied for many times. The first type of loops that we

will introduce here is the while-loop.

while conditions:
 instructions

SU1-45

ANL252 Introduction to Python Programming

The condition is a Boolean expression which controls whether the loop will continue to

run for a new iteration or not. If the condition is True, Python will go on to execute the

instructions that are written with indentation and after the colon behind the conditions.

The number of loops can be infinite and will be repeated as long as the condition is True.

As a result, it is extremely important to ensure that a while-loop will be terminated at

some stage by fulfilling the exit condition.

Example (Cont’d): We will repeat the previous task for 3 students.

Figure 1.34 Entering Names and Scores Repeatedly by while-Loops

SU1-46

ANL252 Introduction to Python Programming

Before the loop starts, we initiate a counter variable called i with the value 0. This

counter will increase by 1 in each iteration. The while-loop is set to continue as long

as i has not reached 3 yet. At the beginning of the last iteration, i should be 2 and

will become 3 when Python executes the instructions within the while-loop. At the

end of this iteration, Python will go back to the first line of the while-loop, and since

the condition i < 3 is no longer True, the program will exit the loop as designed.

Therefore, the most crucial command in the whole loop is i = i + 1. Without this

line, i can never reach 3, which is the exit condition, after three iterations. Instead, it

will stay at 0, the initial value defined before the loop has started, forever.

Read

Read the following section of the textbook on while loops:

Exercise 33 While Loops

5.2 For-Loops
Another type of loops is the for-loop, which are constructed differently. While we need

a True-condition for a while-loop to continue to iterate, we need a list for the running of

the for-loops. We will discuss the construction and properties of a list in detail in Study

Unit 2. Here, we will first learn to generate a simple list of consecutive integers by the

range() function.

variable = range(start, end)

The start value can be any integer as long as it is smaller than the end value. Note that

the end value is not included in the list. In other words, the list will end at end – 1. The

generated list of numbers will be assigned to the variable defined on the left-hand side of

SU1-47

ANL252 Introduction to Python Programming

the syntax. For the for-loops, we do not need to store the generated list in a variable first.

Instead, we can use the range() function in the for-statement directly.

for counter in range(start, end):
 instructions

The for-command must end with a colon, followed by the instructions that should be

carried out in each iteration. These instructions must be written with indentation. The

counter variable will do the counting for the iterations, starting from the start value in

the first iteration and running through the entire integer list. Once the counter reaches

end – 1, Python will execute the instructions for the last time and then exit the loop.

SU1-48

ANL252 Introduction to Python Programming

Example (Cont’d): We will carry out the previous task using the for-loop.

Figure 1.35 Entering Names and Scores Repeatedly by for-Loops

The range() function generates a list containing the values 0, 1, and 2, since 3 will not

be included in the list by definition. The code in Figure 1.35 also shows that the counter

variable i is already integrated in the for-statement, and an explicit instruction to

increase it by one in each iteration is not required at all.

SU1-49

ANL252 Introduction to Python Programming

Read

Read the following section of the textbook on while-loops:

Exercise 32 Loops and Lists

5.3 Breaking from Loops
Though we usually have a clear exit condition or a finite list to guarantee a loop to end at a

certain point of the program, we may still be confronted with situations where we would

like to interrupt the loop and continue with the subsequent program.

In our previous example, suppose we would like to quit the entire program after entering

the first student’s data due to some reasons, although the program allows us to enter the

data for up to three students. It would be reasonable to have a syntax that allows us to

break from the loop in a “clean” manner instead of shutting down the computer entirely.

The command for such situation is break.

for counter in range(start, end):
 …
 if conditions:
 break

Equivalently, the break command also works within a while-loop.

while conditions:
 …
 if conditions:
 break

SU1-50

ANL252 Introduction to Python Programming

Usually, break is used together with an if-condition since we would only want to break

from a loop under some circumstances, and not in general.

Example (Cont’d): Suppose we let the user to quit the program by entering -1 for

his/her score now. All we need to do is to add an if-condition after the input()

statement where he/she can enter the score.

Figure 1.36 Breaking from Loops Using break

The break command is built after the user is asked to enter his/her exam score, but

before the grade is being assigned. Basically, the program will still work normally if

the break command is put after the whole if-elif-block. By breaking from the loop

SU1-51

ANL252 Introduction to Python Programming

before a chunk of codes that will have no further influence on the execution of the

program can shorten the running time and make it faster.

Note that we can also apply the break command on our example in Figure 1.34 where

we use the while-loops for the same task instead.

5.4 Error Handling in Input
Another common use of loops is to control the user input following an input()

statement. For instance, it could happen that the user types in a letter instead of a number

for the exam score by accident. In this case, we would like the user to redo the input until

it is a number. As a result, we can put the input() statement within a while-loop and

only break from it when the input of the user is valid.

Before we start to construct while-loops for user inputs, we have to learn how Python

handles errors. In Chapter 3, we mention that if we apply the int() function to convert

a string variable that contains a non-numeric value to an integer, the program will

be interrupted due to value error. And the user will have to restart the program in

PowerShell. This can be very annoying if the user only makes a small mistake in one of

the input fields, but needs to re-type all the inputs because of the program interruption.

To avoid Python from stopping to execute the program by force, we can use the try:

syntax.

try: #The try-block lets us test a block of code for errors.
 instructions
except exception: #The except-block lets us handle the
 error.
 instructions
else: #The else-block carries out instructions if no error
 occurs (optional).
 instructions
finally: #The finally-block executes instructions
 regardless of the result of the try- and except blocks
 (optional).
 instructions

SU1-52

ANL252 Introduction to Python Programming

The try-except-block is an important instrument in Python to handle errors. Basically,

we can put any syntax in the try-block if we think error can occur in those syntaxes. The

except-block is to tell Python to continue with the program except for the occurrence

of an error, or the occurrence of a specific error that we declare under exception.

If error indeed occurs, Python will carry out the instructions written after the colon

behind the except-statement, instead of stopping the program entirely. The else-block

and finally-block are optional and can be used if we want certain instructions to be

carried out if no error occurs or for finalising a try-block.

In Python, there are many built-in exceptions. Table 1.7 provides some common ones.

Table 1.7 List of Some Common Exceptions

Exception Description

NameError Raised when a local or global name is not found. This applies only

to unqualified names. The associated value is an error message that

includes the name that could not be found.

TypeError Raised when an operation or function is applied to an object of

inappropriate type. The associated value is a string giving details

about the type mismatch.

ValueError Raised when an operation or function receives an argument that has

the right type but an inappropriate value, and the situation is not

described by a more precise exception.

(Source: https://docs.python.org/3/library/exceptions.html)

If the user is asked to enter a numeric value such as an exam score, but enter a string

instead, we can use ValueError as our exception.

SU1-53

https://docs.python.org/3/library/exceptions.html

ANL252 Introduction to Python Programming

Example (Cont’d): We implement a try-block to test the validity of score input by

the user. If it is a string, the program will warn the user of an erroneous input.

Figure 1.37 Using Exception for Error Handling

In the first run, we type in a string “test” where we should actually enter a numeric

value for the score. Python detects an error since the syntax tries to use the int()

function to convert character strings to integers which would usually cause the

program to stop running abruptly. From the output, we can see that Python prints the

warning message we put in the print() function to the screen and ends the program

“properly” as if no error has occurred. In the second run, we enter a numeric value as

required. Python detects no error and simply skips the except-block.

After defining the try-block to instruct Python on how to handle errors, we can construct

a while-loop around it. As condition for the loop to continue iterating is when a Boolean

variable that indicates a valid input does not change from False to True. Hence, if this

Boolean variable is True, the program will break from the loop.

SU1-54

ANL252 Introduction to Python Programming

Example (Cont’d): Now we put the entire try-block within a while-loop. The

while-loop will stop iterating once the input for score is numeric. If it is non-

numeric, the user will see a warning message and he will also be asked to re-enter his

exam score. The whole procedure will last until the input is numeric.

Figure 1.38 Using while-loop for User Input If Error Occurs

We initiate a Boolean variable called valid_input before the while-loop starts.

The initial value of this variable is False which we also use as the condition for the

while-loop to continue to iterate. In the try-block, we add an else-statement for

the case that the input is correct, and the follow-up instruction here is to change the

value of valid_input to True so that the while-loop stops. Note that we can use

the break command here as well. In the output screen, we can see that if the input is

non-numeric, the program will print a warning message in a new line and then ask

the user to re-enter the score until the input is valid.

SU1-55

ANL252 Introduction to Python Programming

It is possible or even desirable to set a maximum number of input trials in order not to

have the program running endlessly. A counter variable can be added to the loop, and

the program will exit the loop after the maximum allowed number of iterations has been

reached.

SU1-56

ANL252 Introduction to Python Programming

Example (Cont’d): The complete program of this study unit containing all the

techniques we have learned is given in the following figure.

Figure 1.39 The Complete Example Program of Study Unit 1

SU1-57

ANL252 Introduction to Python Programming

Summary

We have learned the basics of writing and executing Python programs. We have also been

introduced to the various variable types and some operators that can be applied to them.

We have then discussed how to generate screen output and how to let the user enter

answers and assign them as values to the variables. Furthermore, we have covered the

construction of conditional statements to dynamically change the program behaviour if

necessary. Finally, we have also come to know the use of loops to repeat routine tasks for

an endless number of times within a program.

SU1-58

ANL252 Introduction to Python Programming

Formative Assessment

1. From which directory (folder) can you run your Python script that is saved with

the .py extension?

a. From the folder where Python is installed

b. From the folder where the operating system is installed

c. From the folder where I have saved my Python script

d. From any arbitrary folder

2. Which line of code is not a valid Python syntax?

a. print("This is {a} wrong syntax!")

b. 0 = 0

c. 0 == 1

d. y = a / int(b)

3. Which of the following is a valid Python variable name?

a. iamavariablelol

b. :)iamavariable

c. 007imavariable

d. i-am-a-variable-lol

4. What is the value of int(-0.5) in Python?

a. -1

b. 0.5

c. 0

d. 1

5. What does the .format() method do?

a. It formats the font of the string in a print() function.

SU1-59

ANL252 Introduction to Python Programming

b. It replaces the expression in a curly bracket within a string by its value.

c. It replaces the curly bracket by a round bracket in a string.

d. It replaces the curly bracket within a string by the value of the expression in

the .format() method.

6. Which of the following Boolean expression is false?

a. -5 <= 0

b. 10 ** 2 == 100

c. int(-0.5) < int(-0.2)

d. 18 / 3 > 1 + 4

7. Which Boolean expression is equivalent to not(a and b)?

a. not a and not b

b. not a or not b

c. not a and b

d. a or b

8. Which statement is correct regarding the if-elif-else statement block?

a. The if-elif-else statement must end with an end-statement.

b. There must be an else-statement in every if-elif-else statement block.

c. If-elif-else statement block can also start with an elif- or else-

statement.

d. Behind each if-, elif-, and else-statement must be a colon before the

instruction block starts.

9. Which values will be printed on the screen given the following Python code?

counter = 0
while counter <= 3:
 print(counter)
 counter = counter + 1

SU1-60

ANL252 Introduction to Python Programming

a. 0, 1, 2, 3

b. 1, 2, 3, 4

c. 0, 1, 2, 3, 4

d. 0, 2, 3

10. Which of the following is correct about for-loops in Python?

a. We need to initiate a counter before the loop starts.

b. We must write a line to increase the counter by one within the loop.

c. We need an exit condition for the loop.

d. We can use the range() function to generate a list of numbers as the index of

the for-loop iterations.

SU1-61

ANL252 Introduction to Python Programming

Solutions or Suggested Answers

Formative Assessment
1. From which directory (folder) can you run your Python script that is saved with

the .py extension?

a. From the folder where Python is installed

Incorrect. Python would not be able to find your Python script there unless

you have saved it in the Python program folder, which is rather unlikely.

b. From the folder where the operating system is installed

Incorrect. Python would not be able to find your Python script there unless

you have saved it in the system folder, which is also rather unlikely.

c. From the folder where I have saved my Python script

Correct. You must change to the folder where you have saved your Python

script so that Python can find your file.

d. From any arbitrary folder

Incorrect. Python would not be able to find your Python script unless you

are accidentally in the folder where you have saved your Python script.

2. Which line of code is not a valid Python syntax?

a. print("This is {a} wrong syntax!")

Incorrect. The syntax is correct since the curly bracket and its content will be

treated as part of the printing string.

b. 0 = 0

SU1-62

ANL252 Introduction to Python Programming

Correct. The left-hand side of a value-assignment syntax must be a variable

name. A number there is invalid since Python interprets it as assigning a

value to a number.

c. 0 == 1

Incorrect. This syntax is valid since it is a Boolean expression.

d. y = a / int(b)

Incorrect. This is a valid syntax since we can carry out a division in which the

denominator is being converted to an integer.

3. Which of the following is a valid Python variable name?

a. iamavariablelol

Correct. This variable name is valid since it starts with a character and

contains no invalid character.

b. :)iamavariable

Incorrect. This variable name is invalid since it starts with a colon and

contains invalid characters such as closing round bracket.

c. 007imavariable

Incorrect. This variable name is invalid since it starts with a number.

d. i-am-a-variable-lol

Incorrect. This variable name contains invalid characters such as hyphen.

4. What is the value of int(-0.5) in Python?

a. -1

Incorrect. The int() function does not round down a negative number.

SU1-63

ANL252 Introduction to Python Programming

b. 0.5

Incorrect. The int() function is not used to convert a value to absolute

number.

c. 0

Correct. The int() function will take away all the decimal places.

d. 1

Incorrect. The int() function does not round down a negative number and

then convert it to absolute number.

5. What does the .format() method do?

a. It formats the font of the string in a print() function.

Incorrect. The .format() method does not format the font of a string.

b. It replaces the expression in a curly bracket within a string by its value.

Incorrect. This would be done by the f-instruction in the print() function

for string formatting.

c. It replaces the curly bracket by a round bracket in a string.

Incorrect. The .format() method does not replace the curly bracket by a

round bracket in a string unless the code explicitly requires Python to do so.

d. It replaces the curly bracket within a string by the value of the expression in

the .format() method.

Correct. The value of the expression in the .format() method will be

used to replace the curly bracket within the printing string.

6. Which of the following Boolean expression is false?

a. -5 <= 0

SU1-64

ANL252 Introduction to Python Programming

Incorrect. The expression is true since it requires -5 to be smaller or equal to 0.

b. 10 ** 2 == 100

Incorrect. Since 10 ** 2 = 100, the left-hand side and the right-hand side

are equal.

c. int(-0.5) < int(-0.2)

Correct. Since int(-0.5) is 0 and int(-0.2) is also 0, 0 < 0 is a

false relation.

d. 18 / 3 > 1 + 4

Incorrect. Since 18 / 3 = 6 and 1 + 4 = 5, 6 > 5 is a true relation.

7. Which Boolean expression is equivalent to not(a and b)?

a. not a and not b

Incorrect. not a and not b is equivalent to not(a or b)

b. not a or not b

Correct. not a or not b is equivalent to not(a and b)

c. not a and b

Incorrect. not a and b is equivalent to not(a or not b)

d. a or b

Incorrect. a or b is equivalent to not(not a and not b)

8. Which statement is correct regarding the if-elif-else statement block?

a. The if-elif-else statement must end with an end-statement.

SU1-65

ANL252 Introduction to Python Programming

Incorrect. No end-statement is needed for an if-elif-else statement

block.

b. There must be an else-statement in every if-elif-else statement block.

Incorrect. An if-elif-else statement block does not necessarily require

an else-statement.

c. If-elif-else statement block can also start with an elif- or else-

statement.

Incorrect. An if-elif-else statement block must start with an if-

statement.

d. Behind each if-, elif-, and else-statement must be a colon before the

instruction block starts.

Correct. Behind every if-, elif-, and else-statement must be a colon.

9. Which values will be printed on the screen given the following Python code?

counter = 0
while counter <= 3:
 print(counter)
 counter = counter + 1

a. 0, 1, 2, 3

Correct. Since the print() function comes before the increment of the

counter, the counter will be printed starting from its initial value 0 and

goes until 3 with an increase of 1 in each iteration.

b. 1, 2, 3, 4

SU1-66

ANL252 Introduction to Python Programming

Incorrect. Since the print() function comes before the increment of the

counter, the counter will be printed starting from its initial value 0 and not

1.

c. 0, 1, 2, 3, 4

Incorrect. Since the loop will only continue to run if the value in counter is

smaller or equal to 3, 4 cannot be printed based on this code.

d. 0, 2, 3

Incorrect. Since the increment of the counter can only be 1 for each iteration

of the loop, a jump from 0 to 2 is impossible based on this code.

10. Which of the following is correct about for-loops in Python?

a. We need to initiate a counter before the loop starts.

Incorrect. We only need to initiate a counter before a while-loop starts.

b. We must write a line to increase the counter by one within the loop.

Incorrect. We only need to write a line to increase the counter by one within

a while-loop.

c. We need an exit condition for the loop.

Incorrect. A for-loop does not need any exit condition since it runs through

a finite list. Once the list comes to an end, Python will exit the loop.

d. We can use the range() function to generate a list of numbers as the index

of the for-loop iterations.

Correct. Every for-loop needs a list for it to run through. One type of list

is a list of integers that can serve as the index for the for-loop iterations,

and we can generate such a list by the range() function.

SU1-67

ANL252 Introduction to Python Programming

References

Atom.io. (n.d.). A hackable text editor for the 21st Century. GitHub. https://atom.io

Learn Python. (n.d.). Python – Basic operators. tutorialspoint. https://

www.tutorialspoint.com/python/python_basic_operators.htm

Python Tutorial. (n.d.). Python 3 escape sequences. Python-ds.com. https://www.python-

ds.com/python-3-escape-sequences

Python Tutorial. (n.d.). Python variables. w3schools.com. https://www.w3schools.com/

python/python_variables.asp

Python.org. (n.d.). Built-in exceptions. Python Software Foundation. https://

docs.python.org/3/library/exceptions.html

Python.org. (n.d.). Built-in types. Python Software Foundation. https://

docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Python.org. (n.d.). Download python. Python Software Foundation. https://

www.python.org/downloads/

Shaw, Z. A. (2017). Learn python 3 the hard way. Addison-Wesley Professional.

SU1-68

https://atom.io
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.tutorialspoint.com/python/python_basic_operators.htm
https://www.python-ds.com/python-3-escape-sequences
https://www.python-ds.com/python-3-escape-sequences
https://www.w3schools.com/python/python_variables.asp
https://www.w3schools.com/python/python_variables.asp
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://www.python.org/downloads/
https://www.python.org/downloads/

Study
Unit 2

Data Types and Functions

ANL252 Data Types and Functions

Learning Outcomes

By the end of this unit, you should be able to:

1. Differentiate the various types of compound data structures in Python

2. Discuss how Python manages packages, modules, functions, etc.

SU2-2

ANL252 Data Types and Functions

Overview

Python provides numerous compound data types to group a collection of values together.

Compound data structures organise and store data in a way that they can be accessed

and worked with efficiently. These structures also define the relationship between the

data and the operations that can be performed on them. We will learn in this study unit

how to create, when to use, and what operations to perform on the most common Python

compound data structures: tuples, lists and dictionaries. Furthermore, we will also learn

about what functions and methods are and how they can be integrated in our program.

Lastly, we will also deal with Python packages and modules which are, together with

functions and methods, very useful for reusing and extending our tools of performing

specific tasks in Python programming.

SU2-3

ANL252 Data Types and Functions

Chapter 1: Tuples, Lists, Dictionaries

1.1 Tuples

Lesson Recording

Python Tuples

1.1.1 Defining Tuples

In Study Unit 1, we have learned that we could store values in a variable for later

operations in our code. The type of a variable depends on whether we want to store

numeric values or character strings in it. More often, we work with multiple data points

of the same nature such as the names of all students in a class. It would be inconvenient

to create a new python variable for each data point like, e.g., student1, student2, etc.

What we can do instead is to store all data points in some kind of compound data structure.

Python facilitates several types of compound data for our use. One of these data types is

the tuple. A tuple is a collection of values written as comma-separated items between a

pair of round brackets, similar like vectors in mathematics. Unlike vectors, tuples are not

specifically designed for mathematical operations. The items, or elements in a tuple can

be numeric, string, or a mixture of both.

tuple_name = (element1, element2, …)

Note that tuples are immutable, that is, we are not allowed to modify them once they are

defined. Nevertheless, they are more efficient in terms of performance and memory use.

SU2-4

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU02CH01_P01_H4_0_V1_0/presentation_html5.html

ANL252 Data Types and Functions

Tuples are useful in situations where we want to share the data with other users without

granting them the permission to edit the content.

Example (Students’ score, cont’d): We assign the names of two students to a tuple

called names, the scores of the same students to a tuple scores and a mixture of the

names and the scores to all_data.

Figure 2.1 Definition of Tuples

We can assign elements to a tuple with or without writing them in parentheses in our

code, as long as they are separated by commas. Nevertheless, when printing them on

the screen, they will be wrapped by a pair of round brackets. Furthermore, the tuple

all_data, which consists of two strings and two integers, shows us that tuples can

be indeed a mixture of strings, integers, and floats.

1.1.2 Subsetting Tuples and Indexing

To access one specific element in a tuple, we need to use the index operator []. In Python,

the index of any compound data type, i.e., tuples, lists and dictionaries, begins with 0 and

ends with the total number of elements minus 1. In other words, the index for the first

element in a tuple is 0, the index for the second element is 1, and the third one is 2, and so

SU2-5

ANL252 Data Types and Functions

on. If we want to subset more than a single element from a tuple, we can put the start and

end indices in the index operator, connecting them with a colon.

tuple_subset = tuple_name[start:end]

It is important to recall that the index end will not be included in the subsetting procedure.

Example (Cont’d): We would now like to extract the first element from the tuple

names and store it in a variable called name1, the second element in name2, as well

as the entire data of the first student including his name and score from the tuple

all_data in a new tuple called student1_data.

Figure 2.2 Subsetting Tuples

If we subset a single element from a tuple, it will become a variable of the type that

corresponds to the type of the extracted data. In this case, the variables name1 and

name2 are strings since “Peter” and “Mary” are stored as string in the original tuple

SU2-6

ANL252 Data Types and Functions

names. And if we subset multiple elements from a tuple, the result will be a tuple as

well and the data type of each element will also be taken over from the original tuple.

In the above example, the tuple student1_data should be a subset of the tuple

all_data with the element indexed 0:2, where the index 2 is excluded. In other

word, it only contains the elements 0 and 1, which are the first and second elements:

Peter and 72.

We can also use negative indices to access the elements of a tuple starting from the last

element. That is, the index -1 indicates the last element, -2 the second last, etc.

Example (Cont’d): We would now like to extract the last element from the tuple names

and store it in a variable called name1, the second last element in name2, as well as

the entire data of the second student including his name and score from the tuple

all_data in a new tuple called student2_data.

Figure 2.3 Subsetting of Tuples with Negative Indices

SU2-7

ANL252 Data Types and Functions

Everything seems alright in the above output except that the last element of the tuple

student2_data, the value 86, is missing. The reason is that the last index is never

included. In our example, the subsetting indices we wish to have are -2 and -1. But

since Python does not include -1, we only receive student2_data[-2], which is

“Mary” in this case. To overcome this dilemma, we need to leave the end index blank

after the colon. Python will interpret it as “take all indices until the end”.

Figure 2.4 Subsetting Tuples with "Open End" Indexing

This is the correct output that we want to obtain originally. Note that the “open end”

indexing also works for positive indices.

1.1.3 Concatenating Tuples

Though we can access the tuple elements by using the index operator, we are neither

allowed to change the values of it nor to add a new value to an existing tuple.

SU2-8

ANL252 Data Types and Functions

Example (Cont’d): Suppose we would like to change the first element in the tuple

names from “Peter” to “John”, we will receive an error message as result.

Figure 2.5 Erroneous Modification of Tuples

We will now try to add the name “John” to the tuple names. Since names has 2

elements, the index of the last element must be 1. Hence, we add the new element to

names by referring to a new index, namely 2.

Figure 2.6 Erroneous Adding of Elements to Tuples

Unsurprisingly, we also receive an error message here.

SU2-9

ANL252 Data Types and Functions

Nevertheless, we are allowed to concatenate two tuples into a single tuple by connecting

them with a “+” sign.

Example (Cont’d): Suppose we would like to concatenate the two tuples names and

scores and name the new one newtuple.

Figure 2.7 Concatenation of Two Tuples

The concatenation of tuples works in the same way as it works for strings. As a result,

we can re-attempt to add a new name "John" to the tuple names. The only thing we

need to change is to put "John" in a tuple first.

Figure 2.8 Adding Elements to Tuples by Concatenation

To put the new name “John” into a tuple is indeed tricky since Python would not

recognise syntaxes such as ("John") or "John" as a tuple. The reason here is that

SU2-10

ANL252 Data Types and Functions

all elements in a tuple must be separated by commas. As a result, we put a comma

behind "John" and leave the next element blank so as to tell Python that this is a

tuple of length 1. We can see that after concatenating newname with names, Python

will ignore the blank element in newname and append "John" as the only element

in newname to "Peter" and "Mary", the original elements in names.

1.1.4 Length of Tuples

When dealing with tuples, lists or dictionaries, the function len() can be useful since it

will return the length, i.e., the number of elements of such an object.

tuple_length = len(tuple_name)

The length is also often used as an index to subset a tuple or control the indexing in our

code so that we cannot refer to indices that go beyond the largest index of a tuple.

SU2-11

ANL252 Data Types and Functions

Example (Cont’d): We use the len() function to determine the length of the tuple

all_data. We will then use it as an index to subset the last element of a tuple.

Figure 2.9 Length of Tuples and Index Out of Range

We receive an error message here since all_data[data_length] is equal to

all_data[4]. Recall that the last index of a tuple is the length of the tuple minus 1.

As a result, we can reach our original goal by subtracting 1 from the data_length,

which is equal to 4, for indexing.

Figure 2.10 Subsetting the Last Element of Tuples

SU2-12

ANL252 Data Types and Functions

By using the index data_length - 1, we are now accessing the element

all_data[3], which is the last element of the tuple all_data and 86 in this case.

1.1.5 For-Loops and Tuples

One advantage of tuples, or other compound data types, is that we can access and extract

their elements by using the for-loop iteratively.

In Study Unit 1, we learned how to use the range() function to generate a list for the

for-loop to run over it. Generally, if there are tuples, lists or dictionaries already created

and existing while the program is running, we can use the for-loop directly by putting

the name of the tuple, list, or dictionary in the for-statement.

for counter in tuple_name:
 instructions

In the above syntax, tuple_name can certainly be replaced by any list_name or

dictionary_name.

SU2-13

ANL252 Data Types and Functions

Example (Cont’d): Now we would like to print out each element of the tuple

all_data onto the screen. The name of the counter here is records.

Figure 2.11 Printing Tuple Elements by for-Loops

1.2 Lists

Lesson Recording

Python Lists

1.2.1 Creating Lists

Another type of compound data type in Python is the list. A list is just like a tuple but

with two main differences:

i. The data are comma-separated items wrapped by a pair of square brackets.

ii. The content of a list is modifiable.

We can construct a Python list in a similar fashion like a tuple.

SU2-14

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU02CH01_P02_H4_0_V1_0/presentation_html5.html

ANL252 Data Types and Functions

list_name = [element1, element2, …]

As mentioned before, we must wrap the data in a list by square brackets. However, unlike

a tuple which we may omit the round brackets when defining it in our code as long as

the data are separated by commas, we must define a list with the square brackets in the

program. If we omit the brackets, Python will interpret the data as a tuple.

Same as tuples, lists may contain any type of values: floats, integer, Booleans, strings, or

more advanced Python types like lists. The last one is indeed a very interesting property

of the Python compound data type since we can namely put a list within a list, or a tuple

in a dictionary, and so on.

Example (Cont’d): We define two lists, names and scores, to store the data of the

students in the class.

Figure 2.12 Creating Lists in Python

1.2.2 Subsetting Lists

We can also access elements of a list by the index operator. All the indexing and subsetting

techniques introduced in Chapter 1.1.2 for tuples are applicable to lists.

SU2-15

ANL252 Data Types and Functions

Example (Cont’d): Here we will subset the lists that we have defined above into four

new lists and variables, respectively.

Figure 2.13 Subsetting Lists

In the first line (line 1 and 2 are not counted here), name1 = names[0], we simply

extract the first element of names and store it in name1. Since we have only extracted

one element, it will not be stored as a new list. Instead, it will become a variable, which

we can see from the screen output that the value "Peter" is not wrapped by a pair

of square brackets. And the type of the new variable will be the same as the type of

the extracted element, which is a string variable in this case.

In the second line, name2 = names[1:], we extract multiple elements from the

original list and save it as a new list called name2. Recall that if we use open end

indexing, that is, we leave the value behind the colon blank, Python will take all

elements from the original list starting from the starting value until the end. Here,

SU2-16

ANL252 Data Types and Functions

it indicates that Python should extract the elements with the indices 1 and 2 from

names.

In the third line, score1 = scores[0:2], the first and second elements from

scores will be extracted and saved into a new list score1. We should always be

aware that the last index is never included in indexing. As a result, only the elements

72 and 86, and not 35 are taken over in score1.

In the fourth line, score2 = scores[-2], we use negative indexing to extract

element starting from the last element of scores. The value -2 indicates that we

would like to extract the second last element, which is 86 in this case. The resulting

object here is indeed a numeric variable since we only extract one numeric value from

the original list.

In the fifth line, score3 = scores[-2:-1], we extract the element with the indices

-2:-1 from scores. Since the last index is not included in the subsetting, the only

relevant index here is -2. As a result, we should obtain the same result as the fourth

line. However, there is one significant difference between this line and the fourth line:

the new object here is still a list instead of a variable. In other words, if we want to

create a new list with a single element from another list, we will have to use multiple

indexing.

1.2.3 Modifying Lists

Different from tuples, we can change the content of a list or add elements to it. To edit

specific items of a list, we simply assign new values to them after subsetting them.

list_name[index] = new value

We can also use multiple indexing to edit multiple items.

SU2-17

ANL252 Data Types and Functions

list_name[start index:end index] = [list with new values]

If we only intend to edit the items in the list, then the length of the indices on the left-hand

side, which is the number of items to be modified, must be the same as the length of the

list with the new values. If the list of new values is longer than the indices, items will be

added to the list on the left-hand side. On the other hand, if the list of indices is shorter,

items will be removed from the original list.

Example (Cont’d): Suppose the name of the third student is not John, but Jon, and we

would like to change it now. Once again, the third item has the index 2.

Figure 2.14 Editing Single Item in a List

Figure 2.14 shows how the third element has been replaced by a new value. Now,

suppose that the lecturer has to deduct two marks from the students who scored 72

and 86 after rechecking their exam papers. In other words, we need to modify the first

two elements of the list scores.

SU2-18

ANL252 Data Types and Functions

Figure 2.15 Editing Multiple Items in a List

In the second line of the output, the first value has been replaced by 70 and the second

one by 84. However, if our list [70, 84], does not only contain two values but three,

the output will become:

Figure 2.16 Replacing More Values than the Specified Indices

Python will not treat it as a syntax error. Instead, it will replace the values of the indices

0 and 1 by the first two new values, 70 and 84, and add a new value to it, namely 60,

before returning to the rest of the original list. As a result, the list scores has now

four instead of three elements.

Let us turn to the opposite situation and assume that the indices for modification are

longer than the list of new values.

SU2-19

ANL252 Data Types and Functions

Same as before, Python will not treat the code here as a syntax error as well. Instead,

it will replace the values of the indices 0 and 1 by the only new value, 70, and then

return to the rest of the original list, which is 35, the last value. As a result, the list

scores has now two instead of three elements.

In the above examples, we can see that lists can be extended or shrunk with the

replacement of certain items in the original list by a longer or shorter list of new values.

1.2.4 Concatenating & Merging Lists

Same as tuples, we can concatenate multiple lists into one by “adding” them together.

combined_list = list1 + list2 + …

Basically, Python uses the addition operation “+” to concatenate objects such as strings,

tuples, or lists, rather than to carry out arithmetic addition except for numeric values.

Concatenating lists is a recommended step in Python programming if the nature, i.e.,

content and type, of the lists is identical.

SU2-20

ANL252 Data Types and Functions

Example (Cont’d): Suppose we have two classes for the same course. The student

names of these classes are stored in the lists class1 and class2, respectively.

Equivalently, the exam scores are stored in the lists scores1 and scores2. Now, we

would like to concatenate class1 and class2 into a new list called names and

scores1 and scores2 into a new list called scores.

Figure 2.17 Concatenating Lists

Even if the nature of the two lists is not identical, it is sometimes still quite convenient to

store their data in one list for later use.

Example (Cont’d): Suppose we would like to concatenate the two lists names and

scores into a new list called combined_list in order to store the data of the entire

class in a single compound data source.

SU2-21

ANL252 Data Types and Functions

Figure 2.18 Concatenating Lists with Different Data Types

So, the new list consists of the ten elements combined from the two lists names and

scores. Apparently, concatenating lists with different types of data, such as strings

and integers in this example, is allowed in Python.

Figure 2.18 shows a straightforward concatenation of two lists in Python. However, such

a combination of the two lists will lead to difficulty to distinguish the original nature such

as meanings and types of the elements. For instance, in the above example, suppose the

first item in the list scores is the exam score of the first student in names, that is, Peter’s

exam score is 72, we will not be able to assign the score to the corresponding name unless

we know that each score always belongs to the name five positions before. If we keep in

mind that the length and contents of the concatenated list may change every now and

then, the meaning and source of each element will become more and more untraceable

with time.

Another way to solve this problem is to merge two lists into a new list without combining

the elements together. Instead, each element of the new list is a list and not a single value.

SU2-22

ANL252 Data Types and Functions

To merge two lists into a new list while keeping them as “list elements”, we cannot use

the addition operator as introduced before. Instead, we define the new list by putting the

list names instead of some values as the elements.

list_name = [list1, list2, …]

The advantage of this merging technique is that we will always know that index 0 of

the new list refers to the list names and index 1 to the list scores if the new list is a

combination of two known lists in a fixed sequence. As a result, we will be able to trace

back the origin and meaning of the data in the new list.

Example (Cont’d): Suppose we would like to put the two lists names and scores

into a new list called class_data and keep them as lists in the new list.

Figure 2.19 Merging Two Lists by Keeping Them as Lists in the New One

SU2-23

ANL252 Data Types and Functions

Different from the concatenation technique where all elements of the new list are just

combined straightforwardly, we can see from Figure 2.19 that the elements of the list

names are wrapped by each one pair of outer and inner square brackets to indicate

that they belong to a list that in turn is an element of the new list class_data. The

same can be observed for the elements of scores too.

Note that this merging technique is not limited to merging lists. We can also merge two

tuples into a list and keep their types as tuple in the new list as well.

To access a single element in the merged list, we need to use the double index operator []

since the single index operator would return one of the original lists to us.

Example (Cont’d): Now we extract the first element as well as the first name and score

from the merged list class_data and print them to the screen.

Figure 2.20 Extracting Elements from a Merged List

In line 10, the object that we put in the print() function is class_data[0],

which is the first element of class_data. And this element happens to be the

original list names. In line 11, we try to extract the first element from the first list

SU2-24

ANL252 Data Types and Functions

within class_data by using the double index operator class_data[0][0]. As

a result, Python extracts the first element in class_data first, which corresponds

to the list with the names elements. From there, Python extracts the element with

the index 0, which is “Peter” in this case. The same has also been carried out with

class_data[1][0], which is the first element of the second list. The resulting

element is 72 here.

It is noteworthy that the indexing technique introduced in the above example also works

for multiple indexing.

1.2.5 Printing Lists

In the previous study unit, we learned to use loops to carry out iterative tasks. In fact,

loops can be very useful when working with lists. The reason is obvious: since the items

of a list can be accessed by their indices, we can easily use loops to subset, print, and/or

modify them.

Furthermore, we learned how to generate a list of integers to serve as sort of a counter for

the iterations of the for-loops. Now, after being familiarised with the concept of lists, we

do not always need the range() function to create these integers for us. Instead, we can

simply use any available list as our counter. Nevertheless, the range() function can still

be very useful in some situations.

SU2-25

ANL252 Data Types and Functions

Example (Cont’d): Suppose we would like to print all the student names of the two

classes to the screen.

Figure 2.21 Printing List Elements Line by Line to the Screen

In this example, we print the elements of the list names line by line to the screen. In

each iteration, Python will assign the value of the current list element to the counter

variable i, and the print() function will print the value stored in i to the screen.

Suppose we would like to modify the screen output and use string formatting to print

the score and the student name in the same line by linking them up using more natural

language.

SU2-26

ANL252 Data Types and Functions

Figure 2.22 Printing Elements of Multiple Lists Using Formatted String

Since we want to run through two lists, names and scores, and print out their

corresponding elements, we cannot use one of the lists as our counter in the for-

loop. Thus, we need to use the range() function to generate a list of integers as

our counter. Most conveniently, the integers should be exactly corresponding to the

indices so that we can subset our lists within the for-loop directly. The obvious start

index is 0, and the end index would be the number of items in our lists minus one.

Since the range() function does not include the end value of the range in the result,

we can therefore simply take the length of our list for this purpose. Here, we can apply

the len() function, introduced in Chapter 1.1.4, to determine the length of names,

and then store the result in the variable listlen, which will in turn be taken as the

end of our integer list for the range() function.

SU2-27

ANL252 Data Types and Functions

Within the for-loop, we will have to instruct Python to print the element of names

and scores with the index i for each iteration. And we can subset them by

names[i] and scores[i], respectively.

In the above example, we need to extract the information from two separate lists. In

Chapter 1.2.4, we learned how to merge two lists into one single list where the original

lists are kept as list elements in the new one, which makes the coding easier since we only

need to work with one list. Instead of using the syntax we learned there, we can also use

loops to carry out simple or complicated merging of lists.

Example (Cont’d): Suppose we would like to extract the first student’s name and score

from the two lists and put these data into a small list, then do the same for the second

student, etc. Eventually, all these small lists will be merged into a single list.

Figure 2.23 Rearranging Data Storage in Lists

SU2-28

ANL252 Data Types and Functions

In line 12, we create a temporary list to store the pair of values that we have extracted

from names and scores. This temporary list templist will then be appended to

finallist, our target list, in line 13. This line is essential for the whole process as

we would like to merge all the information into a single list eventually.

However, it is important that we define finallist as an empty list before the for-

loop starts. To define an empty list, we simply assign a pair of square brackets [] with

no content to our target list. If we did not define our target list first, line 13 would

produce a syntax error as Python would not know what finallist is.

Furthermore, the instructions inside a loop are identical in every iteration unless we

add an if-condition in it. If we defined finallist as an empty list inside the for-

loop instead, the list would be re-initialised and become empty in each iteration.

And if we simply have finallist = templist in line13, the complete content of

finallist would be replaced in each iteration. The final output would then only

consist of the data of the last student. It is therefore important to accumulate data in

every iteration by appending templist to finallist.

The square brackets wrapping templist in line 13 is important since we want to

keep the data of each student as a small “sublist” within finallist. If the square

brackets are omitted, each element in the small list will be appended as an individual

element to finallist. Hence, it is important to be familiarised with how brackets

are placed in a syntax appropriately. The output can be quite different.

This arrangement of finallist is perhaps the most natural way to store the data.

In each small list, we have the data of each student. In other words, if we extract an

element of the list finalist, we will have all the data of the one corresponding student

which can be quite convenient when dealing with these data further.

SU2-29

ANL252 Data Types and Functions

Figure 2.24 Printing Data of a List Using Formatted String

After creating finallist, we can use a for-loop to run through it. Within the for-

loop, Python will extract one element from finallist in each iteration and store it

in the variable i. Note that i is not a counter variable here. It is more like a temporary

storage for the current element of the list that is being run through. Since each element

of finallist is a list itself with 2 elements, we can subset them by i[0] and i[1],

respectively. From the construction concept of each of these small lists we know that

the first element is the student’s name, and the second element is the corresponding

exam score. As a result, all we need to do is to put the subsets at the right place of the

formatted string for screen output.

SU2-30

ANL252 Data Types and Functions

1.2.6 Entering Data to Lists

So far, we assign pre-defined values to the lists in our code directly. But we can also let

the user enter his/her own data and store them into a list by the input() function. If we

do not limit the number of entries like in Study Unit 1, a while-loop with an appropriate

exit condition will be the right approach here.

Example (Cont’d): The user is now asked to enter the student’s name and score, and

he can stop entering by pressing ENTER for either the name or the score. After the

entering process, the list will be printed to the screen for checking.

SU2-31

ANL252 Data Types and Functions

Figure 2.25 User’s Input to a List

In this example, we use several elements that we have learned in this and the

previous study units to provide a clear input environment to the user and the suitable

functionality for data storage in a list.

• The program begins with the definition of an empty list called finallist that

will be used to store the data eventually. This is the same step as in line 9 of

Figure 2.23.

SU2-32

ANL252 Data Types and Functions

• We initiate two variables before the while-loop starts: the counter variable i

which is set to 1 initially, and the Boolean variable proceed which controls

whether the while-loop should continue with the next iteration or not.

• The while-loop will continue to run as long as proceed is True. Its value will

only change from True to False if the user’s input of either the name or the

score is an empty string "", i.e., ENTER.

• We print an instruction to tell the user what to do before the loop starts. This

instruction can also be put within the while-loop. In that case, the instruction

will be printed to the screen in every iteration.

• We start the printing string in line 4 with an escape sequence “\n” to create a

blank line between the system prompt and our instruction. It is visually more

comfortable when the texts are not put too close together. We have built in

several escape sequences for line break in the program to create blank lines for

the same purpose.

• In line 6, we include the value of the counter variable in the formatted string to

show the number of the student whose data the user is about to enter.

• The if-condition in line 7 checks whether the user’s input for the student’s

name is an ENTER key or not. If it is the case, the program will switch proceed

to False and break from the while-loop by the command break, which we

learned in Chapter 5.3 of Study Unit 1. For the mechanism of breaking from the

while-loop, the line proceed = False is insufficient since the remaining

instructions within the while-loop will still be carried out although the user

intents to stop the entering process immediately. As a result, we need to add the

break-command to it. Nevertheless, for the sake of programming “cleanliness”,

we also add the line to change the value of proceed to False.

• Starting from line 10, we implement a while-loop controlled by a Boolean

variable called valid_input to check whether the user’s input of the score

is numeric or not. This part of the code is mostly taken over from Chapter 5.4

in Study Unit 1. The main difference between the code there and our current

one is that the user is allowed to press ENTER, i.e., an empty string to quit the

SU2-33

ANL252 Data Types and Functions

entering process instead of -1 as in Study Unit 1. As a result, we cannot convert

the user’s input to float or integer in the same line as the input() function, or

else the if-condition in line 13 could become invalid.

• The exit mechanism for the input of the student’s score is almost the same as

the one for the student’s name. The only difference here is that both syntaxes

proceed = False and break are not redundant. The break command is

used here to break out from the while-loop that controls the numeric input,

and not the outer while-loop for entering data of multiple observations. The

change of value for proceed from True to False prevents the merge of list

in lines 22-25. Hence, the program will jump to the end of the while-loop and

break from it due to proceed = False.

• The conversion of the variable std_score to a numeric value will be put in the

try-block to prevent Python from stopping the program due to the occurrence

of an error. If the input of std_score is indeed a number (but stored as string

temporarily), the control variable valid_input will turn to True and the

while-loop will stop iterating. However, if the input is a character string (with

exception of an empty string), Python will print the warning message that is

written in the except-block, and the while-loop will start a new iteration.

• In the formatted string of the input() function to enquire for the exam score

in line 12, we embed the student’s name that has just been entered by the user

in line 6. This can prevent users from entering the score of another student due

to the visual confusion caused by the mass of information on the screen.

• The same mechanism to store the data in templist and then to append them

to finallist as in Figure 2.23 is employed here in line 23 and line 24. But the

whole procedure will only be carried out if proceed = True. That is, if the

inputs of both the name and the score are not empty strings.

• We increase our counter variable by 1 after all the data for the ith student have

been typed in and confirmed by the user.

• Subsequent to the entire entering process, the program will print the entire list

to the screen for checking purpose. However, this will only be executed if the

SU2-34

ANL252 Data Types and Functions

user has at least entered the entire set of data for one student. This control is

implemented in case the user has already quitted the entering process during

the first iteration and prevents us from printing an empty list. We have also built

in several escape sequences for line breaks here to enhance the visual comfort

of the output.

Read

Read the following official Python documentation: (https://docs.python.org/3/

library/stdtypes.html#sequence-types-list-tuple-range) for details and examples on

lists and on operations applicable to lists.

Read the following section of the textbook on looping over elements of lists:

Exercise 32 Loops and Lists

Read the following section of the textbook on accessing, adding, removing and joining

elements of lists:

Exercise 34 Accessing Elements of Lists

Exercise 38 Doing Things to Lists

1.3 Dictionaries

Lesson Recording

Python Dictionaries

SU2-35

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU02CH01_P03_H4_0_V1_0/presentation_html5.html

ANL252 Data Types and Functions

1.3.1 Defining & Extracting Dictionaries Values

Another useful built-in data type is the dictionary. It is best to think of a dictionary as an

unordered set of key:value pairs, with the requirement that the keys are unique (within

one dictionary). The key:value pairs are separated by commas and wrapped in a pair

of braces.

dictionary_name = {"key1":value1, "key2":value2, …}

Unlike lists and tuples, which are indexed by a range of numbers, dictionaries are indexed

by keys, which are usually strings or numbers. As a result, we use keys to subset a

dictionary instead of indices.

value = dictionary_name["key"]

Hence, we need to use the keys to extract values from the dictionary.

Example (Cont’d): Previously, we store the name and score of a student in a small list

and merge all these “sub-lists” into a big list subsequently. Now, we save our data of

class1 in a dictionary instead. In the following, we will use the student names as

the key and their scores as the value.

Figure 2.26 Defining a Dictionary

To extract the score of Peter, we can put the key, "Peter", in the index operator [].

SU2-36

ANL252 Data Types and Functions

Figure 2.27 Extracting Value from a Dictionary

Note that if the key that we would like to refer to is a string, we will have to put it

within a pair of quotation marks.

The advantage of dictionary is that we can choose a much suitable description for the

value and use it as the key. The programmers or users do not need to rely on their memory

or understanding of the code to trace back the nature and type of the values in a tuple or

a list like our examples in Chapter 1.2.4 and Chapter 1.2.5.

1.3.2 Printing Dictionaries

We can use for-loops to print out the items from a dictionary line by line. However, the

syntax is quite different from tuples and lists since each entry in a dictionary contains two

elements: key and value. On the one hand, we can use the key to extract the corresponding

value as demonstrated in Chapter 1.3.1, on the other hand, we cannot simply use the index

operator [] to refer to the keys. One possibility to get the keys of a dictionary is to use the

.keys() method:

dictionary_name.keys()

Equivalently, the .values() method can extract all values from a dictionary.

dictionary_name.values()

SU2-37

ANL252 Data Types and Functions

Method is like a function to carry out certain actions on the object before the dot (.). We

will have detailed discussion on methods and functions in later chapters. Here, the object

is a dictionary, and the methods are .keys() and .values(). Applying these syntaxes

on any dictionary, Python can extract all the keys and values from it.

Example (Cont’d): Suppose we would like to obtain all the keys and values separately

from the dictionary class1 defined in Figure 2.26.

Figure 2.28 Extracting Keys and Values from a Dictionary

The method .keys() returns an object called dict_keys() with the keys in our

dictionary, and the method .values() returns an object called dict_values()

with the values. However, we cannot work with these keys and values yet since we

cannot extract them from the dict_keys() and dict_values() objects directly.

We need to transform them to list by a function called list() first.

Figure 2.29 Store Keys and Values from a Dictionary in Lists

SU2-38

ANL252 Data Types and Functions

The keys and values are now stored in their corresponding lists, recognisable by the

square brackets around them. From the techniques introduced in Chapter 1.2, we can

print the keys line by line now.

Figure 2.30 Print All the Keys from a Dictionary Line by Line

We can apply the same technique to print the values line by line too. Nevertheless, we

can also use the index operator [] on the original list class1 to print the keys and the

corresponding values. To extract the keys individually, we need to initiate a for-loop

that iterates through the list containing the dictionary keys, which is class_keys

here. In each iteration within the for-loop, one key of the list will be stored in the

variable i. The value can then be extracted by class1[i].

Figure 2.31 Print All the Keys and Values from a Dictionary Line by Line

SU2-39

ANL252 Data Types and Functions

We put two objects separated by comma in the print() function. This is a command

to tell Python to print these objects in the same line to the screen. And the values

assigned in these objects are separated by an empty space between them.

If we want to extract all keys and values from a dictionary in the same step, we can apply

the .items() method on a dictionary.

dictionary_name.items()

Same as the .keys() and .values() methods, the result returned by Python from the

.items() method is not an object that can be accessed directly. Nevertheless, it can be

converted to a list of keys and values by the list() function.

Example (Cont’d): We apply the .items() method on class1 to obtain all the keys

and values of the dictionary.

Figure 2.32 Extracting Items from a Dictionary

The first print() function prints the dict_items() object returned from the

.items() method to the screen. This object contains every pair of keys and values

from the dictionary stored in a tuple. In the second print() function, we convert the

dict_items() object to a list. And the printed object is a list with each pair of keys

and values stored in a tuple as its elements.

SU2-40

ANL252 Data Types and Functions

The list created from a dict_items() object contains tuples that have two elements in

each of them: the keys and the values. We can easily use a for-loop and the index operator

to print the contents. Here, we introduce an extension of the for-loop so that we can omit

the indices when referring to the keys and values.

for element1, element2 in list(dictionary_name.items()):
 instructions

The syntax list(dictionary_name.items()) in the above for-loop can certainly

be replaced by any defined list created from a dictionary. The main difference between

the usual for-loop we know and the one we introduce here is that we use two temporary

storage variables instead of one in it. The mechanism is rather simple. In each iteration,

Python will extract one tuple from the list, and each element of the tuple will then be stored

in one of these storage variables. Since the keys are stored first in the tuples, element1

will contain the key, and element2 will contain the value. If we want to use these two

values in our instructions, we can simply refer to these variables without using the index

operator.

Example (Cont’d): Now we use the double storage variables in a for-loop to print

out the keys and values of our dict_items() object after being converted to a list.

Figure 2.33 Print Items from a Dictionary after Converting it to a List

SU2-41

ANL252 Data Types and Functions

In line 2, we extract the dict_items() object and convert it directly to a list named

class_items. The two storage variables of the for-loops are key and val here.

And in the print() function, we use a formatted string to print out the two values

in a normal sentence for the user to read.

1.3.3 Editing Dictionaries

We can change a value of a dictionary by assigning a new value to a certain key.

dictionary_name["key"] = value

The value can be a numeric value, a character string, a tuple, or a list.

Example (Cont’d): Suppose the score of Peter was 70 instead of 72. We can simply

change it by assigning a new value to the key “Peter”.

Figure 2.34 Change One Value in a Dictionary

There was then a second exam and each of our three students has a new score in

addition to the scores that are already stored in the dictionary. Below is one rather

trivial approach to carry out this task.

SU2-42

ANL252 Data Types and Functions

Figure 2.35 Add Items to Every Dictionary Key and Convert Values to Lists

The above approach replaces the original values in the dictionary by some lists. Each

list contains two scores of each student. Therefore, we must include the first score of

each student in the list as well, which is not quite elegant in terms of programming

conciseness. Another possibility is to use a for-loop to convert the value of each key

and append the new score to it.

Figure 2.36 Print Items from a Dictionary after Converting to Lists Using for-loops

In this approach, we defined a new dictionary named exam2_score to store the

scores of the second exam. We also use the students’ names as our dictionary key here.

Hence, class1 and exam2_score share the same keys which makes the mechanism

within the for-loops much easier to handle. The list that is used for the for-loop to

iterate is the key list of the dictionary class1. In each iteration, the variable i will

store one key from the list. Since both dictionaries have identical keys, we can use

the dictionary subsetting technique on both dictionaries by putting i in the index

operator. Subsequently, we merge the extracted values from both dictionaries to one

SU2-43

ANL252 Data Types and Functions

list, and then assign it to the corresponding key of class1. Eventually, we print out

the edited dictionary for checking purpose.

While assigning new values to a key in a dictionary is rather straightforward, editing a

key in a dictionary is not a simple task in Python. Basically, the keys of a dictionary are

immutable and cannot be changed directly. But we can create a new key in a dictionary,

take over the values from the old key, and then delete the old key in the last step. To delete

a key in a dictionary, we can use the syntax del.

del object

Note that the object in this syntax does not only refer to a key in a dictionary. It can be any

Python object such as a variable, a list, a tuple, a dictionary, etc. Once an object is deleted,

it will no longer be available in the program.

Example (Cont’d): Suppose the key “John” was a typo when entering the data. It

should be “Jon” instead.

Figure 2.37 Changing a key of a Dictionary

First, we assign the value of “John” in the dictionary class1 to a new key called

“Jon” of the same dictionary. Subsequently, we delete the key “John” and its value as

an entire object from the running program.

SU2-44

ANL252 Data Types and Functions

On the other hand, if we want to add a new key to a dictionary, we can simply assign a

value to a new dictionary key.

dictionary["new key"] = value

Basically, the syntax to add a new key is just the same as the syntax to edit an existing key.

The only difference is that the key put in the index operator must be a new one if we wish

to add a new item.

Example (Cont’d): Suppose we would like to add a new student, Michael, who scores

60 in the exam, to our dictionary.

Figure 2.38 Adding a New Key to a Dictionary

However, if we want to merge two dictionaries, Python offers two options.

new_dictionary = dictionary1 | dictionary2 #Version 3.9+
new_dictionary = {**dictionary1, **dictionary2} #Version
 3.5+

The first syntax is a new option available from Python version 3.9 onwards (Recall from

Study Unit 1 that this study guide is written based on Python version 3.9). It uses the

“Bitwise Or” operator, which is a vertical line “|”, to merge two dictionaries. The second

syntax is an option available from Python version 3.5 onwards.

SU2-45

ANL252 Data Types and Functions

Example (Cont’d): Suppose we have a second dictionary with the exam results of a

second class, and we would like to merge these two dictionaries together.

Figure 2.39 Merging Two Dictionaries Using the v3.5+ Option

Figure 2.40 Merging Two Dictionaries Using the v3.9+ Option

As we can see, the two methods deliver the same result.

SU2-46

ANL252 Data Types and Functions

Read

Read the following section of the textbook on creating and manipulating dictionaries:

Exercise 39 Dictionaries, Oh Lovely Dictionaries

Read the following official Python documentation for more details and examples on

dictionaries:

https://docs.python.org/3/library/stdtypes.html#typesmapping

SU2-47

https://docs.python.org/3/library/stdtypes.html

ANL252 Data Types and Functions

Chapter 2: Integrated Methods and Functions

Lesson Recording

Integrated Methods and Functions in Python

2.1 Built-In Functions in Python
In the previous chapters, we have come across various built-in functions of Python, such

as print(), input(), int(), etc. These functions are always available in the Python

environment. A function is a routine program that processes values which are passed on

to it as an argument, or a parameter, and returns some results to the user eventually. For

example, a float value is passed on to the int() function as an argument, Python then

removes all the decimal digits and returns an integer as result.

The following table contains all the built-in functions in alphabetical order.

Table 2.1 Built-in Functions of Python

abs() all() any() ascii()

bin() bool() breakpoint() bytearray()

bytes() callable() chr() classmethod()

compile() complex() delattr() dict()

dir() divmod() enumerate() eval()

exec() filter() float() format()

SU2-48

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU02CH02_H4_0_V1_0/presentation_html5.html

ANL252 Data Types and Functions

frozenset() getattr() globals() hasattr()

hash() help() hex() id()

input() int() isinstance() issubclass()

iter() len() list() locals()

map() max() memoryview() min()

next() object() oct() open()

ord() pow() print() property()

range() repr() reversed() round()

set() setattr() slice() sorted()

staticmethod() str() sum() super()

tuple() type() vars() zip()

__import__()

(Source: https://docs.python.org/3/library/functions.html)

Some of the listed functions are rather straightforward such as abs(), sum(), round()

, etc. There are also some that are quite unclear in terms of their functionality or area

of use such as frozenset() or staticmethod() just by looking at their names. You

can visit the website https://docs.python.org/3/library/functions.html to get detailed

explanation on how to integrate and apply all these functions in Python programs.

SU2-49

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html

ANL252 Data Types and Functions

Example (Cont’d): Suppose we would like to summarise the combined exam results

of class1 and class2 by calculating their mean, maximum and minimum.

Figure 2.41 Computing Statistics of a Dictionary’s Values

In the first three lines, we repeat the syntaxes from Chapter 1.3.2 to merge two

dictionaries into a new one called all_classes. Subsequently, all the exam scores

are extracted by the .values() method from all_classes. In line 5, we use the

sum() function to add up all the numbers stored in scores and divide the result

by the number of elements in scores, determined by the len() function, to obtain

the mean exam scores. The mean will then be rounded to two decimal places by the

round() function when embedding it in a formatted string for printing purpose. In

the last two lines, we determine the highest and lowest exam scores by the max() and

min() functions and include them in the formatted strings for the print() function

to print them onto the screen.

You may wonder why some rather basic functions such as a function for the calculation

of the mean is missing in the above list. Some of those functions may be included in some

common packages that will be introduced in Chapter 4. Some of them could be built-in

methods instead, which will be introduced in the next section.

SU2-50

ANL252 Data Types and Functions

Read

Read the following official Python documentation for more details and examples on

Python functions:

https://docs.python.org/3/library/functions.html

2.2 Built-In Methods in Python
Some routines in Python are not supposed to be applied as functions in the Python

environment; instead, they are methods that can be applied to the objects they are attached

to. In Study Unit 1, we learned the method .format() for format printing; and in this

study unit, we come across the .keys(), .values() and .items() methods that can be applied

on dictionaries to extract their keys and values. Same as functions, there are built-in

methods that are always available in the Python environment. These methods will return

results to the program once they are applied on defined objects during runtime. However,

each method can only be applied to a certain object type. Below is a list of selected built-

in methods of Python.

Table 2.2 Built-in Methods of Python

Method Description Applicable Object Type

append() Adds an element at the end

of the list

List

capitalize() Converts the first character

to upper case

String

casefold() Converts string into lower

case

String

SU2-51

https://docs.python.org/3/library/functions.html
https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_casefold.asp

ANL252 Data Types and Functions

Method Description Applicable Object Type

center() Returns a centred string String

clear() Removes all the elements List, Dictionary

copy() Returns a copy List, Dictionary

count() Returns the number of

times a specified value

occurs in a string

String

count() Returns the number

of elements with the

specified value

List, Tuple

endswith() Returns True if the string

ends with the specified

value

String

extend() Add the elements of a list

(or any iterable), to the end

of the current list

List

find() Searches the string for a

specified value and returns

the position of where it

was found

String

fromkeys() Returns a dictionary with

the specified keys and

value

Dictionary

SU2-52

https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_dictionary_fromkeys.asp

ANL252 Data Types and Functions

Method Description Applicable Object Type

get() Returns the value of the

specified key

Dictionary

index() Returns the position of

the first element with the

specified value

List, Tuple

insert() Adds an element at the

specified position

List

isalnum() Returns True if all

characters in the string are

alphanumeric

String

isalpha() Returns True if all

characters in the string are

in the alphabet

String

islower() Returns True if all

characters in the string are

lower case

String

isnumeric() Returns True if all

characters in the string are

numeric

String

isspace() Returns True if all

characters in the string are

whitespaces

String

SU2-53

https://www.w3schools.com/python/ref_dictionary_get.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isspace.asp

ANL252 Data Types and Functions

Method Description Applicable Object Type

istitle() Returns True if the string

follows the rules of a title

String

isupper() Returns True if all

characters in the string are

upper case

String

items() Returns a list containing a

tuple for each key value

pair

Dictionary

join() Joins the elements of an

iterable to the end of the

string

String

keys() Returns a list containing

the dictionary's keys

Dictionary

lower() Converts a string into

lower case

String

lstrip() Returns a left trim version

of the string

String

pop() Removes the element at

the specified position

List, Dictionary

popitem() Removes the last inserted

key-value pair

Dictionary

SU2-54

https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_dictionary_items.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_dictionary_keys.asp
https://www.w3schools.com/python/ref_string_lower.asp
https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_dictionary_popitem.asp

ANL252 Data Types and Functions

Method Description Applicable Object Type

remove() Removes the first item

with the specified value

List

replace() Returns a string where a

specified value is replaced

with a specified value

String

reverse() Reverses the order of the

list

List

rfind() Searches the string for a

specified value and returns

the last position of where it

was found

String

rstrip() Returns a right trim

version of the string

String

sort() Sorts the list List

split() Splits the string at the

specified separator, and

returns a list

String

splitlines() Splits the string at line

breaks and returns a list

String

startswith() Returns true if the string

starts with the specified

value

String

SU2-55

https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rstrip.asp
https://www.w3schools.com/python/ref_list_sort.asp
https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_splitlines.asp
https://www.w3schools.com/python/ref_string_startswith.asp

ANL252 Data Types and Functions

Method Description Applicable Object Type

strip() Returns a trimmed version

of the string

String

swapcase() Swaps cases, lower case

becomes upper case and

vice versa

String

title() Converts the first character

of each word to upper case

String

update() Updates the dictionary

with the specified key-

value pairs

Dictionary

upper() Converts a string into

upper case

String

values() Returns a list of all the

values in the dictionary

Dictionary

zfill() Fills the string with a

specified number of 0

values at the beginning

String

(Source: https://www.w3schools.com/python/default.asp)

The complete list of methods can be found on:

• https://www.w3schools.com/python/python_ref_tuple.asp

• https://www.w3schools.com/python/python_ref_list.asp

• https://www.w3schools.com/python/python_ref_dictionary.asp

SU2-56

https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_dictionary_update.asp
https://www.w3schools.com/python/ref_string_upper.asp
https://www.w3schools.com/python/ref_dictionary_values.asp
https://www.w3schools.com/python/ref_string_zfill.asp
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/python_ref_tuple.asp
https://www.w3schools.com/python/python_ref_list.asp
https://www.w3schools.com/python/python_ref_dictionary.asp

ANL252 Data Types and Functions

• https://www.w3schools.com/python/python_ref_string.asp

Example (Cont’d): Now we also have each student’s surname in our dictionary, and

we want to sort the data according to it. In the first step, we would like to erase all the

double spacing between the first and surname in the dictionary keys.

Figure 2.42 Replacing Double Spacing by Single Spacing

In the first three lines, we again repeat the syntaxes from Chapter 1.3.2 to merge

two dictionaries into a new one called all_classes. We implement a for-loop to

iterate through all the dictionary keys and search for one with double spacing by the

.find() method. If a key has double spacing, it will be replaced by single spacing.

The .replace(original_string, replacing_string) method will take over

this substitution process. Subsequently, Python assigns the original value to the new

key and delete the old key from the dictionary.

In the next step, we would like to capitalise each word in the dictionary keys. It is

important to mention that the .capitalize() method is not suitable for our task

since it will only convert the first character in each key to upper case. Indeed, we need

the .title() method to make sure that each word in a key starts with a capital letter

after the entire process.

SU2-57

https://%E2%80%8Cwww.w3schools.com/python/python_ref_string.asp

ANL252 Data Types and Functions

Figure 2.43 Capitalise Each Word in Strings

In the above program, we do not search and replace double spacing first and capitalise

each word in the subsequent step. Instead, we initiate a new variable newkey which

is the result of a chain execution of two methods in the same line. First, we convert

the first letter of each word in the keys to upper case by the .title() method and

then replace the double spacing by a single spacebar with the .replace() method.

If the original key was correctly capitalised and spaced, the value stored in newkey

must be the same as the original one. In this case, Python would do nothing and jump

to the next key. Otherwise, Python will create a new key with the capitalisation and

spacing correction and assign the value of the original key to it, and then delete the

original key from the dictionary.

In the third step, we need to switch the format of the keys from “First name Last

name” to “Last name, First name” for the subsequent sorting process (for simplicity,

we assume that the students’ names are all in the “First name Last name” format).

SU2-58

ANL252 Data Types and Functions

Figure 2.44 Switching Surname and First name in Strings

In Figure 2.44, we add two lines to format the dictionary keys according to our needs.

First, we use the .split() method to separate each student’s name into two parts:

first name and last name, and the spacebar is used as the separation character of

the string here. The result will be then stored as a list called name_parts with the

structure [“First name”, “Last name”]. In the next line, we swap the appearance order

of first and last names by concatenating “Last name” and “First name” from the list

and add a “, “ between them to become a new string that is used as our final key. The

replacement and delete process is identical to the previous one, and it should only be

carried out if the original key and the new key are not identical.

Now, we can sort the dictionary by its keys in the ascending alphabetical order.

SU2-59

ANL252 Data Types and Functions

Figure 2.45 Sorting Dictionary by Its Keys

In line 11, the extracted dictionary keys are stored in a list called classkeys and this

list is then sorted in the ascending order by the .sort() method in line 12. In line 13,

we indicate that the contents of the dictionary all_classes will be “reassigned” by

wrapping the expression on the right-hand side with a pair of braces. In the braces, we

initiate a variable k that will store the sorted keys in classkeys once the for-loop

starts to iterate. Behind the variable k, we use a colon to indicate that the expression

following it is the value that belongs to the key k in all_classes. This syntax will

then be followed by the for-loop mentioned before. It is important to use the same

key variable, k in this case, in this for-loop.

It is noteworthy that no colon behind the for-statement will be needed if a for-

loop is initiated this way. The instruction to be carried out in each iteration should be

placed before the for-loop. By doing this, we can simplify our program by writing

two commands in the same line instead of writing some lengthy syntaxes to initiate a

for-loop to run through all the dictionary keys one by one in the traditional way.

SU2-60

ANL252 Data Types and Functions

Note that the sorting step can also be achieved with the same efficiency by the

sorted() function. Since we only focus on the functionality and application of

methods in this section, we try to use methods merely in our demonstration of the

examples.

Read

Read the following website for more details and examples on Python methods for

strings:

https://www.w3schools.com/python/python_ref_string.asp

Read the following website for more details and examples on Python methods for

lists:

https://www.w3schools.com/python/python_ref_list.asp

Read the following website for more details and examples on Python methods for

dictionaries:

https://www.w3schools.com/python/python_ref_dictionary.asp

Read the following website for more details and examples on Python methods for

tuples:

https://www.w3schools.com/python/python_ref_tuple.asp

SU2-61

https://www.w3schools.com/python/python_ref_string.asp
https://www.w3schools.com/python/python_ref_list.asp
https://www.w3schools.com/python/python_ref_dictionary.asp
https://www.w3schools.com/python/python_ref_tuple.asp

ANL252 Data Types and Functions

Chapter 3: User-defined Functions

Lesson Recording

User-defined Functions in Python

In Chapter 2, we are introduced to some built-in functions and methods that are already

included in the Python programming environment. Functions and methods help us to

carry out routine tasks which would require us to write very lengthy code to achieve the

same functionality if we were to create the program by ourselves. Nevertheless, sometimes

we can also write our own functions that suit our own needs.

A user-defined function (we will call it function in the following due to simplicity) can

be viewed as a separate part of the code that will not be interpreted by Python until it is

called from the main program. Usually, a function consists of four parts:

1. the function name

2. some arguments, i.e., values or parameters the function needs for its processing.

This part is optional. If the function has no arguments, it will simply process all

the instructions without any input from the main program.

3. the instructions of how and what to process within the function

4. an object (or a value) that should be returned to the main program at the end

of the function. This is also optional. If no return object is specified, the main

program will proceed without any output from the function.

In Python, the def-syntax indicates the definition of a function:

def function_name(argument1, argument2, …):
 instructions
 return object

SU2-62

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU02CH03_H4_0_V1_0/presentation_html5.html

ANL252 Data Types and Functions

Same as for-loops or if-conditions, the def-statement must end with a colon, and

all the follow-up instructions and codes that belong to the function must be indented.

Subsequently, the function can be called in the main program by integrating the

function_name at an appropriate place.

… (Main program)
y = function_name(argument1 = object1, argument2 = object2,
 …)
print(y)
… (Continue with main program)

We use a function to carry out a certain process. The objects object1 and object2 are

the corresponding input for argument1 and argument2 to the function. It is essential for

Python that object1 and object2 are already defined somewhere in the previous part

of the main program. The output object (or value) from the function will then be assigned

to the variable y.

Caution! It is tempting for beginners to “outsource” some parts of the main program and

make them separate functions for the sake of “program cleanliness”. Though the code may

look more structured at the first sight, the debugging process can be quite challenging if

the whole program is jumping between the main program and the functions. The rules of

thumb for using user-defined functions appropriately are:

1. if the same routine, probably with different arguments, appears more than once

in the main program

2. if several functions should be combined into one which will then be used in the

main program on multiple occasions

3. if a function can really increase the efficiency of the main program

SU2-63

ANL252 Data Types and Functions

In these cases, function can really simplify the program code and the debugging of it since

there are less chances for syntax or logical errors.

Example (Cont’d): We repeat the same task from Chapter 2.2 by implementing two

user-defined functions: list_dictkeys(dicts) and sort_dictkeys(dicts).

Figure 2.46 Defining Functions

The first function list_dictkeys(dicts) is used to extract the keys from a

dictionary and convert them to a list in the same step. It has an argument dicts,

which is a dictionary variable to store the dictionary passed on by the main program

to the function for the extraction and conversion process. This process is written in

the return syntax directly since we target on returning the list as the output object

of our function anyway. An additional step to save the list in an extra variable first

and then to return the extra variable is therefore not necessary here.

The second function sort_dictkeys(dicts) sorts the dictionary keys directly. The

code is basically identical to the lines 11, 12 and 13 in Figure 2.45. The only difference

here is the dictionary object is not a specific dictionary from the main program, but a

variable called dicts that is used as the argument in the definition of the function and

is also only used within the function. The main program will then pass on a dictionary

to sort_dictkeys and store the dictionary in dicts once it starts to process the

instructions inside the function. It is noteworthy to mention that we can call another

function within a function like in line 5, where we call list_dictkeys(dicts) to

generate the list of dictionary keys for further process.

SU2-64

ANL252 Data Types and Functions

The main program does not become significantly shorter, but simpler in terms of the

number of functions and methods involved.

Figure 2.47 Sorting Dictionary Using User-Defined Functions

In line 12, the program commands the list that should be run through in the for-

loop is the output object returned from the list_dictkeys(dicts) function. In

the bracket following the function name list_dictkeys, we specify the dictionary

all_classes which should be stored in the variable dicts when passing on

to list_dictkeys(dicts). The same happened in line 19 where we use the

sort_dictkeys(dicts) function to sort the dictionary all_classes. Note that

the “dicts =” part is not required as long as the function only contains one argument,

or when the objects to be passed on to the function are listed in the same sequence as

the argument list written in the function code. It is therefore important to know either

the sequence of the argument list of each function or to type the “argument =” part

when calling a function.

Certainly, more from the main program can be “outsourced” to a function if those

routines are called more frequently in the program. For instance, the process of

SU2-65

ANL252 Data Types and Functions

formatting the students’ name can be written as a user-defined function as well. Since

defining such a function will not simplify our program here, we keep this part of the

program as in Figure 2.45 due to the aforementioned guidelines of using user-defined

functions appropriately.

Read

Read the following three exercises of the textbook for more details and examples on

user-defined functions:

Exercise 18: Names, Variables, Code, Functions

Exercise 19: Functions and Variables

Exercise 21: Functions Can Return Something

SU2-66

ANL252 Data Types and Functions

Chapter 4: Modules, Packages and Libraries

Lesson Recording

Modules, Packages and Libraries in Python

4.1 Import a Standard Package
Beside build-in functions and methods, as well as user-defined functions, Python also

provides packages which we can think of as a directory of Python scripts, the so-called

modules. These modules specify new functions, methods, and object types for solving

particular tasks. Packages are organised hierarchically; that means they may contain sub-

packages, as well as regular modules themselves.

The packages of the standard library are already installed in the Python environment. A

library is a collection of codes for us to perform specific tasks without writing our own

code. But before we can use the modules in our program, we need to import the package

or a specific module of the package first.

import package_name as package_alias
from package_name import module_name as module_alias

In the first syntax, we import the whole package into our program. The alias is a name that

is used to refer to that particular package from thereon in our program. It is advantageous

to use a package alias if it has a very long name. Note that the “as package_alias”

part is optional in the import syntax. If the original package name is preferred, this part

can be omitted.

SU2-67

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU02CH04_H4_0_V1_0/presentation_html5.html

ANL252 Data Types and Functions

The second syntax imports a particular module from a package. The alias here is the

referral name of the module that we will use in our program, and not the package. Once

again, the alias part is optional and can be omitted.

If the whole package is imported and we want to call a certain module from it, we will

need to use the package name as the prefix and then indicate the module after a dot (.).

The syntax should be something like:

y = package_name.module_name(argument1, argument2, …)
y = package_alias.module_name(argument1, argument2, …)

If we have used an alias for the package name in the import process, we will have to use

the second syntax instead of the first one.

But if we have only imported a single module from a package, we could call it directly by

its name without referring to the package:

y = module_name(argument1, argument2, …)
y = module_alias(argument1, argument2, …)

If we have only imported a single module from a package with an alias, we will have to

use the alias instead of the original module name.

SU2-68

ANL252 Data Types and Functions

Example (Cont’d): If we need to calculate the mean and the standard deviation of the

scores of the two classes, we can import the package statistics for this task.

Figure 2.48 Integrate Entire Package in a Program

We first create a function list_dictvalues(dicts) to extract the values from a

dictionary and convert them to list in the same step. Subsequently, we import the

package statistics and use stat as our alias to refer to it in our program. Since

we have imported the whole package, we need to use the prefix stat. whenever we

call a module from it, which then happens in line 10 and line 11. Line 10 contains

the calculation of the mean by using the stat.mean() function, and in line 11, we

instructed Python to compute the standard deviation by the stat.stdev() function.

If we just want to calculate the mean, we can then choose to import the mean()

function from the statistics package instead.

SU2-69

ANL252 Data Types and Functions

Figure 2.49 Integrate One Module from a Package

In line 4, we modify the syntax to the from … import … version. Since we feel that

the module name mean does not need an alias, we keep the name as it is and call it in

line 10 for the mean calculation.

4.2 Managing Packages with pip/pip3
There are many Python packages available from the internet but not yet installed in the

Python environment. To use those Python packages, we will first have to install them on

our system. Then we can import them into our program same as the standard library. The

simplest way to install such packages is to use PowerShell or Command Prompt as well

(or similar terminal apps from other operating systems). Once we are prompted in the

terminal window to give instructions to the operation system to carry out, type in one of

the following commands and then press ENTER:

SU2-70

ANL252 Data Types and Functions

> pip install package_name
> pip3 install package_name

“pip” or “pip3” refers to the installer program that Python uses for installing external

packages. Basically, “pip3” is a newer version of “pip”. In most of the cases, we can use

either one for our installation.

For instance, the package “numpy” will be needed in the next study units, and we would

like to install it for our class preparation:

Figure 2.50 Installing Package “numpy” with pip

Once ENTER is pressed, Python will download the package installation file and install it

subsequently. The message “Successfully installed xxx” will appear on the screen once the

installation has been completed.

Another package that we will need in the next study units is “matplotlib”. This time we

install it with pip3.

SU2-71

ANL252 Data Types and Functions

Figure 2.51 Installing Package “matplotlib” with pip3

In the same installation process, some other packages are downloaded and installed as

well. This is because “matplotlib” needs some modules of these packages so that it can

work.

If we wish to update/upgrade a package, the command that we need to type in our

terminal app will be:

> pip install package_name --upgrade
> pip3 install package_name --upgrade

SU2-72

ANL252 Data Types and Functions

And if we want to uninstall a package, the command will become:

> pip uninstall package_name
> pip3 uninstall package_name

In Python, there are some packages that are used quite commonly for data analytics, and

a couple of them will also be covered in this study guide.

Table 2.3 Some Common Packages for Data Analytics in Python

Package Description In this Study

Guide (Y/N)?

matplotlib Creates data visualisation Y

numpy Manages multi-dimensional arrays Y

pandas Handles two-dimensional data tables Y

pendulum Provides complex coding for dates and

times

N

requests Sends HTTP requests from Python code N

scikit-learn Provides tools of data analytics Y

scipy Carries out scientific and technical

computations

N

sqlite3 Manages SQL database in Python Y

SU2-73

https://www.w3schools.com/python/ref_string_casefold.asp
https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_center.asp
https://www.w3schools.com/python/ref_list_copy.asp

ANL252 Data Types and Functions

Summary

In this unit, we have learned three types of built-in compound data structures of Python:

tuples, lists and dictionaries. We discussed the major differences among these objects and

the typical applications of them. Their creation and modification were also explained and

demonstrated in detail. The most important issue here is the technique for subsetting

and indexing the elements in these objects. We have also been introduced to functions,

methods, and packages in Python. While some of them are built-in, i.e., they are already

included in the Python environment, others can be user-defined or installed from external

sources. Based on examples, we have been shown how built-in functions and methods,

user-defined functions, as well as standard or external libraries can be applied to our

Python programs.

SU2-74

ANL252 Data Types and Functions

Formative Assessment

1. What is the output of the following program?

 a = 1, 4, 9, 16
 a[2] = 3
 print(a)

a. 1, 3, 9, 16

b. 1, 4, 3, 16

c. 1, 4, [3, 9], 16

d. Syntax Error

2. What is the output of the following program?

 a = []
 for i in range(0, 5):
 a = a + [i ** 2]
 print(a)

a. [0, 1, 2, 3, 4]

b. [0, 1, 4, 9, 16, 25]

c. [0, 1, 4, 9, 16]

d. [0, 1, 2, 3, 4, 5]

3. Which of the following syntaxes will have “north” as output?

a.
d = {“north”: 2, “south”, -2}
dkeys = list(d.keys())
print(dkeys[0])

SU2-75

ANL252 Data Types and Functions

b.
d = {“north”: 2, “south”, -2}
dkeys = list(d.keys())
print(d[0])

c.
d = {“north”: 2, “south”, -2}
dkeys = list(d.items())
print(dkeys[0])

d.
d = {“north”: 2, “south”, -2}
dkeys = list(d.values())
print(dkeys[0])

4. Which of the following statements is correct regarding the properties of dictionaries?

a. The values of a dictionary can only be integers, floats, and strings.

b. The keys of a dictionary cannot be modified.

c. The curly brackets around a dictionary can be omitted.

d. The elements of a dictionary must be separated by semi-colons.

5. What is a Python function?

a. A stand-alone Python program

b. A dictionary with the module names of the standard library as keys

c. An object specifically designed for machine learning operations

d. A Python routine code that is reusable for a particular task

6. Which of the following methods does not apply to string variables?

a. .get()

b. .lower()

SU2-76

ANL252 Data Types and Functions

c. .replace()

d. .strip()

7. Which component is not optional in a user-defined function?

a. Function name

b. Arguments

c. Loops

d. Return value

8. What is not a good habit when implementing user-defined functions in a program?

a. We should only implement user-defined functions whenever it is sensible to

combine multiple functions into one.

b. We should only implement user-defined functions when we need to carry out

the same routine repeatedly in our program.

c. We should only implement user-defined functions when we can reduce our

main program to some syntaxes merely for calling the functions.

d. We should only implement user-defined functions when we have recurrent

tasks that create certain output objects needed for the further parts of the main

program. And the creation of such objects requires some input arguments from

the previous parts of the main program.

9. Which of the following statements is correct when using alias for importing package/

module?

a. We can use both the original name and alias to refer to the package/module in

our program.

b. An alias is optional and can be omitted if we are comfortable to work with the

original package/module name.

c. An alias must be shorter than the original package/module name.

d. If only a single module from a package is imported, the alias refers to the

package and not the module.

SU2-77

ANL252 Data Types and Functions

10. Which command is used to install a new Python package?

a. > pip3 setup package_name

b. > pip3 install package_name --upgrade

c. > pip3 install package_name

d. > pip3 import package_name

SU2-78

ANL252 Data Types and Functions

Solutions or Suggested Answers

Formative Assessment
1. What is the output of the following program?

 a = 1, 4, 9, 16
 a[2] = 3
 print(a)

a. 1, 3, 9, 16

Incorrect. Since a is a tuple, it is immutable, and we cannot assign a new

value to one of the elements in it.

b. 1, 4, 3, 16

Incorrect. Since a is a tuple, it is immutable, and we cannot assign a new

value to one of the elements in it.

c. 1, 4, [3, 9], 16

Incorrect. Since a is a tuple, it is immutable, and we cannot assign a new

value or change the type of the elements in it.

d. Syntax Error

Correct. Since a is a tuple, it is immutable. If we try to reassign a value to

one of the elements in it, we will get an error message from Python.

2. What is the output of the following program?

 a = []
 for i in range(0, 5):
 a = a + [i ** 2]

SU2-79

ANL252 Data Types and Functions

 print(a)

a. [0, 1, 2, 3, 4]

Incorrect. In each iteration, i square will be put into a list and then appended

to a. And the values of i are 0, 1, 2, 3, 4.

b. [0, 1, 4, 9, 16, 25]

Incorrect. Though i square is taken here, the last value is out of range since

the for-loop will stop running at i = 4.

c. [0, 1, 4, 9, 16]

Correct. The for-loop stops running at i = 4 and the values in a are i

square.

d. [0, 1, 2, 3, 4, 5]

Incorrect. The last value is out of range, and the values in a are i and not i

square.

3. Which of the following syntaxes will have “north” as output?

a.
d = {“north”: 2, “south”, -2}
dkeys = list(d.keys())
print(dkeys[0])

Correct. The .keys() method is used to extract the keys of a dictionary.

After converting the object to a list, we subset its item with the index 0,

which is the first key in this case: “north”.

b.
d = {“north”: 2, “south”, -2}
dkeys = list(d.keys())

SU2-80

ANL252 Data Types and Functions

print(d[0])

Incorrect. In the print() function, it refers to the object d and not dkeys.

And since d is dictionary, we can only access its element by the keys and not

the indices.

c.
d = {“north”: 2, “south”, -2}
dkeys = list(d.items())
print(dkeys[0])

Incorrect. The .items() method is used to extract the keys and values of

a dictionary and store each pair of them in a tuple. dkeys[0] will return

(“north”, 2) as its result.

d.
d = {“north”: 2, “south”, -2}
dkeys = list(d.values())
print(dkeys[0])

Incorrect. The .values() method is used to extract the values of a

dictionary. After converting the object to a list, we subset its item with the

index 0, which is the first value 2 in this case, and not the key “north”.

4. Which of the following statements is correct regarding the properties of dictionaries?

a. The values of a dictionary can only be integers, floats, and strings.

Incorrect. The value of a dictionary can also be tuples, lists or other object

types.

b. The keys of a dictionary cannot be modified.

SU2-81

ANL252 Data Types and Functions

Correct. The keys of a dictionary cannot be modified. We can only modify

a specific key indirectly by adding a new pair of key and value to the

dictionary and delete the old pair from it.

c. The curly brackets around a dictionary can be omitted.

Incorrect. A Python dictionary must be wrapped by a pair of curly brackets.

d. The elements of a dictionary must be separated by semi-colons.

Incorrect. The elements of a dictionary must be separated by commas.

5. What is a Python function?

a. A stand-alone Python program

Incorrect. A function cannot be a stand-alone program. We must have a main

program to call a function for a specific task.

b. A dictionary with the module names of the standard library as keys

Incorrect. A function is a routine program and not a dictionary.

c. An object specifically designed for machine learning operations

Incorrect. A function is not an object, it is a routine program.

d. A Python routine code that is reusable for a particular task

Correct. A function is a chunk of code that performs a particular task and

can be called endlessly by the main program.

6. Which of the following methods does not apply to string variables?

a. .get()

Correct. It is a method for dictionary. It extracts the value of a particular

dictionary key.

SU2-82

ANL252 Data Types and Functions

b. .lower()

Incorrect. It is a method for string variables. It converts a string to lower case.

c. .replace()

Incorrect. It is also a method for string variables. It replaces part of a string

by another string.

d. .strip()

Incorrect. It is a method for string variables too. It removes all empty spaces

at the beginning and at the end of a string.

7. Which component is not optional in a user-defined function?

a. Function name

Correct. A user-defined function must have a function name.

b. Arguments

Incorrect. Arguments are input from the main program to the function and

they are optional. A function can still be carried out without arguments

provided.

c. Loops

Incorrect. A function does not need loops for its functionality. Its instructions

can contain loops, but it would still work without them.

d. Return value

Incorrect. A function can also be carried out even if it does not return any

value to the main program.

8. What is not a good habit when implementing user-defined functions in a program?

SU2-83

ANL252 Data Types and Functions

a. We should only implement user-defined functions whenever it is sensible to

combine multiple functions into one.

Incorrect. It is a good habit indeed. If multiple functions are applied to a

single object step-by-step, we can create a function and give a sensible name

to it to simplify our main program.

b. We should only implement user-defined functions when we need to carry

out the same routine repeatedly in our program.

Incorrect. It is recommended to use user-defined functions to replace

recurrent routines in the main program.

c. We should only implement user-defined functions when we can reduce our

main program to some syntaxes merely for calling the functions.

Correct. It is not a good habit to “outsource” chunks of code to various

functions just for the sake of simplifying the main program. It usually

does not simplify the whole program at all and makes the debugging more

difficult since we must jump between the functions on checking the source

of error.

d. We should only implement user-defined functions when we have recurrent

tasks that create certain output objects needed for the further parts of

the main program. And the creation of such objects requires some input

arguments from the previous parts of the main program.

Incorrect. It is a good habit to implement functions when they can really carry

out recurrent tasks and return some objects/values to the main program

based on some input arguments originated from the previous parts of the

main program.

9. Which of the following statements is correct when using alias for importing package/

module?

SU2-84

ANL252 Data Types and Functions

a. We can use both the original name and alias to refer to the package/module

in our program.

Incorrect. Once we have imported a package/module with an alias, we must

use the alias to refer to it in our program.

b. An alias is optional and can be omitted if we are comfortable to work with

the original package/module name.

Correct. The alias part is not compulsory. If we have a concise original

package/module name, there is no reason to use an alias at all.

c. An alias must be shorter than the original package/module name.

Incorrect. There is no guideline for the length of the alias. It can even be longer

than the original package/module name.

d. If only a single module from a package is imported, the alias refers to the

package and not the module.

Incorrect. The alias refers to the module and not the package in the “from …

import … as …” syntax.

10. Which command is used to install a new Python package?

a. > pip3 setup package_name

Incorrect. It should be “install” and not “setup” following “pip3”.

b. > pip3 install package_name --upgrade

Incorrect. The “--upgrade”-option is only used for upgrading/updating

existing packages.

c. > pip3 install package_name

Correct. “install” should be following “pip3” for installation.

SU2-85

ANL252 Data Types and Functions

d. > pip3 import package_name

Incorrect. It should be “install” and not “import” following “pip3”.

SU2-86

ANL252 Data Types and Functions

References

Python.org. (n.d.). Built-in exceptions. Python Software Foundation. https://

docs.python.org/3/library/stdtypes.html#typesmapping

Python.org. (n.d.). Built-in functions. Python Software Foundation. https://

docs.python.org/3/library/functions.html

Python.org. (n.d.). Built-in types. Python Software Foundation. https://

docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Python.org. (n.d.). Python dictionary methods. Python Software Foundation. https://

www.w3schools.com/python/python_ref_dictionary.asp

Python.org. (n.d.). Python list methods. Python Software Foundation. https://

www.w3schools.com/python/python_ref_list.asp

Python.org. (n.d.). Python string methods. Python Software Foundation. https://

www.w3schools.com/python/python_ref_string.asp

Python.org. (n.d.). Python tuple methods. Python Software Foundation. https://

www.w3schools.com/python/python_ref_tuple.asp

Shaw, Z. A. (2017). Learn python 3 the hard way. Addison-Wesley Professional.

SU2-87

https://docs.python.org/3/library/stdtypes.html#typesmapping
https://docs.python.org/3/library/stdtypes.html#typesmapping
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://www.w3schools.com/python/python_ref_dictionary.asp
https://www.w3schools.com/python/python_ref_dictionary.asp
https://www.w3schools.com/python/python_ref_list.asp
https://www.w3schools.com/python/python_ref_list.asp
https://www.w3schools.com/python/python_ref_string.asp
https://www.w3schools.com/python/python_ref_string.asp
https://www.w3schools.com/python/python_ref_tuple.asp
https://www.w3schools.com/python/python_ref_tuple.asp

ANL252 Data Types and Functions

SU2-88

Study
Unit 3

Arrays and Plots

ANL252 Arrays and Plots

Learning Outcomes

By the end of this unit, you should be able to:

1. Explain the operations on arrays

2. Analyse data using appropriate tools for data visualisation

SU3-2

ANL252 Arrays and Plots

Overview

This study unit introduces two Python packages: NumPy and matplotlib. NumPy is the

fundamental package for efficient scientific computing with Python. We will learn how to

create NumPy arrays and how to use indexing and Boolean masks for subsetting NumPy

arrays. We will also learn the NumPy functions to generate statistics on the data stored in

an array. Furthermore, we will also learn how to use the “matplotlib.pyplot” sub-package

for data visualisation purpose. In particular, the functionalities available for plotting and

customising basic charts of data analytics will also be a main focus of this study unit.

SU3-3

ANL252 Arrays and Plots

Chapter 1: Introduction to JupyterLab

Lesson Recording

Introduction to JupyterLab

In the previous study units, we write our programs in Atom first and run them in terminal

apps such as PowerShell or Command Prompt. Starting from this study unit, our focus

will shift from general programming to Python programming for data analytics. For

this purpose, we will work with another Python programming environment called the

JupyterLab.

While Atom is more a Python code editor in the traditional sense, JupyterLab is an open-

source web application specialised in data analytics using Python. It is the newest Python

programming interface developed by Project Jupyter. We can use it to create code for

cleaning and transforming data, running numerical simulation, performing statistical

modelling, data visualisation and machine learning (https://jupyter.org/).

SU3-4

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU03CH01_H4_0_V1_0/presentation_html5.html
https://jupyter.org/

ANL252 Arrays and Plots

Figure 3.1 The Official Website for Jupyter

1.1 Installing JupyterLab
Before we can start working with JupyterLab, we need to install it on our computer so

that it can be integrated in the Python environment. We need to type in the following

command in our terminal app for its installation:

pip install jupyterlab

The pip install command refers to the same Python installer program introduced for

package installation in Chapter 4.2 of Study Unit 2. Instead of a package, JupyterLab is

the object to be installed here.

SU3-5

ANL252 Arrays and Plots

Figure 3.2 Start Installing JupyterLab

The installation could take quite a while since there are many packages that JupyterLab

requires for its functionalities, and they will therefore be installed together.

Figure 3.3 Installation of Jupyter Completed

SU3-6

ANL252 Arrays and Plots

The message “Successfully installed …” will appear on the terminal app once the

installation of JupyterLab has completed.

1.2 Starting JupyterLab
To launch JupyterLab, we need to start the terminal app again, change to the folder where

you have saved all your Python scripts, and then type in the following command:

jupyter lab

Figure 3.4 Starting the JupyterLab

The messages appearing in the terminal app are no longer relevant to our work,

unless we receive an error message from Python for loading JupyterLab. Under normal

circumstances, the JupyterLab environment will be launched automatically in a new

window or a new tab of the standard internet browser. If it does not start by itself, we can

start the internet browser manually and type in the following URL in the address bar:

SU3-7

ANL252 Arrays and Plots

localhost:8888/lab

The start-up page of JupyterLab will then be loaded.

Figure 3.5 Start-Up Page of JupyterLab

To start a new Python script, you can press on the “Python 3” button in the “Notebook”

rubric. And a new tab will appear in JupyterLab.

Figure 3.6 Blank Python Script

When this page appears, we can start writing our program in the field with a thick blue

bar on the left end.

SU3-8

ANL252 Arrays and Plots

1.3 Working with JupyterLab

Each Python program written in a JupyterLab cell can be executed by clicking or

pressing the key combination CTRL + ENTER. The output of the program script will then

be printed below the input box as illustrated in Figure 3.7.

Figure 3.7 Running a Python Script in JupyterLab

After running the first script, JupyterLab will usually add a new cell for us to start another

task. Nevertheless, we can also add it manually by pressing .

Figure 3.8 Inserting a New Cell in JupyterLab

Once a new cell has been inserted, we can write another set of script in it. We can also

choose to go back to the previous cell and modify the code written there.

Note that in JupyterLab, Python only executes the code written in one cell. In other words,

we can return to the “upper” cells and re-run the code there when it is necessary. If we want

to execute the programs in all cells, we can go to the “Kernel” menu and select “Restart

Kernel & Run All Cells…”. In this case, we have to pay attention to the sequence of the

cells since the logical flow among them will become relevant.

SU3-9

ANL252 Arrays and Plots

In the “Edit” menu, there are many functions that JupyterLab provides to restructure our

Python scripts. For example, we can switch the order of the cells by moving them up

and down. We can also cut, copy, paste, and delete them. JupyterLab enables us to merge

multiple cells into one or split a single cell into two or more cells as well.

Figure 3.9 Functions Included in the Edit Menu of JupyterLab

To save a Python program in JupyterLab, we can either press or choose “Save Notebook

As…” in the “File” menu. The file will then be saved with the “.ipynb” extension in the

folder where JupyterLab was started in the terminal app.

SU3-10

ANL252 Arrays and Plots

Figure 3.10 Saving Python Program in JupyterLab

1.4 Markdown
Another advantage of using JupyterLab is that we can use it as an advanced text editor.

Besides Python programs, we can also embed elaborative texts to the program or write

HTML codes to design a website with it. For this purpose, we need to switch the cell type

from “Code” to “Markdown”.

Figure 3.11 Changing the Cell Type in JupyterLab

SU3-11

ANL252 Arrays and Plots

For instance, we can write our Python comments introduced in Study Unit 1 in a

markdown cell for explanatory purpose. In this case, we put a hash (#) at the beginning

of the cell after converting it from a code cell to a markdown cell.

Figure 3.12 Editing a Markdown Cell in JupyterLab

After editing the comment, we can press CTRL + ENTER to finalise the cell. The comment

will be formatted as a header with bold and large font.

Figure 3.13 A Finalised Markdown Cell with a Comment in JupyterLab

If we do not start the markdown cell with the hash (#), JupyterLab will interpret the

content as ordinary text and print it in the standard text format to the Python script file

after finalising the cell.

SU3-12

ANL252 Arrays and Plots

Figure 3.14 A Finalised Markdown Cell with Ordinary Text in JupyterLab

Read

Read the following website for detailed explanation of JupyterLab including all the

functionalities, configurations, and examples:

https://jupyterlab.readthedocs.io/en/stable/

SU3-13

https://jupyterlab.readthedocs.io/en/stable/

ANL252 Arrays and Plots

Chapter 2: Array Management with NumPy

Lesson Recording

Array Management with NumPy

In Study Unit 2, we have been introduced to various types of compound data such as

tuples, lists and dictionaries. We have also discussed in detail on modifying a list or

storing different types of elements in a list. Despite being able to group lists or tuples

in a superordinate list, these types of compound data are basically still one-dimensional.

Recall in one part of our exam score example in the previous study units, the list of data

to be analysed can consist of either sub-lists with individual student scores from different

subjects or the scores of all students in one subject in each one of them. As a result, the

data in this example are in fact two-dimensional: the student dimension and the subject

dimension.

Hence, lists and dictionaries are no longer sufficient to store multidimensional data for

analysis, and arrays should be used instead. Nevertheless, we can also replace lists and

dictionaries by arrays when it comes to one-dimensional data. Note that the shape of

a Python array must be rectangular, that is, the number of values in each row and

each column must be identical, and all values in it must be entirely of the same type,

typically numeric values or strings. Therefore, an array is not equivalent to a dataset in

the conventional sense since missing values and mixed data types are common features

of usual datasets. In Python, we can work with arrays using the “numpy” package.

2.1 Creating NumPy Arrays
In order to work with NumPy arrays, we need to install the “numpy” package in Python

first. We have already explained how to install packages in Python using pip or pip3 in

SU3-14

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU03CH02_H4_0_V1_0/presentation_html5.html

ANL252 Arrays and Plots

Chapter 4.2 of Study Unit 2. To summarise the procedure quickly, we have to launch the

terminal app and type in the following command:

> pip install numpy

The installation will follow as shown in Figure 3.15.

Figure 3.15 Installing Package “numpy”

Once the installation is completed, we can launch JupyterLab and start working with

NumPy arrays after the “numpy” package has been imported into our program. The

corresponding syntax in Python is:

import numpy as np

Recall that we can import a package with an alias, which will then be used as our reference

to the package in the further part of our program. And for “numpy”, the most common

alias used in the literature or online references is “np”.

To create an array, we can use the array() function:

array_name = np.array([[list1_data1, list1_data2, …],
 [list2_data1, list2_data2, …], …])

SU3-15

ANL252 Arrays and Plots

In the above syntax, the array() function was attached to the np. prefix, which is

required if NumPy is imported using the import-statement. The prefix should be omitted

if we use the from … import … statement to import NumPy instead.

The data assigned to array_name in the array() function are stored in various regular

Python lists originally. Each list corresponds to a row of the array, and the total number

of rows is therefore equal to the number of lists included in the array() function.

Additionally, the number of elements in each list must be identical. If the lists have

different lengths, an error message will appear. Note that it is compulsory to wrap all the

lists, separated by commas, in a pair of outer square brackets again before putting them

into the array() function.

In NumPy, an n-dimensional array is also called an “ndarray”. Each direction of an array is

called an axis. For instance, the rows or the columns are the two axes of a two-dimensional

array, just like the coordinate system.

Example (Student score, cont’d): Suppose we have three lists and each of them

contains one student’s exam scores of three different courses. The three lists are [72,

73, 53], [86, 83, 90] and [35, 42, 51]. And we would like to store all these

scores in a two-dimensional array.

Figure 3.16 Creating an Array with NumPy

SU3-16

ANL252 Arrays and Plots

From the output of the array, we can see that each list in the array() function

corresponds to one row in the array, and not one column. Furthermore, NumPy uses

the outer square bracket to indicate the start and end of the array, and the inner square

brackets are used to wrap the data in each row.

Due to the mechanism of the array() function, it is crucial to make sure what features

of the data do the columns and the rows represent before creating the arrays.

2.2 Subsetting Arrays
We can use the index operator to access certain elements of an array just as indexing tuples,

lists or dictionaries in Study Unit 2. And from there, we can subset an array. Nonetheless,

there are two ways to subset an array using the index operator.

• Using index: Suppose we would like to get the second value of the first row in an

array, we can extract the element by array_name[0, 1], where array_name can

be any arbitrary name of an array. The index here starts with 0, same as Python List.

Recall that if we intend to do multiple indexing like start:end, the end index will

not be included in our array subset. Furthermore, negative indexing and open-end

indexing are also allowed here. Check on Chapter 1 of Study Unit 2 for more details

regarding indexing.

• Using Boolean masking: Suppose we want to get all values larger than 80. A first

step is to use array_name > 80 to produce a Boolean mask. The result is a

NumPy array with Boolean elements: True if the corresponding value is above

80, False if it is below. Subsequently, we can use the Boolean mask inside a pair

of square brackets to do subsetting. Only those elements above 80, for which the

corresponding Boolean mask is True, are selected. If, for instance, there are two

values above 80, we will end up with a NumPy array with two values.

Since arrays can be multidimensional (ndarray), we can certainly subset every dimension

of it by using multidimensional indexing. The following syntax is used for subsetting two-

dimensional NumPy arrays:

SU3-17

ANL252 Arrays and Plots

array_name[row_index, column_index]

Basically, the usage of the index operator here is just like subsetting a one-dimensional

Python list. The only difference is the two sets of indices in it, one for row indexing, and

the other one for column indexing. The resulting subset of the array can be a single value,

a row, a column, or an array with less rows and/or less columns. For multidimensional

NumPy arrays, the order of the indices in the index operator must follow the sequence

of the axes, or dimensions, in an array. For instance, axis one of a two-dimensional array

refers to the rows and axis two to the columns.

Example (Cont’d): The array exam_scores created in Figure 3.16 contains data of

individual students in the row and data of each subject in the column. Suppose we

would now like to extract all the exam scores of the second subject.

Figure 3.17 Subsetting a Column from a NumPy Array

To subset a column from a two-dimensional array, we must indicate indices for both

the rows and the columns, or an error message would appear otherwise. The column

index is clearly 1 here since we intend to extract the second column of the array. The

row index must be multiple indexing since we would like to access the entire column.

SU3-18

ANL252 Arrays and Plots

As a result, open-end indexing starting from index 0 is the most appropriate way here

to access the elements of row 1 to row 3 of column 2.

In the next step, we would like to extract the exam scores of the first two students in

the last two subjects.

Figure 3.18 Subsetting a Sub-Array from a NumPy Array

Here, we use negative indexing for subsetting the column. Since our array has three

columns, -2 is the index of the second last column. We leave the end index here open

to instruct Python to “take every index until the end” which is, in this case, the last

column of the array exam_score.

Assuming that the passing mark is 40, we would now like to subset all the failed

exams. That is, we extract all exam marks below 40.

Figure 3.19 Creating a Boolean Mask of a NumPy Array

If we ask Python to compare an array with a numeric value, we will obtain a Boolean

mask as mentioned before. Comparing the Boolean values in Figure 3.19 with the

array created in Figure 3.17, the only True value found here is the score of the third

student in subject 1. To subset exam_score using the Boolean mask, we need to put

the condition exam_scores < 40 into a pair of square brackets.

SU3-19

ANL252 Arrays and Plots

Figure 3.20 Subsetting a NumPy Array Based on a Boolean Mask

The result is the only value in exam_scores that is smaller than 40, namely 35, which

is the score of the third student in the first subject. And it is also the only True value

in the Boolean mask.

We can also check various properties of an ndarray using the following NumPy functions

and methods:

type(array_name)
array_name.ndim
array_name.shape
array_name.size
array_name.dtype

The type() function indicates the type of our array, and the .ndim method returns

the array’s number of dimensions, which is usually 2 in our case. The .shape method

provides the number of rows and columns of the given array and the .size method

calculates the total number of elements in an array. The .dtype method shows us the

type of data contained in the array.

SU3-20

ANL252 Arrays and Plots

Example (Cont’d): In the following, we extract all the information on the

characteristics of our array exam_scores.

Figure 3.21 Extracting Information on the Characteristics of a NumPy Array

The array type returned from the type() function is a Python type output <class

'numpy.ndarray'>, where ndarray stands for n-dimensional array.

Another remarkable output is the values returned from the .size() method. In fact,

the .size() method returns a tuple (row_number, column_number). We subset

the corresponding result in the formatted string by using the index operator [].

The type of data returned by the .dtype() method is int32, a specific NumPy

integer type that fixes the length of an integer variable at 32 bytes. The usual integer

variable of Python has no fixed length, and its type is simply called int.

SU3-21

ANL252 Arrays and Plots

Read

Refer to the three links below for more details and examples on the methods “shape”,

“ndim” and “size” of NumPy arrays:

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.ndarray.shape.html#numpy.ndarray.shape

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.ndarray.ndim.html#numpy.ndarray.ndim

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.ndarray.size.html#numpy.ndarray.size

2.3 Working with NumPy Arrays
The NumPy package does not only facilitate the creation and management of arrays, but

it also provides various functions to us to work with them.

Each function deals with specific types of variable. For instance, mathematical functions

such as log() and sqrt() can only be applied on arrays with numeric values, whereas

strip() and upper() are functions specifically designed for arrays with only strings in

them.

Below is a table of some frequently used NumPy functions.

Table 3.1 Most Common NumPy Functions

Function Description

Array Information and Operations

count_nonzero() Counts the number of non-zero values in the array

SU3-22

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html

ANL252 Arrays and Plots

Function Description

extract() Return the elements of an array given some

conditions

nanargmin() Return the indices of minimum values of rows or

columns ignoring missings

nonzero() Return the indices of the elements that are non-zero

partition() Return a partitioned copy of an array

where() Return selected elements depending on condition

Statistics

amin(), amax() Returns row or column minimum or maximum

percentile() Return row, column, or array percentile

mean() Return row, column, or array mean

median() Return row, column, or array median

nan_to_num() Replace NaN (missings) with zero and infinity with

large finite numbers

std() Return row, column, or array standard deviation

var() Return row, column, or array variance

Rounding

ceil() Return ceiling

SU3-23

ANL252 Arrays and Plots

Function Description

fix() Round to the nearest integer towards zero

floor() Return floor

round() Round to the given decimal places

trunc() Return truncated value

Exponents and Logarithms

exp() Return exponential

log() Return natural logarithm

log10() Return base-10 logarithm

log2() Return base-2 logarithm

Arithmetic

add() Add two arrays together

absolute() Calculate the absolute value

divide() Divide first array by second array. Non-zero

elements in second array required

mod() Return remainder of division

multiply() Multiply two arrays with each other

sign() Indicate the sign of a number

SU3-24

ANL252 Arrays and Plots

Function Description

sqrt() Return non-negative square-root

subtract() Subtract two arrays from one another

Trigonometric

arccos() Return inverse cosine

arcsin() Return inverse sine

arctan() Return inverse tangent

degrees() Convert angles from radians to degrees

cos() Return cosine

radians() Convert angles from degrees to radians

sin() Return sine

tan() Return tangent

Random Sampling

random.randint() Return an array of specified shape with random

integers in a given interval

random.random_ sample() Return an array of specified shape with random

floats in the interval [0, 1)

random.ranf() Return an array of specified shape with random

floats in the interval [0, 1)

SU3-25

ANL252 Arrays and Plots

Function Description

random.normal() Return an array of specified shape with random

floats from a normally distributed population

String Information and Operations

find() Return the lowest index of a substring in a given

string

islower() Check if all characters in the string are lowercase

istitle() Check if a string is title-cased

isupper() Check if all characters in the string are uppercase

startswith() Check if a string starts with a given prefix

String Information and Operations

capitalize() Convert the first character of a string to uppercase

join() Join a sequence of elements to a single string by

given string separator

lower() Covert a given string to lowercase

strip() Remove all leading and trailing spaces from a

string

title() Convert the first character in each word of a string

to uppercase

SU3-26

ANL252 Arrays and Plots

Function Description

upper() Covert a given string to uppercase

We must also be aware of whether the effect of a function is elementwise, row wise, column

wise, or array wise. Having elementwise effects means that the function will be applied

to all elements of an array individually. Having effects on array means that the function

will be operating with all the array elements at the same time. Row wise and column wise

effects indicate that the function will take all the elements from the same row or column

into its operation. If an array has more than two dimensions, the row wise and column

wise effects will become axes effects. That is, the functions can be applied in each direction

of the array.

Example (Cont’d): Suppose we would like to compute some statistics of each subject’s

exam scores such as the mean, standard deviation, maximum, minimum, etc. We will

also have to round off all these statistics to 2 decimal digits.

Figure 3.22 Calculate Column Statistics of a NumPy Array

For the statistical functions in NumPy, we usually need to specify the axis argument

in it. If axis = 0, the column statistics will be calculated. If, however, axis = 1, the

SU3-27

ANL252 Arrays and Plots

row statistics will be returned to us by the functions. Since we intend to compute the

statistics for each subject’s data, which are recorded in the columns of exam_scores,

we shall specify axis = 0 in this case.

For the round() function, we specify the argument named decimals to 2. Recall

from Chapter 3 of Study Unit 2 that it is a good programming habit to specify the

argument names of a function explicitly when assigning a value to it. It is therefore

important to always check the available arguments of a function carefully before using

it in the program.

Read

Refer to the three links below for more details and examples on the functions mean(),

median() and std() of the NumPy package:

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.mean.html#numpy.mean

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.median.html#numpy.median

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.std.html#numpy.std

Refer to the link below for more details and examples of functions provided by the

NumPy package:

https://www.geeksforgeeks.org/numpy-ndarray/

SU3-28

https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
https://www.geeksforgeeks.org/numpy-ndarray/

ANL252 Arrays and Plots

Chapter 3: Plotting with Matplotlib

Lesson Recording

Plotting with matplotlib

3.1 Basic Plotting with Matplotlib
In this chapter, we will introduce some basic features of data visualisation in Python. The

most common visualisation package here is “matplotlib”. Its sub-package named “pyplot”

contains all the functions that we need in this Chapter.

To import the sub-package “matplotlib.pyplot”, we can use the following syntax:

import matplotlib.pyplot as plt

We use the alias “plt” here, which is also commonly found in literatures and websites,

since it is short and has a clear reference to “pyplot”. Note that the above syntax has only

instructed Python to import the sub-package ”pyplot”. All the other functions and sub-

packages of matplotlib are not imported.

The sub-package “matplotlib.pyplot” provides many different plot types. In Chapter 3.2,

we will discuss the most common ones: histogram, bar charts and scatter plots. We can

customise our plots by changing colours, shapes, labels, axes, etc. according to our own

needs and taste. In the following, we will introduce some basic plotting techniques based

on a line plot.

SU3-29

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU03CH03_H4_0_V1_0/presentation_html5.html

ANL252 Arrays and Plots

The following syntax creates a simple line plot:

plt.plot(x, y, color, linestyle, linewidth, marker,
 markerfacecolor, markeredgecolor, markersize)

The argument x is a list of x-axis value. Correspondingly, y is a list of the y-axis value. The

argument color is a string to indicate the colour of the line to be plotted such as “blue”,

“red”, etc. The arguments linestyle and linewidth control whether the line should be

solid, dashed, dotted, etc., and how thin or thick it should be. We can also choose the style

of the marker of the data points on the line chart such as point, circle, square, etc. with the

marker argument. We can also fix the colour and size of the marker with the arguments

markerfacecolor, markeredgecolor and markersize. There are actually more

arguments available for the plot() function. You can refer to https://matplotlib.org/

api/_as_gen/matplotlib.pyplot.plot.html for all available functions of “matplotlib”.

To label the axes, we can use the xlabel() and ylabel() functions.

plt.xlabel("My X-Label String")
plt.ylabel("My Y-Label String")

We can also set a title to the current plot using the title() function:

plt.title("My Plot Title")

Another useful plot customisation is to define the text and location of the labels on each

tick of the x-axis and y-axis.

plt.xticks(ticks, labels, rotation)
plt.yticks(ticks, labels, rotation)

SU3-30

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

ANL252 Arrays and Plots

A list of labels assigned to the argument labels will be plotted on the locations defined

with the argument ticks. We can also rotate the labels in case they fit optically better to

the plot if they are slanted. A numeric value representing the degree of rotation can be

assigned to the argument rotation.

Python will wait for the show() function to actually display all figures.

plt.show()

Note: Since our programs in this study unit are constructed and run in JupyterLab, the

plots will anyway be displayed if we put all the syntaxes for plotting in one cell so that they

can be executed in the same run. As a result, we will not actually need the show() function

in the last step. However, this function is the final instruction to display the figures if we

run the plotting syntaxes in the original Python program.

Example (cont’d): We would like to plot the CGPA development of a student in the

last 4 semesters. The data are [3.2, 3.3, 3.4, 3.1].

Figure 3.23 Importing “matplotlib.pyplot” into the Program

The following program will generate the line chart required.

SU3-31

ANL252 Arrays and Plots

Figure 3.24 Program for Creating a Line Plot

In the first line, we instruct Python to create a line chart with a red line and black circle

markers. The data of the x-axis should be the semester number and the values on the

y-axis are the CGPA. Correspondingly, we name the axes “Semester” and “CGPA”,

respectively. The location of the ticks’ labels on the x-axis must be 1, 2, 3, and 4 because

these are the only data of the x-axis. Since the CGPA usually lies within the interval

of 0 and 4, we can create an integer list from 0 to 4 as our ticks’ labels on the y-axis.

We know from Chapter 5 of Study Unit 1 that we can use the range() function to

generate such a list. Here, we integrate it within the plt.yticks() function. In the

final step, we add a title to the line plot to highlight the topic of our chart using the

title() function. With the plt.show() function, we let Python generate the plot.

Figure 3.25 Line Plot Generated by
“matplotlib.pyplot”

SU3-32

ANL252 Arrays and Plots

Read

Refer to the three links below for more details and examples on the functions plot()

of the “matplotlib.pyplot” package:

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

3.2 Histograms and Scatter Plot
The histogram is another common type of plots in data analytics. It shows the distribution

of a variable by plotting the frequencies that certain ranges of value occur in a sample.

plt.hist(x, bins = None, range = None, align = "mid",
 orientation = "vertical", rwidth = None, color =
 None)

The hist() function has many arguments to control the histogram layout. The above

introduction of the function only includes the most common ones. For instance, we can

decide how many bins (bars) and which range of the values it should contain. We can

also choose to have a histogram with horizontal bars by changing the orientation

argument. With the arguments such as rwidth, which represents the width of the bars,

align, with which we can position the bars between two ticks or on top of a tick, and

color, we can format the bars according to our needs.

Example (cont’d): Suppose the exam scores of the two subjects (taken by the same

students) are now completely available, and we would like to generate a histogram

for subject 1 to look at the distribution.

SU3-33

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

ANL252 Arrays and Plots

Figure 3.26 Creating Data Array for Subsequent Plotting

First, we import both the “NumPy” and “matplotlib” packages, and then we create

two lists with the exam scores of each of the subjects. Eventually, we create a NumPy

array that contains both lists as its elements.

After that, the following program is written to generate the histogram.

Figure 3.27 Program for Creating a Histogram

In the first line, we instruct Python to create a histogram based on the scores of the first

subject’s examination, which are stored in the first row of the array exam_scores.

We set the range argument to be between 0 and 100 to ensure that extreme categories

such as 0-10 or 90-100 marks are also included in the chart although their frequencies

could be 0. The number of bins is fixed at 10 here so that we gain an accurate image

of the distribution. The width of the bars is reduced from 1 to 0.8 so that they are not

SU3-34

ANL252 Arrays and Plots

touching each other, and they are placed between two ticks on the x-axis (align =

"mid") to indicate the score range each bar represents.

The axes are named “Scores” and “Frequencies”, according to their nature. A title is

also given to the histogram called “Exam Marks Distribution”. The ticks on the x-axis

are placed with a gap of 10 marks between 0 and 100. We extended the range to 105

since the right end is not included by the range() function.

Figure 3.28 Historam Generated by “matplotlib.pyplot”

Scatter plots are often used to study the relationship between two variables, which is

usually referred as their correlation. The values of the first variable are plotted in the x-

axis and the values of the second variable in the y-axis. If the data dots are scatted around

the 45 degrees line of the chart, we can conclude that these variables are correlated with

each other.

To create a scatter plot, “matplotlib.pyplot” provides the following possibility:

plt.scatter(x, y, color = None, marker = None,
 linewidths = None, edgecolors = None)

SU3-35

ANL252 Arrays and Plots

Same as the hist() function, we only list out some of the most common arguments

of the scatter() function here. For instance, we can change the colour and style

of the markers, assign another colour to the markers’ edge, and adjust its width for

more sophisticated visualisation. You can refer to https://matplotlib.org/api/_as_gen/

matplotlib.pyplot.scatter.html to find out more available arguments to control the scatter

plot layout.

Example (cont’d): Now we investigate the correlation between the students’

performances in the two exams. The same set of data as in Figure 3.26 is used here to

generate a scatter plot by the following program.

Figure 3.29 Program for Creating a Scatter Plot

First, we instruct Python to create a scatter plot based on the array exam_scores.

The first row of the array contains the data of the x-axis, and the data in the second

row are values of the y-axis. The markers should be red circles and have black edges.

The axes are also named accordingly: “Subject 1” for the x-axis and “Subject 2” for the

y-axis. The title of the scatter plot is “Correlation between the Exam Scores of Subject

1 and Subject 2”. The ticks on the x-axis and y-axis are placed with a gap of 10 marks

between 0 and 100. We extended the range to 105 to include 100 in our chart since the

right end is not included by the range() function.

SU3-36

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

ANL252 Arrays and Plots

Figure 3.30 Scatter Plot Generated by
“matplotlib.pyplot”

Read

Refer to the link below for more details and examples on the hist() function of the

“matplotlib.pyplot” package:

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

Refer to the link below for more details and examples on the scatter() function of

the “matplotlib.pyplot” package:

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

SU3-37

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

ANL252 Arrays and Plots

Summary

We have discussed two Python packages in this study unit: NumPy and matplotlib. They

are the fundamental packages for efficient scientific computing and data visualisation

with Python, respectively. We have learned the basics of the two packages such as

subsetting and some functions to operate on NumPy arrays, and some functions of

matplotlib for plotting and customising basic charts for analytics such as line chart,

histogram and scatter plot.

SU3-38

ANL252 Arrays and Plots

Formative Assessment

1. What is the use of a Markdown cell in JupyterLab?

a. It runs only programs in which the matplotlib package is involved.

b. It has more advanced functionalities than a usual Python3 code cell.

c. It is used to embed elaborative texts to the program.

d. It can only be used if a Python function is not compatible with Python3.

2. What is the output of the following program?

 a = np.array([1, 2, -1], [0, 3, -2])
 print(a)

a.
[[1, 2, -1]
[0, 3, -2]]

b. [1, 2, -1, 0, 3, -2]

c. [[1, 2, -1], [0, 3, -2]]

d. Error message

3. What is the output of the following program?

 a = np.array([[1, 2, -1], [0, 3, -2]])
 print(a[a < 0])

a. [-1 -2]

b.
[[-1]
 [-2]]

SU3-39

ANL252 Arrays and Plots

c. [[], [-1, -2]]

d. [[, , -1], [, , -2]]

4. Which values will remain in the output based on the following code?

 a = np.array([[1, 2, -1], [0, 3, -2]])
 print(a[1:, -2:-1])

a. [[0, 3, -2]]

b. [[3, -2]]

c. [[3]]

d. [[1, -1]]

5. What information does the NumPy method .shape provide?

a. The dimension number of an array

b. The number of rows and columns of an array

c. The total number of elements of an array

d. The type of data in an array

6. Which of the following NumPy functions does not have elementwise effects?

a. cos()

b. exp()

c. fix()

d. var()

7. Which of the following is not an argument of the plt.plot() function?

a. range

b. marker

c. color

SU3-40

ANL252 Arrays and Plots

d. linestyle

8. What does the rotation argument of the plt.xticks() function control?

a. It controls the rotation of the plot.

b. It controls the rotation of the labels of the ticks.

c. It controls the rotation of the axis labels.

d. It controls the rotation of the main title.

9. What does the function plt.show() actually do?

a. It displays the most previous command of “matplotlib.pyplot”.

b. It sends all the figures to the connected printer for printing.

c. It displays all the figures to the screen.

d. It shows all the available arguments of the most previously executed function.

10. Where will the bars of a histogram be placed if we set align = "left"?

a. On top of the lower boundary tick

b. On top of the upper boundary tick

c. Between the ticks of the upper and lower boundaries

d. To the left of the y-axis label

SU3-41

ANL252 Arrays and Plots

Solutions or Suggested Answers

Formative Assessment
1. What is the use of a Markdown cell in JupyterLab?

a. It runs only programs in which the matplotlib package is involved.

Incorrect. JupyterLab can deal with all Python packages and you can run it

in any arbitrary code cell.

b. It has more advanced functionalities than a usual Python3 code cell.

Incorrect. Markdown cells do not have any Python functionality.

c. It is used to embed elaborative texts to the program.

Correct. We can write elaborative texts to the program or HTML code to

design a website in Markdown cells.

d. It can only be used if a Python function is not compatible with Python3.

Incorrect. Markdown cells are not used for programming purpose. It does

not matter whether a Python function is compatible with Python3 or not.

2. What is the output of the following program?

 a = np.array([1, 2, -1], [0, 3, -2])
 print(a)

a.
[[1, 2, -1]
[0, 3, -2]]

SU3-42

ANL252 Arrays and Plots

Incorrect. Since a pair of square brackets to wrap up both the lists inside the

array() function is missing, it is not a valid program.

b. [1, 2, -1, 0, 3, -2]

Incorrect. Since the user intends to create an array with two rows, the result

cannot be a Python list with all the elements in it.

c. [[1, 2, -1], [0, 3, -2]]

Incorrect. The user intends to create an array with two rows, the result cannot

be a Python list with two sub-lists in it.

d. Error message

Correct. Since a pair of square brackets to wrap up both the lists inside

the array() function is missing, it is not a valid program and an error

message will appear.

3. What is the output of the following program?

 a = np.array([[1, 2, -1], [0, 3, -2]])
 print(a[a < 0])

a. [-1 -2]

Correct. The subsetting result in NumPy will be presented in a one-

dimensional row array.

b.
[[-1]
 [-2]]

SU3-43

ANL252 Arrays and Plots

Incorrect. The subsetting result in NumPy will not be presented as a column

array.

c. [[], [-1, -2]]

Incorrect. The subsetting result in NumPy will not be presented in a

multidimensional array.

d. [[, , -1], [, , -2]]

Incorrect. The subsetting result in NumPy will not be presented in a

multidimensional array and positions where the value was False in the

Boolean mask will not be kept in the resulting array.

4. Which values will remain in the output based on the following code?

 a = np.array([[1, 2, -1], [0, 3, -2]])
 print(a[1:, -2:-1])

a. [[0, 3, -2]]

Incorrect. The only column index in this subsetting is -2, the second last

column of the array. As a result, we cannot have three values remaining in

the output.

b. [[3, -2]]

Incorrect. The only column index in this subsetting is -2, the second last

column of the array. As a result, we cannot have two values remaining in the

output.

c. [[3]]

Correct. The only column index in this subsetting is -2, the second last

column of the array. Since the row index is 1, indicating the second row

SU3-44

ANL252 Arrays and Plots

of the array, the output here should be the value positioning in the second

column of the second row, which is 3.

d. [[1, -1]]

Incorrect. Since the row index is 1, indicating the second row of the array, the

output here cannot contain any value of the first row.

5. What information does the NumPy method .shape provide?

a. The dimension number of an array

Incorrect. The dimension number of an array can be extracted by the .ndim

method.

b. The number of rows and columns of an array

Correct. The .shape method returns the number of rows and the number

of columns as a tuple with two elements.

c. The total number of elements of an array

Incorrect. The total number of elements of an array can be extracted by the

.size method.

d. The type of data in an array

Incorrect. The type of data in an array can be extracted by the .dtype

method.

6. Which of the following NumPy functions does not have elementwise effects?

a. cos()

Incorrect. The cos() function calculates the cosine of each element of a

numeric array.

b. exp()

SU3-45

ANL252 Arrays and Plots

Incorrect. The exp() function calculates the exponential of each element of

a numeric array.

c. fix()

Incorrect. The fix() function rounds each element of a numeric array to the

nearest integer towards zero.

d. var()

Correct. The var() function calculates the variance of each row, each

column, or the entire array.

7. Which of the following is not an argument of the plt.plot() function?

a. range

Correct. The plt.plot() function does not have the range argument.

b. marker

Incorrect. The marker argument controls the marker style of a line plot.

c. color

Incorrect. The color argument controls the line colour of a line plot.

d. linestyle

Incorrect. The linestyle argument controls the line style of a line plot.

8. What does the rotation argument of the plt.xticks() function control?

a. It controls the rotation of the plot.

Incorrect. The plot cannot be rotated generally. For some types of plot such as

histogram or bar chart, their bars can be presented vertically or horizontally.

But the plot cannot be rotated completely.

SU3-46

ANL252 Arrays and Plots

b. It controls the rotation of the labels of the ticks.

Correct. We can rotate the labels of the ticks if we want them slanted.

c. It controls the rotation of the axis labels.

Incorrect. It does not control the layout of the axis labels at all.

d. It controls the rotation of the main title.

Incorrect. It does not control the layout of the main title at all.

9. What does the function plt.show() actually do?

a. It displays the most previous command of “matplotlib.pyplot”.

Incorrect. It does not only display the most previous command of

“matplotlib.pyplot”.

b. It sends all the figures to the connected printer for printing.

Incorrect. It does not send anything to the printer for printing.

c. It displays all the figures to the screen.

Correct. It will display all the figures to the screen.

d. It shows all the available arguments of the most previously executed

function.

Incorrect. It is not a function to print out the arguments of a function at all.

10. Where will the bars of a histogram be placed if we set align = "left"?

a. On top of the lower boundary tick

Correct. They will be placed on top of the lower boundary tick.

b. On top of the upper boundary tick

SU3-47

ANL252 Arrays and Plots

Incorrect. If they should be placed on top of the upper boundary tick, we

should have set align = “right”.

c. Between the ticks of the upper and lower boundaries

Incorrect. If they should be placed between the ticks of the upper and lower

boundaries, we should have set align = “mid”.

d. To the left of the y-axis label

Incorrect. The align argument only controls how the histogram bars are

placed in relation to the ticks on the x-axis.

SU3-48

ANL252 Arrays and Plots

References

GeeksforGeeks. (n.d.). N-Dimensional array(ndarray) in numpy. https://

www.geeksforgeeks.org/numpy-ndarray/

JupyterLab stable. (n.d.). JupyterLab documentation. Project Jupyter. https://

jupyterlab.readthedocs.io/en/stable/

NumPy. (2020, Jun 29). numpy.mean. The SciPy Community. https://docs.scipy.org/

doc/numpy/reference/generated/numpy.mean.html#numpy.mean

NumPy. (2020, Jun 29). numpy.median. The SciPy Community. https://docs.scipy.org/

doc/numpy/reference/generated/numpy.median.html#numpy.median

NumPy. (2020, Jun 29). numpy.ndarray.ndim. The SciPy Community.

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.ndarray.ndim.html#numpy.ndarray.ndim

NumPy. (2020, Jun 29). numpy.ndarray.shape. The SciPy Community.

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.ndarray.shape.html#numpy.ndarray.shape

NumPy. (2020, Jun 29). numpy.ndarray.size. The SciPy Community.

https://docs.scipy.org/doc/numpy/reference/generated/

numpy.ndarray.size.html#numpy.ndarray.size

NumPy. (2020, Jun 29). numpy.std. The SciPy Community. https://docs.scipy.org/doc/

numpy/reference/generated/numpy.std.html#numpy.std

matplotlib. (n.d.). matplotlib.plot.scatter. The Matplotlib development team. https://

matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html

matplotlib. (n.d.). matplotlib.pyplot.plot. The Matplotlib development team. https://

matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

matplotlib. (n.d.). matplotlib.pyploy.hist. The Matplotlib development team. https://

matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

SU3-49

https://www.geeksforgeeks.org/numpy-ndarray/
https://www.geeksforgeeks.org/numpy-ndarray/
https://jupyterlab.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/stable/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html#numpy.median
https://docs.scipy.org/doc/numpy/reference/generated/numpy.median.html#numpy.median
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html

ANL252 Arrays and Plots

Project Jupyter. (2021, Jan 06). Home. https://jupyter.org/

SU3-50

https://jupyter.org/

Study
Unit 4

Data Management

ANL252 Data Management

Learning Outcomes

By the end of this unit, you should be able to:

1. Explain the operations on datasets

2. Prepare data for analysis using Python programming

SU4-2

ANL252 Data Management

Overview

This unit will introduce the key data structure for analytics in Python: the pandas

DataFrame. We will learn to develop Python programs to import data from external

sources and convert them to DataFrames, and then to index and query these structures.

We will then deepen our understanding of the pandas package by learning its efficient

functionality on merging multiple DataFrames, identifying and dealing with missing data

and outliers, sorting, grouping and transforming data, as well as discretising numeric

variables to bins.

SU4-3

ANL252 Data Management

Chapter 1: Import Data

Lesson Recording

Import Data in pandas

In the previous study units, we have learned the basic techniques of Python programming.

In this and the next study units, we will discuss in detail how Python can be used for data

management and data analytics.

The most common package for data management in Python is “pandas”. After installing

pandas using pip, we can import it in our program by the following syntax:

import pandas as pd

Here, we use the alias pd to refer to the pandas package in our programs.

To start working with pandas, we need to have Python compatible datasets. Data

circulating in organisations or on the internet are mostly saved as text files or worksheets.

Text editors, spreadsheets, and data management apps are popular tools for opening and

working with them. Pandas actually provides the same possibilities. The first step here is

to load a dataset in the Python environment and open it in the format of pandas. Suppose

we have a dataset from an external source saved as a .csv text file; we can import it by the

following pandas function:

DataFrame_name = pd.read_csv("csv_file_name.csv")

The content stored in the file “csv_file_name.csv” will be then assigned to the pandas

dataset object, or DataFrame, named DataFrame_name. The function read_csv() is

SU4-4

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU04CH01_H4_0_V1_0/presentation_html5.html

ANL252 Data Management

called a reader since it reads in specific format of data files and converts them to pandas

DataFrame.

Same as functions in NumPy or matplotlib, the read_csv() function has more

arguments than we list out here. We can adjust the execution of the reader to the

specifications of the .csv file with these arguments. For instance, we can specify the

character string of the delimiter, the row number in which the header is stored, the

path of the .csv file, etc. You can refer to https://pandas.pydata.org/docs/user_guide/

io.html#io-read-csv-table for further details.

Since .csv is not the only common file format of data files, pandas also allows the import

of other file formats such as Excel spreadsheets, SPSS data or Stata data into Python by

providing the functions listed in the following table.

Table 4.1 Most Common Data File Formats and the Corresponding Reader in pandas

Reader Format Type Data Description

read_csv() text CSV

read_html() text HTML

read_clipboard() text Local clipboard

read_excel() binary MS Excel

read_stata() binary Stata

read_sas() binary SAS

read_spss() binary SPSS

read_pickle() binary Python Pickle Format

read_sql() SQL SQL

SU4-5

https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table
https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table

ANL252 Data Management

Reader Format Type Data Description

read_gbq() SQL Google BigQuery

We can then use the .head() method to display the first five rows of the imported dataset.

It is important to check whether the data have been accurately imported.

DataFrame_name.head()

Alternatively, we can also use the conventional print() function to display the whole

DataFrame. Nevertheless, this can be quite frustrating if the dataset contains many rows

and columns, and the output does not fit to the window properly. Another way to print

the whole DataFrame is to use the display() function or omit the function completely

and simply execute a syntax with only the name of the DataFrame.

Note: When using NumPy ndarrays (n-dimensional arrays) to store multi

dimensional data, a burden is placed on the programmer to specify the orientation

of the dataset, because axes are considered more or less equivalent. The meanings

of rows and columns of an array do not differ significantly and switching the roles

of rows and columns (transpose) to store the data does not change the nature of the

array at all. And the functionality of the NumPy functions will remain. For pandas

DataFrame, or datasets in general, the rows record individual observations, and the

columns represent the features, or variables, of the data. Their roles usually do not

change throughout the entire analysis process. Thus, the axes lend more semantic

meaning to the data, and hence reduce the amount of mental effort required to code

up data transformation.

SU4-6

ANL252 Data Management

Example (Adult Census Data): The US Adult Census dataset is a repository

of 48,842 entries extracted from the 1994 US Census database. The dataset is

downloadable from https://www.kaggle.com/wenruliu/adult-income-dataset. It is

used to predict whether income would exceed $50,000 per year according to the

14 social-demographic attributes (Source: http://www.cs.toronto.edu/~delve/data/

adult/adultDetail.html). Below is a list of the available variables in the dataset:

1. age: the age of an individual. Its value can be any integer greater than 0.

2. workclass: a general term to represent the employment status of an

individual. Its value can be Private, Self-emp-not-inc, Self-emp-

inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-

worked.

3. fnlwgt: final weight. In other words, this is the number of people the entry

represents. Its value can be any integer greater than 0.

4. education: the highest level of education achieved by an individual. Its

value can be Bachelors, Some-college, 11th, HS-grad, Prof-school,

Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th,

10th, Doctorate, 5th-6th, Preschool.

5. educational-num: the highest level of education achieved in numerical form.

Its value can be any Integer greater than 0.

6. marital-status: marital status of an individual. Married-civ-spouse

corresponds to a civilian spouse while Married-AF-spouse is a spouse

in the Armed Forces. Its value can be Married-civ-spouse, Divorced,

Never-married, Separated, Widowed, Married-spouse-absent,

Married-AF-spouse.

7. occupation: the general type of occupation of an individual. Its value

can be Tech-support, Craft-repair, Other-service, Sales, Exec-

managerial, Prof-specialty, Handlers-cleaners, Machine-op-

SU4-7

https://www.kaggle.com/wenruliu/adult-income-dataset
http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html
http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html

ANL252 Data Management

inspct, Adm-clerical, Farming-fishing, Transport-moving,

Priv-house-serv, Protective-serv, Armed-Forces.

8. relationship: represents what this individual is relative to others. For

example, an individual could be a husband. Each entry only has one

relationship attribute. Its value can be Wife, Own-child, Husband, Not-

in-family, Other-relative, Unmarried.

9. race: Descriptions of an individual’s race. Its value can be White, Asian-

Pac-Islander, Amer-Indian-Eskimo, Other, Black.

10. gender: the biological gender of the individual. Its value can be Male,

Female.

11. capital-gain: capital gains for an individual. Its value can be any integer

greater than or equal to 0.

12. capital-loss: capital loss for an individual. Its value can be any integer greater

than or equal to 0.

13. hours-per-week: the hours an individual has reported to work per week. Its

value can be any positive real number or 0.

14. native-country: country of origin for an individual. Its value can

be United-States, Cambodia, England, Puerto-Rico, Canada,

Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece,

South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland,

Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-

Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary,

Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-

Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

15. income: whether or not an individual makes more than $50,000 annually. Its

value can be <=50k, >50k.

Since the original data file is saved in .csv format, we can use the read_csv()

function to import the dataset to Python.

SU4-8

ANL252 Data Management

Figure 4.1 Importing Data with pandas

If we printed the census dataset using the print() function, the output would not

fit the window at all.

Figure 4.2 Printing Entire Imported Dataset

As shown in Figure 4.2, the DataFrame will be truncated anyway. Eventually, only the

head and the tail of the dataset will be displayed due to lack of space. As a result, it is

more advisable to use the pd.head() than print() for control purpose.

Furthermore, Python provides the display() function.

SU4-9

ANL252 Data Management

Figure 4.3 Printing the Head and Tail of the Imported Dataset by display()

The display() function prints out the first 5 and last 5 observations of the

DataFrame. The font is smaller than the one used by the print() function, and we

are therefore able to see all columns side by side and without linebreak. Furthermore,

it also shows the number of rows and columns in the DataFrame, which can be quite

helpful in some cases.

SU4-10

ANL252 Data Management

Read

Refer to the link below for more details and examples on the read_csv() function

of the pandas package:

https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table

Read the following website for more information regarding the US Census data,

including the explanation of the variable names and other useful information about

the data:

http://www.cs.toronto.edu/~delve/data/adult/ adultDetail.html)

SU4-11

https://pandas.pydata.org/docs/user_guide/io.html
http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html

ANL252 Data Management

Chapter 2: Data Selection

Lesson Recording

Data Selection in pandas

Same as Python lists or NumPy arrays, we can access a pandas DataFrame by using the

index operator []. In this chapter, we will introduce three ways to subset rows, columns,

or elements of a DataFrame.

2.1 Selecting Columns by Variable Names
To select specific columns, which represent the variables of a dataset, we can create a list

with the variable names (or labels) to be selected and then put it in the index operator.

DataFrame_name[["var_name1", "var_name2", …]]

Note that each variable name must be put within a pair of quotation marks since it is

treated as a string in this case. If we simply want to access one column, we can omit the

creation of the list and put the variable name as string inside the index operator directly.

SU4-12

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU04CH02_H4_0_V1_0/presentation_html5.html

ANL252 Data Management

Example (Cont’d): Now we would like to select the columns "marital-status",

"race", "gender" and "income" from the US Census dataset.

Figure 4.4 Select Columns from a DataFrame by Variable Names

Suppose we would like to select the target variable "income" alone and save the

column as a NumPy array for further calculation.

Figure 4.5 Select a Single Column from a DataFrame and Save it as NumPy Array

We can see that no list will be needed within the index operator if only a single column

is selected. After selecting the column, the resulting subset of the pandas DataFrame

will then be converted to an NumPy array by the np.array() function.

2.2 Selecting Rows by Positions and Indices
Accessing rows requires different techniques than accessing columns. While we can use

the labels of the columns, or variable names, to select the columns we want, there are

usually no natural “observation names” that we can refer to when selecting rows from

a DataFrame. However, in Figure 4.1, we can see that a row index is provided at the

SU4-13

ANL252 Data Management

beginning of every row by pandas. It starts with 0 and ends with the number of rows in

the DataFrame minus one. As a result, rows can be queried by the numeric index position,

starting at 0, using the DataFrame attribute iloc.

DataFrame_name.iloc[start:end]

The indices in the index operator do not need to be consecutive integers. It can be any

integers within the range 0 and number of rows in the DataFrame – 1. But these integers

must be put in a list first if there are more than one of them. If we want to select a single

row instead, we can simply put one index in the index operator.

Example (Cont’d): Sometimes we may need to inspect a dataset after running some

programs to adjust it for further analytics purposes. We have been introduced to the

.head() method to print out the first five rows of the dataset. We can also randomly

picked a few rows from the DataFrame for our inspection. Here, we need NumPy to

draw random indices to select the rows for us.

Figure 4.6 Select Rows from a DataFrame by Random Row Indices

SU4-14

ANL252 Data Management

In the first line of our program, we determine the total number of rows in the dataset

census. Note that the method .shape() is also applicable to pandas DataFrames

and it returns a tuple (Total Row Number, Total Column Number) to us.

As a result, we can refer to the first element of the tuple as the total number of

rows in census. In the second line, we draw a total of 10 random integers from the

interval 0 and nrow, the number of rows in census. Note that nrow as the upper

boundary is not included in the drawing process at all. The integers drawn by the

random.randint() function will then be assigned to the object named randrow.

And these will then be used as the list of rows that we select from census.

Before we can select rows based on their index labels, we need to create the index labels

first by the method .set_index().

DataFrame_name.set_index(key, inplace = True)

The parameter key can be either a single variable name (column label), a single array of

the same length as the calling DataFrame, or a list containing an arbitrary combination

of variable names and arrays. The argument inplace controls whether the DataFrame

should be modified in place or a new DataFrame should be created. If it is True, the

changes will take place in the original DataFrame.

SU4-15

ANL252 Data Management

Example (Cont’d): Suppose we would like to group the US Census data by the

occupation of the observations.

Figure 4.7 Setting the Values of a Column as Row Index

If we use one of the columns as the row index of our DataFrame, that column will not

be a regular part of the dataset anymore. As you can see from Figure 4.7, the variable

occupation has disappeared from the dataset.

Suppose we would like to change our row index from the occupation to the age group

of each observation. In the first step, we need to remove the occupation as our row

index by the .reset_index() method. It reverses the effect of the .set_index()

method and removes the current row index and converts it back to a column in the

DataFrame.

Figure 4.8 Resetting Row Index of a DataFrame

SU4-16

ANL252 Data Management

Then we recode the age in each row to our target grouping and store it in a new array.

For observations less than 30 years, the group will be labelled as “Age <30”, whereas

the label of those between 30 and 59 years old is “Age 30-59” and the rest receives the

label “Age 60+”. Subsequently, we assign this array as the new row index.

Figure 4.9 Setting a NumPy Array as Row Index

We first create a list named agegroup that contains the grouping of each

observation’s age. The list will then be converted into a NumPy array and used as the

row index subsequently.

The DataFrame rows can be queried by the row index labels using the .loc attribute.

DataFrame_name.loc[["row_label1", "row_label2", …]]

We can see that selecting rows from a DataFrame by the .loc attribute works in a very

similar fashion as the column selection. The row labels must be indicated as strings and

put in a list if we want to select more than one of them. If we just want to select rows of a

single label, we can put the label as a string in the .loc attribute directly.

SU4-17

ANL252 Data Management

Example (Cont’d): Suppose we would like to select all the observations that are 30

years of age or younger from the US Census data.

Figure 4.10 Selecting Rows by Single Row Label

And if we want to select the youngest and oldest age groups from census, we will

need to put the row labels in a list.

Figure 4.11 Selecting Rows by Multiple Row Labels

SU4-18

ANL252 Data Management

Read

Refer to the links below for more details and examples on the attributes

.set_index() and .reset_index() of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.set_index.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.reset_index.html

Refer to the links below for more details and examples on the methods .loc() and

.iloc() of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.loc.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.iloc.html

2.3 Selecting Cells by Positions and Indices
To select elements in the DataFrame, we can specify both column and row labels in the

.loc attribute, or the positions in the .iloc attribute, or a combination of both.

Below is a syntax that uses only the row and column indices for the cell selection.

DataFrame_name.iloc[row_start:row_end, col_start:col_end]

We can also select cells by referring to the corresponding row and column labels.

SU4-19

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html

ANL252 Data Management

DataFrame_name.loc[["row_labels"], ["col_labels"]]

If we want to select the rows by index but the columns by labels, we can use the index

operator and .iloc attribute together.

DataFrame_name[["col_labels"]].iloc[row_start:row_end]

But if we want to select the columns by index but the rows by labels, we need to use both

the .loc and .iloc attributes.

DataFrame_name.loc[["row_labels"]].iloc[:,

col_start:col_end]

While putting the row labels in the .loc attribute, we need to be aware that the .iloc

attribute requires both the row and column indices. Since we do not intend to select the

rows by index, we can use the open-end index 0: or simply : here.

Example (Cont’d): Suppose we would like to select the first five observations of the

first five variables.

Figure 4.12 Selecting Cells Using Indices

Such a selection only makes sense when we exactly know the positions of the variables

and observations. More common is the selection of cells based on labels. Suppose

SU4-20

ANL252 Data Management

we would like to select the observed values in workclass and income for all

observations younger than 30 and older than 60 years old.

Figure 4.13 Selecting Cells Using Row and Column Labels

Nevertheless, this selection method only works if the row labels are set and we can

refer to them in the .loc attribute. While column labels usually correspond to the

variable names, row labels are not necessarily used as row index in most of the

datasets. The row positions are therefore more useful in selecting cells in a DataFrame.

Suppose we would now like to select the observed values of workclass and income

from the first 5 rows.

Figure 4.14 Selecting Cells by Row Indices and Column Labels

If we want to select the observed values of the first two columns from the observations

younger than 30 years old, we will have to use the .iloc and .loc attributes at the

same time.

SU4-21

ANL252 Data Management

Figure 4.15 Selecting Cells by Row Labels and Column Indices

2.4 Selecting Cells by Boolean Masking
In Chapter 2.2 of Study Unit 3, we learned how to use Boolean mask to subset a NumPy

array. Here, we will apply the same technique to select cells from a DataFrame. A Boolean

mask is an array where each of the values is either True or False. The Boolean mask

array is overlaid on top of the data structure that we're querying. And any element aligned

with a True value will be selected, and any element aligned with a False value will not.

DataFrame_name[Condition]

We can also create more complex queries by using bitwise logical operators to chain

several conditions together.

DataFrame_name[(Condition1) &/| (Condition2) &/| …]

The bitwise logical operators are similar to the logical operators. Instead of writing

and/or, we use & (bitwise and), | (bitwise or), or ~ (bitwise not) to combine our

conditions in the DataFrame queries. We can also add the bitwise not operator to the

above syntax if we want to negate any condition.

SU4-22

ANL252 Data Management

We need the bitwise logical operators here because we are actually creating a Boolean

mask for each condition within the index operator []. If there are two conditions, two

Boolean masks will be compared elementwise by the bitwise operator. The result of this

comparison is in turn a Boolean mask as well.

Remember that each Boolean mask/condition needs to be encased in parentheses because

of the order of operations.

Example (Cont’d): Suppose we would like to select those observations that work more

than 40 hours per week.

Figure 4.16 Selecting Cells by a Boolean Mask

The above syntax is a combination of two instructions. First, we create a Boolean

mask to select only those observations where census["hours-per-week"] > 40

is True. Recall that census["hours-per-week"] is actually a syntax to select a

specific column from the DataFrame. So, the condition here is to tell Python to select

the column named hours-per-week first and then assign True to those cases where

the observed value is larger than 40. Those row indices where the Boolean mask is

True will then be selected from the DataFrame census by the index operator [].

SU4-23

ANL252 Data Management

In the next query, we would like to select female respondents from the DataFrame

that work more than 40 hours per week.

Figure 4.17 Selecting Cells by Chaining Two Boolean Masks

In the last query, we want to select female or non-white respondents who work more

than 40 hours per week.

SU4-24

ANL252 Data Management

Figure 4.18 Selecting Cells by Chaining Multiple Boolean Masks

In the first parentheses, we create a Boolean mask for observations where gender

is equal to "Female". In the second parentheses, the Boolean mask is created for

observations where race is not "White". These two masks are compared by the |

(bitwise or) operator. The resulting Boolean mask will then be compared by a Boolean

mask where the values in hours-per-week are larger than 40.

SU4-25

ANL252 Data Management

Chapter 3: Merge DataFrames

Lesson Recording

Merge DataFrames in pandas

3.1 Appending DataFrames by Rows
It often happens that multiple parties are actually collecting data for the same empirical

study simultaneously. Eventually, their collected data must be merged together for

analyses. Though the data could be collected at different locations or during different

periods, they must consist of the same variables since the study is identical. Merging these

datasets means to append their rows below each other to become one dataset.

Figure 4.19 Concatenating Two Datasets with Different Rows but Identical Variables

In Python, we can use the .append() method to merge two DataFrames with identical

variables into one.

DataFrame_name.append(other = [OtherDataFrames])

SU4-26

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU04CH03_H4_0_V1_0/presentation_html5.html

ANL252 Data Management

The parameter other is used for the specification of those DataFrames to be appended

to DataFrame_name eventually. If we only have one DataFrame to be assigned to the

parameter other, we simply put its name without quotation marks behind other =. In

the case of specifying multiple DataFrames to the parameter other, we need to put their

names in a list.

Example (Cont’d): In order to study the different income groups in the US census

data more efficiently, the data analysts have decided to split the dataset into two.

Observatons with income “<50K” will be saved in a new dataset named “census_low”

and those with income “>50K” are now saved in “census_high”. Now, after the

datasets have been cleaned and studied separately, both datasets should be merged

again for some joint analyses.

Figure 4.20 Appending Two DataFrames

Note that we can also apply the .append() method on census_low directly.

However, we must be very sure that we no longer need census_low with its original

data since there is no way to retrieve its original content after the appending process,

unless we can import the original dataset from an external source again. Furthermore,

SU4-27

ANL252 Data Management

if we appended census_high to census_low directly and re-ran the same code

out of whatever reasons, census_low would eventually contain the observations of

census_high double. Therefore, in Figure 4.20, we first copy census_low to a new

DataFrame named census_new. And the .append() method is only applied on

census_new. Re-running the same code would not create mess in any of the involved

DataFrames at all.

Logically, the observations in the merged DataFrame do not follow the same order as

census since it does not play any role in this appending process at all.

Read

Refer to the link below for more details and examples on the .append() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.

append.html

3.2 Merging DataFrames with Different Shapes
The .append() method introduced in Chapter 3.1 is applicable for merging two

DataFrames with the same variables by rows. Nevertheless, there are other scenarios when

merging multiple datasets in general.

Another rather uncomplicated scenario is that different variables are found across

multiple DataFrames. But they contain the same observations.

SU4-28

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html

ANL252 Data Management

Figure 4.21 Concatenating Two Datasets with Different Columns but Identical Observations

For merging DataFrames by columns, they need to have identical keys, which are usually

the row labels of the DataFrames. As Figure 4.21 illustrates, Python can use the row labels

of both DataFrames to match identical observations and append their values of all the

available variables in both DataFrames in the same row.

A more complicated scenario is that we have multiple DataFrames with some common

variables but completely different observations.

Figure 4.22 Outer Join Two Datasets with Some Common Variables

SU4-29

ANL252 Data Management

Figure 4.23 Inner Join Two Datasets with Some Common Variables

When merging DataFrames with some common variables, we may obtain two possible

results: The output dataset contains either all available columns or only the common

variables across all the DataFrames. In Figure 4.22, observation with row label 2 has only

got values for Variable 1 and Variable 2. As a result, the value for Variable 3 of

this row in the final DataFrame will be a missing value. This type of merging is called the

outer join. But in Figure 4.23, the final DataFrame only consists of Variable 1 since it

is the only common variable in both DataFrames. This type of merging is called the inner

join.

Similarly, we may also get multiple DataFrames with some common observations but

totally different variables.

SU4-30

ANL252 Data Management

Figure 4.24 Outer Join Two Datasets with Some Common Observations

Figure 4.25 Inner Join Two Datasets with Some Common Observations

Same as in Figure 4.22 and Figure 4.23, we have two possible results here too: The output

dataset contains either all available rows (outer join) or only the common rows across

all the DataFrames (inner join). In Figure 4.24, observation with row label 2 has only got

values for Variable 1, Variable 2, and Variable 3. As a result, the values for

Variable 4 to Variable 6 of this row in the final DataFrame are entirely missing

values. In Figure 4.25, the final DataFrame only consists of observation with ID = 1 since

it is the only common observation in both DataFrames.

In the last scenario, the multiple DataFrames to be merged have some common variables

and observations. But there are also variables and observations that can only be found in

either one of them. If we choose outer join to merge them, the result will be like the output

dataset in Figure 4.26.

SU4-31

ANL252 Data Management

Figure 4.26 Outer Join Two Datasets with Different Shapes

The values of all available cells in either one of the original DataFrames will be taken over

in the final DataFrame. Cells that were originally unavailable in both DataFrames such as

Value23 will become missing data.

On the other hand, if we choose inner join to merge them, the result will be like the output

dataset in Figure 4.27.

Figure 4.27 Inner Join Two Datasets with Different Shapes

Since Value11 is the only common cell in both DataFrames, it will also be the only cell in

the output DataFrame.

In Python, we can use the concat() function to merge multiple DataFrames in all the

above-described scenarios. It is a rather complex method, and we will only list out the

SU4-32

ANL252 Data Management

most commonly used parameters in our syntax introduction. For details, please refer to

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html.

finalDF_name = pd.concat(objs, axis, join)

The parameter objs is used for the specification of all the DataFrames to be concatenated.

Be reminded that we need to put the names of the DataFrames in a list. The parameter

axis is the direction along which the concatenation should take place. If axis = 0, the

DataFrames will be concatenated below one another, and the concatenation will take place

beside one another if axis = 1. The default value here is 0. With the join parameter, we

can choose to carry out an outer join or inner join. The possible values here are "outer"

and "inner", written as string. If we omit this parameter, “outer” will be considered. The

resulting DataFrame will be assigned to the object named finalDF_name.

Example (Cont’d): We have three sub-DataFrames of the US census study. The first

one named census_ym contains all male observations. However, it has only two

variables: gender and income. The second DataFrame named census_yf has the

same variables, but it contains only female observations. The third DataFrame is called

census_x. It contains all observations and all the variables of census except income

and gender.

Suppose we concatenate census_ym and census_x first. The resulting DataFrame

will contain all observations and all variables from the original census dataset.

SU4-33

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html

ANL252 Data Management

Figure 4.28 Concatenating Two DataFrames with Different Shapes by Outer Join

Nevertheless, we can see in the fifth row, the value of the observation with row index

4 in the variable gender is NaN. We can conclude that this observation does not exist

in census_ym since it is a female observation.

However, if we concatenate them with inner join, this observation will not exist in the

final DataFrame census_final.

SU4-34

ANL252 Data Management

Figure 4.29 Concatenating Two DataFrames with Different Shapes by Inner Join

Figure 4.29 shows that the observation with row index 4 is not included in the final

DataFrame census_final. Furthermore, the number of rows here is 32,650, the

number of rows in census_ym, instead of 48,842, the number of rows in census_x.

To reconstruct the original census DataFrame, we can first concatenate census_ym

and census_yf.

Figure 4.30 Concatenating Two DataFrames with Same Variables by Rows

SU4-35

ANL252 Data Management

We can see from the output that the resulting DataFrame census_yg has 48,842 rows,

which corresponds to the number of rows in census. The DataFrame census_yg

can now be merged with census_x.

Figure 4.31 Concatenating Two DataFrames with Same Observations by Columns

As we can see, the rows in the final DataFrame census_final are sorted by the row

indices automatically.

SU4-36

ANL252 Data Management

Read

Refer to the three links below for more details and examples on merging DataFrames

using the pandas package:

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Refer to the three links below for more details and examples on concatenating

DataFrames using the concat() function of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html

SU4-37

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html

ANL252 Data Management

Chapter 4: Missing Data and Outliers

Lesson Recording

Missing Data and Outliers in pandas DataFrames

In empirical studies, it often occurs that an observed value of a variable is missing. There

are many reasons for missing data: defective measurement tools, withdrawal from the

study, refusal of responses to sensitive questions, etc. In Python, there is the NoneType to

indicate missing data. Different packages have different ways to display a missing value.

For instance, pandas uses a special floating-point value for missing values, and NumPy

uses NaN which stands for “Not a Number”.

Missing data are not desirable for data analytics since they cannot be included in

constructing models, forecasting, etc. Statistical estimation of parameters can be biased.

In pandas, when we use statistical functions on DataFrames, missing values are typically

ignored by these functions. As a result, the execution of the code will not be interrupted,

but the computation of these functions could be due to unequal underlying sample sizes

for each variable.

4.1 Identifying Missing Values
Most of the time, we have to work with datasets provided from external sources, and

missing values can be referred very differently. The reasons of such discrepancies could

be typing errors, or the varying habit of the data collectors when entering missing values,

or the limitation of the software used for data entry, etc. In pandas, readers such as the

read_csv() function provide two parameters, na_filter and na_values, to convert

SU4-38

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU04CH04_H4_0_V1_0/presentation_html5.html

ANL252 Data Management

certain strings to missing values directly while the data are being converted to pandas

DataFrame.

DataFrame_name = pd.read_csv("csv_file_name.csv", na_values
 =
 "na_string", na_filer = True/
False)

The default value of the na_filter parameter is True. In this case, pandas will convert

all white spaces "" to NaN. However, there could be situations where white space is an

actual value of interest and not a missing value. The filter should then be turned off and

the value would be False.

With the parameter na_values, we can declare certain strings from our DataFrame to be

recognised as missing values. By default, strings like "", "#N/A", "#N/A N/A", "#NA",

"-1.#IND", "-1.#QNAN", "-NaN", "-nan", "1.#IND", "1.#QNAN", "N/A", "NA",

"NULL", "NaN", "n/a", "nan", "null" are treated as missing values and do not need

to be specified explicitly with this parameter.

Example (Cont’d): From Figure 4.1 and Figure 4.2, we can recognise that question

marks are used to indicate missing values in the US Adult Census dataset. Suppose

we would like to declare every cell that contains a question mark solely as a missing

value.

SU4-39

ANL252 Data Management

Figure 4.32 Declaring Specific Strings as Missing Values While Importing Data

In the read_csv() function, we specify a single question mark as string that should

be identified as a missing value in the census DataFrame. In Figure 4.32, we can

see that the values for workclass and occupation in the fifth row are now NaN,

whereas in Figure 4.1, they were simply "?".

Read

Refer to the link below for more details and examples on the parameters associated to

missing values in the read_csv() function of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.read_csv.html

SU4-40

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

ANL252 Data Management

4.2 Locating Missing Values
In Chapter 4.1, we learned that the parameters in the read_csv() function can instruct

Python to indicate missing values clearly with NaN in the DataFrame. Though they will

become uniquely identifiable, it is neither easy to locate their positions, nor to detect their

existence, if the dataset contains a large number of rows and columns. One way to find

out their existence and positions is to count the NaNs in each row and each column.

If the number of NaNs in a column is larger than zero, we have then identified the variables

in which missing values exist and including these variables may create biasedness in our

analytics tasks. And if the number of NaNs in a variable is large, we can also conclude

that the variable may not contain sufficient data for reliable analyses. Equivalently, we can

apply the same approach to rows. If the number of NaNs in a row is large, we know that

missing values do not only exist for this observation, it may also not be carrying much

information for our analyses.

DataFrame_name.isnull().sum(axis = 0)
DataFrame_name.isnull().sum(axis = 1)

The above syntax is in fact a Boolean masking. It contains two methods of the pandas

package. The .isnull() method instructs Python to check every cell of the DataFrame

and then return True if it is an NaN. Subsequently, Python should return the sum of each

row or each column of the Boolean mask. If the parameter axis is set to 0, the values in a

column will be added up together. And if axis = 1, we will obtain the sum of the row

instead. The default axis here is 0. Since True is usually represented by 1 and False by

0 when converting a Boolean variable to a numeric value, the sum of a row or a column

with only Boolean values will therefore be the same as counting the occurrence of True

in it.

SU4-41

ANL252 Data Management

If our intension is just to check the existence of missing values, we can use the .any()

method instead. The .any() method will return True if at least one of the elements in

the array returned by the .isnull() method is True.

DataFrame_name.isnull().any(axis = 0)
DataFrame_name.isnull().any(axis = 1)

We can retrieve the indices of the rows or columns with missing data by applying the

.index method on the resulting object from the syntax above.

object_name = DataFrame_name.isnull().any()
object_name[object_name == True].index

Counting the NaNs in columns has actually a different meaning than counting them in

rows. When we count the number of NaNs in columns, we are checking on the existence of

missing values in each variable. If they exist, we may need different approaches to adjust

the data for different types of variable. For instance, if they exist in a numeric variable,

we can replace the missing values by zero or by the mean of the variables. And if a text

variable contains missing data, we may add a response category such as “no reply” to it.

We can also choose to neglect them if the variable is irrelevant for our analyses of the data.

By counting the NaNs in rows, however, we intend to identify those observations with

missing values in at least one of the variables. Depending on the analyses and the

importance of the observation, we can choose to delete the observation or to apply the

appropriate data adjustments to the affected columns.

SU4-42

ANL252 Data Management

Example (Cont’d): From Figure 4.32, we can identify two missing values in

workclass and occupation for the fifth observation. Now we would like to find

out whether there are more missing values in these two and other variables.

Figure 4.33 Counting the Number of Missing Values in Each Variable

The output shows that workclass, occupation, and native-country are the

three variables with missing data. Their proportions of missing data are 2,799 (5.7%),

2,809 (5.7%) and 857 (1.8%) out of 48,842 observations, respectively. We need to further

study these observations to conclude on the adjustment we shall apply on the missing

values. For this purpose, we shall find out all the observations, or their row indices,

with at least one missing value.

SU4-43

ANL252 Data Management

Figure 4.34 Identifying Observations with Missing Values

The output generated in Figure 4.34 is rather not satisfactory since we only see the

returned Boolean value from the chained methods .isnull().any(axis = 1).

Furthermore, it is only useful to us if the rows with missing values are selected from

the DataFrame. As a result, we need to filter census with the results above.

Figure 4.35 Selecting Observations with Missing Values from a DataFrame

First, we save the output generated in Figure 4.34 as an object named missrow. After

that, we use a Boolean mask to select only those “True” observations from missrow,

SU4-44

ANL252 Data Management

and the .index method will then return the corresponding row indices to us for

selection. Eventually, we apply these row indices to subset census. If we wish to

work on this subset of the DataFrame further, we can also assign it to an object in the

second line of our code.

Taken from Figure 4.35, there are a total of 3620 rows with at least one missing value

in workclass, occupation, and native-country. We can now study the data of

these observations and decide on the adjustment measures subsequently.

Read

Refer to the link below for more details and examples on the .isnull() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.isnull.html

Refer to the link below for more details and examples on the .sum() method of the

pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.sum.html

Refer to the link below for more details and examples on the .any() method of the

pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.any.html

Refer to the link below for the index() method of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.index.html

SU4-45

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html

ANL252 Data Management

4.3 Replacing Missing Values
After checking the existence of missing values in a DataFrame and locating them, we

should decide on how to deal with them. Usually, we can consider deleting the entire

observations, replacing them by other values, or simply ignoring them.

To delete an entire row with missing values from the DataFrame, we have two options:

the .drop() and .dropna() methods.

DataFrame_name.drop(axis = 0, index = [index1, index2, …])

With the .drop() method, we can delete an entire row or column by specifying the

corresponding indices resulting from the localisation methods introduced in Chapter 4.2.

The parameter axis indicates whether rows (0) or columns (1) should be dropped.

The .dropna() method combines the localisation and removal of rows or columns with

missing data in a single function. Its usage is rather convenient since we can omit using

the .isnull().any() and .index() methods before dropping the corresponding

observations or variables.

DataFrame_name.dropna(axis = 0, how = "any"/"all")

The axis parameter in pandas functions or methods should not be a stranger to

us anymore. With the how parameter, however, we can instruct Python to drop an

observation with only missing values in all variables (all), or to drop an observation with

at least one missing value in any variable (any).

The drawback of the .dropna() method is the equal treatment for all missing values

throughout the entire dataset. As mentioned in the previous chapters, we have multiple

ways to adjust missing data for different types of variable. And depending on the observed

SU4-46

ANL252 Data Management

values of other variables, we may also want to keep some of the rows with missing data

while deleting others.

Example (Cont’d): Now we would like to remove all the rows with missing values

using the .drop() method.

Figure 4.36 Dropping Observations with Missing Values Using .drop() Method

The missrow object is still the same one created in Figure 4.35, and the indices

assigned to the index parameter in the .drop() method are determined by the same

syntax used in the index operator for missrow in the same figure.

We can obtain the same result using the .dropna() function.

SU4-47

ANL252 Data Management

Figure 4.37 Dropping Observations with Missing Values Using .dropna() Method

Another possibility in dealing with missing values is to replace them by a pre-defined

value. The most common values used for such purpose are 0 or the variable mean.

Some literatures also suggest more sophisticated approaches such as interpolation,

extrapolation, or estimation. In Python, the pandas package facilitates replacement of

missing values by the .fillna() method.

DataFrame_name.fillna(value = repl_value)
DataFrame_name["column_label"].fillna(value = repl_value)

Basically, if we apply the .fillna() method on the entire DataFrame, it will replace all

missing values that Python could find with the value specified in the parameter. But if

we specify a column in the DataFrame and attach the .fillna() method to it, only the

missing values found in the corresponding variable will be replaced. By doing this, we

can treat missing data in various variable types differently.

SU4-48

ANL252 Data Management

Example (Cont’d): Suppose we decide to simply replace all missing values in the

DataFrame census by 0.

Figure 4.38 Replacing Missing Values by 0 in the Entire DataFrame

The output shows that all the missing data (NaN) in row 5 are now replaced by 0.

Nevertheless, it looks rather odd to have a value 0 in the variables workclass and

occupation. As a result, instead of replacing them by 0, we would rather replacing

them with the string “Unknown”.

SU4-49

ANL252 Data Management

Figure 4.39 Replacing Missing Values by “Unknown” in Specific Columns

In the first line, we apply the same chained methods .isnull().any(axis = 0)

on the DataFrame census to detect the existence of missing values in each column. In

the second line, we select only those columns where the returned values from the first

line are True using the .index method. We then apply the .fillna() method to

replace the missing values by “Unknown”, which is the replacement string assigned

to the parameter value.

Read

Refer to the link below for more details and examples on the .drop() method of the

pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.drop.html

Refer to the link below for more details and examples on the .dropna() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.dropna.html

SU4-50

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

ANL252 Data Management

Refer to the link below for more details and examples on the .fillna() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.fillna.html

4.4 Detecting and Removing Outliers
Beside missing data, outliers are data that may cause biasedness in the estimation of

statistical parameters and hence the goodness of fit of the models. Since biased estimates

are undesirable, it is important to identify them and undertake appropriate adjustments

before conducting any analysis.

Basically, we can use statistics such as the interquartile range (IQR) to detect the existence

of outliers in a variable. Furthermore, visualisation like boxplots or histogram can also be

useful to examine the distribution of the variables.

In Chapter 3.2 of Study Unit 3, we have learned how to use the sub-package

matplotlib.pyplot to draw histogram in Python. The boxplot() function from the same

sub-package facilitates the creation of boxplots for outlier detection.

To compute the interquartile range, we can use the .quantile() method to determine

the first and third quartiles of the variable.

DataFrame_name["column_label"].quantile(q = quantile)

With the parameter q, which is a value between 0 and 1, we can define the quantile of the

distribution that the .quantile() method should return to us. Once the 0.25 and 0.75

quantiles of the target variable is obtained, the interquartile range iqr can be computed

by iqr = q3 – q1. An observation y is considered as outlier if y < q1 – 1.5 * iqr

or y > q3 + 1.5 * iqr.

SU4-51

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html

ANL252 Data Management

The usual practice in dealing with outliers is to remove them from the dataset. In Python, it

suffices to keep observations that do not contain outliers in the target variable. The syntax

below generates a subset of rows that do not fulfil the above outlier condition.

DF[~((DF["Col"] < q1 – 1.5 * iqr) | (DF["Col"] > q3 + 1.5 *
 iqr))]

Note that DF represents the DataFrame_Name and Col is the column_label. The

condition left from the bitwise or operator “|” selects all observations with values in

“Col“ smaller than q1 – 1.5 * iqr whereas the condition right from it selects those

observations larger than q3 + 1.5 * iqr. Nevertheless, this would be the combined

condition to select all the outliers. To invert the selection, we need to put the bitwise not

operator “~” before the entire condition, which must then be put in a pair of parentheses.

Example (Cont’d): In the following, we will use the aforementioned interquartile

range rule to detect outliers in the variable hours-per-week, i.e. observations with

extraordinary high or low number of working hours.

Figure 4.40 Computing Criteria for Outlier Detection in a Numeric Variable

Based on the results in Figure 4.40, half of the sample works between 40 and 45 hours

weekly on average. The corresponding upper and lower thresholds to differentiate

outliers from “normal” data are 32.5 and 52.5, respectively.

SU4-52

ANL252 Data Management

In the next step, we can select those outlier observations for checking before dropping

them from the DataFrame eventually.

Figure 4.41 Selected Outlier Observations from a DataFrame

Before dropping those outlier observations from the DataFrame, we shall actually

study them more carefully. For instance, the observation with row index 48829 works

for 60 hours per week, which is much higher than the third quartile of the data. But

according to the variable workclass, he is self-employed. From this perspective, his

average weekly working hours seem sensible. Hence, this observation could be useful

for further analyses.

Nevertheless, in order to show how the syntax works, we will still drop all the outlier

observations from census that fulfil the above criteria by the following program.

SU4-53

ANL252 Data Management

Figure 4.42 Selected Non-Outlier Observations from a DataFrame

The construction of the syntax for selecting those non-outliers is rather

straightforward. All we need to do is to place a bitwise not operator “~” in front of the

entire selection condition for the outliers that is now wrapped up in a round bracket.

Read

Refer to the link below for more details and examples on the .quantile() method

of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.

quantile.html

SU4-54

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html

ANL252 Data Management

Chapter 5: Data Modification

Lesson Recording

Data Modification in pandas

5.1 Sorting Data
The order of the observations in a DataFrame is usually rather arbitrary and random.

It can be a result of the sequence in which the data were collected or recorded, or in

which they were merged. Sometimes, we may want to sort the data according to values of

some variables for better understanding. For instance, we may want to sort an employee

dataset by the rank of the employees in the organisation. In Python, the .sort_values()

method from the pandas package helps us to rearrange the order of the rows in a

DataFrame.

DataFrame_name.sort_values(by = [List_of_var_names],
 ascending)

We can provide a list of variable names to the parameter based on which the DataFrame

will be sorted. The sorting hierarchy among these variables drops with the increasing

index in the list. If we set the parameter ascending to True, the values of the variables

given in the parameter will be sorted in the ascending order, and they will be sorted in the

descending order if it is False.

SU4-55

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU04CH05_H4_0_V1_0/presentation_html5.html

ANL252 Data Management

Example (Cont’d): Suppose we would like to study the relationship between the

individuals’ income and their educational level, which is represented by the numeric

variable educational-num in the DataFrame census, as well as their age. The

value in educational-num increases with the educational level of the individual.

For this purpose, we will sort the DataFrame census first by educational-num

in the descending order and then by age in the ascending order. That is, we will see

observations with the highest educational level first, and observations with the lowest

educational level will appear at the end. And in each educational level, we will first

find the youngest individual, and the oldest individual will be put as last in the group.

Figure 4.43 Sorting a DataFrames by Two Variables

In the above syntax, we used two variables for the sorting process. As mentioned, the

sorting hierarchy decreases with the index of the variable name in the list. That is, the

DataFrame will be first sorted by education-num, followed by age. As a result, we

also need a list of two Boolean values to instruct Python on how each of the variables

should be sorted. Here, we ask Python to sort education-num in the descending

order (False) and then age in the ascending order (True).

SU4-56

ANL252 Data Management

Read

Refer to the link below for more details and examples on the sort_values()

function of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.sort_values.html

5.2 Discretisation
Sometimes, we need to bin continuous variables into discrete intervals. Through

discretisation, the variable could be easier to understand or becomes compatible to some

specific analytics models such as decision trees. In the past, we may need to write lengthy

programs with various number of if-conditions for this purpose. In Python, we can use

the cut() function from the pandas package to discretise continuous variables.

DataFrame_name["column"] = pd.cut(x = array, bins, right,
 labels, include_lowest, ordered)

Note that cut() is a function and not a method to be applied on the DataFrame directly.

The object left from the equal sign can be any object including a new or an existing column

of a DataFrame.

The data to be discretised should be converted to a one-dimensional NumPy array and

assigned to the parameter x. With the parameter bins we can specify the number of equal-

width bins for the discretisation of the array. But we can also define the bin edges in a

numeric tuple or numeric list instead. The parameter right indicates whether the bins

should include the rightmost edge or not. If it is False, the leftmost edge will be included

instead. Note that one bin edge must be excluded in the discretisation in order not to

have overlapping edges. Since the default value here is True, Python usually includes

SU4-57

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html

ANL252 Data Management

the highest value in the corresponding bin. Therefore, the left edge of the first bin is not

included as well by default. By assigning True to the parameter include_lowest we

can instruct Python to include the left edge of the first bin. We can also name the bins by

assigning a list of strings to the parameter labels. And they can be ordered if we assign

True, the default value here, to the parameter ordered.

Example (Cont’d): In Figure 4.9, we use the age groups categorised by the variable

age as the row index of the DataFrame census. There, we wrote a lengthy program

to discretise the age into three bins: “Age <30”, “Age 30-59”, “Age 60+”. Here, we can

apply the cut() function for the same task. The resulting array will then be assigned

to a new variable named “agegroup” in census.

Figure 4.44 Discretising a Numeric Variable into Bins

In the above syntax, we first convert the variable age from the census DataFrame

into a NumPy array and assign it to the parameter x. Then we specify in bins the

edges of the three bins in a tuple (0, 30, 60, 100), and the right edges should not

be included here as we set right = False. These settings enable us to use 30 instead

of 29, 60 instead of 59 as bin edges. Since there is no include_highest parameter

SU4-58

ANL252 Data Management

for the cut() function, we must set the rightmost edge of the last group higher than

the maximum age in our DataFrame. In the final step, we use the same labels as in

Figure 4.9 for our bins and specify them as a list for the parameter labels.

Read

Refer to the link below for more details and examples on the .cut() method of the

pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html

5.3 Grouping Data
In data analytics, we often need to group the data by one or more variables and compute

the aggregated statistics of some other variables for each group. To group a DataFrame by

some variables in Python, we can use the .groupby() method of the pandas package.

DataFrame_name.groupby(by = [List_of_Labels]).anymethod()

With the parameter by we can specify a list of column labels, or variable names, based

on which the grouping should be conducted. These variables must be categorical so that

the number of groups is finite and limited. Attached to the .groupby() method can be

any method that we would like to apply on the grouped data. The list of such functions or

methods can be found in Table 3.1 of Study Unit 3 since the NumPy functions or methods

are also applicable to pandas DataFrames.

Example (Cont’d): Suppose we would like to compute the mean of the number of

working hours, capital gain and capital loss as well as the age for each age group

created in Figure 4.44.

SU4-59

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html

ANL252 Data Management

Figure 4.45 Computing the Mean of All Numeric Columns for Grouped Data

The .mean() method of pandas selects all columns of type integer or float and

compute their means in each age group. As a result, we obtain the group means of

fnlwgt and educational-num as well. To select only the relevant variables for the

group mean calculation, we can subset the census DataFrame first in the above syntax.

Figure 4.46 Computing the Mean of Selected Columns for Grouped Data

As a result, the average age of the youngest group is 23.4, while those between 39 and

59 is 42.2 and those who are 60 and older is 66.5. Individuals between the age of 30

and 59 have to work averagely over 43 hours per week while the average numbers

of the youngsters and seniors are 36 and 34 hours a week, respectively. Furthermore,

seniors at the age of 60 or above have on average the highest capital gain and loss in

comparison to the other two groups.

SU4-60

ANL252 Data Management

Read

Refer to the link below for more details and examples on the functions groupby() of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.groupby.html

5.4 Transformation, Standardisation, Normalisation
In data analytics, we may need to transform the values of a variable due to various reasons.

For instance, we can use the log-transformation to stabilise the variance of a variable, or we

need to standardise or normalise variables for customer segmentation analysis when they

are measured at different scales and do not contribute equally to the analysis. In Python,

we can use various functions to transform, standardise or normalise variables.

The log-transformation of a numeric variable is rather straightforward. Since the log()

function is not available in the pandas package, we need to take it from the NumPy

package.

DataFrame_name["new_var"] =
 np.log(DataFrame_name["var_name"])

It is often useful not to replace the values in the original variable by transformed values

since we may still need the original one for other purposes later. As a result, we shall save

the transformed values as a new variable in the same DataFrame.

SU4-61

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html

ANL252 Data Management

Example (Cont’d): Suppose we would like to transform age by the natural logarithm

for further analyses such as a Gamma regression.

Figure 4.47 Log-Transformation of a Numeric Variable

In Python, the standardisation function can be found in the “scikit-learn” package which

we will introduce in Study Unit 5. Here, we use the most traditional way to standardise a

variable by finding its mean and standard deviation first, and the transformation will be

then conducted by a formula.

var_mean = np.mean(DF["var_name"])
var_std = np.std(DF["var_name"])
DF["std_var"] = (DF["var_name"] – var_mean) / var_std

We can certainly write all the three lines into a single one without assigning the variable

mean and variable standard deviation to different variables first. The advantage of

splitting such a long syntax into three short ones is the readability of the code and

convenience in debugging.

SU4-62

ANL252 Data Management

Example (Cont’d): Suppose we would like to standardise hours-per-week for

further analyses.

Figure 4.48 Standardisation of a Numeric Variable

Normalisation is another transformation method to scale down a variable. While there

are no theoretical upper and lower bounds for standardised variables, the values of a

normalised variable can only be in the interval [0, 1]. Same as the standardisation function,

the normalisation function in Python can also be found in the “scikit-learn” package. Here,

we use the most traditional way to normalise a variable.

var_min = np.min(DF["var_name"])
var_max = np.max(DF["var_name"])
DF["norm_var"] = (DF["var_name"] – var_min) / (var_max –
 var_min)

Same as the syntax for standardisation, we need to find the minimum and maximum of

the target variable first and then transform the variable by a formula.

SU4-63

ANL252 Data Management

Example (Cont’d): We will now normalise hours-per-week for further analyses.

Figure 4.49 Normalisation of a Numeric Variable

From Figure 4.49, we can clearly see that the values of the normalised variable hours-

per-week_n are entirely non-negative while the standardised variable hours-per-

week_s contains both positive and negative values.

SU4-64

ANL252 Data Management

Summary

In this unit, we have seen how Python can be used to manipulate, clean, and query data

using the pandas package. Querying the DataFrame structures can be done in different

ways, such as using the .iloc or .loc attributes for row-based querying or using the

square brackets on the object itself for column-based querying. We also saw that one

can query the DataFrame through Boolean masking. Furthermore, we also came across

situations where we had to use the .append() method and the concat() function

to merge multiple DataFrames with different shapes into one. We then explored how

to detect and replace missing values as well as outliers in a DataFrame. We also talked

about modifying DataFrames for further analyses such as sorting and grouping data,

discretising numeric variables to finite number of categories or bins. While pandas offers

specific methods or functions such as .sort_values(), .groupby(), or cut() for

these types of data modification, we need to construct our own syntax by combining

various NumPy functions to log-transform, to standardise, or to normalise variables if

transformation is required for a variable by the analytics methods.

SU4-65

ANL252 Data Management

Formative Assessment

1. What is not a function/method to display a DataFrame?

a. print()

b. .head()

c. show()

d. display()

2. Which of the following values can be used with .iloc to select rows from a

DataFrame?

a. ["var_label1", "var_label2"]

b. [-4:-1]

c. ["0", "1", "2"]

d. DataFrame_name["var_label1" == "good"]

3. What is the resulting DataFrame according to the following program?

df = pd.DataFrame([[1, 2]], columns = list('AB'))
df2 = pd.DataFrame([[3, 4]], columns = list('AB'))
df.append(df2)

a.
A B

1 2

3 4

b.
A B

3 4

SU4-66

ANL252 Data Management

1 2

c.
A B

1 3

2 4

d.
A B

3 1

4 2

4. Which columns does dfnew contain according to the following program?

df = pd.DataFrame([[1, 2]], columns = list('AB'))
df2 = pd.DataFrame([[3, 4]], columns = list('BC'))
dfnew = pd.concat([df, df2], join = 'outer')

a. A and B

b. B and C

c. Only B

d. A, B, and C

5. Which argument of the pd.read_csv() function is used to declare specific strings

as missing values?

a. na_values

b. na_filter

c. na_drop

d. na_omit

SU4-67

ANL252 Data Management

6. Which method should be used to replace missing values by another value?

a. .drop()

b. .dropna()

c. .nareplace()

d. .fillna()

7. Which variable is the lowest in the sorting hierarchy?

df.sort_values(by = ['Z', 'Y', 'X', 'W'])

a. X

b. W

c. Z

d. Y

8. What function of the pandas package is used to discretise numeric variables?

a. pd.bins()

b. pd.categorize()

c. pd.cut()

d. pd.split()

9. What is not recommended when applying the .groupby() method on a DataFrame?

a. The grouping variable should be categorical.

b. The grouping variable should be discretised before.

c. The grouping variable should be of type float.

d. The values in the grouping variable can be identical to the row indices.

10. Which functions of the NumPy package do we need to normalise a variable?

a. np.min() and np.max()

b. np.mean() and np.std()

SU4-68

ANL252 Data Management

c. np.quantile() and np.range()

d. np.cov() and np.corr()

SU4-69

ANL252 Data Management

Solutions or Suggested Answers

Formative Assessment
1. What is not a function/method to display a DataFrame?

a. print()

Incorrect. We can use the print() function to print out a DataFrame.

b. .head()

Incorrect. We can use the .head() method to print out the first five rows of

a DataFrame.

c. show()

Correct. show() is a function of matplotlib which is used to show the

created graphs.

d. display()

Incorrect. We can use the display() function to print out the first five and

the last five rows of a DataFrame.

2. Which of the following values can be used with .iloc to select rows from a

DataFrame?

a. ["var_label1", "var_label2"]

Incorrect. We can only apply .iloc on row positions.

b. [-4:-1]

Correct. -4:-1 are clearly indices representing the row positions to be

selected.

c. ["0", "1", "2"]

SU4-70

ANL252 Data Management

Incorrect. The values in the index operator for .iloc must be numeric and

not label strings.

d. DataFrame_name["var_label1" == "good"]

Incorrect. The arguments in the index operator for .iloc must be numeric

values and not Boolean expressions.

3. What is the resulting DataFrame according to the following program?

df = pd.DataFrame([[1, 2]], columns = list('AB'))
df2 = pd.DataFrame([[3, 4]], columns = list('AB'))
df.append(df2)

a.
A B

1 2

3 4

Correct. The .append() method merges two DataFrames by row.

b.
A B

3 4

1 2

Incorrect. The .append() method appends df2 to df1 and not vice versa.

c.
A B

1 3

SU4-71

ANL252 Data Management

2 4

Incorrect. The .append() method does not merge DataFrames by column.

Besides, df and df2 are row DataFrames and not column DataFrames.

d.
A B

3 1

4 2

Incorrect. The .append() method does not merge DataFrames by column.

Besides, df and df2 are row DataFrames and not column DataFrames.

Furthermore, it should be df2 appended to df1 and not df1 to df2.

4. Which columns does dfnew contain according to the following program?

df = pd.DataFrame([[1, 2]], columns = list('AB'))
df2 = pd.DataFrame([[3, 4]], columns = list('BC'))
dfnew = pd.concat([df, df2], join = 'outer')

a. A and B

Incorrect. Since it is an outer join, the resulting DataFrame should contain all

available columns across the original DataFrames and not only those from

df.

b. B and C

Incorrect. Since it is an outer join, the resulting DataFrame should contain all

available columns across the original DataFrames and not only those from

df2.

SU4-72

ANL252 Data Management

c. Only B

Incorrect. Since it is an outer join and not inner join, the resulting DataFrame

should contain all available columns across the original DataFrames and not

only the common ones.

d. A, B, and C

Correct. Since it is an outer join, the resulting DataFrame should contain

all available columns across the original DataFrames, which are A, B and C.

5. Which argument of the pd.read_csv() function is used to declare specific strings

as missing values?

a. na_values

Correct. We can specify a list of strings representing missing values in the

DataFrame with na_values.

b. na_filter

Incorrect. na_filter is used to convert white spaces to missing values.

c. na_drop

Incorrect. There is no na_drop parameter for the pd.read_csv() function.

d. na_omit

Incorrect. There is no na_omit parameter for the pd.read_csv() function.

6. Which method should be used to replace missing values by another value?

a. .drop()

Incorrect. The .drop() method is used to delete an entire row/column from

a DataFrame.

b. .dropna()

SU4-73

ANL252 Data Management

Incorrect. The .dropna() method is used to delete an entire row from a

DataFrame if it contains any missing value.

c. .nareplace()

Incorrect. There is no method called .nareplace() in the pandas package.

d. .fillna()

Correct. With the .fillna() method, we can replace missing values in a

DataFrame by a user-defined value.

7. Which variable is the lowest in the sorting hierarchy?

df.sort_values(by = ['Z', 'Y', 'X', 'W'])

a. X

Incorrect. The sorting hierarchy decreases with the increase of the index in

the by list. As a result, variable W should be the lowest in the hierarchy.

b. W

Correct. The sorting hierarchy decreases with the increase of the index in

the by list. As a result, variable W is the lowest in the sorting hierarchy.

c. Z

Incorrect. The sorting hierarchy decreases with the increase of the index in

the by list. As a result, variable W should be the lowest in the hierarchy.

d. Y

Incorrect. The sorting hierarchy decreases with the increase of the index in

the by list. As a result, variable W should be the lowest in the hierarchy.

8. What function of the pandas package is used to discretise numeric variables?

SU4-74

ANL252 Data Management

a. pd.bins()

Incorrect. There is no function called bins() in the pandas package.

b. pd.categorize()

Incorrect. There is no function called categorize() in the pandas package.

c. pd.cut()

Correct. We can use the cut() function to discretise numeric variables into

bins.

d. pd.split()

Incorrect. There is no function called split() in the pandas package.

9. What is not recommended when applying the .groupby() method on a DataFrame?

a. The grouping variable should be categorical.

Incorrect. The number of possible values of a grouping variable should be

limited. A categorical variable matches this criterion perfectly.

b. The grouping variable should be discretised before.

Incorrect. If the grouping variable is the result of a discretised numeric

variable, then its number of possible values has been limited, which matches

the criterion of a grouping variable perfectly.

c. The grouping variable should be of type float.

Correct. This is not recommendable since the number of possible values in

a grouping variable should be limited. However, the number of possible

values of a float variable is infinite.

d. The values in the grouping variable can be identical to the row indices.

SU4-75

ANL252 Data Management

Incorrect. In the case that the row indices are values of a categorical variable,

this categorical variable can perfectly be used as a grouping variable since its

number of possible values is limited.

10. Which functions of the NumPy package do we need to normalise a variable?

a. np.min() and np.max()

Correct. We need the minimum and maximum of a variable for the

normalisation formula.

b. np.mean() and np.std()

Incorrect. The mean and standard deviation of a variable are used for the

standardisation.

c. np.quantile() and np.range()

Incorrect. The quantile and range functions are not required for

normalisation.

d. np.cov() and np.corr()

Incorrect. Covariance and correlation are not needed for normalisation.

SU4-76

ANL252 Data Management

References

Delve. (1996). The Adult dataset. The University of Toronto. http://www.cs.toronto.edu/

~delve/data/adult/adultDetail.html

Kaggle. (n.d.). Adult income dataset. Kaggle Inc. https://kaggle.com/wenruliu/adult-

income-dataset

pandas. (n.d.). IO tools (text, CSV, HDF5, …). The pandas development team. https://

pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table

pandas. (n.d.). Merge, join, concatenate and compare. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

pandas. (n.d.). pandas.concat. The pandas development team. https://

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html

pandas. (n.d.). pandas.cut. The pandas development team. https://pandas.pydata.org/

pandas-docs/stable/reference/api/pandas.cut.html

pandas. (n.d.). pandas.DataFrame.any. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.any.html

pandas. (n.d.). pandas.DataFrame.append. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.append.html

pandas. (n.d.). pandas.DataFrame.drop. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.drop.html

pandas. (n.d.). pandas.DataFrame.dropna. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.dropna.html

SU4-77

http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html
http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html
https://kaggle.com/wenruliu/adult-income-dataset
https://kaggle.com/wenruliu/adult-income-dataset
https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table
https://pandas.pydata.org/docs/user_guide/io.html#io-read-csv-table
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.append.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html

ANL252 Data Management

pandas. (n.d.). pandas.DataFrame.fillna. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.fillna.html

pandas. (n.d.). pandas.DataFrame.groupby. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.groupby.html

pandas. (n.d.). pandas.DataFrame.iloc. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.iloc.html

pandas. (n.d.). pandas.DataFrame.index. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.index.html

pandas. (n.d.). pandas.DataFrame.isnull. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.isnull.html

pandas. (n.d.). pandas.DataFrame.loc. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.loc.html

pandas. (n.d.). pandas.DataFrame.quantile. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.quantile.html

pandas. (n.d.). pandas.DataFrame.reset_index. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.reset_index.html

pandas. (n.d.). pandas.DataFrame.set_index. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.set_index.html

SU4-78

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.quantile.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.reset_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.set_index.html

ANL252 Data Management

pandas. (n.d.). pandas.DataFrame.sort_values. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.sort_values.html

pandas. (n.d.). pandas.DataFrame.sum. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.sum.html

pandas. (n.d.). pandas.read_csv. The pandas development team. https://

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

SU4-79

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sort_values.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sum.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

ANL252 Data Management

SU4-80

Study
Unit 5

Data Analytics in Python

ANL252 Data Analytics in Python

Learning Outcomes

By the end of this unit, you should be able to:

1. Design Python programmes for performing data analytics

2. Analyse data using appropriate tools for data mining

SU5-2

ANL252 Data Analytics in Python

Overview

In this unit, we will discuss the implementation of two analytics techniques in Python:

k-means clustering and decision trees. All these functions, modules, and algorithms

can be found in the scikit-learn library. The scikit-learn library is a machine learning

library written for the Python programming language. It features various modules such as

classification, clustering, regression, etc. We will first develop Python programs to prepare

the DataFrame for the different requirements of these sub-packages. We will then learn

how the two analytics techniques can be carried out by Python programs and how their

results can be extracted and presented.

SU5-3

ANL252 Data Analytics in Python

Chapter 1: Introduction to Scikit-Learn

1.1 Installing and Importing Scikit-Learn

Lesson Recording

Introduction to Scikit-Learn

It has become very common to carry out tasks for data analytics, statistical modelling

or machine learning in Python recently. And the trend is rising. In fact, many Python

packages in these areas have also been developed. One of the most common libraries used

for these purposes is scikit-learn, a free machine learning library written for Python. In

this study unit, we will write our code with the scikit-learn functions in JupyterLab.

One reason that scikit-learn has become one of the most common machine learning

libraries for programming is its broad applicability and functionality. It features various

algorithms for classification, regression, clustering, etc. In machine learning, programs are

constructed with parameters such that they can “learn” from newly fed data. That is, they

can automatically adjust and improve their behaviour according to the new “knowledge”.

Below is a table of the most common algorithms that are available in scikit-learn.

Table 5.1 Most Common Algorithms Available in scikit-learn

Supervised learning

Linear Models Gaussian Processes

Discriminant Analysis Cross decomposition

Kernel ridge regression Decision Trees

SU5-4

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH01_P01_H4_0_V1_0/presentation_html5.html

ANL252 Data Analytics in Python

Support Vector Machines Isotonic regression

Nearest Neighbours Neural network models (supervised)

Unsupervised learning

Gaussian mixture models Novelty and Outlier Detection

Clustering Density Estimation

Covariance estimation Neural network models (unsupervised)

Beside machine learning algorithms, scikit-learn also provides modules for model

selection, visualisation, data transformation as well as example datasets. The website

https://scikit-learn.org/stable/user_guide.html contains many details of the library.

Same as NumPy, matplotlib and pandas, we can simply use pip, the package installer of

Python, to download and install scikit-learn.

pip install scikit-learn

After installing scikit-learn using pip, we can import it into our program.

import sklearn

Note that it is sklearn and not scikit-learn that refers to the scikit-learn library in the

Python programs. Nevertheless, since the library is extraordinary extensive, programmers

usually do not import the entire library. Instead, the common practice is to load the

required algorithm or only its “estimator” object. For instance, if linear regression models

are required for the analytics task, we can import the estimator LinearRegression from

the module linear_model.

SU5-5

https://scikit-learn.org/stable/user_guide.html

ANL252 Data Analytics in Python

from sklearn.linear_model import LinearRegression

Since each module has its own estimators, functions, etc., it is important to refer to the

official websites for the correct spelling, including the cases of the names. It is not unusual

that we need to load couple of them for a single analytics task. It is therefore important to

put sufficient comments in the program to explain the purpose and use of each imported

module.

In this study unit, we will demonstrate two scikit-learn algorithms, k-means clustering

and decision trees, to show how the library, and Python in general, can be applied in data

analytics. But before we can apply these algorithms, we need to prepare the data according

to the requirements of each of the algorithms. The preparation process will be discussed

in the next section.

Example (Adult Census Data): In this study unit, we will construct programs to

estimate the two mentioned machine learning models on the US Adult Census dataset

which has been introduced in Study Unit 4. The dataset is a repository of 48,842

entries extracted from the 1994 US Census database to predict whether income would

exceed $50,000 per year according to the 14 social-demographic attributes. Before we

begin to develop the code using the scikit-learn algorithms, we need to import the

corresponding packages or modules first.

SU5-6

ANL252 Data Analytics in Python

Figure 5.1 Importing Modules and Functions from scikit-learn

In the first box, the packages introduced in the two previous study units, pandas,

NumPy and matplotlib are imported. We will need them to manage DataFrames, to

convert slices of DataFrames to multidimensional arrays, and to construct plots to

illustrate and evaluate the model results. In the second box, we import modules from

scikit-learn that we need for the pre-processing and transformation of the DataFrames

for model constructions. For instance, with the train_test_split function, we can

instruct Python to split arrays into random training and testing subsets for evaluating

the estimator performance. Furthermore, the module metrics includes functions to

compute metrics and distances for the evaluation of classification performance. The

functions in the preprocessing module such as scaling, centring, normalisation,

etc. are used to prepare DataFrames for the scikit-learn algorithms. In the last two

boxes, we import the modules of k-means clustering (KMeans) and decision trees

(tree). In addition to the KMeans module, we also import the PCA module from the

decomposition sub-package for dimension reduction, which will be helpful to plot

multivariate data as a two-dimensional chart.

SU5-7

ANL252 Data Analytics in Python

Read

Refer to the link below for more details on the installation of the scikit-learn package:

https://scikit-learn.org/stable/install.html

Refer to the link below for more details and examples on the cluster module of the

scikit-learn package for applying K-Means clustering:

https://scikit-learn.org/stable/modules/clustering.html

Refer to the link below for more details and examples on the tree module of the

scikit-learn package for constructing decision trees:

https://scikit-learn.org/stable/modules/tree.html

Refer to the link below for more details and examples on the train_test_split

module of the scikit-learn package for splitting arrays into random training and

testing subsets:

https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.train_test_split.html

Refer to the link below for more details and examples on the metric module of the

scikit-learn package for metrics and distance computations:

https://scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-

sklearn.metrics

Refer to the link below for more details and examples on the preprocessing module

of the scikit-learn package for data preparation techniques such as scaling, centring,

normalisation, etc.:

SU5-8

https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/classes.html?highlight=metrics
https://scikit-learn.org/stable/modules/classes.html?highlight=metrics

ANL252 Data Analytics in Python

https://scikit-learn.org/stable/modules/classes.html?

highlight=preprocessing#module-sklearn.preprocessing

1.2 Data Preparation for Analytics Algorithms

Lesson Recording

Data Preparation for Analytics Algorithms of scikit-learn (1/2)

Data Preparation for Analytics Algorithms of scikit-learn (2/2)

In Figure 5.1, various modules for data preparation have been imported. At the same time,

we have also imported packages that we have already worked with in the previous study

units: NumPy, pandas, matplotlib. In fact, the scikit-learn algorithms work hand-in-hand

with these packages. In this section, we will need to combine NumPy, pandas and scikit-

learn to prepare datasets to meet the requirements of every scikit-learn module.

1.2.1 Missing Values

One of the first steps in data preparation is to check on and to deal with missing values in

the dataset. In Chapter 4 of Study Unit 4, we have discussed how to specify, identify, and

modify observations with missing values. To recall some details, we can define specific

strings in the dataset as missing values during the reading process and, at the same time,

we instruct Python to treat white strings as missing values if necessary.

DataFrame_name = pd.read_csv("csv_file_name.csv", na_values
 = "na_string", na_filer
 = True/False)

SU5-9

https://scikit-learn.org/stable/modules/classes.html?highlight=preprocessing
https://scikit-learn.org/stable/modules/classes.html?highlight=preprocessing
https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH01_P02_H4_0_V1_0/presentation_html5.html
https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH01_P03_H4_0_V1_0/presentation_html5.html

ANL252 Data Analytics in Python

After creating a pandas DataFrame, we have to decide on the appropriate measure to deal

with the missing values in it. One way is to remove those rows with missing values in any

of the columns from the DataFrame completely.

DataFrame_name.dropna(axis = 0, how = "any"/"all")

Another possibility is to replace them by specific values. Here, we can choose to apply the

replacement on missing values of the entire DataFrame or just one specific column.

DataFrame_name.fillna(value = repl_value)
DataFrame_name["column_label"].fillna(value = repl_value)

The advantage of replacing the missing values in all columns is certainly the convenience

in creating the corresponding code. Nevertheless, it is not unusual that a DataFrame

contains various types of variables. In this case, replacing all missing values by a single

value may be undesirable or impossible. The replacement values should be chosen

according to the characteristics and requirements of each variable.

SU5-10

ANL252 Data Analytics in Python

Example (Cont’d): After studying the missing data in the US Adult Census dataset,

which occur solely in the variables workclass, occupation, and native-

country, it seems appropriate to remove all these rows from the DataFrame.

Figure 5.2 Removing Missing Data from DataFrame

After removing the missing data from census, the DataFrame contains 45,222 rows.

That is, we had a total of 3,620 observations that contain missing values originally.

1.2.2 Reducing Number of Categories

If a DataFrame contains categorical variables, they must be treated differently in

comparison to scale or interval variables. In data analytics, we usually convert them to

dummy variables in the pre-processing stage. We will discuss the conversion process in

detail in Chapter 1.2.5. Nevertheless, if the variable contains a large number of categories,

the number of dummy variables will become large as well. As a result, the analytics

algorithm will have to handle a large number of variables and the required computational

effort in the fitting process could be significant. One possible solution here is to reduce

the number of categories at the expense of information loss. It is therefore a task for data

analysts to balance this trade-off carefully.

SU5-11

ANL252 Data Analytics in Python

Basically, the process of category reduction is to put observations from similar categories

into a new category. For instance, if the country names are categories of a categorical

variable, we can group them by their continents, and if a categorical variable contains the

models of a certain product, we can group them by their brands or their main features.

The similarity of the categories is essential here for not losing too much information.

In terms of programming, all we need to do is to replace some category labels in a variable

by the .replace() method of the pandas package.

DataFrame_Name["column_label"].replace(to_replace, value)

The parameter to_replace can be a list or dictionary of category labels to be replaced

by the list or dictionary of new labels that is assigned to the value parameter.

Example (Cont’d): In the US Adult Census dataset, there are three relevant categorical

variables that we would like to reduce their number of categories: workclass,

occupation, and education (native-country may have the most categories

among all variables, but it is rather irrelevant). In the first step, we list out the

categories of workclass.

Figure 5.3 Listing Out Unique Categories of a Variable

For instance, we can group all the government employees into one group and those

in self-employment into another. To assign new labels to the old ones, we first create a

dictionary in which the keys contain the original labels, and the values represent the

new ones.

SU5-12

ANL252 Data Analytics in Python

Figure 5.4 Creating a Dictionary with Old and New Category Labels

Actually, it is not required to construct this dictionary first. We could have also put

the corresponding labels in the .replace() method directly. Although this step

may seem redundant in the first sight, the advantage here is that we can refer to this

dictionary to retrieve the original labels whenever the program requires. By applying

the .keys() and values() methods to the dictionary, we can convert all the keys

and values into their own list for the use in the .replace() method.

To maintain the possibility of using the original variable in the algorithms eventually,

we save the variable with reduced categories as a new column and label it

workclass_new.

Figure 5.5 Reducing the Number of Categories for a Categorical Variable

The newly created variable will appear at the rightmost column of the DataFrame.

For marital-status, we follow the same steps to create a new column named

marital-status_new with less categories.

SU5-13

ANL252 Data Analytics in Python

Figure 5.6 Reducing the Number of Categories for a Categorical Variable

In Figure 5.6, we can see that the different marriage statuses have been merged to a

general group named “Married”. Furthermore, the label of the category “Never-

married” has been shortened to “Single” to favour the visualisation of the result

output later.

To reduce the categories in education, we can transform educational-num

instead since they are equivalent. Moreover, educational-num is an ordered

numeric variable so that we can apply discretisation as described in the following

section.

SU5-14

ANL252 Data Analytics in Python

Read

Refer to the link below for more details and examples on the .replace() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.replace.html

1.2.3 Discretisation

If a categorical variable has ordered numeric values as categories, we can discretise them

into new bins by the cut() function of the pandas package. The cut() function has been

introduced in Chapter 5.2 of Study Unit 4.

DataFrame_name["column"] = pd.cut(x = array, bins, labels)

For our purpose here to reduce the number of categories, it is sufficient to put the highest

value of each category in the list assigned to bins. When applying the cut() function, we

have to be aware that it only includes the rightmost edge in each bin and not the leftmost

one. Hence, the list for bins should start with 0, or -1 in case 0 is one of the numeric values

of the original categories.

Example (Cont’d): As mentioned in the previous section, the variables education

and educational-num are equivalent. We can show this by the crosstab()

function where the frequency of each category in education will be counted when

cross-combining with a value in educational-num.

SU5-15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html

ANL252 Data Analytics in Python

Figure 5.7 Cross Tabulation of Two Categorical Variables

From Figure 5.7, we can see that there are only counts in one category

in education for each value in educational-num. In other words, every

category in educational-num corresponds to exactly one category in education.

Furthermore, we can also see that the education level increases with the increase

of the value in educational-num. For instance, “pre-school” level is 1 in

educational-num while education level “1st-4th” has value 2. The highest

education level in this dataset is “Doctorate” and its value in educational-num

is also the highest, namely 16. To gain a better overview of the categories in both

variables, we can chain the methods .groupby().mean().sort_values() as in

Figure 5.8.

SU5-16

ANL252 Data Analytics in Python

Figure 5.8 Numeric Labels of a Categorical Variable

In the first step, we select the only required columns education and educational-

num for this output. Then we use the .groupby() method to group the variables

by the categories in education. At the same time, the mean for each category in

educational-num will be calculated. Since the values in educational-num are

the same for all observations in the same education category, their mean must be

equal to their category value in educational-num. In the final step, we sort the

rows of the grouped table by the values in educational-num since it is the ordered

version of all the educational levels.

Eventually, we can reduce the number of categories in education by assigning the

values in educational-num to new bins.

SU5-17

ANL252 Data Analytics in Python

Figure 5.9 Discretising an Ordered Numeric Categorical Variable

In education_new, we summarise “pre-school” (1) and all the primary (2-3)

levels to the category “Primary”. All the secondary levels, including those who could

not complete the college degree (4-10) are assigned to “Secondary”. Both “Assoc-

voc” (11) and “Assoc-acdm” (12) are now in the group of “Associate”. While

“Bachelor” (13) remains “Bachelor”, every observation with higher education

levels than that (14-16) is now grouped into the category “Postgraduate”.

Since 0 does not belong to the value in educational-num, we can include it in the

list assigned to the parameter bins and take it as the leftmost edge of the first bin.

Read

Refer to the link below for more details and examples on the crosstab() function

of the pandas package:

https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html

SU5-18

https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html

ANL252 Data Analytics in Python

1.2.4 Selecting and Renaming Variables

It is very common that a dataset contains variables that are not directly relevant to be

included in the analytics algorithm. Some of them could be redundant in their meaning;

some of them are the original version of a transformed variable. These variables should

be removed from the DataFrame before using the data to run the scikit-learn estimator.

In Chapter 2 of Study Unit 4, we have learned how to select rows and columns from the

pandas DataFrame using index, Boolean masks, and localisation. The attributes .iloc()

and .loc() are crucial in this context. We can use the same procedures to select the

necessary columns for the scikit-learn algorithm.

If a dataset is originated from an external source, the given variable names may not

necessarily reflect the needs and ideas of the analyst. Sometimes, they can be lengthy and

make the result output visually appalling. In pandas, the .rename() method is used to

rename the variables in a DataFrame.

DataFrame_name.rename(columns = {"oldvar": "newvar"})

The column labels to be renamed must be put as keys of a dictionary that will be assigned

to the parameter columns in the .rename() method. The values of the dictionary will

then be the new labels of the corresponding columns.

Example (Cont’d): After reducing the number of categories in workclass,

marital-status and education, we have variables of both versions in our

DataFrame. For the construction of the model, however, we only need the new

ones. That is, we shall only select all categorical variables with the suffix “_new”.

Furthermore, fnlwgt is not relevant for our analyses and will be dropped. The

variables occupation, relationship and native-country are not included

in the models as well since they are correlated with the variables workclass,

marital-status and race, respectively. After discretisation, educational-num

also becomes redundant. Hence, it will be removed from the final selection.

SU5-19

ANL252 Data Analytics in Python

Figure 5.10 Selecting Relevant Variables

We first create a list of the independent variables named X_var and a list with

the dependent variable named y_var. They will then be concatenated before being

selected from the census DataFrame by indexing. The resulting DataFrame is named

DF_model.

Since we have removed workclass, marital-status, and education from

the DF_model DataFrame, we can now rename workclass_new, marital-

status_new, and education_new back to the names of the original variables.

Figure 5.11 Renaming Selected Variables

SU5-20

ANL252 Data Analytics in Python

Read

Refer to the link below for more details and examples on the .rename() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.rename.html

1.2.5 Creating Dummy Variables

As mentioned, categorical variables must be converted to dummy variables before they

can be evaluated and included in the computation of the scikit-learn algorithms. Dummy

variables are binary variables that only have two values: 0 and 1. If an observation belongs

to a certain category, the corresponding dummy variable will be 1, otherwise 0. Since

each category of a categorical variable will be transformed to a dummy variable, the

number of categories has indeed a direct impact on the number of dummy variables in the

final DataFrame used in the algorithm. As a result, it is important to keep the number of

categories at a rather low level. The syntaxes and procedures for category reduction have

been discussed in Chapter 1.2.2 and 1.2.3 of this study unit.

In Python, we can convert categorical variables to dummy variables using the

get_dummies() function of the pandas package.

DataFrame_name["column"] = pd.get_dummies(data, drop_first)

The parameter drop_first is used to instruct Python to take the first category as

the reference level and remove it from the resulting DataFrame. The reason to define a

reference level for categorical variables and to remove it from the DataFrame is to avoid

linear dependence in the data matrix, which causes error in the calculation. The default

SU5-21

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html

ANL252 Data Analytics in Python

setting here is drop_first = False. In this case, all dummy variables will remain in the

resulting DataFrame. Since most of the modules in scikit-learn have their own algorithms

to deal with this issue, we can keep this setting without causing error in the estimation

process.

The meaning of the parameter data is obvious. Note that pandas will create dummy

variables for each uniquely existing string in all non-numeric variables. If we have a

numeric categorical variable which we would like to convert to dummy variables as well,

we will need to change its data type using the .astype() method.

DataFrame_name.astype({"var_name": "type_str", …})

A dictionary should be assigned to the .astype() method with the variable names as the

keys and the data types as the values, which can be "int", "float", "category",

"str", "bool", etc. To create dummy variables for a numeric categorical variable, we

can either change the type of the orginal variable to "category" or "str".

Example (Cont’d): For the categorical variables workclass, marital-status,

education, race and gender, dummy variables must be created before they can

be included in the construction of the analytics models.

Figure 5.12 Creating Dummy Variables from Categorical Variables

SU5-22

ANL252 Data Analytics in Python

In Figure 5.12, the numeric variables remain unchanged as they do not have the

appropriate data type to be converted. The categorical variables, on the other hand,

have now been replaced by the dummy variables entirely. Therefore, we recommend

carrying out such transformation in a new DataFrame so that we do not lose the

original data in case anything goes wrong.

Read

Refer to the link below for more details and examples on the get_dummies()

function of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.get_dummies.html

Refer to the link below for more details and examples on the .astype() method of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.astype.html

1.2.6 Data Transformation

In the previous sections, we have discussed how to prepare categorical variables for scikit-

learn analytics algorithms. Though numeric variables are generally easier to deal with,

they may also cause trouble in the model estimation. For instance, their range of values can

be rather wide. As a result, variables with such characteristic tend to have higher impact

in the model than those with smaller value ranges. Hence, they need to be scaled down

to match the value range of the other numeric variables. The most common methods for

this purpose are normalisation and standardisation.

SU5-23

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html

ANL252 Data Analytics in Python

In Chapter 5.4 of Study Unit 4, we have discussed how to execute log-transformation,

standardisation, and normalisation on pandas DataFrames. However, we have had to

construct our own programs for standardisation and normalisation since they are not

included in pandas. In scikit-learn, on the other hand, these functions can be found in the

preprocessing module, where the normalize() function is actually straightforward

and easy to handle.

Object_name = sklearn.preprocessing.normalize(X)

The object assigned to parameter X can be a DataFrame, a NumPy array, etc.

Conversely, the syntax for standardisation requires the initialisation of the estimator first,

the data can then be transformed in the subsequent step.

scaler = preprocessing.StandardScaler()
scaler.fit(X)
Object_name = scaler.transform(X)

We first initiate scaler as the estimator object for StandardScaler from the

preprocessing module. Then, the mean and standard deviation of the object X, which

is usually an Array or a DataFrame, will be computed by the fit() function. In the final

step, the object X will be standardised by the transform() function.

Example (Cont’d): In view of K-Means clustering that we will be carrying out in the

next Chapter, we need to normalise the numeric variables. In particular, the values of

the variables capital-gain and capital-loss have very wide range (0 - 99,999

and 0 - 4,356, respectively) and may affect the fit or the explanatory power of the

model.

SU5-24

ANL252 Data Analytics in Python

In the first step, we select those columns that should be normalised and save it in a new

DataFrame. The reason of generating a subset DataFrame here is that normalize()

will generate a function which transforms all numeric variables including the dummy

variables created from the categorical data. Though their values will remain 0 and

1 after normalisation, we can shorten the processing time by not letting irrelevant

variables involved in the process.

Figure 5.13 Selecting Numeric Variables for Normalisation

In the first line, we create a list of variables to be normalised and subset the original

DataFrame using this list. Since the resulting object of the normalize() function is

a NumPy array, we will have to convert it back to a pandas DataFrame with column

and row labels (Note: NumPy arrays have no labels on both axes). Therefore, we

need to save the labels as two Python lists named DF_model_toNorm_colnam and

DF_model_toNorm_rownam for later use.

SU5-25

ANL252 Data Analytics in Python

Figure 5.14 Normalising Numeric Variables

After the normalisation process, we can convert the array DF_model_NormArray

resulting from the preprocessing.normalize() function to a pandas DataFrame

by the pd.DataFrame() function. We can also set our own column and row labels by

assigning the lists DF_model_toNorm_colnam and DF_model_toNorm_rownam

to the columns and index parameters, respectively.

In the final step, we rename the normalised variables and append them to the original

DataFrame.

Figure 5.15 Concatenating Normalised Variables with the Original DataFrame

SU5-26

ANL252 Data Analytics in Python

Note that we have used the original variable names as the column labels of the

normalised variables. If we simply concatenate these DataFrames, these labels would

be duplicate. Hence, we need to append “_norm” as suffix to all labels of the

normalised variables by the .add_suffix() method. Only after ensuring that all

labels in the concatenated DataFrames are unique, we can merge the DataFrames.

Furthermore, we have saved the names of the normalised variables with the suffix

“_norm” in a new list named numnormvar_list just in case we will need to extract

them again from the DataFrame in the future.

Read

Refer to the link below for more details and examples on the normalize() function

of the preprocessing module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.normalize.html

Refer to the link below for more details and examples on the

sklearn.#preprocessing.StandardScaler algorithm of the scikit-learn

package:

https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.StandardScaler.html

Refer to the link below for more details and examples on the .add_suffix() method

of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.add_suffix.html

SU5-27

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add_suffix.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add_suffix.html

ANL252 Data Analytics in Python

1.2.7 Splitting DataFrames for Training and Testing

In data analytics, the performance of a predictive model can be measured by its accuracy

of predicting unseen data. However, such data are usually unavailable. On the other hand,

testing the prediction performance of a model by applying it on the original data based on

which the model was constructed in the first place is not sensible at all. Therefore, analysts

usually “hold back” a subset of data, namely the testing dataset, for model evaluation

purpose. The remaining data form the training dataset for the construction of the model.

In Python, the module model_selection provides the train_test_split()

function to draw observations randomly from the original DataFrame into the training

and the testing datasets.

Object_name = sklearn.model_selection.train_test_split(arrays,

test_size, random_state)

The objects assigned to the parameter arrays can be NumPy arrays, pandas DataFrames,

etc. A value between 0 and 1 should be given to the parameter test_size, which

determines the proportion of observations in the original array that should be distributed

to the testing dataset. The default value here is 0.25. The parameter random_state

controls the shuffling of the data before applying the split. The default value here is

"None", which means that different random seeds will be selected every time the function

is being executed. That is, different observations will be chosen for the testing dataset in

every run. Consequently, the testing result of the model will be different as well.

Example (Cont’d): After all the data preparation steps have been carried out, we

can now split the DataFrame into a training and a testing dataset. The testing data

proportion we require here is 30%, and we will set random_state to “None”.

SU5-28

ANL252 Data Analytics in Python

Figure 5.16 Training Dataset after Split from the Original DataFrame

We can see from Figure 5.16 that the training dataset contains 31,655 rows which

are exactly 70% of the original 45,222 observations. Furthermore, the rows have been

shuffled completely as indicated by the chaotic order of the row indices.

The remaining 13,567 rows are now assigned to the testing dataset as Figure 5.17

illustrates.

Figure 5.17 Testing Dataset after Split from the Original DataFrame

SU5-29

ANL252 Data Analytics in Python

Read

Refer to the link below for more details and examples on the train_test_split()

function of the model_selection module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.train_test_split.html

1.2.8 Extracting Dependent and Independent Variables

In scikit-learn, the ultimate command of many algorithms to fit a model on a DataFrame is

the .fit() function. The .fit() function has usually two parameters: X and Y, where Y

could be optional for some algorithms. The parameter X is the design matrix that contains

all independent variables, and Y is the vector of the target variable. Both X and Y can be

NumPy arrays or pandas DataFrames. As a result, we need to extract the independent

variables as a matrix and the dependent variable as a vector from the original DataFrame.

The procedure here is rather straightforward. We simply select the column that represents

our dependent variable and save it as a new object.

y = DataFrame_name["target_var"]

Similarly, the matrix of the independent variables can be selected in the same manner.

X = DataFrame_name[["X1", "X2", …]]

Note that it is required to wrap the names of the independent variables in a list (square

brackets) first before putting them in the index operator [].

SU5-30

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

ANL252 Data Analytics in Python

If the DataFrame only contains the independent variables and the target variable, we can

also simply drop the target variable from the original DataFrame to obtain X.

X = DataFrame_name.drop("target_var")

If the target variable is categorical and has been transformed to various dummy variables,

the names of the dummy variables must be put in a list when passing them to the .drop()

method.

Example (Cont’d): Before separating our training and testing datasets for the

dependent and independent variables, we shall save the row indices of both the

datasets in two new lists for later identification of the corresponding observations.

Figure 5.18 Saving the Row Indices in Python Lists

Since our DataFrames DF_model_train and DF_model_test only contain the

independent and dependent variables, we can simply extract the dependent variables

for y_train and y_test and drop them from the DataFrames subsequently to

generate X_all_train and X_all_test.

Nevertheless, the target variable income has been a binary categorical variable with

the levels “<=50K” and “>50K”. Hence, there must be two dummy variables in the

DataFrame, one for each of the categories. For model construction, however, we only

need one of them, and the decision here favours the dummy variable “income_>50K”

where 1 represents observation with income more than 50,000 USD and 0 the opposite.

Through this value assignment, the natural order of the income can be reflected

by the order of values in this dummy variable, and we can avoid confusion when

interpreting the modelling results.

SU5-31

ANL252 Data Analytics in Python

Figure 5.19 Slicing Training and Testing Datasets for the Independent and the Target Variables

In the first line, we create a list called y_dummyvar with the names of the two

dummy variables in it. We can use this list to remove the corresponding columns in

X_all_train and X_all_test. For the construction of y_train and y_test, the

column with the label that matches the second item in y_dummyvar will be selected

from the training and testing DataFrames.

Note that both X_all_train and X_all_test still contain the original numeric

variables as well as their normalised counterparts. We keep both sets purposely so that

we can respond to the requirements of the different algorithms flexibly by choosing

either set of them. This is also the reason why we have created two lists named

numvar_list and numnormvar_list in the previous sections so that we can select

the columns directly from the DataFrames in the future.

From Figure 5.20 and Figure 5.21, we can see that y_train and y_test have been

converted to two pandas Series with 31,655 and 13,567 elements, respectively. Figure

5.22 and Figure 5.23 show the training and testing DataFrames of the independent

variables X_all_train and X_all_test.

Figure 5.20 Training Dataset for the Target Variable

SU5-32

ANL252 Data Analytics in Python

Figure 5.21 Testing Dataset for the Target Variable

Figure 5.22 Training Dataset for the Independent Variables

Figure 5.23 Testing Dataset for the Independent Variables

When applying unsupervised machine learning algorithms where we do not need

to partition our DataFrame into training and testing datasets, we can split the

dependent variables and the input variables directly from the original DataFrame

SU5-33

ANL252 Data Analytics in Python

DF_model_final. The mechanism is just the same as Figure 5.19. The corresponding

syntaxes and outputs are given in Figure 5.24 and Figure 5.25.

Figure 5.24 Dataset for the Dependent Variable

Figure 5.25 Dataset for the Independent Variables

SU5-34

ANL252 Data Analytics in Python

Chapter 2: Clustering

2.1 Introduction of K-Means Clustering

Lesson Recording

Introduction and Fitting of K-Means Clustering by scikit-learn

Clustering is a multivariate analytics technique to group “similar” observations into finite

number of disjoint clusters. One of the most popular clustering algorithms is the K-

Means method. This technique is very efficient in clustering large data sets. The algorithm

here is to split the data into K groups with equal variance by minimising the variation

within the cluster. This variation is called the inertia or within-cluster sum-of-squares.

In other words, “members” in the same cluster should be as “similar” as possible, while

observations from different clusters should be most distinguishable.

Different from some other clustering algorithms in which the number of clusters will only

emerge during the grouping process, the K-Means method requires the number of clusters

to be specified before the algorithm starts. The clusters are characterised by their centroids,

which can be interpreted as the centre of an area in a two-dimensional space, and are hence

the average of all the observations within a cluster. As the name of the algorithm suggests,

there should be K different means (centroids) and they should be explored during the

clustering process.

SU5-35

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH02_P01_H4_0_V1_0/presentation_html5.html

ANL252 Data Analytics in Python

The process of K-Means clustering can be described in five main steps:

1. K observations are randomly selected as initial cluster centroids where K is a pre-

defined positive integer.

2. Compute the distance of each object to the centroids.

3. Based on the distance computed, each object is assigned to the nearest centroid.

Objects assigned to the same centroid form a cluster. There will be K different

clusters.

4. For each cluster, recompute the centroid using the objects assigned to the cluster.

The iteration starts again from Step 2.

5. The iteration stops when the centroids remain unchanged or a specified number

of iterations has been performed.

Note that the distance mentioned in 2) refers to the Euclidean distance in general. The

Euclidean distance between an object and a cluster centroid is measured by the sum of

the squared differences between the values of some selected clustering criteria, which are

usually some input variables of the object, and the values of the same clustering criteria

of the centroid.

Subsequent to the clustering process, it is important to make sure that the resulting clusters

really create some insights. To interpret the clusters, the characteristics of each cluster

should be explored by looking at the summary statistics (e.g. mean, min, max) of the

clustering criteria. A good clustering solution should allow us to describe the profile of

each cluster clearly.

In addition, there are objective measures for evaluating the quality of clustering solutions:

cohesion, separation and parsimony. The cohesion measures the similarity of the objects

in a cluster. This value should be small because these objects should be similar. The

separation, on the other hand, measures how dissimilar the clusters are, and this value

should be high. Here, we can apply the Silhouette coefficient since it combines both the

cohesion and the separation. Briefly speaking, the Silhouette coefficient is a value between

-1 and 1 that measures the relationship between the intra-cluster distances and nearest

cluster distances. The mean of the individual Silhouette coefficients will be computed for

SU5-36

ANL252 Data Analytics in Python

every clustering solution for evaluation. A high and positive average Silhouette coefficient

suggests appropriate and useful clustering solution. On the contrary, negative Silhouette

coefficient indicates a rather undesirable clustering result.

Furthermore, parsimony is another important criterion in clustering. As a result, we

prefer smaller number of clusters if the quality of the corresponding clustering solution is

satisfactory. Nevertheless, the number of clustering criteria should also be parsimonious,

so that the clustering solution can be interpreted conveniently.

2.2 Fitting K-Means Clustering by Scikit-Learn
In scikit-learn, all algorithms are controlled and executed by the so-called estimator.

We can adjust our parameters for the modelling process in the syntax of the estimator

declaration. In K-Means Clustering, the estimator is called KMeans. And it can be

imported from the cluster module of the sklearn package.

from sklearn.cluster import KMeans

First, we need to initiate the KMeans estimator and adjust the estimation parameters

according to our needs.

km_Object = sklearn.cluster.KMeans(n_clusters = 8, init =
 "k-means++", n_init = 10, max_iter = 300,
 tol = 0.0001, precompute_distances = "auto",
 random_state = None)

The following table provides description and explanation of the parameters.

SU5-37

ANL252 Data Analytics in Python

Table 5.2 Parameters of the KMeans Estimator

Parameter Value Type Description

n_clusters

(Default: 8)

integer The number of clusters to form as well as

the number of centroids to generate.

init (Default:

"k-means+

+")

"k-means++",

"random", callable,

array-like of shape

Method for initialisation:

"k-means++": selects initial cluster

centres for k-mean clustering in a smart

way to speed up convergence.

"random": choose n_clusters

observations at random from the data as

initial centroids.

Array: An array with number of rows

equal to the n_clusters and number of

columns equal to the number of variables

that give the initial centroids.

Callable: It should take arguments X,

n_clusters and a random state and

return an initialisation.

n_init

(Default: 10)

integer Number of times the k-means algorithm

will be run with different centroid seeds.

The final results will be the best output

of n_init consecutive runs in terms of

inertia.

max_iter

(Default: 300)

integer Maximum number of iterations of the k-

means algorithm for a single run.

SU5-38

ANL252 Data Analytics in Python

Parameter Value Type Description

tol

(Default: 1e-4)

float Relative tolerance of the difference in

the cluster centres of two consecutive

iterations to declare convergence.

precompute_
distances

(Default:

"auto")

"auto", True, False Precompute distances (faster but takes

more memory).

"auto": do not precompute distances

if n_samples * n_clusters > 12

million. This corresponds to about 100MB

overhead per job using double precision.

True: always precompute distances.

False: never precompute distances.

random_state

(Default: None)

integer,

RandomState instance,

None

Determines random number generation

for centroid initialisation. Use an integer

to make the randomness deterministic.

(Source: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html)

Here are some explanations regarding some items mentioned in Table 5.2:

• A callable is a program part that can be called such as a user-defined function or a

built-in method.

• Centroid seeds refer to the initial cluster centres.

• Inertia measures the within-cluster sum-of-squares and should be minimised in the

clustering process.

Next, we can apply the KMeans estimator on a prepared DataFrame.

SU5-39

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

ANL252 Data Analytics in Python

km_fit_Object = km_Object.fit(X, sample_weight = None)

The parameter X is a prepared DataFrame based on which the clusters are constructed.

With sample_weight we can pre-specify the weights for each observation in X. If it is set

to None, which is also the default here, all observations will be assigned equal weight.

The fitted estimator of the K-Means algorithm is saved in km_fit_Object. To obtain and

view the results of the estimation, we still need to request scikit-learn to predict the cluster

classification for each observation in the DataFrame X.

km_pred_Object = km_Object.fit_predict(X, sample_weight =
 None)

The parameters here are the same as the .fit() function. The parameter X contains

the data for which the cluster prediction will be calculated. The pre-specified individual

weights in sample_weight will be assigned to all observations in the dataset. The

output object here is an n-dimensional array of length n_samples, i.e., the number of

observations in the dataset. The items in the array are indices of the cluster that each

sample belongs to.

As mentioned in Chapter 2.1, the number of clusters, K, must be specified before the

clustering algorithm starts. One way to determine the optimal value of K is the elbow

method. Elbow method is a popular technique that uses the inertia as the measurement to

compare the distortions in some clustering solutions with different K. The distortion is the

sum of squared distances of each data point to the centroids. The plot of distortions which

looks like an arm will then be generated. The best value of K can be found at the “elbow”,

the inflection point on the curve. To determine the inertia of a clustering solution, we can

apply the .inertia_ method on a KMeans estimator.

SU5-40

ANL252 Data Analytics in Python

Example (Cont’d): Since K-Means clustering is an unsupervised machine learning

algorithm, we do not need to split our data into a training and a testing dataset. We

can use the entire available DataFrame for clustering purpose.

Figure 5.26 Create a DataFrame with Only Normalised Input Variables

Nevertheless, as mentioned in Chapter 1.2.6., it is more sensible to include normalised

data to build the clusters since numeric variables with extreme value ranges such as

capital-gain or capital-loss have to be scaled. In the first line, X_km is the

DataFrame with no normalised variables and is used for the elbow-test to determine

the optimal number of clusters. The name of all the normalised variables are stored

in the list numnormvar_list (see Figure 5.15). In the second line, X_km_norm is

the DataFrame with no non-normalised variables and will be used for the clustering

process. The name of all the numeric variables before normalisation is stored in

numvar_list (see Figure 5.13). In X_km_norm, we rename the normalised variables

back to their original variable names by removing their suffix “_norm” in order to

simplify their labels for later output.

To find out the best K, the number of clusters, we can conduct an elbow test. Here,

we will compute the inertia of the K-Means clustering solutions that contains 1 to 7

clusters and compare their distortions.

SU5-41

ANL252 Data Analytics in Python

Figure 5.27 Calculating Inertia for the Elbow Method

We use a for-loop here to run through all clustering solutions with 1 to 7 clusters.

The parameter in the KMeans estimator is kept as simple as possible. We only set

the number of clusters and instruct Python to select initial cluster centres for k-mean

clustering in a smart way to speed up convergence by placing init = "k-means+

+". After fitting the K-Means clusters on our data, we store the corresponding inertia

in the list named distortions for later use.

After the inertia are calculated, we can plot them for the Elbow method.

Figure 5.28 Elbow Method to Determine the Optimal Number of Clusters

In the first line of Figure 5.28, we use the matplotlib options to set the size and

resolution of the chart. In the second line, we put the number of clusters in the

clustering solutions on the x-axis and the inertia on the y-axis. From the shape of the

graph, the elbow can be found at K = 2. As a result, we will use a 2-cluster solution

in the following.

SU5-42

ANL252 Data Analytics in Python

Figure 5.29 Fitting K-Means Clustering

The code in Figure 5.29 is basically identical to those in Figure 5.27 but without the

loop. Here, we fix our number of clusters to 2 and the random_state to 0, which

enables us to reproduce the same clustering results in the future.

Figure 5.30 Predicting Classification of the Data

After creating the K-Means clusters based on our normalised numeric variables and

the dummy variables of our categorical variables, we save the predicted cluster index

of each observation in the array object named y_pred. From the output, we can see

that the cluster indices are 0 or 1.

Read

Refer to the link below for more details and examples on the KMeans estimator,

fit(), and fit_predict() functions of the cluster module in the scikit-learn

package:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

SU5-43

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

ANL252 Data Analytics in Python

2.3 Model Exploration and Evaluation

Lesson Recording

Explore & Evaluate K-Means Clustering Models by scikit-learn

As mentioned in the previous section, the characteristics of the clusters should be explored

and interpreted. We can examine this by looking at some statistics such as mean, min, max,

etc. of the clustering criteria based on which the clusters have been constructed. For this

purpose, we can cross-tabulate the clustering criteria and the cluster index to understand

the features of the clusters.

If a clustering criteria variable is categorical, our focus of interpretation will be on the

proportional distribution of the clusters in each category. With the crosstab() function,

which we have briefly introduced in Chapter 1.2.3, we can easily create a cross-table to

fulfil our purpose.

pd.crosstab(index = criteria_var, columns = cluster_index,
 normalize = "index", margin = True)

The object assigned to the first parameter is the row variable of the cross-tabulation. In

most of the cases, one of the clustering criteria is placed here since the number of categories

could be rather large, and it is more convenient to have them listed in rows rather than in

columns. If multiple names are passed to this parameter, these variables will be tabulated

in hierarchy. The second parameter controls the column variable. Our suggestion is to

place the cluster index here since the number of clusters is usually limited. The parameter

normalize can take the values "all", "index", "columns", {0, 1}, or {True,

False} where the default value is False, or 0 equivalently. If normalize = True or

SU5-44

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH02_P02_H4_0_V1_0/presentation_html5.html

ANL252 Data Analytics in Python

1, Python will return the table percentage of each cell, while the counts of each cell will be

shown if normalize is False or 0. If normalize = "index", the row proportion of

the cell will be calculated, while the column percentage will be provided if normalize

= "column". If margin = True, the marginal frequency of the axis specified in the

normalize will be listed out as well.

If a clustering criterion were numeric, the crosstab() function would not be a good

choice since it would take every unique value in it as a separate category. In this case, we

would rather let Python calculate some statistics of the clustering criteria for each cluster.

And the .groupby() method of the pandas package, which has already been introduced

in Chapter 5.3 of Study Unit 4, would become applicable in our Python program once

again.

DF[[criteria_var, cluster_index]]
 .groupby(by = [cluster_index]).anymethod().transpose()

The above syntax is specifically adjusted for clustering interpretation. First, we merge

the selected clustering criteria variables from the original DataFrame with the cluster

classification variable. The resulting DataFrame will be grouped by the cluster indices,

and the method to compute the statistics of interest is appended to it. Note that the

variable used in the .groupby() method, which is the cluster index in this case, will be

displayed as rows. But we can transpose the result of the .groupby() method to swap

the rows and columns. As a result, we put the cluster indices as columns in the same way

crosstab() does. But it is more a step to standardise the presentation rather than an

analytics requirement and hence optional for us to integrate it in our syntax or not.

Example (Cont’d): First, we convert the cluster index array to become a pandas

DataFrame and name the variable “cluster”.

SU5-45

ANL252 Data Analytics in Python

Figure 5.31 Converting the Cluster Index Array to pandas DataFrame

Subsequently, we concatenate the original DataFrame (before the dummy and

normalised variables are created) and the cluster index variable.

Figure 5.32 Merging the Original DataFrame with the Cluster Index

With this DataFrame, we can create our cross tables with the appropriate labels.

Figure 5.33 Cross-Tabulation of income and the Predicated Classification

From the above table, we can see that the majority of the observations with income

more than 50,000 USD are in cluster 0. Though this cluster also contains 62% of the

SU5-46

ANL252 Data Analytics in Python

low-income group, the proportion of the same income group is rather high in cluster

1, namely 38%. The first impression is that the observations in cluster 0 are financially

more well-off.

Figure 5.34 Cross-Tabulation of workclass and the Predicated Classification

Figure 5.34 shows the cross-tabulation of workclass and the cluster index. Here,

we can see that while cluster 0 contains most of the self-employed individuals

(85% vs. 15%), the distributions of the other work classes correspond roughly to the

distribution of the clusters in the entire sample (68% vs. 32%).

Figure 5.35 Cross-Tabulation of education and the Predicated Classification

The cross-tabulation of education and the cluster index does not provide a

conclusive relationship between them. While individuals with primary education

level are over proportionally represented in cluster 0, postgraduates share a similar

proportion in this cluster. As a result, the clusters do not differentiate the individual

education level at all.

SU5-47

ANL252 Data Analytics in Python

Figure 5.36 Cross-Tabulation of race and the Predicated Classification

From this cross-tabulation, Afro-Americans are over proportionally represented in

cluster 1 than other ethnic groups.

Figure 5.37 Cross-Tabulation of Numeric Variables and the Predicated Classification

From Figure 5.37, we can see that individuals in cluster 0 work averagely 6 hours more

in a week and their ratio of capital-gain to capital-loss is much higher than those in

cluster 1. Their average age, however, does not differ significantly in both clusters.

In Chapter 2.1, we introduced the Silhouette coefficient as a measure to evaluate the

cohesion and separation of a clustering solution. In scikit-learn, we can apply the

following syntax to calculate it.

metrics.silhouette_score(criteria_var, cluster_index)

Note that the silhouette_score() function is from metrics and not the KMeans

module.

SU5-48

ANL252 Data Analytics in Python

Example (Cont’d): To calculate the Silhouette coefficient, we need the clustering

criteria array that is stored in the DataFrame X_km_norm and the cluster index array

named y_pred.

Figure 5.38 Calculating the Silhouette Coefficient

The closer the Silhouette coefficient is to 1, the better is the cohesion and separation

of the cluster. Here, a coefficient of 0.24 is indeed not very promising. In other words,

the similarity within the cluster and the dissimilarity among the clusters are not very

clear in this clustering solution. This confirms the findings resulting from the previous

cross-tabulations in which the clusters do not provide a clear differentiation of some

of the clustering criteria as well.

Another possibility to understand a clustering solution is the graphical approach. The

idea of this approach is to plot all the data points with their cluster classification in a two-

dimensional scatter plot. This approach would be rather straightforward if only one or

two input variables have been used as clustering criteria. In the multivariate case, we need

to reduce the dimensionality of all the input variables down to two before plotting.

One of the most common methods to reduce the dimensions of a high-dimensional array

(or matrix) is the Principal Component Analysis (PCA). The idea of the PCA is to project

each data point onto the first few principal components which contain the majority of the

variation in the data. The loss of information caused by the omission of the remaining

components is then insignificant and the data dimension is reduced to the number of

principal components. In our case, we may only be interested in the first two components

to span the space for our scatter plot.

SU5-49

ANL252 Data Analytics in Python

pca_Object = sklearn.decomposition.PCA(n_components)

Note that PCA() is an estimator from the decomposition module. With the above

syntax, we can specify the number of components we would like the result to contain. To

reduce the dimension an array by PCA(), we need to execute the following syntax.

pca_fit_Object =
 sklearn.decomposition.fit_transform(criteria_var)

Here, we need to use the .fit_transformation() instead of the .fit() function

since we are interested in the transformed values of all the criteria variables. The returned

object is an n-dimensional NumPy array with the transformed data. Hence, the array has

2 columns, and its number of rows corresponds to the number of observations in the

DataFrame that has been passed to the .fit_transformation() function in the first

place.

Example (Cont’d): In the first step, we reduce the dimensionality of the clustering

criteria array X_km_norm to 2 components.

Figure 5.39 Reducing the Dimensionality of the Input Variable DataFrame

The resulting values in the array X_pca are the coordinates of each data point in the

scatter plot.

SU5-50

ANL252 Data Analytics in Python

In the next step, we separate the coordinates of observations of cluster 0 from those

of cluster 1 since we would like to plot them in different colours in the final chart.

Figure 5.40 Selecting PCA Data Based on the Predicted Classification

To plot the data points of different clusters in different colours, we need two

plt.scatter command since we have to fix the facecolour parameter in every

line. The values on the x-axis are the values stored in the first column of the subset

arrays of X_pca called filtered_label0 and filtered_label1. The values in

their second columns are the values on the y-axis.

Figure 5.41 Plotting of the K-Means Clustering Result

From Figure 5.41, we can see the clusters are formed based on the distance of their

data points to the centroids. While the data points in the bottom left corner of the chart

are grouped to cluster 0 (grey data points), those in the upper right corner belong to

cluster 1 (cyan data points). The differentiation of the two clusters are indeed quite

clear based on their “locations” in this two-dimensional scatter plot. However, both

the cross-tabulations and the Silhouette coefficients indicate that the characterisation

SU5-51

ANL252 Data Analytics in Python

of the clusters by the clustering criteria is not as straightforward as this plot suggests.

We can therefore suspect that information of some input variables has gone lost during

the process of dimension reduction.

Read

Refer to the link below for more details and examples on the .transpose() method

of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.transpose.html

Refer to the link below for more details and examples on the silhouette_score

function of the metrics module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.silhouette_score. html

Refer to the link below for more details and examples on the PCA estimator of the

decomposition module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.decomposition.PCA.html

SU5-52

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transpose.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transpose.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

ANL252 Data Analytics in Python

Chapter 3: Decision Trees

3.1 Introduction to Decision Trees

Lesson Recording

Introduction and Fitting of Decision Trees by scikit-learn

Decision trees are among the most common data mining methods which split a set (or

subset) of observations to reach certain decision points based on some criteria eventually.

Each decision point in the tree is also called a node and represents a subset of the sample

based on which the decision tree is created. Nodes that are split from a superordinate node

are called the child node while the origin node is called the parent node. A child node

with no further subdivisions or splitting is called a leaf node.

Since each observation in the sample will be assigned to one of the nodes eventually,

decision trees is a classification technique to separate a sample into multiple classes. The

decision tree algorithm predicts the individual classification based on the values of some

input variables and calculates the predicted value of the target variable at the same time.

These rules of decision form the resulting model which can then be illustrated by a tree-like

structure graphically. This structure convenes the interpretation of the modelling result.

We can also use the decision tree model to understand the relationship between the target

variable and the input variable. In fact, decision tree handles complex relationship such as

non-linearity and interaction rather well. Note that not all input variables are of the same

importance in the classification process. Their hierarchy in the decision rules reflects in

the decision tree in which input variables appear higher up are more important.

As mentioned, nodes without further splitting are called the leaf nodes. Their value is

the prediction of the target variable for those observations classified in the corresponding

SU5-53

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH03_P01_H4_0_V1_0/presentation_html5.html

ANL252 Data Analytics in Python

nodes. If the target variable is categorical, the value of the leaf node will be the mode, the

most frequent class. And it will be the mean of the data in that node if the decision tree is

predicting a numeric variable.

Over the years, there have been many algorithms for splitting the nodes and hence the

construction of the tree developed, proposed, and implemented in software packages.

The most common ones are CHAID (chi-square automatic interaction detection), C5.0

(a proprietary algorithm) and CART (classification and regression tree). In Python, the

estimator DecisionTreeClassifier of the scikit-learn package uses an optimised

version of the CART algorithm.

As the name suggests, the CART algorithm is capable to create both classification trees and

regression trees. While regression trees estimate the values of a continuous target variable,

classification trees predict the outcome of a categorical target variable. In other words,

CART is applicable on almost every type of output variables.

In CART, every parent node only has two child nodes. That is, CART will only split the

tree into two sub-samples at every decision point. And the calculation of the split is based

on the input variables that are also used to predict the target output. As the split process

advances, the sample will be divided into more and more, smaller and smaller subsets.

These subsets will also become more and more homogeneous. The whole splitting process

will be terminated once certain stopping criteria are fulfilled.

The homogeneity of each subset reflects the split quality from a parent node to its child

nodes. In classification tree, the homogeneity is measured by Gini and Entropy. Roughly

speaking, both Gini and entropy measure the impurity of a node, but with different

theoretical background. By comparing the impurity decrease across all possible splits in

all input variables, the split with the highest reduction of impurity will be chosen. In

scikit-learn, both Gini and entropy are options of the criterion parameter in the

DecisionTreeClassifier.

In regression tree, the impurity is measured by the sum of squared error (SSE). The SSE

is the total deviance of each observation from the sample mean. For each potential split,

SU5-54

ANL252 Data Analytics in Python

CART computes the SSE for each child node and the split with the lowest sum of SSE

across all child nodes will be chosen. Since the mean of the target variable of the leaf node

is equal to the predicted value of the target variable, splits with low SSE have child nodes

that contain data whose target values are close to the mean value.

One possibility to stop the CART algorithm is when the impurity improvement of a new

split drops below a certain pre-defined threshold. For instance, if a node has reached a

rather low Gini or SSE respectively, meaning that the parent node itself is already rather

homogeneous, another split from the node would only create homogeneous child nodes.

In this case, this split is not really necessary since it does not decrease the impurity

significantly.

Nevertheless, choosing the right thresholds to stop the split algorithm is not as

straightforward as it seems. If the thresholds are high, the resulting tree could be

oversimplified as splits become more difficult. Low thresholds, on the other hand, could

lead to overcomplicated trees that are difficult to interpret and deploy.

Another possibility to stop the algorithm is when the tree has attained a pre-specified

depth. The depth of the tree refers to the number of splits in it. This method can simply

control the size of the tree without oversimplifying or overcomplicating it. One last

stop criterion is to set a lower bound of observations in the nodes. Once the number

of observations in all nodes has reached the bound, a new split from any node would

only create child nodes that contain less observations than the lower bound allows. As a

result, the lower bound blocks the algorithm from carrying out another split and the entire

process ends.

One way to evaluate the performance of a decision tree is to examine the precision of its

prediction. In other word, the predicted values of the target variable will be compared

with the observed data. For classification trees, we can use the confusion matrix in which

the correct and incorrect classifications are summarised. The larger the proportion of

observations for which the predicted and observed classifications are identical, the more

accurate is the decision tree model. For regression trees, the Root-Mean-Square-Error

(RMSE) is usually used to measure the prediction accuracy of the model. Basically, the

SU5-55

ANL252 Data Analytics in Python

RMSE is kind of an average deviance of all the predicted values from their observed

counterparts. The lower such deviance is, the closer are the predictions to the actual values,

and the better is the model.

Furthermore, the performance of a decision tree to predict unseen data must be evaluated

as well. For this purpose, we partition the original dataset randomly into a training and

a testing dataset. As described in Chapter 1, the training dataset is used to construct the

model while the predictive performance of the model will be evaluated based on the

testing dataset. In other words, the decision tree as a predictive model is evaluated by

its ability to apply what it has “learned” from the training data on the testing data. If

the prediction accuracy of the model on the training data is much higher than the testing

data, the model tends to be overfitted. It is too specialised to the structure of the training

dataset and not generalised enough for other data that do not contain certain unique

characteristics of the training data.

3.2 Fitting Decision Trees
Same as K-Means clustering, scikit-learn also has an estimator for decision trees model

which is integrated in the tree module. In order to be able to use all possible functions in

the module, the sklearn.tree module shall be imported in the first place.

from sklearn import tree

If we want to apply a classification tree in Python, we have to initiate a

DecisionTreeClassifier estimator object whereas if the data should be fitted by a

regression tree, a DecisionTreeRegressor estimator object should be declared.

SU5-56

ANL252 Data Analytics in Python

tree_Object = sklearn.tree.DecisionTreeClassifier(criterion
 = "gini", splitter = "best", max_depth = None,
 min_samples_split = 2, min_samples_leaf = 1,
 min_weight_fraction_leaf = 0.0, max_features =
 None, random_state = None, max_leaf_nodes =
 None, min_impurity_decrease = 0.0,
 min_impurity_split = None, class_weight = None)

tree_Object = sklearn.tree.DecisionTreeRegressor(criterion
 = "mse", splitter = "best", max_depth = None,
 min_samples_split = 2, min_samples_leaf = 1,
 min_weight_fraction_leaf = 0.0, max_features =
 None, random_state = None, max_leaf_nodes =
 None, min_impurity_decrease = 0.0,
 min_impurity_split = None)

From the above syntaxes, we can see the main differences between the estimators

DecisionTreeClassifier and DecisionTreeRegressor are the values of the

parameter criterion and the availability of the parameter class_weight. The

following table provides description and explanation of the parameters.

Table 5.3 Parameters of the DecisionTreeClassifier and DecisionTreeRegressor Estimators

Parameter Value Type Description

criterion

(Default:

"gini"

for classification, "mse"

for regression)

Classification: "gini",

"entropy"

Regression:"mse",

"friedman_mse",

"mae", "poisson"

The function to measure

the quality of a split.

For classification trees, the

supported criteria are "gini"

for the Gini impurity and

"entropy" for the information

gain.

SU5-57

ANL252 Data Analytics in Python

Parameter Value Type Description

For regression trees, the

supported criteria are "mse" for

the mean squared error which

is equal to variance reduction

as feature selection criterion,

"friedman_mse", which uses

mean squared error with

Friedman’s improvement score

for potential splits, "mae"

for the mean absolute error,

and "poisson" which uses

reduction in Poisson deviance to

find splits.

splitter

(Default: "best")

"best", "random" The strategy used to choose the

split at each node. Supported

strategies are "best" to choose

the best split and "random" to

choose the best random split.

max_depth

(Default: None)

integer The maximum depth of the

tree. If None, then nodes are

expanded until all leaves are

pure or until all leaves contain

less than min_samples_split

samples.

SU5-58

ANL252 Data Analytics in Python

Parameter Value Type Description

min_samples_split

(Default: 2)

Integer or float The minimum number of

samples required to split an

internal node:

If integer, consider

min_samples_split as the

minimum number.

If float, min_samples_split

is a fraction and

ceil(min_samples_split

* n_samples) are the

minimum number of samples

for each split.

min_samples_leaf

(Default: 1)

Integer or float The minimum number of

samples required to be at

a leaf node. A split point

at any depth will only be

considered if it leaves at least

min_samples_leaf training

samples in each of the left

and right branches. This may

have the effect of smoothing the

model, especially in regression.

If integer, consider

min_samples_leaf as the

minimum number.

SU5-59

ANL252 Data Analytics in Python

Parameter Value Type Description

If float, min_samples_leaf

is a fraction and

ceil(min_samples_leaf *

n_samples) are the minimum

number of samples for each

node.

min_weight_
fraction_leaf

(Default: 0.0)

float The minimum weighted fraction

of the sum total of weights

(of all the input samples)

required to be at a leaf node.

Samples have equal weight

when sample_weight is not

provided.

max_features

(Default: None)

Integer, float, "auto",

"sqrt", "log2"

The number of features to

consider when looking for the

best split:

If integer, consider

max_features features at each

split.

If float, max_features

is a fraction and

int(max_features *

n_features) features are

considered at each split.

If "auto", max_features =

sqrt(n_features)

SU5-60

ANL252 Data Analytics in Python

Parameter Value Type Description

If "sqrt",max_features =

sqrt(n_features)

If "log2",max_features =

log2(n_features).

If None,max_features =

n_features.

Note: the search for a split does

not stop until at least one valid

partition of the node samples

is found, even if it requires

to effectively inspect more than

max_features features.

random_state

(Default: None)

integer,

RandomState instance,

None

Controls the randomness of

the estimator. The features

are always randomly permuted

at each split, even if

splitter is set to "best".

When max_features <

n_features, the algorithm

will select max_features at

random at each split before

finding the best split among

them. But the best found split

may vary across different runs,

even if max_features =

n_features. That is the case,

if the improvement of the

SU5-61

ANL252 Data Analytics in Python

Parameter Value Type Description

criterion is identical for several

splits and one split has to be

selected at random. To obtain a

deterministic behaviour during

fitting, random_state has to be

fixed to an integer.

max_leaf_nodes

(Default: None)

integer Grow a tree with

max_leaf_nodes in best-first

fashion. Best nodes are defined

as relative reduction in impurity.

If None then unlimited number

of leaf nodes.

min_impurity_
decrease

(Default: 0.0)

float A node will be split if this

split induces a decrease of the

impurity greater than or equal to

this value.

min_impurity_split

(Default: 0)

float Threshold for early stopping in

tree growth. A node will split

if its impurity is above the

threshold, otherwise it is a leaf.

class_weight

(Default: None)

Note: Only available for

classification trees.

dictionary, list of

dictionaries,

"balanced"

Weights associated with classes

in the form {class_label:

weight}. If None, all classes

are supposed to have weight

one. For multi-output, a list of

dictionaries can be provided in

SU5-62

ANL252 Data Analytics in Python

Parameter Value Type Description

the same order as the columns of

y.

Note that for multioutput,

weights should be defined for

each class of every column in its

own dictionary.

The "balanced" mode uses

the values of y to

automatically adjust weights

inversely proportional to class

frequencies in the input data.

For multi-output, the weights

of each column of y will be

multiplied.

(Source: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html,
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html)

Next, we can apply the DecisionTreeClassifier and DecisionTreeRegressor

estimators on the prepared training DataFrames with the input variables X and the target

variable y.

tree_fit_Object = tree_Object.fit(X_train, y_train,
 sample_weight = None)

For both the DecisionTreeClassifier and DecisionTreeRegressor estimators,

scikit-learn also facilitates the parameter sample_weight to specify individual weights

in X_train. If it is set to None, the default value, all observations will be assigned equal

SU5-63

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTree%E2%80%8CClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

ANL252 Data Analytics in Python

weight. In addition, sample_weight will be multiplied with class_weight if it is

specified in the DecisionTreeClassifier estimator for classification trees.

The fitted estimator of the decision trees algorithm is saved in tree_fit_Object. We

can now predict the classification of the data stored in the testing DataFrame saved in

X_test.

tree_pred_Object = tree_Object.predict(X_test)

The returned object tree_pred_Object is a NumPy array which contains the predicted

target values of every observation in the testing dataset. The number of rows here is

therefore equivalent to the number of rows in X_test.

Example (Cont’d): Before constructing the decision tree, we have to remove the

normalised numeric variables first since their original variables are preferred.

Figure 5.42 Create a DataFrame without the Normalised Input Variables

In the next step, we initiate an object named clf for the classification tree estimator

DecisionTreeClassifier since our target variable is binary. The decision tree

model will then be fitted by the .fit() function using the training dataset.

Figure 5.43 Fitting Decision Trees

After the model has been created, the classification of the target variable will be

predicted for the observations of both the training and testing datasets. The prediction

accuracy on the training dataset is an indicator of the goodness of fit of the model

SU5-64

ANL252 Data Analytics in Python

while its predictive power can be assessed by its prediction accuracy on the testing

dataset.

Figure 5.44 Predicting Classification of Training and Testing Datasets

The predicted classification of the testing dataset is stored in the NumPy array

y_pred while y_class contains the predicted classification of the training data.

Read

Refer to the link below for more details and examples on the

DecisionTreeClassifier estimator, the fit() and the predict() functions of

the tree module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeClassifier.html

Refer to the link below for more details and examples on the

DecisionTreeRegressor estimator, the fit() and the predict() functions of

the tree module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeRegressor.html

SU5-65

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

ANL252 Data Analytics in Python

3.3 Model Evaluation

Lesson Recording

Evaluate Decision Trees by scikit-learn

As described in Chapter 3.1, there are various possibilities to evaluate the performance of

a decision tree. One of them is the confusion matrix which compares the actual with the

predicted classification of the sample. In Python, the confusion matrix can be computed

by the function confusion_matrix() from the metrics module.

metrics.confusion_matrix(target_var, tree_pred_Object)

The object target_var is the column of the target variable in the original DataFrame and

tree_pred_Object is the resulting NumPy array from the predict() function of the

DecisionTreeClassifier or DecisionTreeRegressor estimator.

Other indicators such as accuracy, precision, and recall scores can also be considered for

assessing the predictive performance of a decision tree.

metrics.accuracy_score(target_var, tree_pred_Object)
metrics.precision_score(target_var, tree_pred_Object)
metrics.recall_score(target_var, tree_pred_Object)

The above three measures are particularly useful in examining binary classification target

variables. A binary target variable has two classes: 0 = “negative” and 1 = “positive”.

Accuracy score measures the sample proportion that has been classified as positive and

negative correctly. Precision score, on the other hand, also called the positive predicted

SU5-66

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU05CH03_P02_H4_0_V1_0/presentation_html5.html

ANL252 Data Analytics in Python

value (PPV) represents the sample proportion that has been predicted as positive correctly

(true positive) in relation to all the cases that are predicted as positive, regardless of their

actual status. Recall score, or sensitivity, is the proportion of the true positive cases in

relation to the actually positive sample.

Example (Cont’d): We will first calculate the accuracy, precision and recall scores for

the predicted classification of the training dataset.

Figure 5.45 Prediction Performance on Training Data

The result seems very promising since the overall accuracy score is 0.92. Furthermore,

over 92% of the observations classified in the income group with more than 50,000

USD p.a. belong really to that income class, and 75% of the individuals in the income

class “>50K” are really predicted as such. As a result, the goodness of fit of the model

is rather high.

Subsequently, we evaluate the predictive power of our decision tree model on the

unseen data.

Figure 5.46 Prediction Performance on Testing Data

The overall accuracy here is worse than the results of the training data prediction but

remain rather high (0.82). The precision score of the prediction on the testing data is,

SU5-67

ANL252 Data Analytics in Python

however, on a slightly lower level (66%), while the recall score is significantly worse

than the classification prediction for the training data (54%).

Another method to evaluate the predictive performance of a decision tree model is

the confusion matrix.

Figure 5.47 Confusion Matrix

Note the accuracy, precision and recall scores can all be found in the confusion matrix.

The diagonal elements are the number of observations that have been classified to

their own income categories accurately. This proportion is equivalent to the accuracy

score calculated above: 82%. From the individuals in the “>50K” income category

(3,329), only 1,814 (54%) have been classified correctly. This proportion is equal to

the recall score. There are altogether 2,737 out of 13,567 observations classified in

the “>50K” income category, and for 1,814 of those is the prediction accurate. The

proportion of 66% is exactly the precision score.

The most important tool to understand and to evaluate a decision tree is the plot of the tree

itself. The tree module of the scikit-learn package provides the plot_tree() function to

generate such a graph conveniently.

tree.plot_tree(decision_tree, max_depth = None,
 feature_names = None, class_names
 = None, label = "all", filled =
 False, impurity = True, node_ids =
 False, proportion = False, rounded =
 False, precision = 3, ax = None,
 fontsize = None)

The following table provides description and explanation of the parameters.

SU5-68

ANL252 Data Analytics in Python

Table 5.4 Parameters of the plot_tree Function

Parameter Value Type Description

decision_tree

(No default value)

An decision tree

regressor or classifier

object

The decision tree to be plotted.

max_depth

(Default: None)

integer The maximum depth of the

representation. If None, the tree

is fully generated.

feature_names

(Default: None)

List of strings Names of each of the features

(variables). If None, generic

names will be used ("X[0]",

"X[1]", …).

class_names

(Default: None)

List of strings or

Boolean

Names of each of the target

classes in ascending numerical

order. Only relevant for

classification and not supported

for multi-output. If True, shows

a symbolic representation of the

class name.

label

(Default: "all")

"all", "root",

"none"

Whether to show informative

labels for impurity, etc. Options

include "all" to show at every

node, "root" to show only at

the top root node, or "none" to

not show at any node.

SU5-69

ANL252 Data Analytics in Python

Parameter Value Type Description

filled

(Default: False)

Boolean When set to True, paint

nodes to indicate majority class

for classification, extremity of

values for regression, or purity of

node for multi-output.

impurity

(Default: True)

Boolean When set to True, show the

impurity at each node.

node_ids

(Default: False)

Boolean When set to True, show the ID

number on each node.

proportion

(Default: False)

Boolean When set to True, change

the display of ”values” and/or

“samples” to be proportions and

percentages respectively.

rounded

(Default: False)

Boolean When set to True, draw node

boxes with rounded corners and

use Helvetica fonts instead of

Times-Roman.

precision

(Default: 3)

integer Number of digits of precision

for floating point in the values

of impurity, threshold and value

attributes of each node.

SU5-70

ANL252 Data Analytics in Python

Parameter Value Type Description

ax

(Default: None)

matplotlib axis Axes to plot to. If None,

use current axis. Any previous

content is cleared.

fontsize

(Default: None)

integer Size of text font. If None,

determined automatically to fit

figure.

(Source: https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html)

The plot_tree() function can also be combined with the matplotlib options such as the

plot size, the borderline settings, etc. to optimise the output of the tree.

Example (Cont’d): Before plotting the decision tree, we need to prepare the labels of

the input variables and the categories of the target variables. While we can use the

.columns.values method to extract the variables names in X_train, we can only

get the category names of the target variable by applying the .unique() method to

extract all the unique values or strings in it.

Figure 5.48 Preparing Labels for Tree Plot

Finally, the decision tree can be plotted by the tree.plot_tree() function.

Figure 5.49 Plotting Decision Tree with tree.plot_tree

SU5-71

https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html

ANL252 Data Analytics in Python

For the parameter feature_names, we can assign the array X_label prepared in

the previous step to it since it requires the labels of all the input variables, including

the dummy variables resulting from the categorical variables. The parameter

class_name requires the labels of the categories in the target variable, which are

now stored in the array y_label. We set the fontsize parameter to 3 and omit

the impurity statistics (impurity = False) in each node so that the displayed

information are still complete and readable. To visually distinguish the nodes, we

instruct Python to fill the node boxes with colours (filled = True) while the corners

do not need to be rounded (rounded = False). In order to keep the decision tree

chart within a certain size, we limit the depth of the tree to a maximum of 4 levels

(max_depth = 4).

Figure 5.50 Decision Tree Plot

From Figure 5.50, we can see that the first split of the tree is generated by the marital

status “Married”. The “non-married” sub-sample will be assigned to the child node

on the left and those “married” observations to the child node on the right. In the next

step, both nodes are split by the estimated threshold values of the variable capital-

gain. These values are different in the two child nodes. The split of the tree will then

continue until certain stop criteria are fulfilled. Since we limit the tree depth down

SU5-72

ANL252 Data Analytics in Python

to the fourth split level in our chart, nodes of the further split levels will only be

displayed in grey boxes with no proper information in it.

Read

Refer to the link below for more details and examples on the confusion_matrix()

functions of the metrics module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.confusion_matrix.html

Refer to the link below for more details and examples on the accuracy_score()

functions of the metrics module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.accuracy_score.html

Refer to the link below for more details and examples on the precision_score()

functions of the metrics module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.precision_score.html

Refer to the link below for more details and examples on the recall_score()

functions of the metrics module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/

sklearn.metrics.recall_score.html

Refer to the link below for more details and examples on the plot_tree() functions

of the tree module in the scikit-learn package:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html

SU5-73

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html

ANL252 Data Analytics in Python

Summary

In this unit, we have seen how Python can be used to carry out analytics tasks based on two

techniques: k-means clustering and decision trees. One of the most common packages in

Python for data analytics and machine learning algorithms is scikit-learn. In scikit-learn,

the analytics algorithm is called an estimator, and its parameters need to be calibrated

before the fitting process are carried out. Once the calibration step is completed, we can

apply the model on prepared DataFrames.

However, the available DataFrames and their contents are usually not in the format and

shape that the scikit-learn algorithms require in the first place. Therefore, we need to

prepare the dataset accordingly. In this unit, we have learned how to remove missing data,

reduce categories, discretise numeric variables, select and rename variables, transform

data, partition data into training and testing datasets and extracting dependent and

independent variables from the original DataFrame.

Subsequently, the application of K-Means clustering and decision trees have been

demonstrated. To understand and evaluate the classification and prediction results of

the K-Means clustering, we need to generate cross-tables of the clustering criteria and

the cluster indices, calculate the Silhouette coefficient, and plot the data points with

optical differentiation regarding their classification on a two-dimensional scatter plot. For

decision tree modules, we can create tree plots to understand the classification process

and compute the confusion matrix, the scores of accuracy, precision as well as recall to

assess their predictive performance.

SU5-74

ANL252 Data Analytics in Python

Formative Assessment

1. What is an estimator in scikit-learn?

a. It is the estimation algorithm of a data analytics/machine learning module.

b. It is the function to fit a model.

c. It is a parameter to calibrate the model estimation.

d. It is a module of the scikit-learn package.

2. What type of tasks do most of the functions in the metrics module carry out?

a. They convert imperial measurements (inch, foot, mile) to metric measurements

(centimetre, metre, kilometre).

b. They compute the mean distance of the data to the centroids in K-Means

clustering.

c. They compute metrics and distances for the evaluation of classification

performance.

d. They solve inequalities in geometry.

3. Why is partitioning data into a training and a testing dataset necessary for supervised

machine learning?

a. We can assess the predictive power of a model by applying it on unseen data.

b. We can increase the goodness of fit of a model by creating a testing dataset.

c. We can increase the learning ability of the algorithm.

d. We have then two datasets to construct different models as alternatives.

4. Which function or method can be used to reduce the number of categories in a

categorical variable?

a. .get_dummies()

b. normalize()

c. .deletecat()

SU5-75

ANL252 Data Analytics in Python

d. .replace()

5. In which of the following syntaxes will the mean and standard deviation of an object

X be calculated during a standardisation process?

a. processing.standardize()

b. scaler = preprocessing.StandardScaler()

c. scaler.fit(X)

d. scaler.transform(X)

6. Whenever random numbers have to be drawn in scikit-learn, there is a parameter

named random_state included in the function. What does random_state actually

control?

a. It draws a random number from an interval [-1, 1].

b. It creates a variable in your DataFrame to store all random numbers that have

been drawn since the first run of the program.

c. It controls the probability distribution of the random numbers.

d. It draws the same “random numbers” in every run to make the results

reproducible.

7. Which function or method can be helpful to determine the optimal number of

clusters?

a. .transpose()

b. .inertia_

c. .silhouette_score()

d. .PCA()

8. How does the Principal Component Analysis reduce the dimension of an array?

a. It projects the data in the array onto a few principal components without losing

too much variation in it.

b. It deletes those variables with a pairwise correlation larger than 0.5.

SU5-76

ANL252 Data Analytics in Python

c. It removes the insignificant variables based on a regression model.

d. It selects randomly two variables and calculate the Silhouette coefficient. The

pair of variables with the highest coefficients form the principal components.

9. What is not a potential stop criterion in a decision tree construction process?

a. The tree depth

b. The number observations in the nodes

c. The impurity improvement

d. The accuracy score

10. Which of the following indicators can give us some information regarding the

predictive performance of a decision tree?

a. precision score

b. Gini and entropy

c. Silhouette coefficient

d. SSE and RMSE

SU5-77

ANL252 Data Analytics in Python

Solutions or Suggested Answers

Formative Assessment
1. What is an estimator in scikit-learn?

a. It is the estimation algorithm of a data analytics/machine learning module.

Correct. The estimator in scikit-learn contains the entire algorithm of an

analytics module.

b. It is the function to fit a model.

Incorrect. We need to apply the .fit() function on the estimator object to

fit a model.

c. It is a parameter to calibrate the model estimation.

Incorrect. The estimator is the entire algorithm and not just the parameters

in it.

d. It is a module of the scikit-learn package.

Incorrect. An estimator is part of a module of the scikit-learn package.

2. What type of tasks do most of the functions in the metrics module carry out?

a. They convert imperial measurements (inch, foot, mile) to metric

measurements (centimetre, metre, kilometre).

Incorrect. There are no such functions in the metrics module.

b. They compute the mean distance of the data to the centroids in K-Means

clustering.

Incorrect. The calculation of such (Euclidean) distances is integrated in the

KMeans module.

SU5-78

ANL252 Data Analytics in Python

c. They compute metrics and distances for the evaluation of classification

performance.

Correct. The functions in metrics are particularly useful in evaluating

classification models.

d. They solve inequalities in geometry.

Incorrect. There are no such functions in the metrics module.

3. Why is partitioning data into a training and a testing dataset necessary for supervised

machine learning?

a. We can assess the predictive power of a model by applying it on unseen data.

Correct. Testing the prediction performance of a model by applying it on

the data based on which the model was constructed is not sensible at all.

Hence, we need a new dataset for this purpose.

b. We can increase the goodness of fit of a model by creating a testing dataset.

Incorrect. The goodness of fit of a model cannot be increased by partitioning

a dataset.

c. We can increase the learning ability of the algorithm.

Incorrect. The learning ability cannot be enhanced by partitioning a dataset.

d. We have then two datasets to construct different models as alternatives.

Incorrect. Different models can also be constructed by the same dataset.

4. Which function or method can be used to reduce the number of categories in a

categorical variable?

a. .get_dummies()

SU5-79

ANL252 Data Analytics in Python

Incorrect. The .get_dummies() method creates dummy variables from a

categorical variable.

b. normalize()

Incorrect. The .normalize() function normalises numeric variable.

c. .deletecat()

Incorrect. There is no method called .deletecat() in the scikit-learn

package.

d. .replace()

Correct. With the .replace() method, we replace the labels of various

categories by one label, and the number of categories is hence reduced.

5. In which of the following syntaxes will the mean and standard deviation of an object

X be calculated during a standardisation process?

a. processing.standardize()

Incorrect. There is no such syntax in the scikit-learn package at all.

b. scaler = preprocessing.StandardScaler()

Incorrect. This line initiates the StandardScaler() estimator.

c. scaler.fit(X)

Correct. This line computes the mean and standard deviation of the object

X.

d. scaler.transform(X)

Incorrect. This line standardises the data in X.

SU5-80

ANL252 Data Analytics in Python

6. Whenever random numbers have to be drawn in scikit-learn, there is a parameter

named random_state included in the function. What does random_state actually

control?

a. It draws a random number from an interval [-1, 1].

Incorrect. The random_state parameter does not control the range from

which the random numbers are drawn.

b. It creates a variable in your DataFrame to store all random numbers that have

been drawn since the first run of the program.

Incorrect. There is no storage or record of the random numbers drawn in

Python.

c. It controls the probability distribution of the random numbers.

Incorrect. The random_state parameter does not control the underlying

distribution of the random numbers at all.

d. It draws the same “random numbers” in every run to make the results

reproducible.

Correct. If we assign an integer to random_state, Python will produce

the same set of “random numbers” in every run. Different integers result

in different sets of “random numbers”.

7. Which function or method can be helpful to determine the optimal number of

clusters?

a. .transpose()

Incorrect. The .transpose() method swaps rows and columns of an array.

b. .inertia_

SU5-81

ANL252 Data Analytics in Python

Correct. Inertia measures the distortions in some clustering solutions

which are used by the Elbow method. The “elbow” of the distortion plot

is the optimal number of clusters.

c. .silhouette_score()

Incorrect. The Silhouette coefficient measures the cohesion and separation of

clusters and is not used to determine the optimal number of clusters.

d. .PCA()

Incorrect. The PCA is a technique to reduce the dimensionality and not used

to determine the optimal number of clusters.

8. How does the Principal Component Analysis reduce the dimension of an array?

a. It projects the data in the array onto a few principal components without

losing too much variation in it.

Correct. The omission of the remaining, insignificant components is the

core idea of dimension reduction by the PCA.

b. It deletes those variables with a pairwise correlation larger than 0.5.

Incorrect. The PCA does not delete variables directly.

c. It removes the insignificant variables based on a regression model.

Incorrect. The PCA does not require regression models for dimension

reduction.

d. It selects randomly two variables and calculate the Silhouette coefficient. The

pair of variables with the highest coefficients form the principal components.

Incorrect. The Silhouette coefficient measures the cohesion and separation of

clusters and is not used to reduce dimensionality.

SU5-82

ANL252 Data Analytics in Python

9. What is not a potential stop criterion in a decision tree construction process?

a. The tree depth

Incorrect. We can indeed stop the split of a decision tree if the tree has reached

a certain depth.

b. The number observations in the nodes

Incorrect. If the sub-sample in any child node is smaller than the minimum

required number of observations after a new split, the estimator will

terminate the tree construction before the split.

c. The impurity improvement

Incorrect. The impurity improvement is actually an important stop criterion

of a decision tree construction process. If new splits of a decision tree do not

improve its impurity, the algorithm will stop further splitting of nodes.

d. The accuracy score

Correct. The accuracy score is an indicator for the predictive performance

of a decision tree and not a stop criterion.

10. Which of the following indicators can give us some information regarding the

predictive performance of a decision tree?

a. precision score

Correct. The precision score represents the sample proportion that has

been predicted as positive correctly (true positive) in relation to all the

cases that are predicted as positive, regardless of their actual status.

b. Gini and entropy

Incorrect. Gini and entropy measure the homogeneity of the nodes in a

decision tree.

SU5-83

ANL252 Data Analytics in Python

c. Silhouette coefficient

Incorrect. The Silhouette coefficient measures the cohesion and separation of

clusters.

d. SSE and RMSE

Incorrect. SSE and RMSE are measurements of impurity for regression trees.

SU5-84

ANL252 Data Analytics in Python

References

pandas. (n.d.). pandas.crosstab. The pandas development team. https://

pandas.pydata.org/docs/reference/api/pandas.crosstab.html

pandas. (n.d.). pandas.DataFrame.add_suffix. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.add_suffix.html

pandas. (n.d.). pandas.DataFrame.astype. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.astype.html

pandas. (n.d.). pandas.DataFrame.rename. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.rename.html

pandas. (n.d.). pandas.DataFrame.replace. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.replace.html

pandas. (n.d.). pandas.DataFrame.transpose. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.transpose.html

pandas. (n.d.). pandas.get_dummies. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.get_dummies.html

scikit learn. (n.d.). Clustering. scikit-learn developers. https://scikit-learn.org/stable/

modules/clustering.html

scikit learn. (n.d.). Decision trees. scikit-learn developers. https://scikit-learn.org/stable/

modules/tree.html

SU5-85

https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html
https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add_suffix.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.add_suffix.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transpose.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transpose.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html

ANL252 Data Analytics in Python

scikit learn. (n.d.). Installing scikit-learn. scikit-learn developers. https://scikit-learn.org/

stable/install.html

scikit learn. (n.d.). sklearn.cluster.KMeans. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

scikit learn. (n.d.). sklearn.decomposition.PCA. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

scikit learn. (n.d.). sklearn.metrics.accuracy_score. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

scikit learn. (n.d.). sklearn.metrics.confusion_matrix. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

scikit learn. (n.d.). sklearn.metrics: Metrics. scikit-learn developers. https://scikit-

learn.org/stable/modules/classes.html?highlight=metrics#module-

sklearn.metrics

scikit learn. (n.d.). sklearn.metrics.precision_score. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.precision_score.html

scikit learn. (n.d.). sklearn.metrics.recall_score. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.recall_score.html

scikit learn. (n.d.). sklearn.metrics.silhouette_score. scikit learn. https://scikit-learn.org/

stable/modules/generated/sklearn.metrics.silhouette_score.html

scikit learn. (n.d.). sklearn.model_selection.train_test_split. scikit-learn

developers. https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.train_test_split.html

scikit learn. (n.d.). sklearn.preprocessing.normalize. scikit-learn developers. https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html

scikit learn. (n.d.). sklearn.preprocessing: Preprocessing and normalization. scikit-

learn developers. https://scikit-learn.org/stable/modules/classes.html?

highlight=preprocessing#module-sklearn.preprocessing

SU5-86

https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.metrics
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://scikit-learn.org/stable/modules/classes.html?highlight=preprocessing#module-sklearn.preprocessing
https://scikit-learn.org/stable/modules/classes.html?highlight=preprocessing#module-sklearn.preprocessing

ANL252 Data Analytics in Python

scikit learn. (n.d.). sklearn.preprocessing.StandardScaler. scikit learn. https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

scikit learn. (n.d.). sklearn.tree.DecisionTreeClassifier. scikit-learn

developers. https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeClassifier.html

scikit learn. (n.d.). sklearn.tree.DecisionTreeRegressor. scikit-learn

developers. https://scikit-learn.org/stable/modules/generated/

sklearn.tree.DecisionTreeRegressor.html

scikit learn. (n.d.). sklearn.tree.plot_tree. scikit-learn developers. https://scikit-learn.org/

stable/modules/generated/sklearn.tree.plot_tree.html

scikit learn. (n.d.). User guide. scikit-learn developers. https://scikit-learn.org/stable/

user_guide.html

SU5-87

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html

ANL252 Data Analytics in Python

SU5-88

Study
Unit 6

Basic SQL in Python

ANL252 Basic SQL in Python

Learning Outcomes

By the end of this unit, you should be able to:

1. Explain the operations on tables in databases

2. Design Python programmes for data retrieval

SU6-2

ANL252 Basic SQL in Python

Overview

In this unit, we will discuss how to use Python to execute SQL commands for database

management. We will first introduce SQLite3, a standard Python package that allows

programmers to use the Python environment to send SQL statements to the database. We

will also discuss how we can generate SQL statements by Python programs for data query

and to present their outputs as a pandas DataFrame. Eventually, we will also use SQLite3

to save the changes of the database to a physical file on the computer.

SU6-3

ANL252 Basic SQL in Python

Chapter 1: Introduction to SQL and SQLite3

Lesson Recording

Introduction to SQL

1.1 Introduction to SQL
SQL (Structured Query Language) is the most common and popular programming

language designed for database management. There have been various versions of

SQL including procedural extensions released such as PSQL, T-SQL, SQL/PSM, etc.

Due to the large amount of internal and external data available nowadays, managing,

maintaining, and updating database have become compulsory for many organisations.

And the demand of SQL specialists has been increasing tremendously.

Many analytics software have integrated SQL as part of their tools. In Python, the package

sqlite3 provides the possibility to embed SQL codes into Python programs to facilitate

connections to databases and query the data in it. Since sqlite3 belongs to the built-in

packages of Python, no installation using pip is required.

Same as scikit-learn, the analytics package introduced in the previous study unit, sqlite3

works hand-in-hand with the pandas packages since both of them are designed for

data management. As a result, we can convert output table of SQL queries to pandas

DataFrames and vice versa anytime.

SU6-4

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU06CH01_H4_0_V1_0/presentation_html5.html

ANL252 Basic SQL in Python

Example (Students’ score, cont’d): In this study unit, we will return to our students’

examination score example from Study Units 1 & 2 and manage a database with a table

containing the personal information of the students and another table in which their

scores of two examinations are stored. Before we can create a database and the tables

in it, we need to import the packages sqlite3 and pandas into our Python program

first.

Figure 6.1 Importing sqlite3 and pandas

Unlike other packages, the commands in sqlite3 must be executed through a cursor

object after the connection between Python and the database has been initiated. As a

result, we do not necessarily need an alias to abbreviate sqlite3 for more convenience

when writing our program.

Read

Refer to the link below for more details on the sqlite3 package of Python:

https://docs.python.org/3/library/sqlite3.html

1.2 Creating Data Files in Python
Before creating a database and its tables by SQL respectively, we need to know how

data entered by users at runtime of a Python program can be stored in, e.g., comma

separated .csv text files. The advantage of storing data in an external file in comparison

to a pandas DataFrame is that almost every software such as Excel, SPSS, SAS, etc. has

a module to convert text files into its own data file format. In other words, text files are

SU6-5

https://docs.python.org/3/library/sqlite3.html

ANL252 Basic SQL in Python

highly compatible and therefore are a good medium of data storage. Furthermore, their

file size is usually comparatively small since they only contain the data and the delimiters,

and no other information such as cell formatting. As a result, when exchange of data is

required within an organisation or between data providers and clients, they are the most

suitable format since they would not use up as much upload and download volume or

time as other data file formats.

In Study Unit 1, we developed a program to let the users enter the examination scores

of a course. However, the program only allows data entry but provides no mechanism to

save the data in an external file. In other words, once we quit the program, all the data we

have entered will not be accessible or found anymore. Here, we will introduce the Python

commands to write data into a .csv file as well as to read the data from it.

In Python, we need to open an external text file with the open() function first before we

can write data into it or read data from it.

with open("file_name", mode = "r/x/w/a/+") as file_object:
 instructions

The with statement is usually used in combination with the open() function. The data

stored in the text file called file_name will then be stored in the file_object for

further process. With the parameter mode, we can choose the operations that we are

permitted to carry out with the file. Here is a list of some of the available modes:

Table 6.1 List of Some Available Modes of the open() Function

Character Description

"r" open for reading (default)

"x" open for exclusive creation, failing if the file already exists

SU6-6

ANL252 Basic SQL in Python

Character Description

"w" open for writing, truncating the file first

"a" open for writing, appending to the end of the file if it exists

"+" open for updating without truncation (reading and writing)

(Source: https://docs.python.org/3/library/functions.html#open)

Once a file is opened in a particular mode, we are only allowed to execute the permitted

operations until it is reopened. For instance, if we have opened a file in reading mode,

Python will block us from writing, appending, or updating any content of the file and

return an error message to us if our code intends to do so. The difference between both

the writing modes "w" and "a" is that "w" overwrites the entire original content in the file

by our new entries while "a" appends the new entries to the end of the file while keeping

the original content.

Note that it is allowed to combine the "r" or "a" modes with the "+" mode. In both cases,

we give the permission for the file to be read and updated. The main difference here is

that if we open the file in the "r+" mode, Python will be able to read the entire existing

content from the beginning of the file and write the new entries at the end of the file. But

if the file is opened in the "a+" mode, Python will not be able to read the entire existing

content and just append the updates at the end of the file. Furthermore, if the text file does

not exist, it will be created in the "a+" mode, while Python will return an error in the "r

+" mode.

After the user has finished entering the data of one record, Python should write this record

to the text file with the following syntax.

file_object.write(data_row)

SU6-7

https://docs.python.org/3/library/functions.html

ANL252 Basic SQL in Python

The name of file_object must be identical with the one defined in the with open()

statement. The object data_row is a string in which the entered data are stored. After all

the data have been saved to the file_object (Python will transfer the data to the real

text file in the background), we need to close the file properly to release its access to other

parties.

file_object.close()

Though closing the external files may not affect the program flow directly, it is still

important and a good programming habit to do so at the end of the code.

Example (Cont’d): The following program creates an interface to let the users enter

the personal information of the students, including their first and last names, gender,

birthday, nationality, and study programme. The input mechanism is the same as

those introduced in Study Unit 1. For simplicity, we have omitted some of the control

mechanisms to prevent invalid inputs here, which are actually essential and extremely

important for a program to be executed correctly. After entering the data of one

student, Python will convert the entries to a comma separated string and store it as a

new line into the file “Student_DB.csv” for later use.

SU6-8

ANL252 Basic SQL in Python

Figure 6.2 Program to Input Data into a .csv File

In the first line, we store the file name in a variable called target_file in case we

will need it multiple times in the later part of our program. By choosing the "r+"

mode in the with open command in the second line, we instruct Python to open

the file for reading and writing, and the existing contents of target_file should

be stored in the object called write_to_file. The option of reading the stored data

in the file would be particularly useful if we needed the number of existing records.

This statistic is particularly helpful for two tasks: i) if the file is empty, we will need to

add a line of column headers to the record which we also include in lines 4 to 6, ii) we

can use the current number of records as the ID number of a new student. We would

not have been able to execute these tasks if we had opened target_file in the "a

+" mode instead.

Since .csv text files are comma separated, we need to insert a comma between each

column when concatenating the data to a string before storing it to target_file.

It is also important to put the escape sequence \n at the end of the string so that the

next record will be stored in a new line. Figure 6.3 shows how the interface looks like

when we run our program in JupyterLab.

SU6-9

ANL252 Basic SQL in Python

Figure 6.3 Interface to Input Data in JupyterLab

To read the existing entries of a text file, we can use a for-loop to go through them line

by line and print the content to the screen.

for line in file_object:
 print(line)

Once again, the file_object must be identical with the one defined in the with

open() statement. Note that Python is able to separate the records in the text file by

recognising the line break (or escape sequence \n) at the end of every line. As a result, the

for-loop automatically will run through all the lines and store the content in the variable

line, which will then be printed to the screen by the print() function.

Example (Cont’d): Figure 6.4 shows our program to print the records stored in

“Student_DB.csv” to the screen line by line.

SU6-10

ANL252 Basic SQL in Python

Figure 6.4 Print the Records in a .csv File to the Screen Line by Line

Same as the input program, we store the file name in a variable called source_file

in case we will still need it in the later part of our program. Subsequently, we open the

file in the "r" mode and store the data in the object read_from_file. The advantage

of opening the file in reading mode is that the data stored in the .csv file is safe from

accidental update or removal. The data will then be printed to the screen line by line

with the subsequent for-loop.

Read

Refer to the link below for more details and examples on the open() function:

https://docs.python.org/3/library/functions.html#open

Refer to the link below for more details and examples on reading and writing files in

Python:

https://docs.python.org/3/tutorial/inputoutput.html#tut-files

SU6-11

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/tutorial/inputoutput.html

ANL252 Basic SQL in Python

1.3 Importing Data to SQL with SQLite3
A database is an organised collection of data, and the data are stored in tables. The data in

each table is a specific set of the records in the database, such as a company’s record of its

employees, customers, sales, and suppliers. These tables are usually directly or indirectly

connected with each other, but it is not a compulsory requirement for them to be put in the

same database. Furthermore, the tables have similar structure as the pandas DataFrames:

their columns represent the features of the data, or variables, and the records are stored

in rows.

To work with databases in Python, we need to generate a “connection” between Python

and the databases first. We can use the connect() function of the sqlite3 package for this

purpose.

connection_object = sqlite3.connect("database_name")

If the database already exists, connect() will simply create a connection between the

two platforms and let the user gain access to the existing database. On the other hand, if

the database is new, connect() will create a new database with the name used in the

string "database_name" and link it with Python directly. Once the connection has been

established, we can create SQL syntaxes as strings or string variables in Python, and then

send these string objects to SQL for execution. The .cursor() method creates a cursor

object to take over this task.

cursor_object = connection_object.cursor()

To create a table with imported data from a .csv file, we need to first read in the file as

a pandas database in Python with the pandas.read_csv() function, which we have

SU6-12

ANL252 Basic SQL in Python

introduced in Chapter 1 of Study Unit 4, then send the data object to the database by the

.to_sql() method of the pandas package.

data_object = pandas.read_csv("csv_file_name.csv")
data_object.to_sql("table_name", connection_object,
 if_exists)

With the parameter if_exists, we can replace ("replace"), append ("append"), or

let Python create an error message ("fail") if the table already exists in the database.

Example (Cont’d): In the first step, we establish a Python connection called conn to

the database named "StudentsDB.db" and create a cursor object cur for later use.

Figure 6.5 Establish a Connection between Python and a Database

In the next step, we import the student data created with the program in Figure 6.2 as

a pandas DataFrame called students.

SU6-13

ANL252 Basic SQL in Python

Figure 6.6 Import a.csv file Dataset as a pandas DataFrame

Subsequently, we can create a new table in the database called students from this

pandas DataFrame. Since we have read in the entire dataset from the .csv file, we can

ask Python to replace the existing table if it exists.

Figure 6.7 Export pandas DataFrame to Database by SQL

The parameter index instructs Python to write the row index as a column with

column name index_label in the table. Since the default value here is True, we

need to specify it in the .to_sql() method if we do not wish to include this column.

With the cursor object being created, we can execute the SQL commands by sending them

as strings through the cursor object with the .execute() method.

cursor_object.execute("SQL_command_string")

Note that SQL is a separated programming language for database management and its

commands are therefore not the same as those in Python. Furthermore, SQL commands

SU6-14

ANL252 Basic SQL in Python

are not case sensitive and should end with a semi-colon (this is usually optional, but

sometimes the semi-colons are useful to separate the commands that are sent to SQL for

execution at the same time).

To select a table from the database, we can send a SELECT statement to SQL.

SELECT * FROM table_name;

The asterisk (*) in the SELECT statement is to instruct SQL to take all columns from the

table. Once the query has been carried out, we can print one record of the result to the

screen by the .fetchone() method.

cursor_object.fetchone()

If we would like Python to print all records from the query result to the screen, we can

use the .fetchall() method instead.

cursor_object.fetchall()

Note that once we have applied the .fetchone() or .fetchall() methods, the data

records in the query result are literally fetched and no longer available. In other words, if

we re-apply the .fetchone() or .fetchall() methods, we will see either no records

or some of them missing. If we wish to select and check out the same table again, we will

have to redo the query.

SU6-15

ANL252 Basic SQL in Python

Example (Cont’d): In Figure 6.8, we use the .execute() method to send the SELECT

statement to SQL for selecting the table students from the database.

Figure 6.8 Select a Table from the Database

Subsequently, we print out one of the records for checking purpose.

Figure 6.9 Fetch One Record for Printing

In the final step, we fetch all the records in the cursor object cur for printing.

Figure 6.10 Fetch All Records for Printing

From Figure 6.10, we can see that the first record has already been fetched in Figure

6.9 and is therefore not included in the output.

If we re-fetch the records from the query output after applying fetchall() once

before, SQL will return an empty object to us.

SU6-16

ANL252 Basic SQL in Python

Figure 6.11 Re-Fetch Records after Applying fetchone() or fetchall()

Read

Refer to the link below for more details and examples on the to_sql() function of

the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.to_sql.html

Refer to the link below for more details and examples on the connect(), .cursor(),

.execute(), .fetchone(), and .fetchall() functions and methods of the

sqlite3 package:

https://docs.python.org/3/library/sqlite3.html

SU6-17

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html
https://docs.python.org/3/library/sqlite3.html

ANL252 Basic SQL in Python

Chapter 2: Data Query

Lesson Recording

Data Query with SQL

2.1 Selecting Table
In Chapter 1, we have already introduced the SELECT statement of the standard SQL in

its simplest form for table selection. In the following, we will discuss some further options

provided by the SELECT statement to optimise our data query.

The SELECT statement also allows us to select some of the variables from the table

instead of all of them. But in some cases, we may not even know the variables that

the table contains or how their names are correctly spelt. In this case, we can use the

.description attribute to extract the variable names from the last queried table.

cursor_object.description

Note that .description is an attribute and not a method. As a result, there are no

brackets and arguments behind it. The returned object is a collection of tuples where the

first item of each tuple is the column name, and the last six items are None.

SU6-18

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU06CH02_H4_0_V1_0/presentation_html5.html

ANL252 Basic SQL in Python

Example (Cont’d): In Figure 6.12, we will use the .description attribute to extract

the column names of the table students.

Figure 6.12 Extract Column Names of a Table by the .description Attribute

Unfortunately, the returned object does not have a particularly useful form for further

usage. Since we only need the first item of each tuple, we can run a for-loop within a

list to extract it.

Figure 6.13 Generate Variable List of a Table

While the for-loop is running through the cur.description object, the current

tuple is stored in the object column, from which the item with the index 0 will then

be put in the list named cols.

From the previous Chapter, we learn that we can fetch the records from a table for further

processes such as printing. However, the data are stored in tuples and when they are

printed, we do not see them as table such as a pandas DataFrame. Furthermore, once they

are fetched, our program has no more access to the queried table. As a result, it may be

desirable to store the result of the query in a pandas DataFrame. In fact, pandas provides

the method .from_records() for this purpose.

SU6-19

ANL252 Basic SQL in Python

query_object = pd.DataFrame.from_records
 (data = cursor_object.fetchall(), columns)

The .from_records() method is actually created to convert structured or n-

dimensional record arrays to pandas DataFrames. Nevertheless, it suits our purpose

perfectly by passing the resulting object of the fetchall() function as the parameter

data to the .from_records() method. With the columns parameter, we can specify

our own column names of the output DataFrame. The default value here is None, and the

corresponding column names would be simply the column indices.

Example (Cont’d): We can now start a new data query by selecting the entire table

students and then store the result of the query in a pandas DataFrame. The query

step is almost identical to the syntax in Figure 6.8. The only difference here is that

the .execute() method will not carry out our SQL command directly, but a string

variable called sql_select in which the SELECT statement is stored for future use.

Figure 6.14 Execute an SQL Statement Stored in a String Variable

In the next step, we can generate the data by applying the .fetchall() method on

the cursor object and convert it to a pandas DataFrame. We will also specify the list

cols which was generated in Figure 6.13 as our column names here.

SU6-20

ANL252 Basic SQL in Python

Figure 6.15 Convert the Result of an SQL Query to a pandas DataFrame

Figure 6.15 shows the table students after being converted to a pandas DataFrame,

a format that has become well-known to us from the previous study units.

Read

Refer to the link below for more details and examples on the .description attribute

of the sqlite3 package:

https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.description

Refer to the link below for more details and examples on the .from_records()

function of the pandas package:

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.from_records.html

Refer to the links below for more details and examples on the SELECT statement of

SQL:

https://www.w3schools.com/sql/sql_select.asp

SU6-21

https://docs.python.org/3/library/sqlite3.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_records.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_records.html
https://www.w3schools.com/sql/sql_select.asp

ANL252 Basic SQL in Python

https://www.sqlitetutorial.net/sqlite-select/

2.2 Sorting Data
In SQL, we can add the keyword ORDER BY to the SELECT statement to sort the data of

a table by some of its variables in the ascending or descending orders.

SELECT * FROM table_name
ORDER BY var1_name, var2_name ASC|DESC;

Note that if we intend to sort the table by multiple variables, we will need to separate

their names by commas. The sequence of the variables in this list also reflects the sorting

hierarchy. That is, the data are sorted by the first variable in the list initially, those tied

records are then sorted by the second variable, and so on. If the data have to be sorted in

the descending order by a particular variable, we must specify the DESC option behind the

variable name. Since the default value here is ASC, we can omit this option for a variable

if the data should be sorted in its ascending order.

SU6-22

https://www.sqlitetutorial.net/sqlite-select/

ANL252 Basic SQL in Python

Example (Cont’d): Suppose we would like to sort the students by their age and

nationality in the table students. Since the table only contains their birthdays, stored

in the variable Birthday, we need to sort the records in the descending order so that

their age will be ordered naturally.

Figure 6.16 Sort Students by Their Birthdays and Nationalities

The second sorting criterion, Nationality, is put after a comma to separate it from

the other sorting criteria. The option ASC can actually be omitted here. From the result,

we can see that the students with ID number 9 and ID number 6 share the same

birthday. Since student number 9 is from Indonesia, which is alphabetically before

Singapore, this record is sorted in front of the student number 6. It is also noteworthy

that the birthday of the student number 8 is missing. As a result, it appears at the end

of the table after sorting the students in the descending order of their birthdays.

SU6-23

ANL252 Basic SQL in Python

Read

Refer to the links below for more details and examples on the ORDER BY option of

SQL:

https://www.w3schools.com/sql/sql_orderby.asp

https://www.sqlitetutorial.net/sqlite-order-by/

2.3 Filtering Data
The main purpose of data query is to request the records of interest from the available

tables. And more often, it is not the entire table that we are actually looking for, instead

we would like to have records that fulfil certain criteria. In SQL, we can use the WHERE

clause in the SELECT statement to filter the useful records for us.

SELECT * FROM table_name
WHERE var_name = value;

In the above syntax, the selection criterion is presented in its simplest form: records will

only be selected if one of the variables is equal to a certain value. We can also construct

other criteria by using the operators listed in the following table.

Table 6.2 Operators in the WHERE Clause

Operator Description

= Equal

> Greater than

SU6-24

https://www.w3schools.com/sql/sql_orderby.asp
https://www.sqlitetutorial.net/sqlite-order-by/

ANL252 Basic SQL in Python

Operator Description

< Less than

>= Greater than or equal

<= Less than or equal

<> Not equal (Note: In some SQL versions it may be written as !

=)

BETWEEN Between a certain range

LIKE Search for a pattern

IN To specify multiple possible values for a column

(Source: https://www.w3schools.com/sql/sql_where.asp)

Same as the if-command in Python, we can also link multiple criteria in one statement

using the AND, OR and NOT operators.

Sometimes, we would rather not obtain records that contain missing values in one or more

variables from a query. In this case, we need to add the IS NOT NULL syntax to the WHERE

clause.

SELECT * FROM table_name
WHERE var_name IS NOT NULL;

If the statement were written without the NOT operator, SQL would return all records with

missing values in the variable var_name to us.

SU6-25

https://www.w3schools.com/sql/sql_where.asp

ANL252 Basic SQL in Python

Example (Cont’d): Suppose we would like to select students of the analytics

programme from the table students. The query can simply be carried out by adding

the criterion Program = 'Analytics' to the WHERE syntax.

Figure 6.17 Select only Analytics Students from the Table students

If the value is a string such as “Analytics” in the above syntax, we will need to put it

in a pair of quotation marks. And it is important here to pay attention to when and

where single or double quotation marks should be used.

Suppose we would like to narrow down our query to only analytics students with ID

numbers between 5 and 10.

Figure 6.18 Select only Analytics Students with ID number between 5 And 10

SU6-26

ANL252 Basic SQL in Python

Suppose these are not the students that we are actually looking for, and we would like

to select the other analytics students. All we need to modify in the above syntax is to

change the operator from BETWEEN to NOT BETWEEN for the ID variable.

Figure 6.19 Select only Analytics Students with ID number not between 5 And 10

In the next query, we would like to select all analytics students who are not from

Singapore or China. With the IN operator, we can specify the two values “Singapore”

and “China” that we are searching for in the column Nationality. Note that these

values must be put in a pair of round brackets. Finally, the NOT operator should be

added to the syntax IN ('Singapore', 'China') to negate it.

Figure 6.20 Select Analytics Students not from Singapore or China

Now, all analytics students whose first names start with an “M” should be selected.

Here, we can use the LIKE operator and the value is 'M%'. The (%) sign is a wildcard

that represents zero, one, or multiple characters. In other words, our value is an M

followed by a string of arbitrary length.

SU6-27

ANL252 Basic SQL in Python

Figure 6.21 Select Analytics Students with First Names that Start with “M”

Instead of searching for first names starting with a particular letter, we can also

select records with first names that contain a pre-defined string, which is “ar” in the

following example.

Figure 6.22 Select Analytics Students with First Names that Contain “ar”

Same as our code in Figure 6.22, we can use the (%) wildcard within the string to

specify the position of our pre-defined string. Unsurprisingly, we can also select first

names that end with a certain character, which is “s” here.

Figure 6.23 Select Analytics Students with First Names that End with “s”

If we wish to select first names that start and end with some pre-defined characters,

we can put the wildcard (%) between the start and the end characters. In the following

example, we would like to select students with first names that start with an “M” and

end with an “l”.

SU6-28

ANL252 Basic SQL in Python

Figure 6.24 Select Analytics Students with First Names that Start with “M” and End with “l”

The other type of wildcard for the LIKE operator is the underscore sign (_), which

represents a single character. In the following example, we would like to select all

students whose last names start with “Ta” and followed by exactly one character.

Figure 6.25 Select Analytics Students with Last Names that Have the Pattern “Ta_”

The syntax in Figure 6.25 will result in selecting all last names with three characters

that start with “Ta”. In other words, last names such as “Tang” will not be included.

In Figure 6.26, cases with missing value in Birthday will be selected. This step is

usually helpful to let data analysts study the cases with missing values first and then

decide to remove them from the dataset or not.

Figure 6.26 Select Students with No Birthday Record

If we simply want to select all students whose birthday records are not missing, we

will just need to replace IS NULL by IS NOT NULL in the SELECT statement.

SU6-29

ANL252 Basic SQL in Python

Figure 6.27 Select Students with Non-Missing Birthday Records

In SQL, we can also select particular columns from a table in the data query. The asterisk

(*) in the SELECT statement should be replaced by a list of selected variables in this case.

SELECT var_name1, var_name2, …
FROM table_name WHERE criteria;

It is also possible to use Python programming to manipulate the SELECT statement as

string before sending it to SQL. That is, we can create our own variable list as string in our

Python program first and then combine it with the rest of the statement. This approach

will give us the flexibility to generate different variable lists for data query depending on

the requirement of the situation.

Example (Cont’d): In Figure 6.28, we select the columns ID, LastName, FirstName,

Nationality and Program from the table students. At the same time, we are only

SU6-30

ANL252 Basic SQL in Python

interested in students outside the analytics program. However, these records should

also be sorted by their nationalities.

Figure 6.28 Select Data of Non-Analytics Students from Certain Columns of a Table

The parameter columns in the from_records() function must be replaced by a

new variable list since the list cols which we have generated in Figure 6.13 contains

more column names than the table we query here. As a result, it is more practical to

store the names of the selected variable in a list or a tuple first, and then concatenate

them to a single string by the join() method.

Figure 6.29 Concatenate Items of a Tuple to a String

In the first line, we define the tuple named sel_cols with the names of the selected

variables in it. In the second line, the .join() method is applied to ", ", the

separator between the variable names in the output string. Basically, the .join()

method runs through all the items in sel_cols and adds them with ", " (except for

the last item for which the separator is not necessary) to the string sel_cols_str

one after another.

In the next step, we first split the SELECT statement in Figure 6.28 into three parts:

"Select ", the variable list and the rest. The original variable list can then be

replaced by the string variable sel_cols_str. Subsequently, we can concatenate

SU6-31

ANL252 Basic SQL in Python

these three partitions of the string into one by “adding” them together as shown in

Figure 6.30. Furthermore, we can also use the variable list sel_cols as the value for

the parameter columns in the from_records() function.

Figure 6.30 Select Certain Columns of a Table by a Variable List String

Hereafter, we can obtain different columns of the table by just changing the variable

names in sel_cols_str and re-run the code in Figure 6.30. Note that the same

technique can also be applied to the other parts of the SELECT statement.

Read

Refer to the links below for more details and examples on the WHERE clause of SQL:

https://www.w3schools.com/sql/sql_where.asp

https://www.sqlitetutorial.net/sqlite-where/

Refer to the link below for more details and examples on the AND, OR, NOT operators

of SQL:

https://www.w3schools.com/sql/sql_and_or.asp

Refer to the links below for more details and examples on the IN operator of SQL:

https://www.w3schools.com/sql/sql_in.asp

https://www.sqlitetutorial.net/sqlite-in/

SU6-32

https://www.w3schools.com/sql/sql_where.asp
https://www.sqlitetutorial.net/sqlite-where/
https://www.w3schools.com/sql/sql_and_or.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.sqlitetutorial.net/sqlite-in/

ANL252 Basic SQL in Python

Refer to the links below for more details and examples on the BETWEEN operator of

SQL:

https://www.w3schools.com/sql/sql_between.asp

https://www.sqlitetutorial.net/sqlite-between/

Refer to the links below for more details and examples on the LIKE operator of SQL:

https://www.w3schools.com/sql/sql_like.asp

https://www.sqlitetutorial.net/sqlite-like/

Refer to the link below for more details and examples on the wildcard characters in

SQL:

https://www.w3schools.com/sql/sql_wildcards.asp

Refer to the links below for more details and examples on NULL values in SQL:

https://www.w3schools.com/sql/sql_null_values.asp

https://www.sqlitetutorial.net/sqlite-is-null/

Refer to the link below for more details and examples on the .join() methods:

https://docs.python.org/3/library/stdtypes.html#str.join

SU6-33

https://www.w3schools.com/sql/sql_between.asp
https://www.sqlitetutorial.net/sqlite-between/
https://www.w3schools.com/sql/sql_like.asp
https://www.sqlitetutorial.net/sqlite-like/
https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_null_values.asp
https://www.sqlitetutorial.net/sqlite-is-null/
https://docs.python.org/3/library/stdtypes.html

ANL252 Basic SQL in Python

Chapter 3: Joining Tables

Lesson Recording

Join Tables with SQL

The tables in a database are usually connected in some ways. For instance, in the database

of a bank, there may be a table with the personal records of all the customer relationship

managers and another table with the records of all customers, including their transaction

records and the names of their relationship manager. With these data, the bank can query

on the sales records of each manager within a certain period. In this case, we are joining

tables from a database to gain cross-table information.

3.1 Inner Join
In SQL, there are many ways to join two or more tables: INNER JOIN, LEFT JOIN, CROSS

JOIN, etc. Depending on the structure of the tables, these join techniques usually result in

different output tables. We will discuss the inner join method in this section.

SELECT * FROM table1_name
INNER JOIN table2_name
ON table1_name.match_var = table2_name.match_var;

The INNER JOIN clause is used within the SELECT statement. It selects only records of

table1 that can be matched by records in table2. The rows of table1 or table2 for

which SQL cannot find any matches in the opposite table will be dropped from the query.

SQL compares the values of each one matching variable from the two tables specified by

the user. Usually, these variables should represent the same feature in both tables such as

SU6-34

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU06CH03_H4_0_V1_0/presentation_html5.html

ANL252 Basic SQL in Python

the employee number or customer ID. Note that it is also possible to extend the match to

multiple pairs of variables if necessary.

The matching condition should be provided after the ON keyword. To indicate the original

table of the matching variables, the name of the table must be specified before each

matching variable and separated by a dot (.). With the ON keyword, the matching

variables do not need to have the same name in their original tables. But if they do, we

can shorten the syntax above by the USING keyword.

SELECT * FROM table1_name
INNER JOIN table2_name USING(match_var);

The name of the original table does not need to be mentioned in the bracket of the USING

keyword. If, however, the column name only exists in one of the tables, SQL will return

an error message to us. Another difference between the ON and USING keywords is that

both matching variables will be included in the output table if we use the ON keyword,

whereas only the matching variable of table1 will remain if the USING keyword is used

for matching.

If more than one records in table2 are found matching to a record in table1, SQL will

append each of them to a copy of the matched record of table1. This is the so-called 1:n

matching.

SU6-35

ANL252 Basic SQL in Python

Example (Cont’d): In the following, we will create a new table called grades which

contains the scores of the students in the two previous examinations. The table will

then be joined with the table students. In Figure 6.31, the data stored in a .csv file

will be transferred to grades by the .to_sql() function.

Figure 6.31 Create a New Table Called grades in the Database

In Figure 6.32, we query the entire table grades from the database and convert it to

a pandas Database for printing and controlling purposes.

Figure 6.32 Contents of the Table grades

Subsequently, we join the two tables, students and grades, with the INNER JOIN

clause. In our first attempt, we use the ON keyword to match the student ID of the two

tables.

SU6-36

ANL252 Basic SQL in Python

Figure 6.33 Inner Join the Tables students and grades by the ON Keyword

We can see from Figure 6.33 that most of the students have two rows in the output

table. Since the majority of them have taken part in both examinations, they should

have indeed two records each in the table grades. With the INNER JOIN clause, SQL

generates one copy of each student’s record in students and appends the scores and

course codes found in grades to the records of the corresponding student.

Furthermore, we can also see from Figure 6.33 that there are two columns named ID.

As mentioned above, the matching variables of both tables will be kept in the output

table. If we intended to use this table for further process, the ambiguous variable name

could cause troubles in data query. It would therefore be important to either rename

or drop one of the ID columns from the table.

Since the matching variable in both tables share the same name, ID, we can also apply

the USING keyword instead.

SU6-37

ANL252 Basic SQL in Python

Figure 6.34 Inner Join the Tables students and grades by the USING Keyword

Read

Refer to the links below for more details and examples on the INNER JOIN clause of

SQL:

https://www.w3schools.com/sql/sql_join_inner.asp

https://www.sqlitetutorial.net/sqlite-inner-join/

SU6-38

https://www.w3schools.com/sql/sql_join_inner.asp
https://www.sqlitetutorial.net/sqlite-inner-join/

ANL252 Basic SQL in Python

3.2 Left Join
Another way to join two or more tables of a database is the left join method.

SELECT * FROM table1_name alias1
LEFT JOIN table2_name alias2
ON alias1.match_var = alias2.match_var;

We add the new options alias1 and alias2 to this syntax. These aliases are usually

abbreviated references of table1 and table2 and can be useful when there are two

variables with the same name in both tables. Note that the aliases are not limited to the

LEFT JOIN clause, but applicable to any SELECT statement.

We can also use USING instead of ON for the matching condition.

SELECT * FROM table1_name
LEFT JOIN table2_name
USING(match_var);

In left join, SQL searches for records from table2 that match the records from table1

based on the matching condition. If no records in table2 can be found for a record from

table1, that record of table1 will still be kept in the output table. The values of the

variables originated from table2 will be missing values in this case.

SU6-39

ANL252 Basic SQL in Python

Example (Cont’d): The tables students and grades will be merged by the LEFT

JOIN method in the following.

Figure 6.35 Left Join the Tables students and grades

In Figure 6.35, we can see that the student with ID number 7 has missing data in the

variables Grade and Course, both variables originated from the table grades. We

can therefore conclude that this student has not taken part in both the examinations

of Course101 and Course102.

We can also sort the joined table by some selected variables. All we need to do is to

add the ORDER BY keyword to the SELECT statement as shown in Figure 6.36.

SU6-40

ANL252 Basic SQL in Python

Figure 6.36 Sort the Left Joined Table by the Course Code and the Students’ Last Name

In Figure 6.36, we have sorted the output table by the course code and the last name

of the students, both in ascending order. By sorting the data this way, we can see the

examination scores of one course as consecutive records, and students from the same

course are sorted in the same order as most probably the official student list, namely

by their last names in alphabetical order.

In Figure 6.37, all records from the joined table that have missing values in the variable

Grade are selected.

Figure 6.37 Select Records with Missing Data in grade

We add the aliases s for the table students and g for the table grades to the SELECT

statement. They are included in the matching criterion since the ON keyword is used

SU6-41

ANL252 Basic SQL in Python

here for record matching. Furthermore, we just want the joined table to contain the

columns ID, LastName, FirstName and Course. Since there is an ID column in

both tables and only the one from the table students should be carried over to the

output table, we need to specify its original table with the alias s.

Read

Refer to the links below for more details and examples on the LEFT JOIN clause of

SQL:

https://www.w3schools.com/sql/sql_join_left.asp

https://www.sqlitetutorial.net/sqlite-left-join/

3.3 Cross Join
With the cross join method, SQL produces the cartesian product of the involved tables.

SELECT * FROM table1_name
CROSS JOIN table2_name;

The cartesian product usually refers to the collection of all cross-item combinations

resulting from two arrays. In terms of the cross join method, it means that every record

of table1 is merged with all records of table2. In other words, if table1 and table2

have m and n records, respectively, there will be a total of m×n records in the output table.

Since no matches are required here, the ON and USING keywords can be omitted in the

SELECT statement.

SU6-42

https://www.w3schools.com/sql/sql_join_left.asp
https://www.sqlitetutorial.net/sqlite-left-join/

ANL252 Basic SQL in Python

Example (Cont’d): Now we cross join the tables students and grades.

Figure 6.38 Cross Join the Tables students and grades

Every row of the table students is now cross-combined with all the rows of the

table grades. In other words, the output table contains records in which students

are assigned to grades that they did not score themselves. It is obvious that this data

query does not make much sense in terms of its logical structure and analytical value.

Nevertheless, cross join could be useful if we had another table with data that are

equal to every student. We could then merge the same records to every row of the

table students.

Read

Refer to the link below for more details and examples on the CROSS JOIN clause of

SQL:

https://www.sqlitetutorial.net/sqlite-cross-join/

SU6-43

https://www.sqlitetutorial.net/sqlite-cross-join/

ANL252 Basic SQL in Python

3.4 Outer Join
With the outer join method, or full outer join, SQL produces the union of the involved

tables. In other words, not only records from both tables that can be matched by the

matching criterion will be selected, records from either one table that cannot find any

match from the opposite side will also be carried over in the output table. However, their

values in the variables originated from the other tables will be None.

One difficulty of applying the outer join method in Python is the fact that it is simply not

supported by the sqlite3 package, although the OUTER JOIN clause is actually available in

other SQL versions. Nevertheless, we can combine the LEFT JOIN clause with the UNION

ALL operator to create the same result as the OUTER JOIN clause.

SELECT var_list FROM table1_name alias1
LEFT JOIN table2_name alias2 USING(matching_var)
UNION ALL
SELECT var_list FROM table2_name alias2
LEFT JOIN table1_name alias1 USING(matching_var)
WHERE alias1.var_name IS NULL;

In the first SELECT statement, the left join method is applied and the records from table2

are matched with the records from table1. As discussed in Chapter 3.2, all records

from table1 are selected in the output table here regardless the matching results. In the

second SELECT statement, the left join method is applied to table1 and table2 in the

opposite roles. As a result, all records from table2 are selected here. However, we need

to drop those matches that are already included in the first SELECT statement to prevent

duplicates. Logically, these records must contain data from both tables, and those from

table2 with no matching records must have missing data in the columns of table1. As

a result, we can simply use this result as our selection criterion. Both SELECT statements

are connected by the UNION ALL operator to produce a combined table of the two queries.

SU6-44

ANL252 Basic SQL in Python

Since the sequence of the columns are naturally different in the output tables of the two

queries, the UNION ALL operator would simply append the data of the second query to

those of the first query regardless their original columns if we just used the asterisk (*) in

both SELECT statements. To avoid such mess in the output data, we must specify the same

list of variable names in both queries so that the sequence of the columns are identical.

Example (Cont’d): Before we use outer join to merge the tables students and

grades, we need to create a list with the variable names of both tables to ensure that

the same sequence of columns are produced in the output table of both queries.

In the column list, we must specify the original table of each variable by the aliases so

that every column in the output table is uniquely defined. The easiest way to generate

such a list is to define a string with all the variable names written in it. However,

if the involved tables have many columns, we will need to write a very long string

in our program which is rather not efficient. Figure 6.39 shows a Python program

which generates a variable list from the column names of both tables together with

the corresponding aliases.

Figure 6.39 Generate Variable List from Both Tables with Aliases

In the first two lines, the column names of the tables students and grades are stored

in the lists students_cols and grades_cols by the same technique as shown

in Figure 6.13. In the third and fourth line, we remove both ID variables from the

lists since they will be merged into one column eventually and therefore do not need

aliases. In the fifth line, we first add the aliases "s." and "g." as strings to each item

of the respective variable list by running through them in a for-loop. Subsequently,

SU6-45

ANL252 Basic SQL in Python

the two lists are concatenated, and the item "ID" is added back to the front of the

resulting list which is now called cols_list. In line six, cols_list is converted

to a string with commas separating the column names. As shown in Figure 6.39, an

alias is added to all names except for the ID variable, which has now become the first

column of the output tables in both SELECT statements.

Figure 6.40 Outer Join the Tables students and grades (1)

Figure 6.41 Outer Join the Tables students and grades (2)

SU6-46

ANL252 Basic SQL in Python

From Figure 6.40, we can see that the student number 7, who has no exam records

found in the table grades, is included in the output table. This is not surprising

since it is the same result as the left join method. In Figure 6.41, the students with

ID numbers 21 to 24 only seem to have some exam results but no personal records

found in the table students. Basically, such cases can only be detected if we left

join the table grades with the table students, which is exactly our second SELECT

statement in Figure 6.40.

Read

Refer to the link below for more details and examples on the UNION ALL operator of

SQL:

https://www.sqlitetutorial.net/sqlite-union/

Refer to the link below for more details and examples on the .remove() method:

https://www.w3schools.com/python/ref_list_remove.asp

SU6-47

https://www.sqlitetutorial.net/sqlite-union/
https://www.w3schools.com/python/ref_list_remove.asp

ANL252 Basic SQL in Python

Chapter 4: Grouping Data

Lesson Recording

Group Data with SQL

4.1 Combining Records into Groups
In SQL, we can combine records of a table into groups based on one or more categorical

variables. In most cases, the grouping is combined with the calculation of some statistics

for each group by the aggregate functions.

Table 6.3 List of Aggregate Functions in SQL

Aggregate Functions Description

AVG Average of the specified columns in a group

COUNT Number of rows in a group

MAX Maximum value of the specified columns in a group

MIN Minimum value of the specified columns in a group

STDDEV Standard deviation of the specified columns in a group

SUM Sum of the specified columns in a group

VARIANCE Variance of the specified columns in a group

SU6-48

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU06CH04_H4_0_V1_0/presentation_html5.html

ANL252 Basic SQL in Python

To group records of a table together, we need to add the GROUP BY statement to the

SELECT statement.

SELECT var_list AGGREGATE_FUNCTION(var_name)
FROM table_name
GROUP BY groupvar1_name, groupvar2_name, …;

In the variable list of the SELECT statement, we can also specify the aggregate function

and the variable for which the aggregated statistics of each group should be calculated.

The GROUP BY statement is followed by the variable names based on which the groups

should be formed, and the variable names must be separated by commas here. If the table

is grouped by more than one variables, the groups will be formed by the cartesian products

of the categories in the variables.

Example (Cont’d): Suppose we would like to group the students by their study

programmes and the number of students in each programme should be counted.

Figure 6.42 Count the Number of Students in Each Programme

In the above syntax, we only select the column program for our output tables since

we are only interested in the number of students in each of its categories. The count

of students is added as a variable to the query, and the name of it is simply taken over

from the SELECT statement, namely Count(Program).

We can also group and count our students by their nationalities and the result will be

sorted by the counts in the descending order.

SU6-49

ANL252 Basic SQL in Python

Figure 6.43 Sort the Nationalities of the Students by Their Counts

In Figure 6.43, we add the name Count to the variable list in the SELECT statement

which will be used as the variable name for Count(Nationality). In other words,

we can specify a name for the column of the aggregated statistics by placing it behind

the aggregate function in the SELECT statement.

Next, we will group the students by their study programmes and nationalities. The

frequency of each nationality in each study programme should be counted as well.

Figure 6.44 Group the Students by their Study Programmes and Nationalities

The grouping variables, separated by a comma, are listed in the GROUP BY statement.

To count the frequency of the cartesian product of nationality and program,

we need to put a multiplication operator (*) between the two variables inside the

COUNT function. From Figure 6.44, we can see that there are altogether eleven analytics

students who are from Singapore, and two students of the same programme actually

come from Malaysia, and so on.

SU6-50

ANL252 Basic SQL in Python

Read

Refer to the links below for more details and examples on the GROUP BY operator of

SQL:

https://www.w3schools.com/sql/sql_groupby.asp

https://www.sqlitetutorial.net/sqlite-group-by/

Refer to the link below for more details and examples on the MIN() and MAX()

functions of SQL:

https://www.w3schools.com/sql/sql_min_max.asp

Refer to the link below for more details and examples on the COUNT(), AVG(), and

SUM() functions of SQL:

https://www.w3schools.com/sql/sql_count_avg_sum.asp

4.2 Filtering Groups
As demonstrated in the previous section, we can compute aggregated statistics after

grouping the data. Furthermore, we can also filter the groups by some specified

conditions. The filtering process for grouped data is carried out by the HAVING clause.

SELECT var_list AGGREGATE_FUNCTION(var_name)
FROM table_name
GROUP BY groupvar1_name, groupvar2_name, …
HAVING conditions;

Nevertheless, we can extend this SELECT statement with a WHERE clause that are used to

filter the records before the grouping takes place, or with the ORDER BY keyword to sort

SU6-51

https://www.w3schools.com/sql/sql_groupby.asp
https://www.sqlitetutorial.net/sqlite-group-by/
https://www.w3schools.com/sql/sql_min_max.asp
https://www.w3schools.com/sql/sql_count_avg_sum.asp

ANL252 Basic SQL in Python

the grouped table by the aggregated statistics, or the INNER JOIN/LEFT JOIN/CROSS

JOIN clauses to merge columns from other tables before the grouping and the calculation

of aggregated statistics are carried out.

Example (Cont’d): Suppose we would like to compare the average grades of the

students based on their age. Instead of calculating their age, we can also just use their

birthyears which can be extracted from the variable Birthday in the table students

by the SQLite function STRFTIME().

Figure 6.45 Calculate Average Grade of Students from Different Birthyears

To retrieve the exam grades, we need to join the tables students and grades here.

Since it does not make much sense to include the records with examination grades

but no matching personal data as well as students who did not participate in any of

the exams, inner join is applied. In the output table, we group the students by their

birthyears generated by STRFTIME('%Y', Birthday), which is included in the

column list in the SELECT statement. The parameters in the function indicate that the

year ('%Y') should be extracted from the dates stored in the variable Birthday. We

can also see from Figure 6.45 that once the column name of an aggregated statistic has

been established within the SELECT statement, we can use it in the other parts of the

syntax such as WHERE, GROUP BY, ORDER BY, etc.

In the next query, the students are grouped by their study programme and their

average grades in each course in which they have taken the examination will be

determined.

SU6-52

ANL252 Basic SQL in Python

Figure 6.46 Calculate Average Grade of Different Programmes in Different Courses

In the above program, we have excluded those records in the joined table that have

missing values in the variable Grade. In other words, these were records from the

table students for which matching could be found in the table grades, but their

data in the column Grade were missing. We have also counted the number of different

IDs in each of the groups to determine the number of students who participated in

the corresponding examination. The counts can be found in the new column named

NumStudents. As a result, there were 15 analytics students who took part in the

examination of Course101 and their average grade is 69.67. Other programmes such

as accountancy and business have only got one student each to participate in this

examination. Therefore, their low average scores here are unreliable statistics for any

inference.

If we would like to select only programmes with 5 students or more participated in

the exams, we can use the HAVING clause for filtering the grouped table.

Figure 6.47 Selected Courses with NumStudents >= 5 Grouped by Study Programme

SU6-53

ANL252 Basic SQL in Python

Now we will create a grouped table in which the average grade of each student in

the two exams are calculated. The number of exam participations will be counted for

each of them and stored as a new variable called NumCourse. Eventually, the output

table should be sorted by the students’ average grades in the descending order and

contains only students with an average grade of at least 40 marks.

Figure 6.48 Listing Students with AverageGrade >= 40

In the first step, we drop variables that are less relevant to this query such as

Birthday, Nationality and Course. Same as our code in Figure 6.47, records with

missing data in the variable Grade will be dropped from the table. After grouping

the table by the ID of the students and their average grades have been calculated,

students will be sorted by their average grades and those with less than 40 marks will

not be selected.

SU6-54

ANL252 Basic SQL in Python

Read

Refer to the links below for more details and examples on the HAVING clause in SQL:

https://www.w3schools.com/sql/sql_having.asp

https://www.sqlitetutorial.net/sqlite-having/

Refer to the link below for more details and examples on the STRFTIME() function

in SQLite:

https://sqlite.org/lang_datefunc.html

Refer to the link below for more details and examples on date data types in SQL:

https://www.w3schools.com/sql/sql_dates.asp

SU6-55

https://www.w3schools.com/sql/sql_having.asp
https://www.sqlitetutorial.net/sqlite-having/
https://sqlite.org/lang_datefunc.html
https://www.w3schools.com/sql/sql_dates.asp

ANL252 Basic SQL in Python

Chapter 5: Editing Data

Lesson Recording

Edit Data with SQL

5.1 Inserting Records
In the previous chapters, we have been introduced to methods for extracting and

reshaping information from a database. Nevertheless, SQL also provides the possibility

for us to change the data or even the structure of a table. In this section, we will discuss

how to insert new records to a table.

INSERT INTO table_name (var_list)
VALUES (value_list);

In the INSERT INTO statement, the variable list added behind the table name should be

a subset of the column names in the table. Its length must be identical with the length

of the value list, and both lists must be put in parentheses. It is also important to ensure

that the sequence of the elements in the value list corresponds to the sequence of the

variables so that the values are assigned to the correct column eventually. For inserting

multiple records, the value list of each record must be wrapped up by a pair of brackets

and every list must be separated by a comma from one another. Furthermore, the values of

the variables excluded in the INSERT INTO statement for the new records will be None.

If we intent to provide values to all columns, the variable list including the brackets can

also be omitted from the syntax.

SU6-56

https://d2jifwt31jjehd.cloudfront.net/ANL252/LessonRecording/ANL252_SU06CH05_H4_0_V1_0/presentation_html5.html

ANL252 Basic SQL in Python

Example (Cont’d): In Chapter 4, we have often come across the student with ID

number 7 who has no matching records found in the table grades. Suppose we

have now received his grades for Course101 and Course102, which are 62 and 54,

respectively, we can insert these two records into the table.

Figure 6.49 Insert Multiple New Records for a Student into the Table grades

Recall from Figure 6.41 that the student with number 21 has got a grade in Course102

but no personal record in the table students. We have now received her personal

data and would like to insert it into the table.

Figure 6.50 Insert a New Record into the Table students without Variable List

Different from the program in Figure 6.49, the variable list is omitted in the INSERT

INTO statement here. Nevertheless, the behaviour of the program remains unchanged

since the data of all variables are completely available and they are put in the right

sequence in the syntax.

SU6-57

ANL252 Basic SQL in Python

Read

Refer to the links below for more details and examples on the INSERT INTO clause

in SQL:

https://www.w3schools.com/sql/sql_insert.asp

https://www.sqlitetutorial.net/sqlite-insert/

5.2 Updating Records
We can also update or edit the data of existing records by the UPDATE statement.

UPDATE table_name
SET var1_name = value1, var2_name = value2, …
WHERE condition;

The concept of updating data in the tables by SQL is slightly different from editing the

contents of a spreadsheet. Here, we need to state certain conditions in a WHERE clause

which must be fulfilled by a record in order to get itself updated. In other words, if the

condition is true to more than one records, all of them will be modified simultaneously.

Hence, depending on the nature of the update, the condition must be specified precisely

so that the update is not applied to the wrong records. If the WHERE clause is omitted, all

records in the involved table will be updated.

With the keyword SET, we can specify the columns that SQL should update and their new

values. The UPDATE statement is particularly useful to replace missing values or outliers

in a dataset.

SU6-58

https://www.w3schools.com/sql/sql_insert.asp
https://www.sqlitetutorial.net/sqlite-insert/

ANL252 Basic SQL in Python

Example (Cont’d): From Figure 6.41, we can see that student with ID number 20

has two records in the table grades. However, her grade in Course102 is missing.

Suppose she had to take the supplementary exam due to illness and her grade is

therefore only available with some weeks of delay.

Figure 6.51 Update the Value of a Selected Record in the Variable Grade

It requires two conditions here to find the target record for updating: the student ID

number must be 20 and the course must be “Course102”. If the ID number were not

specified, every student’s grade in Course102 would become 69. On the other hand, if

Course were not included as one of the conditions, this student’s grades of Course101

and Course102 would both change to 69.

Read

Refer to the links below for more details and examples on the UPDATE clause in SQL:

https://www.w3schools.com/sql/sql_update.asp

https://www.sqlitetutorial.net/sqlite-update/

SU6-59

https://www.w3schools.com/sql/sql_update.asp
https://www.sqlitetutorial.net/sqlite-update/

ANL252 Basic SQL in Python

5.3 Deleting Records
Deleting records from a table works in a very similar way as updating data in rows. That

is, conditions must be set so that records can be selected for removal.

DELETE FROM table_name
WHERE condition;

Same as the UPDATE statement, it is very important to specify the correct records for

deletion. If the condition is too vague, there can be more records deleted than originally

intended. Note that once a row has been dropped from a table, there is no possibility to

undo it in SQL.

SU6-60

ANL252 Basic SQL in Python

Example (Cont’d): After the personal data of student with ID number 21 has been

inserted to the table students as shown in Figure 6.50, it is decided that all records

of students with ID number 22 to 24 should be deleted from the table grades since

no matching personal data could be found for them.

Figure 6.52 Delete Records with ID Number >=22 from the Table grades

The condition for deletion is a rather simple one: ID >= 22. Since it was the

records with the highest ID numbers being deleted, we can sort the table by ID in the

descending order to check whether the deletion has been carried out properly.

SU6-61

ANL252 Basic SQL in Python

Read

Refer to the links below for more details and examples on the DELETE clause in SQL:

https://www.w3schools.com/sql/sql_ref_delete.asp

https://www.sqlitetutorial.net/sqlite-delete/

5.4 Altering Tables
In the previous sections, we have discussed changing the rows of a table. In this section,

we will introduce a method to alter a table by editing its columns. With the ALTER TABLE

statement, we can rename a table, rename a column, or add a column. In the first step, we

introduce the following syntax to add a column to a table.

ALTER TABLE table_name
ADD column_name;

Unlike the other SQL versions, SQLite3 only allows adding one column at a time.

We can rename a column with the following version of the ALTER TABLE statement.

ALTER TABLE table_name
RENAME old_column_name TO new_column_name;

Here, we can only rename one column at a time as well.

SU6-62

https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.sqlitetutorial.net/sqlite-delete/

ANL252 Basic SQL in Python

Example (Cont’d): We would now like to add a new column called email to the table

students to store their email addresses.

Figure 6.53 Add a New Column called email to the Table students

The variable is appended to the rightmost edge of the table with None as its value.

Figure 6.54 The Table students after a New Column email Being Added

Suppose the email address format of this university is

“FirstName.LastName@ouruni.edu.sg”. We can use the || operator of SQL to

concatenate the values in the columns FirstName and LastName with the string

"@ouruni.edu.sg" as the values of the new column email. Moreover, we can also

convert all characters of the email address to lower case with the LOWER() function

of SQL.

SU6-63

ANL252 Basic SQL in Python

Figure 6.55 Update Values in the Column email

The update here does not require the WHERE clause because all email addresses

can be generated with the identical syntax. Certainly, the procedure here is strongly

simplified since we do not consider the possibilities of a) students using user-defined

email address, b) assigning the same email address to multiple students because their

names are identical, c) white spaces in the students’ name if they have middle names,

d) special characters in their names such as å, é, ñ, or ß. We need a much more

sophisticated program to deal with all these issues, and we will omit it since it is out

of the scope of our discussion here.

Finally, since the names of all the other columns start with a capital letter, we will

therefore rename the column from email to Email.

SU6-64

ANL252 Basic SQL in Python

Figure 6.56 Rename the Column from email to Email

Beside altering the content of a table, we can also create a new table in the database.

CREATE TABLE table_name (column1_name, column2_name, …);

And it is also possible to drop a table from the database.

DROP TABLE table_name;

Certainly, we also have the possibility to rename a table.

ALTER TABLE table_name RENAME TO new_table_name;

The syntax for renaming a table is fairly similar to the one for renaming a column in a

table. The only difference is that there should be no name between RENAME and TO when

giving a new name to a table.

If we want to copy the data from one table to another one which has the same column

structure, we can modify and apply the INSERT INTO statement for this purpose.

SU6-65

ANL252 Basic SQL in Python

INSERT INTO target_table_name
SELECT value_list
FROM source_table_name;

Instead of having a variable list and a value list, we can have the SELECT statement

embedded in the above syntax. As a result, data are queried from another table first and

then inserted into the target table. We can also use additional clauses such as ORDER BY,

WHERE, INNER JOIN, etc., to sort or select specific records, or merge multiple tables before

inserting them.

Example (Cont’d): In the following, we will first merge the last and the first names of

the students to one new column called Name in the table students. Subsequently, we

will duplicate the table and drop the variables LastName and FirstName from the

new one and rearrange the sequence of the columns. The reasons we do not carry out

the alteration in the existing table students is that we would like to keep the original

record just in case we will need it again.

Figure 6.57 Add a New Column Called Name to the Table students

In the next step, we convert the students’ last name and first name to the format

"LastName, FirstName" and store it in a new variable called Name.

SU6-66

ANL252 Basic SQL in Python

Figure 6.58 Concatenate Last Name and First Name as a New Variable

Same as the creation of the email address in Figure 6.55, we use the || operator to

merge the last name, the separating comma and the first name together.

We can now copy the data to a new table called students2. However, we would like

to exclude the columns LastName and FirstName in the new table since they are

now completely represented by Name. Furthermore, as we can see from Figure 6.58,

all new variables are appended to the rightmost end of the table. Thus, we need to

rearrange the columns to our need first before copying them to the new table.

Figure 6.59 Create a New Table named students2

In the first line, we generate a list of variables in the sequence of how they should be

inserted in students2. The reason of using a Python string variable to store them

here is that we will need to use it later for the INSERT INTO statement again. In the

second line, we can then create the new table students2 and use the variable list

string sel_col to define the variables and their sequence in the new table.

SU6-67

ANL252 Basic SQL in Python

Figure 6.60 Query Data from students and Insert Them Into students2

In Figure 6.60, we combine the SELECT and the INSERT INTO statements to transfer

the data from students to students2. We insert the variable list string sel_cols,

which has already been used in the CREATE TABLE statement in Figure 6.59, into

the SELECT statement. Hence, we have ensured that the sequence and names of the

columns are identical in both the programs. In addition, we added the ORDER BY

keyword to the SELECT statement so that the data are now sorted by the ID numbers

of the students.

Figure 6.61 shows the table students2 after the data have been inserted.

Figure 6.61 Output of students2 after Inserting the Data

Unlike other SQL versions, SQLite does not support DROP COLUMN in the ALTER

TABLE statement. Therefore, the method introduced in Figure 6.58 and Figure 6.59,

SU6-68

ANL252 Basic SQL in Python

namely, to transfer all data except the variables that should be removed to a new table,

is the only way to delete a column.

Read

Refer to the links below for more details and examples on the ALTER TABLE statement

in SQL:

https://www.w3schools.com/sql/sql_alter.asp

https://www.sqlitetutorial.net/sqlite-alter-table/

Refer to the link below for more details and examples on the RENAME TO keywords

of the ALTER TABLE statement in SQL:

https://www.sqlitetutorial.net/sqlite-rename-column/

Refer to the link below for more details and examples on the LOWER() function in

SQL:

https://www.w3resource.com/sql/character-functions/lower.php

Refer to the links below for more details and examples on the CREATE TABLE

statement in SQL:

https://www.w3schools.com/sql/sql_create_table.asp

https://www.sqlitetutorial.net/sqlite-create-table/

Refer to the links below for more details and examples on the DROP TABLE statement

in SQL:

https://www.w3schools.com/sql/sql_drop_table.asp

https://www.sqlitetutorial.net/sqlite-drop-table/

SU6-69

https://www.w3schools.com/sql/sql_alter.asp
https://www.sqlitetutorial.net/sqlite-alter-table/
https://www.sqlitetutorial.net/sqlite-rename-column/
https://www.w3resource.com/sql/character-functions/lower.php
https://www.w3schools.com/sql/sql_create_table.asp
https://www.sqlitetutorial.net/sqlite-create-table/
https://www.w3schools.com/sql/sql_drop_table.asp
https://www.sqlitetutorial.net/sqlite-drop-table/

ANL252 Basic SQL in Python

5.5 Committing Changes in Database
It is often important to check on the existing content in the database and clear up tables

that are no longer necessary. In SQLite, there is a master table called sqlite_master

which holds the schema of the entire database. We can therefore query the names of the

existing tables in a database by a SELECT statement.

SELECT name FROM sqlite_master WHERE type = 'table';

This syntax is a fixed expression and needs no adjustments. Basically, it queries the

names of all the existing tables (obviously stored as values in the column name) from

sqlite_master in the same fashion as we query data from a table. Armed with the result

of this query, we can decide on whether taking actions or not on the tables.

So far, all procedures have actually been carried out on the virtual platform. That means,

the changes are only stored in the virtual memory of our computer and not saved to

the hard disk yet. Therefore, before closing the database, we need to commit all changes

through the connection object back to the physical file of our database.

connection_object.commit()

The .commit() method of the sqlite3 package must be applied to the connection object.

It works in the same way as the “save” function in most of the software. That means, we

can place it in our Python program wherever we think we need to save the changes before

they are lost. However, we cannot undo the changes once they are committed.

Finally, we can close the connection to the database by the .close() method.

connection_object.close()

SU6-70

ANL252 Basic SQL in Python

Note that the .close() method does not call the .commit() method automatically. In

other words, if we close the connection before committing the changes to the physical file,

all the modifications in the database will be lost.

Example (Cont’d): In the first step, we would like to obtain a list of all the existing

tables in the database.

Figure 6.62 Check on Existing Tables in the Database

As expected and confirmed by Figure 6.62, students, grades and students2 are

the tables that our database contains. Suppose we have now decided not to keep the

table students anymore since students2 actually contains the same data, we can

apply the DROP TABLE statement to remove it.

Figure 6.63 Dropping Table students from the Database

In Figure 6.63, we have added the SELECT statement to check on the names of the

existing tables in the database after dropping students. The output of the query

shows us that the table students has indeed disappeared.

Since students no longer exists, we can use students2 to replace student by

renaming it accordingly.

SU6-71

ANL252 Basic SQL in Python

Figure 6.64 Renaming students2 to student

By adding the same SELECT statement to check on the names of the existing tables,

we can see that students2 has indeed been renamed to student.

We can now use the object conn, which connects our database to the physical file

“StudentsDB.db” according to Figure 6.5, to commit and save all the changes in our

database. Subsequently, we can also close the connection to the database.

Figure 6.65 Commit Changes of the Database to Physical File and Close Connection

Read

Refer to the link below for more details and examples on the .commit() method in

the sqlite3 package:

https://docs.python.org/3/library/sqlite3.html#connection-objects

SU6-72

https://docs.python.org/3/library/sqlite3.html

ANL252 Basic SQL in Python

Summary

In this study unit, we have first learned how to write Python programs to store data

entered by a user to a .csv text file. After the sqlite3 package has been introduced, we

are able to connect Python with the databases and convert external data sources saved

as .csv text files to database tables by SQL. With the SELECT statement, we could execute

different types of data query such as sorting and filtering data. Here, we have used Python

programming to generate SELECT statements flexibly and to convert the query output

to pandas DataFrames for better presentation in the Python environment. We have also

come across the four methods for joining two or more tables of a database: inner join, left

join, cross join, and outer join. The output of these methods could vary strongly since they

select the records differently. The option of grouping the data in a table and calculating

some aggregated statistics has also been illustrated. And we have learned that groups can

be filtered by the aggregated results. With the ALTER TABLE statements, we can also

add, rename, or delete columns and alter thereby the structure of a table. Finally, we need

to apply the .commit() method of the sqlite3 package to save the modification of the

database to a physical file in our computer.

SU6-73

ANL252 Basic SQL in Python

Formative Assessment

1. Which of the following modes of the open() function does not allow you to write to

the source file?

a. "a"

b. "r"

c. "r+"

d. "w"

2. What role does the cursor object play in Python?

a. It carries our commands from Python to SQL.

b. It connects Python with the database.

c. It is the database object in Python.

d. It defines the table in the database with direct access.

3. After querying a SQL table with 50 observations, we use fetchone() to check on the

outcome of one record for merely one time. How many records will remain available

in the query output after that?

a. 0

b. 1

c. 49

d. 50

4. Which statement/clause/keyword cannot be embedded in the SELECT statement?

a. CROSS JOIN

b. GROUP BY

c. ORDER BY

d. RENAME TO

SU6-74

ANL252 Basic SQL in Python

5. Table A has 50 records and table B has 70. A total of 40 records could be matched

based on certain conditions. What would be the number of records in the output table

if we merged A and B by inner join and cross join, respectively?

a. 40 and 3500

b. 50 and 3500

c. 40 and 50

d. 50 and 70

6. Which of the following values would not be selected given the following SQL

command?

SELECT * FROM city_list WHERE city LIKE 'S%g%';

a. Singapore.

b. SINGAP.

c. S’PORE

d. SG

7. Which of the following is one of the main differences between USING and ON in an

INNER JOIN clause?

a. Only ON is allowed to use in an INNER JOIN clause.

b. The matching variable from the second table will not be carried over to the

output table of the query.

c. Missing values of the matching variable from the first table will be replaced by

the values of the matching variable from the second table.

d. We can omit the names of the original tables when using ON in the INNER JOIN

clause.

SU6-75

ANL252 Basic SQL in Python

8. In a table called cars, there is a variable named type which has 4 values: A, B, C and

D. Type A has 20 records, Type B has 10, Type C has 34, Type D has 7 records. What

would be the output table of the following query?

 SELECT type, COUNT(type)
 FROM cars
 GROUP BY type
 WHERE COUNT(type) >= 20;

a. Empty table

b. Error

c. Type C, 34

d. Type A, 20

Type C, 34

9. Which of the following functions is directly supported by SQLite or SQLite3?

a. OUTER JOIN

b. DROP COLUMN

c. REARRANGE COLUMN

d. RENAME TABLE TO

10. Which of the following is no more possible after the connection to a database is

closed?

a. Check the name of the existing tables in a database

b. Connect to another database

c. Rename the database file using file explorer of the operating system

d. Extract information from a Python object which contains the content of an SQL

query

SU6-76

ANL252 Basic SQL in Python

Solutions or Suggested Answers

Formative Assessment
1. Which of the following modes of the open() function does not allow you to write to

the source file?

a. "a"

Incorrect. We can append new records to the file in the appending mode.

b. "r"

Correct. We can only extract data from the file in the reading mode.

c. "r+"

Incorrect. We can add new contents to the file in the updating mode.

d. "w"

Incorrect. We can write to the file in the writing mode.

2. What role does the cursor object play in Python?

a. It carries our commands from Python to SQL.

Correct. We send our SQL commands through the cursor object from

Python to SQL.

b. It connects Python with the database.

Incorrect. The connection object connects Python to the database.

c. It is the database object in Python.

Incorrect. There is no direct database object in Python.

d. It defines the table in the database with direct access.

SU6-77

ANL252 Basic SQL in Python

Incorrect. The cursor object does not specify the table in the database that we

are working on.

3. After querying a SQL table with 50 observations, we use fetchone() to check on the

outcome of one record for merely one time. How many records will remain available

in the query output after that?

a. 0

Incorrect. The fetchone() function only fetches one record from the query

output. So, there must be more than 0 records remaining.

b. 1

Incorrect. The fetchone() function only fetches one record from the query

output. So, there must be more than 1 records remaining.

c. 49

Correct. Since the fetchone() function only fetches one record from the

query output, there must be 49 records remaining.

d. 50

Incorrect. The fetchone() function fetches one record from the query

output anyway. So, there must be less than 50 records remaining.

4. Which statement/clause/keyword cannot be embedded in the SELECT statement?

a. CROSS JOIN

Incorrect. The CROSS JOIN clause must be embedded in the SELECT

statement.

b. GROUP BY

SU6-78

ANL252 Basic SQL in Python

Incorrect. The GROUP BY statement must be embedded in the SELECT

statement.

c. ORDER BY

Incorrect. The ORDER BY keyword must be embedded in the SELECT

statement.

d. RENAME TO

Correct. The RENAME TO keyword must be embedded in the ALTER TABLE

statement.

5. Table A has 50 records and table B has 70. A total of 40 records could be matched

based on certain conditions. What would be the number of records in the output table

if we merged A and B by inner join and cross join, respectively?

a. 40 and 3500

Correct. Inner join creates the intersection set of both tables, i.e., 40, and

cross join returns the cartesian product of both tables, i.e., 3500.

b. 50 and 3500

Incorrect. Only if A were left joined by B, the number of records of A would

return, i.e., 50, and cross join returns the cartesian product of both tables, i.e.,

3500.

c. 40 and 50

Incorrect. Inner join creates the intersection set of both tables, i.e., 40, but only

if A were left joined by B, the number of records of A would return, i.e., 50.

d. 50 and 70

SU6-79

ANL252 Basic SQL in Python

Incorrect. Only if A were left joined by B, the number of records of A would

return, i.e., 50, and only if B were left joined by A, the number of records of

B would return, i.e., 70.

6. Which of the following values would not be selected given the following SQL

command?

SELECT * FROM city_list WHERE city LIKE 'S%g%';

a. Singapore.

Incorrect. Since “S” and “g” are parts of this string, SQL would select this

value.

b. SINGAP.

Incorrect. Since “S” and “g” are parts of this string and SQL is not case

sensitive, SQL would select this value.

c. S’PORE

Correct. Since “g” is not a sub-string of this string, SQL would not select

this value.

d. SG

Incorrect. Since “S” and “g” are parts of this string and SQL is not case

sensitive, SQL would select this value.

7. Which of the following is one of the main differences between USING and ON in an

INNER JOIN clause?

a. Only ON is allowed to use in an INNER JOIN clause.

Incorrect. USING and ON are allowed to use in all JOIN clauses.

SU6-80

ANL252 Basic SQL in Python

b. The matching variable from the second table will not be carried over to the

output table of the query.

Correct. Only the matching variable from the first table will be carried over

to the output table when USING is used in the JOIN clauses.

c. Missing values of the matching variable from the first table will be replaced

by the values of the matching variable from the second table.

Incorrect. It is simply impossible to find matches for missing values in

the matching variables from both tables. As a result, there cannot be any

replacement.

d. We can omit the names of the original tables when using ON in the INNER

JOIN clause.

Incorrect. We must include the names of the original tables when using ON in

the INNER JOIN clause.

8. In a table called cars, there is a variable named type which has 4 values: A, B, C and

D. Type A has 20 records, Type B has 10, Type C has 34, Type D has 7 records. What

would be the output table of the following query?

 SELECT type, COUNT(type)
 FROM cars
 GROUP BY type
 WHERE COUNT(type) >= 20;

a. Empty table

Incorrect. The result would only be possible if the last line were HAVING

COUNT(type) >= 40.

b. Error

SU6-81

ANL252 Basic SQL in Python

Correct. We cannot select groups using the WHERE clause on the aggregated

results. SQL will return an error to us.

c. Type C, 34

Incorrect. The result would only be possible if the last line were HAVING

COUNT(type) >= 30.

d. Type A, 20

Type C, 34

Incorrect. The result would only be possible if the last line were HAVING

COUNT(type) >= 20.

9. Which of the following functions is directly supported by SQLite or SQLite3?

a. OUTER JOIN

Incorrect. OUTER JOIN is not supported by SQLite. We can only outer join

two tables using two LEFT JOIN clauses and connecting them with the

UNION ALL operator.

b. DROP COLUMN

Incorrect. DROP COLUMN is not supported by SQLite. We can only drop a

column from a table by creating a new table first, defining all the columns

except the one that should be dropped and transferring the corresponding

data to the new table.

c. REARRANGE COLUMN

Incorrect. REARRANGE COLUMN is not an SQL function at all. We can

rearrange the columns from a table by creating a new table first, defining all

the columns in the new sequence and transferring the corresponding data to

the new table.

d. RENAME TABLE TO

SU6-82

ANL252 Basic SQL in Python

Correct. RENAME TABLE TO is supported by SQLite. But it is not a stand-

alone statement. We can rename the table using the ALTER TABLE RENAME

TO statement.

10. Which of the following is no more possible after the connection to a database is

closed?

a. Check the name of the existing tables in a database

Correct. To check the name of the existing tables in a database, we need to

send a query to the master table sql_master, which means that we need

the connection to the database.

b. Connect to another database

Incorrect. Once the connection to one database is closed, we can connect

Python to another database.

c. Rename the database file using file explorer of the operating system

Incorrect. If we rename the database file outside Python or SQL, we can do it

after the connection is closed and the file is not opened by another program

anymore.

d. Extract information from a Python object which contains the content of an

SQL query

Incorrect. Since it is a Python object, we do not need a connection to the

database to work on it.

SU6-83

ANL252 Basic SQL in Python

References

pandas. (n.d.). pandas.DataFrame.from_records. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.from_records.html

pandas. (n.d.). pandas.DataFrame.to_sql. The pandas development team.

https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.to_sql.html

Python.org. (n.d.). Built-in functions. Python Software Foundation. https://

docs.python.org/3/library/functions.html#open

Python.org. (n.d.). Built-in types. Python Software Foundation. https://

docs.python.org/3/library/stdtypes.html#str.join

Python.org. (n.d.). Input and output. Python Software Foundation. https://

docs.python.org/3/tutorial/inputoutput.html#tut-files

Python.org. (n.d.). sqlite3 — DB-API 2.0 interface for SQLite databases. Python Software

Foundation. https://docs.python.org/3/library/sqlite3.html

Python.org. (n.d.). sqlite3 — DB-API 2.0 interface for SQLite databases. Python Software

Foundation. https://docs.python.org/3/library/sqlite3.html#connection-objects

Python.org. (n.d.). sqlite3 — DB-API 2.0 interface for SQLite databases.

Python Software Foundation. https://docs.python.org/3/library/

sqlite3.html#sqlite3.Cursor.description

Python Tutorial. (n.d.). Python list remove() method. w3schools.com. https://

www.w3schools.com/python/ref_list_remove.asp

SQL Tutorial. (n.d.). SQL ALTER keyword. w3schools.com. https://

www.w3schools.com/sql/sql_alter.asp

SQL Tutorial. (n.d.). SQL AND, OR and NOT operators. w3schools.com. https://

www.w3schools.com/sql/sql_and_or.asp

SU6-84

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_records.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.from_records.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str.join
https://docs.python.org/3/library/stdtypes.html#str.join
https://docs.python.org/3/tutorial/inputoutput.html#tut-files
https://docs.python.org/3/tutorial/inputoutput.html#tut-files
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html#connection-objects
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.description
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.description
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/sql/sql_alter.asp
https://www.w3schools.com/sql/sql_alter.asp
https://www.w3schools.com/sql/sql_and_or.asp
https://www.w3schools.com/sql/sql_and_or.asp

ANL252 Basic SQL in Python

SQL Tutorial. (w3schools.com). SQL BETWEEN operator. https://www.w3schools.com/

sql/sql_between.asp

SQL Tutorial. (n.d.). SQL COUNT(), AVG() and SUM() functions. w3schools.com. https://

www.w3schools.com/sql/sql_count_avg_sum.asp

SQL Tutorial. (n.d.). SQL CREATE TABLE statement. w3schools.com. https://

www.w3schools.com/sql/sql_create_table.asp

SQL Tutorial. (n.d.). SQL DELETE keyword. w3schools.com. https://

www.w3schools.com/sql/sql_ref_delete.asp

SQL Tutorial. (n.d.). SQL DROP TABLE statement. w3schools.com. https://

www.w3schools.com/sql/sql_drop_table.asp

SQL Tutorial. (n.d.). SQL GROUP BY statement. w3schools.com. https://

www.w3schools.com/sql/sql_groupby.asp

SQL Tutorial. (n.d.). SQL HAVING clause. w3schools.com. https://

www.w3schools.com/sql/sql_having.asp

SQL Tutorial. (n.d.). SQL IN operator. w3schools.com. https://www.w3schools.com/sql/

sql_in.asp

SQL Tutorial. (n.d.). SQL INNER JOIN keyword. w3schools.com. https://

www.w3schools.com/sql/sql_join_inner.asp

SQL Tutorial. (n.d.). SQL INSERT INTO statement. w3schools.com. https://

www.w3schools.com/sql/sql_insert.asp

SQL Tutorial. (n.d.). SQL LEFT JOIN keyword. w3schools.com. https://

www.w3schools.com/sql/sql_join_left.asp

SQL Tutorial. (n.d.). SQL LIKE operator. w3schools.com. https://www.w3schools.com/

sql/sql_like.asp

SQL Tutorial. (n.d.). SQL MIN() and MAX() functions. w3schools.com. https://

www.w3schools.com/sql/sql_min_max.asp

SU6-85

https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_between.asp
https://www.w3schools.com/sql/sql_count_avg_sum.asp
https://www.w3schools.com/sql/sql_count_avg_sum.asp
https://www.w3schools.com/sql/sql_create_table.asp
https://www.w3schools.com/sql/sql_create_table.asp
https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.w3schools.com/sql/sql_ref_delete.asp
https://www.w3schools.com/sql/sql_drop_table.asp
https://www.w3schools.com/sql/sql_drop_table.asp
https://www.w3schools.com/sql/sql_groupby.asp
https://www.w3schools.com/sql/sql_groupby.asp
https://www.w3schools.com/sql/sql_having.asp
https://www.w3schools.com/sql/sql_having.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_in.asp
https://www.w3schools.com/sql/sql_join_inner.asp
https://www.w3schools.com/sql/sql_join_inner.asp
https://www.w3schools.com/sql/sql_insert.asp
https://www.w3schools.com/sql/sql_insert.asp
https://www.w3schools.com/sql/sql_join_left.asp
https://www.w3schools.com/sql/sql_join_left.asp
https://www.w3schools.com/sql/sql_like.asp
https://www.w3schools.com/sql/sql_like.asp
https://www.w3schools.com/sql/sql_min_max.asp
https://www.w3schools.com/sql/sql_min_max.asp

ANL252 Basic SQL in Python

SQL Tutorial. (n.d.). SQL NULL values. w3schools.com. https://www.w3schools.com/

sql/sql_null_values.asp

SQL Tutorial. (n.d.). SQL ORDER BY keyword. w3schools.com. https://

www.w3schools.com/sql/sql_orderby.asp

SQL Tutorial. (n.d.). SQL SELECT statement. w3schools.com. https://

www.w3schools.com/sql/sql_select.asp

SQL Tutorial. (n.d.). SQL UPDATE statement. w3schools.com. https://

www.w3schools.com/sql/sql_update.asp

SQL Tutorial. (n.d.). SQL WHERE clause. w3schools.com. https://www.w3schools.com/

sql/sql_where.asp

SQL Tutorial. (n.d.). SQL wildcards. w3schools.com. https://www.w3schools.com/sql/

sql_wildcards.asp

SQL Tutorial. (n.d.). SQL working with dates. w3schools.com. https://

www.w3schools.com/sql/sql_dates.asp

SQLite. (n.d.). Date and time functions. https://sqlite.org/lang_datefunc.html

SQLite Tutorial. (n.d.). SQLite ALTER TABLE. https://www.sqlitetutorial.net/sqlite-

alter-table/

SQLite Tutorial. (n.d.). SQLite BETWEEN. https://www.sqlitetutorial.net/sqlite-

between/

SQLite Tutorial. (n.d.). SQLite create table. https://www.sqlitetutorial.net/sqlite-create-

table/

SQLite Tutorial. (n.d.). SQLite cross join. SQLite Tutorial. https://www.sqlitetutorial.net/

sqlite-cross-join/

SQLite Tutorial. (n.d.). SQLite delete. https://www.sqlitetutorial.net/sqlite-delete/

SQLite Tutorial. (n.d.). SQLite drop table. https://www.sqlitetutorial.net/sqlite-drop-

table/

SQLite Tutorial. (n.d.). SQLite group by. https://www.sqlitetutorial.net/sqlite-group-by/

SU6-86

https://www.w3schools.com/sql/sql_null_values.asp
https://www.w3schools.com/sql/sql_null_values.asp
https://www.w3schools.com/sql/sql_orderby.asp
https://www.w3schools.com/sql/sql_orderby.asp
https://www.w3schools.com/sql/sql_select.asp
https://www.w3schools.com/sql/sql_select.asp
https://www.w3schools.com/sql/sql_update.asp
https://www.w3schools.com/sql/sql_update.asp
https://www.w3schools.com/sql/sql_where.asp
https://www.w3schools.com/sql/sql_where.asp
https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_wildcards.asp
https://www.w3schools.com/sql/sql_dates.asp
https://www.w3schools.com/sql/sql_dates.asp
https://sqlite.org/lang_datefunc.html
https://www.sqlitetutorial.net/sqlite-alter-table/
https://www.sqlitetutorial.net/sqlite-alter-table/
https://www.sqlitetutorial.net/sqlite-between/
https://www.sqlitetutorial.net/sqlite-between/
https://www.sqlitetutorial.net/sqlite-create-table/
https://www.sqlitetutorial.net/sqlite-create-table/
https://www.sqlitetutorial.net/sqlite-cross-join/
https://www.sqlitetutorial.net/sqlite-cross-join/
https://www.sqlitetutorial.net/sqlite-delete/
https://www.sqlitetutorial.net/sqlite-drop-table/
https://www.sqlitetutorial.net/sqlite-drop-table/
https://www.sqlitetutorial.net/sqlite-group-by/

ANL252 Basic SQL in Python

SQLite Tutorial. (n.d.). SQLite having. https://www.sqlitetutorial.net/sqlite-having/

SQLite Tutorial. (n.d.). SQLite in. https://www.sqlitetutorial.net/sqlite-in/

SQLite Tutorial. (n.d.). SQLite inner join. https://www.sqlitetutorial.net/sqlite-inner-

join/

SQLite Tutorial. (n.d.). SQLite insert. https://www.sqlitetutorial.net/sqlite-insert/

SQLite Tutorial. (n.d.). SQLite IS NULL. https://www.sqlitetutorial.net/sqlite-is-null/

SQLite Tutorial. (n.d.). SQLite left join. https://www.sqlitetutorial.net/sqlite-left-join/

SQLite Tutorial. (n.d.). SQLite like. https://www.sqlitetutorial.net/sqlite-like/

SQLite Tutorial. (n.d.). SQLite order by. https://www.sqlitetutorial.net/sqlite-order-by/

SQLite Tutorial. (n.d.). SQLite rename column. https://www.sqlitetutorial.net/sqlite-

rename-column/

SQLite Tutorial. (n.d.). SQLite select. https://www.sqlitetutorial.net/sqlite-select/

SQLite Tutorial. (n.d.). SQLite union. https://www.sqlitetutorial.net/sqlite-union/

SQLite Tutorial. (n.d.). SQLite update. https://www.sqlitetutorial.net/sqlite-update/

SQLite Tutorial. (n.d.). SQLite where. https://www.sqlitetutorial.net/sqlite-where/

w3resource. (n.d.). SQL LOWER() function. w3resource.com. https://

www.w3resource.com/sql/character-functions/lower.php

SU6-87

https://www.sqlitetutorial.net/sqlite-having/
https://www.sqlitetutorial.net/sqlite-in/
https://www.sqlitetutorial.net/sqlite-inner-join/
https://www.sqlitetutorial.net/sqlite-inner-join/
https://www.sqlitetutorial.net/sqlite-insert/
https://www.sqlitetutorial.net/sqlite-is-null/
https://www.sqlitetutorial.net/sqlite-left-join/
https://www.sqlitetutorial.net/sqlite-like/
https://www.sqlitetutorial.net/sqlite-order-by/
https://www.sqlitetutorial.net/sqlite-rename-column/
https://www.sqlitetutorial.net/sqlite-rename-column/
https://www.sqlitetutorial.net/sqlite-select/
https://www.sqlitetutorial.net/sqlite-union/
https://www.sqlitetutorial.net/sqlite-update/
https://www.sqlitetutorial.net/sqlite-where/
https://www.w3resource.com/sql/character-functions/lower.php
https://www.w3resource.com/sql/character-functions/lower.php

ANL252 Basic SQL in Python

SU6-88

