
1 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

APACHE SPARK
ARCHITECTURE

DR. ALVIN ANG

D R . A L V I N ’ S P U B L I C A T I O N S

2 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

CONTENTS

I. Simple Architecture .. 3

A. Local ... 5

B. Cluster Mode .. 6
1. Submit Mode..6
2. “Real Time” Mode ..7

II. Detailed Architecture ... 9

A. How This Works (In a Nutshell…) ... 10

B. RDD .. 12
1. R for Resilient ...12
2. D for Distributed ..13
3. D for Datasets ..13

C. DAG .. 14
1. Transformations ...14
2. Actions ...15

D. Task Scheduler / Cluster Manager / Executor ... 15
a) Task Scheduler = Cluster Manager = BOSS ..15
b) Executor = Node = SLAVE ...15

About Dr. Alvin Ang .. 16

3 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

I . SIMPLE ARCHITECTURE

• Apache Spark is meant for distributing big data to do parallel processing workloads.

• Basically, we have 2 modes:

o Local vs Cluster

• Spark Client refers to your IDE (like Jupyter Notebook or Colab)… the place where you code

• Your Code is also known as an “Application”. It can either sit on your laptop running (like
Jupyter NB), or you can submit it to a Cluster Manager, once you are done with your code.

• The red boxes represent the Cluster Managers.

4 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

• There are 4 official types of Cluster Managers.

• Standalone refers to Local[*]

• Yarn is the most popular Cluster manager.

• Its supposed to take care of the automatic scheduling of your resources backend.

5 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

A. LOCAL

• Local mode represents running everything on 1 laptop.

• It doesn’t make sense since Apache Spark was meant to be performed for big data running
on huge clusters.

• Thus, Local mode is just for testing and learning purposes.

• You can either have just the Master running… or Master and Slaves…

• Local [*] … the * represents the number of threads (running inside the Java Virtual Machine
JVM).

• Local [1] means only 1 thread… which refers to only the Master… and with no other
threads, the Master has to do all the work himself….

• Local [3] means 3 threads… which refers to the Master and 2 others Slaves… which means
both Master and 2 Slaves work together….

• However, note that all these still happen only on 1 laptop, meaning its just using all the
resources on 1 laptop.

• An example would be: https://www.alvinang.sg/s/Installing-Spark-on-Colab-by-Dr-Alvin-
Ang.pdf

• This article represents running Spark on ‘Local’…. Because Colab can’t do multiple Clusters
(its not connected anywhere else…)

• Thus the entire processing is using the Resources on 1 local Colab runtime only…

https://www.alvinang.sg/s/Installing-Spark-on-Colab-by-Dr-Alvin-Ang.pdf
https://www.alvinang.sg/s/Installing-Spark-on-Colab-by-Dr-Alvin-Ang.pdf

6 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

B. CLUSTER MODE

• You either have “Submit” mode or “Real Time” mode

1. SUBMIT MODE

• You basically Code on your IDE or your laptop (also known as your Application) …

• And once done, you submit your Application (A1 and/or A2 if you have 2 applications) to
the Cluster Manager (like Yarn) who will take care of managing the Masters and Slaves.

• When you switch off your laptop (or IDE), the Cluster Manager continues to work.

• An example is: https://www.alvinang.sg/s/Setting-Up-Apache-Spark-Cluster-in-Google-
Cloud-by-Dr-Alvin-Ang.pdf

https://www.alvinang.sg/s/Setting-Up-Apache-Spark-Cluster-in-Google-Cloud-by-Dr-Alvin-Ang.pdf
https://www.alvinang.sg/s/Setting-Up-Apache-Spark-Cluster-in-Google-Cloud-by-Dr-Alvin-Ang.pdf

7 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

2. “REAL TIME” MODE

• The difference between “Real Time” vs “Submit” mode is that here, the Master sits on your
laptop.

• The Master is continuously supervising the Slaves on the Cluster in “Real Time”.

• But once you turn off your laptop, the Master dies and all job dies because all Slaves are
turned off as well.

• If you are using your own laptops as Slaves, like this article:

o https://www.alvinang.sg/s/Building-a-Apache-Spark-Local-Cluster-on-Windows-
by-Dr-Alvin-Ang.pdf

o Then this is a “Real Time” mode.

https://www.alvinang.sg/s/Building-a-Apache-Spark-Local-Cluster-on-Windows-by-Dr-Alvin-Ang.pdf
https://www.alvinang.sg/s/Building-a-Apache-Spark-Local-Cluster-on-Windows-by-Dr-Alvin-Ang.pdf

8 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

o But run locally.

• But if you are using the Cloud like AWS / Databricks…

o https://www.alvinang.sg/s/Using-Apache-Spark-in-AWS-and-Databricks-by-Dr-
Alvin-Ang.pdf

https://www.alvinang.sg/s/Using-Apache-Spark-in-AWS-and-Databricks-by-Dr-Alvin-Ang.pdf
https://www.alvinang.sg/s/Using-Apache-Spark-in-AWS-and-Databricks-by-Dr-Alvin-Ang.pdf

9 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

II . DETAILED ARCHITECTURE

For details, you may refer here:

• https://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/

• https://towardsdatascience.com/a-neanderthals-guide-to-apache-spark-in-python-
9ef1f156d427

https://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/
https://towardsdatascience.com/a-neanderthals-guide-to-apache-spark-in-python-9ef1f156d427
https://towardsdatascience.com/a-neanderthals-guide-to-apache-spark-in-python-9ef1f156d427

10 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

A. HOW THIS WORKS (IN A NUTSHELL…)

• At the start, there is a Spark Driver.

o You can call this “coding”… where you code the Spark interface either using

Python / Scala / Java or R.

o You may also call this “driver” the Application Programming Interface (API).

o You code the “driver” to give it multiple “tasks”.

• But which library / environment / ecosystem are you coding in?

o You then pick the library you want to use to start to code in.

o Spark SQL / Spark ML Lib / Spark Streaming / Graph X.

o Example: You pick the ML Lib and start coding in it to do Machine Learning Tasks.

11 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

• Subsequently, you need to store your dataset some where right?

o S3 / CSV / Kafka / RDMS (Relational Database Management Systems) are places

you can store your big data.

o Spark calls / labels storage of your datasets as RDDs (Resilient Distributed

Database).

• Once you have setup your RDD, you have entered the Spark “Context”

o Spark Context / Session distributes the RDDs (Datasets) into multiple chunks.

o This distributing process is called DAG (Direct Acyclic Graph).

o The purpose of breaking down the RDD is akin to breaking down a huge dataset

(which is a lot of work) to be redistributed later to other “workers” to handle later

on.

• Now, it’s the Cluster Manager’s turn to take over.

o He will group multiple nodes into “blocks”.

o That’s why he is also called the “block” manager.

o Each node is known as an executor / worker / just simply a machine (like one

laptop).

o The Cluster Manager will take the chunks of RDDs (smaller chunks of datasets) and

hand them over to his “workers” / nodes to do processing – each labelled as a

“task”.

o The Cluster Manager will use Resource Management tools such as Yarn / Mesos /

Docker / Kubernetes / OpenStack / Spark Cluster Manager / EC2 to help with

distribution.

12 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

B. RDD

• RDDs = Resilient Distributed Datasets

1. R FOR RESILIENT

• RDDs are fault tolerant.

• Meaning they work properly even when a failure occurs.

• A failure could be a node bursting into flames for example, or just a communication
breakdown between nodes.

• The graph above shows the Lineage Graph of a RDD.

• Its what the DAG does – transformation and actions (more about this later) that distributes
the RDDS.

• This distribution of RDD makes it fault tolerant.

• In other words, its like replication of the same dataset and placed around other places.

• It makes the RDD independent of other RDDs.

• Thus, if a node / “worker” fails for some reason, all the information about what that node
was supposed to be doing is stored in the lineage graph, which can be replicated elsewhere.

13 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

2. D FOR DISTRIBUTED

• RDDS are distributed.

• Which means they can be repartitioned / shuffled (for sharing of computing resources if the
dataset is very huge).

• Since the processing of data will be divided across multiple nodes, the data is also divided
across multiple nodes.

• Partitioned data refers to data that has been optimized to be able to be processed on
multiple nodes.

3. D FOR DATASETS

• RDDs are a collection of datasets.

• RDDs are immutable: Which means once an RDD has been made, it is impossible to alter it.

• RDD is similar to Pandas DataFrame.

• But RDD do not have a schema, which means that they do not have a columnar structure.

• Records are just recorded row-by-row, and are displayed similar to a list.

• While Pandas DataFrames are organized into columnar structure.

• However, we have Spark DataFrames.

• Spark DataFrame have all of the features of RDDs but also have a schema.

• This will make them our data structure of choice for getting started with PySpark.

14 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

C. DAG

• DAG stands for Direct Acyclic Graph.

• Two things happen in the DAG:

1. TRANSFORMATIONS

• Transformations create new RDDs (something like creating multiple mirror images of the
dataset, without cloning them actually).

• Transformations cannot alter RDDs because they are immutable once created.

• So if you look at the Lineage Graph earlier (in green), the RDD at the top is the “parent”
while those at the bottom are “child”.

• The “child” is just a mirror image of the “parent”. They are just hypothetical RDDs.

• They aren’t really existent until an “Action” is called upon it.

• Thus, even if one RDD is down, they can “mirror” back to other RDDS to be recreated.

15 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

2. ACTIONS

• An Action does NOT produce an RDD as an output.

• An Action is the cue to the compiler to evaluate the Lineage Graph and return the value
specified by the Action.

• Some examples of common Actions are:

o doing a count of the data,

o finding the max or min,

o returning the first element of an RDD, etc.

D. TASK SCHEDULER / CLUSTER MANAGER / EXECUTOR

a) Task Scheduler = Cluster Manager = BOSS

• Job Scope to Check:

o Status of worker node (busy/available)

o Location of worker node

o Memory of worker node

o Total CPU cores of worker node

o Cluster manager keep check on the availability of nodes for task allocation.

• The two most widely used Resource Managers by Cluster Managers are YARN and Mesos.

b) Executor = Node = SLAVE

• Job Scope:

o To work on any task given by the Cluster Manager.

16 | P A G E

COPYRIGHTED BY DR ALVIN ANG

WWW.ALVINANG.SG

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a

scientist, entrepreneur, as well as a personal/business advisor. More about him at www.AlvinAng.sg.

http://www.alvinang.sg/

