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lhput Modeling

Input models provide the driving force for a simulation model. In the simulation of a queueing system,
typical input models are the distributions of time between arrivals and of service times. For an inventory-
system simulation, input models include the distributions of demand and of lead time. For the simulation of
a reliability system, the distribution of time to failure of a component is an example of an input model.

In the examples and exercises in Chapters 2 and 3, the appropriate distributions were specified for you.
In real-world simulation applications, however, coming up with appropriate distributions for input data is a
major task from the standpoint of time and resource requirements. Regardless of the sophistication of the
analyst, faulty models of the inputs will lead to outputs whose interpretation could give rise to misleading
recommendations.

There are four steps in the development of a useful model of input data:

1

3

Collect data from the real system of interest. This often requires a substantial time and resource com-
mitment. Unfortunately, in some situations it is not possible to collect data (for example, when time
is extremely limited, when the input process does not yet exist, or when laws or rules prohibit the
collection of data). When data are not available, expert opinion and knowledge of the process must
be used to make educated guesses.

Identify a probability distribution to represent the input process. When data are available, this step
typically begins with the development of a frequency distribution, or histogram, of the data. Given
the frequency distribution and a structural knowledge of the process, a family of distributions is
chosen. Fortunately, as was described in Chapter 5, several well-known distributions often provide
good approximations in practice.

Choose parameters that determine a specific instance of the distribution family. When data are available,
these parameters may be estimated from the data.
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4. Evaluate the chosen distribution and the associated parameters for goodness of fit. Goodness of fit
may be evaluated informally, via graphical methods, or formally, via statistical tests. The chi-square
and the Kolmogorov-Smirmov tests are standard goodness-of it tests. If not satisfied that the chosen
distribution is a good approximation of the data, then the analyst returns to the second step, chooses
a different family of distributions, and repeats the procedure. If several iferations of this procedure
fail to yield a fit between an assumed distributional form and:the collected data, the empmcal form
of the distribution may be used, as was described in Section 8.1.5. T

Each of these steps is discussed in this chapter. Although software is now widely available to accomplish
Steps 2, 3, and 4—including such stand-alone programs as ExpertFit® and Stat:Fit® and such integrated
programs as Arena’s Input Processor and @Risk’s BestFit®—it is still important to understand what the soft-
ware does, so that it can be used appropriately. Unfortunately, software is not as readily available for input
modeling when there is a relationship between two or more variables of interest or when no data are available.
These two topics are discussed toward the end of the chapter.

9.1 DATA COLLECTION

Problems are found at the end of each chapter, as exercises for the reader, in textbooks about mathematics,
physics, chemistry, and other technical subjects. Years and years of working these problems could give the
reader the impression that data are readily available. Nothing could be further from the truth. Data collection
is one of the biggest tasks in solving a real problem. It is one of the most important and difficult problems
in simulation. And, even when data are available, they have rarely been recorded in a form that is directly
useful for simulation input modeling. _

“GIGO,” or “garbage-in-—garbage-out,” is a basic concept in computer science, and it applies equally in
the area of discrete-system simulation. Even when the model structure is valid, if the input data are inaccu-
rately-collected, inappropriately analyzed, or not representative of the environment, the simulakion ousput
data will be misleading and possibly damaging or costly when used for policy or decision making.

Example 9.1: The Laundromat
As budding simulation students, the first two authors had assignments to simulate the operation of an ongoing
system. One of these systems, which seemed to be a rather simple operation, was a self-service laundromat with
10 washing machines and six dryers.

However, the data-collection aspect of the problem rapidly became rather enormous. The mterarnval-
time distribution was not homogeneous; it changed by time of day and by day of week. The laundromat
was open 7 days a week for 16 hours per day, or 112 hours per week. It would have been impossible to cover
the operation of the lanndromat with the limited resources available (two students who were also taking four
other courses) and with a tight time constraint (the simulation was to be completed in a 4-week periéd).
Additionally, the distribution of time between arrivals during one week might not have been followed during
the next week. As a compromise, a sample of times was selected, and the interarrival-time distributions were
classified according-to arrival rate (perhaps inappropriately) as “high,” “medium,” and “low.” .

Service-time distributions.also presented a difficult problem from many perspectives. The proportion of
customers demanding the various service combinations had to be.observed and recorded. The simplest case
was the customer desiring one washer followed by one dryer. However, a customer might choose two washing
machines followed by one dryer, one dryer only, and so an. The customers used numbered machines, and it
was possible to follow the customers via-that reference, rather than remembering them by personal charac-
teristics. Because of the dependence between washer demand and dryer demand for an individual customer,
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it would have been mappropnate to treat the service times for washers and dryers separately as independent
variables.

Some customers waited patiently for their clothes to complete the washing or drying cycle, and then they
removed their clothes promptly. Others left the premises and returned after their clothes had finished their
cycle on the machine being used. In a very busy period, the manager would remove a customer’s clothes after
the cycle and set them aside in a basket. It was decided that service termination would be measured as that
point in time at which the machine was emptied of its contents.

Also, machines would break down from time to time. The length of the breakdown varied from a few
moments, when the manager repaired the machine, to several days (a breakdown on Friday night, requiring
a part not in the laundromat storeroom, would not be fixed until the following Monday). The short-term
repair times were recorded by the student team. The long-term repair completion times were estimated by
the manager. Breakdowns then became part of the simulation.

Many lessons can be learned from an actual experience at data collection. The first five exercises at the
end of this chapter suggest some situations in which the student can gain such experience. '

The following suggestions might enhance and facilitate data collection, although they are not all
inclusive.

1. A useful expenditure of time is in planning. This could begin by a practice or preobserving session.
Try to collect data while preobserving. Devise forms for this purpose. It is very likely that these
forms will have to be modified several times before the actual data collection begins. Watch for
unusnal circumstances, and consider how they will be handled. When possible, videotape the system
and extract the data later by viewing the tape. Planning is important, even if data will be collected
automatically (e.g., via computer data collection), to ensure that the appropriate data are available.
When data have already been collected by someone else, be sure toallow plenty of time for converting
the data into a usable format.

2. Try to analyze the data as they are being collected Figure out whether the data being collected are
adequate to provide the distributions needed as input to the simulation. Find out whether any data
being collected are useless to the simulation. There is no needto collect superfluous data.

3. Try to combine homogeneous data sets. Check data for homogeneity in successive time periods
and during the same time period on successive days. For example, check for homogeneity of data
from 2:00 PM. to 3:00 P.M. and 3:00 eM. to 4:00 p.M., and check to see whether the data are hoino-
geneous for 2:00 p.M. to 3:00 p.M. on Thursday and Friday. When checking for homogeneity, an initial
test is to see whether the means of the distributions (the average interarrival times, for example) are
the same. The two-sample ¢ test can be used for this purpose. A more thorough analysis would
require a test of the equivalence of the distributions, perhaps via a quantile-quantile plot (described
later).

4. Be aware of the possibility of data censoring, in which a quantity of interest is not observed in its

entirety. This problem most often occurs when the analyst is interested in the time reguired to

.complete some process (for example, produce a part, treat a patient, or have a component fail), but

the process begins prior to, or finishes after the completion of, the observation period. Censoring can

result in especially long process times being left out of the data sample.

To discover whether there is a relationship between two variables, build a scatter diagram.

Sometimes an eyeball scan of the scatter diagram will indicate whether there is a relationship

between two variables of interest. Section 9.7 describes models for statistically dependent input

data.

. 6. Consider the possibility that a sequence of observations that appear to be independent actually has

" autocorrelation. Autocorrelation can exist in successive time periods or for successive customers.

5
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For example, the service time for the ith customer could be related to the service time for the (i + n)th
customer. A brief introduction to autocorrelation was provided in Section 7.4.2, and some input
models that account for autocorrelation are presented in Section 9.7.

Keep in mind the difference between input data and output or performance data, and be sure to
collect input data. Input data typically represent the uncertain quantities that are largely beyond the
control of the system and will not be altered by changes made to improve the system. Qutput data,
on the other hand, represent the performance of the system when subjected to the inputs, performance
that we might be trying to improve. In a queueing simulation, the customer arrival times-are usually
inputs, whereas the customer delay is an output. Performance data are useful f or model validation,
however—see Chapter 10.

7

Again, these are just a few suggestions. As a rule, data cotlection and analysis must be approached with
great care.

9.2 IDENTIFYING THE DISTRIBUTION WITH DATA

In this section, we discuss methods for selecting families of input distributions when data are available. The
specific distribution within a family is specified by estimating its parameters, as described in Section 9.3.
Section 9.6 takes up the case in which data are unavailable. )

9.2.1 Histograms

A frequency distribution or histogram is useful in identifying the shape of a distribution. A histogram is
constructed as follows:

1. Divide the range of the data into intervals. (Intervals are usually of equal width; however, unequal
widths may be used if the heights of the frequencies are adjusted.)

. Label the horizontal axis to conform to the intervals selected.

. Find the frequency of occurrences within each interval.

. Label the vertical axis so that the total occurrences can be plotted foreach interval.

. Plot the frequencies on the vertical axis.

sHwWwN

(7]

The number of class intervals depends on the number of observations and on the amount of scatter or
dispersion in the data. Hines, Montgomery, Goldsman, and Borrow [2002] state that choosing the nurnber
of class intervals approximately equal to the square root of the sample size often works well in practice.
If the intervals are too wide, the histogram will be coarse, or blocky, and its shape and other details will not
show well. If the intervals are too narrow, the histogram will be ragged and will ot smooth the data.
Examples of ragged, coarse, and appropriate histograms of the same data are shown in Figure 9.1. Modern
data-analysis software often allows the interval sizes to be changed easily and interactively until a good
choice is found. .

The histogram for continuous data corresponds to the probability density function of a theoretical dis-
tribution. If continuous, a line drawn through the center point of each class ifiterval frequency should result
in a shape like that of a pdf.

Histograms for discrete data, where there are a large number of data points, should have a cell foreach
value in the range of the data. However, if there are few data points, it could be necessary to combine adjacent
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Figure 9.1 Ragged, coarse, and appropriate histograms: (a} original dato—-too ragged; (b) comblnlng
adjacentcells—too coarse; (c} combining adjacent cells— appropriate.

cells to eliminate the ragged appearance of the histogram. If the histogram is assocxaled with discrete data,

" it should look like a probabilny mass function.

Example 9.2: Discrete Data

The number of vehicles arriving at the northwest corner of an intersection in a S-minute period between
7:00 a.M. and 7:05 aM. was monitored for five workdays over a 20-week period. Table 9.1 shows the resulting
data, The first entry in the table indicates that there were 12 5-minute periods during which zero vehicles
arrived, 10 periods during which one vehicle arrived, and so on. B

The number of automobiles is a discrete variable, and there are ample data, so the hlstogram may have '
acell for each possible value in the range of the data. The resulting histogram is shown in Figure 9.2.
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Table 9.1 Number of Arrivals in a 5-Minute Period

Arrivals Arrivals
~ per Period Frequency per Period Frequency
0 12 ) 6 7
1 10 . 7 5
2 19 8 5
3 17 9 3
4 (N 10 3
5 8 11 1
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Figure 9.2 Histogram of number of arrivals per period.

Example9.3: Continuous Data
Life tests were performed on a random sample of:electronic components at 1.5 times the nominal voltage,
and their lifetime (or time to failure), in days, was recorded:

79.919 3.081 0.062 1.961 5.845
3.027 6.505 0.021 . 0.013 0.123.

6.769. 59.895 1.192 34760 . 5.009
18.387 0.141 43565 24420 0.433
144.695 2663 17967 - 0.091 9.003

0.941 0.878 337 2.157 1.579
0.624 5.380 3.148 7.078 23960
0.590 1.928 . 0.300 0.002 0.543
7.004  31.764 1005 - 1.147 0.219
3217  14.382 1.008 2.336 4.562
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Table 9.2 Electronic Component
Data

Component Life

(Days) Freguency

0<x<3 ) 23
3ij<6 10
651}.<9 5
9ij< 12 1
12€x,<15 1
ISSJ:j<18 2
lBSx}.<2l . 0
2<sx<24 ; 1
1
0
1
{

U5 <
275x<30
30<x<33
3351,<36

4226 <45 1
575x,<60 1

TSij<81 |

l44Sx).<l4'.-‘ i

Lifetime, usually considered a continuous variable, is recorded here to three-decimal-place accuracy. The
histogram is prepared by placing the data in class intervals. The range of the dataisrather large, from 0.002
day to 144.695 days. However, most of the values (30 of 50) are in the zero-to-5-day range. Using intervals
of width three results in Table 9.2. The data of Table 9.2 are then used to prepare the histogram shown
in Figure 9.3. : S

9.2.2 Selecting the Family of Distributions

- In Chapter 5, some distributions that arise often in simulation were described. Additionally, the shapes of

these distributions were displayed. The purpose of preparing a histogram is to infer a known pdf or pmf.
A family of distributions is selected on the basis of what might arise in the context being investigated along
with the shape of the histogram. Thus, if interarrival-time data have been collected, and the histogram has a
shape similar to the pdf in Figure 5.9, the assumption of an exponential distribution would be warranted.
Similarly, if measurements of the weights of pallets of freight are being made, and the histogram appears
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Figure 9.3 Histogram of component life.

symmemc about the mean with a shape like that shown inFigure5.11, the assumption of a normal distribution
would be warranted.

The exponential, normal, and Poisson distributions are frequently encountered and are rot difficult to
analyze from a computational standpoint. Although more difficult to analyze, the beta, gamma, and Weibull
distributions provide a wide array of shapes and should not be overlooked during modeling of an underlying

" probabilistic process. Perhaps an exponential distribution was assumed, but it was found not to fit the data.
The next step would be to examine where the lack of fit occurred. If the lack of fit was in one of the tails of
the distribution; perhaps a gamma or Wejbull distribution would fit the data more adequately.

There are literally hundreds of probability distributions that have been created; many were created with
‘'some specific physical process in mind. One aid to selecting distributions is to use the physical basis of the
distributions as a guide. Here are some examples:

Binomial: Models the number of successes in # trials, when the trials are independent with common
" success probability, p; for example, the number of defective computer chips found in a lot of n chips.
. Negatlve Bmomlal (includes the geometric distribution): Models the number of trials required to

achieve k successes; for example, the number of computer chips that we must inspect to find 4 defec-
sive chips.

~ Poisson: Models the number of independent events that occur in a fixed amount of time or space; for
eéxample; the number of customers that arrive to a store during 1 hour, or the number of defects found
in 30 square meters of sheet metal.

Normal: Models the distribution of a process that can be thought of as the sum of a number of com-
* ponent processes; for example, a time to assemble a product that is the sum of the times required for
each assembly operation. Notice that the normal distribution admits negative values, which could be

" impossible for process times.
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Lognormal: Models the distribution of a process that can be thought of as the product of (meamng to
multiply together) a number of component processes—for example, the rate on an investment, when
interest is compounded, is the product of the returns for a number of periods.

Exponential: Models the time between independent events, or a process time that is memoryless
(knowing how much time has passed gives no information about how much additional time will pass
before the process is completey—for example, the times between the arrivals from a large population
of potential customers who act independently of each other. The exponential is a highly variable
distribution; it is sometimes overused, because it often leads to mathematically tractable models.
Recall that, if the time between events is exponentially distributed, then the number of events ina
fixed period of timie is Poisson. )

Gamma: Anextremely flexible distribution used to model nonnegative random variables. The { gamma
can be shifted away from 0 by adding a constant.

Beta: An extremely flexible distribution used to model bounded (fixed upper and lower lumts) random
variables. The beta can be shifted away from 0 by adding a constant and can be given a range larger
than {0, 1] by multiplying by a constant.

Erlang: Models processes that can be viewed as the sum of several exponentlally distributed
processes—for example, a computer network fails when a computer and two backup computers fail,
and each has a time to failure that is exponentially distributed. The Erlang is a special case of the
gamma.

Weibull: Models the time to failure for components—for example, the time to failure for a disk dl‘lve
The exponential is a special case of the Weibull.

Discrete or Continuous Uniform: Models complete uncertainty: All outcomes are equally likely.
This distribution often is used inappropriately, when there are no data.

Triangular: Models a process for which only the minimum, most likely, and maximum values of the
distribution are known; for example, the minimum, most likely, and maximum time requlred to test
a product. This model is often a miarked improvement over a uniform distribution.

Empirical: Resamples from the actual data collected; often used when no theoretical distribution
seems appropriate.

Do not ignore physical characteristics of the process when selecting distributions. Is the process naturally
discrete or continuous valued? Is it bounded, or is there no natural bound? This knowledge, which does not
depend on data, can help narrow the family of distributions from which to choose. And keep in mind that there
is no “true” distribution for any stochastic input process. An input model is an approximation of reality, so the
goal is to obtain an approximation that yields useful results from the simulation experiment.

The reader is encouraged to complete Exercises 6 through 11 to learsi more about the shapes of the
distributions mentioned in this section. Examining the variations in shape as the parameters change is very
instructive,

9.2.3 Quantile~Quantile Plots

The construction of histograms; as discussed in Section 9.2.1, and the fecognition of a distributional shape,
as discussed in Section 9.2.2, are necessary ingredients for selecting a family of distributions to represent a
sample of data. However, a histogram is not as useful for evaluating the fit of the chosen distribution. When

_ there is a small number of data points, say 30 or fewer, a histogram can be rather ragged. Further, our

perception of the fit depends on the widths of the histogram intervals. But, even if the intervals are chosen
well, grouping data into cells makes it difficult to compare a histogram to a continuous probability density
function. A quantile-quantile (g — g)-plot is a useful tool for evaluating distribution fit, one that does not

suffer from these problems.
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If X is a random variable with cdf F, then the g-quantile of X is that value ysuchthat F(y)= P(X < ) =q,
for0< g < 1. When F has an inverse, we write Y= F~'(g).

Nowlet {x,i=1,2, ..., n} be a sample of data from X. Order the observations from the smallest to the
largest, and denote these as { YpJ= 1, 2, ..., n}, where ¥, £, -+~ <y . Letj denote the ranking or order

number. Therefore, j = 1 for the smallest and j = r for the largest. The g — g plot is based on the fact that ¥

is an estimate of the (j — 1/2)/n quantile of X. In other words,
-1 J A
¥, is approximately F~'{ __ 2
n

Now suppose that we have chosen a diswibution with cdf F as a possible representation of the distribu-
tion of X. If F is a member of an appropriate family of distributions, then a plot of y, versus F “((j - 1/2)/n)

will be approximately a straight line. If F is from an appropriate family of distributions and also has appro--

priate parameter values, then the line will have slope 1. On the other hand, if the assumed distribution is inap-
propriate, the points will deviate from a straight line, usually in a systematic manner. The decision about
whether to reject some hypothesized model is subjective. '

Example 9.4: Normal O — QO Plot
A robot is used to install the doors on automobiles along an assembly line. It was thought that the installa-
tion times followed a normal distribution. The robot is capable of measuring installation times accurately.
A sample of 20 installation times was automatically taken by the robot, with the following results, where the
values are in seconds:

9979 9956 100.17  100.33
10026  100.41 9998  99.83
10023 © 10027 100.02 ~ 100.47
9955 9962  99.65  99.82
99.96  99.90 10006 . 9985

The sample mean is 99.99 seconds, and the sample variance is (0.2832)? seconds®. These values can serve
as the parameter estimates for the mean and variance of the normal distribution. The observations are now
ordered from smallest to largest as follows:

j Value j Value Value j  Value
19955 6 9982 ii 9998 16  100.26
29956 7 9983 12 10002 17 10027
3 9962 8 9985 13 10006 18 10033 -

4 9965 9 9990 14 10017 19  100.41

5 9979 10 999 15 10023 20  100.47

The ordered observations are then plotted versus F-1((j — 1/2)/20), forj =1, 2, ..., 20, where F is the cdf of
the normal distribution with mean 99.99 and variance (0.2832)?, to obtain a g — g plot. The plotted values
are shown in Figure 9.4, along with a histpgram of the data that has the density function of the normal dis-
tribution superimposed. Notice that it is difficult to tell whether-the data are well represented by a normal
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Figure 9.4 Histogram and g ~ g plot of the installation fimes.

distribution from lookmg at the histogram, but the general perception of a stralght line is quite clear in the
q — q plot and supports the hypothesis of a normal distribution. '
In the evaluation of the linearity of a ¢ — g plot, the following should be considered:

1. The observed values will never fall exactly ona straight line.

2, The ordered values are not independent; they have been ranked. Hence, if one point is above a
straightline, itis likely that the next point will also lie above the line. And itis unhkely that the points
will be scattered about the line.

3. The variances of the extremes (largest and smallest values) are much hlgherthan the variances in the
middle of the plot Greater discrepancies can be accepted at the extremes. The linearity of the points
in the middle of the plot is more important than the linearity at the extremes. :

Modern data-analysis software often includes tools for generating g — ¢ plots, especially for the normal
distribution. The g — g plot can also be used to compare two samples of data to see whether they can be
represented by the same distribution (that is, that they are homogeneous). If x,, x,, ..., x, are a sample of the

-random variable X, and z,, z,, ..., Z, are a sample of the random variable Z, then plomng thé ordered values
" of X versus the ordered values of Z wnll reveal approximately a straight line if both samples are well representcd

by the same distribution (Chambers, Cleveland, and Tukey [1983]).
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9.3 PARAMETER ESTIMATION

After a family of distributions has been selected, the pextstep is to estimate the parameters of the distribution.
Estimators for many useful distributions are described in this section. In addition, many software packages—
some of them integrated into simulation languages—are now available to compute these estimates.

9.3.1 Preliminary Statistics: Sumpie Meon and Sample Variance

In a number of instances, the sample mean, or the sample mean and sample variance, are used to estimate
the parameters of a hypothesized diswibution; see Example 9.4. In the following paragraphs, three sets of
equations are given for computing the sample mean and sample variance. Equations (9.1) and (9.2) can be
used when discrete or continuous raw data are available. Equations (9.3) and (9.4) are used when the data
are discrete and have been grouped in a frequency distribution. Equations (9.5) and (9.6) are used when the
data are discrete or continuous and have been placed in class intervals. Equiations (9.5) and (9.6) are approxi-
mations and should be used only when the raw data are unavailable.
If the observations in a sample of size n are X, X,, ..., X , the sample mean (X') is defined by

"X,

X= " .1

and the sample variance, S, is defined by

" X -nk?
L LK o ©¥2)
n-1

If the data are discrete and have been grouped in a frequency distribution, Equations (9.1) and (9.2) can
be modified to provide for much greater computational efficiency. The sample mean can be computed as

&
DI ¢
= _Z‘JJ;_L_{ (9.3)
and the sample variance as
£ 2
51 - Lond K 2K 94)

n-1
where k is the number of distinct values of X and f} is the observed frequency of the value X; of X.

Example 9.5: Grouped Data

TbedaxamTable9 1 canbeanalyzedtoobtamn— 100,f,=12,X,=0,£,=10,X,=1, ..
and Z = fJX 2 = 2080. From Equation (9.3),

k
Zjunfixj = 364’

X= 364 =3.64
100

and, from Equation (9.4),

2080-100(3.64)*
99

8§ = =763
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The sample standard deviation, S, is just the squate root of the sample variance. In this case, S = J7.63=2.76.
Equations (9.1) and (9.2) would have yielded exactly the same results for X and S2

It is preferable to use the raw data, if possible, when the values are continuous. However, data some-
times are received after having been placed in class intervals. Then it is no longer possible to obtain the exact
sample mean and variance. In such cases, the sample mean and sample variance are approximated from the
following equations:

J_( = 2;1 f:fm.:'
R

9.5)

and

o ot o

P (96)

~ where f is the observed frequency in the jth class interval, m, is the midpoint of the jth interval, and c is the

number of class intervals.

Example 9.6: Continuous Data in Class Intervals
Assume that the raw data on component life shown in Example 9.3 either was dlscarded or was lost.
However, the data shown in Table 9.2 are still available. To approximate values for X and 82, Equations (9.5)

9
and (9.6) are used. The following values are created: f, =23, m, = 1.5, f,= 10, m,=4.5, ..., z,'=| fjm ;=614
and E:: .ffm f = 37,226.5. With r = 50, X is approximated from Equation (9.5) as

614

X=-—
50

=12.28

Then, §? is approximated from Equation (9.6) as

-, 37,226.5-50(12.28)"

§? = 605.849
: 49 :

and

S = 24.614

Applying Equations (9.1) and (9.2) to the original data in Example 9.3 results in X =11.894 and S =24.953.
Thus, when the raw data are either discarded or lost, inaccuracies could result.

9.3.2 Suggesfed Estimators

Numerical estimates of the distribution parameters are neaded to reduce the family of distributions to a specific
distribution and to test the resulting hypothesis. Table 9.3 contains suggested estimators for distribu-
tions oftenused in simulation, all of which were described in Chapter 5. Except for an adjustment to remove
bias in the estimate of &2 for the normal distribution, these estimators are the maximum-likelihood estima-
tors based on the raw data. (If the data are in class intervals, these estimators must be modified.) The reader
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Table 9.3 Suggested Estimators for Distributions Often Used in Simulation

Dislribwion Pérameter(s) Suggested Estimator(s)
Poisson d=X
s 1
E; tial A A==
xponentia 7
Gamma B.é B (see Table A.9)
b=1
X
Normal ne? =X
5% = $? (unbiased)
Lognormal u ol ii= X (after taking In of the data)
2 - §2 (after taking In of the data)
Weibull ap ﬁo X
with v=0 N
NP (S
ﬁ = ﬂj«l - I
f (,B ;4)
See Equations (9.12) and (9.15)
for f(B) andf'(B)
Iterate until convergence
wh
xﬂ]
ap
Beta 8,8, W(B)+ Y - B) =In(G)
¥(B) +¥(f, - B,) =1n(G)
where ¥ is the digamma function,
" iia
Gl = (Hm X“) and
- HE
6,=([T..a-%))

is referred to Fishman [1973] and Law and Kelton [2000] for parameter estimatesfor the uniform, binomial,
and negative binomial distributions. The triangular distribution is usually employed when no data are avail-
able, with the parameters obtained from educated . -guesses for the minimum, most likely, and maximum
possiblé values; the uniform dlstnbuuon may also be used in this way if only minimum and maximum values
are available.- -

- Examples of the use of the estimators-are given in the followmg paragraphs. The reader should keep in
mmd that a-parameter is an unknown constant, but the estimator is a statistic (or random vanable) because
itdepends o thé sample values. To dlstmgmsh the two clearly here, if, say, a parameter is denoted by @, the
esumatot w1ll be denoted by & ' .
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Example 9.7: Poisson Distribution
Assume that the armival data in Table 9.1 require analysis. By comparison with Figure 5.7, an examination
of Figure 9.2 suggests a Poisson distributional assumption with unknown parameter . From Table 9.3, the '
estimator of & is X, which was found in Example 9.5. Thus, & = 3.64. Recall that the true mean and vari-

" ance are equal for the Poisson distribution. In Example 9.5, the sample variance was estimated as §2= 7.63.
However, it should never be expected that the sample mean and the sample variance will be precisely equal,
because each is a random variable.

Example 9.8: Lognoi‘mal Distribution
The rates of remrn on 10 investments in a portfolio are 18.8, 27.9, 21.0, 6.1, 37.4, 5.0, 22.9, 1.0, 3.1 and 8.3
percent. To estimate the parameters of a lognormal model of these data, we fi rst take the natural log of the
dataandobtam 29,3.3, 30, 1.8, 36, 1.6,3.1,0, 1.1, and 2.1. Then we set 1 =X =23 and 6> =5? =1.3.

Example 9.9: Normal Distribution
The parameters of the normal distribution, g and g2, are estimated by X and S2, as shown in Table 9.3.
The q — g plot in Example 9.4 leads to a distributional assumption that the installation times are normal.’
From Equations (9.1) and (9.2), the data in Example 9.4 yield fi = X =99.9865 and & =S =(0. 2832)
second®.

Example 9.10:. Gamma Distribution
The estimator 8 for the gamma distribution is chosen by the use of Table A.9, from Choi and Wette [1969].
Table A.9 requires the computation of the quantity 1/M, where

M=mX- —l—Zlu X 9.7
L=
Also, it can be seen in Table 9.3 that 6 is givenby
A1
§=t 9.8)
X

In Chapter S, it was stated thatlead time is often gamma distributed. Suppose that the lead times (indays) -
associated with 20 orders have been accurately measured as follows:

Lead Time Lead Time
Order {Days) Order (Days)
1 70.292 11 30.215
2 10.107 12 17.137 .
3 48.386 13 44.024
4 20.480 14 10.552 .
5 13.053 15 37.298
6 25.292 - 16 16.314
7 14.713 17 .28.073
8 - 39.166 18 39.019
9 17.421 19 32.330
10 13.905 20 36.547
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To estimate 1§ and é, it is first necessary to compute M from Equation (9.7). Here, X is found, from
Equation (9.1), to be

X= 564.32 =2822
20
Then,
In X =3.34

Next,

20

Zln X, =63.99

=
Then,

M=3. 34—93—9-2 =0.14
20

and

IIM=114

By interpolation in Table A.9, ﬁ = 3.728. Finally, Equation (9.8) results in

Example 9.11: Exponential Dlstnbutlon
Assuming that the data in Example 9.3 come from an exponential distribution, the parameter estimate, l,
can be determined. In Table 9.3, 1is obtained from X as follows:

=——=0.084 per day

Example 9.12: Weibull Distribution .
Suppose that a random sample of size n, X, X,, ..., X,, has been taken and that the observations are assumed
to come from a Weibull distribution. The likelihood function derived by using the pdf given by Equation
(5.47) can be shown to be

. ﬁﬂ n n X 8 .
L(a, )= F[]‘[x:*’-"]exp[-z(—') ] 9.9)
] it \ &

The maximum-likelihood estimates are those values of & and B that maximize L(e, B) or, équivalently,
maximize InL(a, f), denoted by X(a, ). The maximum value of /(a, f) is obtained by talsing the partial
derivatives 0l(a, B)/0c and 9l(c, B)/ap, setting each to zero, and solving the resulting equations, which after
substitution become

f(B)=0 (9.10)
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and

( ZX”] 9.11)

i)

where
ny XX,
f(ﬁ)——+ZlnX _WE;.1 —. .12)

=1 z; X'B

The maximum-likelihood estimates, & and ﬂ are the solutions of Equations (9.10) and (9.11). First,
B is found via the iterative procedure explained shortly. Then & is found from Equation (9.11), with = B.

Equation (9.10) is nonlinear, so it is necessary to use a numerical-analysis technique to solveit. In Table 9.3,
an iterative method for computing B is given as

A & f(ﬁj—l)
ROy AL id ©.13)
ﬁ)’ ﬁf f’(ﬁj,J

Equation (9.1 3) employs Newton’s method in reaching ﬁ where ﬁ is the jth iteration, beginning with an initial
estimate for B, o given in Table 9.3, as follows:

(9.14)

If the initial estimate, ﬁo, is sufficiently.closeto the solutiom‘§ ,then p f approaches B as j — o, In Newton’s
‘method, Bis approached through increments of size f(Bj_;)/f' .H)- Equation (9.12) is used to compute

£ Bj-l) and Equation (9.15) is used to compute; i (ﬁj_,) as follows:

DIRAULI o3 o x)
FoooxLx T )

Equation (9.15) can be derived from Equation (9.12) by differentiating f{) with respect to . The iterative

9.15)

=

process continues until f(ﬁ‘) =, for example, until l f(B; )l <0.001.

Considerthedata givenin Example 9.3. These dataconcern the failure of electronic components and looks
to come from an exponential distribution. In Example 9.11, the parameter A was estimated on the hypothesis
that the data were from an exponential distribution. If the hypothesis that the data came from an exponential
distribution is rejected, an alternative hypothesis is that the data come from a Weibull distribution. The Weibull

-distribution is suspected because the data pertain to electronic componentfaxlures which occur suddenly.

Equanon (9.14) is used to compute ﬂ For the data in Example 9.3, n =50, X ='11.894, X2= 141467,
and 2 =37,575.850; so S? is found by Equation (9.2) to be

37,578.850-50(141.467)
' 49

52= =622.650
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and S = 24.953. Thus,

To compute I3 by using Equation (9.13) requires the calculation of f(ﬁ o) and f’(ﬁo) from Equations (9.12)

and (9.15). The following additional values are needed: Z X"“ =115.125, 2 In X, =38.294,
7 xhin X, =292.629,and Y X (In X, =1057.781. Thus,

_ 50(292.629)
f(ﬁ")' 0477 +382 115.125

=16.024

and

=50 50(1057.781) + 50(292.629)*
0477y 115.125 (115.125)

b= =-356.110

Then, by Equation (9.13),

B, =0.477- 16024 _ 4550
~356.110

After four iterations, | f(ﬁj)l < 0.001, at which point ﬁ* ;?54 =(.525 is the approximate solution to
Equation (9.10). Table 9.4 contains the values needed to complete each iteration. -

Now, & can be computed from Equation (9.11) with = 8 = 0.525, as follows:
1/0.525
a= [ ] 30“608] =6.227
50

If 50 is sufficiently close to 3 the procedure converges quickly, usually in four to five iterations.
However, if the procedure appears to be diverging, try other initial guesses for B o—Tforexample, one-half the
initial estimate or twice the initial estimate.

The difficult task of estimating parameters for the Weibull distribution by hand emphasizes the value of
having software support for input modeling. -

Table 9.4 _ lterative Estimation of Parameters of the Weibull Distribution

. " 0 . 50 . 0 . R " N
i B Xxk Yxdmx,  YxPuexy  fB) B B
i= i=l i=] .
0 0.477 115.125 292.629 1057.781 16.024 -356.110 0.522_
1 0.522 129.489 344713, 1254.111 1.008 -313.540 0.525
2 0.525 130.603 348.769 1269.547 0.004 -310.853 0.525
3 0.525 130.608 348.786 1269.614 0.000 -310.841 0.525

AT T T oA A R
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betaMLE := proc(X, n) )

local G1, G2, betal, beta2, egns, solns;

Gl := product(x[i], i=1..n)"*{1/n);:

G2 := product(1-x{i},i=1..n)*(1/n);

eqns := {Psi(betal) - Psi(betal + beta2) = 1ln(Gl),
Psi(beta2) - Psi(betal + beta2) = 1n(G2)};

solns := fsolve(egns, {betal=d..infinity, beta2=0..infinity});:

RETURN (solns) ;

end;

Figure 9.5 Maple procedure to compute the maximum likelihood estimates for the beta distribution

parameters.

Example 9.13: Beta Distribution
The percentage of customers each month who bring in store coupons must be between 0 and 100 percent.
Observations at a store for eight months gave the values 25%,, 74%, 20%, 32%, 81%, 47%, 31%, and 8%.
To fit a'beta distribution to these data, we first néed to rescale itto the interval (0, 1) by dividing all the values
by 100, togelO25 0.74, 0.20, 0.32, 0.81, 047 0.31, 008 -

The maximum-likelihood estimators of the parameters B By solve thé system of equatlons shown in
Table 9.3. Such equations can be solved by modem symbollc/numencal calculation programs, such as
Maple; a Maple procedure for the beta parametexs is shown in Figure 9.5. In this case, the solutions are
B,=147and B,=216.

9.4 GOODNESS-OF-FIT TESTS

Hypothesis testing was discussed in Section 7.4 with respect to testing random numbers. In Section 7.4.1,
the Kolmogorov-Smirnov test and the chi-square test were introduced. These two tests are applied in this
section to hypotheses about distributional forms of input data.

Goodness-of -fit tests provide helpful guidance for evaluating the suitability of a potential input model; -

" however, there is no single correct distribution in a real application, so you should not be a slave to the verdict

of such a test. It is especially important to understand the effect of sample size. If very little data are available,
then a goodness-of fit test is unlikely to reject any candidate distribution; but if a lot of data are available, then
a goodness-of -fit test will likely reject all candidate distributions. Therefore, failing to reject a candidate distri-
bution should be taken as one piece of evidence in favor of that choice, and rejecting an mput model as only
one piece of evidence agamst the chdice.

9.4.1 Chi-Square Test

One procedure for testing the hypothesis that a random sample of size z of the random variable X follows
a specific distributional formi is the chi-square goadn'ess'-of_-ﬁl test. This test formalizes the intuitive idea of
comparing the histogram of the data to the shape of the candidate density or mass function. The test is valid
for large sample sizes and for both discrete and continuous distributional assumptions when parameters are
estimated by maximum likelihood. The test pmcedure begins by arranging the observatlons into a set of
k class intervals or cells. The test statistic is glven by -

S O-E)
?‘0-_@,_ E,

(9.16)
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where O, is the observed frequency in the ith class interval and E, is the expected frequency in that class
interval. The expected frequency for each class interval is computed as E; = np,, where p; is the theoretical,
hypothesized probability associated with the ith class interval.

It can be shown that 2 approximately follows the chi-square distribution with k— s — 1 degrees of free-
dom, where s represents the number of parameters of the hypothesized distribution estimated by the sample
statistics. The hypotheses are the following:

H: The random variable, X, conforms to the distributional assumption with the parameter(s) given by
the parameter estimate(s).
H,: The random variable X does not conform.

The critical value xmk_:_, is found in Table A.6. The null hypothesis, H,, is rejected if x> lf,,,._,-,.

When applying the test, if expected frequencies are too small, x2 will reflect not only the departure of
the observed from the expected frequency, but also the smallness of the expscted frequency as well.
Although there is no general agreement regarding the minimum size of E , values of 3, 4, and 5 have been
widely used. In Section 7.4.1, when the chi-square test was discussed, the minimum expected frequency five
was suggested. If an E, value is too small, it can be combined with expected frequencies in adjacent class
intervals. The corresponding O; values should also be combined, and & should be reduced by one for each
cell that is combined.

If the distribution being tested is discrete, each value of the random variable should be a class interval,
unless it is necessary to combine adjacent class intervals to meet the minimum-expected-cell-frequency
requirement. For the discrete case, if combining adjacent cells is not required,

p;=p(x)=P(X=x)

Otherwise, p, is found by summing the probabilities of appropriate adjacent cells.

If the distribution being tested is continuous, the class intervals are given by [a,_,, a), where a,_; and g,
are the endpoints of the ith class interval. For the continuous case with assumed pdf f{x), or assumed cdf
F(x), p, can be computed as

= |, fa=Fa)-Fa,)

For the discrete case, the number of class intervals is determined by the number of cells resulting after
combining adjacent cells as necessary. However, for the continuous case, the numbér of class intervals must
be specified. Although there are no general rules to be followed, the recommendauons in Table 9.5 are made
to aid in determining the number of class-intervals for continuous data.

Table 9.5 Recommendations for Number of Class
Intervals for Continuous Data

Sample Size, Number of Class Intervals,
n k
20 Do not use the chi-square test
50 5t010
100 101020
>100 Jn to nfs
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Example 9.14: Chi-Square Test Applied to Poisson Assumption
In Example 9.7, the vehicle-amrival data presented in Example 9.2 were analyzed. The hlslogram of the data,
shown in Figure 9.2, appeared to follow a Poisson distribution; hence the parameter, & = 3.64, was found.
Thus, the following hypotheses are formed:

H,: the random variable is Poisson distributed.
H,: the random variable is not Poisson distributed.

The pmf for the Poisson distibution was given in Equation (5.19):

o’ )
py={ q » =ObE , ©.17)

0, otherwise

For o= 3.64, the probabilities associated with various values of x are obtained from Equation (9.17):

p(0)=0.026  p(6)=0.085
p(1)=0096  p(7)=0.044
p2)=0.174  p(8)=0.020
p(3)=0.211  p(9)=0.008
p4)=0.192  p(10)=0.003
p(5)=0.140  p(=11)=0.001

From this information, Table 9.6 is constructed. The value of E, is given by np, = 100(0.026) =2.6.In a
similar manner, the remaining E, values are computed. Since E, = 2.6 <5, E, and E, are combined. In that
case, O, and O, are also combined, and k is reduced by one. The last five class intervals are also combined,
for the same reason, and k is further reduced by four.

The calculated y2 is 27.68. The degrees of freedom for the tabulated value of y2is k~s~1=7~-1-
1 =5. Here, s= 1, since one parameter, & was estimated from the data. At the 0.05 level of significance, the
critical value 32 . . is 11.1. Thus, H, would be rejected at level of significance 0.05. The analyst, therefore,
might want to search for a better-fitting model or use the empirical distribution of the data.

_ Table 9.6 Chi-square Goodness-ofFit Test for Example 9.14

Observed Frequency, Expected Freguency, {O-EP
% ; E g
0 12 26 p
! m} 2 a2 } o
"2 19 17.4 0.15
3 17 211 0.80
4 10 19.2 ' 441
5 8 14.0 2.57
6 ki 85 ’ 0.26
7 5 4.4
8 5 2.0
9 3l 08| 7.6 11.62
10 3 0.3
211 1 o1t :
00 100.0 - 2768
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9.4.2 Chi-Square Test with Equal Probabilities

If a continuous distributional assumption is being tested, class intervals that are equal in probability rather
than equal in width of interval should be used. This has been recommended by anumber of authors (Mann and
Wald, 1942; Gumbel, 1943; Law and Kelton, 2000; Stuart, Ord, and Amold, 1998]. It should be noted that
the pracedure is not applicable to data collected in class intervals, where the raw data have been discarded
or lost.

Unfortunately, there is as yet no method for figuring out the probability associated with eachinterval that
maximizes the power for a test of a given size. (The power of a test is defined as the probability of rejecting
a false hypothesis.) However, if using equal probabilities, then pi = 1/k. We recommend

E=np,25
so substituting for p, yields
225
k
and solving for k yields
n .
ks— : 9.18
3 (5.18)

Equation (9.18) was used in coming up w1th the recommendations for maximum number of class intervals
in Table 9.5.

“If the assumed dissibution is normal, exponential, or Weibull, the method described in this section is
straightforward. Example 9.15 indicates how the procedure is accomplished for the exponential distribution.
If the assumed distribution is gamma (but not Erlang) or certain other distributions, then the computation of
endpoints for class intervals is complex and could require numerical integration of the density function.
Statistical-analysis software is very helpful in such cases.

Example 9.15: Chi-Square Test for Exponential Distribution
In Example 9.11, the failure data presented in Example 9.3 were analyzed. The histogram of the data, shown

- in Pigure 9.3, appeared to follow an exponential dlsnbutlon, so the parameter A=uZ= 0084 was
computed. 'mus, the followmg hypotheses are formed:

H_; the random variable is exponentxally distributed.’
H the random variable is not exponentially distributed.

Inorder to perform the chi-square test with intervals of equal probability, the endpoints of the class inter-

. valsmust be found. Equation (9.18) indicates that the number of intervals should be less than or equal to n/5.

Here, n = 50, and so k < 10. In Table 9.5, it is racommended that 7 to 10 class intervals be used. Let k = 8;
then each interval will have probability p = 0.125. The endpoints for each interval are computed from the cdf
for the exponential distribution, given in Equation (5.28), as follows:

Flo)=1-¢ 19

S L T s L e e e B
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where g, represents the endpoint of the ith interval, i= 1, 2, ...,
zero to a, F(a,) = ip, so Equation (9.19) canbe written as

k. Since F(a) is the cumulative area from

ip= 1—e™

or

e =1-ip

Taking the logarithm of both sides and solving for g, gives a general result for the endpoints of k equiprob-
able intervals for the exponential distribution:

a; = w% In(l-ip), i=0,1,..,k (9.20)

Regardless of the value of A, Equation (9. 20) will always result in a, = 0 and a, = o. With l 0.084 and
k=8, a, is computed from Equation (9.20) as .

G, = In(1-0.125)=1.590

0.084

Continued application of Equation (9.20) fori=2, 3, ..., 7results in a,, ..., a, as 3.425, 5.595, 8.252, 11.677,
16.503, and 24.755. Since k=8, ag=-oo. The first interval is [0, 1.590), the second interval is [1.590, 3.425),
and so on. The expectation is that 0.125 of the observations will fall in each interval. The observations, the
expectations, and the contributions to the calculated value of xg are shown in Table 9.7. The calculated
value of 2 is 39.6. The degrees of freedom are givenby k—s—1=8 -1 — 1=6. At &= 0.05, the tabulated
value of §Z . is 12.6. Since ¢ > ¥3 .. the null hypothesis is rejected. (The value of §2 ¢ is 16.8, 50 the
null hypothesis would also be rejected at level of significance ¢ =0.01.)

Table 9.7 Chi-Square Goodness-of-Fit Test for Example 9.15

Class Observed Frequency, Expected Frequency, ©-EY
Interval : 0, E, E,
[0, 1.590). 19 6.25 26.01
[1.590, 3.425) 10 6.25 ' 225
[3.425,5.595) 3 6.25 0.81
[5.595, 8.252) 6 6.25 0.01
[8.252,11.677) 1 6.25 4.41
[11.677, 16.503) 1 6.25 . 441
{16.503, 24.755) 4 6.25 0.81
[24.755, =) 6 6.25 _0.01
50 50 . 396

-
bis
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9.4.3 Kolmogorov-Smirnov Goodness-of-Fit Test

The chi-square goodness-of-fit test can accommodate the estimation of parameters from the data with a resultant

dscrease in the degrees of freedom (one for each parameter estimated). The chi-square test requires that the data
be placed in class intervals; in the case of a continuous distributional assumption, this grouping is arbitray.
Changing the number of classes and the interval width affects the value of the calculated and tabulated chi-square.
A hypothesis could be accepted when the data are grouped one way, but rejected when they are grouped another
way. Also, the distribusion of the chi-square test statistic is known only approximately, and the power of the test
is sometimes rather low. As a result of these considerations, goodness-of-fit tests other than the chi-square, are
desired. The Kolmogorov--Smimov test formalizes the idea behind examining a g — g plot:

The Kolmogorov--Smirnov test was presented in Section 7.4.1 to test for the uniformity of numbers.
Both of these uses fall into the category of testing for goodness of fit. Any continuous distributional assump-
tion can be tested for goodness of fit by using the method of Section 7.4.1.

The Kolmogorov--Smirnov test is particularly useful when sample sizes are small and when no param-
eters have been estimated from the data. When parameter estimates have been made, the critical values in
Table A.8 are biased; in particular, they are too conservative. In this context, “conservative™ means that the
critical values will be too large, resulting in smaller Type I (¢) errors than those specified. The exact value
of o can be worked out in some instances, as is discussed at the end of this section.

The Kolmogorov--Smirmov test does not take any special tables when an exponential distribution is
assumed. The following example indicates how the test is applied in this instance. (Nosice that it is not nec-
essary to estimate the parameter of the distribution in this example, so we may use Table A.8.)

Example 9.16: Kolmogorov-Smirnov Test for Exponential Distribusion

Suppose that 50 interarrival times (in minutes) are collected over the following 100-minute interval (arranged .

in order of occurrence):

044 053 204 274 200 030 254 052 202 1.8 153 0.1
280 004 135 832 234 195 0.0 142 046 007 109 076
555 393 107 226 288 0.67 1.12 026 457 537 012 3.19
163 146 108 206 085 083 244 102 224 211 315 290
6.58 0.64

The null hypothesis and its altermate are formed as follows:

H: the interarrival times are exponentially distributed.
H the interarrival times are not exponentially dlstrlbuted

The data were collected over the mterval from 0 to T= 100 minutes. It can be shown that, if the under-
lying distribution of interarrival dimes {T, T, ...} is exponential, the arrival times are uniformly diswributed
on the interval (0, T). The arrival times T, T ,+T,T,+ T,+ T, .., T+ + Ty are obtained by adding
interarrival times. The arrival times are then normalized to a (0, 1) interval so that the Kolmogorov—
Smirnov test, as presented in Section 7.4.1,-can be applied. On a (0, 1) interval, the points will be [T'/T,
(T, + TYT, ..., (T, + --- + T;)IT]. The resulting 50 data points are as follows:

0.0044 00097 0.0301 00575 0.0775 0.0805 0.1059  O.1111 0.1313 0.1502
0.1655 01676 0.1956  0.1960 02095 02927 03161 03356 03366 0.3508
0.3553 03561 03670 03746 04300 0.4694 04796 05027 0.5315 0.5382
05494 05520 05977 06514 0.6526 0.6845 - 0.7008 - 0.7154 0.7262 0.7468
0.7553 07636  0.7880  0.7982 0.8206 0.8417 0.8732 09022 09680 0.9744

R R e -0 & FLELE LN e A5 R
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Following the procedure in Example 7.6 produces a D* of 0.1054 and a D~ of 0.0080. Therefore, the
Kolmogorov-Smirnov statistic is D = max(0.1054, 0.0080) =0.1054. The critical value of D obtained from
Table A.8 for alevel of significance of a=0.05andn="50is D,y = 136/\n = 0. 1923; but D = 0.1054, so
the hypothesis thatthe interarrival times are exponentially distributed cannot be rejected.

The Kolmogorov—-Smirnov test has been modified so that it can be used in several situations where the
parameters are estimated from the data. The computation of the test statistic is the same, but different tables
of critical values are used. Different tables of critical values are required for different distributional assump-
tions. Lilliefors {1967] developed a test for normality. The null hypothesis states that the population is one
of the family of normal distributions, without specifying the parameters of the distribution. The interested
reader might wish to study Lilliefors’ original work; he describes how simulation was used to develop the
critical values. )

Lilliefors [1969] also modified the critical values of the Kolmogorov-Smirnov test for the exponential
distribution. Lilliefors again used random sampling to obtain approximate critical values, but Durbin [1975]
subsequently obtained the exact distribution. Connover [1998] gives examples of Kolmogorov--Smirnov tests
for the normal and exponential distributions. He also refers to several other Kolmogorov-Smirnov-type tests
that might be of interest to the reader.

A test that is similar in spirit to the Kolmogorov--Smirnov test is the Anderson-Darling test. Like the
Kolmogorov--Smimov test, the Anderson—Darling test is based on the difference betwsen the empirical cdf and
the fitted cdf;, unlike the Kolmogorov--Smimov test, the Anderson-Darling test is based on a more compre-
hensive measure of difference (not just the maximum difference) and is more sensitive to discrepancies inthe
tails of the distributions. The critical values for the Anderson-Darling test also depend on the candidate distri-
bution and on whether parameters have been estimated. Fortunately, this test and the Kolmogorov-Smirnov test
have been implemented in a number of software packages that support simulation-input modeling.

9.4.4 p-Values and “Best Fits”

To apply a goodness-of -fit test, a significance level must be chosen. Recall that the significance level is the
probability of falsely rejecting & the random variable conforms to the distributional assumptiox. The tra-
ditional significance levels are 0.1, 0.05 and 0.01. Prior to the availability of high-speed computing, having
a small set of standard values made it possible to produce tables of useful critical values. Now most statisti-
cal software computes critical values as needed, rather than storing them in tables. Thus, the analyst can
employ a differentlevel of significance—say, 0.07.

However, rather than require a prespecified significance level, many software packages compute a
p-value for the test statistic. The p-value is the significance level at which one would just reject Hy for the
given value of the test statistic. Therefore, a large p-value tends to indicate a good fit (we would have to
accept a largechance of error in order to reject), while a small p-value suggests a poor fit (to accept we would

. have to insist on almost no risk).

Recall Example 9.14, in which a chi-square test was used to check the Poisson assumption for the vehi-
cle-arrival data. The value of the test statistic was 2 =27.58, with 5 degrees of freedom. The p-value for this
test statistic is 0.00004, meaning that we would reject the hypothesis that the data are Poisson at the 0.00004
significance level. (Recall that we rejected the hypothesxs at the 0.05 level; now we know that we would also
to reject it at even lower levels.)

The p-value can be viewed as a measure of fit, with larger values being better. This suggests that we
couldfit every diswibution at our disposal, compute a test statistic for each fit, and then choose the distribu-
tion that yields the largest p-value. We know of no input modeling software that implements this specific
algorithm, but many such packages do include a “best.fit” option, in which the software recommends an
input model to the user after evaluating all feasible models. The software mightalso take into account other
factors—such as whether the data are discrete or continuous, bounded or unbounded-—but, in the end, some
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summary measure of fit, like the p-value, is used to rank the distributions. There is nothing wrong with this,
but there are several things to keep in mind:

1. The software might know nothing about the physical basis of the data, whereas that information can
suggest distribution families that are appropriate. (See the list in Section 9.2.2.) Remember that the
goal of input modeling is often to fill in gaps or smooth the data, rather than find an input model that
conforms as closely as possible to the given sample. '

2. Recall that both the Erlang and the exponential distributions are special cases of the gamma and that
the exponential is also a special case of the more flexible Weibull. Automated best-fit procedures tend
to choose the more flexible distributions (gamma and Weibull over Erlang and exponential), because
the extra flexibility allows closer conformance to the data and a better summary measure of fit. But
again, close conformance to the data does not always lead to.the most appropriate input model.

3. A summary statistic, like the p-value, is just-that, a summary measure. It says little or nothing about
where the Jack of fit occurs (in the body of the distribution, in the right tail, or in the left tail). A human,
using graphical tools, can see where the lack of fit occurs and decide whether or not it is important for
the application at hand.

Our recommendation is that automated distribution selection be used as one of several ways to suggest
candidate distributions. Always inspect the automatic selection, using graphical methods, and remember that
the final choice is yours. -

9.5 FITTING A NONSTATIONARY POISSON PROCESS

Fitting a nonstationary Poisson process (NSPP) to arrival data is a difficult problem, in general, because we
seldom have knowledge about the appropriate form of the arrival rate function A (z). (See Chapter 5, Section
5.5 for the definition of a NSPP). One approach is to choose a very flexible model with lots of parameters and
fit it with a method such as maximum likelihood; see Johnson, Lee, and Wilson [1994] for an example of this
approach. A secondmethod, and the one we consider here, is to approximate the arrival rate as being constant
over some basic interval of time, such as an hour, or a day, or a month, but varying from time interval to time
interval. The problem then becomes choosing the basic time interval and estimating the arrival rate within
each interval.

Suppose we need to model arrivals over a time period, say [0, T']. The approach that we describe is most
appropriate when it is possible to observe the time period [0, T] repeatedly and count arrivals. For instance,
if the problem involves modeling the arrival of e-mail throughout the business day (8 A.M. to 6 P.M.), and we
believe that the arrival rate is approximately constant over half-hour intervals, then we need to be able to
count arrivals during half-hour intervals for several days. If it is possible to record actual arrival times, rather
than counts, then actual arrival times are clearly better since they can later be grouped into any interval
lengths we desire. However, we will assume from here on that only counts are available.

Divide the time period [0, T] into k equal intervals of length At = T/k. For instance, if we are considering
a 10-hour business day from 8 AM. to 6 p.M. and if we allow the rate to change every half hour, then T = 10,
k=20, and At=1/2. Over n periods of observation (e.g., n days), let C,.j be the number of arrivals that occurred
during the ith time interval on the jth period of observation. In our example, C,, would be the number of
arrivals from 8:30 A.M. to 9 A.M. (second half-hour period) on the third day of observation.

. The estimated arrival rate during the ith time period, (i — 1)At <t < i At, is then just the average number
of arrivals scaled by the length of the time interval:

- 1 &
-3 i o2
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Table 9.8 Monday E-mail Arrival Data for NSPP Excmble

Number of Arrivals

Time Period | Dayl  Day2 Day3 | Estimated Arrival Rate (arrivals/hour)

8:00-8:30 12 14 .10 24
8:30-9:00 23 26 32 54
9:00-9:30 27 19 32 . o )
9:30-10:00 20 13 12 30

After the arrival rates for each time interval have been estimated, adjacent intervals whose rates appear to be
the same can be combined. .

For instance,” consider the e-mail arrival counts during the first two hours of the business day on three
Mondays, shown in Table 9.8. The estimated arrival rate for 8:30--9:00 is

1
3(1/2)

(23+26+32) = 54 arrivals/hour

After seeing these results we might consider combining the interval 8:30--9:00 with the interval 9:00--9:30,
because the rates are so similar. Note also that the goodness-of -fit tests described in the previous section can
be applied to the data from each time interval individually, to check the Poisson approximation.

9.6 SELECTING INPUT MODELS WITHOUT DATA

Unfortunately, it is often necessary in practice to develop a simulation model—perhaps for demonstration

purposes or a preliminary study-—-before any process data are available. In this case, the modeler must be

resourceful in choosing input models and must carefully check the sensitivity of results to the chosen models.
There are a number of ways to obtain information about a process even if data are not available:

Engineering data: Often a product or process has performance ratings provided by the manufacturer
(for example, the mean time to failure of a disk drive is 10000 ‘hours; a laser printer can. produce
8 pages/minute; the cutting speed of a tool is 1 cm/second; etc.). Company rules might specify time .
orlproduclion standards. These values provide a starting point for input modeling by fixing a central
value.

Expert option: Talk to people who are experienced with the process or similar processes. Often, they

_ can provide optimistic, pessimistic, and most-likely times. They might also be able to say whether the -

process is nearly constant or highly variable, and they might be able to define the source of variability.

Physical or conventional limitations: Most real processes have physical limits on performance—for
example, computer data entry cannot be faster than a person can type. Because of company policies,
there could be upper limits on how long a process may take. Do not ignore obvious limits or bounds
that narrow the range of the input process. ) : .

The nature of the process: The desc_:riptioh of the distributions in Section 9.2.2 can be used to justify
a particular choice even when no data are available. . .

'Whén dala are not available, the uniform, tn'angulér, ahd_ beta distributions are often used as ihput models.
The uniform can be a poor choice, because the upper and lower bounds are rarely just as likely as the central
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values in real processes. If, in addition to upper and lower bounds, a most-likely value can be given, then the
triangular disiribution can be used. The triangular distribution places much of its probability near the most-
likely value, and much less near the extremes. (See Section 5.4.) If a beta distribution is used, then be sure
to plot the density function of the selected distribution; the beta can take unusual shapes.

A useful refinement is obtained when a minimum, a maximum, and one or more “breakpoints™ can be
given. A breakpoint is an intermediate value together with a probability of being less than or equal to that
value. The following example illustrates how breakpoints are used.

Example 9.17

For a production-planning simulation, the sales volume of various products is required. The salesperson

responsible for product X'YZ-123 says that no fewer than 1000 units will be sold (because of existing con-
tracts) and no more than 5000 units will be sold (because that is the entire market for the product). Given her
experience, she believes that there is a 90% chance of selling more than 2000 units, a 25% chance of selling
more than 3500 units, and only a 1% chance of selling more than 4500 units. '

Table 9.9 summarizes this information. Notice that the chances of exceeding certain sales goals have
been translated into the cumulative probability of being less than or equal to those goals. With the informa-
tion in this form, the method of Section 8.1.5 can be employed to generate simulation-input data.

When input models have been selected without data, it is especially important to test the sensitivity
of simulation results to the distribution chosen. Check sensitivity not only to the center of the distribution,
but also to the variability or limits. Extreme sensitivity of output results to the input model provides a
convincing argument against making critical decisions based on the results and in favor of undertaking data
collection.

For additional discussion of input modeling in the absence of data, see Pegden, Shannon, and Sadowski

(1995).

9.7 MULTIVARIATE AND TIME-SERIES INPUT MODELS

In Sections 9.1-9.4, the random variables presented were considered to be independent of any other vari-
ables within the context of the problem. However, variables may be related, and, if the variables appear in a
simulation model as inputs, the relationship should be investigated and taken into consideration.

Example 9.18
An inventory simulation includes the lead time and annual demand for industrial robots. An increase in
demand results in an increase in lead time: The final assembly of the robots must be made according to the
specifications of the purchaser. Therefore, rather than treat lead time and demand as independent random
variables, a multivariate input model should be developed.

Table 9.9 Summary of Soles information

Interval Curnulative
i (Sales) . Frequency, c,
1 1000 < x <2000 0.10
2 2000 < x <3500 0.75
3 3500< x <4500 0.99
4 4500 < x < 5000 '1.00

R PR
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Example 9.19 .
A simulation of the web-based trading site of a stock broker includes the time between arrivals of orders to
buy and sell. Investors tend to react to what other investors are doing, so these buy and sell orders arrive in
bursts. Therefore, rather than treat the time between arrivals as independent random variables, a time-series
model should be developad.

We distinguish multivariate input models of a fixed, finite number of random variables (such as the two
random variables lead time aud annual demand in Example 9.18) from time-series input models of a (con-
ceptually infinite) sequence of related random variables (such as the successive times between orders in
Example 9.19). We will describe input models appropriate for these examples after reviewing two measures
of dependence, the covariance and the cormrelation.

9.7.1 Covariance and Correlation

Let X, and X, be two random variables, and let g, = E(X)) and a‘? = V(X,.) be the mean and variance of
X, respectively. The covariance and correlation are measures of the linear dependence between X, and X,
In other words, the covariance and correlation indicate how well the relationship between X and X, 1s
described by the model .

X - = ﬁ(xz-.llz).+e

where € is a random variable with mean 0 that is independent of X,. If, in fact, (X, — ,) = B (X, - 1;), then
this model is perfect. On the other hand, if X, and X, are statistically independent, then f= 0 and the model
is of no value. In general, a positive value of f indicates that X, and X, tend to be above or below their means
together; a negative value of f indicates that they tend to be on opposite sides of their means.

The covariance between X, and X, is defined to be '

COV(XI!X;}: B[(X] - XX, - #0)] = E(X, X)) - i,

The value cov(X,, X,) =0 implies f=0 inour model of dependence, and cov(X,, X;) < 0 (>0) implies § < 0 (>0).
The covariance can take any value between ~c< and cs. The correlation standardizes the covariance to be
between -1 and 1:

922)

COV{XUX}) '
o0y

p=cor (X, X,) = (9.23)

Again, the value corr(X,, X,) = 0 implies =0 in our model, and corm(X,, X,) < 0 (>0) implies § < 0 (>0).
The closer pis to -1 or 1, the stronger the linear relationship is between X, and X,.

Now suppose that we have a sequence of random variables X;, X,, X, ... that are identically distributed
(implying that they all have the same mean and variance), but could be dependent. We refer to such a
sequence as a time series and to cov(X,, X,,,) and corr(X, X, M) as the lag-h autocovariance and lag-h auto-
correlation, respactively. If the value of the amocovariance depends only on k and not on ¢, then we say that
the time series is covariance stationary; this concept is discussed further in Chapter 11. For a covariance-
stationary time series, we use the shorthand notation '

pﬁ = COIT(X‘, Xﬁ.;,)

for the lag-h autocorrelation. Notice that autocorrelation measures ‘the dependence betweern random variables
that are separated by & — 1 others in the time series.
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9.7.2 Multivariate Input Models

If X, and X, each are normally distributed, then dependence between them can be modeled by the bivariate
normal distribution with parameters 1, pt,, 0% 62, and p = corr(X,, X,). Estimation of y1,, /1, 6% and 67 was
described in Section 9.3.2. To estimate p, suppose that we have n independent and identically distributed
pairs (X, , X,,), (X, Xp), .-y (X, X, ). Then the sample covariance is

-~ L&, = -
covX, X) =~ (X, X)X, - ,)
N )

IR =z
= T-l(?:{ XX, —ux,x,] (924)
where )'{l and X, are the sample means. The correlation is estimated by

cov(X,, Xo) 925

p=—=
Gloz

where 6, and &, are the sample variances.

Let X, represent the average lead time to deliver (in months), and X, the annval demand, for industrial robots.
The following data are available on demand and lead time for the last ten years:

lead time demand

6.5 103
43 83
69 116
6.0 97
6.9 112
6.9 104
.58 . 106
73 109
45 92

6.3 96

Standard calculations give X, = 6.14, 6, = 1.02, X, =101.80, and&, =9.93 as estimates of Hy» Gy 1

_and 0, respectively. To estimate the correlation, we need

10
> X, X,;=63285
=t

Therefore, Cov= (6328.5—(10)(6.14)(101.80)})/(10~ 1) = 8.66, and

8.66
(1.02)(9.93)

p= =0.86

" Clearly, lead time and demand are strongly dependent. Before we accept thismodel, hdwever, leadtime and
. demand should be checked individually to see whether they are represented well by normal distributions.
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In particular, demand is a discrete-valued guantity, so the continuous normal distribution is certainly at best
an approximation. .
The following simaple algorithm can be used to generate bivariate normal random variables:

Step 1. Generate Z, and Z,, independent standard normal random variables (see Section 8.3.1).

Step2.SetX, =4, + 6,Z,

Step 3. Set X, = 1, +0‘2(le +\/1—p222)

Obviously, the bivariate normal distribution will not be appropriate for all multivariate-input modeling
problems. It can be generalizéd to the k-variate normal distribution to model the dependence among more
than two random variables, but, in many instances, a normal distribution is not appropriate in any form. We
provide one method for handling nonnormal distributions in Section 9.7.4. Good references for other mod-
els are Johnson {1987] and Nelson and Yamnitsky [1998].

9.7.3 Time-Series Input Models

IfX,, X,, X;, ... is a sequence of identically distributed, but dependent and covariance-stationary random vari-
ables, then there are a number of time series models that can be used to represent the process. We will
describe two models that have the characteristic that the autocorrelations take the form

ph = COl'l'(X‘, Xlﬂt) = 10'fl

for h =1, 2, ... Notice that the lag-h autocorrelation decreases geometrically as the lag increases, so that
observations farapartin time are nearly independent. For one model to be shown shortly, each X, is normally

. distributed; for the other model, each X, is exponentially distributed. More general time-series input models

are described in Section 9.7.4 and in Nelson and Yamnitsky {1998].
AR(1) MODEL. Consider the time-series model

X =p+§(X,_ - p)+E, (9.26)

forz=2,3, ..., where &, ¢, ... are independent and identically (normally) distributed with mean O and
variance of_, and -1 < ¢ < 1. If the initial value X, is chosen appropriately (see shortly), then X, X,, ... are
all normally distributed with mean g, variance aﬁ /(1-¢%), and

Py= ¢h

forh= 1,2, .... This time-series model is called the autoregressive order-1 model, or AR(l) for short.
Estimation of the parameter ¢ can be obtained from the fact that

9= p'=com(X,.X,,,)

the lag-1 autocorrelation. Therefore, to estimate ¢, we first estimate the lag-1 autocovariance by

a1

oK, Xo) == (X, = X, - )

-1 =l

a1

- L[): XX, -(n-nz,J ©27)

n-1 =1

Lty o
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L T Y

and the variance 62 = var(X) by the usual estimator &2 Then

b= SOV, X,0.)
g

Finally, estimate ¢ and 6> by =X and
61 =6%(1-¢"

respectively.
The following algorithm generates a stationary AR(1) time series, given values of the parameters @, i,
and 62

Step 1. Generate X, from the normal distribution with mean M and variance crﬁ /(1 —¢%). Setr=2.
Step 2. Generate ¢, from the normal distribution with mean 0 and variance o>

Step3.SetX =g+ ¢ (X, —p)+&,.

Step 4. Sets=t¢+1and go to Step 2.

EAR(1) MODEL. Consider the time-series model
X, = ¢X,_!, with probabxlfty (1] (9.28)
¢X, ,+ €, with probability 1-¢

for£=2,3, ..., where &, &,, ... are independent and identically (exponentially) distributed with mean 1/4
and 0 £ ¢ < 1. If the initial value X, is chosen appropriately (see shortly), then X, X,, ... are all exponen-
tially distributed with mean 1/4 and '

B = ¢h

forh=1, 2, .... This time-series model is called the exponential autoregressive order-1 model, or EAR(1) for
short. Only autocorrelations greater than 0 can be represented by this model. Estimation of the parameters
proceeds as for the AR(1) by setting ¢ = §, the estimated lag-1 autocorrelation, and setting ] =1/X.

The following algorithm generates a stationary EAR(1) fime series, given values of the parameters
¢ and A:

Step 1. Generate X, from the exponential distribution with mean 1/A. Set ¢=2.

'_Step 2. Generate U from the uniform distribution on [0, 1}. If U < ¢, then set

Xr = ¢Xn-t

Otherwise, generate £, from the exponential distribution with mean 1/2 and set

X,=0X_ + g

1-1

Step 3. Set z=¢+ 1 and go to Step 2.
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Example 9.21: Example 9.19 Continued
The stock broker would typically have a large sample of data, but, for the sake of illustration, suppose that
the following twenty time gaps between customer buy and sell orders had been recorded (in seconds): 1.95,
1.75,1.58, 1.42, 1.28, 1.15, 1.04, 0.93, 0.84, 0.75, 0.68, 0.61, 11.98, 10.79, 9.71, 14.02, 12.62, 11.36, 10.22,
9.20. Standard calculations give X = 5.2 and 57 = 26.7. To estimate the lag-1 autocorrelation, we need

19
Y XX, =924.1
J=t

Thus, cov = [924.1 —(20~1)(5.2*}(20-1) = 21.6, and

N
(=)}

. 2L,
216 o8
P=%.

<

Therefore, we could model the interarrival times as an EAR(1) process with }: =1/5.2=0.192 and & =038,
provided that an exponential distribution is a good model for the individual gaps.

9.7.4 The Normal-to-Anything Transformation

The bivariate normal distribution and the AR(1) and EAR(1) time-series models are useful input models that
are easy to fit and simulate. However, the marginal distribution is either normal or exponential, which is cer-
tainly not the best choice for many applications. Fortunately, we can start with a bivariate normal or AR(1)
model and transform it to have any marginal distributions we want (including exponential).

Suppose we want to simulate a random variable X with cdf F(x). Let Z be a standard normal random
variable (mean 0 and variance 1), and let ®(z) be its cdf. Then it can be shown that

R=0(2)

is a U(0, 1) random variable. As we leamned in Chapter 8, if we have a U(0, 1) random variable, we can get
X by using the inverse cdf transformation

X = F'[R}= F'[®(2)]

Werefer this as the normal to anything transformation, or NORTA for short.

Of course, if all we want is X, then there is no reason to go to this trouble; we can just generate R directly,
using the methods in Chapter 8. But suppose we want a bivariate random vector (X, X,) such that X, and X,
are correlated but their distributions are not normal. Then we can start with a bivariate normal random vec-
tor (Z,, Z,) and apply the NORTA transformation to obtain '

= Fa(Z,)] and X, = F'[9(Z,))

There is not even a requirement that F, and £ be from the same distribution family; for instance, F; could be
an exponential distribution and F; a beta dxstrlbutlon
The same idea applies for tlme series. If Z, is generated by an AR(1) with N(0, 1) margmals then

X, =F{®(Z,)]
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will be a time-series model with marginal distribution F(x). Toinsure that Z, is N(0, 1), we set £ =0 and 0'2 =
1 — ¢? in the AR(1) model.

Although the NORTA method is very general, there are two technical issues that must be addressed to
implement it:

1. The NORTA approachrequires being able to evaluate that standard normal cdf, ®(z), and the inverse
cdf of the distributions of interest, #~* (x). There is no closed-form expression for ®(z) and no closed-
form expression for F~* (1) for many distributions. Therefore, numerical approximations are required.
Fortunately, these functions are built into many symbolic calculation and spreadsheet programs, and
we give one example next. In addition, Bratley, Fox, and Schrage [1987] contains algorithms for many
distributions.

2. The correlation between the standard normal random variables (ZI Z,) is distorted when it passes
through the NORTA transformation. To be more specific, if (Z,, Z,) have comelation p, then in

NORTARho := proc(rhoX, n)

local 21, 22, Ztemp, X1, X2, Rl1l, R2, rho, rhoT, lower, upper;
randomize (123456) ;

21 := [(random[normald(0,1)])(n)]:

2Temp := [random[normald(0,1])](n)]:

22 := [0]:

# set up bisection search

rho := rhoX:

if (rhoX < 0) .then

lower := -1:
upper := 0:
else
lower := 0:
upper- := 1:
fi:
22 := rho*21 + sqgrt(l-rho”2)*ZTemp:
Rl := statevalf [cdf,normald(0,1]] (21):
R2 := statevalf(cdf,normald(0,1]](22):
X1 := statevalf [icdf,exponential[1,0]] (R1):

X2 := statevalf [icdf,betal1,2]](R2}:
rhoT := describe[linearcorrelation] (X1, X2j;
# do bisection search until S% relative error
while abs(rhoT - rhoX)/abs(rhoX) > 0.05 do

if {rhoT > rhoX) then

upper := rho:
else ’
lower := rho:
fi:
rho := evalf((lower + upper)/2):
22 := rho*Zl + sqrt(1-rho”2)+*ZTemp:
Rl := statevalf [cdf,normald([0,1]] (21):
R2 := statevalf [cdf,normald{0,1)] (22):
X1 := statevalf [icdf,exponential(1,0]](R1):
X2 := statevalf [icdf,betall,2]] (R2):
rhoT := describe[linearcorrelation] (X1, X2);
end do;
RETURN(rho) ;

end;

Figure 9.6 Maple procedure to estimate the bivariate normal correlation required for the NORTA method.
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general X, = F'[®(Z,)] and X, = F;'[®(Z,)] will have a comelation p, # p. The difference is
often small, but not always.

The second issue is more critical, because in input-modeling problems we want to specify the bivariate
or lag-1 comrelation. Thus, we need to find the bivariate normal correlation p that gives us the input correla-
tion P, that we want (recall that we specify the time series model via the lag-1 correlation, p, = corr(X,, X,,,))-
There has been much research on this problem, including Cario and Nelson [1996, 1998] and Biller and
Nelson [2003]. Fortunately, it has been shown that p,, is a nondecreasing function of p, and p and p,, will
always have the same sign. Thus, we can do a relatively simple search based on the following algorithm:

Step 1. Set p = p, to start.

Step 2. Generate a large number of bivariate normal pairs (Z;, Z,) with correlation p, and transform them
into (X,, X,)’s, nsing the NORTA transformation.

Step 3. Compute the sample correlation between (Xv X,), using Equation (9.24), and call it pr. If Pr> Py,
then reduce p and go to Step 2; if Pr < Py, then increase p and go to Step 2. If Pr = pythen stop.

Example 9.22
Suppose we needed X, to have an exponential distribution with mean 1, X, to have a beta distribution with
B,=1,8,=1/2,and the two of them to have correlation p, = 0.45. Figure 9 6 shows a procedure in Maple
that will estimate the required value of p. In the procedure, n is the number of sample pairs used to estimate
the correlation. Running this procedure with n set to 1000 gives p = 0.52.

9.8 SUMMARY

Input-data collection and analysis require ma jor time and resource commitments in a discrete-event simula-
tion project. However, regardless of the validity or sophistication of the simulation model, unreliable inputs
can lead to outputs whose subsequent interpretation could result in faulty recommendations. _

This chapter discussed four steps in the development of models. of input data: collecting the raw
data, identifying the underlying statistical distribution, estimating the parameters, and testing for goodness
of fit.

Some suggestions were given for facilitating the data-collection step. However, experience, such as that
obtained by completing any of Exercises 1 through 5, will increase awareness of the difficulty of problems
that can arise in data collection and of the need for planning.

Once the data have been collected, a statistical model should be hypothesized. Constructing a h1stogram
is very useful at this point if sufficient data are available. A distribution based on the underlying process and
on the shape of the histogram can usually be selected for further investigation.

The investigation proceeds with the estimation of parameters for the hypothesized distribution.
Suggested estimators were given for distributions used often in simulation. In a number of instances, these
are functions of the sample mean and sample variance.

The last step in the process is the testing of the distributional hypothesis. The g — ¢ plot is a useful

- graphical method for assessing fit. The Kolmogorov--Smirnov, chi-square, and Anderson-Darling good-

ness-of-fit tests can be applied to many distributional assumptions. When a distributional assumption is
rejected, another distribution is tried. When all else fails, the empirical distribution could be used in the
model. '

Unfortunately, in some situations, a simulation study must be undertaken when there is not time or
resources to collect data on which to base input models. When this happens, the analyst mnst use any available
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information-—such as manufacturer specifications and expert opinion—to construct the input models. When
input models are derived without the benefit of data, it is parsicularly important to examine the sensitivity of
the results to the models chosen. : )

Many, but eot all, input processes can be represented as sequences of independent and identically dis-
tributed random variables. When inputs should exhibit dependence, then multivariate-input models are
required. The bivariate normal distribution (and more generally the multivariate normal distribution) is often
used to represent a finite number of dependent random variables. Time-series models are useful for repre-
senting a (conceptually infinite) sequence of dependent inputs. The NORTA. transformation facilitates devel-
oping multivariate-input models with marginal distributions that are not normal.
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EXERCISES

1. In a college library, collect the following information at the books return counter:

arrival of students for returning books
service time taken by the counter clerk

. Consolidate the datacollected and verify whether it follows any standard distribution. (Prior penmission
from concerned authorities may be required.)

2. Go to a bank having single window operation. Collect information on arrival of customers, servicé
mne,' etc. The type of transaction may vary from customer to customer. From service times o,bserved‘
classify according to the type of transaction and fit arrival and service parameters separately for eacl‘z
type of transaction. (Prior permission from concerned authorities may be required.) i

3. Gotoa xpajor waffic intersecfion, and record the intefarrival-time distributions from each direction.
Sor.ne am'vals want to go straight, some turn left, some turm right. The interarrival-time distribution
varies during the day and by day of the week. Every now and then an accident oceurs. -

4. Goto a‘gr(.)cer?' store,. and construct the interarrival and service distributions at the checkout counters;
These dxsmb}Jtlons mxghF vary by time of day and by day of week. Record, also, the number of service
channels available at all times. (Make sure that the management gives permission to perform this study.)

5. Go to a laundromat, and “relive” the authors’ data-collection experience discussed in Example 9.1
(Make sure that the management gives permission to perform this study.)

Draw the pdf of normal distribution with H=60=3,
. On one figure, draw the pdfs of the Erlang distribution where 8=1/2 and & = 1,2,4,and 8
- On one figure, draw the pdfs of the Erlang distribution where €=2 and k=1, 2, 4, and 8.

\Dw\l?\

- Draw the pdf of Poisson distribution with o= 3, 5, and 6. .
10. Draw the exponential pdf with 4 = 0.5. In the same sheet, draw the exponential pdf with 4 = 1.5.
11. Draw the exponential pdf with A = 1. In the same sheet, draw the exponential pdf with A= 3.

12. The following data are generated randomly from a gamma distribution:

1.691 1437 8221 5976
1.116 4435 2345 1.782
3.810 4589 5313 10.90

2649 2432 1.581 2432
1.843 2466 2833 2361

Compute the maximum-likelihood estimators ﬁ and 8.

13. The following data are generated randomly from a Weibull distribution where v = 0:

7936 5.224 3937 6.513
4599 7.563 7.172 5.132
5259 2.759 4278 2.696
6.212 2407 1.857 5.002
4.612 - 2.003. 6.908 3.326
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Compute the maximum-likelikood estimators éz and [i (This exercise requires a progcammable calcu-
lator, a computer, or a lot of patience.) :

14. Time between failures (in months) of a particular bearing is assumed to follow normal distribution. The
data collected over 50 failures are

11394  10.728 6.680 8.050 8.382
8.740 8287 . 7979 5.857  13.521
12.000 9496 © 9.248 6.529  12.137
11.383 8.135 11752  10.040 8.615
8.686 6.416 9.987  11.282 4732
9.344 7.019 6735 12176 4247
10.099 6.254  '5.557 9.376 5.780
- 7129 . 7.835 9.648 4.381 5.801
8334  9.454 8.486 7256  10.963
10.544 - 10433 10425 10.078 7.109

Uéing _K(:)_lx;l(_)'gorc.)v—Smimov'test, check whether the distribution follows noqmal.
15. Show that'the Kolmogorov--Smimov test statistic for Example 9.16 is D = 0.1054.

16. Records pertaining to the monthly nurriber of job-related injuries at an underground coalmine were
being studied by a federal agency. The values for the past 100 months were as follows:

Injuries per Month ~ Frequency of Occurrence

0 ' 35
40
13

6

4
{
1

AN HE W -

(a) Apply the chi-square test to these data to test the hypothesis that the underlying distribution is
Poisson. Use the level of sigmificance a= 0.05. _
i " (b) Apply the chi-square test to these data to test the hypothesis that the distribution is Poisson with
[ mean 1.0. Again let ¢=0.05. "
['5 (c) What are the differences between parts (a) and (b), and when might each case arise?
i 17. The interarrival time of tools for repair to a service station is assumed to follow exponential with 4 = 1.
o The data collected from 50 such arrivals are

1299 0234 1182 0943 0.038
0.010 - 2494 1.104 0330, 0324
0059 1375 1660 1748 0.706
2198 0.537 0904 1910 0.387
3.508 2784 0237 1137 0.990
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1.002° 1594 0404 1467 0.905
1000 0.143 0697 0442 0395
0.861 1952 0016 0.167 2245
0.812 1035 0.688 0565 0.155
0465 0.451 0507 0224 1.441

Based on appropriate test, check whether the assumption is valid.

18. The time spent by customers (in minutes) based on a study conducted in the college canteen is

13.125 12972 18985 12.041 14.658
14.151 17.541 17.251 13400 15.559
16365 18.946. 11.154 11.159 14.883
13.650 15336 16990 18265 18.719
13763 18.518 16493 15869 13.291
16.643  16.712 12759 14.926 14.412
21285 13299 16.589 13.887 15.853
12995 19.540 17.761 16.290 14.624
14300 . 8497 19.149 14.035 17.076
18.778 11.186  16.263 14.438 15.741

Using appropriate methods, determine how the time is distributed.

19. The time required for the transmission of a message (in minutes) is sampled electronically at a communi-
cations center. The last 50 values in the sample are as follows:

7936 4612 2407 4278 5132
4599 5224 2003 1857 2696
5259 7563 3937 6908 5002
6.212 2759 7172 6513 3326
8.761 4502 6.188 2566 5515
3785 3.742 4682 4346 5359
3535 5.061 4.629 - 5298  6.492
- 3502 4266 3.129 1298 3454
5289 6805 3827 3912 2969
4646 5963 3829 4404 4924

How are the wransmission times distributed? Develop and test an appropriate model.

20. The time spent (in minutes) by a customer in a bus stop awaiting to board a bus is

107 10.69. 1181 12.81 13.75
719 1625 1232 672 13.92
6.62 6.10 2021 9.58 14.13
11.27 3.00 1253 8.01 14.46
728 1412 759 933 11.16
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1038 1113 3.56 457 17.85 (b) Compute the sample corzelation between milling time and planing time.
1197 16.96 5.04 1377 660 - (c) Fit a bivariate normal distribution to these data.
1434 1170 1195 9.24 9.65 _ ' " . A -
13.88 893 1272 .9.00 0.89 23. Write a computer program to compute the maximum-likelihood estimators (&, f) of the Weibull distri-
1339 1037 2053 992 349 bution. Inputs to the program should include the sample size, n; the observations, Xpp Xppeoss X3 @
stopping criterion, € (stop when | f(ﬁ )< €);anda printopsion, OPT (usually set= 0). Qutput would
Using appropriate methods, determine how the time is distributed. be the estimates & and B. If OPT = 1, additional output would be printed, as in Table 9.4, showing
21. Daily demands for transmission overhaul kits for the D-3 dragline were mamtamed by Earth Moving convergence. Make the program as “user frxemﬂy as p.ossq)le._.. o :
Tractor Company, with the following results: 24. Examine a computer-software library or simulation-support environment t6 which you have access.
2 0 0 0 Obtain documentation on data-analysis software that would be useful in solving exercises 7 through 24.
1 0 1 1 1 Use the software as an aid in solving selected problems.
o 1 0 0 o0
2 0 1 o0 1 25. The duration of calls in minutes over a telephone line is
o 1 0 o0 2 )
1 0 1 0 0 2.058 6.407 0.565 0.641 5.989 0.435 0.278 3.447 11.461 1.658 2.913 2.689 4.747 2.587
(l) g (l) g (1) Develop an input model for the call duration data.
0o 0 3 0 l, 26. The following data represent the time to perform transactions in a bank, measured in minutes: 0.740,
10 0 0 0 1.28, 1.46, 2.36, 0.354, 0.750, 0.912, 4.4, 0.114, 3.08, 3.24, 1.10, 1.59, 1.47, 1.17, 1.27, 9.12, 11.5,
How are the daily demands distributed? Develop and test an appropriate model. 2.42, 1.77. Develop an input model for these data.
22. A simulation is to be conducted of a job shop that performs two operations: milling and planing, in 27. 'I‘gvo:jypes of jo bst(A anTiBi' allie releas;dt to thei mp;l tbl;uf;er oft;]c;b s‘;hop aks o;ders dan':ve, and the amval
that order. It would be possible to collect data about processing times for each operation, then generate ot orders 1s uncertain. 1he foflowing data are available trom the fast week of production:

random occusmrences from each distribution. However, the shop manager says that the times might

D Numb, Job. Number of A’
be related; large milling jobs take lots of planing. Data are collected for the next 25 orders, with the @ umber of Jobs umber of A's

following results in minutes: 1 83 53
: 2 93 62
Milling Planing Milling Planing 3 112 : 66
Time Time Time Time 4 65 41
Order  (Minutes)  (Minutes) ~ Order  (Minutes)  (Minutes) 5 78 _ 55
1 12.3 106 4 246 166 Develop an input mbdel for the number of new.arrivals of each ty pe each day.
2 204 13.9 15 285 21.2 _
3 18.9 14.1 16 11.3 99 28. The following data are available on the processing time at a machine (in minutes): 0.64, 0.59, 1.t, 3.3,
4 16.5 10.1 17 133 - 10.7 0.54, 0.04, 045, 0.25, 4.4, 2.7, 2.4, 1.1, 3.6, 0.61, 0.20, 1.0, 0.27, 1.7, 0.04, 034 Develop an input
5 83 84 18 21.0 14.0 ~ model for the processing time.
6 6.5 © 8.1 19 19.5 13.0 ] . ) _ B
7 252 16.9 20 150 115 . 29. In the process of the development of an inventory simulation model, demand for a component is
8 17.7 13.7 21 12.6 929 . _ 1 2 3 4 3 5 4 3
9 10.6 10.2 22 143 13.2 ] 4 4 6 6 5 4 6 4
10 13.7 12.1 23 17.0 12.5 . 575 °5 7 1 5 2
11 26.2 16.0 24 21.2 S 142 '3 4 3 4 2 8 1 2
12 30.4 189 25 284 19.1 § J 3 8 4 4 5 3 1 6
13 9 7 . Usmg appropriate model, identify how the demand is distributed.
(a) Plot milling time on the honzontal axis and plamng time on the vemcal axis. Do these data seem § 30. Using the web, research some of the input-modeling software packages mentioned in this chapter. What
dependent? : are their features? What distributions do they include?
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Verification and Validation of
Simulation Models

One of the most important and difficult tasks facing a model developer is the verification and validation of
the simulation model. The engineers and analysts who use the model outputs to aid in making design
recommendations and the managers who make decisions based on these recommendations—justifiably look
upon a model with some degree of skepticism about its validity. It is the job of the model developer to work
closely with the end users throughout the period of development and validation to reduce this skepticism and
to increase the model’s credibility.

The goal of the validation process is twofold: (1) to produce a model that represents true system behavior
closely enough for the model to be used as a substitute for the actual system for the purpose of experimenting
with the system, analyzing'system behavior, and predicting system performance; and (2) to increase to an
acceptablé level the credibility of the model, so that the model will be used by managers and other decision
makers. ' .

Validation should not be seen as an isolatedset of procedures that follows model development, but rather
as an integral part of model development. Conceptually, however, the verification and validation process
consists of the following components:

1. Verification isconcemed with building the model correctly. It procesds by the comparisonof the con-
ceptual model to the computer representation that implements that conception. It asks the questions: Is
the model implemented correctly in the simulation software? Are the input parameters and logical
structure of the model represented correctly?

2. Validation is concerned with building the correct model. It attempts to confirm that a model is an
accurate representation of the real system. Validation is usually achieved through the calibration of
the model, an iterative process of comparing the model to actual system behavior and using the
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discrepancies between the two, and the insights gained, to improve the model. This process is
repeated until model accuracy is judged to be acceptable.

This chapter describes methods that have been recommendsd and used in the verification and validation
process. Most of the methods are informal subjective comparisons; a few are formal statistical procedures.
The use of the latter procedures involves issues related to output analysis, the subject of Chapters 11 and 12.
Output analysis refers to analysis of the data produced by a simulation and to drawing inferences from these
data about the behavior of thereal system. To summarize their relationship, validation is the process by which
model users gain confidence that output analysis is making valid inferences about the real system under study.

Many articles and chapters in texts have been written on verification and validation. For discussion of
the main issues, the reader is referred to. Balci [1994, 1998, 2003], Carson [1986, 2002], Gass [1983],
Kleijnen [1995], Law and Kelton [2000], Naylor and Finger [1967], Oren [1981], Sargent [2003], Shannon
[1975], and van Hom [1969, 1971]. For statistical techniques relevant to various aspects of validation, the
reader can obtain the foregoing references plus those by Balci and Sargent [1982a,b; 1984a], Kleijnen
[1987], and Schruben [1980}. For case studies in which validation is emphasized, the reader is referred to
Carson et al. [1981a,b], Gafarian and Walsh [1970), Kleijnen [1993], and -Shechter and Lucas [1980].
Bibliographies on validation have been published by Balci and Sargent [1984b] and by Youngblood [1993].

10.1 MODEL BUILDING, VERIFICATION, AND VALIDATION
The first step in model building consists of observing the real system and the interactions among their
various components and of collecting data on their behavior. But observation alone seldom yields sufficient
understanding of system behavior. Persons familiar with the system, or any subsystem, should be questioned
to take advantage of their special knowledge. Operators, technicians, repair and maintenance personnel,
engineers, supervisors, and managers understand certain aspects of the system that might be unfamiliar to
others. As model development proceeds, new questions may arise, and the model developers will retumn to
this step of learning true system structure and behavior.

The second step in model building is the construction of a conceptual model—a collection of assump-
tions about the components and the structure of the system, plus hypotheses about the values of model input
parameters. As is illustrated by Figure 10.1, conceptual validation is the companson of the real system to the
conceptual model.

The third step is the implementation of an operatlonal model, usually by using simulation software and
incorporating the assumptions of the conceptual model into the worldview and concepts of' the simulation
software. In actuality, model building is not a linearprocess with three steps. Instead, the model builder will
return to each of these steps many times while building, verifying, and validating the model. Figure 10.1
depicts the ongoing model building process, in which the need for- verification and validation causes
continual comparison of the real system to the conceptual model and to the operatlonal model and induces
repeated modification of the model to improve its accu:acy

10.2 VERIFICATION OF SIMULATION MODELS

The purpose of model verification is to-assure that the conceptual model is. reflected accurately in the
operational model. The conceptual model quite often involves some degree of abstraction about system opera-
tions or some amount of simplification of actual operations. Verification asks the following question: Is the
conceptual model (assumptions about system components and system structure, paxameter values, absuacuons
and simplifications) accurately represented by the operational model?




312

DISCRETE-EVENT SYSTEM SIMULATION

—— ghemn
r Ralsy

Cﬂibmﬁon
and Conceptual
vatidation validation

Conceptual model

1. Assumptions on system components

L\ 4 | 2- Structural assumptions, which define
the interactions between system
components

\3. Input parameters and data assumptions

f

-

Model
verification

\ Opemtlomlmodel
—+]  (Computerized

representation)

Figure 10.1 Model building, verification, and validation.

Many common-sense suggestions can be given for use in the verification process:

1. Have the operational model checked by someone other than its developer, prefembly an expert in the
simulation software being used.

2. Make a flow diagram that includes each logically possible action a system can take when an event
occurs, and follow the model logic for each action for each event type. (An example of a logic flow
diagram is given in Figures 2.2 and 2.3 for the model of a single-server queue.)

3. Closely examine the model output for reasonableness under a variety of settings of the input parameters.
Have the implemented model display a wide variety of output statistics, and examine all of them closely.

4. Have the operational model print the input parameters at the end of the simulation, to be sure that
these parameter values have not been changed inadvertently.

5. Make the operational model as self-documenting as possible. Give a precise definition of every vari-
able used and a general description of the purpose of each submodel, procedure (or major section of
code), component, or other model subdivision.

6. If the operational model is animated, verify that what is seen in the animation imitates the actual

system. Examples of errors that can be observed through animation are automated guided vehicles

(AGVs) that pass through one another on a unidirectional path or at an intersection and entities that

disappear (unintentionally) during a simulation.

The Interactive Run Controller (IRC) or debugger is an essential component of successful simulation

model building. Even the best of simulation analysts makes mistakes or commits logical-errors when

building a model. The IRC assists in finding and correcting those errors in the following ways:

(a) The simulation can be monitored as it progresses. This can be accomplished by advancing the

7

. simulation until a desired time has elapsed, then displaying model information at that time.
Another possibility is to advance the simulation until a particular condition is in effect, and then -

display information.
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(b) Attention can be focused on a particular entity line, of code, or procedute. For instance, every time
that an entity enters a specified procedure, the simulation will pause so that information can be
gathered. As another example, every time that a specified entity becomes active, the simulation
will pause.

(c) Values of selected model components can be observed. When the simulation has paused, the current
value or status of variables, attributes, queues, resources, counters, and so on can be observed.

(d) The simulation-can be temporarily suspended, or paused, not only to view information, but also
to reassign values or redirect entities. ' A

8. Graphical interfaces are recommended foraccomplishing verification and validation [Borts-cheller and

Saulnier, 1992]. The graphical representation of the model is essentially a form of self-documentation.

It simplifies the task of understanding the model.

These suggestions are basically the same ones any software engineer would follow.

Among these common-sense suggestions, one that is very easily implemented, but quite often overlooked,
especially by students who are learning simulation, is a close and thorough examination of model output for
reasonableness (suggestion 3). For example, consider a model of a complex network of queues consisting of
many service centers in series and parallel configurations. Suppose that the modeler is interested mainly in the
response time, defined as the time required for a customer to pass through a designated part of the network.
During the verification (and calibration) phase of model development, it is recommended that the program
collect and print out many statistics in addition to response times, such as utilizaions of servers and time-
average number of customers in various subsystems. Examination of the utilization of a server, for example,
might reveal that it is unreasonably low (or high), a possible error that could be cansed by wrong specification
of mean service time, or by a mistake in model logic that sends too few (or 00 many) customers to this
patticular server, or by any number of other possible parameter misspecifications or errors in logic.

In a simulation language that automatically collects many standard statistics (average queue lengths,
average waiting times, etc.), it takes little or no extra programming effort to display almost all statistics of
interest. The effort required can be considerably greater in a general-purpose language such as Java, C, or
C-++, which do not have statistics-gathering capabilities to aid the programmer.

Two sets of statiskics that can give a quick indication of model reasonableness are current contents and

. total count. These statistics apply to any system having items of some kind flowing through it, whether these

items be called customers, transactions, inventory, or vehicles. “Current contents™ refers to the number of
items in each component of the system at a given time. “Total count” refers to the total number of items that
have entered each component of the system by a given time. In some simulatioa software, these statistics are
kept automatically and can be displayed at any point in simulation time. In other simulation software, simple
countérs might have to be added to the operational model and displayed at appropriate times. If the current
contents in some portion of the system are high, this condition indicates that a large number of entities are
delayed. If the output is displayed for successively longer simulation run times and the current contents tend
to grow in a more or less linear fashion, it is highly likely that a queue is unstable and that the server(s) will
fall further behind as time continues. This indicates possibly that the number of servers is too small or that a
service time is misspecified. (Unstable queues were discussed in Chapter 6.) On the other hand, if the total
count for some subsystem is zero, this indicates that no items entered that subsystesn—again, a highly- suspect
occurrence. Another possibility is that the current count and total count are equal to one. This could indicate
that an entity has captured a resource, but never freed that resource. Careful evaloation of these statistics for
various run lengths can aid in the detection of mistakes in model logic and data misspecifications. Checking
for output reasonableness will usually fail to detect the more subtle errors, but it is one of the quickest ways
to discover gross errors. To aid in error detection, it is best for the model developer to forecast a reasonable
range for the value of selected output statistics before making a run of the model. Sach a forecast reduces the

. possibility of rationalizing a discrepancy and failing to investigate the cause of unmsaal output.
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For certain models, it is possible to consider more than whether a particular statistic is reasonable. Itis
possible to compute certain long-run measures of performance. For example, as seen in Chapter 6, the
analyst can compute the long-run server utilization for a large number of queueing systems without any
special assumptions regarding interarrival or service-time distributions. Typically, the only information
needed is the network configuration, plus arrival and service rates. Any measure of performance that can be
computed analytically and then compared to its simulated counterpart provides another valuable tool for
verification. Presumably, the objective of the simulation is to estimate some measure of performance, such
as mean response time, that cannot be computed analytically; but, as illustrated by the formulas in Chapter 6
for a number of special queues (M/M/1, M/G/ 1, etc.), all the measures of performance in a queueing system
are interrelated. Thus, if a simulation model is predicting one measure (such as utitization) correctly, then
confidence in the model’s predictive ability for other related measures (such as response time) is increased
(even though the exact relation between the two measures is, of course, unknown in general and varies from
model to model). Conversely, if a model incorrectly predicts utilization, its prediction of other quantities,
such as mean response time, is highly suspect. .

Another important way to aid the verification process is the oft-neglected documentation phase. If
a model builder writes brief comments in the operational model, plus definitions of all variables and para-
meters, plus descriptions of each major section of the operational model, it becomes much simpler for some-
one else, or the model builder at a later date, to verify the model logic. Documentation is also important as
a means of clarifying the logic of a model and verifying its completeness.

A more sophisticated technique is the use of a trace. In general, a trace s a detailed computer printout
which gives the value of every variable (in a specified set of variables) in a computer program, every time

that one of these variables changes in value. A trace designed specifically for use ina simulation program -

would give the value of selected variables each time the simulation clock was incremented (i.e., each time
an event occurred). Thus, a simulation trace is nothing more than a detailed printout of the state of the

simulation model as it changes over time.

Example 10.1 : -
When verifying the operational model (in a general purpose language such as FORTRAN, Pascal, C or C++,

or most simulation languages) of the single-server queue model of Example 2.1, an analyst made a run over
16 units of time and observed that the time-average length of the waiting line was L, = 0.4375 customer,
which is cértainly reasonable for a short run of only 16 time units. Nevertheless, the analyst decided that a
more detailed verification would be of value. :

The trace in Figure 10.2 gives the hypothetical printout from simulation time CLOCK =0 to CLOCK = 16
for the simple single-server queue of Example 2. 1. This example illustrates how an error can be found with
atrace, when no error was apparént from the examination of the summary output statistics (such as iQ). Note
that, at simulation time CLOCK = 3, the number of customers in the system is NCUST = 1, but the server
is idle (STATUS = 0). The source of this error could be incorrect logic, or simply not setting the attribute
STATUS to the value 1 (when coding in a general purpose language or most simulation languages).

In any case, the error must be found and comrected. Note that the less sophisticated practice of examin-
ing the summary measures, o output, did not detect the error. By using equation (6.1), the reader can verify
that L, was computed correctly from the data (f,Q is the time-average value of NCUST minus STATUS):

i '=.(0-0)3+(1—0)2+(0—0)6+(1-0)1+(2—1)4
0 o 3+2+6+1+4

7 .
=—=04375
16

as previously mentioried. Thus, the output measure, iQ, had a reasonable value and was computed correctly
from the data, but its value was indeed wrong because the attribute STATUS was not assumring correct
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Definition of Yariables:

CLOCK = Simulation clock

EVTYP Event type (start, arrival, departure, or stop)
NCUST = Number of customers in system at time ‘CLOCK’
STATUS Status of server { 1-busy, 0-idle)

# o

i}

State of Systenn Just After the Mamed Event Oecurs:

CLOCK =0  EVTYP NCUST =0 STATUS =0
CLOCK =3  EV¥TYP =*Amivall NCUST =1 STATUS =0
CLOCK =5  EVTYP ='Depan’ NCUST =0 STATUS =0
CLOCK =11 EVTYP ='Amivall NCUST =1 STATUS =0
CLOCK =12 EVTYP =‘Amivall NCUST =2 STATUS =1
CLOCK =16 ‘Depait’ NCUST =1 STATUS =1

§

N

.

Figure 10.2 Simulation Trace of Example 2.1.

values. Asis seen from Figure 10.2, a trace yields information on the actual history of the model thatis more
detailed and informative than the summary measures alone. '

Most sim'ulation software has a built-in capability to conduct a trace without the programmer haying to
do any faxu?nswe programuming. In addition, a ‘print’ or ‘write’ statement can be used to implementa.ﬁacin
capability in a general-purpose language. ’

As can be easily imagined, a trace over a large span of simulation time can quickly produce an extremely
large amount of computer printout, which would be extremely cumbersome to check in detail for correct-
ness. The. purpose of the trace is to verify the correctness of the computer program by making detailed paper-
and.-pencﬂ calculations. To make this practical, a simulation with a trace is usually restricted to a very sEort
period of time. It is desirable, of course, to ensure that each type of event (such as ARRIVAL) occurs at least
once, s thatits consequences and effect on the model can be checked for accuracy. If aneventis especially
rare in occurrence, it may be necessary to use artificial data to force it to occur during a simulation of short
fiurauon. This is legitimate, as the purpose is to verify that the effect on the system of the rare event is as
intended.

Some software allows a selective trace. Forexample, a trace could be set for specific locations in the model
or cquld be triggered to begin at a specified simulation time. Whenever an entity goes through the designated
locations, t'he simulation software writes a time-stamped message to a trace file. Some simulation software
allows tracing a selected entity; any time the designated entity becomes active, the trace is activated and time-
stamped messages are written. This trace is very useful in following one entity through the entire model
Another example of a selective trace is to set it for the occurrence of a particular condition. For example when-.
ever th(j, queue before a certain resource reaches five or more, tum on the trace. This allows mnn"mg the
sqnulauon.umil something unusual occurs, then examining the behavior from that point forward in time
Different simulation software packages support tracing to various extents. In practice, it is often implemente(i
by the model developer by adding printed messages at appropriate points into a mode’l.

Of the three classes of techniques—the common-sense techniques, thorough documentation, ar;

. traces—it is recommended that the first two always be carried out. Close-examination of model output for

reasonableness is especially valuable andinformative. A generalized trace may provide voluminous data, far
more than can be used or examined carefully. A selective trace can provide useful information on key model

components and keep the amount of data to a manageable level.

L,
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10.3 CALIBRATION AND VALIDATION OF MODELS

Verification and validation, although conceptually distinct, usually are condt{cted simultaneously bydtrlt(;
modeler. Validation is the overall process of comparing the model and its behavior to the rea! syst;m 1:1111 ,:ts
behavior. Calibration is the iterative process of comparing the model to th.e real sxstem, xfl?qulg ad :|uss"nee;1 "
(or even major changes) to the model, comparing the rev.ised lTlOdCl to reahty,. mal.ung adcli:tlona :" J:,la[idatio;l
comparing again, and so on. Figure 10.3 shows the rela'tlonshlp of modfal calibration to the ovsfecﬁ,ve dation
process. The comparison of the model to reality is carried out by a variety of tests—some su ':1 ’ ect; oers
objective. Subjective tests usually involve people, who are kn.ow!edgeable about one or :jn(:reo : t;l)le o
system, making judgments about the model and its output. Objective tests always require 1 a at o ,-);ormed
behavior, plus the corresponding data produced by the model. Then one or more SlatlSth?r }tfs i a rs: ormed
to compare some aspect of the system data set with the same aspect of the model data s.eL | is i ;,rlas 1t0 Ecc'om-
of comparing model with system and then revising both‘the concepn.lal. and opersnonz;f : m(:l ; o s
modate any perceived model deficiencies is continued unt.ll the model is 'Judge:d tq ehsu t;::le 0)(; aoeu b‘;en
A possible criticism of the calibration phase, were it to stop a‘t‘ this Bomt, is (; at te (r)n el has been
validated only for the one data set used—that is, the model has been “fitted tf’ one data set. nle tym s
viate this criticism is to collect a new set of system data (or to reserve a portion of the ori gina sy;’. em. )
to be used at this final stage of validation. That is, after the model has been cahbrated by using L 1e ;rsnf:e !
system data set, a “final” validation is conducted, using the s.econd ‘syste’l’n dzfta s‘et. If unacc;.pta ;. 1lr mu;;t
ancies between the model and the real system are discovered in the “final” validation effort, the modele:
return to the calibration phase and modify the model until it becomes acceptab{e. ot st
Validation is not an either/or proposition—no model is ever totall)f representative of the. system unffer S I.Flr g'
In addition, each revision of the model, as pictured in Figure 1'0.3, involves some cost, time, and ?. ort. aseg
modeler must weigh the possible, but not guaranteed, increase in model acc.:uracy v'ersus the cost 0 mcreOdel
validation effort. Usually, the modeler (and model users) ha\fe some maximum discrepancy IJ.e.tv:/;ter}t ‘Tn ol
predictions and system behavior that would be acceptable. If this level of accuracy cannolt be ob;ameba;v(;o nled
budget constraints, either expectations of model accuracy must be lowered, or the model must be a .

Compare model - Inital
to reality model
Revise -
Compare revised  _ { First revisi
Real model toreality  \_ of model
system
Revise

i

Compare second Second revisio ’
Tevision to reality - of model )
lRevise

Figure 10.3 lteralive process of calibrating a madel.
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As anaidin the validation process, Naylor and Finger [1967] formulated a three-step approach that has
been widely followed:

1. Build a model that has high face validity.
2. Validate model assumptions.

3. Compare the model input-output transformations to corresponding input—output transformations for
the real system.

The next five subsections investigate these three steps in detail.

10.3.1 Face Validity

The first goal of the simulation modeler is to construct a model that appears reasonable on its face to model
users and others who are knowledgeable about the real system being simulated. The potential users of a model
should be involved in model construction from its conceptualization to its implementation, to ensure that a
high degree of realism is built into the model through reasonable assumptions regarding system structure and
through reliable data. Potential users and knowledgeable persons can also evaluate model output for reason-
ableness and can aid in identifying model deficiencies. Thus, the users can be involved in the calibration
process as the model is improved iteratively by the insights gained from identification of the initial model defi-
ciencies. Another advantage of user involvement is the increase in the model’s perceived validity, or credibility,
without which a manager would not be willing to trust simulation results as a basis for decision making,

Sensitivity analysis can also be used to check a model’s face validity. The model user is asked whether
the model behaves in the expected way when one ‘or more input variables is changed. For example, in most
queueing systems, if the arrival rate of customers (or demands for service) were to increase, it would be
expected that utilizations of servers, lengths of lines, and delays would tend to increase (although by how
much might well be unknown). From experience and from observations on the real system (or similar related
systems), the model user and model builder would probably have some notion at least of the direction of
change in model output when an input variable is increased or decreased. For most large-scale simulation
models, there are many input variables and thus many possible sensitivity tests. The model builder must
attempt to choose the most critical input variables for testing if it is too expensive or time consuming to vary
all input variables. If real system data are available for at least two settings of the input parameters, objec-
tive scientific sensitivity tests can be conducted via appropriate statistical techniques.

10.3.2 Validation of Model Assumptions

Model assumptions fall into two general classes: structural assumptions and data assumptions. Structural
assumptions involve questions of how the system operates and usually involve simplifications and abstrac-
tions of reality. For example, consider the customer queueing and service facility in a bank. Customers can
form one line, or there can be an individual line for each teller. If there are many lines, customers could be
served strictly on a first-come-first-served basis, or some customers could change lines if one line is moving
faster. The number of tellers could be fixed or variable. These structural assumptions should be verified by
actual observation during appropriate time periods and by discussions with managers and tellers regarding
bank policies and actual implementation of these policies.

Dataassumptions should be based on the collection of reliable data and correct statistical analysis of the
data. (Example 9.1 discussed similar issues for a model of a laundromat.) For example, in the bank study
previously mentioned, data were collected on

1. interarrival times of customers during several 2-hour periods of peak loading (“rush-hour” traffic);
2. interarrival times during a slack period;
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3. service times for commercial accounts;
4. service times for personal accounts.

onsultation with bank managers, who identified typical ruih
hours and typical slack times. When combining two or more data sets collected at different times, data reli-

ability can be further enhanced by objective statistical tests for homogeneity of data. (Do two data sets {X;}

v i i arent
and {Y } .on service times for personal accounts, collected at two different times, come from the same p:
i

opulation? If so, the two sets can be combined.) Additional tests might be rgquired, Fo t'est for correlat:l(:;n

E’n E’he data 'As soon as the analyst is assured of dealing with a random sample (i.e., correlation is not present),
tatistical analysis can begin. o N

e s”I'flhta procedurZs for analyzing input data from a random samp!c were discussed in detz.ul in Chapter 9.

Whether done manually or by special-purpose software, the analysis consists of three steps:

The reliability of the data was verified by ¢

1. Identify an appropriate probability disﬁiputc'llo;. i
. Estimate the parameters of the hypothesized distribution. . -
' § sti];dmale the a[s)sumed statistical model by a goodness-of -fit test, such as the chi-square or Kolmogorov:

Smirnov test, and by graphical methods.

The use of goodness-of-fit tests is an important part of the validation of data assumptions.

10.3.3 Validating Input-Output Transformations

- . < abilit
The ultimate test of a model, and in fact the only objective test of t!'ne mo(;lel as atw}l]ut)llle, lzatimzangl;:? :dai)vll:lez
i i 1 system when the model input data match the r .
to prediot the future behavior of the rea el O e o e i the Iovel of
icy i i ] is implemented at some point in the system. s
a policy implemented in the mode! n e e sereaso the
i i i te of customers to a service facility) were to 2
some input variables (e.g., the arrival ra T T e, I cther
I i n thereal system under similar circ .
model should accurately predict what would happen 1 : tan, her
words, the structure of the model should be accurate enough for the mpdel to make good predictions, not jus
i input data sets that are of interest.
for one input data set, but for the range of inpul  sets . S
In thisphase of the validation process, the model is viewed as an 1npqt—0utput transformanofn lfl:::-tn:zn t‘l:
model accepts values of the input parameters and transforms these inputs into output measures Gl per .
It is this correspondence that is being validated. . o
Instead ofp?/alidating the model input—output transformations by predicting the: fqture, t:;et mc:ti(;}:;
could use historical data that have been reserved for validation purposes only—;lthat 1st, gf 3::(1 :sat ;e s
cali it is recommended that a separate data set be
been used to develop and calibrate the model, i 0 epa
validation test. Thus, accurate “prediction of the past” can replace prediction of the future for the purpose
of validating the model. .
A modfl is usually developed with primary interest in a specific set of system responses to be measured

i i be server
under some range of input conditions. For example, in a queueing system, the responses may

. . h . . .
utilization and customer delay, and the range of input conditions (or input variables) may include two or thre

. . .
servers at some station and a choice of scheduling rules. In a productlt(l)q syslfem, thel resglc:inns; glzrgn
i i input conditions may be a choice of several ma
throughput (i..e., production per hour), and the inpu l chi
at dif?er[:zm speeds, with each machine having its own breakdovyn and maintenance cha@ctepsfncs. idatin
In any case, the modeler should use the main responses of interest as the primary cntenz(i)d o;’ vh " bi
a'model. If the model is used later for a purpose different from its original purpose, the model shou

revalidated in terms of the new responses of interest and under the possibly new mput conditions.

A IleCeSSaly C()lldltl()ll i()l ﬂle Vallda[ on ()f 1 pul—Output tlallstImatl()nS 1S that some version Of [he
1 n
s

system under study exist, so that system data under at least one set of input conditiol Rabtopsede
compare to model predictions. If the system is in the planning stages and no system operating da
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collected, complete input—output validation is not possible. Other types of validation should be conducted,
to the extent possible. In some cases, subsystems of the planned system may exist, and a partial input—output
validation can be conducted. .

Presumably, the model will be used to compare altemnative system designs or to investigate system
behavior under a range of new input conditions. Assume for now that some version of the system is operating
and that the model of the existing system has been validated. What, then, can be said about the validity of
the model when different inputs are used?—that is, if model inputs are being changed to represent a new
system design, or a new way to operate the system, or even hypothesized future conditions, what can be said
about the validity of the model with respect to this new but nonexistent proposed system or to the system
under new input conditions? -

First, the responses of the two models under similar input conditions will be used as the criteria for com-
parison of the existing system to the proposed system. Validation increases the modeler’s confidence that the
model of the existing system is accurate. Second, in many cases, the proposed system is a modification of
the existing system, and the modeler hopes that confidence in the model of tlie existing system can be trans-
ferred to the model of the new system. This transfer of confidence usually can be justified if the new model
is a relatively minor modification of the old model in terms of changes to the operational model (it may be
a major change for the actual system). Changes in the operational model ranging from relatively minor to
relatively major include the following: :

1. minor changes of single numerical parameters, such as the speed of a machine, the arrival rate of
customers (with no change in distributional form of interarrival tiines), the number of servers in a
parallel service center, or the mean time to failure or mean time to repair of a machine;

2. minor changes of the form of a statistical distribution, such as the distribution of a service time or
a time to failure of a machine;

3. major changes in the logical structure of a subsystem, such as a change in queue discipline for a
waiting-line model or a change in the scheduling rule for a job-shop model;

4. major changes involving a different design for the new system, such as a computerized inventory
control system replacing an older noncomputerized system, or an automated storage-and-retrieval
system replacing a warehouse system in which workers pick items manually using fork trucks.

If thechange tothe operational model is minor, such as in items 1 or 2, these changes can be carefully ver-
ified and output from the new model accepted with considerable confidence. If a sufficiently similar subsystem
exists elsewhere, it might be possible to validate the submodel that represents the subsystem and then to inte-
grate this submodel with other validated submodels to build a complete- model. In this way, partial validation
of the substantial model changes in items 3 and 4 might be possible. Unfortunately, there is no way to validate
the input—output transformations of a model of a nonexisting system completely. In any case, within time and
budget constraints, the modeler should use as many validation techniques as possible, including input—output
validation of subsystem models if operating data can be collected on such subsystems.

Example 10.2 will illustrate some of the techniques that are possible for input—output validation and will
discuss the concepts of an input variable, uncontrollable variable, decision variable, output or response vari-
able, and input-output transformation in more detail.

Example 10.2: The Fifth National Bank of Jaspar
The Fifth National Bank of Jaspar, as shown in Figure 10.4, is planning to expand its drive-in service at the
corner of Main Street. Currently, there is one drive-in window serviced by one teller. Only one or two transac-
tions are allowed at the drive-in window, so it was assumed that each service time was a random sample from
some underlying population. Service times {S;, i = 1, 2,..., 90} and interarrival times {A; i = 1, 2,..., 90}
were collected for the 90 customers who arrived between 11:00 A.M. and 1:00 pM. on a Friday. This time slot
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Figure 10.4 Drive-in window at the Fifth National Bank.

was selected for data collection after consultation with management and the teller because it was f elt to be
representative of a typical rush hour.

Data analysis (as outliced in Chapter 9) led to the conclusion that arrivals could be modeled as a Poisson
process at a rate of 45 customers per hour and that service times were approximately normally distributed,
with mean 1.1 minutes and standard deviation 0.2 minute. Thus, the model has two input variables:

1. interarrival times, exponentially distributed (i.e., a Poisson arrival process) at rate 4 =45 per hour;
2. service times, assumed to be N(1.1, (0.2)3).

Each input variable has a level: the rate (A = 45 per hour) for the interarrival times, and the mean 1.1 minutes
and standard deviation 0.2 minute for the service times. The interarrival times are examples of uncontrollable
variables (i.e., uncontrollable by managemenit in the real system). The service times are also treated as uncon-
trollable variables, although the level of the service times might be partially controllable. If the mean service
time could be decreased to 0.9 minute by installing a computer terminal, the level of the service-time variable
becomes a decision variable or controllable parameter. Setting all decision variables at somelevel constitutes
a policy. For example, the current bank policy is one teller (D, = 1), mean service time D, = 1.1 minutes, and
one line for waiting cars (D3 = 1). (D), D, ... are used to denote decision variables.) Decision variables are
under management’s control; the uncontrollable variables, such as arrival rate and actual arrival times, are not
under management’s control. The arrival rate might change from time to time, but such change is treated as
being due to external factors notunder management control.

. A model of current bank operations was developed and verified in close consultanon with bank
‘management and employees. Model assumptions were validated, as discussed in Section 10.3.2. The resulting
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model is now viewed as a “black box™ that takes all input-variable specifications and transformstheminto a
set of output or response variables. The output variables consist of all statistics of interest generated by the
simulation about the model’s behavior. For example, management is interested in the teller’s utilization at the
drive-in window (percent of time the teller is busy at the window), average delay in minutes of a customer
from arrival to beginning of service, and the maximum length of the line during the rush hour. These input
and output variables are shown in Figure 10.5 and are listed in Table 10.1, together with some additional
output variables. The uncontrollable input variables are denoted by X, the decision variables by D, and the

Poisson arrivals Teller's utilization
_""'_"_xu. Xle. s
rate = 45/hour Y =p
Random )
variables
Servics imes You X
MOy, 025 200 Xpn, lg
D Average delay
E .
One teller L h
D =1
Decision | Mean service time . " Maximum line length
: o Black box
variables 0, =~ 1.1 minutes Y,
One line
D=1

Input variables =»> Model ——— Output variables

Figure 10.5 Model input—output transformation.

Table 10.1 Input and Output Variables for Model of Current Bank Operations

Input Variables Model Output Variables, Y

D =decision variables
X= other variables

Variables of primary interest

to management (Y, Y5, ¥3)
Y, = teller’s utilization
Poisson arrivals at rate = 45/hour Y, =average delay
X Xige - Y, = maximum line length
Service times, N (D,, 0.2%) Other output variables of
Xo1s Xg .. secondary interest

Y4 =observed arrival rate

D, = 1 (one teller) Y =average service time
D, = 1.1 minutes (mean service time) Y = sample standard deviation of service
D; =1 (oneline) times
Y, = average length of waiting line
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output variables by Y. From the “black box” point of view, the model takes the inputs X and D and produces
the outputs Y, namely

X, D)LY

or
fX,D)y=Y

Here f denotes the transformation thatis due to the structure of the model. For the Fifth National Bank study,
the exponentially distributed interarrival time generated in the model (by the methods of Chapter 8) between
customer n — 1 and customer n is denoted by X),. (Do not confuse X;, with A,; the latter was an observation
made on the real system.) The normally distributed service time generated in the model for customer n is
denoted by X,,. The set of decision variables, or policy, is D = (D, D,, D3= (1, 1.1, 1) for current opera-
tions. The output, or response, variables are denoted by Y= (Y}, Y5, ..., ¥7) and are defined in Table 10.1.

For validation of the input-output transformations of the bank model to be pessible, real system data
must be available, comparable to at least some of the model output Y of Table 10.1. The system responses
should have been collected during the same time period (from 11:00 A.M. to 1:00 P.M. on the same Friday)
in which the input data {A;, S;} were collected. This is important because, if system response data were
collected on a slower day (say, an arrival rate of 40 per hour), the system responses such as teller utilization (Z,),
average delay (Z;), and maximum line length (Z,) would be expected to be lower than the same variables
during a time slot when the arrival rate was 45 per hour, as observed. Suppose that the delay of successive
customers was measured on the same Friday between 11:00 AM. and 1:00 P.M. and that the average delay
was found to be Z, = 43 minutes. For the purpose of validation, we will consider this to be the true mean
value gty =4.3.

When the model is run with generated random variates X, and X,,, it is expected that observed values
of average delay, Y5, should be close to Z, = 4.3 minutes. The generated input values (X,, and X,,) cannot be
expected to replicate the actual input values (A, and S,) of the real system exactly, but they are expected to
replicate the statistical pattern of the actual inputs. Hence, simulation-generated values of ¥, are expected to
be consistent with the observed system variable, Z, = 4.3 minutes. Now consider how the modeler might test
this consistency.

The modeler makes a small number of statistically independent replications of the model. Statistical
independence is guaranteed by using nonoverlapping sets of random numbers produced by the random-
number generator or by choosing seeds for each replication independently (from a random number table).
The results of six independent replications, each of 2 hours duratior, are given in Table 10.2.

Table 10.2 Results of Six Replications of the First Bank Mode}

Y, Y5 Y, = Average Delay
Replication (Arrivals/Hour) (Minutes) (Minutes)

1 51 1.07 2.79
2 40 1.12 R A V]
3 455 1.06 224

4 50.5 : 1.10 345
-5 53 1.09 - 313
6 49 1.07 2.38
Sample mean 2.51
Standard deviation ' 0.82
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Obsgrved arrival rat? Y, and sar.nple average service time ¥; for each replication of the model are also
noted, to be compared with the specified values of 45/hour and 1.1 minutes, respectively. The validation test

consists of comparing the system response, namel i
par X y average delay Z, = 4.3 minutes,
Formally, a statistical test of the null hypothesis va e tothe modelresponses 1y

H, : E(Y,)= 4.3 minutes
versus . (10.1)
H,: E(Y,)# 4.3 minutes

is conducted. If Hj is not rejected, then, on the basis of this test, there is no reason to consider the model
invalid. If H, is rejected, the current version of the model is rejected, and the modeler is forced to seek ways
_to improve the model, as illustrated by Figure 10.3. As formulated here, the appropriate statistical test is the

t test, which is conducted in the following manner:
Choose a level of significance, @, and a sample size, n. For the bank model, choose

=005 .n=6

Compute the sample mean, ¥, , and the sample standard deviati icati i
Eauations 0.1 s s 4 p! iation, S, over the n rephca_uons, by using

— 1
Y,= ;Z Y,; = 2.51 minutes
i=l

and

Z" @ 7 ) .7
S=|&a2 2 | 082 minute
n-1
where Yy, i =1, ..., 6, are as shown in Table 10.2. .
Gelt the crmca‘l value of ¢ from Table A.5. For a two-sided test, such as tﬁat in equation (10.1), use
tan, n-1; for a one-sided test, use lan-1 OF —1y .., as appropriate (n — 1 being the degrees of freedom). From

Table A.S5, 10,455.5 = 2.571 for a two-sided test,
Compute the test statistic

=7 T (102)
where g, is the specified value in the null hypothesis, Hy Here g1, = 4.3 minutes, so that .

_251-43
YA

b For the lWo-sified test,. if [to] > tar2,01, reject Hy. Otherwise, do not reject H. [Forthe one-sided test with
12 E(Y) > pro, reject Hy if £ > tons With Hy 1 E(Y)) < pto, reject H,yif £ < — wn1-]

I I =J. 0.0 =2. l, r6|ect H Conc| a h 1S 1na e(lllate 1n 1ts P ed ctio
Slllce I1 5 34 > 57 0 and On! lllde lh t the model d
25,5 redi n

Recall that, in the testing of hypotheses, rejection of the null hypothesis H, is a strong conclusion, because

5.34

P(Hyrejected | Hy istrue) = o o (103)




324 DISCRETE-EVENT SYSTEM SIMULATION

and the level of significance a is chosen small, say & =0.05, as wasdone here. Equation (10.3) says that the
probability of making the error of rejecting Hy when Hy is in fact true is low (@ =0.05)—that is, the proba-
bility is small of declaring the model invalid when it is valid (with respect to the variable being tested). The
assumptions justifying a # test are that the observations (Y);) are nommally and independently distributed. Are
these assumptions met in the present case?

1. The ith observation Y5, is the average delay of all drive-in customers who began service during the
ith simulation run of 2 hours; thus, by a Central Limit Theorem etfect, it is reasonable to assume that
each observation Y, is approximately normally distributed, provided that the number of customers it
is based on is not too small. :

2. The observations Yy, i = 1, ..., 6, are statistically independent by design—that is, by choice of the
random-number seeds independently for eachreplication or by use of nonoverlapping streams.

3. The ¢ statistic computed by Equation (10.2) is a robust statistic—that is, it is distributed approximately
as the ¢ distribution with n — 1 degrees of freedom, even when Y,;, Y,,, ... are not exactly normally
distributed, and thus the critical values in Table A.5 can reliably be used.

Now that the model of the Fifth National Bank of Jaspar has been found lacking, what should the modeler
do? Upon further investigation, the modeler realized that the model contained two unstated assumptions:

1. When a car arrived to find the window immediately available, the teller began service immediately.
2. There is no delay between one service ending and the next beginning, when a car is waiting.

Assumption 2 was found to be approximately correct, because a service time was considered to begin
when the teller actually began service but was not considered to have ended until the car had exited the drive-
in window and the next car, if any, had begun service, or the teller saw that the line was empty. On the other
hand, assumption 1 was found to be incorrect because the teller had other duties—mainly, serving walk-in
customers if no cars were present—and tellers always finished with a previous customer before beginning
service on a car. It was found that walk-in customers were always present during rush hour; that the transac-
tions were mostly commercial in nature, taking a considerably longer time than the time required to service
drive-up customers; and that, when an arriving car found no other cars at the window, it had towait until the
teller finished with the present walk-in customer. To correct this model inadequacy, the structure of the model
was changed to include the additional demand on the teller’s time, and data were collected on service times
of walk-in customers. Analysis of these data found that they were approximately exponentially distributed
with a mean of 3 minutes.

The revised model was run, yielding the results in Table 10.3. A test of the null hypothesis Hy : E(Y,) =
4.3 minutes (as in equation (10.1)] was again conducted, according to the procedure previously outlined.

Choose & = 0.05 and n= 6 (sample size). :
Compute ¥, = 4.78 minutes, S = 1.66 minutes.
Look up, in Table A.5, the critical value 455 = 2.571.

Compute the test statistic 1, = (¥, - 1;)/S/<n =0.710.

Since |to} < tg 0255 = 2.571, do not reject Hy, and thus tentatively accept the model as valid.

Failure to reject H,y must be considered as a weak conclusion unless the power of the test has been esti-
mated and found to be high (close to 1)—that is, it can be concluded only that the data at hand (Y, ..., Y5)
were not sufficient to reject the hypothesis Hy : tto = 4.3 minutes. In other words, this test detects no incon-
sistency between the sample data (Y, ..., Y,6) and the specified mean yg.

The power of a test is the probability of detecting a departure from H, : = tto when in fact such a depar-
ture exists. In the validation context, the power of the test is the probability of detecting an invalid model.
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Table 10.3 Results of Six Replications of the Revised Bank Model

Replicati R RE Y,= Average Delay
epucarion (Arrivals/Hour} (Minutes) (Minutes)
1 51 107 537
2 40 1.11 1.98
3 455 1.06 ' 5.29
4 50.5 1.09 382
5 53 1.08 674
6 49 1.08 5.49
Sample mean 478
Standard deviation l: 66

The power may also be expressed as 1 minus the probability of a Type 11, or 3, error, where f= P(Type II
error) = P(failing to reject Ho|H, is wue) is the probability of accepting the model as valid when it is not
valid. i

To consider failure to reject Hy as a strong conclusion, the modeler would want f3 to be small. Now,
depends on the sample size r and on the true difference between E(Y,) and gty = 4.3 minutes—that is, on

52 1B~y
’ a

whc?re o, the gopulation standard deviation of an individual Y,,, is estimated by S. Tables A.10 and A. 11 are
typical operatlpg-characten§UC (OC) curves, which are graphs of the probability of a Type 11 error B(§)
versus § for given sample size n. Table A.10 is for a two-sided ¢ test; Table A.11 is for a one-sided f test
Suppo;elthat fthhe modeler would like to reject H, (model validity) with probability at least 0.90 if the true
mean delay of the model, E(Y,), differed from the averagé delay in the system, fiy=4.3 mi 1 i

Then §is estimated by : ’ ’ PHo= 3 minutes, by | minue

s EX)-p) 1
6= I 2 0 E
S 166 _0‘60

For the two-sided test with & = 0.05, use of Table A.10results in

B(8)=P(0.6)=0.75for n=6

To guarantee that f3 (& < 0.10, as was desired by the modeler, Table A.10 reveals that a sample size of approx-
imately n = 30 independent replications would be required—thatis, for a sample size n =6 and assuming that
the population standard deviation is 1.66, the probability of accepting H,, (model validity), when.in fact the
model is invalid (|E(Y,) - tg| = 1 minute), is f=0.75, which is quite high. If a 1-minute difference is critical, -
and if the modeler wants to control the risk of declaring the model valid when model predictions are as much
as 1 minute off, a sample size of n =30 replications is required to achieve a power of 0.9. If this sample size
is too high, either a higher f§ risk (lowerpover) or.a larger difference § must be considered. i

In general, it is always best to control the Type I error, or f§ error, by specifying a critical difference &
and choosing a sample size by making use of an appropriate OC curve. (Computation of power and use of
OC curves for a wide range of tests is discussed in Hines, Montgomery, Goldsman, and Borror [2002].)
In summary, in the context of model validasion, the Type I error is the rejection of a valid model and is easily
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Table 10.4 Type; of Error in Model Validation

Associated
Statistical Terminology Modeling Terminology Risk
Type I: rejecting Hy when H, Rejecting a valid model a
is true
Type I failure to reject H, Failure to reject an B
when H is true invalid model

controlled by specifying a small level of significance ¢ (say &= 0.1, 0.05, or 0.01). The Type II error is the
acceptance of a model as valid when it is invalid. For a fixed sample size n, increasing o will decrease f3, the
probability of a Type II emror. Once ¢ is set, and the critical difference to be detected is selected, the only
way to decrease f3 is to increase the sample size. A Type Il error is the more serious of the twotypes of errors;
thus, it is important to design the simulation experiments to control the risk of accepting an invalid model.
The two types of error are summarized in Table 10.4, which compares statistical terminology to modeling

terminology.

Note that validation is not to be viewed as an either/or proposition, but rather should be viewed in the .

context of calibrating a model, as conceptually exhibited in Figure 10.3. If the current version of the bank
model produces estimates of average delay (Y>) that are not close enough to real system behavior (g, = 4.3
minutes), the source of the discrepancy is sought, and the model is revised in light of this new knowledge.
This iterative scheme is repeated until model accuracy is judged adequate.

Philosophically, the hypothesis-testing approach tries to evaluate whether the simulation and the real
system are the same with respect to some output performance measure or measures. A different, but closely
related, approach is to attempt to evaluate whether the simulation and the real-system performance measures
are close enough by using confidence intervals.

We continue to assume that there is a known output performance measure for the existing system,
denoted by g, and an unknown performance measure of the simulation, y, that we hope is close. The
hypothesis-testing formulation tested whether ¢ = ty; the confidence-interval formulation tries to bound
the difference |u — p| to see whether it is < €, a difference that is small enough to allow valid decisions to
be based on the simulation. The value of € is set by the analyst.

Specifically, if Y is the simulation output, and = E(Y), then we execute the simulation and form a
confidence interval for yt, suchas ¥ + onat S / . The determination of whether to accept the model as valid
or to refine the model depends on the best-case and worst-case error implied by the confidence interval.

1. Suppose the confidence interval does not contain g (See Figure 10.6(a).)
(a) If the best-caseerror is > &, then the difference in performance is large enough, even in the best
case, to indicate that we need to refine the simulation- model. )
(b) If the worst-case error is < &, then we can accept the simulation model as close enough to be
considered valid. :
(c) If the best-case error('{s < &, but the worst-case error is > &, then additional simulation replica-
tions are necessary to shrink the confidence interval until a conclusion can be reached.
2. Suppose the confidence interval does contain (1 (See Figure 10.6(b).)
(a) If either the best-case or worst-case error is > &, then additional simulation replications are
necessary to shrink the confidence interval until a conclusion can be reached.
(b) If the worst-case error is < &, then we can accept the simulation model as close enough to be

considered valid.
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Figure 10.6 Validation of the input-output transformation (a) when the true value falls outside,
(b) when the true value falls inside, the confidence inferval.

In Example 10.2, py = 4.3 minutes, and “close enough” i :
: -2, . 3 gh” was €= 1 minute of expected cust
A 95% confidence interval, based on the 6 replications in Table 10.2, is P customer deay.

Y t1,00, S/
2.51+2.571(0.82/6)

yielding the interval [1.65, 3.37]. As in Figure 10.6(a), ¢4 = 4.3 falls outside the confidence interval. Since
in the best case [3.37 — 4.3] = 0.93 < 1, but in the worst case [1.65 — 4.3 = 2.65 > 1, additional replications
are needed to reach a decision.

10.3.4 Input-Output Validation: Using Historical Input Data

Whein using artificially generated data as input data, as was done to test the validity of the bank models in
szctton 10.3.3, the modeler expects the model to produce event patterns that are compatible with, but not iden-
tical to, the evefn patterns that occurred in the real system during the period of data COUeCtiOﬂ: Thus, in the
banl.c model, artificial input data (X,,, Xp,, n=1,2,...} for interarrival and service times were generat;d and
rephcates of the output data Y, were compared to what was observed in the real system by means of the h ,oth-
esis test stated in equation (10.1). An alternative to generating input data is to use the actual historical r?::ord,
(A, S, n= 1,2,...}, to drive the simulation model and then to compare model output with system data

To -lmplement this technique for the bank model, the data A}, A,... and Sy, S,,... would have .to be
entered into the model into arrays, or stored in afile to be read as the need arose. J u;t afzter customer n arrived

n

at time ¢, =.zi=‘ A, customer n + 1 would be scheduled on the future event list to arrive at future time
t,,+A.,,+1 (without any random numbers being generated). If customer n were to begin service at time ¢/, a
service completion would be scheduled to occur at time t, + S, This event scheduling without randg;n-
n.umber. generation could be implemented quite easily in a general-purpose programming language or most
simulation lar}guages by using arrays to store the data or reading the data from a file.

.When using this technique, the modeler hopes that the simulation will duplicate as closely as possible
the. 1mp9rtanl events that occurred in the real system. In the model of the Fifth National Bank of Jaé ar, the
armival times and service durations will exactly duplicate what happened in the real system on thathrida
between 11:00 A.M. and 1:00 p.m. If the model is sufficiently accurate, then the delays of customers length)s,
of lines, utilizations of servers, and departure times of customers predicted by the model will be closé to what
actually happened in the real system. It is, of course, the model-builder’s and model-user’s judgment that
determines the level of accuracy required. : eren e
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To conduct a validation test using historical input data, it is important that all the input datav(A,,, Se ....)
and all the system response data, such as average delay (Z,), be collected during th.e same time period.
Otherwise, the comparison of model responses to system responses, such as the comparison of average delay
in the model (¥3) to that in the system (Z,), could be misleading. The responses (;Yz and Z_l) deper}d both on
the inputs (A, and S,) and on the structure of the system (or model). Implementz.mon of tl}ls techmgue could
be difficult for a large system, because of the need for simultaneous data collection of all mp}lt variables and
those response variables of primary interest. In some systems, electronic counters and devices are used to

ease the data-collection task by automatically recording certain types of data. The following example was .

based on two simulation models reported in Carson et al. {1981a, b}, in which simultaneous data collection
and the subsequent validation were both completed successfully.

Example 10.3: The Candy Factory - : :
The production line at the Sweet Lil’ Things Candy Factory in Decatur consists of three machines that make,

“package, and box their famous candy. One machine (the candy maker) makes and wraps individual pieces of

candy and sends them by conveyor to the packer. The second machine (the Qacker) packs the individual
pieces into a box. A third machine (the box maker) forms the boxes and supplies them by conveyor to the
packer. The system is illustrated in Figure 10.7. _ .

Each machine is subject to random breakdowns due to jams and other causes. These breakdowns cause
the conveyor to begin to empty or fill. The conveyors between the two makersand th_e packer are usec! asa
temporary storage buffer for in-process inventory. In addition to the randomly qccu.rrmg brfeakdoqu, if tlfe
candy conveyor empties, a packer runtime is interrupted and the packer remains idle untll.more candy is
produced. If thebox conveyor empties because of a long random breakdown of the box machine, an operator
manually places racks of boxes onto the packing machine. If a conveyor fills, the cort.espondm.g maker
becomes idle. The purpose of the model is to investigate the frequency of t_hose opgra}qr lntervent[ons that
require manual loading of racks of boxes as a function of various combinations of individual mac.hlfles and
lengths of conveyor. Different machines have different production speeds and brea!(down chgractenshcs, and
longer conveyors can hold more in-process inventory. The goal is to hold operator interventions to an accept-
able level while maximizing production. Machine stoppages (whether due to a full or an empty conveyor)
cause damage to the product, so this is also a factor in production. o

A simulation model of the Candy Factory was developed, and a validation effort using historical inputs
was conducted. Engineers in the Candy Factory set aside a 4-hour time slot from7:00 A.M. to 11:00 A.M. to

Conveyor for
candy

Candy
maker

Box | )

maker

Figure 10.7 Production line ot the candy factory.
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collect data on an existing production line. For each machine—say, machine i-—-sime to failure and downtiine
duration

Ty, Diy, Tp, Dy ..

were collected. For machine i(i = 1, 2, 3), Ty is the jth runtime (or time to failure), and Dy is the successive
downtime. A runtime, 7};, can be interrupted by a full or empty conveyor (as appropriate), but resumes when
conditions are right. Initial system conditions at 7:00 A.m. were recorded so that they could be duplicated
in the model as inidal conditions at time 0. Additionally, system responses of primary interest—the produc-
tion level (Z,), and the number (Z;) and time of occurrence (Z3) of operator interventions—were recorded for
comparison with model predictions.

The system input data, T;; and D;;, were fed into the model and used as runtimes and random downtimes.
The structure of the model determined the occurrence of shutdowns due to a full or empty conveyor and the
occurtence of operator interventions. Model response variables (Y;, i = 1, 2, 3) were collected for compari-
son to the corresponding system response variables (Z,i = 1, 2, 3).

The closeness of model predictions to system performance aided the engineering staff considerably in
convincing management of the validity of the model. These results are shown in Table 10.5. A simple dis-
play such as Table 10.5 can be quite effective in convincing skeptical engineers and managers of a model’s
validity—perhaps more effectively than the most sophisticated statistical methods!

With only one set of historical input and output data, only one set of simulated output data can be
obtained, and thus no simple statistical tests are possible that are based on summary measures; but, if K
historical input data sets are collected, and K observations Zy, Zy, ..., Zx of some system response variable,
Z;, are collected, such that the output measure Z; corresponds to the jth input set, an objective statistical test
becomes possible. For example, Z; could be the average delay of all customers who were served during the
time the jth input data set was collected. Withthe K input data sets in hand, the modeler now runs the model
K times, once for each input set, and observes the simulated results W;;, W, ..., Wi corresponding to Z,,
j=1,...; K. Continumg the same example, W;; would be the average delay predicted by the model for the

Jjthinput set. The data available for comparison appears as in Table 10.6.

If the K input data sets are fairly homogeneous, it is reasonable to assume thatthe K observed differ-
encesd;=Z;— W;, j=1, ..., K, are identically distributed. Furthermore, if the collecsion of the K sets of input
data was separated in time—say, on different days—it is reasonable to assume that the K differences d,, ..., dg
are statistically independent and, hence, that the differences d,, ..., dy constitute a random sample. In many
cases, each Z; and W; is a sample average over customers, and so (by the Central Limit Theorem) the
differences d; = Z; ~ Wj; are approximately normally distributed with some mean 1, and variance 02. The
appropriate statistical test is then a ¢ test of the null hypothesis of no mean difference:

Ho THy= 0
versus the alternative of significant difference:

Hypy#0

Table 10.5 Validation of the Candy-Factory Model

Response, i System, Z; Model, Y;
1. Production level 897,208 883,150
2. Number of operator 3 3

interventions
3. Time of occurrence

7:22, 8:41, 10:10 7:24, 8:42, 10:14
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Table 10.6 Comparison of System and Model Output Measures for Identical Historical Inputs

System Model Observed Squared Deviation
Input Data Output, Output, . Difference, from Mean,
Set Z; W d; (d,-dy
1 Z Wy d=2,-Wa @ -~ay
2 Zp Wa dy=Z;~ Wy (4-dy
3 Z Wy dy=Z3— Wy (4,-9)
K Zu Wi de=Zu W (d;-a)’
- 1 & 1 X -
==>d, Sl=——Y ({d.-d)
d K le ¥ d K-1 g( 7 ) .

The proper test is a paired ¢ test (Z; is paired with W), each having been pmdﬁced by the firstinput data set,
and so on). First, compute the sample mean difference, d and the sample variance, S2, by the formulas given
in Table 10.6. Then, compute the ¢ statistic as

. | (10.4)

s,/Nk

(with p1,= 0), and get the critical value f, x_, from Table A.5, where o is the prespecified significance level
and K - 1 is the number of degrees of freedom. If [to| > #4,-1, Teject the hypothesis H, of no mean differ-
ence, and conclude that the model is inadequate. If |to| < f4 ¢-1, do not reject Hy, and hence conclude that
this test provides no evidence of model inadequacy.

Example 10.4: The Candy Factory, Continued
Engineers at the Sweet Lil’ Things Candy Factory decided to expand the initial validation effort reported in
Example 10.3. Electronic devices were installed that could automatically monitor- one of the production
lines, and the validation effort of Example 10.3 was repeated with K = 5 sets of input data. The system and
the model were compared on the basis of production level. The results are shown in Table 10.7.

Table 10.7 - Validation of the Candy-Factory Model (Continued)

Input System Model Observed Squared Deviation
Data Set, Production, Production, Difference, from M fean,
J Z; le d} : (d,-‘d)z_
1 897,208 883,150 14,058 . 1594 %107
2 629,126 630,550 -1,424 4.580x 107
3 735,229 741,420 —6,191 -~ 1330x107
4 797,263 788,230 9,033 1.362 x 107
5 825,430 814,190 11,240 3.4772x 107
d=53432 53=7.580x10’

T 24 3 e e R I D

VERIFICATION AND VALIDATION OF SIMULATION MODELS . 331

A paired ¢ test was oonductedfo test Hy : 1150, 0r equivalently, Hy : E(Z;) = E(W,), where Z  is the system
production level and W, is the production level predicted by the simulated model. Let the level of significance
be o= 0.05. Using the results in Table 10.7, the test statistic, as given by equation (10.4), is

d 53432

"SR wosssTh

From Table A.5, the critical value is 1,7, x_; = fo.gos.4-278- Since | o = 1.37 < fggy5,,=2.78, the null hypoth-
esis cannot be rejected on the basis of this test—that is, no inconsistency is detected between system
response and model predictions in terms of mean production level. If H, had been rejected, the modeler
would have searched for the cause of the discrepancy and revised the model, in the spirit of Figure 10.3.

10.3.5 Input ~ Output Validation: Using a Turing Test

In addition to statistical tests, or when no statistical test is readily applicable, persons knowledgeable about
system behavior can be used to compare model output to system output. For example, suppose that five
reports of system performance over five different days are prepared, and simulation output data are used to
produce five “fake” reports. The 10 reports should all be in exactly the same format and should contain infor-
mation of the type that managers and engineers have previously seen on the system. The 10 reports are ran-
domly shuffled and given to the engineer, who is asked to decide which reports are fake and which are real.
If the engineer identifies a substantial number of the fake reports, the model builder queétions the engineer
and uses the information gained to improve the model. If the engineer cannot distinguish between fake and
}'eal reports with any consistency, the modeler will conclude that this test provides no evidence of model
inadequacy. For further discussion and an application to a real simulation, the reader is referred to Schruben
[1980]. This type of validation test is commonly called a Turing test. Its use as model development proceeds
can be a valuable tool in detecting model inadequacies and, eventually, in increasingmodel credibility as the
model is improved and refined. ’ ' -

10.4 SUMMARY

Validation of simulation models is of great importance. Decisions are made on the basis of simulation results;
thus, the accuracy of these results should be subject to question and investigation.

Quite often, simulations appear realistic on the surface because simulation models, unlike analytic mod-
els, can incorporate any level of detail about the real system. To avoid being “fooled” by this apparent real-
ism, it is best to compare system data to model data and to make the comparison by using a wide variety of
techniques, including an objective statistical test, if at all possible. : '

- As discussed by Van Horn [1969, 1971], some of the possible validation techniques, in order of increas-
ing cost-to-value ratios, include

1. Develop models with high face validity by consulting persons knowledgeable about system behav-
ior on both model structure, model input, and model output. Use any existing knowledge in the form
of previous research and studies, observation, and experience. :

2. Conduct simple statistical tests of input data for homogeneity, for randonmess, and for goodness of
fit to assumed distributional forms. _ .

3. Conduct a Turing test. Have knowledgeable people (engineers, managers) compare model output to
system output and attempt to detect the difference. - '
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4. Compare model output to system output by means of statistical tests.

5. After model development, collect new system data and repeat techniques 2 to 4.

6. Build thenew system (or redesign the old one) conforming to the simulation results, collect data on the
new system, and use the datato validate the model (not recommended if this is theonly technique used).

7. Do little or no validation. Implement simulation results without validating. (Not recommended.)

_ Itis usually too difficult, too expensive, or too time consuming to use all possible validation techniques
for every model that is developed. It is an important part of the model-builder’s task to choose those valida-
tion techniques most appropriate, both to assure model accuracy and to promote model credibility.
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EXERCISES

1. Qsmu;anon model ,of_ a job shop was developed to investigate different schieduling rules. To validate
e model, the sch'edulmg tule currently used was incorporated into the model and the resulting output

was compared against observed system behavior. By searching the previousyear’s database reconfs iltltpu
estimated that the average number of jobs in the shop was 22.5 on a given day.Seven independen,t re;?if

cations of the model were run, each ! i i i
o jobs n the o of 30 days’ duration, with the following results for average number

18.9 220 194 221 198. 219 202 -

(a) Develop and conduct a statistical test to eval
¢ uate whether model output i i i
® behavior. Use the level of significance a:= 0.05. VIpUL T comssient with ystem
What is the power of this test if a difference of jobs is vi i
) f two jobs is viewed as criticdl? Wh ize i
needed to guarantee a power of 0.8 or higher? (Use a = 0.05.) stsnmplesioe

2. System data for the job shop of Exercise 1 revealed that the average time spent by a job in the shop was

-approximately 4 working days. The model made the followin; dicti i i
cations, for average time spent in the shop: Bpredietions (-m seven ndependentrepll

370 421 435 413 383 432 4.05

(a) IS mdel Ou[put consistent Wlth sy‘ stem behaVIOI ? Onduct a Statlstlcal te. V
C
. St, using the level Of
( ) "‘)0 tec dlﬁe'rence OfO 5 day llat Salllple S1Ze1S lleeded to vea l)()we] of 0.90 .)
b Ifltlsl rtant to de ta - y W ha
Iﬂte[p[et yOUI lesults 1n terins Of mod_el Valldlty or lnvalldlt y. (USC a= 0.01.)

3. For the job shop of Exercise 1, four setsof in our di
: , putdata were collected over four different 10-da i
together with the average number of jobs in the shop (Z) foreach period. The input data welyep:sr:()idtst; '
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drive the simulation model for four runs of 10 days each, and model predictions of average number of
jobs in the shop (Y) were collected, with these results: l l )
i 1 2 3 4

Z, 217 192 228 194

r s a1 us | Output Analysis for a Single

(a) Conduct a statistical test to check the consistency of system output and model output. Use the level M o d e l

of significance &= 0.05. o )
(b) If a difference of two jobs is viewed as important to detect, what sample size is required to guaran-

tee a probability of at least 0.80 of detecting this difference if it indeed exists? (Use a=0.05.)

4. Find several examples of actual simulations reported in the literature in which the authors discuss vali-
dation of their model. Is enough detail given to judge the adequacy of the validation effort? If so, com-
pare the reported validation with the criteria set forth in this chapter. Dic_i the auth_ors use any va}lda}lon
technique not discussed in this chapter? [Several potential sources of art{cles on simulation apph(fanons
include the journal Interfaces and Simulation, and the Winter Simulation Conference Proceedings at

www.informs-cs.org.]
5. (a) Compare validation in simulation to the validation of theories in the.physical sciences. .
(b) Compare the issues involved and the techniques available for validation of models of physical sys-

tems versus models of social systems. ' o
(c) Contrast the difficulties, and compare the techniques, in validating a model of a manually operated

warehouse with fork trucks and other manually operated vehicles, versus a model of a facility with

; i -and-retrieval system. .. - . . - .
automated guided vehicles, conveyors, and an au“;n.l:tegoi:;?gzsltdm'::ml labgran dhuman deci- Output analysis is the examination of data generated by a simulation. Its purpose is-either to predict the
@ R.Cp cat (c_) fora model of a production system dl nv? ving tem after it has been automated. performance of a system or to compare the performance of two or more alternative system designs. This
sion making, versus a model of the same production sys! chapter deals with the analysis of a single system; Chapter 12 deals with the comparison of two or more sys-

tems. The need for statistical output analysis is based on the observation that the output data from a
simulation exhibits random variability when random-number generators are used to produce the values of
the input variables—that is, two different streams or sequences of random numbers will produce two sets of
outputs, which (probably) will differ. If the performance of the system is measured by a parameter 6, the
result of a set of simulation experiments will be an estimator 6 of 6. The precision of the estimator 6 can
be measured by the standard error of 6 or by the width of a confidence interval for 6. The purpose of the
statistical analysis is either to estimate this standard error or confidence interval or to figure out the number
i of observations required to achieve a standard error or confidence interval of a given size—or both.
'; : : Consider a typical output variable, Y, the total cost per week of an inventory system; Y should be treated
E : as a random variable with an unknown distribution. A simulation run of length 1 week provides a single
A ) . sample observation from the population of all possible observations on Y. By increasing the run length, the
! sample size can be increased to n observations, Y, o Vs ¥ based on a run length of n weeks. However,
these observations do not constitute a random sample, in the classical sense, because they are Rot statistically
! - ) _ independent. In this case, the inventory on hand at the end of one week is the beginning inventory on hand
: : : for the next week, and thus the value of Y, has some influence on the value of Y;,;. Thus, the sequence of
random variables Y, Y,,..., Y,, could be autocorrelated (i.e., correlated with itself). This autocorrelatio:i,
' ‘which is a measure of a lack of statistical independence, means that classical methods of statistics, which
assume independence, are not directly applicable to the analysis of these output data. The methods must be
Pproperly modified and the simulation experiments properly designed for valid inferences.to be made. .
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i . ification of the initial
i i imulation output data, the spect ]
iti rrelation present in most simu ¢ ] o tluence the
I aum:;otim:: 0 can pose a problem for the simulation analy:tﬁz:::gowomd e
Condiﬁ?ir;:ao;:)hii;l:;?; the inventory on hand and the number l(:f batt:lcordrcf:lsa son e conditon
o e the va : k 1. Because of the autocor , the al conditions
i the total cost for week 1. o e onditions, if 10
influence the value of ¥}, L weeks. The spee ;
1d also influence the costs ,, . Y,.)_ for subsequ ke, e Seady-sie (]o.n.g ml})
wouormmll can have an csperially CPlen S ot a'a:lmp lgsis the effect of the initial conditions 15
e ance i of statistical analysis, . e o
. onmodel. For PP o - gt initial observations might not
- oy abs‘ml;lt?:ns might not be identically distributed and that the initial obser
that the output observ } € .
ive of the steady-state behavior of the system. et versusseady state—and defines
representati distinguishes between two types of simulation—trans e latraes by
Section 113 n::alsugres of system performance foreach t){ge f’f s;{l;;xr:tt:.):;mt o enchy
comm(;nl{hzsﬁlherent b Sl e pmbaglllst;:g 1 ; 3 covers the statistical estimation of
st ' isti is of the output. SeC . t o
tatistical analysis O . on 11. ® e analys
demonsaes fgre:;oi lll 4 discusses the analysis of transient simulations, Secti
sures. .
performance mea

of steady-state simulations.

. YSIS
11.1 TYPES OF SIMULATIONS WITH RESPECT TO OUTPUT ANAL

inati ient simulations
a distinction is made between terminating or ransient simul

. . he!
and steady -gtate slm"]a[]ons A teym’na"ng S|mula| 10on ]'S one ﬂlat runs f()l some dul‘auon Of time E? where
. 3 . . . . 0 T .

‘ ) SuCh a SimulatEd System Opens at tume 0

E S| 10e Ve or set Ot events tha[ StOpS the SimulatiOIl. .

i ) ) . f

1Sa poc ﬁ de. nt(‘ L N .

lllldel‘ We“-SpeClﬁCd ”uuﬂl COlkiILHOJ'LS‘ ‘and CIOSCS at the StOpPl"g time 1 E Ihe next four examples are

terminating simulations.

In the analyzing of simulation Output data,

fthe 11 tellers work-
s Bank opens at 8:30 A.M. (time 0) withno cust.omers p}r{esenttzzi ‘5,3 e(:n Ecies e fac
The(sh'i:%); ‘:G(’r:;;ions) and closes at 4:30 PM. (time Tg =.480 mlll;:tiss)i. nt:rr;ted in modeling the interaction
bttt 480 minutes. The simulation ana ¢ e
e hase?:;nn; It)t:?l[l]efr(s)rovtfar the entire day, including the effect of starting up and of closing
between custom .

the end of the day.

{ 0l . the a \ 1 b res 1 tot pel l(Kl fr() 1 l. AM. time 0) to
h Sh dy Gro (3 Bank Of Examplﬂ 1.1, ut {ric! ed he m 30 (
nSIdel'

l 3“ Wh t 1S espe au ])| 1S I (o) lell T.= inu I in‘l i l COﬂditions at
P. en 1t 1S €8] C! i i i 120 minutes. he tia.
M .l i p .l y y- he Slmulan n run gth 1S E :
R . ( 1 30 ) Could be Specif led in ESselllially twowa ys: ( l) ule[eal SySteﬂl COuld be ObSCl \
lime 0 11: AM. 3 ed at l 1 30

istributi f customers .
i d a distribution of number o i 0 e e
ona mumbet o dlﬁere;t di}:u?: be used to load the simulation model \fvnh custom;zartsisa'_ ) Sl e 0 ot e
e o th'esel ?:,: from 8:30 AM.to 1 1:30 A.M. without collecu“gooutputsi;ulatior;
s : “conditi : :30 P.M. .
mOdde'l'cmsﬂ:ttiel‘si;gl A.M. used as initial conditions for the 11:30 A.M. to 1:3 .
conditon: . M. |

Example 11.3 /

A C()ln]ﬂulll(:atl()ns System conslsts O COl ents p sev b C. pO . Il 1S mpfesented
luS € Cral ackup Om| nents.
$ t fSeVCraI mpoﬂ N |
SCI le"laﬂ(',auy m Flgm. ] 1 l-l. OOnSlder the Systﬁm overa pe“()d Ofmlle, T E uﬂtﬂ the Sys[em falls- Ihe Stopplng
ev deﬁ ed by E = {A falls or D falls or (B and C bo(h fall)). Illltlal COﬂdluoﬂs are that au COmPOI'lemS
ent E 18 n > 2 N

are new at time 0.

in system (at 1 1:30 A.M.) could be
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Figure 11.1 Example of a communications system.

Notice that, in the bank model of Example 11.1, the stopping time T = 480 minutes is-known, but in
Example 11.3, the stopping time T ¢ is generally unpredictable in advance; in fact, T, is probably the output

variable of interest, as it represents the total time unti! the system breaks down. One goal of :he simulation
might be to estimate £7), the mean time to system failure. -

Example 11.4

A widget-manufacturing process runs continuously from Monday momings until Saturday mormings. The

. first shift of each workweek is used to load inventory buffers and chemical tanks with the components and
catalysts needed to make the final product (28 varieties of widget). These components and catalysts are made
continually throughout the week, except for the last shift Friday night, which is used f orcleanup and main-
tenance. Thus, most inventory buffers are near empty at the end of the week. During the first shift on
Monday, a buffer stock is built up to cover the eventuality of breakdown in some part of the process. It is
desired to simulate this system during the first shift (time 0 to time T ;= 8 hours) to study various scheduling
policies for loading inventory buffers.

In the simulating of a terminating system, the initial conditions of the system at time O must be specified,
and the stopping time 7,—or, alternatively, the stopping event E—must be well defined. Although it is
certainly true that the Shady Grove Bank in Example 11.1 will open again the next day, the simulation
analyst has chosen to consider it a terminating system because the object of interest is one day’s aperation,
imcluding start up and close down. On the other hand, if the simulation analyst were interested in some other
aspect of the bank’s operations, such as the flow of money or operation of automated teller machines, then
the system miight be considered as a nonterminating one. Similar comments apply to the communications
system of Example 11.3. If the failed component were replaced and the system continued to operate, and,
most important, if the simulation analyst were interested in studying its long-run behavior, it might be
considered as a nonterminating system. In Example 11.3, however, interest is in its short-run behavior, from
time 0 until the first system failure at time T,.. Therefore, whether a simulation is considered 1o be terminating

depends on both the objectives of the simulation study and the nature of the system.

Example 11.4 is.a terminating system, too. It is also an example of a transient (or nonstationary) simulation:
the variables of interest are the in-process inventory levels, which are increasing from zero or near zero
(attime 0) to full or near full (at time 8 hours). : o

A nonterminating system is a system that runs continuously, or at least over a very long period of time.
Examples include assembly lines that shut down infrequently, continuous producsion systems of many different
types, telephone systems and other communications systems such as the Intemet, hospital emergency rooms,
police dispatching and pawolling operations, fire departments, and continuously operating computer petworks.

A simulation of a nonterminating system starts at simulation time 0 under initial conditions defined by
the analyst and runs for some analyst-specified period of time T,. (Significant problems arise concerning the
specification of these initial and stopping conditions, problems that we discuss later.) Usually, the analyst
wants to study steady-state, or long-run, properties of the system—that is, properties that are not influenced
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by the initial conditions of the model at time 0. A stead y-state simulation is a simulation whose objective is
to study long-run, or steady-state, behavior of a nonterminating system. The next two examples are steady-
state simulations.

Example 11.5
Consider the widget-manufacturing process of Example 11.4, beginning with the second shift when the

complete production process is under way. It is desired to estimate long-run production levels and production
efficiencies. For the relatively long period of 13 shifts, this may be considered as a steady-state simulation.
To obtain sufficiently precise estimates of production efficiency and other response variables, the analyst
could decide to simulate for any length of time, T, (even longer than 13 shifts)—thatis, T is not determined
by the nature of the problem (as it was in terminating simulations); rather, it is set by the analyst as one
parameter in the design of the simulation experiment.

Example 11.6
HAL Inc., a large computer-service bureau, has many customers worldwide. Thus, its large computer system

with many servers, workstations, and peripherals runs continuously, 24 hours per day. To handle an increased
work load, HAL is considering additional CPUs, memory, and storage devices in various configurations.
Although the load on HAL’s computers varies throughout the day, management wants the system to be able
to accommodate sustained periods of peak load. Furthermore, the time frame in which HAL’s business will
change in any substantial way is unknown, so there is no fixed planning horizon. Thus, a steady-state
simulation at peak-load conditions is appropriate. HAL systems staff develops a simulation model of the
existing system with the current peak work load and then explores several possibilities for expanding capacity.
HAL is interested in long-run average throughput and utilization of each computer. The stopping time, T,
is determined not by the nature of the problem, but rather by the simulation analyst,either arbitrarily or with
a certain statistical precision in mind.

11.2 STOCHASTIC NATURE OF OUTPUT DATA

Consider one run of a simulation model over a period of time [0, 7,]. Since the model is an input-output
transformation, as illustrated by Figure 10.5, and since some of the model input variables are random vari-
ables, it follows that the model output variables are random variables. Three examples are now given to illus-
trate the nature of the output data from stochastic simulations and to give a preliminary discussion of several
important properties of these data. Do not be concered if some of these properties and the associated
terminology are not entirely clear on a first reading. They will be explained carefully later in the chapter.

Example 11.7: Able and Baker, Revisited
Consider the Able-Baker technical-support call center problem (Example 2.2) which involved customers
arriving according to the distribution of Table 2.11 and being served either by Able, whose service-time
distribution is given in Table 2.12, or by Baker, whose service-time distribution is given in Table 2.13. The'
purpose of the simulation is to estimate Able’s utilization, p, and the mean time spent in the system per
customer, w, over the first 2 hours of the workday. Therefore, each run of the model is for a 2-hour period,
with the system being empty and idle at time 0. Four statistically independent runs were made by using four
distinct streams of random numbers to generate the interarrival and service times. Table 11.1 presents the
results. The estimated utilization for run r is given by P, and the estimated average system time by W,
(ie., w, is the sample “average time in system for all customers served during run r). Notice that, in this
sample, the observed utilizationranges from 0.708 to 0.875 and the observed average system time ranges from
3.74 minutes to 4.53 minutes. The stochastic nature of the output data {p,, p,, Py, p,} and (W, w,, w,, w,}
is demonstrated by the results in Table 11.1. . :

T e
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Dution o bo Al et K of 2t
Run, Able’s l{tilimxion Avergge Sy.s;tem Time,
r P W, (Minutes) ,
" : :
: o315 o
: 0842 o8
Util'iz'g;zr:s ai;i tru:) firfl:;l qQuestions that we will address by a statistical analysis-—say, of the observed

2. t:stimation of the error in our point estimate, i
interval.

These qucstlons are addrCSSCd n Sectloﬂ 1 14 ‘0[ te"nlﬂatlﬂ Slml.l] S al'ﬂple ll- .
g athIlS, such as Ex ; ClaSSlCal
melhOdS Of statistics may bc used bccausc pp pp P3: and P4 constitute a Iaﬂdoln Sample—that 18 they re
H a

independent and identically distri i oA

. . y distributed. In addition, p = E(p)i

1S al H . » P,) 1S the param H : i A

| 1.;10']2??:53 ::?Tite :f the true mean utilization p. The analysis of El))cam p;:etclrlb’(;lilslgc::rsxtslircrj1 . edi o P
U1980]. Addional guidance z;;f Zf?iﬁi? o b applicable to terminating simulations is givlgf t’a(;ﬁ:
Kelton [2000], and Nelson [2001], 11 Alexopoulos and Seila (1998], Kieijnen [1987), Law and

The next Cxalﬂple
lllllstl ates tlle eﬂ ects Of COlIelatlon alld tnitial coﬂdltlolls on tllc estl"la[l()ll ()i l()ll =
g

the true Jong- ilization i
£-run server utilization is p = AE@S) = (9. 1)(9.5)=0.95. We typically would not need to simulat
1t mathematically; but we simulate it here to illustrate difficulties tha:
X Lq, defined by Equation 6.4).

» we divide the time interval [Q 5 i i
e Compute the average number of customers in u[ e oo five i
Y- Specifically, the average number of customers in Y

_ 1 riaox)
Yj—looo."(j LQ(t)dtv j=l,...,5 (lll)

~1)1000

'The ran; ice time
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standard deviati; ibili X
Swellowerds seom -1 ol ot ard deviations, to exclude the possibility of a negative service time; that r'ange
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i i i tomers in the queue from time 0 to
Thus, ¥, = L;wo Ly(t)dt/ 1000 is the time-weighted average number of custo! q

. i , 2000), and so on. Equation (11.1) is a special
time 1000, ¥, = Lz:: Ly(ndt! 1000 is the same average over [1000 ).

: « A ——
i i 7.} provide an example of “batching of raw simul :
caseof Equaton (6, e 1< 5 ot e P lled batch means. The use of batch means 1n

in thi — Y areca
i _in this case, L,{(#),0< £ <5000} and the ¥, ‘ : . !
:2:13:;; (;utput data is %iscussed in Section 11.5.5. For now, simply notice that batching transforms the

continuous-time queue-length process, {LQ(t), 0 < 1 < 5000}, into a discrete-time batch-means process
i i fL,

' i=1,2,3,4,5) where each Y;is an estimator of L o ' N )
e fl'hc ,simulatiorz results of three statistically independent repllcatlo.ns iare showq 1nhTa'I:;t:dll1mZeaISafc0r
replication, or run, uses a distinct stream of random numbers. F(lxr r;phca:o;n 1, -Ylﬁl:f:n ; o for
J (the jih int ( 1) similarly, Y,; and ¥y, are r _

th interval), as defined by Equation (11.1)s p’ y fine ‘
?:;[)Tiyﬁ(onz Zﬂ;nd 3, respectively. Table 1 1.2 also gives the sample mean over each replication, I, for repli

cations r = 1,2,3.2 That is,

L

Y _——E 'I = (112)
Y. 1,2,3
r 5

=

batch averages first, then average the batch means, or just

. . - K :
B v ding togeie,we s e same eg. In other words, each ¥ . is equivalent to the time average

i he same thin

average everything together, we get the same . s e e
» entire interval [0, 5000) for replication r, as given b){ quation (6.4). o o
over;ZEIEH;I;CZI?l;stratEas the inherent variability in stochastic simulations both within a single replication

and across different replications. Consider the variability within replication 3, .in which the1 Sggrzﬁi l?t:lz
length over the batching intervals varies from a low of ¥y, = 7.67f igsggme}'s (:u;m%ag:: f;rlst2 M
i i i l o minutes. .
i f ¥..= 20.36 customers during the third subinterva . jows
ia};;zg;gil(i)ty aBCJross replications. Compare Y/ to Y, t0 Yy the average queue lengths over the intervals

to 5000 minutes across all three replications. .
Suppose, for the moment, that a simulation ana
the result ¥.=3.75 customers as an estimate of rpea
ion i ting to estimal
uestion is usually answered by attemptt t
?nterval. The simulation analyst might think that the five batgh means Y, , z o
random sample; however, the terms in the sequence are not independent, and 1n_

lyst makes only one replication of this model and ge?s
n queue length, L, How precise is the estimate? This

te the standard eror of ¥,. or by forming a confidence
) P Y, could be regarded as a
t they are autocorrelated,

Table 11.2 Batched Average Queue Length for Three
Independent Replications

Replication
Batching
Interval Batch, 1, 2, f’,
(Minutes) i Yl/' Yy 3
[0, 1000) 1 3.61 291 167
[1000, 2000) 2 3.21 9.00 , 12%22
[2000,3000) 3 2.18 16.15 036
{3000, 4000) 4 692 2453 !
{4000, 5000) 5 282 2519 62
{0, 5000) ¥.=315 ¥,.=15.56 Y, =13.66

. ipt r-, indi i ipt; the bar, as in Y. indicates an average.
2The dot, as in the subscript -, indicates summation over the second subscrip! f
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because all of the dataare obtained from within one replication. If Y, , ..., Y, were mistakenly assumed to
be independent observations, and their autocorrelation were ignored, the usual classical methods of statistics
might severely underestimate the standard error of ?,., possibly resulting in the simulation analyst's thinking
that a high degree of precision had been achieved. On the other hand, the averages across the three replica-
tions, Y., }72., and ¥,., can be regarded-as independent observations, because they are derived from three
different replications.

Intuitively, ¥,, and Y, are correlated because in replication 1 the queue length at the end of the time
interval [0, 1000) is the queue length at the beginning of the interval [1000, 2000)—similarly for any two
adjacent batches within a given replication. If the system is congested at the end of one interval, it will be
congested for a while at the beginning of the next time interval. Similarly, periods of low congestion tend to
follow each other. Within a replication, say for ¥,;, Y,,, ..., ¥, high values of a batch mean tend to be
followed by high values and low values by low. This tendency of adjacent observations to-have like values
is known as positive autocorrelation. The effect of ignoring autocorrelation when it is present is discussed in
more detail in Section 11.5.2. - :

Now suppose that the purpose of the M/G/1 queueing simulation of Example 11.8 is to estimate “steady-
state” mean queue length, that is, mean queue length under “typical operating conditions over the long run.”
However, each of the three replications was begun in the empty and idle state (no customers in the queue and
the server available). The empty and idle initial state means that, within a given replication, there will be a
higher-than- “typical™ probability that the. system will be uncongested for times close to 0. The practical
effect is that an estimator of LQ—saf,', 17, for replication —will be biased low [i.e., E(17,.) < LQ]. The extent
of the bias decreases as the run length increases, but, for short-run-length simulations with atypical initial
conditions, this initialization bias can produce misleading results. The problem of initialization bias is
discussed further in Section 11.5.1.

11.3 MEASURES OF PERFORMANCE AND THEIR ESTIMATION

Consider the estimation of a performance parameter, 6 (or ¢), of a simulated system. It is desired to have a

point estimate and an interval estimate of  (or ¢). The length of the interval estimate is a measure .of the
error in the point estimate. The simulation output data are of the form (Y}, ¥, ..., ¥,} for estimating 6; we

refer to such output data as discrete-time data, because the index n is discrete valued. The simulation output

dataare of the form {¥(1),0< ¢ < TE} forestimating ¢; we refer to such output data as continuous-time data,

because the index ¢ is continuous valued. For example, Y, might be the delay of customer i, or the total cost

in week i; Y(r) might be the queue length at time ¢, or the number of backlogged orders at time ¢. The param-

eter 6 is an ordinary mean; ¢ will be referred to as a time-weighted mean. Whether we call the performance

parameter 6 or ¢ does not really matter; we use two different symbols here simply to provide a distinction

between ordinary means and time-weighted means. :

11.3.1 Point Estimation
The point estimator of 6 based on the data {Y,, ..., Y, } is defined by

gL
n

>, o ' (113)

i=l

where 0 is a sample mean based on a sample of size n. Computer simulation languages may refer to this as
a “discrete-time,”

2 ¢,

collect,” “tally” or “observational” statistic.
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The point estimator 6 is said to be unbiased for 0if its expected value is —thatis, if

E@)=6 (114)

In general, however,

E@®)#0 (11.5)

and E(é ) — @is called the bias in the point estimator . It is desirable to have estimators that are unbiased,
or, if this is not possible, have a small bias relative to the magnitude of 6. Examples of estimators of the' form
of Equation (11.3) include ¥ and 'ﬁ’Q of Equations (6.5) and (6.7), in which case ¥, is the time spent in the

(sub)system by customier i. o ) ) . )
The point estimator of ¢ based on thedata {¥(z), 0 < ¢ < T}, whereT . is the simulation run length, is

defined by )
a1 ¢%
=— 11.6
b= [roa (116)
and is called a time average of Y| (¢) over [0,' T,}. Simulation languages may refer to this as a “continuous-
time,” “discrete-change” or “time-persistent” statistic. In general,

E@)#0 (1.7)

and ti; is said to be biased for ¢. Again, we would like to obtain unbiased or low-bias estimators. Examples

of time averages include L and Lg of Equations (6.3) and (6.4) and YJ of Equation (11.1). '

Generally, 6 and ¢ are regarded as mean measures of performance of the system being simulated. Other
measures usually can be put into this common framework. For example, consider estunation of the proportion
of days on which sales are lost through an out-of-stock situation. In the simulation, let

v _ 1, ifoutof stockonday i
710, otherwise

With n equal to the total number of déys, 6 defined by Equation (11.3) is a point estimator. of 6, the propor-
“tion of out-of-stock days. For a second example, consider estimation of the proportion of time queue length
is greater than k, customers (for example, k, = 10). If LQ(t) represents simulated queue length at time ¢, then
(in the simulation) define
1, ifL (8)>
CY()= { . Q k"

0, otherwise

Then é, as defined by Equation (11.6), isa point estimator of ¢, the proportion of time that the queue length
is greater than k, customers. Thus, estimation of proportions or probabilities is a special case of the estima-
tion of means.

A performance measure that does not it this common framework is a quantile or percentile. Quantiles
describe the level of performance that can be delivered with a given probability, p. For instance, suppose that
Y represents the delay in queue that a customer experiences in a service system, measured in imnutes. Then

the 0.85 quantile of Y is the value @ such that
PH{Y<6) =p

where p = 0.85 in this case. Asa percentage, 8is the 100pth or 85th percentile of customer delay. Therefore,
85% of all customers will experience a delay of @ minutes or less. Stated differently, a customer has only

(118)

5l
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a 0.15 probability of experiencing a delay of longer than @ minutes. A widely used perforinance measure is
the median, which is the 0.5 quantile or 50th percentile. :

'1:'hQ problemof esimating a quantile is the inverse of the problem of estimating a propartion or probability.
Cons1d¢?r Equation (11.8). In estimating a proportion, 8 is given and p is to be estimated; but, in estimating
a quantile, p is given and is to be estimated. ‘

The most intuitive method for estimating a quantile is to form a histogram of the observed values of Y,
then find a value 6 such that 100p% of the histogram is to the left of (smaller than) 6. For instance if we:
observe n=250 customer delays {Y, ..., Y.}, then an estimate of the 85th percentile of delay is a vzilue 6
§uch that (0.85)(250) =212.5 = 213 of the observed values are less than or equal to 6. An obvious eskmate
is, therefonte, to set @ equal to the 213th smallest value in the sample (this requires sorting the data). When
tl.le output is a continuous-time process, such as the queue-length process {Ly1), 0<£< T}, then a histogram
gives the fraction of time that the process spent at each possible level (queue length in this example).
I-?owever, the method forﬁquantile estimation remains the same: Find a value 6 such that 100p% of the
histogram is to the left of 9. i

11.3.2 Confidence-Interval Estimation

To understand confidence intervals fully, it is important to understand the difference between a measure of
error and a measure of risk. One way to make the difference clear is to contrast a confidence interval with a
prediction interval (which is another useful output-analysis tool).

. Bofh confidence and prediction intervals are based on the premise that the data being produced by the
simulation is represented well by a probability model. Suppose that model is the normal distribution with
mean 6 and variance 62, both unknown. To make the example concrete, let f be the average cycle time for
parts produced on the ith replication (representing a day of production) of the simulation. Therefore, 8 is the
mathematical expectation of ¥.., and g is represents the day-to-day variation of the average cycle ti,me.

Suppose our goal is to estimate 6. If we are planning to be in business fora long time, producing parts
day after day, then @ is a relevant parameter, because it is the long-run mean daily cycle time. Our average
cycle time will vary from day to day, but over the long run the average of the averages will be close to 6.

The natural estimator for 8 is the overall sample mean of R independent replications, ¥ .. = RI)—’: IR
But Y. is not 6, it is an estimate, based on a sample, and it has error. A confidence interval is a measure 6f
that error. Let

1 & =
SZ = _k__:_l_ E(K - Y")Z

i=l

be the sample variance across the R replications. The usual confidence interval, which assumes the ¥, are
normally distributed, is

' > s

Yottt npy _\/F

where t,,, ,_, is the quantile of the ¢ distribution with R — 1 degrees of freedom that cuts off @/2 of the area

of each tail. (See Table A.5.) We cannot know for certain exactly how far ¥ .. is from 6, but the confidence inter-
val attempts to bound that error. Unfortunately, the confidence interval itself may be wrong. A confidence
level, such as 95%, tells us how much we can trust the interval to actually bound the error between Y .. and 6.
The more replications we make, the less error there is in ¥ .., and our confidence interval reflects that because

tarnpaS/ VR will tend to get smaller as R increases, converging to 0 as R goes to infinity.
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Now suppose we need to make a promise about whatthe average cycle time will be on a particular day.
A good guess is our estimator Y.., but it is unlikely to be exactly right. Even &itself, which is the cgnter of the
distribution, is not likely to be the actual average cycle time on any particular day, because thedfnly average
cycle time varies. A prediction interval, on the other hand, is designed to be wide enough to contain tlwacmal
average cycle time on any particular day with high probability. A prediction mterval is a measure of risk; a
confidence interval is a measure of error.

The normal-theory prediction interval is

- f 1
Y2t 0.8 HE

The length of this interval will not go to 0 as R increases. In fact, in the limit it becomes
8tz,,0

to reflect the fact that, no matter how much we simulate, our daily average cycle time still varies.

In summary, a prediction interval is a measure of risk, and a confidence interval is a measure of error.
We can simulate away error by making more and more replications, but we can never simulate away tisk,
which is an inberent part of the system. We can, however, do a better job of evaluating risk by making more

replications.

Example 11.9 - : : — —
Suppose that the overall average of .the average cycle time on 120 replications of a manufacturing simula-
tion is 5.80 hours, with a sample standard deviation of 1.60 hours. Since t,5,5 1,5 = 198, 2 95% confidence
interval for the long-run expected daily average cycle time is 5.80 +1.98(1.60/ V120) or 5.80 £ 0.29 hours.
Thus, our best guess of the long-run average of the daily average cycle times is 5.80 hours, but there could
be as much as 30.29 hours error in this estimate. '

On any particular day, we are 95% confident that the average cycle time for all parts produced on'that

day will be

5.80%1.98(1.60),/1+ —
1.98.60), 1+

or 5.80 + 3.18 hours. The £3.18 hours reflects the inherent variability in the daily average cycle tirpes and
the fact that we want to be 95% confident of covering the actual average cycle time on a particular day (rather
than simply covering the long-run average).

11.4 OUTPUT ANALYSIS FOR TERMINATING SIMULATIONS

Consider a terminating simulation thatruns overa simulated time interval [0, 7] and‘ results in observations

Y,...s ¥,. The sample size, n, may be a fixed number, or it may be a random variable (say, the number of
e ". y - 0 . . 0

observations that occur during time 7). A common goal in simulation is to estimate

o-e{s)
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Whenthe output data are of the form {¥(£), 0 £t < T}, the goal s to estimate.

1¢% .
¢=E (T-s Jo Y@ d:)

The m‘ethod used in each case is the method of independent replications. The simulation is repeated a total
of R tm.ies, each run using a different random number stream and independently chosen initial conditions
(which includes the case that all runs have identical initial conditions). We now address this problem.

11.4.1 Statistical Background

Perhaps the most confusing aspect of simulation output analysis is distinguishing within-replication data
from across-replication data, and understanding the properties and uses of each. The issué can be further
confused b-y the fact that simulation languages often provide only summary meésurés, like sample means,
sample variances, and confidence intervals, rather than allof the raw data. Sometimes these summary measures
are all the simulation language provides without a lot of extra work. .

To illustrate the key ideas, think in.terms of the simulation of a manufacturing system and two
perforinance measures of that system, the cycle time for parts (time from release into the factory until
completion) and the work in process (WIP, the total number of parté in the factory at any time). In computer
applications, these two measures could correspond to the response time and the length of the task queue at
the CPU; in a service application, they could b€ the time to fulfill a customer’s request and the number of
requests on the “todo™ list; in a supply-chain application, they could be the order fill time and the inventory
level. Similar measures appear in many systems.

Here is the usual set up for something like cycle time: Let Y, be the cycle time for the jth part produced
in the ith replication: If each replication represents two shiﬁsJ of production, then the number of parts
produced in each replication might differ. Table 11.3 shows, symbolically, the results of R replications.

" The across-replication data are formed by summarizing within-replication data: }_f is the sample mean
of the n, cycle times from the ith replication, S? is the sample variance of the same data, and

-
H, :Im""'jfi—_ (11.9)

is a confidence-interval half-width based on this dataset. -
From the across-replication.data, we compute overall statistics, the average of the daily cycle time averages

_ 1 & . _ . .
Y“=E§ e . s (11.10)

o~

Table 11.3  Within- and AcrossReplication

Cydle-Time Data
Wit&z'ri—kép Data Across:Rep Data
. Yu. ¥y o 'Ylnl I i_’;.,S,Z.,Hl .
}fll 1/22 Y,‘:”2 - f. S?, H,
Yo Ym .Y,;,R . }"RsfR H,
.U H

Jo
B
i
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the sample variance of the daily cycle time averages

1 & =
= F.-7.) (11.11)
R - l i=l (Y‘ )
and finally, the confidence-interval half-width
. S
H= s g (11.12)

Thie quantity SIR is the standard error, which is sometimes interpreted as the average emror in .. as an esti-
mator of 6. Notice that §? is not the average of the within-replication sample variances, S’; rather, it is the
sample variance of the within-replication averages ., 7’2., . 2

Within a replication, work in process (WIP) is a continuous-time output, denoted Y(r). The stopping
time for the ith replication, Tz, , could be a random variable, in general; in this example, it is the end of the
“second shift. Table 11.4 is an abstract representation of the data produced.

The within-replication sampie mean and variance are defined appropriately for continuous-time data:

5 _ 1 (7 ’
Yi,-?;jo Y() (11.13)
and
2 _ 1 Ty V)2 4
s _T_E,'L (Y(0)-Y ) dt (11.14)
A definition for H, is mdre' problematic, but, to be concrete, take it to be
5, (11.15)

H, =zarz”ff‘“~
E

Ffarikly, itis difficult to conceive of a situation in which H, is relevant, a topic we discuss later. Although the
definitions of the within-replication data change for continuous-time data, the across-replication statistics are
. unchanged, and this is a critical observation.

Table 11.4 Within- and AcrossReplication

WIP Data
Within-Rep Data Across-Rep Data
K(D.0S<T, ¥.55H,
Y(),0<I<T, Y. 5L H,
Y(D,0<tST, Y,.S%L H,
' Y. 8%k
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Here are the key points that must be understood:

and the individual replication sample averages, Y., are always

The overall sample average, ¥..,
unbiased estimators of the expccted daily average cycle time or daily average WIP.
Across-replication data are independent (since they are based on different random numbers), are
identically distributed (since we are running the same model on each replication), and tend to be
normally distributed if they are averages of within-replication data, as they are here. This implies that
the confidence interval ¥..+ H is often pretty good.

Within-replication data, on the other hand, might have none of these properties. The individual cycle
times may not be identically distributed (if the first few parts of the day find the system empty); they
are almost certainly not independent (because one part follows another); and whether they are
normally distributed is difficult to know in advance. For this reason, S, ,2 and H,, which are computed
under the assumption of independent and identically distributed (i.i.d.) data, tend not to be useful
(although there are exceptions).

* There are situations in which ¥.. and Y are valld estimators of the expected cycle time for an indi-
vidual part or the expected WIP at any point in time, rather than the daily average. (See Section 11.5
on steady-state simulations.) Even when this is the case, the confidence interval Y..x H isvalid, and
Y.+ H, is not. The difficulty occurs because S is a reasonable estimator of the variance of the cycle

time, but S}fn; and SfITEi are not good estimators of the Var[?‘.. ]—more on this in Section 11.5.2.

Example 11.10: The Able-Baker Problem, Continued
Consider Example 11.7, the Able-Baker technical-support call center problem, with the data for R = 4
replications given in Table 11.1. The four utilization estimates, §,, are time averages of the form of Equation
(11.13). The simulation produces output data of the form

I, if Able is busy at time ¢
Y ()=
0, otherwise

and P, = ?,- as computed by Equation (11.13) with T, = 2 hours. Similarly, the four average system times,
Wy, ..., W, are analogous to ¥ of Table 11.3,: where Y is the actual time spent in system by customer i on
replication r.

First, suppose that the analyst desires a 95% confidence interval for Able’s true utilization, p. Using
Equation (11.10) compute an overall point estimator

f=p= 0.808+0.875+0.708+0.842 =0.808
4
Using Equation (11.11), compute its estimated variance:
_ 2, ... _ 2
st (0.808—0.808) +--+(0.842-0.808)" _ 0.072)°

4-1
Thus, the standard error of p=0.808 is estimated by s.e. ©O)= S/JZ =0.036. Obtain Logsa= 3.18 from
Table A.5, and compute the 95% confidence interval half-width by (11.12) as

=(3.18)(0. 036) 0.114

"ooﬁaf
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giving 0.808 % 0.114 or, with 95% confidence,
- 0694 <p<0.922

In a similar fashion, compute a 95% confidence interval for mean time in system w:

. 3.74+4.53+3.84+3.98

W= 7 =4.02 nﬁnutes
- 2 aee - . 2
§2= (3.74-4.02)* +-.-+(3.98-4.02) =(0352)*
' 3 Tl
so that . . .
-8 ) : -
H=t,,.. 7:: (3.18)(0.176) = 0.560

01'. ’ . .
< 4.02-0.56<w<4.02=0.56
Thus, the 95% confidence imterval for w is 3.46 <w<dSs.

11.4.2 Confidence Intervals with Speciﬁe'd: Precision

By Expression (11.12), the half-length A of a 100(1

— )% confidence interval for a mean 0, based on the ¢
distribution, is given by i

S
H= Lm,x—xﬁ

where §? is the sample variance and R is the number of replications. Suppose that an error criterion € is
specified; in other words, it is desired to estimate 6 by Y.. to within Xe with high probability—say, at least

1= 0. Thus, it is desired that a sufficiently large. sample size, R, be taken to satisfy

PU¥.-Ol<e)zl~a

When the sample size, R, is fixed, no guarantee can be given for the resulting error. But if the sample size
can be increased, an error criterion can be specified.

Assume that an initial sample of size R, replications has been observed—that is, the simulation analyst
initially makes R, independent replications. We must have R 2 2, with 10 or more being desirable. The R
replications will be used to obtain an initial estimate S? of the population variance 62 Tomeet.the half-
length criterion, a sample size R must be chosen such that R 2 R, and '

-
H=t o, —=%¢ 11.16
f1.R-1 JE ( )
Solving for R in Inequality (11.23) shows that R is the smalleet integer setisfying R2Rand
A
R Z[M) (11.17)
e )
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Since t,,, ., 2z, an initial estimate for R is given by

2
R > Za.‘zsn
. €

where 2, is the 100(1 — a/2) percentage point of the standard normal distribution from Table A.3. And
since far22-1 = 22 for large R (say, R 2 50), the second inequality for R is adequate when R is large. After
determining the final sample size, R, col]ectR R, additional observations (ie., make R — R additional repli-
cations, or start over and make R total rephcatlons) and form the lO()(l )% conﬁdence mterval for 6 by

(11.18)

20 Lan., R-!T s 9 <Y+ tarlul—l J_

where ¥.. and $? are computed onthe ba51s of all R replications, ¥ .. by Equation (11. 10), and §? by Equanon
(11.11). The half-length of the confidence interval given by Inequality (11.19) should be approximately, € or
smaller; however, with the additional R — R, observations, the variance estimator 52 could differ somewhat
from the initial estimate S7, possibly causing the half-length to be greater than desired. If the confidence
interval (11.19) is too large, the procedure may be repeated, using Inequality (11.17), to determine an even
larger sample size. ’

._._(11,1_9)

Example 11.11
Suppose that it is desifed to estimate Able’s ‘tilization in “Example 11. 7 to within +0.04 with pxobablhty
0.95. An initial sample of size R, = 4 is taken, with the results given in Table 11.1. An initial estiméte of the
population variance is S2 = (0. 072)2 =0.00518. (See Example 11.10 for the relevant data.) The error criterion
is € = 0.04, and the. conﬁdence coeﬂicnent is 1 — a=0.95. From Inequallty ( 11. 18), the final sample size
must be at least as large as .

Bt (1.96) (0.00518}

= =]2.
e (0.04) 44

Next, Inequality (11.17) can be used to test possible candidates (R =13, 14, ...) for final sample size,_ as follows:

R 3 14 15
fywns 218 216 214

2
faoas 50 .
& 1539 1500 1483

Thus, R = 15 is the smallest integer satisfying Inequality (11.17), SOR - R,=15 -4 =11 additional repli-
cations are needed. After obtalmng the additional outputs, we would agam need to compute the half-width
H to ensure that it is as small as is desired. !

11.4.3 Quantiles

Topresent the interval estimator for quantiles, it is helpful to review the interval estimator for a mean in the
special case when the mean represents a proportion or probability, p.-In this book, we have chosen to treat a
proportion or probablllty as justa spec1a1 case of a mean. However, in many statlstlcs texts probablllies are
treated separately. - - e
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. When the number of independent replications Y , ..., ¥, is laige enough that 43,51 =2, the confidence
interval for a probability p is often written as

- pl-p
Pz, -1

where p is the sample proporsion (tedious algebra shows that this formula for the half-width is precisely
equivalent to Equation (11.12) when used in estimating a proporsion).

As mentioned in Seciion 1 1.3, the quantile-estimation problem is the inverse of the probability-estimation
problem: Find 8 such that Pr{ ¥ < 6} = p. Thus, to estimate the p quantile, we find that value 8 such that 100p%
of the data in a histogram of Y is to the leftof 8 (orstated differently, the npth smallest value of Y,..., Y;).

Extending this idea, an approximate (1 — )100% confidence interval for 8 can be obtained by finding
two values: 6, that cuts of 100p,% of the histogram and 6, that cuts off 100p % of the histogram, where

pl-p)
R-1

pil=p)
R-1

Pe=P—Zap

Pu=P¥lap (11.20)
(Recall that we latow p.) In terms of sorted values, é, is the Rp, smallest value (rounded down) and é‘, is the
Rp, smallest value (rounded up), of ¥,,...,Y,. - :

Example 11.12 :
Suppose that we want to estimate the 0.8 quantile of the time to failure (in hours) for the communications
system in Example 11.3 and form a 95% confidence interval for it. A histogram of R = 500 independent
replications is shown in Figure 11.2.

100

AL Lih Luia Lt Gl LA LT L B s ik I L
2000 6000 18000 14000 18000 22000

4

Figure 11.2 Failuie data in hours for 500 replications of the communications system.
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:Ihe point. e‘stimator is 6 = 4644 hours, because 80% of the data in the histogram is to the left of 4644.‘
Equivalently, it is the 500 x 0.8 =400th smallest value of the sorted data.
Toobtain the confidence interval we first compute

- p{l-p) 0.8(0.2)
=p-, =U.g=1. =
Pe=P—2,, -1 0.8-1.96 299 0.765
p{-p) 0.3(0.2)
P.=P+Z, =0.8+1.96 =0.
p S - 299 0.835

The lower bound of the confidence interval is é, = 4173 (the 500x p, =382nd smallest value, rounding

down); the upper bound of the confidence interval is é,, = 5119 hours (the 500 x p, = 418th smallest value, '
rounding up). '

11.4.4 Estimating Probabilities and Quantiles from Summary Data

Knowing the equation for the confidence interval half-width is important if all the simulation software
provides is ¥.. and H and you need to work out the number of replications required to get a prespecified
precision, or if you need to estimate a probability or quantile. You know the number of replications, so the
sample standard deviation can be extracted from H by using the formula

AR

H

S=

LI o]

With this information, the method in Section 11.4.2 can be employed.
. The more difficult problem is estimating a probability or quantile from summary data. When all we have
available is the sample mean and confidence-interval halfwidth (which gives us the sample standard devia-

tion), then one approach is to use a normal-theory approximation for the probabilities or quantiles we desire,
specifically

Prif. <) zPr{ZS C‘f"}
s

and

éﬂfd-zps

The following example illustrates how this is done.

Example 11.13

From 25 replications of the manufacturing simulation, a 90% confidence interval for the dail y average WII

is 218 £ 32. What is the probability that the daily average WIP is less than 3502 What is the 85th percentil:

of daily average WIP? : .
First, we extract the standard deviation: '

HVR _ 32325 _ %
fosss 171

S=

T e
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Then, we use the normél approximations and Table A.3 to get
o 50 ~21
Pr{f, <350)= Pr{Z < 350—93—-3-} =Pr{Z<1.42}=0.92

and BT -
=T+ 2,,,5 =218+1.04(93) = 315 parts

There are shortcomings to obtaining our probabilities and quantiles this way. The appr.oxim.ation fiepe:ids
héavily on whether the output variable of interest is normally distributed. If th; output variable itself is not an
average, then this approximation is suspect. Therefore, we expect the approxxmatlo'nl to work. wgll. for state-
ments about the average daily cycle time, for instance, but very poorly for the cycle time of an individual part.

- 11.5 OUTPUT ANALYSIS FOR STEADY-STATE SIMULATIONS

Consider a sihgle run of a simulation model whose purpose is toestimate a s;eady-&rtate,-or long-run;, charac-
teristic of the system. Suppose that the single run produces observations _Yv Y,, ..., which, gene@y, are samples
of an autocorrelated time series. The steady-state (or long-run) measure of performance, 6, is defined by
.. 1 < . X

e—yﬂngz o , ()
with probability 1, where the value of 8 s independent o f the initial conditions. (The phrase “v'vith probability 'l ?
means that essentially all simulations of the model, using different random numbers, will pxo‘duc,e series
Y, i=1,2,... whose sample average converges to 6.) For example, if Y, was the timc_: customer i spent talk-
ir;g to an operator, then 6 would be the long-run average time a customer s_pcn_d_s talking .to an operator; and,
because 8is defined as a limit, it is independent of the call center’s conditions at time 0. Similarly, the _stfaady.-
state pérfdrmzihce fora cohﬁnuous-tirne_output measure {¥(r), t 2 0}, such as the number of customers in the
call center’s hold queue, is defined as

1 qn
9= }:T-F; o

with probability 1. ]

Of course, the simulation analyst could decide to stop the simulation after some number of observat‘lons—
say, n—have been collected; or the simulation analysi could decide to simulate for some ler‘lgth of ‘umej 7.'5
that determines n (although » may vary from run to'run). The sample size n (or T) is a des:gft chou.:e; itis
not inherently determined by the nature of the problem. The simulation analyst will choose simulation run
length (n or T) with several considerations in mind:

1. Any bias in the point estimator that is due to artificial or arbitrary initial conditions. (The bias can be
severe if run length is too short, but generally itdecreases as run length increases.). ‘
2. The desired pracision of the point estimator, as measured by the standard error or confidence interval
half-width. )
- 3. Budget constraints on computer resources, -

The next subsection discusses initialization bias and the following subsections outline two methods of
estimating point-estimator variability. For clarity of presentation, we discuss only estimation of 6 from a
discrete-ime output process. Thus, when discussing one replication (or run), the notation

BT LLnhe e
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Y.Y,.Y,

adgeea-

will be used; if several replications have been made, the output data for replication r will be denoted by

) 2 N (11.22)

11.5.1 Initialization Bias in Steady-State Simulations

There are several methods of reducing the point-estimator bias caused by using artificial and unrealistic initial
conditions in a steady-state simulation. The first method is to initialize the simulation in a state that is more
representative of long-run conditions. This method is sometimes called intelligent initialization. Examples
include : .

1. setting the inventory levels, number of backorders, and number of items on order and their arrival
dates in an inventory simulation;
2. placing customers in queue and in service in a queueing simulation;
3. having some components failed or degraded in a reliability simulation.
There are at least two ways to specify the initial conditions intelligently. If the system exists, collect data
on itand use these data to specify more nearly typical initial conditions. This method sometimes requires a large

- data-collection effort. In addition, if the system being modeled does not exist—for example, if it is a variant of

an existing system—this method is impossible to implement. Nevertheless, it is recommended that simulation
analyss usc any available data on existing systems to help initialize the simulation, as this will usually be better
than assursing the system to be “completely stocked,” “empty and idle,” or “brand new” at time 0. '

A related idea is to obtain initial conditions from a second model of the system that has been simplified
enough to make it mathematically solvable. The queueing models in Chapter 6 are very useful for this
purpose. The simplified model can be solved to find long-run expected or most likely conditions—such as the
expected number of customers in the queue—and these conditions can be used to initialize the simulation.

A second method to reduce the impact of initial conditions, possibly used in conjunction with the first,
is to divide each simulation run into twophases: first, an initialization phase, from time 0 to time T ;, followed
by a data-collection phase from time T, to the stopping time T + T—that is, the simulation begins at time
0 under specified initial conditions /; and runs for a specified period of time T Data collection on the
response variables of interest does not begin until time T, and continues until time T + T. The choice of T,
is quite important, because the system state at time T, denoted by /, should be more nearly representative of
steady-state behavior than are the original initial conditions at time 0, /. In addition, the length T of the
data-collection phase should be long enough to guarantee sufficiently precise estimates of steady-state
behavior, thice that the system state, /, attime T is a random variable and to say that the system has reached
an approximate steady state is to say that the probability distribution of the system state at time 7 is
sufiiciently close to the steady-state probability distribution as to make the bias in point estimates of response
variables negligible. Figure 11.3 illustrates the two phases of a steady-state simulation. The effect of starting
a simulation run of a queueing model in the empty and idle state, as well as several useful plots to aid the
simulation analyst in choosing an appropriate value of T, are given in the following example,

Example 11.14
Consider the M/G/1 queue discussed in Example 11.8. Suppose that a total of 10 independent replications
were made (R = 10), each replication beginning in the empty and idle state. The total simulation run length
on each replication was T, + T = 15,000 minutes. The response variable was queue length, L (¢, r), at time ¢, -
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Specified initial “Steady-state” initial
conditions, conditions,
1) !
i G !
0 % TetTe
Initialization phase Data-collection phase
of length Ty of length T¢

Figure 11.3 Initidlization and data collection phases of a steady-state simulation run.

wherethe second argument, r, denotes the replication (r = 1,..., 10). The raw output data were hatched, as in
Example 11.8, Equation (11.1), in batching intervals of 1000 minutes, to produce the following batch means:

1 piuoon '

Y=o j( o Lot (11.23)
for replication r= 1,..., 10 and for batch j = 1, 2...., 15. The estimator in Equation (11.23) is simply the time-
weighted-average queue length over the time interval [(j— 1)1000, j(1000)), similar to that in Equation (6.4).
The 15 batch means for the 10 replications are given in Table 11.5.

Normally we average all the batch means within each replication to obtain a replication average.
However, our goal at this stage is to identify the trend in the data due to initialization bias and find out when
it dissipates. To do this, we will average cormesponding batch means across replications and plot them (this
idea is usually attributed to Welch [1983]). Such averagesare known as ensemble averages. Specifically, for
each batch j, define thé ensemble average across all R replications to be

.
1?J.=1R2Y,,. - (11.24)
=]

(R =10 here). The ensemble averages 7. pJ =1 .., 15 are displayed in the third column of Table 11.6. Notice

that ¥., = 4.03 and 7., = 5.45 are estimates of mean queue length over the time periods {0, 1000) and {1000,

2000), respectively, and they are less than all other ensemble averages Y. ;U =3,.... 15). The simulation
analyst may suspect that this is due to the downward bias in these estimators, which in turn is due to the
queue being empty and idle at time 0. This downward bias is further illustrated in the plots that follow.

Figure 11.4 is a plot of the ensemble averages, }_’.P versus 1000j, forj =1, 2,..., 15. The actual values, }-’.j,
are the discrete set of points in circles, which have bsen connected by straight lines as a visual aid.
Figure 11.4 illustrates the downward bias of the initial observations. As time becomes larger, the effect of the
initial conditions on later observasions lessens and the observations appear to vary around a common mean.
When the simulation analyst feels that this point has been reached, then the data-collection phase begins.

Table 11.6 also gives the cumulative average sample mean after deleting zero, one, and two batch means
from the beginning—that is, using the ensemble average batchmeans Y. 4+ When deleting d observations out
of a total of n observations, compute

Y.nd)=— 37 (11.25)

The results in Table 11.6 for the M/G/1 simulation are for d=0, 1,and 2, and n=d + 1...., 15. These cumulative
averages with deletion, namely ¥.(n,d), are plotted for comparison purposes in Figure 11.5. We do not
recommend using cumulative averages to determine the initialization phase, for reasons given next.

L
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| | . Table 11.6  Summary of Data for M/G/1 Simulation: Ensemble Batch Means and Cumulative Means,

i Averaged Over 10 Replications

Figure 11.4 Ensemble averages ?", for M/G/1 queue.

Cumulative Cumulative Cumulative
Average Average Average
R Average 8
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1,000 1 4.03 4.03 — —
y 5.45 —
2,000 2 5.45 4.74
3,000 3 8.00 5.83 6.72 8.00
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Figure 11.5 Cumulative average queue length ¥..{n,d} versus time 1000n.

From Figures 11.4 and 11.5, it is apparent that downward bias is present, and this initialization bias in
the point estimator can be reduced by deletion of one or more observations. For the 15 ensemble average
batch means, it appears that the fisst two observations have considerably more bias than any of the remaining ones.
The effect of deleting first one and then two batch means is also illustrated i in Table 11.6 and Figure 11.5.
As expected, the estimators increase in value as more data are deleted that is, 7. .15, 2)=8.43 and
Y.(15, 1)=8.21 are larger than ¥..(15, 0)=7.94.It also appears from Flgure 115 that Y.(nd)is increasing
forn=5,6,...,11 (and alld=0, 1, 2), and thus there may still be some initialization bias. ‘It seems, however,
that deletion of the first two batches removes most of the bias.

Unfortunately, there is no widely accepted, objective, and proven techmque to gunde how much data to
delete to reduce initialization bias to a negligible level. Plots can, at tlmcs be mlsleadmg, but. they are still
recommended. Several points should be kept in mind:

- 1. Ensemble averages, such as Figure 11.4, will reveal a smoother and more precise trend as thenumber
- of replications, R, is increased. Sin¢e each exnsemble average is the sample mean of i.i.d. observa-
tions, a confidence interval based on the ¢ distribution can be placed around each point, as.shown in
Figure 11.6,:and these. intervals can be used to judge whether or not the plot is precise enough to’
judge that bias has diminished. This is the preferred method to determine a deletion point.
2. Ensemble averages can be smoothed further by plotting a moving average, rather than the original
" ensemble averages. In a moving average, each plotted point is actually the average of several ad_]acent
' "enscmble averages. Specifically, the jth plot point would be

- 1 frm

= Y.,
) T Plerait

ALl e T UL LR ERNREL L T XD . § IS L A
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Figure 11.6 -Ensemble averages ?'i for M/G/1 queue with 95% confidence intervals.

for some m 2 1, rather than the original ensemble average Y. ;- The value of m is typically chosen by
trial and error until a smooth plot is obtained. See Law and Kelton [2000] or Welch {1983] for further
discussion of smoothing. ‘

3. Cumulative averages, such as in Figure 11.5, become less variable as more data are gverag.ed.
Therefore, it is expected that the left side of the curve will always be less smooth than the right side.
More importantly, cumulative averages tend to converge more slowly to lo.rlgfml? perf(?nnancc than
do ensemble averages, because cumulative averages conta all observat_lons, including the most
biased ones from the beginning of the run. For this reason, cumulative averages s{wu{d bfz used f)nly
if itis not feasible to compute ensemble averages, such as whe.n .only flfmgle rephcatu?n is possible.

4. Simulation data, especially from queueing moflels, usually exhibit positive autocorrella.uon. The more
correlation present, the ‘longer it takes for Y. ; o approach steady state. The positive correlation
between successive observations (i.e., batch means) }_’.l,i'_.l, ... can be seen in Figure 11.4.

5. In most simulation studies, the analyst is interested in several different output performance measures
at once, such as the number in queue, customer waiting time, and utilizati(')n of the servers. Un'fon.'-
tunately, different performance measures could approach steady. state at 'dlffer.ent rates. Thus, 1? is
important to examine each performance measure individually for initialization bias and use a deletion
point that is adequate for all of them.

There has. been no shortage of solutions to the initialization-bias problem. Unf9mtely, fpr every
“solution” that works well in some §ituations, there are other situations in which either itis not applicable or
it performs poorly. Important ideas include testing for bias (e.g., Kelton and Law {19831, Schruben {1980},
Goldsman, Schruben, and Swain {1994]); modeling the bias (e.g., Snell and Schruben {1985]); and randomly
sampling the initial conditions on multiple replications (e.g., Kelton {1989])).

C i ——
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11.5.2 Error Estimation for Steady-State Simulation

If (Y, ....Y, } are not statistically independent, then §%n, given by Equation (11.11), is a biased estimator of
the true variance, V(é). This is almost always the case when {Y,, ..., Y] is a sequence of output observa-
tions from within a single replication. In this situation, Y, Y,, ... is an autocorrelated sequence, sometimes
called a time series. Example 11.8 (the M/G/1 queue) provides an illustration of this situation.

Suppose that our point estimator for 6 is the sample mean r= z:'_l Y./n. A general result from mathe-
matical statistics is that the variance of ¥ is? - ’

V(¥)= :—ZZZCO\((Y‘., Y) (11.26)
i =1 ' .

where cov(Y;, ¥) = V(¥,). To construct a confidence interval for 6, an estimate of V(¥) is required. But obtain-
ing an estimate of (11.26) is pretty much hopeless, because each term cov(Y,, Y) could be different, in general.
Fortunately, systems that have a steady state will, if simulated long enough to pass the transient phase (such
as the production-line startup in Example 11.4), produce an output process that is approximately covariance
stationary. Intuitively, stationarity implies that Y, depends on Y, , in the same manneras Y, dependson ¥,.
In particular, the covariance between two random variables in the time series depends only on the number-of

- observations between them, called the lag.

For a covariance-stationary time series, {Y,, Y,, ...), define the lag-k autocovariance by
Y. =cov(l, },) =cov(Y, 1)) (11.27)

which, by definition of covariance stationarity, is not a function of i. For k = 0, y, becomes the population -
variance 02—that is,

Yo =oo¥, £} =V(¥)=0 (11.28)
The lag-k autocorrelation is the correlation between any two observations k apart. It is defined by
Y
P, = 0_‘; (11.29)
and has the property that
-1<p, <1, k=1,2,...

If a time series i s covariance stationary, then Equation (11.26) can be simplified substanlially. Tedious algebra
shows that : '

2 n-l ’
V(?)=o—[l+22(l—£)pk} (11.30)
n &=l n

where p, is the lag-k autocorrelation given by Equation (11.29).

Whenp, >0 for all k (ormost k), the time series is said to be positively autocorrelated. In this case, large
observations tend to be followed by large observations, small observations by small ones. Such a series will tend
to dnift slowly above and then below its mean. Figure 11.7(a) is an example of a stationary time series exhibit-
ing positive autocorrelation. The output data from most queueing simulations are positively autocorrelated.

On the other hand, if some of the p, <0, the series Y, Y,, ... will display the characteristics of negative
autocorrelation. In this case, large observations tend to be followed by small observations, and vice versa.
Figure 11.7(b) is an example of a stationary time series exhibiting negative autocorrelation. The output of
certain inventory simulations might be negatively autocorrelated. C '

: 3This general result can be derived from the fact that, for two random variables Y, and Y, V(¥, £ Y,) = V(¥)) + V(Y,) £ 2cov(Y,, ¥).




360 L DISCRETE-EVENT SYSTEM SIMULATION

Y

o \/\/\/‘//

¥

8= EY)

b

©

Figure 11.7 (q) Stationary time series Y, exhibiting positive autocorrelation; {b) staficherytime series Y;
exhibiting negative autocorrelation; {c} nonstationary fime series with an upward trend.

- Figure 11.7(c) also shows an example of & time series with an upward ténd. Such a time series is not
stationary; the probability distribution of Y, is changing with the index i. - '
Why does autocorrelation make it difficult to estimate V(¥ )? Recall that the standard egtimator for the
variance of a sample mean is $%/n. By using Equation (11.30), it ¢an be shown [Law, 1977] thatthe expected
value of the variance estimator §%/n is’ ’ ' '

E[§]=BV{I7) - (1131)
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where

an/c—l

(11.32)
n-1

and c is the quantity in brackets in Equation (11.30). The effect of the autocorrelation on the oxestimator S¥n

is derived by an examination of Equations (11.30) and (11.32). There are essentially three possibilities:

Case 1

If the Y; are independent, then p, = 0 for k = 1, 2, 3, .... Therefore, c=1+222;:(1—k/n)p,t =1 and

Equation (11.30) reduces to the familiar 6%n. Notice alsothat B = 1, so §%n is an unbiased estimator of V().
The Y, will always be independent when they are obtained from different replications; that independence is
the primary reason that we prefer experiment designs calling for multiple replications.

Case 2

If the autocorrelations p, are primarily positive, then ¢ =1+ 22:(1 —kin)p,> 1, so thatn/c< n, and hence
B < 1. Therefore, S%/n is biased low as an estimator of V(¥). If this correlation were ignored, the nominal
100(1 = )% confidence interval given by Expression (11.12) would be too short, and its true confidence
coefficient would be less than 1 — ¢ The practical effect would be that the simulation analyst would have unjus-

tified confidence (in the apparent precision of the point estimator) due to the shortness of the confidence
interval. If the correlations p, are large, B could be quite small, implying a significant underestimation.

Case 3

If the autocorrelations p, are substantially negative, then0 < ¢ < 1, and it follows that B > 1 and §%n is biased
high for V(Y). In other words, the wue precision of the point estimator ¥ would be greater than what is indi-
cated by its variance estimator §%/n, because
z
V(Fi<E [—-)
n

As a result, the nominal 100(1 — &)% confidence interval of Expression (11.12) would have true confidence
coefficient greater than 1 — ¢. This error is less serious than Case 2, because we are unlikely to make incor-
rect decisions if our estimate is actually more precise than we think it is. ’

A simple example demonstrates why we are especially concerned about positive correlation: Suppose
you want to know how students on a university campus will vote in an upcoming election. To esWimate their
preferences, you plan to solicit 100 responses. The standard experiment is to randomly select 100 students
to poll; call this experiment A. An alternative is to randomly select 20 students and ask each of them to state
their preference S times in the same day; call this experiment B. Both experiments obtain 100 responses, but
clearly an estimate based on experiment B will be less precise (will have larger variance) than an estimate
based on experiment A. Experiment A obtains 100 independent responses, whereas experiment B obtains

* only 20 independent responses and 80 dependent ones. The five opinions from any one student are perfectly

positively correlated (assuming a student names the same candidate all five times). Although this is an
extreme example, it illustrates that esiimates based on positively correlated data are more variable than esti-
mates based on independent data. Therefore, a confidence interval or other measure of error should account
correctly for dependent data, but $%n does not.

Two methods for eliminating or reducing the deleterious effects of autocorrelation upon estimation of a
mean are given in the following sections. Unfortunately, some simulation languages either use or facilitate
the use of $%/n as anestimator of V(¥), the variance of the sample mean, in all situations. If used uncritically

in a simulation with positively autocorrelated output data, the downward bias in §%n and the.resulting
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shortness of a confidence interval for 6 will convey the impression of much greater precision than actually
exists. When such positive autocorrelation is present in the output data, the true variance of the point
estimator, Y, can be many times greater than is indicated by $%/n.

11.5.3 Replication Method for Steady-State Simulations

If initialization bias in the point estimator has been reduced to a negligible level (through some combination
of intelligent initialization and deletion), then the method of independent replicasions can be used to estimate
point-estimator variability and to construct a confidence interval. The basic idea is simple: Make R replica-
tions, initializing and deleting from each one the same way.

If, however, significant bias remains in the point estimator and a large number of replications are used
to reduce point-estimator variability, the resulting confidence interval can be misleading. This happens
because bias is not affected by the number of replications (R); it is affected only by deleting more data
(i.e., increasing T)) or extending the length of each run (i.e., increasing T'). Thus, increasing the number of
replications (R) could produce shorter confidence intervals around the “wrong point.” Therefore, it is important
to do a thorough job of investigating the initial-condition bias.

If the simulation analyst decides to delete d observations of the total of n observations in a replication,
then the point estimator of 0 is Y.(n, d), defined by Equation (11.25)—that is, the point estimator is the
average of the remaining data. The basic raw output data, (¥, r=1....,R;j = 1...., n}, ‘are exhibited in
Table 11.7. Each Y,/. is derived in one of the following ways:

Case 1

Y is an individual observation from within replication r; for example, ¥, could be the delay of customer j
in a queue, or the response time to job j in a job shop.

Case 2 '

Y .is a batch mean from within replication r of some number of discrete-time observations. (Batch means
are discussed further in Section 11.5.5.)

Case 3

Y .is a batch mean of a continuous-tme process over time interval j; for instance, as in Example 11.14, Equation
(11.23) defines Y, ;as the time-average (batch mean) number in queue over the interval [1000 (5 - 1), 1000)).

In Case 1, the number d of deleted observations and the total number of observations n might vary from
one replication to the next, in which case replace d by d_and n by n,. For simplicity, assume that d and » are
constant over replications. In Cases 2 and 3, d and » will be constant.

Table 11.7  Raw Output Data from a Steady-State Simulation

Observations Replication
Replication 1 - d d+1 n Averages
1 » Y, Y+l ' F(n,a)
2 Y2.1 Y 24 Y 24 +1 Y 2n ?2-("- d)
R Yo Yea Yian Yin Yo(n, d)-
Y, -7, g, ¥, Y.ud)
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When using the replication method, each replication is regarded as a single sample for the purpose of
estimating 6. For replication r, define

-."Ql

| _
d=—" § (11.33)

T

as the sample mean of all (nondeleted) observations in replication r. Because all replications use different

~ random-number streams and all are initialized at time 0 by the same set of initial conditions (Z ), the repli-

canon averages

%.(nd), ..7,.(n, d)

are independent and idensically distributed random variables-—that is, they constitute a random sample from
some underlying population having unknown mean

8., =E[¥.(n,d)] O (1134)

The overall point estimator, givenin Equation (11.25), is also given by

Y.(n, d)-—EY {n.d) (11.35)

'=l
as can be seen from Table 11.7 or from using Equation (1 1.24). Thus, it follows that
EF.(n.d))=8,,

also. If d and n are chosen sufficiently large, then 6,, =8, and Y..(n, d) is an approximately unbiased

" estimator of . The bias in Y..(n, d) is 0,, d~0.

For convenience, when the value of n and d are understood, abbreviate z.(n,d) (the mean of the undeleted
observations from the rth replication) and ¥..(n, d) (the mean of ¥,.(n, d), .., ¥;(n,d) by ¥. and Y.,
respectively. To estimate the standard emor of Y.., first compute the sample variance,

1 4
Sz=R—_l§( y.)? —R—[EY’ -RYZ ) (11.36)

r=l

The standard error of ¥.. is given by

seY.)= % (11.37)

A 100(1 - a)% confidence interval for 6, based on the ¢ distribution, is given by

= .- S - . S
Y.- talz.R-l “E <O<Y+ to:lz.R-I TE

(11.38)

iz
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where 1, o, is the 100(1 ~ /2) percentage point of a ¢ distribution with R — 1 degrees of freedom. This
confidence interval is valid only if the bias of Y. is approximately zero.

As a rough rule, the length of each replication, beyond the deletion point, should be at least ten times
the amount of data deleted. In other words, (n — d) should at least 10d (or more generally, T, should be at
least 10T,). Given this run length, the number of replications should be as many as time permits, up to about
25 replications. Kelton [1986] established that there is little value in dividing the available time into more
than 25 replications, so, if time permits making more than 25 replications of length 7, + 10T, then make 25
replications of longer than 7 + 10T, instead. Again, these are rough rules that need not be followed slavishly.

Example 11.15 .
Consider again the M/G/1 queueing simulation of Examples 11.8 and 11.14. Suppose that the simulation
analyst decides to make R = 10 replications, each of length T ;= 15,000 minutes, each starting at time 0 in
the empty and idle state, and each initialized for T, = 2000 minutes before data collection begins. Th.e raw
output data consist of the batch means defined by Equation (11.23); recall that each batch mean is simply
the average number of customers in queue for a 1000-minute interval. The first two batch means are deleted
(d=2). The purpose of the simulation is to estimate, by a 95% confidence interval, the long-run time-average
queue length, denoted by L,

The replication averages }_’,.(1 5,2),r=1.2,..,10, are shown in Table 11.8 in the righsmost column. The
point estimator is computed by Equation (11.35) as

7.(152)=843
Its standard error is given by Equation (11.37) as

se(¥..(15,2)) = 1.59

Table 11.8 Data Summary for M/G/1 Simulation by Replication

Sample Mean for Replication r
" Replication, (No Deletion) (Delete 1) (Delete 2)
r ¥.15,0) ¥.(15,1) Y.(15.2)
1 327 324 3.25
2 16.25 17.20 17.83
3 15.19 15.72 15.43
4 7.24 7.28 771
5 293 298 311
6 4.56 : 4.82 4.91
7 8.44 8.96 9.45
8 5.06 5.32 527
9 6.33 © 6.14 6.24
10 10.10 10.48 11.07
Y.=(154d) 794 8.21 843
R
PR 826.20 894.68 938.34
r=l
. 21.75 24.52 25.30
S 4.66- 495 5.03
S0 =se(¥.) 147 1.57 1.59
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and using @ = 0.05 and £y, . = 2.26, the 95% confidence interval for long-run mean queue length is given
by Inequality (11.38) as

8.43-2.26(1.59) <L, <8.43+2.26(1.59)
or

4845 L,<12.02

The simulation analyst may conclude with a high degree of confidence that the long-run mean queue length

_is between 4.84 and 12.02 customers. The confidence interval computed here as given by Inequality (11.38)

should be used with caution, because a key assumption behind its validity is that enough data have been
deleted to remove any significant bias due to initial conditions—that is, that d and n are sufficiently large
that the bias 6, ,— € is negligible. ' .

Example 11.16
Suppose that, in Example 11.15, the simulation analyst had decided to delete one batch (d=1) or no batches
{d = 0). The quantities needed to compute 95% confidence intervals are shown in Table 11.8. The resulting
95% confidence intervals are computed by Inequality (11.38) as follows: ’ :

(d=1) 4.66=821-226(1.57)<L, <821+ 2.26(1.57) =11.76
(d=0) 4.62=7.94-226(147)< L, <7.94+2.26(1.47)=11.26

Notice that, for a fixed total sample size, n, two things happen as fewer data are deleted:

1. The confidence interval shifts downward, reflecting the greater downward bias in ¥..(n, d) as d
decreases. _ :
2. The standard error of ¥..(n, d), namely S/ \E , decreases as d decreases.

In this example, ¥.{n, d) is based on a run length of T, =__l 000(n — d) = 15,000 —1000d minutes. Thus, as
d decreases, T increases, and, in effect, the.sample meaa Y .. is based on a larger “sample size” (i.e., longer
run length). In general, the larger the sample size, the smaller the standard error of the point estimator. This
larger sample size can be due to a longer run length (7}) per replication, or to more replications (R).

Therefore, there is a trade-off between reducing bias and increasing the variance of a point estimator,
when the total sample size (R and T+ T ;) is fixed. The more deletion (ie., the larger T is and the smaller
T, is, keeping T, + T fixed), the less bias but greater variance there is in the point estimator.

Recall that each batch in Examples 11.15 and 11.16 consists of 1000 minutes of simulated time.
Therefore, discarding d = 2 batches really means discarding 2000 iinutes of data, a substantial amount.
It is not uncommon for very large deletions to be necessary to overcome the initial conditions.

11.5.4 Sample Size in Steady-State Simulations

Suppose it is desired to estimate a long-run performance measure, 6, within t¢, with confidence 100(1 — @)%.
In a steady-state simulation, a specified precision may be achieved either by increasing the number of repli-
cations (R) or by increasing the run length (7). The first solution, controlling R, is carried out as given in
Section 11.4.2 for terminating simulations. : '
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Example 11.17 : . — - -
Consider the data in Table 11.8 for the M/G/1 queueing simulation as an inisial sample of size R, = 10. Assuming

that d = 2 observations were deleted, the initial estimate of variance is S2 =25.30. Suppose that it is desircd‘ to
estimate long-run mean queue length, L 5, within € = 2 customers with 90% ccnﬁdence: 'I‘he ﬁ{aa! sample size
needed must satisfy Inequality (11.17). Using @=0.10in Inequality (11.18) yields an initial estimate:

2 H
Rz(zms,,) _L4s 2{225.30) =171
€

Thus, at least 18 replications will be needed. Proceeding as in Example 11.11, nextoy R=18,R =19, ... as
follows:

R 18 19
1.74 173

rO.OS.R—-I

S 2
(M) ‘1915 18.93
p

R=192 (1505,55,/ €)* =18.93 is the smallest integer R satisfying Inequality (11.17), so a total sample size of
R =19 replications is néeded to estimate L, to within +2 customers. Therefore, R —R;=19-10=9
addisional replications are needed to achieve the specified error. .

An alternative to increasing R is to increase total run length T, + T, within each replication. If the
calculations in Section 11.4.2, as illustrated in Example 11.17, indicate that R - R, additional replications
are needed beyond the initial number, R, then an alternative is to increase run length (T, + T) in the same

proportion (R/R,) to a new run length (R/R;)(T; + T;). Thus, additional data will be deleted, from time 0 to

time (R/R))T;, and more data will be used to compute the point estimates, as illustrated by Figure 11.8.
However, the total amount of simulation effort is the same as if we had simply increased the number of repli-
cations but maintained the same run length. The advantage of increasing total run length per replication and
deleting a fixed proportion [Ti/(T, + T)] of the total run length is that any residual bias in the point estima-
tor should be further reduced by the additional deletion of data at the beginning of the run. A possible

Ininalization Daa collection
. phase l' phase .
[ } 1
0 T . _ I+ Tg
: L Initialization Duta collection
y phase ‘) ghase —
— U
0 (RIR)T, RifTo + Tp)

Figure 11.8 Increasing runlength to achieve specified accuracy.
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disadvantage of the method is that, in order to continue the simulation of all R replications [from time T, + T,
to time (R/R) (T, + Tp), it & necessary to have saved the state of the model at time T, + T and to be able
to restart the model and run it for the additional required time. Otherwise, the simulations would have to
be remn from time 0, which could be time consuming for a complex model. Some simulation languages have
the capability to save enough information that a replication can be continued from time T, onward, rather
than having to start over from time 0.

Example 11.18
In Example 11.17, suppose that run length was to be increased to achieve the desired error, +2 customers.
Since R/R;=19/10 = 1.9, the run length should be almost doubled to (R/R))(T, + T;) = 1.9(15,000) =28,500
minutes. The data collected from time 0 to time (R/R )T, = 1.9(2000) = 3800 minutes would be deleted, and
the data from time 3800 to time 28,500 used to compute new point estimates and confidence intervals.

11.5.5 Batch Means for Interval Estimation in Steady-State Simulations

One disadvantage of the replication method is that data must be deleted on each replication and, in one sense,
deleted data are wasted data, or at least lost information. This suggests that there might be merit in using
an experiment design that is based on a single, long replication. The disadvantage of a single-replication
design arises when we try to compute the standard error of the sample mean. Since we only have data from
within one replication, the data are dependent, and the usual estimator is biased.

The method of batch means attempts to solve this problem by dividing the output data from one repli-
cation (after appropriate deletion) into a few large batches and then treating the means of these batches as if
they were independent. When the raw output data after deletion form a continuous-time process, {¥(t), T, <
1 £ T+ T}, such as the length of a queue or the level of inventory, then we form  batches of size m = T/k
and compute the batch means as

— 1 r

Y = (;_umy(H%)d’
forj=1, 2, ..., k. In other words, the jth batch mean is just the time-weighted average of the process over
the time interval [T, + (j ~ 1)m, T +jm), exactly as in Example 11.8.

When the raw output data after deletion form a discrete-time process, {Y,i=d +1,d +2, ..., n}, such
as the customer delays in a queue or the cost per period of an inventory system, then we form & batches of
size m = (n - d)/k and compute the batch means as ’

- 1 &
V=~ Z Via
M putj-tyere)

forj=1, 2, ..., k (assuming k divides n — d evenly, otherwise round down to the nearest integer). That is, the
batch means are formed as shown here:

Boon Yy oo Yd‘om)ryxmw s Yaezm s Yosthtymons = Yorim
e et w e e et

debeaed R K 4
Stanting with either continuous-time or discrete-time data, the variance of the sample mean is estimated by

_ oz e
$ 13 (lf,-mlf)"=Zx,-,,‘."ff"“'2 (11.39)
k-1 Kk —1)

k k

=

kB!
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where ¥ is the overall sample mean of the data after deletion. As was discussed in Section 11.2, the batch
means }7,, Z, o 171 are not independent; however, if the batch size is sufficiently large, successive batch means
will be approximately independent, and the variance estimator will be approximately unbiased.

Unfortunately, there is no widely accepted and relatively simple method for choosing an acceptable
batch size m (or equivalently choosing a number of batches k). But there are some general guidelines that
can be culled from the research literature:

o Schmeiser [1982] found that for a fixed total sample size there is little benefit from dividing it into
more than k = 30 batches, even if we could do so and still retain independence between the batch
means. Therefore, there is no reason to consider numbers of batches much greater than 30, no matter
how much raw data are available. He also found that the performance of the confidence interval, in
terms of its width and the variability of its width, is poor for fewer than 10 batches. Therefore, a
number of batches between 10 and 30 should be used in most applications.

Although there is typically autocorrelation between batch means at all lags, the lag-1 autocorrelation
p = corr(fj,i—'w) is usually studied to assess the dependence between batch means. When the lag-1
autocorrelation is nearly 0, then the batch means are treated as independent. This approach is based on
the observation that the autocorrelation in maty stochastic processes decreases as the lag increases.
Therefore, all lag autocorrelations should be smaller (in absolute value) than the lag-1 autocorrelation.
The lag-1 autocorrelation between batch means can be estimated as described shortly. However,
the autocorrelation should not be esimated from a small number of batch means (suchas the 10 k<30
secommended above); there is bias in the autocorrelation estimator. Law and Carson [1979] suggest
estimating the lag-1 autocorrelation from a lasge number of batch means based on a smaller batch size
(perhaps 100 < k < 400). When the autocorrelation between these batch means is approximately 0, then
the autocorrelation will be even smaller if we rebatch the data to between 10 and 30 batch means based
on a larger batch size. Hypothesis tests for0 autocorrelation are available, as described next.

If the total sample size is to be chosen sequentially, say to attain a specified precision, then itis helpful
to allow the batch size and number of batches to grow as the run length increases. It can be shown that
agood strategy isto allow the number of batches to increase as the square root of the sample size after
first finding a batch size at which the lag-1 autocorrelation is approximately 0. Although we will not
discuss this point further, an algorithm based on it can be found in Fishman and Yarberry [1997]; see
also Steiger and Wilson {2002].

Given these insights, we recommend the following general strategy:

1. Obtain output data from a single replication and delete as appropriate. Recall our guideline: collect-
ing at least 10 times as much data as is deleted.

2. Form up to k =400batches (but at least 100 batches) with the retained data, and compute the batch
means. Estimate the sample lag-1 autocorrelation of the batch means as

k-1 =

L Y E DD
pi= —
l Z;:l(yi -Y )2

3. Check the correlation to see whether it is sufficiently small.
(a) If P, <0.2a, then rebatch thedata into 30 < k < 40 batches, and form a confidence interval using
k— 1 degrees of freedom for the ¢ distribution and Equation (11.39) to estimate the variance of Y.
(b) If p, > 0.2, then extend the replication by 50% to 100% and go to Step 2. If itis not possible to
- extend the replication, then rebatch the data into approximately k = 10 batches, and form the
confidenceinterval, using k-1 degrees of freedom for the ¢ distribution and Equation (11.39) to
estimate the variance of Y.

er
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4. Asan additional check on the confidence interval, examir.e the batch means (at the larger or smaller

batch Size) fol' mdependence usin S|
] g the fOllOWln test, S f
) ] g ( €€, 1or lnstance, Alexopoulos and Sella

2 T _in 2 T
=
2X .-
g C < zgthen accept the independence of the batch means, where f3 is the Type I error level of the
st (such as 0.1, 0.05, 0.01). Otherwise, extend the replication by 50% to 100% and go to Step 2.

If it is not possible to extend the replication, then rebatch the data into approximately k= 10 batches, and

form the confidence interval, using k-1 degrees of freed istributi i
form the oonfidencs nterss g 2rees o lom for the ¢ distribution and Equation (11.39) to

;Ii'f)::ls‘proc;durc: mcluding‘ the final check, is conservative in several respects. First, if the lag-1 autocorrela-
ton élsa:}:) sttant;ally maglimv:1 then we proceed to form the confidence interval anyway. A dontinant negative
ion tends to make the confidence interval wider than nec ich i '

: . de essary, which is an error, but not one that
;Nul‘:l cauic u(sl to‘ make incorrect decisions. The requirement that §, <0.2 at 100 < k <400 batches is pretty
o nfe-?i ar:‘1 wnlldtendto force us to get more data (and therefore create larger batches) if there is any hint
moges‘;a :/aew;,pen ence. And ltl'mally,. the hypothesis test at the end has a probability of f of forcing us to get

en none are really needed. But this conservatism is b; ign; l i A
! ¢ y design; the cost of an incorrect decisi
is typically much greater than the cost of some additional computer run time oo
The batch-means approach to confidence-interval estimation is illustrated in the next examblc

Example 11.19
Reconsider the M/G/1 simulation of Example 11.8, except that the mean service time is changed from 9.5

- minutes to 7 nunutes (implying a long-run server utilization of 0.7). Suppose that we want to estimate the steady-

:}Lla:::o?f:l:[t]egf(:;lay zld q;lgue, b:g,n by a 95% confidence interval. To illustrate the method of batch means, assume

e model has made, simulating 3000 customers after the deletion poi :

A . ‘ point. Wethen form batch

r‘:::acxll:cﬁ‘zm k=100 batch.cs of sizem = 30 and estimate the lag-1 autocorrelation to be p, =0.346>0.2, Thus
i to extem.i the.SImulatlon to 6000 customers after the deletion point, and again we estimate the 1 -i

autocorrelation. This estunate, based on k = 100 batches of size m =60, is p, = 0.004 <0.2 *

HaVlng passed the correlation Check, we reba[ch tlle data into k = 30 batCllCS ()t sizem= 200. I lle p()“lt
. :
estimate 1S theoverall mean .

minutes. The variance of ¥, computed from the 30 batch means, is

g Lp-ar
e 30029) =0.604

Thus, a 95% confidence interval is given by

¥ = tocas 29 V0.604 S wy S ¥ bty V0,604

7.45=9.04-2.04(0.777) S w, £9.04+2.04(0.777) = 10.63
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i i .63 minutes.

Thus, we assert with 95% confidence thattrue mean delay in queue, w,, is between 7.4§ and IOd i,n:(r;‘[:li; :
If these results are not sufficiently precise for practical use, the run length should be increase: .
reater precision. - . .

’ Asr; further check on the validity of the confidence interval, we can apply the correlation hypothesf;s

test. To do so, we compute the test statistic from the k = 30 batches of size m =200 used to form the conf1-

dence interval. This gives
C=-0.31<1.96 =245

ignificance level. Notice that, at this small number of batches,

irmi f lation at the 0.05 s : ;
e st be slightly negative, illustrating our point about the difficulty

the estimated lag-1 autocorrelation appears to ;
of estimating correlation with small numbers of observations.

11.5.6 Quantiles

Constructing confidence intervals for quantile estimates in a steady-state simulatiortl, canfbe trtlc[l;)srcs:s;ﬂec:lz;llli
if the output process of interest is a continuqus:lime process, such as L(f), the number of custo! q

i i ion, we outline the main issues. ) )
) mzll“:kti'n[; t[lt:;ses:s(i:;lro;se first, suppose that the output process from a single 'replicauonf(:i]fte'r lz:pprsotgxr'::::
deletion of initial data) is Y,,,, ..., ¥,. To be concrele,.Y,. might be the 'delay in queut;] o the it o(t:'ume dau;
Then the point estimate of the pth quantile can be obtained as l.)efore,. either from the 1st0gramake e o
or from the sorted values. Of course, only the data after the deletion point are useq. Suppose we m: R in;:j -
cations and let é, be the quantile estimate from thfa rth. Then the R quantile estimates, 6, ...,0,
pendent and identically distributed. Their average 1s

PO
6‘=E,Z=,"e'

It can be used as the point estimator of 6; and an approximate confidence interval is

- S
0.+ Lo ﬁ‘

where 82 is the usual sample variance of 6,,....0k

.What if only a single replication is obtained? Then the same reasoning applies if we lﬁF 0, be the ‘;1:::11::
tile estimate from within the ith batch of data. This requires sorting the dafa, or formmg a 1stogLam, o
each batch. If the batches are large enough, then these within-batch quantile estimates will also be appro
mate\lzl::l'ldwe'have a continuous-time output process, then, in principle, the same mct!lods apply. Hov:cf\_/:;
we must be careful not to transform the data in a way that changes the problem. In particular, vf;e cfanno [hle, ™
form batch means—as we have done throughout this chapter—and then estimate the quantile from

batch means. The p quantile of the batch means of LQ(t) is not the same as the p quantile of LQ(t) itself. Thus,

the quantile point estimate must be formed from the histogram of the raw data-—either from each run, if we

make replications, or within each batch, if we make a single replication.

11.6 SUMMARY

This chapter emphasized the idea that a stochastic discrete-event simulation is a statistical experiment.

Therefore, before sound conclusions can be drawn on the basis of the simulation-generated output data, . :

p——tagrm = s e - —eyAsC T f EEPAEA P e X
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a proper statistical analysis is required. The purpose of the simulation experiment is to abtain estimates of
the performance measures of the system under study. The purpose of the statistical analysis is to acquire
some assurance that these estimates are sufficiently precise for the proposed use of the model.

" A distinction was made between terminating simulations and steady-state simulations. Steady-state
simulation output data are more difficult to analyze, because the simulation analyst must address the problem
of initial conditions and the choice of run length. Some suggestions were given regarding these problems,

"but unfortunately no simple, complete, and satisfactory solution exists. Nevertheless, simulation analysts
should be aware of the potential problems, and of the possible solutions—namely, deletion of data and
increasing of the run length. More advanced statistical techniques (not discussed in this text) are given in
Alexopoulos and Seila [1998], Bratley, Fox, and Schrage [1996], and Law and Kelton [2000]. )

The statistical precision of point estimators can be measured by a standard-error estimate or by a confi-
dence interval. The method of independent replications was emphasized. With this method, the simulation
analyst generates statistically independent observations, and thus standard statistical methods can be
.employed. For steady-state simulations, the method of batch means was also discussed.

The main point is that simulation output data contain some amount of random variability; without some
assessment of its size, the point estimates cannot be used with any degree of reliability.

REFERENCES

ALEXOPOULOS, C., AND A. F. SEILA [1998], “Output Data Analysis,” Chapter 7 in Handbook of Simulation, J.
Banks, ed., Wiley, New York.

BRATLEY, P., B. L. FOX, AND L. E. SCHRAGE [1996], A Guide to Simulation, 2d ed., Springer-Verlag, New York.

FISHMAN, G. S., AND L. S. YARBERRY [1Q97], “An Implementation of the Batch Means Method,” INFORMS
Journal on Computing, Vol. 9, pp. 296-310.

GOLDSMAN, D., L. SCHRUBEN, AND J. J. SWAIN {[1994], “Tests for Transient Means in Simulated Time Series,”
Naval Research Logistics, Vol. 41, pp. 171-187. : o -

KELTON, W. D. [1986], “Replication Splitting and Variance for Simulating Discrete-Parameter Stochastic Processes,”
Operations Research Letters, Vol. 4, pp. 275-279. R . .

KELTON, W. D. [1989], “Random Initialization Methods in Simulation,” //E Transactions, Vol. 21, pp. 355-367.

KELTON, W. D, AND A. M. LAW [1983], “A New Approach for Dealing with the Startup Problem in Discrete Event
Simulation,” Naval Research Logistics Quarterly, Vol. 30, pp: 641-658. o

KLEDNEN, J. P. C. [1987], Statistical Tools for Simulation Practitioners, Dekker, New York.

LAW, A. M. [1977], “Confidence Intervals in Discrete Evém Simulation: A Comparison of Replication and Batch
Means,” Naval Research Logistics Quarterly, Vol. 24, pp. 667-78. - - B

LAW, A. M. [1980], “Statistical Analysis of the Output Data from Terminating Simulations,” Naval Research Logistics

" Quarterly, Vol. 27, pp. 131-43, - : . ;

LAW, A. M., AND J. S. CARSON [1979], “A Sequential Procedure for Determining the Length of a Steady-State
Simulation,” Operations Research, Vol. 27, pp. 1011-1025.

LAW, A. M., AND W. D. KELTON [2000), Simulation Modeling and Analysis, 3d ed., McGraw-Hill, New York.

NELSON, B. L. [2001], ¢Statistical Analysis of Simulation Results,” Chapter 94 in Handbook of Industrial Engineering,
3d ed, G. Salvendy, ed., Wiley, New York. K

- SCHMEISER, B. [1982], “Batch Size Effects in the Analysis of Simulation Output,” Oper_ations Research, Vol. 30,

pp. 556-568. : .
SCHRUBEN, L. [1980], “Detecting Initialization Bias in Simulation Output,” Operations Research, Vol. 30, pp. 569-590.
SNELL, M., AND L. SCHRUBEN [1985], “Weighting Simulation Data to Reduce Initialization Effects,” I[E
Transactions, Vol. 17, pp. 354-363.

" STEIGER, N. M., AND J. R. Wilson [2002], “An Improved Batch Mezns Procedure for Simulation Output Analysis,”

" Management Science, Vol. 48, pp. 1569-1586. - :

- WELCH, P. D. [1983], “The Statistical Analysis of Simulation Results,” in The Computer Pelforﬁmrice Modeling

Handbook, S. Lavenberg, ed., Academic Press, New York, pp. 268-328.




1%

R S R

172 DISCRETE-EVENT SYSTEM SIMULATION

EXERCISES

1. Suppose that, in Example 11.14, the simulation analyst decided to investigate the bias by using batch
means over a batching interval of 2000 minutes. By definition, a batch mean for the interval {(j —1) 2000,
j(2000)) is defined by

L (t)dt

-nzom @

1 picoo

b =55

(a) Show algebraically that such a batchmean can be obtained from two adjacent batch means over the
two halves of the interval. :

(b) Compute the sevenaveraged batch means for the interv_als [0, 2000), (2000, 4000), ... for the M/G/1
simulation. Use the data (¥.) in Table 11.6 (ignoring Y .,; = 8.76). . :

(c) Draw plots of the type used in Figures 11.4.and 1 1.5. Does it still appear that deletlop of the data
over [0,2000) (the first “new” batch mean) is sufficient to remove most of the point-estimator
bias? :

2. Suppose, in Example 11.14, that the simulation analyst could only afford to run 5 independent replica-
tions (instead of 10). Use the batch means in Table 11.5 for replications 1 to 5 to compute a 95%
confidence interval for mean queue length L, Investigate deletion of initial data. Compare the results

|2
from using 5 replications with those from using 10 replications.

@

In Example 11.7, suppose that management desired 95% confidence in the estimate of mean system
-time w and that the error allowed was £ = 0.4 minute. Using the same initial sample of size R, = 4 (given
in Table 11.1), figure out the required total sample size.

4. Simulate the dump-truck problem in Example 3.4. At first, make the run length T = 40 hours. Make

four independent replications. Compute a 90% confidence interval for mean cycle time, where a cycle.
time for a given truck is the time between its successive arrivals to the loader. Investigate the effect of
different initial conditions (all trucks initially at the loaderqueue, versus all at the scale, versus all ®rav-
eling, versus the trucks distributed throughout the system in some manner).

S. Consider an (M, L) inventory system, in which the procurement quantity, Q, is defined by

M-t itr<L

N {o ifI2L
where I is the level of inventory o nhand plus on order at the end of a month, M is the maximum inven-
tory level, and L is the reorder point. M and L are under management control, so the pair (M, L) is called
the inventory policy. Under certain conditions, the analytical solution of such a model is possible, but
the computational effort can be prohibitive. Use simulation to investigate an (M, L) inventory systfzm
with the following properties: The inventory status is checked at the end of each month. Backorde}'xng
is allowed at a cost-of $4 per item short per month. When an order arives, it will first be used to relieve
the backorder. The lead time is given by a uniform distribution on the interval (0.25, 1.25) -months. Let
the beginning inventory level stand at 50 units, with no orders outstanding. Let the holding cost be $1
per unit in inventory per month. Assure that the inventory position is reviewed eachmor}th. If an or‘der
is placed, its cost is $60 + $50, where $60 is the ordering cost and $5 is the cost of each item. The time
between demands is exponentially distributed with a mean of 1/15 month. The sizes of the demands fol-
low this distribution:
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Demand Probability
1 172
2 1/4
3 1/8
4 118

(a) Make four independent replications, each of run length 100 months preceded by a 12-month
initialization period, for the (M, L) = (50, 30) policy. Estimate long-run mean monthly cost with a
90% confidence interval. o o '

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean
monthly cost within'$5. ' o

6. Reconsider Exercise 6, except that, if the inventory level at a monthly review is zero or negative, a rush
order for Q units is placed. The cost for a rush order is $120+$120, where $120 is the ordéring cost and
$12 is the cost of each item. The lead time for a rush order is given by a uniform distribution on the
interval (0.10, 0.25) months. )

(a) Make four independent replications for the (M, L) policy, and estimate long-run. mean monthly cost
with a 90% confidence interval. T .

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean
monthly cost within $5. : : E S

7. Suppose that the items in Exercise 6 are perishable, with a selling price given by thé»‘fOllOWiﬁg data:

On the Shelf (Months) Selling Price
0-1 B (1]
12
>2 0

Thus, any item that has been on the shelf greater than 2 months cannot be sold. The age is measured at
the time the demand occurs. If an item is outdated, it is discarded, and the next item is brought forward.
Simulate the system for 100 months. i

(a) Make four independent replications for the (M, L) = (50, 30) policy, and estimate long-run mean
monthly cost with a 90% confidence interval. :

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean
monthly cost within $5. ' :

_ At first, assume that all the items in the beginning inventory are fresh. Is this a good assumption? What

effect does this “all-fresh” assumption have on the estimates of long- run mean monthly cost? What can
be done to improve these estimates? Carzy out.a complete analysis.

8. Consider the following inventory system:

(a) Whenever the inventory level falls to or below 10 units, an order is pfaoed. Only one order can be
outstanding at a time. . . .

(b) The size of each order is Q. Maintaining an inventory costs $0.50 per day per item in inventory.
Placing an order incurs a fixed cost, $10.00. :

(c) Lead time is distributed in accordance with a discrete uniform distribution between zero and 5 days.

(d) If a demand occurs during a period when the inventory level is zero, the sale is lost at a cost of $2.00
per unit.

[ — LML L e hent Sedhe
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(e) Thenumber of customers each day is given by the following distribution:

Number of Customers per Day

Probability
1 0.23
2 0.41
3 022
4 0.14

(f) The demand on the part of each customer is Poisson distributed with a mean of 3 units.
(g) For simplicity, assume that all demands occur at noon and that all orders are placed immediately
thereafter.

'A'ssumg-further that orders are received at 5:00 P.uM., or after the demard that occurred on that day.
Consider-the policy having Q = 20.. Make five independent replications, each of length 100 days, and
compute a 90% confidence interval for long-run mean daily cost. Investigate the effect of initial inven-

- tory level and existence of an outstanding order on the estimate of mean daily cost. Begin with an initial

inventory of Q + 10 and no outstanding orders.

. A store selling Mother’s Day cards must decide 6 months in advance on the number of cards to stock.

. Reordering is not allowed. Cards cost $0.45 and sell for $1.25. Any cards not sold by Mother’s Day go

10.

on sale for $0.50 for 2 weeks. However, sales of the remaining cards is probabilistic in nature accord-
ing to the following dlsmbuuon

32% of the time, all cards remaining get sold.
40% of the time, 80% of all cards remaining are sold.
28% of the time, 60% of all cards remaining are sold.

Any cards leftafter 2 weeks are sold for $0.25. The card-shop owner is not sure how many cards ¢an be
sold, but thinks it is somewhere (i.e., uniformly distributed) between 200 and 400. Suppose that the
‘card-shop owner decides to order 300 cards. Estimate the expected total profit with an error of at most
$5.00. (Hint: Make three or four initial replications. Use these data to estlmate the total sample size
needed. Each replication consists of one Mother’s Day.)

A very large mining operation has decided to control the inventory of high-pressure piping by a
“periodic review, order up to M” policy, where M is a target level. The annual demand for this piping is
normally distributed, with mean 600 and variance 800. This demand occurs fairly uniformly over
the year. The lead time for resupply is Erlang distributed of order k = 2 with its mean at 2 months.
The cost of each unit is $400. The inventory carrying charge, as a proportion of item cost on an annual
basis, is expected to fluctuate normally aboutthe mean 0.25 (simple interest), with a standard deviation
of 0.01. The cost of making a review and placing an order is $200, and the cost of a backorder is
estimated to be $100 per unit backordered. Suppose that the inventory level is reviewed every 2 months,

-and let M = 337.

(a) Make five independent replications, each of run length 100 months to tsnmate loug—run mean
. monthly cost by means of a 90% confidence' mtﬂrval )

(b) Investigate the effects of initial conditions. Calculate an appropnate number- of monthly observa-
tions to delete to reduce initialization bias to a negligible level.
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12.

Consider some number, say N, of M/M/1 queues in series. The M/M/1 queue, described in Section 6.4,
has Poisson arrivals at some rate A customers per hour, exponentially distributed service times with
mean /4, and a single server. {Recall that “Poisson arrivals” means that interarrival times are exponen-
‘tially distributed.) By M/M/1 queues in series, it is meant that, upon completion of service at a given

server, a customer joins a waiting line for the next server. The system can be shown as. follows:
Server 2

Server | Server N

p - ,l_‘ fea i

All service times are exponentially distributed with mean 174, and the capacity of each waiting line is
assumed to be unlimited. Assume that A = 8 customers per hour and 1/z = 0.1 hour. The measure of
performance is response time, which is defined to be the total time a customer is in the system.

{a) By making appropriate simulation runs, compare the initialization bias for N = 1 (i.e., one M/M/1
queue) to N = 2 (i.e., two M/M/1 queues in series). Starteach system with all servers idle and no
customers present. The purpose of the simulation is to estimate mean response time.

(b) Investigate the initialization bias as a function of N,forN=1,2, 3,4, and 5. -

(c) Draw some general conclusions concemning initialization bias for “large” queueing systems when at
time O the system is assumed tobe empty and idle.

Jobs enter a job shop in random fashion according to a Poisson process at a stationary overall rate, two
every 8-hour day. The jobs are of four types. They flow from work station to work station in a fixed
order, depending on type, as shown next. The proportions of each type are also shown.

Bpe Flow through Stations Proportion
1 1,2,3,4 0.4
2 1,34 0.3
3 2,4,3 0.2
4 1,4 0.1

Processing times per job at each station depend on type, but all times are (approximately) normally
distributed with mean and s.d. (in hours) as follows:

Station
Type ! 2 3 4
1 20,3) (30,5  (75,4)  (20,3)
2 (18,2) . (60,5 (10, 1)
3 (20,20 (50,8 (10, 1)
4 (0.9 (15, 2)

Station i will havec workers (z =1, 2 3, 4) Each jOb occupies one worker at a station for the duration

of a processing t1m¢ All jobs are processed on a first-in—first-out basis, and all queues for waiting jobs
are assumed to have unlimited capacity. Simulate the system for 800 hours, preceded by a 200-hour
initialization period. Assume that ¢, = 8, ¢, = 8, ¢, =20, ¢,= 7. Based on R =5 replications, compute a -

"97.5% confidence interval for average worker utilization at each of the four stations. Also, compute a
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- 95% confidence interval for mean total response time for each job type, where a total response time is
the total time that a job spends in the shop.

13. Change Exercise 12 to give priority at each station to the jobs by type. Type 1 jobs have priority over

type 2, type 2 over type 3, and type 3 over type 4. Use 800 hours as run length, 200 hours as initialization
period, and R =5 replications. Compute four 97.5% confidence intervals for mean total response time
by type. Also, run the model without priorities and compute the same confidence intervals. Discuss the
trade-offs when using first in, first out versus a priority system.

14. Consider a single-server queue with Poisson arrivals atrate A = 10.82 per minute and normally distributed

service times with mean 5.1 seconds and variance 0.98 seconds?. It is desired to estimate the mean time in
the system for a customer who, upon arrival, finds { other customers in the system—that is, to estimate

w, = E(W|N=i) fori=0,1,2,...

where W is a typical system time and N is the number of customers found by an ;rnval;nF:rs&::;n;ﬁ:fé
w, is the mean system time for those customers who find the system empty, w, is t ']‘; me: g Z[e m e
for those customers who find one other customer present upon arrival, and‘ so on. The es mll) 1 v of w,
will be a sample mean of system times taken over all arrivals who find i in the system. Plot w; vs &

Hypothesize and attempt to verify a relation between w; and i.

i i i idle initial conditions. .
a) Simulate for a 10-hour period with empty and idle initia ' .
Eb; Simulate for a 10-hour period after an initialization of one hour. Are there observable differences in
the results of (a) and (b)? L . .
(c) Repeatparts (a) and (b) with service times exponentially distributed with mean 5.1 seconds.
(d) Repeat parts (a) and (b) with deterministic service #imes equal to 5.1_ seconds. b of
(e) Find the number of replications needed to estimate wg, wy, ..., Wg wntl} a §tandard error for each o
at most 3 seconds. Repeat pasts (a)—(d), but using this n_umber of replications.

15. At Smalltown U, there is one specialized graphics workstation for student use located across campus

from the computer center. At 2:00 A.M. one day, six stu'dents arrive at the workstation to complete ;x:
assignment. A student uses the workstation for 10 + 8 minutes, lhefn leaves to goto the C(c)lm;:utei;lceg o
to pick up graphics output. There is a 25% chance th?l the run \.Vlll be: QK and thefstu ;21 woungd !
sleep. If it is not OK, the student retums to the workstation am_i .wans unti} it bgcomes Tee. 'e I Siblg
from workstation to computer center and back takes30+5 mml'nes. The con‘lputer‘ becorf\es inaccessibl
at 5:00 a.M. Estimate the probability, p, that at least five of the six students will ﬁmsh. their assngnmzl’,:t 1:1
the 3-hour period. First, make R = 10 replications, and compute a 95% confidence 1{1terval for pt.' e)l(',
work out the number of replications needed to estimate p within .02, and make this number of repli-
cations. Recompute the 95% confidence interval for p.

16. Four workers are spaced evenly along a conveyor belt. Items needing processing arrive according to a

Poisson process at the rate 2 per minute. Processing time is exponentially distributed, with mean Ilf.6
minutes. If a worker becomes idle, then he or she takes the first item to come by on the conveyo;.ki a
worker is busy when an item comes by, that item moves down the conveyor to the. next wor.ker, taking
20 seconds between two successive workers. Whena worker finishes processing an item, the }@em leaves
the system. If an item passes by the last worker, it is recirculated on a loop conveyor and will return to
the first worker afer 5 minutes. _

Management is interested in having a balanced workload—that is, management would like worker

utilizations to be equal. Let p, be the long-run utilization of worker i, an.d let p be the average l..lﬁlila(;
tion of all workers. Thus, P = (P, + P, + 3 + Pa)4. According to queueing theory, p can be estimate!
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17.

18.

by p= Alcp, where A = 2 arrivals per minute, ¢ = 4 servers, and 1/ = 1.6 minutes is the mean service
time. Thus, p= A/cp1 = (2/4)1.6 = 0.8; so, on the average, a worker will be busy 80% of the time.

(a) Make 5 independent replications, each of run length 40 hours preceded by a one hour initialization
peod. Compute 95% confidence intervals for p, and p,. Draw conclusions: concerning workload
balance.
(b) Based on the same 3 replications, test the hypothesis H,: p, =0.8 ata level of significance o= 0.05. '
If adifference of £.05 is important to detect, determine the probability that such a deviation is detected.
In addition, if itis desired to detect such a deviation with probability at least 0.9, figure out the sample
“sizaeeded to do so. (See any basic statistics textbook for guidance on hypothesis testing.)
(c) Repeat(b)forH,:p,=0.8.
(d) From the results of (a)—(c), draw conclusions for management about the balancing of workloads.

At a small rock quarry, a single power shovel dumps a scoop full of rocks at the loading area approxi-
mately every 10 minutes, with the actual time between scoops modeled well as being exponentially
distributed, with mean 10 minutes. Three scoops of rocks make a pile; whenever one pile of rocks is
completed, the shovel starts a new pile. :

The quarry has asingle wuck that can carry one pile (3 scoops) at a time. It takes approximately 27 minutes
for a pile of rocks to be loaded into the truck and for the truck to be driven to the processing plant,
unloaded, and return to the loading area. The actual time to do these things (altogether) is modeled well
as being normally distributed, with mean 27 minutes and standard deviation 12 minutes. -

When the truck returns to the loading area, it will load and transport another pile if one is waiting to be
loaded; otherwise, it stays idle until another pile is ready. For safety reasons, no loading of the truck’
occurs until a complete pile (all three scoops) is waiting.

The quarry operates in this manner for an 8-hour day. We are interested in estimating the utilization of
the trucks and the expected number of piles waiting to be transported if an additional truck is purchased.

Big Bruin, Inc. plans to open a small grocery store in Juneberry, NC. They expect to have two check-
out lanes, with one lane being reserved for customers paying with cash. The question they want to
answer is: how many grocery carts do they need?

During business hours (6 AM.—8 p.M.), cash-paying customers are expected to arrive at 8 per hour. All
other customers are expacted to arrive at 9 per hour. The time between arrivals of each type can be
modeled as exponentially distributed random variables. '

The time spent shopping is modeled as normally distributed, with mean 40 minutes and standard
deviation 1 minutes. The time required to check out after shopping can be modeled as lognormally
distributed, with (a) mean 4 minutes and standard deviation 1 minute for cash-paying customers;
(b) mean 6 minutes and standard deviation 1 minute for all other customers. '

We will assume that every customer uses a shopping cart and that a customer who finishes shopping
leaves the cartin the store so that it is available immediately for another customer. We will also assume
that any customer who cannotobtain a cart immediately leaves the store, disgusted. '

The primary performance measures of interest to Big Bruin are the expected number of shopping carts
in use and the expected number of customers lost per day. Recommend a number of carts for the store,
remembering that carts are expensive, but so are lost customers.

. Develop a simulation model of the total time in the system for an M/M/1 queue with servicerate gt = 1;

therefore, the teaffic intensity is p = A/g = 4, the arrival rate. Use the simulation, in conjunction with
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bias when the queue starts empty. Specifically, see how the initialization phase 7 changes for

the technique of plotting ensemble averages, to stdy the effect of traffic intensity on initialization
p=0.5,0.7,08, 0.9, 0.95. l '

20. The average waiting data from 10 replication of a queuing system are

Replication  Average Waiting Time C ompari son and Eva' ua". on Of

1.77 . o : o
230 Alternative System Designs
322
3.00
2.11
3.12
3.49
2.39
3.49

OO 00NNV E WN =

Determine 90% confidence interval for the average waiting time.

2L C(-)nsidér Example 6. If it is required to estimate the average waiting time with an absoluteerror of 0.25
and confidence level of 90%, determine the nnmber of replications required.

22. Ina queuing simulation with 20 replications, 90% confidence interval for average queue length is found
to be in the range 1.72-2.41. Determine the probability that the average queue length is less than 2.75. -

23. Collect papers dealing with simulation output analysis and study the tools used. Chapter 11 dealt with the precise estimation of a measure of performance for one system. This chapter

: discusses afew of the many statistical methods that can be used to compare two or more system designs on
the basis of some performance measure. One of the most important uses of simulation is the comparison of
alternative system designs. Because the observations of the response variables contain random variation,
statistical analysis is neaded to discover whether any observeddifferences are due to differences in design or
merely to the random fluctuation inherent in the models.

The comparison of two system designs is computationally easier than the simultaneous comparison of
multiple (more than two) system designs. Section 12.1 discusses the case of two system designs, using two
possible statistical techniques: independent sampling and correlated sampling. Correlated sampling is also
lmown as the common random numbers (CRN) technique; simply put, the same random numbers are used
to simulate both alterative system designs. If implemented correctly, CRN usually reduces the variance of
the estimated difference of the performance measures and thus can provide, for a given sample size, more
precise estimates of the mean difference than can independent sampling. Section 12.2 extends the statistical
techniques of Section 12.1 to the comparison of multiple (more than two) system designs, using the
Bonferroni approach to confidence-interval estimation, screening, and selecting the best. The Bonferroni
approach is limited to twenty or fewer system designs, but Section 12.3 describes how a large number of
complex system designs can sometimes be representad by a simpler metamodel. Finally, for comparison and
evaluation of a very large number of system designs that are related in a less structured way, Section 12.4
presents optimization via simulation.

379
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12.1 COMPARISON OF TWO SYSTEM DESIGNS

Suppose that a simulation analyst desires to compare two possible configurations of a system. In a queueing
system, perhaps two possible queue disciplines, or two possible sets of servers, are to be compared. In a
supply-chain inventory system, perhaps two possible ordering policies will be compared. A job shop could
have two possible scheduling rules; a production system could have in-process inventory buffers of various
capacities. Many other examples of alternative system designs can be provided.

The method of replications will be used to analyze the output data. The mean performance measure for
system i will be denoted by 6(i=1,2). If it is a steady-state simulation, it will be assumed that deletion of data,

or other appropriate techniques, have been used to ensure that the point estimators are approximately unbiased

estimators of the mean performance measures, 6,. The goal of the simulation experiments is to obtain point and
interval estimates of the difference in mean performance, namely 6, — 6,. Three methods of computing a
confidence interval for 6, — 6, will be discussed, but first an example and a general framework will be given.

Example 12.1
A vehicle-safety inspection station performs three jobs: (1) brake check, (2) headlight check, and (3) steer-
ing check. The present system has three stalls in parallel; that is, a vehicle enters a stall, where one attendant
makes all three inspections. The current system is illustrated in Figure 12.1(a). Using data from the existing
system, it has been assumed that arrivals occur completely at random (i.e., according to a Poisson process)
at an average rate of 9.5 per hour and that the times for a brake check, a headlight check, and a steering check
are normally distributed with means of 6.5, 6, and 5.5 minutes, respectively, all having standard deviations
of approximately 0.5 minute. There is no limit on the queue of waiting vehicles.

An alternative system design is shown in Figure 12.1(b). Each attendant will specialize in a single task,
and each vehicle will pass through three work stations in series. No space is allowed for vehicles between
the brake and headlight check, or between the headlight and steering check. Therefore, a vehicle in the brake
or headlight check must move to the next attendant, and a vehicle in the steering check must exit before the
next vehicle can move ahead. The increased specialization of the inspectors suggests that mean inspection
times for each type of check will decrease by 10%: to 5.85, 5.4, and 4.95 minutes, respectively, for the brake,
headlight, and steering inspections. The Safety Inspection Council has decided to compare the two systems
on the basis of mean response time per vehicle, where a response time is defined as the total time from a
vehicle arrival until its departure from the system.

Three attendanjs
Cars arrive
R LU =

(a)
Cars arrive
—] - » e )

Brake Headlight Steering
inspection check check
(b)

Figure 12.1 Vehicle safety inspection station and a possible alternative design.
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When ctzir)nparing two systems, such as those in Example 12.1, the simulation analyst must decide on a
run .length T for each model (i = 1, 2), and a number of replications R, to be made of each model. From
replication r of system i, the simulation analyst obtains an estimate Y . olf the mean performance mt;.asure
6.1In E).(amp]e 12.1, ¥, would be the average response time observed dGring replication r for system i (r= l"
.- R; i =1,2). The data, together with the two summary measures, the samb]e means ¥, and the samplf;

Vall.all(:es Sz are Cxlll’bited I.ll Table 12 l ASSulllill i ) . y
¢ i .l g that the estimators . A i
i ’ ri re (at leaSt appr0x1matel )

6,=E{Y ) r= L...R;6,=EY,),r=1,..., R,
] .In Example .l 2.1, fhe Safety Inspection Council is interested in a comparison of the two system
besngns. so the simulation analyst decides to compute a confidence interval for 6, — 6, the difference
1c:n:;:en the t\\{o mean perfqrmance measures. The confidence interval is used to answer two questions:
(1) How large is the mean difference, and how precise is the estimator of mean difference? (2) Is there a

Slglllhcalll dlﬁelﬁllce betweell the two Syslem81 lhl Sel q on w d to one o tll € po b
i S Coﬂd uestion lll lea
f re possi le

1. If the conftldence inter_val (ci.) for 6, ~ 6, is totally to the left of zero, as shown in Figure '122(a)
then there is strong evidence for the hypothesis that 6, - 6, <0, or equivalently 6, <8, ,

Table 12.1 Simulation Output Data and Summary Measures for
Comparing Two Systems :

Replication .
Sample Sample
System 1 2 R‘. Mean Variance
1 LD A A Y, s
2 Yo Y, . Y2 Y, s
t———y
1 0
7.| _ig
@)
1 —X%—
0 t
?.| _Ez
®)
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In Example 12.1, 6, < 6, implies that the mean response time for system 1 (the original system) is smaller
than for system 2 (the alternative system).
2. If the c.i. for 6, - 0, is totally to the right of zero, as shown in Figure 12.2(b), then there is strong
evidence that 6,-6,>0,0r equivalently, 6,>6,

In Example 12.1, 6, > 6, can be interpreted as system 2 being better than system 1, in the sense that system
2 has smaller mean response time.

3. If the c.i. for 6, — 6, contains zero, then, in the data at hand, there is no strong statistical evidence
that one system design is better than the other.

Some statistics textbooks say that the weak conclusion 6, = 6, can be drawn, but such statements can be
misleading. A “weak” conclusion is often no conclusion at all. Most likely, if enough additional data were
collected (i.e., R, increased), the c.i. would shift, and definitely shrink in length, until conclusion 1 or 2 would
be drawn. In addition to one of these three conclusions, the confidence interval provides a measure of the
precision of the estimator of 6, - 6, )

In this chapter, a two-sided 100(1-a)% c.i. for 6, — 6, will always be of the form

Yi=Yatt, . se(Y1—Y2) (12.1)

=‘ardv

where IT, is the sample mean performance measure for system i over all replications
— 1 )
Yi= -R-ZY,, (122)

and v is the degrees of freadom associated with the variance estimator, ¢,  is the 100(1 ~ a/2) percentage
point of a ¢ distribution with v degrees of freedom, and s.e.(-) represenss the standard error of the specified
point estimator. To obtain the standard error and the degrees of freedom, the analyst uses one of three
statistical techniques. All three techniques assume that the basic data, ¥ ; of Table 12.1, are approximately
normally distributed. This assumption is reasonable provided that each Y, is itself a sample mean of obser-
vations from replication r (which is indeed the situation in Example 12. l)

By design of the simulation experiment, ¥ ,(r= 1, ..., R,) are independently and ldentlcally distributed
(1 i.d.) with mean 6, and varlancecr2 (say). Smularly, (r- L, ..., R,) are iid. with mean 6, and variance
o? (say). The three techniques for computing the conﬁdence mterval in (12.1), which are based on three
different sets of assumptions, are discussed in the following subsectious.

There is an important distinction between statistically significant differences and practically significant
differences in systems performance. Statistical significance answers the following question: Is the observed
difference YJ—-Y: larger than the variability in ¥,—Y,? This question can be restated as: Have we collected
enough data to be confident that the difference we observed is real, or just chance? Conclusions 1 and 2
imply a statistically significant difference, while Conclusion 3 implies that the observed difference is not
statistically significant (even though the systems may indeed be different). Statistical significance is a function
of the simulation experiment and the output data.

Practical significance answers the following question: Is the true dlfferenoe 0, — 6, large enough to matter
for the decision we need to make? In Example 12.1, we may reach the conclusmn that 6, > 6, and decide
that system 2 is better (smaller expected response time). However, if the actual différencc 6, - 6, is very
small---say, small enough that a customer would not notice the improvement— then it might not be worth
the cost to replace system 1 with system 2. Practical significance is a function of the actual difference
between the systems and is independent of the simulation experiment. :
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Confidence intervals do not answer the question of practical significance directly. Instead, they bound
(with probability 1 — ) the true difference 6,- 8, within the range

Yom¥ o=ty 58¥,-¥ )< 8,-8, S ¥,-F, 41,,, se.(¥,-F,)

Whether a difference within these bounds is practically significant depends on the particular problem.

12.1.1 Independerit Sampling with Equal Variances

Independent sampling means that different and independent random number streams will be used to simulate
the two systems. This implies that all the observations of simulated system 1, namely {Y ,, r=1, ..., R}, are
statistically independent of all the observations of simulated system 2, namely {Y,, r = |1, ..., R,}. By
Equation (12.2) and the independence of the replications, the variance of the sample mean, ¥, , is given by

V(Y,)= =%, i=12

For independent sampling, ¥, and ¥, are statistically independent; hence,

V(¥ ~¥,)=V(¥.)+V(¥,)

o +o (12.3)

R OR,

In some cases, it is reasonable to assume that the two variances areequal (but unknown in value); that
is, 0] = 0. The datacan be used to testihe hypothesis of equal varlances, if rejected, the method of Section
12.1.2 must be used. In a steady-state simulation, the variance o7 decreases as the run length T(E" increases;
therefore, it nught be possible to adjust the two run lengths, 7¢’ and T2, to achieve at least approximate
equality of ¢} and g2.

If it is reasonable to assume that O'( = O'2 (approximately), a two-sample-t confidence-interval
approach can be used. The point estimate of the mean performance difference is

1712 (129)

' R:_lm
1 (&, o
- v2
“—&_I{ZY,;-RX,-] (12.5)

Note that S? is an unbiased estimator of the variance ¢7. By assumption, ol=ol= o’ (say), so0a pooled
estimate of o2 is obtained by

gt R -DST+ R, -1)S]
’ R+R-2
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which has v= R, + R, — 2 degrees of freedom. The c.i. for 6, — 6, is then given by Expression (12.1) with -

the standard error computed by
se(Y,-1,)=§, |—+— (12.6)

This standard error is an estimate of the standard deviation of the point estimate, which, by Equauon (12.3),
is given by G‘,IIJ’R +1/R,.

In some cases, the smulatlon analyst could have R, = R,, in which case it is safe to use the c.i. in
Expression (12.1) with the standard error taken from Equatlon (12.6), even if the variances (O‘,l and 0'2) are
not equal. However, if the variances are unequal and the sample sizes differ, it has been shown that use of
the two-sample-£ c.i. could yield invalid confidence intervals whose true probability of containing 6, - 6, is
much less than 1 — e Thus, if there is no evidence that 67 = 67, and if R, # R, the approximate procedure
in the next subsection is recommended.

12.1.2 Independent Sampling with Unequal Variances

If the assumption of equal variances cannot safely be made, an approximate 100(1 — )% c.i. for 6, — 8, can
be computed as follows. The point estimate and sample variances are computed by Equations (12.4) and
(12.5). The standard error of the point estimate is given by

_ 5
self,~¥,)= ’—+—1 (12.7)
R K

with degrees of freedom, v, approximated by the expression

B (STIR, 45, IR,
WS /R KR, — DI +(S3 { R,V IR, = 1]

(12.8)

rounded to an integer. The confidence interval is then given by Expression (12.1), using the standard error of
Equation (12.7). A minimum number of replications R, 2 6 and R, 2 6 is recommended for this procedure.

12.1.3 Common Random Numbers {CRN})

CRN means that, for each replication, the same random numbers are used to simulate both systems.
Therefore, R, and R, must be equal, say R, = R,=R. Thus, for each replication r, the two estimates, ¥, and
Y, are no longer independent, but rather are correlated. However, independent streams of random numbers
are used on different replications, so the pairs (Y,,Y,,) are mutually independent when r # s. (For example,
in Table 12.1, the observation Y, is correlated with ¥,,, but ¥}, is independent of all other observations.) The
purpose of using CRN is to mduce a positive correlation between Y, and Y, (foreach r) and thus to achieve

a variance reduction in the point estimator of mean difference, Y )f In general, this variance is given by

V(¥, -1,) = V(¥ )+ V(T,)~ 2eou(¥, ¥,)
= Pi " E; _2p,0,0,

- 2 (12.9)

where p,, is the correlation between Y, and Y., By definition, Pz =CcOV(Y,,, ¥,)/0,G;, which does not
depend on r.]

LT LT
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Now compare the variance of E-Y_z arising from the use of CRN {Equation (12.9), call it V,, to the -
variance arising from the use of independent sampling with equal sample sizes [Equation (12.3) with
R, =R, =R, callit V). Notice that

2p,,0,0.
o = Vip =22 (12.10)
R
If CRN works as intended, the correlation p,, will be posmve hence, the second term on the right side of
Equation (12.9) will be positive, and, therefore,

Vern < Vino

That is, the variance of the point estimator will be smaller with CRN than with independent sampling.
A smaller variance (for the same sample size R) implies that the estimator based on CRN is more precise,
leading to a shorter confidence interval on the difference, which implies that smaller differences in performance
can be detected.
To compute a 100(1 - )% c.i. with correlated data, first compute the differences
D =¥

4 r

-Y, az.11y

which, by the definition of CRN, are i.i.d.; then compute the sample mean difference as

1 R
_EDr

R (12.12)
(Thus, D =¥, -¥,.) The sample variance of the differences {D,} is computed as
D, - D
S 2 Z( ¥
L3 —
--—[ED,’—RD’] (12.13)
-1l &

which has degrees of freedom v=R — 1. The 100(1 - )% c.i. for 6, - 6, is given by Expressmn (12.1), with
the standard error of Y - ¥, estimated by

5.!3,( 5) E s,e,(i'; - f’; J= _‘EQ___

N

Because S D/\/E of équation (12.14) is an estimate of \’ch and Expression (12.6) or (12.7) is an estimate

of ‘/V‘W—D, CRN typically will produce a c.i. that is shorter for a given sample size than the c.i. produced by
independent sampling if p,, > 0. In fact, the expected length of the c.i. will be shorter with use of CRN if
Py >0.1, provided R > 10. The larger R is, the smaller p,, can be and still yield a shorter expected length
{Nelson 1987].

Forany problem, there are many ways of implementing common random numbers. It is never enough
to simply use the same seed on the random-number generator(s). Each random number used in one model
for some purpose should be used for the same purpose in the second model—-that is, the use of the random
numbers must be synchronized. For example, if the ithrandom number is used to generate a service time at

(12.14)
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work station 2 for the Sth arrival in model 1, the ith random number should be used for the very same purpose
in model 2. For queueing systems or service facilities, synchronization of the common random numbers
guararitees that the two systems face identical work loads: both systems face arrivals at the same instants of
time, and these arrivals demand equal amounts of service. (The actual service times of a given arrival in the
two models may not be equal; they could be proportional if the server in one model were faster than the server
in the other model.) For an inventory system, in comparing of different ordering policies, synchronization
guarantees that the two systems face identical demand for a given product. For production or reliability
systems, synchronization guarantees that downtimes for a given machine will occur at exactly the same times
and will have identical durations, in the two models. On the other hand, if some aspect of one of the systems
is totally different from the other system, synchronization could be inappropriate—or even impossible to
achieve. In summary, those aspects of the two system designs that are sufficiently similar should be simulated
with common random numbers in such a way that the two models “behave” similarly; but those aspects that
are totally different should be simulated with independent random numbers.

Implementation of common random numbers is model dependent, but certain guidelines can be given
that will make CRN more likely to yield a positive correlation. The purpose of the guidelines is to ensure
that synchronization occurs:

1. Dedicate a random-number stream to a specific purpose, and use as many different streams as
needed. (Different random-number generators, or widely spaced seeds on the same generator, can be
used to get two different, nonoverlapping streams.) In addition, assign independently chosen seeds
to each stream at the beginning of each replication. It is not sufficient to assign seeds at the begin-
ning of the first replication and then let the random-number generator merely continue for the second
and subsequent replications. If simulation is conducted in this manner, the first replication will be
synchronized, but subsequent replications might not be.

2. For systems (or subsystems) with external arrivals: As each entity enters the system, the next inter-

arrival time is generated, and then immediately all random variables (such as service times, order

sizes, etc.) needed by the arriving entity and identical in both models are generated in a fixed order
and stored as attributes of the entity, to be used later as needed. Apply guideline 1: Dedicate one
random-number stream to these extemal arrivals and all their attributes.

For systems having an entity performing given activiies in a cyclic or repeating fashion, assign a

random-number stream to this entity. (Example: a machine that cycles betweentwo states: up~-down—

up-down-.... Use a dedicated random-number sieam to generase the uptimes and downtimes.)

4. If synchronization is not possible, or if it is inappropriate for some part of the two models, use inde-
pendent streams of random numbers for this subset of random variates.

w

Unfortunately, there is no guarantee that CRN will always induce a positive correlation between com-
parable runs of the two models. It is known that if, for each input random variate X, the estimators Y, and
Y, are increasing functions of the random variate X (or both are decreasing functions of X), then Py will
be positive. The intuitive idea is that both models (i.e., both Y, and ¥,,) respond in the same direction to
each input random variate, and this results in positive correlation. This increasing or decreasing nature of
the response variables (called monotonicity) with respect to the input random variables is known tohold for
certain queueing systems (such as the GI/G/c queues), when the response variable is customer delay, so
some evidence exists that common random numbers is a worthwhile technique for queueing simulations.
(For simple queues, customer delay is an increasing function of service times and a decreasing function of
interarrival times.) Wright and Ramsay {1979] reported a negative correlation for certain inventory simula-
tions, however. In summary, the guidelines recently described should be followed, and some reasonable
notion that the response variable of interest is a monotonic function of the random input variables should
be evident.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS © 387

Example 12.1: Continued
The two inspection systems shown in Figure 12.1 will be compared by using both independent sampling and
CRN, in order to illustrate the greater precision of CRN when it works.

"Each vehicle arriving to be inspected has four input random variables associated with it:

A, = interarrival time between vehicles n and n + 1

S® =brake inspection time for vehicle z in model 1
S = headlight inspection time for vehicle z in model 1
S = steering inspection time for vehicle n in model 1

”
For model 2 (of the proposed system), mean service times are decreased by 10%. When using independent
sampling, different values of service (and interarrival) times would be generated for models 1 and 2 by using
different random numbers. But when using CRN, therandom number generator should be usedinsuchaway
that exactly the same values are generated for AL Ay A, ... in both models. For service times, however, we
do not want the same service times in both models, because the mean service-time for model 2 is 10%
smaller, but we do want strongly correlated service times. There are atleasttwo ways to do this:

L. Let S¥(i=1,2,3;n=1,2,...) be the service times generated for model 1; then use S -0.1ES®)
as the service times i n model 2. In words, we take each service time from model 1 and subtract 10%
of its true mean.

Recall that normalrandom variates are usually produced by first generating a standard normal variate

“and then using Equation (8.29) to obtain the correct mean and variance. Therefore, the service times
for, say, a brake inspection could be generated by

2

.

E(5"y+ oZ" _ (12.15)

where Z% is a standard normal variate, &= 0.5 minute, but E(S"’)=6.5 minutes formodel 1 and
E(S™) = 5.85 minutes (10% less) for model 2. The other two inspection times would be generated
in a similar fashion. To implement (synchronized) common random numbers, the simulation analyst
would generate identical Z,‘," sequences (i= 1, 2, 3; n=1, 2, ...) in both models and then use th
appropriate version of Equation (12.15) to generate theinspection times. :

For the synchronized runs, the service times for a vehicle were generated at the instant of arrival (by
guideline 2) and stored as an attribute of the vehicle, to be used as needed. Runs were also made with non-
synchronized common random numbers, in which case one random number stream was used as needed.

Table 12.2 gives the average response time for each of R = 10 replications, each of run length 7. = 16
hours. It was assumed that two cars were present at time 0, waiting to be inspected. Column 1 gives the
outputs from model 1. Model 2 was run with independent random numbers (column 2I) and with common
random numbers without synchronization (column 2C*) and with synchronization (column 2C). The purpose
of the simulation is to estimate meaa difference in response times for the two systems.

For the two independent runs (1 and 21), it was assumed that the variances were not necessarily equal,
so the method of Section 12.1.2 was applied. Sample variances and the standard error were computed by
Equations (12.5) and (12.7), yielding

S?=1189,  §}=2443

and

se(¥,~¥,)= lll—%ﬂf % =6.03
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Table 12.2 Comparison of System Designs for the Vehicle-Safety Inspection System

: Observed

Average Response Time for Mode! Differences
Replication I 21 2c* 2c Dyye. D¢
1 29.59 51.62 56.47 29.55 -26.88 0.04
2 2349 5191 3334 2426 -9.85 =077
3 25.68 45.27 3582 26.03 -10.14 -03s
4 41.09 30.85 34.29 42.64 6.80 -1.55
5 33.84 56.15 39.07 3245 -523 1.39
6 39.57 28.82 32.07 37.91 7.50 1.66
7 37.04 41.30 -51.64 36.48 -14.60 0.56
8 40.20 73.06 41.41 4124 ~1.21 -1.04
9 61.82 23.00 48.29 60.59 13.53 1.23
10 44.00 28.44 2244 4149 21.56 2.51
Samplemean | 37.63 4304 -1.85 037
Sample variance _118,90 244,33‘ 208.94 1.74
Standard error 63 457 042

with degrees of freedom, v, equal to 17, as given by Equation (12.8). The point estimate is Y }'2 ;=54
minutes, and a 95% c.i. [Expression (12.1)] is given by

~54£2.11(6.03)
or
~18.156,-6,573 (12.16)

The 95% confidence interval in Inequality (12.16) contains zero, which indicates that there is no strong
evidence that the observed difference, —5.4 minutes, is due to anything other than random variation in the output

data. In other words, it is not statistically significant. Thus, if the simulation analyst had decided to use inde- *

pendent sampling, no strong conclusion would be possible, because the estimate of 6, - 6, is quite imprecise.

For the two sets of correlated runs (1 and 2C*, and 1 and 2C), the observations are paired and analyzed
as given in Equations (12.11) through (12.14). The point estimate when not synchronizing the random
numbers is given by Equation (12.12) as

D =-1.9 minutes

the sample variance by Sf, (with v = 9 degrees of freedom), and the standard error by s.e.(D)=46. Thus, a
95% c.i. for the true mean difference in response times, as given by expression (12.1), is

-1.9+2.26(4.6)

or

~123<6,-6,< 85 (12.17)
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Again, no strong conclusion is possible, because the confidence interval contains zero. Notice, however,
that the estimate of 6, — 6, is slightly more precise than that in Inequality (12.16), because the length of the
interval is smaller.

When complete synchronization of the random numbers was used, in run 2C, the point estimate of the
mean difference in response times was

D = 0.4 minute

the sample variance was S,Z, = 1.7 (with v=9 degrees of freedom), and the standard error was s.e.(D) = 0.4.
A 95% c.i. for the true mean difference is given by

-0.50<8, -8, <1.30 (12.18)
The confidence interval in Inequality (12.18) again contains zero, but it is considerably shorter than the
previous two intervals. This greater precision in the estimation of 6, — 6, is due to the use of synchronized
common random numbers. The short length of the interval in Inequality (12.18) suggests that the true
difference, 6, — 6,, is close to zero. In fact, the upper bound, 1.30, indicates that system 2 is at most 1.30
minutes faster, in expectation. If such a small difference is not practically significant, then there is no need
to look further into which system is truly better.

As is seen by comparing the confidence intervals in inequalities (12.16), (12.17), and (12.18), the
width of the confidence interval is reduced by 18% when using nonsynchronized common random numbers,
by 93% when using common random numbers with full synchronization. Comparing the estimated variance
of D when using synchronized common random numbers with the variance of ¥,—Y, when using
independent sampling shows a variance reduction of 99.5%, which means that, to achieve precision com-
parable to that achieved by CRN, a total of approximately R = 209 independent replications would have
to be made.

The next few examples show how common random numbers can be implemented in other contexts.

Example 12.2: The Dump-Truck Problem, Revisited
Consider Example 3.4 (the dump-truck problem), shown in Figure 3.7. Each of the trucks repeatedly goes
through three activities: loading, weighing, and traveling. Assume that there are eight trucks and that, at time 0,

- all eight are at the loaders. Weighing time per truck on the single scale is uniformly distributed between 1

and 9 minutes, and travel time per truck is exponentially distributed, with mean 85 minutes. An unlimited
queue is allowed before the loader(s) and before the scale. All trucks can be traveling at the same time.
Management desires to compare one fast loader against the two slower loaders currently being used. Each
of the slow loaders can fill a truck in from 1 to 27 minutes, uniformly distributed. The new fast loader can
fill a truck in from 1 to 19 minutes, uniformly distributed. The basis forcomparison is mean system response
time, where a response time is defined as the duration of time from a truck arrival at the loader queue to that
truck’s departure from the scale.

To implement synchronized common random numbers, a separate and distinct random number stream
was assigned to each of the eight trucks. At the beginning of eachreplication (i.e., at time 0), a new and inde-
pendéntly chosen set of eight seeds was specified, one seed for each random number stream. Thus, weighing
times and travel times for each truck were identical in both models, and the loading time for a given truck’s
ith visit to the fast loader was proportional to the loading time in the original system (with two slow loaders).
Implementation of common random numbers without synchronization (e.g., using one random number
stream to generate all loading, weighing, and travel times as needed) would likely lead to a given random
number being used to generate a loading time in model 1 but a travel time in model 2, or vice versa, and from '
that point on the use of a random number would most likely be different in the two models.. b
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Table 12.3 Comparison of System Designs for the Dump Truck Problem

Average Response Time for Model
) Replicalion 1 21 2C Differences,
: (2 Loaders) (I Loader) (I Loader) D,y
1 21.38 29.01 2430 -2.92
2 24.06 2470 27.13 -3.07
3 2139 26.85 23.04 -1.65
4 21.90 . 2449 23.15 -1.25
5 23.55 27.18 26.75 -3.20
6 2236 26.91 25.62 ~3.26
Sample mean 22.44 26.52 ~2.56
Sample variance 128 2.86 . 0.767
Sample standard 113 1.69 0.876
deviation

Six replications of each model were run, each of run length T .= 40 hours. The results are shown in
Table 12.3. Both independent sampling and CRN were used, to illustrate the advantage of CRN. The first
column (labeled model I) contains the observed average system response time for the existing system with
two loaders. The columns labeled 2I and 2C are for the alternative design having one loader; the independent
sampling results are in 2I, and the CRN results are in the column labeled 2C. The rightmost column, labeled
D, lists the observed differences between the runs of model 1 and model 2C. o
For independent sampling assuming unequal variances, the following summary statistics were computed
by using Equations (12.2), (12.5), (12.7), (12.8), and (12.1) and the data (in columns 1 and 2I) in Table 12.3:

Point Estimate: ¥, —¥,, =2244-26.52=—4.08 minutes
Sample variances: S’ = 1.28 52 =286
Standard Error:  se.(¥, -¥,)=(S}/R, + 2 IR,)"* = 0831
Degrees of freedom: v=873=9
95% c.i. for 6, — 6,; -4.08 £2.26(0.831) or —4.08 + 1.878
- -596<6,~6,£-220

For CRN, implemented by the use of ‘synchronized commen random numbers, the following summary
statistics were computed by using Equations (12.12), (12.13), (12.14), and (12.1) plus the data (in columns
1 and 2C) in Table 12.3: )

Point Estimate: . D = ¥, ~¥,, = -2.56 minutes
Sample variance: S = 0.767
Standard Error: s.e.(l_)) =S,/ \/E =0.876/ s/g =().358
Degrees of freedom: v=R-1=5
95% c.i. for 6, = 6,: —2.56 £2.57(0.358) or —2.56 + 0.919
: '~348<6,~6,<-1641

By comparing the c.i. widths, we see that the use of CRN with synchronization reduced c.i. width
by 50%. This reduction could be important if a difference of as much as, say, 5.96 is considered piactically

-Example 12.3
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significant, but a difference of at most 3.48 is not. Equivalently, if equal precision were desired, independent
sampling would require approximately four times as many observations as would CRN: approximately 24
replications of each model instead of six.

To illustrate how CRN can fail when notimplemented correctly, consider the dump-truck model again.
There were eight trucks, and each was assigned its own random number stream. For each of the six replica-
tions, eight seeds were randomly chosen, one seed for each random number stream. Therefore, a total of 48
(6 times 8) seeds were specified for the correct implementation of common random numbers. When the
authors first developed and ran this example, eight seeds were specified at the beginning of the first replica-
tion only; on the remaining five replications the random numbers were generated by continuing down the
eight original streams. Since comparable replications with one and two loaders required different numbers
of random variables, only the first replications of the two models were synchronized. The remaining five
were not synchronized. The resulting confidence interval for 6, — 6, under CRN was approximately the same
length as, or only slightly shorter than, the confidence interval under independent sampling. Therefore, CRN
is quite likely to fail in reducing the standard error of the estimated difference unless proper care is taken to
guarantee synchronization of the random number stre2ms on all replications.

In Example 2.5, two policies for replacing bearings in a milling machine were compared. The bearing-life
distribution, assumed discrete in Example 2.5 (Table 2.22), is now more realistically assumed to be contin-
uous on the range from 950 to 1950 hours, with the first column of Table 2.22 giving the midpoint of 10
intervals of width 100 hours. The repaisperson delay-time distribution of Table 2.23 is also assumed contin-
uous, in the range from 2.5 to 17.5 minutes, with interval midpoints as given in the first column. The prob-
abilities of each interval are given in the second columns of Tables 2.22 and 2.23.

The two models were run by using CRN and, for illustrative purposes, by using independent sampling, each
forR = 10 replications. The puspose was to estimate the difference in mean total costs per 10,000 bearing hours,
with the cost data given in Example 2.5. The estimated total cost for the two policies is given in Table 12.4.

Table 12.4 Total Costs for Alternative Designs of Bearing
Replacement Problem :

Total Cost for Difference in
Policy " Total Cost
Replication r
2 1 IC D,
1 13,340 17,010 17,556 4,216
2 12,760 17,528 17,160 4,400
3 13,002 17,956 17,808 4,806
4 13,524 17,920 18,012 4,488
5 13,754 18.880 18,200 4,446
6 13,318 17,528 17,936 4,618
7 13,432 17,574 18,350 4,918
8 14,208 17,954 19,398 5,190
9 13,224 18,290 . 17,612 4,388
10 13,178 17,360 17,956 4,778
Sample mean 13,374 17,800 ' 4,624
Sample variance 160,712 276,188 87,353
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Policy 1 was to replace each bearing as it failed. Policy 2 was to replace all three bearings whenever one
bearing failed. Policy 2 was run first, and then policy 1 was run, using independent sampling (column 1I),
and using CRN (column IC). The 95% confidence intervals for mean cost difference are as follows:

Independent sampling: $4426 £ 439
CRN: $4625 £ 211

(The computation of these confidence intervals is left as an exercise for the reader.? o

Notice that the confidence interval for mean cost difference when using CRN is approximately 50% of
the length of the confidence interval based on independent sampling. Theref?re,. for t.he same computer COsts,
(i.e., for R = 10 replications), CRN produces estimates that are twice as precise in this e?(ample. IfCRN were
used, the simulation analyst could conclude with 95% confidence that the mean cost difference between the
two policies is between $4414 and $4836.

12.1.4 Confidence Intervals with Specified Precision

Section 11.4.2 described a procedure for obtaining confidence intervals with specified precision. Confidence
intervals for the difference between two systems’ performance can be obtained in an analogm‘ls manner.

Suppose that we want the error in our estimate of 6, — 6, to be less than te .(the. quantity € might be
a practically significant difference). Therefore, our goal is to find a number of replications R such that

H=1,,,5e(f,-¥,)<e (12.19)

As in Section 11.4.2, we begin by making R, 2 2 replications of each system to obtain an initial estimate of
se.(Y,~Y, ). We then solve for the total number of replications R 2 R, needed to. ac!lleve the half-length
criterion (12.19). Finally, we make an additional R - R,, replications (or a fresh R rephcapons) of each system,
compute the confidence interval, and check that the half-length criterion has been attained.

Example 12.1: Continued .
Recall that R, = 10 replications and complete synchronization of the random r}umt?ers )'ltj,lded th.e 95%
confidence interval for the difference in expected response time of the two vehicle-inspection stations in
Inequality (12.18); this interval can be rewritten as 0.4 £ 0.90 minutes. Althoug!1 system 2 appears .to have
the smaller expected response time, the difference is not statistically significant, since d?e conﬁfieqce interval
contains 0. Suppose that a difference larger than £0.5 minute is considered to be practically significant. We
therefore want to make enough replications to obtain a H < €=0.5.

The confidence interval used in Example 12.1 was D1, 12810 /J;?_ , withthe specific values D = 0.4,

Ry =10, £50y5 =226 and 5% =1.7. To obtain the desired precision, we need to find R such that
fa/Z,R—lSD_S €

R

Therefore, R is the smallest integer satisfying R > R, and

2
R > :C(ﬂ.ﬂ-lsn .
- €

i i i rRis givenb
Since £,/ gy < 490,-1> @ CONSEIVALIVE estimate fo g y

2
R> (jt“’ 2150 ]

€

BRI . #. ¥, LA
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Substituting ¢, . ;= 2.26 and SL=17, we obtain

R> (2.26)*(1.7)

=057 =343

implying that 35 replications are needed, 25 more than in the initial experiment.

12.2 COMPARISON OF SEVERAL SYSTEM DESIGNS

Suppose that a simulation analyst desires to compare K alternative system designs. The comparison will be
made on the basis of some specified performance measure, 8, of system i, for i = 1,2,...,K. Many differ-

. ent statistical procedures have been developed that can be used to analyze simulation data and draw statisti-

cally sound inferences concerning the parameters 6. These procedures can be classified as being either
fixed-sample-size procedures or sequential-sampling (or multistage) procedures. In the first type, a prede-
termined sample size (i.e., run length and number of replications) is used to draw inferences via hypothesis
tests or confidence intervals. Examples of fixed-sample-size procedures include the interval estimation of
a mean performance measure (Section 11.3) and the interval estimation of the difference between mean
performance measures of two systems [as by Expression (12.1) in Section 12.1]. Advantages of fixed-
sample-size procedures include a known or easily estimated cost in terms of computer time before running
the experiments. When computer time is limited, or when a pilot study is being conducted, a fixed-sample-size
procedure might be appropriate. In some cases, clearly inferior system designs may be ruled out at this early
stage. A major disadvantage is that a strong conclusion could be impossible. For example, the confidence
interval could be too wide for practical use, since the width is an indication of the precision of the point
estimator. A hypothesis test may lead to a failure to reject the null hypothesis, a weak conclusion in general,
meaning that there is no strong evidence one way or the other about the truth or falsity of the null hypothesis.

A sequential sampling scheme is one in which moreand more data are collected until an estimator with
a prespecified precision is achieved or until one of several alternative hypotheses is selected, with the prob-
ability of correct selection being larger than a prespecified value. A two-stage (or multistage) procedure is
one in which an initial sample is used to estimate how many additional observations are needed to draw
conclusions with a specified precision. An example of a two-stage procedure for estimating the performance
measure of a single system was given in Section 11.4.2 and 12.1.4, .

The proper procedure to use depends on the goal of the simulation analyst. Some possible goals are the

following:

1. estimation of each parameter, 01;
2. comparison of each performance measure, 6, to a control, 6, (where 6, could represent the mean
performance of an existing system);
3. all pairwise comparisons, 6,— ., for i # j;
. 4. selection of the best 6, (largest or smallest).

The first three goals will be achieved by the construction of confidence intervals. The number of such
confidence intervals is C =K, C=K - 1, and C = K(K — 1)/2, respectively. Hochberg and Tamhane {1987]
and Hsu [1996] are comprehensive references for such multiple-comparison procedures. The fourth goal
requires the use of a type of statistical procedure known as a multiple ranking -and selection procedure.
Procedures to achieve these and other goals are discussed by Kleijnen [1975, Chapters II and V), who also
discusses their relative merit and disadvantages. Goldsman arid Nelson [1998] and Law and Kelton [2000]
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- discuss those selection procedures most relevant to simulation. A comprehensive reference is Bechhofer,

Santner, and Goldsman [1995]. The next subsection presents a fixed-sample-size procedure that can be used
to meet goals 1, 2, and 3 and is applicable in a wide range of circumstances. Subsections 12.2.2-12.2.3 present
related procedures to achieve goal 4.

12.2.1 Bonferroni Approach to Mulﬁple Comparisons

Suppose that C confidence intervals are computed and that the ith interval has confidence coefficient 1 - ¢,
Let S, be the statement that the ith confidence interval contains the parameter, (or difference of two parame-
ters) being estimated. This statement might be true or false for a given set of data, but the procedure leading
to the interval is designed so that statement S, will be true with probability 1— ¢, When it is desired to make
statements about several parameters simultaneously, as in goals 1, 2 and 3, the analyst would like to have
high confidence that all statements are true simultaneously. The Bonferroni inequality states that

4
C)21-Y 0 =1-0, (1220)

=l

P (all statements S; are true, i =1,...,

where ¢, = Z;_aj is called the overall error probability. Expression (12.20) can be restated as

P (one or more statements S,. is false,i=1,...0) S a;

or equivalently,

P (one or more of the C confidence intervals does not
contain the parameter being estimated) < o

Thus, o provides an upper bound on the probability of a false conclusion. To conduct an experiment that
involves making C comparisons, first select the overall error probability, say a;;= 005 or 0.10. The individ-
ual @ may be chosen to be equal (o= a,/C), or unequal, as desired. The smaller the value of o, the wider
the jth confidence interval will be. For example, if two 95% c.i.’s (2, = &, = 0.05) are constructed, the over-
all confidence level will be 90% or greater (= @, + @, = 0.10). If ten 95% Ci.'s are constructed (, 0.05,
i=1, ..., 10), the resulting overall confidence level could be as low as 50% (aE &= - 0.50), which is
far too low for practical use. To guarantee an overall confidence level of 95%, when 10 comparisons are
being made, one approach is to construct ten 99.5% confidence intervals for the parameters (or differences)
of interest.

The Bonferroni approach to multiple confidence. intervals is based on expression (12.20). A major
advantage is that it holds whether the models for the alternative designs are run with independent sampling
or with common random numbers.

The major disadvantage of the Bonferroni approach in making a large number of comparisons is the
increased width of each individual interval. For example, for a given set of data and a large sample size, a
99.5% c.i. will be 7, o0,4/2, ,5 =2.807/1.96 = 1.43 times longer thana 95% c.i. For small sample sizes—say,
for a sample of size 5—a 99.5% c.i. will be 1 0025.4%.025.4 = 5-398/2.776 = 1.99 times longer than an indi-
vidual 95% c.i. The width of a c.i. is a measure of the precision of the estimate. For these reasons, it is
recommended that the Bonferroni approach be used only when a small number of comparisons are being
made. Twenty or so comparisons appears to be the practical upper limit.

Corresponding to goals 1, 2, and 3, there are at least three possible ways of using the Bonferroni
Inequality (12.20) when comparing K alternative system designs:

L. (Individual c.i.’s): Construct a 100(1 — @)% c.i. for parameter 6, by using Expression (11.12), in
which case the number of intervals is C= K. If independent sampling were used, the K c.i.'s would be
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mutually independent, and thus the overall confidence level would be (1 - o) x (1 — @) x -+ x (1 -

which is larger (but not much larger) than the right side of Expression (12.20). This type of proce-
dure is most often used to estimate multiple parameters of a single system, rather than to compare
systems—and, because multiple parameter estimates from the same system are likely to be dependent,
the Bonferroni inequality typically is needed. ]

2. (Comparison to an existing system): Compare all designs to one specrﬁc desrgn—usually, to an
existing system: that is, construct a 100(1 — ¢)% c.i. for 6,— 6,(i = ., K), using Expression
(12.1). (System 1 with performance measure 6, is assumed to be the existing system). In this case,
the number of intervals is C = K — 1. This type of procedure is most often used to compare several
competitors to the present system in order to learn.which are better.

3. (All pairwise comparisons): Compare all designs to each other—that is, for any two system designs
i #j, construct a 100(1 - ;)% c.i. for 6, - 9 With K designs, the number of confidence intervals
computed is C = K(K — 1)/2 The overall ‘confidence coefficient would be bounded below by
1-a; =1- Z Z i O ;7 (Which follows by Expression (12.20)). It is generally believed that CRN will

make the true overall conﬂdence level larger than the right side of Expression (12.20), and usually
larger than will independent sampling. The right side of Expression (12.20) can be thought of as
giving the worst case (i.e., the lowest possible overall confidence level).

Example 12.4
Reconsider the vehicle-inspection station of Example 12.1. Suppose that the construction of additional space
to hold one waiting car is being considered. The alternative system designs are the following:

. existing system (parallel stations);

. no space between stations in series;

. one space between brake and headlight lnspectron only;

. one space between headlight and steering inspection only.

W N

Design 2 was compared to the existing setup in Example 12.1. Designs 2, 3, and 4 are series queues, as
shown in Figure 12.1(b), the only difference being the number or location of a waiting space between two
successive inspections. The arrival process and the inspection times are as given in Example 12.1. The basis
for comparison will be mean response time, 6, for system i, where a response time is the total time it takes
for a car to get through the system. Confidence intervals for 6,~6,,6,~6,, and 6, ~ 6, will be constructed,
each having an overall confidence level of 95%. The run length T, has now been set at 40 hours (instead of
the 16 hours used in Example 12.1), and the number of replrcatlons R of each model is 10. Common random
numbers will be used in all models, but this does not affect the overall confidence level, because, as men-
tioned, the Bonferroni Inequality (12.20) holds regardless of the statistical independence or dependence of
the data. :
Since the overall error probability is o, = 0.05 and C = 3 confidence intervals are to be constructed let

" 0;,=0.05/3 = 0.0167 for i = 2,3,4. Then use Expression (12.1) (with proper modificaions) to construct C = 3

confrdence intervals with o= @, =0.0167 and degrees of freedom v= 10— 1=9. The standard error is computed
by Equation (12.14), because common random numbers -are being used. The output data Y are displayed in
Table 12.5; Y is the sample mean response time for replication r on system i (= 1, ..., 10;i=1, 2, 3,"4). The
differences D =Y, -7 are also shown, together with the sample mean dlfferences D averaged over all
replications as in Equatlon (12.12), the sample variances Sj,, and the standard error. By Expresslon (12.1), the
three confidence intervals, with overall confidence coefficient at least 1 — @, are given by

D;-t,00:56(D)S8,-0,S D, +1,,, ,se4D,), i=2,3,4
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Table 12.5 Analysis of Output Data for Vehicle Inspection System When Using CRN For purposes of illustration, 10 replications of each of the four designs were run, using independent
- sampling (i.e., different random numbers for all runs). The results are presented in Table 12.6, together with
; Average Response Time O_b“”'ed Difference . sample means (Y,), sample standard deviations (S,), and sample variances (S7), plus the observed difference
i for System Design with System Design 1 of sample means (¥, - ) and the standard error (s.e.) of the observed difference. It is observed that all three
; Repticaton, . 2 3 ‘ confidence intervals for 6l - 8(i= 2, 3, 4) contain zero. Therefore, no strong conclusion is possible from
1t _ these data and this sample size. By contrast, a sample size of ten was sufficient, when using CRN, to provide
L r Yy Yo Y Y, D, D, D, strong evidence that design 3 is superior to design 1.
t Notice the large increase in standard error of the estimated difference with independent sampling versus
o 1 63.72 63.06 3174 6263 066 598 109 with common raﬁ%iom numbers. These standard errors are compared in Table 125? In additioF:l, a careful
‘ 2 3224 3178 2965 31.56 0.46 259 0.68 examination of Tables 12.5 and 12.6 illustrates the superiority of CRN. In Table 12.5, in all 10 replications,
; 3 40.28 4032 36.52 39.87 -0.04 3.76 0.41 system design 3 has a smaller average response time than does system design 1. By comparing replications
' 4 36.94 311 35.71 3735 - | ~0.77 1.23 -0.41 1 and 2 in Table 12.5, it can be seen that a random-number stream that leads to high congestion and large
5 36.29 36,79 33.81 36.65 -0.50 248 ~036 _ response times in system design 1, as in the first replication, produces results of similar magnitude across all
6 56.94 57.93 51.54 5715 ~0.99 5.40 -021 ff)ur systqm designs. Slmlla}'ly, _when system destgn 1 exhibits relat}vely low congestion and lo»y response
; 2410 1339 3139 1330 0 291 080 t{me?s, as in the second repllcatlor.l, a!l sy§tem designs produce relatively low average response times. This
; : : . : ' similarity of results on each replication is due, of course, to the use of common random numbers across
8 6336 6292 5724 6221 0.44 6.12 L15 . systems. By contrast, for independent sampling, Table 12.6 shows no such similarity across system designs.
9 4929 4167 4263 4746 1.62 6.66 1.83 In only 5 of the 10 replications is the average response time for system design 3 smaller than that for system
10 87.20 80.79 67.27 79.60 6.41 19.93 7.60 design 1, although the average difference in response times across all 10 replications is approximately the
Sample mean, 5; 0.80 5.686 1.258 same magnitude in each case: 5.69 minutes when using CRN, and 5.89 minutes when using independent
q. . . Sample standard deviation, S, _ 2.12 5.338 2340 '
% " ) Sample variance, S; 4.498 28.498 5.489
i ' Table 12.6 Analysis of Output Data for the Vehicle-Inspection
Standard ertor, SDJ!J'IE 0.671 1.688 0.741 . System that Uses Independent Sampling
: Average Response Time for System Design
. I The value of ta' 1. = logums = 2.97 is obtained from Table A.5 by interpolation. For these data, with 95% Replication, 1 2 3, 4
f R confidence, it is stated that r Y, Y, Y, Y,
iy -1.19<6 - 6,279 1 63.72 59.37 5200 59.03
' 06756, - 6,<10.71 2 1224 5006 4704 4997
-0.94< 6, - 6,<346 y ’ '
AT % 3 40.28 60.63 53.21 60.18
The simulation analyst has high confidence (at least 95%) that all three confidence statements are correct. 4 36.94 46.36 40.88 45.44
Notice that the c.i. for 6, — 6, again contains zero; thus, there is no statistically significant difference between 5 36.29 68.87 50.85 66.65
design 1 and design 2, a conclusmn that supports the previous results in Example 12.1. The c.i. for 6, - 6, 6 56.94 66.44 60.42 66.03
lies completely above zero and so provides strong evidence that 6, — 6, > 0—that is, that design 3 is better 7 34.10 2751 26.70 27.45
than design 1 because its mean response time is smaller, The c.i. for 9 0, contains zero, so there is no 8 6336 47.98 4012 4750
- statistically significant difference between designs 1 and 4. ) ’ ’ :
If the simulation analyst now decides that it wouldbe desirable to compare designs 3.and 4, snore simulation ? 49.29 2992 2859 29.84
runs would be necessary, because it is not formally correct to decide which confidence intervals to compute 10 87.20 47.14 41.62 46.44
after the data have been examined. On the other hand, if the simulation analyst had decided to compute all ; Sample mean }7, 50.04 50.43 44.14 49,85
"possible confidenceintervals (and had made this decision before collecting the data, ¥ ), the number of confi- s 17.70 13.98 10.76 13.64
dence intervals would have been C=6 and the three ci.'s would have been f,, , / Lyoosze = 3.32/2.97=1.12 . s 313.38 195.54 115.74 185.98
times (or 12%) longer. There is always a wade-off between the number of intervals (C) and the width of each : o
interval. The simulation analyst should carefully consider the possible conclusions before running the simulation Y-, =039 5.89 0.8
experiments and choose those runs and analyses that will provide the most useful information. In particular, the s.e. f‘ -Y,) 7.13 655 - 107
number of confidence intervals computed should be as small as possible—preferably, 20 or less.
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Table 12.7 Comparison of Standard Errors Arising from CRN with
those from Independent Sampling, for the Vehicle-inspection Problem

Standard Error When Using
Difference in CRN Independent Percentage
Sample Means Sampling Sampling Increase
Y,-7, 0.67 7.13 1064%
Y,-F, 169 6.55 1388%
}7‘ - }7¢ 0.74 7.07 955%

sampling. The greater variability of independent sampling is reflected also in the standard errors of the point
estimates: £1.69 minutes for CRN versus + 6.55 minutes for independent sampling, an increase of 388%, as
seen in Table 12.7. This example illustrates again the advantage of CRN.

As stated previously, CRN does not yield a variance reduction in all simulation models. It is recom-
mended that a pilot study be undertaken and variances estimated to confirm (or possibly deny) the assumption
that CRN will reduce the variance (or standard error) of an estimated difference. The reader is referred to the
discussion in Section 12.1.3. ’

Some of the exercises at the end of this chapter provide an opportunity to compare CRN and independent
sampling and to compute simultaneous confidence intervals under the Bonferroni approach.

12.2.2 Bonferroni Approach to Selecting the Best

Suppose that there are K system designs, and the ith design has expected performance 6. At a gross level,

we are interested in which system is best, where “best” is defined to be having maximum expected

performance.! At a more refined level, we could also be interested in how much better the best is relative to
each alternative, because secondary criteria that are not reflected in the performance measure 6, (such as ease
of installation, cost to maintain, etc.) could tempt us to choose an inferior system if it is not deficient by much.

If system design i is the best, then 6,— max ;,; 6, is equal to the difference in performance between the
best and the second best. If system design i is not the best, then 6;,—max,; 6, is equal to the difference
between system i and the best. The selection procedure we describe in this section focuses on the parameters
6,—max,,, 6 fori=1,2,... K.

Let i* denote the (unlmown} index of the best system. As a general rule, the smaller the true difference
6.- max, qu is, and the more certain we want to be that we find the best system, the more replications are
required to achieve our goal. Therefore, instead of demanding that we find i*, we can compromise and ask
to find i* with high probability whenever the difference between system i* and the others is at least some
practically significant amount. More precisely, we want the probability that we select the best system to be
at least 1 — o whenever 8, —max,,..0; 2 €. If there are one or more systems that are within € of the best,
then we will be satisfied to selecteither the best or any one of the near best. Both the probability of correctselec-
tion, 1 — ¢, and the practically significant difference, €, will be under our control.

The following procedure achieves the desired probability of correct selection (Nelson and Matejcik
[1995]). And because we are also interested in how much each system differs from the best, it also forms
100(1- )% confidence intervals for 6, —max J.,,,q fori=1,2, ..., K. The procedure is vglid for normally
distributed data when either CRN or independent sampling is being used.

'If “best” is defined to be having minimum expected performance, then the procedure in.this section is easily modlﬁed as we
illustrate in the example.
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Two-Stage Bonferroni Procedure _
L. Specify the practicaily significant difference €, the probability of correct selection 1 — ¢, and the
- first-stage sample size R 2 10. Let £ =14 5 -

2. Make R, replications of system i to obtain ¥, ¥, ..., Y, ',,, for systemsi=1,2,...,K.
3. Calculate the first-stage sample means ¥,, i = 1, 2, ....K. For all i # j, calculate the sample variance

of the difference,?
1 9 = =\
=0 N(¥ -y - -T.
¥ Rn_lgl( ATy ( u J))
Let§? = X, JS ;» the largest sample variance.

4. Calculate the second-stage sample size,

182
R= max[Rn,{f f ”
€
wherer Tmeans to round up.

S. Mx;zke R - R, additional replications of system i to obtain the output data YeuoYeuan fori=12,..
K.
6. Calculate the overall sample means

..’.‘*31!

5

xl—-

fori=1,2,....K. _
7. Select the system with largest }?‘ as the best.

Also form the confidence intervals

min{0, ?: maxY —-€)<0, —maxG max {0, i .maxY +€)
b3

fori=1,2,...,K
The confidence mtervals in Step 7 are not like the usual + intervals presented elsewhere in this chapter.
Perhaps the most useful interpretation of them is as follows. Let i be the index of the system selected as best.
Then, for each of the other systems i, we make one of the declarations:

o If )E' —}2 +€< 0, then declare system i to be inferior to the best.

oIf ¥, —17} +€ > 0, then declare system i to be statistically indisinguishable from the best (and, there-
fore, system i might be the best).

Example 12.4: Continued

"Recall that, in Example 12.4, we considered K = 4 different designs for the vehicle-inspection stasion. Suppose
- that we would like 0.95% confidence of selecting the best (smallest expected response time) system design when

2Notice that S is algebraically equivalent to S v the sample variance of D =Y, -Y, forr=1, 2,
31f it is more convement atotal of R replications can be generated from system i by reslanmg the entire expeumenL
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thebest differs from the second bestby at least two minutes. This is a minimization problem, so we focus on the

differerices , —min,_, § fori = 1,2,3,4. Then we can apply the Two-Stage Bonferroni Procedure as follows:

1. €=2 minutes, | - @=0.95, R, = 10, and £ = £, ¢, ; =2.508.
2. The data in Table 12.5, which was obtained by using CRN, is employed.
3. From Table 12.5, we get S}, = S;, =4.498, 5, = S, =28.498, and S}, =S}, =5.489. By similar

calcultions, we obtain S}, =11.857, SZ, = 0.119, and 53, = 9.849.
4. Since §? = S, =28.498 is the largest sample variance,

2
R= max{!o,[—————a'sm)fg'ws}]} =max{10,[44.81} =45

5. Make 45 — 10 = 35 additional replications of each system.
6. Calculate the overall sample means

- l 45
Yi =‘EZYH.

r=l

fori=1,23,4 =
7. Select the system with smallest Y; as the best.
Also, form the confidence intervals

min{0, i—min ?;-2}s 6, —min 6; < max{0, }?— mip?j +2}
i i i

fori=1,2,3,4.

12.2.3 Bonferroni Approach to Screening

When a two-stage procedure is not possible, or when there are many systems, it could be useful to divide the
set of systems into those that could be the best and those that can be eliminated from further-consideration.
For this purpose, a screening or subset selection procedure is useful. The following procedure, due to Nelson
et al. [2001], guarantees that the retined subset contins the true best system with probability > 1 — @ when the
data are normally distributed and either independent sampling or CRN is used. The subset may contain all
K of the systems, only one system, or some number in between, depending on the number of replications and
the sample means and sample variances.

Séreehing Procedure
1. Specify the probability of correct selection 1 — & and common sample size from each system, R 2 2.
Let 1= 1,0 g
2. Make R replications of system i to obtain ¥, ¥,.,..., ¥ forsystemsi=1,2,... K.

3. Calculate the sample means Y_ fori=1,2,...,K. For all i #j, calculate the sample variance of the
difference,

BRI AL TR L AT TR T
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1 & - -
Si= g2 t-E-T))
4, Ifbiggeris beiter, then retain system J in the selectéd subset if

s 5.
YJZY.,--t--?Efomlijaei

vR

If smaller is better, then retain system i in the selected subset, if

= o S,
Y, <7 +1—L forallji

VR

All system designs that are not retained can be eliminated from further consideration. '

Example 12.4: Continued

Suppose we want to see whether any of the designs for the vehicle-inspoéion station can be eliminated on

the basis of only the 10 replications in Table 12.5. Summaries of the sample means and variances of the dif-
- ferences are as follows: : S . .

Y, 1 2 3 4
5004 4924 4435 4878

S| 2 3 -4

1 4498 28498 5489

2 11857 0119

3 9.84

The appropriate critical value to obtain 95% confidence that the selected subset contains the true best is
L= by 169 = 2.508. Recall that smaller response time is_b_ettér. Applying the Subset Selection Procedure,
- system designs 1, 2, and 4 can all be eliminated, because

= = ’S’
Y, =5004£Y,+: —é’- =44.35+2508 2—81%9—8 =48.58

B . : : o
T, =aBT8%T, 41, ‘-SI—?- = 443542508, Pi—?- =4684

- - Sz . .
¥, =4924 £, +1, ,"1? =4435+2.508 '—11:2_51-: 47.08

* Thus, in this case there was adequate data to select the best, system design 3, with 95% confiderice. Had .

- more than'one system survived the subset selection, then we could perform additional analysis on that subset,
__ Perhaps using the Two-Stage Bonferroni Procedure.
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.12.3 METAMODELING

Suppose that there is a simulation output response variable, Y, that is related to k independent variables, say
XsX,, -+, X;. The dependent variable, Y, is arandom variable, while the independent variables X5 Xy -0y X, ATE
calleddesign variables and are usually subject to control. The true relationship between the variables ¥ and x
is represented by the (often complex) simulation model. Our goal is to approximate this relationship by
a simpler mathematical function called a metamodel. In some cases, the analyst will know the exact form
of the functional relationshi_p between Yandx,,x,, ..., x,, say Y =f(x,,x,, ..., x,). However, in most cases, the
functional relationship is unknown, and the analyst must select an appropriate f containing unknown para-

meters, and then estimate those parameters from a set of data (Y, x). Regression analysis is one method for

estimating the parameters.

Example 12.5
An insurance company promises to process all claims it receives each day by the end of the next day. It has
developed a simulation model of its proposed claims-processing system to evaluate how hard it will be to
meet this promise. The actual number and types of claims that will need to be processed each day will vary,
and the number may grow over time. Therefore, the company would like to have a model that predicts the
total processing time as a function of the number of claims received.

The primary value of a metamodel is to make it easy to answer “what if” questions, such as, what the
processing time will be if there are x claims. Evaluating a function f, or perhaps its derivatives, at a number
of values of x is typically much easier than running a simulation experiment for each value.

12.3.1 Simple Linear Regression

Suppose that it is desired to estimate the relationship between a single independent variable x and a dependent
variable Y, and suppose that the true relationship between Y and x is suspected to be lmear Mathematically,
the expected value of Y for a given value of x is assumed to be

E(¥Y{x)=8+px 12.21)

where 3, is the intercept on the Y axis, anunknown constant; and B, is the slope, or change in ¥ for a unit change
in x, also an unknewn constant. It is further assumed that each observation of ¥ can be described by the model

Y=8,+Px+e (12.22)

where € is a random error with mean zero and constant variance 62 The regression model given by
Equation (12.22) involves a single variable x and is commonly-called a simple linear regression model.

Suppose that there are # pairs of observations (Y}, x,), (Y, x,), .. xn) These observations can be
. used to estimate f and B, in Equation (12.22). The method of least squares is commonly used to form the
estimates. In the method of least squares, 8, and B, are estimated in such a way that the sum of the squares
of the deviations between the observations and the regression line is minimized. The individual observations
in Equation (12.22) can be written as

L=ftBx+ei=1.2n (1223)

where €, €, .... are assumed to be uncorrelated random variables.
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Each ¢, in Equation (12.23) is given by

&=Y-f-Bx ' (1224)

and represents the difference between the observed response, Y, and the expected response, By + Byx,
predicted by the model in Equation (12.21). Figure 12.3 shows how €, is related to x,,Y,, and E(Y) Jx).
The sum of squares of the deviations given in Equation (12.24) is given by )

=36 = Z_I(YI -8, -Bx) O 1225)

and L is called the least-squares function. It is convenient to rewrite Y, as follows:
=B+ Bi(x, - T+ - (12.26)

where ﬁo Bo+BX and x = Zx /n. Equation (12.26) is often called the transformed linear regrcssmn
model. Using Equation (12. 26) Equatlon (12.25) becomes

L= ¥~ BB (x -DF

To minimize L, find 9L /3, and L /ap,, set each to zero, and solve for B,; and B, Taking the partial
derivatives and setting each to zero yields

=YY
i=|
BY (x, -5 =Y ¥(x,-3) . 1227
i=l

Equations (12.27) are often called the “normal equations,” which have the solutions

o’ o LY
Bi=r=3%- (12.28)

Ei—x;) = Bo + Buxi

y=PBo+Bix;+¢
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and

o T Vi %)

n

i=t

| = ~——— (12.29)
za-l (=% y
The numerator in Equation (12.29) is rewritten for computational purposes-as’
ul e . (Z.'-l:lxl)(z:::lyi) .
S, = (x-0)=y xf—— = (12.30)
i=l

where S_ denotes the corrected sum of cross products of x and Y. The denominator 6f Equation (12.29) is
rewritten for computational purposes as .

St 12.31)
S, =)(x-3'=) 2~ (
A
where S, denotes the corrected sum of squares of x. The value of ﬁo can be retrieved easily as
Bo=B-p= (1232)

Example 12.6: Calculating ﬁo and ﬁ, :

The simulation model of the claims-processing system in Example 12.5 wasexecuted with initial conditions
x =100, 150, 200, 250, and 300 claims received the previous day. Three replications were obtained at each
setting. The response Y is the number of hours required to process x claims. The results are shown in Table 12.8.
The graphical relationship between the number of-claims received and total processing time is shown in

Table 12.8 Simulation Results for Processing Time Given

x Claims
Number of Claims x |~ Hours of Processing Time Y
100 8l
100 7.8
100 7.0
150 9.6
150 8.5
150 9.0
200 : - 109
200 - 13.3
200 . 116
250 B 127
250 ’ 14.5
250 147
300 _ 16.5
300 17.5
300 16.3
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Figure 12.4 Relationship between number of claims and
hours of processing time. :

Figun.a'12.4. Such a fiisp]ay is called a scatter diagram. Examination of this scatter diagram indicates that

t!lere is a strong relationship between number of claims and processing time. The tentative assumption of the

linear model given by Equation (12.22) appears to be reasonable. '
With the processing |1me§ asthe Y, values (the dependent variables) and the number of claims as thex, values

(the independent variables), 8, and Bl can be found by the following computations: n = 15, z#j‘x. = 3000
13 15 ] i=1 7 h
Y,=178, 3, " » =675,000, . x¥,=39080, and X = 3000/15 = 200,

From Equation (12.30) S o is calculated as

5, =139,080~ XU _ 545
i 15
From Equation (12.31), S _ is calculated as
\2
S, =675,000- (301.;50) =175,000
Then, ﬁ, is calculated from Equation (12.29) as
< S
B="2= 3480 _ 0.0464
S, 75000

As shown in Equation (12.28), B isjust 7, or

~ 178
=—=11.8667
Bo 5
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To express the model in the original terms, compute ﬁo from Equation (12.32) as

B, =11.8667-0.0464(200)= 2.5867

Then an estimate of the mean of Y given x, E(Y|x), is given by

$= B, +Bx=25867+0.0464x (12.33)
For a given number of claims, x, this model can be used to predict the number of hours required to process
them. The coefficient f has the interpretation that each additional claim received adds an expected 0.0464
hours, or 2.8 minutes, to the expected total processing time.

Regression analysis is widely used and frequently misused. Several of thecommon abuses are briefly men-
tioned here. Relationships derived in the manner of Equation (12.33) are valid for values of the independent
variable within the range of the original data. The linear relationship that has been tentatively assumed may not
be valid outside the original range. In fact, we know from queueing theory that mean processing time may
increase rapidly as the number of claims approaches the capacity of the system. Therefore, Equation (12.33)
can be considered valid only for 100 < x < 300. Regression models are not advised for extrapolation purposes.

Care should be taken in selecting variables thathave a plausible causal relationship with each other. It is
quite possible to develop statistical relationships that are unrelated in a practical sense. For example, an attempt
might be made to relate monthly output of a steel mill to the weight of reports appearing on a manager’s desk
during the month. A straight line may appear to provide a good model for the data, but the relationship between
the two variables is tenuous. A strong observed relationship does not imply that a causal relationship exists
between the variables. Causality can be inferred only when analysis uncovers some plausible reasons for its
existence. In Example 12.5 it is reasonable that starting with more claims implies that more time is neaded to
process them. Therefore, a relationship of the form of Equation (12.33) is at least plausible.

12.3.2 Testing for Significance of Regression

In Section 12.3.1, it was assumed thata linear relationship existed between ¥ and x. In Example 12.5, a scatter
diagram, shown in Figure 12.4, relating number of claims and processing time was prepared to evaluate
whether a linear model was a reasonable tentative assumption prior to the calculation of ﬁo and ﬂ‘ However,
the adequacy of the simple linear relationship should be tested prior to using the model for predicting the
response, Y given an independent variable, x . There are several tests which may be conducted to aid in deter-
mining model adequacy. Testing whether the oxder of the model tensatively assumed is correct, commonly
called the “lack-of-fit test,” is suggested. The procedure is explained by Box and Draper [1987], Hines,
Montgomery, Goldsman, and Borror [2002], and Montgomery [2000].

Testing for the significance of regression provides another means for assessing the adeguacy of the
model. The hypothesis test described next requires the additional assumption that the error component € is
normally distributed. Thus, the complete assumptions are that the errors are NID(0, 0%)—that is, normally
and independently distributed with mean zero and constant variance 62 The adequacy of the assumptions
can and should be checked by residual analysis, discussed by Box and Draper [1987], Hines, Montgomery,
Goldsman, and Borror [2002], and Montgomery [2000}.

Testing for significance of regression is one of many hypo(hesw tests that can be developed from.the .

variance properties of ﬁ, and ﬁ, The interested reader is referred to the references just cited for extensive
discussion of hypothesis testing in regression. Just the highlights of testing for significance of regression are
given in this section.
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Suppose that the alternative hypotheses are

Hy:B,=

H;:B,20 .

Failure to reject , indicates that there is no linear relationship between x and Y. This situation is illnstrated
in Figure 12.5. Notice that two possibilities exist. In Figure 12.5(a), the implication is that x is of little value
in explaining the variability in ¥, and that =¥ is the best estimator. In Figure 12. S(b) the implication is
that the true relationship is not linear.

Alternatively, if H, is rejected, the implication is thatx is of value in explaining the variability in Y. This
situation is illustrated in Figure 12.6. Here, also, two pOSSlbllltl% exist. In Figure 12.6(a), the straight-line
model is adequate. However, in Figure 12.6(b), even though there is a linear effect of x, a model with higher-
order terms (such as x2, x3, ...) is necessary, Thus, even though there may be significance of regression,
testing of the residuals and testing for lack of fit are needed to confirm the adequacy of the model.

The appropriate test statistic for significance of regression is given by

o B (12.34)
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Figure 12.5 Failure to reject H, : f, =
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Figure 12.6 H,: B, =0 is rejected.
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where MS_ is the mean squamdemn The error is the difference between the observed value, Y, and the predicted
value, ¥, at x, or ¢; =Y, — ¥, The squared error is given by Z e, , and the mean squared error, given by

2

Ms, =35

_1712

(12.35)

isan unblased estimator of 0'2 = V(e) “The direct method can be used to calculate 2 e Calculate each ¥,
compute e, and sum all the ¢’ values z =1, 2, ..., n. However, it can be shown that

Y =5,-BS, (1236)
i=l
where Syy, the c:'ofrected sum of squares of Y, is given by
2 (2 iml )
s, EY (12.37)

and S - isgiven by Equation (12.30). Equation (12.36) could be easier to use than the direct method.
The statistic defined by Equation (12.34) has the ¢ distribution with n — 2 degrees of freedom. The null
hypothesis H, is rejected if |t > ¢, . ,.

Example 12.7: Testing for Significance of Regression
Given the results in Example 12.6, thetest for the significance of regression is conducted. One more computahon

is needed prior to conducting the test. That is, Z Ny ¥? =2282.94. Using Equation (12.37) yields

S,, =2282.94~ ‘(}% =1706734

Then 2::;8-'2 is computed according to Equation (12.36) as

o :
Z e,.2 =170.6734 - 0.0464(3480)= 9.2014
ist

Now, the value of MS;. is calculated from Equation (12.35):

MS, —-9—-21(3]&—07078

The value of #, can be calculated by using Equation (12.34) as

. . 00464
" J0.7078/75000

002513 = 2-16 from Table A.5, we reject the hypothesis that ﬁ: 0. Thus, there is significant evidence
that x and Y are related.

=15.13
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12.3.3 Multiple Linear Regression

If the simple linear regression model of Section 12.3.1 is inadequate, several other possibilities exist. There
could be several independent variables, so that the relationship is of the form

Y=F+fx+Bx, + -+ x, te

Notice that this model is still linear, buthas more than one independent variable. Regression models having

(12.38)

_ the form shown in Equation (12.38) are called multiple linear regression models Another possibility is that

the model is of a quadratic form such as

Y= B +Pxtpte (12.39)
Equation (12.39) is also a linear model which may be transformed to the form of Equation (12.38) by letting
x,=xandx,=x%

Yet another possibility is a model of the form such as

Y= ﬁo +B.x, +Bx;, + Byxyx, + €

which is also a linear model. The analysis of these three models with the forms just shown, and related
models, can be found in Box and Draper [1987], Hines, Montgomery, Goldsman, and Borror [2002],
Montgomery [2000], and other applied statistics texts; and also in Kleijnen [1987, 1998], which is concerned
primarily with the application of these models in simulation. '

12.3.4 Random-Number Assignment for Regréssion

The assignment of random-number seeds or streams is part of the design of a simulation experiment.*
Assigning a different seed or stream to different design points (settings for x,, x,, ... x,, in a multiple linear
regression) guarantees that the responses Y from different design points w111 be statistically independent.
Similarly, assigning the same seed or stream to different design points induces dependence among the cor-
responding responses, by virtue of their all having the same source of randomness.

Many textbook experimental designs assume independent responses across design points. To conform
to this assumption, we must assign different seeds or streams to each design point. However, it is often use-
ful to assign the same random number seeds or streams to all of the design points—in other words, to use
common random numbers.

The intuition behind common random numbers for metamodels is that a falrer comparison among design
points is achieved if the design points are subjected to the same experimental conditions, specifically the
same source of randomness. The mathematical justification is as follows: Suppose we fit the simple linear
regression ¥, = f§; + f,x, +¢ and obtain least squares estimates f3, and f,. Then an estimator of the expected
difference in performance between design points i and;j is

By+bix~ By +Bx))=Bx -x,)

when x; and x; are fixed design points, B, determines the estimated difference betwéen design poihts i and j,
or for that matter between any other two values of x. Therefore, common random numbers can be

~ expected to reduce the variance of ﬂl and, more generally, reduce the variance of all of the slope terms in a

multiple linear regression. Common random numbers typically do not reduce the variance of the intercept
term, f3,.

“This section is based on Nelson [1992].
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The least-squares estimators Bo and ﬁ, are appropriate regardless of whether we use common random
numbers, but the associated statistical analysis is affected by that choice. For statistical analysis of a meta-
model under common random numbers, see Kleijnen {1988] and Nelson {1992].

12.4 OPTIMIZATION VIA SIMULATION

" Consider the following examples.’

Example 12.8: Materials Handling System (MHS) :
Engineers need to design a MHS consisting of a large automated storage and retrieval device, automated
guided vehicles (AGVs), AGV stations, lifters, and conveyors. Among the design variables they can control
are the number of AGVs, the load per AGV, and the routing algonthm used to dispatch the AGVs.
Alternative designs will be evaluated according to AGV utilization, transportation delay for material that
needs to be moved, and overall investment and operation costs.

Example 12.9: Liquified Natural Gas (LNG) Transportation
A LNG transportation system will consist of LNG tankers and of loading, unloading, and storage facilities.
In order to minimize cost, designers can conwol tanker size, number of tankers in use, number of jetties at
the loading and unloading facilities, and capacity of the storage tanks.

Example 12.10: Automobile Engine Assembly
In an assembly line, a large buffer (queue) between workstations could increase station utilization—bacause
there will tend to be something waiting to be processed—but drive up space requirements and work-in-process
inventory. An allocation of buffer capacity that minimizes the sum of these competing costs is desired.

Example 12.11: Traffic Signal Sequencing
Civil engineers want to sequence the #raffic signals along a bnsy section of road to reduce driver delay and
the congestion occurring along narow cross streets. For each waffic signal, the length of the red, green, and
green-turn-arrow cycles can be set individually.

Example 12.12: On-Line Services
A company offering on-line information services over the Intemet is changing its computer architecture from
central mainframe computers to distributed workstaion computing. The numbers and types of CPUs, the
network structure, and the allocation of processing tasks all need to be chosen. Response time to customer
queries is the key performance measure.

What do these design problems have in common? Clearly, a simulation model could be useful in each,
and all hiave an implied goal of finding the best design relative to some performance measures (cost, delay,
etc.). In each example, there are potentially a very large number of alternative designs, ranging from tens to
thousands, and certainly more than the 2 to 10 we considered in Section 12.2.2. Some of the examples con-
tain a diverse collection of decision variables: discrete (number of AGVs, number of CPUs), continuous
(tanker size, red-cycle length) and qualitative (routing strategy, algorithm for allocating processing tasks).
This makes developing a metamodel, as described in Section 12.3, difficult.

All of these problems fall under the general topic of “optimization via simulation,” where the goal is to

minimize or maximize some measures of system perfoanance and system performance can beevaluated only -

_ by running a.computer simulation. Optimization via simulation is a relafively new, but already vast, topic,

and commercial software has become widely available. In this section, we describe the key issues that should -

be considered in undertaking optimization via simulation, provide some pointers to the available literature,
and give one example algorithm.

5Some of these descripsions are based on Boesel, Nelson, and Ishii [2003].
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12.4.1 What Does ‘Optimization via Simulation’ Mean?

Optimization is a key tool used by operations researchers and management scientists, and there are well-
developed algorithms for many classes of problems, the most-famous being linear programming. Much of the
work on optimization deals with problems in which all aspects of the system are treated as being known with
certainty; most critically, the performance of any design (cost, profit, makespan, etc.) can be evaluated exactly.
In stochastic, discrete-event simulation, the result of any simulation run ‘is a random variable. For
notation, letx X, ... X, be the m controllable design variables and let Y(x, x5, ---, x,,) be the observed sim-
ulation output performance on one run. To be concrete, x,, x,, x, might denote the number of AGVs, the load
per AGY, and the routing algorithm used to dispatch the AGVs, respectively, in Example 12.8, while
Y(x,, x,, x,) could be total MHS acquisition and operation cost. L
What does it mean to “optimize” ¥ (x,, Xgpeaes X,) with respect to X Xpeens X, Y is a random variable,
so we cannot optimize the actual value of Y. The most common definition of optimization is
maximize or minimize E (Y (x,, x,, ..., X)) - (12.40)

m

In other words, the mathematical expectation, or long-run average, of performance is maximized or mini-
mized. This is the default definition of optimization used in ail commercial packages of which we are aware.
In our example, E(Y (x,, x,, x,)) is the expected, or long-run average cost of operating the MHS with x,
AGVs, x, load per AGV and routing algorithm x;.

It is lmportam to note that (12.40) is not the only possible definition, however. For instance, we might
want to select the MHS design that has the best chance of costing less than $D to purchase and operate,
changing the objective to '

maximize Pr (¥ (x;, x,, x;) £ D)

We can fit this objective into formulation (12.40) by defining a new performance measure

. I, if¥{x,x, x)=D
SRS g

and maximizing E (Y'(x,, x,, x,)) instead.

A more complex opnmlzauon problem occurs when we want to select the system desngn that is most
likely to be the best. Such an objective is relevant when one-shot, rather than long-run average, performance
matters. Examples include a Space Shuttle launch, or the delivery of a unique, large order of products.
Bechliofer, Santner, and Goldsman {1995] address this problem under the topic of “multinomial selection.”

We have been assuming that a system design x,, X,,..., x,, can be evaluated in terms of a single per-
formance measure, Y, such as cost. Obviously, this may not always be the case. In the MHS example, we
might also be interested in some measure of system productivity, such as throughput or cycle time. At pres-

_ent, multiple objective optimization via simulation is not well developed. Therefore, one of three strategies

is typically employed:

1. Combine all of the performance measures into a single measure, the most common being cost. For
instance, the revenue generated by each completed product in the MHS could represent productivity
and be included as a negative cost.

2. Optimize with respect to one key performance measure, but then evaluate the top solutions with
respect to secondary performance measures. For instance, the MHS could be optimized with respect
to expected cost, and then the cycle time could be compared for the top 5 designs. This approach
requires that information on more than just the best solution be maintained.

LTUTIRRINAT,
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3. Optimize with respect to one key performance measure, but consider only those alternatives that meet
certain constraints on the other performance measures. For instance, the MHS could be optimized with
respect to expected cost for those alternatives whose expected cycle time is less than a given theeshold.

12.4.2 Why is Optimization via Simulation Difficult?

Even when there is no uncertainty, opsimization can be very difficult if the number of design variables is large,
the problem contains a diverse collection of design variable types, and little is known about the structure of
the performance function. Optimization via simulation adds an additional complication: The performance of
a particnlar design cannot be evaluated exactly, but instead must be estimated. Because we have estimates, it
is not possible to conclude with assurance that one design s better than another, and this uncertainty frustrates
optimization algorithms that &ry to move in imaproving directions. In principle, one can eliminate this compli-
cation by making so many replications, or such long runs, at each design point thdt the performance estimate
has essentially no variance. In practice, this could mean that very few alternative designs will be explored,
because of the time required to simulate each one. ,

The existence of sampling variability forces optimization via simulation to make compromises. The fol-
lowing are the standard ones:

¢ Guarantee a prespecified probability of correct selection. The Two-Stage Bonferroni Procedure in
Section 12.2.2 is an example of this approach, which allows the analyst to specify the desired chance
of being right. Such algorithms typically require either that every possible design be simulated or that
a strong functional relationship among the designs (such as a metamodel) apply. Other algorithms can
be found in Goldsman and Nelson {1998]. _
¢ Guarantee asymptotic convergence. There are many algorithms that guarantee convergence to the
global optimal solution as the simulation effort (number of replications, length of replications)
becomes infinite. These guarantees are useful because they indicate that the algorithm tends to get to
where the analyst wants it to go. However, convergence can be slow, and there is often no guarantee
as to how good the reported solution is when the algorithm is terminated in finite time (as it must
be in practice). See Andraddéttir {1998] for specific algorithms that apply to discrete- or continuous-
variable problems. _
Optimal for deterministic counterpart. The idea here is to use an algorithm that would find the
. optimal solution if the performance of each design could be evaluated with certainty. An example
might be applying a standard nonlinear programming algorithm to the simulation optimization prob-
lem. 1t is typically up to the analyst to make sure that enough simulation effort is expended (replica-
tions or run length) to insure that such an algorithm is not misled by sampling variability. Direct
application of an algorithm that assumes deterministic evaluation to'a stochastic simulation is not
recommended. . _
Robust heuristics. Many heuristics have been developed for deterministic optimization problems that
do nat guarantee finding the optimal solution, but nevertheless been shown to be very effective on dif -
ficult, practical problems. Some of these heuristics use randonmess as part of their search strategy, so
one might argue that they are less sensitive to sampling variability than other types of algorithms.
Nevertheless, it is still important to make sure that enough simulation effort is expended {replications
or run length) to insure that such an algorithm is not misled by sampling variability.

Robust heuristics are the most common algorithms found in commercial optimization via simulation
_ software. We provide some guidance on their use in the next section. See Fu {2002] for a comprehensive
discussion of optimization theory versus practice.

BRI S} . P Ff L . - SR S SN SRR LRI .\ o 2 s i LA

) ‘Improvernents occur by changing the solution via “moves.” For example, the solution (x;, x;,X;)could be changed
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12.4.3 Using Robust Heuristics

By a “robust heuristic” we mean a procedure that does not depend on strong problem stucture—such as
continuity or convexity of E(Y(x,;..., x,))—to be effective, can be applied to problems with mixed types of
decision variables, and—ideally—istolerant of some sampling variability. Genetic algorithms (GA) and tabu
search (TS) are two prominent examples, but there are many others and many variations of them. Such
heuristics form the core of most commercial implementations. To give a sense of these heuristics, we
describe GA and TS next. We caution the reader that only a high-level description of the simplest version of
each procedure is provided. The commercial implementations are much more sophisticated.

Suppose that there are k possible solutions to the optimization via simulation problem. Let X = (x,, x,,...,
x,} denote the solutions, where the ith solution X, = (x, X, ..., X,,) provides specific settings for the = degi-
sion variables. The simulation output at solution x; is denoted Y (x,); this could be the output of a single repli-
cation, or the average of several replications. Our goal is to find the solution x* that minimizes E(Y(x)).

On each iteration (known as a “generation™), a GA operates on a “population” of p solutions. Denote
the population of solutions on the jth iteration as P()) = (x,(), x,(), .... xp(;)}. There may be multiple
copies of the same solution in P(j), and P(j) may contain solutions that were discovered on previous
iterations. From iteration to iteration, this population evolves in such a way that good solutions tend to sur-
vive and give birth to new, and hopefully better, solutions, while inferior solutions tend to be removed from
the population. The basic GA is given here:

Basic GA

Step 1. Set the iteration counter j = 0, and select (perhaps randomly) an initial population of p solutions
PO) = {x,(0), .... x,(0)}.

Step 2. Run simulation experiments to obtain perforiance estimates Y (x) for all p solutions x(§) in P()).

Step 3. Select a population of p solutions from those in P(j} in such a way that those with smaller Y(x) values
are more likely, but not certain, to be selected. Denote this population of solutions as P(j + 1).

Step 4. Recombine the solutions in P(j + 1) via crossover (which joins parts of two solutions x, (j + 1) and
x,(j+1) to form a new solution) and mutation (which randomly changes a part of a solution x, (j + 1).

Step 5. Setj=j+ 1 and go to Step 2.

The GA can be terminated after a specified number of iterations, when little or no improvement is noted

"in the population, or when the population contains p copies of the same solution. At termination, the solu-

tion x* that has the smallest Y(x) value in the last population is chosen as best (or alternatively, the solution
with the smallest Y(x)-over all iterations could be chosen).

GAs are applicable to almost any optimization problem, because the operations of selection, crossover,
and mutation can be defined in a very generic way that does not depend on specifics of the problem.
However, when these operations are not tuned to the specific problem, a GA’s progeess can be very slow.
Commercial versions are often self-tuning, meaning that. they update selection, crossover, and mutation
parameters during the course of the search. There is some evidence that GAs are tolerant of sampling vari-
ability in Y(x) because they maintain a population of solutions rather than focusing on improving a cusrent-
best solution. In other words, it is not critical that the GA rank the solutions in a population of solutions

" perfectly, because the next iteration depends on the entire population, not on a single solution.

" TS, on the other hand, identifies a current best solution on each iteration and then tries to improve it.
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to the solution (x, + 1, x,, x;) by the move of adding 1 to the first decision variable (perhaps x, represents the

number of AGVs in Example 12.8, so the move would add one more AGV). The “neighbors” of solution x are

all of those solutions that can be reached by legal moves. TS finds the best neighbor solution and moves to it.

However, to avoid making moves that return the search to a previously visited solution, moves may become “tabu”

(not usable) for some nuniber of iterations. Conceptually, think about how you would find your way through

a maze: If you took a path that lead to a dead end, then you would avoid taking that path again (it would be tabu).
The basic TS algorithm is given next. The description is based on Glover [1989].

Basic TS

Step 1. Set the iteration counter J = 0and the list of tabu moves to empty. Select an initial solution x* in X
(perhaps randomly).

Step 2. Find the solution x” that minimizes Y'(x) over all of the neighbors of x* that are not reached by tabu
moves, running whatever simulations are needed to do the optimization.

Step 3. If Y (x') € Y(x*), then x* = x” (move the current best solution to x”).
Step 4. Update the list of tabu moves and go to Step 2.

The TS can be terminated when a specified number ofiterationshave been completed, when some num-
ber of iterations has passed without changing x*, or when there are no more feasible moves. At termination,
the solution x* is chosen as best.

TS is fundamentally a discrete-decision-variable optimizator, but continuous decision variables can be dis-
cretized, as described in Section 12.4.4. TS aggressively pursues improving solutions, and therefore tends to
makerapid progress. However, it is more sensitive to random variability in Y(x), because x* is taken to be the
true best solution so far and attempts are made to improve it. There are probabilistic versions of TS that should
be less sensitive, however. An important feature of commercial implementations of TS, which is notpresent in
the Basic TS, is a mechanism for overiding the tabu list when doing so is advantageous.

Next, we offer two suggestions for using commercial products that employ a GA TS, or other robust
heuristic controlling sampling variability, and reszarting.

Control Sampling Variability

In many cases, it will up to the user to determine how much sampling (replications or run length) will be
undertaken at each potential solution. This is a difficult problem in general. Ideally, sampling should increase
as the heuristic closes in on the better solutions, simply because it is much more difficult to distinguish solu-
tions that are close in expected performance from those that differ widely. Early in the search, it may be easy
for the heuristic to identify good solutions and search directions, because clearly inferior solutions are being
compared to much better ones, but late in the search this might not be the case.

If the analyst must specify a fixed number of replications per solution that will be used through the
search, then a preliminary experiment should be conducted. Simulate several designs, some at the extremes
of the solution space and some nearer the center. Compare the apparent best and apparent worst of these
designs, using the approaches in Section 12.1. Using the technique described in Section 12.1.4, find the min-
imum for the number of replications required to declare these designs to be statistically significantly differ-
ent. This is the minimum number of replications that should be used.

After the optimization run has completed, perform a second set of experiments on the top S to 10 designs
identified by the heuristic. Use the comparison techniques in Section 12.2-12.2.3 to rigorously evaluate
which are the best or near-best of these designs.
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Restarting

Because robust heuristics provide no guarantees that they converge to the optimal solution for optiraization
via simulation, it makes sense to run the optimization two or more times to see which run yields the best solu-
tion. Each optimization run should use different random number seeds or streams and, ideally, should start
from different initial solutions. Try starting the optimization at solutions on the extremes of the solution space,
in the center of the space, and at randomly generated solutions. If people familiar with the system suspect that
certain designs will be good, be sure to include them as possible staring solutions for the heuristic.

12.4.4 An lllustration: Random Search

In this section, we present an algorithm for optimization via simulation knowr as random search. The spe-
cific implementation is based on Algorithm 2 in Andradéttir [1998], which provides guaranteed asymptotic
convergence under certain conditions. Thus, it will find the true optimal solution if permitted to run long
enough. However, in practice, convergence can be slow, and the memory requirements of this particular ver-
sion of random search can be quite large. Even though random search is not a “robust heuristic,” we will also
use it to demonstrate some strategies we would employ in conjunction with such heuristics and to demon-
strate why optimization via simulation is tricky even with what appears to be an uncomplicated algorithm.

The random-search algorithm that we present requires that there be a finite number of possible system
designs (although that number may be quite large). This might seem to rule out problems with continuous
decision variables, such as conveyor speed. In practice, however, apparently continuous decision variables
can often be discretized in a reasonable way. For instance, if conveyor speed can be anything from 60 to 120
feet per minute, little may be lost by treating the possible conveyor speeds as 60, 61, 62, .., 120 feet per
minute (61 possible values). Note, however, that there are algorithms designed specifically for continuous-
variable problems (Andradéttir [1998]).

Again, letthe k possible solutions tothe optimization via simulation problem bedenoted {x,, X, ..., X,},
where the ith solution x; = (x;,, X, .., X,,) provides specific settings for the 7 decision variables. The sim-
ulation output at solution x; is denoted Y (x,); this could be the output of a single replication or the average
of several replications. Our goal is to find the-solution x* that minimizes E(Y(x)).

On eachiteration of the random-search algorithm, we compare a current good solution to a randomly
chosen competitor. If the competitor is better, then it becomes the current good solution. When we terminate
the search, the solution we choose is the one that has been visited most often (which means that we expect
to revisit solutions many times). :

R-andom-Search Algorithm

Step 1. Initialize counter variables C(i) =.0 for i = 1, 2,..., k. Select an initial solution {9, and set C(ib) =1

. (C() counts the number of times we visit solution i.)

Step 2. Choose another solution i from the set of all solutions except i®in such a way that each solution has
an equal chance of being: selected.

Step 3. Run simulation experiments at the two solutions i® and ' to obtam outputs Y(i% and Y(:”) 94 ) <Y(Y),

then set i%=1". (See note following Step 4.)
_ Step 4. Set C(i% = C(i% + 1. If not done, then go to Step 2. If done, then select as the estlmated optimal

solution xi* such that C(i*) is the largest count.
" Note that, if the problem is a maximization problem then replace Step 3 with -

Step 3. Run simulation experiments at the two solunons i%andi’to obtainoutputs Y(i% and Y@). KEYG ) > Y(i9,
thenseti®=7.

fd:
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One of the difficult problems with many optimization-via-simulation algorithms is knowing when to
stop. (Exceptions include algorithms that guarantee a probability of correct selection.) Typical rules might

"be to stop after a certain number of iterations, stop when the best solution has not changed much in several

iterations, or stop when all time available to solve the problem has been exhausted. Whatever rule is used,
we recommend applying a statistical selection procedure, such as the Two-Stage Bonferroni Procedure in
Section 12.2.2, to the S to 10 apparently best solutions. This is done to evaluate which among them is the
true best with guaranteed confidence. If the raw data from the search have been saved, then these gata can
be used as the first-stage sample fora two-stage selection procedure (Boesel, Nelson, and Ishii [2003]).

Example 12.13: Implementing Random Search
Suppose that a manufacturing system consists of 4 stations in series. The zeroth station always has raw mate-
rial available. When the zeroth station completes work on a part, it passes the part along to the first station,
then the first passes the part to the second, and so on. Buffer space between stations 0 and 1, 1 and 2, and
2 and 3 is limited to SO parts total. If, say, station 2 finishes a part but there is no buffer space available in
front of station 3, then station 2 is blocked, meaning that it cannot do any further work. The question is how
to allocate these 50 spaces to minimize the expected cycle time per part over one shift.

Let x; be the number of buffer spaces in front of station i. Then the decision variables are x,, x,, x, with
the constraint that x1'+ x, +x, = 50 (it makes no sense to allocate fewer buffer spaces than we have avail-
able). This implies a total of 1326 possible designs (can you figure out how this number is computed?).

To simplify the presentation of the random-search algorithm, let the counter for solution (x;, x,, x,) be
denoted as C(x,, x,, x,).

Random Search Algorithm

Step 1. Initialize 1326 counter variables C(x!, . X3) = 0, one foreach of the possible solutions (x,, x,, x3)
Select an initial solution, say (x; =20,x,= 15, x,=15) and set C(20, 15, 15)=1.

Step 2. Choose another solution from the set of all solutions except (20, 15, 15) in such a way that each solu-
tion has an equal chance of being selected. Suppose (11, 35, 4) is chosen.

-Step 3. Run simulation experiments at the two solutions to obtain estimates of the expected cycle time ¥(20,

15, 15) and Y(11, 35, 4). Suppose that Y(20, 15, 15) < Y(11, 35, 4). Then (20, 15, 15) remains as the current
good solution.

Step 4. Set C(20, 15, 15) = C(20, 15, 15) + 1.

Step 2. Choose another solution from the set of all solutions except (20, 15, 15) in such a way that each solu-
tion has an equal chance of being selected. Suppose (28, 12, 10) is chosen.

Step 3. Run simulation experiments at the two solutions to ob#ain estimates of the expected cycle time Y(20,

‘15, 15) and Y(28, 12, 10). Suppose that Y(28, 12, 10) < Y(20, 15, 15). Then (28, 12, 10) becomes the current

good solution.
Step 4. Set C(28, 12, 10) = C(28, 12, 10) + 1.

Step 2. Choose another solution from the set of all solutions excepr (28, 12, 10) in such a way that each solu-
tion has an equal chance of being selected. Suppose (0, 14, 36) is chosen.

Step 3. Continue...

When the search is terminated, we select the solution (x,, x,, x;) that gives the largest C(x;, x,, x,) count.
As we discussed earlier, the top S to 10 solutions should then be subjected to a separate statistical analysis
to determine which among them s the true best (with high confidence). In this case, the solutions with the
largest counts would receive the second analysis.
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Despite the apparent simplicity of the Random-Search Algorithm, we have glossed over a subtle issue
that often arises in algorithms with provable performance. In Step 2, the algorithm must randomly choose
a solution such that all are equally likely to be selected (except the current one). How can this be accom-
plished in Example 12.13? The constraint that x; + x, + x, = 50 means that x,, x, and x, cannot be sampled
independently. One might be tempted to sample x, as a discrete uniform random variable on 0 to 50, then
sample x, as a discrete uniform on 0 to 50 — x,, and finally set x, = 50 — x; — x,. But this method does not
make all solutions equally likely, as the following illustration shows: Suppose that x, is randomly sampled to
be 50. Then the trial solution must be (50, 0, 0); there is only one choice. But if x, = 49, then both (49, 1, 0) and
(49,0, 1) are possnble Thus, x, = 49 should be more likely than x, =50 1f all solutions with X +x,+x= 50
are to be equally likely.

12.5 SUMMARY

This chapter provided a basic introduction to the comparative evaluation of alternative system designs based
on data collected from simulation runs. It was assumed that a fixed set of alternative system designs had been
selected for consideration. Comparisons based on confidence intervals and the use of common random num-
bers were emphasized. A brief introduction to metamodels—whose purpose is to describe the relationship
between design variables and the output response—and to optimization via simulation—whose purpose is to
select the best from among a large and diverse collection of system designs—was also provided. There are
many additional topics of potential interést (beyond the scope of this text) in the realm of statistical analysis
techniques relevant to simulation. Some of these topics are

1. experimental design models, whose purpose is to discover which factors have a significant impact on
the performance of system altematives;

2. output-analysis methods other than the methods of replication and batch means;

3. variance-reduction techniques, which are methods to improve the statistical efficiency of simulation
experiments (common random numbers being an important example).

The reader is referred to Banks [1998] and Law and Kelton [2000] for discussions of these topics and
of others relevant to simulation. '

The most impoxrtant idea in Chapters 11 and 12 is that simulation output data require a statistical analysis
in order to be interpreted correctly. In particular, a statistical analysis can provide a measure of the precision of
the results produced by a simulation and can provide techniques for achieving a specified precision.
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EXERCISES

1. Reconsider the dump-truck proulem of Example 3.5, which was also analyzed in Example 12.2: As
business expands, the company buys new trucks, making the total number of trucks now equal to 16.
The company desires to have a sufficient number of loaders and scales so that the average number of
trucks waiting at the loader queue plus the average number at the weigh queue is no more than three.

_Investigate the following combinations of number of loaders and number of scales: '

Number of ~ Number of Loaders
Scales 2 3 4
1 - _
2 - = -

The loaders being considered are the “slow” loaders in Example 12.2. Loading time, weighing time, and
travel time for each truck are as previously defined in Example 12.2. Use common random numbers to
the greatest extent possible when comparing alternative systems designs. The goal is to find the small-
est number of loaders and scales to meet the company’s objective of an average total queue length of no
more than three trucks. In your solution, take into account the initialization conditions, run length, and
number of replications needed to achieve a reasonable likelihood of valid conclusions.

2. In Exercise 11.5, consider the following altemative (M, L) policies:

Investigate the relative costs of these policies, using suitable modifications of the snmulatlon. model
developed in Exercise 11.5. Compare the four system designs on the basis of long-run-mean monthly
cost. First make four replications of each (M, L) policy, using common random numbers to the greatest
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L
Low High
30 40
Low 50 (50, 30) (50, 40)
M
High 100 (100, 30) (100, 40)

N

extent possible. Each replication should have a 12-month initialization phase followed by a 100-month
data-collection phase. Compute confidence intervals having an overall confidence level of 90% for mean
monthly cost for each policy. Then estimate the additional replications needed to achieve confidence
intervals that do not overlap. Draw conclusions as to which is the best policy.

. Reconsider Exercise 11.6. Compare the four inventory policies studied in Exercise 2, taking the cost of

rush orders into account when computing monthly cost.

. In Exercise 11.8, investigate the effect of the order quantity on long-run mean daily cost. Each order

arrives on a pallet on a delivery truck, so the permissible order quantities, 9, are multiples of 10 (i.e., @
may equal 10, or 20, or 30, ...). In Exercise 11.8, the policy Q = 20 was investigated.

(a) First, investigate the two policies Q = 10 and Q = 50. Use the run lengths, and so on, suggested in
Exercise 11.8. On the basis of these runs, decide whether the optimal Q, say Q*, is between 10 and
50 or is greater than 50. (The cost curve as a function of Q should have what kind of shape?)

(b) Using the results in part (a), suggest two additional values for Q and simulate the two policies. Draw
conclusions. Include an analysis of the strength of your conclusions.

. In Exercise 11.10, find the number of cards Q that the card shop owner should purchase to maximize

the profit with an error of approximately $5.00. Use the following expression to generate Q value
0=300%100
For each run, generate a uniform random variate to get the Q value and for that Q value compute profit.

. In Exercise 11.10, investigate the effect of target level M and review period N on mean monthly cost.

Consider two target levels, M, determined by +10 from the target level used in Exercise 11.10, and consider
review periods N of 1 month and 3 months. Which (N, M) pair is best, according to these simulations?

Reconsider Exercises 11.12 and 11.13, which involved the scheduling rules (or queue disciplines) first-
in-first-out (FIFO) and priority-by-type (PR) in a job shop. In addition to these two rules, consider
a shortest imminent operation (SIO) scheduling rule. For a given station, all jobs of the type with the
smallest mean processing time are given highest priority. For example, when using an SIO rule at sta-
tion 1, jobs are processed in the following order: type 2 first, then type 1, and type 3 last. Two jobs of
the same type are processed on a FIFO basis. Develop a simulation experiment to compare the FIFO,
PR, and SIO rules on the basis of mean total response time over all jobs.

. In Exercise 11.12 (the job shop with FIFO rule), find the minimum number of workers needed at
each station to avoid bottlenecks. A bottleneck occurs when average queue lengths at a station increase
steadily over time. (Do not confuse increasing average queue length due to an inadequate number of
servers with increasing average queue length duetoinitialization bias. In the former case, average queue
length continues to increase indefinitely and server utilization is 1.0. In the latter case, average queue
length eventually levels off and server utilization is less- than 1.) Report on utilization of workers
and total time it takes for a job to get through the job shop, by type and over all types. (Hint: If server
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10.

utilization at a work station is 1.0, and if average queue length tends to increase linearly as simulation
run length increases, it is a good possibility that the work station is unstable and therefore is a bottle-
neck. In this case, at least one additional worker is needed at the work station. Use queueing theory,
namely Afc,z1 < 1, to suggest the minimum number of workers needed at station 1. Recall that A is the
arrival rate, 1/t is the overall mean service time for one job with one worker, and c, is the number of
workers at station 7. Attempt to use the same basic condition, A/c,12 < 1, to suggest an initial number of
servers at station i for i= 2, 3, 4.)

. (a) Repeat Exercise 8 for the PR scheduling rule (see Exercise 11.13).

(b) Repeat Exercise 8 for the SIO scheduling rule (see Exercise 12.7).
(c) Compare the minimum required number of workers for each scheduling rule: FIFO, versus PR,
versus SIO. .

With the minimum number of workers found in Exercises 9 and 10 for the j(_)b shop of Exercise 11.12,
consider adding one worker to the entire shép. This worker can be trained to handle the processing at
only one station. At which station should this worker be placed? How does this additional worker affect
mean total response time over all jobs? Over type 1 jobs? Investigate the job shop with and without the

" additional worker for each scheduling rule: FIFO, PR, SIO.

11.

13,
14
1.

In Exercise 11.16, suppose that a buffer of capacity one item is constructed in front of each worker.

Design an experiment to investigate whether this change in system design has a significant impact upon

md1v1dual worker utlhzahons (p,, Pa psand p,). At the very least, compute confidence intervals for
P; and p., p,,, where pj, is utilization for worker i when the buffer has capacity s.

A clerk in the admissions office at Smnall State University processes requests for admissions materials.
The time to process requests depends on the program of interest (e.g., industrial engineering, manage-
ment science, computer science, etc.) and on the level of the program (Bachelors, Masters, Ph.D.).
Suppose that the procéssing time is mode’2d well as normally distributed, with mean 7 minutes and stan-
dard deviation 2 minutes. At the beginning of the day it takes the clerk some time to get set to begin
working on requests; suppose that this time is modeled well as exponentially distributed, with mean 20
minutes. The admissions office typically receives between 40 and 60 requests per day.

Let x be the number of applications received on a day, and let Y be the time required to process them
(including the set-up time). Fit a metamodel for E(Y{x) by making n replications at the design points
x =40, 50, 60. Notice that, in this case, we know that the correct model is

E(Y{x) B +Bx=20+7x
(Why?) Begin w1th n =2 replications at each design point and estimate f§, and 3. Gradually increase the
number of replications and observe how many are required for the estimates to be close to the true values.
Repeat the previous exercise using CRN. How do the results change?
The usual statistical analysis used to test for B, = 0 does notholdif we use CRN. Where doesit break down?

Riches and Associates retains its cash reserves primarily in the form of cer#ificates of deposit (CDs),
which earn interest at an annual rate of 8%. Periodically, however, withdrawals must be made from these
CDs in order to-pay suppliers, etc. These cash outflows are made through a checking account that eamns

no interest. The need for cash cannot be predicted with certainty. Transfers from CDs to checking can .

be made instantaneously, but there is a “substantial penalty™ for early withdrawal from CDs. Therefore,
it might make sense for R&A to make use of the overdraft protection on their checking account, which
charges interest at a rate of $0.00033 per dollar per day (i.e., 12% per year) for overdrafts.
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16.

17.

18.

19.

R&A likes simple policies in which it transfers a fixed amount, a fixed number of times, per year.
Currently, it makes 6 transfers per year, of $18,250 each time. Your job is to find a policy that reduces
its long-run cost per day.

Judging from historical patterns, demands for cash arrive a rate of about 1 per day, with the arrivals being
modeled well as a Poisson process. The amount of cash needed to satisfy each demand is reasonably rep-
resented by a lognormally distributed random variable with mean $300 and standard deviation $150.

The penalty for early withdrawal is different for different CDs. It averages $150 for each withdrawal
(regardless of size), but the actual penalty can be modeled as a uniformly distributed random variable
with range $100 to $200.

Use cash level in checking to determine the length of the initialization phase, Make enough replications
that your confidence interval for the difference in long-run cost per day does not contain zero. Be sure
to use CRN in your experiment design.

If you have access to commercial optimization-via-simulation software, test how well it works as the
variability of the simulation outputs increases. Use a simple model, such as Y = 12 + &, where s is a
random variable with a N(0, 2) distribution, and for which the optimal solution is known (x = 0 for
minimization, in this case). See how quickly, or whether, the software can find the true optimal solution
as 02 increases. Next, try more complex models with more than one design variable.

For Example 12.12, show why there are 1326 soluﬁons. Then derive a way to sample x,, x,, and x, such
that x; + x, + x; = 50 and all outcomes are equally likely.

A critical electronic component with mean time to failure of x years can be purchased for 2x thousand
dollars (thus, the more reliable the component, the more expensive it is). The value of x is restricted to
being between 1 to 10 years, and the actual time to failure is modeled as exponentially distributed.
The mission for which the component is to be used lasts one year; if the component fails in less than
one year, then there is a cost of $20,000 for early failure. What value of x should be chosen to minimize
the expected total cost (purchase plus early failure)?

To solve this problem, develop a simulation that generates a total cost for a component with mean time
to failure of x years. This requires sampling an exponentially diswributed random variable with mean x,
and then computing the total cost as 2000x plus 20,000 if the failure time is less than 1. Fit a quadratic
metamodel in x and use it to find the value of x that minimizes the fitted model. [Hints: Select several
values of x between 1 and 10 as design points. At each value of x, let the response variable Y(x) be the

- average of at least 30 observations of total cost.]

The demand for an item follows N(10, 2). It is required to avoid the shortage. Let Q be the order quan-
tity. Assuming Q to be an integer between 10 and 150, determine the optimal value for Q that maximizes
the probability, so that the shortage is equal to zero. Use random search algorithm.

If you have access, use any optimization via simulation software to solve Exercise 19.

. Explore the possibility of applying metaheunstlcs to search for near-optimal solution using simulation

models.
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Simulation of Manufacturing and
Material-Handling Systems

Manufacturing and material-handling systems provide one of the. most important applications of simulation,
Simulation has been used successfully as an aid in the design of new production facilities, warehouses, and
distribution centers. It has also been used to evaluate suggested improvements to existing systems. Engineers
and analysts using simulation have found it valuable for evaluating the impact of capital investments in
equipment and physical facility and of proposed changes to material handling and layout. They have also
found it useful to evaluate staffing and operating rules and proposed rules and algorithms to-be incorporated
into production control systems, warehouse-management control software, and material-handling controls.
Managers have found simulation useful in providing a “test drive” before makmg capital investments, without
disrupting the existing system with untried changes.

Section 13.1 provides an introduction and discusses some of the features of simulation models of -
manufacturing and material-handling systems. Section 13.2 discussed the goals of manufacturing simulation
and the most common measures of system performance. Section 13.3 discusses a number of the issues
common to many manufacturing and material-handling simulations, including the treatment of downtimes and
failure, and trace-driven simulations using actual historical data or historical order files. Section 13.4 provides
brief abstracts of a number.of reported simulation projects, with references for additional reading. Section 13.5
gives an extended example of a simulation of a small production line, emphasizing the experimentation and
analysis of system performance to achieve a desired throughput. For an overview of simulation software for
manufacturing and material-handling applications, see Section 4.7. :
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13.1 MANUFACTURING AND MATERIAL-HANDLING SIMULATIONS

As do all modeling projects, manufacturing and material-handling simulation projects need to address the
issues of scope and level of detail. Consider scope as analagous to breadth and level of detail as analagous to
depth. Scope describes the boundaries of the project: what’s in the model, and what’s not. For a subsystem,
process, machine, or other component, the project scope determines whether the object is in the model. Then,
once a component or subsystem is treated as part of a model, often it can be simulated at many dlﬂ’emnt levels
of detail.

The proper scope and level of detail should be determined by the objectives of the study and the ques-
tions being asked. On the other hand, level of detail could be constrained by the availability of input data and
the knowledge of how system components work. For new, nonexistent systems, data availability might be
limited, and system knowledge might be based on assumptions.

Some general guidelines can be provided, but the judgment of experienced simulation analysts working
with the customer to define, early in the project, the questions the model is being designed to address
provides the most effective basis for selecting a proper scope and a proper leve! of detail.

Should the model simulate each conveyor section or vehicle movement, or can some be replaced by a
simple time delay? Should the modelsimulate auxiliary parts, or the handling of purchased parts, or can the
model assume that such parts are always available at the right location when needed for assembly?

At what level of detail does the control system need to be simulated? Many modermn manufacturing

facilities, distribution centers, baggage-handling systems, and other material-handling systems are computer

controlled by a management-control software system. The algorithms built into such control software play a
key role in system performance. Simulation is often used to evaluate and compare the effectiveness of
competing control schemes and to evaluate suggested improvements. It can be used to debug and fine-tune
the logic of a control system before it is installed.

These questions are representative of the issues that need to be addressed in choosing the correct level
of model detail and scope of a project. In turn, the scope and level of model detail limit the type of questions
that can be addressed by the model. In addition, models can be developed in an iterative fashion, adding
detail for peripheral operations at later stages if such operations are later judged to affect the main operation
significantly. It is good advice to start as simple as possible and add detail only as needed.

13.1.1 Models of Manufacturing Systems

Models of manufacturing systems might have to take into account a number of characteristics of such systems,
some of which are the following:

Physical layout
Labor
Shift schedules
Job duties and certification
Equipment
Rates and capacities
Breakdowns
Time to failure
Time to repair
Resources needed for repair
Maintenance
PM schedule
Time and resources required
Tooling and fixtures
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‘Wockcenters
Processing
Assembly
Disassembly
Product
. Product flow, routing, and resources needed
Bill of materials
Production schedules
Made-to-stock
Made-to-order
Customer orders
Line items and quantities
Production control
Assignment of jobs to work areas
Task selection at workeenters
Routing decisions
Supplies
Ordering
Receipt and storage
Delivery to workcenters
Storage
Supplies
Spare parts
‘Work-in-process (WIP)
Finished goods
Packing and shipping
Order consolidation
Paperwork
Loadiag of trailers

13.1.2 Models of Material Handling Systems

In manufacturing systems, it is not unusual for 80 to 85% of an item’s total time in system to be expended
on material handling or on waiting for material handling to occur. This work-in-process (WIP) represents a
vastinvesunent, and reductions in WIP and associated delays canresultin large cost savings. Therefore, for
some studies, desailed material-bandling simulations are cost effective.

In some production lines, the material-handling system is an essential component. For example, auto-
motive paint shops typically consist of a power-and-free conveyor system that transports automobile bodies
or body parts through the paint booths.

In warehouses, distribution centers, and flow-through and cross-docking operations, material handling
is clearly akey component of any material-flow model. Manual warehouses typically use manual fork trucks
to move pallets from receiving dock to storage and from storage to shipping dock. More automated distri-
bution centers might use extensive conveyor systems to support putaway, order picking, order sortation, and
consolidation.

Models of material-handling systems often have to contain some of the following types of subsystems:

Conveyors
Accumulating
Nonaccumulating
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Indexing and other special purpose
Fixed window or random spacing
Power and free
Transporters
Unconstrained vehicles (e.g., manually guided fork trucks)
Guided vehicles (automated or operator controlled, wire guided chemical paths, rai! guided)
Bridge cranes and other overhead lifts
Storage systems
Pallet storage
Case storage
Small-part storage (totes)
Oversize items
Rack storage or block stacked
Automated storage and retrieval systems (AS/RS) with storage-retrieval machines (SRM)

13.1.3 Some Common Material-Handling Equipment

There are numerous types of material-handling devices common to manufacturing, warehousing, and distri-
bution operations. They include unconstrained transporters, such as carts, manually driven fork-lift trucks,
and pallet jacks; guided path transporters, such as AGVs (automated guided vehicles); and fixed-path
devices, such as various types of conveyor.

The class of unconstrained transporters, sometimes called free-path mnsporters includes carts, fork-lift
trucks, pallet jacks, and other manually driven vehicles that are free to travel throughout a facility uncon-
strained by a guide path of any kind. Unconstrained transporters are not constrained to a network of paths and
may choose an alternate path or move around an obstruction. In contrast, the guided-path transporters move
along a fixed path, such as chemical trails on the floor, wires imbedded in the floor, or infrared lights placed
strategically, or by self-guidance, using radio communications, laser guidance and dead reckoning, and rail.
Guided-path transporters sometimes contend with each other for space along their paths and usually have
limited options upon meeting obstacles and congestion. Examples of guided-path transporters include the

automated guided vehicle (AGVY); a rail-guided turret truck for storage and retrievals of pallets in rack storage;

and a crane in an AS/RS (automated storage and retrieval system).

The conveyor is a fixed-path device for moving entities from point to point, followmg a fixed path with
specific load, stopping or processing points, and unload points. A conveyor system can consist of numerous
connected sections with merges and diverts. Each section can be of one of a number of different types.
Examples of conveyor types include belt, powered and gravity roller, bucket, chain, tilt tray, and power-and-free,
each with its own characteristics that must be modeled accurately. _

Most conveyor sections can be classified as either accumulating or nonaccumulating. An accumulating
conveyor section runs continuously. If the forward progress of an item is halted while on the accumu-
lating conveyor, slippage occurs, allowing the item to remain stationary and items behind it to continue
moving until they reach the stationary item. Some belt and most roller conveyors operate in this manner.
Only items that will not be damaged by bumping into each other can be placed on an accumulating conveyor.

In contrast, after an item is on a nonaccumulating conveyor section, its spacing relative to otheritems does
not change. If one item stops moving, the entire section stops moving, and hence all items on the section stop.
For example, nonaccumulating conveyor is used for moving televisions not yet in cartons, for they must be
kept at a safe distance from each other while moving from one assembly or testing station to the next. Bucket
conveyors, tilt-tray conveyors, some belt conveyors, and conveyors designed to carry heavy loads (usually,
pallets) are nonaccumulating conveyors.
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~ Conveyors can also be classified as fixed-window or random spacing. In fixed-window spacing, items
on the conveyor must always be within zones of equal length, which can be pictured as lines drawn on a belt
conveyor or trays pulled by a chain. For example, in a tilt-tray conveyor, continuously moving trays of fixed
size are used to move items. The control system is designed to induct items in such a way that each item is
in a separate tray; thus it is a nonaccumulating fixed-window conveyor. In contrast, with random spacing,

. items can be anywhere on the conveyor section relative to other items. To be inducted, they simply require

sufficient space.

Besides these basic types, there are innumerable types of specialized conveyors for special purposes. For
example, a specialized indexing conveyor may move forward in increments, always maintaining a fixed dis-
tance between the trailing edge of the load ahead and the leading edge of the load behind. Its purpose is to
form a “slug” of items, equally spaced apart, to be inducted all together onto a transport conveyor. For the
local behavior of some systems—that is, the performance at a particular workstation or induction point—a
detailed understanding and accurate model of the physical workings and the control logic are essential for
accurate results.’

13.2 GOALS AND PERFORMANCE MEASURES

The purpose of simulation is insight, not numbers. Those who purchase and use simulation software and
services want to gain insight and understanding into how a new or modified system will work. Will it meet
throughput expectations? What happens to response time at peak periods? Is the system resilient to short-term
surges? What is the recovery time when short-term surges cause congestion and queueing? What are the
staffing requirements? What problems occur? If problems occur, what is their cause and how do they arise?
What is the system capacity? What conditions and loads cause a system to reach its capacity?

Simulations are expected to provide numeric measures of performance, such as throughput under a
given set of conditions, but the major benefit of simulation comes from the insight and understanding gained
regarding system operations. Visualization through animation and graphics provides major assistance in the
communication of model assumptions, system operations, and model results. Often, visualization is the
major contributor to a model’s credibility, which in turn leads to acceptance of the model’s numeric outputs.
Of course, a proper experimental design thatincludes the right range of experimental conditions plus a rigorous
analysis and, for stochastic simulation models, a proper statistical analysis is of utmost importance for the
simulation analyst to draw correct conclusions from simulation outputs.

The major goals of manufacturing-simulation models are to identify problem areas and quantify system
performance. Common measures of system performance include the following:

* throughput under average and peak loads;
* system cycle time (how long it takes to produce one part);
¢ utilization of resources, labor, and machines;
* bottlenecks and choke points;
* queueing at work locations;
* queueing and delays caused by material-handling devices and systems;
¢ WIP storage needs; -
- ® staffing requirements;
¢ effectiveness of scheduling systems;
e effectiveness of control systems.

Often, material handling is an important part of a manufacturing system and its performance.
Non-manufacturing material-handling systems include warehouses, distribution centers, cross-docking
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operations, baggage-handling systems at airports and container terminals. The major goals of these non-
manufacturing material-handling systems are similar to those identified for manufacturing systems. Some
additional considerations are the following:

* how long it takes toprocess one day of customer orders;

¢ effect of changes in order profiles (for distribution centers);

¢ truck/irailer queueing and delays at receiving and shipping docks;

¢ effectiveness of material-handling systems at peak loads;

® recdvery time from short-term surges (for example, with baggage-handling).

13.3 ISSUES IN MANUFACTURING AND MATERIAL-HANbI.ING SIMULATIONS

There are a number of modeling issues especially important for the achievement of accurate and valid
simulation models of manufacturing and material-handling systems. Two of these issues are the proper
modeling of downtimes and whether, for some inputs, to use actual system data or a statistical model of those
inputs.

13.3.1 Modeling Downtimes and Failures

Unscheduled random downtimes can have a major effect on the performance of manufacturing systems.
Many authors have discussed the proper modeling of downtime data (Williams [1994]; Clark [1994)}; Law
and Kelton [2000]). This section discusses the problems that can arise when downtime is modeled incor-
rectly and suggests a number of ways to model machine and system downtimes correctly.

Scheduled downtime, such as for preventive maintenance, or periodic downtime, such as for tool replace-
ment, also can have a major effect on system performance. But these downtimes are usually (or should be)
predictable and can be scheduled to minimize disruptions. In addition, engineering efforts or new technology
might be able to reduce their duration.

There are a number of alternatives for modelmg random unscheduled downtime, some better than
others:

1. Ignore it.

2. Do not model it explicitly, but increase processing times in appropriate proportion.
3. Use constant values for time to failure and time to repair.

4. Use statistical distributions for time to failure and time to repair.

Of course, alternative (1) generally is not the suggested approach. This is certainly an irresponsible
modeling technique if downtimes have an impact on the results, as they do in almost all situations. One sit-
uation in which ignoring downtimes could be appropriate, with the full lmowledge of the customer, is to
leave out those catastrophic downtimes that occur rarely and leave a production line or plant down fora long
period of time. In other words, the model would incorporate normal downtimes but ignore those cataswophic
downtimes, such as general power failures, snow storms, cyclones, and hurricanes, that occur rarely but stop
all production when they do occur. The documented scope of the project should clearly state the assumed
operating conditions and those conditions that dre not included in the model. If it is generally known that a
plant will be closed for some number of snow days per year, then the simulation need not take these down-
times into account, for the effect of any given number of days can easily be factored into the simulation
results when making annual projections.

The second possibility, to factor into the model the effect of downtimes by adjusting processing times
applied to each job or part, might be an acceptable approximation under limited circumstances. If each job
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or part is subject to a large number of small delays associated with downtime of equipment or tools, then the
total of such delays may be added to the pure processing time to arrive at an adjusted processing time. If total
delay time and pure processing time are random in nature, then an appropriate statistical distribution should
be used for the total adjusted processing time. If the pure processing time is constant while the total delay
time in one cycle is random and variable, it is almost never accurate to adjust the processing time by a
constant factor. For example, if processing time is usually 10 minutes but the equipment is subject to down-
times that cause about a 10% loss in capacity, it is not appropriate to merely change the processing time to a
constant 11 minutes. Such a deterministic adjustment might provide reasonably accurate estimates of overall
system throughput, but will not provide accurate estimates of such local behavior as queue and buffer
space needed at peak times. Queueing and short-term congestion are strongly influenced by randomness and
vanability.

The third possibility, using constant durations for time to failure and time to repair, might be appropri-
ate when, for example, the downtime is actually due to preventive maintenance that is on a fixed schedule.
In almost all other circumstances, the fourth possibility, modeling time to failure and time to repair by appro-
priate statistical distributions, is the appropriate technique. This requires either actual data for choosing a sta-
tistical distribution based on the techniques in Chapter 11, or, when data is lacking, a reasonable assumptlon
based on the physical nature of the causes of downtimes.

The nature of time to failure is also important. Are times to failure completely random in nature, a
situation due typically to a large number of possible causes of failure? In this case, exponential distribution
might provide a good statistical model. Or are times to failure, rather, more regular—typically, due to some
major component—say, a tool—wearing out? In this case, a uniform or (truncated) normal distribution could
be more nearly appropriate. In the latter case, the mean of the distribution represents the average time to failure,
and the distribution places a plus or minus around the mean.

Time to failure can be measured in a number of different ways:

1. by wall-clock time;

2. by machine or equipment busy time;
3. by number of cycle times;

4. by number of items produced.

Breakdowns or failures can be based on clock time, actual usage, or cycles. Note that the word breakdown
or failure is. used, even though preventive maintenance could be the reason for a downtime. As mentioned,
breakdowns or failures can be probabilistic or deterministic in duration.

Actual usage breakdowns are based on the time during which the resource is used. For example, wear
on a machine tool occurs only when the machine is in use. Time to failure is measured against machige-busy
time and not against wall-clock time. If the time to failure is 90 hours, then the model Keeps track of total
busy time since the last downtime ended, and, when 90 hours is reached, processing is interrupted and a
downtime occurs.

Clock-time breakdowns might be associated with scheduled maintenance—for example, changes of
fluids every three months when a complete lubrication is required. Downtimes based on wall-clock time may
also be used for equipment that is always busy or equipment that “runs” even when it is not processing parts.

Cycle breakdowns or failures are based on the number of times the resource is used. For example, after
every 50 uses of a tool, it needs to be sharpened. Downtimes based on number of cycle times or number of
items produced are implemented by generating the number of times or items and, in the model, simply count-
ing until this number is reached. Typical uses of downtimes based on busy time or cycle times may be for
maintenance or tool replacement.

Another issue is what happens to a part ata machine when the breakdown or failure occurs. Possibilities
include scrapping the part, rework, or simply continuing processing after repair. In some cases—for example,
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when prevenuvc maintenance is due—the part in the machine may complete processing before the repair
(or maintenance activity) begins.
Time to repair can also be modeled in two fundamentally different ways:

1. as a pure time delay (no resources required);
2. as a wait time for a resource (e.g., maintenance person) plus a time delay for actual repair.

Of course, there are many variations on these methods in actual modeling situations. When a repair or main-
tenance person is a limited resource, the second approach will be a more accurate model and provide more
information. '

" The next example illustrates the importance of using the proper approach for modeling downtimes and
of the consequences and inaccurate results that sometimes result from inaccurate assumptions.

Example 13.1: Effect of Downtime on Queueing
Consider a single machine that processes a wide variety of parts that arrive in random mixes at random times.
Data analysis has shown that an exponentially distributed processing time with a mean of 7.5 minutes
provides a fairly accurate representation. Parts arrive at random, time between arrivals being exponentially
distributed with mean 10 minutes. The machine fails at random times. Downtime studies have shown that
time-to-failure can be reasonably approximated by an exponential distribution with mean time 1000 minutes.
The time to repair the resource is alsoexponentially distributed, with mean time 50 minutes. When a failure
occurs, the current part in the machine is removed from the machine; when the repair has been completed,
the part resumes its processing.

When a part arrives, it queues and waits its turn at the machine. Itis desired to estimate the size of this
queue. An experiment was designed to estimate the average number of parts in the queue. To illustrate the
effect of an accurate treatment of downtimes, the model was run under a number of different assumptions.
For each case and replication, the simulation run length was 100,000 minutes.

Table 13.1 shows the average number of parts in the queue for six different treatments of the time
between breakdowns. For each treatment that involves randomness, five replications of those treatments and
the average for those five replications are shown.

Case A ignores the breakdowns. The average number in the queue is 2.31 parts. Across the 5 inde-
pendent replications, the averages range from 2.05 to 2.70 parts. This treatment of breakdowns is not
recommended.

Case B increases the average service time fom 7.5 minutes to 8.0 minutes in an attempt to approximate
the effect of downtimes. On average, each downtime and repair cycle is 1050 minutes, .with the machine
down for 50 minutes. Thns the machine is down, on the average in the long run, 50/1050 = 4.8% of total
time. Thus, some have argued that downtime has approximately the same effect as increasing the processing

Table 13.1 Average Number of Parts in Queue for Machines with Breckdowns

Case Ist Rep 2nd Rep 3rd Rep 4thRep  5thRep Avg Rep

A. Ignore the breakdowns 2.36 2.05 2.38 2.05 2.70 231
B. Increase service time to 8.0 332 282 332 2.81 4.03 326
C. All random 4.05 3.77 4.36 395 443 411
D. Random processing, '

deterministic breakdowns 324 2.85 328 3.05 3.79 324
E. All deterministic ] 0.52
E Deterministic processing; :

Random breakdowns 106 1.04 1.10 1.32 116 1.13
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time of each part by 4.8%, which is about 7.86 minutes. Therefore, an assumed constant 8 minutes per part
should be (it is argued) a conservative approach. For this treatment of downtimes, the average number of
parts in the queue, over the five replications, is about 3.26 parts. Across the 5 replications, the range is from
2.81 to 4.03 parts. (Note that the variability as shown in the range of values is very small compared to the
other cases.) The treatment in Case B might be appropriate under some limited circumstances, but, as was
discussed in a previous section, it is not appropriate under the assumptions of this example.

The proper treatment, shown as Case C, treats the randomness in processing and breakdowns properly,
with the assumed correct exponential distributions. The average value is about 4.11 parts waiting for the
machine. Across the 5 replications, the average queue length ranges from 3.77 to 4.43 parts. The average
number waiting differs from that of Case B by almost one part.

Case D is a simplification that treats the processing randomly, but treats the breakdowns as determinis-
tic. Theresults average about 3.24 parts in the queue. The range of averages is from 2.85 t03.79 parts, quite
a reduction in variability from Case C. '

Case E treats all of the times as deterministic. Only one replication is needed, because additional repli-
cations (using the same seed) will reproduce the result. The average value in the queue is 0.52 parts, well
below the value in Case C, or any other case for that matter. The conclusion: Ignoring randomness is dan-
gerous and leads to totally unrealistic results.

Case F treats arrivals and processing as deterministic, but breakdowns are random. The average number
of parts in the queue at the machine is about 1.13. The range is from 1.04 to 1.32 parts. For some machines
and processing in manufacturing environments, Case F is the realistic situation: Processing times are con-
stant, and arrivals are regulated-—that is, are also constant. The reader is left to consider the inaccuracies that
would result from making faulty assumptions regarding the nature of time to failure and time to repair.

In conclusion, there can be significant differences between the estimated average numbers in a queue,
based on the treatment of randomness. The results using the correct treatment of randomness can be far
different from those using alternatives. Often, one is tempted by the unavailability of detailed data and the
availability of averages to want to use average time to failure as-if it were a constant. Example 13.1 illustrates
the dangers of inappropriate assumptions. Both the appropriate technique to use and the appropriate statistical
distribution depend on the avaitable data and on the situation at hand.

As discussed by Williams {1994), the accurate weatment of downtimes is essential for achieving valid
models of manufacturing systems. Some of the essential ingredients are the following:

* avoidance of oversimplified and inaccurate assumptions;

¢ careful collection of downtime data;

* accurate representation of time to failure and time to repair by statistical distributions;

* accurate modeling of system logic when a downtime occurs, in terms both of the repair-time logic and
of what happens to the part currently processing.

13.3.2 Trace-driven Models

Consider a model of a distribution center that receives customer orders that must be processed and shipped in

“one day. One modeling question is how to represent the day’s set of orders. A typical order will contain one

or more line items, and each line item can have a quantity of one or more pieces. For example, when you buy
a new stereo, you might purchase an amplifier, a tuner, and a 'CD player (all separate line items, each having
a quantity of one piece), and 4 identical speakers (another line item with a quantity of 4 pieces). The overall
order profile can have a majorimpact on the performance of a particular system design. A system designed to
handle large orders going to a small number of customers might not perform well if order profiles shift toward
a larger number of customers (or larger number of separate shipments) with one or two items per order.
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One approach is to characterize the order profile by using a discrete statistical distribution for each variable
in an order:

1. the number of line items .
2. for each line item, the number of pieces.

If these two variables are statistically independent, then this approach might provide a valid model of the order
profile. For many applications, however, these iwo variables may be highly correlated in ways that could be
difficult to characterize statistically. For example, an apparel and shoe company. has six large customers (the
large department stores and discount chains), representing 50% of sales volume, which typically order dozens
or hundreds of line items and large quantities of many of the items. At the opposite pole, on any given day
approximately 50% of the orders are for one or two pairs of shoes (just-in-time with a vengeance!). For this

company, the number of line items in an order is highly positively correlated with the quantity ordered; that

is, large orders with a large number of line items also usually have large quantities of many of the line items.
And small orders with only a few line items typically order small quantities of each item.

What would happen if the two variables, number of line items and quantity per line item, were modeled
by independent statistical distributions? When an order began processing, the model would make two ran-
dom uncorrelated draws, which could result in order profiles quite different from those found in practice.
Such an erroneous assumption could result, for example, in far too large a proportion of orders having one
or two line items with large unrealistic quantities.

Another common but more serious error is to assume that there is an average orderand to simulate only
the number of orders in a day witheach being the typical order. In the author’s experience, analyses of many
order profiles has shown (1) that there is no such thing as a typlcal order and (2) that there is no such thing
as a typical order profile.

An alternative approach, and one that has proven successful in many studies, is for the company to pro-
vide the actual orders for a sample of days over the previous year. Usually, it is desirable to simulate peak
days. A model driven by actual historical data is called a trace-driven model.

A trace-driven model eliminates all possibility of error due to ignoring or misestimating correlations in
the data. One apparent limitation could be a customer’s desire, at times, to be able to simulate hypothesized
changes to the order profile, such as a higher proportion of smaller orders in terms of both line items and
quantities. In practice, this limitation can be removed by adding “dials” to the order-profile portion of the
model, so that a simulation analyst can “dial up” more or less of certain characteristics, as desired. One
approach is to treat the day’s orders as a statistical population from which the model draws samples in a ran-
dom fashion. This approach makes it easy to change overall order volume without modifying the profile.
A second related approach_ would be to.subdivide a day’s orders into subgroups based on number of line
items, quantities or other numeric parameters, and then sample in a specified proportion from each subgroup.
By changing the proportion of each subgroup, different order profiles can be “dialed up” and fed into the
model. A third approach is to use factors to adjust the number of daily orders, the numbier of line items, and/or
the quantities. In practice one of these approaches might be as accurate as can be expected for hypothesized
future order profiles and might provide a cost effective and reasonably accurate niodel, especially for testing
the robustness of a system design for assumed changes in order characteristics.

Other examples of trace-driven models include the following:

¢ orders to a custom job shop, using actual historical orders;

¢ product mix and quantities, and production sequencing, for an assembly line making 10{) styles and
sizes of hot-water heaters; :

¢ time to failure and downtime, using actual maintenance records;

¢ Truck arrival times to a warehouse, using gate records.
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Whether to make aninput variable trace-driven or to characterize it as a statistical distribution depends on a
number of issues, including the nature of the variable itself, whether it is correlated with or independent of
other variables, the availability of accurate data, and the questions being addressed.

13.4 CASE STUDIES OF THE SIMULATION OF MANUFACTURING AND MATERIAL
HANDLING SYSTEMS

The Winter Simudation Conference Proceedings, IE Magazine, Modern Material Handling and other periodicals
are excellent sources of information for short cases in the simulation of manufacturing and material-handling
systems.

An abstract of some of the papers from past Winter Simulation Conference Proceedings will provide
some insight into the types of problems that can be addressed by simulation. These abstracts have been par-
aphrased and shortened where appropriate; our goal is to provide an indication of the breadth of real-world
applications of simulation.

Session: ~ Semiconductor Wafer Manufacturing

Paper: Modeling and Simulation of Material Handling for Semiconductor Wafer Manufacwiring

Authors:  Neal G. Pierce and Richard Stafford

Abstract:  This paper presents the results of a design study to analyze the interbay material-handling
systems for semiconductor wafer manufacturing. The authors developed discrete-event
simulation models of the performance of conventional cleanroom material handling including
manual and automated systems. The components of a conventional cleanroom material-
handling system include an overhead monorail system for interbay (bay-to-bay) transport,
work-in-process stockers for lot storage, and manual systems for intrabay movement.
The authors constructed models and experiments that assisted with analyzing cleanroom
material-haadling issues such as designing conventional automated material-handling systems
and spacifying requirements for transport vehicles.

Session:  Simulation in Aerospace Manufacturing

Paper: Modeling Aircraft Assembly Operations

Authors:  Harold A. Scott

Abstract: A simulation model is used to aid in the understanding of complex interactions of aircraft
assembly operations. Simulation helps to identify the effects of resource constraints on
dynamic process capacity and cycle time. To analyze these eff ects, the model must capture
job and crew interactions at the control code level. This paper explores five aspects of
developing simulation models to analyze crew operations on aircraft assembly lines:

Representing job precedence relationships

Simulating crew members with different skill and job proﬁcnency levels
Reallocating crew members to assist ongoing jobs

Depicting shifts and overtime

Modeling spatial constraints and crew movements in the production area.

Session:  Control of Manufacturing Systems
Paper: Discrete Event Simulation for Shop Fioor Control ’
Authors:  J. S. Smith, R. A. Wysk, D. T. Sturrock, S. E. Ramaswamy, G. D. Smith, S: B. Joshi
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Abstract:

Session:
Paper:
Authors:

Abstract:

Session:
Paper:
Authors:

Abstract:

Session:
Paper:
Authors:
Abstract:

Session:
Paper:
Authors:
Abstract:

Session:
Paper:

This paper describes an application of simulation to shop floor control of a flexible
manufacturing system. The simulation is used not only as an analysis and evaluation tool,
but also as a “task generator” for the specification of shop floor control tasks. Using this
approach, the effort applied to the development of control logic in the simulation is not
duplicated in the development of the control system. Instead the same control logic is used
for the control system as was used for the simulation. Additionally, since the simulation
implements the control, it provides very high fidelity performance predictions. The paper
describes implementation experience in two flexible manufacturing laboratories. -

Flexible Manufacturing

Developing and Analyzing Flexible Cell Systems Using Simulation

Edward E. Watson and Randall P. Sadowski

This paper develops and evaluates flexible cell alternatives to support an agile production
environment at a mid-sized manufacturer of industrial equipment. Three work cell alterna-
tives were developed based on traditional flow analysis studies, past experience, and com-
mon sense. The simulation model allowed the analyst to evaluate each cell alternative under
current conditions as well as anticipated future conditions that included changes to product
demand, product mix, and process technology.

Modeling of Production Systems

Inventory Cost Model for Just-in-Time Production

Mahesh Mathur

This paper presents a simulation model used to compare setup and inventory carrying costs
with varying lot sizes. While reduction of lot sizes is a necessary step towards implementa-
tion of Just-in-Time (JIT) in a job shop environment, a careful cost study is required to
determine the optimum lot size under the present set-up conditions. The simulation model
graphically displays the fluctuation of carrying costs and accumulation of set-up costs on a
time scale in a dynamic manner. The decision of the optimum lot size can then be based on
realistic cost figures. '

Analysis of Manufacturing Systems

Modeling Strain of Manual Work in Manufacturing Systems

1. Ehrhardt, H. Herper, and H. Gebhardt

This paper describes a simulation model that considers manual operations for increasing
the effectiveness of planning logistic systems. Even though there is ever increasing automa-
tion, there are vital tasks in production and logistics that are still assigned to humans.
Present simulation modeling efforts rarely concentrate on the manual activities assigned to
humans.

Manufacturing Case Studies

Simulation Modeling for Quality and Productivity in Steel Cord Manufacturing

C. H. Turkseven and G. Ertek

The paper describes the application of simulation modeling to estimate and improve quality
and productivity performance of a steel cord manufacturing system. It focuses on wire
fractures, which can be an important source of system disruption.

Manufacturing Analysis and Control
Shared Resource Capacity Analysis in Biotech Manufacturing
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Author:  P.V. Saraph :

Abstract:  This paper discusses an application of simulation in analyzing the capacity needs of a-shared
resource, the Blast Freezer, .at one of the Bayer Corporation’s manufacturing facilities.
The simulation model was used to analyze the workload patterns, run different workload
scenarios, taking into consideration uncertainty and variability, and provide recommenda-
tions on a capacity increase plan. This analysis also demonstrated the benefits of certain
operational scheduling policies. The analysis outcome was used to determine capital invest-
ments for 2002.

Session: Manufacturing Analys1s and Control

Paper: Behavior of an Order Release Mechanism in a Make-to-Order Manufacturmg System with
Selected Order Acceptance g

Authors:  A. Nandi and P. Rogers

Abstract:  The authors used a simulation model to evaluate a controversial policy, namely, holdmg
orders in a pre-shop pool prior to their release to the factory floor. In a make-to-order manu-
facturing system, if capacity is fixed and exogenous due dates are inflexible, having orders
wait in a pre-shop pool may cause the overall due date performance of the system to deteri-
orate. The model was used to evaluate an alternative approach, the selective rejection of
orders for dealing with surges in demand while maintaining acceptable due date performiance.

13.5 MANUFACTURING EXAMPLE: AN ASSEMBLY-LINE SIMULATION

This section describes a model of a production line for the.final assembly of f‘giimcés". It then fo_cuses' on
how simulation can be used to analyze system performance.

13.5.1 System Description and Model Assumptions

At a manufacturing facility, an engineering team has designed a new production line for the final assembly of

. gizmos. Before making the investment to install the new system, some team embers propose using simula-

tion to analyze the system’s performance, specifically to predict system throughput (gizmos per 8-hour shift,
on the average). In addition, the engineers desire to evaluate potential improvements to the designed system.
One such potential improvement is adding buffer space for holding work-m-process (WIP) between adjacent
workstations.

The team decides to develop a simulation model and conduct an analysis. The team’s primary objective
is to predict throughput (completed gizmos per shift on the average) for the given system design and to eval-
uate whether it meets the desired throughput. In addition, should throughput be less than expected, the team
wants to use the model to help in identifying bottlenecks, gaining insight into the system’s dynamic behavior
and evaluating potential design improvements.

The proposed production line has six workstations and a special rack for WIP storage between adjacent
stations. There are four manual stations, each having its own operator, and two automated stations, which
share a single operator. The six stations perform production tasks in the following sequence:

Station I: initial manual station begins final assembly of a new gizmo
Station 2: manual assembly station

Station 3: manual assembly station

Station 4: automatic assembly station

Station 5: automatic testing station

Station 6: manual packing station
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At each manual swation, an operator loads a giamo onto a workbench, perforins some tasks, and on
completion unloads the gizmo and places it into the WIP storage for the next workstation. The operator takes
10 seconds and 5 seconds for the loading and unloading tasks, respectively.

The WIP storage racks between each pair of adjacent stations have limited capacity. If a.station
completes its tasks on a giamo but the downstream rack is full, the gizmo must remain in the station, block-
ing any further work. In the initial design, the WIP storage racks have the capacities shown in Table 13.2.
(By assumption, the WIP storage preceding Station 1 is always kept full at 4 units; since it is assumed to
always be full, its specific capacity plays no role.) The system design with capacities given in Table 13.2 is
called the Baseline configaration.

From time to time, a tool will fail, causing unscheduled downtime or unexpected extra work at a manual
or automated station. In addition, all operators are scheduled to take a 30-minute Tunch break at the same
time. Work is interrupted and resumes where it left off after lunch. This interrupt/resume rule applies to
operator tasks including assembly work, parts resupply, and repairs during a downtime.

At the automatic stations, a machine performns an assembly or testing task. The automatic stations might
have unscheduled (random) downtimes, but they continue to operate during the operator’s lunch break. One
operator services both machines to load and unload gizmos (10 seconds and 5 seconds, respectively). After
being loaded, a machine processes the giamo without further operator intervention unless a downtime occurs.
At all stations, the operator perf orms repairs as needed whenever the station experiences a downtime.

Table 13.3 gives the total assembly time and parts resupply times for each station, plus the number of
parts in a batch. The assembly time for the manual stations is assumed to vary by plus/minus 2 seconds
(unifoemly distributed) from the times given in Table 13.3. Parts resupply time dees not occur for each
gizmo, but rather after a batch of parts has been assembled onto the giamo. The machines at stations 4 and
5 do not consume parts.

Each station is subject to unscheduled (random) downtime. Manual stations 1--3 have tool failures or
other unexpected problems. The automatic stations occasionally jam or have some other problem that
requires the assigned operator to fix it. Station 6 (packing) is not subject to these downtimes. Table 13.4

. Table 13.2 Capacity of WIP Storage Buffers for
. Baseline Configuration

RackBeforeStaton 1 2 3 4 5 6
Buffer Capacity 4 2 2 2 1 2

Table 13.3 ~ Assembly and Parts Resupply Times

Assembly per Parts Resupply Time No. of Parts
Station Gizmo (Seconds) Part Number (seconds per Batch) per Batch
L 40 A 10 15
B B 15 10
2 38 C 20 8
o D 15 14
3 -38 E 30 ol
4 35
5 35
6 40 e © 30 32

: At station 6, the part number (F) represents the shipping conteiners,

SIMULATION OF MANUFACTURING AND MATERIAL-HANDLING SYSTEMS 439

Table 13.4 Assumptions and Data for Unscheduled Downtimes

MITF MTTR Expected
- Station TTF (Minutes) TTR (Minutes) +- Availability
1 Exponential 36.0 Uniform 4.0 1.0 90%
2 Exponential 4.5 Uniform 0.5 0.1 90%
3 Exponential 270 Uniform 3.0 1.0 90%
4 Exponential 9.0 Uniform 1.0 0.5 90%
5 Exponential 18.0 Unifora 2.0 1.0 90%

shows time to failure (TTF) and time to repair (TTR) distributional assumptions and the assumed mean time
to failure (MTTF), mean time to repair (MTTR) and spread (+/-) of repair times. For example, at Station 1,
repair time is uniformly distributed with mean 4.0 minutes plus or minus 1.0 minutes—that is, uniformly
distributed between 3.0 and 5.0 minutes. Failure can only occur when an operator or machine. is working;
hence, TTF is modeled by measuring only busy or processing time until a failure occurs.

"The primary model output or response is average throughput during the assumed 7.5 working hours per
8-hourshift. The model also measures detailed station utilization, including busy or processing time, idle or
starved time (no parts ready for processing), blocked time (part cannot leave station, because downstream
WIP buffer is full), unscheduled downtime, and time waiting for an operator. '

Station starvation occurs when the operator and station are ready to work on the next gizmo, the just-
completed gizmo leaves the station, but upstream conditions cause no gizmo to be ready for thls production
step. In short, the upstream WIP buffer is empty.

Station blockage occurs when a station completes all tasks on a gizmo, but cannot release the part
because the downstream WIP buffer is full. For both starvation and blockage, production time is lost at the
given swation and cannot be made up.

When an operator services more than one station, as does the operator servicing Stations 4 and 5, it is
possible for both stations to need the operator at the same time. This could cause additional delay at the
station and is measured by a “wait for operator” state. Blockage, starvation, and wait-for-operator at each
station will be measured in order to help explain any throughput shortfall, should it occur, and to assist in
identifying potential system improvements.

13.5.2 Presimulation Analysis

A presimulation analysis, taking into account the average station cycle time as well as expected station avail-
ability (90%), indicates that each station, if unhindered, can achieve the desired throughput. This initial
analysis is carried out as described in this section.

From the assumed downtime data, the team was able to estimate expected station availability, under the
(ideal)assumption of no interaction betwsen stations. The expacted availability shows each station’s individual
availability during working (nonlunch, nonbreak) hours, assuming that the operator can always place a
completed gizmo into the downstream rack storage and the next gizmo is ready to begin work at the station.
Expected availability is computed by MTTF/(MTTF + MTTR), or expected busy time during a downtime
“cycle” divided by the length of a downtime cycle (a busy cycle plus a repair cycle) and is given in Table 13.4,
This calculation ignores certain aspects of the problem, including the parts resupply times and any delay
caused by having only one operator to service both Stations 4 and 5.

The design goal for the modeled system is 390 finished gizmos per 8-hour shift. After taking lunch into
account, each shift has up to 7.5 hours of available work time. With unscheduled (random) downtime expected
to be 10% of available time, this further reduces working time to 0.90 x 7.5 hours = 6.75 hours. This implies
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Table 13.5 Estimoted Totol Cycle Time ot Eoch Stotion

Stasion Formula to Estimate Cycle Time (Seconds) Estimate (Seconds)
1 10 +40+5 + 10/15 + 15/10 572
2 10 +38 +5 +20/8 + 15/14 56.6
3 10 +38 +5 +30/25 542
4 10+35+5 50.0
5 10+35+5 50.0
6 10+40+5+30/32 55.9
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Table 13.6 Detailed Stotion Utilization for Boseline Configuration

Station % Down . % Blocked % Starved % Wait for Operator
i (8.8,9.6) (114,12.5) (0.0,0.0) (0.0,0.0)
2 (8.2,84) (8.0,8.8) (4.9,5.6) 0.0,0.0)
3 (7.9,8.6) (9.9,10.4) (6.1,6.9) (0.0,0.0)
4 (8.9,9.6) 2.0,2.8) (7.58.2) (13.1,14.4)
5 (8.3,9.0) (0.0,0.2) (19.4.20.4) 3.9.4.7)

that the station with the slowest total cycle time must be able to produce 390 gizmos in the available
6.75 hours. Therefore the total cycle time per gizmo at each station must not exceed 6.75 hours/390 =
62.3 seconds.

Now, total cycle time consists of assembly, testing or packing time, and parts resupply time (as given
in Table 13.3), plus gizmo loading time of 10 seconds and unload time of 5 seconds. Parts resupply is not
taken on every gizmo, but rather after a given number of gizmos corresponding to using all parts in a given
batch of parts. For example, using the values in Table 13.3 for Station 1, parts resupply will take 10 seconds
every 15 gizmos for Pat A, plus 15 seconds every 10 gizmos for Part B, for a total time on the average of

10/15 + 15710 seconds per gizmo.

Using this information, the (minimum) total cycle time foreach statlon isestimated in Table 13.5. These
presimulation estimates indicate, first, that each theoretical cycle time is well below the requirement of 62.3
seconds. Secondly, they indicate that Stations 1 and 2 are potential bottlenecks, if there are any. . )

As the simulation analysis will later show, Station 1 experiences blockage due to Station 2 downtime, and
Station 2 occasionally experiences starvation due to downtime at Station 1 and blockage due to downtime at
Station 3. These blockage and starvation conditions reduce the available work time below the calculated 90%;
hence, for the Baseline Configuration, they reduce the design throughput well below the desiced value,
390 giamos per shift. In summary, a presimulation analysis, although valuable, at best can provide a rough

-estimate of system performance. As the simulation will show, ignoring blockage and starvation gives an overly

optimistic estimate of system throughput.

13.5.3 Simulation Model and Analysis of the Designed System

Using the simulation model, the first experiment was conducted to estimate-system performance of tiie
system as designed. The simulation analyst on the team made 10 replications of the model, each having a
2-hour warm-up or initialization followed by a 5-day simulation (each day being 24 hours). A 95% confi-
dence interval was computed for mean throughput per shift:

95% CI for mean throughput: (364.5, 366.8), or 365.7 + 1.14.

With 95% confidence, the model predicts that mean (or long-run average) throughput will be between 364.5

and 366.8 gizmos per 8-hour shift with the system as designed. This is well below the desxgn throughput,
390 gizmos per shift.

. The team decided to conduct further analyses to identify possnble botﬂenecl.s and potential areas of
improvement.

13.5.4 Analysis of Station Utilization

At this point, the team desired to have some explanation of the shortfail in throughput. They suspected that
perhaps it had to do with the small WIP buffer capacity and the resulting blockage and starvasion. The same

model was used to estimate detailed workstation utilization in hopes that it would provide an explanation of
throughput shortfall. Table 13.6 contains 95% confidence-interval estimates for the first five workstations for
percent of time down, blocked, starved, and waiting for an operator. (Waiting for operator affects only
stations 4 and 5, as these two stations share one operator. The other stations have a dedicated operator. In
addition to the utilization statistics in Table 13.6, the operators have a 30-minute Iunch per 8-hour shift,
representing 6.25% of available time.)

From the results in Table 13.6, it appears that blockage and starvation explain some portion of the short-
fall in throughput. In addition, another possible explanation surfaces: Station 4 experiences a significant time
waiting for the single operator that services stations 4 and 5. This delay at Station 4 could result in a full WIP
buffer, which in turn wonld help explain the blockage at Station 3 preceding it. Percent of time blocked is higher
than percent starved for Stations 1 to 3, so it appears that downstream delays could be a significant bottleneck.

The team proposed some possible system improvements:

1. having two operators to service Stations 4 and 5 (instead of the currently proposed one operator);
2. increasing the capacity of some of the WIP.buffers; -
3. a combination of both. :

The expense of additional WIP storage _space induced the team to desire to keep total buffer space as small
as possible, and to require an additional operator only if absolutely necessary, while achieving the design
goal of 390 gizmos per shift.

13.5.5 Anadlysis of Potential System Improvements

To evaluate the addition of an operator and larger WIP buffers, the model was revised appropriately to allow
thesechanges, and a new analysis was conducted. In this analysis, the capacity of each WIP buffer for Stations
2 — 6 was allowed to increase by one unit above the Baseline value given in Table 13.2. In addition, the effect
of a second operator at Stations 4 and 5 is considered, These possibilities result in a total of 64 scenarios or
model configurations. (Why?) Making 10 replications per scenario results in a total of 640 simulation runs.

To facilitate the analysis, the team decided to use the Common Random Number technique discussed in
Section 12.1.3. To implement it with proper synchronization, each source of random variability was identi-
fied and assigned a dedicated random-number stream. In this model, processing time, TTF, and TTR are
modeled by statistical disxibutions at'each of the six workstations. Therefore, a total of 18 random-number
streams were defined, with 3 used at each workstation. In this way, in each set of runs, each workstation
experienced the same workload and randoff downfimes no mattér which configuration was being simulated.
For a given number of replications the CRN technique, also known as- correlated sampling, is expected to
give shorter confidence intervals for differences in system performance:

The model configurations with the most improvement in system throughput, compared with Lhe Baseline
conﬁguratlon are shown in Table 13.7. These configurations were chosen for fusther evaluation because
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Table 13.7 improvement in System Throughput for Alternative Configurations

Increase in Mean
Number of Throughput per Shift
Operators Buffer Capacities (Compared to Baseline)
Stations Ave,
4&5 Buffer2  Buffer 3  Buffer4 Buffer5  Buffer6  Total Diff  CiLew Cl High
2 3 3 3 2 2 13 3.7 303 331
2 3 3 3 2 3 14 31.7 304 330
2 3 3 2 2 3 13 300 286 313
2 3 3 3 1 3. 13 298 286 31.0
2 3 3 2 2 2 12 29.7 281 313
2 3 3 3 1 2 12 295 281 31.0
2 3 3 2 1 3 12 266 254 279
2 2 3 3 2 2 12 266 251 28.1
T2 2 3 3 2 3 13 266 250 28.1
2 3 2 3 2 3 13 265 250 28.0
T2 3 2 3 2 2 12 264 253 275
2 3 3 2 1 2 11 263 251 275

eachshowsa potential improvement in throughput of approximately 25 units or more—that is, thelowerend
of the 95% confidence interval is 25 or higher. The values shown for “Ave Diff” represent the increase in
throughput compared to the Baseline configuration. Recall that the Baseline throughput was previously esti-
mated, with 95% confidence, to be in the interval (364.5, 366.8). Being conservative, the engineering team
would like to see an improvement of 390 — 364.5 = 25.5 gizmos per shift. The top six configurations in
Table 13.7 have a lower confidence interval larger than 25.5 and hence are likely candidates for achieving the
desired throughput. Interpreted statistically: The lower end of the confidence interval is larger than 25.5,
so the results yield a 95% confidence that mean throughput will increase by 25.5 or more in the top six
coiifigurations listed in Table 13.7.

Note thatall the most improved configurations include two operators at Stations 4 and 5. The simulation
results for configurations with one operator (not shown here) indicate that a 390 thmughput cannot be
achieved with one operator, at least not with the buffer sizes considered. :

Some configurations can be ruled out because a léss expensive option achieves a similar throughput.
Consnder for example, the first two configurations in Table 13.7. They are identical except for Buffer 6
capacity. Since WIP buffer capacity is expensive, the smaller total buffer capacity will be the less expensive
option. Clearly, there is no need to expand from 2 to 3 units at Buffer 6. The “Total” column can assist in
quickly ruling out configurations that do no better than a similar one with smaller total buffer capacity.

The model configuration that increases throughput by 25.5 or better and has the smallest total buffer
capacity is the fifth one in Table 13.7, with capacities of (3,3,2,2,2) for Buffers.2 to 6, respectively. On these
considerations, this system design becomes the team’s top candidate for further evaluation. The next step
(not included here) would be to conduct a financial analysis of each altemative configuration.

13.5.6 Concluding Words: The Gizmo Assembly-l.iné Simulation

Real-life gxamples similar to this example model include assembly lines for automotive parts and automo-
bile bodies, automotive pollution-control assemblies, consumer items such as washing machines, ranges, and
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dishwashers, and any number of other assembly operations with a straight flow and limited buffer space
between workstations. Similar models and analyses may also apply to a job shop with multiple products;
variable routing, and limited work-in-process storage.

13.6 SUMMARY

This chapter introduced some of the ideas and concepts most relevant to manufacturing and matesial handling
simulation. Some of the key points are the importance of modeling downtimes acctrately, the advantages
of trace-driven simulations with respect to some of the inputs, and the need in some models for accuraté
modeling of material-handling equipment and the control software.
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EXERCISES -.

Instructions to the student: Many of the following exercises contain material-handling equipment such as
conveyors and vehicles. The student is expected to use any simulation language or simulator that supports
modeling conveyors and vehicles at a high level.

Some of the following exercises use the uniform, exponential, normal, or triangular distributions.
Virtually all simulation languages and simulators support these, plus other distributions. The use of the first
three distributions was explained in the. note to the exercises in Chapter 4; the use of the triangular is
«.xplamed in the exercise that requires it. For reference, the properties of these distributions, plus others used
in simulation, are given in Chapter 5, and random-variate generation is covered in Chapter 8.

1. A case soctation system consists of one infeed conveyor and 12 sortation lanes, as shown in the follow-
ing schematic (not to scale):

— 60 ft

=
|

15 ft
Cases enter the system from the left at a rate of 50 per minute at random times. All cases are 18 by 12
inches and travel along the 18 inch dimension. The incoming mainline conveyor is 20 inches wide and
60 feet in length (as shown). The sortation lanes are numbered 1 to 12 from left to right, and are 18
“inches wide and 15 feet in length, with 2 feet of spacing between adjacent lanes. (Estimate any other
dimensions that are needed.) The infeed conveyor runs at 180 feet/minute, the sortation lanes at 90
feet/minute. All conveyor sections are accumulating, but, upon entrance at the left, incoming cases are
at least 2 feet apart from leading edge to leadmg edge. On the sortation lanes, the cases accumulate with
no gap between them.

Ll L

Incoming cases are distributed to the 12 lanes in the following proportions:

6% 7 1%
6% 8 6%
5% 9 5%

24% 10 5%
15% 11 3%
4% 12 0%

AU AL —

The 12th lane is an overflow lane; it is used only if one of the other lanes fill and a divert isnot possible.

At the end of the sortation lanes, there is a group of operators who scan each case with a bar-code scan-
ner, apply a label and then place it on a pallet. Operators move from lane to lane as necessary to avoid
allowing a lane to ﬁll There is one pallet per lane, each holding 40 cases. When a pallet is full, assume
anewempty one is immediately available. If a lane fills to 10 cases and another case arrives at the divert
point, this last case continues to move down the v0-foot mainline conveyor and is diverted into lane 12,
the overflow lane. -
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Assume that one operator can handle 8.5 cases per minute, on the average. Ignore walking time and
assignment of an operator to a particular lane; in other words, assume the operators work as a group
uniformly spread over all 12 lanes.

(a) Set up an experiment that varies the number of operators and addresses the question: How many
operators are needed? The objective is to have the minimum number of operators but also to avoid
overflow. .

(b) For each experiment in part (a), report the following output statistics: >

Operator utilization

Total number of cases palletized
Number of cases palletized by lane -
Number of cases to the overflow lane

() For each experiment in part a, verify that all cases aré being: palletized. In other words, verify that
the system can handle 50 cases per minute, or explain why it cannot.

2. Redo Exercise 1 to a greater level of detail by modeling opérator walking time and operator assignment
to lanes. Assume that operators walk at 200 feet per minute and that the walking distance from.one lane
to the next is 5 feet. Handling time per case is now assumed to be 7.5 cases per minute. Devise a set of
rules that can be used by operators for lane changing. (For example, change lanes to that lane with the
greatest number of cases only when the current lane is empty or the other lane reaches a certain level.)
Assume that each operator is assigned to a.certain number -of adjacent lanes and handles only those
lanes. However, if necessary, two operators (but no more) may be assigned to one lane—that is, operator
assignments may overlap. . .

(a) If your lane-changing rule has any numeric parameters, experiment to find the best settings. Under
these circumstances, how many operators are needed? What is the average operator utilization?

(b) Does a model that has more detail, as ddes Execise 2a when compared to Exercise 1, always have
greater accuracy? How about this particular model? Compare the results of Exercnse 2a tothe results
for Exercise 1. Are the same or different conclusions drawn?- e

(c) Devise a second lane-changing rule. Compare results between the two rules. Compare total walk-
ing time or percent of time spent walking between the two rules:.
Suggestion: A lane-changing rule could have one or two “triggers”. A one-trigger rule might state
that, if a lane reached a certain level, the operator moved to that lane. (Without modification, such
a rule could lead to excessive operator movement, if two lanes had about the same number of cases ,
near the trigger level.) A two-trigger rule might state that, if a lane reached a certain level and the
operator’s current lane became empty, then change to the new lane; but if a4ane reaches a specified
higher “critical” level, then the operator immediately changes lanes.

(d) Compare your results wnth those of other students who may have used a dlﬁerem lane-changmg
.rule.

3. Parts carried by thé AGV S)lstem .arrive through three intersections are -

Intersection . Interarrival Time (Minutes) -

n 10+4

D .o 8x2 o
13 206
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The parts are to be assembled in any one of the assembly stations Al or A2. The assembly time is

3
-
P
i 3
4 h 4
S 6
1 1 ¥ I A2 3
11 12 3 ) 6
- - 3 . r
¥
6
Al

7 + 2 minutes. After assembly, parts are sent to the output station P. If both A1 and A2 are free, parts
have an equal probability of going to either Al or A2. AGV is required to take the amiving part to
assembly station and assembled part to output station. Once AGV becomes free, it responds to any
waiting call, otherwise it is sent to staging area S. Al links are unidirectional and the distances are shown
in meters, The AGV speed is 40 meters per minute. Delay the start of the assembly operations for
30 minutes after parts start arriving to allow a buildup of parts. Simulate the system for 10,000 minutes.
Determine the number of AGVs required to ensure that there is always a part available for the assembly

" operations.

Redo the simulation with the assumption that the assembly times are different in A1 and A2 as

Assembly Station ~ Assembly Time (Minutes)
Al 9+£2
A2 7+2

Hence if both Al and A2 are free, the part is taken to the assembly station A2.

In a machine shop, there are four machines M1, M2, M3, and M4. They are identical in all respscts and
served by AGVs. Parts arrive with interarrival time following exponential with a mean of 5 minutes.
Machines do not have any buffer space. So an arriving part at the input area must first gain access to a
free machine before it can be moved to the machine. When a machine finishes an operation, an AGV is
requested and the machine is to be made free only after the part has been picked up by the' AGV.
Processing time follows normal with a mean of 8 minutes and a standard deviation of 2 minutes. It takes

. 30 seconds to load and unload the parts. AGV takes the finished parts to the output station and the AGV

is free to respond to other requests, or is sent to the i input area that gerves as a staging area. The AGVs
move at a speed of 25 meters per minute. The dimensions shown are in meters, and the intersections
are 0 meter in length. Simulate this system f or2 500 minutes, Change the number of AGVs and analyze
the impact on parts waiting time.
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6. Reconsider Exercise 5. Assume that two types of parts are arriving and the parts are to be processed in

more than one machine. Parts arrive with interarrival time following exponential with a mean of 5 minutes.
The sequence of operation and the percentage of part types are

Part Type  Percentage Sequence
A 60 Ml, M2, M4
B 40 M2, M3
Process time at the machines are
Machine Process Time
Ml N@8,2)
M2 4+2
M3 N@.I)
M4 9x2

Simulate this system for 2,500 minutes. Change the number of AGVs and analyze the impact on parts
waiting time.

. Develop a model for Example 13.1 and attempt to reproduce qualitatively the results found in the text
regarding different assumptions for simulating downtimes. Do not attempt to get exactly the same

numerical results, but rather to show the same qualitative results.

(a) Do your models support the conclusions dlscussed in the text? Provide a discussion and conclu-
.sions.

(b) Make a plot of the number of entities in the queue versus time. Can you tell when failures occurred?
After a repair, about how long does it take for the queue to get back to “normal™?

In Example 13.1, the failures occurred at low frequency comparé_d with the procéssing time of an entity.
Tisne to failure was 1000 minutes, and interarrival time was 10 minutes, implying that few entities would

" experience a failure. But, when an entity did experience a failure {of 50 mmutes on average) it was sev-

eral times larger than the processing time of 7.5 minutes.

Redo the model for Example 13.1, assuming high-frequency failures. Specifically, assume thatthe time
to failure is exponentially distibuted, with mean 2 minutes, and the time to repair is exponentially

heg
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distributed, with mean 0.1 minute or 6 seconds. As compared with the low-frequency case, entities will
tend to experience a number of short downtimes. .

For low-frequency versus high-frequency downtimes, compare the average number of downtimes expe-
rienced per entity, the average duration of downtime experienced, the average time to complete service
(including downtime, if any), and the percent of time down.

Note that the percentage of time the machine is down for repair should be the same in both cases:

50/(1000 + ‘50_) =4.76%
6 sec/(2min+6 sec) = 4.76%

Verify percentage downtime from the simulation results. Are the results identical? ... close? Should they
be identical, or just close? As the simulation run-length increases, what should happen to percentage of
time down? '

With high-frequency failures, do you come to the same conclusions as were drawn in the text regarding
the different ways to simulate downtimes? Make recommendations regarding how to model low-frequency
versus high-frequency failures. '

RedoExercise 11 (based ouExample 13.1), but with one change: When an entitv experiences a downtime,
it must be reprocessed from the beginning. If service time is random, take a new draw 1ol Uic wssuuiid
distribution. If service time is constant, it starts over again. How does this assumption affect the results?

Redo Exercise 11 (based on Example 13.1), but with one change: When an entity éxpefiences a down-
time, it is scrapped. How does scrapping entities on failure affect the results in the low-frequency and
in the high-frequency situations? What are your recommendations regarding the handling of low-versus
high-frequency downtimes when parts are scrapped?

Sheets of metal pass sequentially through 4 presses: shear, punch, form, and bend. Each machine is
subject to downtime and die change. The parameters for each machine are as follows:

Process Time to Time to No. of Sheets to Time to
Rate Failure Repair a Die Change Change Die
Press  (per min.) (min.) =~ (min.) (no. sheets) . (min.)
Shear 45 100 8 500 25
Punch =~ 5.5 90 C10° 400 25
Form = 38 180 9 750 . 25
Bend 3.2 240 20 600 ' 25

Note that processing time is given as a rate—for example, the shear pressworks at a rate of 4.5 sheets
per minute. Assume -that processing time is constant. The automated equipment makes the time to
change a die fairly constant, so it is assumed to be always 25 minutes. Die changes occur between
stamping of two sheets afterthe number shown in the table have gone through a machine. Time to failure
is assumed to be éxponentially distributed, with the mean given in the table. Time to repair is assumed
to be uniformly distributed, with-the mean taken from the table and a-half-width of 5 minutes. When a
failure occurs, 20% of the sheets are scrapped. The remaining 80% are reprocessed at the failed machine
after the repair. ’ '

Assume that an unlimited supply of material is available in front of the shear press, which processes one
sheet after the next as long as there is space available between itself and the next machine, the punch press.
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. In general, one machine processes one sheet after another continuously, stopping only for a downtime,

fora die change, or because the available buffer space between itself and the next machine becomes full.
Assume that sheets are taken away after bending at the bend press. Buffer space is divided into 3 sepa-
rate areas, one between the shear and the punch presses, the second between the punch and form presses,
and the last between form and bend.

(a) Assume that there is an unlimited amount of space between machines. Run the simulation for 430
hours (about.1 month with 24 hour days, 5 days-per week). Where do backups occur? If the total
buffer space for all three buffers is limited to 15 sheets (not counting before shear or after bend),
how would you recommend dividing this space among the three adjacent pairs of machines? Does
this simulation provide enough information to make a reasonable decision?

(b) Modify the model so that there is a finite buffer between adjacent machines. When the buffer
becomes full and the machine feeding the buffer completes a sheet, the sheet is not able to exit the
machine. It remains in the machine blocking additional work. Assume that total buffer space is 15
sheets for the 3 buffers.

Use the recommendation from part (a) as a starting point for each buffer size. Attempt to minimize the
number of runs. You are allowed to experiment with a maximum of 3 buffer sizes for each buffer. (How
many runs does this make?) Run a set of experiments to determine the allocation of buffer space that
maximizes production. Simulate each alternative for at least 1000 hours.

Report total production per hour on the average, press utilization (broken down by percentage of time
busy, down, changing dies, and idle), and average number of sheets in each buffer.
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‘Simulation of Computer Systems

‘It is only natural that simulation is used extensively to simulate computer systems, because of their great
unportance to the everyday operations of business, industry, government, and universities. In this chapter, we
!ook at the motivations for simulating computer systems, the different types of approaches used and, the
mter'p]ay between characteristics of the model a::d implementation strategies. We begin the discu.;ssion by
loo_kmg.at general characteristics of computer-system simulations. Next, we lay the groundwork for investi-
g‘atmg s‘lmulation of computer systems by looking at various types of simulation tools used to perform those
s:rn'mlauons. In section 14.3, we describe different ways that input is presented or generated for these simu-
lations. We next work through an example of a high-level computer system one might simulate, paying atten-

tien to problems of model construction and output analysis. In section 14.5, we tumn to the central processing -

unit (CPU) and point out what is generally simulated and how. Following this, we consider simulation of
memory systems, in section 14.6.

14.1 INTRODUCTION

Computer systems areincredibly complex. A computer system exhibits complicated behavior at time scales
from the time to “flip™ a transistor’s state (on the order of 10-"! seconds) to the time it takes a human to inter-
act with it (on the order of seconds or minutes). Computer systems are designed hierarchically, in an effort
to manage this complexity. Figure 14.1 illusirates the point. At a high level of abstraction (the system level),
one might view computational activity in terins of tasks circulating among servers, queueing for service
‘when a server is busy. A lower level in the hierarchy can view the activity as being among components of a
given processor (its registers, its memory hierarchy). At a lower level still, one views the activity of func-
tional units that together make up a central processing unit, and, at an even lower level, one can view the
logical circuitry that makes it all happen.
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Figure 14.1 Different levels of abstraction in computer systems.

Simulation is used extensively at every level of this hierarchy, with some results from one level
being used at another. For instance, engineers working on designing a new chip will begin by partitioning
the chip functionally (e.g., the subsystem that does arithmetic, the subsystem that interacts with memory,
and so on), establish interfaces between the subsystems, then design and test the subsystems individually.
Given a subsystem design, the electrical properties of the circuit are first studied by using a circuit simula-
tor that solves differential equations describing electrical behavior. At this level, engineers work to ensure
the comrectness of signals’ timing throughout the circuit and to énsure that the electrical properties
fall within the parameters intended by the design. Once this level of validation has been achieved, the elec-
trical behavior is abstracted into logical behavior (e.g., signals formerly thought of as electrical waveforms
are now thought of as logical 1’s and 0's). A different type of simulator is next used to test the correctness
of the circuit’s logical behavior. A common testing technique is to present the design with many different
sets of logical inputs (“test vectors*) for which the desired logical outputs are known. Discrete-event simu-
lation is used to evaluate the logical response of the circuit to each test vector and is also used to evaluate
timing (e.g., the time required to load a register with a datum from the main memory). Once a chip’s
subsystems are designed and tested, the designs are integrated, and then the whole system is subjected to
testing, again by simnlation. o .
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At a higher level, one simulates by using functional abstractions. For instance, a memory chip could be
modeled simply as an array of numbers, and a reference to memory as just an indexing operation. A special
type of description language exists for this level, called “register-transfer-language” (see, for instance, Mano
1993). This is like a programming language, with reassigned namesfor registers and other hardware specific
entities and with assignment statements used to indicate data transfer between hardware entities. For exam-
ple, the following sequence loads into register r 3 the data whose memory address is in register r 6, subtracts
one from it, and writes the result into the memory location that is word adjacent (a word in this example is
4 bytes in size) to the location first read: :

r3 = M{réj;
r3 = r3-1;
ré = ré6+4;
Mlrel = r3;

A simulator of such a language might ascribe deterministic time constants to the execution of each of these
statements. This is a useful level of abstraction to use when one needs to express sequencing of data trans-
fers at a low level, but not so low as the gates themselves. The abstraction makes sense when one is content
to assume that the memory works and that the time to put a datum in or out is a known constant. The “known
constant” is a value resulting from analysis at a lower level of abstraction. Functional abstraction is also
commonly used to simulate subsystems of a central processing unit (CPU), in the study of how an execut-
ing program exercises special architectural features of the CPU.

At a higher level still, one might study how an Input--Output (I/O) system behaves in response to exe-
cution of a computer program. The program’s behavior may be abstracted to the point of being modeled, but
with some detailed description of I/O demands (e.g., with a Markov chain that with some specificity
describes an I/O operation as the Markov chain transitions). The behavior of the /O devices may be
abstracted to the point that all that is considered is how long it takes to complete a specified I/O operation.
Because of these abstractions, one can simulate larger systems, and simulate them more quickly. Continuing
in this vein, at a higher level of abstraction still, one dispenses with specificity altogether. The execution of
a program is modeled with a randomly sampled CPU service interval; its /O demand is modeled as a ran-
domly sampled service time on a randomly sampled I/O device. '

Different levels of abstraction serve to answer different sorts of questions about a computer system, and
different simulation tools exist for each level. Highly abstract models rely on stochastically modeled behav-
ior to estimate high-level system performance, such as throughput (average number of “jobs™ processed per
unit time) and mean response time (per job). Such models can also incorporate system failure and repair and
can estimate metrics such as mean time to failure and availability. Less abstract models are used to evaluate
spacific systems components. A study of an advanced CPU design might be aimed at estimating the through-
put (instrictions executed per unit time); a study of a hierarchical memory system might seek to estimate the
fraction of time that a sought memory reference was found immediately in the examined memory. As we
have already seen, more detailed models are used to evaluate functional correctness of circuit design.

14.2 SIMULATION TOOLS

Hand in hand with different abstraction levels, one finds different tools used to perform and evaluate simu-
lations. We next examine different types of tools and identify important characteristics about their function
and their use. _ )

Animportant characteristic of a tool is how it supports model building. In many tools, one constructs net-
works of components whose local behavior is already known and already programmed into the tool. This is a
powerful paradigm for coinplex model construction. At the low end of the abstraction hierarchy, electrical

SIMULATION OF COMPUTER SYSTEMS 453

circuit simulators and gate-level simulators are driven by network descriptions. Likewise, at the high end of
the abswaction hierarchy, toolsthat simulate queueing networks and Pexi nets are driven by network descrip-
tions, as are sophisticated commercial communication-system simulators that have extensive libraries of pre-
programmed protocol behaviors. Some of these tools allow one to incorporate user-programmed behavior, but
it appears this is not the norm as a usage pattern. '

A very significant player in computer-systems design at lower levels of abstraction is the VHDL lan-
guage (e.g., see Ashenden [2001]). VHDL is the result of a U.S. effort in the 1980’s to standardize the lan-
guages used to build electronic systems for the government. It has since undergone the IEEE standardization
process and is widely used throughout the industry. As a language for describing digital electronic systems,
VHDL serves both as a design specification and as a simulation specification. VHDL is a rich language, full
both of constructs specific to digital systems and the constructs one expects to find in a procedural pro-
gramming language. It achieves its dual role by imposing a clear separation between system topology and
system behavior. Design specification is a matter of topology; simulation specification is a matter of behav-
ior. Libraries of predefined subsystems and behaviors are widely available, but the language itself very much
promotes user-defined programmed behavior. VHDL is also innovative in its use of abstract interfaces (e.g.,

"to a functional unit) to which different “architectures” at different levels of abstraction may be attached. For

instance, the interface to the Arithmetic Logical Unit (ALU) would be VHDL “signals” that identify the
input operands, the operation to be applied to them, and the output. One could attach to this interface an
architecture that in a few lines of code just performs the opération—if an addition is specified, just one
VHDL statement assigns the output signal to be the sum (using the VAIDL addition operator) of the two input
signals. An alternative architecture could completely specify the gate-level logical design of the ALU.
Models that interact with the ALU interface cannot tellhow the semantics of the interface are implemented.
This separation of interface from architecture supports modular construction of models and allows one to
validate a new submodel architecture by comparing the results it returns to the interface with those returned
by a different architecture given the same inputs. A substantive treatment of VHDL is well beyond the scope
of this book. VHDL is widely used in the electrical and computer engineering community, but is hardly used
outside of it.

One drawback to VHDL is that it is a big language, requires a substantial VHDL compiler, and vendors
typically target the commercial market at prices that exclude academic research. Of course, other simulation
languages exist, and this text describes several in Chapter 4. Such languages are good for modeling certain
types of computer systems at a high level, but are not designed or suited for expression of computer-systems
modeling at lower levels of the abstraction hierarchy. As a result, when computer scientisk naed to simulate
specialized model behavior, they will often write a simulation (or a'simulator) from scratch. For example, if
a new policy for movingdata between memories in a hierarchy is to be considered, an existing language will
not have that policy preprogrammed; when a new architectural feature in a CPU is designed, the modeler
will have to describe that feature and its interactibn with the rest of the CPU, using a general programming
language. A class of tools exists that use a general programming language to express simulation-model
behavior, among them SimPack (Fishwick [1992]), C+-SIM (Little and McCue [1994]), CSIM (Schwetman
[1986]), Awesime (Grunwald {1995]), and SSF (Cowie et al. [1999]). This type of tool defines objects
and libraries for use with such languages as C, C++, Java. Model behavior is expressed as a computer
program that manipulates these predefined objects. The technique is especially powerful when used with
object-oriented languages, because the tool can define base-class objects whose behavior is extended by the
modeler. - -

Some commercial simulation languages do support interaction with general programming languages;
however, simulation languages are not frequently used in the academic computer-science world. Cost is a
partial explanation. Commercial packages are developed with commercial needs and commercial budgets in
mind, yet computer scientists can usually develop what they need relatively quickly, themselves. Another
explanation is a matter of emphasis: Simulation languages tend to include a rich number of predefined
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simulation objects and actions and allow access to a programming language to express object behavior; a
simulation model is expressed primarily in the constructs of the simulation language, and the model is eval-
uated either by compiling the model (using a simulation-language-specific compiler) and running it or by
using a simulation-language-specific interpreter.

One of the many .advantages to such an approach is that the relative rigidity of the programming model
makes possible graphical model building, thereby raising the whole model-building endeavor to a higher
level of abstraction. Some tools have so much preprogrammed functionality that it is possible to design and
run a model without writing a single line of computer code.

By contrast, programming languages with simulation constructs tend to define a few elemental simula-
tion objects; a simulation model is expressed principally via the notions and control flow of the general pro-
gramming language, with references to simulation objects interspersed. To evaluate the model, one compiles
or interprets the program, using a compiler or interpreter associated with the general programining language,
as opposed to one associated with the simulation language. The former approach supports more rapid model
development in contexts where the language is tuned to the application; the latter approach supports much
greater generality in the sorts of models that can be expressed.

Among tools supporting user-programmed behavior, a fundamental characteristic is the worldview that
is supported. In the following two subsections, we look closely at process orientation as it is expressed in
SSF, then at an event-oriented approach using a Java base framework.

14.2.1 Process Orientation

A process-oriented view (see Chapter 3) implies that the tool must support separately schedulable threads of
control. Threading is a fundamental concept in programming, and a discussion of its capabilities and imple-
mentation serves to highlight important issues in simulation modeling. Fundamentally, a “thread” is a sepa-
rately schedulable unit of execution control, implemented as part of a single executing process (as seen by
the operating system; see Nutt {2004]). An operating system has the nodon of separate processes (which
might interact), which typically have their own separate and independent memory spaces. A group of threads
operate in the same process memory space, with each thread having allocated to it a relatively small portion
of that space for its own use. That space is used to contain the thread’s stare, which is the full set of all infor-
mation needed to restart the thread after it is suspended. State would include register values and the thread’s
runtime stack, which holds variables that are local to the procedures called by the thread. Once a thread is
given control, it runs until it yields up control, either via an explicit statement that serves simply to relinquish
control or by blocking until signaled by another thread to continue.

These ideas are made more concrete by discussing them in the context of a Java implementation of SSE.
Java defines the Thread class; a subclass of Thread defines the execute method, which is defined in
the thread body. Threads coordinate with each other through “locks,” which provide mutually exclusive
access to code segments. Every instance of a Java object has an associated lock (and almost every variable

in Java is an object). A thread tries to execute a code fragment protsctsd by the lock for object obj via the Java
statement

synchrénized(obj) { /* code fragment */ }

A thread must acquire the lock before executing the code fragment, and only one thread has the lock at a
time. A thread that executes a synchronized statement at an instant at which another thread holds the
lock blocks—which could mean suspension, depending on the thread scheduler. Java threads can also coor-
dinate through wait and notify method calls, also associated with an object’s lock. A thiread that executes
obj.wait () suspends. Actually, multiple threads can execute obj .wait (), and each will suspend.

Eventually some thread executes obj .notify(), and the thread scheduler releases one of the suspended
threads to continue. i
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These notions can be used toimplement process orientation in a Java simulator. Each simulation process
derives from the Java Thread class. One additional thread will maintain an event list; processing for that
thread involves removing the least-time event from the event list, reanimating the simulation process thread
(or threads) associated with that event, and blocking until those threads have completed. While a process
thread is executing, it may cause additional events to be inserted into the scheduler thl:ead’§ event list. When
a process thread completes, it needs to block and to signal the scheduler thread that it is finished. We accom-
plish all this by using two locks per simulation process. One of these locks is the one Jaya prov_ldes auto-
matically for every object (and a simulation process thread is an object). The other lock is a variable each
simulation object defines, which we’ll call lock. A suspended process thread blocks on a call
lock.wait (); it remains blocked there until the scheduling thread executes notify () on that same
object variable. Afterthe scheduler does this, it blocks bycallingwait () onthe simu!ation. process ob Jegt's
own built-in lock. So the simulation process thread notifies the scheduler that it is finished by calling
notify() onits own built-in lock. . .

SSF code we discussed earlier in Chapter 4 (Figures 4.14 and 4.15) illusiates some of these points.
Recall that this code models a single server with exponentially distributed interarrival times and positive nor-
mal service times. A cursory glance shows the model to be legitimate Java code that uses SSF base classes.

SSF defines five base classes around which simulation frameworks are built (discussed in Chapter 4).
The key one for discussing process orientation is the process class; derived classes Arrivals in Figure 4.14
and Server in Figure 4.15 are examples of it. The base class specifies that method action be the threa}d body;
each derived class overrides the base-class definition to specify its own thread’s behavior. Every object of a
given class derived from process defines a separate thread of control, but all execute the same thread code bf)dy.

The waitFor statement used in Arrival’s thread body suspends the thread; its argument spec%ﬁes

how long in simulation time the thread suspends. The Java thread-based scheduli{l g mech @ism we descrll?ed
earlier enables implementation of waitFor to cause a “wake-up” event to be inserted into ttle sche(liulm‘g
thread’s event list, time stamped with the current time plus the wait For argument. Here variable tl.me is
the future-event time; method insertProcess puts the process into the event queue. A non-Simple
process (e.g., one implemented with a Java thread) goes through a sequence of synchronization steps to reach
the notify () method. (We will say more about Simple processes in 14.2.2.) The scl?eduler.thread has
blocked on the process’s native lock; this notify () releases it. The process then :medmtcly calls
wait () on its Lock variable, which suspends the thread until the scheduler executes notify () on t.hat
same variable. From the point of view of the code fragment executing waitFor, the statement followxgg
the waitFor call executes precisely at the time implied by the waitFor argument. The code in
Figure 14.2 (taken from an SSF implementation) illustrates this.

public void waitFor(long timeinterval) {
time = owner.owner.clock + timeinterval;
owner.owner. insertProcess (this) ;
if (tissimple()){
' synchronized{lock) {
synchronized (this) {
notify();

try{lock.wait{);)}
catch(InterruptedException e} { }
)

}
}

Figure 14.2 SSF implementation of waitFor statement.
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The call to waitOn in the Server’s action has a slightly different implementation. The code implementing
waitOn first attaches the process to the inChannel’s list of processes that are blocked on it, then engages
in the same lock synchronization sequence as wai tFor to block itself and release the scheduler thread. The
semantics of releasing a blocked process are defined in terms of SSF Events. An outChannel object to
which an Event object is written has almost always been “mapped” to an inChannel object. When an
Event is written to an outChannel at time ¢, the outChannel’s write method computes thetime ¢ + d
at which the Event is available o n the associated inChannel (dis a function of delays declared when the
outChannel is created, the mapTo method is called, and the write method is called), and an internal event

is put on the scheduler’s event list, with time stamp ¢ + d. The scheduler executes this event (no SSF process -

does) and releases all processes blocked on the inChannel to which the Event arrives. Each of these is able
to get a copy of the Event so delivered, by calling the inChannel’s activeEvents method.

From these descriptions, we see that, normally, each event has a thread overhead cost: 2 thread reani-
mations, and 2 thread suspensions.- Depending on how thread context switching is implemented, this cost
ranges from heavy to very heavy, as compared with a purely event-oriented view. These costs can be avoided
in SSF by designing processes to be simple, as is described next.

14.2.2 Event Orientation

From a methodological point of view, the process-oriented view is distinguished from the event-oriented view
in terms of the focus of the model description. Process erientation allows for a continuous description, with
pauses or suspensions. Event orientation does not. From an implementation point of view, the key distin-
guishing feature of process-oriented simulation is the need to support suspension and reanimation, which
leads us to threads, as we have seen. In SSE, though, we see thatthe difference between process and event ori-
entation is not very large: The SSF world encompasses both. The only difference is that, for SSF to be event
oriented, its processes need to be simple, a technical term for the case when every statement in action that
might suspend the process would be the last statement executed under normal execution semantics.

The implementation of wai tFor in Figure 14.2 computes the time when the suspension is lifted and
puts a reanimation event in the event list. Synchronization by threads through locks is used only if the
process is not simple. An implementation of waitOn would be entirely similar. If every SSF process in a
model is simple, there is no true code suspension, and the model is essentially event oriented. The action
body for a simple process is just executed fromits normal entry point when the condition that releases that
process from “suspension” is satisfied. The only way an Event that is writteninto an outChannel is deliv-
ered is if the recipient had called waitOn for the corresponding inChannel at a time prior to that at which
the Event was written. Thus, we see that some of the “events” implicit in an SSF model with event orien-
tation are kernel events, which decide whether model events ought to be executed as a result. Writing to an
outChannel schedules a kernel event at the Event’s receive time, butthe kernel’s processing of that event
determines whether an action body is called. Nevertheless, execution of action bodies constitutes the
essential “event processing” when SSF is used in a purely event-oriented view. It is interesting that, from a
conceptual point of view, there is very little difference between process-oriented and event-oriented SSE.

To conclude this discussion on tools, we remark that flexibility is the key requirement in computer-systems
simulation. Flexibility in most contexts means the ability to use the full power of a general programming lan-
guage. This requires a level of programming expertise that is not needed by users of commercial graphically
oriented modeling packages. The implementation requirements of an object-oriented event-oriented approach
are much less delicate than those of a threaded simulator, and the amount of simulator overhead involved in
delivering an event to an object is considerably less than the cost of a context switch in a threaded system.
For these reasons, most of the simulators written from scratch take the event-oriented view. However, the
underlying simulation framework necessarily provides a lower level of abskaction and so forces a modeler
to design and implement more model-management logic. The choice between using a process-oriented or an
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event-oriented simulator—or writing one’s own—is a function of the level of modeling ease, versus execution
speed.

To summarize this section, we present a table that lists diff erent levels of abstraction in computer-systems
simulation, the sorts of questions whose answers are sought from the models, and the sorts of tools typically
used for modeling. The level of abstraction decreases as one descends through Table 14.1.

14.3 MODEL INPUT

Justas there are different levels of abstraction in computer-systems simulation, there are different means of
providinginputto a model. The model might be driven by stochastically generated input, or it might be given
trace input, measured from actual systems. Simulations at the high end of the abstraction hierarchy most typ-
ically use stochastic input; simulations at lower levels of abstraction commonly employ trace input.
Stochastic input models are particularly useful when one wishes to study system behavior over a range of
scenarios; it could be thatall that is required is to adjust an input model parameter and rerun the simulation.
Of course, using randomly generated input raises the question of how real or representative the input is; that
doubt frequently induces systems people to prefer trace data on lower level simulations. Using a trace means
one cannot explore different input scenarios, but traces are useful when directly comparing two different.
implementations of some policy or some mechanism on the same input. The realism of the mput gives the
simulation added authority.

In all cases, the data used to drive the simulation is mtended to exercise whatever facet of the computer
system is of interest. High-level systems-simulations accept a stream of job-descriptions; CPU simulations
accept a stream of instruction descriptions; memory simulations accept a stream of memory references; and
gate-level simulations accept a stream of logical signals.

Computer systems modeled as queueing networks (recall Chapter 7) typically interpret *“customers” as
computer programs; servers typically represent services such as attention by the CPU or an Input-Output
(/0) system. Random sampling generates customer interarrival times; it may also be used to govern routing
and time in service. However, it is common in computer-systems contexts to have routing and service times
be state dependent (e.g., the next server visited is already specified in the customer’s description, or could
be the attached server with least queue length).

Interarrival processes have historically been modeled as Poisson processes (where times between suc-
cessive arrivals have-an exponential distribution). However, this assumption has fallen from favor as a result
of empirical observations that significantly contradict Poisson assumptions in current computer and com-
munication systems. The real value of Poisson assumptions lies in tractability for mathematical analysns, S0,
as simulationists, we can discard them with little loss.

In the subsections to follow, we look at the mathematical formulation of comraon input models sto-
chastic input models for virtual memory, and direct-execution techniques.

Table 14.1 Decreasing Abstraction and Model Results

Typical System Model Results Tools
CPU Network job throughput, queueing network,
job response time Petri net simulators, scratch
Processor instruction throughput, VHDL, scratch
time/instruction
Memory System miss rates, fesponse time B VHDL, scratch
- ALU timing, correctness VHDL, scratch
Logic Network timing, correctness VHDL, scratch
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14.3.1 Modulated Poisson Process

Stochastic input models ought to reflect the real-life phenomenon called burstiness—that is, brief periods when
traffic intensity is much higher than normal. An input model sometimes used to support this, retaining a useful

* level of mathematical tractability, is a Modulated Poisson Process, or MPP, (See Fischer and Meier-Hellstern,
[1993].) The underlying framework is a continuous-time Markov chain (CTMC), whose details we sketch so as
to employ the concept later. A CTMC is always in some state; for descriptive purposes, states are named by the
integers: 1, 2, .... The CTMC remains in a state for a random period of time, transitions randomly to another
state, stays there-for a random period of time, transitions again, and so on. The CTMC behavior is completely
described by its generator matrix, Q= {q,.J.}. For states i # j, entry g, describes the rate at which the chain tran-
sitions from state i into state j (this is the total transition rate out of state i, times the probability that it transitions
then into state ). The rate describes how quickly the transition is made; its units are transitions per unit simula-
tion time. Diagonal element g, is the negated sum of all rates out of state i : g, = —ZM g, An operational
view of the CTMC is that, upon entering a state i, it remains in that state for an exponentially distributed period
of time, the exponential having rate —g, When making the transition, it chooses state j with probability —
qu/q‘._l.. Many CTMCs are ergodic, meaning that, if it is left to run forever, every state is visited infinitely
often. In an ergodic chain, . denotes state i’s stationary probability, which we can interpret as the long-term
average fraction of time the CTMC is in state i. A critical relationship exists between stationary probabili-
ties and transition rates : For every state i,

Y 4= L

jei Jj#i

If we think of g, as describing a probability “flow” that is enabled when the CTMC is in state i, then these
equations say that, in the long term, the sum of all flows out of state i is the same as the sum of all flows into
the state. We will see in the example that follows that we can use the balance equations to build a stochastic
input with desired characteristics. To complete the definition of a MPP, it remains only to associate a cus-
tomer arrival rate A, with state i. When the CTMC is in state i, customers are generated as a Poisson process
with rate 4,.

To illustrate, let us consider an input process that is either OFF, ON, or BURSTY (the output rate is much
higher in the BURSTY state than in the ON state). We wish for the process to be OFF half of the time—on
average, for | second—and, when it is not OFF, we wish for it to be BURSTY for 10% of the time. We will
assume that the CTMC transitions into BURSTY only from the ON state and transitions out of BURSTY only
into the ON state. We will say that state O corresponds to OFF, 1 to ON, and 2 to BURSTY. Our problem
statement implies that 7z, = 0.5, z, = 0.45, and 7, =0.05. The only transition from OFF is to ON, and the mean
OFF time is 1, so we infer that 4y, = L. The balance equation for state O can be rewritten as

0.5=045¢,,
and hence g, ,= (0.5/0.45). The balanceequationfor state | can be rewritten as
0.45((0.5/0.45)+ g, ,)=0.5+0.05g,,
and the balance equation for state 2 is
' | 005¢,,=045q,,

The equations for states 1 and 2 are identical; mathematically, we don’t have enough conditions to force a
unique solution. If we add the constraint that a BURSTY period lasts, on average, 1/10 of a §econd, we
thereby define that ¢, , = 10 and, hence, thatg, , = (0.5/0.45). Operationally, the simulation of this CTMC is
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straightforward. In state 0, one samples an exponential with mean 1 to determine the state’s holding (in}e.
Following this period, the CTMC transitions into state 1 and samples a holding time from an exponential
with mean 0.45, after which it transitions to OFF or BURSTY with equal probability. In the BURSTY state,
it samples an exponential holding time with mean 0.1. Now all that is left is for us to define the state-depend-
ent customer arrival rates. Obviously, Ao =0; for illustration, we choose ﬂ.l = 10 and Az =500. B

Figure 14.3 presents a snippet of code used to generate times of arrivals in this process. Transnflons
between states are sampled by using the inverse-transform technique, described in Chapter 9. (The variable
acc computes the cumulative probability function in the distribution described by the row vector
p[state].) Figure 14.4 plots total customers generated as a function of time—for a short period of a sam-
ple run, and for a longer period. In the shorter run, we see regions where the graph increases sharply; they
correspond to periods in the BURSTY state. While the CTMC is not in this state, a mixture of OFF and QN
periods moves the accumulated packet count up at a much more gradual rate. The MPP model can de§cnbe
burstiness, but the burstiness is limited in time scale. The longer run views the data at a time scale that is two
orders of magnitude larger, and we see that the irregularities are largely smoothed.

class mpp {

public static double Finish; // sim termination
public static double time = 0.0; // current clock
public static double htime, etime; // tranmsition times
public static int state = 0; . // current state id
public static int total = 0; // total pkts emitted

public static Random stream;

public static void main(String argv(]) {
while( time < Finish ) {

// generate exponential holding time, state-dependent mean
htime = time+exponential ( stream, hold[state] );

// emit packets until state transition time. State dependent
// rate. Note assignment made to etime in while condition test
while( (etime = time+exponential( stream, 1.0/rate[state]))
" < min( htime, Finish) ) {
System.out.println( etime + ‘' ‘’ + total);
total++;
time = etime; // advance to packet issue time

}

time = htime;

// select next state

double ,trans = stream.nextDouble();
double acc = P[state] [0];.

int i = 0;

while( acec < trans ) acc += P[state] [++il];
state = i; '
}

}

} ' N . T
Figure 14.3 Java code generating MPP trace.
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Figure 14.4 Sample runs from MPP model.

In contrast to the Markovian essence of the MPP model, consider a traffic source that remains OFF for
an exponentially distributed period of time with mean 1.0, but, when it comes ON, remains on for a period
of time sampled from a Pareto distribution. While it is ON, packets arrive as a Poisson process. As we will
see in the chapter on simulation of computer networks, the Pareto distribution is of particular interest because
it gives rise to “self-similarity,” which informally means preservation of irregularities at multiple time scales..
Figure 14.5 parallels the MPP data, displaying accumulated packet counts as a function of time; it presents
behavior for the first 1000 units of time and for the first 100,000 units of time. Here, despite two orders of
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Figure 14.5 Sample runs from self-similar model.

magnitude of difference in run length, the visual impression of behavior is much the same between the two
traces. This sort of behavior is frequently seen in computer and communication systems; the long lengths
reflect burstiness of packets, file lengths, and demand on a server.

14.3.2 Vlrtual -Memory Referencing

Randomness can also be used to drive models in the middle levels of abstraction. An example is a model of
program-execution behavior in a computer with virtual memory. (See Nutt {2004).) In such a system, the data
and instructions used by the program are organized in units called pages. All pages are the same size,
typically 2! to 2!2 bytes in size. The physical memory of a computer is divided into page frames, each capable
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of holding exactly one page. The decision of which page to map to which frame is made by the operating
system. As the program executes, it makes memory references to the “virtual memory,” as if it occupied a
very large memory starting at address 0 and were the only occupant of the memory. On every memory ref-
erence made by the program, the hardware looks up the identity of the page frame containing the reference
and translates the virtual address into a physical address. The hardware might discover that the referenced
page is not present in the main memory; this situation is called a page fault. When a page fault occurs, the
hardware alerts the operating system, which then takes over to bring in the referenced page from a disk and
decides which page frame should contain it. The operating system could need to evict a page from a page
frame to make room for the new one. The policy the operating system uses to decide which page to evict is
called the “replacement policy.” The quality of a replacement policy is often measured in terms of the hit
ratio—ithe fraction of references made whose page frames are found immediately.

Virtual-memory systems are used in computers that support concurrent execution of multiple programs.
In order to study different replacement policies, one could simulate the memory-referencing behavior of
several different programs, simulate the replacement policy, and count the number of references that page
fault. For this simulation to be meaningful, it is necessary that the stochastically generated references capture
essential characteristics of program behavior. Virtual memory works well precisely because programs do tend
to exhibit a certain type of behavior; this behavior is called locality of reference. What this means intuitively
is that program references tend to cluster in time and space and that, when a reference to a new page is made
and the page is brought in from the disk, it is likely that the other data or instructions on the page will also
soon be referenced. In this way, the overhead of bringing in the page isamortized over all the references made
to that page before it is eventually evicted. A program’s referencing behavior can usually be separated into a
sequence of “phases”; during each phase, the program makes references to a relatively small collection of
pages, called its working set. Phase #ansitions essentially change the program’s working set. The challenge
for the operating system is to recognize when the pages used by a program are no longer in its working set,
for these are the pages it can safely evict to make room for pages that are in some program’s worling set.

Figure 14.6 illustrates a stream of memory references taken from an execution of the commonly used
gcc compiler. One graph gives a global picture; the other cuts out references to pages over number 100 and
shows more fine detail. Each graph depicts points of the form (i, p,) where p, is the page number of the ith
reference made by the program {arithmetically shifted so that the smallest page number referenced is 10).
The phasesare clearly seen; each member of the working set of a phase is seen as lines (which arereally just
a concatenation of many points). One striking facet of this graph is how certain pages remain in almost all
working sets. However, other kinds of programs exhibit other behaviors. A common characteristic of scien-
tific programs is that the execution is dominated by an inner logp that sweeps over arrays of data; the pages
containing the instructions are in the working set throughout the loop, but data pages migrate in and out.

Despite various differences, a near-invariant among program execusions is the presence of phase-like
behavior and of working sets. In the building of a stochastic reference generator, it therefore makes sense to
focus modeling effort on phase and working-set defmition. As a starting point, we might, with every refer-
ence generated, randomly choose (with some small probability) whether to start a new phase (by changing
the working set). Given a working set, we would choose to reference some page in the working set with high
probability and, if choosing to stay in the set, choose with high probability the same page as the one last ref-
erenced in the working set. The inner loop of a program that generates references in this fashion appears in
Figure 14.7. Details of working-set definition are hidden inside of routine new_wrkset and might vary
with the type of program being modeled. For the purposes of illustration here, we wrote a version that
defined a working set by randomly choosing a working-set size between 2 and 8 and a maximum page num-
ber of 100. A working set of size a is constructed by randomly choosing a “center” page ¢ from among all
pages, randomly choosing an integer dispersion factor d from 2 to 6, and then randomly selecting a working
set from among all pages within distance d X n from center- page ¢ (with appropriate wraparound of page
numbers at the endpoints 0 and 100). In order to model the referencing pattern of a scientific program’s
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double ppt

= 0.0001; // Pr{phase transition}
double psw = 0.999; . // Pr(ref in WS}
double psp = 0.9; // Pr{reference same page}

// method new_wrkset{) creates a new working set
// method from_wrkset(} samples from the working set
// method not_from_wrkset () samples from outside the working set

int ref; // last page referenced
int sv_ref; // save ref
Random stream; // random number stream

for(int i=0; i<length; i++) {
if( stream.nextDouble{) < ppt ) new_wrkset(); // phase transition
if ( stream.nextDouble() < psw ) { // stay in working set?
if( psp < stream.nextDouble() ) // change page, in wrkset
ref = sv_ref = from_wrkset(}); : :
} else ref = not_from wrkset(); // step outside of wrkset

System.out.println(i + ‘' ** + ref);
ref = sv_ref;

}

Figure 14.7 Java pseudocode for generating a reference trace.

instruction stream, we manipulated the logic illustrated above to “lock down” a worliing set for a long time
in the middle of the program execution. Figure 14.8 illustrates the result. As designed, phases and working
sets are precisely defined.

The preceding example illustrates how one can in principle generate an execution path stochastically,
but simulations at the middle level of abstraction also commonly use #aces. Studies of CPU design will use
ameasured trace of instructions executed by a running program; studies of memory systems will use a meas-
ured trace of the addresses referenced by an executing program. Such traces get to be lengthy. A small piece
of a typical trace of memory references is shown here: :

430470
430474
415130
1000acac
414134
7££f00ac
414138

ME NMONMNDN

The first number is a code describing the ty pe of access; 2 represents an instruction fetch, 0 a data read, 1 a data
write. The second number represents a memory address, in hexadecimal. If the wace were also to describe the
instruction stream, a hexadecimal word giving the machine code of theinstruction fetched could follow the mem-
ory address on every instruction fetch line. Two or three words of memory are needed to represent one reference,
even when the information is efficiently packed (not as characters, as shown, which take much more spacet).
Consider also the amount of computation needed to simulate a CPU or memory for the execution of a signifi-
cantly long run of a nontrivial program. These observations help us understand the motivation for techniques
that compress the address trace and for techniques that allow ong to infer information about multiple systems
from a single pass through a long trace. We will say more about these techniques later in this chapter.
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Figure 14.8 A synthetic trace modeling a scientific-program instruction stream.

Anothermethod of generating inputis called “direct execution” simulation. (For examples, see Covington
etal. [19911, Lebeck and Wood [1997], Dickens et al. [19961). One approach to it is illustrated in Figure 14.9.
Direct execution is like generating a trace and driving the simulation with that trace, all at once. Computer
programs are “instrumented” with additional code that observes the instructions the program executes and the

program Simulation
Sourge Kernel
cnde Library

Simulation executable

""""""" i subfoutine call = ==~———~
! Simulation Model ' | Instrumented
{ and Control | ! Program

—————————— ' return reference de = — e e o

Figure 14.9 Directexecution simulation.
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memory and IO references the program makes as it executes. The instrumented program is compiled and

linked with a simulation kernel library. Execution control rests with the simulation kemel, which calls the.

instrumented program to provide the next instruction or reference that the program generates. The simulation
kernel uses the returned information to drive the model for the next step. The simulation model driven by the

program’s execution can be of an entirely different CPU design, or a memory system, or even (given multiple,

instrumented programs) the internals of a communications network. Direct-execution simulation solves
the problem of storing very large traces—the trace is consumed as it is being generated. However, it is tricky
to modify computer programs to get at the trace information and to coordinate the trace generator with
discrete-event simulator. The only practical way an ordinary simulator practitioner can use such methods is
when the system has a software tool for making such modifications, but this feature is not common.

14.4 HIGH-LEVEL COMPUTER-SYSTEM SIMULATION

In this section, we illustrate concepts typical of high-level computer simulations by sketching a simulation
model of a computer system that services requests from the World Wide Web.

Example 14.1
A company that provides a major website for searching and links tosites for travel, commerce, entertainment,
and the like wishes to conduct a capacity-planning study. The overall architecture of its system is shown in
Figure 14.10. At the back end, one finds data servers responsible for all aspects of handling specific queries
and updating databases. Data servers receive requests for service from application servers—machines dedi-
cated to running specific applications (e.g., a search engine) supported by the site. In front of the applications
are Web servers, which manage the interaction of applications with the World Wide Web; the portal to the
whole system is a load-balancing router that distributes requests directed to the website amongthe Web servers.

The goal of the study is to evaluate the site’s ability to handle load at peak periods. The desired output
is an empirical distribution of the access response time. Thus, the high-level simulation model should focus

web servers

local area network

Figure 14.10 Website server sylstem.
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on the impact of timing at each level that is used, system factors that affect that timing, and the effects of
timing on contention for resources. To understand where those delays occur, let us consider the processing
associated with a typical query.

* All entries into the system are through a dedicated router, which examines the request and forwards it to
some Web server. Time is required to exercise the logic of looking at the request to discern whether it is a new
request (requiring load balancing) or part of an ongoing session. It is reasonable to assume one switching time
for a preexisting request and a different time for a new request. The result of the first step is selection of a Web
server and the enqueueing there of a request for service. A Web server can be thought of as having one queue
of threads of new requests, a second queue of threads that are suspended awaiting a response from an appli-
cation server, and a third queue of threads “ready” to process responses from application servers. An accepted
request from the router creates a new request thread. We may assume the Web server has adequate memory
to deal with all requests. It has a queueing policy that manages access to'the CPU; the distinction between new
requests and responses from application servers is maintained for the sake of scheduling and for the sake of
assigning service times, the distributions of which depend on the type. The servicing of a new requestamounts
to identification of an application and the associated application server. A request for service is formated and
forwarded to an application server, and the requesting thread joins the suspended queue. At an application
server, requests for service are organized along application types. A new request creates a thread that joins a
new-request queue associated with the identified application. An application request is modeled as a sequence
of sets of requests from data servers, interspersed with computational bursts—for example,

burst 1

request data from D1, D3, and DS
burst 2

request data from D1 and D2
buxst 3

In this model, we assume that all data requests from a set must be satisfied before the subsequent computational
burst can begin. Query search on a database is an example of an application that could generate a long sequence
of bursts and data requests, with large numbers of data requests in each set. We need not assume that every
execution of an application is identical in terms of data requests or execution bursts; these can be generated
stochastically. An application thread’s state will include description of its location in its sequence and a list of
datarequests still outstanding before the thread can execute again. Thus, for each application, we will maintain
a list of threads that are ready to execute and a list of threads that are suspended awaiting responses from data
servers. An application server will implement a scheduling policy over sets of ready application threads. A data
server creates a new thread to respond to a data request and places it in a queue of ready threads. Some
data server might implement memory-management policies and could require further coordination with the
application server to know when to release used memory. Upon receiving service, the thread requests data from
adisk, then suspends until the disk operation completes, at which point the thread is moved from the suspended
list to the ready list and, when executed, again reports back to the application server associated with the request.
The thread suspended ‘at the application server responds; eventually, the application thread-finishes and reports
its completion back to the Web-server thread that initiated it, which in tam communicates the results back over
the Internet, '

Stepping back from the details, we see that a simulation model of this system must specify a number of
features, listed in Table 14.2. All of these affecting timing in some way. The query-response-time distribu-
tion can be estimated by measuring, for each query, the time between at which a'request first hits the router
and the time at which the Web-server thread communicates the results. From the set of simulated queries,
one can build up a histogram. As should be evident, a response time reflects a great many different factors
related to execution bursts, scheduling policies, and disk-access times. Deeper understanding of the system
is obtained by measuring behavior at each server of each type. One would look especially for evidence of
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Table 14.2 Required Specification for Web System Model

Subsystem Specifications

Router load-balancing policy, execution times

Web Server server count, queueing policy, execution times

Application Server server count, queueing policy, behavior model

Data Server server count, disk count, queueing policy,
memory policy, disk timing

bottlenecks. CPU bottlenecks would be reflected at servers withhighCPU utilization; IO bottlenecks at disks
with high utilization. To assess system capacity at peak loads, we would simulate to identify bottlenecks,
then look to see how to reduce load at bottleneck devices by changes in scheduling policies, by binding of
applications to servers, or by increasing the number of CPUs or disks in the system. Normally, one must
resimulate a reconfigured system under the same load as before to assess the effects of the changes.

The website model is an excellent candidate for a threaded (process-oriented) approach to modeling.
The most natural process-oriented approach is to associate processes with servers. The simulation model is
expressed from an abstracted point of view of the servers’ operating system. Individual queries become
messages that are passed between server processes. In additional to limiting the number of processes, an
advantage of this approach is that it explicitly exposes the scheduling of query processing at the user level.
The modeler has both the opportunity and the responsibility to provide the logic of scheduling actions that
model processing done on behalf of a query. It is a modeling viewpoint that simplifies analysis of server
behavior—an overloaded server is easily identified by the (modeler-observable) length of its queue of
runnable queries. However, it is a modeling viewpoint that is a bit lower in abstraction than the firstone and
requ'ires more modeling and coding on the part of the user. '

An event-oriented model of this system need not look a great deal different from the second of our
process-oriented models. A query passed as a message between servers have an obvious event-oriented
expression. A modeler would have to add to the logic, events, and event handlers that describe the way a
CPU passes through simulation time. For example, consider a call to hold(qt ) in a process-oriented model to
expressthat the CPU is allocating gt units of service to a query, during which time it does nothing else. In an
event-oriented model, one would need to define events that reflect “starting” and “stopping” the processing
of a query, with some scheduling logic interspersed. Additional events and handlers.need to be defined for
any “signaling” that might be done between servers in a process-oriented model—for example, when a data-
server process awaits completion of modeled 10 requests sent to its disks. A process-oriented approach, even
one focused on servers rather than queries, lifts the level of model expression to a higher level of abstraction
and reduces the amount of code that must be written. In a system as complex as the website, one must factor
complexity of expression into the overall model-development process.

14.5 CPU SIMULATION

Next, we consider a lower level of abstraction and look at the simulation of a central processing unit.
Whereas the high-level simulation of the previous example treated execution time of a program as a constant,
at the lower level we do the simulation to discover what the execution time is. The input driving this simu-
lation is a stream of instructions. The simulation works through the mechanics of the CPU’s logical design
to find out what happens in response to that stream, how long it takes to execute the program, and where
bottlenecks exist in the CPU design. Our discussion illustrates some of the functionality of a modern CPU
and the model characteristics that such a simulation seeks to discern. Examples of such simulations include
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those described in Cmelik and Keppel [1994], Bedicheck [1995], Witchel and Rosenblum [1996], Austin,
Larson, and Ernst [2002], Bohrer et al. [2004] and Magnusson et al. [2002]. The view of the CPU taken in
our discussion is similar to that taken by the RSIM system (Hughes et al. [2002]).

The main challenge to making effective use of a CPU is to avoid stalling it; stalling happens whenever
the CPU comumnits to executing an instruction whose inputs are not all present. A leading cause of stalls is
the latency delay between CPU and main memory, which can be tens of CPU cycles. One instuction might
initiate a read—for example,

load $2, 4($3)

which is an assembly language statement that instructs the CPU to ase the data in register 3 (after adding
value 4 to it) as a memory address and to put the data found atthataddress into register 2. If the CPU insisted
on waiting for that data to appear in register 2 before further execution, the instruction could stall the CPU
for a long time if the referenced address is not found in the cache. High-performance CPUs avoid this by
recognizing that additional instructions can be executed, up to the point where the CPU attempts to execute
an instruction that reads the contents of register 2—for example,

add $4,$2,$5

Thisinstruction adds the contents of registers 2 and 5, and places the result in register 4. If the data expected
in register 2 is not yet present, the CPU will stall. So we see that, to allow the CPU to continue past amemory
load, it is necessary to (1) mark the target register as being unready, (2) allow the memory system to load the
target register asynchronously while the CPU continues on in the instruction stream, (3) stall the CPU if it
attempts to read a register marked as unready, and (4) clear the unready status when the memory operation
completes.

The sort of arrangement just described was first used in the earliest supercomputers, designed in the
1960s. Modern microprocessors add some additional capabilities to exploit instruction level parallelism
(ILP). We outline some of the current architecture ideas in use to illustrate what a simulation model of an
ILP CPU involves.

The technique of pipelining has long been recognized as a way of accelerating the execution of com-
puter instructions. (See Patterson and Hennessy [1997].) Pipelining exploits the fact that each instruction
goes sequentially through several stages in the course of being processed; separate hardware resources are
dedicated to each stage, permitting multiple instructions to be in various stages of processing concurrently.
A typical sequence of stages in an ILP CPU is as follows:

1. Instruction fetch: The instruction is fetched from the memory.

2. Instruction decode: The memory word holding the instruction is interpreted to discover what operatlon
is specified, the registers involved are identified.

3. Instruction issue: An instruction is “issued” when there are no constraints holding it back from being
executed. Constraints that keep an instruction from being issued include data not yet being ready in
an input register and unavailability of a functional unit (e.g., Arithmetic Logical Unit) nesded to
execute the instruction.

4. Instruction execute: The instruction is performed.

S. Instruction complete: Results of the instruction are stored in the destination register.

6. Instruction graduate: Executed instructions are graduated in the order that they appear in the instruc-
tion stream.

Ordinary pipelines permit at most one instruction to be represented in each stage; the degree of parallelism
(number of concurrent instructions) is limited to the number of stages. ILP designs allow multiple instruc-
tions to be represented in some stages. This necessarily implies the possibility of executing some stages of
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successively fetched instructions out of order. For example, it is entirely possible for the n™ instruction, /,,
to be constrained from being issued for several clock cycles while the next instruction, /_,, is not so
constrained. An ILP processor will push the evaluation of /,,; along as far as it can without waiting on /.
However, the instruction graduate stage will reimpose order and insist on graduating /_ before /.

ILP CPUs. use architectural slight of hand with respect to register useage to accelerate performance.
An ILP machine typically has more registers available than appear in the instruction set. Registers named in
instructions need not precisely be the registers actually used in the implementation of those instructions. This
is acceptable, of course, as long as the effect of the instructions is the same in the end. One factor motivating
this design is the possibility of having multiple instructions involving the same logical registers (those named
by the instructions themselves) actively being processed concurrently. By providing each instruction with it
own “copy” of a register, we eliminate one source of stails. Another factor involves branches—that is, instruc-
tions that interrupt the sequential flow of control. An ILP, encountering a branch instruction, will predict
whether the branch is taken or not and possibly alter the instruction stream as a result. Various methods exist
to predict branching, but any of them will occasionally predict incorrectly. When an incorrect prediction is
made, the register state computed as a result of speculating on branch outcome needs to be discarded and
execution resumed at the branch point. Thus, another use of additional registers is to store the “speculative
register state.” With dedicated hardware resources to track register useage following speculative branch
decision, speculative state can be discarded in a single cycle and control resumed at the mispredicted branch
point. In all of these cases, the hardware implements techniques for renaming the logical registers that appear
in the instructions to physical registers, for mamtalmng the mapping of logical to physical registers, and for
managing physical register useage.

A simulation model of an ILP CPU will model the logic of each stage and coordinate the movement of
instructions from stage to stage. We consider each stage in tum.

An instruction-fetch stage could interact with the simulated memory system, if that is present. However,
if the CPU simulation is driven by a direct-execution simulation or by a trace file, there is little for a model
of this stage to do but get the next instruction in the stream. If a memory system is present, this stage could
look into an instruction cache for the next referenced instruction, stalling if a miss is suffered.

Following an instuction fetch, an instruction will be in the CPU’s list of active instructions until it exits
altogether from the pipeline. The instruction-decode stage places an instruction in this list; a logical register
that appears as the target of an operation is assigned a physical register-—segisters used as operand sources
will have been assigned physical registers in instructions that defined their values. (Sequencing issues asso-
ciated with having multiple representations of the same register are dealt with at a later stage in the pipeline.)
Branch instructions are identified in this stage, predictions of branch outcomes are made, and resources for
tracking speculative execution are committed here.

Decoded instructions pass into the instruction-issue stage. The loglc here is complex and very much
timing dependent. An instruction cannot be issued until values in i% input registers are available and a functional
unit needed to perform the instruction is available. An input value might be not yet in a register, for instance,
if that value is loaded from memory by a previous instruction and has not yet appeared. A functional unit
could be unavailable because all appropriate ones are busy with multicycle operations initiated by other
instructions. Implementation of the issue-stage model (and hardware) depends on marking registers and
functional units as busy or pending and on making sure that, when the state of a register or functional unit
changes, any instruction that cannot yet issue because of thatregister or funcnonal unit is reconsidered for
issue.

Simulation of the instruction-execute stage is a matter of computing the resultspecified by the instruc-
tion (e.g., an addition). At this point, the action of depositing the result into a register.or memory is sched-
uled for the instruction-complete stage. This latter stage also cleans up the status bits associated with
registers and functional units involved in the instruction and resolves the final outcome of a predicted branch.
If a branch was mispredicted, the speculatively fetched and processed instructions that follow itare removed
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from other pipeline stages, the hardware that tracks speculative instruction is released, and the instruction
stream is reset to follow the branch’s other decision direction.

Between the instruction-issue and instruction-complete stages, instructions could get processed in an order
that does not correspond to the original instruction stream. The last stage, graduation, reorders them.
Architecturally, this permits an ILP CPU to associate an exception (e.g., a page fault or a division by zero) with
the precise instruction that caused it. Simulation of this stage is a matter of knowing the sequence number of
the next instruction to be graduated, then graduating it when it appears.

Example 14.2
An example helps to show what goes on. Consider the following sequence of assembly-language instructions
for a hypothetical computer: '

load $2, 0{$6) ;: I1- load $2 from memory

mult $5, 2 ¢ I2- multiply $5 with constant 2
add $4, 12 ; I3~ add constant 12 to $4

add $s, $2 ; T4~ 85 <~ $5 + §2

add $5, $4 ; I5- $5 <~ $5 + $4

Let us suppose that the register load misses the first-level cache but hits in the second-level cache, resulting
in a delay of 4 cycles before the register gets the value. Suppose further that separate hardware exists for
addition and multiplication, that addition takes one cycle, and that multiplication takes 2 cycles to complete.
Time is assumed to advance in units of a single clock tick.

Table 14.3 shows a timeline of when each instruction is in each stage. Cycles in which an instuction
cannot proceed through the pipeline are marked as “stall” cycles. Processing is most easily understood by
tracing individual instructions through. '

1. After being fetched in cycle 1, the decode of Il assigns physical register $p1 as the target of the
load operation and marks $pl as unready. No constraints prohibit I1 from being issued in cycle 3 nor exe-
cuted in cycle 4. Because the memory operation takes 4 cycles to finish, Il is stalled in cycles 5-8. Cycle 9
commits the data from memory to physical register $pl and clears its unready flag; the instruction is graduated
in cycle 10.

{2. Instruction 12 is fetched in cycle 2 and has physical register $p2 allocated to receive the results of
the multiplication in the cycle-3 decode stage; $p2’s unready flag is raised. No constraints keep I2 from

Table 14.3 Pipeline Stages, LP CPU Simulation

Inst./Cycle 1 2 3 4 5 6 7
I fetch decode issue execute stall stall stal}
n _ fetch decode issue execute stall complete
13 fetch decode issue execute  complete
14 fetch decode stall stall
IS fetch decode stall
Inst/Cycle 8 9 10 11 12 13 14
Il " stall  complete  graduate
12 stall stall stal} graduate
13 stall stail stall stall graduate
14 stall stall issue execute complete  graduate
I5 ) stall stall stall stall stall issue complete
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being issued in cycle 4 or executed in cycle 5, but the 2-cycle delay of the multiplier means the result is not
committed to register $p2 until cycle 7, at which point the $p2 unready flag is cleared. The instruction
remains stalled through cycles 8~10, awaiting the graduation of I1.

13. [Instruction I3 is fetched in cycle 3 and has physical register $p3 allocated to receive the results of
its addition in the cycle-4 decode stage. The $p3 unready flag is raised. There are no constraints keeping I3
from being issued in cycle 5 and executed in cycle 6, with results written into $p3 in cycle 7, at which time
$p3’s unready flag is cleared. I3 must stall, however, during cycles 8-11, awaiting the graduation of 12.

{4. Instruction I4 is fetched in cycle 4 and has physical register $p4 allocated to receive the results of
the addition during the cycle-5 decode stage. $p4’s unready flag is raised at that point. Physical registers $p1
and $p2 are operands to the addition; I4 stalls in cycles 6-9, waiting for their unready flags to clear. It then
passes the remaining stages without further delay, clearing the $p4 unready flag in cycle 12.

15. Instruction I5 is fetched in cycle 5 and has physical register $p5 allocated to receive the results of
its addition in the cycle-6 decode stage, at which point the $p5 unready flag is set. Physical registers $p3 and
$p4 contain the addition’s operands; I5 stalls through cycles 7-12, waiting for their unready flags both to
clear. From that point forward, IS passes through the remaining stages without further delay.

The performance benefit of pipelining and ILP can be appraciated if we compare the execution time of
this sequence on a nonpipelined, non-ILP machine. Assuming that each stage must be performed for each
instruction but that one instruction is processed in its entirety before another one begins, 51 cycles are needed
to execute Il through I5. With the advanced architectural features, only 15 cycles are needed. The example
illustrates both the parallelism that pipelining exposes and the latency tolerance that the ILP desiga supports.
Even though 11 stalls for four cycles while awaiting a result from memory, the pipeline keeps moving other
instructions through to some extent. The bottom line for someone using a model like this is the rate at which
instructions are graduated, as this reflects the effectiveness of the CPU design. Secondary statistics would
try to pinpoint where in the design stalls occur that might be alleviated (e.g., if many stalls occur because of
waiting for the multiplier (no such stalls occur in the example), then one could consider including an addi-
tional multiplier in the CPU design).

Our explanation of the model’s workings was decidedly process oriented, taking the view of an instruc-
tion. However, the computational demands of a model like this are enormous, owing to the very large number
of instructions that must be simulated to assess the CPU design on, say, a single program run. The relatively
high cost of context switching would deter use of a normal process-oriented language. One could implement
what is essentially a process-oriented view by using events—each time an instruction passes througha stage,
an event is scheduled to take that instruction through the next stage, accounting for stalls. The amount of
simulation work accomplished per event is thus the amount of work done on behalf of one instruction in
one stage. An alternative approach is to eschew explicit events altogether and simply use a cycle-by-cycle
activity scan. At each cycle, one would examine each active instruction to see whether any activity associ-
ated with that instruction can be done. An instruction that was at one stage at cycle j will, at cycle j + 1, be
examined for constraints that would keep it-at cycle j. Finding none, that instruction would be advanced to
the nextstage. An activity-scanning approach has the attractiveness of eliminating event-list overhead, but
the disadvantage of expending computational effect on checking the status of a stalled instruction on every
cycle during which it is stalled. Implementation details and model behavior largely determine whether an
activity-scanning approach is faster than an event-oriented approach (with the nod going to activity scanning
when few instructions stall).

14.6 MEMORY SIMULATION

One of the great challenges of computer architecture is finding ways to deal effectivély with the increasing
gap in operation speed between CPUs and main memory. A factor of 100 in speed is not far from the mark.
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The main technique that has evolved is to build hierarchies of memories. A relatively small memory—the
L1 cache-—operates at CPU speed. A larger memory-——the 1.2 cache—is larger and operates more slowly.
The main memory is larger still and slower still. The smaller memories hold data that was referenced recently
and nearby data that one hopes will also be referenced soon. Data moves up the hierarchy on demand and
agesout as it becomes disused, to make room for the datain current use. For instance, when the CPU wishes
to read memory location 100,000, hardware will look for it in the L1 cache; if it fails to find it there, it will
lookin the L2 cache. If it is found there, an entire block containing that reference is moved from the L2 cache
into the L1 cache. If it is not found in the L2 cache, a (larger) block of data containing location 10,000 is
copied from the main memory to the L2 cache, and part of that block (containing location 10,000 of course)
is copied into the L1 cache. It could take 50 cycles or more to accomplish this. After this cost has been
suffered, the hope and expectation is that the CPU will continue to make references to data in the block brought
in, because accesses to L1 data are made at CPU speeds. Fortunately, most programs exhibit locality of
reference at this scale (as well as at the paging scale discussed earlier in the chapter), so the strategy works.
However, after a block ceases to be referenced for a time, it is ejected from the L1 cache. It could remain in
the L2 cache for a while and later be brought back into the L1 cache if any element of the block is referenced
again. Eventually a block remains unreferenced long enough so that it is e jected also from the L2 cache.

The astute reader will realize that data that is written into an L1 cache by the CPU creates a consistency
problem, in that a memory address then has different values associated with it at different levels of the memory
hierarchy. One way of dealing with this is to write through to all cache levels every time there is a write—
the new value is asynchronously pushed from L1 through L2 to the main memory. An alternative method
copies back a block from one memory level to the lower level, at the point the block is being ejected from
the faster level. The write-through strategy avoids writing back blocks when they are ejected, whereas the
write-back strategy requires that an entire block be written back when ejected, even if only one word of
the block was modified, once. One of the roles simulation plays is to compare performance of these two
write-back strategies, taking into consideration all costs and contention for the resources needed to support
writing back modifications. .

Like paging systems, the principle measure of the quality of a memory hierarchy is its hit ratio at each

- level. As with CPU models, to evaluate a memory hierarchy design, one must study the design in response

to a very long string of memory references. Direct-execution simulation can provide such a reference stream,
as can long traces of measured reference traffic. Nearly every caching system is a demand system, which

-means that a new block is not brought into a cache before a reference is made to a word in that block.

Decisions left still to the designer include whether to write-through or write-back modifications, the replace-
ment policy, and the “set associativity.” ’

The concept of set associativity arises inresponse to the cost of the mechanism used to look for a match.
Imagine we have an L2 cache with 2 million memory words (an actual figure from an actual machine). The
CPU references location 10000—the main memory has, say, 2'2 words, so the L2 cache holds but a minute
fraction of the memory. How does the hardware find out whether location 10000 is in the L2 cache? It uses
what is called an associative memory, one that associates search keys with data. One queries an associative
memory by providing some search key. If the key is found in the memory, then the data associated with the
key is returned; otherwise, indication of failure is given. In the caching context, the search key is derived
from the reference address, and the return data is the data stored at that address. Caches must be very very
fast, which means that the search process has to be abbreviated. This is accomplished by dedicating
comparison hardware with every location in the associative memory. Presented with a search key, every com-
parator looks for a match with the key at its location. At most one comparator will see a match and return
the data; it is possible that none will. A fully associative cache is one where any address can appear any-
where in the cache. This means building the cache to have a unique comparator associated with every address
in the cache; doing so is prohibitively expensive. Tricks are played with memory addresses in order to reduce
the costs greatly. The idea is to partition the address space into sets. Figure 14.11 illustrates how a 48-bit
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Figure 14.11 48bit address partitioned for cache.

memory address might be partitioned in key, set id, and blockoffset. Any given memory address is mapped
to the set identified by its set-id address bits. This scheme assigns the first block of 2% addresses to set 0,
the second block of 2° addresses to set 1, and so on, wrapping around back to set O after 2° blocks have
been assigned. Each set is give a small portion of the cache—the set size—typically, 2 or 4 or 8 words. Only

-those addresses mapped to the same set compete for storage in that space. Only as many comparators are
needed as there are words in the set. Given an address, the hardware uses the set-id bits to identify the set
number and the key bits to identify the key. The hardware matches the keys of the blocks already in the iden-
tified set to comparator inputs and also provides the key of the sought address as input to all the comparators.
Comparisons are made in parallel; in the case of a match, the block-offset bits are used to index into the
identified block to select the particular address being referenced.

The overall size of this cache is seen to be the total number of sets times the set size. One role of simu-
lation is to work out, for a given cache size, how the space ought to be partitioned into sets. This is largely
a cost consideration, for increasing the set size (thereby reducing the number of sets) typically increases the
hit ratio. However, if a set size of 4 yields a sufficiently large hit ratio, then there is little point to increasing
the set size (and cost).

Least'Recently Used (LRU) is the replacement policy most typically used. When a reference is made

but is not found in a set, some block in the set is ejected to make room for the one containing the new
reference. Under LRU, the block selected for ejection is the one which, among all blocks in the set, was last
referenced most distantly in the past.

LRU is one of several replacement policies known as stack policies. (See Stone [1990].) These are char-
acterized by the behavior that, for any reference in any reference string, if that reference misses in a cache
of size n, then it also misses in every cache of size m < n, and that, if it hits in a cache of size m, then it hits
in every cache of size n > m. Simulations can exploit this fact to compute the miss ratio of many different
set sizes, in just one pass of the reference string! Suppose that we do not wish to consider any set size larger
than 64. Now we conduct the simulation with set sizes of 64. Every block in the cached set is marked with
a priority—namely, the temporal index of the last reference made to it (e.g., the block containing the first
reference in the string is marked with 1, the block containing the second reference is marked with a 2 (over-
writing the 1, if the same as the previous block), etc.). When a block must be replaced, the one with the
smallest index is selected. Imagine that the simulation organizes and maintains the contents of a cached set
in LRU order, with the most recently referenced block first in the order. The stack distance of a block in this
list is its distance from the front; the most recently referenced block has stack distance 1, the block refer-
enced next most recently has stack distance 2, the LRU block has stack distance 64. Presented with a refer-
ence, the simulation searches the list of cache blocks for a match. If no match is found, then, by the stack
property, no match will be found in any cache of a size smaller than 64, on this reference, for this reference
string. If a match is found and the block has stack distance k, then no match will be found in any cache
smaller than size , and a match will always be found in a cache of size larger than k. Rather than record a
hit or miss, one increments the & element of a 64-element array thatrecords the number of matches at each
LRU level. To find out how many hits occurred in a cache of size n, one sums up the counts of the first n
elements of the array. Thus, with a'little arithmetic at the end of the run, one can count (for each set cache)
the number of hits for every set of every size between 1 and 64.

stack distance 2 D/B D F C/BF
B A A D

Figure 14.12 [RU stack evolution
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Figure 14.12 illustrates the evolution of an LRU list in response to a reference string. Under each
reference (given as a alphabetic symbol rather thanactual memory address) is the state of the LRU stack after
the reference is processed. The horizontal direction from left to right symbolizes the trace, read from left to
right. A hit is illustrated by a circle, with an arrow showing the migration of the symbol to the top of the
heap. The “hits” array counts the number of hits found at each stack distance. Thus we see that a cache of
size 1 will have the hit ratio 0/15, a cache of size 1 will have the hit ratio 1/15, and a cache of size-3 will
have the hit ratio 6/15.

In the context of a set-associative cache simulation, each set must be managed separately, as shown in the
figure. In one pass, one can get hit ratios for varying set sizes, but it is important to note that each change in
set size corresponds to a change in the overall size of the entire cache. This technique alone does not let us in
one pass discover the hit ratios for all the different ways one might partition a cache of a given capacity (e.g.,
256 sets with set size 1 versus 128 sets with set size 2 versus 64 sets with set size 4). It actually is possible to
evaluate all these possibilities in one pass, but the technique is beyond the scope of this discussion.

14.7 SUMMARY

This chapter looked at the broad area of simulating computer systems. It emphasized that computer-system
simulations are performed at a number of levels of abstraction. Inevitably, it discussed a good deal of computer
science along with the simulation aspects, for in computer-systems simulation the two are inseparable.

The chapter outlined fundamental implementation issues behind computer-system simulators—principatly,
how process orientation is implemented and how object-oriented concepts such as inheritance are fruit-
fully employed. Next it considered model input, ranging from stochastically generated traffic, to stochastically
generated memory-referencing patterns, to measured traces and direct-execution techniques. The chapter was
brought to a conclusion by looking at examples of simulation at different levels of abstraction: a WWW-site
server system, an instruction-level CPU simulation, and simulation of set-associative memory systems. |

The main point is that computer-system simulators are tailored to the tasks at hand. Appropriate levels
of abstraction need to be chosen, as must appropriate simulation techniqués.
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EXERCISES

1. Sketch the logic of an event-oriented model of an M/M/1 queue. Estimate the number of events executed
when processing the arrival of 5000 jobs. How many context switches on average does a process-
oriented implementation of this queue incur if patterned after the SSF implementation of the single-server
queue in Chapter 47

2. For each of the systems listed, sketch the logic of a process-oriented model and of an event-oriented
model. For both approaches, develop and simulate the model in any language:

¢ a central-server queueing model: when a job leaves the CPU queue, it joins the /O queue with
shortest length.

* a queueing model of a database system, that implements fork join: a job receives service in two
parts. When it first enters the server it spends a small amount of simulation time generasing a
random number of requests to disks. It then suspends (freeing the server) until such time as all
the requests it made have finished, and then enqueues for its second phase of service, where it
spends a larger amount of simulasion time, before finally exiting. Disks may serve requests from
various jobs concurrently, but serve them using FCFS ordering. Your model shouldreporton the
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statistics of a job in service-—how long (on average) it waited for phése 1, how long it waits on
average for its /O requests to complete, and how long it waits on average for service after its
I/Orequests complete.

3. Consider a three-state (OFF, ON, and BURSTY) Markov Modulated Process with the following
characteristics
(a) The MMP is in ON state for 90% of the time on average.
(b) The MMP is in BURSTY state for 5% of the time on average.
(c) OFF to ON wransitions probability is 0.8 and OFF to BURSTY is 0.05.
(d) ON to OFF transition probability is 0.9 and ON to BURSTY is 1.
(e} BURSTY toON transition probability is 0.5 and BURSTY to OFF is 0.5.

“If the time spent in OFF state is exponential with a mean of 0.3, determine exponential mean values of
time spent in ON and BURSTY states by means of simulation.

4. Recall the pseudo-code for generating reference traces (Figure 14.7). Write routines new_wrkset,
from_wrkset, and not_from_wrkset to model the following types of programs:

(a) ascientific program with a large worling set during initialization, a small working set for the bulk of
the computation, and a different working set to complete the computation. (You will need to modify
the control code in the figure slightly to force phase transitions in desired places);

(b) a program whose working set always contains a core set of pages present in every phase, with the
rest of the pages clustered elsewhere in the address space.

S. Consider computer network with three printers (a, b, and c). The type of printer (a or b or c) is selected
by the user and some users are high-priority users. Simulate the model using any simulator or language.

g

FJsing any simulator or language you like, model the router-to-Web-server logic of the system described
in section 14.1. Pay special attention to the load-balancing mechanism that the router employs.

7. Using any simulator or language you like, model the interaction between application server and data
server described in section 14.4. Pay special attention to the logic of requesting multiple data services
and of waiting until all are completed until advancing to the next burst.

™

Consider the following language for describing CPU instructions:
op rl r2
The preceding expressions describe an operation, where

op=1 means add, op=2 means subtract. Each require 1 cycle.

op=3 means mult. rl receives the result rl op r2. A multiplication requi':rés 2
cycles. :

op=4 means a load from memory, into rl, using the value in r2 as the memory
address. Every 10th load requires 4 cycles, the remaining loads require 1.

op=5 means a store to memory, storing the data found in rl, using the value in
r2 ad® the memory address. Each store requires 1 cycle.

Write a CPU simulation along the lines of thatdescribed in 14.5 that accepts a stream of instructions in
the format just described. Your simulator should use a logical-to-physical register mapping, use the
timing information previously sketched, and use stall instructions as described in the example.

»

Integrate the trace generator created in Problem 4 with the one-pass simulator written in the previous
problem, in effect creating a pseudo “direct-execution simulator.”

10. Analyze the log of WWW requests to your site’s server, produce a stochastic model of the roquest
stream, and simulate it.
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Simulation of Computer Networks

15.1 INTRODUCTION

Computers and the networks that connect them have become part of modem working life. In this chapter, we
illustrate by example some of the ways that discrete-event simulation is used to understand network systems,
the software that controls them, and the traffic that they carry.

Like computer systems, network systems exhibit complexity at multiple layers. Networked systems are
designed (with varying degrees of fidelity) in accordance with the so-called Open System Interconnection
(OSI) Stack Mode (Zimmerman, 1980). The fundamental idea is that each layer provides certain services
and guarantees to the layer above it. An application or protocol at a particular layer communicates only with
protocols directly above and below it in the stack, implementing communication with a corresponding appli-
cation or protocol at the same stack layer in a different device. Simulation is used to study behavior at all
these layers, although not generally all in the same model. Different layers encapsulate different levels of
communication abstraction.

The Physical Layer is concerned with the communication of a raw bit-stream, over a physical medium.
The specification of a physical layer has to address all the physical aspects of the communication: voltage
orradio signal strength, standards for connecting a physical device to the medium, and so on. Models of this
layerdescribe physics.

The DataLink Layer implements the communication of so-called data-frames, which contain a limited
chunk of data and some addressing information. Protocols at the Data Link Layer interact with the physical
layer to send and receive frames, but also provide the service of “error-free” communication to the layer
aboveit. Protocols at the Data Link Layer must theref ore implement error-detection and retransmission when
needed. A critical component of avoiding errors is access control, which ensures that at most one device is
transmitting at a time on a shared medium. Techniques for access control have significant impact on how
long it takes to deliver data and on the overall capacity of the network to move data. Simulation plays an
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important role in understanding tradeoffs between access-control techniques; in this chapter, we will look at
some protocols and the characteristics that simulation reveals.

The Network Layer is responsible for allaspectsof delivering data frames across subnetworks. A given
frame may cross multiple physical mediums en-route to its final destination; the Network Layer is responsible
for logical addresses across subnets, for routing across subnets, for flow control, and so on. The success of
the Internet is due in no small part to widespread adaption of the Internet Protocol, more commonly known
as IP (Comer, 2000). IP specifies a global addressing scheme that allows communication between devices
across the globe. The specification of IP packets includes fields that describe the type of data being carried
in the packet, the size of the packet, the protocol suitable for interpreting the packet, source/destination address-

ing information, and more. The Network Layer provides error-free end-to-end delivery of packets to the layer -

above it. Simulation is frequently used to study algorithms thatmanage devices (routers) that implement the
Network Layer.

The Transport Layer accepts a message from the layer above, segments it into packets that are passed
to the Network Layer for transmission, and provides the assurance that received packets are delivered to the
layer above in the order in which they appear in the original message, eror free, without loss, and without
duplication. Thus, the Transport Layer protocol in the sending device coordinates with the Transport Layer
protocol in the receiving device in such a way that the receiving device can infer packet-order information.
Variants of the Transmission Control Protocol {TCP) are most commonly used at this layer of the stack
(Comer, 2000). Dealing with packet loss is the responsibility of the transport layer. Packet loss:is distinct
from error-free transmission—a packet could be transmitted to a routing device without error, only to find
that device does not have the buffering capacity to store it; the packet is received without error, but is deliber-
ately dropped. Transport layer protocols need to detect and react to packet loss, becatse they're responsible
for replacing the packets that are dropped. One of the ways they do this is to apply flow-control algorithms
that simultaneously try to utilize the available bandwidth fully, yet avoid the loss of packets. Simulation has
historically played a critical role in studying the behavior of different transport protocols, and in this chap-
ter we will examine simulation of TCP.

The first four OSI layers are well defined and separated in actual implementation. The remaining three
have not emerged so strongly in practice. Officially the Session Layer is responsible for the creation, main-
tenance, and termination of a “session” abstraction, a session being a prolonged period of interaction
between two entities. Above this one finds the Presentation Layer, whose specification includes conversion
between data formats. An increasingly important conversion function is encryption/decryption. Finally, the
Application Layerserves as the interface between users and network services. Services typically associated
with the Application Layer include email, network management tools, remote printer access, and sharing of
other computational resources. _

Any simulation of networking must include models of data waffic, and so we begin the discussion there.
At the time of this writing, the field of #affic modeling is very active, and we bring to the discussion key
elements of an exciting area of current work. ’ '

Devices with traffic they wish to transmit must somehow gain access to the networks that carry traffic.
Our second area of discussion then considers the problem of how devices coordinate to use the network
medium, sometimes called Media Access Control (MAC) protocols. Historically, simulation has played an
important role in helping engineers to understand the performance of different MAC protocols.

Finally, we describe the Transport Control Protocol (TCP) and discuss how simulation plays an impor-
tant role in its study.

15.2 TRAFFIC MODELING

Our discussion of network simulation begins with modeling of the data traffic that the networks carry. We'll
consider two levels of detail for this, corresponding to two different levels of abstraction. The first is at the
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application level: consideration of how commonly used network applications create demand for a network.
Such models are appropriate when one’s interest is in the details of a relatively small network and the impact
that its native applications have on it. The second level of abstraction is of aggregated application flows. This
level is appropriate when one’s focus is on the Intemet’s core infrastructure, where the global impact of
global traffic needs to be represented.

One of the easiest models of traffic-load generation is that of moving files across the network. Our interest
here is not in the mechanics of the protocols that accomplish the movement so much as it is in the model of
the teaffic load that is offered to the network. Simulation studies that model file transfer typically are focused
on the impact that the traffic has on servers holding the files. A given transfer can be characterized by the
size of the file and by the rate at which its bytes are presented to the network. We usually also characterize
how often a user initiates an ftp transfer. A simple model of a file-transfer request process is as an on--off
source, whose off period is randomly distributed (e.g., an exponential think time) and whose or period is
driven by the arrival of a file. The on period lasts as-long as needed to push or pull a file of the referenced
length. File size is sampled from another probability distribution. Measurements suggest that a heavy-tailed
distribution is appropriate. This is especially appropriate given the level of music-sharing activity on the
Internet.

Another significant source of application traffic is the World Wide Web. Traffic associated with web
pages is more complex than individual file transfers and so bears separate treasmnent. We describe a model
expounded upon in (Barford and Crovella [1998]), called Surge. Here we model the delay between succes-
sive sessions with an intersession delay distribution. Within a session, a number of different URLs will be
accessed, with another delay time between each such access; this is illustrated in Figure 15.1.

The Surge model incorporates a number o f important characteristics of files, most importantly, including

¢ the distribution of file sizes, ainong all files on a web server,
¢ the distribution of the file sizes of those files that are actually requested,
* temporal locality of file-referenced file.

The first and third characteristics, coupled with a model of referencing pattern, essentially define the second
characteristic. Suppose that we’ve selected the first  files already—call them f,, f}, ..., fy—and suppose that
this set of references is organized in a Least-Recently-Used stack. We select the (k + 1)* file by sampling an
integer from a stack-distance distribution. If that sample has value j, the next file selected has position j in
the LRU stack (position 1 being the last file referenced). Empirical studies of reference strings of files
suggest that a lognormal distribution is appropriate. This distribution places significant weight on small
values; hence, it induces temporal locality of reference. When the stack-distance sample is larger than the
number of files in the LRU stack, a new file is sampled from the set of files not yet in the reference stream.

‘This description gives a general, but simplistic idea of the structure of Surge. Its authors pay much attention
to issues of identifying distributional parameters that are internally consistent and that produce traffic that
can be validated against real traffic. Our goal here is to introduce the fundamental notions behind a model
of web traffic.

Models of other interesting and important application types can be found in the literature. We expect
that the Internet will increasingly support telephony—*voice over IP (VoIP)” (Black [2001]), and so
attendant models should be developed. A sampling of the current literature suggests that a VoIP source be
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Figure 15.1 Nested on-off periods in Surge WWW traffic generation.
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modeled as an on-off process, where both phases have distributions with tails somewhat heavier than
exponential (e.g., an appropriate Weibull). Increasingly, the Internet will be used to stream video content.
Models for video are more complex, because they must capture a number of facets of video compression, at
different time-scales.

All of the application models we've considered describe the traffic workload offered to a network by
individual programs. There are contexts in which a modeler needs instead to consider the impact of aggregated
application flows on a network device. One could create the aggregate stream by piecing together many
individual application streams—or one could start with an aggregated model in the first place. We next
consider direct models of aggregated offered load.

Classical models of telephone traffic assume that aggregated call arrivals to the telephony network
follow a Poisson distribution and that call completions likewise are Poisson. The early days of modeling and
engineering data networks made the same assumption. However, with time, it became clear that this assumption
didn’t match reality well. In telephony, the increased use of faxes, and thén Internet connections, radically
transformed the statistical behavior of traffic. Two things emerged as being particularly different: First, data
traffic exhibits a burstiness that flies in the face of the exponential’s memoryless property. MMP processes
described in Chapter 14 can be used to introduce burstiness explicitly into the arrival pattern of packetsto a
data network. However, studies indicate that the durations of burstiness aren’t Markovian, as in the MMP
model. Instead, traffic seems to exhibit long-term temporal dependence—correlations in the number of |
active sessions that extend past what, statistically, can be expected from MPP models.

Researchers noticed that there is tremendous variance in the size of files transferred within a session.
Itseemed that a heavy-tailed diswribution like the Pareto does a good job of capturing this spread. Heavy-tailed
distributions have the characteristic that, infrequently, very very large samples emerge. These large samples are
large enough relative to their probability to exerta very significant influence on the moments of the distribution;
in some cases, the integral defining variance diverges. It was hypothesized then that long-range dependence in
sessioncounts was due to the correlations induced by the concurrency of very long-lived sessions.

A model that appears to capture these explanations is the “Poisson Pareto Burst Process” (Zukeman et al.
[2003]), in which bursts (e.g., sessions) of traffic arrive as a Poisson process. Each session length has dura-
tion sampled from a Pareto distribution, Bursts may be concurrent. More formally, let ¢, be the arrival time
of the ith burst, equal to ¢, , + e, where ¢, is sampled from an exponential, and let b, be the Pareto-sampled
duration of that burst, and letd,= L+ b, be the finishing time of the ith burst. The state at ¢, X(¢), is the number
of bursts £, with £, <t < d. '

Tre Pareto distribution with parameters a and b has the probability distribution function

D(x) =1-[£)
x

for x 2 b. The distribution has mean (ab)/(a - 1) and variance ab*/((a—1)¥a-2)). One can sample a Pareto
with these parameters, using the inverse transform technique:

x=bx(L0-U)*"

In this equation U is a uniformly distributed random variable.

It is instructive to consider how traffic is analyzed for evidence of long-range dependence and whether
the style of synthetic traffic generation described here exhibits it. Let X, X,, ..., be a stationary time series,
whose samples have mean g and variance ¢2. The autocorrelation function p(k) describes how well
correlated are samples k apart in the time series:

E - -
P(k)= [(Xg #(:‘(ZX”k #)]
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The sample autocorrelation function can be constructed from an actual sample by estimating the expactation
in the numerator. Long-range dependence is observed when p (k) decays slowly as a function of k. Long-range
dependence is more formally defined in terms of the autocorrelation function, if there exists a real number
a < (0, 1), and a constant > 0 such that

i 2
k=i ﬁ,’("“

The denominator of this limit describes how slowly p(k) needs to go to zero as k increases. The smaller a is,
the slower is the degradation. H = 1 — af2 is known as the Hurst parameter for the sequence. Values of H with
0.5 < H < 1.0 define long-range dependence; the larger H is, the more significant is the long-range dependence.

To see evidence that PPBP does yield long-range dependence, we ran an experiment where the mean
burst interarrival time was 1 second and the Pareto parameters were @ = 1.1 and b = 10. We computed the
sample autocorrelation function, shown in Figure 15.2. Here we see directly that the autocorrelation decays
very slowly. We also used the SELHS tool (Karagiannis et al. [2003]) to estimate the Hurst parameter; all
of its estimators indicate strong long-range dependence in the sampled series.

Burstiness is not the only consideration in traffic modeling. Traffic intensity exhibits a siong diumnal
characteristic—that is, source intensity varies with the source’s time of day; furthermore, weekends and
holidays behave differently still. To accommodate time-of-day considerations, one can allow the exponentia¥
burst interarrival distribution of the PPBP to have a parameter that is dependent on the time of day.

The PPBP describes the number of active sessions X(¢) as a fuaction of time. X(f) may be transformed
into packet arrival rates, and hence into packets, by including a packet-rate parameter A. The process
AX(t) thus gives an arrival rate of packets from an aggregated set of sources to a network device that handles
such.
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Figure 15.2 Autocorrelation function of aggregated stream of 50 sources.
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The main point to be understood about traffic-modeling is that models of aggregated traffic ought to
exhibit characteristics of aggregation, whereas application traffic ought to focus on what makes the applica-
tions distinct. Next, we look at how traffic acquires a shared medium for carrying traffic.

15.3 MED!A ACCESS CONTROL

Computers in an office or university environment are usually integrated into a local area network (LAN).
Computers access the network through cables (ak.a. wireline), although an increasing fraction access
it through radio (wireless). In either case, when a computer wishes to use the network to transmit some
information, it engages in a Media Access Control (MAC) protocol.

Different MAC protocols give traffic different characteristics. Simulation is an extremely important tool
for assessing the behavior of a given protocol. A MAC protocol gives traffic specific qualities of latency
(average and maximum are usually interesting) and throughput. The behavior of these qualities as a function
of “offered load” (traffic intensity) is of critical interest, for some protocols allow throughput to actually
decrease as the demands on the network go up—a lose-lose situation.

15.3.1 Tbken-Passing Protocols

One class of MAC protocols is based on the notion of a “token,” or permission to transmit. In the “polling
protocol” variation, a master controller governs which device on the shared medium may transmit (Kurose
and Ross [2002]). The controller selects a network device and sends it the token. If the recipient has “frames”
(the basic unit of transmission) buffered up, it sends them, up to a maximum number of frames. The con-
woller listens to the network and detects when the token holder either has selected not to transmit or has
finished transmission. The controller then selects another network device and sends it the token. Devices are
visited in round-robin fashion.

One drawback of the polling protocol is that the controller is a device with separate functionality from
the others. A more homogeneous approach is achieved by using a token bus protocol. In this approach a
device is programmed to transmit frames (again up to a maximum number) when it receives a token, but is
programmed to pass the token directly to a different specified network device after it is finished. There is no
controller; the network devices pass the token among themselves, effectively creating a decentralized round-
robin polling scheme.

A drawback of both types of token-passing protocol is that a single failure can stop the network in its
tracks—in the case of the polling protocol, the network stops if the controller dies; in the case of the token
bus, a token passed to a dead device in effect gets lost. In the latter case, one can detect that a device failed
to pass the token on and so amend the protocol to deal with like failures.

Token-passing networks are “fair,” in the sense that each device is assured its turn within each round.
The overhead of access control is the time that the network spends on transmitting the token (rather than
data) and the time that the network is idle long enough for a device to ascertain thata transmission has ended
or is not going to occur. An important characteristic of token-passing protocols is that the throughput (bits
per second of useful traffic) is monotone nondecreasing as a function of the “offered load” (wraffic that the
network is requested to carry). To illustrate this point, Figure 15.3 plots data from a set of experiments on a
modeled 10 Mbits (10 million bits per second) network, with 10 devices, evenly spaced, with a latency delay
of 25.6 pLsec between the most distant pair. (We use this figure in order to compare this network with one
managed by using Ethernet, later.) Five different experiments are displayed on the graph; right now, we are
interested only in the one labeled “token bus, Poisson.” The experiments assume that the data frame is 1500
bytes long and that the token is 10 bytes long. They assume that, once a’device gains the token, itmay send
atmost one frame and then must release the token. This set of data uses a Poisson process to generate frame
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Figure 15.3 Throughput versus Offered Load, for Token Bus and Ethernet MAC protocals, Poisson and
Bulk Pareto arrival processes, Exponential and Fixed Backoff (for Ethernet).

arrivals. The x-axis gives the “offered load,” measured here as the total sum of bits presented to the network
before the simulation end time, divided by the length of the simulation run. The y-axis plots the measured
throughput. For each off-time rate, we run 10 independent experiments. For each experiment, we plot the
observed pair (offered load, throughput). For the experiment of interest, the throughput increases linearly
with the offered load, right up to network saturation. It is interesting to note, though, the impact of a change
in the traffic-arrival pattern. We replaced the Poisson arrival process with the arrival process that defines an
PPBP, a Poisson bulk arrival process, where the number of frames in each bulk arrival is a truncated Pareto.
We use the same Pareto parameters as before (a = 1.1 and b = 10) and reduced the arrival by a factor of the
inverse Pareto mean ((a~1)/(ab)) to obtain the same average bit-arrival rate. The set of data points associ-
ated with the label “token bus, Pareto bulk” reflect the impact of this change. Throughput grows linearly with
offered load until the bus is roughly 60% utilized. For larger loads, we begin to see some deviations from
linear. For a point (x, y) off the diagonal, the difference between x and y reflects the volume of unserved
frames at the end of the simulation-—the frames in queue. This is no surprise; queueing theory tells us that
we should expect significant queue lengths when the arrival pattern is highly variant.

Another important aspect is the average time a frame awaits transmission after arrival. Knowledge of
queueing theory and the protocol’s operation identifies two factors that ought to contribute to growth in the
queuing length. One factor is the time required by a token to reach a new frame arrival. As the offered load
increases, the amount of work that the token encounters and must serve prior to reaching the new arrival
increases linearly. A second factor is from queueing theory; the view from a station is of an M/G/1 queue.
In this view, the service time incorporates the time spent waiting for a token to arrive, a mean that increases
with the offered load. A job’s average time in an M/G/I queue grows with 1/(1-p), where p = A/ is the ratio
of arrival rate to service-completion rate. As the offered load grows, p increases; this fact explains the second
factor of waiting-time growth. As p-approaches unity, the asymptotic waiting time increases rapidly.
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Figure 15.4 Average Queue Deldy versus Offered Load: for Token Bus and Ethernet MAC protocols, for
Poisson and Bulk Pareto arrival processes, and for Exponential and Fixed Backoff {for Ethernet).

Figure 15.4 confirms this intuition, plotting the average time a frame waits in queue between the time
of its arrival and the time at which it begins transmission. Again we execute 10 independent experiments for
a given offered load and plot the raw pair (x, g), where x is the average number of bits presented to the
network per secend in that run and g is the average time a job is enqueued. Units of queueing delay are “slot
times”, the length of time required for a bit to traverse a cable at the limit of what is permissible for Ethernet
(25.6 psec). The extreme range of queueing delays observed for the five experiment types encourages our
use of a log scale on the y-axis. Tracking data from the experiments by using Poisson arrivals, we see stability
in the growth pattern, up to the point where the bus is fully saturated. We know to expect extremas there.
What is very interesting, though, are the extremely high average queueing delays experienced under the
“bulk Pareto” assumptions. If nothing else, these kinds of experiments point out the importance of the traffic
model in the analyzing of network behavior.

A straight-forward implementation of a token-bus protocol models devices, the bus, and the explicit and
continuous passing of the token among stations. However, this implementation has an undesirable charac-
teristic. Under low traffic load, the model creates a discrete event approximately every 10.84 jisec, the time
it takes to transmit a token between adjacent stations. Under low traffic load, the token could completely
cycle through the network many times before reaching a point in simulation time when there is a frame
available for transmission. Unless the simulation has some particular reason for pushing the token around an
otherwise idle network (e.g., if, at each hop, there is a nonzero probability of the token’s being lost or
corrupted, forcing the protocol to detect and react), there are more efficient ways of executing the simula-
tion, at the cost of incorporating extra logic. We may suppose that each device samples the next future time
at which a batch of frames arrives. Before that time, if the device has no frames to transmit, it will make no

- further demands on the network. When the simulation has reached a time at which no frame is being
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transmitted and no device has a frame waiting for transmission, we perform a calculation to advance simulation
time past an epoch during which the only activity is token passing. Because the time required to circulate the
token around the ring is computable, and the next time at which a frame is available at any station is known,
we can advance simulation time to the cycle in which the next frame is transmitted and save ourselves the
computational effort of getting to that place by pushing a token around.

15.3.2 Ethernet

Token-based access protocols have been popular, but they have drawbacks when it comes to network
management. In particular, every time a device is added to or removed from the network, configuration actions
must be taken to ensure that a new device gets the token and that a removed device is never again sent the
token. The Ethernet access protocol is a solution to this problem (Spurgeon [2000]). A device attached to an
Ethemnet cable has no specific idea of other devices on that cable; however, when it wants to use the cable, it
must coordinate with such other devices. Consider the problem —a device has a frame to send; when can it
send it? Ethernetis a decentralized protocol, meaning that there is no controller granting access. A device can
“listen” to the Ethernetcable to see whether it is currently in use. If the cable is already in use, the device holds
off until the cable is free. However, two or more devices could independently and more or less simultaneously
decide to transmit, shortly after which the transmission on the cable is garbled. Both devices can detect this
“collision” (e.g., by comparing what they are transmitting on the cable with what they ate receiving from the
cable). Collision detection and reaction to it is the one of the key componens of the Ethemnet protocol; it is a
so-called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) protocol.

The format of an Ethernet frame is illustrated in Figure 15.5. The 8-byte preamble is a special sequence
of bits (alternating 1's and 0’s, except for the last bit which is also a ‘1) that listeners on the cable recognize
and use to prepare to examine the next frame field, a 6-byte Destination address that may specify one device,
a group of devices, or a broadcast to all listening devices. After scanning the full Destination address,
adevice listening to the cable knows whether it is an intended recipient. The next 6 bytes identify the send-
ing device; then comes a 2-byte field describing the number of data bytes. The data follow, and the frame is
terminated with a 4-byte code used for error detection.

When a device decides to transmit, it begins in the knowledge that it is possible for another device to
begin also, not yet having heard the new ransmission. Ethernet specifications on network design ensure that
any transmission will be heard by another device within § = 25.6 pisec. This is called a slot time. The worst
case is that the device begins to transmit at time ¢, yet before time ¢ + 8, a device at the other end of the cable
decides to transmit and does so just before time ¢ + &, and another § time is neededAby the first device to
detect the collision.

The length of the data portion of an ethernet frame is not specified by the protocol. However, there is a

‘lower bound on the allowable length of the data portion. The frame must be large enough so that it takes

longer than 2 slot times to transmit it. This bound ensures that, if a collision does occur, the sending device
will be sransmitting when the effects of the collision reach it, and hence it can detect the collision. This
minimum is 46 bytes of data; furthermore, a frame is not permitted to carry more than 1500 bytes of data.

Some of the complexities of Ethernet exist because of physics. An accurate simulation of Ethernet must
therefore pay attention to the delicacies of signal latency. The model used to generate Ethernet performance
figures specifically accounts for signal latency. It assumes that the devices are evenly spaced along a cable
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Figure 15.5 Format of Ethernet Frame.
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that requires a full slot time (25.6 pisec) for a signal to traverse. When a device listens to the cable to see
whether it is free, the model really answers the question of whether the device can, at that instant, hear any
transmission that might have already started, This is a matter of measuring the distance between a sending
device and a listening device, computing the signal latency time between them, and working out whether the
sender started longer ago than that latency. Likewise, when-a device has a frame to send and is listening to
the cable to find out when it is idle, its view of the cable state is one that accounts for a'certain delay between
when a transmission ends and when that end is seen by an observer.

A device with a frame to send listens to the cable and, if it hears nothing begins to transmit. If it
successfully transmits the frame without collision and has another frame to send, it waits 2 slottimes before
making the attempt. If a device wanting to send a frame hears that the cable is in use, it simply waits until
the cable is quiet and then begins to transmit. The most interesting part of Ethemet is its approach to
collisions. If a device transmitting a frame F detects a collision, it continues to transmit—but jumbled—long
enough to ensure that it transmits a full minimum frame’s worth of bits. This “jamming” ensures that all
devices on the cable detact the collision. Next, it backs off and waits a while before trying to send F again.

The backoff period following a collision has been a topic of some study, one in which simulation has
played an important role. If the backoff time is short, there is a chance of not overly increasing the delay time
of a frame, butthere is also a significant chance of incurring another collision. On the other hand, if the back-
off time is large, one reduces the risk of a subsequent collision, but ensures that the delay of the frame in the
system will be large. Over time, the following strategy, called “exponential backoff”, has become the
Ethemnet standard. Following the mth collision while attempting to transmit frame F, the device randomly
samples an integer k from {0, 2™~1}, and waits 2% slot times before making another attempt. If 10 attempts
are made without success, the frame is simply dropped. The term “exponential backoff” describes the
doubling in length of the mean backoff time on each successive collision. Successive collisions are meas-
ures, of asort, of the level of congestion in the network. A device stivés to reduce its contribution to the
congestion, and so enable other frames to get through and relieve the congestion.

Simulation is a useful tool to investigate both backoff schemes and other variants of Ethernet one nught
consider. We did experiments (assuming Poisson arrivals) on exponential backoff and on “fixed” backoff—
where, after a collision occurs, the sender chooses ke [0, 4] slot times to wait, uniformly at random.
Figure 15.3 illustrates the effects on throughput. Under exponential backoff, throughput increases linearly
with offered load until after about 60% utilization. For greater load, throughput hovers in the 70% of band-
width regime, without significant degradation. The story is quite different under fixed backoff. When offered
load is 70% of the network bandwidth, the throughput plummets from 60+% and settles in at around 40%
of bandwidth—under higher load, the network delivers poorer service. Queueing delays are affected too, as
one would expect. Under high load, the delays under fixed backoff are an order of magnitnde larger than
those urider exponential backoff.

A final set of experiments used the same Poisson bulk arrival process, with Pareto-based bulk amvals,
assuming exponential backoff. The results are similar to those for the token bus: large and highly variable
queueing delays, and some deviation of throughput from linear at high load. This set of experiments suggests
that Ethernet may be more sensitive to the Pareto’s high variance than is the token-bus protocol. ;

15.4 DATA LINK LAYER

A network is farmore complicated than the single channel seen by a MAC protocol. A frame might be sent
and received many times, by many devices, before it reaches its ultimate destination. Consequently, data
wraveling at the physical layer contains at least two addresses. One address is a hardware address of the
intended endpoint of the current hop. This address (like an Ethernet address) is recognizable by a device's
network-interface hardware. The second address is the ultimate destination’s network address, typically an

S el




(3

L o L e O SO SN PN P i L iR L R S

488 - DISCRETE-EVENT SYSTEM SIMULATION

IP address. Different types of devices make up the network. A hub is a device that simply copies every bit
received on one interface to all its other interfaces. Hubs are useful for connecting separated networks, but
have the disadvantage that the connection brings those networks into the same Ethemnet collision domain.

A bridge makes the same sort of connection, but keeps component subnetworks in different collision
domains. For every frame heard on one interface, the bridge takes the destination address and looks up in a
table the interface through which that destination can be reached. The bridge hasnothing to do if one reaches
the deswnation through the same interface as that through which the frame was observed—the destination
will recognize the frame for itself. However, if the destination is reached through a different interface, the
bridge takes the responsibility of injecting the frame through that interface, moving it closer to its ultimate
goal. In injecting the frame, the bridge acts like a source on that subnetwork, engaging in that subnetwork’s
MAC protocol. The bridge in effect moves a frame from one collision domain and puts it into another. It can
also bridge different subdomain technologies (e.g., different types of Ethernet). Contexts where one would
consider simulation study of MAC protocols on one subdomain are the sorts of contexts where one would
use sitnelation and involve models of bridges. '

A bridge involves only the physical layer and the data link layer. There is a practical limit on devices
retaining the physical addresses of other devices, particularly devices that are in different administrative
domains. A router is a device that can connect more widely dispersed networks, by making its connections
at the Network Layer. A frame coming in to arouter on one interface is pushed up to the IP layer, where the
IP destination address is extracted; the IP address determines which interface should be used to forward the
packet. The forwarding tables used to direct traffic flow are the result of complex routing algorithms, such
as OSPF (Moy {1998]) and BGP (van Beijum [2002]). Simulation is frequently used to study variants and
optimizations of these protocols. : '

We will see that network services commonly used provide users with delivery of data error free and in
the order it was sent. These attributes are provided in spite of the real possibility that data will be corrupted
in transmission or lost in transinission. A router is one place where a frame might be lost, for, if the router
experiences a temporary burst of traffic, all to be routed through a particularinterface, buffers holding frames
waiting to be forwarded could become exhausted. We think of the traffic flowing through a router as being
a set of flows, each flow being defined by the source~destination pair involved. When the arrivals become
bursty, and the router’s buffer becomes saturated, arrivals that cannot be buffered are deliberately dropped.
Most flows actively involved in the burst will lose frames. Under TCP, data loss is the signal that congestion
exists, and TCP reacts by significantly decreasing the rate at which it injects traffic into the network. But it
takes time to detect thisloss—a lot more time than it takes to route frames through the router. One idea that
has been swudied extensively (by using simulation) is Random Early Detection (RED) (Floyd and Jacobson
[1993]) queue management. The idea behind RED is to have a router continuously monitor the number of
frames enqueued for transmission and, when the average length exceeds a threshold, proactively attempt to
throttle back arrival rates before the arrivals overwhelm the buffer and cause all of the flows to suffer. RED
visits each frame and, with some probability, either préemptively discards it, or marks a “congestion bit” that
is available in the TCP header, but is not much used by most TCP implementations. RED chooses a few
flows to suffer for the hoped-for sake of the network as a whole. Complexity abounds in finding effective
RED parameters (e.g., threshold queue length, probability of dropping a visited frame) and in assessing
tradeoff's and impacts that use of RED could have. Simulation, of course, has played and will play a key role
in making these assessments.

15.5 TCP

The Transport Control Protocol (TCP) (Comer {2000]) establishes a connection between two devices, both
of which view the communication as a stream of bytes. TCP ensures error-free, in-order delivery of that
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Figure 15.6 Data flow from TCP sender to TCP receiver, passing- through network devices.

stream. As we have seen, data frames might be discarded (in response to congestion) somewhert_a t?etween
the sender and receiver; TCP is responsible for recognizing when data loss occurs and for r.etransmlttxng data
that have gone missing. TCP mechanics are focused on avoiding loss, detecting it, and .rapldl)f respondul'ng to
it. A number of TCP variants have been proposed and studied; all of these studies use simulation extensively
to determine the protocol’s behavior under different operating conditions. .

Our discussion of TCP serves toillustrate further how different components of networ}.ang layers come
together. Figure 15.6 illustrates data flow from a servertoa client. 'l\vo.applications in'tendmg. to communi-
cate establish “sockets” at each side. Sockets are viewed by the applications as buffers into wh1c1.1 data could
be written and out of which data might be read. Calls to sockets are sometimes blocking calls, in the sense
that, if a socket buffer carnot accept more data on a write, or has no data to provide on a read, the calling
processes blocks. On the server side, the TCP implementation is responsible for removing data from the
socket’s bufferand sending it down through the protocol stack to the networ.k. Once on the n.eIWOrk, the data
pass through different devices. In this figure, we illustrate a bridge (which involves remapping of hardware
addresses and does not look at the IP address) and a router (which must decode the IP address to find out
the interface through which the data is passed). The client host’s IP recognizes that the data ought to go up
the stack to TCP, and the client side TCP is responsible for releasing the data to the socket—but only a
contiguous stream of data. If the routerdrops a frame of this flow, the client-side TCP must somehow detect
and communicate this absence to the server-side TCP. . . .

TCP segments the data flow into segments. Figure 15.7 illustrates the header (in 3?-b1t words) that is
placed arcund the data. First, note thatthe only addressing information is “port numbe:r " atthe source .and
destination machines—IP is responsible for knowing (and remembering) the identity of the mac.hmes-
involved. From TCP's point of view, there is just a source and a destination. SFqN and AckN are descrlptor's'
of points in the data flow, viewed as a stream of bytes, each numbered. SeqN is ther) the “sequence nur'nl')etr
of the first byte in the segment. At the beginning of a connection, a sender and receiver agree upon an fmual
sequence number (usually random), the SeqN value is this initial numbf:r plus the byte 'lndex w!th;n the
stream of the first byte carried in the segment. Because the segment size is ﬁxedr the. receiver can 1r.|fer the
precise subsequence of the byte stream contained in the segment. The AckI.‘I field is critical f ordetecting lost
segments. Every time a TCP receiver sends a header about the flow (e.g., in a.ccordance wnth_ acknowl.edgfa-
ment rules), it puts into the AckN field the sequence number of the next byte it needs to receive to malp_tam
a contiguous flow. Since TCP provides a contiguous data stream to the 'layer above, the v.alfxe in ACkN.lS the

initial sequence number plus the index of the next byte it would prov'lde to that layer, if it were available.
“The linkage of this value with packet loss is subtle. TCPrequiresa re?elveftq send an acknowledg(? forevery
segment it receives and requires a sender to detect within a certain time limit whether a segment it has sént
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Source port number Destinasion port number
(SegN) Sequence Number
(AckN) Acknowledgement Number
UlA|P|R|S|F
Header )

Length RIC|8|5{Y]1 Receiver Window Size

) G{K[H|T|N|N
Checksum Pointer to ugentdata

Options
Data

Figure 15.7 TCP header format.

has been acknowledged. Now imagine the effect if 3 segments are sent, and the second one is lost en route
Assume the initial sequence number is 0. The first segment is received, and the receiver sends back aI;
?ckno.wledgement with AckN squal to (say) 961 (and the ACK flag set to 1 to indicate that the AckN field
is valid). The third segment is received, but the receiver notices that the v lue of SeqN is a segment larger
than expected—it nosices the hole. So it sends back an acknowledgement, but AckN in that header is again
961. The second segment sent is not acknowledged, of course, but interestingly, neither is the third
Eventually the TCP sender times out while waiting for these acknowledgements and resends the unac:

knowledged packets. The only other field in this header, that is critical to our discussion is the Receiver win-

dow si{ze, which is included in an Acknowledge to report how many bytes of buffer are currently available
to receive data from the sender. ) ’

One can visu;_l!i_ze TCP asssliding a sendwindow overthe byte stream, Within the send window are bytes
that have been sent, but not yet acknowledged. TCP controls the rate at which it injects segments into the
network by maintaining a congestion window size, which at any time is the largest the send window is
allode to get. If the send-window size is smaller than the congestion-window size and there are data to send
TCP is free to send it, up until the point where the send window has the same size as the congestion window‘
~ When t%le TCP sender has stopped for this reason, an incoming acknowledgement can reduce the size of tht;

send v.imflow (because bytes at the ]owep end of the window are now acknowledged), and so free more
transmission. . :

TCP trie§ to find just how much bandwidth it can use for its connection by experimenting with the
congesuon-\.v_mdow size. When the window is toe small, there is bandwidth available but it isn’t being used
When the window is too large, the sendercontributes to congestion in the network, and the flow could suffel:
data }oss asa result. TCP’s philosophy is to grow the congestion window aggressively until there is indication
that 1} has‘overshot the (vnkaown) target size, then fall back and advance more slowly. This all is formally
described in terms of variables cwnd and ssthresh. TCP is in slow start mode whenever cwnd < ssthresh, but-
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in congestion avoidance mode whenever cwnd > ssthresh. Both variables change as TCP executes; cwnd
grows with acknowledgements a certain way in slow-start, and a different way in congestion-avoidance;
ssthresh changes when packets are lost. When a TCP connection is first established, cwnd is typically set to
one segment size and ssthresh typically is initialized to a value like 2. TCP starts in slow-start mode, which
is distinguished by the characteristic that, for every segment that is acknowledged, cwnd grows by a
segment’s worth of data.

Consider how cwnd behaves during slow start by thinking about TCP sending out segments in rounds.
In the first round, it sends out one segment, then immediately stalls, because the send-window and conges-
tion-window sizes are equal. When the acknowledgement eventually returns, the sender issues two segments
as the second round-—it replaces the segment that was acknowledged and sends another, because cwnd
increased by 1. The sender stalls until acknowledgements come in. The two acknowledgements for the
second round enable the sender to issue four segments: half of these due to replacing the ones acknowledged,
the other half due to the one-per-acknowledgement increase of cwnd rule during slow start. The number of
segments issued thus doubles in successive rounds. .

Any one of a number of things can halt the doubling of the number of segments sent each round. One
is detection of packet loss, the effects of which are to set ssthresh to be half the size of the send window, set
the send-window size to zero, and set cwnd to allow retransmission of one segment (the one in the lost packet).
Another way TCP ceases to double the number of segments sent each round is due to the rule that the
congestion window may not be increased to exceed certsin limits—an inteenally imposed buffer size at the
sender side, or the size of the “receiver window”—the field in ACKs which reports how much space is
available for new data. Finally, the doubling effect changes also if cwnd grows to exceed ssthresh, and so
puts TCP into congestion-avoidance mode. Within congestion-avoidance mode, cwnd increases, but much
more slowly. Intuitively, cwnd increases by one segment for every full round that is sent and acknowledged
(as opposed to increasing by one segment with every segment that is acknowledged). This is sometimes
described as increasing cwnd by 1/cwnd with every acknowledgement.

Simulation is an excellent tool for understanding how TCP works and many of the subleties of its behav-
ior; we now examine simple examples of that behavior. The first topology is that of a server, a client, and a
800 kbps link between them. The server is to send a 300000 byte file to the client. We attach a monitor that
emits a tcpdump formatted trace (see www.tcpdump.org) of every TCP packet that passes (in either

- direction) through the server’s network ‘interface. Postprocessing of this frace yields information about how

TCP variables of interest behave. In the first situation, we plot the values of SeqN in packets sent by the
server and the values of AckN in packets sent by the receiver in response for the first six rounds, assuming
an initial sequence number of 0. This is illustrated in Figure 15.8, where the Y-axis is logarithmic in orderto
illustrate interesting behavior at different scales. The TCP connection is requested by the client at time 192,
the first step in TCP's three-way handshake that results in the server sending the first segment at time 192.3
(not actually shown in the graph, to allow higher resolution to later rounds). The SegN in the header of that
segment is 1, the index of the first byte in the segment. It takes approximately 100 ms for the segment to
reach the client, and ancther 100 ms for the client’s acknowledgment to reach the monitoring point, at time
192.5. (The exact figures are a little different, as they account for the transmission delay caused by the link
bandwidth.) The ACK bit of that segment is set, and the AckN value in the header is 961---the index of the
nextbyte the receiver expects to see. The server’s send window now being empty, and cwnd having advanced
from | to 2 by virtue of the received acknowledgement, the server immediately sends two segments, one with
SeqN equal to 961, the next with SeqN equal to 961 + 960 = 1921. The graph shows overlapping marks for
byte index 961, one from the acknowledgement header, and one from the next segment the server sends. The
delay between the server’s sending of a segment and the ultimate acknowledgement of that segment is known
as the round-trip time, or RTT. In this example, the network is as simple as it can be, and the RTT is just the
sum of the time to send a segment across the link plus the time to send an ackrowledgement back—here, a
value very close to 200 ms. At times 192.3 and 192.5, the server stopped sending segments just as soon as
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Figure 15.8 Early rounds of TCP connection on 800 kbps/100 ms link, with tcpdump probe at the
server's network interface.

its send window and the congestion window were the same size. After one RTT, acknowledgements from the
previous round come in; they allow the server to double the number of segments sent from one round to the
next. For rounds three and four (at tmes 192.7 and 192.9, approximately), the graph shows the slight stag-
gering of times associated with acknowledgements coming in and new segments going out.

" Figure 15.8 shows how, in slow-start mode, upon receiving a burst of aclaowledgements, the server
generates a burst of new segments. A moment’s reflection shows that, if the acknowledgement for the first
segment in that burst is received while the burst is continuing, then the burst will continue ad infinitum. For,
at the instant that critical acknowledgement is received, the send window must be smaller than the conges-
tion window, and the send window will not grow after this point, while the congestion window will. We can
compute the size of the congestion window at which this phenomenon occurs—it is when the congestion
window is large enough that the time needed to transmit that many bytes is precisely the RTT. Back-of-the-
envelope calculations indicate that this is 20000 bytes, or just under 21 segments. In these experiments, the
receiver window is limited to 32 segments, so this saturation happens before the flow is limited by that buffer.
SSFNet mitializes ssthresh to 65396 bytes, so this saturation point is reached in slow-start, before cwnd
reaches ssthresh and triggers congestion-avoidance mode. Since cwnd starts with value 1 and doubles with
every round, the server saturates its sends in the middle of the 6th round. This is observed in Figure 15.8, in
the round that starts just after time 193.5. )

In Figure 15.9, we illustrate this same experiment, along with another that is identical—save that the
link latency is 300 ms. A larger epoch of simulation time is illustrated. There is an interesting kink in the
SeqN data set for the 100 ms network; in the vicinity of SeqN = 65K.. The “slope” of the data set decreases
perceptibly. Up to this point, for every acknowledgement received two new segments are transmitted, and
they are marked in the tcpdump trace as occurting at the same instant (SSFNet does not ascribe time advance
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Figure 15.9 TCP connections between server and client: ond 800 kbps/100-ms link, and an 800
kbps/300-ms link. '

to protocol actions, only to network transmission). At the point of the ink, the value of cwnd becomes equal
to the receiver window, 32 segments. The sender window becomes limited by the size of the receiver win-
dow, rather than by cwnd, so, after the kink, there is a one-to-one correspondence between receipt of an
acknowledgement and transmission of another segment. Now consider the experiments using a 300 ms
latency. As we'd expect, rounds happen approximately every 600 ms. To saturate the link, the sender. window
has to become three times as large as in the first experiment—almost 64 segments. However, this will never
happen, because the send window will be limited by the receiver window, at 32 segments. Indeed, we see
that the change in slope of the SegN trace happens at the same byte index as it did with the first experiment.
Likewise, we see visually that there’s a gap in transmission time between each successive round.

As a final example of how simulation illustrates the behavior of TCP, we consider an experiment
designed to induce packet loss. The topology is that of a server, a router, and a client. Again, the server is to
send 300000 bytes to the client. Both server and client connect with the router. The link between server and
router has 8 Mbps of bandwidth and 5-ms latency. The link between clientand router has 800 kbps of band-
width and 100-ms latency, The router’s interface with the client has a 6000-byte buffer. If a packet arrives to
that interface and there is insufficient buffer space available, the packet is dropped. From earlier analysis of
TCP, we canforesee, in part, what will happen. Inthe slow-start phase, the server begins to double the num-
ber of segments with each successive round. Howevet, it can push packets towards the router 10 times faster
than the router can push packets to the client, so a queue will form at the interface. The buffer holds at most
6 packets, so we expect that, in the round where 8 packets are sent, there will be packet loss. Figure 15.10
illustrates this experiment, adding a trace of cwnd behavior to that of SeqN and AckN (once again meas-
ured at the server’s network interface). The effects of the packet loss are visually distinctive. Around time
193.5, the server begins to receive a sequence of acknowledgements that all carry the same AckN value.
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Figure 15.10 TCP connection suffering loss.

These acknowledgements were sent in response to packets that were sent after a loss. Recall that TCP rules
on AckN specify that the receiver identify the sequence number of the next byte it needs to receive to
advance the sequence of contiguously received bytes; hence, the repeated AckN identifies the beginning of
the first lost segment. At the point at which the loss is observed, the send-window size is approximately
25000 bytes; in reaction to the loss, ssthresh is set to half this value, cwnd s set to 1, and the sender window
collapses to size zero in order to cause the retransmission- of all segments (from the first lost one forward).
In the region between times 193 and 194, we see the impact that loss has on cwnd and how the slow-start
doubling of cwnd with each round begins anew. (Notice the small periods of sharply increased growth at
times 194.6, 194.8, and 195.) However, this time, congestion-avoidance mode is entered when cwnd reaches
ssthresh, shortly after time. 195; thereafter, it grows more or less linearly with time. This particular transfer
ends just before cwnd reaches a size that will allow loss once again; had the transfer advanced that far, TCP’s
treatment of cwnd would look very much like the period from 193.8 on.

As these simple examples show, TCP’s relatively simple rules create complex behavior. Simulation is an
indispensabletool for predicting how TCP will behave in any given context and for undesstanding that behavior.

15.6 MODEL CONSTRUCTION

SSFNet is a versatile tool for building and analyzing network simulations, used in the previous section to
look at how TCP behaves. Suggested homework projects encourage use of SSFNet, and so we describe the
general process SSFNet uses in constructing a simulation from an input model. We then illustrate this
process, in part, by describing the contents of one input file used in the last subsection. This is not a users’
manual for SSFNet; very complete documentation exists at www . ssfnet .org. Our aim here to is give a
sense of the approach and to encourage readers to investigate further.

R 1 N
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15.6.1 Construction

Input to SSFNet is in the form of so-called Domain Modeling Language (DML) files. At the simplest level,
a DML file contains just a recursively defined list of attribute-value pairs, where an attribute is a string and
a value may be either a string or a list of at«ibute—value pairs. This structure naturally induces a tree, where
interior nodes are attributes (labeled with the attribute string name) and leaves are values of type string
(rather than of type list). To illustrate, consider this DML list:

Net [ -

frequency 1000000

host [ id 0
interface [ id 0 bitrate 800000]
nhi_route [ dest 1(0) interface 0 ]

1

host [ id 1
interface [ id 0 bitrate 800000]
nhi_route [ dest default interface 0 ]

]

link [ attach 0(0) attach 1(0) latency 0.1 ]
]

This has some elements of SSFNet DML structure worth noting. Description of a network, elements within
the network, and connections between them use a hierarchical naming convention known as the Network-
Host-Interface convention, or just NHI. The network is defined in terms of links between interfaces, and each
interface has an id number that is unique among all interfaces owned by a common host. That host has an id
number that is unique among all hosts in a common net. Each nethasanid, unique among all nets contained
in the same parent net, and so on. The NHI address 0.1.2(4) refers to an interface named 4, within a host
named 2, within a net named 1, within a net named 0. Within a net, a reference such as 2(4) is understood
to mean interface 4 associated with the uniquely named host 2 within that understood net. The NHI address
of an interface is derived from the nesting described within a DML file. The first interface to appear in the
preceding example.has NHI address 0(0); the second interface to appear has address 1(0). The 1ink attrib-

"ute in this example specifies two endpoints of the link, in NHI addressing (using the at tach attribute), and

a link latency of 100 ms. .

The recursive structure of DML allows it be oxparsed easily and allows one to construct a parse-tree
whose interior nodes are attributes and whose leaves are string-valued values. The parse-tree associated with
the previous example is illustrated in Figure 15.11. This data structure gives a handy way of methodolically
building a model from a DML description. The SSFNet engine recursively traverses the tree and configures
core SSFNet objects (such as host). Attributes or values within the tree can be referenced globally by the
sequence of attribute labels on nodes from the root to the target. This proves to be useful: one can embed in
a DML file a “library” of attribute—value pairs and reference elements of that library.

SSFNet recognizes a variety of attributes, many of which are described in Table 15.1.

15.6.2 Example

Finally, we illustrate some of these ideas by looking at the DML input file for one of our TCP examples.
The file is presented in Figure 15.12 (annotated with line numbers for easier reference).

In this particular file, lines 1-8 are comments describing the architectare. Line 10- tells the SSFNet
model parser where to find format descriptions of certain constucts; when the parser encounters these
constructs in the DML file, it will check against the schema to ensure format correctness. Line 12 starts the
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Table 15.1 Common Atiributes in SSFNet DML Models :;5%5?.55459 ! L
248 IR °
Attribute Value E" %
Net list describing a network -3 -~ '-g
frequency number of discrete ticks per simulation second & £ & 3 e
traffic list of traffic patterns °
pattern description of waffic pattern, in terms of receiver (client) and server (sender). " ?
servers list describing a set of servers to which a client might connect—including their NHI ¥ %; >
identities and port numbers : E § Y §
link list describing interfaces to be connected, and associated latency g g § _ § 2 _§i§‘ _ >
host : list describing a host, and diverse attributes it may have & & ¥ i, 3 LN ;: g, ‘—§
graph list of protocols in a host's protocol stack T - : . 4i £t 2
ProtocolSession list specifying a protocol ) i% P gg £ -Eg =
interface a list describing a connection to the network; attributes include g _'f g g; y 555 ;; .%
connection bandwidth, and target file for storing monitoring information. é {3‘% < 8,4 4t i £
route description of a forwarding table entry for IP. The dest attribute idensifies the 4 Qg = E‘: ;E 1 S%Eg ] - 5
destination being described; the interface attribute describes which interface : 5 59 } %‘ E 2 E g . ;g Eg . 5 -
packets for that destination should be routed. ' E = i 7 i P T I 3 §' ‘.{ggéégg- 553 . -
dictionary a list of constants that can be referenced elsewhere within the DML file g '_-7_? 3 : . ,ig? gg?ﬁ : 8 i aenmes ;E T - o
Lo s iED hmBalag Pag s E | e
o g i g meElrd SR I | 3
overarching list: “Net” followed by a list. Line 14 specifies a clock resolution of 1 microsecond. Lines 15-20 Eg s E 55% § _s; Eg?,? %I § §§ s%%"'é }EE gs: § 2;5 -
describe the network’s traffic, a single pattern that includes host 0 as client. The “servers” attribute gives a X ‘E 3 § b E%é% gg%ﬁgﬁﬁ §o3 f;,;gﬁé” §§§ Eg:". ; -3
list of servers, in this case a single one at NHI address 1(0) (meaning host 1, interface), using port 10. R B IR 3 3 3 "i § EM
The “link™ attribute at line 24 describes two interfaces to be connected: the one at NHI address 0(0), and 3; '§u o P E§§ g ~§ I3 _§ _-_Eé ..§ _gg 3 E.i
the one at NHI address 1(0). The latency across this link is specified to be 0.1 seconds. g fgg s 1 g:":,‘.'f oo :;E :.f% e il
A host contains protocols and interfaces to the network. The host beginning at line 28 is given NHI id 1 R L Pa # G g e
and contains a “graph” of protocol sessions. Each model of a software component is described as such a - 2 w 5 a 2 8 % v ] n s 3 £ ®
session. The order of appearance in the graph is important, descending from higher to lower in the stack.
Each protacol session describes its type (e.g., server, client, TCP, [P), and the Java class that describes its
behavior. These classes are constructed, by using certain methologies, to be composable; builders of simulasion
models (in contrast to developers of modeling components these builders use) need not develop new classes, : . 497
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but the methodology specifies how one does. A protocol session of a given type may include attributes
specific to that type. For example, the tcpServer protocol beginning at line 32 specifies the port through
which it is accessible (10). Line 37 begins the declaration of the tcpSessionMaster, a component that man-
ages all TCP sessions. Characteristics of its version of TCP are described by including a list of attributes
defined in a list held elsewhere in the DML file. The statement _find .dictionary.tcpinit causes
the contents of the named list to essentially be inserted at the point of the statement. The string .dic-
tionary.tcpinit names the list in terms of how to find it in the file: “” is the highest level list,
“dictionary” is the name of an attribute in that list, “ccpinit” is the attribute associated with the
sought list, an attribute of the value-list of dictionary. This list starts at line §2.

- We quickly describe the meaning of each attribute not obvious from the comments, in order to illuswate
the diversity of parameters in SSFNet’s implementation of TCP. RcvWndSize, SendWndSize, and
SendBufferSize describe units of MSS and limit buff eruseage (which affects TCP behavior, as we have
already seen). A missing segment will be retransmitted up to MaxrexmitTimes times before the TCP
session is aborted. TCP_SLOW_INTERVAL and TCP_FAST INTERVAL give timer values used to
determine when enough time has gone by so that a transmitted segment has not yet been acknowledged. If
a TCP session is inactive forMaxIdleTime seconds, it is terminated. delay_ack and fast_recovery
are Boolean flags that describe whether to use particular optimizations lnown for TCP.

Back within the specification of the host.(at lines 40-43), we find attributes whose values are files into
which the system saves descriptions of how TCP variables behaved during the simulation. Following this
(at line 40) is the inclusion of the IP protocol. This, in turn, is followed by declaration of the server’s single
interface, given id 0 for NHI coordinates and specified to have a bandwidth of 800 Kbits per second. The last
awcibute for the serveris an “nhi_route”, an element in IP’s forwarding table, described in NHI coordi-
nates. The server is not a router and so needs only to direct traffic from IP to one interface. Attribute--value
pair dest def ault says to route everything through the interface to follow, 0.

Specification of the second host is similar. In this case, the uppermost ProtocolSession is that of a client
that requests data, through a socket. Attributes for the client include the simulasion time at which it initiates
the request. (It actually specifies a window of simulation time in which this occurs, to provide some jitter
when multiple clients are to start more or less simultaneously). The length of the wansfer being requested is
an atwibute (line 60). The rest of this host’s ProtocolSessions are similar to the server’s, although we don’t
save so much information about TCP’s behavior at this host.

15.7 SUMMARY

In this chapter, we touched on some important topics related to simulation of computer networks. Traffic
modeling—at different levels of abstraction—is a crucial element of simulating and modeling networks.
We-emphasized the importance of non-Poisson arrivals models, in some cases tobetter match characteristics
of specific applications, in othérs to be sure to explain and capture long-range dependence.

+ Next, we focused on the Data Link layer and on the Media Access Control algorithms. We examined the
token-bus and ethernet protocols, discussed subleties of their simulation, and showed by example how
significant an impact traffic-model assumptions can have on network performance. Following this, we
mentioned issues at the Data Link layer for which simulation has been a critical wol for investigation.

Much of the traffic on the Internet is carried by using TCP. We described TCP’s basic rules and used
simulation to illustrate some of thé consequences of these rules. Finally, we sketched how one builds network
models in the SSFNet simulator.

This chapter has barely scratched the surface of how networking uses simulation. Our hope is that what
we discuss leads a student to explore more deeply any one of a number of fascinating areas of networking
that can be explored only with simulation. The exercises are designed to do this and to teach the student some
skill in using SSF and SSFNet.
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EXERCISES

1. Survey literature in models of Voice-over-IP iraffic, and build a simulator that creates traffic load cor-
responding to one model of particular interest.

2. Create a Markov-Modulated Poisson process (see chspter 14) and a Poisson-Pareto Burst Process that
yield the same average bit-rate traffic demand. Acquire the SELFIS tool for analyzing long-range
dependence (it’s free), and compare traces from the MMP and PPBP models.

@

Get from www.benn . net the SSF models for the Ethernet protocol experiments reported in this chapter.
Design and perform a sensitivity analysis of throughput as a function of the physical distance between
ethernet ports. Likewise, design and perform a sensitivity analysis of throughput as a function of
maximum frame size.

4. Acduire the SSFNet simulator from www.ssfnet.org (free for academic use) and the TCP inodels
described in this chapter from www.bcnn.net.

* Look into how TCP behavior changes in each case by i mcreasmg the bandwidth by a factor of
10.

* Investigate how TCP behavior changes in each case by reducing the link latency by a factor of
10.

¢ Work out how TCP behavior changes in each case by increasing the buffer limits expressed in
the DML file by a factor of 10.
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Table A.1" Random Digits -
94737 08225 35614 24826 88319 05595 58701 57365 74759
87259 85982 13296 89326 74863 199986 68558 06391 50248
63856 14016 18527 11634 96908 52146 53496 51730 03500
66612 54714 46783 61934 30258 . 61674 07471 67566 31635
30712 58582 05704 23172 86689 94834 99057 . 55832 21012
69607 24145 43886 86477 05317 30445 33456 34029 09603
37792 27282 94107 41967 21425 04743 42822 28111 09757
01488 56680 73847 64930 11108 44834 45390 86043 23973
66248 97697 38244 50918 55441 51217 54786 04940 50807
51453 03462 61157 65366 61130 26204 15016 85665. 97714
92168 82530 19271 86999 96499 12765 20926 25282 39119
36463 07331 54590 00546 03337 41583 46439 40173 46455
47097 78780 04210 87084 44484 753711 57753 41415 09890
80400 45972 44111 99708 45935 03694 81421 60170 58457
94554 13863 88239 91624 00022 40471 78462 96265 55360
31567 53597 08490 73544 72573 30961 12282 97033 13676
07821 24759 47266 21747 72496 77155 50391 59554 31 177
09056 10709 69314 11449 40531 02917 95878 74587 60906
19922 37025 80731 26179 16039 01518 82697 73221 13160
29923 02570 80164 36108 73689 26342 35712 49137 13482
29602 29464 99219 20308 82109 03898 82072 85199 13103
94135 94661 87724 88187 62191 70607 63099 40494 49069
87926 34092 34334 55064 43152 01610 03126 47312 59578
85039 19212 59160 83537 54414 19856 90527 21756 64783
66070 38480 74636 45095 -~ 86576 79337 39578 40851 53503
78166 82521 79261 12570 10930 47564 77869 16480 43972
94672 07912 26153 10531 12715 163142 88937 94466 31388
56406 70023 27734 22254 27685 67518 63966 33203 70803
67726 57805 94264 77009 08682 18784 47554 59869 66320
07516 45979 76735 46509 17696 67177 92600 55572 17245
43070 22671 00152 81326 89428 16368 57659 79424 57604
36917 60370 . 80812 87225 02850 47118 23790 55043 75117
03919 82922 02312 31106 44335 05573 17470 25900 91080
46724 22558 64303 78804 05762 70650 56117 06707 90035
16108 61281 86823 20286 14025 24909 38391 12183 89393
74541 75808 89669 87680 72758 60851 55292 95663 88326
82919 31285 01850 72550 42986 57518 01159 01786 98145
31388 26809 77258 199360 92362 21979 41319 75739 98082
17190 75522 15687 07161 99745 48767 03121 20046 28013
00466 88068 68631 98745 97810 35886 14497 90230 69264




502 DISCRETE-EVENT SYSTEM SIMULATION APPENDIX 503
Table A.2° Random Normal Numbers Table A.3. Cumulative Normal Distribution
0.23 -0.17 043 2.18 213 049 272 - 0.8 042 .
0.24 -1.17 0.02- 0.67 -0.59 -0.13 —0.15 -0.46 1.64 . : o
-1.16 -0.17 0.36 -1.26 0.91 0.71 -1.00 -1.09 —0.02 : ’
- —0.02 -0.19 -0.04 1.92 0.71 -090 -0.21 -140 —0.38 )
0.39 0.55 0.13 2.55 -0.33 -0.05 -0.34 -195 —044 L . ¢ I
: =" A= 1-0 '
0.64 -036 0.98 -0.21 -0.52 -0.02 -0.15 -0.43 0.62 #ea=[] o -
-1.90 0.48 -0.54 0.60 035 -1.29 -0.57 0.23 1.41 -
-1.04 -0.70 -1.69 1.76 047 -0.52 -0.73 0.94 -1.63 Iz 0.00 0.01 0.02 003 0.04 2y
-.78 0.11 -0.91 -113 007 0.45 094 142 0.75 . ' . , ’
0.0 0.500 00 0.503 99 0507 98 0.51197 0.51595 0.0
0.68: 177 082 168  -260 159 072 080 0.61 0l 0.53983 0.54379 0.54776' 0.55172 0.55567- 0.1
002 0.92 176 066 018 ~132 1.26 0.61 0.83 0.2 0.279 26 0.583 17 0.587 06 0.590 95 0.594 83 0.2
. 03 061791 062172 062551 0.629 30 0.633 07 03
31(7) :.2?) ?'gg 'g:gg (1)"(2)(1] :g;’g _(l)z ?‘fg g:g?, 04 0.65542 0.659 10 0.66276 0.666 40 0.67003 T 04
—0.75 0.09 ~1.50 0.14 299 —0.41 099 —0.70 0.51 05 069146 069497 0.69847 0.701 94 0.705 40 05
—0.66 -197 0.15 -1.16 —0.60 0.50 1.36 1.94 0.11 0.6 0.72575 0.729 07 0.73237 0.735 65 0.73891 0.6
: 0.7 0.758 03 076115 0.764 24 0.76730 - 077035 07
—0.44 -0.09 —0.59 1.37 0.18- 144 -0.80 2.11 -1.37 0.8 0.788 14 0.791 03 0.793 89- 0.796 73 0.79954 08
1.41 271 —0.67 1.83 097 0.06 —0.28 0.04 -0.21 09 0.81594 0.818 59 0.82121 0.823 81 0.82639 09
1.21 -0.52 -020 -0.88 -0.78 0.84 -1.08 =025 0.17 10 084134 0843 75 0.846 13 0.848 49 0.850 83 10
0.07 0.66 =051 -0.04 -0.84 004 160 -092 114 ' 11 0.86433 0866 50 0.868 64 087076 0.87285 11
-0.08 0.79 -0.09 -L12 -113 0.77 0.40 0.69 -0.12 12 0.88493 0.886 86 0.88877 0.890 65 0.892 51 12
: 13 090320 0904 90 0.906 58 0.908 24 0.909'88 13
053 036 264 02 —0.78 192 026 1.04 -L61 14 0.919 24 0920 73 092219 092364 0.92506 1.4
-1.56 1.82 -1.03 1.14 -0.12 —0.78 -0.12 142 —0.52 . o .
0.03 -~1.29 —0.33 2.60 —0.64 1.19 -0.13 0.91 0.78 L5 093319 0934 48 0.935 74 0.936 99 093822 - L5
149 155  -079 1.37 097 0.17 0.58 143 -129 1.6 094520 0946 30 - 094738 0948 45 0.949 50 16
17 0955 43 0956 37 0957 28 0958 18 0.959 07 17
119 135 0.16 1.06 017 032 —0.28 0.68 054 1.8 0.964 07 0964 85 0965 62 0.966 37 096711 18
-1.19 -1.03 -0.12 107 0.87 -1.40 024 —0.81 0.31 1.9 0971 28 0.971 93 097257 0.97320 0.973 81 1.9
0.11- -195 —0.44 -039 -0.15 -1.20 -1.98 0.32 291 2.0 097725 097778 0.978 31 097882 0.979 32 3,3
-1.86 0.06 0.19 -1.29 0.33 1.51 -0.36 -0.80 -0.99 21 0.982 14 0.982 57 0.983 00, 0.983 41 0983 82 21
0.16 0.28 0.60 -0.78 0.67 0.13 —0.47 —0.18 —0.89 2.2 0.986 10 0.986 45 0.986 79 0.98713 0.987 45 2.2
1.21 -1.19 —0.60 -122 0.07 -1.13 145 094 0.54 23 0.989 28 0.989 56 0.989 83 099010 099036 23
: 24 0.991 80 0.99202 099224. 0.992 45 0992 66 24
—0.82 0.54 —0.98 —0.13 1.52 0.77 0.95 —0.384 240 . . - -
0.75 -0.30 -0.28 177 -0.16 -0.33 243 -L11 1.63 25 099379 0.99396 099413, 099430 0.99446 256
_ P : 26 - 0.995 34 0.995 47 0.995 60 099573 0995 85. 26"
_?’;g : _'(1]3; _(l,'gg g‘fg 3’;’2 _?;g _?'?; (1)‘2; :?)'g; 27 0996 53 0.996 64 0.996 74 0.996 83 0.9% 93 27
089 0.08 0.95 o7 15 104 047 068 Py 28 0997 44 0997 52 0997 60 0.99767 099774 28
- . - - : - - - 29 0.998 13 0.998 19 0.99825 0.998 31 0.99836 29.
0.19 0.85 1.68 -0.57 0.37 —0.48 -0.17 2.36 -0.53 3.0 0.998 65 0.998 69 0.998 74 o,t}g_g 78 0.998 82 3.0
0.49 0.32 -2.08 -1.02 2.59 —0.53, 0.15 0.11 0.05 31 099903 - 0.999 06 0999 10 0.999 13 099916 31
-1.44 0.07 -0.22 -0.93 ~1.40 0.54 -1.28 -0.15 0.67 32 0999 31 0999 34 0.999 36 0.999 38 099940 32 |
—0.21 —0.48 1.21 067 -i.10 -0.75 037 0.68 —0.02 33 099952 099953 . 099955 099957 .. . 099958 . .33, |
—0.65 -0.12 0.94 044 - -121 -006 -1.28 -1.51 1.39 34 0.999 66 0.999 68 . 099969 . . . 09970 1099971 34
} 35 099977 099978 099978 0.99979 0999 80 35
_g‘?,;' '?'gi (1).2(5) _g‘g _g'gz -(l).g; %gg ' _g'g; _g'ég 3.6 0.999 84 0.999 85 0.999 85 0.999 86 0.999 86 3.6
193 075 032 095 135 151 _0.88 0.10 s 37 0999 89 0999 %0 0.999 90 0.999 90 0.99991 37
. - - v 3 v y . . 38 099 93 0999 93 0999 93 0.999 94 099994 3.8
0.08 0.16 0.38 -0.96 199 -020 0.98 0.16 026 39 099995 0.999 95 0999 96 ©0.999 96 0999 3.9
-0.47 ~125 0.32 0.51 -1.04 0.97 2.60 -0.08 1.19 -
(continued overleaf)
|
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504 DISCRETE-EVENT SYSTEM SIMULATION APPENDIX 505
Table A.3 (continued) Table A.4 Cumulative Poisson Distribution
2 0.05 0.06 0.07 0.08 0.09 Z, o= Mean
0.0 0.519%4 052392 052790 053188 053586 0.0 x| 0L . 05 1 2 3 4 5 6 P 8 9| x
0.1 0.5%9 62 0.56356 0.567 49 0.571 42 0.575 34 0.1 .
0.2 0.59871 0.60257 0.60642 0.61026 061409 02 0 .990 951 905 .. .819 741 670 607 549 497 449 407 0
03 0.63683 0.640 58 064431 0.64803 . 065173 03 11000 99 995 982 963 938 910 .878 844 809 72| 1
04 0.673 64 067724 0.68082 0.68438 068793 .04 2 T 1000 1000 999 99 992 98 977 966 953 937 | 2
0S 0.708 84 071226 0.715 66 0.719 04 0.722 40 0s 3 1.000 1.000 999 998 997 994 .991 .987 3
0.6 0.742 15 0.745 37 0.748 57 0.75175 0.754 90 06 4 ’ 1.000 1.000 1.000 999 999 .998 4
07 0.77337 0.776 37 0779 35 0.78230 0.785 23 0.7 5 1000 1000 1000 | 5
08 0.802 34 0.805 10 0.807 85 081057 081327 0.8
0.9 0.82494 0.831 47 0.83397 0.83646 0.83891 0.9
1.0 0.853 14 0.855 43 0.857 69 0.85993 .0862 14 1.0 .
1.1 0.87493 0.876 97 0.879 00 0.881 00 0.88297 11 a=Mean
1.2 0.894 35 0.896 16 0.89796 0.89973 090147 1.2 j .
13 0911 49 091308 0914 65 091621 091773 13 x 0o 112 13 14 15 16 17 "18 19 20| x
14 0926 47 092785 092922 093056 053189 14 0| 368 333 301 273 247 223 202 .18 165 .50 .35 | 0
15 0.93943 0.94062 0.54179 094295 094408 1.5 1| 736 699 663 627 592 558 525 493 463 434 406 | 1
L6 095053 095154 095254 095352 0954 48 16 2| 920 900 879 857 833 809 783 757 731 .74 677 | 2.
1-;’ 0.959 54 0.96080 Og 64 Oﬁm 0-923 2; :; 3| 981 974 966 957 946 934 921 907 891 875 857 | 3
:' " g'ggz i‘: g-;’:: gg 3'97 . §§ 3-972 ?g 8'372 e by 4| 996 995 992 989 98 981 976 970 964 956 947 | ‘4
g ARt : - : - ‘ s| 999 999 998 998 997 996 994 992 990 987 983 | 5
20 0979 82 0.980 30 098077 0981 24 0.981 69 2.0 6| 1000 1000 1.000 1.000 999 999 999 998 997 997 995 6
1 098422 098461 098500 098537 0985 74 21 7 : L000 1000 1000 1000 999 999 999 | 7
22 098778 0.988 09 0.988 40 0.988 70 0.988 99 22 8 1.000 1.000 1.000 1 8
23 099061 0.990 86 0991 11 0.991 34 0.991 58 23
24 0.992_ 86 0.993 05 0993 24 0.99343 | 0.993 61 24
25 099461 . 0.994 77 0994 92 0.995 06 0.995 20 25
26 0.995 98 0.996 09 099621 099632 0.996 43 26 o= Mean
2.7 0.997 02 099711 0.997 30 0.99728 0.997 36 27
28 099781 0.997 88 0.997 95 0.998 01 " 0.99807 28 x 22 24 26 2.8 3.0 35 4.0 4.5 5.0 5.5 6.0 x
29 0.99841 0.998 46 099851 0.998 56 0.998 61 - 29
o .1 .91 074 061 050 030 018 Ol 007 004 02| O
30 0.99886 099889 059893 099897 099900 30 1| 355 308 267 231 199 36 092 .06l 040 027 017 | 1
i 059918 099921 0999 24 099926 099929 3 2| 623 50 518 469 423 320 238 074 125 088 062 | 2
32 0999 42 0.999 44 099946 0.99948 099950 32 : - DB ‘ : : : - ! :
3| 819 779 736 692 647 537 433 342 265 202 .51 | 3
33 0.999 60 0.99961 0999 62 0.99964 0.999 65 33
34 099972 099973 0999 74 099975 099976 4 41 928 904 877 848 8IS 725 629 532 440 358 285 | 4
- s| 975 964 951 935 916 858 185 .03 .66 529 446 | S
35 099981 099981 099982 059983 059983 3s 6| 993 988 983 976 966 935 889 831 762 686 606 | 6
36 059987 099987 099988 099988 (099989 36 7| 998 997 995 992 988 973 949 913 867 809 .74 | 7
7 099991 099992 - 0999 92 0.99992 0999 92 3.7 ) ) ) ° ) : ) : - ) :
: 81000 999 999 998 996 9% 979 960 932 894 847 | 8
33 0.999 94 0999 94 0999 95 0.99995 0.999 95 38 ,
19 099996 099996 0999 96 099997 099997 19 9 1600 1000 999 999 997 992 983 968 946 916 | 9
10 _ 1000 1000 999 997 993 98 . 975 957 | 10
Source: W. W, Hines and D. C. Montgomery, Probability and Statistics in Engincering and Management Science, 2d ed., © 1980, 11 ] 1.000 999 .998 995 989 .980. | I1. -}
pp. 592-3. Reprinted by permission of John Wiley & Sons, Inc., New York. 12 1.000 999 998 996 99 | 12
- : ‘5 13 1000 999 998 99 | 13
: 14 1000 999 999 | 14
. 15| . 1000 999 | 15
| 16 1.000 | 16

(continued overleaf)




506 _ DISCRETE-EVENT SYSTEM SIMULATION APPENDIX 507 |
" Table A.4 ‘{continued) i Table A.5 Percentage Points of The Student's ¢ Distribution with v Degrees of freedom
o = Mean
x 65 10 15 80 90 100 120 140 160 180 200 | x «
0| 002 .001 001 0
1| .011 007 -005 .003 .001 1 PR
2| 043 030 020 .014 006 .003 .00 2 . “
3 .12 082 059 042 021 .010 002 3 v
4| 224 U 132 .10 055 029 008 002 4 Tag0s foa Togns fous fo10
5| 369 300 241 .91 .1l6 067 020 006 .001 - 5 1 63.66 3182 1271 6.31 1.08
6| 527 450 378 313 207 .30 046 04 .04 .00 6 2 992 6.92 " 430 292 ' 1.89
7| 673 599 525 453 324 220 090 .032 .00 003 .001 | 7 3 584 454 318 235 L64
8| 792- 729 662 593 456 333 S5 062 02 007 002 | 8 4 4.60 375 278 213 153
9| 877 830 776, 717 587 458 242 109 .43 015 005 | 9
10| 933 901 862 816 .706 .58 347 176 0677 .30 011 | 10 5 403 3.36 2.57 2.02 148
11 | 966 947 921 888 803 697 462 260 127 055 021 | 11 6 3 3.14 245 1.94 1.44
12| 984 973 957 93 876 - 792 576 358 .193 .092 039 | 12 7 350 3.00 2.36 1.90 1.42
13| 993 987 978 966 926 864 682 464 275 143 066 | 13 8 3.36 2.90 231 186 140 ).
14 | 997 994 990 983 959 917 372 570 368 208 .105 | 14 9 325 2.82 2.26 1.83 138 - |”
15| 999 998 995 992 978 951 .844 .668 467 287  .AST | IS 10 317 276 223 181 137
16 | 1000 99 998 996 989 973 899 756 566 375 221 | 16 - 1 311 272 220 180 136
17 1000 999 998 - .995 98 .937 827 659 469 297 | 17 12 3.06 268 218 178 136
18 : 1000 999 998 .993 963 883 .742 562 .38l | 18 13 3.01 265 216 177 135
19 1000 999 997 979 923 812 651 470 | 19 14 2.8 262 214 176 Y
20 1000 . 998 988 .952 868 731 559 | 20 .
21 _ 999 994 971 911 799 644 | 21 15 295 2.60 2213 1.75 1.34
22 . 1000 997 983 942 85 721 | 22 16 292 2.58 2.12 175 1.34
23 , 999 991 963 899 787 | 23 17 2.90 257 2.11 174 . 133
24 999 995 978 932 .843 | 24 18 2.88 2.55 2.10 173 1.33
25 : 1000 997 987 955 .888 | 25 19 2.86 2.54 209 LT3 1.33
26 _ 999 993 9712 922 | 26 ' 20 284 2.53 209 172 . 132
27 999 996 983 948 | 271 | ; 21 283 252 208 17 132
28 _ 1000 998 990 966 | 28 » 282 251 207 . 172 13
29 : ' 999 $4 I8 |29 if 2 2381 250 207 171 132
30 | - | 999 997 . 987 | 30 ’ 2% 280 249 206 17 132
31 — 1000 .998 .92 | 31 . : : o
32 99 .95 | 32 25 219 2.48 206 L 132
33 | _ 1000 997 | 33 26 2.78 248 2.06 L7 - 132
34 999 | 34 27 2.77 247 2,05 1.70 1.31
" 35 999 | 35 28 2.76 247 2.05 1.70 1.31
36 | _ . : 1000 | 36 | 2 276 T 246 204 170 1.31
Source: . Banks and R. G. Heikes, Handbook of Tables and Graphs for the Industrial Engineer and Manager, © 1984, pp. 34-35. 3 - 275 246 2,04 170 1.31
Reprinted by permission of John Wiley and Sons, Inc., New York. 40 2.70 242 202 1.68 1.30
. : : 60 266 239 - 2.00 1.67 1.30
120 2,62 236 . 198 1.66 129
o 2.58 233 .. 196 1.645 - 1.28 .
Source: Robert E. Shannon, Systers Simulation: The Art and Science, @ 1975, p. 375. Regrinted by permission of
Prentice Hall, Upper Saddle River, NJ. - ' )
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Degrees of Freedom for Denominator (v,)
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Table A.7 Percentage Points of The F Distribution with a=0.05
' Degrees of Freedom for the Numerator (¥,)
Y
v, 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 oa
1 1614 1995 2157 2246 230.2 2340 236.8 2389 2405 2419 2439 24-5.9 248.0 249.1 2501 2511 2522 2533 2543
2 1851 19.00 19.16 1925 1930 19.33 1935 1937 1938 19.40 19.41 1943 19.45 1945 1946 1947 19.48 1949 19.50
3 1013 955 © 9.28 9.12 9.01 894 8.89 8.85 8.81 8.79 8.74 870 8.66 8.64 8.62 859 857 8.55 853
4 171 694 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 . 577 . 575 5.72. .5.69 - 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 495 4,88 4.82 4.77 474 468 4.62 4.56 4.53 450 4.46 443 440 436
6 599 5.14 4.76 4,53 -+ 439 428 . 4.21 4.15 4.10 406 . 400 394 3.87 3.84 3.81 3.77 3.74 3,70 3.67
7 559 474 435 4.12 3.97 387 379 3.73 3.68 3.64 357 3.51 344 3.41 338 . 334 3.30 327 323
8 532 446 4.07 3.84 3.69 3.58 . 3.50 3.44 3.39 3.35 3.28 322 3.15 312 3.08 3.04 3.01 297 293
9 512 426 3.86 3.63 3.48 337 3.29 323 3.18 3.14 3.07 3.01 294 290 286 2.83 2.79 2.75 2.1
10 496 4.10 3.7 348 333 322 3.14 3.07 3.02 298 2.91 285 21 2.74 270 266 262 2.58 254
11 484 398 3.59 3.36 3.20 3.09 - 3.01 295 290 285 2.719 272 265 . 261 257 253 2.49 245 240
12 4.75 3.89 3.49 3.26 3.11 3.00 291 2.85° 280 275 2.69 2,62 254 2.51 247 243 . 238 234 230
13 467 3.81 3.41 3.18 3.03 292 283" 277 2,71 ¢ 267 2.60 253 -~ 246 242 238 234 230 225 221
14 460 3.74 334 3.11 2.96 285 276 270 2.65 2.60 2.53 246 239 235 231 227 - 222 2.18 213
15 454 3,68 3.29 306 290 279 - 2.7 2.64 2.59 254 248 240 233 2.29 225 2.20 2.16 211 2,07
16 449 363 324 3.01 285 . 274 2,66 2.59 2.54 249 242 235 2.28 224 219 2.15 2.11 2.06 2.01
17 445 359 3.20 2.96 2.81  .2.70- 2.61 2.55 249 . 2‘45. 2:38 ..231 223 219 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 293 277 266 258 ! 251 246.° 241 234 227 219 215 . 211 2.06 202 197 © 192
19 438 352 3.13 2.90 2.74 2.63 2.54 248 2.42 2.38 2.31 223 - 216 2.11 2.07 2.03 1.98 193 - 1.88
20 435 349 3.10 2.87 2.1 260 - 2.51 245 239 235 228 2,20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 432 347 3.07 2.84 268 257 _‘ 249 2.42 237 232 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 430 344 3.05 2.82 2.66 255 - 246 240 234 230 223 2.15 207 203 198 1.94 1.89 1.84 198
23 428 342 3.03 2.80 264 253 244 237 232 227 220 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1."_76
24 426 340 3.01 2.78 262 251 242 236 230 225 2.18 2.11 2.03 1.98 194 189 1.84 1.79 173
25 424 3.39 299 2.76 2.60 249 240 - 234 -228 224 2.16 2,09 201 196 -192° 1.87 182 - LT 171
26 423 337 298 2.74. 259 247 239 232 227 222 2.15 207 - 199 195 1.90 1.85 1.80 1.75. 1.69
27 421 3.35 2.96 2.73 2.57 '2.4§ L 237 2.31 225 220 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1737 167
28 420 334 295 2.7 2.56 245 236 - 2.29 224 - 219 2.12 204 1.96 1.91 1.87- 182 1.77 1.71 1.65
29 418 333 293 2.70 2.55 243 235 228 222 2.18 2.10 2,03 1.94 190 1.85 1.81 1.75 1.70 1.64
30 417 332 292 269 253 242 233 227 2.21 2.16 2.09 2.01 193 1.89 1.84 1.79 174 1.68 1.62
40 408 323 2.84 2.61 245 234 225 2.18 2,12 2.08 2.00 1.92 1.84 179 174 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 237 225 2.17 2.10 204 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 147 1.39
120 392 3.07 268 245 229 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.55 1.43 1.35 1.25
o0 384 3.00 2.60 237 . 2.21 2.10 2.01 . 194 1.88 1.83 .75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
Source: W. W. Hinesand D. C. Montgomery, Probability and Statistics in Engineering and M

& Sons, Inc., New York.

Science, 2d ed., © 1980, p- 599. Reprinted by permission of John Wiley _
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DISCRETE-EVENT SYSTEM SIMULATION

Table A.8 Kolmogorov-Smirnov Crifical Values

Degrees of
Freedom
(N) Dﬂ.lﬂ Do.ns Do.m
1 0.950 0.975 0.995 .
2 0.776 0.842 0929
3 0.642 0.708 0.828
4 0.564 0624 0.733
5 0.510 0.565 0.669
6 0.470 0.521 0618
7 0.438 0.486 0.577
8 0.411 0.457 0.543
9 0.388 0.432 0.514
10 0.368 0.410 0.4%0
11 0.352 0.391 0.468
12 0.338 0.375 0.450
13 0.325 0.361 0.433
14 0.314 0.349 0418
15 0.304 0.338 0.404
16 0.295 0.328 0.392
17 0.286 0.318 0.381
18 0.278 0.309 0.371
19 0272 0.301 0.363
20 0264 0.294 0.356
25 - 0.24 0.27 0.32
30 0.22 0.24 0.29
35 0.21 0.23 0.27
Over 1.22 1.36 1.63
35 N I N

Source: F. J. Massey, “The Kolawgorov-Smimov Test for Goodness of
Fi." The Journal of $he American Statistical Association, Vol. 46.© 1951,
p- 70. Adapied with perraission of the A merican Statistical Association.
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Table A.9 Maximum Likelihood Estimates of the Gamma Distribution- *

w B M B M B

0.020 0.0187 2.700 1494 . 10300 5311
0.030 0.0275 2.800 1.545° - 10600 5.461
0.040 0.0360 2900 . 1.596 '10.900 5611
0.050 0.0442 3.000 1.646 11200 5.761
0.060 0.0523 3.200 1748 -11.500 5911
0.070 0.0602 3.400 1.849 "11.800 6.061
0.080 0.0679 3.600 1950 “"12.100 6.211
0.090 0.0756 3.800 2,051 12.400 6.362
0.100 0.0831 4,000 2.151 12.700 6.512
0.200 0.1532 14200 2252 13.000 6.662
0.300 0.2178 4.400 12353 . 13300 6.812
0.400 0.2790 4,600 2453 . 13.600 6.962
0.500 0.3381 4800 2554 - °13.900 7.112
0.600 0.3955 . 5000. 2654 .. 14.200 7262
0.700 0.4517 5.200 2755 14.500 7.412
0.800 0.5070 5400 2855 14.800 7.562
0.900 0.5615 5.600 2.956 15.100 7.712
1.000 0.6155 5.800 3.056 15.400 7.862
1.100 0.6690 6.000 3.156 15.700 ..8.013.
1.200 0.7220 6200 3257 “1600p .77 “8.163
1.300 0.7748 6.400 3357 © 16300 - .78.313
1.400 0.8272 6.600 " 3.457 16600 : .. 8.463
1.500 0.8794 6.800 3.558 16900 . ' 8.613
1.600 09314 7.000 3.658 17.200 - . 8.763
1.700 0.9832 7.300 3.808 17.500 8.913
1.800 1.034 7.600 3.958 17.800. 9.063
1.900 1.086 7.900 4.109 18.100 :  9.213
2.000 1.137 8.200 4259 18400 9.363
2.100 1.188 8.500 4.409 18700 - 9.513
2200 1.240 8.800 4.560 19.000 9.663
2.300 1.291 9.100 4710 19.300 9.813
2.400 1.342 9.400 4.860 - 19.600 9.963
2.500 1.393 9.700 5.010 20000 - 10.16

2.600 1.444 10.000 5.160 o .

Source: S. C. Choi and R. Wette, “Maximunt Likelihood Estimates of thc Gma Distribution and
Their Bias,” Technemetrics, Yol. 11, No. 4, Nov. © 1969, pp. 688--9.Adapted with permission of the
American Statistical Association.
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512 . DISCRETE-EVENT SYSTEM SIMULATION APPENDIX
Table A.10 Operating Characteristic Curves for The Two-Sided ¢ Test-for Table A.11  Operating Characteristic Curves for the One~Sided ¢ Test for
Different Values of Sample Size n Different Values of Sample Size
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_ \ \\\\ N S I Source: A. H. Bowker and G. J. Lieberman, Engincering Statistics, 24 ed., © 1972, p. 203. Reprinted
0 0204 06 08 10 12 14 16 1.8 20 22 24 26 28 30 32 by permission of Prentice Hall, Upper Saddle River, NJ.
p .
_ _ (b) =001
Source: C. L. Ferris, E E. Grubbs, and C. L. Weaves, “Operating Characteristics for the Comraon
Swatistical Tests of Significance,” Annals of Mathematical Statistics, June 1946. Reproduced with
pesmission of The Institute of Mathematical Statistics.
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Able-Baker call center problem, 62-63, 68,
338-339, 347-348
Abstraction, 451-452
in computer systems, 450-452
Acceptance-re jection technique, 254260
* gamma distribation, 259-260
nonstationary Poisson process (NSPP),
258-259
Poisson distribution, 255-258
Accumulating conveyor section, 428-429
Across-replication cycle-time data, 345-347
Activities, 61
defined, 8
Activity-scanning approach, 66~68
Actual average cycle time, 344
Actual usage breakdowns, 431
AGV dispatching systems, 8
AGVs, See Automated guided vehicles (AGVs)
ALGOL, 87-88
Altemative system designs, 379422
common random numbers (CRN), 384392
comparison of,, 393401
Bonferroni approach to multiple
comparisons, 394398
Bonferroni approach to screening, 400401
Bonferroni approach to selecting the best,
398400 _ '

multiple linear regression, 409
random-number assignment for
regression, 409410
simple linear regression, 402-406
testing for significance of regression,
406408
Two-Stage Bonferroni Procedure,
399401
comparison of two system designs, 380--393
confidence intervals with specified
precision, 392-393
independent sampling:
with equal variances, 383-384
with unequal variances, 384
optimization via simulation, 410-417
systems performance, statistically and
practically significant differences in,
382 '

_American Statistical Association (ASA), 6

Ample-server system, 205
Analytical methods, 12
Anderson-Darling test, 293
Application Layer, 479 -

- Application Program Interface (API), 106-107

Applied Research Laboratory, United States
Steel Corporation, 88
Approximation for the M/G/c/~= queue, 205
Arena, 14, 110-111
Input Analyzer, 111
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Arena (continued)
Input Processor, 270
Output and Process Analyzer, 116
Professional Edition (PE), 110
and SIMAN simulation language, 111
Standard Edition (SE), 110
website, 110
Arithmetic Logical Unit (ALU), 453
Arrays, storing records in, 79
Arrival process, queueing systems, 181182
Arrivals class, 107-108
AS/RS (automated storage and retrieval
system), 428
Assembly-line simulation, 437443

potential system improvements, analysis of,

441442
presimulation analysis, 439-440
. simulation model and analysis of the
designed system, 440
station utilization, analysis of, 440-441
system description and model assumptions,
437439
Association for Computing Machinery/Spacial
Interest Group on Simulation
(ACM/SIGSIM), 6
Associative memory, 473-474
@Risk’s BestFit, 270
Attributes, 61
defined, 8
Autocorrelation tests, 233-235
for random numbers, 228-229 :
Automated guided vehicles (AGVs), 312, 428
Automated material handling systems
(AMHS), 8
Automobile engine assembly problem, 410
AutoMod, 14, 111
animation, 111
AutoStat, 111
AutoView, 111
templates, 111
website, 110
worldview, 111
AutoStat, 15,116
AutoView, 111
Average of the averages, 343
Average system time, 186-187
- Awesime, 453

B

Baseline configuration, 438
Batch means, 340, 367, 370

Bemoulli distributions, 141
Bernoulli process, 141
Bemoulli trials, 141-142
Best fits, 293-294
Beta distributions, 141, 164-165
physical basis of, 277
.suggested estimators, 281-287
BGP, 488
Bias, in point estimator, 341-342
Binomial distributions, 140-142
physical basis of, 276
Bonferroni approach:
to multiplc comparisons, 394-398
to screening, 400-401
to selecting the best, 398—400
Bonferroni inequality, 394
Bootstrapping, 65
Bottom of a list, 78-79
Branch instructions, 470
Branches, 470
Breakpoints, 296
Bridge, 488
Bucket conveyors, 428
Burstiness, 458
and traffic modeling, 482-483
Business process simulation, 7

C

C, 260, 313-314, 453
C++, 79, 260, 313-314, 453
C++SIM, 453
Calibration, 316
Call-center analysis, 8
Calling population, queueing systems, 20,
179-180
Cancellation of an event, 64
Carrier Sense Multiple Access/Colljsion :
Detection (CSMA/CD) protocol, 486
Carrying stock in inventory, 36
Central processing unit (CPU), 450, 452
Chains, See Lists
Chi-square distributions, 508
Chi-square test, 231-233, 270, 287-289
computations for, 232-233
with equal probabilities, 290-291
Classes, 79
Clock, 61
and Java, 93
Clock-time breakdowns, 431
Combined linear congruential generators,
226-228

A R T bt
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Commercial simulation languages, 453
Common random nimbers (CRN), 379,
384-392
Component life, histograms of, 276
Computer systems:
complexity of, 450
levels of abstraction in, 450451
simulation of, 450-477
Computer-network simulations, 478499
data link layer, 487-488
Media Access Control (MAC) protocol
483-487
Transport Control Protocol (TCP), 488-494
Computer-systems simulations, 450-477
CPU simulation, 463-472
event orientation, 456457
high-level computer simulations, 466-468
memory simulations, 472-475
model input, 457466
Modulated Poisson Process (MPP),
458461
virtual-memory referencing, 461466
process orientation, 454-456
simulation tools, 452-457
Conceptual model, construction of, 311
Conditional event, 62
Conditional wait, 62
Confidence intervals, with specified precision,
392-393
Confidence-interval estimation, 343-344
statistical background, 345-348
Congestion window size, 490
Conservation equation, 188-189
Construction engineering applications,
simulation, 7
Continuous data, histograms for, 274-275
Continuous distributions, 146-165
beta distribution, 164-165 .
Erlang distribution, 151-153
exponential distribution, 147-150
gamma distribution, 150-151
normal distribution, 153-159
triangular distribution, 244-245
uniform distribution, 146-147
Weibull distribution, 159-160
Continuous model, 11-12
Continuous random variables, 132-134
Continuous system, 11
Continuous uniform distributions, physical
basis of, 277 . .
Continuous-time data, 341 - -
Control and Simulation Language (CSL), 88

Control sampling variability, 414

Conventional limitations, as source of process
information, 295

Conveyor sections, classification of, 428

Conveyors, classification of, 428429

Convolution of distributions, 261

Correlated sampling, 379, 441

~, Covariance-stationary process, 297, 359

CPU simulations, 457, 468—472
Critical path, 51
CSIM, 453

.Cumulative averages, 358 -

Cumulative distribution function (cdf),
134-136

Cumulative normal distribution, 503-504

Cumulative Poisson distribution, 505-506

Current contents and model reasonableness,
313

Cycle breakdowns or failures, 431

D

Data assumptions, 317 :
Data collection, guidelines for, 270-272
Data Link Layer, 478—479, 487488
protocols at, 479
Data-frames, 478-479
Debugger, 312 .
Dedicated random-number stream, 386
Delay, 61, 187
Delmia/QUEST, 114
website, 110
Design variables, 402
Deterministic duration, 62
Deterministic simulation models, 11
Direct execution, defined, 465
Direct-execution simulation, 465-466, 473

"Discrete data, histogeams for, 273

Discrete distributions, 141-146, 250-254
Bemoulli trials and the Bernoulli
distribution, 141
binomial distribution, 142-143
discrete uniform distribution, 252-253
empirical discrete. distribution, 250-252
geometric and negative binomial
distributions, 143-144 -
geometric distribution, 253254
physical basis of, 277
Poisson distribution, 144—145
Discrete model, 12

" Discreterandom variables, 132 141

Discrete system, 9 -
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Discrete uniform distributions, 252-253
Discrete-event models, 60
Discrete-event simulation, 12, 60, 451
concepts in, 61-78
defined, 63
Discrete-time data, 341
Distribution applications simulation, 7
Distribution of maximum lgnorance, 141
Documentation, 314
Domain Modeling Language (DML) files, 495
Doubly-linked lists, 83
Dump-truck problem, 73-77, 389-392
Dynamic allocation, and linksd lists, 81
Dynamic simulation models, 11

E

ECSL, 88
Ehrhardt, I., 436
.Embpirical dlsmbutlons 169-171, 245-249
discrete distributions, 250-252
physical basis of, 276
Emulation, 8
End of downtime, 66
End of runtime, 66
End-loading event (EL), 75
Endogenous events/activities, 9
- Engineering data, as source of process
information, 295 .
Ensemble averages, 354, 357-358
Entities, 3, 61, 79
defined, 8
Ergodic chains, 458
Erlang distributions, 151-153
and convolution method, 261-262
physical basis of; 277
Ertek, G., 436
_ Ethernet, 483, 486-487
Ethernet frame, format of, 486
Event Class, 95
Event list, 61
Event methods, Java, 93
Event notices, 61, 78
Event orientation, 456-457
Events, 9, 21, 61
Event-scheduling simulation, 69-78
checkout-couater simulation problem,’
72-73
dump-truck problem, 73-77
single-channel queue, 69-72
Event-scheduling simulation program, overall
structure of, 93-94

Event-schdulmg/mm—advance algorithm, 64-65
Exogenous events, 64
Expectation, 136-137
Experimentation and statnstncal-analysns tools,
115-116
comunon features, 115
products, 116
Arena’s Ousput and Process Analyzer
116
AutoStat, 116
OptQuest, 117
SimRunner, 117
Expert option, as source of process
information, 295
ExpertFit, 270
Exponential backoff, 487
Exponential distributions, 168, 182 275-276
physical basis of, 277
suggested estimators, 281
Extend, 14, 111
website, 110

F

Face validity, 317
Family of distributions, selecting, 275—277
FEL, 61, 63-66
end-loading event (EL) on, 75
Fields, 78
FIFO (first in, first out), 20
Finite population models:
compared to infinite models, 179-180
steady-state behavior of, 208-211

- First-in-first-out (FIFO), 182

“Fixed" backoff, 487
Fixed-sample-size procedures, 393-394
Fixed-window conveyors, 429 .
Flexibility, in simulation tools, 456-457
Flexsim, 14
animation, 111-112
simulation models, 111
website, 110
Flexsim Software Products, Inc., 112
FORTRAN, 78-79, 87-89, 93, 260, 314
Forwarding tables, 488
Frames, 483
Free-path transporters, 428
Frequency tests, 229-233
chi-square test, 231-233
Kolmogorov-Smimov test, 230-233
for random numbers, 229 -
Fully associative cache, 473
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Functional abstraction, 452
Future event list (FEL), See FEL
FutureEventList, 93

G
GA, See Genetic algorithms (GA)
Gamma distributions, 139-141, 150-151,
~ 181-182,276
acceptance-rejection technique, 259-260
maximum likelihood estimates of, 511
physical basis of, 314
suggested estimators, 281
Garbage-in-garbage-out (GIGO), 270
GASP (General Activity Simulation Program),
87-88
GASP IV, 88
gec compiler, 462
Gebhardt, H., 436
General Simulation Program, 87-88
Generation, 413
Generator matrix, 458
Genetic algorithms (GA), 413-414

Geometric and negative binomial distributions,

143-144
Geometric distributions, 140, 150, 253-254
GIGO, 270
Goodness-of-fit tests, 287-294
best fits, 293~294
chi-square test, 287-288
chi-square test with equal probabilities,
290-291
Kolmogorov-Smirnov test, 292-293
p-values, 293-294
Gordon, Geoffrey, 88
GPSS (General Purpose Simulation System):
development of, 88
simulation in, 102-106
GPSS/360, 86-87
GPSS/H;, 14, 86-88,93, 102
single-server queue simulation in, 102-105
GPSS/NORDEN, 88
Graphical interfaces, and
verification/validation, 313

H

Head of a list, 78

Head pointer, 78

Health care applications, simulation, 7
Heavy-tailed distributions, 479483
Henriksen, James O., 88

Herper, H,, 436
High-level computer simulations, 466468
Histograms, 272-275
of component life, 276
for continuous data, 274-275
for discrete data, 273
Hit ratio, 462, 473-475
Hixson, Harold, 87
Hubs, 488
Hurst parameter, 482
Hyperexponential distribution, 141

I

IBM, 88
Imagine That, Inc., 111
Imminent event, 63-64
in_service Variable, 108
inChannel classes, 107
Independent replications, 345
Independent sampling, 379
with equal variances, 383-384
with unequal variances, 384
Infinite population models, compared to finite
models, 180
Infinite-population Markovian models, steady-
state behavior of, 194-208
single-server queues with Poisson
arrivals/unlimited capacity, 195-201
Initial conditions, 336 :
Initialization method, 93, 97
Input modeling, 269--309
" data collection, 270-272
defined, 269
fitting a nonstationary Poisson process
(NSPP), 294-295
goodness-of -fit tests, 287-289
best fits, 293-294
chi-square test, 287289
chi-square test with equal probabilities,
290-291
Kolmogorov-Smimov test, 292-293
p-values, 293-294
identifying the diswibution with data, 272-279
histograms, 272-275
quantile-quantile (g—g) plots, 277-279 -
selecting the family of distributions,
275-277
parameter estimation, 280-287
sample mean and sample variance,
280-281
suggested estimators, 281-287
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Input modeling (continued)
steps in development of a useful model of
input data, 269-270
Input models:
multivariate and time-series input models,
296-303
covariance and correlation, 297
multivariate input models, 298-299
normal-to-anything transformation
(NORTA), 301-303
time-series input models, 299--301
without data, selecting, 295-296
Input-Output (I/O) system, 452-457
Input-output transformations:
validation process, 318-327 -
using historical input data, 327-331
Institute for Operations Research and the
Management Sciences: College on
Simulation (INFORMS/CS), 6
Institute of Electrical and Electronics
Engineers: Computer Society
(IEEE/CS), 6 .
Institute of Electrical and Electronics.
Enginsers: Systems, Man and
Cybemetics Society (EEE/SMCS), 6
Institute of Industrial Engineers (IIE}, 6
Instruction complete, 469.
Instruction decode, 469
Instruction execute, 469
Instruction fetch, 469
Instruction graduate, 469
Instruction issue, 469
Instruction level parallelism (ILP), 469
Instruction-complete stage, 470471
Instruction-decode stage, 470
Instruction-execute stage, 470
Instruction-fetch stage, 470
Instruction-issue stage, 470
Insurance company problem, 402
Intelligent initialization, 353
Interactive Run Controller (IRC), 312
Interarrival processes, 457 -
Internet Protocol (IP), 479
Inventory and supply-chain systems, 140
Inventory policy, 372 :
Inventory systems:
and random number synchromzanon
385-386
simulation of, 35-42
news dealer’s problem, 36-39
order-up-to-level inventory system, 40-42
Inverse-transform technique, 240-254

continuous distributions without a closed-
form inverse, 249-250
discrete distributions, 250--254
empirical distributions, 245-249
exponential distribution, 240-243
triangular distribution, 244-245
uniform distribution, 243-244
‘Weibull distribution, 244-
IP (Internet Protocol), 479

J

Java, 79, 81--82, 92,260, 313, 453
online resources for learning, 93-94
simulation in, 93-102 .
single-server queue simulation in, 95-102
fThread/ class, 454 )
Java simulation program, overall structure of, 95
Joshi, S. B., 435
Just-in-Time (JIT), 436

K

Kiviat, Phillip J., 88 .
Kohnogorov-Smimov critical values, 510
Kolmogorov-Smirmov test, 230—233 270
calculations for, 233
as goodness-of -fit test, 292-293

L

LI cache, 473
Lack-of -fit test, 406
Lag, 234, 359

- Lag-h autocorrelation, 297

Lag-h autocovariance, 297
Last-in-first-out (LIFO), 182
Lead time, 40, 140
Lead-time demand, 47-49
Least Recently Used (LRU), 474
stack evolution, 475
Least-squares function, 403
Linear congruential method, 223-226
or random-number generation, 223-226
Linked lists, 78
qumﬁed natural gas (LNG) transportation
problem, 410
List processing, 64, 78-83
basic properties/operations performed on -
lists, 78-79 :
_defined, 78
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using amrays for, 79--81

future event list and dump-truck problem,

82-83
list for dump trucks at weigh queue, 79-81

Lists, 61
Local area network (LAN), 483
Locality of reference, 462
Logistics applications, simulation, 7
Lognormal distributions, 141, 163-164

pdf of, 163

physical basis of, 276

suggested estimators, 281-282
Long-range dependence, 481-482
Long-run average system time, 187
Long-run time-average number, 185
Lost sales case, 40

M

MAC protocol, 479, 487-488
Main program, Java, 93
“Making up backorders;” 40
Manufacturing and material-handling systems,
425-449
assembly-line simulation, 437443
potential system improvements, 441-442
presimulation analysis, 439440
simulation model and analysis of the
designed system, 440
station utilization, 440441
system description and model
assumptions, 437-439
case studies of the simulation of, 435-437
defined, 425
goals and performanice measures, 429-430
manufacturing and material-handling
simulations, trace-driven models,
433-435
manufacturing-simulation models, major
goalsof, 429
modeling issues in, 430-435
modeling downtimes and failures,
430-433 .
non-manufactaring material-handling
systems, 429-430
simulation projects, 426-429
material-handling equipment, 428-429
- models of manufacturing systems,
| 426-427
models of material handling systems,
427-428
Manufacturing applications, simulation, 6

Markov chain transitions, 452
Markovian models, 195
Markowitz, Haery, 88
Materials handling system (MHS) problem, 410
Mathur, Mahesh, 436
Maximum density, 224
Maximum period, 224
Maximum-likelihood estimators, 281
Measures of performance, 3
confidence-interval estimation, 343-344
point estimation, 341-343
Media Access Control (MAC) protocol,
479, 483-487 .
Ethemnet, 486-487 _
token-passing protocols, 483-486
Median-spectrum test, 229
Memory simulations, 457, 472-475
Memoryless propesty, 149, 166
Metaheuristics, 115
Metamodeling, 402 ,
Micro Analysis and Design, Inc., 113
Micro Saint, 14, 113
website, 110
Microsoft Windows XP, 109
Mid pointer, 83
Military applications, simulation, 7
Milling-machine-bearings-replacement-policy
problem, 391
Min-time event method, Java, 93
Mixed congruential method, of random-
number generation, 223 .
M/M/c/K/K queue, steady-state probablhtles
for, 208
Mode, 137
Model assumptions:
types of, 317
validation of , 317-318
Model building, verification and validation,
311
Model input, 457-466
computer-systems simulations, 457
Modulated Poisson Process (MPP),
458-461
virtual-memory referenging, 461-466
Model input-output transformations, validation
process, 318-327
Turing test, 331
Model reasonableness, 318
indicators of, 314
Models, 9, 61, 335-378
defined, 3
types of, 11
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. Modulated Poisson Process (MPP) 458-461
Monotonicity, 386
Monte Carlo simulation, 11
Multiple linear regression models, 409
Multiple ranking and selection procedure, 393
Multiplicative congruential method, of random-
number generation, 223
Multiplier, 223
Multiserver queues, 201-204
with Poisson arrivals and limited capacity
(M/M/c/N/ee), 206-208
Multistage procedures, 393
Multivariate and time-series input models:
covariance and correlation, 296-297
normal-to-anything transformation
(NORTA), 301-303

N

Nance, Richard, 86
Nandi, A., 437
National Institute of Standards and Technology
(NIST), 6
Nature of the process, as source of process
information, 295
Negative binomial distributions, 140-141,
143-144
physical basis of, 277
Network Layer, 479, 488
Networked systems design, 478
Application Layer, 479
Data Link Layer, 478-479
Network Layer, 479, 488
Physical Layer, 478
Presentation Layer, 479
Session Layer, 479
traffic modeling, 479-483
Transport Layer, 479
Network-Host-Interface (NHI) convention, 495
Networks, 478499
of queues, 211-213
nextDouble Method, 100
Nonaccumulating conveyor section, 428
Non-manufacturing material-handling systems,
430
_ Nonstationary Poisson process (NSPP),
168-169
acceptance-rejection technique, 258-259
fitting, 294-295
Nonstationary simulation, 337
Nonterminating system, 337

Nonzero autocorrelation, 234
Normal distributions, 153-157, 275-276
pdf of,, 153-154
physical basis of, 277
special properties of, 153-154
suggested estimators, 281
transforming to, 155
using the symmetry property of, 156
“Normal equations,” 403
Normal-theory prediction interval, 344
Normal-to-anything transformation (NORTA),
301-303
NSPP, See Nonstationary Poisson process
(NSPP)
Nth moment, 136
Number of Servers is Infinite (M/Gloe/es), 205
Numerical methods, 12

0

Offered load, 191
On-line information services problem, 410
Open System Interconnection (OSI) Stack
Mode, 478
Operating characteristic curves, 512-513
Operational model, implementation of,
311312 - -
Optimization, 115 '
Optimization via simulation, 410-416
defined, 411-412
difficulty of, 412
random search, 415-417
robust heuristics, 413-414
control sampling variability, 414
restarting, 415
OptQuest, 15, 113, 117
Order-up-to-level inventory system, 4042
OSPF, 488
outChanmel classes, 107
Output analysis, 311
defined, 335
measures of performance and their -
estimation, 341-344
for a single model, 335-378
for steady-state simulations, 352-370
batch means for interval estimation,
367-368
error estimation, 359-362
initialization bias, 353-358
quantiles, 370
replication method, 362-365
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sample size, 365-367
stochastic nature of output data, 338-341
for terminating simulations, 344352
-confidence intervals with specified
precision, 348-351
estimating probabilities and quantiles
. from summary data, 351-352
statistical background, 345-348
Overall error probability, 394-395
Owen, D.G., 87

P

Packet loss, 479
Page fault, 462
Page frames, 461

- Pages (units), 461-462

Parallel service mechanisms, 182
Parameter estimation, 280-287
sample mean and sample variance, 280-281
suggested estimators, 281— 287
Pareto distribution, 460
Pascal, 314
Pegden, C. Dennis, 89
Pending customer, 182
Periodic downtime, 430
Petri nets, 453
Physical Layer, 478
Physical or conventional Jimitations, as source
of process information, 295
Picture formatting, 105
Pierce, Neal G., 435
Point estimate, 339
Point estimation, 341-342
Point estimator:
bias in, 341-342
unbiased, 341
Poisson arrival process, 181-182
Poisson distributions, 140-141, 143-144,
275-276
acceptance-re jection technique, 255-258
physical basis of, 277
suggested estimator, 28] -
Poisson Pareto Burst Process, 481
Poisson probability mass function, 144
Poisson process, 165-169
nonstationary, 168-169
properties of,, 167
Pooled process, 167
Positive autocorrelation, 341
Power of a test, 290
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Presentation Layer, 479

Primary event, 62

Pritsker, Alan, 88

Probability density function (pdf), 132

Probability distribution, 132

Probability mass function (pmf), 132

Procedure, 412

ProcessArrival, 98

ProcessDeparture, 98

Process-interaction approach, 66-68

Program documentation, 15

Programmable logic controllers (PLCs), 8

Programming languages, and candom-variate-

. generation libraries, 239

Progress reports, 15

Project management applications, simulation, 6

Project reports, 15 -

ProModel, 14, 113

OptQuest Optimizer for, 113
website, 110

Proof Animation, 102

Protocols, at the Data Link Layer, 478

ProtocolSession, 496, 498

Pseudo-random numbers, generation of,
222-223

P-values, 293-294

Q

Quantile-quantile (g—¢) plos, 277-279
Quantiles, 370
Quest, 14
Queue behavior, 182
Queue discipline, 182
Queueing, 431

effect of downtime on (problem), 432433
Queueing Event Simulation Tool (QUEST),

114 Queueing models, 178-218

defined, 178
Queueing networks, 453, 457
Queueing notation, 184

for parallel server systems, 184
Queueing problems, costs in, 194
Queueing systems, 138-140

Able-Baker call center problem, 32-35

arrivals, 20 |

calling populauon, 20

characteristics, 179-184

arrival process, 181-182
calling population, 179-180
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Queueing systems (continued)
service mechanism, 182-184
service times, 182
system capacity, 180
examples of,, 180
long-run measures of performance of,
185-194
average time spent in system per
customer, 186-188
server utilization, 189-193
time-average number in system, 185-186
measures of performance in, 314
services, 20
simulation of, 20-35
single-channel queue, 20
single-channel queue problem, 25-30
waiting line, 20
Queueing theory, 178, 406
Queues, See also Lists
defined, 184
networks of, 211-213

R

Ramaswamy, S. E., 435
RAND Corporation, 88
RAND() function, Excel, 22
Random digits, 501
Random Early Detection (RED), 488
Random normal numbers, 4547, 502
Random number synchronization, 385-386
Random numbers:
defined, 221
distribution of, 22-23 -
frequency tests for, 229
generation of, 223
combined linear congruential generators,
226-228
random-number streams, 228
techniques for, 223-228
pdf for, 222
properties of, 221-222
pseudo-random numbers, generation of,
222-223
routines, 223
tests for, 228-235 )
autocorrelation tests, 229, 233-235
frequency tests, 229, 230-233
Random search, 415417
implementation problem, 416

Random splitting, 167
Random unscheduled downtime, modeling,
430-431
Random-number generation, 221-238
Random-number generators, 386
Random-search algorithm, 415
Random-spacing conveyors, 428
Random-variate generation, 239-266
acceptance-rejection technique,
254-260
gamma distribution, 259-260
nonstationary Poisson process (NSPP),
258-259
Poisson distribution, 255-257
inverse-transform technique, 240-254
special properties, 260-263
convolution method, 261-262
direct wansformation for the normal and
lognommal distributions, 260-261
Random-variate generators, 241
Java, 93
Records, 78
“Register-transfer-language,” 452
Regression analysis, 402,406
Reitman, Julian, 88
Reliability function, 152
Report generator, Java, 93 -
ReportGeneration method, 100
Residual analysis, 406
Robust heuristics, 413-414
control sampling variability, 414
restarting, 415
Rogers, P., 437
Routers, 479, 488
Routines, 223
Routing algorithms, 488
Runs test, 229
Runtime, 181
RVEXPO, 102-103

S

Sadowski, Randall P., 436

Sample mean, 280-281

Sample variance, 280-281

Sampling numbers, 229

Saraph, P. V,, 437

Scalable Simulation Framework (SSF),
106-109

Scale parameter, 150

Scatter diagram, 405
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Scheduled downtime, 430
Scott, Harold A., 435
Screening procedure, 400
Secondary event, 62
Seed, 223

. Selective trace, 315

SELFIS tool, 482
Semiconductor manuf acturing applications,
simulation, 6
Sensitivity analysis, 317
Sequential sampling scheme, 393
Server utilization, 189-193
and service variability, 199-201
and system performance, 192-193
Server utilization in G/G/1/eo/o> queues, 189
Server utilization in G/G/c/eofea queues, 191
Service according to priority (PR), 182
Service completion, 66
Service in random order (SIRO), 182
Service mechanism, queueing systems,
182-184
Service rate, 189
Service times, queueing systems, 182
service-time variable, 270
Service-time distributions, and data collection,
270
Session Layer, 479
Set associativity, 473
Sets, See Lists
Shape parameter, 150
Shortest processing time first (SPT), 182
Short-term congestion, 431
Significance of regression, testing for,
406-407
Significant differences in, 382
SIMAN (SIMulation ANalysis), 89
and Arena, 111 ’
SIMAN V, 86
SimPack, 453
Simple linear regression, 402-406
SimRunner, 15, 117
SIMSCRIPT, 87
SIMSCRIPT I, 88
SIMULS, 14,114~115
website, 110
SIMULA, 87-88
Simulation;
advantages.of, 5-6
applications of, 6-8
of computer systems, 450477
defined, 5

disadvantages of, 5
examples, 19-59
in GPSS, 102-106
of inventory systems, 35-46.
in Java, 93-102
of large-scale systems, 8
lead-time demand, 47-50 .
and numeric measures of performance, 429
optimization via, 410-417
of queueing systems, 20-35
random normal numbers, 45-47
reliability problem, 43-45
in SSF, 106-109 _
statisticalmodels in, 131-177
steps in, 19
uses of, 4
types of, with respect to output analysis,
336-338
when not to use, 4-5
Simulation analysis, 178
Simulation clock, 21-22
Simulation Language for Alternative Modeling
(SLAM), 89

- Simulation languages, 14, 341

and random numbers, 221
Simulation libraries, 93
Simulation models:
calibration,316
compared to optimization models, 5
conceptual model, construction of, 311
input-output transformations, validation
process, 318-327
model building, 311-312
observation, 295
. operational model, implementation of,
311-312
validation of, 316-326
verification process, 311-315
Simufation packages, 60-61
advanced techniques, 83
world views, 66-67
Simulation programming languages (SPLs),
86-87
Simulation software:
history of, 87-89
Advent (1961-65), 87
Consolidation and Regeneration
(1979-86), 89 _
Expansion Period (1971-78), 88
Formative Period (1966-70), 88
Integrated Environments (1987-present), 89
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Simulation software: (continued)
Period of Search (1955-60), 87
packages, 109-115
* animation, 109
Arena, 110-111
AutoMod, 111
common characteristics, 109
Extend, 111-123
features, 109-110
Flexsim, 112
Micro Saint, 113
process-interaction worldview, 110
ProModel, 113
QUEST, 114
SIMULS, 114-115
and tracing, 315
WITNESS, 115
selection of,, 89-92
animation and layout features, 91
checkout counter example simulation, 93
features, 89-92
output features, 92
runtime environment, 91
vendor support and product
documentation, 92
Simulation study, steps in, 12-16
data collection, 14
documentation and reporting, 15
experimental design, 15
implementation, 16
model conceptualization, 14
model translation, 14
problem formulation, 12
production runs and analysis, 15
setting of objectives/overall project plan, 12
validation, 15
verification, 14
Simulation trace, 314-315
“Simulation-language-specific interpreter, 454
Simulation-model building process, phases of ,
13,16
Single-channel queuing simulation, interarrival
times/service times, generation of, 20
Singly-linked lists, 82-83
SLAMI], 86, 89
Slot time, 485
Smith, G. D, 435
Smith, J. S., 435
Society for Computer Simulation (SCS), 6
Sockets, 489
Specialized conveyors, 429430

Special-purpose simulation languages, 4
Speculative register state, 470
SSF, 93, 106-109
SSFNet, 492-498
constnuction, 495-498
DML models, common attributes in, 496
DML structure, 495-496
documentation, 494-497
example, 495-498
SSQueue class, 93
Stack distance, 474
Stack policies, 474
Stafford, Richard, 435
Stat::Fit, 270
State, threads, 454
State of a system, 9, 21, 61
Static simulation model, 11
Stationary probability, 458
Statistical duration, 62
Statistical models, 137-141
Bernoulli distributions, 141
beta distributions, 141
binomial distributions, 141-143
gamma distributions, 150-151
inventory and supply-chain systems, 140
limited data, 141
lognormal distributions, 141
negative binomial distributions, 143-144
Poisson distributions, 140-143
queueing systems, 138-140
reliability and maintainability, 140
uniform distributions, 141
Weibull distributions, 139-140
Statistical models in simulation, 131-177
Statistical-analysis software, 290
Steady-state behavior:
of finite-population model, 208-211
of infinite-population Markovian models,
194-208
Steady-state simulations, 338-339
batch means for interval estimation,
367-369
error estimation, 359-362
initialization bias, 353-358
output analysis for, 352-370
quantiles, 349 i
replication method, 362-364
sample size, 365-367
Stochastic input models, 457
and burstiness, 458
Stochastic nature of output data, 338341
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Stochastic simulation model, 11
Stopping time, 336
Structural assumptions, 317-318

*Sturrock, D. T., 435

Subset selection procedure, 400-401
Successive times to failure, 182
Suggested estimators, 281-282

beta distributions, 282, 287

exponential distributions, 282, 284

gamma distributions, 282

lognormal distributions, 282

normal distributions, 282

Poisson distributions, 282

Weibull distributions, 282, 284
Supply chain applications, simulation, 7
Surge model, 480 _
System capacity, queueing systems, 180
System environment, defined, 8
System state, See State of a system
Systems, 43, 450472

components of, 8-9

continuous, 9

defined, 8

discrete, 9

event orientation, 456-457

with external arrivals, 386

model of,9

process orientation, 454456

simulation tools, 452-457
Systems Modeling Corporation, 89
Systems performance, distinction between

statistically and practically significant
differences in, 382

T

Table-lookup generation scheme, 249

Tabu search (TS), 413-414

Tail of a list, 78

TCP, See Transport Control Protocol (TCP)

tcpdump, 491

TcpServer protocol, 498

TcpSessionMaster, 498

Terminating simulation, defined, 336

Terminating simulations, output analysis for,
344-352

Testing for the significance of regression,
406-408

problem, 408
Thinning, 258
Threads, 454-455

Three-phase approach, 68
Tilt-tray conveyors, 428
Time average, 342
Time series, 359

defined, 297
Time to failure, 182, 244, 431
Time to repair, modeling, 431
Time-integrated average, 186
Time-series input models, 296
Tocher, K.D., 87
Token bus protocol, 483
Token-passing protocols, 483-486
Top of a list, 78
Total count, and model reasonableness, 313
TotalCustomers, 98

- Trace-driven models, 433-435

defined, 433
examples of, 434
Tracing, 314-315
Traffic modeling, 479-483
Traffic signal sequencing problem, 410
Transactions, 102
Transforrned linear regression model, 403
Transient behavior, 77
Transient simulation, 337
Transport Control Protocol (TCP), 479, 480,
488494
AckN field, 489491
bandwidth, 490
congestion window size, 490
cwnd variable, 491494
header format, 490
Receiver window size, 490
round-trip time (RTT), 491-492
segments, 489—490
send window, 490
SeqN field, 489494
slow start mode, 491
sockets, 489
ssthresh variable, 491-494
Transport Layer, 479
Transportation modes and traffic applications,
simulation, 7
Triangular distribution, 161-163, 244245
density function for, 245
mode, median, and mean for, 162
pdf of, 161-162
Triangular distributions, 248-250
physical basis of , 277
Truncated norinal distributions, 182
Turing test, 331
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Turkseven, C. H., 436
_ 'I\vo-_Stage Bonferroni Procedure, 399~400

U

- Unbiased point estimator, 341

Unconditional wait, 62
Uniform distributions, 141, 146-147
Unscheduled random downtimes, 430-433

\'

Validation, 310334

defined, 310
Validation procegs, 316-327

face validity, 317318

goalof, 310

input-output transformations, 318-327

-Step approach to, 317

validation of mode] assumptions, 317-318
Variance heterogeneity test, 229
Vehicle-safety inspection system, comparison

of system designs for, 387-388

Verification, defined, 310
Verification procegs, 3 1-315

guidelines for, 312-313

L language, 453_454

Virtuat memory, 462
V‘zrtual-memoxy referencing, 461-466
Visual Basic, 260
Visualization, ang mode] credibility, 429
Voice over [p (VoIP), 480

w

Warehouse Management systems (WMS), 8
Watson, Edward E, 436
Website Server problem, 466468
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Weibull disxibutions, 139-14;, 159-160, 182,
276

physical basis of, 277
suggested estimators, 281,303
Winter Simulation Conference (WSQ), 6, 86,
435
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Manufacturing System with Selected
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Contol, 435

Inventory Cost Model for j ust-in-Time
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435
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: Manufacwring Systems, 436
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Productivity in Steel Cord
Manufacturing, 436 .
Within—repHCation cycle-time data, 345-346
WITNESS, 14, 115 :
website, 110
WITNESS Optimizer, 15
Wolverine Software, 88, 102
Working set, 462
Work-in-process (WIP), 345, 427, 437
World Wide Web, and application traffic, 480
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