
9 
Input Modeling 

Input models provide the driving force for a simulation model. In the simulation of a queueing system, 
typical input models are the distributions of time between arrivals and of service times. For an inventory­
system simulation, input models include the distributions of demand and of lead time. For the simulation of 
a reliability system, the distribution of time to failure of a component is an example of an input model. 

In the examples and exercises in Chapters 2 and 3, the appropriate distributioil.s were sp!:cified for you. 
In real-world simulation applications, however, coming up with appropriate distributions for input data is a 
major task from the standpoint of time and resource requirements. Regardless of the sophistication of the 
analyst, faulty models of the inputs will lead to outputs whose interpretation could give rise to misleading 
recommendations. 

There are four steps in the development of a useful model of input data: 

1. Collect data from the real system of interest. This often requires a substantial time and resource com­
mitment. Unfortunately, in some situations it is not possible to collect data (for example, when time 
is extremely limited, when the input process does not yet exist, or when laws or rules prohibit the 
collection of data). When data are not available, expert opinion and knowledge of the process must 
be used to make educa,ted guesses. 

2. Identify a probability distribution to represent the input process. When data are available, this step 
typically begins with the development of a frequency distribution, or histogram, of the data. Given 
the frequency distribution and a structural knowledge of the process, a family of distributions is 
chosen. Fortunately, as was described in Chapter 5, several well-known distributions often provide 
good approximations in practice. 

3. Choose parameters that determine a specific instance of the distribution family. When data are available, 
these parameters may be estimated from the data. 
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4. Evaluate the chosen distribution and the associated parameters for goodness of fit. Goodness offit 
may be evaluated informally, via graphical methods, or formally, via statistical tests. The chi-square 
and the Kolmogorov-Smimov tests are standard goodness-of-fit tests. If not satisfied that the chosen 
distribution is a good approximation of the data, then the analyst returns to the second step, chooses 
a different family of distributions, and repeats the procedure. If several iterations of this procedure 
fail to yield a fit between an assumed distributional form and the collected data, the empirical form 
of the distribution may be used, as was described in �ection 8.1.5. 

Each of these steps is discussed in this chapter. Although software is now widely available to accomplish 
Steps 2, 3, and 4-including such stand-alone programs as Expertfit®- and Stat:Fit® and such integrated 
programs as Arena's Input Processor and @Risk's BestFit®-it is still important to understand what the soft· 
ware does, so that it can be used appropriately. Unfortunately, software is not as readily available for input 
modeling when there is a.relationship between two or more variables of interest or when no data are available. 
These two topics are discussed toward the end of the chapter. 

9.1 DATA COLLECTION 

Problems are found at the end of each chapter, as exercises for the reader, in textbooks about mathemiitics, 
physics, chemistry, and other technical subjects. Years and yeaf!J of working these problems could give the 
reader the impression that data are readily available. Nothing could be further from the truth. Data collection 
is one of the biggest tasks in solving a real problem. It is one of the most important and difficult problems 
in simulation. And, even when data are available, they have rarely been recorded in a form that is directly 
useful for simulation input modeling. 

"GIGO," or "garbage-in-garbage-out," is a basic concept in computer science, and it applies equally in 
the area of discrete-system simulation. Even when the model structure is valid, if the input data are inaccu­
rately collected, inappropriately analyzed, or not representatiye of the environment, the simulation output 
data will be misleading and possibly damaging or costly when used for policy or decision making. 

Example 9.1: Tbe Laundromat 
As budding simulation students, the first two authors bad assignments to simulate the operation of an ongoing 
system. One of these systems, which seemed to be a rather simple operation, was a self-service laundromat with 
I 0 washing machines and six dryers. 

However, the data-collection aspect of the problem rapidly became rather enormous. The interarrival­
time distribution was not homogeneous; it changed by time of day and by day of week. The laundromat 
was open 7 days a week for 16 hours per day, or 1 12 hours per week. It would bave been impossible to cover 
the operation of the lanndromat with the limited resources available (two students who were also taking four 
other courses) and with a tight time constraint (the simulation was to be completed in a 4-week peri6d). 
Additionally, the distribution of time between arrivals during one week might not have been followed during 
the next week. As a compromise, a sample of times was selected, and the interarrival-time distributions were 
classified according to arrival rate (perhaps inappropriately) as "hi�" "medium," and �·tow." 

Service-time distributions also presented a difficult problem from many perspectives. The proportion of 
customers demanding the vanous service combinations had to,be.observed and recorded. The simplest case 
was the customer desiring one washer followed by one dryer. However, a customer might choose two washing 
machines followed by one dryer, one dryer only, and so on. The customers used numbered machines, and it 
was possible to follow the customers via-that reference, rather than remembering them by personal charac­
teristics. Because of the dependence between washer demand and dryer demand for an individual customer, 
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it would have been inappropriate to treat the service times for washers and dryers separately as independent 
variables. - · 

Some customers waited patiently for their clothes to complete the washing or drying cycle, and then they 
removed their clothes promptly. Others left the premises and returned after their clothes had finished their 
cycle on the machine being used. In a very busy period, the manager would remove a customer's clothes after 
the cycle and set them aside in a basket. It was decided that service termination would be measured as tbat 
point in time at which the machine was emptied of its contents. 

Also, machines would break down from time to time. The length of the breakdown varied from a few 
moments, when the manager repaired the machine, to several days (a breakdown on Friday night, requiring 
a part not in the laundromat storeroom, would not be fixed until the following Monday). The short-term 
repair times were recorded by the student team. The long-term repair completion times were estimated by 
the manager. Breakdowns then became part of the simulation. 

Many lessons can be learned from an actual experience at data collection. The first five exercises at the 
end of this chapter suggest some situations in which the student can gain such experience. 

The following suggestions might enhance and facilitate data collection, although they are not all 
inclusive. 

I. A useful expenditure of time is in planning. This could begin by a practice or preobserving session. 
Try to collect data while preobserving. Devise forms for this purpose. It is very likely that these 
forms will have to be modified several times before the actual data collection begins. Watch for 
unusnal circumstances, and consider how they will be handled. When possible, videotape the system 
and extract the data later by viewing the tape. Planning is important, even if data will be collected 
automatically (e.g., via computer data collection), to ensure that the appropriate data are available. 
When data have already been collected by someone else, be sure to allow plenty of time for converting 
the data into a usable format. 

2. Try to analyze the data as they are being collected. Figure out whether the data being collected are 
adequate to provide the distributions needed as input to the simulation. Find out whether any data 
being collecled are useless to the simulation. There is no need to collect superfluous data. 

3. Try to combine homogeneous data sets. Check data for homogeneity in successive time periods 
and during the same time period on successive days. For example, check for homogeneity of data 
from 2:00 P.M. to 3:00 P.M. and 3:00 P.M. to 4:00 P.M., and check to see whether the data are holno­
geneons for 2:00 P.M. to 3:00 P.M. on Thursday and Friday. When checking for homogeneity, an initial 
test is to see whether the means of the distributions (the average interarrival times, for example) are 
the same. The two-sample t test can be used for this purpose. A more thorough analysis would 
require a test of the equivalence of the distributions, perhaps via a quantile-quantile plot (desCribed 
later). 

4. Be aware of the possibility of data censoring, in which a quantity of interest is not observed in its 
entirety. This problem most often occurs when the analyst is interested in the time required to 

. complete some process (for example, produce a part, treat a patient, or have a component fail), but 
the process begins prior to, or finishes after the completion of, the observation period. Censoring can 
result in especially long process times being left out of the data San!ple. 

S. To discover whether there is a ·relationship between two variables; build a scatter .diagram. 
Sometimes an eyeball scan of the scatter diagram will indicate whether there is a relationship 
between two variables of interest. Section 9.7 describes models for statistically dependent input 
data. 

6. Consider the possibility that a sequence of observations that appear to 1>e independent actually has 
autocorrelation. Autocorrelation can exist in successive time periods or for successive customers. 
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For example, the service time for the ith customer could be related to the service time for the (i + n)th 
customer. A brief introduction to autocorrelation was provided in Section 7.4.2, and some input 
models that account for autocorrelation are presented in Section 9.7. 7. Keep in mind the difference between input data and output or performance data, and be sure to 
collect input data. Input data typically represent the uncertain quantities that are largely beyond the 
control of the system and will not be altered by changes made to improve the system. Output data, 
on the other hand, represent the performance of the system when subjected to the inputs, performance 
that we might be trying to improve. In a queueing simulation, the customer arrival times·are usually 
inputs, whereas the customer delay is an output. Performance data are useful for model validation, 
however-see Chapter I 0. -

Again, these are just a few suggestions. As a rule, data collection and analysis must be approached with 
great care. 

9.2 IDENTIFYING THE DISTRIBUTION WITH DATA 

In this section, we discuss methods for selecting families of input distributions when data are available. The 
specific distribution within a family is specified by estimating its parameters, as described in Section 9.3. 
Section 9.6 takes up the case in which data are unavailable. 

-

9.2.1 Histograms 

A frequency distribution or histogram is useful in identifying the shape of a distribution. A histogram is 
constructed as follows: 

1. Divide the range of the data into intervals. (Intervals are usually of equal width; however, unequal 
widths may be used if the heights of the frequencies are adjusted.) 

2. Label the horizontal axis to conform to the intervals selected. 
3. Find the frequency of occurrences within each interval. 
4. Label the vertical axis so that the total occurrences can be plotted for each interval. 
5. Plot the frequencies on the vertical axis. 

The number of class intervals depends on the number of observations and on the amount of scatter or 
dispersion in the data. Hines, Montgomery, Goldsman, and Borrow [2002] state that choosing the nmnber 
of class intervals approximately equal to the square root of the sample size often works well in practice. 
If the intervals are too wide, the histogram will be coarse, or blocky, and its shape and other details will not 
show well. If the intervals are too narrow, the histogram will be ragged and will not smooth the data. 
Examples of ragged, coarse, and appropriate histogra_ms of the same data are shown in Figure 9 . 1 .  Modern 
data-analysis software often allows the interval sizes to be changed easily and interactively until a good 
choice is found. 

The histogram for continuous data corresponds to the probability density function of a theoretical dis­
tribution. If continuous, a line drawn through the center point of each class interval frequency should result 
in a shape like that of a pdf. 

-

Histograms for discrete data, where there are a large number of data points, should have a cell for each 
value in the range of the data. However, if there are few data points, it could be necessary to combine adjacent 
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Figure 9.1 Ragged, coarse, and appropriate histograms: (al original data-too ragged; (b) combining 
adjacent cells-too coorse; (c) combining adjacent cells-appropriate. 

cells to eliminate the ragged appearance of the histogram. If the histogram is associated with discrete data, 
it should look like a probability mass function. 

Example 9.2: Discrete Data 
The number of vehicles arriving at the northwest corner of an intersection in a 5-minute period between 
7:00 A.M. and 7:05 A.M. was monitored for .five workdays over a 20-week period. Table 9.1 shows the resulting 
data. The first entry in the table indicates that there were 12 5-ll).inute periods during which zero vehicles 
arrived, 10 periods during which one vehicle arrived, and so on. . 

The number of automobiles is a disc.rete variable, and there. are ample 4ata, so the histogram may have 
a cell for each possible value in the range of the data. The resulting histogram is shown in Figure 9 .2. 
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Table 9.1 Number of Arrivals in a 5-Minute Period 

Arrivals Arrivals 
per Period Frequency per Period 

0 12 6 
I 10 7 
2 19 8 
3 17 9 
4 10 10 
5 8 I I  

0 1 2 3 4 5 6 7 8 9 10 11 
Number of arrivals per period 

Frequency 

7 
5 
5 
3 
3 

Figure 9.2 Histogram of number of arrivals per period. 

.t 

Example 9.3: Continuous Data 
Life tests were performed on a random sample of electronic components at 1 .5 times the nominal voltage, 
and their lifetime (or time to failure), in days, was recorded: 

79.919 3.081 0.062 1.961 5.845 
3.027 6.505 0.021 0.013 0.123 . 
6.769 . 59.899 1 . 192 34.760 . 5.009 

1 8.387 0.141 43.565 24.420 0.433 
144.ti95 2.663 17.967 0.091 9.003 

0.941 0.878 3.371 2.157 7.579 
0.624 5.380 3.148 7.078 23.960 
0.590 1.928 0.300 0.002 0.543 
7.004 31.764 1.005 1 .147 0.219 
3.217 14.382 1.008 2.336 4.562 
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Table 9.2 Electronic Component 
Data 

Component Life 
(Days) 

0 S xi < 3  
3 :s; xi < 6  
6 S xi < 9  
9 S xi < l2 

1 2 :s; xi < 15 . 
15 :S xi < l8 
1 8 S -) < 21 
2l :S .tj < 24 
24 :S .tj < 27 
27 :S.tj <.30 
30 :S xi <33 
33 !> xi < 36 

Frequency 

23 
10 
5 
1 
1 
2 
0 
1 
1 
0 
I . I 
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Lifetime, usually considered a continuous variable, is recorded here to three-decimal-place accuracy. The 
histogram is prepared by placing the data in class intervals. The range of the data is rather large, from 0.002 
day to I 44.695 days. However, most of the values (30 of 50) are in the zero..to-5-day range. Using intervals 
of width three results in Table 9.2. The data of Table 9.2 are then used to prepare the histogram shown 
in Figure 9.3. 

9.2.2 Selecting the Family of Distributions 

In Chapter 5, some distributions that arise often in simulation were described. Additionally, the shapes of 
these distributions were displayed. The purpose of preparing a histogram is to infer a known pdf or pmf. 
A family of distributions is selected on the basis of what might arise in the context being investigated along 
with the shape of the histogram. Thus, if interarrival-time data have been collected, and the histogram has a 
shape similar to the pdf in Figure 5.9, the assumption of an exponential distribution would be warranted. 
Similarly, if measurements of the weights of pallets of freight are being made, and the histogram appears 



: j  

276 DISCRETE-EVENT SYSTEM SIMULATION 

Chip life 

Figure 9.3 Histogram of component life. 

symmetric about the mean with a shape like that shown in Figure 5 . 1 1 ,  the assumption of a normal distribution 
would be warranted. 

The exponential, normal, and Poisson distributions are frequently encountered and are not difficult to 
analyze from a computational standpoint. Although more difficult to analyze, the beta, gamma, and Weibull 
distributions provide a wide array of shapes and should not be overlooked during modeling of an underlying 
probabilistic process. Perhaps an exponential distribution was assumed, but it was found not to fit the data. 
The next step would be to examine where the lack of fit occurred. If the lack of fit was in one of the tails of 
the distribution, perhaps a gamma or Wejbull distribution would fit the data more adequately. 

There are literally hundreds of probability distributions that have been created; many were created with 
some specific physical process in mind. One aid to selecting distributions is to use the physical basis of the 
distributions as a guide. Here. are some examples: 

Binomial: Models the number of successes in n trials, when the trials are independent with common 
success probability, p; for example, the number of defective computer chips found in a lot of n chips . 

. Negative Binomial (includes the geometric distribution): Models the number of trials required to 
achieve k successes; for example, the number of computer chips that we must inspect to find 4 defec-
� �  

. 

Poisson: Models the number of independent events that occur in a fixed amount of time or spate; for 
example; tlie number of customers that arrive to a store during l hour, or the number of defects found 
in .30 square meters of sheet metal. 

Normal: Models tlie distribution of a process that can be thought of as the sum of a number of com­
. ponent processes; for example, a time. to assemble a product that is the sum of the times required for 

each assembly operation. Notice that the normal distribution admits negative values, which could be 
impossible for process times. 
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Lognormal: Models the distribution of a process that can be thought of as the product of (meaning to 
multiply together) a number of component processes-for example, the rate on an investment,· when 
interest is compounded, is the product of the returns for a number of perlods. 

Exponential: Models the time between independent events, or a process time that is memoryless 
(knowing how much time has passed gives no information about how much additional time will pass 
before the process is complete )-for example, the times between the arrivals from a large population 
of potential customers who act independently of each other. The exponential is a highly variable 
distribution; it is sometimes overused, because it often leads to mathematically tractable models. 
Recall that, if the time between events is exponentially distributed, then the number of events in a 
fixect period of time is Poisson. 

Gamma: An extremely flexible distribution used to model nonnegative random variables. The gamma 
can be shifted away from 0 by adding a constant 

Beta: An extremely flexible distribution used to model bounded (fixed upper and lower limits) random 
variables. The beta can be shifted away from 0 by adding a constant and can be given a range larger 
than [0, I I  by multiplying by a constant 

Erlang: Models processes that can be viewed as the sum of several exponentially distributed 
processes-for example, a computer network fails when a computer and two backup computers fail, 
and each has a time to failure that is exponentially distributed. The Erlang is a special cai;e of the 
gamma. 

Weibull: Models the time to failure for components-for example, the time to failure for a disk drive. 
The exponential is a special case of the Weibull. 

Discrete or Continuous Uniform: Models complete uncertainty: All outcomes are .equally likely. 
This distribution often is used inappropriately, when there are no data. 

Triangular: Models a process for which only the minimum, most likely, and maximum values of the 
distribution are known; for example, the minimum, most likely, and maximum time required to test 
a product. This model is often a marked improvement over a uniform distribution. 

Empirical: Resamples from the actual data collected; often used when no theoretical distribution 
seems appropriate. 

Do not ignore physical characteristics of the process· when selecting distributions. Is the process naturally 
discrete or continuous valued? Is it bounded, or is there no natural bound? This knowledge, which does not 
depend on data, can help narrow the family of distributions from which to choose. And keep in mind that there 
is no ''true" distribution for any stochastic input process. An input model is an approximation of reality, so the 
goal is to obtain an approximation that yields useful results from the simulation experiment. 

The reader is encouraged to complete Exercises 6 through I I  to leani · more about the shapes of the 
distributions mentioned in this section. Examining the variations in shape as the parameters change is very 
instructive. 

9.2.3 Quantile-Quantile Plots 

The construction of histograms; as discussed in Section 9.2. 1 ,  and the recognition of a distributional shape, 
as discuSsed in Section 9.2.2, are necessary ingredients for selecting a family of distributions to represent a 
sample of data. However, a histogram is not as useful for evaluating the fit of the chosen distribution. When 
tQere is a small number of data points, say 30 or fewer, a histogram can be rather ragged. Further, our 
perception of the fit depends on the widths of the histogram intervals. But, even if the intervals are chosen 
well, grouping data into cells makes it difficult to compare a histogram to a continuous probability density 
function. A quantile-quantile (q - q) plot is a useful tool for evaluating distribution fit, one that does not 
suffer from these problems. 
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If X is a random variable with cdf F, then the q-quantile of X is that value ysuch that F(1J = P(X::;; 1J = q, 
for 0 < q < l .  When F has an inverse, we write y = F-1(q). 

Now let {x., i = 1, 2, . . . , n} be a sample of data from X. Order the observations from the smallest to the 
largest, and de�ote these as {yp j 1, 2, . . . , n}, where y1 $ y2 :5 . . . :5 yn. Letj denote the ranking or order 
number. Therefore,j = 1 for the smallest andj = n for the largest. The q - q plot is based on the fact that y1 · 
is an estimate of the (j - l/2)/n quantile of X. In other words, 

Now suppose that we have chosen a distribution with cdf F as a possible representation of the distribu­
tion of X. If F is a member of an appropriate family of distributions, then a plot of y1 versus F-1((j - 1/2)/n) 
will be approximately a straight line. IfF is from an appropriate family of distril>utions and also has appro- · 

priate parameter values, then the line will have slope 1. On the other hand, if the assumed distribution is inap­
propriate, the points will deviate from a straight line, usually in a systematic manner. The decision about 
whether to reject some hypothesized model is subjective. 

Example 9.4: Normal Q - Q Plot 
A robot is used to install the doors on automobiles along an assembly line. It was thought that the installa­
tion times followed a normal distribution. The robot is capable of measuring installation times accurately. 
A sample of 20 installation times was automatically taken by the robot, with the following results, where the 
values are in seconds: 

99.79 99.56 100. 17 100.33 
100.26 100.41 99.98 99.83 
100.23 100.27 100.02 100.47 
99.55 99.62 99.65 99.82 
99.96 99.90 100.06 99.85 

The sample mean is 99.99 seconds, and the sample variance is (0.2832)2 seconds2• These values can serve 
as the parameter estimates for the mean and variance of the normal distribution. The observations are now 
ordered from smallest to largest as follows: 

j Value j Value j WUue j Value 

99.55 6 99.82 I I  99.98 16 100.26 
2 99.56 7 99.83 12 100.02 17 100.27 
3 99.62 8 99.85 13 100.06 1 8  100.33 . 
4 99.65 9 99.90 14 100.17 19 100.41 
5 99.79 10 99.96 15 100.23 20 100.47 

The ordered observations are then plotted versus F"1((j - 112)/20), for j ;,  1, 2, . . .  , 20, where F is the cdf of 
the normal distribution with mean 99.99 and variance (0.2832)2, to obtain a q - q plot. The plotted values 
are shown in Figure 9.4, along with a histogram of the data that has the density function of the normal dis­
tribution superimposed. Notice that it is difficult to tell whether the data are well represented by a �ormal 
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q plot of the installation times. 

distribution from looking at the histogram, but the general perception of a straight line is quite. clear in the 
q - q plot and supports the hypothesis of a normal distribution. 

In the evaluation of the linearity of a q - q plot, the following should be considered: 

1. The observed values will never fall exactly on a straight line. 
2. The ordered values are not independent; they have been ranked. Hence, if one point is above a 

straight line, it is likely that the next point will also lie above the line. And itis unlikely that the points 
will be scattered about the line. . 

3. The variances of � extremes (largest and smallest values) are much higher than the variances in the 
middle of the plot. Greater discrepancies can be accepted at the extremes. The linearity' of the pOints 
in the middle of the plot is more important than the linearity at the extremes. 

Modem data-analysis softwaie often includes tools for generating q - q plots, especially for .the normal 
distribution. The q - q plot can also be used to compare two samples of data to see.whether they can be 
represented by the same distribution (that is, that they are homogeneous). If xl' Xz• • . •  , xn are a sample of the 
random variable X, and Zp Z:l• ••• , zn are a santple of the random variable Z, then plotting the ordered values 
of X versus the ordered values of Z will reveal approximately a straight line if both santples are well represented 
by the same distribution (Chambers, Cleveland, and Tukey (1983}). 
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9.3 PARAMmR ESTIMADON 

After a family of distributions has been selected, the next step is to estimate the parameters of the distribution. 
Estimators for many useful distributions are described in this section. In addition, many software packages­
some of them integrated into simulation languages-are now available to compute these estimates. 

9.3•1 Preliminary Statistics: Sample Mean and Sample Variance 

In a number of instances, the sample mean, or the sample mean and sample variance, are used to estimate 
the parameters of a hypothesized distribution; see Example 9.4. In the following paragraphs, three sets of 
equations are given for computing the sample mean and sample variance. Equations (9. 1) and (9.2) can be 
used when discrete or continuous raw data are available. Equations (9.3) and (9.4) are used when the data 
are discrete and have been grouped in a frequency distribution. Equations (9.5) and (9.6) are used when the 
data are discrete or continuous and have been placed in class intervals. Equations .(9.5) and (9.6) are approxi­
mations and should be used only when the raw data are unavailable. 

If the observations in a sample of size n are Xl' X2, . . . , x •. the sample mean (X) is defmed by 

(9.1 )  

and the sample variance, S2, is defined by 

(9.2) 

If the data are discrete and have been grouped in a frequency distribution, Equations (9.1 )  and (9.2) can 
be modified to provide for much greater computational efficiency. The sample mean can be computed as 

and the sample variance as 

where k is the number of distinct values of X and� is the observed frequency of the value � of X. 

Example 9.5: Grouped Data 

(9.3) 

(9.4) 

The dan; in Table 9.1 can be analyzed t? obtain n = lOO,J; = 12, X1 = O,fz = 10, � = 1 , . . . , L�a1.0X1 = 364, 
and "' . = f.. X .2 = 2080. From Equanon (9.3), · k;=l J J . . 

and, from Equation (9.4), 

X = 
364 

= 3.64 
IOO 

82 = 
2080 - 100(3.64)2 _

7.63 
99 

281 

The sample standard deviation, S, is just the square root of the sample variance. In this case, S = M = 2.76. 
Equations (9.1) and (9.2) would have yielded exactly the same results for X and S2• 

It is preferable to use the raw data, if possible, when the values are continuous. However, data some­
times are received after having been placed in class intervals. Then it is no longer possible to obtain the exact 
sample mean and variance. In such cases, the sample mean and sample variance are approximated from the 
following equations: 

(9.5) 

and 

(9.6) 

where� is the observed frequency in the jth class interval, mi is the midpoint of the jth interval, and c is the 
number of class intervals. 

Example 9.6: Continuous Data in Class Intervals 
Assume that the raw data on component life shown in Example 9.3 either was discarded or was lost. 
However, the data shown in Table 9.2 are still available. To approximate values for X and S2, Equations (9.5) 
and (9.6) are used. The following values are created:/1 = 23, m1 = I .5,fz = 10, m2 = 4.5, . . . , r;:Jimi = 614 

"' 49 2 -
and ki=tf;mj = 37,226.5. With n 50, X is approximated from Equation (9.5) as 

x = 614 
= 12.28 

50 

Then, S2 is approximated from Equation (9.6) as 

and 

37,226.5- 50(12.28)2 605.849 
49 

s 24.614 

Applying Equations (9.1 )  and (9.2) to the original data in Example 9.3 results in X = 1 1 .894 and S = 24.953. 
Thus, when the raw data are either discarded or lost, inaccuracies could result. 

9.3.2 Suggested Estimators 

Numerical estimates of the distribution parameters are needed to reduce the family of distributions to a specific 
distribution and to test the resulting hypothesis. Table 9:3 contains suggested estimators for distribu­
tions often used in simulation, all of which were described in Chapter 5. Except for an adjustment to remove 
bias in the estimate of cr2 for the normal distribution, these estimators are the maximum-likelihood estima­
tors based on the raw data. (If the data are in class intervals, these estimators must be modified.) The reader 
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Table 9.3 Suggested Estimators for Distributions Often Used in Simulation 

Distribution Parameter(s) 

Poisson a 

Exponential A. 

Gamma {3, 8 

Normal P. a
' 

Lognormal P. a
' 

Wei bull a, {3  
with v= O 

Beta 

Sug�;ested Estimator(s) 

[3 (see Table A.9) 

iJ=-l: 
X 

[l = X  
(12 

= sl (unbiased) 

X (after taking In of the data) 

[Jl = s' (after taking In of the data) 

. x 
f3o = s 

A A tJJJ•I) f11 = Pi-1 - r<]J1_1) 
See Equations (9.12) and (9.15) 

forf(P) andj'(/j) 
Iterate until convergence 

'f'<]J,J+ '¥<]3, -A> = ln(G1l 

'¥(/j2) +'¥(/j1 - p,) = ln(G,) 

where '¥ is the digamma function, 

G, =(n;.1x,f and 
a, =(IT.,o - x,>)"' 

is referred to FIShman [ 1973] and Law and Kelton [2000] for parameter estimates for the uniform, binomial, 
and negative binomial distributions. The triangular distribution is usually employed when no data are avail­
able, with the parameters obtained from educated guesses for the minimum, most likely, and maximum 
possible values; the uniform distribution may also be used in this way if only minimum and maximum values 
are available. 

· 

Examples of the use of the estimators ate given in the following paragraphs. The reader should keep in 
mind that a parameter is an unknown coriStant, but the estimator is a statistic (or random variable), because 
it depends ()ri the sample values. To distinguish the two clearly here, if, say, a parameter is denoted by a, the 
estimatorwill be denoted by. a: 

Example 9.7: Poisson Distribution 

Assume that the anival data in Table 9. 1 require analysis. By comparison with Figure 5. 7, an examination 
of Figure 9.2 suggests a Poisson distributional assumption with unknown paia.meter a. From Table 9.3, the 
estimator of a is X, which was found in Example 9.5. Thus, a = 3.64. Recall that the true mean and vari­
ance are equal for the Poisson distribution. In Example 9.5, the sample variance was estimated as S2 = 7.63. 
However, it should never be expected tnat the sample mean and the sample variance will be precisely equal, 
because each is a random variable. 

Example 9.8: Lognormal Distribution 

The rates of return on 10 investments in a portfolio are 18.8, 27 .9, 21 .0, 6. 1, 37.4, 5.0, 22.9, 1 .0, 3. 1 and 8.3 
percent. To estimate the parameters of a lognormal model of these data, we first take the natural log of the 
data and obtain 2.9, 3.3, 3.0, 1 .8, 3.6, 1 .6, 3 . 1, 0, 1 . 1, and 2.1. Then we set [1 = X  = 2.3 and a2 = S2 1 .3· 

Example 9.9: Normal Distribution 

The parameters of the normal distribution, p. and <r2, are estimated by X and S2, as shown in Table 9.3. 
The q - q plot in Example 9.4 leads to a distributional assumption that the installation times are normal. 
From Equations (9.1 )  and (9.2), the data in Example 9.4 yield [1 = X =  99.9865 and a =  S2 = (02832i 
second2• 

Example 9.10:. Gamma Distribution 

The estimator f3 for the gamma distribution is chosen by the use of Table A.9, from Choi and Wette [1969]. 
Table A.9 requires the computation of the quantity liM, where 

(9.7) 

Also, it can be seen in Table 9.3 that (;J is given by 

. l 
(;) = =  (9.8) 

X 

In Chapter 5, it was stated that lead time is often gamma distributed. Suppose that the lead times (in days) · 

associated with 20 orders have been accurately measured as follows: 

Lead Tll!le Lead 1ime 
Order (Days) Order (Days) 

1 70.292 l l  30.215 
2 10.107 12 17.137 
3 48.386 l3  44;024 
4 20.480 14 10.552 
5 13.053 15 37.298 
6 25.292 . 16 16.314 
7 14.713 17 . 28.073 
8 39.166 18 39.019 
9 17.421 19 32.330 

10 13.905 20 36.547 
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To estimate {J and 6, it is first necessary to compute M from Equation (9.7). Here, X is found, from 
Equation (9. 1), to be · 

Then, 

Next, 

Then, 

and 

x = 564·32 = 28.22 
20 

1n x = 3.34 

20 
L, ln X, = 63.99 i�t 

M = 3.34 -
63·99 = 0.14 

20 

liM =  7.1 4  

B y  interpolation i n  Table A.9, P = 3.728. Finally, Equation (9.8) results in 

Example 9.11: Exponential Distribution 

A 1 9 = - = 0.035 
28.22 

Assuming that the data in Example 9.3 come from an exponential distribution, the parameter estimate, can be determined. In Table 9.3, i is obtained from X as follows: 

� 1 1 II. = -= = 0.084 per day 
. X 1 1.894 

Example 9.12: Weibull Distribution 
Suppose that a random sample of size n, X., X2, • • •  , x •. has been taken and that the observations are assumed 
to come from a Weibull distribution. The likelihood function derived by using the pdf given by Equation 
(5.47) can be shown to be 

L(a, J3) = P;, [n xt'> ]exp[-t(x, )P] a i•t ,., a {9.9) 

The maximum-likelihood estimates are those values of a and /3 that maximize L(a, /3) or, equivalently, 
maximize lnL(a, fj), denoted by l(a, /3). The maximum value of l(a, /3) is obtained by taking the partial 
derivatives at( a, f3)Jaa and iJl(a, f3)/df3, setting each to zero, and solving the resulting equations, which after 
substitution .become 

/(/3 ) = 0  (9.10) 

and 

where 

( 1 • )''P a= -L,xf 
n i=J 

• n"' ' XPin X 
f(/3) = !!.+ L, ln xi - ""•·t. ' p ' 

/3 ,., L, i=l x, 
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{9. 1 1) 

(9.12) 

The maximum-likelihood estimates, a and P, are the solutions of Equations (9. 1 0) and (9.1 1). First, 
{3 is found via the iterative procedure explained shortly. Then a is found from Equation (9 . 1 1  ), with /3 = {3. 

Equation (9.10) is nonlinear, so)t is necessary to use a numerical-analysis technique to solve it In Table 9.3, 
an iterative method for computing P is given as 

(9. 13) 

Equation (9.1}) employs Newton's method in reaching P, where Pi is the jth iteration, beginning with an initial 
estimate for P 0, given in Table 9.3, as follows: 

(9.14) 

If the initial estimate, /3 0, is sufficiently close to the solution /J, then P J approaches /3 as j � =. In Newton's 
method, {J is approached through increments of size f(fji_, ) IJ'<ft1_). Equation (9. 12) is used to compute 

f(fji_1) and Equation (9. 15) is used to compute, f'(jji-1) as follows: 

(9.15) 

Equation (9.15) can be derived from Equation (9. 12) by differentiatingf(/3) with respect to f3. The iterative 
process continues until J<ft,) = Q, for example, until lf<P)I� 0.001. 

Consider the data given in Example 9.3. These data concern the failure o,_f electronic components and looks 
to come from an exponential distribution. In Example 9. 1 1 , the parameter II. was estimated on the hypothesis 
that the data were from an exponential distribution. If the hypothesis that the data came from an exponential 
distribution is rejected, an alternative hypothesis is that the data come from a Weibull distribution. The Weibull 
distribution is suspected because the data pertain to electronic component failures, �hich occur �uddenly. 

Equation (9.14) is used to compute P 0• For the data in Example 9.3, n = 50, X = I  1 .894, X2 = 141.467, 
and L, ::, x; = 37,575.850 ; so S2 is found by Equation (9.2) to be 

82 
= 37,578.850 -50(141.467) = 622.650 

49 



and S = 24.953. Thus, 

� = 1 1 .894 = 0.477 0 24.953 

To compute /31 by usi�g Equation (9.13) requires the calculation ofj(P 0) andf'(P0) from Equations (9.12) 
50 

• 50 
and (9. 15). The following additional values are needed: L 1=1 X1fl. = 1 15.125, L1=1 ln X, = 38.294, 

50 "  SO A, L 1=1Xt" ln X1 = 292.629, and L ,=1 X, (In XY = 1057.781 .  Thus, 

and 

1 <P > = � + 38.294- 50<292·629> 16.024 
0 0.477 1 15.125 

J'(/Jo) �- 50(1057.781) + 50(292.629)2 = _356.1 10 
(0.477)2 1 15.125 (1 15.125)2 

Then, by Equation (9.13), 

fJA 0.477- 16.024 0.522 I -356. 1 10 

After four iterations, I/(JJ3 >I � 0.001, at which point P = [34 = 0.525 is the approximate solution to 
Equation (9.10). Table 9.4 contains the values needed to compJete each iteration. 

Now, a can be computed from Equation (9. 1 1 )  with fJ = fJ = 0.525, as follows: 

1/0.525 
a =  [ 13�:8] 6.227 

If P 0 is sufficiently close to P, the procedure converges quickly, usually in four to five iterations. 
However, if the procedure appears to be diverging, try other initial gues"ses for P 0-for example, one-half the 
initial estimate or twice the initial estimate. 

• 

The difficult task of estimating parameters for the Weibull distribution by hand emphasizes the value of 
having software support for input modelirig. · 

j 

0 
1 
2 
3 

Table 9.4 . Iterative Estimation of Parameters of the Weibull Distribution 

pj 
"' l:,xf' 
i=l 

0.477 1 15. 125 
0.522 129.489 
0.525 130.603 
0.525 130.608 

"' l:,XP'InX. . . i=l 

292.629 
344.713 . 
348.769 
348.786 

50 • l:,x:' (lnX,)2 
i=J 

1057.781 
1254. 1 1 1  
1269.547 
1269.614 

t<P) f'<Pj> 
16.024 -356.110 

1 .008 -313.540 
0.004 -310.853 
0.000 -310.841 

pj+l 
0.522 
0.525 
0.525 
0.525 
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betaMLE := proc (X, n) 
local Gl , G2 , betal , beta2 , eqns, solns ; 
Gl : =  product (X [il . i=l . .  n) A {l/n) ; 
G2 : =  product (l-X [i) , i=l • .  n) A (l/n) ; 
eqns := {Psi (betal) - Psi (betal + beta2) = ln (Gl ) , 

Psi (beta2) - Psi (betal + beta2) = ln (G2 ) } ; 
solns : =  fsolve (eqns, {betal=O . .  infinity, beta2=0 . .  infinity} l :  
RETURN (solns) ;  
end; 

Figure 9.5 Maple procedure to compute the maximum likelihood estimates for the beta distribution 
parameters. 

Example 9.13: Beta Distribution 
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The per�ntage of customers each month who bring in store coupons must be between 0 and 100 percent. 
Observations at a store for eight months gave the values 25%, 74%, 20%, 32%, 81%, 47%, .3 1 %, and 8%. 
To fit a beta distribution to these data, we first need to rescale it to the interval (0, 1 )  by dividing all the values 
by 100, to get 0.25, 0.74, 0.70, 0.32, 0.81 ,  0.47, 0.31,.0.08. 

· 

The n1aximum-likelihood estimators of the parameters /Jp /32 solve the system of equations shown in 
Table 9.3. Such equations can be solved by modem symbolic/numerical calculation programs, such as 
�aple; a Map!� procedure for the beta parameters is shown in Figure 9.5. In this case, the solutions are 
fJ1 L47 and Ji2= 2.16. 

9.4 GOODNES5-0F·FIT TESTS 

Hypothesis testing was discussed in Section 7.4 with respect to testing random numbers. In Section 7.4.1, 
the Kolmogorov-8mirriov test and the chi-square test were introduced. These two tests are applied in this 
section to hypotheses about distributional fonns ofinput data. 

Goodness-of-fit tests provide helpful guidance for evaluating the suitability of a potential input model; 
however, there is no single correct distribution in a real application, so you should not be a slave to the verdict 
of such a test. It is especially important to underStand the effect of sample size. If very little data are available, 
then a goodness-of-fit test is unlikely to reject any candidate distribution; but if a lot of data are available, then 
a goodness-of-fit test will likely reject all candidate distributions. Therefore, failing to reject a candidate distri­
bution should be taken as one piece of evidence in favor of that choice, and rejecting an input model as only 
one piece of evidence against the chOice. 

. · · 

9.4.1 Chi·Square Test 

One procedure for testing the hypothesis that a random sample of size n of the random variable X follows 
a specific distributional form is the chi-square goodness-of-fit test. This test formalizes the intuitive idea of 
comparing the histogram of the data to the shape of the candidate density or mass function. The test is valid 
for large sample sizes and for both discrete and continuous distributional assumptions when parameters are 
estimated by maximum likelihood. The test pi:ocedUre begins by arranging the n observations.into a set of 
k class intervals or reDs. The test statistic is given by · · 

(9.16) 
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where 01 is the observed frequency in the ith class interval and E1 is the expected frequency in that class 
interval. The expected frequency for each class interval is computed as E1 np;, where p1 is the theoretical, 
hypothesized probability associated with the ith class interval. 

It can be shown that zJ approximately follows the chi-square distribution with k- s - I degrees of free­
dom, where s represents the number of parameters of the hypothesized distribution estimated by the sample 
statistics. The hypotheses are the following: 

H0: The random variable, X, conforms to the distributional assumption with the parameter(s) given by 
the parameter estimate(s). 

H1: The random variable X does not conform. 

The critical value X�k-s-l is found in Table A.6. The null hypothesis, H0, is rejected if X� > X�.k-s+ 
When applying the test, if expected frequencies are too small, X� will reflect not only the departure of 

the observed· from the expected frequency, but also the smallness of the expected frequency as well. 
Although there is no general agreement regarding the minimum size of Ei' values of 3, 4, and 5 have been 
widely used. In Section 7.4. 1 ,  when the chi-square test was discussed, the minimum expected frequency five 
was suggested. If an E1 value is too small, it can be combined with expected frequencies in adjacent class 
intervals. The corresponding 0; values should also be combined, and k should be reduced by one for each 
cell that is combined. 

If the distribution being tested is discrete, each value of the random variable should be a class interval, 
unless it is necessary to combine adjacent class intervals to meet the minimum-expected-cell-frequency 
requirement. For the discrete case, if combining adjacent cells is not required, 

P; = p(x;) = P(X = x) 

Otherwise, p1 is found by summing the probabilities of appropriate adjacent cells. 
If the distribution being tested is continuous, the class intervals are given by [aH, a), where aH and a1 

are the endpoints of the ith class interval. For the continuous case with assumed pdf j{x), or assumed cdf 
F(x), p1 can be computed as 

For the discrete case, the number of class intervals is determined by the number of cells resulting after 
combining adjacent cells as necessary. However, for the continuous case, the number of class intervals must 
be specified. Although there are no general rules to be folloWed, the recommendations in Table 9.5 are made 
to .aid in determining the number of class intervals for continuous data. 

Table 9.5 Recommendations for Number of Class 
Intervals for Continuous Data 

Sample Size, 
n 

20 
50 

100 
>100 

Number of Class Intervals, 
k 

Do not use the chi-square test 
5 to 10 

10 to 20 
.Jn to n/5 

INPUT MODELING 

Example 9.14: Chi-Square Test Applied to Poisson Assumption 
In Example 9.7, the vehicle-arrival data presented in Example 9.2 were analyzed. The histogram of the data, 
shown in Figure 9.2, appeared to follow a Poisson distribution; hence the parameter, a = 3.64, was found. 
Thus, the following hypotheses are formed: 

H0: the random variable is Poisson distributed. 
H1: the random variable is not Poisson distributed. 

The pmf for the Pojsson distribution was given in Equation (5. 19): 

( )  --, x= O, l, 2, ... 
le-aax 

p x  = x! 
0, otherwise 

For a= 3.64, the probabilities associated with various values of X are obtained from Equation (9.17): 

p(O) = 0.026 
p(l) ;; 0.096 
p(2) = 0.174 
p(3) :;; 0.21 1 
p(4) = 0.192 
p(5) = 0.140 

p(6) = 0.085 
p(7) = 0.044 
p(8) = 0.020 
p(9) 0.008 
p(10) 0.003 
p(�l l )  = 0.001 

(9.17) 

From this information, Table 9.6 is constructed. The value of E1 is given by np0 = 100(0.026) = 2.6. In a 
similar manner, the remaining E1 values are computed. Since E1 = 2.6 < 5, E1 and E2 are combined. In that 
case, 01 and 02 are also combined, and k is reduced by one. The last five class intervals are also combined, 
for the same reason, and k is further reduced by four. 

The calculated x5 is 27.68. The degrees of freedom for the tabulated value of X2 is k - s - l = 7 - 1 -
1 = 5. Here, s = l ,  since one parameter, a was estimated from the data. At the 0.05 level of significance, the 
critical value X5.os.s is 1 1. 1 .  Thus, H0 would be rejected at level of significance 0.05. The analyst, therefore, 
might want to search for a better-fitting model or use the empirical distribution of the data. 

Table 9.6 Chi-square GoodnesS-oF-fit Test for Example 9. 14  

Observed FreiJuency, Expected Frequency, (01-E1)2 
X; 0; E; _E_;_ 

0 12 } 22 �:: } 12.2 } 7.87 
1 10 

. 2 19 17.4 0.15 
3 17 21.1  0.80 
4 10 19,2 4.41 
5 8 14.0 2.57 
6 7 8.5 0.26 
7 5 4.4 
8 5 2.0 l 9 3 17 0.8 7.6 1 1.62 

10 3 0.3 
:1: 1 1  1 0.1 

100 100.0 27.68 
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9.4.2 Chi-Square Test with Equal Probabilities 

If a continuous distributional assumption is being tested, class intervals that are equal in probability rather 
than equal.in width of interval should be used. This has been recommended by a number of authors (Mann and 
Wald, 1942; Gumbel, 1943; Law and Kelton, 2000; Stuart, Ord, and Arnold, 1998]. It should be noted that 
the procedure is not applicable to data collected in class intervals, where tbe raw data have been discarded 
or lost. 

Unfortunately, there is as yet no method for figuring out the probability associated with each interval that 
maximizes the power for a test of a given size. (The power of a test is defined as the probability of rejecting 
a false hypothesis.) However, if using equal probabilities, then pi 1/k. We recommend 

so substituting for pi yields 

and solving for k yields 

(9. 18) 

Equation (9.18) was used in coming up with the recommendations for maximum number of class intervals 
in Ta�le 9.5. . . 

. . if the assumed distribution is normal, exponential, or Weibull, the method described in this section is 
straightforward. Example 9.15 indicates how the procedure is accomplished for the exponential distribution. 
If the assumed distribution is gamma (but not Erlaug) or certain other distributions, then the computation of 
endpoints for class intervals is complex and could require numerical integration of the density function. 
Statistical-analysis software is very helpful in such cases. 

Example 9.15� Chi�Square Test for Exponential Distribution 
In Example 9.1 1, the failure data presented in Example 9.3 were analyzed. The hlstogri!ID of �e data, shown 
in Figure 9.3', appeared· to follow an exponential distribution, so the parameter l = II X =  0.084 was 
computed. Thus, the following hypotheses are formed: 

H0: the random variable is exponentially distributed. 
H1: the random variable is not exponentially distributed. 

In oriler to perform the chl�square �t with intervals of equal probability, the endpoints of the class inter-
. vals.must be found. Equation (9.18) indicates that the number of intervals should be less than or equal to n/5. 

Here, n = 50, and so k ::;  10. In Table. 9.5, it is recommended that 7 to 10 class intervals be used. Let k = 8; 
then each ipterval will have probability p = 0.125. The endpoints for each interval are computed from the cdf 
for the exponential distribution, given in Equation (5.28), as follows: 

(9.19) 
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where a. represents the endpoint of the ith interval, i = 1, 2, . . .  , k. Since F(a) is the cumulative area from 
zero to � -. F(a.) ip, so Equation (9. 19) can be written as I I 

or 

e-.w, = l- ip 

Taking the logarithm of both sides and solving for a; gives a general result for the endpoints of k equiprob­
able intervals for the exponential distribution: 

a1 = -i ln(l - ip), i -=  0, l ,  . . .  , k (9.20) 

Regardless of the value of l, Equation (9.20) will always result in a0 = 0 and ak = ""· With i = 0.084 and 
k = 8, a1 is computed from Equation (9.20) as 

l 
ln(l -0.125) = 1 .590 

0.084 . 

Continued application of Equation (9.20) for i =  2, 3, . . . , 7 results in a2, . . .  , a7 as 3.425, 5.595, 8.252, 1 1 .677, 
16.503, and 24.755. Since k =  8, a8 = =. The first interval is [0, 1.590), the second interval is [1.590, 3.425), 
and so on. The expectation is that 0.125 of the observations will fall in each interval. The observations, the 
expectations, and the contributions to the calculated value of xJ are shown in Table 9.7. The calculated 
value of z2 is 39.6. The degrees of freedom are given by k - s l = 8 - 1 1 6. At a =  0.05, the tabulated 
value of X� is 12.6. Since x2 > z�056, the null hypothesis is rejected. (The value of X�.Ol.6 is 16.8, so the 0.05,6 0 . . 

0 01 ) null hypothesis would also be rejected at level of significance a =  . . 

Table 9.7 Chi-Square Goodness-of-Fit Test for Example 9. 1 5  

Class Observed Frequency. Expected Frequency, 

Interval oi E; El 
[0, 1 .590) 19 6.25 26.01 
[1.590, 3.425) 10 6.25 2.25 
[3.425, 5.595) 3 6.25 0.81 
(5.595, 8.252) 6 6.25 0.01 
[8.252, 1 1.677) 6.25 4.41 
[1 1.677, 16.503) 6.25 4.41 
[16.503, 24.755) 4 6.25 0.81 
[24.755, oo} 6 6.25 0.01 

so 50 39.6 
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9.4.3 Kolmogorov-Smimov Goodness-of.Fit Test 

The chi-square goodness-of-fit test can accommodate the estimation of parameters from the data with a resultant 
decrease in the degrees of freedom (one for each parameter estimated). The chi-square test requires that the data 
be placed in class intervals; in the case of a continuous distriootional assumption, this grouping is arbitrary. 
Changing the number of classes and the interval width affects the value of the calculated and tabulated chi-square. 
A hypothesis could be accepted when the data are grouped one way, rut rejected when they are grouped another 
way. Also, the distribution of the chi-square test statistic is known only approximately, and the power ef the test 
is sometimes rather low. As a result of these considerations, goodness-of-fit tests other than the chi-square, are 
desired. The Kolmogorov-Smimov test formalizes the idea behind examining a q - q plot 

· 

The Kolmogorov-Smirnov test was presented in Section 7.4.1 to test for the uniformity of numbers. 
Both of these uses fall into the category of testing for goodness of fit Any continuous distributional assump­
tion can be tested for goodness of fit by using the method of Section 7.4.1. 

The Kolmogorov-Smimov test is particularly useful when sample sizes are small and when no param­
eters have been estimated from the data. When parameter estimates have been made, the critical values in 
Table A.8 are biased; in particular, they are too conservative. In this context, "conservative'' means that the 
critical values will be too large, resulting in smaller 1Ype I (a) errors than those specified. The exact value 
of a can be worked out in some instances, as is discussed at the end of this section. 

The Kolmogorov-Smirnov test does not take any special tables when an exponential distribution is 
assumed. The following example indicates how the test is applied in this instance. (Notice that it is not nec­
essary to estimate the parameter of the distribution in this example, so we may use Table A.8.) 

Example 9.16: Kolmogorov-Smimov Test for Exponential Distribution 
Suppose that 50 interarrival times (in minutes) are collected over the following 1 00-minute interval (arranged 
in order of occurrence): 

0.44 0.53 2.04 2.74 2.00 0.30 2.54 0.52 2.02 1.89 1 .53 0.21 
2.80 0.04 1 .35 8.32 2.34 1 .95 0.10 1 .42 0.46 O.o7 1 .09 0.76 
5.55 3.93 1 .07 2.26 2.88 0.67 1 . 12  0.26 4.57 5.37 0.12  3.19 
1 .63 1 .46 1.08 2.06 0.85 0.83 2.44 !.02 2.24 2. 1 1  3.15 2.90 
6.58 0.64 

The null hypothesis and its alternate are formed as follows: 

H0: the interwival times are exponentially distributed. 
H1: the interarrival times are not exponentially distribpted. 

The data were collected over the interval from 0 to T = 100 minutes. It can be shown that, if the under­
lying distribution of interarrival times { T1, T2, . . . J is exponential, the arrival times are uniformly distributed 
on the interval (0, T). The arrival times Tl' T1 + T2, T1 + T2 + T3, . . .  , T1 + .. . + T are obtained by adding 
interarrival times. The arrival times are then normalized to a (0, 1) interval ; that the Kolmogorov­
Smimov test, as presented in Section 7.4.l ,.can be applied. On a (0, I) interval, the points will be [T1/T, 
(T1 + T2)fT, .. .  , (T1 + · · · + T50)fT]. The resulting 50 data points are as follows: 

0.0044 0.0097 0.0301 0.0575 0.0775 0.0805 0.1059 0.1 1 1 1  0.1 3 13 0.1502 
0.1655 0.1676 0.1956 0.1960 0.2095 0.2927 0.3161 0.3356 0.3366 0.3508 
0.3553 0.3561 0.3670 0.3746 0.4300 0.4694 0.4796 0.5027 0.5315 0.5382 
0.5494 0.5520 0.5977 0.6514 0.6526 0.6845 0.7008 0.7154 0.7262 0.7468 
0.7553 0.7636 0.7880 0.7982 0.8206 0.8417 0.8732 0.9022 0.9680 0.9744 
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Following the procedure in Example 7.6 produces a D+ of 0. 1054 and a v- of 0.0080. Therefore, the 
Kolmogorov-Smirnov statistic is D = max(0.1054, 0.0080) = ·o. l054. The critical value of D obtained from · 
Table A.8 for a level of significance of a= 0.05 and n 50 is Do.os = 1.36 f J;;. = 0.1923; but D = 0.1054, so 
the hypothesis that the interarrival times are exponentially distributed cannot be rejected. 

The Kolmogorov-Smimov test has been modified so that it can be used in several situations where the 
parameters are estimated from the data. The computation of the test statistic is the same, but different tables 
of critical values are used. Different tables of critical values are required for different distributional assump­
tions. Lilliefors [ 1967] developed a test for normality. The null hypothesis states that the population is one 
of the family of normal distributions, without specifying the parameters of the distribution. The interested 
reader might wish to study Lilliefors' original work; he describes how simulation was used to develop the 
critical values. 

Lilliefors [ 1969] also modified the critical values of the Kolmogorov-Smimov test for the exponential 
distribution. Lilliefors again used random sampling to obtain approximate critical values, but Durbin ( 1975] 
subsequently obtained the exact distribution. Connover [1998] gives examples ofKolmogorov-Smimov tests 
for the normal and exponential distributions. He also refers to several other Kolmogorov-Smimov-type tests 
that might be of interest to the reader. 

A test that is similar in spirit to the Kolmogorov-Smirnov test is the Anderson-Darling test. Like the 
Kolmogorov-Smimov test, the Anderson-Darling test is based on the difference between the empirical cdf and 
the fitted cdf; unlilce the Kolmogorov-Smimov test, the Anderson-Darling test is based on a more compre­
hensive measure of difference (not just the maximum difference) and is more sensitive to discrepancies in ·the 
tails of the distributions. The critical values for the Anderson-Darling test also depend on the candidate distri­
bution and on whether parameters have been estimated. Fortunately, this test and the Kolrilogorov-Smimov test 
have been implemented in a number of software packages that support simulation-input modeling. 

9.4.4 p·Values and "Best Fits" 

To apply a goodness-of-fit test, a significance level must be chosen. Recall that the significance level is the 
probability of falsely rejecting H0: the random variable conforms to the distributional assumption. The tra­
ditional significance levels are 0. 1, 0.05 and 0.01 .  Prior to the availability of high-speed computing, having 
a small set of standard values made it possible to produce tables of useful critical values. Now most statisti­
cal software computes critical values as needed, rather than storing them in tables. Thus, the analyst can 
employ a different level of significance-say, 0.07. 

However, rather than require a prespecified significance level, many software packages compute a 
p-value for the test statistic. The p-value is the significance level at which one would just reject H0 for the 
given value of the test statistic. Therefore, a large p-value tends to indicate a good fit (we would have to 
accept a large chance of error in order to reject), while a small p-value suggests a poor fit (to accept we would 
have to insist on almost no risk). 

Recall Example 9.14, in which a chi-square test was used to check the Poisson assumption for the vehi­
cle-arrival data. The value of the test statistic was X�= 27 .58, with 5 degrees of freedom. The p-value for this 
test statistic is 0.00004, meaning that we would reject the hypothesis that the data are Poisson at the 0.00004 
significance level. (Recall that we rejected the hypothesis at the 0.05 level; now we know that we would also 
to reject it at even lower levels.) 

The p-value can be viewed <:15 a measure of fit, with larger values being better. This suggests that we 
could fit every distribution at our disposal, compute a test statistic for each fit, and then choose the distribu­
tion that yields the largest p-value. We know of no input modeling software that implements this specific 
algorithm, but many such packages do include a "best. fit" option, in which the software recommends an 
input model to the user aftir evaluating all feasible models. The software might also take into account other 
factors--such as whether the data are discrete or continuous, bounded or unbounded-but, in the end, some 
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summary measure of fit, like the p-value, is used to rank the distributions. There is nothing wrong with this, 
but there are several things to keep in mind: 

1. The software might know nothing about the physical basis of the data, whereas that information can 
suggest distribution families that are appropriate. (See the list in Section 9 .2.2.) Remember that the 
goal of input modeling is often to fill in gaps or smooth the data, rather than find an input model that 
conforms as closely as possible to the given sample. 

2. Recall that both the Erlang and the exponential distributions are special cases of the gamma and that 
the exponential is also a special case of the more flexible Weibull. Automated best-fit procedures tend 
to choose the more fl�xible distributions (gamma and Weibull over Erlang and exponential), because 
the extra flexibility allows closer conformance to the data and a better summary measure of fit. But 
again, close conformance to the data does not always lead to. the most appropriate input model. 

3. A summary statistic, like the p-value, is just that, a summary measure. It says little or nothing about 
where the lack of fit occurs (in the body of the distribution, in the right tail, or in the left tail). A human, 
using graphical tools, can see where the lack of fit occurs and decide whether or not it is important for 
the application at hand. 

Our recommendation is that automated distribution selection be used as one of several ways to suggest 
candidate distributions. Always inspect the automatic selection, using graphical methods, and remember that 
the final choice is yours. 

9.5 FlmNG A NONSTATIONARY POISSON PROCESS 

Fitting a nonstationary Poisson process (NSPP) to arrival data is. a difficult problem, in general, because we 
seldom have knowledge about the appropriate form of the arrival rate function A. (t). (See Chapter 5, Section 
5.5 for the definition of a NSPP). One approach is to choose a very flexible model with lots of parameters and 
fit it with a method such as maximum likelihood; see Johnson, Lee, and Wilson [ 1994] for an example of this 
approach. A second method, and the one we consider here, is to approximate the arrival rate as being constant 
over some basic interval of time, such as an hour, or a day, or a month, but varying from time interval to time 
interval. The problem then becomes choosing the basic time interval and estimating the arrival rate within 
each interval. 

Suppose we need to model arrivals over a time period, say [0, T]. The approach that we describe is most 
appropriate when it is possible to observe the time period [0, T] repeatedly and count arrivals. For instance, 
if the problem involves modeling the arrival of e-mail throughout the business day (8 A.M. to 6 P.M.), and we 
believe that the arrival rate is approximately constant over half-hour intervals, then we need to be able to 
count arrivals during half-hour intervals for several days. If it is possible to record actual arrival times, rather 
than counts, then actual arrival times are clearly better since they can later be grouped into any interval 
lengths we desire. However, we will assume from here on that only counts are available. 

Divide the time period [0, T] into k equal intervals of length 11t = Tlk. For instance, if we are considering 
a 1 0-hour business day from 8 A.M. to 6 P.M. and if we allow the rate to change every half hour, then T = I 0, 
k= 20, and 11t= 112. Over n periods of observation (e.g., n days), let Cij be the number of arrivals that occurred 
during the ith time interval on the jth period of observation. In our example, C23 would be the number of 
arrivals from 8:30 A.M. to 9 A.M. (second half-hour period) on the third day of observation. 

The estimated arrival rate during the ith time period, (i - 1)11t < t � i 11t, is then just the average number 
of arrivals scaled by the length of the time interval: 

' l • A.(t) =-L,Cij 
nl1t j=l 

(9.21) 
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Table 9.8 Monday E-mail Arrival Data for NSPP Example 

Number of Arrivals 

Time Period Day l Day 2 Day ] Estimated Arrival Rate (arrivals/hour) 

8:00-8:30 12 14 10 24 
8:30-9:00 23 26 32 54 
9:00-9:30 27 19 32 52 
9:30-10:00 20 13 ]2 30 

After the arrival rates for each time interval have been estimated, adjacent intervals whose rates appear to be 
the same can be combined. 

For instance; consider the e-mail arrival counts during the first two hours of the business day on three 
Mondays, shown in Table 9.8. The estimated arrival rate for 8:30--9:00 is 

1 
-- (23+26+32) = 54 arrivals/hour 
3(1 / 2) 

After seeing these results we might consider combining the interval 8:30--9:00 with the interval 9:00--9:30, 
becaus� the rates are so similar. Note also that the goodness-of-fit tests described in the previous section can 
be apphed to the data from each time interval individually, to check the Poisson approximation. 

9.6 SELECTING INPUT MODELS WITHOUT DATA 

Unfortunately, it is often necessary in practice to develop a simulation model-perhaps for demonstration 
purposes or a preliminary study--before any proeess data are available. In this case, the modeler must be 
resourceful in choosing input models and must carefully check the sensitivity of results to the chosen models. 

There are a number of ways to obtain information about a process even if data are not available: 
Engineering data: Often a product or process has performance ratings provided by the manufacturer 

(for example, the mean time to failure of a disk drive is 10000 hours; a laser printer can produce 
8.pages/�ute; the cutting speed of a tool is 1 em/second; etc.). Company rules might specify time 
or productJon standards. These values provide a starting point for input modeling by fixing a central 
value. 

Expert op�on: �� �o peop�e ��o are experie?ced �ith the process or similar processes. Often, they 
. can prov1de optm_ustJc, pessmustlc, and most-likely tJmes. They might also be able to say whether the 

pr�s is nearly �nstan� o� hi�hly variable, and they might be able to define the source of variability. 
Physical or conventional limitations: Most real processes have physical limits on performance-for 

example, computer data entry cannot be faster than a person can type. Because of company policies, 
there could be upper limits on how long a process may take. Do not ignore obvious limits or bounds 
that narrow the range of the input process. 

The nature of the process: The description of the distributions in Section 9.2.2 can be used to justify 
a particular choice even when no data are available. . 

When data are not available, the uniform, triangular, and beta distributions are often used as illput models. 
The uniform can be a poor choice, because the upper and lower bounds are rarely just as likely as the central 
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values in real processes. If, in addition to upper and lower bounds, a most-likely value can be given, then the 
triangular distribution can be used. The triangular distribution places much of its probability near the most­
likely value, and much less near the extremes. (See Section 5.4.) If a beta distribution is used, then be sure 
to plot the density function of the selected distribution; the beta can take unusual shapes. 

A useful refinement is obtained when a minimum, a maximum, and one or more "breakpoints" can be 
given. A breakpoint is an intermediate value together with a probability of being less than or equal to that 
value. The following example illustrates how breakpoints are used. 

Example 9.17 
For a production-planning simulation, the sales volume of various products is required. The salesperson 
responsible for product XYZ-123 says that no fewer than l 000 units will be sold (because of existing con­
tracts) and no more than 5000 units will be sold (because that is the entire market for the product). Given her 
experience, she believes that there is a 90% chance of selling more than 2000 units, a 25% chance of selling 
more than 3500 units, and only a I% chance of selling more than 4500 units. 

Table 9.9 summarizes this information. Notice that the chances of exceeding certain sales goals have 
been translated into the cumulative probability of being less than or equal to those goals. With the informa­
tion in this form, the method of Section 8.1.5 can be employed to generate simulation-input data. 

When input models have been selected without data, it is especially important to test the sensitivity 
of simulation results to the distribution chosen. Check sensitivity not only to the center of the distribution, 
but also to the variability or limits. Extreme sensitivity of output results to the input model provides a 
convincing argument against making critical decisions based on the results and in favor of undertaking data 
collection. 

For additional discussion of input modeling in the absence of data, see Pegden, Shannon, and Sadowski 
[1995]. 

9.7 MULTIVARIATE AND TIME-SERIES INPUT MODELS 

In Sections 9.1-9.4, the random variables presented were considered to be independent of any other vari­
ables within the context of the problem. However, variables may be related, and, if the variables appear in a 
simulation model as inputs, the relationship should be investigated and taken into consideration. 

Example 9.18 
An inventory simulation �eludes the lead time and annual demand for industrial robots. An increase in 
demand results in an increase in lead time: The final assembly of the robots must be made according to the 
specifications of the purchaser. Therefore, �her than treat lead time and demand as independent random 
variables, a multivariate input model should be developed. 

Table 9.9 Summary of Soles Information 

1 
2 
3 
4 

Interval 
(Sales) 

!OOO � x � 2000 
2000 < x � 3500 
3500 < x �  4500 
4500 < x � 5000 

Cumulative 
. Frequency, c1 

0. 10 
0.75 
0.99 
1.00 
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Example 9.19 
A simulation of the web-based trading site of a stock broker includes the time between arrivals of orders to 
buy and sell. Investors tend to react to what other investors are doing, so these buy and sell orders arrive in 
bursts. Therefore, rather than treat the time between arrivals as independent random variables, a time-series 
model should be developed. 

We distinguish multivariate input models of a fixed, finite number of random variables (such as the two 
random variables lead time and annual demand in Example 9.1 8) from time-series input models of a (con­
ceptually infinite) sequence of related random variables (such as the successive times between orders in 
Example 9 .19). We will describe input models appropriate for these examples after reviewing two measures 
of dependence, the covariance and the correlation. 

9.7.1 Covariance and Correlation 

Let X1 and X2 be two random variables, and let Jl.; = E(X;) and 0'� = V(X) be the inean and variance of 
Xi' respectively. The covariance and correlation are measures of the linear dependence between X1 and X2• 
In other words, the covariance and correlation indicate how well the relationship between X1 and X2 is 
described by the model 

(Xl -p.l) = fJ(X2 -p.2).+ t: 

where *' is a random variable with mean 0 that is independent of X2. If, in fact. (X1 - p.1) = p (X2 - Jl.i), then 
this model is perfect. On the other hand, if X1 and � are statistically independent. then p = 0 and the model 
is of no value. In general, a positive value of P indicates that X1 and X2 tend to be above or below their means 
together; a negative value of p indicates that they tend to be on opposite sides of their means. 

The covariance between XI and x2 is defined to be 

(9.22) 

The value cov(Xl' X2) = 0 implies p = 0 in our model of dependence, and cov(XI' �) < 0 (>0) implies p < 0 (>0). 
The covariance can take any value between -co and ""· The correlation standardizes the covariance to be 

between -1 and I :  

(9.23) 

Again, the value corr(XI' �) = 0 implies P = 0 in our model, and corr(X1, X2) < 0 (>0) implies p < 0 (>0). 
The closer p is to -1 or l ,  the stronger the linear relationship is between X1 and Xz. 

Now suppose that we have a sequence of random variables XI' Xz, X3, • • •  that are identically distributed 
(implying that they all have the same mean and variance), but could be dependent We refer to such a 
sequence as a time series and to cov(X,, X,+h) and corr(X,, Xr+h) as the lag-h autocovariance and lag-h auto· 
correlation, respectively. If the value of the autocovariance depends olily on h and not on t, then we say that 
the time series is covariance stationary; this concept is discussed further in Chapter I I . For a covariance-
stationary time series, we use the shorthand notation 

· 

p,. = corr(X,, x,.,) 

for the lag-h autocorrelation. Notice that autocorrelation measures the dependence between random variables 
that are separated by h - l others in the time series. 
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9.7.2 Multivariate Input Models 

If X1 and X2 each are normally distributed, then dependence between them can be modeled by the bivariate 
normal Qistribution with parameters /li, 112· crt, cr�. and p = corr(X" X2). Estimation of 11" 112· cr�, and cri was 
described in Section 9.3.2. To estimate p, suppose that we have n independent and identically distributed 
pairs (XII, X21), (X12, X.,.), . . .  , (XIn' X2n). Then the sample covariance is 

I (� - - ) = - £.JXyX21 -nX1X2 n- 1  1•1 

where XI and x2 are the sample means. The correlation is estimated by 

• cov(X�> X� p =  • •  < 

<11<12 

where &1 and &2 are the sample variances. 

Example 9.20: Example 9.18 Continued 

(9.24) 

(9.25) 

Let X1 represent the average lead time to deliver (in months), and � the annual demand, for industrial robots. 
The following data are available on demand and lead time for the last ten years: 

lead time demand 

6.5 103 
4.3 83 
6.9 1 16 
6.0 97 
6.9 1 1 2  
6.9 104 
5.8 106 
7.3 109 
4.5 92 
6.3 96 

Standard calculations give XI = 6.14, a, = 1.02, x2 = 101.80, and &2 = 9.93 as estimates of !1 '  C1 '  IL 
d ' l "' . th . l l r:z, an <12, respective y • •  o estimate e correlation, we need 

10 l.;xljX21 = 6328.5 
J=l < 

Therefore, � = [6328.5 -(10)(6.14)(101.80)]/(10- 1) = 8.66, and 

• = 8•66 - 0.86 p (1.02)(9.93) 

Clearly, lead time and demand are strongly dependent Before we accept this model, however, lead time and 
demand should be checked individually to see whether they are represented well by normal distributions. 
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In particular, demand is a discrete-valued quantity, so the continuous normal distribution is certainly at best 
an approximation. 

The following simple algorithm can be used to generate bivariate normal random variables: 

Step l. Generate Z1 and Z2, independent standard normal random variables (see Section 8.3. 1) .  
Step 2. Set X1 = P.1 + cr1Z1 

Step 3. Set X2 112 +cr2 (pz, +�l- iz2) 
Obviously, the bivariate normal distribution will not be appropriate for all multivariate-input modeling 

problems. It can be generalized to the k-variate normal distribution to model the dependence among more 
than two random variables, but, in many instances, a normal distribution is not appropriate in any form. We 
provide one method for handling nonnormal distributions in Section 9.7.4. Good references for other mod­
els are Johnson [1987] and Nelson and Yamnitsk:y [1998] . 

9.7.3 Time·Series Input Models 

If xl' X:v x3, . . .  is a sequence of identically distributed, but dependent and covariance-stationary random vari­
ables, then there are a number of time series models that can be used to represent the process. We will 
describe two models that have the characteristic that the autocorrelations take the form 

for h = 1 ,  2, . . . Notice that the lag-h autocorrelation decreases geometrically as the lag increases, so that 
observations far apart in time are nearly independent. For one model to be shown shortly, each X, is normally 
distributed; for the other model, each X, is exponentially distributed. More general time-series input models are described in Section 9.7.4 and in Nelson and Yamnitsk:y [ 1998]. 

AR( 1 )  MODEL Consider the time-series model 

(9.26) 

for t =  2, 3, . . .  , where t1• �· . . .  are independent and identically (normally) distributed with mean 0 and 
variance cr! , and -1 < if/ <  1. If the initial value X1 is chosen appropriately (see shortly), then XI' X2, . . .  are 
all normally distributed with mean fl, variance a; /(1 -if/2 ) ,  and 

ph = ifih 
for h = 1, 2, . . .. This time-series model is called the autoregressive order-1 model, or AR(l) for short. 

Estimation of the parameter if/ can be obtained from the fact that 

the lag-1 autocorrelation. Therefore, to estimate if/, we first estimate the lag-1 autocovariance by 

1 •-1 
�<x,,x,+l> = -1 2.;( x, -i><x,+l -x) n- <=l 

. 1 (n-1 _ )  = -, - 2.;X,X,+1 - (n- l)X2 n-1  r=l 
(9.27) 
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and the variance u2 = var(X) by the usual estimator 82• Then 

Finally, estimate J1. and u! by jl = X and 

respectively. 
The following algorithm generates a stationary AR(1) time series, given values of the parameters !p, fl, 

and u;: 

Step 1. Generate X1 from the normal distribution with mean J1. and v;mance u! /(1 . !p2) .  Set t = 2. 

Step 2. Generate 81 from the normal distribution with mean 0 and variance u;. 

Step 3. Set X, = J.l. +  !p (XH - J.l.) + 81• 

Step 4. Set t = t + 1 and go to Step 2. 

EAR(l) MODEL Consider the time-series model 

X = {tPX,_1 , with probability tP 
· ' !pX,_1 + 8,, with probability 1-tP (9.28) 

for t =  2, 3, . • .  , where 82, 83, • . .  are independent and identically (exponentially) distributed with mean Ill 
and 0 ::;  !p < l .  If the initial value X1 is chosen appropriately (see shortly), then X1, X2, • • •  are all exponen­
tially distributed with mean 1/l and 

for h = 1 ,  2, . . . .  This time�series model is called the exponential autoregressive order-1 model, or EAR(l ) for 
short. Only autocorrelations greater than 0 can be represented by this model. Estimation of the parameters 
proceeds as for the AR( l )  by setting tf = p, the estimated lag-1 autocorrelation, and setting i = ti X· 

The following algorithm generates a stationary EAR(l )  time series, given values of the parameters tP and l: 

Step 1. Generate X1 from the exponential distribution with mean 1/A.. Set t = 2. 

Step 2. Generate U from the uniform distribution on [0, 1]. If U :;;; !p, then set 

Otherwise, generate 81 from the exponential distribution with mean 1/l and set 

X, = !pX,_1 + 8, 

Step 3. Set t = t + 1 and go to Step 2. 
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Example 9.21: Example 9.19 Continued 
The stock broker would typically have a large sample of data, but, for the sake of illustration, suppose that 
the following twenty time gaps .between customer buy and sell orders had been recorded (in seconds): 1 .95, 
1 .75, . 1 .58, 1 .42, 1 .28, 1 . 15, 1 .04, 0.93, 0.84, 0.75, 0.68, 0.61, 1 1 .98, 10.79, 9.71, 14.02, 12.62, 1 1.36, 10.22, 
9.20. Standard calculations give X =  5.2 and u2 = 26.7. To estimate the lag-! autocorrelation, we need 

19 
:E x,x,+) = 924. 1 
i�l 

Thus, &;'V = [924. 1 -(20-1)(5.2)2}/(20-1) = 21.6, and 

A 21 .6 0 8 p = = . 
26.7 

Therefore, we could model the interarrival times as an EAR(!) process with i = l/5.2 = 0.192 and � = 0.8, 
provided that an exponential distribution is a good model for the intlivitllnol 

9.7.4 The Normal-to-Anything Transformation 

The bivariate normal distribution and the AR(l)  and EAR(l) time-series models are useful input models that 
are easy to fit and simulate. However, the marginal distribution is either normal or exponential, which is cer­
tainly not the best choice for many applications. Fortunately, we can start with a bivariate normal or AR(l) 
model and transform it  to have any marginal distributions we want (including exponential). 

Suppose we want to simulate a random variable X with cdf F(x). Let Z be a standard normal random 
variable (mean 0 and variance 1), and let <ll(z) be its cdf. Then it can be shown that 

R =  <I>(Z) 

is a U(O, 1) random variable. As we learned in Chapter 8, if we have a U(O, 1) random variable, we can get 
X by using the inverse cdf transformation 

We refer this as the normal to anything transformation, or NORTA for short. 
Of course, if all we want is X, then there is no reason to go to this trouble; we can just generate R directly, 

using the methods in Chapter 8. But suppose we want a bivariate random vector (X1, X2) such that X1 and X2 
are correlated but their distributions are not normal. Then we can start with a bivariate normal random vec­
tor (Z1, 2.t) and apply the NORTA transformation to obtain 

There is not even a requirement that F; and Fz be from the same distribution family; for instance, r; could be 
an exponential distribution and Fz a beta distribution. 

The same idea applies for time series. If z, is generated by an AR(l) with N(O, 1 )  marginals, then 
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will be a time-series model with marginal distribution F(x). To insure that z, is N(O, l ), we set J1. = 0 and a;= 
1 tfJ2 in the AR(l )  model. · 

Although the NORTA method is very general, there are two technical issues that must be addressed to 
implement it: 

1. The NORTA approach requires being able to evaluate that standard normal cdf, lfl(z), and the inverse 
cdf of the distributions of interest, F1 (u) . There is no closed-form expression for <ll(z) and no closed­
form expression for F1 (u) for many distributions. Therefore, numerical approximations are required. 
Fortunately, these functions are built into many symbolic calculation and spreadsheet programs, and 
we give one example next In addition, Bratley, Fox, and Schrage [ 1 987] contains algorithms for many 
distributions. 

2. The correlation between the standard normal random variables (Zl' Z2) is distorted when it passes 
through the NORTA transformation. To be more specific, if (Zl' �) have correlation p, then in 

NORTARho :� proc (rhoX, n) 
local Zl , Z2 , Ztemp, Xl, X2 , Rl , R2 , rho, rhoT, lower, upper ; 
randomize (123456) ;  
Zl : =  [random [normald [O , l] ] (n) ] :  
ZTemp : =  [random[normald [ O , l] l (n) ] : 
Z2 := [0] : 

# set up bisection search 
rho : =  rhoX: 
if (rhoX < 0) . then 

lower : =  - 1 :  
upper ·(= 0 :  

else 
lower 0 :  
upper· L 

fi : 
Z2 := rho*Zl + sqrt ( l -rho'2 ) *ZTemp : 
Rl := statevalf [cdf , normald [ O , l] ]  (Zl ) : 
R2 : =  statevalf [cdf, normal d [ O , ll l (Z2 ) : 
Xl : =  statevalf [icdf, exponential [ l , O ] ] (Rl ) : 
X2 : =  statevalf [icdf, beta ( l , 2 ] ] (R2) : 
rhoT : =  describe (linearcorrelation] (Xl, X2 ) ;  
# do bisection search until 5% relative error 
while abs (rhoT - rhoX ) /abs ( rhoX) > 0 . 05 do 

i£ (rhbT > rhoX) then 
upper · - rho: 

else 
lower ::  rho: 

fi :  
rho := evalf ( (lower + upper) /2 ) : 
Z2 : =  rho*Zl + sqrt (l-rho'2) *ZTemp : 
Rl : =  statevalf [cdf, normald (O , l] ] ( Zl ) : 
R2 := statevalf [cdf, normald (O, l] ]  ( Z2 ) : 
X1 : =  statevalf [ icdf, exponential [ l , O] ]  (Rl ) : 
X2 : =  statevalf [icdf,beta [l, 2 ] ]  (R2) : 
rhoT : =  describe (linearcorrelat ion] (Xl, X2) ; 

end do; 
RETURN(rho) ; 
end; 

Figure 9.6 Mople procedure to estimote the bivariate normal correlation required for the NORTA method. 

INPUT 

general X1 = F;"1[ifl(Z1 )] and X2 = F;-1[<1l(Z2)] will have a correlation Px '1: p. The difference is 
often small, but not always. 

The second issue is more critical, because in input-modeling problems we want to specify the bivariate 
or lag- 1 correlation. Thus, we need to find the bivariate normal correlation p that gives us the input correla­
tion Px that we want (recall that we specify the time series model via the lag-1 correlation, Px = corr(X,. X1+1)). 
There has been much research on this problem, including Carlo and Nelson [19%, 1 998] and Biller and 
Nelson [2003]. Fortunately, it has been shown that Px is a nondecreasing function of p, and p and Px will 
always have the same sign. Thus, we can do a relatively simple search based on the following algorithm: 

Step 1. Set p = Px to start. 

Step 2. Generate a large number of bivariate normal pairs (Zp Z1) with correlation p, and transform them 
into (XI' X1)'s, nsing the NORTA transformation. 

Step 3. Compute the sample correlation between (X1; X2), using Equation (9.24), and call it pT. If PT > Px. 
then reduce p and go to Step 2; if PT < Px. then increase p and go to Step 2. If PT "' Px then stop. 

Example 9.22 
· 
--------------------------,-­

Suppose we needed X1 to have an exponential distribution with mean l ,  X1 to have a beta distribution with 
/31 = 1, /32 = 112, and the two o£ them to have correlation Px = 0.45. Figure 9.6 shows a procedure in Maple 
that will estimate the required value of p. In the procedure, n is the number of sample pairs used to estimate 
the correlation. Running this procedure with n set to 1000 gives p = 0.52. 

9.8 SUMMARY 

Input-data collection and analysis require major time and resource commitments in a discrete-event simula­
tion project. However, regardless of the validity or sophistication of the simulation model, unreliable inputs 
can lead to outputs whose subsequent interpretation could result in faulty recommendations. 

This chapter discussed four steps in the development of models of input data: collecting the raw 
data, identifying the underlying statistical distribution, estimating the parameters, and testing for goodness 
of fit. 

Some suggestions were given for facilitating the data-collection step. However, experience, such as that 
obtained by completing any of Exercises I through 5, will increase awareness of the difficulty of problems 
that can arise in data collection and of the need for planning. 

Once the data have been collected, a statistical model should be hypothesized. Constructing a histogram 
is very useful at this point if sufficient data are available. A distribution based on the underlying process and 
on the shape of the histogram can usually be selected for further investigation. 

The investigation proceeds with the estimation of parameters for the hypothesized distribution. 
Suggested estimators were given for distributions used often in simulation. In a number of instances, these 
are functions of the sample mean and sample variance. 

The last step in the process is the testing of the distributional hypothesis. The q - q plot is a useful 
graphical method for assessing fit. The Kolmogorov-Smirnov, chi-square, and Anderson-Darling good­
ness-of-fit tests can be applied to many distributional assumptions. When a distributional asSumption is 
rejected, another distribution is tried. When all else fails, the empirical distribution could be used in .the 
model. 

Unfortunately, in some situations, a simulation study must be undertaken when there is not time or 
resources to collect data on which to base input models. When this happens, the analyst mnst use any available 
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information-such as manufacturer specifications and expert opinion-to construct the input models. When 
input models are derived without the benefit of data, it is particularly important to examine the sensitivity of 
the results to the models chosen. 

Many, but not all, input processes can be represented as sequences of independent and identically dis­
tributed random variables. When inputs should exhibit dependence, then multivariate-input models are 
required. The bivariate normal distribution (and more generally the multivariate normal distribution) is often 
.used to represent a finite number of dependent random variables. Time-series models are useful for repre­
senting a (conceptually infinite) sequence of dependent inputs. The NORTA transformation facilitiu:es devel­
oping multivariate-input models with marginal distributions that are not normal. 
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EXERCISES 

1. In a college library, collect the following infOrmation at the books return counter: 
arrival of students for returning books 
serVice time taken by the counter clerk 
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Consolidate the data collected and verify whether it follows any standard distribution. (Prior penni · · f: ed th . 
. SSIOn rom concern .au ontJ.es may be required) 

2. � to a bank having single window operation. Collect information on arrival of customers, service tune,
_ 
etc. The �pe of transaction may vary from customer to customer. From service times observed, classtfy accordt

.
ng to �e type �f �on and fit arrival and service parameters separately for each type of transaction. (Prior pemnssmn from concerned authorities may be required.) 

3. Go to a �jor traffic intersection, and record the interarrival-time distributions from each direction. Some amvals want to go straight, some tum left, some turn right. The interarrival-tim d" ...:b ti' · · d · e ISt.u U On vanes unng the day and by day of the week. Every now and then an accident occurs . .  
4. Go to a. gr�e� store: and construct the interarrival and service distn"butions at the checkout counters, These dtstnb.utions IDlgh� vary by time of day and by day of week. Record, also, the number ofservice channels av&lable at all ttrnes. (Make sure that the management gives permission i:o perform this study.) 
5. Go to a laundromat, and "relive" the authors' data-collection experience discussed in Example 9. 1 .  (Make sure that the management gives permission to perform this study.) 
6. Draw the pdf of normal distribution with J.l. = 6, a= 3 .  
7. On one figure, draw the pdfs of the Erlang distribution where 8 = 1/2 and k = I, 2, 4,  and 8 
8. On one figure, draw the pdfs of the Erlang distribution where 8= 2 and k = 1, 2, 4, and 8. 
9. Draw the pdf of Poisson distribution with a= 3, 5, and 6. 

10. Draw the exponential pdf with A. =  0.5. In the same sheet, draw the exponential pdf with A. =  1.5. 
11. Draw the exponential pdf with A.= l. In the same sheet, draw the exponential pdf with A.= 3. 
12. The following data are generated randomly from a gamma distribution: 

1.691 
1 . 1 16 
3.810 
2.649 
1 .843 

1 .437 
4.435 
4.589 
2.432 
2.466 

8.221 
2.345 
5.313  
-1.581 
2.833 

Compute the maximum-likelihood estimators jJ and e. 

5.976 
1 .782 

10.90 
2.432 
2.361 

13. The following data are generated randomly from a Weibull distribution where v = o; 

7.936 5.224 3.937 6.513 
4.599 7.563 7.172 5.132 
5.259 2.759 4.278 2.696 
6.212 2.407 1.857 5.002 
4.612 2.003 . 6.908 3.326 
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Compute the maximum-likelihood estimators & and fj. (This exercise requires a programmable calcu­
lator, a computer, or a lot of patience.) 

14. Time between failures (in months) of a particular bearing is assumed to follow normal distribution. The 
data collected over 50 failures are 

11.394 10.728 6.680 8.050 8.382 
8.740 8.287 7.979 5.857 13.521 

12.000 9.496 . 9.248 6.529 12.137 
1 1.383 8. 135 1 1.752 10.040 8.615 
8.686 6.416 9.987 1 1 .282 4.732 
9.344 7.019 6.735 12.176 4.247 

10.099 6.254 5.557 9.376 5.780 
7. 129 7.835 9.648 4.381 5.801 
8.334 9.454 8.486 7.256 10.963 

10.544 10.433 10.425 10.Q78 7.709 

Using K�Iffiogorov-Smirnov test, check whether the distribution follows normal. 

15. Show that·ihe:Kolmogorov-Smimov test statistic for Example 9.16 is D == 0.1054. 

16. Records pertaining to the monthly number of job-related injuries at an underground coalrnine were 
being studied by a federal agency. The values for the past 100 months were as follows: 

Injuries per Month 

0 
1 
2 
3 
4 
5 
6 

Frequency of Occurrence 

35 
40 
13 
6 
4 

(a) Apply the chi-square test to these data to test the hypothesis that the underlying distribution is 
Poisson. Use the level of significance a== 0.05. 

(b) Apply the chi-square test to these data to test the hypothesis that the distribution is Poisson with 
mean 1.0. Again let a= 0.05. · 

(c) What are the differences between parts (a) and (b), and when might each case arise? 

17. The interarrival time of tools for repair to a service station is assumed to follow exponential with A.= I. The data collected from 50 such arrivals are 

1 .299 0.234 1 . 182 0.943 0.038 
0.010 2.494 1 . 104 0.330 0.324 
0.059 1 .375 ' 1 .660 1 .748 0.706 
2.198 0.537 0.904 1.910 0.387 
3.508 2.784 0.237 1 .137 0.990 
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1.002 
1.000 
0.861 
0.812 
0.465 

1 .594 
0.143 
1 .952 
1.035 
0.451 

0.404 
0.697 
0.016 
0.688 
0.507 

1.467 
0.442 
0.167 
0.565 
0.224 

Based on appropriate test, check whether the assumption is valid. 

0.905 
0.395 
2.245 
0.1 55 
1 .44 1 

18. The time spent by customers (in minutes) based on a study conducted in the college canteen is 

13. 125 
14.151 
16.365 
13.650 
13.763 
16.643 
21.285 
12.995 
14.300 ' 
18.778 

12.972 
17.541 
18.946. 
15.336 
18.518  
16.71 2  
1 3.299 
19.540 
8.497 

1 1 . 186 

18.985 
17.251 
1 1 . 154 
16.990 
16.493 
12.759 
16.589 
17.761 
19. 149 
16.263 

12.041 
13.400 
1 1 .159 
18.265 
15.869 
14.926 
13.887 
16.290 
14.035 
14.438 

Using appropriate methods, determine how the time is distributed. 

14.658 
15.559 
14.883 
18.719 
13.291 
14.412 
15.853 
14.624 
17.076 
15.741 
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19. The time required for the transmission of a message (in minutes) is sampled electronically at a communi­
carious center. The last 50 values in the sample are as follows: 

7.936 
4.599 
5:259 
6.212 
8.761 
3.785 
3.535 

. 3.502 
5.289 
4.646 

4.612 
5.224 
7.563 
2.759 
4.502 
3.742 
5.061 
4.266 
6.805 
5.963 

2.407 
2.003 
3 .937 
7. 172 
6.188 
4.682 
4.629 
3.129 
3.827 
3.829 

4.278 
1.857 
6.908 
6.513  
2.566 
4.346 
5.298 
1 .298 
3.912 
4.404 

5.132 
2.696 
5.002 
3.326 
5.5 15 
5.359 
6.492 
3.454 
2.969 
4.924 

How are the transmission times distributed? Develop and test an appropriate model 

20. The time spent (in minutes) by a customer in a bus stop awaiting to board a bus is 

'.: .. • 

1 .07 
7. 19 
6.62 

1 1.27 
7.28 

10.69 
1 6.25 
6.10 
3.00 

14.12 

1 1.81 
12.32 
20.21 
12.53 
7.59 

12.81 
6.72 
9.58 
8.01 
9.33 

13.75 
13.92 
14.13  
14.46 
1 Ll6 
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10.38 1 1 .13 3.56 4.57 17.85 
1 1 .97 16.96 5.04 13.77 6.60 
14.34 11 .70 1 1 .95 9.24 9.65 
13.88 8.93 12.72 9.00 0.89 
13.39 10.37 20.53 9.92 3.49 

Using appropriate methods, determine how the time is distributed. 

21. Daily demands for transmission overhaul kits for the D-3 dragline were maintained by Earth Moving 
Tractor Company, with the following results: 

0 2 0 0 0 
I 0 1 1 1 
0 I 0 0 0 
2 0 1 0 I 
0 1 0 0 2 
I 0 1 0 0 
0 0 0 0 0 
I 0 I 0 1 
0 0 3 0 l 
1 o o o o· 

How are the daily demands distributed? Develop and test an appropriate model. 

22. A simulation is to be conducted of a job shop that performs two operations: milling and planing, in 
that order. It would be possible to collect data about processing times for each operation, then generate 
random occurrences from each distribution. However, the shop manager says that the times might 
be related; large milling jobs take lots of planing. Data are collected for the next 25 orders, with the 
following results in minutes: 

Milling Planing Milling Planing 
Tinu! Time Time Tinu! 

Order (Minutes) (Minutes) Order (Minutes) (Minutes) 

1 12.3 10.6 14 24.6 16.6 
2 20.4 13.9 15 28.5 21.2 
3 1 8.9 14.1 16 1 1.3 9.9 
4 16.5 10.1 17 13.3 10.7 
5 8.3 8.4 18 21.0 14.0 
6 6.5 . 8.1  19 19.5 13.0 
7 25.2 16.9 20 15.0 1 1 .5 
8 17.7 13.7 2 1  1 2.6 9.9 
9 10.6 10.2 22 1 4.3 13.2 

10 13.7 12. 1 23 17.0 12.5 
1 1  26.2 16.0 24 21.2 14.2 
1 2  3o.4 1 8.9 25 28.4 19.1 

7.7 

(a) Plot milling time on the horizontal axis and planing time on the vertical axis. Do tbese data seem 
dependent? 
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(b) Compute the sample correlation between milling time and planing time. 
(c) Pit a bivariate normal distribution to these data. 
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23. Write a computer program to compute the maximum-likelihOOd estimators (a, /:J) of the Weibull distri-
bution. Inputs to the program should include the sample size, n·, the observations x x x · a A. ' !' 2t• • •'l' 'l' 

stopping criterion, E (stop when I f({Ji) Is e) ;.and a print option, OPT (usually set = 0). Output w:Uld 
be the estimates a and /:J. If OPT '= l ,  addition� output would be printed, as in Table 9.4, showing 
convergence. Make the program as "user friendly" as possible. 

24. Examine a computer-software librazy or simulation-support environment to which you · have access. 
Obtain documentation on data-analysis software that would be useful in solving exercises 7 through 24. 
Use the software as an aid in solving selected problems. 

25. The duration of calls in minutes over a telephone line is 

2.058 6.407 0.565 0.641 5.989 0.435 0.278 3.447 l l.461 1 .658 2.91 3  2.689 4.747 2.587 

Develop an input model for the call duration data. 

26. The following data represent the time to perform transactions in a bank, measured in minutes: 0.740, 
1.28, 1 .46, 2.36, 0.354, 0.750, 0.912, 4.44, O. l l4, 3.08, 3.24, 1. 10, 1.59, 1.47, 1.17, 1.27, 9. 12, 1 1 .5, 
2.42, 1.77. Develop an input model for these data. 

27. Two types of jobs (A and B) are released to the input buffer ofajob shop as orders arrive, and the arrival 
of orders is uncertain. The following data are available from the last week of production: 

Day Number of Jobs Number of A's 

I 83 53 
2 93 62 
3 1 12 .66 
4 65 41 
5 78 55 

Develop an input model for the number of new arrivals of each type each day. 

:ZS. The following data are available on the processing time at a machine (in minutes): 0.64, 0.59, l , f, 3.3, 
0.54, 0.04, 0.45, 0.25, 4.4, 2.7, 2.4, 1 . 1 ,  3.6, 0.61, 0.20, 1.0, 0.27, 1.7, 0.04, 0.34. Develop an input 
model for the processing time. 

· 

29 • .  In the process of the development of an inventory simulation model, demand for a component is 
1 2 3  4 3 5 4  3 
4 4 6 6  5 4  6 4 
5 7  5 .5  7 1 5  2 
3 4  3 4 2 8 7 2 
3 8  4 4 5 3 1 6  

Using appropriate model, identify how the demand is distributed. 

3o. Using the web, research some of the input-modeling software packages mentioned in this chapter. What 
are their features? What distributions do they include? 
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Verification and Validation ol 
Simulation Models 

One of the most important and difficult tasks facing a model developer is the verification and validation of 
the simulation model. The engineers and analysts who use the model outputs to aid in maldng design 
recommendations and the managers who make decisions based on these recommendations-justifiably look 
upon a model with some degree of skepticism about its validity. It is the job of the model developer to work 
closely with the end users throughout the period of development and validation to reduce this skepticism and 
to increase the model's credibility. 

The goal of the validation process is twofold: (I) to produce a model that represents true system behavior 
closely enough for the model to be used as a substitute for the actual system for the purpose of experimenting 
with the system, analyzing ·system behavior, and predicting system performance; and (2) to increase· to an 
acceptable level the credibility of the model, so that the model will be used by managers and other decision 
makers. 

Validation should not be seen as an isolated set of procedures that follows model development, but rather 
as an integral part of model development Conceptually, however, the verification and validation process 
consists of the following components: 
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1 .  Verification i s  concerned with building the model correctly. It proceeds by the comparison of  the con­
ceptual model to the computer representation that implements that conception. It asks the questions: Is 
the model implemented correctly in the simulation software? Are the input parameters and logical 
structure of the model represented correctly? 

2. Validation is concerned with building the correct model. It attempts to confirm that a model is an 
accurate representation of the real system. Validation is usually achieved through the calibration of 
the model, an iterative process of comparing the model to actual system behavior and using the 
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discrepancies between the two, and the insights gained, to imprnve the model. This process is 
repeated until model accuracy is judged to be acceptable. 

This chapter describes methods that have been recommended and used in the verification and validation 
prncess. Most of the methods are informal subjective comparisons; a few are formal statistical procedures. 
The use of the latter procedures involves issues related to output analysis, the subject of Chapters I I  and 12. 
Output analysis refers to analysis of the data produced by a simulation and to drawing inferences from these 
data about the behavior of the real system. To summarize their relationship, validation is the process by which 
model users gain confidence that output analysis is makil)g valid inferences about the real system under study. 

Many articles and chapters in texts have been· written on verification and validation. For discussion of 
the main issues, the reader is referred to Balci [1994, 1998, 2003], Carson [ 1986, 2002], Gass [ 1983], 
Kleijnen [ 1995], Law and Kelton [2000], Naylor and Finger [1967], Oren [ 1981], Sargent [2003], Shannon 
[ 1975], and van Horn [1969, 197 1]. For statistical techniques relevant to various aspects of validation, the 
reader can obtain the foregoing references plus those by Balci and Sargent [ 1982a,b; 1984a], Kleijnen 
[1987], and Schruben [1980}. For case studies in which validation is emphasized, the reader is referred to 
Carson et al. [198 la,b], Gafarian and Walsh [1970], Kleijnen [ 1993], and Shechter and Lucas [ 1980]. 
Bibliographies on validation have been published by Balci and Sargent [1984b] and by Youngblood [ 1993]. 

1 0. 1  MODEL BUILDING, VERIFICAnON, AND VALIDAnON 

The first step in model building consists of observing the real system and the interactions among their 
various components and of collecting data on their behavior. But observation alone seldom yields sufficient 
understanding of system behavior. Persons familiar with the system,. or any subsystem, should be questioned 
to take advantage of their special knowledge. Operators, technicians, repair and maintenance personnel, 
engineers, supervisors, and managers understand certain aspects of the system that might be unfamiliar to 
others. As model development proceeds, new questions may arise, and the model developers will return to 
this step of learning true system structure and behavior. 

The second step in model building is the construction of a conceptual model-a collection of assump­
tions about the components and the structure of the system, plus hypotheses about the values of model input 
parameters. As is illustrated by Figure 10. 1, conceptual validation is the comparison of the real system to the 
conceptual model. 

The third step is the implementation of an operational model, usually by using simulation software and 
incorporating the assumptions of the conceptual model into the worldview and concepts of the simulation 
software. In actuality, model building is not a linear process with three steps. Instead; the model builder will 
return to each of these steps many times while building, verifying, and validating the model. Figure 10.1 
depicts the ongoing model building process, in which the need for· verification and validation causes 
continual comparison of the real system to the conceptual model and to the operational model and induces 
repeated modification of the model to improve its accuracy. 

1 0.2 VERIFICAnON OF SIMULATION MODELS 

The purpose of model verification is to assure that the conceptual model is reflected accurately in the 
operational model. The conceptual model quite often involves S<!me degree of abstraction about system opera­
tions or some amount of simplification of actUal operations. Verification asks the following·question: Is the 
conceptual model (assumptions about system components and system structure, parameter value8; abstractions, 
and simplifications) accurately represented by the operational model? 
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l .  Assump!ions on system components 

1-. _ _.1 2. Structural assump!ions. which define 
the interactions between system 
componeniS 

3. Input paramerers and data assumptions 

Model 
verification 

Operational model 
'-----+-! (Computerized 

repteSentation) 

Figure 1 0.1 Model building, verification, and validation. 

Many common-sense suggestions can be given for use in the verification process: 

1. Have the operational model checked by someone other than its developer, preferably an expert in the 
simulation software being used. 

2. Make a flow diagram that includes each logically possible action a system can take when an event 
occurs, and follow the model logic for each action for each event type. (An example of a logic flow 
diagram is given in Figures 2.2 and 2.3 for the model of a single-server queue.) 

3. Closely examine the model output for reasonableness under a variety of settings of the input parameters. 
Have the implemented model display a wide variety of output statistics, and examine all of them closely. 

4. Have the operational model print the input parameters at the end of the simulation, to be sure that 
these parameter values have not been changed inadvertently. 

s. Make the operational model as self-documenting as possible. Give a precise definition of every vari­
able used and a general description of the purpose of each submodel, procedure (or major section of 
code), component, or other model subdivision. . 

6. H the operational model is animated, verify that what is seen in the animation imitates the actual 
system. Examples of errors that can be observed through animation are automated guided vehicles 
(AGVs) that pass through one another on a unidirectional path or at an intersection and entities that 
disappear (unintentionally) during a simulation. 

1. The Interactive Run Controller (IRC) or debugger is an essential component of successful simulation 

model building. Even the best of simulation analysts makes mistakes or commits Iogical.errors when 

building a model. The IRC assists in finding and correcting those errors .in the following ways: 
(a) The simulation can be monitored as it progresses. This can be accomplished by advancing the 
· 

simulation ontil a desired time has elapsed, then displaying model information at that time. 
Another possibility is to advance the simulation until a particular condition is in effect, and then 
display information. 
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(b) Attention can be focused on a particular entity line, of code, or procedure. For instance, every time 
that an entity enters a specified procedure, the simulation will pause so that information can be 
gathered. As another example, every time that a specified entity becomes active, the simulation 
will pause. 

(c) Values of selected model components can be observed When the simulation has paused, the current 
value or status of variables, attributes, queues, resources, counters, and so on can be observed. 

(d) The simulation· can be temporarily suspended, or paused, not only to view information, but also 
to reassign values or redirect entities. 

· · · 

8. Graphical interfaces are recommended for accomplishing verification and validation [Borts-cheller and 
Saulnier, 1992]. The graphical representation of the model is essentially a form of self-documentation. 
It simplifies the task of understanding the model. 

These suggestions are basically the same ones any software engineer would follow. 
Among these common-sense suggestions, one that is very easily implemented, but quite often overlooked, 

especially by students who are learning simulation, is a close and thorough examination of model output for 
reasonableness (suggestion 3). For example, consider a model of a complex network of queues consisting of 
many service centers in series and parallel configurations. Suppose that the mode]er is interested mainly in the 
response time, defined as the time required for a customer to pass through a designated part of the network. 
During the verification (and calibration) phase of model development, it is recommended that the program 
collect and print out many statistics in addition to response times, such as utilizations of servers and time.: 
average number of customers in various subsystems. Examination of the utilization of a server, for example, 
might reveal that it is unreasonably low (or high), a possible error that could be caused by wrong specifi!:ati1>n 
of mean service time, or by a mistake in model logic that sends too few (or too many) customers to this 
particular server, or by any number of other possible parameter misspecifications or errors in logic. 

In a simulation language that automatically collects many standard statistics (average queue lengths, 
average waiting times, etc.), it takes little or no extra programming effort to display almost all statistics of 
interest. The effort required can be considerably greater in a general-purpose language such as Jiwa, C, or 
C++, which do not have statistics-gathering capabilities to aid the programmer. 

1\vo sets of statistics that can give a quick indication of model reasonableness are current contents and 
total count. These statistics apply to any system having items of some kind flowing through it, whether these 
items be called customers, transactions, i nventory, or vehicles. "Current contents" refers to the number of 
items in each component of the system at a given time. "Total count" refers to the total number of items that 
have entered each component of the system by a given time. In some simulation software, these statistics are 
kept automatically and can be displayed at any point in simulation time. In other simulation software, simple 
counters might have to be added to the operational model and displayed at appropriate times. If the current 
contents in some portion of the system are high, this condition indicates that a lruge number of entities are 
delayed. If the output is displayed for successively longer simulation run times and the current contents tend 
to grow in a more or less linear fashion, it is highly likely that a queue is unstable and that the server(s) will 
fall further behind as time continues. This indicates possibly that the number of servers is too small or that a 
service time is misspecified. (Unstable queues were discussed in Chapter 6.) On lbe other hand, if the total 
count for some subsystem is zero, this indicates that no items en�red that subsySfem-again, a highly suspect 
occurrence. Another possibility is that the current count and total count are equal to one. This could indicate 
t)lat an entity has captured a resource, but never freed that resource. Careful evaluation of these statistics for 
various run lengths can aid in the detection of mistakes in model logic and data misspecifications. ·Checking 
for output reasonableness will usually fail to detect the more subtle errors, but it is one of the quickest ways 
to discover gross errors. To aid in error detection, it is best for the model develope.-to forecast a reasonable 
range for the value of selected output statistics before making a run of the model. Sui:h a forecast reduces the 
possibility of rationalizing a discrepancy and failing to investigate the cause of uiiiiSIIal output. 
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For certain models, it is possible to consider more than whether a particular statistic is reasonable. It is 

possible to compute certain long-run measures of performance. For example, � seen in Cha�ter 6, the 

analyst can compute the long-run server utilization for a large number of queuemg systems :VIIhout �ny 

special assumptions regarding interarrival or service-time distributions. Typically, the only Information 

needed is the network configuration, plus arrival and service rates. Any measure of performance that can be 

computed analytically and then compared to its simulated counterpart provides another valuable tool for 

verification. Presumably, the objective of the simulation is to estimate some measure of performance, such 

as mean response time, that cannot be computed analytically; but, as illustrated by the formulas i� Chapter 6 

for a number of special queues (M/M/1,  MIG/I , etc.), all the measures of perform�c� in
. 
a queueing system 

are interrelated. Thus if a simulation model is predicting one measure (such as utilization) correctly, then 

confidence in the model's predictive ability for other related measures (such as response time) is increased 

(even though the exact relation between the two measures is, of course, unknown in general and varies �m 

model to model). Conversely, if a model incorrectly predicts utilization, its prediction of other quantities, 

such as mean response time, is highly suspect. . . 
Another important way to aid the veri{ication process is the oft-neg�e�ted docume�tation phase. If 

a model builder writes brief comments in the operational model, plus defimtions of all vanables and para­

meters, plus descriptions of each major section of the operational model, it becomes �uc� simp�er for some­

one else, or the model builder at a later date, to verify the model logic. Documentation IS also Important as 

a means of clarifying the logic of a model and verifying its completeness. 
. . . 

A more sophisticated technique is the use of a trace. In general, a trace IS a detailed computer pnn�out 

which gives the value of every variable (in a specified s�t of variab!es) in a comp�ter pr_ogra.m_. every time 

that one of these variables changes in value. A trace desrgned specrfrcally for use m a srmulation program 

would give the value of selected variables each time the simulation clock was incremented (i.e., each time 

an event occurred). Thus, a simulation trace is nothing more than a detailed printout of the state of the 

simulation model as it changes over time. 

Example 10.1 . 
When verifying the operational model (in a general purpose language such as FORTRAN, Pascal, C or C++, 

or most simulation languages) of the single-server queue model of Example 2.1, an 3J!a!yst made a run over 

1 6  units of time and observed that the time-average length of the waiting line was La = 0.4375 customer, 

which is certainly reasonable for a short run of only 16 time units. Nevertheless, the analyst decided that a 

more detailed verification would be of value. 
The trace in Figure 10.2 gives the hypothetical printout from simulation time CLOCK= 0 to CLOCK = 

.
16 

for the simple single-server queue of Example 2 1. This example illustrates how an �rr_or can be fo!'nd wrth 

a trace, when no error 'Yas apparent from the examination of the summary output statistics (such as L1). Note 

that at simulation time CLOCK = 3, the number of customers in the system is NCUST 1, but the server 

is idle (STATUS = 0). The source of this error could be incorrect logic, or simply not setting the attribute 

STATUS to the value 1 (when coding in a general purpose language or most simulation languages). 

In any case, the error must be found and corrected. Note that the less sophisticated practice of exa�n­

ing the summary measures, or output, did not d�tect the error. By using equation (6.1), � reader can venfy 

that i0 was computed correctly from the data (La is the time-average value of NCUST nunus STATUS): 

� (0- 0)3 + (1 -0)2+(0 - 0)6+ ( l-0)1 + (2 - 1)4 
La =· 

7 
= -'- =  0.4375 

16 

3 + 2 + 6 + 1 + 4  

a s  previously mentioned. Thus, the output measure, ia, had a reasonable value and was compute_<� correctly 

from the data, but its value was indeed wrong because the attribute STATUS was not assunung correct 
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Definition of Variables: 
CLOCK = Simulation clock 
EVTYP 
NCUST 
STATIJS 

CLOCK 
CLOCK 
CLOCK 
CLOCK 
CLOCK 
CLOCK 

"' Event type {start, anival, departure. or stop) 
Number of customers in system at lime 'CLOCK' 
Status of server ( !-busy, 0-idle) 

EVTYP 'Arrival' 
EVTYP = 'Depart' 

NCUST = O  STATIJS = O  
NCUST = I  STATUS = 0  
NCUST = 0 STATUS = 0 
NCUST = I  STATUS = 0  
NCUST = 2 STATUS = I 
NCUST = I STATUS = I 

Figure 1 0.2 Simulation Trace of Example 2. 1 .  

3 1 5  

values. A s  i s  seen from Figure l 0.2, a trace yields information o n  the actual history of the model that i s  more 
detailed and informative than the summary measures alone. 

. Most simulation software has a built-in capability to conduct a trace without the programmer having to 
do any extensive programming. In addition, a 'print' or 'write' statement can be used to implement a .ttacing 
capability in a general-purpose language. 

As can be easily imagined, a trace over a large span of simulation time can quickly produce an extremely 
large amount of computer printout, which would be extremely cumbersome to check in detail for correct­
ness. The. purpose �f the trace is to verify the correctness of the computer program by making detailed paper­
and-pencil calculatrons. To make this practical, a simulation with a trace is usually restricted to a very short 
period of time. It is desirable, of course, to ensure that each type of event (such as ARRIVAL) occurs at least 
once, so that its consequences and effect on the model can be checked for accuracy. If an event is especially 
rare in occurrence, it may be necessary to use artificial data to force it to occur during a simulation of short 
duration. This is legitimate, as the purpose is to verify that the effect on the system of the rare event is as 
intended. 

Some software allows a selective trace. For example, a trace could be set for specific locations in the model 
or could be triggered to begin at a specified simulation time. Whenever an entity goes through the desiguated 
locations, the simulation software writes a time-stamped message to a trace file. Some simulation software 
allows tracing a selected entity; any time the desiguated entity becomes active, the trace is activated and time­
stamped messages are written. This trace is very useful in following one entity through the entire model. 
Another example of a selective trace is to set it for the occurrence of a particular condition. For example, when­
ever the queue before a certain resource reaches· five or more, tilm on the trace. This allows running the 
simulation until something unusual occurs, then examining the behavior from that point forward in time. 
Different simulation software packages support tracing to various extents. fu practice, it is often implemented 
by the model developer by adding printed messages at appropriate points into a model. . 

Of the three classes of techniques-the common-sense techniques, thorough documentation, and 
traces-it is recommended that the first two always be carried out Close·examination of model output for 
reasonableness is especially valuable and informative. A generalized trace may provide voluminous data, far 
more than can be used or examined carefully. A selective trace can provide useful information on key model 
components and keep the amount of data to a manageable leveL 



I � : : 

316 DISCRETE-EVENT SYSTEM SIMULATION 

10.3 CALIBRATION AND VALIDATION OF MODELS 

Verification and validation, although conceptually distinct, usually are conducted simultaneously by the 

modeler. Validation is the overall process of comparing the model and its behavior to the real system and its 

behavior. Calibration is the iterative process of comparing the model to the real system, making adjustments 

(or even major changes) to the model, comparing the revised model to reality, making additional adjustments, 

comparing again, and so on. Figure 10.3 shows the relationship of model calibration to the overall Yalidation 

process. The comparison of the model to reality is carried out by a variety of tests-some subjective, others 

objective. Subjective tests usually involve people, who are knowledgeable about one or more aspects of the 

system, making judgments about the model and its output. Objective tests always require data on the system's 

behavior, plus the corresponding data produced by the model. Then one or more statistical tests are performed 

to compare some aspect of the system data set with the same aspect of the model data set. This iterative process 

of comparing model with system and then revising both the conceptual and operational models to accom­

modate any perceived model deficiencies is continued until the model is judged to be sufficiently accurate. 

A possible criticism of the calibration phase, were it to stop at this point, is that the model has been 

validated only for the one data set used-that is, the model has been "fitted" to one data set. One way to alle­

viate this criticism is to collect a new set of system data (or to reserve a portion of the original system data) 

to be used at this final stage of validation. That is, after the model has been calibrated by using the original 

system data set, a "final" validation is conducted, using the second system data set. If unacceptable discrep­

ancies between the model and the real system are discovered in the "final" validation effort, the modeler must 

return to the calibration phase and modify the model until it becomes acceptable. 

Validation is not an either/or proposition-no model is ever totally representative of the system under study. 

1n addition, each revision of the model, as pictured in Figure 1 0.3, involves some cost, time, and effort. The 

modeler must weigh the possible, but not guaranteed, increase in model accuracy versus the cost of increased 

validation effort. Usually, the modeler (and model users) have some maximum discrepancy between model 

predictions and system behavior that would be acceptable. If this level of accuracy cannot be obtained within the 

budget constraints, either expectations of model accuracy must be lowered, or the model must be abandoned. 

Real 
system 

Compare model 

to reality 

Compare revised 

model to reality 

Compare second 

revision to reality 

Revise 

Revise 

Revise 

Figure 1 0.3 Iterative process of calibrating a model. 
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As
_ 
an aid in the validation process, Naylor and Finger [1967] formulated a three-step approach that has 

been wtdely followed: 

1. Build a model that has high face validity. 
2. Validate model assumptions. 
3. Compare the model input-output transformations to corresponding input-output transformations for 

the real system. 

The next five subsections investigate these three steps in detail. 

1 0.3. 1 Face Validity 

The first goal of the simulation modeler is to construct a model that appears reasonable on itS face to model 
users and �thers wh� are knowledgeable about the real system being simulated. The potential users of a model 
s�ould be mvolved

_ 
m �od�l �onstruction from its conceptualization to its implementation, to ensure that a 

htgh degree of reahsm IS bmlt mto the model through reasonable assumptions regarding system structure and 
through reliable da�. :o�entia� u�ers and knowledgeable persons can also evaluate model output for reason­
ableness and can atd m tdentlfymg model deficiencies. Thus, the users can be involved in the calibration 
p�oc�ss as the model is improved iteratively by the insights gained from identification of the initial model defi­
ct�nctes. A�other advantage of user involv��ent is the in�rease in the model's perceived validity, or credibility, 
wtthout ":'�'�h a mana�er would not be wtlhng to trust stmulation results as a basis for decision making. 

Sensttlvtty analysts can also be used to check a model's face validity. The model user is asked whether 
the m�del behaves �n the ex�ected way when one or more input variables is changed. For example, in most 
queuemg syste��' tf

_ 
the am val rate of customers (or demands for service) were to increase, it would be 

expecte� that ut1hzat10ns of servers, len�s of lines, and delays would tend to increase (although by how 
much mtght well be unknown). From expenence and from observations on the real system (or similar related 
systems!, the model user and model builder would probably have some notion at least of the direction of 
change m model output when an input variable is increased or decreased. For most large-scale simulation 
models, there are many input variables and thus many possible sensitivity tests. The model builder must 
att�mpt to C�O?Se the most critical input variables for testing if it is too expensive or time consuming to vary 
�II mp�t v�nables.

_ 
�f �eal system data are available for at least two settings of the input parameters, objec­

ttve sctentlfic sensttlvtty tests can be conducted via appropriate statistical techniques. 

1 0.3.2 Validation of Model Assumptions 

Model �sm�ptions fall in
_
to two general classes: structural assumptions and data assumptions. Structural �sumptlons

_ 
mvolve questiOns of how the system operates and usually involve simplifications and abstrac­

tions of r�hty. For example, consider the customer queueing and service facility in a bank. Customers can 
form one 

_
hne, or there can be an individual line for each teller. If there are many lines, customers could be 

served stnctly on a first-come-first-served basis, or some customers could change lines if one line is moving 
faster. The nu�ber of �ellers coul� be �xed or _variable. These structural assumptions should be verified by 
actual o�s�rvat10n dunn� appropnate time penods and by discussions with managers and tellers regarding 
bank pohctes and actual tmplementation of these policies. 

. 
Data assumptions should be based on the collection of reliable data and correct statistical analysis of the 

data.
_ 
(Example :u discussed similar issues for a model of a laundromat.) For example, in the bank study 

prev10usly mentioned, data were collected on 

1. interarrival times of customers during several 2-hour periods of peak loading ("rush-hour" traffic); 
2. interarrival times during a slack period; . 
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3. service times for commercial accounts; 
4. service times for personal accounts. 

The reliability of the data was verified by consultation with bank managers, wh? identifi� typical rus� 

hours and typical slack times. When combining two or more data sets col�ected at different umes, data reli­

ability can be further enhanced by objective statistical tests for homogene1� of data. (Do two data sets {X; l 

and { Y.} on service times for personal accounts, collected at two different Urnes, �orne from the same par�nt 

population? If so, the two sets can be combined.) Additional tests might be r�mred, to �est �or correlatiOn 

in the data. As soon as the analyst is assured of dealing with a random sample (1.e., correlation IS not present), 

the statistical analysis can begin. . . 
· 

The procedures for analyzing input data from a random samp�e wer� discussed in de�1l m Chapter 9. 

Whether _done manually or by special-purpose software, the analysis consists of three steps. 

1. Identify an appropriate probability distribution. 

2. Estimate the parameters of the hypothesized distribution. _ . 

3. Validate the assumed statistical model by a goodness-of-fit test, such as the chi-square or Kolmogorov-

Smimov test, and by graphical methods. 

The use of goodness-of-fit tests is an important part of the validation of data assumptions. 

1 0.3.3 Validating Input-Output Transformations 

The ultimate test of a model, and in fact the only objective test of the model as a whole, is th� model's ability 

to rediat the future behavior of the real system when the model input data match the real mp�ts and when 

a ;!icy implemented in the model is implemented at some point in the system. Furthermore, 1f the level of 

· t · bles (e g the arrival rate of customers to a service facility) were to increase or decrease, the 
some mpu vana - ., 

d - - 1  · tan I th r 
model should accurately predict what would happen in the real system un er sum ar cucums _ _ces. n o _ e 

words, the structure of the model should be accurate enough for the �ode! to make good pred1ctwns, not JUSt 

for one input data set, but for the range of input data
_ 
se� that are of_ mterest. . . 

In this phase of the validation process, the model Is viewed as an mput-output transformatiOn-that IS, the 

model accepts values of the input parameters and transforms these inputs into output measures of performance. 

It is this correspondence that is being validated. _ _ . 

Instead of validating the model input-output transformations by pred1ctmg th� f�ture, the modeler 

could use historical data that have been reserved for validation purposes only-that IS, If one data set has 

been used to develop and calibrate the model, it is recommended that a separate data set be used as the final 

. validation test Thus, accurate "prediction of the past" can replace prediction of the future for the purpose 

of validating the model. 

A model is usually developed with primary interest in a specific set of system responses to be measured 

under some range of input conditions. For example, in a queueing system, the respo�ses may be server 

utilization and customer delay, and the range of input conditions (or input �ariables) may mclude two or three 

servers at some station and a ,choice of scheduling rules. In a productwn
_ 

system, the respo_nse may be 

throughput (i.e., production per hour), and the input conditions may be a c�mce of several ma�h�nes that run 

at different speeds, with each machine having its own breakdown and mrunten�ce ch�cte�sucs. 
_ 

_ 

In any case, the modeler should use the main responses of int
_
erest -� the pnmary cntena for validating 

a modeL If the model is used tater for a purpose different from 1ts ongmal p�se, the 11_1�del should be 

al
·.
dated · n terms of the new responses of interest and under the possibly new mput conditions. 

rev 1 1 . . th · f the 
A necessary condition for the validation of input-output transformations IS at some verswn o 

system under study exist, so that system data under at least one set of input conditions can
_ 
be collected to 

compare to model predictions. If the system is in the planning stages and no system operatmg data can be 
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collected, complete input-output validation i s  not possible. Other types o f  validation should be conducted, 
to the extent possible. In some cases, subsystems of the planned system may exist, and a partial input-output 
validation can be conducted. 

· 

P�esumably, the model will be used to compare alternative system designs or to investigate system 
behavwr under a range of new input conditions. Assume for now that some version of the system is operating 
and that the model of the existing system has been validated. What, then, can be said about the validity of 
the model when different inputs are used?-that is, if model inputs are being changed to represent a new 
system design, or a new way to operate the system, or even hypothesized future conditions, what can be said 
about the validity of the model with respect to this new but nonexistent proposed system or to the system 
under new input conditions? 

First, the responses of the two models under similar input conditions will be used as the criteria for com­
parison of the existing system to the proposed system. Validation increases the modeler's confidence that the 
model of the existing system is accurate. Second, in many cases, the proposed system is a modification of 
the existing system, and the modeler hopes that confidence in the model of the existing system can be trans­
ferred to the model of 1he new system. This transfer of confidence usually can be justified if the new model 
is a r�latively minor modification of the old model in terms of changes to the operational model (it may be 
a maJor change for the actual system). Changes in the operational model ranging from relatively minor to 
relatively major include the following: 

1. minor changes of single numerical parameters, such as the speed of a machine, the arrival rate of 
customers (with no change in distributional form of interarrival tiines ), the number of servers in a 
parallel service center, or the mean time to failure or mean time to repair of a machine; 

2. minor changes of the form of a statistical distribution, such as the distribution of a service time or 
a time to failure of a machine; 

3. major changes in the logical structure of a subsystem, such as a change in queue discipline for a 
waiting-line model or a change in the scheduling rule for a job-shop model; 

4. major changes involving a different design for the new system, such as a computerized inventory 
control system replacing an older noncomputerized system, or an automated storage-and-retrieval 
system replacing a warehouse system in which workers pick items manually using fork trucks. 

_ If the change to the operational model is minor, such as in items 1 or 2, these changes can be carefully ver­
Ified and output from the new model accepted with considerable confidence. If a sufficiently similar subsystem 
exists elsewhere, it might be possible to validate the submodel that represents the subsystem and then to inte­
grate this submodel with other validated submodels to build a complete model. In this way, partial validation 
of the substantial model changes in items 3 and 4 might be possible. Unfortunately, there is no way to validate 
the input-output transformations of a model of a nonexisting system completely. In any case, within time and 
budget constraints, the modeler should use as many validation techniques as possible, including input-output 
validation of subsystem models if operating data can be collected on such subsystems. 

_ Example 10.2 will illustrate some of the techniques that are possible for input-output validation and will 
discuss the concepts of an input variable, uncontrollable variable, decision variable, output Dr response vari­
able, and input-output transformation in more detail. 

Example 10.2: The Fifth National
-
Bank of Jaspar 

The Fifth National Bank of Jaspar, as shown in Figure 10.4, is planning to expand its drive-in service at the 

�mer of Main Street. Currently, there is one drive-in window serviced by one teller. Only one or two transac­
tions are allowed at the drive-in window, so it was assumed that each service time was a random sample from · 

some underlying population. Service times {S;, i = 1, 2, . . .  , 90} and interarrival times {A;; i = I, 2, . . .  , 90} 
were collected for the 90 customers who arrived between 1 1 :00 A.M. and 1 :00 P.M. on a Friday. This time slot 
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Figure 10.4 Drive-in window at the Fifth National Bank. 

was selected for data collection after consultation with management and the teller because it was felt to be 
representative of a typical rush hour. 

Data analysis (as outlined in Chapter 9) led to the conclusion that arrivals could be modeled as a Poisson 
process at a rate of 45 customers per hour and that service times were approximately normally distributed, 
with mean l . l  minutes and standard deviation 0.2 minute. Thus, the model has two input variables: 

1. interarrival times, exponentially distributed (i.e., a Poisson arrival process) at rate A =  45 per hour; 
z. service times, assumed to be N(l. l ,  (0.2)2). 

Each input variable has a level: the rate (A= 45 per hour) for the interarrival times, and the mean l . l  minutes 
and standard deviation 0.2 minute for the service times. The interarrival times are examples of uncontrollable 
variables (i.e., uncontrollable by management in the real system). The service times are also treated as uncon­
trollable variables, although the level of the service times might be partially controllable. If the mean service 
time could be decreased to 0.9 minute by installing a computer terminal, the level of the service-time variable 
becomes a decision variable or controllable parameter. Setting all decision variables at some.level constitutes 
a policy. For example, the current bank policy is one teller (D1 = 1), mean service time D2 = 1 . 1  minutes, and 
one line for waiting cars (D3 = 1). (D1, D2, . . .  are used to denote decision variables.) Decision variables are 
under management's control; the uncontrollable variables, such as arrival rate and actual arrival times, are not 
under management's control. The arrival rate might change from time to time, but such change is treated as 
being due to external factors not under management control. 

A model of current bank operations was developed and verified in close. consultation with bank 
management and employees. Model assumptions were validated, as discussed in Section I 0.3.2. The resulting 
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model is now viewed as a "b�ack box" that takes all input-variable specifications and transforms them into a �t of o
.
utput or response v:mables .

. 
The output variables consist of all statistics of interest generated by the 

su�ml�tton
_ 
about the model s �ehav10r. For e�ample, management is interested in the teller's utilization at the 

dnve-m ;vmdow (�er�nt of tim� the teller ts busy at the window), average delay in minutes of a customer 
from arrtval to

. 
begmnmg of sefV!ce, and the maximum length of the line during the rush hour. These input 

and outpu� vartables are shown in Figure 10.5 and are listed in Table IO.l ,  together with some additional 
output vanables. The uncontrollable input variables are denoted by X, the decision variables by D, and the 

Random 
variables 

Poisson arrivals 

rate = 45/hour 

One teller 

o, 

Decision Mean service time 

variables 02 ! . 1  minutes 

One line 

o, 1 

M 
0 
D 
E 
L 

"Black box" 

Teller's utilization 

Y, = p 

Average delay 

Maximum line length 

y3 

Input variables ---------. Model - Output variables 

Figure 10.5 Model input-output transformation. 

Table 1 0.1 Input and Output Variables for Model of Current Bank Operations 

Input Variables 

D = decision variables 
X= other variables 

Poisson arrivals at rate = 45/hour 

Xu, Xll, ... 
Service times, N (02, 0.22) 

x21> X22, . . . 

D1 = I (one teller) 
D2 = !.1 minutes (mean service time) 
D3 = I  (one line) 

Model Output Variables, Y 

Variables of primary interest 
to management (YJ> Y2, Y3) 

f1 = teller's utilization 
Y2 = average delay 
Y3 = maximum line length 
Other output variables of 

secondary interest 
Y4 = observed arrival rate 
Y5 = average service time 
Y6 = sample standard deviation of service 

times 
Y1 average length of waiting line 
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output variables by Y. From the "black box" point of view, the model takes the inputs X and D and produces 
the outputs Y, namely 

(X, D) ....!....., Y 
or 

/(X, D) = Y 
Here f denotes the transformation that is due to the structure of the model. For the Fifth National Bank study, 
the exponentially distributed interarrival time generated in the model (by the methods of Chapter 8) between 
customer n - 1 and customer n is denoted by X1 •. (Do not confuse X1• with A.; the latter was an observation 
made on the real system.) The normally distributed service time generated in the model for customer n is 
denoted by X2n. The set of decision variables, or policy, is D = (Dh D2, D3.= (1, 1 .1 ,  1) for current opera­
tions. The output, or response, variables are denoted by Y = (Yh Y2, • • •  , Y1) and are defined in Table 10. 1. 

For validation of the input-output transformations of the bank model to be pessible, real system data 
must be available, comparable to at least some of the model output Y of Table 1 0.1. The system responses 
should have been collected during the same time period (from 1 1:00 A.M. to 1 :00 P.M. on the same Friday) 
in which the input data {A;, S;} were collected. This is important because, if system response data were 
collected on a slower day (say, an arrival rate of 40 per hour), the system responses such as teller utilization (Z1), 
average delay (Zz), and maximum line length (Z:J) would be expected to be lower than the same variables 
during a time slot when the arrival rate was 45 per hour, as observed. Suppose that the delay of successive 
customers was measured on the same Friday between 1 1 :00 A.M. and 1 :00 P.M. and that the average delay 
was found to be Zz = 4.3 minutes. For the purpose of validation, we will consider this to be the true mean 
value Jlo = 4.3. 

When the model is run with generated random variates· X1• and X2n, it is expected that observed values 
of average delay, Y2, should be close to Zz = 4.3 minutes. The generated input values (X1• and X2n) cannot be 
expected to replicate the actual input values (A. and S.) of the real system exactly, but they are expected to 
replicate the statistical pattern of the actual inputs. Hence, simulation-generated values of Y2 are expected to 
be consistent with the observed system variable, Zz = 4.3 minutes. Now consider how the modeler might test 
this consistency. 

The modeler makes a small number of statistically independent replications of the model. Statistical 
independence is guaranteed by using nonoverlapping sets of random numbers produced by the random­
number generator or by choosing seeds for each replication independently (from a ·random number table). 
The results of six independent replications, each of 2 hours duration, are given in Table 1 0.2. 

Table 1 0.2 Results of Six Replications of the First Bank Model 

Replication 

I 
2 
3 
4 
5 
6 

Sample mean 
Standard deviation 

r. 
(Arrivals/Hour) 

5 1  
40 
45.5 
50.5 
53 
49 

Ys 
(Minutes) 

1 .07 
l.l2 
1.06 
l.IO 
1.09 
1.07 

Y2 = Average Delay 
(Minutes) 

2.79 
l.l2 
2.24 
3.45 
3.13 
2.38 
2.51 
0.82 
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Observed arrival rat� f4 and s�ple average service time Ys for each replication of the model are also note� to be comp�ed With the Specified values of 45/hour and l . l  minutes, respectively. The validation test conststs of com��ng the system response, namely average delay Zz = 4.3 minutes, to the model responses y: Formally, a stausucal test of the null hypothesis ' 2' 

H0 : E(I;) = 4.3 minutes 
versus (10.1) 

H1 : E(l;) * 4.3 minutes 

�s co?ducted . . If fl_o is not rejected, then, on the basis of this test, there is no reason to consider the model 
m�ahd. If Ho IS rejected, the current version of the model is rejected, and the modeler is forced to seek ways 
to lmpro�e �e model, as illustrated by Figure 10.3. As formulated here, the appropriate statistical test is the 
t test, which IS conducted in the following manner: 

Choose a level of significance, a, and a sample size, n. For the barik model, choose 

a = 0.05, n = 6  

�ompute the sample mean, I; ,  and the sample standard deviation, S, over the n replications by using EquatiOns (9. 1) and (9.2): ' 

and 

- 1 n Y2 = -L Y2, = 2.51 minutes n i=t ...::., i=I (Y2i - 1'; )2 • 

[� · - ]112 
S = 

n- l  
=0.82 mmute 

where Yz;, i = 1, . . .  , 6, are as shown in Table 10.2. 
G�t the critic�! value of t from Table A.5. For a two-sided test, such as that in equation (10.1), use 1al2. •-I• for a one-sJded test, use ta.n-.

1 or -ta,n-1> as appropriate (n - 1 being the degrees of freedom). From Table A.5, 10.025,5 = 2.571 for a two-sided test. 
Compute the test statistic 

f - JL  t = -2 __ 0 o sj-.[n 

where Jlo is the specified value in the null hypothesis, H0 Here Jlo = 4.3 minutes, so that 

2.5 1-4.3 10 = 
0.82/.J6 

-5.34 

(10.2) 

. 
For the two-si�ed tes� if ltol > tal2.n--l• reject Ho. Otherwise, do not reject H0• [For the one-sided test with Hi · �(Yz) > Jlo, reject H0 1f t >  ta,n-1; with H1 : E(Yz) < JL0, reject H0 if t < -ta.n-i ·l Smce ltl = 5.34 > to.ozs,s = 2.571, reject Ho, and conclude that the model is inadequate in its prediction of average customer delay. 
Recall that, in the testing ofliypotheses, rejection of the null hypothesis Ho is a strong conclusion, because 

P(H0 rejected I H0 is true) = a (10.3) 
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and the level of significance a is chosen small, say a =  0.05, as was done here. Equation (1 0.3) says that the 
probability of making the error of rejecting H0 when H0 is in fact true is low (a = 0.05)-that is, the proba­
bility is small of declaring the model invalid when it is valid (with respect to the variable being tested). The 
assumptions justifying a t  test are that the observations (Y2;) are normally and independently distributed. Are 
these assumptions met in the present case? 

1. The ith observation Y2i is the average delay of all drive-in customers who began service during the 
ith simulation run of 2 hours; thus, by a Central Limit Theorem effect, it is reasonable to assume that 
each observation Y2; is approximately normally distributed, provided that the number of customers it 
is based on is not too small. 

2. The observations Y21, i = I, . . .  , 6, are statistically independent by design-that is, by choice of the 
random-number seeds independently for each replication or by use of nonoverlapping streams. 

3. The t statistic computed by Equation (10.2) is a robust statistic-that is, it is distributed approximately 
as the t distribution with n - I degrees of freedom, even when Y21, Y22, • • •  are not exactly normally 
distributed, and thus the critical values in Table AS can reliably be used. 

Now that the model of the Fifth National Bank of Jaspar has been found lacking, what should the modeler 
do? Upon further investigation, the modeler realized that the model contained two unstated assumptions: 

l. When a car arrived to find the window immediately available, the teller began service immediately. 
2. There is no delay between one service ending and the next beginning, when a car is waiting. 

Assumption 2 was found to be approximately correct, because a service time was considered to begin 
when the teller actually began service but was not considered to have ended until the car had exited the drive­
in window and the next car, if any, had begun service, or the teller saw that the line was empty. On the other 
hand, assumption l was found to be incorrect because the teller had other duties-mainly, serving walk-in 
customers if no cars were present-and tellers always finished with a previous customer before beginning 
service on a car. It was found that walk-in customers were always present during rush hour; that the transac­
tions were mostly commercial in nature, taking a considerably longer time than the time required to service 
drive-up customers; and that, when an arriving car found no other cars at the window, it had to.wait until the 
teller finished with the present walk-in customer. To correct this model inadequacy, the structure of the model 
was changed to include the additional demand on the teller's time, and data were collected on service times 
of walk-in customers. Analysis of these data found that they were approximately exponentially distributed 
with a mean of 3 minutes. 

The revised model was run, yielding the results in Table !0.3. A test of the null hypothesis H0 : E(Y2) 
4.3 minutes [as in equation (10. 1  )) was again conducted, according to the procedure previously outlined. 

Choose a =  0.05 and n = 6 (sample size). 
Compute f; = 4. 78 minutes, S = 1.66 minutes. 
Look up, in Table A.5, the critical value t0.15•5 = 2.571 .  
Compute the test statistic t0 = (f; -fl0)/ sj.Jn = 0.710. 
Since Ito! < to.025,s = 2.571 ,  do not reject Ho. and thus tentatively accept the model as valid. 
Failure to reject H0 must be considered as a weak conclusion unless the power of the test has been esti­

mated and found to be high (close to I )-that is, it can be concluded only that the data at hand (Y2I> • • •  , Y26) 
were not sufficient to reject the hypothesis H0 : flo = 4.3 minutes. In other words, this test detects no incon­
sistency between the sample data (Y2" • • •  , Y26) and the specified mean flo· · The power of a test is the probability of detecting a departure from H0 : fl = flo when in fact such a depar­
ture exists. In the validation context, the power of the test is the probability of detecting an invalid model. 
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Table 1 0.3 Results of Six Replications of the Revised Bonk Model 

y4 Ys Yz = Average Delay 
ReplicaJion (Arrivals/Hour) (Minutes) (Minutes) 

1 5 1  1.07 5.37 
2 40 l . l l ! .98 
3 45.5 1.06 5.29 
4 50.5 1.09 3.82 
5 53 1 .08 6.74 
6 49 1.08 5.49 

Samp1e mean 
4.78 

Standard deviation 
1.66 

The po�er �! also � expressed 
_
as 1 m�us the probability of a Type n, or p, error, where p = P(Type 11 

err?r) - P(fa11ing to reJect Hoi HI IS true) IS the probability of accepting the model as valid when it is not 
vahd 

To consider failure � reject H0 as a strong conclusion, the modeler would want p to be small. Now, p 
depends on the sample size n and on the true difference between E(Y2) and flo = 4.3 minutes-that is, on 

5 = !E(Yz) -.Uol 
(T 

wh�re a, the �opulation s��d deviation of an individual Y21, is estimated by s. Tables A lO and A l l  are typical operati�g-characten�hc (OC) curves, which are graphs of the probability of a Type rr error /3(5) versus 5 for given sample size n. :rable A:IO is for a two-sided t test; Table A. I I  is for a one-sided 1 test. Suppose that the modeler would !Ike to reJect H0 (mod�! validity) with probability at least 0.90.if the true mean d�Iay of the model, E(Y2), dtffered from the average delay in the system, J.lo = 4.3 minutes by 1 · t Then 15 IS estimated by ' mmu e. 

8 =  IE(l';) -floi _ _ I_ = 0 60 s 1 .66 . 

For the two-sided test with a =  0.05, use of Table AI 0 results in 

/3(6) = /3(0.6) = 0.75 for n = 6 

!o guarantee th
_
at fJ <5J 5, 0.1 0, ':' w� desired by the modeler, Table A. I 0 reveals that a sample size of approx­

Imately n =. 30 mdependent ��hca�ons would be required-that is, for a sample size n = 6 and assuming that 
the po�u�aho� standard devtahon U: 1 .66, �e probability of accepting H0 (model validity), when in fact th� 
mod� l is mvahd (!E(Y2) -J.lol = I rrunute ), IS fJ = 0. 75, which is quite high. If a I-rninute difference is critical 
and If �e modeler wants to

. 
control the risk of declaring the model valid wjlen model predictions are as much 

� 1 m1�ute �ff, a s�ple Size
_
of n 30 replications is required to achieve a power of 0.9. If this sample size 

IS too h1gh, etther a higher fJ nsk (lower power) or a larger difference 5 must be considered. 
In ge�eral, it is alw�ys best to �ontrol the Type U error, or fJ error, by specifying a critical difference 15 

and choosmg a s�ple SIZe by making use of an appropriate OC curve. (Computation of power and use of 
OC curves f�r a Wide range of tests i s

_ 
d�cussed in Hines, Montgomery, Goldsman, and Borror [2002].) 

In summary, m the context of model validation, the Type I error is the rejection of a valid model and is easily 
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Table 1 0.4 Types of Error in Model Validation 

Statistical Tenninology 

Type I: rejecting H0 when H0 
is true 

Type II: failure to reject H0 
when H1 is true 

Modeling Tenninology 

Rejecting a valid model 

Failure to reject an 
invalid model 

Associated 
Risk 

a 

f3 

controlled by specifying a small level of significance a (say a =  0. 1, 0.05, or 0.01). The Type II error is the 
acceptance of a model as valid when it is invalid. For a fixed sample size n, increasing a will decrease f3, the 
probability of a Type II error. Once a is set, and the critical difference to be detected is selected, the only 
way to decrease f3 is to increase the sample size. A Type II error is the more serious of the two types of errors; 
thus, it is important to design the simulation· experiments to control the risk of accepting an invalid model. 
The two types of error are summarized in Table 10.4, which compares statistical terminology to modeling 
terminology. 

Note that validation is not to be viewed as an either/or proposition, but rather should be viewed in the 
context of calibrating a model, as conceptually exhibited in Figure 10.3. If the current version of the bank 
model produces estimates of average delay ( Y2) that are not close enough to real system behavior (Jlo = 4.3 
minutes), the source of the discrepancy is sought, and the model is revised in light of this new knowledge. 
This iterative scheme is repeated until model accuracy is judged adequate. 

Philosophically, the hypothesis-testing app�oach tries to evaluate whether the simulation and the real 
system are the same with respect to some output performance measure or measures. A different, but closely 
related, approach is to attempt to evaluate whether the simulation and the real-system performance measures 
are close enough by using confidence intervais. 

We continue to assume that there is a known output performance measure for the existing system, 
denoted by Jlo, and an unknown performance measure of the simulation, Jl, that we hope is close. The 
hypothesis-testing formulation tested whether Jl = Jlo; the confidence-interval formulation tries to bound 
the difference IJL - Jlol to see whether it is � t:, a difference that is small enough to allow valid decisions to 
be based on the simulation. The value of t: is set by the analyst. 

Specifically, if Y is the simulation output, and Jl = E(Y), then we execute the simulation and form a 
confidence interval for Jl, such as Y ± t a/2,._1 S / .J;;. The determination of whether to accept the model as valid 
or to refine the model depends on �e best-case and worst-case error implied by the confidence interval. 

1. Suppose the confidence interval does not contain Jlo· (See Figure 10.6(a).) 
(a) If the best-case error is > t:, then the difference in performance is large enough, even in the best 

case, to indicate that we need to refine the simulation model. 
(b) If the worst-case error is � t:, then we can accept the simulation model as close enough to be 

considered valid. 
(c) If the best-case error� �. t:, but the worst-c�e error is :- t:, then a�ditional simulation replica-

tions are necessary to shnnk the confidence 10terval until a conclusiOn can be reached. 
2. Suppose the confidence interval does contain JLo- (See Figure 10.6(b).) 

(a) If either the best-case or worst-case error is > t:, then additional simulation replications are 
necessary to shrink the confidence interval until a conclusion can be reached. 

(b) If the worst -case error is � t:, then we can accept the simulation model as close enough to be 
considered valid. 

' i . \ 1.) ,· l'• \ � .. : . . 
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best case 

worst case 

(a) 

worst case 

(b) 

Jlo 

best case 1---1 

Jlo 

Figure 10.6 Validation of the inpul-output transformation (a) when the true value falls outside 
(b) when the true value falls inside, the confidence interval. 

' 
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In Example 10:2, Jlo = 4.3 minutes, and "close enough" was t: =  I minute of expected customer delay. A 95% confidence 10terval, based on the 6 replications in Table 10.2, is 

Y ± 1o025 sf .J;; 
2.5 I  ± 2.57 1(0.82/ .J6> 

�ielding the interval [1 .65, 3.37]. As in Figure 10.6(a), Jlo = 4.3 falls outside the confidence interval. Since 
10 the best case J3.37 - 4.3J = 0.93 < I, but in the worst case J l .65 - 4.31 = 2.65 > I ,  additional replications 
are needed to reach a decision. 

1 0.3.4 Input-Output Validation: Using Historical Input Data 
Wh�n using artificially generated data as input data, as was done to test the validity of the bank models in �ectwn 10.3.3, the modeler expects the model to produce event patterns that are compatible with, but not iden­tical to, the eve�t �at�rns that occurred in the real system during the period of data collection. Thus, in the ban� model, art1fic1al 10put data (X1., X2n, n = I , 2, . . .  } for interarrival and service times were generated, and re�hcates of th: output �ata Y2 were compared to what was observed in the real system by means of the hypoth­eSIS test stated 10 equation (I 0. 1 ). An alternative to generating input data is to use the actual historical record (A., s., n = I , 2, . . .  }, to drive the simulation model and then to compare model output with system data 

' 

. 
To implement this technique for the bank model, the data AI, A2· · · ·  and s" s2•· · ·  would have 

.
to be ent:red into the

.
model into arrays, or stored in a file to be read as the need arose. Just after customer n arrived at time t. � L i=l A,, customer n + I would be scheduled on the future event list to arrive at future time t.+A

�+l (w1thou_t any random numbers being generated). If customer n were to begin service at time t�, a servrce complet
_
wn would b: scheduled to occur at time t� + s. This event scheduling without random­n_umber

_ 
generation could b� Implemented quite easily in a general-purpose programming language or most Simulation languages by us10g arrays to store the data or reading the data from a file. 

. When using this technique, the modeler hopes that the simulation will duplicate as closely as possible the
_ 
1mp�rtant events that occurred in the real system. In the model of the Fifth National Bank of Jaspar, the arnval Urnes and service durations will exactly duplicate what happened in the real system on that Frida bet':"een l � :

_
00 �.M. and I :00 P.M. If the mode� is sufficiently accurate, then the delays of customers, len� of hnes, ut1hzatwns of servers, and departure !lmes of customers predicted by the model will be close to what actually happened in the real system. It is, of course, the model-builder's and model-user's judgment that determines the level of accuracy required. . 
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To conduct a validation test using historical input data, it is important that all the input data (An, Sn, . . . ) 

and all the system response data, such as average delay (�). be collected during the same time period. 

Otherwise, the comparison of model responses to system responses, such as the comparison of average delay 

in the model (f z) to that in the system (�). could be misleading. The responses (f2 and �) depend both on 

the inputs (An and s.) and on the structure of the system (or model). Implementation of this technique could 

be difficult for a large system, because of the need for simultaneous data collection of all input variables and 

those response variables of primary interest In some systems, electronic counters and devices are. used to 

ease the data-collection task by automatically recording certain types of data. The following example was 

based on two simulation models reported in Carson et al. [l98 la, b ], in which simultaneous data collection 

and the subsequent validation were both completed successfully. 

Example 10.3: The Candy Factory 

The production line at the Sweet Lil' Things Candy Factory in Decatur consists of three machines that make, 

· package, and box their famous candy. One machine (the candy maker) makes and wraps individual.pieces of 

candy and sends them by conveyor to the packer. The second machine (the packer) packs the individual 

pieces into a box. A thii:d machine (the box maker) forms the boxes and supplies them by conveyor to the 

packer. The system is illustrated in Figure 10.7. 
Each machine is subject to random breakdowns due to jams and other causes. These breakdowns cause 

the conveyor to begin to empty or fill. The conveyors between the two makers and the packer are used as a 

temporary storage buffer for in-process inventory. In addition to the randomly occurring breakdowns, if the 

candy conveyor empties, a packer runtime is interrupted and the packer remains idle until more candy is 

produced. If the box conveyor empties because of a long random breakdown of the box machine, an operator 

manually places racks of boxes onto the packing machine. If a conveyor fills, the corresponding maker 

becomes idle. The purpose of the model is to investigate the frequency of those operator interventions that 

require manual loading of racks of boxes as a function of various combinations of individual machines and 

lengths of conveyor. Different machines have different production speeds and breakdown characteristics, and 

longer conveyors can hold more in-process inventory. The goal is to hold operator interventions to an accept­

able level while maximizing production. Machine stoppages (whether due to a full or an empty conveyor) 

cause damage to the product, so this is also a factor in production. 

A simulation model of the Candy Factory was developed, and a validation effort using historical inputs 

was conducted. Engineers in the Candy Factory set aside a 4-hour time slot from 7:00 A.M. to 1 1 :00 A.M. to 

Conveyors 

for boxes 

figure 1 0.7 Production line at the candy factory. 
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coli� data on an existing production line. For each machine-say, machine i-time to failure and downtim 
duration 

e 

Til• Dil, Ta. D,-z, . .. 
were �llected. F�r machine i(i =: 1, 2, 3), TIJ is the jth runtime (or time to failure), and � is the successive 
dow;�me. A ru?tune, �J: can be mterru��d by a full or empty conveyor (as appropriate), bot resumes when 
�on ttions are �g?�· Ininal

. �
ystem c.ond1ttons at 7:00 A.M. were recorded so that they could be duplicated 

I? the model as m1ttal cond11!ons at ume 0. Additionally, system responses of primary interest-the produc­
tion lev� I (�) •

. 
and the number (�) and time of occurrence (ZJ) of operator interventions-were recorded fo 

companson With model predictions. 
r 

The system input data, Til and D;1, were fed into the model and used as runtimes and random downtimes 
The structure of the mo�l dete�ned the occurrence of shutdowns due to a full or empty conveyor and th� 
occurrence of operat�r mterventions. Model response variables (I';, i = 1, 2, 3) were collected fer compari­
son to the correspondmg system response variables (Z;. i = 1, 2, 3). '!'h� closeness of model predictions to system performance aided the engineering staff considerably in 
convmcmg management of the v�dity of the model. These results are shown in Table 10.5. A simple dis­
pia� �uch as Table 10.5 can be qmte effective in convincing skeptical engineers and managers of a model's 
val1d1ty-peibaps more effectively than the most sophisticated statistical methods! :W.th only one set ?f histori�al. input and output data, only one set of simulated output data can be 
o?tat�ed, .and thus no s1mple statistical tests are possible that are based on summary measures. but, · f K 
h1stoncal mput data sets are collected, and K observations Zu. Z,-z, . . •  , Z;K of some system respons� varia�le 
Z;, are collec�, such that the output measure Z1i corresponds to the jth input set, an objective statistical tes� �mes 

.�
s1ble. For example, Zi1 could be the average delay of all customers who were served during the 

� the jth mput data s:t was collected. With the K input data sets in hand, the modeler now runs the model 
K times, once for each mput set, and observes the simulated results w, w w 0 din z 
· - 1 K c · . ll• t2• . . .  , iK c rrespon g to � 
� - . , · . . ; . onunumg the same example, WIJ would be the average delay predicted by the model for th; 
Jth mput set The data available for comparison appears as in Table 10.6. 

If the K input data sets are fairly homogeneous, it is reasonable to assume that the K observed differ­
ences di= Zij - Wij,j =  1 ,  . . .  , K, are identically distributed. Furthermore if the collection oftheK sets of ' t 
data was separated · ti d'ff 

' mpu 

. . m me-say, on 1 erent days-it is reasonable to assume that the K differences d d 
are statistically indepen�ent and, hence, that the differences db . . .  , dK constitute a random sample. �� ·�; 
c�es, each Zi and w; IS a sample .average over customers, and so (by the Central Limit Theorem) the 
differen�s 0 =

. 
Z¥ - WIJ ·� approximately normally distributed with some mean Jld and variance q2• The 

appropn�te statistical test IS then a t  test of the �ull hypothesis of no mean difference: 
4 

Ho : Jld= O 
versus the alternative of significant difference: 

Table 1 0.5 Validation of the Candy-Factory Model 

Respot�Se, i 

1. Production level 
2. Number of operator 

interventions 
3. Time of occimence 

System, Z1 

897,208 
3 

7:22, 8:41, 10:10 

Model, Y, 

883,150 
3 

7:24, 8:42, 10:14 
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Table 1 0.6 Comparison of System and Model Output Measures for ldenticaf Historical Inputs 

Input Data 
Set 

2 
3 

K 

System 
Output, 

z,i 

Model 
Output, 

wij 

Observed 
. Difference, 

dj 

di = Zil - wil 
d2 = Z,1 - Wa 
d3 = Zi3 - Wi3 

Squared Deviation 
from Mean, 

(d) - d)' 

(d, d)' 
(d, -d)' 
(d., -d)' 

(dK -d)' 

s' = -1-±(d. -d)' 
d K - 1 1=, ' . 

The proper test is a paired t test (Zil is paired with Wil, �ch having been pm?uced br the first input data
_ 
set, 

and so on). First, compute the sample mean difference, d and the sample vanance, Sd, by the formulas given 
in Table I 0.6. Then, compute the t statistic as 

d-J1.d t - --o - sJJK (10.4) 

(with J1.d = 0}, and get the critical value tai2, K-l from Table A.5, wh�re a is the presp�ified significance �eve! 
and K _ 1 is the number of degrees of freedom. 1f I tal > ta12,K-I• reJect the hypothesiS H0 of no mean differ­
ence, and conclude that the model is inadequate. If ltol !> tan,K-l• do not reject Ha. and hence conclude that 
this test provides no evidence of model inadequacy. 

Example 10.4: The Candy Factory, Continued . . . . . . 
Engineers at the _Sweet Lil' Things Candy Factory decided to expand �e Irutlal �alidatJ.on effort reporte� m 
Example 10.3. Electronic devices were installed that could automatJ.cally momtor one of the productiOn 
lines, and the validation effort of Example 10.3 was repeated with K = 5 sets of i�put data. The system and 
the model were compared on the basis of production level. The results are shown m Table 10.7 · 

Table 10.7 . Validation of the Candy-Factory Model (Continued) 

Input System Model Observed Squared Deviation 
Data Set, Production, Production, Difference, from Mean, 

j Z11 Wu dj (dj - d)' 

1 897;,208 883,150 14,058 7.594 x W 
2 629,126 630,550 -1,424 4.580 x  107 
3 735,229 741,420 -6,191 1 .330 X 107 
4 797,263 788,230 9,033 1.362 X 107 
5 825,430 814,190 1 1,240 3.4772 x 10' 

d = 5,343.2 s; = 7.580 x 107 
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A paired t test was conducted to test H0 ; J1.d 0, or equivale)ltly, H0 ; E(Z1) = E(W1), where Z1 is the system 
production level and W1 is the production level predicted by the simulated model. Let the level of significance 
be a= 0.05. Using the results in Table 10.7, the test statistic, as given by equation (10.4), is 

d 5343.2 to = s)JK 
= 

8705.85/../5 
1.37 

From Table A.5,.the critical value is tan,K-l = to.025.4=2.18• Since I tal = 1 .37 < t0.025,4 = 2.78, the null hypoth­
esis cannot be rejected on the basis of this test-that is, no inconsistency is detected between system 
response and model predictions in terms of mean production level. If H0 had been rejected, the modeler 
would have searched for the cause of the discrepancy and revised the model, in the spirit of Figure 1 0.3. 

1 0.3.5 Input - Output Validation: Using a Turing Test 

In addition to statistical tests, or when no statistical test is readily applicable, persons knowledgeable about 
system behavior can be used to. compare model output to system output. For example, suppose that five 
reports of system petformance over five different days are prepared, and simulation output data are used to 
produce five "fake" reports. The 10 reports should all be in exactly the same format and should contain infor­
mation of the type that managers and engineers have previously seen on the system. The 10 reports are ran­
domly shuffled and given to the engineer, who is asked to decide which reports are fake and which are real. 
If the engineer identifies a substantial number of the fake reports, the model builder questions the engineer 
and uses the information gained to improve the model. lf the engineer cannot distinguish between fake and 
real reports with any consistency, the modeler will conclude that this test provides no evidence of model 
inadequacy. For further discussion and an application to a real simulation, the reader is referred to Schruben [1980]. This type of validation test is commonly called a Thring test. Its use as model development proceeds 
can be a valuable tool in detecting model inadequacies and, eventually, in increasing model credibility as the 
model is improved and refined. 

10.4 SUMMARY 

Validation of simulation models is of great importance. Decisions are made on the basis of simulation results; 
thus, the accuracy of these results should be subject to question and investigation. 

Qilite often, simulations appear realistic on the sutface because simulation models, unlike analytic mod­
els, can incorporate any level of detail about the real system. To avoid being "fooled" by this apparent real­
ism, it is best to compare system data to model data and to make the comparison by using a wide variety of 
techniques, including an objective statistical test, if at all possible . 

. As discussed by Van Hom [1969, 1971], some of the possible validation techniques, in order of increas­
ing cost-to-value ratios, include 

1. Develop models with high face validity by consulting persons knowledgeable about system behav­
ior on both model structure, model input, and model output. Use any existing knowledge in the form 
of previous research and studies, observation, and experience. 

2. Conduct simple statistical tests of input data for homogeneity, for randonmess, and for goodness of 
fit to assumed distributional forms. 

3. Conduct a Turing test. Have knowledgeable people (engineers, managers) compare modeloutput to 
system output and attempt to detect the difference . 

. - , ---.-:-------- -
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4. Compare model output to system output by means of statistical tests. 

5. After model development, collect new system data and repeat techniques 2 to 4. 

6. Build the new system (or redesign the old one) conforming to the simulation results, collect data on the 

new system, and use the data to validate the model (not recommended if this is the only technique used). 

7. Do little or no validation. Implement simulation results without validating. (Not recommended.) 

It is usually too difficult, too expensive, or too time consuming to use all possible validation tec!miques 

for every model that is developed. It is an important part of the model-builder's task to choose those valida­

tion techniques most appropriate, both to assJife model accuracy and to promote model credibility. 
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EXERCISES 

1. A simulation model.o� a job shop was developed to investigate different schedulliJg rules. To validate 
the model, the sc�eduhng rule currently used was incorporated into the model and the resulting output 
w� compared agamst observed system behavior. By searching the previous year's database records it was 
est�ed that the average number of jobs in the shop was 22.5 on a given day. Seven independen� repli­
ca�ons ?f the model were run, each of 30 days' duration, with the following results for average number 
of JObs m the shop: 

18.9 22.0 19.4 22.1 19.8 21 .9 20.2 

(a) Devel?P and conduct a sta�sti�al test to evaluate whether model' output is consistent with system 
behavtor. Use the level of stgmficance a= 0.05. 

· 

(b) What is the power of this test if a difference of two jobs is viewed as critical? What sample size is 
needed to guarantee a power of 0.8 or higher? (Use a =  0.05.) 

2. Sys� data for the jo? shop of Exercise I revealed that the average time spent by a job in the shop was 
ap�roxunately 4 working days. The model made the following predictions, on seven independent repli­
cattons, for av�rage time spent in the shop: 

3.70 4.21 4.35 4.13 3:83 4.32 4.05 

(a) � �del output consistent with system behavior? Conduct a statistical test, using the level of 
stgmficance a =  0.01. 

(b) Ifit is important to de�t a difference of 0.5 day, what sample size is needed to have a power of 0.90? 
Interpret your results m tenns of model validity or invalidity. (Use a =  0.01.) 

3. For the job shop of Exercise I ,  four sets of input data were collected over four different 1 0-day · ods 
together with the average number of jobs in the shop (Z;) for each period. The input data were �ed t� 
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drive the simulation model for four runs of 10 days each, and model predictions of average number of 

jobs in the shop (f;) were collected, with these results: 

21.7 
24.6 

2 

19.2 
21 . 1  

3 

22.8 
19.7 

4 

19.4 
24.9 

(a) Conduct a statistical test to check the consistency of system output and model output. Use the level 

of significance a =  0.05. . . ired (b) If a difference of two jobs is viewed as impo�t t? detect, ��at_ sample s�ze �s requ 
_

to guaran­

tee a probability of at least 0.80 of detecting thiS difference 1f It 10deed exists . (Use a - 0.05.) 

Find several examples of actual simulations rep?rted in the literature in whic� th� authors �iscuss vali� 
4. dation of their model. Is enough detail given to JUdge the adequacy of �e validation effort. If s�, co

_
m 

th rted alidation with the criteria set forth in this chapter. D1d the authors use any validation 
pare 

. 
e repo . 

di 
v 

ed . this chapter? [Several potential sources of articles on simulation applications 
techmque not scuss 10 · 

p d' t 
include the journal Inteifaces and Simulation, and the Winter Simulation Conference rocee mgs a 

www.informs-cs.org.] 

5. (a) Compare validation in simulation to the validation of theo?es i
al
n 

_
th
d 

e 
_
phys�cal ;!�:��s

p
. 
hysical sys (b) Compare the issues involved and the techniques available ,or v 1 auon o m · 

terns versus models of social systems. . . . 
(c) Contrast the difficulties, and compare the techniques, 10 val1dat10g a model of a manually 

-
�perat� 

warehouse with fork trucks and other manually operated vehicles, versllS � model of a fac1hty w1th 

automated guided vehicles, conveyors, and an_ auto":'ated sto�ge-and-retneval system. . _ 
(d) Repeat (c) for a model of a production system 10volv10g cons1dera�le manual labor and human dec! 

sion making, versus a model of the same production system after It has been automated. 

1 . 1 
Output Analysis for a Single 
Model 

Output analysis is the examination of data generated by a simulation. Its purpose is either to predict the 
performance of a system or to compare the performance of two or more alternative system designs. nus 
chapter deals with the analysis of a single system; Chapter 12 deals with the comparison of two or more sys­
tems. The need for statistical output analysis is based on the observation that the output data from a 
simulation exhibits random variability when random-number generators are used to produce the values of 
the input variables-that is, two different streams or sequences of random numbers will produce two sets of 
outputs, which (probably) will differ. If the performance of the system is measured by a parameter (), the 
result of a set of simulation experiments will be an estimator 0 of 9. The precision of the estimator 0 can 
be measured by the standard error of e or by the width of a confidence interval for e. The purpose of the 
statistical analysis is either to estimate this standard error or confidence interval or to figure out the number 
of observations required to achieve a standard error or confidence interval of a given size-or both. 

Consider a typical output variable, Y, the total cost per week of an inventory system; Y should be treated 
as a random variable with an unknown distribution. A simulation run of length 1 week provides a single 
sample. observation from the population of all possible observations on Y. By increasing the run length, the 
sample size can be increaSed to n observations, fl' Y2, . . . , Yn, based on a run length of n weeks. However, 
these observations do not constitute a random sample, in the classical sense, because they are not statistically 
independent. In this case, the inventory on hand at the end of one week is the beginning inventory on hand 
for the next week, and thus the value of Y; has some influence on the value of Yi+l' Thus, the sequence of 
random variables fl ' Y2, . . •  , Yn, could be autocorrelated (i.e., correlated with itself). nus autocorrelation, 
which is a measure of a lack of statistical independence, means that classical methods of statistics, which 
�sume independence, are not directly applicable to the analysis of these output data. The methods must be 
.properly modified and the simulation experiments properly designed for valid inferences to be made . .  

335 
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In addition to the autocorrelation present in most simulation output data. the specification of the initial 

conditions of the system at time 0 can pose a problem for the simulation analyst and could influence the 

output data. For example, the inventory on hand and the number of backorders at time 0 would most likely 

influence the value of Yl' the total cost for week l .  Because of the autocorrelation, these initial conditions 

would also influence the costs (Y1, . • •  , Yn) for subsequent weeks. The specified initial conditions, if not 

chosen well, can have an especially deleterious effect pn attempting to estimate the steady-state (long-run) 

performance of a simulation model. For purposes of stati�cal analysis, the effect of the initial conditions is 

that the output observations might not be identically distributed and that the initial observations might not be 

representative of the steady-state behavior of the system. 

Section 1 1 . 1  distinguishes between two types of simulation-transient versus steady state-and defines 

commonly used measures of system performance for each type of simulation. Section 1 1 . 2  illustrates by 

example the inherent variability in a stochastic (i.e., probabilistic) discrete-event simulation and thereby 

demonstrates the need for a statistical analysis of the output. Section 1 1 .3 covers the statistical estimation of 

performance measures. Section 11.4 discusses the analysis of transient simulations, Section 1 1 .5 the analysis 

of steady-state simulations. 

1 1 .1 TYPES Of SIMULAnONS WITH RESPECT TO OUTPUT ANALYSIS 

In the analyzing of simulation output data. a distinction is made between terminating or transient simulations 

and steady-state simulations. A terminating simulation is one that runs for some duration of time T E' where 

E is a  specified event (or set of events) that stops the simulation. Such a simulated system "opens" at time 0 

under well-specified initial conditions .and "closes" at the stopping time Tr The next four examples are 

terminating simulations. 

Example 11.1 
The Shady Grove Bank opens at 8:30 A.M. (time 0) with no customers present and 8 of the 11  tellers work-

ing (initial conditions) and closes at 4:30 P.M. (time T£ == 480 minutes). Here. the event E is merely the fact 

that the bank has been open for 480 minutes. The simulation analyst is  interested in modeling the interaction 

between customers and tellers over the entire day, including the effect of starting up and of closing down at 

the end of the day. 

Example 11.2 
---------------------------

Consider the Shady Grove Bank of Example 1 1. 1 ,  but restricted to the period from 1 1 :30 A.M. (time 0) to 

. 1 :30 P.M., when it is especially busy. The simulation run length is TE = 120 minutes. The initial conditions at 

time 0 (1 1 :30 A.M.) could be specified in essentially two ways: ( 1) the real system could be observed at 1 1:30 

on a number of different days and a distribution of number of customers in system (at 1 1 :30 A.M.) could be 

estimated, then these data could be used to load the simulation model with customers at time 0; or (2) the 

model could be simulated from 8:30 A.M. to 1 1:30 A.M. without collecting output statistics, and the ending 

conditions at 1 1:30 A.M. used as initial conditions for the 1 1:30 A.M. to 1:30 P.M. simulation. 

Example 1 1.3 
A communications system consists of several components plus several backup components. It is represented 

schematically in FigUre 1 1 . 1 .  Consider the system over a period of time, TE' until the system fails. The stopping 

event E is defined by E = lA fails, or D fails. or (B and C both fail) } .  Initial conditions are that all components 

are new at time 0. 

MODEL 

Figure 1 1 .1 E I xomp e of o communications system. 
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by the initial conditions of the model at time 0. A steady-state simulation is a simulation whose objective is 
to study long-run, or steady-state, behavior of a nonterminating system. The next two examples are steady­
state simulations. 

Example 11.5 
Consider the widget-manufacturing process of Example 1 1.4, beginning with the second shift when the 
complete production process is under way. It is desired to estimate long-run production levels and production 
efficiencies. For the relatively long period of 13 shifts, this may be considered as a steady-state simulation. 
To obtain sufficiently precise estimates of production efficiency and other response variables, the analyst 
could decide to simulate for any length of time, TE (even longer than 13 shifts)-that is, To is not determined 
by the nature of the problem (as it was in terminating simulations); rather, it is set by the analyst as one 
parameter in the design of the simulation experiment. 

Example 11.6 
HAL Inc., a large computer-service bureau, has many customers worldwide. Thus, its large computer system 
with many servers, workstations, and peripherals runs continuously, 24 hours per day. To handle an increased 
work load, HAL is considering additional CPUs, memory, and storage devices in various configurations. 
Although the load on HAL's computers varies throughout the day, management wants the system to be able 
to accommodate sustained periods of peak load. Furthermore, the time frame in which HAL's business will 
change in any substantial way is unknown, so there is no fixed planning horizon. Thus, a steady-state 
simulation at peak-load conditions is appropriate. HAL systems staff develops a simulation model' of the 
existing system with the current peak work load and then explores several possibilities for expanding capacity. 
HAL is interested in long-run average throughput and utilization of each computer. The stopping time, TE, 
is determined not by the nature of the problem, but rather by the simulation analyst, either arbitrarily or with 
a certain statistical precision in mind. 

1 l .2 STOCHASTIC NATURE OF OUTPUT DATA 

Consider one run of a simulation model over a period of time [0, TE] . Since the model is an input-output 
transformation, as illustrated by Figure 10.5, and since some of the model input variables are random vari­
ables, it follows that the model output variables are r-411dom variables. Three examples are now given to illus­
trate the nature of the output data from stochastic simulations and to give a preliminary discussion of several 
important properties of these data. Do not be concerned if some of these properties and the associated 
terminology are not entirely clear on a first reading. They will be explained carefully later in the chapter. 

Example 11.7: Able and Baker, Revisited 
Consider the Able-Baker technical-support call center problem (Example 2.2) which involved customers 
arriving according to the distribution of Table 2. 1 1  and being served either by Able, whose service-time 
distribution is given in Table 2.12, or by Baker, whose service-time distribution is given in Table 2. 13. The 
purpose of the simulation is to estimate Able's utilization, p, and the mean time spent in the system per 
customer, w, over the first 2 hours of the workday. Therefore, each run of the model is for a 2-hour period, 
with the system being empty and idle at time 0. Four statistically independent runs were made by using four 
distinct streams of random numbers to generate the interarrival and service times. Table 1 1. 1  presents the 
results. The estimated utilization for run r is given by P, and the estimated average system time by w, 
(i.e., w, is the sample average time in system for all customers served during run r). Notice that, in this 
sample, the observed utilization ranges from 0.708 to 0.875 and the observed average system time ranges from 
3.74 minutes to 4.53 minutes. The stochastic nature of the output data {p" p2, p3' p4 } and {wl' W2, W3, W4} 
is demonstrated by the results in Table 1 1 . 1 .  
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�abl� 1 1. 1  Results of Four Independent Runs of 2-Hour urahon of the Able-Boker Queueing Problem 
Run, Able 's Utiliwion 

r p, 
0.808 

2 0.875 
3 0.708 
4 0.842 

Average System Tune 
w, (Minutes) 

' 

3.74 
4.53 
3.84 
3.98 

339 

. .  There �e two general questions that we will addr b . . utilizations P, r = 1, . . .  , 4: ess y a statistical analysis--say, of the observed 

L estimation of the true utilization p = E( · ) . 
2. �stimation of the error in our point estin:;te 

bfn ��gle nu�ber, called a point estimate; 
mterval. ' e orrn either of a standard error or of a confidence 

These question� are addressed in Section 1 1 .4 for terminatin . 
. 

. methods of statistics may be used beca p' , • , g Slm�ations, such as Example 1 1 .7. Classical · de de . . use •· A· PJ• and P4 constitute a d . � pen . nt and Identically distributed. In addition = E( , ) . 
ran om sample-that IS, they are IS an unbiased estimate of the true mean t-1· . ' 

p P, IS the parameter being estimated, so each p' 
1 1 10 . u l lzatlon p. The analys· f E  I . , . of Section 1 1 .4. A survey of statistical m th ds . IS o X<l_IDP e l l.7 Js considered in Example [1980]. Additional guidance may be found in 

e 
A�exo 

ap�Iicable to te_rrrunating simulations is given by Law Kelton [2000], and Nelson [2001]. 
po los and SeJla [1998], Kleijnen [1987], Law and The next example illustrates the effects of correlation - . . . . run mean measures of performance of a system. 

and IOitJ.al conditiOns on the estimation of long-

Example 11.8 �nsider a single-server queue with Poisson arrivals at a �ute) and service times that are normally distributed 
:�verage rate of

_ 
one every 10 minutes (.l= 0. 1 per ffilnutes.• This is an M/G/1 queue which w d 'b 

' Ith mean 9.5 mmutes and standard deviation 1 75 th 
' as escn ed and anal zed · s · · e true long-run server utilization is p = .lE(S) = (0 1)(9 5) - 0 / m �tJ.on 6.4. 1 . By Equation (6. 1 1), such a system, because we can analyze it math ti

. II : . - . �- We typically would not need to simulate occur in trying to estimate the long-run mean 
:::

e
c�:�u� we sunulate it here t_o illustrate difficulties. that 

Suppose we run a single simulation for a total f 5oo0 
q' defined by Equation (6.4). 

0 S �. S 5000), where Lit) is the number of custo:ers in th
trunu�� an� obser;e the output process LQ{(t), continuous-time process a little easier to I . . e W&ting hoe at time t minutes. To make this te al f . ana yze, we divide the time . te I [0 5000 . rv s 0 1000 trunutes and compute the avera 

10 rva • ) mto five equal subin-ally. Specifically, the average number of custor!e n�m
th
ber of custorne� in queue for each interval individu-. ers 10 e queue from time (j - 1) 1000 toj(lOOO) is 

y I Jj(IOOO) 
i = 1000 U-l)lOOOLQ(t)dt, j = 1, . . .  , 5 (11 . 1 )  

•The range of a service time is restricted to ±5 standani d . . . . 
covers well over 99.999% of the normal distribution. 

ev.attons, to exclude the possibility of a negative service time; that range 
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Th y = JIOOO L (t)dt /1000 is the time-weighted average number of customers in the queue from time 0 to 
US, I 0 Q • "al . 1000 Y. = J2ooo L (t)dt / 1000 is the same average over [1000, 2000), and so on. Equation (11.1) IS a spec! 

ttme ' 2 Q 
. " " f · t  IOOO • y y l rovide an example of "hatching o raw simu a-

case of Equation (6.4). The observatiOns { yl' Y2, �·th 
4' y 5 p 

lied batch means. The use of batch means in 
tion data-in this case,_LQ� (t), 0 s; t _.::;; 5000_}-� 5 5

e £1 ar
�o� simply notice that hatching transforms the 

analyzing o�tput data IS discussed 10 Sec
{
�o

(
n
) 0 � � <o�OOOJ into a discrete-time batch-means process 

continuous-time queue-length process, Q t ' - - ' 
. 1 2 3 4 5} where each Y is an estimator of LQ. 2 E h { Yi, l = , . , 't : Its f thr� statistically independent replications are shown in Table 1 1 .  . ac 
The s1mu atlon resu ? . 

rs For re lication 1, y . is the batch mean for 
replication, or run, uses a dlstmct stream of �ndom nu�b� : / and y . are ljdefmed for batch j for 
bate? j 

_
(the jth interval), a� de

1
fin!d

b
�y 

1 
��:���n

g�:� !�� �:���e�� over ��ch replication, Y, ., for repli· 
rephcat10ns 2 and 3, respective Y· ta e · 

cations r = 1,2,3.2 That is, 
I 5 · (1 1 .2) 

y - -:L,Y r = l, 2, 3  ,. - 5 j=l ,j , 

. . . f take batch averages first, then average the batch means, or just 
It probably will not surpnse you that, ' we 

h. I th rds each y is equivalent to the time average 
average everything together, we get the same t mg. n � er wo , . (6 

4) · · · a1 [0 5000) for replication r as g1ven by Equation · · 
over the enure 10terv , . bT , . t hastic simulations both within a single replication 

Table 1 1:2 illustrate� th� inherent _vana I ���::i�� within replication 3, in which the average queue 
and across different �epl�cauons. Co�slder the 

I w of / = 7.67 customers during the frrst 1000 minutes to 
len� over the batchmg mtervals var:es f:::�ir� subini�rval of 1000 minutes. Table 1 1 .2 also shows the 
a high of y33= 20.36 

_
cus�omer

c
s dunng 

y t y to y the average queue lengths over the intervals 4000 
variability across rephcat10ns. omp_are. t5 o 25 35' 

to 5000 minutes across all three rephc�tiO�
S. . I t makes only one replication of this model and gets 

Suppose, for the moment, that a Sl�U atlon ana ys 
How recise is the estimate? This 

the result Y;. = 3.75 customers as an estl�ate of �ean 
��

eu
� 

1:���· e��r of y 
p 
or by forming a confidence 

question is usually answered by attempt�ng to estimate e s � y y 
I . y could be regarded as a 

interval. The simulation analyst mig�t thmk that the five b
�
t� 

d�;::�en�t, and
, 
i� fac:�hey are autocorrelated, 

rimdom sample; however, the terms m the sequence are no 10 , . 

Table 1 1 .2 Botched Average Queue Lenglh lor Three 

Independent Replications 

Replication 

Batching I 2, I 3, 
Interval Batch, 1, 

(Minutes) j ylj y2j y3j 
1 3.61 2.9 1 7.67 

[0, 1000) 
[ 1000, 2000) 2 3.21 9.00 . 19.53 

[2000, 3000) 3 2.18 16. 15 20.36 

[3000, 4000) 4 6.92 24.53 8. 1 1  

[4000, 5000) 5 2.82 25.19 12.62 

[0, 5000) Y;. = 3.75 f,.= 15.56 f,. = 13.66 

b 
· t· th bar as in Y indicates an average. 

2The dot, as in the subscript r·. indicates summation over the second su scnp , e , r •· 
"<2·. 
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because all of the data are obtained from within one replication. If Y1 l' . . .  , Y15 were mistakenly assumed to 
be independent observations, and their autocorrelation were ignored, the usual classical methods of statistics 
might severely underestimate the standard error of �., possibly resulting in the simulation analyst's thinking 
that a high degree of precision had been achieved. On the other hand, the averages across the three replica­
tions, �., i; ., and �., can be regarded as independent observations, because they are derived from three 
different replications. 

Intuitively, Ya and Y12 are correlated because in replication 1 the queue length at the end of the time 
interval [0, 1000) is the queue length at the beginning of the interval [1000, 2000)-similarly for any two 
adjacent batches within a given replication. If the system is congested at the end of one interval, it will be 
congested for a while at the beginning of the next time interval. Similarly, periods of low congestion tend to 
follow each other. Within a replication, say for Y,p Y �· . . .  , Y r5' high values of a batch mean tend to be 
followed by high values and low values by low. This tendency of adjacent observations to have like values 
is known as positive autocorrelation. The effect of ignoring autocorrelation when it is present is discussed in 
more detail in Section 1 1 .5.2. 

· 

Now suppose that the purpose of the M/G/1 queueing simulation of Example 1 1 .8 is to estimate "steady­
state" mean queue length, that is, mean queue length under "typical operating conditions over the long run." 
However, each of the three replications was begun in the empty and idle state (no customers in the queue and 
the server available). The empty and idle initial state means that, within a given replication, there will be a 
higher-than- "typical'' probability that the. system will be uncongested for times close to 0. The practical 
effect is that an estimator of LQ-say, Y,. for replication r-will be biased low [i.e., E(Y,.) < LQ]. The extent 
of the bias decreases as the run length increases, but, for short-run-length simulations with atypical initial 
conditions, this initialization bias can produce misleading results. The problem of initialization bias is 
discussed further in Section 1 1 .5 . 1 .  

1 1 .3 MEASURES OF PERFORMANCE AND THEIR ESTIMATION 

Consider the estimation of a performance parameter, e (or ¢), of a simulated system. It is desired to have a 
point estimate and an interval estimate of e (or ¢). The length of the interval estimate is a measure of the 
error in the point estimate. The simulation output data are of the form { Y" Y2, • • •  , Y.l for estimating e; we 
refer to such output data as discr�te-time data, because the index n is discrete valued. The simulation output 
data are of the form { Y(t), 0 :<:; t :<:; TE} for estimating ¢; we refer to such output data as continuous-time data, 
because the index t is continuous valued. For example, Y; might be the delay of customer i, or the total cost 
in week i; Y(t) might be the queue length at time t, or the number of backlogged orders at time t. 'fl\e param­
eter e is an ordinary mean; ¢ will be referred to as a time-weighted mean. Whether we call the performance 
parameter e or ¢ does not really matter; we use two different symbols here simply to provide a distinction 
between ordinary means and time-weighted means. 

1 1 .3.1 Point Estimation 

The point estimator of e based on the data { Y" . . .  , Y.J is defined by 

1 n 
e = -L.r. n i=l 

( 1 1.3) 

where e is a sample mean based on a sample of size n. Computer simulation languages may refer to this as 
a "discrete-time," "collect," "tally" or "observational" statistic. 
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The point estimator 9 is said to be unbiased for 0 if its expected value is 0-that is, if 

E(iJ) =0 ( 1 1 .4) 
In general, however, 

( 1 1 .5) 

d E( 9 )  0 is called the bias in the point estimator 0. It is desirable to have estimator� that are unbiased, �� if this is not possible have a small bias relative to the magnitude of 0. Examples o: estun�tors of th� form 
of Equation ( 1 1 .3) incl�de w and wi.l of Equations (6.5) and (6.7), in which case f; IS the time spent m the 
(sub)system by customer i. . . . . . 1 gth · The point estimator of tP based on the data { f(t), 0 s t s T2}, where T2 IS the simulation run en , IS 
defined by 

A ' 1T' !P=- Y(t)dt T. 0 E 
( 1 1 .6) 

. s· . ul . 1 may refer to this as a "continuous-and is called a time average of f(t) over [0, T8]. un ation angnages . 
time" "discrete-change" or "time-persistent" statistic. In general, ' 

( 1 1.7) E (B) ¢ 0  

and i is said to be biased for 4J. £�-gain, we would like to obtain unbiased or 1ov:'-bias estimators. Examples 
of time averages inelude L and La of Equations (6.3) and (6.4) and lj of Equation (11 .

_
1). 

• I ted Oth Generally, 8 and 41 are regarded as mean measures of performance of th� syste� be�ng slmu a . . er 
uall can be put into this common framework. For example, constder estunat10n of the proportion measures us Y . In th · 1 ti let of days on which sales are lost through an out-of-stock situation. e sunu a on, 

_ {1; if out of stock on day i 
y: - . ' 0, otherwtse 

With n equal to the total number of days, 9 defined by Equation ( 11.3) is a point �timator. of 9, the propor­
. tion of out-of-stock days. For a second example, consider estimation of the proportion of ttme qu�e length 
is greater than ko customers (for example, k0 = 10). If LQ(t} represents simulated queue length at time t, then 
(in the simulation) define {1 , if LQ(t) > ko 

Y(t) = . 0, otherwiSe 

The� $, as defined by Equation (1 1 .6), is a point estimator of 4J, the proP?�� of tim� that the queue le?� 
is greater than ko customers. Thus, estimation of proportions or probabilities IS a special case of the estima 
tion of means. . · 'l Q tiles A rforrnance measure that does not fit this common framework IS a

_ 
�uantile or

_ 
percent! e. uan 

d ·be
pe

the level of pe. rforrnance that can be delivered with a given probabtlity, p. For msta�, �uppose that escn · 

· • · te easured m rmnutes Then y represents the delay in queue that a customer expenences m a semce sys m, m · 

the 0.85 quantile of y is the value 9 such that 
Pr{Y S  8} = p (1 1.8) 

where p = 0.85 in this case. As a percentage, O is the lOOpth or 85th percentil� of customer delay. Therefore, 
85% of all customers will experience a delay of 0 minutes or less. Stated differently, a customer has only 
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a 0.15 probability of experiencing a delay of longer than 9 minutes. A widely used perfonnance measure is the median, which is the 0.5 quantile or 50th percentile. 

Th� problem of estimating a quantile is the inverse of the problem of estimating a proportion or probability. Consider Equation ( 1 1 .8). In estimating a proportion, 8 is given and p is to be estimated; but, in estimating a quantile, p is given and 9 is to be estimated. · 

The most intuitive method for estimating a quantile is to form a histogram of the observed values of Y, then find a value 8 such that lOOp% of the histogram is to the left of (smaller than) 8.  For instance, if we observe n = 250 customer delays { Y1, . • •  , Y 250}, then an estimate of the 85th percentile of delay is a value 8 such that (0.85)(250) = 212.5 = 213 of the observed values are less than or equal to 9. An obvious estimate is, therefore, to set 8 equal to the 213th smallest value in the sample (this requires sorting the data). When the output is a continuous-time process, such as the queue-length process { LQt), 0 s; t s; TE},  then a histogram gives the fraction of time that the process spent at each possible level (queue length in this example). However, the �ethod for quantile estimation remains the same: Find a value 8 such that lOOp% of the histogram is to the left of 8. 

1 1 .3.2 Confidence-Interval Estimation 

To understand confidence intervals fully, it is important to understand the difference between a measure of error and a measure of risk. One way to make the difference clear is to contrast a confidence interval with a prediction interval (which is another useful output-analysis tool). 
Both confidence and prediction intervals are based on the premise that the data being produced by the simulation is represented well by a probability model. Suppose that model is the normal distribution with mean 0 and variance 112, both unknown. To make the example concrete, let �· be the average cycle time for parts produced on the ith replication (representing a day of production) of the simulation. Therefore, 9 is the mathematical expectation of � . • and 11 is represents the day-to-day variation of the average cycle time. Suppose our goal is to estimate 8. If we are planning to be in business for a long time, producing parts day after day, then 0 is a relevant parameter, because it is the long-run mean daily cycle time. Our average cycle time will vary from day to day, but over the long run the average of the averages will be close to 9. 
The natural estimator for 9 is the overall sample mean of R independent replications, Y .. = I:, f;.t R. 

But Y .. is not 8, it is an estimate, based on a sample, and it has error. A confidence interval is a measure of that error. Let 

S2 = -'-f <r - Y  .. i R- l  ,., '· 

be the sample variance across the R replications. The usual confidence interval, which assumes the Yr are 
normally distributed, is 

- s 
Y.. ± ta/l.R-1 ,[ii 

where tall,R-l is the quantile of the t distribution with R - 1 degrees of freedom that cuts off a/2 of the area 
of each tail. (See Table A.5.) We carmot know for certain exactly how fur Y .. is from 9, but the cnnfidence inter­
val attempts to bound that error. Unfortunately, the confidence interval itself may be wrong. A confidence 
leve� such as 95%, tells us how much we can trust the interval to actually bound the error between Y .. and 8. 
The more replications we make, the less error there is in Y . . , and our confidence interval reflects that because 
t an.R-lS I .fii will tend to get smaller as R increases, converging to 0 as R goes to infinity. 
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Now su se we need to make a promise about what the average cycle ti_me will t:e o� a particular day. 
A good gue!fs our estimator f .. , but it is unlikely to be exactly right. E':'en 6 ttself, which IS the c:nter

v
o�th: 

distribution is not likely to be the actual average cycle time on any particulru: day, because the �tl� e u!.. 
I · ' · A p•edt'cti'on 'mterval on the other hand, is designed to be wtde enough to contam ac eye e time vanes. ' ' 

. . · 1 · f · k· average cycle time on any particular day with high probability. A prediction mterva Is a measure o ns , a 
confidence interval is a measure of error. 

The normal-theory prediction interval is 

The length of this interval will not go to 0 as R increases. In fact, in the limit it becomes 

to reflect the fact that, no matter how much we simulate, our daily average cy�le time 
_
still varies. 

ed. ti"on m· terval 18' a measure of risk, and a confidence mterval ts a measure of error. In summary, a pr ac 
· u1 · k, • b · aking more and more replications but we can never stm ate away r1S We can Simulate away error Y m 

' . · · b aki which is an inherent part of the system. We can, however, do a better JOb of evaluating nsk y m ng more 
replications. 

Example 11.9 · · 

· · f f tu · imula-Suppose that the overall average of.the average cycle time on 120 replications o a manu ac nng s 
tion is 5.80 hours, with a sample standard deviation of 1.60 hours. Since to.o25.l l9 == 1.98, a 95% confidence 
interval for the long-run expected daily average cycle time is 5.80 ± 1.98�1.60( .[Ji{J) or 5.80 ± 0.29 hours. 
Thus, our best guess of the long-run average of the daily average cycle times IS 5.80 hours, but there could 
be as much as ±0.29 hours error in this estimate. . 

On any particular day, we are 95% confident that the average cycle time for all parts produced on that 
day will be 

5.80 ± 1 .98(1.60)�1 + 
I
� 

5 80 + 3 l8 hours The ±3.18 hours reflects the inherent variability in the daily average cycle times and :e fact ilia� we want �0 be 95% conftdent of covering the actual average cycle time on a particular day (rather 
than simply covering the long�run average). 

1 1 .4 OUTPUT ANALYSIS FOR TERMINATING SIMULATIONS 

Consider a terminating simulation that runs over a simulated time interval [0, TEl � results in observa�o� 
y y The sample size n may be a fixed number, or it may be a random variable (say, the num r o 
ob���arl�ns that occur durln� time TE). A common goal in simulation is to estimate 
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When the output data are of the fonn { Y(t), 0 ::;  t ::;  TEl, the goal is to estimate 

1/1 == E (..!.._ r Y(t) dt) 
TE .0 
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The method used in each case is the method of independent replications. The simulation is repeated a total of R times, each run using a different random number stream and independently chosen initial conditions (which includes the case that all runs have identical initial conditions). We now address this problem. 

1 1 .4.1 Statistical Background 

Perhaps the most con.fusing .aspect of simulation output analysis is distinguishing _ within-replication data from across-replication data, and understanding the properties .and. uses of each. The issue Can be further confused by the fact that simulation languages often provide only summary measures, like sample means, sample variances, and confidence interval;;, rather than all of the raw data. Sometimes theSe summary measures are all the simulation language provides without a lot of extra work. 
To illustrate the key ideas, think in tenus of the simulation of a �anufacturing .system .and two perfonnance measur�s of that system, the cycle time for parts (time from release into the factory until completion) and the work in process (WIP, the total number-of parts in the-factory at any time). In computer applications, these two measures could correspond to the response time and the length of the task queue at the CPU; in a service application, they could be the time to fulfill a customer's request and the number of requests on the "to do" list; in a supply-chain application, they could be the order fill time and the inventory level. Similar measures appear in many systems. 
Here is the usual set up for something like cycle time: Let Yij be the cycle time for the jth part produced in the ith replication; If each replication represents two shifts of production, then the number of parts p�uced in each replication might differ. Table I 1.3 shows, symbolically, the results of R replications. The across-replication data are fonned by summarizing within-replication data: f;. is the sample mean 

of the n, cycle times from the ith replication, s; is· the sample variance of the same data, and 

( 1 1 .9) 

is a confidence-interval half-width based on this dataset. 
From the across-replication data, we compute ovefll)l statistics, the average of the daily cycle time averages 

yll 
Yzl 

YRI 

- I R -
Y .. = -L,Y,. 

· .  { 1 1 . 10) R •=• 

Table 11.3 Within- and Acros�eplicolion 
Cycle-Time Doia 

· · · · 

Within-Rep Data 

fll r�.� 
Yn 

.. . " y� . . . 
Yn .. . y/ln/1 

Across,Rep Data 

f.., S1\ H1 
Y,.,s:, H2 

�., s;, a. 
- 2 Y .. , S  , H  
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the sample variance of the daily cycle time averages 

2 1 f - - 2 s = - ""� .-f .. ) 
R-1  ;., 

and finally, the confidence-interval half-width 

( 1 1 . 1 1 )  

( 1 1 .12) 

The quantity st.JR is the standard error, which is sometimes interpreted as the average error in f .. a5 an esti­
mator of 6. Notice that S2 is not the average of the within-replication sample variances, S12; rather, it is the 
sample variance of the within-replication averages � ., � ., ... , YR ... 

Within a replication, work in process (WIP) is a continuous-time output, denoted f;(t). The stopping 
time for the ith replication, TE , could be a random variable, in general; in this example, it is the end of the 
second shift. Table 1 1 .4 is an �b�tract representation of the data produced. 

The within-replication sampte mean and variance are defined appropriately for continuous-time data: 

- 1 iT� y;. = - J;(t) dt 
T o E, 

( 1 1 . 13) 

and 

2 1 f.T4 - 2 S. = - (Y.(t)-Y.) dt J I 0 J I E, 
(1 1.14) 

A definition for Hi is more problematic, but, to be concrete; take it to be 

s. H, = z .. ,2 .Jt. . ( 1 1 . 15) 

Frankly, it is difficult to conceive of a situation in which H1 is relevant, a topic we discuss later. Although the 
definitions of the within-replication data change for continuous-time data, the acro-ss-replication statistics are 

. unchanged. and this is a critical observation. 

Table 1 1.4 Within- and A<::ross-Replicalion 
WIP Data 

Within-Rep Data Across-Rep Data 

f.(t),O$ t � Te, �-.s�.H, 
Y2(t),O � t :S: Te, Y,_., s;.H2 

Y,(t),O s; t ::;; TE, � .• s;,H. 
Y .. ,S2, 1:  
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Here are the key points that must be understood: 

• The overall sample average, f .. , and the individual replication sample averages, �-· are always 
unbiased estimators of the expected daily average cycle time or daily average WIP. 

• Across-replication data are independent (since they are based on different random numbers), are 
identically distributed (since we are running the same model on each replication), and tend to be 
normally distributed if they are averages of within-replication data, as they are here. This implies that 
the confidence interval f .. ± H is often pretty good. 

• Within-replication data, on the other hand, might have none of these properties. The individual cycle 
times may not be identically distributed (if the first few parts of the day find the system empty); they 
are almost certainly not independent (because one part follows another); and whether they are 
normally distributed is difficult to know in advance. For this reason, s: and H,, which are computed 
under the assumption of independent and identically distributed (i.i.d.) data, tend not to be useful 
(although there are exceptions). 

• There are situations in which f .. .and f;. are valid estimators of the expected cycle time for an indi­
vidual part or the expected WIP at any point in time, rather than the daily average. (See Section 1 1 .5 
on steady-state simulations.) Even when this is the case, the confidence interval Y .. ± H  is valid, .and 
�. ± H1 is not. The difficulty occurs because s; is a reasonable estimator of the variance of the cycle 

time, but Sfln1 and SJITE· are not good estimators of the Var[�. ]-more on this in Section 1 1.5.2. 
l 

Example 11.10: The Able-Baker Problem, Continued 
Coosider Example 1 1.7, the Able-Baker technical-support call center problem, with the data for R = 4 
replications given in Table I L l .  The four utilization estimates, P,. are time averages of the form of Equation 
(11 . 13). The simulation produces output data of the form {1, if Able is busy at time t 

f (t) = r 0, otherwise 

and P, Y,. as computed by Equation ( 1 1 .13) with TE = 2 hours. Similarly, the four average system times, 
w1, ... , w4, are analogous to �- of Table 1 1.3,: where Yri is the actual time spent in system by customer i on 

replication r. 
First, suppose that the analyst desires a 95% confidence interval for Able's tnie utilization, p. Using 

Equation ( 1 1 .1 0) compute an overall point estimator 

f.= p = 0.808+0.875+0.708+0.842 - 0.808 
4 

Using_ Equation ( 1 1 . 1 1 ), compute its estimated variance: 

82 = (0.808 -0.808)2 +· .. +(0.842-0.808)2 (o.on)z 
4- 1  

Thus, the standard error of p = 0.808 i s  estimated by s.e .. (jJ) = stJ4 = 0.036. Obtain t0.0253 = 3.18 from 
Table A.5, and compute the 95% confidence interval half-width by (1 1 . 12) as 

s 
H = t0.025.3 .J4 = (3. 18)(0.036) = 0.1 14 
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giving 0.808 ± 0. 1 14 or, with 95% confidence, 

0.694 $ p $ 0.922 

In a similar fashion, compute a 95% confidence interval for mean time in system w: 

so that 

or 

Thus, the 95% confidence 

• 3.74 + 4.53 + 3.84+ 3.98 4 02 . te w =  - . mmu s 
4 

82 (3.74 -4.02)2 + · : ·+ (3.98 -4.02)2 (0.352)2 
3 - 1  

s . 
H = t002S,3 .J4 = (3. 18)(0.1 76) = 0.560 

4.02 - 0.56 $ w $ 4.02 = 0.56 

for w is 3.46 S w S 4.58. 

1 1  A.2 Confidence Intervals with Specified Precisian 

By Expression (1 1 .12), the half-length H of a 100(1 - a)% confidence interval for a mean 6, based on the t 
distribution, is given by 

s 
H = t  -
. .a11,R-! JR 

where S2 is the sample variance and R is the number of replications. Suppose that an error criterion e is 
specified; in other words, it is desired to estimate e by ·r . . to within ±e w�th hlgh probability-say, at least 
. 1  - a. Thus, it is desired that 1,1 sufficiently large. sample size, R, be taken to satisfy 

When the sample size, R, is fixed, no guarantee can be given for the resulting error. But if the sample size 
can be increased, an error criterion can be specified. 

Assume that an initial sample of size R0 replications has been observed-that is, the simulation analyst 
initially makes R0 independent replications. We must have R0 � 2, with 10 or more being desirable. The !4J 
replications will be used to obtain an initial estimate S� of the population variance o-2• To meet the hl,llf­
length criterion, a sample size R must be chosen such that R :?! R0 and 

H ( 1 1 .16) 

Solving for R iri Inequality ( 1 1 .23) shows that R is the sq�allest integer satisfying R :?!  R0 and 

( l l . l7) 
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Since tall,R
-t :?! za�2, an initial estimate for R is given by 

R <! ( Za;So )1 
349 

( 1 l. l8) 

where Zan is the I 00(1 - a/2) percentage point of the standard normal distribution from Table A.3. And 
since t!%12.R-I "' Zan for large R (say, R :?! 50), the second ineq1,1ality for R is adequate when R is large. After 
determining the final sample size, R, coUeet R - R0 additional observations (i.e., make R -R� a(iditional repli­
cations, or start over and make R total replications) and form the 100(1-0:)% confidenCe iriterv31 for e by 

- s - s 
Y..- tan.R-! JR S 6 5o Y.. + t;,n.R-l . . . . . . .  ( 1 1 .19) 

where Y .. and s:i. are computed on the basis of aU R replications, Y .. by Equation ( 1 1 .10), and S2 by Equation . 

(I I . I I). The half-length of the confidence interval given by Inequality ( ll . l9) should be approximately, e or 
smaller; however., with the additional R - R0 observations, the variance estimator S2 could differ somewhat 
from the initial estimate s;, possibly causing the half-length to be greater than desired. If the confidence 
interval (IIJ9) is too large, the procedure may be repeated, using Inequality ( l l . l7), to determine an even 
larger sample size. 

· 

EJample 11.11 . . . 
Suppose that it is desired to estimate Able's utiliZation in 'Example 1 1.7 to within ±0.04 with probability 
0.95. An initial sample of size R0 = 4 is taken, with the results given in Thble 1 1.1 .  An initial estim�te of the 
population variance is S� = (0.072)2 = 0.005 18. (See Example 1 1 .10 for the relevant data.) The error criterion 
is .e = 0.04, and the .confidence coefficient is 1 - a =  0.95. From Inequality (1 l . l 8), the final sample size 
must be at least as large as 

Next, Inequality (1 1.17) can be used to test possible candidates (R = 13, 14, • • .  ) for final sample size, as follows: 

R 13  14  15 

2.18 2.16 2.14 

15.39 15.10 14.83 

Thus, R = 15 is the smallest integer satisfying Inequality ( 1 1 .17), so R - R0 = 15 - 4 = 1 1  additional repli­
cations are needed. After obtaining the additional outputs, we would again need to compute the half-width 
H to ensure that it is as small as is desired. 

1 1 .4.3 Quantiles 

To present the interval estimator fo� q�tiles, it is helpful tO review tlie interval estimator for a mean in the 
special case when the mean represents a proportion or probability, p. In this book, we have chosen to treat a 
proportion or probability as just a special case of a mean. However, in many statistics texts, probabilities are 
treated separately. 

. . 
: ' > ' 
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When the number of independent replications Yl' • • •  , YR is large enough that tall.n-t i:: Zq�2, the confidence 
interval for a probability p is often written as 

where p is the sample proportion (tedious algebra shows that this formula for the half-width is precisely 
equivalent to Equation (1 1 .12) when used in estimating a proportion). 

As mentioned in Section 1 1.3, the quantile-estimation problem is the inverse of the p£0!?ability-estimation 
problem: Fmd () such that Pr{ Y � 6} = p. Thus, �estimate the p quantile, we find that value 6 such that I OOp% 
of the data in a histogram of Y is to the left of () (or stated differently, the npth smallest value of Y1, . . .  , YR). 

Extending this idea, an approximate ( I  - a) 100% confidence interval for () can  be obtained by finding 
two values: 61 that cuts of 100p1% of the histogram and 6. that cuts off lOOp.% of the histogram, where 

( 1 1 .20) 

(Recall that we know p.) In terms of sorted values, el is the Rpl smallest value (rounded down) and e. is the 
Rp. smallest value (rounded up), of Yl' . . .  ,Y8• 

· 

Example 11.12 
Suppose that we want to estimate the 0.8 quantile of the time to failure (in hours) for the communications 
system in Example 1 1.3 and form a 95% confidence interval for it. A histogram of R = 500 independent 
replications is shown in Figure 1 1.2. 

2000 6000 10000 14000 18000 22000 
y 

Figure 1 1 .2 Failure data in hours for 500 replications of the communications system. 
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The point estimator is e = 4644 hours, because 80% of the data in the histogram is to the left of 4644 
. 

Equivalently, it is the 500 x 0.8 = 400th smallest value of the sorted data. 
. 

To obtain the confidence interval we first compute 

Pt = p-z t2�p(l -p) =0 8- 1 96�0·8<0·2) - 0 765 a R - l  . . 
499 - ' 

P = p+z �p(l -p) =0 8+ 1 96 O.S(0.2) - 0 835 u all R-.1 . • 499 -
. 

The lower bound of the confidence interval is el = 4173 (the 500xpl = 382itd smallest value, rounding 
down); the upper bound of the confidence interval is e. =  5 1 19 hours (the 500 X p = 418th smallest value 
roun- � 

• ' 

1 1 .4.4 Estimating Probabilities and Quantiles from Summary Data 

Kno':"ing
. 
th: equation for the confidence interval half-width is important if all the simulation software 

prov��es IS Y:. and H and you need to work out the number of replications required to get a prespecified 
prec1s1on, or If you ��d to estimate a probability or quantile. You know the number of replications, so the 
sample standard deviation can be extracted from H by using the formula 

With this information, the method in Section 1 1 .4.2 can be employed. 
. The �ore difficult problem is estimating a probability or quantile from summary data. When all we have 

�vadable IS the sample �ean and confidence-interval halfwidth (which gives us the sample standard devhi­
non), then one approach IS to use a normal-theory approximation for the probabilities or quantiles we desire 
specifically ' 

and 

Pr{�. � c) ""  Pr{ Z � c�Y .. } 

The f<!llowing example illustrates how this is done. 

Example 11.13 
:rom 25 replications of the manufacturing simulation, a 90% confidence interval for the daily average wn 
IS 218 ± 32. What is the probability that the daily average WIP is less than 3501 What is the 85th pereentil• of daily average WIP? · 

First, we extract the standard deviation: 

S = 
Hfi = 32..fi5 = 93 
to.os,'IA 1.71 
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Then, we use the normal approximations and Table A.3 to get 

Pr{f,, ::> 350} = Pr{ Z ::> 350 �218} = Pr{Z ::> 1.42} = 0.92 

and 
B = Y..+ Zo8SS = 218+1 .04(93) = 315 parts 

There are shortcomings to obtaining.our probabilities and quantiles this way. The approximation depends 
heavily on whether the output variable of interest is normally distributed. If the output variable itself is not an 
average, then this approximation is suspect. Therefore, we expect the approximation to work well for state­
ments about the average daily cycle time, for instance, but very poOrly for the cycle time of an individual part. 

. 1 1 .5 OUTPUT ANALYSIS FOR STEADY·STATE SIMULAnONS 

Consider a single run of a simulation model whose purpose is tocestimate a stetuly"state, or long-run; charac­
teristic of the system. Suppose that the single run produces observations Y1, Y2, • • •  , which, generally, are samples 
of an autocorrelated time series. The steady-state (or long-run) meastire of performance, e. is defined by 

. 1 n 
6 = lim-l',r; 

n-+- n f;:::l 
(11 .21) 

with probability I, where the value of 6 is independent of the initial conditions. (The phrase "with p�bability I" 

means that essentially all simulations of the model, using different random numbers, will produce series 
Y., i ::: 1, 2, . . . whose sample average converges to 6.) For example, if Y1 was the time customer i spent talk­

u;g to an operator, then 6 would be the long-run average time a customer spends talking. to an operator; and, 
because e is defined as a limit, it is independent of the call center's conditions at time 0. Similarly, the steady� 
state performance for a continuous-time output m�Ure { Y(t), t <=: 0}, such as the number of customers in the 
call center's hold queue, :is defined as 

· · 

with probability 1 .  
Of course, the simulation analyst could decide to stop the simulation after some number of observations­

say, n--bave been collected; or the simulation analyst could decide to simulate for some length of time T E 
that determines n (although n may vary.from run to run). The sample size n (or TE) is a design choice; it is 
not inherently determined by the nature of the problem. The simulation analyst will choose simulation run 
length (n or TE) with several considerations in mind: 

1. Any bias in the PQint estimator that is due to artificial or arbitrary initial conditions. (The bias can be 
severe if run length is too short, but generally it decreases as run length increases.). 

2. The desired precision of the .point estimator, as measured by the standard error or confidence interval 
half-width. 

3. Budget constraints on computer resources. 

The next subsection discusses initialization bias and the following Sl.lbsections outline two methods of 
esnmating point-estimator variability. For clarity of presentation, we discuss only estimation of e from a 
discrete-time output process. Thus, when discussing one replication (or run), the notation 

MODEl 

will be used; if several replications have been made, the output data for replication r will be denoted by 

Y,p Y,2, Y,p . . .  ( 1 1 .22) 

1 1 .5.1 Initialization Bias in Steady-State Simulations 

There are several methods of reducing the point-estimator bias caused by using artificial and unrealistic initial 
conditions in a steady-state simulation. The first method is to initialize the simulation in a state that is more 
representative of long-run conditions. This method is sometimes called intelligent initialization. Examples 
include 

1. setting the inventory levels, number of backorders, and number of items on order and their arrival 
dates in an inventory simulation; 

· 

2. placing customers in queue and in service in a queueing simulation; 
3. having some components failed or degraded in a reliability simulation. 

There are at least two ways to specify the initial conditions intelligently. If the system exists, collect data 
on it and use these data to specify more nearly typical initial conditions. This method sometimes requires a large 

· data-collection effort. In addition, if the system being modeled does not exist-for example, if i� is a variant of 
an existing syste!Il--'lhis method is impossible to implement. Nevertheless, it is recommended that simulation 
analysts use any available data on existing systems to help initialize the simulation, as this will usually be better 
than assuming the system to be "completely stocked," "empty and idle," or "brand new" at time 0. 

A related idea is to obtain initial conditions from a second model of the system that has been simplified 
enough to make it mathematically solvable. The queueing models in Chapter 6 are very useful for this 
purpose. The simplified model can be solved to find long-run expected or most likely conditions-such as the 
expected number of customers in the queue-and these conditions can be used to initialize the simulation. 

A second method to reduce the impact of initial conditions, possibly used in conjunction with the first, 
is to divide each �imulation run in�o two phases: first, an initialization phase, from time 0 to time T0, followed 
by a data-collectton phase from time T0 to the stopping time T0 + TE-that is, the simulation begins at time 
0 under specified initial conditions /0 and runs for a specified period of time T0• Data collection on the 
response variables of interest does not begin until time T0 and continues until time T + T The choice of T 
is. quite important, because the system state at time T0, denoted by /, should be more �earl� representative o� 
steady-state. behavior than are the original initial conditions at time 0, /0• In addition, the length T11 of the 
data-collection phase should be long enough to guarantee sufficiently precise estimates of steady-state 
behavior. Notice that the system state, /, at time T0 is a random variable and to say that the system has reached 
an approximate steady state is to say that the probability distribution of the system state at time T. is 
sufficiently close to' the steady-state probability distribution as to make the bias in point estimates of respo�se 
variables negligible. Figure 1 1.3 illustrates the two phases of a steady-state simulation. The effect of starting 
a simulation run of a queueing model in the empty and idle state, as well as several useful plots to aid the 
simulation analyst in choosing an appropriate value of T0, are given in the following example. 

Example 11.14 
Consider the M/G/1 queue discussed in Example 1 1 .8. Suppose that a total of 10 independent replications 
were made (R = 10), each replication beginning in the empty and idle state. The total simulation run length 
on each replication was T0 + TE = 15,000 minutes. The response variable was queue length, LQ(t, r), at time t, 
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Data-collection phase 
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figure 1 1 .3 Initialization and data collection phases of a steady-state simulation run. 

where the second argument, r, denotes the replication (r = 1, . . .  , 10). The raw output data were hatched, as in 
Example 1 1 .8, Equation ( l l . l ), in hatching intervals of lOOO minutes, to produce the following batch means: 

I f'<IOOOl 
Y>i = -- L1/t, r)dt 

1000 (j-1)1000 
(11.23) 

for replication r= 1, . . .  , 10 and for batcbj = I, 2, . . .  , 15. The estimator in Equation ( 1 1 .23) is simply the time­
weighted-average queue length over the time interval [U- 1) 1000, j( 1 000)), similar to that in Equation (6.4). 
The 15 batch means for the 10 replications are given in Table 1 1.5. 

Normally we average all the batch means within each replication to obtain a replication average. 
However, our goal at this stage is to identify the trend in the data due to initialization bias and find out when 
it dissipates. To do this, we will average corresponding batch means across replications and plot them (this 
idea is usually attributed to Welch ( 1983]). Such averages are known as ensemble averages. Specifically, for 
each batch j, define the ensemble average across all R replications to be 

(1 1.24) 

(R = 10 here). The ensemble averages Y.i'j = 1, ... , 15 are displayed in the third column of Table 1 1 .6. Notice 
that f.1 = 4.03 and Y.2 = 5.45 are estimates of mean queue length over the time periods (0, 1000) and [1000, 
2000), respectively, and they are less than all other ensemble averages r.,(j = 3, ... , 15) . The simulation 
analyst may suspect that this is due to the downward bias in these estimators, which in tum is due to the 
queue being empty and i.dle at time 0. This downward bias is further illustrated in the plots that follow. 

Figure 1 1 .4 is a plot of the ensemble averages, Y.i' versus lOOOj, forj = 1, 2, . . .  , 15. The actual values, Y.J' 
are the discrete set of points · in circles, which have been connected by straight lines as a visual aid. 
Figure 1 1 .4 illustrates the downward bias of the initial observations. As tinte becomes larger, the effect o( the 
initial conditions on later observations lessens and the observations appear to vary around a common mean. 
When the simulation analyst feels that this point has been reached, then the data-collection phase hegins. 

Table 1 1.6 also gives the cumulative average sample mean after deleting zero, one, and two batch means 
from the beginning-that is, using the ensemble average batch means Y.J' when deleting d observations out 
of a total of n observations, compute 

- 1 � ­
Y .. (n, d) = - ""- Y 

n-d J=d+l 
(11.25) 

The results in Table 1 1 .6 for the M/G/1 simulation are for d= 0, l, and 2, and n = d + 1, • . .  , 15. These cumulative 
averages with deletion, namely f .. (n, d), are plotted for comparison purposes in Figure 1 1 .5. We do not 
recommend using cumulative averages to determine the initialization phase, for reasons given next 
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Table 1 1 .6 Summary of Data for M/G/1 Simulation: Ensemble Batch Means and Cumulative Means, 

A d 0v 1 0 Replications verage er 

Run 
Length 

T 

1,000 
2,000 
3,000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 

10,000 
1 1,000 
12,000 
13,000 
14,000 
15,000 

Y.J 
1 1  

Batch 

j 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
1 2  
1 3  
14 
15 

Cumulative Cumulative 

Avemge Average Avemge 

Batch Mean, (No Deletion), (Delete 1). 
Y.; ¥ .. (j. 0} f .. {j. l) 

4.03 4.03 
5.45 4.74 5.45 

6.72 8.00 5.83 
6.61 6.37 5.96 
6.54 6.33 6.04 

8.15 6.39 6.86 
7. l l  8.33 6.67 

6.77 7.16 7.50 
9.70 7.10 7.48 

7.90 1 1 .25 7.51 
8 . 18  10.76 7.8 1 
8.29 9.37 7.94 

7.28 7.89 8.21 

7.76 7.88 8.17 

8.76 7.94 8.21 

figure 1 1 .4 Ensemble averages Y.i for M/G/1 queue. 

Cumulative 
Avemge 

(Delete 2), 
f .. {j, 2} 

-

8.00 
7 . 18 
6.90 
7.21 
7.44 
7.45 
7.77 
8.20 
8.49 
8.58 
8.46 
8.40 
8.43 
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f..(n, d) 

� No deletion 

-. Delete !. 

o--o---o Delete 2 

2 3 4 5 6 7 8 9 10 I I  12 13 14 15 n 
0 3000 6000 9000 12,000 15,()()() 

Figure 1 1 .5 Cumulative average queue length Y .. (n, d) versus time 1 OOOn. 

From Figures 1 1.4 and 1 1.5, it is apparent that downward bias is pr�nt. and this initialization bias in 
the point estimator can be reduced by deletion of one or more observations. For the 15 ensemble. average 
batch means, it appears that the first two observations have considerably more bias than any of the remaining ones. 
The effect of deleting first one and then two batch means is also illustrated in Table 1 1.6 and Figure 1 1 .5. 
A$ expected, the estimators . increase in value as more data are deleted;· that is, Y .. (l5, 2) = 8.43 and 
Y .. (15, 1) = 8.21 are larger than f .. (l5, 0) = .7.94 . It also appears from Figure 1 1 .5 that Y .. (n, d) is increasing 
for n = 5, 6, . .. , l l  (and all (1 = 0, 1, 2), and thus there may still be some initialization bias. It seems, however, 
that deletion of the first two batches removes most of the bias. 

Unfortunately, there is no wide)y accept:�<d, objective, and proven technique to guide how much data to 
delete to reduce initialization bias to a negligible level. Plots can, at times, be misleading, but .they are still 
recommended. Several points should be kept in mind: 

1. Ensemble averages, such as Figure 11.4, will reveal a smoother and more precise trend as the number 
of replications', R, is increased. Since each elisemble average is the sample mean of i.i.d. observa­
tions, a confidence interval based on.the t distribution can be placed around. each point. as.shown in 
Figure 1 1.6,:and these intervals can be. used to judge whether or not the plot is precise enough to 
judge that bias has diminished. This is the preferred method to determine a deletion point. 

2. Ensemble averages can be smoothed further by plotting a moving average, rather than _the original 
ensemble averages. In a moving average, eAch plotted point is actually the average ofseveral adjacent 
ensemble averages. Specifically, thejth plot point would be 

I � . i.j L r  .. 2m+ l i�J-m 
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b---b----t:. Ensemble average 

o--o--a Lower confidence limit 

o--o--o Upper confidence limit 

Figure 1 1 .6 - Ensemble averages Y.; for M/G/1 queue with 95% confidence intervals. 

for some m � 1, rather than the original ensemble average Y.i . The value of m is typically chosen by 

trial and error until a smooth plot is obtained. See Law and Kelton [2000] or Welch [1983] for further 

discussion of smoothing. 
3. Cumulative averages, such as in Figure 1 1 .5, become less variable as more data are �vera�ed. 

Therefore, it is expected that the left side of the curve will always be less smooth than the nght stde. 

More importantly, cumulative averages tend to converge m�re slowly to lo�g�ru� perf�rmance than 

do ensemble averages, because cumulative averages contain all observations, mcludmg the most 

biased ones from the beginning of the run. For this reason, cumulative a�erages s�u� b� used �nly 

if i_i is not feasible to compute ensemble averages, such as whe
_
n ?nly � �mgle replicati�n IS possible. 

4. Simulation data, especially from queueing models, usually exhib1t positive autocorre�a�10n. The m?re 

correlation present, the · longer it takes for Y.i to approach steady state. The positive correlation 

between successive observations (i.e., batch means) Y.PY.2, ••• can be seen in Figure 1 1 .4. 

s. 1n most simulation studies, the analyst is interested in several different output performance measures 

at once, such as the number in queue, customer waiting time, and utilization of the servers. U�o�­

tunately, different performance measures could approach stead� ��te. at �iffe�ent rates. Thus, I� IS 
important to examine each performance measure individually for lmtialization b1as and use a deletion 

point that is adequate for all of them. 

There has been no shortage of solutions to the initialization-biru: pro�lem .. Unf?�ately, f?r every 

"solution" that works-well in some situations, there are other situations m which e1ther 1t1s not apphcable or 

it performs poorly. lnlportant ideas include testing for bias (e.g., Kelton and Law [1983], Schruben [1980], 

Goldsman, Schruben, and Swain [1994]); modeling the bias (e.g., Snell and Schruben [1985]); and randomly 

sampling the initial conditions on multiple replications (e.g., Kelton [1989]). 

:, :·:· .· �-�'-.. : '. � .. '1'·.� .... •';'. ··: ' ·. . . .  _, . 
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1 1 .5.2 Error Estimation for Steady-State Simulation 

If { Y1, • • •  ,Y } are not statistically independent, then S2/n, given by Equation ( 1 1 . 1 1 ), is a biased estimator of 
the true varlance, V(6) . This is almost always the case when { Y" . . .  , Y. l is a sequence of output observa­
tions from within a single replication. In this situation, Y1, Y2, • • •  is an autocorrelated sequence, sometimes 
called a time series. Example 1 1 .8 (the M/G/1 queue) provides an illustration of this situation. 

Suppose that our point estimator fo� 6 is the sample mean Y = L,� YJn. A general result from mathe-
matical statistics is that the variance of Y is3 ,_,_ · 

_ 1 n n 
V(Y) = 2 L,L,cov(Y,., Y) 

n i=l j=l 
( 1 1 .26) 

where cov(Y;, Y;) = V(Y;). To construct a confidence interval for 6, an estimate of V(Y) is required. But obtain­
ing an estimate of (1 1.26) is pretty much hopeless, because each term cov( Y; , lj) could be different, in general. 
Fortunately, systems that have a steady state will, if simulated long enough to pass the transient phase (such 
as the production-line startup in Example 1 1.4), produce an output process that is approximately covariance 
stationary. Intuitively, stationarity implies that Y;+k depends on Yi+l in the same marmer as Yk depends on Y1• 
In particular, the covariance between two random variables in the time series depends only on the number of 
observations between them, called the lag. 

For a covariance-stationary time series, { Y1, Y2, • • •  ) ,  define the lag-k autocovariance by 

Y1 = cov(Y,, 1';.1) = cov(t;, Y,.,) ( 1 1 .27) 

which, by definition of covariance stationarity, is not a function of i. For k = 0, Yo becomes the population 
variance a2-that is, 

(1 1 .28) 

The lag-k autocorrelation is the correlation between any two observations k apart. It is defined by 

P = h._ k (Jl (11 .29) 

and has the property that 
-l :s; p1 :s; 1, k = 1, 2, . . .  

If a time series i s  covariance stationary, then Equation (1 1 .26) can be simplified substantially. Tedious algebra 
shows tha,t 

V(Y) = - 1 + 2I, 1 - - p, 
0"2 [ n-1 ( k) ] 
n 1=1 n 

(1 1.30) 

where pk is the lag-k autocorrelation given by Equation ( 1 1 .29). 
When pk > 0 for all k (or most k), the time series is said to be positively autocorrelated. In this case, large 

observations tend to be followed by large observations, small observations by small ones. Such a series will tend 
to drift slowly above and then below its mean. Figure l l .7(a) is an example of a stationary time series exhibit­
ing positive autocorrelation. The output data from most queueing simulations are positively autocorrelated. 

On the other hand, if some of the pk < 0, the series Y1, Y2, • • •  will display the characteristics of negative 
autocorrelation. In this case, large observations tend to be followed by small observations, and vice versa. 
Figure ll .7(b) is an example of a stationary time series exhibiting negative autocorrelation. The output.of 
certain inventory simulations might be negatively autocorrelaied. 

'Tills general result can be derived from the fact that. for two random variables f1 and Y2, V(Y1 ± Y2) = V(Y1) + V(Y2) ± 2cov(Yl' Y,J. 
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!', 

(a) 

{b) 

(c) 

Figure 1 1 .7 (o) Stationary time series � exhibiting positive autocorrelation; (b) sfaiiooarytime series Y; 
exhibiting negative autocorrelation; (c) nG>niMionary time series with on upward trend. 

Figure l l. 7( c) also shows an example of a: time series with an upward tretld. Such a time series is not 

stationary; the probability distribution of Y, is changing with the index i. . . • 

Why does autocorrelation make it difficult to estimate v(Y)? Recall that the standard estimator for the 

variance of a sample mean is S2/n. By using Equation ( 1 1.30), it can be shown [Law, 1977] that the expected 

value of the varianee estimator S2/n is 
· · 

( 1 1 .31) 

FOR A SINGLE MODEL 

where 

B= n/c - 1  
n - 1  

( 1 1 .12) 

and c is the qu�tity in brackets in Equation ( 1 1 .30). The effect of the autocorrelation on the oxestimator S2/n 
is derived by an examination of Equations ( I  1.30) and ( 1 1 .32). There are essentially three possibilities: 

Case 1 

If the Y1 are independent, then pk = 0 for k =  I, 2, 3, . . . .  Therefore, c = 1+ 2I,:::(l -k/n)p1 = l and 

Equation (1 1 .30) reduces to the familiar a2/n. Notice also that B = 1, so S2/n is an unbiased estimator of V(Y). 
The Y1 will always be independent when they are obtained from different replications; that independence is 
tbe primary reason that we prefer experiment designs calling for multiple replications. 

ease 2 

If the autocorrelations p< are primarily positive, then c = 1 + 21:::: (1 -kln)p1 > 1 , so that n/c < n, and hence 

B < I .  Therefore, S2/n is biased low as an estimator of V(Y). If this correlation were ignored, the nominal 
100(1 - a)% confidence interval given by Expression ( l l .l2) would be too short, and its true confidence 
coefficient would be less than 1 - a. The practical effect would be that the simulation analyst would have unjus­
tified confidence (in the apparent precision of tbe point estimator) due to the shortness of the confidence 
interval. If the correlations pk are large, B could be quite small, implying a significant underestimation. 

Case 3 

If the autocorrelations p, are substantially negative, then 0 s; c < I, and it follows that B > 1 and S2/n is biased 
high for V(f). In other words, the true precision of the point estimator Y would be greater than what is indi­
cated by its variance estimator Slfn, because 

As a result, the nominal 100(1 - a)% confidence interval of Expression ( 1 1 . 12) would have true confidence 
coefficient greater than 1 - a. This error is less serious than Case 2, because we are unlikely to make incor­
rect decisions if our estimate is actually more precise than we think it is. 

A simple example demonstrates why we are especially concerned about positive correlation: Suppose 
you want to know how students on a university campus will vote in an upcoming election. To estimate their 
preferences, you plan to solicit 100 responses. The standard experiment is to randomly select 100 students 
to poll; call this experiment A. An alternative is to randomly select 20 students and ask each of them to state 
their preference 5 times in the same day; call this experiment B. Both experiments obtain 1 00  responses, but 
clearly an estimate based on experiment B will be less precise (will have larger variance) than an estimate 
based on experiment' A. Experiment A obtains 100 independent responses, whereas experiment B obtains 

· only 20 independent responses and 80 dependent ones. The five opinions from any one student are perfectly 
positively correlated (assuming a student names the same candidate all five times). Although this is an 
extreme example, it illustrates that estimates based on positively correlated data are more variable than esti­
mates based on independent data. Therefore, a confidence interval or other measure of error should account 
correctly fur dependent data, but S2/n does not. 

Two methods for eliminating or reducing the deleterious effects of autocorrelation upon estimation of a 
mean are given in tbe following sections. Unfortunately, some simulation languages either use or facilitate 
the use of S2/n as an estimator of V(f), ttie variance of the sample mean, in all situations. If used uncritically 
in a simulation with positively autocorrelated output data, the downward bias in S2/n and the.resulting 
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shortness of a confidence interval for f) will convey the impression of much greater precision than actually 
exists. When such positive autocorrelation is present in the output data, the true variance of the point 
estimator, Y, can be many times greater than is indicated by S2/n. 

1 1 .5.3 Replication Method for Steady-State Simulations 

If initialization bias in the point estimator has been reduced to a negligible level (through some combination 
of intelligent initialization and deletion), then the method of independent replications can be used to estimate 
point-estimator variability and to construct a confidence intervaL The basic idea is simple: Make R replica­
tions, initializing and deleting from each one the same way. 

If, however, significant bias remains in the point estimator and a large number of replications are used 
to reduce point-estimator variability, the resulting confidence interval can be misleading. This happens 
because bias is not affected by the number of replications (R); it is affected only by deleting more data 
(i.e., increasing T0) or extending the length of each run (i.e., increasing Te>· Thus, increasing the number of 
replications (R) could produce shorter confidence intervals around the "wrong point" Therefore, it is important 
to do a thorough job of investigating the initial-condition bias. 

If the simulation analyst decides to delete d observations of the total of n observations in a replication, 
then the point estimator of 9 is f .. (n, d), defined by Equation (1 1.25)-that is, the point estimator is the 
average of the remaining data. The basic raw output data, { Y,r r = 1 ,  . .. , R; j = 1, .. . , n}, are exhibited in 
Table 1 1 .7. Each Y,j is derived in one of the following ways: 
Case 1 

Y.; is an individual observation from within replication r; for example, Y,j could be the delay of customer j 
in a queue, or the response time to job j in a job shop. 
Case 2 

Y.; is a batch mean from within replication r of some number of discrete-time observations. (Batch means 
are discussed further in Section 1 1 .5 5.) 
Case 3 

Y.; is a batch mean of a continuous-time process over time intervalj; for instance, as in Example 1 1. 1 4, Equation 
(1 1 .23) defines Yti as the time-average (batch mean) number in queue over the interval [ 1000 (j- 1 ), 1000)). 

In Case 1, the number d of deleted observations and the total number of observations n might vary from 
one replication to the next, in which case replace d by d, and n by n,. For simplicity, assume that d and n are 
constant over replications. In Cases 2 and 3, d and n will be constant. 

Replication 

1 

2 

R 

Table 1 1 .7 Raw Output Data from o Steady-Stole Simulation 

Observatioll.S 

1 . .. d d + i . .. n 

r,.l .. . Yl.d yl,d + 1 . . .  Y, .• 

Yz.l . .. y�d y�d +  1 .. . y2.• 

YR. I . . .  YR,d f R.d+ I ... YR.• 
r., . . .  f .• f., •• , . . . ' .. 

Replication 
Averages 

�.(n, d) 

Y,.(n, d) 

f..(n, d) · 

f .. (n, d) 
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When using the replication method, each replication is regarded as a single sample for the purpose of 
estimating 9. For replication r, define 

· 

1 • 

Y,.(n, d) = - I r'i 
n-d j=<�+I ( 1 1.33) 

as the sample mean of all (nondeleted) observations in replication r. Because all replications use different 
ran

_
dom-number streams and all are initialized at time 0 by the same set of initial conditions (!;), the repli­

cation averages 

�.(n, d) . .... �.(n, d) 

are independent and identically distributed random variables-that is, they constitute a random sample from 
some underlyil!g population having unknown mean 

9 • .4 = E [f,.(n, d)] 

The overall point estimator, given in Equation (1 1.25), is also given by 

- l f -Y .. (n, d) = -kf, .(n, d) 
R r=l 

as can be seen from Table I 1 .7 or from using Equation (I 1.24). Thus, it follows that 

(11 .34) 

(1 1 .35) 

also. If d and n are chose� sufficiently large, then 9.4 "' 9, and Y .. (n, d) is an approximately unbiased 
estimator of 9. The bias in Y .. (n, d) is e •. d-9. 

For convenience, when the value of n and d are understood, abbreviate Y,:.(n,d) (the mean of the undeleted 
observations from the rth replication) and Y .. (n, d) (the mean of f..(n, d), .... � .(n, d) by Y,:. and Y .. , 
respecti_vely. To estimate the standard error of Y .. , first compute the sample variance, 

S = -k(f, .-Y .. ) = - kf,. - RY.. 2 1 f - - 2 1 (f -2 -2 ) 
R - l  ,.,1 R-1 r=l 

The standard error of is given by 
. - s s.e.(Y •. ) =  .JR 

A 100(1 - a)% confidence interval for IJ, based on the 1 distribution, is given by 

- . s - s Y. ·- I a12.R-l .Jii S f) S Y.. + f «12.R-l .JR 

(1 1.36) 

(1 1.37) 

(11 .38) 
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where t is the 100(1 - a/2) percentage point of a t distribution with R - l degrees of freedom. This 

confide��terval is valid only if the bias of F.: is approximately zero. 
As a rough rule, the length of each replication, beyond the deletion point, should be at least ten times 

the amount of data deleted. In other words, (n d) should at l�st IOd (or more generally, T8 should be at 
least lOT. ). Given this run length, the number of replications should be as many as time permits, up to about 
25 replic�tions. Kelton [1986] established that there is little value in dividing the available time into more 
than 25 replications, so, if time permits making more than 25 replications of length T0 + I OT0, then make 25 
replications of longer than T0 + IOT0, instead. Again, these are rough rules that need not be followed slavishly. 

Example 11.15 
Consider again the M/G/1 queueing simulation of Examples l l .8 and 1 1. 14. Suppose that the sim,ulaition 

analyst decides to make R = 10  replications, each of length T8 = 15,000 minutes, each starting at time 0 in 

the empty and idle state, and each initialized for T0 = 2000 minutes before data collection begins. The raw 

output data consist of the batch means defined by Equation ( 1 1 .23); recall that each batch mean is simply 

the average number of customers in queue for a 1000-minute interval. The first two batch means are deleted 

(d= 2). The purpose of the simulation is to estimate, by a 95% confidence interval, the long-run time-average 

queue length, denoted by LQ. 
The replication averages i-:_.(lS,2),r = 1,2, ... ,10, are shown in Table 1 1 .8 in the rightmost column. The 

point estimator is computed by Equation ( 1 1 .35) as 

F .. (l5,2) = 8.43 

Its standard error is given by Equation ( 1 1 .37) as 

s.e.(Y . . (l5,2)) 1.59 

Table 1 1 .8 Data Summary for M/G/1 Simulation by Replication 

· Replication, 
r 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Y . .  =(l5,d) 
R 
r,-z 

Y,.. 
,.,. 

S2 
s 

S t..JlO = s.e.(Y .. ) 

Sample Mean for Replication r 

(No Deletion) (Delete I) (Delete 2) 

�.(15,0) ¥,.(15,1) �.(15.2) 

3.:::7 3.24 3.25 
i6.25 17.20 17.83 
15.19 15.72 15.43 
7.24 7.28 7.71 
2.93 2.98 3.1 1 
4.56 4.82 4.91 
8.44 8.96 9.45 
5.06 5.32 5.27 
6.33 6.14 6.24 

10.10 10.48 1 1 .07 

7.94 8.21 8.43 

826.20 894.68 938.34 

21.75 24.52 25.30 
4.66 4.95 5.03 

1 .47 1.57 1.59 
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and using a =  0.05 and t0025_9 = 2.26, the 95% confidence interval for long-run mean queue length is given 
by Inequality (I 1.38) as 

8.43-2.26(1.59) � Li.! :s; 8.43 + 2.26 (1 .59) 

or 

4.84 :s; 41 � 12.02 

The simulation analyst may conclude with a high degree of confidence that the long-run mean queue length 
. is between 4.84 and 12.02 customers. The confidence interval computed here as given by Inequality ( 1 1 .38) 
should be used with caution, because a key assumption behind its validity is that enough data have been 
deleted to remove any significant bias due to initial conditions-that is, that d and n are sufficiently large 
that the bias 6n.d - 6 is negligible. 

Example 11.16 
Suppose that, in Example I US, the simulation analyst had decided to delete one batch (d= 1) or no batches 

0). The quantities needed to compute 95% confidence intervals are shown in Table 1 1 .8. The resulting 
95% confidence intervals are computed by Inequality ( 1 1.38) as follows: 

(d = 1) 4.66 = 8.2 1 -2.26(1.57) :s; LQ � 8.21 + 2.26(1.57) = 1 1 .76 

(d = 0) 4.62 = 7.94-2.26(1.47) � Li.! � 7.94+ 2.26(1.47) = 1 1 .26 

Notice that, for a fixed total sample size, n, two things happen as fewer data are deleted: 

1. The confidence interval shifts downward, reflecting the greater downward bias in F .. (n, d) as d 
decreases. 

2. The standard error of f..(n, d), namely S t.fii, decreases as d decreases. 

In this example, F .. (ll, d) is based on a run length of TE = lOOO(n - d) =  15,000 -IOOOd minutes. Thus, as 
d decreases, T8 increases, and, in effect, the. sample mean F .. is based on a larger "sample size" (i.e., longer 
run length). In general, the larger the sample size, the smaller the standard error of the point estimator. This 
larger sample size can be due to a longer run length (TE) per replication, or to more replications (R). 

Therefore, there is a trade-off between reducing bias and increasing the variance of a point estimator, 
when the total sample size (R and T0 + T8) is fixed. The more deletion (i.e., the larger T0 is and the smaller 
T8 is, keeping T0 + TE fixed), the less bias but greater variance there is in the point estimator. 

Recall that each .batch in Examples 1 1 . 15 and 1 1. 16 consists of 1000 minutes of simulated time. 
Therefore, discarding d 2 batches really means discarding 2000 minutes of d:i.ta, a substantial amount 
It is not uncommon for very large deletions to be necessary to overcom.e the initial conditions. 

1 1 .5.4 Sample Size in Steady-State Simulations. 

Suppose it is desired to estimate a long-run performance measure, 6, within ±E. with confidence 1 00( 1 a)%. 
In a steady-state simulation, a specified precision may be achieved either by increasing the number of repli­
cations (R) or by increasing the run length (T8). The first solution, controlling R, is carried out as given in 
Section 1 1 .4.2 for terminating simulations. 
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Example 11.17 · 
. . 

Consider the data in Table 1 1 .8 for the MIG/I queueing simulation as an initial sample of SJ.ZeR0 -_I?- Ass�g 
that d = 2 observations were deleted, the initial estimate of variance is S� = 25.30. Suppose that 1t IS desired_ to 
estimate long-run mean queue length, LQ, within e = 2 customers with 90% �nfiden:e: � �al sample siZe 
needed must satisfy Inequality (Il . l7). Using a= 0.10 in Inequality (I I . l8) yields an 1mt1al estimate: 

R � ( z.o.:S0 J = 1.645
2

2
�25.30) _ 17 .I 

Thus, at least ·18 replications will be needed. Proceeding as in Example I l. l l, next try R=  18, R =  19, . . .  as 
follows: 

R 18 19 

to.os.R-l L74 L73 

co.os.;-ISO J 19.15 18.93 

R = 19 � (t S !e f = 18.93 is the smallest integer R satisfying Inequality (1 1 .17), so a total sample size of 
R = 19 re;n��ti�ns is needed to estimate LQ to within ±2 customers .. Therefore, R - R0 = 19 - 10 = 9 
additional replicatimis are needed to achieve the specified error. . . . . An alternative to increasing R is to increase total run length T0 + TE w1thm each_ �phcatlo�. If_ the 
calculations in Section 1 1.4.2, as illustrated in Example 1 1. 17, indicate that R -R0 additional �phcanons 
are needed beyond the initial number, R0, then an alternative is to increase run length (T0 + T,) m �e same 
proportion (R/R0) to a new run length (R!Rr)(T0 + TE). Thus, ad�ition�l data will

_ 
be deleted, fro� time 0 to 

time (R/Rr)T 0' and more data will be used to compute the �Oint eslm_llltes, �s Illustrated by F1gure 1 1 .�. 
However, the total amount of simulation effort is the same as 1f we had simply mcreased the num�er �f repli­
cations but maintained the same run length. The advantage of increasing total run length per rephcauon and 
deleting a fixed proportion [T J(T + T )] of the total run length is that any residual bias in the point estima­
tor should be further reduced b; the £additional deletion of �ata at the beginning of the run. A possible 

Initialization 

I phase 
0 To 

0 

Data collection 
phase 

Figure 1 1.8 Increasing runlength to achieve specified accuracy. 
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disadvantage of the method is that, in order to continue the simulation of all R replications [from time T0 + TE 

to time fY./R0) (T0 + TE)J, it is necessary to have saved the state of the model at time T0 + TE and to be able 
to restart the model and run it for the additional required time. Otherwise, the simulations would have to 
be remn from time 0, which could be time consuming for a complex model. Some simulation languages have 
the capability to save enough information that a replication can be continued from time T E onward, rather 
than having to start over from time 0. 

Example 11.18 
In Example l l . l7, suppose that run length was to be increased to achieve the desired error, ±2 customers. 
SinceR/R0= 19/10 1 .9, the ruri lengthshould be almost doubled to (R/R0)(T0 + TE) = 1.9(15,000) = 28,500 
minutes. The data collected from time 0 to time (R/R0)T0 = 1.9(2000) = 3800 minutes would be deleted, and 
the data from time 3800 to time 28,500 used to compute new point estimates and confidence intervals. 

1 1 .5.5 Batch Means for Interval Estimation in Steady-State Simulations 

One disadvantage of the replication method is that data must be deleted on each replication and, in one sense, 
deleted data are wasted data, or at least lost information. This suggests that there might be merit in using 
an experiment design that is based on a single, long replication. The disadvantage of a single-replication 
design arises when we try to compute the standard error of the sample mean. Since we only have data from 
within one replication, the data are dependent, and the usual estimator is biased. 

The method of batch means attempts to solve this problem by dividing the output data from one repli­
cation (after appropriate deletion) into a few large batches and then treating the means of these batches as if 
they were independent When the raw output data after deletion form a continuous-time process, ( Y(t), T0 � 
t :5.  T0 + TE}, such as the length of a queue or the level of inventory, then we form k batches of size m = TE/k 
and compute the batch means as 

- I ijm Y , _ Y(t+T0)dt } m (j-l)m 

for j = l ,  2, . . . , k. In other words, the jth batch mean is just the time-weighted average of the process over 
the time interval [T0 + (j - I )m, T0 + jm), exactly as in Example 1 1 .8. 

When the raw output data after deletion form a discrete-time process, ( Y;, i = d + l ,  d + 2, . . .  , n}, such 
as the customer delays in a queue or the cost per period of an inventory system, then we form k batches of 
size m = (n - d)lk and compute the batch means as 

for j = 1, 2, . . .  , k (assuming k divides n - d eV!:nly, otherwise round down to the nearest integer). That is, the 
batch means are formed as shown here: 

Starting with either continuous-time or discrete-time data, the variance of the sample mean is estimated by 

s2 1 k <i' - YY 
- = -1:-} -k k j:J k - 1  

( 1 1 .39) 
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where Y is the overall sample mean of the data after deletion. As was discussed in Section 1 1 .2, the batch 

means Y;, � . ... , � are not independent; however, if the batch size is sufficiently large, successive batch means 

will be approximately independent, and the variance estimator will be approximately unbiased. 

Unfortunately, there is no widely accepted and relatively simple method for choosing an acceptable 

batch size m (or equivalently choosing a number of batches k). But there are some general guidelines that 

can be culled from the research literature: 

• Schmeiser [1982] found that for a fixed total sample size there is little benefit from dividing it into 

more than k = 30 batches, even if we could do so and still retain independence between the batch 

means. Therefore, there is no rea.Son to consider numbers of batches much greater than 30, no matter 

how much raw data are available. He also found that the performance of the confidence interval, in 

terms of its width and the variability of its width, is poor for fewer than 10 batches. Therefore, a 

number of batches between 10 and 30 should be used in most applications. 

• Although there is typically autocorrelation between batch means at all lags, tbe Iag-1 autocorrelation 

p, =corr(�.�+,) is usually studied to assess the dependence between batch means. When the lag-1 

autocorrelation is nearly 0, tben the batch means are treated as independent. This approach is based on 

the observation that the autocorrelation in many stochastic processes decreases as the lag increases. 

Therefore, all lag autocorrelations should be smaller (in absolute value) than the lag-1 autocorrelation. 

• The lag-1 autocorrelatio!l between batch means can be estimated as described shortly. However, 

the autocorrelation should not be estimated from a small number of batch means (such as the 10 � k � 30 

recommended above); there is bias in tbe autocorrelation estimator. Law and Carson [1979] suggest 

estimating the lag-1 autocorrelation from a large number of batch means based on a smaller batch size 

(perhaps 100 � k � 400). When the autocorrelation between these batch means is approximately 0, then 

the autocorrelation will be even smaller if we rebatch the data to between 10 and 30 batch means based 

on a larger batch size. Hypothesis tests for 0 autocorrelation are available, as described next. 

• If the total sample size is to be clwsen sequentially, say to attain a specified precision, then it is helpful 

to allow the batch size and number of batches to grow as the run length increases. It can be shown that 

a good strategy is to allow the number of batches to increase as the square root of tbe sample size after 

first finding a batch size at which the lag-1 autocorrelation is approximately 0. Although we will not 

discuss this point further, an algorithm based on it can be found in Fishman and Yarberry [1997]; see 

also Steiger and Wilson {2002]. 

Given these insights, we recommend the following general strategy: 

1. Obtain output data from a single replication and delete as appropriate. Recall our guideline: collect-

ing at least 10 times as much data as is deleted. 
· 

2. Form up to k = 400 batches (but at least 100 batches) with the retained data, and compute the batch 

means. Estimate the sample lag-1 autocorrelation of the batch means as 

" r.:::<� -f)(�+l -f) 
p

, = I,�,(� -fi 

3. Check the correlation to see whether it is sufficiently small. 
(a) If p1 � 0.2a , then rebatch the data into 30 � k � 40 batches, and form a confidence interval using 

k 1 degrees of freedom for tbe t distribution and Equation ( 1 1 .39) to estimate tbe variance of f. 

(b) If p1 > 0.2 , then extend the replication by 50% to 100% and go to Step 2. If it is not possible to 

extend the replication, then rebatch the data into approximately k = 10 batches, and form the 

confidence interval, using k'-1 degrees of freedom for the t distribution and Equation (1 1 .39) to 

estimate the variance of Y. 
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4• As an a�itio� check on the confidence interval, examir.e the batch means (at the Jar er or smaller 
batch s1ze) for mdependence, using the following test (S f · 

g 
· 

[1998].) Compute the test statistic 
. ee, or mstance, Alexopoulos and Sella 

: C < Zp then accept tbe independen� of the batch means, where fJ is the Type [ error level of the 
�

_
(such as �-1, 0.05, 0.01). OtherwiSe, extend the replication by 50% to 100% and 0 t Ste 2 

If 1t IS not poss1ble to
_
extend the replication, then rebatCh tbe data into approximately k = 1 t bat�hes �d 

fo� tbe c
th
onfide�ce mten:_al, using k- 1 degrees of freedom for the t distribution and �<'nuation ( I I 39) to 

estlmate e vanance of Y. 
·""� · 

�is 
_
procedure: includin� the final check, is conservative in several respects. First if th 1 - I  1 

non IS substantially negative then we proceed to form the confidence in 
. ' 

. 
e ag . autocorre. a-

correlation tends to make the confidence interval wider than necessary
te������w

an
ay. A do

b
nu

t
nant negat

h
lve 

will cause us to mak · d · · , • error, u not one t at 
. . . e mcorrect eclSlons. The requirement that p, < 0.2 at 100 < k < 400 batche · 

stnng��t and will tend to force us to get more data (and therefore create larger batches) if there i: �pr�� 
of pos

d
1tive d

h
ependence. And finally, the hypothesis test at )he end has a probability of fJ of forcing us �0 get 

more ata w en none are really needed But this se t' · b d · 
· 

is typically much great th th . f 
co� . rva ISm IS Y eslgn; the cost of an incorrect deeision 

er an e cost o some add1tional computer run time. . 
The batch-means approach to confidence-interval estimation is illustrated in the next example. 

Example 11.19 
Rc:consider th� MIG/� sim�lation of Example 1 1 .8, except . that the mean service time is chan ed from 9 5 
mmutes to 7 nunutes

_ 
(unplymg a long-run server utilization of 0.7). Suppose that we want to estima� the stead· _ 

state expected delay m queue, wQ' by a 95% confidence interval To illustrate the method ofb tch 
y 

that one run of the model h bee ad . . 
· a means, assume 

m fro -
as � m e, Slmulatm� 3000 customers after the deletion point. We then form batch 

eans . m k - 100 batches of s1ze m = 30 and estunate tbe lag-1 autocorrelation to be p = 0.346 > 0 2 Th 
we dec1d

� 
� exten? the 

_
simulation to 6000 customers after the deletion point, and again1 we estimate fu� ,a:_

s
j 

autocorr� ation. This estunate, � on k = I 00 batches of size m = 60, is jJ1 = 0.004 < 0.2. 
. . Hav1.ng passed the correlation check, we rebatch the data into k = 30 batches of size m = 200 The po· t 

estimate IS the overall mean 
· m . 

- I 6000 _ Y =-I_� = 9.04 
6000 j=l 

minutes. The variance of Y, computed from the 30 batch means, is 

s2 
k 

Thus, a 95% confidence interval is given by 

30(29) 
0.604 

7.45 = 9.04-2.04(0. 777) � w Q � 9.04 + 2.04(0.777) = 10.63 
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. 
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Thus we assert with 95% confidence that true mean delay in queue, w Q' is between 7 .4� and 10.63 min�tes. 

If th�se results are not sufficiently precise for practical use, the run length should be mcreased to ach1eve 

greater precision. th 1 · h th · 
As a further check on the validity of the confidence interval, we c�n apply e corre atlon ypo es1s 

test. To do so, we compute the test statistic from the k = 30 batches of SIZe m = 200 used to form the confi-

dence interval. This gives 
C = -0.3 1 < 1 .96 = Zo.os 

confirming the lack of correlation at the 0.05 significance level.
_ 
Not!ce that: at this sm

_
all number of �atches, 

the estimated lag- ! autocorrelation appears to be slightly
_ 
negative, 11lustratmg our pomt about the d1fficulty 

of estimating correlation with small numbers of observatiOns. 

1 1 .5.6 Quantiles 

Constructing confidence intervals for quantile estimates in a steady-state simulation can be tricky, e�pecially 

· · · · ch as L (t) the number of customers m queue 
if the output process of interest IS a contmuous-tlme process, su Q ' 

at time t In this section we outline the main issues. . 

Tabng the easier c�se first, suppose that the output process from a single _replication ( afte� appropnate 

deletion of initial data) is yd+l '  . . •  , Yn. To be concrete, Y; might be the _delay m queue ?f the tth customer. 

Then the point estimate of the pth quantile can be obtained as before, e1ther from the histogram: �e d��a 

or from the sorted values. Of course, only the data after the deletion point ar� used
_
- Suppos� we 11!_ :r

e 
:�� 

· d 1 t e· b th quantile estimate from the rth. Then the R quanule esumates, e., . . .  , e •. 
cattons an e , e e . . 
pendent and identically distributed. Theu average IS . I f .  e. = - ,�_}; R ;=' 

It can be used as the point estimator of e; and an approximate confidence interval is 

. s 
e.± tai2.R·l .JR 

where $2 is the usual sample variance of 8, . · . , 8 •· 

. What i� only a single replication is obtained? Then �he sam� reasoning applies i� we le� 0; be the q�:� 
tile estimate from within the ith batch of data. This reqmres sortmg the da�, or �ormmg � histogram, Wit . 

each batch. If the batches are large enough, then these within-batch quantile estimates w1ll also be approXI-

mately i.i.d. · h thod ply However 
When we 'have a continuous-time output process, then, in princ1ple, t e same me . 

s ap · ' 
we must be careful not to transform the data in a way that changes the proble�. In particular, v:e canno��:� 
form batch means-as we have done throughout this chapter-and then estimate �e quantile

_ 
from 

batch means. The p quantile of the batch means of LQ(t) is not the same as the p qu�nttle of LQ(t) 1tself. �;us, 

the quantile point estimate must be formed from the his
_
togram o� th� raw data-either from each run, I we 

make replications, or within each batch, if we make a smgle rephcauon. 

1 1 .6 SUMMARY 

This cha ter emphasized the idea that a stochastic discrete-event simul�tion i� a statistical experiment. 
Therefor�, before sound conclusions can be drawn on the basis of the s1mulat1on-generated output data, 
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a proper statistical analysis is required. The purpose of the simulation experiment is to obtain estimates of 
the performance measures of the system under study. The purpose of the statistical analysis is to acquire 
some assurance that these estimates are sufficiently preci$e for the proposed use of the model. 

A distinction was made between terminating simulations and steady-state simulations. Steady-state 
simulation output data are more difficult to analyze, because the simulation analyst must address the problem 
of initial conditions and the choice of run length. Some suggestions were given regarding these problems, 
but unfortunately no simple, complete, _and satisfactory solution exists. Nevertheless, simulation analysts 
should be aware of the potential problems, and of the possible solutions-namely, deletion of data and 
increasing of the run length. More advanced statistical techniques (not discussed in this text) are given in 
Alexopoulos and Seila [1998], Bratley, Fox, and Schrage [1996],.and Law and Kelton [2000]. 

The statistical precision of point estimators can be measured by a standard-error estimate or by a confi­
dence interval. The method of independent replications was emphasized. With this method, the simulation 
analyst generates statistically independent observations, and thus standard statistical methods can be 
employed. For steady-state simulations, the method of batch means was also discussed. 

The main point is that simulation output data contain some amount of random variability; without some 
assessment of its size, the point estimates cannot be used with- any degree of reliability. 
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EXERCISES 

1. Suppose that, in Example 1 1 . 14, the simulation analyst decided to investigate the bias by using batch 
means over a batching interval of 2000 minutes. By definition, a batch mean for the interval [(j -I) 2000, 
j (2000)) is defined by 

Y -
1 - f j(2000) L (t) dt 

J 2000 Juc1>2000 Q 

(a) Show algebraically that such a batch mean can be obtained from two adjacent batch means over the 
two halves of the interval 

(b) Compute the seven averaged batch means for the intervals [0, 2000), [2000, 4000), . . .  for the MIG/I 
simulation. Use the data (f . .  ) in Table 1 1 .6 (ignoring f.15 = 8.76). 

(c) Draw plots of the type used in Figures 1 1 .4 and 1 1 .5. Does it still appear that deletion of the data 
over [0, 2000) (the first "new" batch mean) is sufficient to remove most of the point-estimator 
bias? 

2. Suppose, in Example 1 1 .14, that the simulation analyst could only afford to run 5 independent replica­
tions (instead of 1 0). Use the batch means in Ta�le 1 1.5 for replications 1 to 5 to compute a 95% 
confidence interval for mean queue length LQ. Investigate deletion of initial data. Compare the results 
from using 5 replications with those from using 10 replications. 

3. In Example 1 1.7, suppose that management desired 95% confidence in the estimate of mean system 
. time w and that the error allowed was e = 0.4 minute. Using the same initial sample of size R0 = 4 (given 
in Table 1 1 . 1 ), figure out the required total sample size. 

4. Simulate the dump-truck problem in Example 3:4. At first, make the run length TE 40 hours. Make 
four independent replications. Compute a 90% confidence interval for mean cycle time, where a cycle 
time for a given truck is the time between its successive arrivals to the loader. Investigate the effect of 
different initial conditions (all trucks initially at the loader queue, versus all at the scale, versus all trav­
eling, versus the trucks distributed throughout the system in some manner). 

5. Consider an (M, L) inventory system, in which the procurement quantity, Q, is defined by 

-{M- l iff < L  
Q - 0 if l ?. L  

where l is the level of inventory o n  hand plus on order at the end of a month, M is the maximum inven· 
tory level, and L is the reorder point M and L are under management control, so the pair (M, L) is called 
the inventory policy. Under certain conditions, the analytical solution of such a model is possible, but 

the computational effort can be prohibitive. Use simulation to investigate an (M, L) inventory system 
with the following properties: The inventory status is checked at the end of each month. Backordering 
is allowed at a cost of $4 per item short per month. When an order arrives, it will first be used to relieve 
the backorder. The lead time is given by a uniform distribution on the interval (0.25, 1.25) months. Let 
the beginning inventory level stand at 50 units, with no orders outstanding. Let the holding cost be $1 

per unit in inventory per month. Assume that the inventory position is reviewed each month. If an order 
is placed, its cost is $60 + $5Q, where $60 is the ordering cost and $5 is the cost of each item. The time 
between demands is exponentially distributed with a mean of 1/15 month. The sizes of the demands fol-
low this distribution: 

MODEL 

Demand Probability 

1 
2 
3 
4 

In 
l /4 
1/8 
1/8 

(a) Make four independent replications, each of run length 100 months preceded by a 12-month 
initialization period, for the (M, L) = (50, 30) policy. Estimate long-run mean monthly cost with a 
90% confidence interval. 

· 

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean 
monthly cost within $5. 

· · 

6. Reconsider Exercise 6, except that, if the inventory level at a monthly review is zero or negative, a rush 
order for Q units is placed. The cost for a rush order is $120+$12Q, where $120 is the ordering cost and 
$12 is the cost of each item. The lead time for a rush order is given by a uniform distribution on the 
interval (0.10, 0.25) months. 
(a) Make four independent replications for the (M, L) policy, and estimate lo�g��n mean monthly cost 

with a 90% confidence interval. · 
. . 

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean 
monthly cost within $5. 

7. Suppose that the items in Exercise 6 are perishable, with a selling price given by thefollowing data: 

On the Shelf(Months) 

0- 1 
1 -2 
>2 

Selling Price 

$10 
5 
0 

Thus, any item that has been on the shelf greater than 2 months cannot be sold. The age is measured at 
the time the demand occurs. If an item is outdated, it is discarded, and the next item is brought forward. 
Simulate the system for 100 months. 

(a) Make four independent replications for the (M, L) = (50, 30) pOlicy, and estimate long-run mean 
monthly cost with a 90% confidence interval. . 

(b) ·Using the results of part (a), estimate the total number of replications needed to estimate mean 
monthly cost within $5. 

At first, assume that all the items in the beginninginventory are fresh. Is tbis a good assumption? What 
effect does this "all-fresh" assumption have on the estimates of long- run mean monthly cost? What can 
be done to improve these estimates? Carry out a complete analysis. 

8. Consider the following inventory system: 

(a) Whenever the inventory level falls to or below 10 units, an order is placed. Only one order can be 
outstanding at a time. 

(b) The size of each order is Q; Maintaining an inventory costs $0.50 per day per item in inventory. 
Placing an order incurs a fixed cost, $10.00. 

(c) Lead time is distributed in ac�ordance with a discrete uniform distribution between zero and 5 days. 
(d) If a demand occurs during a period when the inventory level is zero, the sale is lost at a cost of $2.00 

per unit. 
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(e) The number of customers each day is given by the following distribution: 

Number of Customers per Day 

l 
2 
3 
4 

Probability 

0.23 
0.41 
0.22 
0.14 

(f) The demand on the part of each customer is Poisson distributed with a mean of 3 units. 
(g) For simplicity, assume that an·demands occur at noon and that all orders are placed immediately 

thereafter. 

Assume further that orders are received at 5:00 P.M., or after the demar.d that occurred on that day. 
Consider the poiicy having Q = 20 .. Make five independent replications, each of length 100 days, and 
compute a 90% confidence interval for long-run mean daily cost. Investigate the effect of initial inven­
tory level and existence of an outstanding order on the estimate of mean daily cost. Begin with an initial 
inventory of Q + I 0 and no outs.tanding orders. 

9. A store selling Mother's Day cards must decide 6 months in advance on the number of cards to stock. 
Reordering is not allowed. Cards cost $0.45 and sell for $1 .25. Any .cards not sold by Mother's Day go 
on sale for $0.50 for 2 weeks. However, sales of the remaining cards is probabilistic in nature accord­
ing to the following distribution: 

32% of the time, all cards remaining get sold. 

40% of the time, 80% of all cards remaining are sold. 

28% of the time, 60% of all cards remaining are sold. 

Any cards left after 2 weeks are sold for $0.25. The card-shop owner is not sure how many cards can be 
sold, but thinks it is somewhere (i.e., uniformly distributed) between 200 and 400. Suppose that the 
card-shop owner decides to order 300 cards. Estimate the expected total profit with an error of at most 
$5.00. (Hint: Make three or four initial replications. Use these data to estimate the total sample size 
needed..Each replication consists of one Mother's Day.) 

· 

10. A very large mining operation has decided to control the inventory of high-pressure piping by a 
"periodic review, order up to M" policy, where M is a target level. The annual demand for this piping is 
normally distri�uted, with mean 600 and variance 800. This demand occurs fairly uniformly over 
the year. The lead time for resupply is Erlang distributed of order k = 2 with its mean at 2 months. 
The cost of each unit is $400. The inventory carrying charge, as a proportion of item cost on an annual 
basis, is expected to fluctuate normally about the mean 0.25 (simple interest), with a standard deviation 
of 0.01. The cost of making a review and placing an order is $200, and the cost of a backorder is 
estimated to be $100 per unit backordered. Suppose that the inventory level is reviewed every 2 months, 
and let M = 337. 

(a) Make five independent replications, each of run length 100 months, to estimate long-run mean 
monthly cost by means of a 90% confidence interval: 

· · 

(b) Investigate the effects of initial conditions. Calculate an appropriate number of monthly observa­
tions to delete to reduce initialization bias to a negligible level. 
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11. Consider some number, say N, of MIMI! queues in series. The MIMI! queue, described in Section 6.4, 
has Poisson arrivals at some rate A customers per hour, exponentially distributed service times with 
mean 1/p, and a single server. (Recall that "Poisson arrivals" means that interarrjval times are exponen­
-tially distributed.) By MIMil queues in series, it is meant that, upon completion of seniice at a given 
server, a customer joins a waiting line for the next server. The system can be shown as follows: 

All service times are exponentially distributed with mean lip, and the capacity of each waiting lipe is 
assumed to be unlimited. Assume that A =  8 customers per hour and lip. 0.1  hour. The measure of 
performance is response time, which is defined to be the total time a customer is in the system. 

(a) By making appropriate simulation runs, compare the initialization bias for N = I (i.e., one MIMI! 
queue) to N =  2 (i.e., two MIMI! queues in series). Start each system with all servers idle and no 
customers present. The purpose of the simulation is to estimate mean response time. 

(b) Investigate the initialization bias as a function of N, for N = I ,  2, 3, 4, and 5. 
(c) Draw some general conclusions concerning initialization bias for "large" queueing systems when at 

time 0 the system is assumed to be empty and idle. 

12. Jobs enter a job shop in random ·fashion according to a Poisson process at a stationary overall rate, two 
every 8-hour day. The jobs are of four types. They flow from work station to work station in a fixed 
order, depending on type, as shown next. The proportions of each type are also shown. 

Type Flow through Stations Proportion 

I l ,  2, 3, 4 0.4 
2 1, 3, 4 0.3 
3 2, 4, 3 0.2 
4 1 , 4  0. 1 

Processing times per job at each station depend on type, but all times are (approximately) normally 
distributed with mean and s.d. (in hours) as follows: 

Station 

Type 1 2 3 4 

1 (20, 3) (30, 5) ('75, 4) (20, 3) 
2 (18, 2) (60, 5) (10, I )  
3 (20, 2) (50, 8) ( 10, I)  
4 (30, 5) ( 15, 2) 

Station i will have c; workers (i = 1, 2, 3, 4). Each job occupies one worker at a station for the duration 
of a processing time. All jobs are processed on a first-in-fust-out basis, and all queues for waiting jobs 
are assumed to have unlimited capacity. Simulate the system for 800 hours, preceded by a 200-hour 
initialization period. Assume that c1 = 8, c2 = 8, c3 20, c4 = 7. Based on R = 5 replications, compute a 

· 97.5% confidence interval for average worker utilization at each of the four stations. Also, compute a 
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95% confidence interval for mean total response time for each job type, where a total response time is 
the total time that a job spends in the shop. 

13. Change Exercise 12 to give priority at each station to the jobs by type. Type I jobs have priority over 
type 2, type 2 over type 3, and type 3 over type 4. Use 800 hours as run length, 200 hours as initialization 
period, and R = 5 replications. Compute four 97.5% confidence intervals for mean total response time 
by type. Also, run the model without priorities and compute the same confidence intervals. Discuss the 
trade-offs when usingjirst in, first out versus a priority system. 

14. Consider a single-server queue with Poisson arrivals at rate A.= 10.82 per minute and normally distributed 
service times with mean 5.1 seconds and variance 0.98 seconds2• It is desired to estimate the mean time in 
the system for a customer who, upon arrival, finds i other customers in the system-that is, to estimate 

W; =E<W lN= i) for i = 0, 1, 2, . . .  

where W is a typical system time and N is the number of customers found by an arrival. For example, 

w0 is the mean system time for those customers who find the system empty, w1 is the mean system time 

for those customers who find one other customer present upon arrival, and so on. The estimate w1 of w1 

will be a sample mean of system times taken over all arrivals who find i in the system. Plot w1 vs i. 

Hypothesize and attempt to verify a relation betw�n w; and i. 

(a) Simulate for a 10-hour period with empty and idle initial conditions. 

(b) Simulate for a 1 0-hour. period after an initialization of one hour. Are there observable differences in 

the results of (a) and (b)'? . 
(c) Repeat parts (a) and (b) with service times exponentially distributed with mean 5.1 seconds. 

(d) Repeat parts (a) and (b) with deterministic service times equal to 5.1 seconds. 

(e) Find the number of replications needed to estimate w0, w1, • • •  , w6 with a standard error for each of 

at most 3 seconds. Repeat parts (a)-( d), but using this number of replications. 

15. At Smalltown U., there is one specialized graphics workstation for student use located across campus 

from the computer center. At 2:00 A.M. one day, six students arrive at the workstation to complete an 

assignment. A student uses the workstation for 10 ± 8 minutes, then leaves to go to the computer center 

to pick up graphics output. There is a 25% chance that the run will be OK and the student will go to 

sleep. If it is not OK, the student returns to the workstation and waits until it becomes free. The roundtrip 

from workstation to computer center and back takes 30 ± 5 minutes. The computer becomes inaccessible 

at 5:00 A.M. Estimate the probability, p, that at least five of the six students will finish their: assignment in 

the 3-hour period. First, makeR =  10 replications, and compute a 95% confidence interval for p. Next, 

work out the number of replications needed to estimate p within ±.02, and make this number of repli· 

cations. Recompute the 95% confidence interval for p. 

16. Four workers are spaced evenly along a conveyor belt. Items needing processing arrive according to a 

Poisson process at the rate 2 per minute. Processing time is exponentially distributed, with mean 1.6 

minutes. If a worker becomes idle, then he or she takes the first item to come by on the conveyor. If a 

worker is busy when an item comes by, that item moves down the conveyor to the next worker, taking ' 

20 seconds between two successive workers. When a worker finishes processing an item, the item leaves 

the system. If an item passes by the last worker, it is recirculated on a loop conveyor and will return to 

the first worker after 5 minutes. 

Management is interested in having a balanced workload-that is, management would like worker 

utilizations to be equal. Let pi be the long-run utilization of worker i, and let p be the average utiliza­

tion of all workers. Thus, p = (p1 + p2 + p3 + p,J/4. According to queueing theory, p can be estimated 

' . . • -·�···"· 'Y";.•:-
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by P = Ale J1, where 1 = 2 arrivals per minute c = 4 servers and lip - 1 6 · · th · 

time Thus p - M ·11 ('114)1 6 0 8 
' ' - · mmutes IS e mean serv1ce 

· • - c,., · = · ; so, on the average, a worker will be busy 80% of the time. 
(a) Ma� 5 independent replications, e

_
ach of run length 40 hours preceded by a one hour initialization 

b
pe
al
nod. Compute 95% confidence mtervals for p, and p4. Draw conclusions concerning workload 
ance. 

(b) ���;:�e:e�:g5 
��lications, test the hypothes!s Ho : PI ;= 0.8 at a level of significance a= 0.05. 

. . . ? . _
1s nnportant to detect, detenrune the probability that such a deviation is detected 

I? add111on, 1f 11 1s destred to detect such a deviation with probability at least 0.9 figure 0 1 th 1 · 

( ) R
slze needed to do so. (See any basic statistics textbook for guidance on hypoth;sis testin� ) 

e samp e 

c epeat (b) for H0 : p4 = 0.8. 
· 

(d) From tbe results of (a)-( c), draw conclusions for management about the balancing of workloads. 
17. At a small rock qu�, a sin�le power shovel dumps a scoop full of rocks at the loadin area a roxi­

�at�ly every 
_
10 mmutes, w�th the actual time between scoops modeled well as bein

g 
ex n��tiall 

��
s:

�::�: ;��h::s:!:�
n
:;:

·
p��

ee scoops of rocks make a pile; whenever one �ile � rocks i� 
;!

e 
;;:ro��o:��

n
;�\:U�::: �=0� :�:��

3 
f:�:)�:k

ti:eb It �
es appro

th
ximately 2j minutes 

nnloaded and the . e nven to e processmg plant 
. 

• ret� to. load1?g area. The actual time to do these things (altogether) is modeled weli 
as bemg normally distributed, With mean 27 minutes and standard deviation 12 minutes. 
When �e true� ret�ms to �e load�g area, it will load and transport another pile if one is waitin to be 
loaded, ot�erw1se, 1t stay

_
s tdle unttl another pile is ready. For safety reasons, no loading of th; truck 

occurs until a complete pde (all three scoops) is waiting. 
The quarry at · thi 
th tru ks 

0:� es 10 s manner for an 8-hour day. We are interested in estimating the utilization of 
e c an t e expected number of piles waiting to be transported if an additional truck is purchased. 

18. Big Bruin, Inc. plans to open a small grocery store in Juneberry NC Th h 
out lanes w"th 1 be" 

• · ey expect to ave two check-
. : h 

1 one ane mg reserved for customers paying with cash .. The question they want to 
answer IS. ow many grocery carts do they need? 

D
�
ring business hours (6 A.M.-8 P.M.), cash-paying customers are expected to arrive at 8 per hour All 0 

od
er

1
customers are �xpect� �o arrive at 9 per hour. The time between arrivals of each type c� be 

m e ed as exponenttally d1stnbuted random variables. 
Th� ti

_
me spen� shopping is modeled as normally distributed, with mean 40 minutes and s�dard 

d�vt�t!On lO �mutes. The time required to check out after shopping can be modeled as to norman 1
:)
1ribut

� 
V:'th (a) mean 4 minutes and standard deviation l minute for cash-paying !stomer: 

mean IDJnutes and standard deviation l minute for all other customers. 
· ' 

We will assu� that every customer uses a shopping cart and that a customer who finishes sho · 
lel!.ves the cart m the store so that it is available immediately for another customer. We will also 

ppmg 

that any customer who cannot obtain a cart immediately leaves the store, disgusted. 
assume 

!he primary performance measures of interest to Big Bruin are the expected number of shopping carts 
10 use an

b 
d
_ 
the expected number of customers lost per day. Recommend a number of carts for the store 

remem enng that carts are expensive, but so are lost customers. 
' 

19. Develop a �imulation model of the total time in the system for an MIMII queue with service rate 11 = 1 ·  
therefore, the traffic intensity is p - A/11 1 th · 1 · · 

r ' 
- r , . e amva rate. Use the stmulal!on, in conjunction with 
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the technique of plotting ensemble averages, to stUdy the effect of traffic intensity on initialization 
bias when the queue starts empty. Specifically, see how the initialization phase T0 changes for 
p = 0.5, 0.7, 0.8, 0.9, 0.95. 

20. The average waiting data from 10 replication of a queuing system are 

Replication Average Waiting Time 

1 .77 
2 2.50 
3 1 .87 
4 3.22 
5 3.00 
6 2.1 1 
7 3.12 
8 .  3.49 
9 2.39 

l O  3.49 

Detennine 90% confidence interval for the average waiting time. 

2L Consider Example 6. If it is required to estimate the average waiting time with an absolute error of 0.25 

and confidence level of 90%, determine the nnmber of replications required. 

22. In a queuing simulation with 20 replications, 90% confidence interval for average queue length is found 
to be in the range 1 .72-2.41 .  Determine the probability that the average queue length is less than 2.75. 

23. Collect papers dealing with simulation output analysis and study the tools used. 

.. 1 2  
Comparison and Evaluation of 
Alternative System Designs 

Chapter l l  dealt with the precise estimation of a measure of performance for one system. This chapter 
discusses a few of the many statistical methods that can be used to compare two or more system designs on 
the basis of some performance measure. One of the most importarit uses of simulation is the comparison of 
alternative system designs. Because the observations of the response variables contain random variation, 
statistical analysis is needed to discover whether any observed differences are due to differences in design or 
mere! y to the random fluctuation inherent in the models. 

The comparison of two system designs is computationally easier than the simultaneous comparison of 
multiple (more than two) system designs. Section 12.1 .discusses the case of two system designs, using two 
possible statistical teclmiques: independent sampling and correlated sampling. Correlated sampling is also 
known as the common random numbers (CRN) technique; simply put, the same random numbers are used 
to simulate both alternative system designs. If implemented correctly, CRN usually reduces the variance of 
the estimated difference of the performance measures and thus can provide, for a given sample size, more 
precise estimates of the mean difference than can independent sampling. Section 12.2 extends the statistical 
�echniques of Section 12. 1  to the comparison of multiple (more than two) system designs; using the 
Bonferroni approach to confidence-interval estimation, screening, and selecting the best The Bonferroni 
approach is limited to twenty or fewer system designs, but Section 12.3 describes how a large number of 
complex system designs can sometimes be represented by a simpler metamodel. Finally, for comparison and 
evaluation of a very large number of syst�m designs that are related in a less structured way, Section 1 2.4 
presents optimization via simulation. 

379 
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1 2. 1  COMPARISON OF TWO SYSTEM DESIGNS 

Suppose that a simulation analyst desires to compare two possible configurations of a system. In a queueing 
system, perhaps two possible queue disciplines, or two possible sets of servers, are to be compared. In a 
supply-chain inventory system, perhaps two possible ordering policies will be compared. A job shop could 
have two possible scheduling rules; a production system could have in-process inventory buffers of various 
capacities. Many other examples of alternative system designs can be provided. 

The method of replications will be used to analyze the output data. The mean performance meruiure for 
system i will be denoted by £W = 1 ,2). If it is a steady-state simulation, it will be assumed that deletion of data, 
or other appropriate techniques, have been used to ensure that the point estimators are approximately unbiased 
estimators of the mean performance measures, 8r The goal of the simulation experiments is to obtain point and 
interval estimates of the difference in mean performance, namely 81 - 82• Three methods of computing a 
confidence interval for 81 - 82 will be discussed, but first an example and a general framework will be given. 

Example 12.1 
A vehicle-safety inspection station performs three jobs: (l) brake check, (2) headlight check, and (3) steer­
ing check. The present system has three stalls in parallel; that is, a vehicle enters a stall, where one attendant 
makes all three inspections. The current system is illustrated in Figure 12.l(a). Using data from the existing 
system, it has been assumed that arrivals occur completely at random (i.e., according to a Poisson process) 
at an average rate of 9.5 per hour and that the times for a brake check, a headlight check, and a steering check 
are normally distributed with means of 6.5, 6, and 5.5 minutes, respectively, all having standard deviations 
of approximately 0.5 minute. There is no limit on the queue of waiting vehicles. 

An alternative system design is shown in Figure 12. 1 (b). Each attendant will specialize in a single task, 
and each vehicle will pass through three work stations in series. No space is allowed for vehicles between 
the brake and headlight check, or between the headlight and steering check. Therefore, a vehicle in the brake 
or headlight check must move to the next attendant, and a vehicle in the steering check must exit before the 
next vehicle can move ahead. The increased specialization of the inspectors suggests that mean inspection 
times for each type of check will decrease by 10%: to 5.85, 5.4, and 4.95 minutes, respectively, for the brake, 
headlight, and steering inspections. The Safety Inspection Council has decided to compare the two systems 
on the basis of mean response time per vehicle, where a response time is defmed as the total time from a 
vehicle arrival until its departure from the system. 

Cars arrive 

Cari; arrive 

Brake 
inspection 

Thiee attendants 

(a) 

Headlight 
check 

(b) 

Steering 
check 

Figure 1 2.1  Vehicle safety inspection station and a possible alternative design. 

� ;·, ..... , .... -.... , .... 
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When c��paring two syste�s, such as those in Example 12.1, the simulation analyst must decide on a run _len�th T E for each _model _(! = I '

. 
2), and a number of replications R, to be made of each model. From replicatiOn r of system 1, the stmulatiOn analyst obtains an estimate y of the mean rf 8 I E 1 1 ri pe orrnance measure r n

. 
��mp e 2. 1 ,  Y,; would be the �verage response time observed during replication r for system ; (r = 1 : . . .  , R,, t - 1 , 2). The data, together wtth the two summary measures the sample means y-

a d  th 1 0 s' 0 0 0 ' 
·
i '  n e samp e van�nces 

. 
, , are exhtbtted m Table 12. 1 .  Assuming that the estimators y . are (at least ap

· 
proximately) unbtased, tt follows that " 

81 = E(Y), r = I , . . .  , Rl ;  82 = E(Y,2), r = I, . . .  , R2 

. 
In Example 

_
12. 1 , �e Safety Inspection Council is interested in a comparison of the two system destgns, so the stmulation analyst decides to compute a confidence interval for 8 _ (} th di"" between th t rf 

1 2' · e . uerence 

, 
e w_o mean pe �rmance measures. The confidence interval is used to answer two questions: (_I)  �ov. lar�e ts the mean dtfference, and how precise is the estimator of mean difference? (2) Is there a stgmfic�nt dtfference between the two systems? This second question will lead to one of three possible conclusiOns: 

1. If the con�dence inte�val (c.i.) for 81 - 82 is totally to the left of zero, as shown in Figure l22(a), then there ts strong evtdence for the hypothesis that 8 - (} < 0 or equivalently 8 < D I 2 • I u2• 

Table 1 2.1 Simulation Output Data and Summary Measures for 
Comparing Two Systems 

Replication 

System 1 2 . . .  

I r, , r,, . . .  

2 yl2 Y,, . . . 

0 

f. , - Y., 

0 

0 

Sample 
R, Mean 

YR, I  l', 
-

YR22 l', 

(a) 

f., - Y., 
(b) 

f., - Y., 
(c) 

Sample 
Variance 

s' I 
s' 2 

Figure 1 2.2 Three confidence intervals that can occur in the comparing of two systems. 
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In Example 12. 1, 81 < 82 implies that the mean response time for system I (the original system) is smaller 
than for system 2 (the alternative system). 

2. If the c.i. for 81 - 82 is totally to the right of zero, as shown in Figure 12.2(b), then there is strong 
evidence that 8, - 82 > 0, or equivalently, 8, > 82. 

In Example 12. 1, 81 > 82 can be interpreted as system 2 being better than system 1, in the sense that system 
2 has smaller mean response time. 

3. If the c.i. for 81 - 82 contains zero, then, in the data at hand, there is no strong statistical evidence 
that one system design is better than the other. 

Some statistics textbooks say that the weak conclusion 81 82 can be drawn, but such statements can be 
misleading. A "weak" conclusion is often no conclusion at all. Most likely, if enough additional data were 
collected (i.e., R; increased), the c.i. would s}lift, and definitely shrink in length, until conclusion 1 or 2 would 
be drawn. In addition to one of these three conclusions, the confidence interval provides a measure of the 
precision of the estimator of 8, - 82' 

In this chapter, a two-sided 100(1-a)% c.i. for 81 82 will always be of the form 

- -
f.1 -Y.2 ± t.n.vs.e.(Y.l -f.2) 

where f; is the sample mean performance measure for system i over all replications 

1 R, Y., = -_LY. 
R, .-.1 n 

(12. 1)  

(12.2) 

and v is the degrees of freedom associated with the variance estimator, tafl,v is the 100(1 - a/2) percentage 
point of a t distribution with v degrees of freedom, and s.e.(·) represents the standard error of the specified 
point estimator. To obtain the standard error and the degrees of freedom, the analyst uses one of three 
statistical techniques. All three techniques assume that the basic data, Yri of Table 12.1 ,  are approximately 
normally distributed. This assumption is reasonable provided that each Y,; is itself a sample mean of obser­
vations from replication r (which is indeed the situation in Example 12.1 ). 

By design of the simulation experiment, Y,1(r = I, . . . , R1) are independently and identically distributed 
(i.i.d.) with mean 81 and variance a� (say). Similarly, Y rz(r = l, . . .  , �) are i.i.d. with mean 82 and variance 
ai (say). The three techniques for computing the confidence interval in (12. 1  ), which are based on three 
different sets of ·assumptions, are discussed in the following subsectious. 

There is an important distinction between statistically significant diffe�ences and practically significant 
differences� sEtems performance. Statistical �ficance answers the following question: Is the observed 
difference rl-r2 larger than the variability in rl- r2 ? This question can be restated as: Have we collected 
enough data to be confident that the difference we observed is real, or just chance? Conclusions I and 2 
imply a statistically significant difference, while Conclusion 3 implies that the observed difference is not 
statistically significant (even though the systems may indeed be different). Statistical significance is a function 
of the simulation experiment and the output data. 

Practical significance answers the following question: Is the true difference 81 - 82 1arge enough to matter 
for the decision we need to malre1 In Example 12. 1, we may reach the conclusion that 81 > 82 and decide 
that system 2 is better (smaller expected response time). However, if the actual difference 81 - 82 is very 
small-say, small enough that a customer would not notice the improvement- then it might not be worth 
the cost to replace system 1 . with system 2. Practical significance is a function of the actual difference 
between the systems and is independent of the simulation experiment. 

COMPARISON AND EVAlUATION OF AlTERNATIVE SYSTEM DESIGNS 383 

. Confide�:e intervals do not �swer the question of practical significance directly. Instead, they bound ( wtth probabtltty I a) the true dtfference 81 - 02 within the range . 

Whether a difference within these bounds is practically significant depends on the particular problem. 

12.1 .1  Independent Sampling with Equal Variances 

Independent sampling means that different and independent random number streams will be used to simulate 
the

.
rn:o sysu;ms. This implies that all the observations of simulated system I ,  namely { frl, r =  I ,  . . .  , R1}, are 

statlst�cally Independent
_ 

of all the observations of simulated system 2, namely { Yrz, r =.J, . . .  , R2}. By 
Equation ( 12.2) and the mdependence of the replications, the variance of the sample mean, Y, , is given by 

i =  1, 2 

For independent sampling, r,- and f, are statistically independent; hence, 

V(Y:1 -Y.2 ) = V(Y.1)+V(Y.2) 
a2 a2 _L+_l_ 
Rl R;_ 

( 12.3) 

In some cases, it is reasonable to assume that the two variances are equal (but unknown in value)· that · a2 2 Th , IS, 1 = a2 . e data can be used to test ihe hypothesis of equal variances; if rejected, the method of Section 
12.1.2 must be used. In a steady-state simulation, the variance af decreases as the run length T�1 increases; 
there�ore, it �ght be possible to adjust the two run lengths, T�1 and T�1, to achieve at least approximate equaltty of a, and a;. 

If . . 2 2 tt ts reasonable to assume that a, a2 (approximately), a two-sample-t confidence-interval approach can be used. The point estimate of the mean performance difference is 

with 1':, given by Equation (12.2). Next, compute the sample variance for system i by 

1 R, -
S� = -· _L(Y. -Y.i 

t Rl - 1  r=l  n ., 

1 R; 2 -2) _LYri -R,I:, 
r=l 

(12.4) 

(12.5) 

No.te that S,2 is an unbiased estimator of the variance cr:. By assumption, a; = a{= a2 (say), so a pooled 
estunate of a2 is obtained by 

82 = (� - l)S� + (R;_ - l)Si 
P R, +�-2 
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which has V= R1 + R2 2 degrees of freedom. The c.i. for 81 82 is then given by Expression ( 12.1)_ with 
the standard error computed by 

- - HI s.e.(Y - Y  ) = S  - + -., -2 P R, R2 (12.6) 

This standard error is an estimate of the standard deviation of the point estimate, which, by Equation ( 12.3), 
is given by a�l/ R1 + UR2 • 

In some cases, the simulation analyst could have R1 = R2, in which case it is safe to use the c.i. in 
Expression (12. 1) with the standard error taken from Equation (12.6), even if the variances (� and a�) are 
not equal. However, if the variances are unequal and the sample sizes differ, it has been shown that use of 
the two-sample-t c.i. could yield invalid confidence intervals whose true probability of containing 81 - 82 is 
much less than I a. Thus, if there is no evidence that a� = a22 , and if R1 ¢ R2, the approximate procedure 
in the next subsection is recommended. 

1 2. 1 .2 Independent Sampling with Unequal Variances 

If the assumption of equal variances cannot safely be made, an approximate I 00(1 - a )% c.i. for 81 82 can 
be computed as follows. The point estimate and sample variances are computed by Equations ( 12.4) and 
( 12.5). The standard error of the point estimate is given by 

(12.7) 

with degrees of freedom, v, approximated by the expression 

(12.8) 

rounded to an integer. The confidence interval is then given by Expression (12.. 1), using the standard error of 
Equation ( 12.7). A minimum number of replications R1 2: 6 and R2 2: 6 is recommended for this procedure. 

12.1 .3 Common Random Numbers (CRN) 

CRN means that, for each replication, the same random numbers are used to simulate both systems. 
Therefore, R1 and R2 must be equal, say R1 = R2 = R. Thus, for each replication r, the two estimates, Y,1 and 
Y,2• are no longer independent, hot rather are correlated. However, independent streams of random numbers 
are used on different replications, so the pairs (Y,I'fs2) are mutually independent when r ¢ s. (For example, 
in Table 12. 1 ,  the observation r, I is correlated with yl2' but r,l is independent of all other observations.) The 
purpose of using CRN is to induce a positive correlation between Y,1 and Y 1'2 (for each r) and thus to achieve 
a variance reduction in the point estimator of mean difference, �-y2 • In general, this variance is given by 

(12.9) 

where p12 is the correlation between Y,1 and Yr2. [By definition, P12 = cov(Y,., f.2) /a,o; , which does not 
depend on r.] 
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Now compare the variance of Y1-Y2 arising from the use of CRN [Equation (12.9), call it VeRN to the 
variance arising from the use of independent sampling with equal sample sizes [Equation (12.3) with 
R1 = Rz = R, call it �ND]. Notice that 

v - v - 2p,20'10'2 
CRN - IND R ( 12. 10) 

If CRN works as intended, the correlation p12 will be positive; hence, the second term on the right side of 
Equation ( 12.9) will be positive, and, therefore, 

VCRN < �ND 
That is, the variance of the point estimator will be smaller with CRN thim with independent sampling. 
A smaller variance (for the same sample size R) implies that the estimator based on CRN is more precise, 
leading to a shorter confidence interval on the difference, which implies that smaller differences in performance 
can be detected. 

To compute a 100(1 - a)% c.i. with correlated data, first compute the differences 

which, by the definition of CRN, are i.i.d.;. then compute the sample mean difference as 

I �< D=-LD R r=l r 

(Thus, .5 = f1 -Y2.) The sample variance of the differences {D,} is computed as 

(12. 1 1) 

(12. 12) 

( 12. 13) 

which has degrees of �m v= R l.  The 100(1 - a)% c.i. for 81 - 82 is given by Expression (12. 1), with 
the standard error of Y1 -Y2 estimated by 

( 12.14) 

Because SDrJii of Equation ( 12. 14) is an estimate of .jV;;; and Expression ( 12.6) or ( 12.7) is an estimate 
of .,JV;;;;, CRN typically will produce a c.i. that is shorter for a given sample size than the c.i. produced by 
independent sampling if p12 > 0. In fact, the expected length of the c.i. will be shorter with use of CRN if 

p12 > 0. 1 ,  provided R > 10. The larger R is, the smaller p12 can be and still yield a shorter expected length 
[Nelson 1987]. 

For any problem, there are many ways of implementing common random numbers. It is never enough 
to simply use the same seed on the random-number generator(s). Each random number used in one model 
for some pUfP9se should be used for the same purpose in the second model-that is, the use of the random 
numbers must be synchronized. For example, if the ith random number is used to generate a service time at 
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work station 2 for the 5th arrival in model I, the ith random number should be used for the very same purpose 
in model 2. For queueing systems or service facilities, synchronization of the common random numbers 
guarantees that the two systems face identical work loads: both systems face arrivals at the same instants of 
time, and these arrivals demand equal amounts of service. (The actual service times of a given arrival in the 
two models may not be equal; they could be proportional _if the server in one model were faster than the server 
in the other model.) For an inventory system, in comparing of different ordering policies, synchronization 
guarantees that the two systems face identical demand for a given product. For production or reliability 
systems, synchronization guarantees that downtimes for a given machine will occur at exactly the same times 
and" will have identical durations, in the two models. On the other hand, if some aspect of one of the systems 
is totally different from the other system, synchronization could be inappropriate-or even impossible to 
achieve. In summary, those aspects of the two system designs that are sufficiently similar should be simulated 
with common random numbers in such a way that the two models "behave" similarly; but those aspects that 
are totally different should be simulated with independent random numbers. 

Implementation of common "random numbers is model dependent, but certain guidelines can be given 
that will make CRN more likely to yield a positive correlation. The purpose of the guidelines is to ensure 
that synchronization occurs: 

1. Dedicate a random-number stream to a specific purpose, and use as many different streams as 
needed. (Different random-number generators, or widely spaced seeds on the same generator, can be 
used to get two different, nonoverlapping streams.) In addition, assign independently chosen seeds 
to each stream at the beginning of each replication. It is not sufficient to assign seeds at the begin­
ning of the first replication and then let the random-number generator merely continue for the second 
and subsequent replications. If simulation is conducted in this manner, the fust replication will be 
synchronized, but subsequent replications might not be. 

2. For systems (or subsystems) with external arrivals: As each entity enters the system, the next inter­
arrival time is generated, and then immediately all random variables (such as service times, order 
sizes, etc.) needed by the arriving entity and identical in both models are generated in a fixed order 
and stored as attributes of the entity, to be used later as needed. Apply guideline I :  Dedicate one 
random-number stream to these external arrivals and all their attributes. 

3. For systems having an entity performing given activities in a cyclic or repeating fashion, assign a 
random-number stream to this entity. (Example: a machine that cycles between two states: up-down­
up-down-. . . .  Use a dedicated random-number stream to generate the uptimes and downtimes.) 

4. If synchronization is not possible, or if it is inappropriate for some part of the two models, use inde­
pendent streams of random numbers for this subset of random variates. 

Unfortnnately, there is no guarantee that CRN will always induce a positive correlation between com­
parable runs of the two models. It is known that if, for each input random variate X, the estimators Y,1 and 
Y are increasing functions of the random variate X (or both ru:e decreasing functions of X), then p12 will 
b� positive. The intuitive idea is that both models (i.e., both Y,1 and Y,2) respond in the same direction to 
each input random variate, and this results in positive correlation. This increasing or decreasing nature of 
the response variables (called 11Uinotonicity) with respect to the input random variables is known to hold for 
certain queueing systems (such as the GIIG/c queues), when the response variable is customer delay, so 
some evidence exists that common random numbers is a worthwhile technique for queueing simulations. 
(For simple queues, customer delay is an increas'ng function of service times and a decreasing function of 
interarrival times.) Wright and Ramsay [1979] reported a negative correlation for certain inventory simula­
tions: however. In summary, the guidelines recently described should be followed, and some reasonable 
notion that the response variable of interest is a monotonic function of the random input variables should 
be evident. 
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Example 12.1: Continued 

The two inspection systems shown in Figure 12. 1 will be compared by using both independent sampling and 
CRN, in order to illustrate the greater precision of CRN when it works. 

·Each vehicle arriving to be inspected has four input random variables associated with it 

A. interarrival time between vehicles n and n + 1 

s;n brake inspection time for vehicle n in model 1 

s,;21 = headlight inspection time for vehicle n in model } 

s�>l = steering inspection time for vehicle n in model I 

For model 2 (of the proposed system), mean service times are decreased by 10%. When using independent 
sampling, different values of service (and interarrival) times would be generated for models I and 2 by using 
different random numbers. But when using CRN, the random number generator should be used in such a way 
that exactly the same values are generated for A1, A2, A3, . . .  in both models. For service times, however, we 
do not want the same service times in both models, because the mean service·time for model 2 is 10% 
smaller, but we do want strongly correlated service times. There are at least two ways to do this: 

1. Let S�11(i = I, 2, 3; n = I, 2, ... ) be the service times generated for model 1; then use S�0 -O.IE(S�1� )  
as the service times i n  model 2. In words, we take each service time from model I and subtract 10% 
of its true mean. 

2. Recall that normal random variates are usually produced by flfSt generating a standard normal variate 
and then using Equation (8.29) to obtain the correct mean and variance. Therefore, the service times 
for, say, a brake inspection rould be generated by 

( 1 2. 15) 

where Z�'1 is a standard normal variate, <:1 = 0.5 minute, but E(S�'l) = 6.5 minutes for model I and 
E(S�n) = 5.85 minutes ( 10% less) for model 2. The other two inspection times would be generated 
in a similar fashion. To implement (synchronized) common random numbers, the simulation analyst 
would generate identical z;il sequences (i = 1, 2, 3; n = 1, 2, . . . ) in both models and then use the 
appropriate version of Equation (12.15) to generate the inspection times. 

For the synchronized runs, the service times for a vehicle were generated at the instant of arrival (by 
guideline 2) and stored as an attribute of the vehicle, to be used as needed. Runs were also made with non­
synchronized common random numbers, in which case one random number stream was used as needed. 

Table 1 2.2 gives the average response time for each of R = 10 replications, each of run length 1 6  
hours. I t  was assumed that two cars were present a t  time 0 ,  waiting to be inspected. Column 1 gives the 
outputs from model I .  Mode1 2 was run with independent random numbers (column 21) and with common 
random numbers without synchronization (column 2C*) and with synchronization (column 2C). The purpose 
of the simulation is to estimate mean difference in response times for the two systems. 

For the two independent runs (I and 21), it was assumed that the variances were not necessarily equal, 
so the method of Section 1 2. 1 .2 was applied. Sample variances and the standard error were computed by 
Equations ( 1 2.5) and ( 1 �.7), yielding 

and 

s: = 1 18.9, 

(y- y-
) 

1 1 8.9
+

244.3 
= 6.03 s.e . . 1 - ,21 = 

10 10 
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Table 1 2.2 Comparison of System Designs for the Vehicle-Safety Inspection System 

Observed 
Average Response Time for Model Differences 

Replication I 21 2C* 2C D1.2C* DI�C 
I 29.59 51 .62 56.47 29.55 -26.88 0.04 

2 23.49 5 1 .91  33.34 24.26 -9.85 -o.77 

3 25.68 45.27 35.82 26.03 -10.14 -Q.35 

4 41.09 30.85 34.29 42.64 6.80 -1.55 

5 33.84 56.15 39.07 32.45 -5.23 1.39 

6 39.57 28.82 32.07 37.91 7.50 1.66 

7 37.04 41 .30 51.64 36.48 -14.00 0.56 

8 40.20 73.06 41.41 41 .24 -1.21 -1.04 

9 61 .82 23.00 48.29 60.59 13.53 1.23 

10 44.00 28.44 22.44 41 .49 21.56 2.51 

Sample mean 37.63 43.04 -1.85 0.37 

Sample variance 1 1 8.90 244.33 208.94 1.74 

Standard error 6.03 4.57 0.42 

with degrees of freedom, v, equal to 17, as given by Equation ( 12.8). The point estimate is Y1 -Y21 = -5.4 
minutes, and a 95% c.i. [Expression (12.1)] is given by 

-5.4 ± 2.1 1(6.03) 

or 

(12. 16) 

.The 95% confidence interval in Inequality (12.16) contains zero, which indicates that there is no strong 
evidence that the observed difference, -5.4 minutes, is due to anything other than random variation in the output 
data. In other words, it is not statistically significant Thus, if the simulation analyst had decided to use inde­
pendent sampling, no strong conclusion would be possible, because the estimate of 81 - 82 is quite imprecise. 

For the two sets of correlated runs (1 and 2C*, and I and 2C), the observations are paired and analyzed 
as given in Equations (12. 1 1) through ( 12. 14). The point estimate when not synchronizing the random 
numbers is given by Equation (12.12) as 

D = -1.9 minutes 

the sample variance by S� (with v = 9 degrees of freedom), and the standard error by s.e.(D) = 4.6. Thus, a 
95% c.i. for the true mean difference in response times, as given by expression (12.1), is 

-1.9 ± 2.26( 4.6) 

or 

( 12.17) 
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Again, no strong conclusion is possible, because the confidence interval contains zero. Notice, however, 
that the estimate of 81 - 82 is slightly more precise than that in Inequality ( 12.16), because the length of the 
interval is smaller. 

When compfete synchronization of the random numbers was used, in run 2C, the point estimate of the 
mean difference in response times was 

D = 0.4 minute 

the sample variance was S� = 1 .7 (with v = 9 degrees of freedom), and the standard error was s.e.(D) = 0.4. 
A 95% c.i. for the true mean difference is given by 

(12.18) 

The confidence interval in Inequality (12. 1 8) again contains zero, but it is considerably shorter than the 
previous two intervals. This greater precision in the estimation of (}1 - (}2 is due to the use of synchronized 
common random numbers. The short length of the interval in Inequality (12. 18) suggests that the true 
difference, 81 - 82, is close to zero. In fact, the upper bound, 1 .30, indicates that system 2 is at most 1.30 
minutes faster, in expectation. If such a small difference is not practically significant, then ihere is no need 
to look further into which system is truly better. 

· 

As is seen by comparing the confidence intervals in inequalities ( 12. 16), (12. 17), and (12. 18), the 
width of the confidence interval is reduced by 18% when using nonsynchronized common random numbers, 
by 9l% when using common random numbers with full synchronization. Comparing the estimated variance 
of D when using synchronized common random numbers with the variance of �-� when using 
independent sampling shows a variance reduction of 99.5%, which means that, to achieve precision com­
parable to that achieved by CRN, a total of approximately R = 209 independent replications would have 
to be made. 

The next few examples show how common random numbers can be implemented in other contexts. 

Example 12.2: The Dump-Truck Problem, Revisited 
Consider Example 3.4 (the dump-truck problem), shown in Figure· 3.7. Each of the trucks repeatedly goes 
through three activities: loading, weighing, and traveling. Assume that there are eight trucks and that, at time 0, 
all eight are at the loaders. Weighing time per truck on the single scale is uniformly distributed between 1 
and 9 minutes, and travel time per truck is exponentially distributed, with mean 85 minutes. An unlimited 
queue is allowed before the loader(s) and before the scale. All trucks can be traveling at the same time. 
Management desires to compare one fast loader against the two slower loaders currently being used. Each 
of the slow loaders can fill a truck in from I to 27 minutes, uniformly distributed. The new fast loader can 
fill a truck in from 1 to 19 minutes, uniformly distributed. The basis for comparison is mean system response 
time, where a response time is defined as the duration of time from a truck arrival at the loader queue to that 
truck's departure from the scale. 

To implement synchronized common random numbers, a separate and distinct random number stream 
was assigned to each of the eight trucks. At the beginning of each replication (i.e., at time 0), a new and inde­
pendently chosen set of eight seeds was specified, one seed for each random number stream. Thus, weighing · 
times and travel times for each truck were identical in both models, and the loading time for a given truck's 
ith visit to the fast loader was proportional to the loading time in the original system (with two slow loaders). 
Implementation of common random numbers without synchronization (e.g., using one random number 
stream to generate all loading, weighing, and travel times as needed) would likely lead to a given random 
number being used to generate a loading time in model 1 but a travel time in model 2, or vice versa, and from 
that point on the use of a random number would most likely be different in the two models. · 
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Table 1 2.3 Comparison of System Designs for the Dump Truck Problem 

Average Response Time for Model 

Replication I 21 2C Differences, 

(2 Loaders) (I Loader) (I Loader) D/,2C 

I 21 .38 29.01 24.30 -2.92 

2 24.06 24.70 27.13 -3.07 

3 21 .39 26.85 23.04 -1.65 

4 21.90 24.49 23.15  -1.25 

5 23.55 27. 18 26.75 -3.20 

6 22.36 26.91 25.62 -3.26 

Sample mean 22.44 26.52 -2.56 

Sample variance 1 .28 2.86 0.767 

Sample standard 1.13 1.69 0.876 

deviation 

Six replications of each model were run, each of run length TE = 40 hours. The results are shown in 

Table 12.3. Both independent sampling and CRN were used, to illustrate the advantage of CRN. The first 

column (labeled model I) contains the observed average system response time for the existing system with 

two loaders. The columns labeled 2I and 2C are for the alternative design having one loader; the independent 

sampling results are in 21, and the CRN results are in the column labeled 2C. The rightmost column, labeled 

D lists the observed differences between the runs of model I and model 2C. t.2C' 
• '" II 

. . . ted For independent sampling assuming unequal vanances, the ,o owmg summary statistics were compu 

by using Equations (12.2), (12.5), (12.7), (12.8), and (12.1) and the data (in columns 1 and 21) in Table 12.3: 

Point Estimate: }'1 -f21 = 22.44-26.52 = -4.08 minutes 

Sample variances: S� = 1.28, Si, 2.86 

Standard Error: s.e.(f1 -f2 ) = (S; I R1 + Si1 I R2 )112 = 0.831 
Degrees of freedom: v = 8.73 "' 9  

95% c.i. for 01 - 02: -4.08 ± 2.26(0.831) or -4.08 ± 1.878 
. 5.9�:::: 81 02 ::;; -2.20 

For CRN, implemented by the use o(synchronized common random numbers, the following summary 

statistics were computed by using Equations (12. 12), (12.13), (12.14), and (12.1) plus the data (in columns 

1 and 2C) in Table 12.3: 
· 

Point Estimate: . i5 = f1 -f2c = -2.56 minutes 

Sample variance: S� = 0.767 

Standard Error: s.e.(D) = S0 J.Jii = 0.8761 ../6 0.358 

Degrees of freedom: v = R - 1 = 5 

95% c.i. for 01 - 82: -2.56 ± 2.57(0.358) or -2.56 ± 0.919 

3.48 ::;; 01 82 ::;; -1.641 

By comparing the c.i. widths, we see that the use of CRN with synchronization reduced c.i. width 
by 50%. This reduction could be important if a difference of as much as, say, 5.96 is considered ptactically 
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significant, but a difference of at most 3.48 is not. Equivalently, if equal precision were desired, independent 
sampling would require approximately four times as many observations as would CRN: approximately 24 
replications of each model instead of six. 

To illustrate how CRN can fail when not implemented correctly, consider the dump-tmck model again. 
There were eight trucks, and each was assigned its own random number stream. For each of the six replica­
tions, eight seeds were randomly chosen, one seed for each random number stream. Therefore, a total of 48 
(6 times 8) seeds were specified for the correct implementation of common random numbers. When the 
authors first developed and ran this example, eight seeds were specified at the beginning of the first replica­
tion only; on the remaining five replications the random numbers were generated by continuing down the 
eight original streams. Since comparable replications with one and two loaders required different numbers 
of random variables, only the first replications of the two models were synchronized. The remaining five 
were not synchronized. The resulting confidence interval for 81 - 02 under CRN was approximately the same 
length as, or only slightly shorter than, the confidence interval under independent sampling. Therefore, CRN 
is quite likely to fail in reducing the standard error of the estimated difference unless proper care is taken to 
guarantee synchronization of the random number streams on all replications. 

·Example 12.3 
In Example 2.5, two policies for replacing bearings in a milling machine were compared. The bearing-life 
distribution, assumed discrete in Example 2.5 (Table 2.22), is now more realistically assumed to be contin­
uous on the range from 950 to 1950 hours, with the first column of Table 2.22 giving the midpoint of 10 
intervals of width 100 hours. The repairperson delay-time distribution of Table 2.23 is also assumed contin­
uous, in the range from 2.5 to 17.5 minutes, with interval midpoints as given in the first column. The prob­
abilities of each interval are given in the second colunms of Tables 2.22 and 2.23. 

Tbe two models were run by using CRN and, for illustrative purposes, by using independent sampling, each 
for R = 10 replications. The purpose was to estimate the difference in mean total costs per 10,000 bearing hours, 
with the cost data given in Example 2.5. Tbe estimated total cost for the two policies is given in Table 12.4. 

Table 1 2A Total Costs for Alternative Designs of Bearing 
Replacement Problem 

Total Cost for Difference in 
Policy · Total Cost 

Replication r 
2 II IC DIC.2 

I 13,340 17,010 17,556 4,216 
2 12,76o 17,528 17,160 4,400 
3 13,002 17,956 17,808 4,806 
4 13,524 17,920 18,012 4,488 
5 1 3,754 18,880 18,200 4,446 
6 13,318 17,528 17,936 4,618 
7 13,432 17,574 18,350 4,918 
8 14,208 17,954 19,398 5,190 
9 13,224 18,290 . 17,612 4,388 
10 13,178 17,360 17,956 4,778 

Sample mean 13,374 17,800 4,624 
Sample variance 160,712 276,188 87,353 
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Policy 1 was to replace each bearing as it failed. Policy 2 was to �epl�ce all three bearin�s whenever one 

bearing failed. Policy 2 was run first, and then policy 1 was run, usmg mde�endent sampling (column 11), 

and using CRN (column lC). The 95% confidence intervals for mean cost difference are as follows: 

Independent sampling: $4426 ± 439 
CRN: $4625 ± 21 1 

(The computation of these confidence intervals is left as an exercise for t�e reader.? . . 
Notice that the confidence interval for mean cost difference when usmg CRN IS approximately 50% of 

the length of the confidence interval based on independent sampli�g. Theref�re,
_ 
for �e same computer costs, 

(i.e., for R = 10 replications), CRN produces estimates that are twice as precise m th1s e�ample. IfCRN were 

used, the simulation analyst could conclude with 95% confidence that the mean cost difference between the 

two policies is between $4414 and $4836. 

1 2. 1 .4 Confidence Intervals with Sp�ified Precision 

Section 1 1.4.2 described a procedure for obtaining confidence intervals with specified precision. Confidence 

intervals for the difference between two systems' performance can be obtained in an analogo�s man�er. 

Suppose that we want the error in our estimate of 81 - 82 to be less than ±�: 
_
(th� quantity E rmght be 

a practically significant difference). Therefore, our goal is to find a number of replicatiOns R such t!Jat 

H = ta12,vS.e.(i', - i'2 ) :'> € (12. 19) 

As in Section 1 1 .4.2, we begin by making R0 ;:: 2 replications of each system to obtain � initial estimate of 

s.e.(f.- Y, ). We then solve for the total number of replications R <': R0 needed to
_ 
ac?ieve the half-length 

criterion ( 12.19). Finally, we make an additional R - R0 replications (or a fresh R replications) of each system, 

compute the confidence interval, and check that the half-length criterion has been attained. 

Example 12.1: Continued . 
Recall that R0 = 10 replications and complete synchronizati?n of the random �um�rs YI�lded th

_
e 95?'o 

confidence interval for the difference in expected response time of the two vehicle-mspectlon stations m 

Inequality ( 12. 1 8); this interval can be rewritten as 0.4 ± O-?� rninut�s- �lthoug� system 2 appears �o have 

the smaller expected response time, the difference is not statistically s1gmficant, smce �e confi�e�ce mterval 

contains o. Suppose that a difference larger than ±0.5 minute is considered to be practically significant We 

therefore want to make enough replications to obtain a H ::> E = 0.5. 
_ 

The confidence interval used in Example 12.1 was i5 ± ta12./lo_,S0 I JR:, with the specific values D = 0.4, 

R - 10 t = 2 26 and S2 = 1.7. To obtain the desired precision, we need to find R such that 
, 0 - ' 0.025,9 ' D 

t s a/2,R-l D :'> € 
.JR 

Therefore, R is the smallest integer satisfying R <': R0 and 

R <':ca/2,:-ISD J 
Since t < t a conservative estimate for R is given by a/2.R-I - a/2.Ro-t ' (t s )2 

R <': a/2,:-1 D 
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Substituting t0.025_9 = 2.26 and � = 1. 7, we obtain 

R ;:: (2.26)2(1.7) = 34.73 
(0.5)2 

implying that 35 replications are needed, 25 more th� in the initial experiment. 

12.2 COMPARISON OF S£VERAL SYSTEM DESIGNS 

393 

Suppose that a simulation analyst desires to compare K alternative system designs. The comparison will be 
made on the basis of some specified performance measure, e,, of system i, for i = 1, 2, . . .  , K. Many differ-

. ent statistical procedures have been developed that can be used to analyze simulation data and draw statisti­
cally sound inferences concerning the parameters e.- These procedures can be classified as being either 
fixed-sample-size procedures or sequential-sampling (or multistage) procedures. In the first type, a prede­
termined sample size (i.e., run length and number of replications) is used to draw inferences via hypothesis 
tests or confidence intervals. Examples of fixed-sample-size procedures include the interval estimation of 
a mean performance measure (Section 11 .3) and the interval estimation of the difference between mean 
performance measures of two systems [as by Expression (12.1) in Section 12.1]. Advantages of fixed­
sample-size procedures include a known or easily estimated cost in terms of computer time before running 
the experiments. When computer time is limited, or when a pilot study is being conducted, a fixed-sample-size 
procedure might be appropriate. In some cases, clearly inferior system designs may be ruled out at this early 
stage. A major disadvantage is that a strong conclusion could be impossible. For example, the confidence 
interval could be too wide for practical use, since the width is an indication of the precision of the point 
estimator. A hypothesis test may lead to a failure to reject the null hypothesis, a weak conclusion in general, 
meaning that there is no strong evidence one way or the other about the truth or falsity of the null hypothesis. 

A sequential sampling scheme is one in which more and more data are collected until an estimator with 
a prespecified precision is achieved or until one of several alternative hypotheses is selected, with the prob­
ability of correct selection being larger .than a prespecified value. A two-stage (or multistage) procedure is 
one in which an initial sample is used to estimate how many additional observations are needed to draw 
conclusions with a specified precision. An example of a two-stage procedure for estimating the performance 
measure of a single system was given in Section 1 1 .4.2 and 12.1.4. 

The proper procedure to use depends on the goal of the simulation analyst Some possible goals are the 
following: 

1. estimation of each parameter, e;; 
2. comparison of each performance measure, e,, to a control, 81 (where 81 could represent the mean 

performance of an existing system); 
3. all pairwise comparisons, ei - �, for i * j; 
4. selection of the best e; (largest or smallest). 

The first three goals will be achieved by the construction of confidence intervals. The number · of such 
confidence intervals is C = K, C = K - 1, and C = K(K- 1)/2, respectively. Hochberg and Tamhane [ 1987] 
and Hsu [1996] are comprehensive references for such multiple-comparison procedures. The fourth goal 
requires the use of a type of statistical procedure known as a multiple ranking and selection procedure. 
Procedures to achieve these and other goals are discussed by Kleijnen [1975, Chapters II and V], who also 
discusses their relative merit and disadvantages: Goldsman arid Nelson [1998] and Law and Kelton [2000] 
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discuss those selection procedures most relevant to simulation. A comprehensive reference is Bechhofer, 
Santner, and Goldsman [1995]. The next subsection presents a fixed-sample-size procedure that can be used 
to meet go�s I, 2, and 3 and is applicable in a wide range of circumstances. Subsections 12.2.2-12.2.3 present 
related procedures to achieve goa1 4. 

12.2.1 Bonferroni Approach to Multiple Comparisons 

Suppose that C confidence intervals are computed and that the ith interval has confidence coefficient I - ar 
Let S. be the statement that the ith confidence interval contains the paramete� (or difference of two parame­
ters) being estimated. This statement might be true or false for a given set of data, but the procedure leading 
to the interval is designed so that statement S; will be true with probability 1 - ar When it is desi�d to make 
statements about several parameters simultaneously, as in goals I ,  2 and 3, the analyst would hke to have 
high confidence that all statements are true simultaneously. The Bonferroni inequality states that 

c 
p (all statements S, are true, i = 1, . . .  , cr � 1- I ll;  = 1- a£ 

j=l 

where a£ = I �=, IX; is called the overall error probability. Expression (1 2.20) can be restated as 

P (one or more statements S; is false, i = 1, . . .  C) ::;  a£ 
or equivalently, 

P (one or more of the C confidence intervals does not 
contain the parameter being estimated) ::; aE 

(12.20) 

Thus, a provides an upper bound on the probability of a false conclusion. To conduct an experiment that 
involves£ making C comparisons, first select the overall error probability, say aE = 0.05 or 0.10. The individ­
ual a. may be chosen to be equal (a. = aEIC), or unequal, as desired. The smaller the value of al the wider 
thejth confidence interval will be. For example, if two 95% c.i.'s (a1 = a2 = 0.05) are constructed, the over­
all confidence level will be 90% or greater (a£= a1 + a2 = 0.10). If ten 95% c.i.'s are fOnstructed (a; 0.05, 
i = 1, . . .  , 10), the resulting overall confidence level could be as low as 50% (a£ = I�,a, "'  0.50), which is 
far too low for practical use. To guarantee an overall confidence level of 95%, when I 0 comparisons are 
being made, one approach is to construct ten 99.5% confidence intervals for the parameters (or differences) 
of interest 

The Bonferroni approach to multiple confidence. intervals is based on expression (12.20). A major 
advantage is

. 
that it holds whether the models for the alternative designs are run with independent sampling 

or with common random numbers. 
The major disadvantage of the Bonferroni approach in making a large number of comparisons is the 

increased width of each individual interval. For example, for a given set of data and a large sample size, a 
99.5% c.i. will be z0_ooJZo.025 

= 2.807/1 .96 = 1 .43 times longer than a 95% c.i. For.small sample sizes-:-sa�, 
for a sample of size 5-a 99.5% c.i. will be t0_0025.it0_025,4 = 5.598/2.776 = 1.99 ttmes longer than an t�d�­
vidual 95% c.i. The width of a c.i. is a measure of the precision of the estimate. For these reasons, 1t ts 
recommended that the Bonferroni approach be used only when a small number of comparisons are being 
made. Twenty or so comparisons appears to be the practical upper limit. 

Corresponding to goals 1, 2, and 3, there are at least three possible ways of using the Bonferroni 
Inequality (12.20) when comparing K alternative system designs: 

1. (Individual c.i. 's): Construct a 100(1 - a)% c.i. for parameter 8; by using Expression ( 1 1 . 12), in 
which case the number of intervals is C= K. If independent sampling were used, the K c.i.'s would be 
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mutually independent, and thus the overall confidence level would be (1 - a1) x (I - �) x · · · x (1 - ac), 
which is larger (but not much larger) than the right side of Expression ( 12.20). This type of proce­
dure is most often used to estimate multiple parameters of a single system, rather than to compare 
systems-and, because multiple parameter estimates from the same system are likely to be dependent, 
the Bonferroni inequality typically is needed. 

2. (Comparison to an existing system): Compare all designs to one specific design-usually, to an 
existing system: that is, construct ·a 100(1 - a)% c.i. for (}; - 81(i = 2, 3, . . .  , K), using Expression 
( 12. 1 ). (System 1 with performance measure 81 is assumed to be the existing system). In this case, 
the number of intervals is C = K - I .  This type of procedure is most often used to compare several 
competitors to the present system in order to learn which are qetter. 

3. (All pairwise comparisons): Compare all designs to each other-that is, for any two system designs 
i *- j, construct a 100(1 - a)% c.i. for (}; - �· With K designs, the number of confidence intervals 
computed is C = K(K - 1)/2. The overall confidence coefficient would be bounded below by 
1 - aE = 1- I I,.i a" (which follows by Expression (12.20)). It is generally believed that CRN will 
make the true overall confidence level larger than the right side of Expression (12.20), and usually 
larger than will independent sampling. The right side of Expression (12.20) can be thought of as 
giving the worst case (i.e., the lowest possible overall confidence level). 

Example 12.4 
Reconsider the vehicle-inspection station of Example 12. 1 .  Suppose that the construction of additional space 
to hold one waiting car is being considered. The alternative system designs are the following: 

1. existing system (parallel stations); 
2. no space between stations in series; 
3. one space between brake and headlight inspection only; 
4. one space between headlight and steering inspection only. 

Design 2 was compared to the existing setup in Example 12. 1. Designs 2, 3, and 4 are series queues, as 
shown in Figure 12.1(b), the only difference being the number or location of a waiting space between two 
successive inspections. The arrival process and the inspection times are as given in Example 12.1. The basis 
for comparison will be mean response time, 8,, for system i, where a response time is the total time it takes 
for a car to get through the system. Confidence intervals for 82 - 81' 83 - 81' and 84 - 81 will be constructed, 
each having an overall confidence level of 95%. The run length TE has now been set at 40 hours (instead of 
the 16 hours used in Example 12.1), and the number of replications R of each model is 10. Common �andom 
numbers will be used in all models, but this does not affect the overall confidence level, because, as men­
tioned, the Bonferroni Inequality (12.20) holds regardless of the statistical independence or dependence of 
the data. 

Since the overall error probability is aE = 0.05 and C = 3 confidence intervals are to be constructed, let 
a; = 0.05/3 = 0.0167 for i =  2,3,4. Then use Expression (12.1) (with proper modifications) to construct C = 3 
confidence intervals with a= a; = 0.0161 and degrees of treedom v= 10 - 1  = 9. The standard erior is computed 
by Equation (12.14), because common random numbers are being used. The output data Y .  are displayed in 
Table 12.5; Yri is the sample mean response tlrn.e for replication r on system i (r=  1, . . .  , 1� i ;, 1, 2, 3, 4). The 
differences D,; = Y,1 - Y,; are also shown, together with the sample mean differences, D_1, averaged over all 
replications as in Equation (12.12), the sample variances s�, . and the standard error. By Expression (12. 1), the 
three confidence intervals, with overall confidence coefficient at least I - aE' are given by 

. . · - - · � ·-.-,. --·-·: ' -. - - . --�- --��---- - -- --:':.��: : · . 
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Table 12.5 Analysis of Output Data for Vehicle Inspection System When Using·CRN 

Avemge Response 1ime Observed Difference 
for System Design with System Design 1 

Replication, 1, 2, 3, 4, 

r Y,t yr2 Y,3 ynl Dl'l D,3 Dr4 

1 63.72 63.06 57.74 62.63 0.66 5.98 1.09 

2 32.24 31.78 29.65 31.56 0.46 2.59 0.68 

3 40.28 40.32 36.52 39.87 -0.04 3.76 0.41 

4 36.94 37.71 35.71 37.35 . -0.77 1.23 -0.41 

5 36.29 36.79 33.81 36.65 -0.50 2.48 -0.36 

6 56.94 57.93 51.54 57.15 -0.99 5.40 -0.21 

7 34.10 33.39 31.39 33.30 0.71 2.71 0.80 

8 63.36 62.92 57.24 62.21 0.44 6.12 1.15 

9 49.29 47.67 42.63 47.46 1.62 6.66 1.83 

10 87.20 80.79 67.27 79.60 6.41 19.93 7.60 

Sample mean, D., 0.80 5.686 1.258 

Sample standard deviation, S 0, 2.12 5.338 2.340 

Sample variance, S�, 4.498 28.498 5.489 

Standard error, S 0 t.fR 0.671 1.688 0.741 
' 

The value of ta, tz,R-t = t0.001l3•9 = 2.97 is obtained from Table A.5 by interpolation. For these data, with 95% 
confidence, it is stated that 

-1.19 $ 81 - 82 $ 2.79 
0.67 :;; 81 � :;; 10.71 

-0.94 $ 81 - 84 $ 3.46 

The simulation analyst has high confidence (at least 95%) that all three confidence statements are correct 
Notice that the c.i. for 81 - 82 again contains zero; thus, there is no statistically significant difference between 
design 1 and design 2, a conclusion that supports the previous results in Example 12. 1 .  The c.i. for 81 - 83 
lies completely above zero and so provides strong evidence that 81 - 83 >. 0-that is, that design 3 is better 
than design 1 because its mean response time is smaller. The c.i. for 81 - 84 contains zero, so there is no 
statistically significant difference between designs 1 and 4. . 

If the simulation analyst now decides that it would be desirable to compare designs 3 and. 4, more si!Jll.dation 
runs would be necessary, because it is not formally correct to decide which confidence intervals to compute 
after the data have been examined. On the other hand, if the simulation analyst had decided to compute all 

· possible confidence intervals (and had made this decision before collecting the data, Y ), the number of confi­
dence intervals would have been C = 6  and the three c.i.'s would have been t0.0042•9 /t0.0083,9 = 3.32/ 2.97 = 1.12 
times (or 12%) longer. There is illways a trade-off between the number of intervals (Q and the width of each 
interval. The simulation analyst should carefully consider the possible conclusions before running the simulation 
experiments and choose those runs and analyses that will provide the most useful information. In particular, the 
number of confidence intervals computed should be as small as possible-preferably, 20 or less. 
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For purposes of illustration, 10 replications of each of the four designs were run, using independent 
sampling (i.e., d.!_fferent random numbers for all runs). The results are presented in Table 12.6, together with 
sample means (}',), sample standard deviations (S1 ), and sample variances (s;), plus the observed difference 
of sample means <f1 -i::) and the standard error (s.e.) of the observed difference. It is observed that all three 
confidence intervals for 81 - 6;(i = 2, 3, 4) contain zero. Therefore, no strong conclusion is possible from 
these data and this sample size. By contrast, a sample size of ten was sufficient, when using CRN, to provide 
strong evidence that design 3 is superior to design L 

Notice the large increase in standard error of the estimated difference with independent sampling versus 
with common random numbers. These standard errors are compared in Table 1 2.7. In addition, a careful 
examination of Tables 12.5 and 1 2.6 illustrates the superiority of CRN. In Table 1 2.5, in all lO replications, 
system design 3 has a smaller average response time than does system design L By comparing replications 
l and 2 in Table 1 2.5, it can be seen that a random-number stream that leads to high congestion and large 
response times in system design I, as in the first replication, produces results of similar magnitude across all 
four system designs. Similarly, when system design l exhibits relatively low congestion and low response 
times, as in the second replication, all system designs produce relatively low average response times. This 
similarity of results on each replication is due, of course, to the use of common random numbers across 
systems. By contrast, for independent sampling, Table 12.6 shows no such similarity across system designs. 
In only 5 of the I 0 replications is the average response time for system design 3 smaller than that for system 
design I, although the average difference in response times across all lO replications is approximately the 
same magnitude in each case: 5.69 minutes when using CRN, and 5.89 minutes when using independent 

Table 12.6 Analysis of Output Data for the Vehicle-Inspection 
System that Uses Independent Sampling 

Average Response 1ime for System Design 

Replication, I, 2, 3, 4, 
r Y,t Y,2 Y,3 ynl 

I 63.72 59.37 52.00 59.03 

2 3224 50.06 47.04 49.97 

3 40.28 60.63 53.21 60. 18 

4 36.94 46.36 40.88 45.44 

5 36.29 68.87 50.85 66.65 

6 56.94 66.44 60.42 66.03 

7 34. 10 27.51 26.70 27.45 

8 63.36 47.98 40.12 47.50 

9 49.29 29.92 28.59 29.84 

10 87.20 47.14 41.62 46.44 

Sample mean f1 50.04 50,43 44.14 49.85 

si 17.70 13.98 10.76 13.64 

s; 313.38 195.54 1 !5.74 185.98 

ill r, -0.39 5.89 0.18 

s.e.(}'1 fi l 7.13 6.55 7.07 
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Table 1 2.7 Comparison of Standard Errors Arising from CRN with 
those from Independent Sampling, for the Vehicle-Inspection Problem 

Standard Error When Using 

Difference in CRN !rule pendent Percentage 

Sample Means sampling Sampling Increase 

fl f2 0.67 7.13 1064% 

v. 1.69 6.55 388% 

f, - f4 0.74 7.07 955% 

sampling. The greater variability of independent sampling is reflected also in the standard errors of the point 
estimates: ±1.69 minutes for CRN versus ± 6.55 minutes for independent sampling, an increase of 388%1 as 
seen in Table 12.7. This example illustrates again the advantage of CRN. 

As stated previously, CRN does not yield a variance reduction in all simulation models. It is recom­
mended that a pilot study be undertaken and varianCes estimated to confirm (or possibly deny) the assumption 
that CRN will reduce the variance (or standard error) of an estimated difference. The reader is referred to the 
discussion in Section 12.L3. 

Some of the exercises at the end of this chapter provide an opportunity to compare CRN and independent 
sampling and to compute simultaneous confidence intervals under the Bonferroni approach. 

1 2.2.2 Bonferroni Approach to Selecting the Best 

Suppose that there are K system designs, and the ith design has expected performance Br At a gross level, 
we are interested in which system is best, where "best" is defined to be having maximum expected 
performance.' At a more refined level, we could also be interested in how much better the best is relative to 
each alternative, because secondary criteria that are not reflected in the performance measure 81 (such as eaSe 
of installation, cost to maintain, etc.) could tempt us to choose an inferior system if it is not deficient by much. 

If system design i is the best, then 81 - maxi., 8i is equal to the difference in performance between the 
best and the second best. If system design i is not the best, then 81 -maxi_i 8i is equal to the difference 
between system i and the best. The selection procedure we describe in this section focuses on the parameters 
8, -maxi-' B; for i ::  1 ,  2, . . . , K. 

Let i* deQote the (unknown) index of the best system. As a general rule, the smaller the true difference 
8,� - maxi_"� is, and the more certain we want to be that we find the best system, the more replications are 
required to achieve our goal. Therefore, instead of demanding that we find i*, we can compromise and ask 
to find i* with high probability whenever the difference betWeen system i* and the others is at least some 
practically' significant amount. More precisely, we want the probability that we select the best system to be 
at least 1 - a whenever 9,� - maxi_..�8i 2! E. If there are one or more systems that are within E of the best, 
then we will be satisfied to select either the beat or any one of the near beat. Both tbe probability of correct selec� 
tion, I - a, and the practically significant difference, E, will be under our control. 

The following procedure achieves the desired probability of correct selection (Nelson and Matejcik 
[1995]). And because we are also interested in how much each system differs from the best, it also forms 
100(1- a)% confidence intervals for 8i" - maxi•"� for i =  1 ,  2, . . . , K. The procedure is valid for normally 
distributed data when either CRN or independent sampling is being used. 

1ff "besr' is defined to be having minimum expected performance, then the procedure in.thls section is easily modified, as we 
illustrate in the example. 
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Two·Stage Bonferroni Procedure 

1. Specify the practically significant difference E, the probability of correct selection 1 a, and the 
. first-stage sample size R0 � 10. Let t = tMK-I).R,-I ' 

2. Make R0 replications of system i to ob�n 1:';1, Y2" ... , Y Ro·�' for systems i = l ,  2, . . . , K. 
3. Calculate the first-stage sample means t:i' i 1, 2, . . . , K. For all i "'-j, calculate the sample variance 

of the difference, 2 

- Y .  -(f - f )}2 
I') ·l •J 

'2 2 LetS = max;. iS", the largest sample variance. 
4. Cali::ulate the second-stage sample size, 

where f.l means to round up. 
5. �e R R0 additional replications of system i to obtain the output data YRo+l.i'YRo+2.i' for i =  1 , 2, . . .  , 

6. Calculate the overall sample means 
- } R 
f, = -l:Y" R r•l 

for i 1 , 2, . . . , K. 
7. Select the system with largest f: as the best. ' 

Also form the confidence intervals 

min{O, Y, -max f. - E) :5: 81 -max8. � max[O, Y - maxY + E) pi J pi J l jl:i J 

for i =  1 , 2, . . .  , K. 
The confidence intervals in Step 7 are not like the usual ± �tervals presented elsewhere in this chapter. 

Perhaps tbe most useful interpretation of them is as follows. Let i be the index of the system selected as best. 
Then, for each of the other systems i, we make one of the declarations: 

· 

• If Y, -� + e � 0 , then declare system i to be inferior to the beat. 

• · If Y, -Y; +£ > 0, then declare system i to be statistically indistinguishable from the best (and, there­
fore, system i might be the best). 

Example 12.4: Continued 
Recall that, in Example 12.4, we considered K = 4 different designs for the vehicle-inspection station. Suppose 
that we would like 0.95% confidence of selecting the best (smallest expected response time) system design when 

2Notice that S;; is algebraically equivalent to Si, the sample variance of D, Y,; for r: 1, 2, ... , R0• 
'ff it is more convenient, a total of R replications can be generated from system i by restarting the entire experiment 
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the best differs from the second best by at least two minutes. This is a minimization problem. so we focus on the 
differences 91 - min j¢i � for i = I, 2, 3, 4. Then we can apply the 1\vo-Stage Bonferroni Procedure as follows: 

1. IE =  2 minutes, l - a =  0.95, R0 = l 0, and t = t0.0167•9 = 2.508. 
1. The data in Table 12.5, which was obtained by using CRN, is employed. 
3. From Table 12.5, we get s;2 S� = 4.498, s;3 = s� .. = 28.498, and S�4 = S!, = 5.489. By similar 

calcultions, we obtain Si3 = 1 1 .857, S� = 0. 1 19, and Si4 = 9.849. 

4. Since S2 = s:3 28.498 is the largest sample variance, 

R 
max{ lO,

f (2.508):;28.498) l} = max{lo, r 44.81} = 45 

S. Make 45 - 10 = 35 additional replications of each system. 
6. Calculate the overall sample means 

l 45 
Y1 = -l,Y 

45 r•l n 

for i = l, 2, 3, 4. _ 

7. Select the system with smallest Y, as the best. 
Also, form the confidence intervals 

min{O, Y, - min Y1. - 2}  s; 91 - min 91. s; max{O, Y, - min � +2 } 
)M j#.i J(:t 

for i =  1 , 2, 3,4. 

1 2.2.3 Bonferroni Approach to Screening 

When a two-stage procedure is not possible, or when there are many systemS, it could be useful to divide the 
set of systems into those that could be the best and those that can. be eliminated from further consideration. 
For this purpose, a screening or subset selection procedure is useful. The following procedure, due to Nelson 
et al. [200 l ], guarantees that the retained subset contains the tme best system with probability ;?: I - a when the 
data are normally distributed and either independent sampling or CRN is used. The subset may contain all 
K of the systems, only one system, or some number in between, depending on the number of replications and 
the sample means and sample variances. 

sCree�ing Procedure 

1. Specify the probability of correct selection 1 - a and common sample size from each system, R ;;: 2. 
Let t= ta/(IH),R-\' 

2. Make R replications of system i to obtain Y1i' Y2i' . . . , YRi for systems i = l ,2, .. . ,K. 

3. Calculate the sample means f. for i = 1 , 2, . . . ,K. For all i * j, calculate the sample variance of the 
difference, 
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2 I R - - . Su = -L(Yrl -Y. -(Y. -Y.)i 
R - 1  r=t � ., ·; 

4. If bigger is better, then retain system i in the selected subset if 

If smaller is better, then retain system i in the selected subset. if 

- - sif ri ::;;; rj +t iR for allj ¢;j 

All system designs that are not retained can be eliminated from fui:ther consideration. · 

Example 12.4: Continued · · 

·  
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Sup� we want to see whether any ofthe designs for the vehicle-inspection station can be eliminated · the basts of only the 10 replications in Table 12.5. Summaries of the sample ineims and variances of the d
?;. 

· ferences are as follows: · 1 

s� 
I 
2 
3 

50.04 

2 

49.24 

2 

4.498 

3 

44.35 

3 

28.498 
1 1.857 

4 

48.78 

4 

5.489 
O. l l9 
9.84 

The appropriate critical value to obtain 95% confidence that the selected subset contains the tme best is t = to.ot67,9 � 2.508. Recall that smaller response time is better. Applying the Subset Selection Procedure 
system destgns 1 ,  2, and 4 can all be elimina� because 

· · ' 

}', 50.04 $ }'3 + t1Ji. = 44.35.+ 2.5osl8��98 
= 48.58 

}'2 ::: 49.24 $ }'3 +tf: = 44.35+ 2.508l \�7 = 47.08 

rsr ·. . f9.84 . 
� = 48.78 $}'3 +tv--; = 44.35+2.5osv¥o± = 46.84 

Thus, in this case there was adequate data to select the best, system design 3, with 95% confidence. Had more than one system survived the subset selection, then we could perform additional analysis on that subset, perhaps using the 1\vo-Stage Bonferroni Procedure. 
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12.3 METAMODEUNG 

Suppose that there is a simulation output rt(sponse variable, f, that is related to k independent variables, say 
xl'x2, ·- · ·xk. The dependent variable, f, is a random variable, while the independent variables Xl'Xz' . . . ,xk are 
called design variables and are usually subject to control. The true relationship between the variables f and x 
is represented by the (often complex) simulation model. Our goal is to approximate this relationship by 
a simpler mathematical function called a metamodel. In some cases, the analyst will know the exact form 
of the functional relationship between fandx1,x2, • • •  ,xk, say f= j(XpXz• . . .  ,xk). However, in most cases, the 
functional relationship is unknown, and the analyst must selec.t an appropriate f containing unknown para­
meters, and then estimate those parameters from a set of data (f, x). Regression analysis is one method for 
estimating the parameters. 

Example 12.5 
An insurance company promises to process all claims it receives each day by the end of the next day. It has 
developed a simulation model of its proposed claims-processing system to evaluate how hard it will be to 
meet this promise. The actual number and types of claims that will need to be processed each day will vary, 
and the number may grow over time. Therefore, the company would like to have a model that predicts the 
total processing time as a function of the number of claims received. 

The primary value of a metamodel is to make it easy to answer "what if" questions, such as, what the 
processing time will be if there are x claims. Evaluating a functionj, or perhaps its derivatives, at a number 
of values of x is typically much easier than running a simulation experiment for each value. 

12.3.1 Simple Unear Regression 

Suppose that it is desired to estimate the relationship between a single independent variable x and a dependent 
variable f, and suppose that the true relationship between f and x is suspected to be linear. Mathematically, 
the expected value of f for a given value of x is assumed to be 

(12.21) 

where Po is the intercept on the f axis, an unknown constant; and P, is the slope, or change in f for a unit change 
in x, also an unknown constant It is further assumed that each observation of f can be described by the model 

(12.22) 

where E is a random error with mean zero and constant variance a2• The regression model given by 
Equation (1222) involves a single variable x and is commonly called a simple linear regression model. 

Suppose that there are n pairs of observations (f1, x1), (f2, x2), _ •• ,(f., x.). These observations can be 
used to estimate Po and P1 in Equation (12.22). The method of least squares is commonly used to form the 
estimates. In the method of least squares, Po and P1 are estimated in such a way that the sum of the squares 
ofthe deviations between the observations and the regression line is minimized. The individual observations 
in Equation (12.22) can be written as 

(12.23) 

where El' ez . . . .  are assumed to be uncorrelated random variables. 
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Each E; in Equation (12.23) is given by 

(12.24) 
and �epresents the diff�rence �tween the o�served response, Y;, and the expected response, p0 + p1x,, 
predtcted by the model m Equat10� (�2.21): Ftg�re 12.3 

_
shows how E; is related to x;.Y;, and E(fJtJ 

The sum of squares of the devtatlons gtven m Equation (12.24) is given by 

L = f. E2 = fo (f - R -p x )2 4.J 1  � i f'O l i  i=l i=l 
and L is called the least-squares function. It is convenient to rewrite f. as follows: I 

(12.25) 

(12.26) 

where P� = Po +P1x and x=  IxJn. Equation (12.26) is often called the transformed linear regression i=l 
model. Using Equation (12.26), Equation (12.25) becomes 

n 
L = Irr. -p� -P1 (x; -x)]2 i=l 

. 
To

_ 
minimize L: find au ap� and au a pi , set each to zero, and solve for p; and A. Taking the partial 

denvauves and settmg each to zero yields 

np; = fr, 
i=l 

P1I (x, -x)2 = Ir,<x, -x) 
i=l i=1 

Equations ( 12.27) are often called the "normal equations;" which have the solutions 

y 

E(y, - X; ) � Po + P1x; 

Y � Po + p,x, + e, 

• n y 
P� = f=:L...L 

£=• n 

--------����- � }� I I I I I I 
X; 

Figure 1 2.3 Relationship of •; to x;, Y,, and E(lj jx; ). 
X 

(12.27) 

(12.28) 
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and 
. �� Y,(x. -:X) A �I=( I I 

/3, = 
� · - 2  "-'•=t (x, -x) 

The numerator in Equation (12.29) is rewritten for computational purposes as 

• • ' x. Y, (L. )(L· ) 
� _ � . /=I I /=] I 

sxy = ""' Y,(x, - x) = .i.J x,Y, 
i=t i=t n 

(12.29) 

(1230) 

where Sxy denotes the corrected sum of cross products of x and Y. The denominator of Equation (12.29) is 
rewritten for computational purposes as . . 

. . 
S.., = L(x, -:X)2 = Lx: 

i=l i=l n 

where Sxx denotes the corrected sum of squares of x. The value of Po can be retrieved easily as 

Example 12.6: . Calculating Po and A 

(12.31) 

(12.32) 

The simulation model of the claims-processing system in Example 12.5 was executed with initial conditions 
x = I 00, 150, 200, 250, and 300 claims received the previous day. Three replications were obtained at each 
setting. The response Y is the number of hours required to process x claims. The results are shown in Table 12.8. 
The graphical relationship between the number of. claims received and total processing time is shown in 

Table 1 2.8 Simulafion Results for Processing Time Given 
x Claims 

Number of Claims x Hours of Processing Time Y 
100 8.1 
100 7.8 
100 7.0 
150 9.6 
150 8.5 
150 9.0 
200 10.9 
200 13.3 
200 1 1.6 
250 12.7 
250 14.5 
250 14.7 
300 16.5 
300 17.5 
300 16.3 
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Figure 1 2.4 Relationship between number of claims and 
hours of processing time. 
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Figure 12.4. Such a display is called a scatter diagram. Examination of this scatter diagram indicates that there is a strong relationship between number of claims and processing time. The tentative assumption of the linear model given by Equation (12.22) appears to be reasonable. · 

With the processing tim� as the Y1 values (the dependent variables) and the number of claims as thex. values (the independent variables), /30 and p, can be found by the following computations: n = 15, L;:, x, � 3000, 
� 15 

�
15 2 �

15 
"-'•=t Y, = 178, "-'•=1 X1 = 675,000, "-'•=1x1 Y, = 39080, and :X =  3000/ 15 = 200. 

From Equation (12.30) Sxy is calculated as 

sxy = 39,080 
<3000)(178) 

= 3480 
15 

From Equation (12.31), Sxx is calculi1ted as 

(3000)2 S,,. = 675,000 - -- = 75,000 
15 

Then, A is calculated from Equation (12.29) as 

P, 
= 

sxy 
= 

3480 
= 

o.0464 
s,.,. 75,000 

As shown in Equation (12.28), P� isjustf, or 
., 178 
/30 = - "' 1 1.8667 

15 
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To express the model in the original terms, compute A from Equation ( 12.32) as 

Po = 1 1 .8667 -0.0464(200)= 2.5867 

Then an estimate of the mean of Y given x, E(Y I x), is given by 

( 12.33) 

For a given number of claims, x, this model can be used to predict the number of hours required to process 
them. The coefficient A has the interpretation that each additional claim received adds an expected 0.0464 
hours, or 2.8 minutes, to the expected total processing time. 

Regression analysis is widely used and frequently misused. Several of the common abuses are briefly men­
tioned here. Relationships derived in the manner of Equation (12.33) are valid for values of the independent 
variable within the range of the original data. The linear relationship that has been tentatively assumed may not 
be valid outside the original range. In fact, we know from queueing theory that mean processing time may 
increase rapidly as the number of claims approaches the capacity of the system. Therefore, Equation (12.33) 
can be considered valid only for 100 s; x s; 300. Regression models are not advised for extrapolation purposes. 

Care should be taken in selecting variables that have a plausible causal relationship with each other. It is 
quite possible tO develop statistical relationships that are unrelated in a practical sense. For example, an attempt 
might be made to relate monthly output of a steel mill to the weight of reports appearing on a manager's desk 
during the month. A straight line may appear to provide a good model for the data, but the relationship between 
the two variables is tenuous. A strong observed relationship does not imply that a causal relationship exists 
between the variables. Causality can be inferred only when analysis uncovers some plausible reasons for its 
existence. In Example 12.5 it is reasonable that starting with more claims implies that more time is needed to 
process them. Therefore, a relationship of the form of Equation (12.33) is at least plausible. 

1 2.3.2 Testing for Significance of Regression 

In Section 12.3.1, it was assumed tliat a linear relationship existed between Y and x. In Example 12.5, a scatter 
diagram, shown in Figure 1 2.4, relating number of claims and processing time was prepared to evaluate 
whether a linear model was a reasonable tentative assumption prior to the calculation of A and A. However, 
the adequacy of the simple linear relationship should be tested prior to using the model for predicting the 
response, Y� given an independent variable, Xr There are several tests which may be conducted to aid in deter­
mining model adequacy. Testing whether the order of the model tentatively assumed is correct, commonly 
called the "lack-of-fit test," is suggested. The procedure is explained by Box and Draper [1987], Hines, 
Montgomery, Goldsman, and Borror [2002], and Montgomery [2000]. 

Testing for the significance of regression provides another means for assessing the adequacy of the 
model. The hypothesis test deseribed next requires the additional assumption that the error component E1 is 
normally distributed. Thus, the complete assumptions are that the errors are NID(O, o-2)-that is. normally 
and independently distributed with mean zero and constant variance o-2• The adequacy of the assumptions 
can and should be checked by residual analysis, discussed by Box and Draper [1987], Hines, Montgomery, 
Goldsman, and Borror [2002], and Montgomery [2000]. 

Testing for significpnce o( regression is one of many hypothesis tests that can be developed from the . 
variance properties of fJ. and flt. The interested reader is referred to the references just cited for extensive 
discussion of hypothesis testing in regression. Just the highlights of testing for significance of regression are 
given in this section. 
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Suppose that the alternative hypotheses are 

H0 :  /11 = 0 
Hl : {Jl :;e O 
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Failure to reject H0 indicates that there is no linear relationship between x and Y. This situation is illnstrated 
in Figure 12.5. Notice that two possibilities exist In Figure 12.5(a), the implication is that x is of little value 
in explaining the variability in Y, and that y = Y is the best estimator. In Figure 12.5(b ), the implication is 
that the true relationship is not linear. 

Alternatively, if H0 is rejected, the implication is thaf x is of value in explaining the variability in Y. This 
situation is illustrated in Figure 1 2.6. Here, also, two possibilities exist. In Figure l2.6(a), the straight-line 
model is adequate. However, in Fi� 12.6(b), even though there is a linear effect ofx, a model with higher­
order terms (such as r, xl, . . . ) is necessary. Thus, even though there may be significance of regression, 
testing of the residuals and testing for lack of fit are needed to confirm the adequacy of the model. 

The appropriate test statistic for significance of regression is given by 

y 

• 
• 

• 

y 

• • • 
• • • 
• • • • • 

(a) 

y 

• • • 
• • 
• 

• 
• •• • • • • 
• •• • • • 

• • • • • • • •  
. · . .. . . 

(b) 
X 

Figure 12.5 Failure to reject H0 : {31 = 0. 

y 

(a) (b) 

Figure 12.6 H0 : {31 = 0 is rejected. 

( 12.34) 
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where MSE is the mean sqt.iared error. The error is the difference between the observed value, f., and the predicted 
value, y,, at x, or e, = Y, -y,. The sqt.iared error is given by L ;=, e;, and the mean squared er:or, given by 

n 2 
MSE = I_.!L. •=• n-2 

(12.35) 

is an unbiased estimatOr of a2 = V(i:.). The direct method can be used to calculate � �  e;: Calculate each Y1, 
2 2 r L,,=l , 

compute e, , and sum all the e, values, i = 1, 2, . . .  , n. However, it can be shown that 

i:_e,2 = syy -[J,s"' (12.36) 
i=l 

where SYY, the corrected sum of squares of Y, is given by 

(12.37) 

and Sxy is given by Equation (12.30). Equation (12.36) could be easier to use than the direct method. 
The statistic defined by Equation (12.34) has the t distribution with n - 2 degrees of freedom. The null 

hypothesis H0 is rejected if lt01 > ta1211_2• 

Example 12.7: Testing for Significance of Regression 
Given the results in Example 12.6, the test for the significance of regression is conducted. One more computation 
is needed prior to conducting the test That is, L ;=, f,2 = 2282.94. Using Equation (12.37) yields 

s = 2282.94 - 078)2 
= 170.6734 yy 15 

Then I.::.e; is computed according to Equation ( 12.36) as 15 
I,e; = 170.6734-0.0464(3480)= 9.2014 
i=l 

/ 
Now, tile value of MSi is calculated from Equation (12.35): 

MS = 9·2014 = 0.7078 E 13 

The value of t0 can be calculated by using Equation (12.34) as 

t = 0·0464 15.13 0 ../0.7078175000 

Since t0_025,13 = 2.16 from Table A.5, we reject the hypothesis that P1 = 0. Thus, there is significant evidence 
that x arid Y are related. 
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1 2.3.3 Multiple Linear Regression 

If the simple linear regression model of Section 12.3.1 is inadequate, several other possibilities exist. There 
could be several independent variables, so that the relationship is of the form 

(12.38) 

Notice that this model is still linear, but has more than one independent variable. Regression models having 
the form shown in Equation ( 12.38) are called multiple linear regression models. Another possibiiity is that 
the model is of a quadratic form such as 

(12.39) 

Equation (12.39) Is also a linear model which may be transformed to the form of Equation (12.38) by letting 
x1 = x andx2 = r. 

Yet another possibility is a model of the form such as 

Y = Po + P,x, + P2x2 + PJxh + E 

which is also a linear modeL The analysis of these three models with the forms just shown, and r.elated 
models, can be fou.nd in Box and Draper [1987], Hines, Montgomery, Go1dsman, and Borror [2002], 
Montgomery [2000], and other applied statistics texts; and also in Kleijnen [ 1987, 1998], which is concerned 
primarily with the application of these models in simulation. 

1 2.3.4 Random-Number Assignment for Regression 

The assignment of random-number seeds or streams is part of the design of a simulation experiment.4 
Assigning a different seed or stream to different design points (settings for xl' x2, _ . . xm in a multiple linear 
regression) guarantees that the responses Y from different design points will be statistically independent. 
Similarly, assigning the same seed or stream to different design points induces dependence among the cor­
responding responses, by virtue of their all having the same source of randomness. 

Many textbook experimental designs assume independent responses across design points. To conform 
to this assumption, we must assign different seeds or streams to each design point. However, it is often use­
ful to assign the same random number seeds or streams to all of the design points-in other words, to use 
common random numbers. . . . 

The intuition behind common random numbers for metamodds is that a fairer comparison among design 
points is achieved if the design points are subjected to the same experimental conditions, specifically the 
same source of randomness. The mathematical justification is as follows: Suppose we fit the simple linear 
regression Y; = Po + P, x, + E; and obtain least squares estimates Po and A.  Then an estimator of the expected 
difference in performance between design points i andj is 

Po + P,x, -cPo + P,x) = [3, (x, -xi )  

when xi and xi are fixed design points, A determines the estimated difference between design poi�ts i and j, 
or for that matter between any other two values of x. Therefore, common random numbers can be 
expected to reduce the variance of A and, more generally, reduce the variance of all of the slope terms in a 
multiple linear regression. Common random numbers typically do not reduce the variance of the intercept 
term, p0• 

'This section is based on Nelson (1992]. 
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The least-squares estimators fie and A are appropriate regardless of whether we use common random 
numbers, but the associated statistical analysis is affected by that choice. For statistical analysis of a meta­
model under common random numbers, see Kleijnen [I  988] and Nelson [ 1992]. 

12.4 OPTIMIZATION VIA SIMULATION 

· Consider the following examples.5 

Example 12.8: Materials Handling System (MHS) 
Engineers need to design a MHS consisting of a large automated storage and retrieval device, automated 
guided vehicles (AGVs), AGV stations, lifters, and conveyors. Among the design variables they can control 
are the number of AGVs, the load per AGV, and the routing algorithm used to dispatch the AGVs. 
Alternative designs will be evaluated according to AGV utilization, transportation delay for material that 
needs to be moved, and overall investment and operation costs. 

Example 12.9: Liquified Natural Gas (LNG) Transportation 
A LNG transportation system will consist of LNG tankers and of loading, unloading, and storage facilities. 
In order to minimize cost, designers can control tanker size, number of tankers in use, number of jetties at 
the loading and unloading facilities, and capacity of the storage tanks. 
Example 12.10: Automobile Engine Assembly 
In an assembly line, a large buffer (queue) between workstations could increase station utilization-because 
there will tend to be something waiting to be processed--but drive up space requirements and work-in-process 
inventory. An allocation of buffer capacity that minimizes the sum of these competing costs is desired. 

Example 12.11: Traffic Signal Sequencing 
Civil engineers want to sequence the traffic signals along a bnsy section of road to reduce driver delay and 
the congestion occurring along narrow cross streets. For each traffic signal, the length of the red, green, and 
green-tum-arrow cycles can be set individually. 

Example 12.12: On-Line Services 
A company offering on-line information services over the Internet is changing its computer architecture from 
central mainframe computers to distributed workstation computing. The numbers and types of CPUs, the 
network structure, and the allocation of processing tasks all need to be chosen. Response time to customer 
queries is the key performance measure. 

What do these design problems have in common? Clearly, a simulation model could be useful in each, 
and all have an implied goal of finding the best design relative to some performance measures (cost, delay, 
etc.). In each CX3!Ilple, there are potentially a very large number of alternative desigris, ranging from tens to 
thousands, and certainly more than the 2 to 10 we considered in Section 12.2.2. Some of the examples con­
tain a diverse collection of decision variables: discrete (number of AGVs, number of CPUs), continuous 
(tanker size, red-cycle length) and qualitative (routing strategy, algorithm for allocating processing tasks). 
Thj.s makes developing a metamodel, as described in Section 12.3, difficult. 

All of these problems fall under the general topic of "optimization via simulation," where the goal is to 
minimize or maximize some measures of system perfonnance and system performance can be evaluated only 
by running a .computer simulation. Optimization via simulation is a relatively new, but afready vast, topic, 
and commercial software has become widely available. In this section, we describe the key issues that should 
be considered in undertaking optimization via simulation, provide some pointers to the available literature, 
and give one example algorithm. 

ssome of these descriptions are based on Boesel, Nelson, and Ishii [20031. 
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1 2.4.1 What Does 'Optimization via Simulation' Mean? 

Optimization is a .key tool used by operations researchers and management scientists, and there are well­
developed algorithms for many classes of problems, the most famous being linear programming. Much of the 
work on optimization deals with problems in which all aspects of the system are treated as being known with 
certainty; most critically, the performance of any design (cost, profit, makes pan, etc.) can be evaluated exactly. 

In stochastic, discrete-event simulation, the result of any simulation run ·is a random variable. For 
notation, letx1, x2, • • •  , xm be the m controllable design variables and let Y(x1, x2, • • •  , xm) be the observed sim­
ulation output performance on one run. To be concrete, xl' x2, x3 might denote the number of AGV s, the load 
per AGV, and the routing algorithm used to dispatch the AGVs, respectively, in Example 12.8, while 
Y(xl' Xi• xJ could be total MHS acquisition and operation cost. 

What does it mean to "optimize" Y(x1, x2, . . .  , xm) with respect to x1, x2, . . .  , xm? Y is a random variable, 
so we cannot optimize the actual value of Y. The most common definition of optimization is 

maximize or minimize E (Y (x1, Xi• . . .  , xm)) ( 12.40) 

In other words, the mathematical expectation, or long-run average, of performance is maximized or mini­
mized. This is the default definition of optimization used in aU commercial packages of which we are aware. 
In our example, E(Y(x1, x2, x)) is the expected, or long-run average cost of operating the MHS with x1 
AGVs, x2 load per AGV, and routing algorithm x3• . . 

[t is important to note that (12.40) is not the only possible definition, however. For instance, we might 
want to select the MHS design that has the best chance of costing less than $D to purchase and operate, 
changing the objective to 

maximize Pr (Y (xl' x2, x3) $; D) 

We can fit this objective into formulation (12.40) by defining a new performance measure 

and maximizing E (Y'(x1, x2, x3)) instead. 
A more complex optimization problem occurs when we want to select the system design that is most 

likely to be the best. Such an objective is relevant when one-shot, rather than long-run average, performance 
matters. Examples include a Space Shuttle launch, or the delivery of a unique, large order of products. 
Bechliofer, Santner, and Goldsman [ 1995] address this problem under the topic of "multinomial selection." 

We have been assuming that a system design xl' x2, • • •  , xm can be evaluated in terms of a single per­
formance measure, Y, such as cost. Obviously, this may not always be the case. In the MHS example, we 
might also be interested in some measure of system productivity, such as throughput or cycle time. At pres­

. ent, multiple objective optimization via simulation is not well developed; Therefore, one of three strategies 
is typically employed: 

1. Combine all of the performance measures into a single measure, the most common being cost. For 
instance, the revenue generated by each completed product in the MHS could represent productivity 
and be included as a negative cost. 

2. Optimize with respect to one key performance measure, but then evaluate the top solutions with 
respect to secondary performance measures. For instance, the MHS could be optimized with respect 
to expected cost, and then the cycle time could be compared for the top 5 designs. This approach 
requires that information on more than just the best solution be maintained. 
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3. Optimize with reSpect to one key perfonnance measure, but consider only those alternatives that meet 
certain constraints on the other perfonnance measures. For instance, the MHS conld be optimized with. 
respect to expected cost for those alternatives whose expected cycle time is less than a given threshold. 

1 2.4.2 Why is Optimization via Simulation Difficult? 

Even when there is no uncertainty, optimization can be very difficult if the number of design variables is large, 
the problem contains a diverse collection of design variable types, and little is known about the structure of 
the performance function. Optimization via simulation adds an additional complication: The performance of 
a particnlar design cannot be evaluated exactly, but instead must be estimated. Because we have estimates, it 
is not possible to conclude with assurance that one design is better than another, and this uncertainty frustrates 
optimization algorithms that try to move in improving directions. In principle, one can eliminate this compli­
cation by making so many replications, or such long runs, at each design point that the performance estimate 
has essentially no variance. In practice, this could mean that very few alternative designs will be explored, 
because of the time required to simulate each one. . 

The existence of sampling variability forces optimization via simulation to make compromises. The fol­
lowing are the standard ones: 

IIi Guarantee a prespecified probability of correct selection. The Two-Stage Bonferroni Procedure in 
Section 12.2.2 is an exari:lple of this approach, which allows the analyst to specify the desired chance 
of being right. Such algorithms typically require either that every possible design be simulated or that 
a strong functional relationship among the designs (such as a metamodel) apply. Other algorithms can 
be found in Goldsman and Nelson [1998]. 

• Guarantee asymptotic convergence. There are many algorithms that guarantee convergence to the 
global optimal solution as the simulation effort (number of replications, length of replications) 
becomes infinite. These guarantees are useful because they indicate that the algorithm tends to get to 
where the analyst wants it to go. However, convergence can be slow, and there is often no guarantee 
as to how gond the reported solution is when the algorithm is terminated in finite time (as it must 
be in practice). See Andrad6ttir [ 1 998] for specific algorithms that apply to discrete- or continuous­
variable problems. 

• Optimal for deterministic counterpart. The idea here is to use an algorithm that would find the 
optimal solution if the peiformance of er1ch design could be evaluated with certainty. An example 
might be applying a standard nonlinear programming algorithm to the simulation optimization prob­
lem. It is typically up to the analyst to make sure that enough simulation effort is expended (replica­
tions or run length) to insure that such an algorithm is not misled by sampling variability. Direct 
application of an algorithm that assumes deterministic evaluation to a stochastic simulation is not 
recommended. 

• Robust heuristics. Many heuristics have been developed for deterministic optimization problems that 
do not guarantee finding the optimal solution, but nevertheless been shown to be very effective on dif­
ficult, practical problems. Some of these heuristics use randonmess as part of their search strategy, so 
one might argue that they are less sensitive to sampling variability than other types of algorithms. 
Nevertheless, it is still important to make sure that enough simulation effort is expended (replications 
or run length) to insure that such an algorithm is not misled by sampling variability. 

Robust heuristics are the most common algorithms found in commercial optimization via simulation 
software. We provide some guidance on their use in tbe next section. See Fu [2002] for a comprehensive 
discussion of optimization theory versus practice. 
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12A.3 Using Robust Heuristics 

By a "robust heunstic" we mean a procedure that does not depend on strong problem structure-such as 
continuity or convexity of E(Y(xl''"' x.,))-to be effective, can be applied to problems with mixed types of 
decision variables, and-ideally-is tolerant of some sampling variability. Genetic algorithms (GA) and tabu 
search (TS) are two prominent examples, but there are many others and many variations of them. Such 
heuristics form the core of most commercial implementations. To give a sense of these heuristics, we 
describe GA and TS next We caution the reader that only a high-level description of the simplest version of 
each procedure is provided. The commercial implementations are much more sophisticated. 

· 

Suppose that there are k possible solutions to the optimization via simulation problem. Let X =  ( �, 'S·· .. , 
xk} denote the solutions, where the ith solution xi= (xil' x,1, . . .  , xim) provides specific settings for the m d�­
sion variables. The simulation output at solution X; is denoted Y (x); this could be the output of a single repli­
cation, or the average of several replications. Our goal is to find the solution x* that minimizes E(Y(x)). 

On each iteration (known as a "generation"), a GA operates on a "population" of p solutions. Denote 
the population of solutions on the jth iteration as P(J) = ( x1()), 'S(J), . . .  , xP(J) } .  There may be nmltiple 
copies of the same solution in P(j), and P(J) may contain solutions that were discovered on previous 
iterations. From iteration to iteration, this population evolves in such a way that gond solutions tend to sur­
vive and give birth to new, and hopefully better, solutions, while inferior solutions tend to be removed from 
the population. The basic GA is given here: 

Basic GA 

Step 1. Set the iteration counter j = 0, and select (perhaps randomly) an initial population of p solutions 
P(O) = { x1(0), . . .  , xpCO)} .  

Step 2.  Run simulation experiments to obtain perfonnance estimates Y(x) for all p solutions xU) in  P(J). 

Step 3. Select a population of p solutions from those in P(J) in such a way that those with smaller Y(x) values 
are more likely, but not certain, to be selected. Denote this population of solutions as PU + 1). 

Step 4. Recombine the solutions in P(j + 1) via crossover (which joins parts of two solutions X; (j + 1)  and 
xt(j + 1 )  to form a new solution) and mutation (which randomly changes a part of a solution X; (j + 1). 

Step S. Setj = j + I  and go to Step 2. 

nie GA can be terminated after a specified number of iterations, when little or no improvement is noted 
· in the population, or when the population contains p copies of the same solution. At termination, the solu­
tion x* that has the smallest Y(x) value in the last population is chosen as best (or alternatively, the solution 
with the smallest Y(x) over all iterations could be chosen). 

GAs are applicable to almost any optimization problem, becanse the operations of selection, crossover, 
and mutation can be defined in a very generic way that does not depend on specifics of the problem. 
However, when these operations are not tuned to the specific problem, a GA's progress can be very slow. 
Commercial versions are often self-tuning, meaning that. they update selection, crossover, and mutation 
parameters during the course of the search. There is some evidence that GAs are tolerant of sampling vari­
ability in Y(x) because they maintain a population of solutions rather than focusing on improving a current­
best solution. In other words, it is not critical that the GA rank the solutions in a population o'f solutions 
.perfectly, because the next iteration depends on the entire popolation, not on a single solution. 

TS, on the other hand, identifies a current best solution on each iteration and then tries to improve it 
·Improvements occur by changing the solution via "moves." For example, the solution (x1, X.• x3) could be changed 
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to the solution (x1 + I, �· XJ) by the move of adding 1 to the first decision variable (perhaps x1 represents the 
number of AGVs in Example 12.8, so the move would add one more AGV). The "neighbors" of solution x are 
all of those solutions that can be reached by legal moves. TS finds the best neighbor solution and moves to it 
However, to avoid making moves that return the search to a previously visited solution, moves may become "tabu'' 
(not usable) for some number of iterations. Conceptually, think about how you would find your way through 
a maze: If you took a path that lead to a dead end, then you would avoid taking that path again (it would be tabu). 

The basic TS algorithm is given next. The description is based on Glover [1989]. 

Basic TS 

Step 1. Set the iteration coonter j = 0 and the list of tabu moves to empty. Select an initial solution x* in X 
(perhaps randomly). 

Step 2. Find the solution x that minimizes Y(x) over all of the neighbors of x* that are not reached by tabu 
moves, running whatever simulations are needed to do the optimization. 

Step 3. If Y (x) < Y(x*), then x* = x' (move the current best solution to x'). 

Step 4. Update the list of tabu moves and go to Step 2. 

The TS can be terminated when a specified number of iterations have been completed, when some num­
ber of iterations has passed without changing x*, or when there are no more feasible moves. At termination, 
the solution x* is chosen as best. 

TS is fundamentally a discrete-decision-variable optimizator, but continuous decision variables can be dis­
cretized, as described in Section 12.4.4. TS aggressively pursues improving solutions, and therefore tends to 
make rapid progress. However, it is more sensitive to random variability in Y(x), because x* is taken to be the 
true best solution so far and attempts are made to improve it. There are probabilistic versions of TS that should 
be less sensitive, however. An important feature of commercial implementations of TS, which is not present in 
the Basic TS, is a mechanism for overiding the tabu list when doing so is advantageous. 

Next, we offer two suggestions for using commercial products that employ a GA, TS, or other robust 
heuristic controlling sampling variability, and restarting. 

Control Sampling Variability 

In many cases, it will up to the user to determine how much sampling (replications or run length) will be 
undertaken at each potential solution. This is a difficult problem in general. Ideally, sampling should increase 
as the heuristic closes in on the better solutions, simply because it is much more difficult to distinguish solu­
tions that are close in expected performance from those that differ widely. Early in the search, it may be easy 
for the heuristic to identify good solutions and search directions, because clearly inferior solutions are being 
compared to much better ones, but late in the search this might not be the case. 

If the analyst must specify a fixed number of replications per solution that will be used through the 
search, then a preliminary experiment should be conducted. Simulate several designs, ·some at the extremes 
of the solution space and some nearer the center. Compare the apparent best and apparent worst of these 
designs, using the approaches in Section 12. 1 .  Using the technique described in Section 12. 1 .4, find the min­
imum for the number of replications required to declare these designs to be statistically significantly differ­
ent. This is the minimum number of replications that should be used. 

After the optimization run has completed, perform a second set of experiments on the top 5 to 10 designs 
identified by the heuristic. Use the comparison techniques in Section 12.2-12.2.3 to rigorously evaluate 
which are the best or near-best of these designs. 
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Restarting 

Because robust heuristics provide no guarantees that they converge to the optimal solution for optimization 
via simulation, it makes sense to run the optimization two or more times to see which run yields the best solu­
tion. Each optimization run should use different random number seeds or streams and, ideally, shotild start �m different initial solutions. Try starting the optimization at solutions on the extremes of the solution space, 
m th� cen�r of th� space, and at rando�y generated solutions. If people familiar with the system suspect that 
certarn designs will be good, be sure to mclude them as possible starting solutions for the heuristic. 

1 2.4.4 An Illustration: Random Search 

� �s section, w� pr�sent an algorithm for optimization via simulation known as random search. The spe­
cific rrnplementatton IS based on Algorithm 2 in Andrad6ttir [ 1998], which provides guaranteed asymptotic 
convergence under. certai� conditions. Thus, it will find the true optimal solution if permitted to run long 
enough. However, m practice, convergence can be slow, and the memory requirements· of this particular ver­
sion of randOm search can be quite large. Even though random search is not a "robust heuristic," we will also 
use it to demonstrate some strategies we would employ in conjunction with such heuristics and to demon­
strate why optimization via s�mulation is tricky even with what appears to be an uncomplicated algorithm. 

. The random-search algorithm that we present requires that there be a finite number of possible system 
des1gns (although that number may be quite large). This might seem to rule out problems with continuous 
decision variables, such as conveyor speed. In practice, however, apparently continuous decision variables 
can often be discretized in a reasonable way. For instance, if conveyor speed can be anything from 60 to 120 
f� per minute, 

_
little may be lost by treating the possible conveyor speeds as 60, 61,  62, ...  , 120 feet per 

rrnnute (61 possible values). Note, however, that there are algorithms designed specifically for continuoUs­
variable problems (Andrad6ttir [1998]). 

Again: let the� possible solutions to the optimization via simulation problem be denoted { xl' �· . . . , x1}, 
where the 1th solution xi = (x;1• xi1, . . . , xim) provides specific settings for the m decision variables. The sim­
ulation output at solution xi is denoted Y (xi); this could be the output of a single replication or the average 
of several replications. Our goal is to find the solution x* that minimizes E(Y(x)). 

On each iteration of the random-search algorithm, we compare a current good solution to a randomly 
chosen competitor. If the competitor is better, then it becomes the current good solution. When we terminate 
the search, the solution we choose is the one that has been visited most often (which means that we expect 
to revisit solutions many times). 

Random·Search Algorithm 

Step 1. Initialize counter variables C(i) =.0 for i = 1, 2, . . .  , k. Select an initial solution ;o, and set C(io) = 1 .  
(C(i) counts the number of times we visit solution i.) 

Step 2. Choose another solution l from the set of all solutions except i0 in such a way that each solution has 
an equal chance of being· selected. 

Step 3. Run simulation experiments at the two solutions i0 and i' to obtain outputs Y(i!l) and Y( i'). lf Y(i') < Y(1'0), 
. then set i0= t. (See note following Step 4.) 

· · 

. Step 4. Set C(i!l) = C(i0) + 1. If not done, then g� to Step 2. If done, then select as the estimated optimal 
solution xi* such that C(i*) is the largest count. 

Note that, if the problem is a maximization problem, then replace Step 3 with 

Step 3. Run simulation experiments at the two solutions i0 and i' to obtain outputs Y(i0) and Y(i'). IfY(i') > Y(io), 
then set i0 = (. 
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One of the difficult problems with many optimization-via-simulation algorithms is knowing when to 
stop. (Exceptions include algorithms that guarantee a probability of correct selection.) 1Jpical rules might 
·be to stop after a certain number of iterations, stop when the best solution has not changed much in several 
iterations, or stop when all time available to solve the problem has been exhausted. Whatever rule is used, 
we recommend applying a statistical selection procedure, such as the TWo-Stage Bonferroni Procedure in 
Section 1 2.22, to the 5 to 10 apparently best solutions. This is done to evaluate which among them is the 
true best with guaranteed confidence. If the raw data from the search have been saved, then these data can 
be used as the first-stage sample for a two-stage selection procedure (Boesel, Nelson, and Ishii [20()3]). 

Example 12.13: Implementing Random Search 
Suppose that a manufacturing system consists of 4 stations in series. The zeroth station always has raw mate­
rial availabie. When the zeroth station completes work on a part, it passes the part along to the first station, 
then the first passes the part to the second, and so on. Buffer space between stations 0 and I, I and 2, and 
2 and 3 is limited to 50 parts total. If, say, station 2 finishes a part but there is no buffer space available in 
front of station 3, then station 2 is blocked, meaning that it cannot do any further work. The question is how 
to allocate these 50 spaces to minimize the expected cycle time per part over one shift. 

Letx1 be the number of buffer spaces in front of station i. Then the decision variables are x1, x2, x3 with 
the constraint that x1 · + � + x, = 50 {it makes no sense to allocate fewer buffer spaces than we have avail­
able). This implies a total of 1326 possible designs (can you figure out how this number is computed?). 

To simplify the presentation of the random-search algorithm, let the counter for solution (xl' x2, x3) be 
denoted as 

Random Search Algorithm 

Step 1. Initialize 1 326 counter variables C(x1, �· x3) = 0, one for each of the possible solutions (xl' x2, x3). 
Select an initial solution, say (x1 = 20, x2 = 15, x3 = 15) and set C(20, 15, 15) = l .  

Step 2. Choose another solution from the set of all solutions except (20, 15, 15) in such a way that each solu­
tion has an equal chance of being selected. Suppose ( I I ,  35, 4) is chosen. 

Step 3. Run simulation experiments at the two solutions to obtain estimates of the expected cycle time Y(20, 
15, 15) and Y(l l ,  35, 4). Suppose that Y(20, 15, 15) < Y(l l , 35, 4). Then (20, 15, 15) remains as the current 
good solution. 

Step 4. Set C(20, 15, 15) = C(20, 15, 15) + 1 .  

Step 2.. Choose another solution from the set of all solutions except (20, 15 ,  15) in such a way that each solu­
tion has an equal chance of being selected. Suppose (28, 1 2, 10) is chosen. 
Step 3. Run simulation experiments at the two solutions to obtain estimates of the expected cycle time Y(20, 
· 15, 15) and Y(28, 12, 10). Suppose that Y(28, 12, 10) < Y(20, 15, 15). Then (28, 12, 10) becomes the current 
good solution. 
Step 4. Set C(28, 1 2, 10) = C(28, 12, 1 0) + 1 .  
Step 2. Choose another solution from the set of all solutions except (28, 12, 10) in such a way that each solu­
tion has an equal chance of being selected. Suppose (0, 14, 36) is chosen. 
Step 3. Continue ... 

When the search is terminated, we select the solution (xl' x2, .x,) that gives the largest C(xl' x2, x3) count. 
As we discussed earlier, the top 5 to 1 0  solutions should then be subjected to a separate statistical analysis 
to determine which among them is the true best (with high confidence). In this case, the solutions with the 
largest counts would receive the second analysis. 

I I I 
I 
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Despite the apparent simplicity of the Random-Search Algorithm, we have glossed over a subtle issue 
that often arises in algorithms with provable performance. In Step 2, the algorithm must randomly choose 
a solution such that all are equally likely to be selected (except the current one). How can this be accom­
plished in Example 12. 13? The constraint that x1 + x2 + x3 = 50 means that xl' x2 and x3 cannot be sampled 
independently. One might be tempted to sample x1 as a discrete uniform random variable on 0 to 50, then 
sample x2 as a discrete uniform on 0 to 50 - x1, and finally set � = 50 - x1 - x2• But this method does not 
make all solutions equally likely, as the following illustration shows: Suppose that x1 is randomly sampled to 
be 50. Then the trial.solution must be (50, 0, 0); there is only one choice; But if x1 = 49, then both (49, 1 ,  0) and 
(49, 0, 1 )  are possible. Thus, x1 = 49 should be more likely than x1 = 50 if all solutions with x1 + � + x3 = 50 
are to be equally likely. 

1 2.5 SUMMARY 

This chapter provided a basic introduction to the comparative evaluation of alternative system designs based 
oo data collected from simulation runs. It was assumed that a fixed set of alternative system designs had been 
selected for consideration. Comparisons based on confidence intervals and the use of common random num- · 

bers were emphasized. A brief introduction to metamodels-whose purpose is to describe the relationship 
between design variables and the output response-and to optimization via simulation-whose purpose is to 
select the best from among a large and divJ:�rse collection of system designs-was also provided. There are 
many additional topics of potential interest (beyond the scope of this text) in the realm of statistical analysis 
techniques relevant to simulation. S�me of these topics are 

1. experimental design models, whose purpose is to discover which factors have a significant impact on 
the performance of system alternatives; 

2. output-analysis methods other than the methods of replication and hatch means; 
3. variance-redaction techniques, which are methods to improve the statistical efficiency of simulation 

experiments (common random numbers being an impOrtant example). 

The reader is referred to Banks [1998] and Law and Kelton [2000] for discussions of these topics and 
of others relevant to simulation. 

The most important idea in Chapters I I  and 12  is that simulation output data reqnire a statistical analysis 
in order to be interpreted correctly. In particular, a statistical analysis can provide a measure of the precision of 
the results produced by a simulation and can provide techniques for achieving a specified precision. 
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EXERCISES 

1. Reconsider the dump-truck prolilem of Example 3.5, which was also analyzed in Example 12.2. As 
business expands, the company buys new trucks, making the total number of trucks now equal to 16. 
The company desires to have a sufficient number of loaders and scales so that the average number of 
trucks waiting at the loader queue plus tb.e average number at the weigh queue is no more than three. 
Investigate the following combinations of number of loaders and number of scales: 

Number of 
Scales 

1 
2 

Number of Loaders 
2 3 4 

The loaders being considered are the "slow" loaders in Example 12.2. Loading time, weighing time, and 
travel time for each truck are as previously defined in Example 12.2. Use common random numbers to 
the greatest extent possible when comparing alternative systems designs. The goal is to find the small­
est number of loaders and scales to meet the company's objective of an average total queue length of no 
more than three trucks. In your solution, take into account the initialization conditions, run length, and 
number of replications needed to achieve a reasonable likelihood of valid conclusions. 

2. In Exercise 1 1 .5, consider the following alternative (M, L) policies: 

Investigate the relative costs of these policies, using suitable modifications of the simulation model 
developed in Exercise 1 1 .5. Compare the four system designs on the basis of long-run mean monthly 
cost First make four replications of each (M, L) policy, using common random numbers to the greatest 
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L 
Low High 
30 40 

Low 50 (50, 30) (50, 40) 
M 

High 100 (100, 30) (100, 40) 

extent possible. Each replication should have a 12-month initialization phase followed by a 100-month 
data-collection phase. Compute confidence intervals having an overall confidence level of 90% for mean 
monthly cost for each policy. Then estimate the additional replications needed to achieve confidence 
intervals that do not overlap. Draw conclusions as to which is the best policy. 

3. Reconsider Exercise 1 1 .6. Compare the four inventory policies studied in Exercise 2, taking the cost of 
rush orders into account when computing monthly cost. 

4. In Exercise 1 1 .8, investigate the effect of the order quantity on long-run mean daily cost. Each order 
arrives on a pallet on a delivery truck, so the permissible order quantities, Q, are multiples of 10 (i.e., Q 
may equal 10, or 20, or 30, . . .  ). In Exercise 1 1 .8, the policy Q = 20 was investigated. 

(a) First, investigate the two policies Q = 10 and Q = 50. Use the run lengths, and so on, suggested in 
Exercise 1 1 .8. On the basis of these runs, decide whether the optimal Q, say Q*, is between I 0 and 
50 or is greater than 50. (The cost curve as a function of Q should have what kind of shape?) 

(b) Using the results in part (a), suggest two additional values for Q and simulate the two policies. Draw 
conclusions. Include an analysis of the strength of your conclusions. 

5. In Exercise 1 1 . 1  0, find the number of cards Q that the card shop owner should purchase to maximize 
the profit with an error of approximately $5.00. Use the following expression to generate Q value 

Q =  300 ± 100 

For each run, generate a uniform random variate to get the Q value and for that Q value compute profit. 
' 

6. In Exercise l l .IO, investigate the effect of target level M and review period N on mean monthly cost. 
Consider two target levels, M, determined by ±10 from the target level used in Exercise l l . l  0, and consider 
review periods N of l month and 3 months. Which (N, M) pair is best, according to these simulations? 

7. Reconsider Exercises l l . l2 and l l . l3, which involved the scheduling rules (or queue disciplines) first­
in-first-out (FIFO) and priority-by-type (PR) in a job shop. In addition to these two rules, consider 
a shortest imminent operation (SIO) scheduling rule. For a given station, all jobs of the type with the 
smallest mean processing time are given highest priority. For example, when using an SIO rule at sta­
tion l, jobs are processed in the following order: type 2 first, then type l, and type 3 last. 1\vo jobs of 
the same type are processed on a FIFO basis. Develop a simulation experiment to compare the FIFO, 
PR, and SIO rules on the basis of mean total response time over all jobs. 

8. In Exercise l l . l2  (the job shop with FIFO rule), fmd the minimum number of workers needed at 
each station to avoid bottlenecks. A bottleneck occurs when average queue lengths at a station increase 
steadily over time. (Do not confuse increasing average queue length due to an inadequate number of 
servers with increasing average queue length due to initialization bias. In the former case, average queue 
length continues to increase indefinitely and server utilization is 1 .0. In the latter case, average queue 
length eventually levels off and server utilization is less than l .) Report on utilization of workers 
and total time it takes for a job to get through the job shop, by type and over all types. (Hint: If server 
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utilization at a work station is 1.0, and if average queue length tends to increase linearly as simulation 
run length increases, it is a good possibility that the work station is unstable and therefore is a bottle­
neck. In this case, at least one additional worker is needed at the work station. Use queueing theory, 
namely llc1J.L < I ,  to suggest the minimum number of workers needed at station l .  Recall that A. is the 
arrival rate, 1/J.L is the ovefall mean service time for one job with one worker, and c1 is the number of 
workers at station i. Attempt to use the same basic condition, A.lc1/l < 1, to suggest an initial number of 
servers at station i for i = 2, 3, 4.) 

9. (a) Repeat Exercise 8 for the PR scheduling rule (see Exercise 1 1.13). 
(b) Repeat Exercise 8 for the SIO scheduling rule (see Exercise 12.7). 
(c) Compare the minimum required number of workers for each scheduling rule: FIFO, versus PR, 

versus SIO. 

10. With the minimum number of workers found in Exercises 9 and 10 for the job shop of Exercise 1 1. 12, 
consider adding one worker to the entire shop. This worker can be trained to handle the processing at 
only one station. At which station should this worker be placed? How does this additional worker affect 
mean total res(lOnse time over all jobs?. Over type I jobs? Investigate the job shop with and without the 
additional worker for each scheduling rule: FIFO, PR, SIO. 

11. In Exercise 1 1 .16, suppose that a buffer of capacity one item is constructed in front of each worker. 
Design an experiment to investigate whether this change in system design has a significant impact upon 
individual. worker utilizations (p1, p2, p3 and p4). At the very least, compute confidence intervals for 
p� - p: and p� P!,  where p;, is utilization for worker i when the buffer has capacity s. 

12. A clerk in the admissions office at Small State University processes requests for admissions materials. 
The time to process requests depends on the program of interest (e.g., industrial engineering, manage­
ment science, computer science, etc.) and on the level of the program (Bachelors, Masters, Ph.D.). 
Suppose that the processing time is mode1'!d well as normally distributed, with mean 7 minutes and stan­
dard deviation 2 minutes. At the beginning of the day it takes the clerk some time to get set to begin 
working on requests; suppose that this time is modeled well as exponentially distributed, with mean 20 
minutes .. The admissions office typically receives between 40 and 60 requests per day. 

Let X be the number of applicatiOnS received On a day, and let f be the time required tO process them 
(including the set-up time). Fit a metamodel for E(Y!x) by making n replications at the design points 
x = 40, 50, 60. Notice that, in this case, we know that the correct model is 

E(Yjx) = flo +  /l1x = 20+ 1x 

(Why? ) Begin with n = 2 replications at each design point and estimate flo and Pr Gradually increase the 
number of replications and observe how many are required for the estimates to be close to the true values. 

13. Repeat lhe previous exercise using CRN: How do the results change'? 

14. The usual statistical analysisusedto test for /l1 * O does notholdifwe useCRN. Wheredoesitbreakdown? 

15. Riches and Associates retains its cash reserves primarily in the form of certificates of deposit (Ci:>s), 
which earn interest at an annual rate of 8% .. Periodically, however; withdrawals must be made froro these 
CDs in order to pay supplierS, etc. These cash outflows are made through a checking account that earns 
no interest. The need for cash cannot be predicted with certainty. Transfers from CDs to checking can . 
be made instantaneously, but there is a "substantial penalty" for early withdrawal from CDs. Therefore, 
it might make sense for R&A to make use of the overdraft protection on their checking account, which 
charges interest at a rate of $0.00033 per dollar per day (i.e., 12% per year) for overdrafts. 
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R&A likes simple policies in which it transfers a fixed amount, a fixed number of times, per year. 
Currently, it makes 6 transfers per year, of $18,250 each time. Your job is to find a policy that reduces 
its long-run cost per day. 

Judging from historical patterns, demands for cash arrive a rate of about l per day, with the arrivals being 
modeled well as a Poisson process. The amount of cash needed to satisfy each demand is reasonably rep­
resented by a lognormally distributed random variable with mean $300 and standard deviation $150. 

The penalty for early withdrawal is different for different CDs. It averages $150 for each withdrawal 
(regardless of size), but the actual penalty can be modeled as a uniformly distributed random variable 
with range $100 to $200. 

Use cash level in checking to determine the length of the initialization phase, Make enough replications 
that your confidence interval for the difference in long-run cost per day does not contain zero. Be sure 
to use CRN in your experiment design. 

16. If you have access to commercial optimization-via-simulation software, test how well it works as the 
variability of the simulation outputs increases. Use a simple model, such as Y = x2 + e, where e is a 
random variable with a N(O, 112) distribution, and for which the optimal solution is known (x = 0 for 
minimization, in this case). See how quickly, or whether, the software can find the true optimal solution 
as 112 increases. Next, try more complex models with more than one design variable. 

17. For Example 12.12, show why there are 1326 solutions. Then derive a way to sample xl' x2, and x3 su.ch 
that x1 + :s· + XJ = 50 and all outcomes are equally likely. 

18. A critical electronic component with mean time to failure of x years can be purchased for 2x thousand 
dollars (thus, the more reliable the component, the more expensive it is). The value of x is restricted to 
being between 1 to 10 years, and lhe actual time to failure is modeled as exponentially distributed. 
The mission for which the component is to be used lasts one year; if the component fails in less than 
one year, then there is a cost of $20,000 for early failure. What value of x should be chosen to minimize 
the expected total cost (purchase plus early failure)? 

To solve this problem, develop a simulation that generates a total cost for a component with mean time 
to failure of x years. This requires sampling an exponentially distributed random variable with mean x, 
and then computing the total cost as 2000x plus 20,000 if the failure time is less than I.  Fit a quadratic 
metamodel in x and use it to find the value of x that minimizes the fitted model. [Hints: Select several 
values of x between 1 and 10 as design points. At each value of x, let the response variable Y(x) be the 

· average of at least 30 observations of total cost.] 

19. The demand for an item follows N(IO, 2). It is required to avoid the shortage. Let Q be the order quan­
tity. Assuming Q to be an integer between I 0 and 150, determine the optimal value for Q that maximizes 
the probability, so that the shortage is equal to zero. Use random search algorithm. 

20. H you have access, use any optimization via simulation software to solve Exercise 19. 

21. Explore the possibility of applying metaheuristics to search for near-optimal solution using simulation 
models. 
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Simulation of Manufacturing and 
Material-Handling Systems 

Manufacturing and material-handling systems provide one of the most important applications of simulation. 
Simulation has been used successfully _as an aid in the design of new production facilities, warehouses, and 
distribution centers. It has also been used to evaluate suggested improvements to existing systems. Engineers 
and analysts using simulation have found it valuable for evaluating the impact of capital investmentS in 
equipment and physical facility and of proposed changes to material handling and layout. They have also 
found it useful to evaluate staffing and operating rules and proposed rules and algorithms to be incorporated 
into production control systems, warehouse-management control software, and material-handling controls. 
Managers have found simulation useful in providing a "test drive" before making capital investments, without 
disrupting the existing system with untried changes. 

Section 13.1 provides an introduction and discusses some of the features of simulation !Dodels of · 

manufacturing and material-handling systems. Section 13.2 discussed the goals of manufacturing simulation 
and the most common measures of system performance. Section 13.3 discusses a number of the issues 
common to many manufacturing and material-handling simulations, including the treatment of downtimes and 
failure, and trace-driven simulations using actual historical data or historical order files. Section 13.4 provides 
brief abstracts of a number of reported simulation projects, with references for additional reading. Section 13.5 
gives an extended example of a simulation of a small production line, emphasizing the experimentation and 
analysis of system performance to achieve a desired throughput. For an overview of simulation software for 
manufacturing and material-handling applications, see Section 4.7. 
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1 3. 1  MANUFACTURING AND MATERIAL-HANDLING SIMULAnONS 

As do all modeling projects, manufacturing and material-handling simulation projects need to address· the 
issues of scope and level of detail. Consider scope as analagous to breadth and level of detail as analagous to 
depth. Scope describes the boundaries of the project: what's in the model, and what�s not For a subsystem, 
process, machine, or other component, the project scope determines whether the object is in the model. Then, 
once a component or subsystem is treated as part of a model, often it can be simulated at many different levels 
of detail. 

The proper scope and level of detail should be determined by the objectives of the study and the ques­
tions being asked. On the other hand, level of detail could be constrained by the availability of input data" and 
the knowledge of how system components work. For new, nonexistent systems, data availability might be 
limited, and system knowledge might be based on assumptions. 

Some general guidelines can be provided, but the judgment of experienced simulation analysts working 
with the customer to define, early in the project, the questions the model is being designed to address 
provides the most effective basis for selecting a proper scope and a proper level of detail. 

Should the model simulate each conveyor section or vehicle movement, or can some be replaced by a 
simple time delay? Should the model simulate auxiliary parts, or the handling of purchased parts, or can the 
model assume that such parts are always available at the right location when needed for assembly? 

At what level of detail does the control system need to be simulated? Many modern manufacturing 
facilities, distribution centers, baggage-handling systems, and other material-handling systems are computer . 
controlled by a management-control software system. The algorithms built into such control software play a 
key role in system performance. Simulation is often used to evaluate and compare the effectiveness of 
competing control schemes and to evaluate suggested improvements. It can be used to debug and fine-tune 
the logic of a control system before it is installed. 

These questions are representative of the issues that need to be addressed in choosing the correct level 
of model detail and scope of a project In turn, the scope and level of model detail limit the type of questions 
that can be addressed by the model. In addition, models can be developed in an iterative fashion, adding 
detail for peripheral operations at later stages if such operations are later judged to affect the main operation 
significantly. It is good advice to start as simple as possible and add detail only as needed. 

1 3. 1 . 1 Models of Manqfacturing Systems 

Models of manufacturing systems might have to take into account a num!Jer of characteristics of such systems, 
some of which are the following: 

Physical layout 
Labor 

Shift schedules 
Job duties and certification 

Equipment 
Rates and capacities 
Breakdowns 

Time to failure 
Ttme to repair 
Resources needed for repair 

Maintenance 
PM schedule 
Ttme and resources required 
Tooling and fixtures 
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Wodtcenters 
Processing 
Assembly 
Disassembly 

Product 
. Product flow, routing, and resources needed 
Bill of materials 

Production schedules 
Made-to-stock 
Made-to-order 

Customer orders 
Line items and quantities 

Production control 
Assignment of jobs to work areas 
Task selection at workcenters 
Routing decisions 

Supplies 
Ordering 
Receipt and storage 
Delivery to workcenters 

Storage 
Supplies 
Spare parts 
Work-in-process (WIP) 
Fmished goods 

Packing and shipping 
Order consolidation 
Paperwork 
Loading of trailers 

1 3. 1 .2 Madels of Material Handling Systems 
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In manufacturing systems, it is not unusual for 80 to 85% of an item's total time in system to be expended 
on material handling or on waiting for material handling to octur. This work-in-process (WIP) representS a 
vast investment, and reductions in WIP and associated delays can result in large cost savings. Therefore, for 
some studies, detailed material-handling simulations are cost effective. 

In some production lines, the material-handling system is an essential component For example, auto­
motive paint shops typically consist of a power-and-free conveyor system that transports automobile bodies 
or body parts through the paint booths. 

In warehouses, distribution centers, and flow-throqgh and cross-docking operations, material handling 
is clearly a key component of any material-flow modeL Manual warehouses typically use manual fork trucks 
to move pallets from receiving dock to storage and from storage to shipping dock. More automated distri­
bution centers might use extensive conveyor systems to support putaway, order picking, order sortation, and 
consolidation. 

Models of material-handling systems often have to contain some of the following types of subsystems: 

Conveyorli 
Accumulating 
Nonaccumulating 
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Indexing and other special purpose 
Fixed window or random spacing 
Power and free 

Transporters 
Unconstrained vehicles (e.g., manually guided fork trucks) 
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Guided vehicles (automated or operator controlled, wire guided chemical paths, rail guided) 
Bridge cranes and other overhead lifts 

Storage systems 
Pallet storage 
Case storage 
Small-part storage (totes) 
Oversize items 
Rack storage or block stacked · 

Automated storage and retrieval systems (ASIRS) with storage-retrieval machines (SRM) 

1 3. 1 .3 Some Common Material-Handling Equipment 

There are numerous types of material-handling devices common to manufacturing, warehousing, and distri­
bution operations. They include unconstrained transporters, such as carts, manually driven fork-lift truc!'s, 
and pallet jacks; guided path transporters, such as AGVs (automated guided vehicles); and fixed-path 
devices, such as various types of conveyor. . 

The class of UQconstrained transporters, sometimes called free-path transporters, includes carts, fork-lift 
trucks, pallet jacks, and other manually driven vehicles that are free to travel throughout a facility uncon­
strained by a guide path of any kind. Unconstrained transporters are not constrained to a network of pathS and 
may choose an alternate path or move around an obstruction. In contrast, the guided-path transporters move 
along a ftxed path, such as chemical trails on the floor, wires imbedded in the floor, or infrared �ghts pia� 
strategically, or by self-guidance, using radio communications, laser guidance and dead reckomng, and rail. 
Guided-path transporters sometimes contend with each other for space along their paths and usually have 
limited options upon meeting obstacles and congestion. Examples of guided-path transporters include the 
automated guided vehicle (AGV); a rail-guided turret truck for storage and retrievals of pallets in rack storage; 
and a crane in an ASIRS (automated storage and retrieval system). . 

The conveyor is a fixed-path device for moving emities from point to point, following a fixed path with 
specific load, stopping or processing points, and unload points. A conveyor system can consist of numerous 
connected sections with merges and diverts. Each section can be of one of a number of different types. 
Examples of conveyor types include belt, powered and gravity roller, bucket, chain, tilt tray. and power-and-free, 
each with its own characteristics that must be modeled accurately. 

Most conveyor sections can be classified as either accumulating or nonaccumulating. An accumulating 
conveyor section runs continuously. If the forward progress of an item is halted while on the accumu­
lating conveyor, slippage occurs, allowing the item to remain stationary and items behind it to continue 
moving until they reach the stationary item. Some belt and most roller conveyors operate in this manner. 
Only items that will not be damaged by bumping into each other can be placed on an accumulating conveyor. 

In contrast, after an item is on a nonaccumulating conveyor section, its spacing relative to other items does 
not change. If one item stops moving, the entire section stops moving, and hence all items on the section stop. 
For example, nonaccumulating conveyor is used for moving televisions not yet in cartons, for they must be 
kept at a safe distance from each other while moving from one assembly or testing station to the next Bucket 
conveyors, tilt-tray conveyors, some belt conveyors, and conveyors designed to carry heavy loads (usually, 
pallets) are nonaccumulating conveyors. 
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Conveyors can also be classified as fixed-window or random spacing. In ftxed-window spacing, items 
on the conveyor must always be within zones of equal length, which can be pictured as lines drawn on a belt 
conveyor or trays pulled by a chain. For example, in a tilt-tray conveyor, continuously moving trays of fixed 
size are used to move items. The control system is designed to induct items in such a way that each item is 
in a separate tray; thus it is a nonaccumulating fixed-window conveyor. In contrast, with random spacing, 

. items can be anywhere on the conveyor section relative to other items. To be inducted, they simply require 
sufficient space. 

Besides these basic types, there are innumerable types of specialized conveyors for special purposes. For 
example, a specialized indexing conveyor may move fo:i:ward in increments, always maintaining a ftxed dis­
tance between the trailing edge of the load ahead and the leading edge of the load behind. Its purpose is to 
form a "slug" of items, equally spaced apart, to be inducted all together onto a transport conveyor. For the 
local behavior of some systems-that is, the performance at a particular workstation or induction point-a 
detailed understanding and accurate model of the physical workings and the control logic are essential for 
accurate results; 

1 3.2 GOALS AND PERFORMANCE MEASURES 

The purpose of simulation is insight, not numbers. Those who purchase and use simulation software and 
services want to gain insight and understanding into how a new or modified system will work. Will it meet 
throughput expectations? What happens to response time at peak periods? Is the system resilient to short-term 
surges? What is the recovery time when short-term surges cause congestion and queueing? What are the 
staffing requirements? What problems occur? If problems occur, what is their cause and how do they arise? 
What is the system capacity? What conditions and loads cause a system to reach its capacity? 

Simulations are expected to provide numeric measures of performance, such as throughput under a 
given set of conditions, but the major benefit of simulation comes from the insight and understanding gained 
regarding system operations. Visualization through animation and graphics provides major assistance in the 
communication of model assumptions, system operations, and model results. Often, visualization is the 
major contributor to a model's credibility, which in tum leads to acceptance of the model's numeric outputs. 
Of course, a proper experimental design that includes the right range of experimental conditions plus a rigorous 
analysis and, for stochastic simulation models, a proper statistical analysis is of utmost importance for the 
simulation analyst to draw correct conclusions from simulation outputs. 

The major goals of manufacturing-simulation models are to identify problem areas and quantify system 
performance. Common measures of system performance include the following: 

• thfoughput under average and peak loads; 
• system cycle time (how long it takes to produce one part); 
• utilization of resources, labor, and machines; 
• bottlenecks and choke points; 
• queueing at work locations; 
• queueing and delays caused by.material-handling devices and systems; 
• WIP storage needs; 
• staffing requirements; 
• effectiveness of scheduling systems; 
• effectiveness of control systems. 

Often, material handling is an important part �f a manufacturing system and its performance. 
Non-manufacturing material-handling systems include warehouses, distribution centers, cross-docking 
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operations, baggage-handling systems at airports and container terminals. The major goals of these non­
manufacturing material-handling systems are similar to those identified for manufacturing systems. Some 
additional considerations are the following: 

• how long it takes to process one day of customer orders; 
• effect of changes in order profiles (for distribution centers); 
• trucldtrailer queueing and delays at receiving and shipping docks; 
• effectiveness of material-handling systems at peak IO{Ids; 
• rec<ivery time from short-term surges (for example, with baggage-handling). 

1 3.3 ISSUES IN MANUFACTURING AND MATERIAL·HANDUNG SIMULAnONS 

There are a number of modeling issues especially important for the achievement of accurate and valid 
simulation models of manufacturing and material-handling systems. Two of these issues are the proper 
modeling of downtimes and whether, for some inputs, to use actual system data or a statistical model of those 
inputs. 

1 3.3.1 Modeling Downtimes and Failures 

Unscheduled random downtimes can have a major effect on the performance of manufacturing systems. 
Many a\)thors have discussed the proper modeling of downtime data (Williams [1994]; Clark [ 1994]; Law 
and Kelton [2000]). This section discusses the problems that can arise when downtime is modeled incor­
rectly and suggests a number of ways to model machine and system downtimes correctly. 

Scheduled downtime, such as for preventive maintenance, or periodic downtime, such as for tool replace­
ment, also can have a major effect on system performance. But these downtimes are usually (or should be) 
predictable and can be scheduled to minimize disruptions. In addition, engineering efforts or new technology 
might be able to reduce their duration. . 

There are a number of alternatives for modeling random unscheduled downtime, some better than 
others: 

l. Ignore it. 
2. Do not model it explicitly, but increase processing times in appropriate proportion. 
3. Use constant values for time to failure and time to repair. 

· 

4. Use statistical distributions for time to failure and time to repair. 

Of course, alternative (I)  generally is not the suggested approach. This is certainly an irresponsible 
modeling technique if downtimes have an impact on the results, as they do in aimost all situations. One sit­
uation in which ignoring downtimes could be appropriate, with the full knowledge of the customer, is to 
leave out those catastrophic downtimes that occur rarely and leave a production line or plant down for a long 
period of time. In other words, the model would incorporate normal downtimes bl!t ignore those catastrophic 
downtimes, such as general power failures, snow storms, cyclones, and hurricanes, that occur rarely but stop 
all production when they do occur. The documented scope of the project should clearly state the assumed 
operating conditions and those conditions that are not included in the model. If it is generally known that a 
plant will be closed for some number of snow days per year, then the simulation need not take these down­
times into account, for the effect of any given number of days can easily be factored into the simulation 
results when making annual projections. 

The second possibility, to factor into the model the effect of downtimes by adjusting processing times 
applied to each job or part, might be an acceptable approximation under limited circumstances. If each job 
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or part is subject to a large number of small delays associated with downtime of equipment or tools, then the 
total of such delays may be added to the pure processing time to arrive at an adjusted processing time. If total 
delay time and pure processing time are random in nature, then an appropriate statistical distribution should 
be used for the total adjusted processing time. If the pure processing time is constant while the total delay 
time in one cycle is random and variable, it is almost never accurate to adjust the processing time by a 
constant factor. For example, if processing time is usually I 0 minutes but the equipment is subject to down­
times that cause about a 10% loss in capacity, it is not appropriate to merely change the processing time to a 
constant 1 1  minutes. Such a deterministic adjustment might provide reasonably accurate estimates of overall 
system throughput, but will not provide accurate estimates of such local behavior as queue and buffer 
space needed at peak times. Queueing and short-term congestion are strongly influenced by randoumess and 
variability. 

The third possibility, using constant durations for time to failure and time to repair, might be appropri­
ate when, for example, the downtime is actually due to preventive maintenance that is on a fixed schedule. 
In almost all other circumstances, the fourth possibility, modeling time to failure and time to repair by appro­
priate statistical distributions, is the appropriate technique. This requires either actual data for choosing a sta­
tistical distribution based on the techniques in Chapter I I , or, when data is lacking, a reasonable assumption 
based on the physical nature of the causes of downtimes. 

The nature of time to failure is also important. Are times to failure completely random in nature, a 
situation due typically to a large number of possible causes of failure? In this case, exponential distribution 
might provide a good statistical model. Or are times to failure, rather, more regular-typically, due to some 
major component-say, a tool-wearing out? In this case, a uniform or (truncated) normal distribution could 
be more nearly appropriate. In the latter case, the mean of the distribution represents the average time to failure, 
and the distribution places a plus or minus around the mean. 

Time to failure can be measured in a number of different ways: 

1. by wall-clock time; 
2. by machine or equipment busy time; 
3. by number of cycle times; 
4. by number of items produced. 

Breakdowns or failures can be based on clock time, actual usage, or cycles. Note that the word breakdown 
or failure is used, even though preventive maintenance could be the reason for a downtime. As mentioned, 
breakdowns or failures can be probabilistic or deterministic in duration. 

Actual usage breakdowns are based on the time during which the resource is used. For example, wear 
on a machine tool occurs only when the machine is in use. Time to failure is measured against machiae-busy 
time and not against wall-clock time. If the time to failure is 90 hours, then the model lCeeps track of total 
bnsy time since the last downtime ended, and, when 90 hours is reached, processing is interrupted and a 
downtime occurs. 

t;::lock-time breakdowns might be associated with scheduled maintenance-for example, changes of 
fluids every three months when a complete lubrication is required. Downtimes based on wall-clock time may 
also be used for equipment that is always busy or equipment that "runs" even when it is not processing parts. 

Cycle breakdowns or failures are based on the number of times the resource is used. For example, after 
every 50 uses of a tool, it needs to be sharpened. Downtimes based on number of cycle times or number of 
items produced are implemented by generating the number of times or items and, in the model, simply count­
ing until this number is reached. 'I)rpical uses of downtimes based on busy time or cycle times may be for 
maintenance or tool replacement. 

Another issue is what happens to a part at a machine when the breakdown or failure occurS. Possibilities 
include scrapping the part, rework, or simply continuing processing after repair. In some cases-for example, 
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when preventive maintenance is due-the part in the machine may complete processing before the repair 
(or maintenance activity) begins. 

Time to repair can also be modeled in two fundamentally different ways: 

1. as a pure time delay (no resources required); 
2. as a wait time for a resource (e.g., maintenance person) plus a time delay for actual repair. 

Of course there are many variations on these methods in actual modeling situations. When a repair or main­
tenance �rson is a limited resource, the second approach will be a more accurate model and provlde more 
information. 

The next example illustrates the importance of using the proper approach for modeling downtimes and 
of the consequences and inaccurate results that sometimes result from inaccurate assumptions. 

Example 13.1: Effect of Downtime on Queueing 
Con�ider a single machine that processes a wide variety of parts that arrive in random mixes at random times. 
Data analysis has shown that an exponentially distributed processing time with a mean of 7.5 minutes 
provides a fairly accurate representation. Parts arrive at random, time between arrivals being exponentially 
distributed with mean 10 minutes. The machine fails at random times. Downtime studies have shown that 
time-to-failure can be reasonably approximated by an exponential distribution with mean time l 000 minutes. 
The time to repair the resource is also exponentially distributed, with mean time 50 minutes. When a failure 
occurs, the current part in the machine is removed from the machine; when the repair has been completed, 
the part resumes its processing. 

When a part arrives, it queues and waits its turn at the machine. It is desired to estimate the size of this 
queue. An experiment was designed to estimate the average number of parts in the queue. To illustrate the 
effect of an accurate treatment of downtimes, the model was ron under a number of different assumptions. 
For each case and replication, the simulation run length was 100,000 minutes. 

Table 13.1 shows the average number of parts in the queue for six different treatments of the time 
between breakdowns. For each treatment that involves randomness, five replications of those treatments and 
the average for those five replications are shown. 

Case A ignores the breakdowns. The average number in the queue is 2.31 parts. Across the 5 inde­
pendent replications, the averages range from 2.05 to 2.70 parts. This treatment of ·breakdowns is not 
recommended. 

Case 8 increases the average service time from 7.5 minutes to 8.0 minutes in an attempt to approximate 
the effect of downtimes. On average, each downtime and repair cycle is 1050 minutes, with the machine 
down for 50 minutes. Thns the machine is down, on the average in the long run, 50/l050 = 4.8% of total 
time. Thus, some have argued that downtime has approximately the same effect as increasing the processing 

Table 13.1 Average Number of Parts in Queue for Machines with Breakdowns 

Case lst Rep 2nd Rep 3rd Rep 4th Rep 5th Rep Avg Rep 

A Ignore the breakdowns 2.36 2.05 2.38 ·2.05 2.70 2.31 
B. Increase service time to 8.0 3.32 2.82 3.32 2.81 4.03 326 
C. All random 4.05 3.77 4.36 3.95 4.43 4.1 1  
D .  Random processing, 

deterministic breakdowns 3.24 2.85 3.28 3.05 3.79 3.24 
E. All deterministic 0.52 
F. Deterministic processing, 

Random breakdowns 1.06 . 1.04 1.10 1.32 1.16 1.13 
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time of each part by 4.8%, which is about 7.86 minutes. Therefore, an assumed constant 8 minutes per part 
should be (it is argued) a conservative approach. For this treatment of downtimes, the average number of 
parts in the queue, over the five replications, is about 3.26 parts. Across the 5 replications, the range is from 
2.81  to 4.03 parts. (Note that the variability as shown in the range of values is very small compared to the 
other cai;es.) The treatment in Case B might be appropriate under some limited circumstances, but, as was 
discussed in a previous section, it is not appropriate under the assumptions of this example. 

The proper treatment, shown as Case C, treats the randomness in processing and breakdowns properly, 
with the assumed correct exponential distributions. The average value is about 4. n parts waiting for the 
machine. Across the 5 replications, the average queue length ranges from 3.77 to 4.43 parts. The average 
number waiting differs from that of Case B by almost one part. 

Case D is a simplification that treats the processing randomly, but treats the breakdowns as determinis­
tic. The results average about 3.24 parts in the queue. The range of averages is from 2.85 to:J .79 parts, quite 
a reduction in variability from Case C. 

Case E treats all of the times as deterministic. Only one replication is needed, because additional repli­
cations (using the same seed) will reproduce the result. The average value in the queue is 0.52 parts, well 
below the value in Case C, or any other case for that matter. The conclusion: Ignoring randomness is dan­
gerous and leads to totally unrealistic results. 

Case F treats arrivals and processing as deterministic, but breakdowns are random. The average number 
of parts in the queue at the machine is about 1 . 13. The range is from 1.04 to 1 .32 parts. For �orne machines 
and processing in manufacturing environments, Case F is the realistic situation: Processing times are con­
stant, and arrivals are regulated-that is, are also constant. The reader is left to consider the inaccuracies that 
would result from making faulty assumptions regarding the nature of time to failure and time to repair. 

In conclusion, there can be significant differences between the estimated average numbers in a queue, 
based on the treatment of randomness. The results using the correct treatment of randomness can be far 
different from those nsing alternatives. Often, one is tempted by the unavailability of detailed data and the 
availability of averages to want to use average time to failure as if it were a constant. Example 13 . 1  illustrates 
the dangers of inappropriate assumptions. Both the appropriate technique to use and the appropriate statistical 
distribution depend on the available data and on the situation at hand. 

As discnssed by Williams [1994], the accurate treatment of downtimes is essential for achieving valid 
models of manufacturing systems. Some of the essential ingredients are the following: 

• avoidance of oversimplified and inaccurate assumptions; 
• careful collection of downtime data; 
• accurate representation of time to failure and time to repair by statistical distributions; 
• accurate modeling of system logic when a downtime occurs, in terms both of the repair-time logic and 

of what happens to the part currently processing: 

1 3.3.2 Trace-driven Models 

Consider a model of a distribution center that receives customer orders that must be processed and shipped in 
one day. One modeling question is how to represent the day's set of orders. A typical order will contain one 

· or more line items, and each line item can have a quantity of one or more pieces. For example, when you buy 
a new stereo, you might purchase an amplifier, a tuner, and a CD player (all separate line items, each having 
a quantity of one piece), and 4 identical speakers (another line item with a quantity of 4 pieces). The overall 
order profile can have a major impact on the performance of a particular system design. A system designed to 
handle large orders going to a small number of customers might not perform well if order profiles shift toward 
a larger number of customers (or larger number of separate shipments) with one or two items per order. 
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One approach is to chacacteri.ze the order profile by using a discrete statistical distribution for each variable 
in an order: 

1. the number.of line items 
2. for each line item, the number of pieces. 

If these two variables are statistically independent, then this approach might provide a valid model of the order 
profile. For many applications, however, these two variables may be highly correlated in ways that could be 
difficult to characterize statistically. For example, an apparel and shoe company. has six large customers (the 
large department stores and discount chains), representing 50% of sales volume, which typically order dozens 
or hundreds of line items and large quantities of many of the items. At the opposite pole, on any given day 
approximately 50% of the orders are for one or two pairs of shoes (just-in-time with a vengeance!). For this 
company, the number of line items in an order is highly positively correlated with the quantity ordered; that . 
is, large orders with a large number of line items also usually have large quantities of many of the line items. 
And small orders with only a few line items typically order small quantities of each item. 

What would happen if the two variables, number of line items and quantity per line item, were modeled 
by independent statistical distributions? When an order began processing, the model would make two ran­

dom uncorrelated draws, which could result in order profiles quite different from those found in practice. 
Such an erroneous assumption could result, for example, in far too large a proportion of orders having one 
or two line items with large unrealistic quantities. . 

Another common but more serious error is to assume that there is an average order and to simulate only 
the number of orders in a day with each being the typical order. In the author's experience, analyses of many 
order profiles has shown (1) that there is no such thing as a typical order and (2) that there is no such thing 
as a typical order profile. 

An alternative approach, and one that has proven successful in many studies, is for the company to pro­
vide the actual orders for a sample of days over the previous year. Usually, it is desirable to simulate peak 
days. A model driven by actual historical data is called a trace-driven model. 

A trace-driven model eliminates all possibility of error due to ignoring or misestimating correlations in 
the data. One apparent limitation could be a customer's desire, at times, to be able to simulate hypothesized 
changes to the order profile, such as a higher proportion of smaller orders in terms of both line items and 
quantities. In practice, this limitation can be removed by adding "dials" to the order-profile portion of the 
model, so that a simulation analyst can "dial up" more or less of certain characteristics, as desired. One 
approach is to treat the day's orders as a statistical population from which the model draws samples in a ran­

dom fashion. This approach makes it easy to change overall order volume without modifying the profile. 
A second related approach.would be to.subdivide a day's orders into subgroups based on number of line 
items, quantities or other numeric parameters, and then sample in a specified proportion from each subgroup. 
By changing the proportion of each subgroup, different order profiles can be "dialed up" and fed into the 
model. A third approach is to use factors to adjust the number of daily orders, the number of line items, and/or 
the quantities. In practice one of dtese approaches might be as accurate as can be expected for hypothesized 
future order profiles and might provide a cost effective and reasonably accurate niode� especiaUy for testing 
the robustness of a system design for assumed changes in order characteristics. 

Other examples of trace-driven models include the foUowing: 

• orders to a custom job shop, using actual historical orders; 
• product mix and quantities, and production sequencing, for an assembly line maldng 100 styles and 

sizes of hot-water heaters; 
• time to failure and downtime, using actual maintenance records; 
• Truck arrival times to a warehouse, using gate records. 
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Whether to make an input variable trace-driven or to characterize it as a statistical distribution depends on a 
number of issues, including the nature of the variable itself, whether it is correlated with or independent of 
other variables, the availability of accurate data, and the questions being addressed. 

13.4 CASE SnJDIES OF 1HE SIMULAnON OF MANUFACTURING AND MATERIAL 
HANDUNG SYSTEMS 

The Winter Simulation Conference Proceedings, l1E Magazine, Modem Material Handling and other periodicals 
are excellent sources of information for short cases in the simulation of manufacturing and material-handling 
systems. 

An abstract of some of the papers from past Winter Simulation Conference Proceedings will provide 
some insight into the types of problems that can be addressed by simulation. These abstracts have been par­
aphrased and shortened where appropriate; our goal is to provide an indication of the breadth of real-world 
applications of simulation. 

Session: 
Paper: 
Authors: 
Abstract: 

Session: 
Paper: 
Authors: 
Abstract: 

Session: 
Paper: 
Authors: 

Semiconductor Wafer Manufacturing 
Modeling and Simulation of Material Handling for Semiconductor Wafer Manufacturing 
Neal G. Pierce and Richard Stafford 
This paper presents the results of a design study to analyze the interbay material-handling 
systems for semiconductor wafer manufacturing. The authors developed discrete-event 
simulation models of the performance of conventional cleanroom material handling including 
manual and automated systems. The components of a conventional cleanroom material­
handling system include an overhead monorail system for interbay (bay-to-bay) transport, 
work-in-process stockers for lot storage, and manual systems for intrabay movement. 
The authors constructed models and experiments that assisted with analyzing cleanroom 
material-handling issues such as designing conventional automated material-handling systems 
and specifying requirements for transport vehicles. 

Simulation in Aerospace Manufacturing 
Modeling Aircraft Assembly Operations 
Harold A. Scott 
A simulation model is used to aid in the understanding of complex interactions of aircraft 
assembly operations. Simulation helps to identify the effects of resource constraints on 
dynamic process capacity and cyCle time. To analyze these effects, the model must capture 
job and crew interactions at the control code level. This paper explores five aspects of 
developing simulation models to analyze crew operations on aircraft assembly lines: 

Representing job precedence relationships 
Simulating crew members with different skill and job proficiency levels 
Reallocating crew members to assist ongoing jobs 
Depicting shifts and overtime 
Modeling spatial constraints and crew movements in the production area. 

Control of Manufacturing Systems 
Discrete Event Simulation for Shop Floor Control . 
J. S. Smith, R. A. Wysk, D. T. Sturrock, S. E. Ramaswamy, G. D. Smith, S; B. Joshi 
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Session: 
Paper: 
Authors: 

� . . Abstract: 

Session: 
Paper: 
Authors: 
Abstract: 

Session: 
Paper: 
Authors: 
Abstract: 

Ses�ion: 
Paper: 
Authors: 
Abstract: 

Session: 
Paper: 

DISCRETE-EVENT SYSTEM SIMULATION 

This paper describes an application of simulation to shop floor control of a flexible 
manufacturing system. The simulation is used not only as an analysis and evaluation tool, 
but also as a "task generator" for the specification of shop floor control tasks. Using this 
approach, the effort applied to the development of control logic in the simulation is not 
duplicated in the development of the control system. Instead the same control logic is used 
for the control system as was used for the simulation. Additionally, since the simulation 
implements the control, it provides very high fidelity performance predictions. The paper 
describes implementation experience in two flexible manufacturing laboratories. 

Flexible Manufacturing 
Developing and Analyzing Flexible Cell Systems Using Simulation 
Edward F. Watson and Randall P. Sadowski 
This paper develops and evaluates flexible cell alternatives to support an agile production 
environment at a mid-sized manufacturer of industrial equipment Three work cell alterna­
tives were developed based on traditional flow analysis studies, past experience, and com­
mon sense. The simulation model allowed the analyst to evaluate each cell alternative under 
current conditions as well as anticipated future conditions that included changes to product 
demand, product mix, and process technology. 

Modeling of Production Systems 
Inventory Cost Model for Just-in-Time Production 
Mahesh Mathur 
This paper presents a simulation model used to compare setup and inventory carrying costs 
with varying lot sizes. While reduction of lot sizes is a necessary step towards implementa­
tion of Just-in-Time (JIT) in a job shop environment, a careful cost study is required to 
determine the optimum lot size under the present set-up conditions. The simulation model 
graphically displays the fluctuation of carrying costs and accumulation of set-up costs on a 
time scale in a dynamic manner. The decision of the optimum lot size can then be based on 
realistic cost figures. 

Analysis of Manufacturing Systems 
Modeling Strain of Manual Work in Manufacturing Systems 
I. Ehrhardt, H. Herper, and H. Gebhardt 
This paper describes a simulation model that considers manual operations for increasing 
the effectiveness of planning logistic systems. Even though there is ever increasing automa­
tion, there are vital tasks in production and logistics that are still assigned to humans. 
Present simulation modeling efforts rarely concentrate on the manual activities assigned to 
humans. 

Manufacturing Case Studies 
Simulation Modeling for Quality and Productivity in Steel Cord Manufacturing 
C. H. Turkseven and G. Ertek 
The paper describes the application of simulation modeling to estimate and improve quality 
and productivity performance of a steel cord manufacturing system. It focuses on wire 
fractures, which can be an important source of system disruption. 

Manuf�cturing Analysis and Control 
Shared Resource Capacity Analysis in Biotech Manufacturing 
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Author: 
Abstract: 

Session: 
Paper: 

Authors: 
Abstract 

P. V. Saraph 
This paper discusses an application of simulation in analyzing the capacity needs of a shared 
resource, the Blast Freezer, at one of the Bayer Corporation's manufacturing facilities. 
The simulation model was used to analyze the workload patterns, run different workload 
scenarios, taking into consideration uncertainty and variability, and provide recommenda­
tions on a capacity increase plan. This analysis also demonstrated the benefits of certain 
operational scheduling policies. The analysis outcome was used to determine capital invest­
ments for 2002. 

Manufacturing Analysis and Control 
Behavior of an Order Release Mechanism in a Make-to-Order Manufacturing System with 
Selected Order Acceptance 
A. Nandi and P. Rogers 
The authors used a simulation model to evaluate a controversial policy, namely, holding 
orders .in a pre-shop pool prior to their release to the factory floor. In a make-to-order manu­
facturing system, if capacity is fixed and exogenous due dates are inflexible, having orders 
wait in a pre-shop pool may cause the overall due date performance of the system to.deteri­
orate. The model was used to evaluate an alternative approach, the selective rejection of 
orders. for dealing with surges in demand while maintaining acceptable due date perforniance. 

1 3.5 MANUFACTURING EXAMPLE: AN ASSEMBLY-UNE SIMULATION 

This section describes a model of a production line for the final assembly of "gizmos". It then focuses on 
how simulation can be used to analyze system performance. 

1 3.5.1 System Description and Model Assumptions 

At a manufacturing facility, an engineering team has designed a new production line for the final �se�bly of 
gizmos. Before making the investment to install the new syst�m, some team members

_ 
propose usmg Simu�a­

tion to analyze the system's performance, specifically to predict system throughput (gizmos pe� 8-hour shift, 
on the average). In aQdition, the engineers desire to evaluate potential improvements to the designed s�stem. 
One such potential improvement is adding buffer space for holding work-in-process (WIP) between adJacent 
workstations. · · 

. . 
The team decides to develop a simulation model and conduct an analysis. The team's p�m� objective 

is to predict throughput (completed gizmos per shift on the average) for the !liven system design and to eval­
uate whether it meets the desired throughput.' In addition, should throughput be less than expected, the team 
wants to use the model to help in identifying bottlenecks, gaining insight into the system's dynamic behavior 
and evaluating potential design improvements. . 

The proposed production line has six workstations and a special rack for WIP storage betw�n adJa�nt 
stations. There are four manual stations, each having its own operator, and two automated stations, which 
share a single operator. The six stations perform production tasks in the following sequence: 

Station 1: initial manual station begins final assembly of a new gizmo 
Station 2: manual assembly station 
Station 3: manual assembly station 
Station 4: automatic assembly station 
Station 5: automatic testing station 
Station 6: manual packing station 
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At each manual station, an operator loads a gizmo onto a workbench, perfonns some tasks, and on 
completion unloads the gizmo and places it into the WIP storage for the next workstation. The operator takes 
10 seconds and 5 seconds for the loading and unloading tasks, respectively. 

The WIP storage racks between each pair of adjacent stations have limited capacity. If a .  station 
completes its tasks on a gizmo but the downstream rack is ful� the gizmo must remain in the station, block­
ing any further work. ln. the initial design, the WIP storage racks have the capacities shown in Table 13.2. 
(By assumption, the WIP storage preceding Station 1 is always kept full at 4 units; since it is assumed to 
always be full, its specific capacity plays no role.) The system design with capacities given in Table 13.2 is 
called the Baseline confignration. 

From time to time, a tool will fai� causing unscheduled downtime or unexpected extra work at a manual 
or automated station. In addition, all operators are scheduled to take a 30-minute lunch break at the same 
time. Work is interrupted and resumes where it left off after lunch. This interrupt/resume rule applies to 
operator tasks including assembly work, parts resupply, and repairs during a downtime. 

At the automatic stations, a machine perfonns an assembly or testing task. The automatic stations might 
have unscheduled (random) downtimes, but they continue to operate during the operator's lunch break. One 
operator services both machines to load and unload gizmos (10 seconds and 5 seconds, respectively). After 
being loaded, a machine processes the gizmo without further operator intervention unless a downtime occurs. 
At all stations, the operator perfonns repairs as needed whenever the station experiences a downtime. 

Table 13.3 gives the total assembly time and parts resupply times for each station, plus the number of 
parts in a batch. The assembly time for the manual stations is assumed to vary by plus/minus 2 seconds 
(uniformly distributed) from the times given in Table 13.3. Parts resupply time does not occur for each 
gizmo, but rather after a batch of parts has been assembled onto the gizmo. The machines at stations 4 and 
5 do not consume parts. 

Each station is subject to unscheduled (random) downtime. Manual stations 1-3 illlve tool failures or 
other unexpected problems. The automatic stations occasionally jam or have some other problem that 
requires the assigned operator to fix it. Station 6 (packing) is not subject to these downtimes. Thble 13.4 

Station 

2 

3 
4 
5 
6 

Table 13.2 Capacity of WIP Storage Suffers for 
Baseline Configuralion 

Rack Before Station 2 3 4 5 

Buffer Capacity 4 2 2 2 

Table 13.3 ·· Assembly and Parts Resupply Times 

Assembly per Parts Resupply 1ime 
Gizmo (Seconds) Part Number (seconds per Batch) 

40 A 10 
B 15  

38 c 20 
D 15 

38 E 30 
35 
35 
40 F" 30 

•: At station 6, the part number (F) represents the shipping containers. 

6 

2 

No. of Parts 
per Batch 

15 
to 
8 

1 4  
25 

32 
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Table 13.4 Assumptions and Data for Unscheduled Downtimes 

MTTF MITR Expected 
- Station TTF (Minutes) TTR (Minutes) +1- Availability 

Exponential 36.0 Unifonn 4.0 1.0 90% 
2 Exponential 4.5 Unifonn 0.5 0.1 90% 
3 Exponential 27.0 Unifonn 3.0 t .O 90% 
4 Exponential 9.0 Unifonn 1 .0 0.5 90% 
5 Exponential 18.0 Unifonn 2.0 l.O 90% 

shows time to failure (TTF) and time to repair (TfR) distributional assumptions and the assumed mean time 
to failure (MTTF), mean time to repair (MTfR) and spread ( +1-) of repair times. For example, at Station 1 ,  
repair time is  uniformly distributed with mean 4.0 minutes plus or  minus 1 .0 minutes-that is, unifon:i:lly 
distributed between 3.0 and 5.0 minutes. Failure can only occur when an operator or machine. is working; 
hence, TTF is modeled by measuring only busy or processing time until a failure occurs. 

The primary model output or response is average throughput during the assumed 7.5 working hours per 
8-hour shift. The model also measures detailed station utilization, including busy or processing time, idle or 
starved time (no parts ready for processing), blocked time (part cannot leave station, because downstream 
WIP buffer is full), unscheduled downtime, and time waiting for an operator. 

Station starvation occurs when the operator and station are ready to work on the next gizmo, the just­
completed gizmo leaves the station, but upstream conditions cause no gizmo to be ready for this production 
step. In short, the upstream WIP buffer is empty. 

Station blockage occurs when a station completes all tasks on a gizmo, but cannot release the part 
because the downstream WIP buffer is full. For both starvation and blockage, production time is lost at the 
given station and cannot be made up. 

When an operator services more than one station, as does the operator servicing Stations 4 and 5, it is 
possible for both stations to need the operator at the same time. This could cause additional delay at the 
station and is measured by a "wait for operator" state. Blockage, starvation, and wait-for-operator at each 
station will be measured in order to help explain any throughput shortfall, should it occur, and to assist in 
identifying potential system improvements. 

1 3.5.2 Presimulation Analysis 

A presimillation analysis, taking into account the average station cycle time as well as expected station avail­
ability (90%), indicates that each station, if unhindered, can achieve the desired throughput. This initial 
analysis is carried out as described in this section. 

From the assumed downtime data, the team was able to estimate expected station availability, under the 
(ideal) assumption of no interaction between stations. The expected availability shows each station's individual 
availability during working (nonlunch, nonbreak) hours, assuming that the operator can always place a 
completed gizmo into the downstream rack storage and the next gizmo is ready to begin work at the station. 
Expected availability is computed by M1TF/(MTIF + MTTR), or expected busy time during a downtime 
"cycle" divided by the length of a downtime cycle (a busy cycle plus a repair cycle) and is given in Table 13.4, 
This calculation ignores certain aspects of the problem, including the parts resupply times and any delay 
caused by having only one operator to service both Stations 4 and 5. . . . 

The design goal for the modeled system is 390 finished gizmos per 8-hour shift. After taking lunch into 
account, each shift has up to 7.5 hours of available work time. With unscheduled (random) downtime expected 
to be 10% of available time, this further reduces working time to 0.90 x 7.5 hours 6.75 hours. This implies 
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Table 1 3.5 Estimoted Totol Cycle Time ot Eoch Stotion 

Station Formula to Estinwte Cycle T1111e (Seconds) Estimate (Seconds) 

I 10 + 40 + 5 + 10115 + 15/10 57.2 
2 10 + 38 +5 + 2018 + 15/14 56.6 
3 10 + 38 + 5  + 30125 54.2 
4 10 + 35 + 5  50.0 
5 10 + 35 + 5 50.0 
6 10+  40 + 5  + 30132 55.9 

that the station with the slowest total cycle time must be able to produce 390 gizmos in the available 
6.75 hours. Therefore the total cycle time per gizmo at each station must not exceed 6.75 hours/390 = 
62.3 seconds. 

· 

Now, total cycle time consists of assembly, testing or packing time, and parts resupply time (as given 
in Table 13.3), plus gizmo loading time of 10 seconds and unload time of 5 seconds. Parts resupply is not 
taken on evecy gizmo, but rather after a given number of gizmos corresponding to using all parts in a given 
batch of parts. For example, using the values in Table 13.3 for Station I ,  parts resupply will take 10 seconds 
evecy 15 gizmos for Part A, plus 15 seconds evecy 10 gizmos for Part B, for a total time on the average of 
10/15 + 15110 seconds per gizmo. 

Using this information, the (minimum) total cycle time for each station is estimated in Table 13.5. These 
presimulation estimates indicate, first, that each theoretical cycle time is well below the requirement of 62.3 
seconds. Secondly, they indicate that Stations 1 and 2 are potential bottlenecks, if there are any. 

As the simulation analysis will later show, Station l experiences blockage due to Station 2 downtime, and 
Station 2 occasionally experiences starvation due to downtiine at Station 1 and blockage due to downtime at 
Station 3. These blockage and starvation conditions reduce the available work time below the calculated 90%· 
hence, for the Baseline Configuration, they reduce the design throughput well below the desired value: 
390 gizmos per shift. In summacy, a presimulation analysis, although valuable, at best can provide a rough 
estimate of system performance. As the simulation will show, ignoring blockage and starvation gives an overly 
optimistic estimate of system throughput. 

1 3.5.3 Simulation Model and Analysis of the Designed System 

Using the. simulation model, the first experiment was conducted to estimate system performance of tlie 
system as designed. The simulation analyst on the team made 10 replications of the model, each having a 
2-hour warm-up or initialization followed by a 5-day simulation (each day being ;24 hours). A 95% confi­
dence interval was computed for mean throughput per shift: 

95% CI for mean throughput: (364.5, 366.8), or 365.7 ± 1 . 14. 

With 95% confidence, the model predicts that mean (or long-ron average) throughput will be between 364.5 
and 366.8 gizmos per 8-hour shift with the system as designed. This is well below the design throughput, 
390 gizmos per shift. 

· 

The team decided to conduct further analyses to identify possible bottlenecks and potential areas of 
improvement. - -

1 3.5.4 Analysis of Station Utilization 

At this point, the team desired to have some explanation of the shortfall in throughput. They suspected that 
perltaps it had to do with the small WIP buffer capacity and the resulting blockage and starvation. The same 
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Table 1 3.6 Detailed Stotion Utilization for Boseline Configuration 

StatiJ:m % Down % Blocked % Starved % Wait for Operator 

I (8.8,9.6) (1 1 .4, i2.5) (0.0,0.0) (0.0,0.0) 
2 (8.2,8.4) (8.0,8.8) (4.9,5.6) (O.O,M) 
3 (7.9,8.6) (9.9,10.4) (6.1 ,6.9) (0.0,0.0) 
4 (8.9,9.6) (2.0,2.8) (7.5,8.2) (13.1, 14.4) 
5 (8.3,9.0) (0.0,0.2) ( 19.4,20.4) (3.9,4.7) 

model was used to estimate detailed workstation utilization in hopes that it would provide an explanation of 
throughput shortfall. Table 13.6 contains 95% confidence-interval estimates for the first five workstations for 
percent of time down, blocked, starved, and waiting for an operator. (Waiting for operator affects only 
stations 4 and 5, as these two stations share one operator. The other stations have a dedicated operator: In 
addition to the utilization statistics in Table 13.6, the operators have a 30-minute lunch per 8-hour shift, 
representing 6.25% of available time.) 

From the results in Table 13.6, it appears that blockage and starvation explain some portion of the short­
fall in throughput. In addition, another possible explanation surfaces: Station ·4 experiences a significant time 
waiting for the single operator that services stations 4 and 5. This delay at Station 4 could result in a full WIP 
buffer, which in tum wonld help explain the blockage at Station 3 preceding it. Percent of time bl<icked is higher 
than percent starved for Stations 1 to 3, so it appears that downstream delays could be a significant bottleneck. 

The team proposed some possible system improvements: 

l. having two operators to service Stations 4 and 5 (instead of the currently proposed one operator); 
2. increasing the capacity of some of the WIP buffers; 
3. a combination of both. 

The expense of additional WIP storage space induced the team to desire to keep total buffer space as small 
as possible, and to require an additional operator only if absolutely necessary, while achieving the design 
goal of 390 gizmos per shift. 

1 3.5.5 Analysis of Potential System Improvements 

To evaluate the addition of an operator and larger WIP buffers, the modei was revised appropriately to allow 
these changes, and a new analysis was conducted. In this analysis, the capacity pf each WIP ouffer for Stations 
2 - 6  was allowed to increase by one unit above the Baseline value given in Tab!� 13.2. In addition, the effect 
of a second operator at Stations 4 and 5 is considered. These possibilities result .in a total of 64 scenarios or 
model configurations. (Why?) Making IO replications per scenario resultS in a total of 640 simulation runs. 

To facilitate the analysis, the team decided to use the Common Random Number �hnique discussed in 
Section 1 2. 1 3. To implement it with proper synchronization, each source of random variability was identi­
fied and assigned a dedicated random-number stream. In this model, processing time, TTF, and TTR are 
modeled by statistical distribUtions at each of the six workstations. Therefore, a total of 1 8  random-number 
streams were defined, with 3 used at each workstation. In this. way, in each set of runs, each workstation 
experienced the same workload and random downtimes no matter which configuration was being simulated. 
For a given number of replications the CRN technique, also known as correlated sampling, is expected to 
give shorter confidence intervals for differences in system performance; 

The model configurations with the most improvement in system throug�put, compared with me Baseline 
configuration, are shown in Table 13.7. These configurations were chosen for fur>�tcr evaluation because 
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Table 1 3.7 Improvement in Syslem Throughpul for Alternalive Configurations 

increase in Mean 
Number of ThroughpuJ per Shift 
Operators Buffer Capacities (Compared to Baseline) 
Stations Ave. 

4 & 5  Buffer 2 Buffer 3 Buffer 4 Buffer 5 Buffer6 Total Diff. CJ Low Cl High 

2 3 3 3 2 2 l 3  3 1.7 30.3 33.1 
2 3 3 3 2 3 14 31 .7 30.4 33.0 
2 3 3 2 2 3 13 30.0 28.6 31 .3 
2 3 3 3 I 3 13  29.8 28.6 3 1.0 
2 3 3 2 2 2 12 29.7 28.1 31.3 
2 3 3 3 1 2 12  29.5 28.1 31 .0 
2 3 3 2 l 3 12 26.6 25.4 27.9 
2 2 3 3 2 2 12 26.6 25.1 28.1 
i 2 3 3 2 3 13 26.6 25.0 28.1 
2 3 2 3 2 3 13 26.5 25.0 28.0 
2 3 2 3 2 2 12  26.4 253 27.5 
2 3 3 2 1 2 l l  26.3 25.1 27.5 

each shows a potential improvement in throughput of approximately 25 units or more-that is, the lower end 
of the 95% confidence interval is 25 or higher. The values shown for "Ave Diff' represent the increase in 
throughput compared to the Baseline configuration. Recall that the Baseline throughput was previously esti­
mated, with 95% confidence, to be in the interval (364.5, 366.8). Being conservative, the engineering team 
would like to see an improvement of 390 - 364.5 = 25.5 gizmos per shift. The top six configurations in 
Table 13.7 have a lower confidence interval larger than 25.5 and hence are likely candidates for achieving the 
!iesired throughput. Interpreted statistically: The lower end of the confidence interval is larger than 25.5, 
s'o the results yield a 95% confidence that mean throughput will increase by 25.5 or more in the top six 
corifigurations listed in Table 13.7. 

Note that all the most improved configurations include two operators at Stations 4 and 5. Tbe simulation 
results for configurations with one operator (not shown here) indicate that a 390 throughput cannot be 
achieved with one operator, at least not with the buffer sizes considered. ' 

Some configurations can be ruled out because a less expensive option achieves a similar throughput. 
Consider, for example, the first two configurations in Table 13.7. They are identical except for Buffer 6 
capacity. Since WIP buffer capacity is expensive, the smaller total buffer capacity will be the less expensive 
option. Clearly, there is no need to expand from 2 to 3 units at Buffer 6. The "Total" column can assist in 
quickly ruling out configurations that do no better than a similar one with smaller total buffer capacity. 

The model configuration that increases throughput by 25.5 or better and has the smallest total buffer 
capacity is the fifth one in Table 13.7, with capacities of (3,3,2,2,2) for Buffers 2 to 6, respectively. On these 
oonsiderations, this system design becomes the team's top candidate for further evaluation. Tbe next step 
(not included here) would be to conduct a financial analysis of each alternative configuration. 

1 3.5.6 Concluding Words: The Gizmo Assembly-Une Simulation 

Real-life <;Xamples similar to this example model include assembly lines for automotive parts and automo­
bile bodies, automotive pollution-control assemblies, consumer items such as washing machines, ranges, and 
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dishwashers, and any number of other assembly operations with a straight flow and limited buffer space 
between workstations. Similar models and analyses may also apply to a job shop with multiple products; 
variable routing, and limited work-in-process storage. 

13.6 SUMMARY 

This chapter intrOduced some of the ideas and concepts most relevant to manufacturing and material handling 
simulation. Some of the key points are the importance of modeling downtimes acctirately, the advantages 
of trace-driven simulations with respect to some of the inputs, and the need in some models for accurate! 
modeling of material-handling equipment and the control software. 
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EXERCISES · 

Instructions to the student: Many of the following exercises contain material-handling equipment such as 
conveyors and vehicles. The student is expected to use any simulation language or simulator that supports 
modeling conveyors and vehicles at a high level. 

Some of the following exercises use the uniform, exponential, normal or triangular distributions. 
Virtually all simulation languages and simulators support these, plus other distributions. The use of �e ftrst 
three distributions was explained in the note to the exercises in Chapter 4; the use of the triangular is 
explained in the exercise that requires. it For reference, the properties of these distributions, plus others used 
in simulation, are given in Chapter 5, and random-variate generation is covered in Chapter 8. 

I. A case sortation system consists of one infeed conveyor and 12 sortation lanes, as shown in the follow­
ing schematic (not to scale): 

60 fl --------1 

�--
15 ft 1 ! 

Cases enter the system from the left at a rate of 50 per minute at random times. All cases are 18 by 12 
inches and travel along the 18 inch dimension. The incoming mainline conveyor is 20 inches wide and 
60 feet in length (as shown). The sortation lanes are numbered I to 12 from left to right, and are 18 
inches wide and 15 feet in length, with 2 feet of spacing between adjacent lanes. (Estimate any other 
dimensions that are needed.) The infeed conveyor runs at 180 feet/minute, the sortation lanes at 90 
fee.tlminute. All conveyor sections are accumulating, but, upon entrance at the left, incoming cases are 
at least 2 feet apart from leading edge to leading edge. On the sortation lanes, the cases accumulate with 
no gap between them. ' 

Incoming cases are distributed to the 12 lanes in the following proportions: 

6% 7 I I% 
2 6% 8 6% 
3 5% 9 5% 
4 24% 10 5% 
5 15% I I  3% 
6 14% 12 0% 

The 12th lane is an overflow lane; .it is used only if one of the other lanes fill and a divert is not possible. 

At the end of the sortati<in lanes, there is a group of operators who scan each case with a bar-code scanc 
ner, apply a label and then place it on a pallet. Operators move from lane to lane as necessary to avoid 
allowing a lane. to. fill. 'fhere is one pallet per lane, each holding 40 cases. When a pallet is full, assume 
a new empty one is immediately available. If a lane fills to I 0 cases and another case arrives at the divert 
point, this last case continues to move down the uO-foot mainline conveyor and is diverted into lane 12, 
the overflow lane. · 
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Assume that one operator can handle 8.5 cases per minute, on the average. Ignore walking time and 
assignment of an operator to a particular lane; in other words, assume the operators work as a group 
uniformly spread over all 12 lanes. 

(a) Set up an experiment that varies the number of operators and addresses the question: How many 
operators are needed? The objective is to have the minimum number of operators but also to avoiJ 
overflow. 

(b) · For each experiment in part (a), report the following output statistics: 

Operator utilization 
Total number of cases palletized 
Number of cases palletized by lane 
Number of cases to the overflow lane 

(c) For each experiment in part a, verify that all cases are being palletized. In other words, verify that 
the system can handle 50 cases per minute, or explain why it cannot. 

2. Redo Exercise I to a greater level of detail by modeling operator walking time and operator assignment 
to lanes. Assume that operators walk at 200 feet per minute and that the walking distance from one lane 
to the next is 5 feet. Handling time per case is now·assumed to be 7.5 cases per minute. Devise a set of 
rules that can be used by operators for lane changing. (For example, change lanes to that lane with the 
greatest number of cases only when the current lane is empty or the other lane reaches a certain level.) 
Assume that each operator is assigned to a certain number .of adjacent lanes and handles only those 
lanes. However, if necessary, two operators (but no more) may be assigned to one lane-.,..-that is, operator 
assignments may overlap. 

(a) If your lane-changing rule has any numeric parameters, experiment to find the best settings. Under 
these circumstances, how many operators are needed? What is the average operator utilization? 

(b) Does a model that has more detail, as ddes.Exercise 2a when compared to Exercise I, always have 
greater accuracy? How about this particular model? Compare the results of Exercise 2a to the results 
for Exercise I .  Are the same or different conclusions drawn? · · 

(c) Devise a second lane-changing rule. Compare results between the two rules. Compare total walk­
ing time or percent of time spent walking between the two rules: 
Suggestion: A lane-changing rule could have one or two "triggers". A one-trigger rule might state 
that, if a lane reached a certain level, the operator moved to that lane. (Without modification, such 
a rule could lead to excessive operator movement, if two lanes had about the same number of cases 
near the trigger level.) A two-trigger rule might state that, if a lane reached a certain level and the 
operator's current lane became empty, then change to the new lane; but ifaclane reaches a specified 
higher "critical" level, then the operator immediately changes lanes. 

(d) Compare your results with those of other stUdents who may have used a different lane�changing 
rule. 

3. Parts carried by the AGV system arrive through three intersections are 

Intersection Jnterarrival Time (Minutes) 

11 10 ± 4  
u 8 ± 2  
13 20 ± 6  
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The parts are to be assembled in any one of the assembly stations A l  or A2. The assembly time is 

p 

s 

w 
II 12 D 

A I  

. .. . ]l o(  , ..,. . )o 
6 6 6 3 6 

3 

6 

A2 

6 

6 

7 ± 2 minutes. After assembly, parts are sent to the output station P. If both A l  and A2 are free, parts 
have an equal probabili� of going to either A l  or A2. AGV is required to take the arriving part to 
assembly station and assembled part to output station. Once AGV becomes free, it responds to any 
waiting call, otherwise it is sent to staging area S. All links are unidirectional and the distances are shown 
in meters. The AGV speed is 40 meters per minute. Delay the start of the assembly operations for 
30 minutes after parts start aniving to allow a buildup of parts. Simulate the system for 10,000 minutes. 
Determine the number of AGVs required to ensure that there is always a part available for the assembly 

· operations. · 

4. Redo the simulation with the assumption that the assembly times are different in A l  and A2 as 

Assembly Station Assembly Time (Minutes) 

AI 
A2 

9 ± 2  
7 ± 2  

Hence if both AI and A2 are free, ihe part is taken to the assembly station A2. 

5. In a machine shop, there are four machines M l ,  M2, M3, and M4. They are identical in all respects and 
served by AGVs. Parts arrive with interanival time following exponential with a mean of 5 minutes. 
Machines do not have any buffer space. So an aniving part at the input area must first gain access to a 
free machine before it can be moved to the machine. When a machine finishes an operation, an AGV is 
requested and the machine is to be made free only after the part has been picked up by the· AGV. 
Processing time follows normal with a mean of 8 minutes and a standard deviation of 2 minutes. It takes 
30 seconds to load and.unload the parts. AGV takes the finished parts to the output station and the AGV 
is free to respond tO other requests, or is sent to the input area that �es as a staging area. The AGVs 
move at a speed of 25 meters per minute. The dimensions shown are in meters, and the intersections 
are 0 meter in length. Simulate this system for 2,500 minutes. Change the number of AGVs and analyze 
the impact on parts waiting _time. 

· · 
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20 20 10 

INPUT 
10 

I Ml  I I M2 I 
10 

I M4 I 1 M3  I 
10 OU11'UT 

6. Reconsider Exercise 5. Assume that two types of parts are aniving and the parts are to be processed in 
more than one machine. Parts arrive with interarrival time following exponential with a mean of 5 minutes. 
The sequence of operation and the percentage of part types are 

Part Type Percentage Sequence 

Process time at the machines are 

A 60 Ml, M2, M4 
B 40 M2, M3 

Machine Process Time 

M l  N(8,2) 
M2 4 ± 2  
M3 N(8,1 )  
M4 9 ± 2  

Simulate this system for 2,500 minutes. Change the number of AGVs and analyze the impact on parts 
waiting time. 

7. Develop a model for Example 13 . 1  and attempt to reproduce qualitatively the results found in the text 
regarding different assumptions for simulating downtimes. Do not attempt to get exactly the siune 
numerical results, but rather to show the same qualitative results. 

(a) Do your models support the conclusions discussed in the text? Provide a discussion and conclu­
- sions. 

(h) Make a plot of the number of entities in the queue versus time. Can you tell when failures occurred? 
After a repair, about how long does it take for the queue to get back to "normal"? 

8. In Example 13.1,  the failures occorred at low frequency compaied with the processing time of� entity. 
Tune to failure was 1000 minutes, and interarrival time was 10 minutes, implying that few entities would 
experience a failure. But, when an entity did experience a failure (of 50 minutes, on average), it was sev-
eral times larger than the processing time of 7.5 minutes. 

· 

Redo the model for Example 13.1,  assuming high-frequency failures. Specjfically, assume that the time 
to failure is exponentially distributed, with mean 2 minutes, and the time to repair is eJ�,ponentially 
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distributed, with mean 0. 1 minute or 6 seconds. As compared with the low-frequency case, entities will 
tend to experience a number of short downtimes. 

For low-frequency versus high-frequency downtimes, compare the average number of downtimes expe­
rienced per entity, the average duration of downtime experienced, the average time to complete service 
(including downtime, if arty), and the percent of time down. 

Note that the percentage of time the machine is down for repair should be the same in both c�ses: 

50/(1000 + SO) = 4.76% 
6 sec/(2min-t:6 sec) = 4.76% 

Verify percentage downtime from the simulation results. Are the results identical? . . .  close? Should they 
be identical, or just close? As the simulation run-length increases, what should happen to percentage of 
time down? 

· 

With high-frequency failures, do you come to the same conclusions as were drawn in the text regarding 
the different ways to simulate downtimes? Make recommendations regarding how to model low-frequency 
versus high-frequency failures. 

9. Redo Exercise 1 1  (hased ou.Example 13.1), but with one change: When an entitv experiences a downtime, 
it must be reprocessed from the beginning. If service time is random, take a new dmw uuu. t.h..; ..;.ouaJd 
distribution. If service time is constant. it starts over again. How does this assumption affect the results? 

10. Redo Exercise l l  (based on Example 13.1), but with one change: When an entity experiences a down­
time, it is scrapped. How does scrapping entities on failure affect the results in the low-frequency and 
in the high-frequency sitliations? What are your recommendations regarding the handling of low-vecius 
high-frequency downtimes when parts are scrapped? 

11. Sheets of metal pass sequentially through 4 presses: shear, punch, form, and bend. Each machine is 
subject to downtime and die change. The parameters for each machine are as follows: 

Process Time to Time to No. of Sheets to Time to 
Rate Failure Repair a Die Change Change Die 

Press (per min.) (min.) (min.) (no. sheets) · (min.) 

Shear 4.5 100 8 500 25 
Punch 5.5 90 10 400 ' 25 
Form 3.8 180 9 750 25 
Bend 3.2 240 20 600 25 

' 

Note that processing time is given as a rate-for example, the shear press works at a rate of 4.5 sheets 
per minute. A�sume that prpcessing time is constant The automated equipment makes the time to 
change a die fairly constant. so it is assumed to be always 25 minutes. Die changes occur between 
stamping of two sheets after the number shown in the table have gone through a machine. Time to failure 
is assumed to be exponentially distributed, with the mean given in the table. Time to repair is assumed 
to be uniformly distributed, with the mean taken from the table and a half-width of 5 minutes. When a 
failure occurs, 20% of,the sheets are scrapped. The remaining 80% are reprocessed at the failed machine 
after the repair. 

Assume that an unlimited supply of material is available in front of the shear press, which processes one 
sheet after the next as long as there is space available between itself and the next machine, tbe punch press. 
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In general, one machine processes one sheet after another continuously, stopping only for a downtime, 
for a die change, or because the available buffer space between itself and the next machine becomes full. 
Assume that sheets are taken away after bending at the bend press. Buffer space is divided into 3 s�pa­
rate areas, one between the shear and the punch presses, the second between the punch and form presses, 
and the last between form arid bend. 

(a) Assume that there is an unlimited amount of space between machines. Run the simulation for 480 
hours (abOut 1 month with 24 hour days, 5 days per week). Where do backups occur? If the total 
buffer space for all three buffers is limited to 15 sheets (not counting before shear or after bend), 
how would you recommend dividing this space among the three adjacent pairs of machines? Does 
this simulation provide enough information to make a reasonable decision? 

(b) Modify the model so that there is a finite buffer between adjacent machines. When the buffer 
becomes full and the machine feeding the buffer completes a sheet, the sheet is not able to exit the 
machine. It remains in the machine blocking additional work. Assume that total buffer space is 1 5  
sheets for the 3 buffers. 

Use the recommendation from part (a) as a starting point for each buffer size. Attempt to minimize the 
number of runs. You are allowed to experiment with a maximum of 3 buffer sizes for each buffer. (How 
many runs does this make?) Run a set of experiments to determine the allocation of buffer space that 
maximizes production. Simulate each alternative for at least 1000 hours. 

Report total production per hour on the average, press utilization (broken down by percentage of time 
busy, down, changing dies, and idle), and average number of sheets in each buffer. 
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Simulation of Computer Systems 

!t is only natural that simulation is used extensively to simulate computer systems, because of their great unportance to �e e�ezyday o�ratio�s of business, industry, government, and universities. In this chapter, we �ook at the motivations for Simulatmg computer systems, the different types of approaches used, and the mte�lay between characte�s�cs of the model a;:d implementation strategies. We begin the discussion by loo�ng 
_
at gen�ral charactenstJ.cs of computer-system simulations. Next, we lay the groundwork for investi­�atlng �1mulatJ.on o: computer system� by l?oking at various types of simulation tools used to perfonn those sn�mlations. In sectiOn 14.3, we descnbe different ways that input is presented or generated for these simu­l�t!ons. We next work through an example of a high-level computer system one might simulate, paying atten­tio� to problems of

_ 
model constt:nction and output analysis. In section 14.5, we tl!rn to the central prooessing umt (CPU) and pomt out what IS generally simulated and how. Following this, we consider simulation of memory systems, in section 14.6. 

14.1 INTRODUCTION 

Computer systems are incredibly complex. A computer system exhibits complicated behavior at time scales 
fu:>m the time to "flip" a transistor's state (on the order of l(J·Il seconds) to the time it takes a human to inter­
act with it (o� the order

_ 
of seconds or minutes). Computer systems are designed hierarchically, in an effort 

to �age th_is compleXIty: Figure 14.1 illustrates the point. At a high level of abstraction (the system level), 
one unght VIe:' computational activity in tenns of tasks circulating among servers, queueing for service 
·v.:hen a server IS �usy. � lower level in the hierarchy can view the activity as being among components of a 
�1ven pr�essor (Its registers, its memory hierarchy). At a lower level still, one views the activity of func­
tional untts that together make up a central processing unit, and, at an even lower level one can view the 
logical circuitry that makes it all happen. 

' 
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Figure 14.1 Different levels of abstraction in computer systems. 
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Simulation is used extensively at every level of this hierarchy, with some results from one level 
being used at another. For instance, engineers working on designing a new cbip will begin by partitioning 
the chip functionally (e.g., the subsystem that does arithmetic, the subsystem that interacts with memory, 
and so on), establish interfaces between .the subsystems, then design and test the subsystems individually. 
Given a subsystem design, the electrical properties of the circuit are first studied by using a circuit simula­
tor that solves differential equations describing electrical behavior. At this level, engineers worlc to ensure 
the correctness of signals' timing throughoot the circuit and to ensure that the electrical properties 
fall within the parameters intended by the design. Once tliis level of validation has been achieved, the elec­
trical behavior is abstracted into logical behavior (e.g., signals fonnerly thought of as electrical waveforms 
are now thought of as logical 1 's and O's). A different type of simulator is next used to test the correctness 
of the circuit's logical behavior. A common testing technique is to present the design with many different 
sets of logical inputs ("test vectors") for wbich the desired logical outputs are known. Discrete-event simu­
lation is used to evaluate the logical response ()f the circuit to eaCh test veetor and is also used to evaluate 
timing (e.g., the time required to load a register with a datum from the main memory). Once a chip's 
subsystems are designed and tested, the designs are integrated, .and then the whole system is subjected to 
testing, again by simnlation. 



ll 
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At a higher level, one simulates by using functional abstractions. For instance, a memory chip could be 
modeled simply as an array of numbers, and a reference to memory as just an indexing operation. A special 
type of description language exists for this level, called "register-transfer-language" (see, for instance, Mano 
1 993). This is like a programming language, with reassigned names for registers and other hardware specific 
entities and with assignment statements used to indicate data transfer between hardware entities. For exam­
ple, the following sequence loads into register r3 the data whose memory address is in register r6, subtracts 
one from it, and writes the result into the memory location that is word adjacent (a word in this example is 
4 bytes in size) to the location first read: 

r3 M [r6] ; 

r3 = r3 - l ;  

r6 r6+4 ; 

M !r6l = r3 ; 

A simulator of such a language might ascribe deterministic time constants to the execution of each of these 
statements. This is a useful level of abstraction to use when one needs to express sequencing of data trans­
fers at a low level, but not so low as the gates themselves .. The abstraction makes sense when one is content 
to assume that the memory works and that the time to put a datum in or out is a known: constant. The "known 
constant" is a value resulting from analysis at a lower level of abstraction. Functional abstraction is also 
commonly used to simulate subsystems of a central processing unit (CPU), in the study of how an execut-
ing program exercises special architectural features of the CPU. 

· 

At a higher level still, one might study how an Input-Output (I/0) system behaves in response to exe­
cution of a computer program. The program's behavior may be abstracted to the point of being modeled, but 
with some detailed description of I/0 demands (e.g., with a Markov chain that with_ some specificity 
describes an I/0 operation as the Markov chain transitions). The behavior of the I/0 devices may be 
abstracted to the point that all that is considered is how long it takes to complete a specified I/0 operation. 

.Because of these abstractions, one can simulate larger systems, and simulate them more quickly. Continuing 
in this vein, at a higher level of abstraction still, one dispenses with specificity altogether. The execution of 
a program is modeled with a randomly sampled CPU service interval; its I/0 demand is modeled as a ran­
domly sampled service time on a randomly sampled I/0 device. 

Different levels of abstraction serve to answer different sorts of questions about a computer system, and 
different simulation tools exist for each level. Highly abstract models rely on stochastically modeled behav­
ior to estimate high-level system performance, such as throughput (average number of 'jobs" processed per 
unit time) and mean response time (per job). Such models can also incorporate system failure and repair and 
can estimate metrics such as mean time to failure and availability. Less abstract models are used to evaluate 
specific systems components. A study of an advanced CPU design might be aimed at estimating the through­
put (instrUctions executed per unit time); a study of a hierarchical memory system might seek to estimate the 
fraction of time that a sought lllemory reference was found immediately in the examined memory. As we 
have already seen., more detailed models are used to evaluate functional correctness of circuit design. 

1 4�2 SIMULAnON TOOLS 

Hand in hand with different abstraction levels, one finds different tools used to perform and evaluate simu­
lations. We next examine different types of tools and identify important characteristics about their function 
and their use. 

An important characteristic of a tool is how it supports model building. In many toots; one constructs net­
works of components whose local behavior is already known and already programmed into the tool. This is a 
powerful paradigm for complex model construction. At the low end of the abstraction hierarchy, electrical 
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circuit simulators and gate-level simulators are driven by network descriptions. Likewise, at the high end of 
the abstraction hierarchy, tools that simulate queueing networks and Petri nets are driven by network descrip­
tions, as are sophisticated commercial communication-system simulators that have extensive libraries of pre­
programmed protocol behaviors. Some of these tools allow one to incorporate user-programmed behavior, but 
it appears this is not the norm as a usage pattern. . . . A very significant player in computer-systems des1gn at lower levels of abstraction IS the VHDL lan­
guage (e.g., see Ashenden [200 1]). VHDL is the result of a U.S. effort in the 1980's to standardize '?e l�n­
guages used to build electronic systems for the government It has since und��one ��·IEEE stan?ard1zat10n 
process and is widely used throughout the industry. As a language for descnbmg d1gttal electromc systems, 
VHDL serves both as a design specification and as a simulation specification. VHDL is a rich language, full 
both of constructs specific to digital systems and the constructs one expects to fmd .  in a procedural pro­
gramming language. It achieves its dual role by imposing a clear separation between system topology and 
system behavior. Design specification is a matter of topology; simulation specification is a ruatter of behav­
ior. Libraries of predefined subsystems and behaviors are widely available, but the language itself very much 
promotes user-defined programmed behavior. VHDL is also innovative in its use o� abstract interfaces (e.g., 
to a functional unit) to which different "architectures" at different levels ofabstractlon may be attached. For 
instance, the interface to the Arithmetic Logical Unit (ALU) would be VHDL "siguals" that identify the 
input operands, the operation to be applied to them, and the output. One could attach to this interface an 
architecture that in a few lines of code just performs the operation�i( an addition is specified, just one 
VHDL statement assigus the output sigual to be the sum (using the VHDL addition operator) of the two input 
signals. An alternative architecture could completely specify the gate-level logical design of the ALU. 
Models that interact with the ALU interface cannot tell how the semantics of the interface are implemented. 
This separation of interface from architecture supports modular construction of models and allows one to 
validate a new submodel architecture by comparing the results it returns to the interface with those returned 
by a different architecture given the same inputs. A substantive treatment of VHDL is well beyond the scope 
of this book. VHDL is widely used in the electrical and computer engineering community, but is hardly used 
outside of it. 

One drawback to VHDL is that it is a big language, requires a substantial VHDL compiler, and vendors 
typically target the commercial market at prices that exclude academic research. Of course, other �imulati�n 
languages exist, and this text describes several in Chapter 4. Such languages are good for modehng certam 
types of computer systems at a high level, but are not designed or suited for expressi?n �f computer-�ystems 
modeling at lower levels of the abstraction hierarchy. As .a result, when computer sc1enttsts need to s1mulate 
specialized model behavior, they will often write a simulation (or a simulator) from scratch. For example, 

_
1f 

a new policy for moving data between memories in a hierarchy is to be considered, an existing language w1ll 
not hive that policy preprogrammed; when a new architectural.feature in a CP� is designed, the mod�ler 
will have to describe that feature and its interaction with the rest of the CPU, usmg a general programmmg 
language. A class of tools exists that use a general programming language to express simulation-model 
behavior, among them SimPack (Fishwick [ 1992]), C++SIM (Little and McCue [1994]), CSIM (Schwet

_
man 

[ 1986]), Awesime (Grunwald [19951), and SSF (Cowie et al. [ 1999]). This type of tool defines objeCts 
and libraries for use with such languages as C, C++, Java. Model behavior is expressed as a computer 
program that manipulates these predefined objects. The technique 

_
is especially pow�rfu

.
l when used with 

object-oriented languages, because the tool can define base-class objects whose behavtor IS extended by the 
modeler. 

Some commercial simulation languages do support interaction with general progranlming languages; 
however, simulation languages are not frequently used in the academic computer-science wo;td. Cost is

_ 
a 

partial explanation. Commercial packages are developed with commerci�l needs �nd commerc1al budgets m 
mind, yet computer scientists can usually develop what they need relatively qm�kly, themselves. Another 
explanation is a matter of emphasis: Simulation languages tend to include a nch number of predefined 
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simulation objects and actions and allow access to a programming language to express object behavior; a 
simulation model is expressed primarily in the constructs of the simulation language, and the model is eval­
uated either by compiling the model (using a simulation-language-specific compiler) and running it or by 
using a simulation-language-specific interpreter. 

One of the many advantages to such an approach is that the relative rigidity of the programming model 
makes possible graphical model building, thereby raising the whole model-building endeavor to a higher 
level of abstraction. Some tools have so much preprogrammed functionality that it is possible to design and 
run a model without writing a single line of computer code. 

By contrast, programming languages with simulation constructs tend to define a few elemental simula­
tion objects; a simulation model is expressed principally via the notions and control flow of the general pro­
gramming language, with references to simulation objects interspersed. To evaluate the model, one compiles 
or interprets the program, using a compiler or interpreter associated with the general programming language, 
as opposed to one associated with the simulation language. The former approach supports more mpid model 
development in contexts wher� the language is tuned to the application; the latter approach supports much 
greater generality in the sorts of models that can be expressed. 

Among tools supporting user-programmed behavior, a fundamental chamcteristic is the worldview that 
is supported. In the following two subsections, we look closely at process orientation as it is expressed in 
SSF, then at an event-oriented approach using a Java base framework. 

14.2.1 Process Orientation 

A process-oriented view (see Chapter 3) implies that the tool must support sepamtely schedulable threads of 
control. Threading is a fundamental concept in progmmming, and a discussion of its capabilities and imple­
mentation serves to highlight important issues in simulation modeling. Fundamentally, a "thread" is a sepa­
mtely schedulable unit of execution control, implemented as part of a single executing process (as seen by 
the opemting system; see Nutt [2004]). An opemting system has the notion of sepamte processes (which 
might internet), which typically have their own sepamte and independent memory spaces. A group of threads 
opemte in the same process memory space, with each thread having allocated to it a relatively small portion 
of that spacefor its own use. That space is used to contain the thread's state, which is the full set of all infor­
mation needed to restart the thread after it is suspended. State would include register values and the thread's 
runtime stack, which holds variables that are local to the prOcedures called by the thread. Once a thread is 
given control, it runs until it yields up control, either via an explicit statement that serves simply to relinquish 
control or by blocking until signaled by another thread to continue. 

These ideas are made more concrete by discussing them in the context of a Java implementation of SSR 
Java defines the Thread class; a subclass of Thread defines the execute method, which is defined in 
the thread body. Threads coordinate with each other through "locks," which provi�e mutually exclusive 
access to code segments. Every instance of a Java object has an associated lock (and almost every variable 
in Java is an object). A thread tries to execute a code fragment protected by the lock for object obj via the Java 
statement 

synchronized (obj ) { /• code fragment •/ } 

A thread must acquire the lock before executing the code fragment, and only one thread has the Jock at a 
time. A thread that executes a synchronized statement at an instant at which another thread holds the 
lock blocks-which could mean suspension, depending on the thread scheduler. Java threads can also coor­
dinate through wait and notify method calls, also associated with an object's lock. A thread·that executes 
obj . wait ( )  suspends. Actually, multiple threads can execute obj • wait ( ) ,  and each will suspend. 
Eventually some thread executes obj . notify ( ) ,  and the thread scheduler releases one of the suspended 
threads to continue. 1 
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These notions can be used to implement process orientation in a Java simulator. Each simulation process 

derives from the Java Thread class. One additional thread will maintain an event list; processing for that 

thread involves removing the least-time event from the event list, reanimating the simulation p�ocess thread 

(or threads) associated with that event, and blocking until those threads have completed. While � process 

thread is executing, it may cause additional events to be inserted into the scheduler �ead'� event hst. When 

a process tlliead completes, it needs to block and to signal the scheduler threa� that 1t 1s fimshed. 'W_e accom­

plish all this by using two locks per simulation process. One of these locks IS the one Ja�a prov�des auto­

matically for every object (and a simulation process thread is an object). The other lock 1s a vanable each 

simulation object defines, which we'll call lock. A suspended process thread blocks on a call 

lock . wait ( ) ;  it remains blocked there until the scheduling thread executes �oti�y ( )  on that �an;e 

object variable. After the scheduler does this, it blocks by calling wait ( ) on the s�u�atlon. process obje:t s 

own built-in lock. So the simulation process thread notifies the scheduler that 1t Is fm1shed by calhng 

notify ( )  on its own built-in lock. . 
SSF code we discussed earlier in Chapter 4 (Figures 4.1 4  and 4.15) illustrates some of these pomts. 

Recall that this code models a single server with exponentially distributed interarrival times and positive nor­

mal service times. A cursory glance shows the model to be legitimate Java code that uses SSF base classes. 

SSF defines five base classes around which simulation frameworks are built (discussed in Chapter 4). 

The key one for discussing process orientation is the process cl�s; derived classes �rrivals in Figure 4. 1: 
and Server in Figure 4.15 are examples of it. The base class specifies that method actio� be the thr�d body, 

each derived class overrides the base-class definition to specifY its own thread's behav10r. Every object of a 

given class derived from process defines a separate thread of control, but all execute the s.ame thread code �dy. 

The wai tFor statement used in Arrival's thread body suspends the thread; 1ts argument spec1fies 

how long in simulation time the thread suspends. The Java thread-based scheduli�g mech�ism we descri� 
earlier enables implementation of wai tFor to cause a "wake-up" event to be mserted mto t?e sch�ulm.g 

�·s event list, time stamped with the current time plus the wait For argument. Here vanable u�e IS 

the future-event time; method insertProcess puts the process into the event q?eu�. A non-Simple 

process (e.g., one implemented with a Java thread) goes through a sequence of synchromzation steps to reach 

the noti fy ( )  method. (We will say more about.Simple processes in 14.2.2.) The sc�eduler.thread has 

blocked on the process's native lock; this notify ( )  releases it. The process then un�ediately calls 

wait ( )  on its lock variable, which suspends the thread until the scheduler executes not �fy ( )  on �at 

same variable. From the point of view of the code fragment executing wai tFor, the statement follow1�g 

the waitFor call executes precisely at the time implied by the waitFor argument. The code m 

Figure 14.2 (taken from an SSF implementation) illustrates this. 

public void waitFor ( long timeinterval) { 
time = owner.owner. clock + timeinterval ; 
owner . owner . insertProcess (this ) ; 
if ( I isSimple ( )  ) {  

synchronized(lockl { 
synchroni zed (thisl {  

notify( ) ;  
} 
try{lock.wait ( l ; } 
catch(InterruptedException e l { )  

Figure 14.2 SSF implementation of waitFor statement. 
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The call to wait On in the Server's action has a slightly different implementation. The code implementing 
waitOn first attaches the process to the in Channel's list of processes that are blocked on it, then engages 
in the same lock synchronization sequence as wai tFor to block itself and release the scheduler thread. The 
semantics of releasing a blocked process are defirjed in terms of SSF Events. An out Channel object to 
which an Event object is written has almost always been "mapped" to an inChannel object. When an 
Event is written to an out Channel at time t, the outChannel's write method computes the time t + d  
at which the Event is available o n  the .associated inChannel (d is a function of delays declared when the 
out Channel is created, the mapTo method is called, and the write method is called), and an internal event 
is put on the scheduler's event list, with time stamp t + d. The scheduler executes this event (no SSF process 
does) and releases all processes blocked on the inChannel to which the Event arrives. Each of these is able 
to get a copy of the Event so delivered, by calling the in Channel's acti veEvents method. 

From these descriptions, we see that, normally, each event has a thread overhead cost 2 thread reani­
mations, and 2 thread suspensions. Depending on how thread context switching is implemented, this cost 
ranges from heavy to very heavy, as compared with a purely event-oriented view. These costs can be avoided 
in SSF by designing processes to be simple, as is described next. 

1 4.2.2 Event Orientation 

From a methodological point of view, the process-oriented view is distinguished from the event-oriented view 
in terms of the focus of the model description. Process orientation allows for a continuous description, with 
pauses or suspensions. Event orientation does not. From an implementation point of view, the key distin­
guishing feature of process-oriented simulation is the need to support suspension and reanimation, which 
leads us to threads, as we have seen. In SSP, though, we see that the difference between process and event ori­
entation is not very large: The SSF world encompasses both. The only .difference is that, for SSF to be event 
oriented, its processes need to be simple, a technical term for the case when every statement in action that 
might suspend the process would be the last statement executed under normal execution semantics. 

The implementation of wai tFor in Figure 14.2 computes the time when the suspensipn is lifted and 
puts a reanimation event in the event list Synchronization by threads through locks is used only if the 
process is not simple. An implementation of wai tOn would be entirely similar. If every SSF process in a 
model is simple, there is no true code suspension, and the model is essentially event oriented. The action 
body for a simple process is just executed from its normal entry point when the condition that releases that 
process from "suspension" is satisfied. The only way an Event that is written into an out Channel is deliv­
ered is if the recipient had called wai tOn for the cprresponding inChannel at a time prior to that at which 
the Event was written. Thus, we see that some of the "events" implicit in an SSF model with event orien­
tation are kernel events, which decide whether model events ought to be executed as a result Writing to an 
out Channel schedules a kernel event at the Event's receive time, but the kernel's processing of that event 
determines whether an action body is called. Nevertheless, execution of action bodies constitutes the 
essential "event processing" when SSF is used in a purely event-oriented view. It is interesting that, from a 
conceptual point of view, there is very little difference between process-oriented and event-oriented SSE 

To conclude this discussion on tools, we remark that flexibility is the key requirement in computer-systems 
simulation. Flexibility in most contexts means the ability to use the full power of a general programming lan­
guage. This requires � level of programming expertise that is not needed by users of commercial graphically 
oriented modeling packages. The implementation requirements of an object-oriented event-oriented approach 
are much less delicate than those of a threaded simulator, and the amount of simulator overhead involved in 
delivering an event to an object is considerably less than the cost of a context switch in a threaded system. 
For these reasons, most of the simulators written from scratch take the e-Vent-oriented view. However, the 
underlying simulation framework necessarily provides a lower level of abstt:action an<!. so forces a modeler 
to design and implement more model-management logic. The choice between using a process-oriented or an 

I 
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event-oriented simulator-or writing one's own�is a function of the level of modeling ease, versus execution 
speed. 

To summarize this section, we present a table that lists different levels of abstraction in computer -systems 
simulation, the sorts of questions whose answers are sought front the models, and the sorts of tools typically 
used for modeling. The level of abstraction decreases as one descends through Table 14. 1 .  

1 4.3 MODEL INPUT 

Just as there are different levels of abstraction in computer-systems simulation, there are different means of 
providing input to a model. The model might be driven by stochastically generated input, or it might be given 
trace input, measured from actual systems. Simulations at the high end of the abstraction hierarchy most typ­
ically use stochastic input; simulations at lower levels of abstraction commonly employ trace input 
Stochastic input models are particularly useful when one wishes to study system behavior over a range of 
scenarios; it could be that all that is required is to adjust an input model paiameter and rerun the simulation. 
Of course, using randomly generated input raises the question of how real or representative the input is; that 
doubt frequently induces systems people to prefer trace data on lower level simulations. Using a trace means 
one cannot explore different input scenarios, but traces are nseful when directly comparing two different. 
implementations of some policy or some mechanism on the same input. The realism ·of the input gives the 
simulation added authority. 

In all cases, the data used to drive the simulation is intended to exercise whatever facet of the computer 
system is of interest High-level systems simulations accept a stream of job descriptions; CPU simulations 
accept a stream of instruction descriptions; memory simulations accept a stream of memory references; and 
gate-level simulations accept a stream of logical signals. 

Computer systems modeled as queueing networks (recall Chapter 7) typically interpret "customers" as 
computer programs; servers typically represent services such as attention by the CPU or an Input-Output 
(1/0) system. Random sampling generates customer interarrival times; it may also be used to govern routing 
and time in serviCe. However, it is common in computer-systems contexts to have routing and service times 
be state dependent (e.g., the next server visited is already specified in the customer's description, or could 
be the attached server with least queue length). 

Interarrival processes have historically been modeled as Poisson processes (where times between suc­
cessive arrivals have an exponential distribution). However, this assumption has fallen from favor as a result 
of empirical observations that significantly contradict Poisson assumptions in current computer and com­
munication systems. The real value of Poisson assumptions lies in tractability for mathematical analysis, so, 
as simulationists, we can discard them with little loss. 

In the subsections to follow, we look at the mathematical formulation of common input models, sto-
chastic input models for virtual memory, and direct-execution techniques. 

' 

Table 14.1 Decreasing Abstraction and Model Results 

Typical System Model Results Tools 

CPU Networlc job throughput, queueing networlc, 
job response time Petri net simulators. scratch 

Processor instruction throughput, VHDL, scratch 
time/instruction 

Memory System miss rates, response time VHDL, scratch 
ALU timing, correctness VHDL, scratch 
Logic N�ork timing, correctness VHDL, scratch 
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14.3.1 Modulated Poisson Process 

Stochastic input models ought to reflect the real-life phenomenon called burstiness----that is, brief periods when 
traffic intensity is much higher than normal. An input model sometimes used to support this, retaining a useful 

· level of mathematical tractability, is a Modulated Poisson Process, or MPP. (See Fischer and Meier-Hellstern, 
[1993).) The underlying framework is a continuous-time Markov ch� (CIMC), whose details we sketch so as 
to employ the concept later. A CIMC is always in some state; for descriptive purposes, states are named by the 
integers: 1, 2, .. .. The CIMC remains in a state for a random period of time, transitions randomly to another 
state, stays there for a random period of time, transitions again, and -so on. The CfMC behavior is completely 
described by its generator matrix, e = { qij I .  For states i * j, entry qij describes the rate at which the chain tran­
sitions from state i into state j (this is the total transition rate out of state i, times the probability that it transitions 
then into state;). The rate describes how quickly the transition is made; its units are transitions per unit simula­
tion time. Diagonal element q . .  is the negated sum of all rates out of state i : qu = -"' . _ q, 1-. An operational y . �}�/ . view of the CIMC is that, upon entering a state i, it remains in that state for an exponentially distributed period 
of time, the exponential having rate -q •r When making the transition, it chooses state j with probability -
q . .lq . .. Many CIMCs are ergodic, meaning that, if it is left to run forever, every state is visited infinitely IJ f.J . 
often. In an ergodic chain, tr. denotes state i's stationary probability, which we can interpret as the long-term 
average fraction of time the

' 
CTMC is in state i. A critical relationship exists between stationary probabili­

ties and transition rates : For every state i, 

H,rq,_j = rHjqjj 
i�i f#.i 

If we think of qiJ as describing a probability "flow" that is enabled when the CTMC is in state i, then these 
equations say that, in the long term, the sum of all flows out of state i is the same as the sum of all flows into 
the state. We will see in the example that follows that we can use the balance equations to build a stochastic 
input with desired characteristics. To complete the definition of a MPP, it remains only to associate a cus­
tomer arrival rate A. with state i. When the CIMC is in state i, customers are generated as a Poisson process 
with rate Ar 

' 

To illustrate, let us consider an input process that is either OFF, ON, or BURSTY (the output rate is much 
higher in the BURSTY state than in the ON state). We wish for the process to be OFF half of the time-on 
average, for l second-and, when it is not OFF, we wish for it to be BURSTY for 10% of the time. We will 
assume that the CTMC transitions into BURSTY only from the ON state and transitions out of BURSTY only 
into the ON state. We will say that state 0 corresponds to OFF, I to ON, and 2 to BURSTY. Our problem 
statement implies that tr0 = 0.5, 1r1 = 0.45, and 112 = 0.05. The only transition from OFF is to ON, and the mean 
OFF time is l, so we infer that %.1 = l. The balance equation for state 0 can be rewritten as 

0.5 = 0.45ql,O 

and hence q 1,0 = (0.5/0.45). The balance equation for state 1 can be rewritten as 

0.45((0.5/ 0.45) + ql,2 ) = 0.5 + 0.05q2,1 

and the balance equation for state 2 is 

The equations for states 1 and 2 are identical; mathematically, we don't have enough conditions to force a 
unique solution. If we add the constraint that a BURSTY period lasts, on average, l/10 of a second, we 
thereby define that q2.1 = 10 and, hence, that q1_2 = (0.5/0.45). Operationally, the simulation of this CTMC is 
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straightforward. In state 0, one samples an exponential with mean l to dete�e 
_
the state's holding �e. 

Following this period, the CTMC transitions into state l and �pies a holdin� �e from an exponential 
with mean 0.45, after which it transitions to OFF or BURSTY With equal probability. In the BURSTY state, 
it samples an exponential holding time with mean 0. 1. Now all that is left is for us to define the state-depend-
ent customer arrival rates. Obviously, \ = 0; for illustration, we choose � = 10 and � = 500. 

_ . Figure 14.3 presents a snippet of code used to generate ti�es of arri�als i_n this process. Trans1�ons 
between states are sampled by using the inverse-transform technique, descnbed m Chapter 9. (The vanable 
ace computes the cumulative probability function in the dis�butio� described by the

_ 
row vector 

p [state] .) Figure 14.4 plots total customers generated as a function of time-for � short penod of a sam­
ple run, and for a longer period. In the shorter run, we see regions where_ the graph �creases sharply; they 
correspond to periods in the BURSTY state. While the CTMC is not in this state, a rrnxture of OFF and ?N 
periods moves the accumulated packet count up at a much more gnid� rate. The MPP

_ 
model can de�nbe 

burstiness, but the burstiness is limited in time scale. The longer run v1ews the data at a time scale that IS two 
orders of magnitude larger, and we see that the irregularities are largely smoothed. 

class mpp { 

public static double Finish; 
public static double time = 0 . 0 ; 
public static double htime , etime; 
public static int state = 0;  
public static int total = 0 ;  
public static Random stream; 

public static void main (String argv [ ] ) 

while ( time < Finish ) { 

I I sim termination 
II current clock 
II transition times 
II current state id 
II total pkts emitted 

11 generate exponential holding time, state-dependent mean 
htime = time+exponential ( stream, hold [state] ) ;  

11 emit packets until state transition time. 
_
state d':'p':'ndent 

11 rate . Note assignment made to etime in wh1le cond1t1on test 
while ( (etime = time+exponential ( stream, l . Oirate [state] ) )  

· < min ( htime , Finish) ) { 
System . out . println ( etime + ' '  • •  + total ) ; 

total++ ; 
time = · etime; II advance to packet issue time 

time = htime; 

II select next state 
double . trans = stream. nextDouble ( ) ; 
double ace = P [state] [0] ; 
int i = 0 ;  

while ( ace < trans ) ace += P [statel [++i] ; 
state = i ;  

) 
) 

Figure 14.3 Java code generating MPP trace. 
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Tune 

(a) Short run, small time scale 

Time 
(b) Long run, large time scale 

Figure 14.4 Sample runs from MPP model. 

In contrast to the Markovian essence of the MPP model, consider a traffic source that remains OFF for 
an �xponentially distributed period of time with mean 1.0, but, when it comes ON, remains on for a period 
of time sampled from a Pareto distribution. While it is ON, packets arrive as a Poisson process. As we will 
see in the chapter on simulation of computer networks, the Pareto distribution is of particular interest because 
it gives rise to "self-similarity," which informally means preservation of irregularities at multiple time scales. 
Figure 14.5 parallels the MPP data, displaying accumulated packet counts as a function of time; it presents 
behavior for the first 1000 units of time and for the first 100,000 units of time. Here, despite two orders of 

-·-'---"--· 
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Figure 14.5 Sample runs from self-similar model. 
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magnitude of difference in run length, the visual impression of behavior is  much the same between the two 

traces. This sort of behavior is frequently seen in computer and communication systems; the· long lengths 

reflect burstiness of packets, file lengths, and demand on a server. 

14.3.2 Virtual-Memory Referencing 

Randomness can also be used to drive models in the middle levels of abstraction. An example is a model of 
program-ex:ecution behavior in a computer with virtual memory. (See Nutt [2004].) In such a system, the data 
and instructions used by the program are organized in units called pages. All pages are the same size, 
typically 210 to 212 bytes in size. The physical memory of a computer is divided into page frames, each capable 
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of holding exactly one page. The decision of which page to map to which frame is made by the operating 
system. As the program executes, it makes memory references to the "virtual memory," as if it occupied a 
very large memory starting at address 0 and were the only occupant of the memory. On every memory ref­
erence made by the program, the hardware looks up the identity of the page frame containing the reference 
and translates the virtual address into a physical address. The hardware might discover that the referenced 
page is not present in the main memory; this situation is called a page fault. When a page fault occurs, the 
hardware alerts the operating system, which then takes over to bring in the referenced page from a disk and 
decides which page frame should contain it. The operating system could need to evict a page from a page 
frame to make room for the new one. The policy the operating system uses to decide which page to evict is 
called the "replacement policy." The quality of a replacement policy is often measured in terms of the hit 
ratio-the fraction of references made whose page frames are found immediately. 

Vn:tual-memory systems are used in computers that support concurrent execution of multiple programs. 
In order to study different replacement policies, one could simulate the memory-referencing behavior of 
several different programs, simulate the replacement policy, and count the number of references that page 
fault For this simulation to be meaningful, it is necessary that the stochastically generated references capture 
essential characteristics of program behavior. VJrtual memory works well precisely because programs do tend 
to exhibit a certain type of behavior; this behavior is called locality of reference. What this means intuitively 
is that program references tend to cluster in time and space and that, when a reference to a new page is made 
and the page is brought in from the disk, it is likely that the other data or instructions on the page will also 
soon be referenced. In this way, the overhead of bringing in the page is amortized over all the references made 
to that page before it is eventually evicted. A program's referencing behavior can usually be separated into a 
sequence of "phases"; during each phase, the program makes references to a relatively small collection of 
pages, called its working set. Phase transitions essentially change the program's working set The challenge 
for the operating system is to recognize when the pages used by a program are no longer in its working set, 
for these are the pages it can safely evict to make room for pages that are in some program's working set. 

Figure 14.6 illustrates a stream of memory references taken from an execution of the commonly used 
gee compiler. One graph gives a global picture; the other cuts out references to pages over number I 00 and 
shows more fine detail. Each graph depicts points of the form (i, pi) where P; is the page number of the ith 
reference made by the program (arithmetically shifted so that the smallest page number referenced is 10). 
The phases are clearly seen; each member of the working set of a phase is seen as lines (which are really just 
a concatenation of many points). One striking facet of this graph is how certain pages remain in almost all 
working sets. However, other kinds of programs exhibit other behaviors. A common characteristic of scien­
tific programs is that the execution is dominated by an inner loop that sweeps over arrays of data; the pages 
containing the instructions are in the working set throughout the loop, but data pages i'nigrate in and out. 

Despite various differences, a near-invariant among program executions is the presence of phase-like 
behavior and of working sets. In the building of a stochastic reference generator, it therefore makes sense to 
focus modeling effort on phase and working-set defmition. As a starting point, we might, with every refer­
ence generated, randomly choose (with some small probability) whether to start a new phase (by changing 
the working set). Given a working set, we would choose to refe,rence some page in the working set with high 
probability and, if choosing to stay in the set, choose with. high probability the same page as the one last ref­
erenced in the working set. The inner loop of a prograp:� that generates references in this fashion appears in 
Figure 14.7. Details of working-set definition are hidden inside of routine new_wrkset and might vary 
with the type of program being modeled. For the purposes of illustration here, we wrote a version that 
defined a working set by randomly choosing a working-set size between 2 and 8 and a maxirrium page num­
ber of 100. A working set of size n is constructed by randomly choosing a "center" page c from among all 
pages, randomly choosing an in�er dispersion factor d from 2 to 6, and then randomly selecting a working 
set from among all pages within distance d x n from center page c (with appropriate wraparound of page 
numbers at the endpoints 0 and 100). In order to model the referencing pattern of a scientific program's 
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figure 1 4.6 ScaHer-plotted referencing paHern cif gee com�ile�. Referenced page number is ploHed os 

a function of reference number ("time"). Horizontal sequences md1cate frequent rereferences to the same 

page number. 



double ppt 
double psw 
double psp 

0 . 0001; II Pr{ phase transition) 
0 . 999; II Pr{ ref in ws } 
0 . 9 ; II Pr{ reference same page) 

II method new_wrkset ( )  creates a new working set 
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II method from_wrkset ( )  samples from the working set 
II method not_from_wrkset ( )  samples from outside the working set 

int ref ; 
int sv_ref ;  
Random stream; 

II last page referenced 
II save ref 
II random number stream 

for ( int i=O; i<length; i++) { 
if ( stream.nextDouble ( )  < ppt ) new wrkset ( ) ; 
if ( stream.nextDouble ( J  < psw ) { -

if ( psp < stream.nextDouble ( )  ) 
ref � sv_ref = from_wrkset ( ) ;  

II phase transition 
II stay in working set? 

II change page, in wrkset 

else ref = not_from_wrkset ( ) ;  II step outside of wrkset 

System. out .println ( i  + ' '  ' '  + ref ) ; 
ref sv_ref ; 

figure 14.7 Java pseudocode for generating a reference trace. 

instruction stream, we manipulated the logic illustrated above to "lock down" a working set for a long time 
in the middle of the program execution. Figure 14.8 illustrates the result. As designed, phases and working 
sets are precisely defmed. 

The preceding example illustrates how one can in principle generate an execution path stochastically, 
but simulations at the middle level of abstraction also commonly use traces. Studies of CPU design will use 
a measured trace of instructions executed by a rurming program; studies of memory systems will use a meas­
ured trace of the addresses referenced by an executing program. Such traces get to be lengthy. A small piece 
of a typical trace of memory references is shown here: 

2 430d70 
2 430d74 
2 415130 
0 1000acac 
2 414134 
1 7fffOOac 
2 414138 

The first number is a code describing the type of access; 2 represents an instruction fetch, 0 a data read, 1 a data 
write. The second number represents a memory address, in hexadecimal. If the trace were also to describe the 
instruction stream, a hexadecimal word giving the machine code of the instruction fetched could follow the mem­
ory address on every instmction fetch line. 1\vo or three words of memory are needed to represent onf< reference, 
even when the information is efficiently packed (not as characters, as shown, which take much more space!). 
Consider also the amount of computation needed to simulate a CPU or memory for the execution of a signifi­
cantly long run of a nontrivial program. These observations belp us understand the motivation for techniques 
that compress the address trace and for techniques that' allow one to infer information about multiple systems 
from a single pass through a long trace. We will say more about these techniques later in this chapter. 

SIMULATION OF COMPUTER SYSTEMS 465 

"wStrace'.' 

20 

Time 

Figure 14.8 A synthetic trace modeling a scientific-program instruction slream. 

Another method of generating input is called "direct execution" simulation. (For examples, see Covington 
eta/. [1991], Lebeck and Wood [1997], Dickens etaL [1996]). One approach to it is illustrated in Figure 14.9. 
Direct execution is like generating a trace and driving the simulation with that trace, all at once. Computer 
programs are "instrumented" with additional code that observes the instructions the program executes and the 

Simulation executable 

r ---------� subroutine call• i--------; 
l Simulation Model I 1 lns!rumented I 
I and Control I I Progrnm : 
�----------1 return reference '- ----- _ _  I 

Figure 14.9 Direct-execution simulation. 
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memory and flO references the program makes as it executes. The instrumented program is compiled and 
linked with a simulation kemel library. Execution control rests with the simulation kernel, which calls the. 
instrumented program to provide the next instruction or reference that the program generates. The simulation 
kernel uses the returned information to drive the model for the next step. The simulation model driven by the 
program's execution can be of an entirely different CPU design, or a memory system, or even (given multiple 
instrumented programs) the internals of a communications network. Direct-execution simulation solves 
the problem of storing very large traces-the trace is consumed as it is being generated. However, it is tricky 
to modify computer programs to get at the trace information and to coordinate the trace generator with 
discrete-event simulator. The only practical way an ordinary simulator practitioner can use such methods is 
when the system has a software tool for making such modifications, but this feature is not common. 

1 4.4 HIGH-LEVEL COMPUTER-SYmM SIMULATION 

In this section, we illustrate concepts typical of high-level computer simulations by sketching a simulation 
model of a computer system that services requests from the World Wide Web. 

Example 14.1 
A company that provides a major website for searching and links to sites for travel, commerce, entertainment, 
and the like wishes to conduct a capacity-planning study. The overall architecture of its system is shown in 
Figure 14. 10. At the back end, one finds data servers responsible fur all aspects of handling specific queries 
and updating databases. Data servers receive requests for service from application servers-machines dedi­
cated to running specific applications (e.g., a search engine) supported by the site. In front of the applications 
are Web servers, which manage the interaction of applications with the World Wide Web; the portal to the 
whole system is a load-balancing router that distributes requests directed to the website among the Web servers. 

The goal of the study is to evaluate the site's ability to handle load at peak periods. The desired output 
is an empirical distribution of the access response time. Thus, the high-level simulation model should focus 

Figure 14.1  0 Website server system. 
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on the impact of timing at each level that is used, system factors that affect that timing, and the effects of 
timing on contention for resources. To understand where those delays occur, let us consider the processing 
associated with a typical query. 

· All entries into the system are through a dedicated router, which examines the request and forwards it to 
some Web server. Time is required to exercise the logic of looking at the request to discern whether it is a new 
request (requiring load balancing) or part of an ongoing session. It is reasonable to assume one switching time 
for a preexisting request and a different time for a new request. The result of the first step is selection of a Web 
server and the enqueueing there of a request for service. A Web server can be thought of as having one queue 
of threads of new requests, a second queue of threads that are suspended awaiting a response from an appli­
cation server, and a third queue of threads "ready" to process responses from application servers. An accepted 
request from the router creates a new request thread. We may assume the Web server has adequate memory 
to deal with all requests. It has a queueing policy that manages access to' the CPU; the distinction between new 
requests and responses from application servers is maintained for the sake of scheduling and for the sake of 
assigning service times, the distributions of which depend on the type. The servicing of a new request amounts 
to identification of an application and the associated application server. A request for service is formatted and 
forwarded to an application server, and the requesting thread joins the suspended queue. At an application 
server, requests for service are organized along application types. A new request creates a thread that joins a 
new-request queue associated with the identified application. An application request is modeled as a sequence 
of sets of requests from data servers, interspersed with computational bursts-for example, 

burst 1 
reques t data from Dl , D3 , and DS 

burst 2 

request data from Dl and D2 

burst 3 

In this model, we assume that all data requests from a set must be satisfied before the subsequent computational 
burst can begin. Query search on a database is an example of an application that could generate a long sequence 
of bursts and data requests, with large numbers of data requests in each set We need not assume that every 
execution of an application is identical in terms of data requests or execution bursts; these can be generated 
stochastically. An application thread's state will include description of its location in its sequence and a list of 
data requests still outstanding before the thread can execute again. Thus, for each application, we will maintain 
a list of threads that are ready to execute and a list of threads that are suspended awaiting responses from data 
servers. An application server will implement a scheduling policy over sets of ready application threads. A data 
server creates a new thread to respond to a data request and places it in a queue of ready threads. Some 
data �rver might implement memory-management policies and could require further coordination with the 
application server to know when to release used memory. Upon receiving service, the thread requests data from 
a disk, then suspends until the disk operation completes, at which point the thread is moved from the suspended 
list to the ready list and, when executed, again reports back to the application server associated with the request 
The thread suspended 'at the application server responds; eventually, the application thread· finishes and reports 
its completion back to the Web-server thread that initiated it, which in turn communicates the results back over 
the Internet 

Stepping back from the details, we see that a simulation model of this system must specify a number of 
features, listed in Table 14.2. All of these affecting timing in some way. The query-response-time distribu­
tion can be estimated by measuring, for each query, the time between at which a request first hits the router 
and the time at which the Web-server thread communicates the results. From the set of simulated queries, 
one can build up a histogram. As should be evident, a response time reflects a great many different factors 
related to execution bursts, scheduling policies, and disk-access times. Deeper understanding of the system 
is obtained by measuring behavior at each server of each type. One would look especially for evidence of 
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Table 14�2 Required Specification for Web System Model 

Subsystem 

Router 
Web Server 
Application Server 
Data Server 

Specijicalions 

load-balancing policy, execution times 
server count, queueing policy, execution times 
server count, queueing policy, behavior model 
server count, disk count, queueing policy, 
memory policy, disk timing 

bottlenecks. CPU bottlenecks would be reflected at servers with high CPU utilization; IO bottlenecks at disks 
with high utilization. To assess system capacity at peak loads, we would simulate to identify bottlenecks, 
then look to see how to reduce load at bottleneck devices by changes in scheduling policies, by binding of 
applications to servers, or by increasing the number of CPUs or disks in the system. Normally, one must 
resimulate a reconfigured system under the same load as before to assess the effects of the changes. 

The website model is an excellent candidate for a threaded (process-oriented) approach to modeling. 
The most natural process-oriented approach is to associate processes with servers. The simulation model is 
expresSed from an abstracted point of view of the servers' operating system. Individual queries become 
messages that are passed between server processes. In additional to limiting the number of processes, an 
advantage of this approach is that it explicitly exposes the scheduling of query processing a� the u�er level. 
The modeler has both the opportunity and the responsibility to provide the logic of schedultng actwns that 
model processing done on behalf of a query. It is a modeling viewpoint that simplifies analy�is of server 
behavior-an overloaded server is easily identified by the (modeler-observable) length of Its queue of 
runnable queries. However, it is a modeling viewpoint that is a bit lower in abstraction than the first one and 
requires more modeling and coding on the part of the user. · 

An event-oriented model of this system need not look a great deal different from the second of our 
process-oriented models. A query passed as a message between servers have an obvious �vent-oriented 
expression. A modeler would have to add to the logic, events, and event h�dlers that des:nbe the way a 
CPU passes through simulation time. For example, consider a call to hold( qt) m a process-onented model to 
express that the CPU is allocating qt units of service to a query, during which time it does nothing else. In

_ 
an 

event-oriented model, one would need to define events that reflect "starting" and "stopping" the processmg 
of a query, with some scheduling logic interspersed. Additional events and handlers need to be defined for 
any "signaling" that might be done between servers in a process-oriented model-for example, when a data­
server process awaits completion of modeled 10 requests sent to its disks. A process-oriented approach, even 
one focused on servers rather than queries, lifts the level of model expression to a higher level of abstraction 
and reduces the amount of code that must be written. In a system as complex as the website, one must factor 
complexity of expression into the overall model-development process. 

· --------

1 4.5 CPU SIMULATION 

Next, we consider a lower level of abstraction and look at the simulation of a central processing unit. 
Whereas the high-level simulation of the previous example treated execution time of a program as a cons.tant, 
at the lower level we do the simulation to discover what the execution time is. The input driving this stmu­
lation is a stream of instructions. The simulation works through the mechanics of the CPU's logical design 
to find out what happens in response to that stream, how long it takes to execute the program, and where 
bottlenecks exist in the CPU design. Our discussion illustrates some of the functionality of a modern CPU 
and the model characteristics that such a simulation seeks to discern. Examples of such simulations include 

OF COMPUTER SYSTEMS 

those described in Cmelik and Keppel [1994], Bedicheck [ 1 995], Witchel and Rosenblum [1996], Austin, 
Larson, and Ernst [2002], Bohrer et aL [2004] and Magnusson et al. [2002]. The view of the CPU taken in 
our discussion is similar to that taken by the RSIM system (Hughes et al. [2002]). 

The main challenge to making effective use of a CPU is to avoid stalling it; stalling happens whenever 
the CPU commits to executing an instruction whose inputs are not all present. A leading cause of stalls is 
the latency delay between CPU and main memory, which can be tens of CPU cycles. One instruction might 
initiate a read-for example, 

load $ 2 ,  4 ( $3 }  

which is  an assembly language statement that instructs the CPU to use the data in register 3 (after adding 
value 4 to it) as a memory address and to put the data found at that address into register 2. If the CPU insisted 
on waiting for that data to appear in register 2 before further execution, the instruction could stall the CPU 
for a long time if the referenced address is not found in the cache. High-performance CPUs avoid this by 
recognizing that additional instructions can be executed, up to the point where the CPU attempts to execute 
an instruction that reads the contents of register 2-for example, 

add $4 , $2 , $ 5 

This instruction adds the contents of registers 2 and 5, and places the result in register 4. If the data expected 
in register 2 is not yet present, the CPU will stalL So we see that, to allow the CPU to continue past a memory 
load, it is necessary to (I)  mark the target register as being unready, (2) allow the memory system to load the 
target register asynchronously while the CPU continues on in the instruction stream, (3) stall the CPU if it 
attempts to read a register marked as unready, and (4) clear the unready status when the memory operation 
completes. 

The sort of arrangement just described was frrst used in the earliest supercomputers, designed in the 
1960s. Modern microprocessors add some additional capabilities to exploit instruction level parallelism 
(ILP). We outline some of the current architecture ideas in use to illustrate what a simulation model of an 
ILP CPU involves. 

The technique of pipelining has long been recognized as a way of accelerating the execution of com­
puter instructions. (See Patterson and Hennessy [ 1997].) Pipelining exploits the fact that each instruction 
goes sequentially through several stages in the course of being processed; separate hardware resources are 
dedicated to each stage, permitting multiple instructions to be in various stages of processing concurrently. 
A typical sequence of stages in an ILP CPU is as follows: 

1. Instruction fetch: The instruction is fetched from the memory. 
2, Instruction decode: The memory word holding the instruction is interpreted to discover what ,operation 

is specified; the registers involved are identified. 
· 

3. Instruction issue: An instruction is "issued" when there are no constraints holding it back from being 
executed. Constraints that keep an instruction from being issued include data not yet being ready in 
an input register and unavailability of a functional unit (e.g., Arithmetic Logical Unit) needed to 
execute the instruction. 

4. Instruction execute: The instruction is perfonned. 
S. Instruction complete: Results of the instruction are stored in the destination register. 
6. Instruction graduate: Executed instructions are graduated in the order that they appear in the instruc­

tion stream. 

Ordinary pipelines permit at most one instruction to be represented in each stage; the degree of parallelism 
(number of concurrent instructions) is limited to the number of stages. ILP designs allow multiple instruc­
tions to be represented in some stages. This necessarily implies the possibility of executing some stages of 
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successively fetched instructions out of order. For example, it is entirely possible for the nth instruction, I., 
to be constrained from being issued for several clock cycles while the next instruction, In+!' · is not so 
constrained. An ILP processor will push the evaluation of In+1 along as far as it can without waiting on I •• 

However, the instruction graduate stage will reimpose order and insist on graduating In before /n+r 
ILP CPUs. use architectural slight of hand with respect to register useage to acrelerate performance. 

An ILP machine typically has more registers available than appear in the instruction set Registers named in 
instructions need not precisely be the registers actually used in the implementation of those instructions. This 
is acceptable, of course, as long as the effect of the instructions is the same in the end. One factor motivating 
this design is the possibility of having multiple instructions involving the same logical registers (those named 
by the instructions themselves) actively being processed concurrently. By providing eachinstruction with its 
own "copy" of a register, we eliminate one source of stails. Another factor involves branches-that is, instruc­
tions that interrupt the sequential flow of control. An ILP, encountering a branch instruction, will predict 
whether the branch is taken or not and possibly alter the instruction stream as a result Various methods exist 
to predict branching, but any of them will occasionally predict incorrectly. When an incorrect prediction is 
made, the register state computed as a result of speculating on branch outcome needs to be discarded and 
execution resumed at the branch point. Thus, another use of additional registers is to store the "speculative 
register state." With dedicated hardware resources to track register useage fqllowing speculative branch 
de.cision, speculative state can be discarded in a single cycle and control resumed at the mispredicted branch 
point. In all of these cases, the hardware implements techniques for renaming the logical registers that appear 
in the instructions to phy�ical registers, for maintaining the mapping of logical to physical registers, and for 
managing physical register useage. · 

A simulation model of an ILP CPU will model the logic of each stage and coordinate the movement of 
instructions from stage to stage. We consider each stage in tum. 

An instruction-fetch stage could interact with the simulated memory system, if that is present. However, 
if the CPU simulation is driven by a direct-execution simulation or by a trace file, there is little for a model 
of this stage to do but get the next instruction in the stream. If a memory system is present, this stage could 
look into an instruction cache for the next referenced instruction, stalling if a miss is suffered. 

Following an instruction fetch, an instruction will be in the CPU's list of active instructions until it exits 
altogether from the pipeline. The instruction-decode stage places an instruction in this list; a logical register 
that appears as the target of an operation is assigned a physical register-registers used as operand sources 
will have been assigned physical registers in instructions that defined their values. (Sequencing issues asso­
ciated with having multiple representations of the same register are dealt with at a later stage in the pipeline.) 
Branch instructions are identified in this stage, predictions of branch outcomes are made, and resources for 
tracking speculative execution are committed here. 

Decoded instructions pass into the instruction-issue stage. The logic here is complex and very much 
timing dependent An instmction cannot be issued until values in its input registers are available and a functional 
unit needed to perform the instruction is available. An input value might be not yet in a register, for instance, 
if that value is loaded from memory by a previous instruction and has not yet appeared. A functional unit 
could be unavailable because all appropriate ones are busy with multicycle operations initiated by other 
instructions. Implementation of the issue-stage model (and hardware) depends on marking registers and 
functional units as busy or pending and on making sure that, when the state of a register or functional unit 
changes, any instruction that cannot yet issue because of that register or functional unit is reconsidered for 
issue. 

Simulation of the instruction-execute stage is a matter of computing the result specified by the instruc· 
tion (e.g., an addition). At this point, the action of depositing the result into a register. or memory is sched­
uled for the instruction-complete stage. This latter stage also cleans up the status bits associated with 
registers and functional uniis fu.volved in the instruction and resolves the final outcome of a predicted branch. 
If a branch was mispredicted, the speculatively fetched and processed instructions that follow it  are removed 

. ':� ' . 
l 

SIMUlATION OF COMPUTER SYSTEMS 471 

from other pipeline stages, the hardware that tracks speculative instruction is released, and the instruction 
stream is reset to follow the branch's other decision direction. 

Between the instruction-issue and instruction-complete stages, instructions could get processed in an order 
that does not correspond to the original instruction stream. The last stage, graduation, reorders them. 
Architecturally, this permits an ILP CPU to associate an exception (e. g., a page fault or a division by zero) with 
the precise instruction that caused it Simulation of this stage is a matter of knowing the sequence number of 
the next instruction to be graduated, then graduating it when it appears. 

Example 14.2 
An example helps to show what goes on. Consider the following sequence of assembly-language instructions 
for a hypothetical computer: 

load $2 . 0 ($6} Il- load $2 from memory 
mult $5, 2 I2- multiply $5 with constant 2 
add $4, 12 I3 - add constant 12 to $4 
add $5,  $2 I4 · $5 <- $5 + $2 
add $5,  $4 IS·  $5 <- $5 + $4 

Let us suppose that the register load misses the first-level cache but hits in the second-level cache, resulting 
in a delay of 4 cycles before the register gets the value. Suppose further that separate hardware exists for 
addition and multiplication, that addition takes one cycle, and that multiplication takes 2 cycles to complete. 
Time is assumed to advance in units of a single clock tick. 

Table 14.3 shows a timeline of when each instruction is in each stage. Cycles in which an instruction 
cannot proceed through the pipeline are marked as "stall" cycles. Processing is most easily understood by 
tracing individual instructions through. 

11. After being fetched in cycle 1 ,  the decOde of II assigns physical register $p 1 as the target of the 
load operation and marks $pl as unready. No constraints prohibit 1 1  from being issued in cycle 3 nor exe­
cuted in cycle 4. Because the memory operation takes 4 cycles to finish, 11 is stalled in cycles 5-S. Cycle 9 
commits the data from memory to physical register $p 1 and clears its unready flag; the instruction is graduated 
in cycle 10. 

12. Instruction 12 is fetched in cycle 2 and has physical register $p2 allocated to receive the results of 
the multiplication in the cycle-3 decode stage; $p2's unready flag is raised. No constraints keep 12 from 

lnsUCycle I 

II fetch 
12 
13 
14 
15 

InsUCycle 8 

II stall 
12 stall 
13 stall 
14 stall 
15 stall 

Table 14.3 Pipeline Stages, ILP CPU Simulation 

2 3 4 5 

decode issue execute stall 
fetch decode issue execute 

fetch decode issue 
fetch decode 

fetch 

9 10 1 1  12 

complete graduate 
stall stall graduate 
stall stall stall graduate 
stall issue execute complete 
stall stall stall stall 

6 7 

stall stall 
stall complete 

execute complete 
stall stall 

decode stall 

13 14 

graduate 
issue complete 
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being issued in cycle 4 or executed in cycle 5, but the 2-cycle delay of the multiplier means the result is not 
committed to register $p2 until cycle 7, at which point the $p2 unready flag is cleared. The instruction 
remains stalled through cycles 8-10, awaiting the graduation of II. 

13. Instruction I3 is fetched in cycle 3 and has physical register $p3 allocated to receive the results of 
its addition in the cycle-4 decode stage. The $p3 unready flag is raised. There are no constraints keeping I3 
from being issued in cycle 5 and executed in cycle 6, with results written into $p3 in cycle 7, at which time 
$p3's unready flag is cleared. I3 must stall, however, during cycles 8-1 1, awaiting the graduation of 12. 

14. Instruction 14 is fetched in cycle 4 and has physical register $p4 allocated to receive the results of 
the addition during the cycle-5 decode stage. $p4's unready flag is raised at that point. Physical registers $p 1 
and $p2 are operands to the addition; 14 stalls in cycles 6--9, waiting for their unready flags to clear. It then 
passes the remaining stages without further delay, clearing the $p4 unready flag in cycle 12. 

15. Instruction I5 is fetched in cycle 5 and has physical register $p5 allocated to receive the results of 
its addition in the cycle-6 decode stage, at which point the $p5 unready flag is set. Physical registers $p3 and 
$p4 contain the addition's operands; I5 stalls through cycles 7-12, waiting for their unready flags both to 
clear. From that point forward, I5 passes through the remaining stages without further delay. 

The performance benefit of pipelining and ILP can be appreciated if we compare the execution time of 
this sequence on a nonpipelined, non-ILP machine. Assuming that each stage must be performed for each 
instruction but that one instruction is processed in its entirety before another one begins, 51 cycles are needed 
to execute II through 15. With the advanced architectural features, only 15  cycles are needed. The example 
illustrates both the parallelism that pipelining exposes and the latency tolerance that the ILP design supportS. 
Even though 1 1  stalls for four cycles while awaiting a result from memory, the pipeline keeps moving other 
instructions through to some extent. The bottom line for someone using a model like this is the rate at which 
instructions are graduated, as this reflects the effectiveness of the CPU design. Secondary statistics would 
try to pinpoint where in the design stalls occur that might be alleviated (e.g., if many stalls occur because of 
waiting for the multiplier (no such stalls occur in the example), then one could consider including an addi­
tional multiplier in the CPU design). 

Our explanation of the model's workings was decidedly process oriented, taking the view of an instruc­
tion. However, the computational demands of a model like this are enormous, owing to the very large number 
of instructions that must be simulated to assess the CPU design on, say, a single program ron. The relatively 
high cost of context switching would deter use of a normal process-oriented language. One could implement 
what is essentially a process-oriented view by using eventg.;-each time an instruction passes through a stage, 
an event is scheduled to take that instruction through the next stage, accounting for stalls. The amount of 
simulation work accomplished per event is thus the amount of work done on behalf of one instruction in 
one stage. An alternative approach is to eschew explicit events altogether and simply use a cycle-by-cycle 
activity scan. At each cycle, one would examine each active instruction to see whether any activity associ­
ated with that instruction can be done. An instruction that was at one stage at cycle j will, at cycle j + I, be 
examined for constraints that would keep it at cycle j. Finding none, that instruction would be advanced to 
the next stage. An activity-scanning approach has the attractiveness of eliminating event-list overhead, but 
the disadvantage of expending computational effect on checking the status of a stalled instruction on every 
cycle during which it is stalled. Implementation details and model behavior largely determine whether an 
activity-scanning approach is faster than an event-oriented approach (with the nod going to activity scanning 
when few instructions stall). 

1 4.6 MEMORY SIMULATION 

One of the great challenges of computer architecture is finding ways to deal effectively with the increasing 
gap in operation speed between CPUs and main memory. A factor of 100 in speed is not far from the mark. 
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The main technique that has evolved is to build hierarchies of memories. A relatively small memory-the 
Ll cache-operates at CPU speed. A larger memory-the L2 cache-is larger and operates more slowly. 
The main memory is larger still and slower still. The smaller memories hold data that was referenced recently 
and nearby data that one hopes will also be referenced soon. Data moves up the hierarchy on demand and 
ages out as it becomes disused, to make room for the data in current use. For instance, when the CPU wishes 
to read memory location 100,000, hardware will look for it in the Ll cache; if it fails to find it there, it will 
look in the L2 cache. If it is found there, an entire block containing that reference is moved from the L2 cache 
into the L l  cache. If it is not found in the L2 cache, a (larger) block of data containing location 10,000 is 
copied from the main memory to the L2 cache, and part of that block (containing location 10,000 of course) 
is copied into the L l  cache. It could take 50 cycles or more to accomplish this. After this cost has been 
suffered, the hope and expectation is that the CPU will continue to make references to data in the block brought 
in, because accesses to L1 data are made at CPU speeds. Fortunately, most prograrns exhibit locality of 
reference at this scale (as well as at the paging scale discussed earlier in the chapter), so the strategy works. 
However, after a block ceases to be referenced for a time, it is ejected from the L 1 cache. It could remain in 
the L2 cache for a while and later be brought back into the L 1 cache if any element of the block is referenced 
again. Eventually a block remains unreferenced long enough so that it is ejected also from the L2 cache. 

The astute reader will realize that data that is written into an L I cache by the CPU creates a consistency 
problem, in that a memory address then has different values associated with it at different levels of the memory 
hierarchy. One way of dealing with this is to write through to all cache levels every time there is a write­
the new value is asynchronously pushed from L l  through L2 to the main memory. An alternative method 
copies back a block from one memory level to the lower level, at the point the block is being ejected from 
the faster level. The write-through strategy avoids writing back blocks when they are ejected, whereas the 
write-back strategy requires that an entire block be written back when ejected, even if only one word of 
the block was modified, once. One of the roles simulation plays is to compare performance of these two 
write-back strategies, taking into consideration all costs and contention for the resources needed to support 
writing back modifications. . 

Like paging systems, the principle measure of the quality of a memory hierarchy is its hit ratio at each 
· level. As with CPU models, to evaluate a memory hierarchy design, one must study the design in response 
to a very long string of memory references. Direct-execution simulation can provide such a reference stream, 
as can long traces of measured reference traffic. Nearly every caching system is a demand system, which 

. means that a new block is not brought into a cache before a reference is made to a word in that block. 
Decisions left still to the designer include whether to write-through or write-back modifications, the replace-
ment policy, and the "set associativity." · 

The concept of set associativity arises in response to the.cost of the mechanism used to look for a match. 
Imagine we have an L2 cache with 2 million memory words (an actual figure from an actual machine): The 
CPU references location 10000-the main memory has, say, 212 words, so the L2 cache holds but a rmnute 
fraction of the memory. How does the hardware find out whether location 10000 is in the �2 cache? I� u�es 
what is called an associative memory, one that associates search keys with data. One quenes an associative 
memory by providing some search key. If the key is found in the memory, then the data associa� wi� the 
key is returned; otherwise, indication of failure is given. In the caching context, the search key ts denved 
from the reference address, and the return data is the data stored at that address. Caches must be very v�ry 
fast, which means that the search process has to be abbreviated. This is accomplished by dedicating 
comparison hardware with every location in the associative memory. Presented with a search key, every com­
parator looks for a match. with the key at its location. At most one comparator will see a match and return 
the data; it is possible that none will. A fully associative cache is one where any address can appear any­
where in the cache. This means building the cache to have a unique comparator associated with every address 
in the cache; doing so is prohibitively expensive. Tricks are played with memory addr_esses in order to redu� 
the costs greatly. The idea is to piutition the address space into sets. Figure 14. 1 1  Illustrates how a 48-btt 
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Figure 14. 1 1  48-bit address partitioned for cache. 

memory address might be partitioned in key, set id, and block offset Any given memory address is mapped 
to the set identified by its set-id address bits. This scheme assigns the first block of 2b addresses to set O, 
the second block of 2b addresses to set I ,  and so on, wrapping around back to set 0 after 2s blocks have 
been assigned. Each set is give a small portion of the cache-the set size-typically, 2 or 4 or 8 words. Only 
those addresses mapped to the same set compete for storage in that space. Only as many comparators are 
needed as there are words in the set Given an address, the hardware uses the set-id bits to identify the set 
number and the key bitS to identify the key. The hardware matches the keys of the blocks already in the iden­
tified set to comparator inputs and also provides the key of the sought address as input to all the comparators. 
Comparisons are made in parallel; in the case of a match, the block-offset bits are used to index into the 
identified block to select the particular address being referenced. 

The overall size of this cache is seen to be the total number of sets times the set size. One role of simu­
lation is to work out, for a given cache size, how the space ought to be partitioned into sets. This is largely 
a cost consideration, for increasing the set size (thereby reducing the number of sets) typically increases the 
hit ratio. However, if a set size of 4 yields a sufficiently large hit ratio, then there is little point to increasing 
the set size (and cost). 

Least·Recently Used (LRU) is the replacement policy most typically used. When a reference is made 
but is not found in a set, some block in the set is ejected to make room for the one containing the new 
reference. Under LRU, the block selected for ejection is the one which, among all blocks in the set, was last 
referenced most distantly in the past 

· 

LRU is one of several replacement policies known as stack policies. (See Stone [ 1990].) These are char­
acterized by the behavior that, for any reference in any reference string, if that reference misses in a cache 
of size n, then it also misses in every cache of size m < n, and that, if it hits in a cache of size m, then it hits 
in every cache of size n > m. Simulations ·can exploit this fact to compute the miss �atio of many different 
set sizes, in just one pass of the reference string! Suppose that we do not wish to consider any set size larger 
than 64. Now we conduct the simulation with set sizes of 64 . . Every block in the cached set is marked with 
a priority-namely, the temporal index of the last reference made to it (e.g., the block containing the first 
reference in the string is marked with I, the block containing the second reference is marked with a 2 (over­
writing the I, if the same as the previous block), etc.). When a block must be replaced, the one with the 
smallest index is selected. Imagine that the simulation organizes and maintains the contents of a cached set 
in LRU order, with the most recently referenced block first in the order. The stack distance of a block in this 
list is its distance from the front; the most recently referenced block has stack distance I, the block refer­
enced next most recently has stack distance 2, the LRU block has stack distance 64. Presented with a refer­
ence, the simulation searches the list of cache blocks for a match. If no match is found, then, by the stack 
property, no match will be found in any cache of a size smaller than 64, on this reference, for this reference 
string. If a match is found and the block has stack distance k, then no match will be found in any cache 
smaller than size k, and a match will always be found in a cache of size larger than k. Rather than record a 
hit or miss, one increments the fCh element of a 64-element array that records the number of matches at each 
LRU leveL To find out how many hits occurred in a cache of size n, one sums up the counts of the first n 
elements of the array. Thus, with a' little arithmetic at the end of the run, one can count (for each set cache) 
the number of hits for every set of every size between I and 64. 

. I .  
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Figure 1 4. 12 LRU stack evolution 

Figure 14. 12 illustrates the evolution of an LRU list in response to a reference string. Under each 
reference (given as a alphabetic symbol rather than actual memory address) is the state of the LRU stack after 
the reference is processed. The horizontal direction from left to right symbolizes the trace, read from left to 
right A hit is illustrated by a circle, with an arrow showing the migration of the symbol to the top of the 
heap. The "hits" array counts the number of hits found at each stack distance. Thus we see that a cache of 
size I will have the hit ratio 0/15, a cache of size I will have the hit ratio l/15, and a cache of size-3 will 
have the hit ratio 6/15. 

In the context of a set-associative cache simulation, each set must be managed separately, as shown in the 
figure. In one pass, one can get hit ratios for varying set sizes, but it is important to note that each change in 
set size corresponds to a change in the overall size of the entire cache. This technique alone does not let us in 
one pass discover the hit ratios for all the different ways one might partition a cache of a given capacity (e.g., 
256 sets with set size I versus 128 sets with set size 2 versus 64 sets with set size 4). It actually is possible to 
evaluate all these possibilities in one pass, but the technique is beyond the scope of this discussion. 

1 4.7 SUMMARY 

This chapter looked at the broad area of simulating computer systems. It emphasized that computer-system 
simulations are performed at a number of levels of abstraction. Inevitably, it discussed a good deal of computer 
science along with the simulation aspects, for in computer-systems simulation the two are inseparable. 

The chapter outlined fundamental implementation issues behind computer-system simulators-principally, 
how process orientation is implemented and how object-oriented concepts such as inheritance are fruit­
fully employed. Next it considered model input, ranging from stochastically generated traffic, to stochastically 
generated memory-referencing patterns, to measured traces and direct-execution techniques. The chapter was 
brought to a conclusion by looking at examples of simulation at different levels of abstraction: a WWW-site 
server system, an instruction-level CPU simulation, and simulation of set-associative memory systems. . 

The main point is that computer-system simulators are tailored to the tasks at hand. Appropriate levels 
of abstraction need to be chosen, as must appropriate simulation techniques. 
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EXERCISES 

1. Sketch the logic of an event-oriented model of an MIM/1 queue. Estimate the number of events executed 
when processing the arrival of 5000 jobs. How many context switches on aver<.ge does a process­
oriented implementation of this queue incur if patterned after the SSF implementation of the single-server 
queue in Chapter 4? 

2. For each of the systems listed, sketch the logic of a process-oriented model and of an event-oriented 
model. For both approaches, develop and simulate the model in any language: 

• a central-server queueing model: when a job leaves the CPU queue, it joins the UO queue with 
shortest length. 

• a queueing model of a database system, that implements fork join: a job receives service in two 
parts. When it first enters the server it spends a small amount of simulation time generating a 
random number of requests to disks. It then suspends (freeing the server) until such time as all 
the requests it made have finished, and then enqueues for its second phase of service, where it 
spends a larger amount of simulation time, before finally exiting. Disks may serve requests from 
various jobs concurrently, but serve them using FCFS ordering. Your model should report on the 1 
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statistics of a job in service-how long (on average) it waited for phase 1, how long it waits on 
average for its UO requests to complete, and how long it waits on average for service after its 
UO requests complete. 

3. Consider a three-state (OFF, ON, and BURSTY) Markov Modulated Process with the following 
characteristics . 
(a) The MMP is in ON state for 90% of the time on average. 
(b) The MMP is in BURSTY state for 5% of the time on average. 
(c) OFF to ON transitions probability is 0.8 and OFF to BURSTY is 0.05. 
(d) ON to OFF transition probability is 0.9 and ON to BURSTY is 1 .  
(e) BURSTY to ON transition probability is 0.5 and BURSTY to  OFF is  0.5. 

If the time spent in OFF state is exponential with a mean of 0.3, determine exponential mean values of 
time spent in ON and BURSTY states by means of simulation. 

4. Recall the pseudo-code for generating reference traces (Figure 14.7). Write routines new wrkset, 
from_ wrkset, and not_ from_ wrkset to model the following types of programs: 

-

(a) a scientific program with a large working set during initialization, a small working set for the bulk of 
the computation, and a different working set to complete the computation. (You will need to modify 
the control code in the figure slightly to force phase transitions in desired places); 

(b) a program whose working set always contains a core set of pages present in every phase, with the 
rest of the pages clustered elsewhere in the address space. 

5. Consider computer network with three printers (a, b, and c). The type of printer (a or b or c) is selected 
by the user and some users are high-priority users. Simulate the model using any simulator or language. 

6. Using any simulator or language you like, model the router-to-Web-server logic of the system described 
in section 14. 1. Pay special attention to the load-balancing mechanism that the router employs. 

7. Using any simulator or language you like, model the interaction between application server and data 
server described in section 14.4. Pay special attention to the logic of requesting multiple data services 
and of waiting until all are completed until advancing to the next burst. 

8. Consider the following language for describing CPU instructions: 
op rl r2 

The preceding expressions describe an operation, where 

op=l means add, op=2 means subtract . Each. require l cycle . 
op=3 means mult . rl receives tbe result rl op r2 . A multiplication 2 

cycles . 

op=4 means a load from memory, into rl, using tbe value in r2 as the memory 
address . Every lOth load requires 4 cycles, tbe remaining loads require 1 .  

op=S means a store t o  memory, storing tbe data found i n  rl, using the value in 
r2 as the memory address .  Each store requires 1 cycle . 

Write a CPU simulation along the lines of that described in 14.5 that accepts a stream of instructions in 
the fonnat just described. Your simulator should use a logical-to-physical register mapping, use the 
timing information previously sketched, and use stall instructions as described in the example. 

9. integrate the trace generator created in Problem 4 with the one-pass simulator written in the preVious 
problem, in effect creating a pseudo "direct-execution simulator." 

10. Analyze the log of WWW requests to your site's server, produce a stochastic model of the request 
stream, and simulate it. 



1 5  
Simulation of Computer Networks 

1 5. 1  INTRODUCTION 

Computers and the networks that connect them have become part of modem working life. In this chapter, we 
illustrate by example some of the ways that discrete-event simulation is used to understand network systems, 
the software that controls them, and the traffic that they carry. 

Like computer systems, network systems exhibit complexity at multiple layers. Networked systems �e 
designed (with varying degrees of fidelity) in accordance with the so-called Open System Interconnection 
(OSI) Stack Mode (Zimmerman, 1980). The fundamental idea is that each layer provides �n servi-:es 
and guarantees to the layer above it An application or protocol at a particular layer commumcates only With 
protocols directly above and below it in the stack, implementing communication with a corresponding appli­
cation or protocol at the same stack layer in a different device. Simulation is used to stlldy behavior at all 
these layers, although not generally all in the same modeL Different layers encapsulate different levels of 
communication abstraction. 

The Physical Layer is concerned with the communication of a raw bit-stream, over a physical medium. 
The specification of a physical layer has to address all the physical aspects of the communication: volta�e 
or radio signal strength, standards for connecting a physical device to the medium, and so on. Models of this 
layer describe physics. 

. . . . 
The Data Link Layer implements the communication of so-called tkJta-frames, which con tam a hrmted 

chunk of data and some addressing information. Protocols at the Data Link Layer interact with the physical 
layer to send and receive frames, but also provide the service of "error-free" communication to the layer 
above it Protocols at the Data Link Layer must therefore implement error-detection and retransmission when 
needed. A critical component of avoiding errors is access control, which ensures that at most one device is 
transmitting at a time on a. shared }Iledium. Techniques for access control have significant impact on how 
long it takes to deliver data and on the overall capacity of the network to move data. Simulation plays an 
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important role in understanding tradeoff's between access-control techniques; in this chapter, we will look at 
some protocols and the characteristics that simulation reveals. 

The Network Layer is responsible for all aspects of delivering data frames across subnetworks. A given 
frame may cross multiple physical mediums en-route to its final destination; the Network Layer is responsible 
for logical addresses across subnets, for routing across subnets, for flow control, and so on. The success of 
the Internet is due in no small part to widespread adaption of the Internet Protocol, more commonly known 
as W (Comer, 2000). W specifies a global addressing scheme that allows communication between devices 
across the globe. The specification of W packets includes fields that describe the type of data being carried 
in the packet, the size of the packet, the protocol suitable for interpreting the packet, source/destination address­
ing information, and more. The Network Layer provides error-free end-to-end delivery of packets to the layer · 

above it. Simulation is frequently used to study algorithms that manage devices (routers) that implement the 
Network Layer. 

The Transport Layer accepts a message from the layer above, segments it into packets that are passed 
to the Network Layer for transmission, and provides the assurance that received packets are delivered to the 
layer above in the order in which they appear in the original message, error free: without loss, and without 
duplication. Thus, the Transport Layer protocol in the sending device coordinates with the Transport Layer 
protocol in the receiving device in such a way that the receiving device can infer packet-order information. 
Variants of the Transmission Control Protocol (TCP) are most commonly used at this layer of the stack 
(Comer, 2000). Dealing with packet loss is the responsibility of the transport layer. Packet loss,is distinct 
from error-free transmission-a packet could be transmitted to a routing device without error, only to find 
that device does not have the buffering capacity to store it; the packet is received without error, but is deliber­
ately dropped. Transport layer protocols need to detect and react to packet loss, becaUse they're responsible 
for replacing the packets that are dropped. One of the ways they do this is to apply flow-control algorithms 
that simultaneously try to utilize the available bandwidth fully, yet avoid the loss of packets. Simulation has 
historically played a critical role in stlldying the behavior of different transport protocols, and in this chap­
ter we will examine simulation ofTCP. 

The first four OSI layers are well defmed and separated in actllal implementation. The remaining three 
have not emerged so strongly in practice. Officially the Session Layer is responsible for the creation, main­
tenance, and termination of a "session" abstraction, a session being a prolonged period of interaction 
between two entities. Above this one finds the Presentation Layer, whose specification includes conversion ' 
between data formats. An increasingly important conversion function is encryption/decryption. Finally, the 
Application Layer serves as the interface between users and network services. Services typically associated 
with the Application Layer include email, network management tools, remote printer access, and sharing of 
other computational resources. 

Any simulation of networking must include models of data trafJi.c, and so we begin the discussion there. 
At the time of this writing, the field of traffic modeling is very active, and we bring to the discussion key 
elements of an exciting area of current work. 

Devices with traffic they wish to transmit must somehow gain access to the networks that carry traffic. 
Our second area of discussion then considers the problem of how devices coordinate to use the network 
medium� sometimes called Media Access Control (MAC) protocols. Historically, simulation has played an 
important role in helping engineers to understand the performance of different MAC protocols. 

Finally, we describe the Transport Control Protocol (TCP) and discuss how simulation plays an impor­
tant role in its study. 

1 5.2 TRAFFIC MODEUNG 

Our discussion of network simulation begins with modeling of the data traffic that the networks carry. We'll 
consider two levels of detail for this, corresponding to two different levels of abstraction. The first is at the 
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application level: consideration of how commonly used network applications create demand for a network. 
Such models are appropriate when one's interest is in the details of a relatively small network and the impact 
that its native applications have on it. The second level of abstraction is of aggregated application flows. This 
level is appropriate when one's focus is on the Internet's core infrastructure, where the global impact of 
global traffic needs to be represented. 

One of the easiest models of traffic-load generation is that of moving files across the network. Our interest 
here is not in the mechanics of the protocols that accomplish the movement so much as it is in the model of 
the traffic load that is offered to the network. Simulation studies that model file transfer typically are focused 
on the impact that the traffic has on servers holding the files. A given transfer can be characterized by the 
size of the file and by the rate at which its bytes are presented to the network. We usually also characterize 
how often a user initiates an ftp transfer. A simple model of a file-transfer request process is as an on-off 
source, whose off period is randomly distributed (e.g., an exponential think time) and whose on period is 
driven by the arrival of a file. The on period lasts as long as needed to push or pull a file of the referenced 
length. File size is sampled from another probability distribution. Measurements suggest that a heavy-tailed 
distribution is appropriate. This is especially appropriate given the level of music-sharing activity on the 
Internet. 

Another significant source of application traffic is the World Wide Web. Traffic associated with web 
pages is more complex than individual file transfers and so bears separate treatment. We describe a model 
expounded upon in (Barford and Crovella [ 1998]), called Surge. Here we model the delay between succes­
sive sessions with an intersession delay distribution. Within a session, a number of different URLs will be 
accessed, with another delay time between each such access; this is illustrated in Figure 15.1 .  

The Surge model incorporates a number o f  important characteristics of files, most importantly, including 

• the distribution of file sizes, among all files on a web server, 
• the distribution of the file sizes of those files that are actually requested, 
• temporal locality of file-referenced file. 

The first and third characteristics, coupled with a model of referencing pattern, essentially define the second 
characteristic. Suppose that we've selected the first k files already-call them.t;./2, • • •  ,J;,-and suppose that 
this set of references is organized in a Least-Recently-Used stack. We select the (k + l )'t  file by sampling an 
integer from a stack -distance distribution. If that sample has value j, the next file selected has position j in 
the LRU stack (position 1 being the last file referenced). Empirical studies of reference strings of files 
suggest that a lognormal distribution is appropriate. This distribution places significant weight on small 
values; hence, it induces temporal locality of reference. When the stack-distance sample is larger than the 
number of files in the LRU stack, a new file is sampled from the set of files not yet in the reference stream. 

This description gives a general, but simplistic idea of the structuie of Surge. Its authors pay much attention 
to issues of identifying distributional parameters that are internally consistent and that produce traffic that 
can be validated against real traffic. Our goal here is to introduce the fundamental notions behind a model 
of web traffic. 

Models of other interesting and important application types can be found in the literature. We expect 
that the Internet will increasingly support telephony-"voice over IP (VoiP)" (Black [2001]), and so 
attendant models should be developed. A sampling of the current literature suggests that a VoiP source be 

Figure 1 5.1 Nested on-<:>ff periods in Surge WWW traffic generation. 
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modeled as an on-off process, where both phases have distributions with tails somewhat heavier than 
exponential (e.g., an appropriate Weibull). Increasingly, the Internet will be used to stream video content. 
Models for video are more complex, because they must capture a number of facets of video compression, at 
different time-scales. 

· 

All of the application models we've considered describe the traffic workload offered to a network by 
individual programs. There are contexts in which a modeler needs instead to consider the impact of aggregated 
application flows on a network device. One could create the aggregate stream by piecing together many 
individual application streams-or one could start with an aggregated model in the first place. We next 
consider direct models of aggregated offered load. 

Classical models of telephone traffic assume that aggregated call arrivals to the telephony network 
follow a Poisson distribution and that call completions likewise are Poisson. The early days of modeling and 
engineering data networks made the same assumption. However, with time, it became clear that this assumption 
didn't match reality well. In telephony, the increased use of faxes, and then Internet connections, radically 
transformed the statistical behavior of traffic. 'IWo things emerged as being particularly different: First, data 
traffic exhibits a burstiness that flies in the face of the exponential's memoryless property. MMP processes 
described in Chapter 14 can be used to introduce burstiness explicitly into the arrival pattern of packets to a 
data network. However, studies indicate that the durations of burstiness aren't Markovian, as in the MMP 
model. Instead, traffic seems to exhibit long-term temporal dependence-correlations in the number of 
active sessions that extend past what, statistically, can be expected from MPP models. 

Researchers noticed that there is tremendous variance in the size of files transferred within a session. 
It seemed that a heavy-tailed distribution like the Pareto does a good job of capturing this spread. Heavy-tailed 
distributions have the characteristic that, infrequently, very very large samples emerge. These large samples are 
large enough relative to their probability to exert a very significant influence on the moments of the distribution; 
in some cases, the integral defining variance diverges. It was hypothesized then that long-range dependence in 
session counts was due to the correlations induced by the concurrency of very long-lived sessions. 

A model that appears to capture these explanations is the "Poisson Pareto Burst Process" (Zukernan et al. 
[2003]), in which bursts (e.g., sessions) of traffic arrive as a Poisson process. Each session length has dura­
tion sampled from a Pareto distribution. Bursts may be concurrent More formally, let t; be the arrival time 
of the ith burst, equal to tH + e1 where e, is sampled from an exponential, and let b1 be the Pareto-sampled 
duration of that burst, and let d, = t, + bi be the finishing time of the ith burst. The state at t, X(t), is the number 
of bursts � with ti � t � �-

The Pareto distribution with parameters a and b has the probability distribution function 

D(x) = l -(; J 
for x � b. The distribution has mean (ab)l(a - 1) and variance al?/((a-l )l(a-2)). One can sample a Pareto 
with these parameters, using the inverse transform technique: 

x = b  X (1.0- U)"l.OI 

In this equation U is a uniformly distributed random variable. 
It is instructive to consider bow traffic is analyzed for evidence of long-range dependence and whether 

the style of synthetic traffic generation described here exhibits it. Let X1, X2, • • •  , be a stationary time series, 
whose samples have mean J.L and variance u2• The autocorrelation function p(k) describes how well 
correlated are samples k apart in the time series: 

p(k)= E[(X, -J.L)(X,., - J.L)] 
0"2 
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The sample autocorrelation function can be constructed from an actual sample by estimating the expectation 
in the numerator. Long-range dependence is observed when p(k) decays slowly as a function of k. Long-range 
dependence is more formally defined in terms of the autocorrelation function, if there exists a real number 
a E (0, 1}, and a constant f3 > 0 such that 

The denominator of this limit describes how slowly p(k) needs to go to zero as k increases. The smaller a is, 
the slower is the degradation. H = I a/2 is known as the Hurst parameter for the sequence. Values of H with 
0.5 < H < 1 .0 define long-range dependence; the larger H is, the more significant is the long-range dependence. 

To see evidence that PPBP does yield long-range dependence, we ran an experiment where the mean 
burst interarrival time was I second and the Pareto parameters were a = l . l and b = 10. We computed the 
sample autocorrelation function, shown in Figure 15.2. Here we see directly that the autocorrelation decays 
very slowly. We also used the SELFIS tool (Karaglannis et al. [2003]) to estimate the Hurst parameter; all 
of its estimators indicate strong long-range dependence in the sampled series. 

Burstiness is not the only consideration in traffic modeling. Traffic intensity exhibits a strong diurnal 
characteristic-that is, source intensity varies with the source's time of day; furthermore, weekends and 
holidays behave differently still. To accommodate time-of-day considerations, one can allow the exponential 
burst interarrival distribution �f the PPBP to have a parameter that is dependent on the time of day. 

The PPBP describes the number of active sessions X(t) as a function of time. X(t) may be transformed 
into packet arrival rates, and hence into packets, by including a packet-rate parameter A. The process 
.1\.X(t) thus gives an arrival rate of packets from an aggregated set of sources to a network device that handles 
such. 
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Figure 1 5.2 Autocorrelation function of aggregated stream of 50 sources. 
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The main point to be understood about traffic-modeling is that models of aggregated traffic ought to 
exhibit characteristics of aggregation, whereas application traffic ought to focus on what makes the applica­
tions distinct. Next, we look at how traffic acquires a shared medium for carrying traffic. 

1 5.3 MEDIA ACCESS CONTROL 

Computers in an office or university environment are usually integrated into a local area network (LAN). 
Computers access the network through cables (a.k.a. wireline), although an increasing fraction access 
it through radio (wireless). In either case, when a computer wishes to use the network to transmit some 
information, it engages in a Media Access Control (MAC) protocol. 

. 

Different MAC protocols give traffic different characteristics. Simulation is an extremely important tool 
for assessing the behavior of a given protocol. A MAC protocol gives traffic specific qualities of latency 
(average and maximum are usually interesting) and throughput. The behavior of these qualities as a function 
of "offered load" (traffic intensity) is of critical interest, for some protocols allow throughput to actually 
decrease as the demands on the network go up-a lose-lose situation. 

1 5.3.1 Token-Passing Protocols 

One class of MAC protocols is based on the notion of a "token," or permission to transmit In the "polling 
protocol" variation, a master controller governs which device on the shared medium may transmit (Kurose 
and Ross [2002]). The controller selects a network device and sends it the token. If the recipient has "frames" 
(the basic unit of transmission) buffered up, it sends them, up to a maximum number of frames. The con­
troller listens to the network and detects when the token holder either has selected not to transmit or has 
finished transmission. The controller then selects another network device and sends it the token. Devices are 
visited in round-robin fashion. 

One drawback of the polling protocol is that the controller is a device with separate functionality from 
the others. A more homogeneous approach is achieved by using a token bus protocol. In this approach a 
device is programmed to transmit frames (again up to a maximum number) when it receives a token, but is 
programmed to pass the token directly to a different specified network device after it is finished. There is no 
controller; the network devices pass the token among themselves, effectively creating a decentralized round­
robin polling scheme. 

A drawback of both types of token-passing protocol is that a single failure can stop the network in its 
tracks-in the case of the polling protocol, the network stops if the controller dies; in the case of the token 
bus, a token passed to a dead device in effect gets lost In the latter case, one can detect that a device failed 
to pass the token on and so amend the protocol to deal with like failures. 

Token-passing networks are "fair:' iri the sense that each device is assured its turn within each round. 
The overhead of access control is the time that the network spends on transmitting the token (rather than 
data) and the time that. the network is idle long enough for a device to ascertain that a transmission has ended 
or is not going to occur. An important characteristic of token-paSsing protocols is that the throughput (bits 
per second of useful traffic) is monotone nondecreasing as a function of the "offered load" (traffic that the 
network is requested to carry). To illustrate this point, Figure 15.3 plots data from a set of experiments on a 
modeled lO Mbits (I 0 million bits per second) network, with lO devices, evenly spaced, with a latency delay 
of 25.6 J.Lsec between the most distant pair. (We use this figure in order to compare this network with one 
managed by using Ethernet, later.) Five different experiments are displayed on the graph; right now, we are 
interested only in the one labeled "token bus, PoisSQn." The experiments .assume that the data frame is 1500 
bytes long and that the token is lO bytes long. They assume that, once a-device gains ihe tOken, it may send 
at most one frame and then must release the token. This set of data uses a Poisson process to generate frame 
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Figure 1 5.3 Throughput versus Offered Load, for Token Bus and Ethernet MAC protocols, Poisson and 
Bulk Pareto arrival processes, Exponential and Fixed Backoff lfor Ethernet). 

arrivals. The x-axis gives the "offered load," measured here as the total sum of bits presented to the network 
before the simulation end time, divided by the length of the simulation run. The y-axis plots the measured 
throughput For each off-time rate, we run l O  independent experiments. For each experiment, we plot the 
observed pair (offered load, throughput). For the experiment of interest, the throughput increases linearly 
with the offered load, right up to network saturation. It is interesting to note, though, the impact of a change 
in the traffic-arrival pattern. We replaced the Poisson arrival process with the arrival process that defines an 
PPBP, a Poisson bulk arrival process. where the number of frames in each bulk arrival is a truncated Pareto. 
We use the same Pareto parameters as before (a = 1.1  and b = 10) and reduced the arrival by a factor of the 
inverse Pareto mean ((a-1)/(ab)) to obtain the same average bit-arrival rate. The set of data points associ­
ated with the label "token bus, Pareto bulk" reflect the impact of this change. Throughput grows linearly with 
offered load until the bus is roughly 60% utilized. For larger loads, we begin to see some deviations from 
linear. For a point (x, y) off the diagonal, the difference between x and y reflects the volume of unserved 
frames at the end of the simulation-the frames in queue. This is no surprise; queueing theory tells us that 
we should expect significant queue lengths when the arrival pattern is highly variant 

Another important aspect is the average time a frame awaits transmission after arrival. Knowledge of 
queueing theory and the protocol's operation identifies two factors that ought to contribute to growth in the 
queuing length. One factor is the time required by a token to reach a new frame arrival. As the offered load 
increases, the amount of work that the token encounters and must serve prior to reaching the new arrival 
increases linearly. A second factor is from queueing theory; the view from a station is of an M/G/1 queue. 
In this view, the service time incorporates the time spent waiting for a token to arrive, a mean that increases 
with the offered load. A job's average time in an M/G/1 queue grows with 11(1-p), where p = lip is the ratio 
of arrival rate to service-c9mpletion rate. As t\le offered load grows, p increases; this fact explains the second 
factor of waiting-time growth. As p approaches unity, the asymptotic waiting time increases rapidly. 
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Figure 1 5.4 Average Queue Delay versus Offered Load: for Token Bus and Ethernet MAC protocols, for 
Poisson and Bulk Pareto arrival processes, and for Exponential and Fixed Backoff (for Ethernet). 

Figure 15.4 confirms this intuition, plotting the average time a frame waits in queue between the time 
of its arrival and the time at which it begins transmission. Again we execute 10 independent experiments for 
a given offered load and plot the raw pair (x, q), where x is the average number of bits presented to the 
network per second in that run and q is the average time a job is enqueued. Units of queueing delay are "slot 
times", the length of time required for a bit to traverse a cable at the limit of what is permissible for Ethernet 
(25.6 J1sec). The extreme range of queueing delays observed for the five experiment types encourages our 
use of a log scale on the y-axis. Tracking data from the experiments by using Poisson arrivals, we see stability 
in the growth pattern, up to the point where the bus is fully saturated. We know to expect extremes there. 
What is very interesting, though, are the extremely high average queueing delays experienced under the 
"bulk Pareto" assumptions. If nothing else, these kinds of experiments point out the importance of the traffic 
model in the analyzing of network behavior. 

A straight-forward.implementation of a token-bus protocol models devices, the bus, and the explicit and 
continuous passing of the token among stations. However, this implementation has an undesirable charac­
teristic. Under low traffic load, the model creates a discrete event approximately every 10.84 f.!Sec, the time 
it takes to transmit a token between adjacent stations. Under low traffic load, the token could completely 
cycle through the network many times before reaching a point in simulation time when there is a frame 
available for transmission. Unless the simulation has some particular reason for pushing the token around an 
otherwise idle network (e.g., if, at each hop, there is a nonzero probability of the token's being lost or 
corrupted, forcing the protocol to detect and react), there are more efficient ways of executing the simula­
tion, at the cost of incorporating extra logic. We may suppose that each device samples the next future time 

at which a batch of frames arrives. Before that time, if the device has no frames to transmit, it will make no 

further demands on the network. When the simulation has reached a time at which no frame is being 
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transmitted and no device has a frame waiting for transmission, we perform a calculation to advance simulation 
time past an epoch during which the only activity is token passing. Because the time required to circulate the 
token around the ring is computable, and the next time at which a frame is available at any station is known, 
we can advaoce simulation time to the cycle in which the next frame is transmitted and save ourselves the 
computational effort of getting to that place by pushing a token around. 

1 5.3.2 Ethernet 

Token-based access protocols have been popular, but they have drawbacks when it comes to network 
management In particular, every time a device is added to or removed from the network, configuration actions 
must be taken to ensure that a new device gets the token and that a removed device is never again sent the 
token. The Ethernet access protocol is a solution to this problem (Spurgeon [2000]). A device attached to an 
Ethernet cable has no specific idea of other devices on that cable; however, when it wants to use the cable, it 
must coordinate with such other devices. Consider the problem-a device has a frame to send; when can it 
send it? Ethernet is a decentralized protocol, meaning that there is no controller granting access. A device can 
"listen" to the Ethernet cable to see whether it is currently in use. If the cable is already in use, the device holds 
off until the cable is free. However, two or more devices could independently and more or less simultaneously 
decide to transmit, shortly after which the transmission on the cable is garbled. Both devices can detect this 
"collision" (e.g., by comparing what they are transmitting on the cable with what they are receiving from the 
cable). Collision detection and reaction to it is the one of the key components of the Ethernet protocol; it is a 
so-called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) protocol. 

The format of an Ethernet frame is illustrated in Figure 15.5. The 8-byte preamble is a special sequence 
of bits (alternating 1 's and O's, except for the last bit which is also a ' l' )  that listeners on the cable recoguize 
and use to prepare to examine the next frame field, a 6-byte Destination address that may specify one device, 
a group of devices, or a broadcast to all listening devices. After scanning the full Destination address, 
a device listening to the cable knows whether it is an intended recipient. The next 6 bytes identify the send­
ing device; then comes a 2-byte field describing the number of data bytes. The data follow, and the frame is 
terminated with a 4-byte code used for error detection. 

When a device decides to transmit, it begins in the knowledge that it is possible for another device to 
begin also, not yet having heard the new transmission. Ethernet specifications on network design ensure that 
any transmission will be heard by another device within o = 25.6 J.I.Sec. This is called a slot time. The worst 
case is that the device begins to transmit at time t, yet before time t + 0, a device at the other end of the cable 
decides to transmit and does so just before time t + o, and another o time is needed

· 
by the first device to 

detect the collision. 
The length of the data portion of an ethemet frame is not specified by the protocol. However, there is a 

lower bound on the allowable length of the data portion. The framt;! must be large enough so that it takes 
longer than 2 slot times to transmit it. This bound ensures that, if a collision does occur, the sending device 
will be transmitting when the effects of the collision reach it, and hence it can detect the collision. This 
minimum is 46 bytes of data; furthermore, a frame is not permitted to carry more than 1500 bytes of data. 

Some of the complexities of Ethernet exist because of physics. An accurate simulation of Ethernet must 
therefore pay attention to the delicacies of signal latency. The model used to generate Ethernet performance 
figures specifically accounts for signal latency. It assumes that the devices are evenly spaced along a cable 
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Figure 1 5.5 Format of Ethernet Frame. 
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that requires a full slot time (25.6 JlSec) for a signal to traverse. When a device listens to the cable to see 
whether it is free, the model really answers the question of whether the device can, at that instant, hear any 
transmission that might have already started. This is a matter of measuring the distance between a sending 
device and a listening device, computing the signal latency time between them, and working out whether the 
sender started longer ago than that latency. Likewise, when a device has a frame to send and is listening to 
the cable to find out when it is idle, its view of the cable state is one that accounts for a certain delay between 
when a transmission ends and when that end is seen by an observer. 

A device with a frame to send listens to the cable and, if it hears nothing begins to transmit. If it 
successfully transmits the frame without collision and has another frame to send, i t  waits 2 slot times before 
making the attempt. If a device wanting to send a frame hears that the cable is in use, it simply waits until 
the cable is quiet and then begins to transmit. The most interesting part of Ethernet is its approach to 
collisions. If a device transmitting a frame F detects a collision, it continues to transmit-but jumbled-long 
enough to ensure that it transmits a full minimum friune's worth of bits. This 'jamming" ensures that all 
devices on the cable detect the collision. Next, it backs off and waits a while before trying to send F again. 

The backoff period following a collision has been a topic of some study, one in which simulation has 
played an important role. If the backoff time is short, there is a chance of not overly increasing the

. 
delay time 

of a frame but there is also a significant chance of incurring another collision. On the other hand, If the back­
off time is

, 
large, one reduces the risk of a subsequent collision, but ensures that the delay of the frame in the 

system will be large. Over time, the following strategy, called "expone�tial backoff", has
. 

become the 
Ethernet standard. Following the mth collision while attempting to transnut frame F, the devtce randomly 
samples an integer k from (0, 2m-lj, and waits 2k slot times before making another attempt If 10 attempts 
are made without success, the frame is simply dropped. The term "exponential backoff' describes the 
doubling in length of the mean backoff time on each successive collision. Successive collisions are meas­
ures, of a sort, of the level of congestion in the network. A device strives to reduce its contribution to the 
congestion, and so enable other frames to get through and relieve the congestion: . Simulation is a useful tool to investigate both backoff schemes and other vanants of Ethernet one nught 
consider. We did experiments (assuming Poisson arrivals) on exponential backoff and on "fixed" backoff­
where after a collision occurs, the sender chooses ke [0, 4] slot times to wait, uniformly at random. 
Fi� 15.3 illustrates the effects on throughput. Under exponential backoff, through�! increases linearly 
with offered load until after about 60% utilization. For greater load, throughput hovers tn the 70% of band­
width regime, without significant degradation. The story is quite different under fixed back?ff. When offered 
load is 70% of the network bandwidth, the throughput plummets from 60+% and settles m at around 40% 
of bandwidth-under higher load, the network delivers poorer service. Queueing delays are affected too, as 
one would expect. Under high load, the delays under fixed backoff are an order of magnitnde larger than 
those urider exponential backoff. . . 

A final set of experiments used the same Poisson bulk arrival process, with Pareto-based
. 
bulk am

_
vals, 

assuming exponential backoff. The results are similar to those fo� the token b
_
us: large and 

.
highly vanable 

queueing delays, and some deviation of throughput from linear at high load. This set of expenments suggests 

that Ethernet may be more sensitive to the Pareto's high variaoce than is the token-bus protocol. 

1 5.4 DATA UNK LAYER 

A network is far more complicated than the single channel seen by a MAC protocol. A frame might be sent 

and received many times,. by many devices, before it reaches its ultimate destination. Consequently, data 

traveling at the physical layer contains at least two addresses. One address �s a hard�are address o� �e 

intended endpoint of the current hop. This address (like an Ethernet address) IS recognizable by a 
.
deVIce s 

network-interface hardware. The second address is the ultimate destination's network address, typtcally an 
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IP �ss. Diff�rent types of d:vices m� up the network. A hub is a device that simply copies every bit 
received o� one mterface to all Its other mterfaces. Hubs are useful for com1ecting separated networks, but 
have the �Isadvantage that the connection brings those networks into the same Ethernet collision domain. � bridge makes the same sort of com1ection, but keeps component subnetworks in different collision 
domams.

_ 
For every frame he�d on one i��ace, the bridge takes the destination address and looks up in a 

table th� m�rface through which that destmatton can be reached. The bridge has nothing to do if one reaches 
th� destma�on through the same interface as that through which the frame was observed-the destination 
w�ll recogmze the frame for itself. However, if the destination is reached through a different interface the 
bndge ��s �e responsibility of injecting the frame through that interface, moving it closer to its ulti:nate 
goal. In mJecUng the f�ame: the bridge acts like a source on that subnetwork, engaging in that subnetwork's 
MAC �rot�!. The bndge m effect moves a frame from one collision domain and puts it into another. It can 
also �ndg� dtffe:ent subdomain technologies (e.g., different types of Ethernet). Contexts where one would 
const

_
der su�ulauon

_ 
study of MAC protocols on one subdomain are the sqrts of contexts where one would 

use stmulation and mvolve models of bridges . . � bridge invo�ves only the physical layer and the data link layer. There is a practical limit on devices 
retam�g the physt�al ad�sses of other devices, particularly devices that are in different administrative 
domams. A router ts a devtce that can connect more widely dispersed networks, by making its connections 
at the �e":ork Layer. J: frame coming in to a router on one interface is pushed up to the IP layer, where the 
IP desunauon address IS extracted; the IP address determines which interface should be used to forward the 
packet The forwarding tables used to direct traffic flow are the result of �mplex routing algorithmr, such 
as ?5�F �oy [1998]) and BOP (van Beijum {2002]). Simulation is frequently used to study variants and 
optirmzatlons of these protocols. . 

We �ill see that network s:rvices commonly used provide users with delivery of data error free and in 
�e order !t -:vas sent. These attnbutes are provided in spite of the real possibility that data will be corrupted 
m tra�smtsston or lost in transmission. A router is one place where a frame might be lost, for, if the router 
ex�nences a temporary burst of traffic, all to be routed through a particular interface, buffers holding frames 
wwtmg to be forwarded co�ld become exhausted. We think of the traffic flowing through a router as being 
a set of flows, each flow bemg defined by the source-destination pair involved. When the arrivals become 
bursty, and the_ rou�r's buffe� becomes saturated, arrivals that carmot be buffered are deliberately dropped. 
M?st flows actively mvolv� 1� the burst will l�se frames. Under TCP, data loss is the signal that congestion 
exists, 

_
and TCP reac� by stgmficantly decreasmg the rate at which it injects traffic into the network. But it 

takes t:J.me to �etect this loss-a lot more time than it takes to route frames through the router. One idea that 
has been studted extensively (by using simulation) is Random &rly Detection (RED) (Floyd and Jacobson 
{1993]) queue management. The idea behind RED is to have a router continuously monitor the number of 
frames enqueu� for transmission and, when the average length exceeds a threshold, proactively attempt to 
�?ttle back arnval rates before the arrivals overwhelm the buffer and cause all of the flows to suffer. RED 
�tstts �ch �e and, with some pro?ability, either preemptively discards it, or marks a "congestion bit" that 
IS avwlable m the TCP header, but ts not much used by most TCP implementations. RED chooses a few 
flows to suffer for the hoped-for sake of the network as a whole. Complexity abounds in finding effective 
RED parame�rs (e.g., threshold queue length, probability of dropping a visited frame) and in assessing 
�deo�s and tmpacts that use of RED could have. Simulation, of course, has played and will play a key role 
m making these assessments. 

1 5.5 TCP 

The T�ansP?rt Control Proto_col _
(TCP) (Comer [2000]) establishes a com1ection between two devices, both 

of whtch VIew the commumcauon as a stream of bytes. TCP ensures error-free, in-order delivery of that 
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Server Bridge Router Client 

Figure 1 5.6 Data How from TCP sender to TCP receiver, passing through network devices. 

stream. As we have seen, data frames might be discarded (in response to congestion) somewhere between 
the sender and receiver; TCP is responsible for recognizing when data loss occurs and for retransmitting data 
that have gone missing. TCP mechanics are focused on avoiding loss, detecting it, and rapidly responding to 
it. A number ofTCP variants have been proposed and studied; all of these studies use simulation extensively 
to determine the protocol's behavior under different operating conditions. . 

Our discussion of TCP serves to illustrate further how different components of networking layers come 
together. Figure l5.6 illustrates data flow from a server to a client. 1\vo applications intending to communi­
cate establish "sockets" at each side. Sockets are viewed by the applications as buffers into which data could 
be written and out of which data might be read. Calls to sockets are sometimes blocking calls, in the sense 
that, if a socket buffer carmot accept more data on a write, or has no data to provide on a read, the calling 

processes blocks. On the server side, the TCP implementation is responsible for removing data from the 
socket's buffer and sending it down through the protocol stack to the network. Once on the network, the data 
pass through different devices. In this figure, we illustrate a bridge (which involves remapping of hardware 

addresses and does not look at the IP address) and a router (which must decode the IP address to find out 

the interface through which the data is passed). The client host's IP recognizes that the data ought to go up 

the stack to TCP, and the client side TCP is responsible for releasing the data to the socket-but only a 

contiguous stream of data. If the router drops a frame of this flow, the client-side TCP must somehow detect 

and communicate this absence to the server-side TCP. 
TCP segments the data flow into segments. Figure 15.7 illustrates the header (in 32-bit words) that is 

placed .around the data. First, note that the only addressing information is "port number" at the source and 
destination machines-IP is responsible for knowing (and remembering) the identity of the machines 

involved. From TCP's point of view, there is just a source and a destination. SeqN and AckN are descriptors 
of points in the data flow, viewed as a stream of bytes, each numbered. SeqN is then the "sequence number" 

of the first byte in the segment. At the begimiing of a com1ection, a sender and receiver agree upon an initial 

sequence number (usually random); the SeqN value is this initial number plus the byte index within the 
stream of the frrst byte carried in the segment Because the segment size is fixed, the receiver can infer the 

precise subsequence of the byte stream contained in the segment The AckN field is critical for detecting lost 
segments. Every time a TCP receiver sends a header about the flow (e.g., in accordance with acknowledge­

ment rules), it puts into the AckN field the sequence number of the next byte it needs to receive to maintain 
a contiguous flow. Since TCP provides a contiguous data stream to the layer above, the value in AckN is the 

initial sequence number plus the index of the next byte it would provide to that layer, if it were available. 

The linkage of this value with packet loss is subtle. TCP requires a receiver to send an acknowledge for every 

segment it receives and requires a sender to deteCt within a certain time limit whether a segment it has sent 



490 

Header 
Lenglh 

DISCRETE-EVENT SYSTEM SIMULATION 

Source port number Destination port number 

(SeqN) Sequence Number 

(Acl:N) Acknowledgement Number 

U A[ill[S 
R C Y 
G K N 

Checksum 

F 
I Receiver Wmdow Size 
N 

Pointer to W'gent data 

Options 

Data 

Figure 1 5.7 TCP header format. 

has been aclrnowledged. Now imagine the effect if 3 segments are sent, and the second one is lost en route. Assume the initial sequence number is 0. The first segment is received, and the receiver sends back an acknowledgement with AckN equal to (say) 961 (and the ACK flag set to 1 to indicate that the AckN field is valid). The �d se�ment is rece!ved. but the receiver notices that the value of SeqN is a segment larger than expected-It notices the hole. So it sends back an acknowledgement, but AckN in that header is again 961. The second segment sent is not acknowledged, of course, but interestingly, neither is the third. Evenrually the TCP sender times out while waiting for these acknowledgements and resends the unac­knowledged packets. The only other field in this header, that is critical to our discussion is the Receiver win­dow size, which is included in an Acknowledge to report how many bytes of buffer are currently available tl1 receive data from the sender. · · 

One can visu� TCP as sliding a send window over the byte stream. Within the send window are bytes that have been sent, but not yet acknowledged. TCP controls the rate at which it injects segments into the network by maintaining a congestion window size, which at any time is the largest the send window is allowed to get. If the send-window size is smaller than the congestion-window size and there are data to send, TCP is free to send it, up until the point where the send window has the same size as the congestion window. When the TCP sender has stopped for this reason, an incoming acknowledgement can reduce the size of the send ":in?ow (because bytes at the lower end of the window are now acknowledged), and so free more transnnsston. . 
TC� tri� to fin� just how muc� band�idth it can use for its connection by experimenting with the congestlon-:-rndo': Size. When the wmdow IS too small, there is bandwidth available .but it isn't being used. When the wmdow ts too large, the sender contributes to congestion in the network:, and the flow could suffer data loss as a result TCP's philosophy is to grow the congestion window aggressively until there is indication that i� has

.overshot the (�ilknown) target size, then fall back and advance more slowly. This all is formally descnbed rn terms of vanables cwnd and ssthresh. TCP is in slow start mode whenever cwnd < ssthresh but . , 
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in congestion avoidance mode whenever cwnd > ssthresh. Both variables change as TCP executes; cwnd 
grows with acknowledgements a certain way in slow-start, and a different way in congestion-avoidance; 
ssthresh changes when packets are lost. When a TCP connection is first established, cwnd is typically set to 
one segment size and ssthresh typically is initialized to a value like 216• TCP starts in slow-start mode, which 
is distinguished by the characteristic that, for every segment that is acknowledged, cwnd grows by a 
segment's worth of data. 

Consider how cwnd behaves during slow start by thinking about TCP sending out segments in rounds. 
In the first round, it sends out one segment, then immediately stalls, because the send-window and conges­
tion-window sizes are equal. When the acknowledgement eventllally rerums, the sender issues two segments 
as the second round-it replaces the segment that was acknowledged and sends another, because cwnd 
increased by l .  The sender stalls until acknowledgements come in. The two acknowledgements for the 
second round enable the sender to issue four segments: half of these due to replacing the ones acknowledged, 
the other half due to the one-per-acknowledgement increase of cwnd role during slow start. The number of 
segments issued thus doubles in successive rounds. 

Any one of a number of things can halt the doubling of the number of segments sent each round. One 
is detection of packet loss, the effects of which are to set ssthresh to be half the size of the send window, set 
the send-window size to zero, and set cwnd to allow retransmission of one segment (the one in the lost packet). 
Another way TCP ceases to double the number of segments sent each round is due to the rule that the 
congestion window may not be increased to exceed certain limits-an internally imposed buffer size at the 
sender side, or the size of the "receiver window"-the field in ACKs which reports how much space is  
available for new data. Finally, the doubling effect changes also if  cwnd grows to exceed ssthresh, and so 
puts TCP into congestion-avoidance mode. Within congestion-avoidance mode, cwnd increases, but much 
more slowly. Inmitively, cwnd increases by one segment for every full round that is sent and acknowledged 
(as opposed to increasing by one segment with every segment that is acknowledged). This is sometimes 
described as increasing cwnd by 1/cwnd with every acknowledgement 

Simulation is an excellent tool for understanding how TCP works and many of the subleties of its behav­
ior; we now examine simple examples of that behavior. The first topology is that of a server, a client, and a 
800 kbps link between them. The server is to send a 300000 byte file to the client. We attach a monitor that 
emits a tcpdump fonnatted trace (see www . tcpdump . org) of every TCP packet that passes (in either 
direction) through the server's network interface. Postprocessing of this trace yields information about how 
TCP variables of interest behave. In the first siruation, we plot the values of SeqN in packets sent by the 
server and the values of AckN in packets sent by the receiver in response for the first six rounds, assuming 
an initial sequence number of 0. This is illustrated in Figure 15.8, where the Y-axis is logarithmic in order to 
illustrate interesting behavior at different scales. The TCP connection is requested by the client at time 192, 
the first step in TCP's three-way handshake that results in the server sending the ftrst segment at time 192.3 
(not acrually shown in the graph, to allow higher resolution to later rounds). The SeqN in the header of that 
segment is 1, the index of the first byte in the segment. It takes approximately 100 ms for the segment to 
reach the client, and another 100 ms for the client's acknowledgment to reach the monitoring point, at time 
192.5. (The exact figures are a little different, as they account for the transmission delay caused by the link 
bandwidth.) The ACK bit of that segment is set, and the AckN value in the header is %1-the index of the 
next byte the receiver expects to see. The server's send window now being empty, and cwnd having advanced 
from 1 to 2 by virtlle of the received acknowledgement, the server immediately sends two segments, one with 
SeqN equal to 961 ,  the next with SeqN equal to 961 + 960 = 1921. The graph shows overlapping marks for 
byte index 961, one from the acknowledgement header, and one from the next segment the server sends. The 
delay between the server's sending of a segment and the ultimate acknowledgement of that segment is known 
as the round-trip time, or RTT. In this example, the network is as simple as it can. be, and the RTT is just the 
sum of the time to send a segment across the link plus the time to send an acknowledgement back-here, a 
value very close to 200 ms. At times. 192.3 and 192.5, the server stopped sending segments just as soon as 
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Figure 1 5.8 Early rounds of TCP connection on 800 kbps/1 00 ms link, with tcpdump probe at fhe 
server's network interface. 

its s�nd window and �e congestion window were the same size. After one RTI, acknowledgements from the 
prev1ous round come m; they allow the server to double the number of segments sent from one round to the 
ne�t. For ';'unds thr� and four (at times 192.7 and 192.9, approximately), the graph shows the slight stag­
genng of Urnes associated with acknowledgements coming in and new segments going out 

Figure 15.8 shows how, in slow-start mode, upon receiving a burst of acknowledgements, the server 
generates a burst of new segments. A moment's reflection shows that, if the acknowledgement for the first 
segment in that burst is received while the burst is continuing, then the burst will continue ad infinitum. For 

�t the �nstant that critical acknowledgement is received, the send window must be smaller than the conges� 
uon wmdow, and the send window will not grow after this point, while the congestion window will We can 
c�mpute

_ 
the size of the congestion window at which this phenomenon occurs-it is when the congestion 

wmdow 1s large enough that the time needed to transmit that many bytes is precisely the RTI. Back-of-the­
env�lope c_aJcula�o�s �ndicate that this is 20000 bytes, or just under 21 segments. In these experiments, the 
receiver ��o:V 1s lllll1ted to 32 segments, so this saturation happens before the flow is limited by that buffer. 
SSFNet m1t1altzes ssthresh to 65396 bytes, so this saturation point is reached in slow-start, before cwnd 
reaches ssthresh and triggers congestion-avoidance mode. Since cwnd starts with value 1 and doubles with 
every round, the server saturates its sends in the middle of the 6th round. This is observed in Figure 15 8 in 
the round that starts just after time 193.5. 

· ' 

In Figure 15.9, we illustrate this same experiment, along with another that is identical-save that the 
link latency is 300 ms. A larger epoch of �imulation time is illustrated. There is an interesting kink in the 
SeqN data set for the 100 ms network, in the vicinity of SeqN = 65K. The "slope" of the data set decreases 
perceptibly. Up to this point, for every acknowledgement received two new segments are transmitted and 
they are marked in the tcpdump trace as occurring at the same instant (SSFNet does not ascribe time ad�ance 
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Figure 1 5.9 TCP connections between server and client: ond 800 kbps/1 00-ms link, and an 800 
kbps/300-ms link. 

493 

to protocol actions, only to network transmission). At the point of the kink, the value of cwnd becomes equal 
to the receiver window, 32 segments. The sender window becomes iimited by the size of the receiver win­
dow, rather than by cwnd, so, after the kink, there is a one-to-one .correspondence between receipt of an 
acknowledgement and transmission of another segment. Now consider the experiments using a 300 ms 

latency. As we'd expect, rounds happen approximately every 600 ms. To saturate the link, the sender window 

has to become three times as large as in the first experiment-almost 64 segments. However, this will never 

happen, because the send window will be limited by the receiver window, at 32 segments. Indeed, we see 
that the change in slope of the SeqN trace happens at the same byte index as it did with the first experiment. 
Likewise, we see visually that there's a gap in transmission time between each successive round. 

As a final example of how simulation illustrates the behavior of TCP, we consider an experiment 

designed to induce packet loss. The topology is that of a server, a router, and a client. Again, the server is to 

send 300000 bytes to the client. Both server and client connect with the router. The link between server and 
router has 8 Mbps of bandwidth and 5-rns latency. The link between client and router has 800 kbps of band­

width and 100-rns latency. The router's interface with the client has a 6000-byte buffer. If a packet arrives to 

that interface and there is insufficient buffer space available, the packet is dropped. From earlier analysis of 

TCP, we can foresee, in part, what will happen. In the slow-start phase, the server begins to double the num­
ber of segments with each successive round. However, it can push packets towards the router 10 times faster 

than the router can push packets to the client, so a queue will fonn at the interface. The buffer holds at most 

6 packets, so we expect that, in the round where 8 packets ate sent, there will be packet loss. Figure 15.10 

illustrates this experiment, adding a trace of cwnd behavior to that of SeqN and AckN (once again meas­

ured at the server's network interface). The effects of the packet loss are visually distinctive. Around time 

193.5, the server begins to receive a sequence of acknowledgements that all carry the same AckN value. 
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Figure 1 5.10 TCP connection suffering loss. 

These acknowledgements were sent in response to packets that were sent after a loss. Recall that TCP rules 
on AckN specify that the receiver identify the sequence number of the next byte it needs to receive to 
advance the sequence of contiguously received bytes; hence, the repeated AckN identifies the beginning of 
the first lost segment At the point at which the loss is observed, the send-window size is approximately 
25000 bytes; in reaction to the loss, ssthresh is set to half this value, cwnd is set to l ,  and the sender window 
collapses to size zero in order to cause the retransmission of all segments (from the first lost one forward). 
In the region between times 193 and 194, we see the impact that loss has on cwnd and how the slow-start 
doubling of cwnd with each round begins anew. (Notice the small periods of sharply increased growth at 
times 194.6, 194.8, and 195.) However, this time, congestion-avoidance mode is entered when cwnd reaches 
ssthresh; shortly after time. l95; thereafter, it grows more or less linearly with time. This particular transfer 
ends just before cwnd reaches a size that will allow loss once again; had the transfer advanced that far, TCP's 
treatment of cwnd would look very much like the period from 193.8 on. 

As these simple examples show, TCP's relatively simple rules create complex behavior. Simulation is an 
indispensable tool for predicting how TCP will behave in any given context and for understanding that behavior. 

1 5.6 MODEL CONSTRUCTION 

SSFNet is a versatile tool for buildi.ng and rui.alyzing network simulations, used in the previous section to 
look at how TCP behaves. Suggested homework projects encourage use of SSFNet, and so we describe the 
general process SSFNet uses in constructing a simulation from an input model. We then illustrate this 
process, in pari, by describing the contents of one input ftle used in the last subsection. This is not a users' 
manual for SSFNet; very complete documentation exists at www . ssfnet . org. Our aim here to is give a 
sense of the approach and to encourage readers to investigate further. 
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1 5.6.1 Construction 

Input to SSFNet is in the form of so-called Domain Modeling Language (DML) files. At the simplest level, 
a DML file contains just a recursively defmed list of attribute--value pairs, where an attribute is a string and 
a value may be either a string or a list of attribute--value pairs. This structure naturally induces a tree, where 
interior nodes are attributes (labeled with the attribute string name) and leaves are values of type string 
(rather than of type list). To illustrate, consider this DML list: 

Net 
frequency 1000000 
host [ id 0 

interface id 0 bitrate 800000]  
nhi route dest 1 ( 0 )  interface o 

host id 1 
interface id 0 bitrate 800000]  
nhi_route dest default interface 0 l 

l ink attach 0 ( 0 )  attach 1 ( 0 )  latency 0 . 1. l 

This has some elements of SSFNet DML structure worth noting. Description of a network, elements within 
the network, and connections between them use a hierarchical naming convention known as the Network­
Host-Interface convention, or just NHL The network is defined in terms of links between interfaces, and each 
interface has an id number that is unique among all interfaces owned by a common host That host has an id 
number that is unique among all hosts in a common net Each net has an id, unique among all nets contained 
in the same parent net, and so on. The NHI address 0.1.2(4) refers to an interface named 4, within a host 
named 2, within a net named 1 ,  within a net named 0. Within a net, a reference such as 2(4) is understood 
to mean interface 4 associated with the uniquely named host 2 within that understood net. The NHl address 
of an interface is derived from the nesting described within a DML file. The first interface to appear in the 
preceding example.has NHI address 0(0); the second interface to appear has address 1(0). The link attrib­
ute in this example specifies two endpoints of the link, in NHI addressing (using the attach attribute), and 
a link latency of l 00 ms. 

The recursive structure of DML allows it be oxparsed easily and allows one to construct a parse-tree 
whose interior nodes are attributes and whose leaves are string-valued values. The parse-tree associated with 
the previous example is illustrated in Figure 15. 1 1 . This data structure gives a handy way of methodolically 
building a model from a DML description. The SSFNet engine recursively traverses the tree and configures 
core SSFNet objects (such as host). Attributes or values within the tree can be referenced glObally by the 
sequence of attribute labels on nodes from the root to the target This .Proves to be useful: one can embed in 
a DML file a "library" of attribute--value pairs and reference elements of that library. 

SSFNet recognizes a variety of attributes, many of which are described in Table 15.1. 

1 5.6.2 Example 

Finally, we illustrate some of these ideas by looking at the DML input file for one of our TCP examples. 
The file is presented in Figure 15 .12 (annotated with line numbers for easier reference). 

In this particular file, lines 1-8 are comments describing the architecture. Line 10 tells the SSFNet 
model parser where to find format descriptions of certain constructs; when the parser enCounters these 
constructs in the DML file, it will check against the schema to ensure format correctness. Line 1 2  starts the 
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0(0) 1(0) 0.1. 

Figure 1 5.1 1 Parse tree of simple DMl example. 

Table 1 5. 1  Common Attributes in SSFNet DMl Models 

Attribute Value 

Net 
frequency 
traffic 
pattern 
servers 

link 
host 
graph 
Protoco!Session 
interface 

route 

dictionary 

list describing a network 
number of discrete ticks per simulation second 
list of traffic patterns 
description of traffic pattern, in terms of receiver (client) and server (sender). 
list describing a set of servers to which a client might connect-including their NHI 
identities and port numbers 
list describing interfaces to be connected, and associated latency 
list describing a host, and diverse attributes it may have 
list of protocols in a host's protocol stack 
list specifying a protocol 
a list describing a connection to the network; attributes include 
connection bandwidth, and target file for storing monitoring information. 
description of a forwarding tahle entry for IP. The dest attribute identifies the 
destination being described; the interface attribute describes which interface 
packets for that destination should be routed. 
a list of constants that can be referenced elsewhere within the DML file 

overarching list "Net" followed by a list Line 14 specifies a clock resolution of 1 microsecond. Lines 15-20 
describe the netwodc's traffic, a single pattern that includes host 0 as client The "servers" attribute gives a 
list of servers, in this case a single one at NHI address 1 (0) (meaning host 1, interface), using port 10. 

The "link" attribute at line 24 describes two interfaces to be connected: the one at NHI address 0(0), and 
the one at NHI address 1(0). The latency across this link is specified to be 0.1 seconds. 

A host contains protocols and interfaces to the network. The host beginning at line 28 is given NHI id 1 
and contains a "graph" of protocol sessions. Each model of a software component is described as such a 
session. The order of appearance in the graph is important, descending from higher to lower in the stack. 
Each protocol session describes its type (e.g., server, client, TCP, IP), and the Java class that describes its 
behavior. These classes are constructed, by using certain methologies, to be composable; builders of simulation 
models (in contrast to developers of modeling components these builders use) need not develop new classes, 
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but the methodology specifies how one does. A protocol session of a given type may include attributes 
specific to that type. For example, the tcpServer protocol beginning at line 32 specifies the port through 
which it is accessible ( I  0). Line 37 begins the declaration of the tcpSessionMaster, a component that man­
ages all TCP sessions. Characteristics of its version of TCP are described by including a list of attributes 
defined in a list held elsewhere in the DML file. The statement _ find . dictionary . tcpini t causes 
the contents of the named list to essentially be inserted at the point of the statement The string . di c­
tionary . tcpini t names the list in terms of how to find it in the file: "." is the highest level list, 
"dictionary" is the name of an attribute in that list, "tcpinit" is the attribute associated with the 
sought list, an attribute of the value-list of dictionary. This list starts at line 82. 

We quickly describe the meaning of each attribute not obvious from the comments, in order to illustrate 
the diversity of parameters in SSFNet's implementation of TCP. RcvWndSize, SendWndSize, and 
SendBuf f erSize describe units of MSS and limit buffer useage (which affects TCP behavior, as we have 
already seen). A missing segment will be retransmitted up to MaxrexmitTimes times before the TCP 
session is aborted. TCP _SLOW_ INTERVAL and TCP _FAST_ INTERVAL give timer values used to 
determine when enough time has gone by so that a transmitted segment has not yet been acknowledged. If 
a TCP session is inactive for MaxidleTime seconds, it is terminated. delay_ ack and fast _recovery 
are Boolean flags that describe whether to use particular optimizations known for TCP. 

Back within the specification of the host (at lines 40-43), we find attributes whose values are files into 
which the system saves descriptions of how TCP variables behaved during the simulation. Following this 
(at line 40) is tJle inclusion of the IP protocol. This, in tum, is followed by declaration of the server's shigle 
interface, given id 0 for NHI coordinates and specified to have a bandwidth of 800 Kbits per second. The last 
attribute for the server is an "nhi_route", an element in IP's forwarding table, described in NHI coordi­
nates. The server is not a router and so needs only to direct traffic from IP to one interface. Attribute-value 
pair dest default says to route everything throuib the interface to follow, 0. 

Specification of the second host is similar. In this case, the uppermost ProtocolSession is that of a client 
that requests data, through a socket Attributes for the client include the simulation time at which it initiates 
the request. (It actually specifies a window of simulation time in which this occurs, to provide some jitter 
when multiple clients are to start more or less simultaneously). The length of the transfer being requested is 
an attribute (line 60). The rest of this host's Protoco!Sessions are similar to the server's, although we don't 
save so much information about TCP's behavior at this host. 

1 5.7 SUMMARY 

In this chapter, we touched on some important topics related to simulation of computer networks. Traffic 
modeling-at different levels of abstraction-is. a crucial element of simulating and modeling networks. 
We'emphasized the importance of non-Poisson arrivals models, in some cases to better match characteristics 
of specific applications,. in others to be sure to explain and capture long-range dependence. 

· Next, we focused on the Data L� layer and on the Media Access Control algorithms. We examined the 
token-bus and ethemet protocols, discussed subleties of their simulation, and showed by example how 
significant an impact traffic-model assumptions can have on · network performance. Following this, we 
mentioned issues at the Data Link layer for which simulation has been a critical tool for investigation. 

Much of the traffic on the Internet is carried by using TCP. We described TCP's basic rules and used 
simulation to illustrate some of the consequences of these rules. Finally, we skoo;hed how one builds network 
models in the SSFNet simulator. 

This chapter has barely scratched the surface of how networking uses simulation. Our hope is that what 
we discuss leads a student to explore more deeply any one of a number of fas<;inating areas of networking 
that can be explored only with simulation. The exercises are designed to do this and to teach the student some 
skill in using SSP and SSFNet 
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EXERCISES 

1. Surv�y literature in models of Voice-over-IP traffic, and build a simulator that creates traffic load cor­
responding to one model of particular interest 

2. Create a Markov-Modulated Poisson process (see chapter 14) and a Poisson-Pareto Burst Process that 
yield the same average bit-rate traffic demand. Acquire the SELFIS tool for analyzing long-rimge 
dependence (it's free), and compare traces from the MMP and PPBP models. 

3. Get from www . bcnn . net the SSP models for the Ethernet protocol experiments reported in this chapter. 
Design and perform a sensitivity analysis of throughput as a function of the physical distance .between 
ethemet ports. Likewise, design and perform a sensitivity analysis of throughput as a function of 
maximum frame size. 

4. Acquire the SSFNet simulator from www . ssfnet.  org (free for academic use) and the TCP inodels 
described in this chapter from www . bcnn. net. 

• Look into how TCP behavior changes in each case by increasing the bandwidth by a factor of 
10. 

• Investigate how TCP behavior changes in each case by reducing the link latency by a factor of 
10. 

• Work out how TCP behavior changes in each case by increasing the buffer limits expressed in 
the DML file by a factor of 10. 

. . -�-. -. . -. .  -.-. .  -. �. 
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Table A. 1 · Random Digits · 

94737 08225 35614 24826 88319 05595 58701 57365 74759 
87259 85982 13296 89326 74863 99986 68558 06391 50248 
63856 14016 18527 1 1634 96908 52146 53496 51730 03500 

Appendix 
66612 54714 46783 61934 30258 . 61674 07471 67566 31635 
30712 58582 05704 23172 86689 94834 99057 55832 21012 

69607 24145 43886 86417 05317 30445 33456 34029 09603 
37792 27282 94107 41967 21425 04743 42822 281 1 1  09757 
01488 56680 73847 64930 l l l08 44834 45390 86043 23973 
66248 97697 38244 50918 55441 5 1217 54786 04940 50807 
51453 03462 61 157 65366 61 130 26204 15016 85665. 97714 

92168 82530 19271 86999 96499 12765 20926 25282 391 19 
36463 07331 5459o 00546 03337 41583 46439 40173 46455 
47097 78780 04210 87084 44484 75377 57753 41415 09890 
80400 45972 441ll 99708 45935 03694 81421 60170 58457 
94554 13863 88239 91624 00022 40471 78462 96265 55360 

31567 53597 08490 73544 72573 30961 12282 97033 13676 
07821 24759 47266 21747 72496 77755 50391 59554 3 1 177 
09056 10709 69314 1 1449 40531  02917 95878 74587 60906 
19922 37025 80731 26179 16039 01518 82697 73227 13160 
29923 02570 80164 36108 73689 26342 35712 49137 13482 

29602 29464 99219 20308 82109 03898 82072 85199 13103 
94135 94661 87724 88187 62191 70607 63099 40494 49069 
87926 34092 34334 55064 43152 01610 03126 47312 59578 
85039 19212 59160 83537 54414 1 9856 90527 21756 64783 
66070 38480 74636 45095 86576 79337 39578 40851 53503 

78166 82521 79261 12570 10930 47564 77869 16480 43972 
94672 07912 26153 10531 12715 . 63142 88937 94466 3 1388 
56406 70023 27734 22254 27685 675 1 8  63966 33203 70803 
67726 57805 94264 77009 08682 18784 47554 59869 66320 
07516 45979 76735 46509 17696 67177 92600 55512 17245 

43070 22671 00152 81326 89428 16368 57659 79424 57604 
36917 60370 ' 80812 87225 02850 471 1 8  23790 55043 75l 17 
03919 82922 02312 3 1 1o6 44335 05573 17470 25900 91980 
46724 22558 64303 78804 05762 70650 561 17 06707 90035 
16108 61281 86823 20286 14025 24909 38391 12183 89393 

74541 75808 89669 87680 72758 60851 55292 95663 88326 
82919 31285 01850 72550 42986 575 1 8  0 1 159 01786 98 145 
3 1388 26809 .77258 99360 92362 21979 41319 75739 98082 
17190 75522 15687 07161 99745 48767 03121 20046 28013 
00466 88068 68631 98745 978 10 35886 14497 90230 69264 

500 
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Table A.2 Random Normal Numbers 

0.23 �.17 0.43 2.18 2.13 0.49 2.72 �.18 0.42 
0.24 -l.l7 0.02 · 0.67 �.59 �.13 �.15 �.46 1.64 

-l.l6 �.17 0.36 -1 .26 0.91 0.71 -1.00 -1.09 �.02 
�.02 �.19 �-04 1.92 0.71 �-90 �.21 -1 .40 -;0.38 

0.39 0.55 0.13 2.55 �.33 �.05 -0.34 -1.95 �.44 

0.64 �.36 0.98 �.21 �.52 �.02 �.15 �.43 0.62 
-1.90 0.48 �.54 0.60 �.35 -1.29 �.57 0.23 1.41 
-1.04 �.70 -1.69 1 .76 0.47 �.52 �.73 0.94 -1.63 
-.78 O.l l  �.91 -1.13 0,07 0.45 �.94 1 .42 0.75 
0.68 1.77 �.82 -1.68 -2.60 1.59 �.72 �.80 0.61 

�.02 0.92 1.76 �.66 OJ8 -1 .32 1.26 0.61 0.83 
�.47 1.04 0.83 -2.05 1.00 �.70 l .l2 0.82 0.08 
�.40 1.40 1 .20 0.00 0.21 -2.13 �.22 1 .79 0.87 
�.75 0.09 -1.50 0.14 -2.99 �.41 �.99 �.70 0.51 
�.66 ..:1.97 0.15 -1.16 �.60 0.50 1.36 ! .94 0.11  

�.44 �-09 �.59 1.37 0.18 1.44 �.80 2.1 1 -1.37 
1.41 -2.71 �.67 1.83 0.97 0.06 �.28 0.04 �.21 
1.21 �-52 �.20 �.88 �.78 0.84 -1.08 �-25 0.17 
0.07 0.66 �.5 1 �-04 �.84 0.04 1 .60 �.92 1.14 

�.08 0.79 �.09 -l.l2 _:1.13 0.77 0.40 0.69 �.12 

0.53 . �.36 -2.64 0.22 �.78 1.92 �.26 1 .04 -1.61 
-1.56 1.82 -1.03 1.!4 �.12 �.78 �.12 1 .42 �.52 

0.03 -1.29 �.33 2.60 �.64 1.19 �-13 0.91 0.78 
1.49 1 .55 �.79 1.37 0.97 0.17 0.58 1 .43 -! .29 

-1.19 1.35 0.16 1.06 �.17 0.32 �.28 0.68 0.54 

-1.19 -!.03 �.12 1 .07 0.87 -1.40 �.24 �.81 0.31 
0.'11 -! .95 �.44 �.39 �.15 -1.20 -L98 0.32 2.91 

-1.86 0.06 0.19 -1.29 0.33 1.51 �.36 �;80 �.99 
0.16 0.28 0.60 �.78 0.67 0.13 �.47 �.18 �.89 
1.21 -1.19 �-60 -1.22 0.07 -1.13 !.45 0.94 0.54 

�.82 0.54 �.98 �.13 1 .52 0.77 0.95 �.84 2.40 
0.75 �.80 �.28 Ln �.16 �.33 2.43 -1.1 1 1.63 
0.42 ll.31 1 .56 0.56 0.64 �.78 0.04 1.34 �.01 

-1.50 -1.78 �.59 0.16 0.36 1.89 -1.19 0.53 �.97 
�.89 0.08 0.95 �.73 1 .25 -1.04 �.47 �.68 �.87 

0.19 0.85 1.68 �.57 0.37 �.48 �.17 2.36 �.53 
0.49 0.32 -2.08 -1.02 2.59 �.53. 0.15 O.l l  0.05 

-1.44 0.07 �.22 �.93 _:_1.40 0.54 -1.28 -0.15 0.67 
�.21 �.48 1.21 0.67 . -LlO �.75 �.37 0.68 �.02 
�.65 �.12 0.94 �.44 -1.21 �.06 -1.28 -1.51 1.39 

0.24 �.83 1 .55 0.33 �.59 -1.24 ·0.70 0.01 0.15 
�.73 1.24 0.40 �.61 0.68 �.69 0.07 �.23 �-66 
-1.93 0.75 �.32 0.95 !.35 1.51 �.88 0.10 -1.19 

0.08 0.16 0.38 �-96 1.99 �.20 0.98 0.16 0.26 
�.47 -1.25 0.32 0.51 -!.04 0.97 2.60 �.08 1 . 19 
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Table A.3 Cumulative. Normal Distribution 

la 

0.0 
0.1 
0.2 
0.3 
0.4 

o.s 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3A 

3.5 
3.6 
3.7 
3.8 
3.9 

r 1 - 'n 
· l/I(Za) = ..fiiie • du = J - a  

0.00 0.01 

0.500 00 0.503 99 
0.539 83 0.543 79 
0.579 26 0.583 17 
0.617 91  0.621 72 
0.655 42 0.659 10 

0.691 46 0.694 97 
0.725 75 0.729 07 
0.758 03 0.761 15 
0.788 14 0.791 03 
0.815 94 0.818 59 

0.841 34 0.843 75 
0.864 33 0.866 50 
0.884 93 0.886 86 
0.903 20 0.904 90 
0.919 24 0.920 73 

0.933 19 0.934 48 
0.945 20 0.946 30 
0.955 43 0.956 37 
0.964 07 0.964 85 
0.971 28 0.971 93 

0.977 25 0.977 78 
0.982 14 0.982 57 
0.986 10 0.986 45 
0.989 28 0.989 56 
0.991 80 0.992 02 

0.993 79 0.993 96 
0.995 34 0.995 47 
0.996 53 0.996 64 
0.997 44 0.997 52 
0.998 13 0:998 19 

0.998 65 0.998 69 
0.999 03 0,999 06 
0.999 31 0.999 34 
0.999 52 0.999 53 
0.999 66 0.999 68 

0.999 77 0.999 78 
0.999 84 0.999 85 
0.999 89 0.999 90 
0.999 93 0.999 93 
0.999 95 0.999 95 

0.02 0.03 

0.507 98 0.51 1  97 
0.547 76 0.551 72 
0.587 06 0.590 95 
0.625 5 1  0.629 30 
0.662 76 0.666 40 

0.698 47 0.701 ?4 
0.732 37 0.735 65 
0.764 24 0.767 30 
0.793 89 0.796 73 
0.821 21 0.823 81 

0.846 13 0.848 49 
0.868 64 0.870 76 
0.888 77 0.890 65 
0.906 58 0.908 24 
0.922 19 0.923 64 

0.935 74 0.936 99 
0.947 38 0.948 45 
0.957 28 0.958 1 8  
0.965 62 0.966 37 
0.972 57 0.973 20 

0.978 3( 0.978 82 
0.983 00. 0.983 41  
0.986 79 0.987 1 3  
0.989 83 0.990 10 
0.992 24 0.992 45 

0.994 13 0.994 30 
0.995 6,0 0.995 73 
0.996 74 0.996 83 
0.997 60 0.997 67 
0.998 25 0.998 31 

0.998 74 0.998 78 
0.999 10 0.999 .13 
0.999 36 0.999 38 
0.99955 0.999 57 
0.999 69 0.999 70 

0.999 78 0.999 79 
0.999 85 0.999 86 
0.999 90 0.999 90 
0.999 93 0.999 94 
,0.999 96 0.999 96 
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0.04 la 

0.515 95 o.o 
0.555 67 Q.1 
0.594 83 0.2 
0.633 07 0.3 
0.67003 0.4 

0.705 40 0.5 
0.738 91 0.6 
0.770 35 0.7 
0.799 54 0.8 
0.826 39 0.9 

0.850 83 1.0 
0.872 85 . 1;1 
0.1!92 51 1.2 
0.909 88 1.3 
0.925 06 1.4 

0.938.22 1.5 
0.949 so 1.6 
0.959 07 1.7 
0.967 11  1:8 
0.973 81 1.9 

0.979 �2 ��-0.983 82 
0.987 45 2.2 
0.99036 2.3 
0.992 66 2.4 

0.994 46 2.5 
0.995 85. 2;6 . 
0.996 93 i..7 
0.997 74 :u 
0.998 36 2;9 

0.998 82 3.0 
0.999 16 3.1 
0.999 40 3.2 
0.999 58 3.,3 

. 0.99971 . '  3A. 

0.999 80 3.S 
0.999 86 3.Ci 
0.999 91 3.7 
0.999 94 3.8 
0.999 96 3.9 

(colllinued overleaf) 
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Table A.3 (continued} 

Za 0.05 0.06 O.ff1 0.08 0.09 za 
0.0 0.51 9 94  0.523 92 0.527 90 0.53 1 88 0.535 86 0.0 

0.1 0.559 62 0.563 56 0.567 49 0.571 42 0.575 34 0.1 
u 0.598 7 1  0.602 57 0.606 42 0.610 26 0.61409 0.2 
0.3 0.636 83 0.640 58 0.644 3 1  0.648 03 0.65 1 73 0.3 

0.4 0.673 64 0.677 24 0.680 82 0.684 38 0.687 93 . 0.4 

0.5 0.708 84 0.712 26 0.715 66 0.719 04 0.722 40 0.5 
u 0.742 15 0.745 37 0.748 57 0.751 75 0.754 90 0.6 

0.7 0.773 37 0.776 37 0.779 35 0.782 30 0.785 23 0.7 

0.8 0.802 34 0.805 10 0.807 85 0.810 57 0.8 13 27 0.8 

0.9 0.824 94 0.83 1 47 0.833 97 0.83646 0.838 9 1  0.9 

1.0 0.853 14 0.855 43 0.857 69 0.859 93 . 0.862 14 1.0 

1.1 0.874 93 0.876 97 0.879 00 0.88 1 00 0.882 97 1.1 
1.2 0.894 35 0.1!96 16 0.897 96 0.899 73 0.90 1 47 1.2 
1.3 0.9 1 1 49 0.91 3  08 0.914 65 0.9 1 6 2 1  0.917 73 1.3 

lA 0.926 47 0.927 85 0.929 22 0.930 56 0.93 1 89 1A 
1.5 0.939 43 0.94062 0.941 79 0.942 95 0.944 08 1.5 
u 0.950 53 0.95 1 54 0.952 54 0.953 52 0.954 48 u 
L7 0.959 94 0.%0 80 0.96 1 64 0.962 46 0.963 27 1.7 

1.8 0.967 84 0.968 56 0.969 26 0.969 95 0.970 62 1.8 

1.9 0.974 41 0.975 00 0.975 58 0.976 15 0.976 70 1.9 
2.0 0.979 82 0.980 30 0.98077 0.98 1 24 0.981 69 z.o 
2.1 0.984 22 0.984 6 1  0.985 00 0.985 37 0.985 74 l.l 
2.2 0.987 78 0.988 09 0.988 40 0.988 70 0.988 99 2.2 
2.3 0.990 6 1  0.990 86 0.991 I I  0.99 1 34 0.991 58 2.3 
2.4 0.992 86 0.993 05 0.993 24 0.993 43 0.993 61 2.4 
2.5 0.994 6 1  0.994 77 0.994 92 0.995 06 0.995 20 2.5 
2.6 0.995 98 0.996 09 0.996 2 1  0.996 32 0.996 43 2.6 
2.7 0.997 02 0.997 1 1  0.997 20 0.997 28 0.997 36 2.7 

2.8 0.997 8 1  0.997 88 0.997 95 0.998 01 0.998 07 2.8 
2.9 0.998 4 1  0.998 46 0.998 5 1  0.998 56 0.998 61 2.9 

3.0 0.998 86 0.998 89 0.998 93 0.998 97 0.999 00 3.0 
3.1 0.999 1 8  0.999 2 1  0.999 24 0.999 26 0.999 29 3.1 
3.2 0.999 42 0.999 44 0.99946 0.999 48 0.999 50 3.2 
3.3 0.999 60 0.999 6 1  0.999 62 0.999 64 0.999 65 3.3 
3A 0.999 72 0.999 73 0.999 74 0.999 75 0.999 76 3A 
3.5 0.999 8 1  0.999 8 1  0.999 82 0.999 83 0.999 83 3.5 
3.6 o.999 a·1 0.999 87 0.999 88 0.999 88 0.999 89 3.6 
3.7 0.999 9 1  0.999 92 0.999 92 0.999 92 0.999 92 3.7 

3.8 0.999 94 0.999 94 0.999 95 0.999 95 0.999 95 3.8 

3.9 0.999 96 0.999 96 0.999 96 0.999 97 0.999 97 3.9 

Source: W. W. Hines and D. C. Montgomery, Probability and Stodstics in Engineering and Ml11Ulgement Science, 2d ed., © 1980, 

pp. 592-3. Reprinted by permission of Jobn Wiley &. Sons, Inc., New York. 

APPENDIX 

X .01. .05 

0 .990 .95 1 
I 1 .000 .999 
2 1.000 
3 
4 
5 

X 1.0 1 . 1  

0 368 .333 
I .736 .699 
2 .920 .900 
3 .981 .974 
4 .996 . .  995 
5 .999 .999 
6 1.000 1 .000 
7 
8 

X 2.2 2.4 

0 . I l l  .091 
I .355 .308 
2 .623 .570 
3 .819 .779 
4 '  .928 .904 
5 .975 .964 
6 .993 .988 
7 .998 .997 
8 1.000 .999 
9 l .ooO 

10 
l 1  
12 
13 
14 
15 
16 
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Table A.4 Cumulative Poisson Distribution 

a= Mean 

. I  .2 .3 .4 .5 .6 .7 .8 .9 X 

.905 , .  .819 .741 .670 .61J7 .549 .497 .449 .407 0 

.995 .982 .963 .938 .910 .878 .844 .809 .1n I 
1 .000 .999 .996 .992 .986 .977 .966 .953 .937 2 

1 .000 1.000 .999 .998 .997 .994 .991 .987 3 
1.000 1 .000 1 .000 .999 .999 .998 4 

1 .000 1 .000 1 .000 5 

a=.Mean 

1.2 1.3 1.4 1.5 1.6 1 .7 1.8 1.9 2.0 X 

.301 .273 .247 .223 .202 . 183 .165 . !50 . 135 0 

.663 .627 .592 .558 .525 .493 .463 .434 .406 I 

.879 .857 .833 .809 .783 .757 .73 1 .704 .677 2 

.966 .957 .946 .934 .921 .907 .891 .875 .857 3 

.992 .989 .986 .981 .976 .970 .964 .956 ;947 4 

.998 .998 .997 .996 .994 .992 .990 .987 .983 5 
1 .000 1 .000 .999 .999 .999 .998 .997 .997 .995 6 

1.000 1 .000 1.000 1 .000 .999 .999 .999 7 
1 .000 1.000 1.000 8 

a = Mean 

2.6 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 X 

.074 .061 .050 .030 .018 .01 1  .CYJ7 .004 .002 0 

.267 .231 .199 .136 .092 .061 .040 .027 .017 l 

.518 .469 .423 .321 .238 . 174 .125 .088 .062 2 

.736 .692 .647 .537 .433 .342 265 .202 . 151  3 
.877 .848 .815 .725 .629 .532 .440 .358 .285 4 
.951 .935 .916 .858 .785 .703 .616 .529 .446 5 
.983 .976 .966 .935 .889 .831 .762 .686 .606 6 
.995 .992 .988 .973 .949 .913 .867 .809 .744 7 
.999 .998 .996 .990 .979 .961J .932 .894 .847 8 

1 .000 .999 .999 .997 .992 .983 .968 .946 .916 9 
1.000 1 .000 .999 .997 .993 .986 .975 .957 10 

1 .000 .999 .998 .995 .989 .980 I I  
1 .000 .999 .998 .996 .991 12 

1.000 .999 .998 .996 13 
1 .000 .999 .999 14 

1.000 .999 15 
1.000 16 

(contmued overleaf) 
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· Table A.4 (continued) 

a = Mean 
X 6.5 7.0 7.5 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0 X 

0 .002 .001 .001 0 

1 .01 1  .007 ·.005 .003 .001 1 

2 .043 .030 .020 .014 Jl06 .003 .001 2 

3 . 1 12 .082 .059 .042 . 021 .010 .002 3 
4 .224 .173 . 132 . 100 .055 .029 .008 .002 4 

5 .369 .301 .241 . 191 .1 16 .067 .020 .006 .001 5 

6 .527 .450 .378 .313 .207 .130 . . 046 . .014 .004 .001 6 

7 .673 .599 .525 .453 .324 .220 .090 .032 .010 .003 .001 7 

8 .792 .729 . .662 .593 .456 .333 .155 .062 .022 .007 .002 8 

9 .877 .830 .776 .717 .587 .458 .242 .109 .043 .015 .005 9 

10 .933 :9()1 .862 .816 .706 .583 .347 .176 .077 .030 .Ol l  10 

1 1  .966 .947 .921 .888 .803 .697 .462 .260 .127 .055 .021 1 1  

12 .984 .973 .957 .936 .876 .792 .576 .358 . 193 .092 .039 12 

13 .993 .987 .978 .966 .926 .864 .682 .464 .275 .143 .066 13  

14  .997 .994 .990 .983 .959 .917 .772 .570 .368 .208 . 105 14  

15 .999 .998 .995 .992 .978 .95 1 .844 .669 .467 .287 .157 15 

16 1 .000 .999 .998 .996 .989 .973 • 899 .756 .566 .3?5 .221 16 . 

17 1 .000 .999 .998 .995 .986 .937 ,827 .659 .469 .297 17  

1 8  1 .000 .999 .998 .993 .963 .883 .742 .562 .381 18 
19 1 .000 .999 .997 .979 . 923 .812 . .651 .470 19 

20 1.000 . .998 .988 .952 .868 .731 .559 20 

21 .999 .994 .971 .911 .799 .644 21 

22 1 .000 .997 .983 .942 .855 .721 22 

23 .999 .991 .963 .899 .787 23 
24 .999 .995 .978 .932 · .843 24 

25 1.000 .997 .987 .955 .888 25 

26 .999 .993 .972 .922 26 

27 .999 .996 .983 .948 27 

28 1 .000 .998 .990 .966 28 

29 .999 .994 .978 29 

30 .999 .997 .987 30 

3 1  1.000 .998 .992 31 

32 .999 .995 32 

33 1 .000 .997 33 

34 .999 34 

35 .999 35 

36 1 .000 36 

Source: J. Banks and R. G. Heikes. Hant/b()()k of Tables and Graphs for the Industrial Engineer onJ M011Gger, C 1984, pp. 34-35. 
Reprinted by permission of John: Wiley and Sons, Inc., New Yorlc. · 

APPENDIX 

Table A.S Percentage Points of The Student's t Distribution with v Degrees of Fteedom 

. 

v 1o.oos 10.01 ,0.025 to.os 10.10 

1 63.66 31 .82 12.71 6.31 3.08 
2 9.92 6.92 4.30 2.92 1 .89 
3 5.84 4.54 3.18 2.35 1.64 
4 4.60 3.75 2.78 2.13 1.53 

5 4.03 3.36 2.57 2.02 1.48 
6 3.71 3.14 2.45 1.94 1.44 

· 1  3.50 3.00 2.36 1.90 1.42 
8 3.36 2.90 2.31 1.86 1.40 
9 3.25 2.82 2.26 1 .83 1 .38 

10 3.17 2.76 2.23 1.81 1.37 
1 1  3. 1 1  2.72 2.20 1.80 1.36 
12 3.06 2.68 2.18 1 .78 1.36 
13 3.01 2.65 2.16 1.77 1.35 
14 2.98 2.62 2.14 1.76 1 .34 

15 2.95 2.60 2.13 1.75 1.34 
16 2.92 2.58 2.12 1 .75 1.34 
17 2.90 2.57 2. 1 1  1.74 . 1.33 
18 2.88 2.55 2.10 1.73 1.33 
19 2.86 2.54 2.09 1.73 1.33 

20 2.84 2.53 2.09 1.72 1.32 
21 2.83 2.52 2.08 1.72 1.32 
22 2.82 2.51 2.07 1.72 1.32 
23 2.81 2.50 2.07 1.71 1.32 
24 2.80 2.49 2.06 · 1.7 1  1 .32 

25 2.79 2.48 2.06 1.71 1.32 
26 2.78 2.48 2.06 1.71 1.32 
27 2.77 2.47 2.05 1.70 1.31 
28 2.76 2.47 2.05 1 .70 1.31 
29 2.76 2.46 2.04 1.70 1.31 

30 2.75 2.46 . 2.04 1.70 1.31 
40 2.70 2.42 2.02 1 .68 1.30 
60 2.66 2.39 2.00 1 .67 1.30 

120 2.62 2.36 1.98 1 .66 1 .29 
"' 2.58 2.33 1 .96 1.645 1.28 . 

Source: Robert E. Shannon, Systems Simulation: TheM onJ Science, C 1975, p. 37S. Reprinted by permission of 
Prentice Hall, Upper Saddle River, NJ. 

· · · 
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Table A.7 Percentage Points of The F Dis.tribution with a =  0.05 

Degrees of Freedom for the Numerator 

2 3 4 5 6 7 8 9 10 12 IS 20 24 30 40 

199.5 2 15.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1 
19.00 19.16 1 9.25 1 9.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 
9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 
6.94 6.59 6.39 6.26 6.16  6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72. 
5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 " 4.56 4.53 4.50 4.46 
5.14 4.76 4.53 4.39 4.28 . 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 
4.74 4.35 4.12 3.97 3.87 ·3.79 3.73 3.68 3.64 3.57 . 3.51 3.44 3.41 3.38 3.34 
4.46 4.07 3.84 3.69 3.58 . 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 
4.26 3.86 3.63 3.48 3.37 3.29 3.23 3. 18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 
4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 
3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 
3.89 3.49 3.26 3. 1 1  ·3.00 2.91 2.85 2.80 2.75 2.69 2,62 2.54 2.51 2.47 2.43 
3.81 3.41 3.18 3.03 2.92 2.83 2.7? 2.71 2.67 2.60 2.53 2.46 2.42 2.38. 2.34 . 

3.74 3.34 3 . 1 1 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 . 2.35 2.31 ·2.27 
3.68 3.29 3.06 2.90 2.79 . 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 
3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2 . 15  
3.59 3.20 2.96 2.81 . 2.70 . ·  2.61 2.55 2.49 2.45 2.38 . 2.31 2.23 2.19 2.15 2:10 
3.55 3.16 2.93 2.77 2.66 2.58 2.51 "2.46 2.4!" 2.34 2.27 2.19 " 2.15 2. 1 1 . .2.06 
3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2. 1 1  2.07 2.03 
3.49 3.10 2.87 2.71 .2.60 . ;t.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 
3.47 3.07 2.84 2.68 " 2.57 2.49 2.42 2.37 2.32 2.25 2. 18  2.10 2.05 2.01 1.96 
3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 . 1 .98 1 .94 
3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 
3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.1 1  2.03 1.98 1 .94 1 .89' 
3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 · 1.96 . 1.92 1.87 
3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1 .95 1 .90 1.85 
3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1 .84 
3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 . 2.19 2.12 . 2.04 1.96 1.91 L87 L82 
3.33 2.93 2.70 2.55 2.43 2.35 · 2.28 2.22 2.18 2.10 2.03 1 .94 1 .90 1.85 1.81 
3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1 .89 1 .84 1 .79 
3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1 .84 1 .79 1 .74 1 .69 
3. 15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1 .92 1 .84 1 .75 1 .70 1 .65 1.59 
3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1 .91  1.83 1.75 1 .66 1.61 1.55 1 .55 
3.00 2.60 2.37 2.21 2.10 2.01 . 1 .94 1 .88 1 .83 1.75 1.67 1.57 1.52 1 .46 1.39 

----· -·-··--�--·-···-··------·- . 

60 120 

252.2 253.3 
19.48 19.49 

8.57 8.55 
. 5.69 5.66 

4.43 4.40 
3.74 3.70 
3.30 3.27 
3.01 2.97 
2.79 2.75 
2.62 2.58 
2.49 2.45 
2.38 2.34 
2.30 2.25 
:i.22 2.18 
2.16 2.1 1  
2. 1 1  2.06 
2.06 2.0) 
2.02 1.97 . 
1.98 1.93 
1.95 1 .90 
1.92 1 .87 
1 .89 1 .84 
1.86 1.81 
1 .84 1.79 
1.82 1 .77 
1.80 1 .75. 
1.79 1 .73 
1.77 1.71 
1 .75 1 .70 
1.74 1 .68 
1.64 1.58 
l .53 1 .47 
1.43 1.35 
1 .32 1.22 
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4.36 
3.67 
3.23 
2.93 
2.71 
2.54 
2.40 
2.30 
2.21 
2. 13 
2.07 
2.01 
1.96 
1.92 

. 1.88 
1 .84 
1.81 
1.'78 
1 .'16 

�:;z.o 1.71 
1 .69 
1.67 
1 .65 
1.64 
1 .62 
1.51 
1 .39 
1.25 
1.00 

Source: W. W: llines and D. C. Montgomery, Probability and Statistics in Engineering and Matu:Igement Science, 2d ed., © 1980, p. 599. Reprinted by pennission of John Wiley 

& Sons, Inc., New York. 
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Table A.8 Kolmogorov-Smirnov Critical Values 

Degrees of 
Freedom 

(N) DO.IO Do.os DMI 
1 0.950 0.975 0.995 . 
2 0.776 0.842 0.929 
3 0.642 0.708 0.828 
4 0.564 0.624 0.733 
5 0.510 0.565 0.669 
6 0.470 0.521 0.618  
7 0.438 0.486 0.577 
8 0.4 1 1  0.457 0.543 
9 0.388 0.432 0.514 

10 0.368 0.410 0.490 
I I  0.352 0.391 0.468 
12 0.338 0.375 0.450 
13 0.325 0.361 0.433 
14 0.314 0.349 Q.418 
15 0.304 0.338 0.404 
1 6  0.295 0.328 0.392 
17  0.286 0.318  0.38 1  
1 8  0.278 0.309 0.371 
19 0.272 0.301 0.363 
20 0.264 0.294 0.356 
25 0.24 0.27 0.32 
30 0.22 0.24 0.29 
35 0.21 0.23 0.27 

Over 1.22 1.36 1.63 
35 .[ii .JN 1N 

Source: F. J. Massey, "The Kolmogorov-Smimov Test for Goodness of 
Fit.� The Journal of/he American Statistical Association, Vol. 46. C 1951, 
p. 70. Adapted witb pennission of the American Statistical Association. 

APPENDIX 

Table A.9 Maximum likelihood Estimates of the Gamma Distribution 

liM f3 JIM f3 liM f3 
0.020 0.0187 2.700 1.494 >Hl300 5.3 1 1  
0.030 0.0275 .2.800 1 .545 . lo:600 5.461 
0.040 0.0360 2.900 1 596'. io,900 5.6 1 1  
0.050 0.0442 3.000 1 .646 .1 1.200 5.761 
0.060 0.0523 3.200 1 .748 1 1.500 5.9 1 1  
0.070 0.0602 3.400 1 .849 1 1.800 6.061 
0.080 0.0679 3.600 1.950 ' 12.100 6.2 1 1  
0.090 0.0756 3.800 2.051 12.400 6.362 
0.100 0.0831 4.000 2.151 12.700 6.512 
0.200 0.1532 4.200 2.252 13.000 6.662 
0.300 0.2178 4.400 

' 
2.353. 13.300 6.812 

0.400 0.2790 4,600 2.453 13.600 6.962 
0500 0.3381 4.800 2.554 13.900 7.1 12 
0.600 0.3955 . 5.000 2:654 14.200 7.262 
0.700 0.4517 5.200 2.755 14.500 7.412 
0.800 0.5070 5.400 2.855 14.800 7.562 
0.900 0.5615 5.600 2.956 15.100 7.712 
1.000 0.6155 5.800 3.056 15.400 7.862 
1.100 0.6690 6.000 3.156 15.700 8.013 
1 .200 0.7220 6.200 3.257 ' 16.000 ·"' -" .•• 8.163 
1 .300 0.7748 6.400 3.357 16.300 

' 
8.313 

1 .400 0.8272 6.600 3.457 16.600 ' : . 8.463 
1 .500 0.8794 6.800 3.558 16.900 8.613 
1.600 0.9314 7.000 3.658 17.200 8.763 
1.700 0.9832 7.300 3.808 17.500 8.913 
1 .800 1.034 7.600 3.958 17.800 9.063 
1.900 1 .086 7.900 4.109 18.100 9.213 
2.000 1.137 8.200 4.259 . 18.400 9.363 
2.100 l.I88 8.500 4.409 18.700 9.513 
2.200 1 .240 8.800 4.560 19.000 9.663 
2.300 1.291 9.100 4.710 19.300 9.813 
2.400 1 .342 9.400 4.860 19.600 9.963 
2.500 1.393 9.700 5.010 . 20.000 .. 10.16 
2.600 1.444 10.000 5.160 

Source: S. C. Choi and R. Wette, "Maximum Likelihood EstimateS. of the Gamma Distribution and 
Their Bias:' Technometrics, Vol. I I ,  No. 4, Nov. © 1969, pp. 688-9:Adapted witb pennission of tile 
American Statistical Association. 
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gamma distribution, 259-260 
nonstationary Poisson process (NSPP), 

258-259 
Poisson distribution, 255-258 

Accumulating conveyor section, 428--429 
Across-replication cycle-time data, 345.:..347 
Activities, 61 

defined, 8 
Activity.scanning approach, 66-68 
Actual average cycle time, 344 
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AGV dispatching systems, 8 
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comparisons, 394-398 

Bonferroni approach to screening, 400-401 
Bonferroni approach to selecting the best, 

398-400 
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406-408 
1\vo-Stage Bonferroni Procedure, 

399-401 
comparison of two system designs, 380-393 
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precision, 392-393 
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with equal variances, 383-384 . 
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optimization via simulation, 410--417 
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practically significant differences in, 
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Ample-server system, 205 
Analytical methods, 12 
Anderson-Darling test, 293 
Application Layer, 479 
Application Program Interface (API), 106-107 
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Steel Corporation, 88 
Approximation for the M/G/c/oo queue, 205 
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Arena (continued) 
Input Processor, 270 
Output and Process Analyzer, 1 1 6  
Professional Edition (PE), 1 10 
and SIMAN simulation language, I l l  
Standard Edition (SE), 1 10 
website, 1 10 

Arithmetic Logical Unit (ALU), 453 
Arrays, storing records in, 79 
Arrival process, queueing systems, 181-182 
Arrivals class, 107-108 
AS/RS (automated storage and retrieval 

system), 428 
Assembly-line simulation, 437-443 

potential system improvements, analysis of, 
441-442 

presimulation analysis, 439-440 
simulation model and analysis of the 

designed system, 440 
station utilization, analysis of, 440-441 
system description and model assumptions, 

437-439 
Association for Computing Machinery/Special 

Interest Group on Simulation 
(ACM/SIGSIM), 6 

Associative memory, 473-474 
@Risk's BestFit, 270 
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defined, 8 
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for random numbers, 228-229 
Automated guided vehicles (AGVs), 3 12, 428 
Automated material handling systems 

(AMHS), 8 
Automobile engine assembly problem, 410 
AutoMod, 14, 1 1 1  

animation. 1 1 1  
AutoStat, I l l  
AutoView, 1 1 1  
templates, 1 1 1  
website, 1 10 
worldview, 1 1 1  

AutoStat, 15, 1 1 6  
Auto View, 1 1 1  
Average of the averages, 343 
Average system time, 1 86-187 
Awesime, 453 

B 
Baseline configuration, 438 
Batch me�s, 340, 367, 370 

Bernoulli distributions, 141 
Bernoulli process, 141 
Bernoulli trials, 141-142 
Best fits, 293-294 
Beta distributions, 141, 164-165 

physical basis of, 277 
. suggested estimators, 281-287 

BGP, 488 
Bias, in point estimator, 341-342 
Binomial distributions, 140-142 

physical basis of, 276 
Bonferroni approach: 

to multiple comparisons, 394-398 
to screening, 400-401 
to selecting the best, 398-400 

Bonferroni inequality, 394 
Bootstrapping, 65 
Bottom of a list, 78-79 
Branch instructions, 470 
Branches, 470 
Breakpoints, 296 
Bridge, 488 
Bucket conveyors, 428 
Burstiness, 458 

and traffic modeling, 482-483 
Business process simulation, 7 

c 
C, 260, 313-314, 453 
C++, 79, 260, 3 13-314, 453 
C++SIM, 453 
Calibration, 316 
Call-center analysis, 8 
Calling population, queueing systems, 20, 

179-180 
Cancellation of an event, 64 
Carrier Sense Multiple Access/Colijsion 
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Detection (CSMA/CD) protocol, 486 
Carrying stock in inventory, 36 
Central processing unit (CPU), 450, 452 
Chains, See Lists 
Chi-square distributions, 508 
Chi-square test, 231-233, 270, 287-289 

computations for, 232-233 
with equal probabilities, 290-291 
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Clock. 61  

and Java, 93 
Clock-time breakdowns, 431 
Combined linear congruential generators, 

226-228 

I 
I 
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Commercial simulation languages, 453 
Common random numbers (CRN), 379, 

384-392 
Component life, histograms of, 276 
Computer systems: 

complexity of, 450 
levels of abstraction in, 450-451 
simulation of, 450-477 

Computer-network simulations, 478-499 
data link layer, 487-488 
Media Access Control (MAC) protocol, 

483-487 
Transport Control Protocol (fCP), 488-494 

Computer-systems simulations, 450-477 
CPU simulation, 468-472 
event orientation, 456-457 
high-level computer simulations, 466-468 
memory simulations, 472-475 
model input, 457-466 

Modulated Poisson Process (MPP), 
458-461 

virtual-memory referencing, 461-466 
process orientation, 454-456 
simulation tools, 452-457 

Conceptual model, construction of, 3 1 1  
Conditional event, 62 
Conditional wait, 62 
Confidence intervals, with specified precision, 

392-393 
Confidence-interval estimation, 343-344 

statistical background, 345-348 
Congestion window size, 490 
Conservation equation, 188-189 
Construction engineering applications, 

simulation, 7 
Continuous data, histograms for, 274-275 
Continuous distributions, 146-165 

beta distribution, 164-165 
Erlang distribution, 15 1-153 
exponential distribution, 147-150 
gamma distribution, 150-15 1 
normal distribution, 153-159 
triangular distribution, 244-245 
uniform distribution, 146-147 
Weibull distribution, 159-160 

Continuous model, 1 1-12 
Continuous random variables, 132-134 
Continuous system, 1 1  
Continuous uniform distributions, physical 

basis IJf, 277 . 
Continuous-time data, 341 
Control and Simulation Language (CSL), 88 
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Control sampling variability, 414 
Conventional limitations, as  source of process 

information, 295 
Conveyor sections, classification of, 428 
Conveyors, classification of, 428-429 
Convolution of distributions, 261 
Correlated sampling, 379, 441 

·, Covariance-stationary process, 297, 359 
' CPU simulations, 457, 468-472 

Critical path, 5 1  
CSIM, 453 
Cumulative averages, 358 . 
Cumulative distribution function (edt), 

134-136 
Cumulative normal distribution, 503-504 
Cumulative Poisson distribution, 505-506 
Current contents and model reasonableness, 

3 1 3  
Cycle breakdowns or failures, 431 

D 

Data assumptions, 317 
Data collection, guidelines for, 270-272 
Data Link Layer, 478-479, 487-488 

protocols !lt. 4 79 
Data-frames, 478-479 
Debugger, 312  . 
Dedicated random-number stream, 386 
Delay, 61, 187 
Delmia!QUEST, 1 14 

website, l lO 
Design variables, 402 
Deterministic duration, 62 
Deterministic simulation models, 1 1  
Direct execution, defined, 465 
Direct-execution simulation, 465-466, 473 

· Discrete data, histograms for, 273 
Discrete distributions, ·141 � 146, 250-254 

Bernoulli trials and the Bernoulli 
distribution, 141 

binomial distribution, 142-143 
discrete uniform distribution, 252-253 
empirical discrete. distribution, 250-252 
geometric and negative binomial 

distributions, 143-144 
geometric distribution, 253-254 
physical basis of, 277 
Poisson distribution, 144-145 

Discrete model, 12 ·· 

Discrete random variables; 132, 141 
Discrete system, 9 
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Discrete uniform distributions, 252-253 
Discrete-event models, 60 
Discrete-"event simulation, 12, 60, 451 

concepts in, 61-78 
defined. 63 

Discrete-time data, 341 
Distribution applications, simullition, 7 
Distribution of maximum ignorance, 141 
Documentation, 314 
Domain Modeling Language (DML) files, 495 
Doubly-linked lists, 83 
Dump-truck problem, 73-77, 389-392 
Dynamic allocation, and linked lists, 8 1  
Dynamic simulation models, 1 1  

E 
ECSL, 88 
Ehrhardt, I., 436 
Empirical dis�butions, 169-171,  245-249 

discrete distributions, 250-252 
physical basis of, 276 

Emulation, 8 
End of downtime, 66 
End of runtime, 66 
End-loading event (EL), 75 
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· Engineering data, as source of process 
information, 295 

Ensemble averages, 354; 357-358 
Entities, 3, 6 1 ,  79 

defined, & 
Ergodic chains, 458 
Erlang distributions, 1 51-153 

and convolution method, 261-262 
physical basis of; 277 

Ertek, G., 436 
Ethernet, 483, 486-487 

· Ethernet frame, format of, 486 
Event Class, 95 
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Event methods, Java, 93 
Event notices, 61 ,  78 
Event orientation, 456-457 
Events, 9, 21 ,  6 1  
Event-scheduling simulation, 69-78 

· checkout-counter simulation problem, 
72-73 

dump-truck problem, 7'J-,77 
single-channel queue, 69-72 

Event-scheduling simulation program, overall 
structure of, 93-94 
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Event-scheduling/time-advance algorithm, 64-65 
Exogenous events, 64 · 
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OptQuest, 1 17 
SimRunner, 1 17 

Expert option, as source of process 
information, 295 
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Exponential backoff, 487 
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physical basis of, 277 
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Extend, 14, I l l  
website, 1 10 

F 
Face validity, 317 
Family of distributions, selecting, 275--277 
FEL, 61, 63-66 
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website, 1 10 
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FORTRAN, 78-79, 87-89, 93, 260, 314 
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Frames, 483 
Free-path transporters, 428 
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chi-square test, 231-233 
Kolmogorov-Srnirnov test, 2J0-233 
for random numbers, 229 · 
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Functional abstraction, 452 
Future event list (FBI.), See FEL 
FutureEventList, 93 
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Gamma distributions, 139-14 1 ,  150-15 1 ,  

181-182, 276 . 
acceptance-rejection technique, 259-260 
maximum likelihood estimates of, 5 1 1  
physical basis of, 3 14 
suggested estimators, 281 

Garbage-in-garbage-out (GIGO), 270 
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87-88 
GASP IV, 88 

gee compiler, 462 
Gebhardt, H., 436 
General Simulation Program, 87-88 
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Generator matrix, 458 
Genetic algorithms (GA), 413--414 
Geometric and negative binomial distributions, 

143-144 
Geometric distributions, 140, 150, 253-254 
GIG0, 270 
Goodness-of-fit tests, 287-294 

best fits, 293-294 
chi-square test, 287-288 
chi-square test with equal probabilities, 

290-291 
Kolmogorov-Srnirnov test, 292-293 
p-values, 293-294 

Gordon, Geoffrey, 88 
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development of, 88 
simulation in, 102-106 

GPSS/360, 86-87 
GPSSIH, 14, 86-88, 93, 102 
· single-server queue simulation in, 102-105 
GPSS/NORDEN, 88 
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Henriksen, James 0., 88 

Herper, H., 436 
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Histograms, 272-275 
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for discrete data, 273 

Hit ratio, 462, 473-475 
Hixson, Harold, 87 
Hubs, 488 
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inChannel classes, 107 
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with unequal variances, 384 
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models, 180 
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arrivals/unlimited capacity, 1 95--201 
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Initialization method, 93, 97 
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· data collection, 270-272 
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(NSPP), 294-295 
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best fits, 293-294 
chi-square test, 287-289 
chi-square test with equal probabilities, 

290-291 
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275-277 
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(NOliTA), 301-303 
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Intelligent initialization, 353 
Interactive Run Controller (IRC), 312 
Interarrival processes,. 457 
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385-386 

simulation of, 35-42 
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order-up-to-level inventory system, 40-42 
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empirical distributions, 245-249 
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triangular distribution, 244-245 
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IP (Internet Protocol), 479 

J 
Java, 79, 8 1:-82, 92, 260, 3 13, 453 

online resources for learning, 93-94 
simulation in, 93-102 
single-server queue simulation in, 95-102 
/Thread/ class, 454 

Java simulation progrnm, overall structure of, 95 
Joshi, S. B., 435 
Just-in-Time (JIT), 436 
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Kohnogorov-Smirnov critical values, 5 10 
Kolmogorov-Smimov test, 230-233, 270 

calculations for, 233 
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Ll cache, 4 73 
Lack -of-fit test, 406 
Lag, 234, 359 

· Lag-h autocorrelation, 297 
Lag-b autocovariance, 297 
Last-in-first-out (LIFO), 182 
Lead time, 40, 140 
Lead-time demand, 47-49. 
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stack evolution, 475 
Least-squares function, 403 
Linear congruential method, 223-226 

or random-number generation, 223-226 
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Liquified natural gas (LNG) transportation 

· 
problem, 410 

List processing, 64, 78-83 
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lists, 78-79 
. defined, 78 
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using arrays for. 79:-81 
future event list and dump-truck problem, 

82--83 
list for dump trucks at weigh queue, 79:-8 1 
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Local area network (LAN), 483 
Locality of reference, 462 
Logistics applications, simulation, 7 
Lognormal distributions, 141,  163-164 

pdf of, 163 
physical basis of, 276 
suggested estimators, 281-282 

Long-range dependence, 48 1-482 
Long-run average system time, 187 
Long-run time-average number, 185 
Lost sales case, 40 

M 
MAC protocol, 479, 487-488 
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Manufacturing and material-handling systems, 

425-449 
assembly-line simulation, 437-443 

potential system improvements, 441-442 
presimulation analysis, 439-440 
simulation model and analysis of the 

designed system, 440 
station utilization, 440-441 
systeni description and model 

assumptions, 437-439 
case studies of the simulation of, 435-437 
defined, 425 
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433-435 
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goals of, 429 
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430-433 
non-manufacturing material-handling 

systems, 429-430 
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. 426-427 
models of material handling systems, 

427-428 
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Markov chain transitions, 452 
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Markowitz, Harry, 88 
Materials handling system (MHS) problem, 410 
Mathur, Mahesh, 436 
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Maximum-likelihood estimators, 281 
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confidence-interval estimation, 343-344 
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Media Access Control (MAC) protocol, 
479, 483-487 
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token-passing protocols, 483-486 
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Memoryless property, 149, 166 
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Micro Analysis and Design, Inc., U3 · 
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