
9
Input Modeling

Input models provide the driving force for a simulation model. In the simulation of a queueing system,
typical input models are the distributions of time between arrivals and of service times. For an inventory­
system simulation, input models include the distributions of demand and of lead time. For the simulation of
a reliability system, the distribution of time to failure of a component is an example of an input model.

In the examples and exercises in Chapters 2 and 3, the appropriate distributioil.s were sp!:cified for you.
In real-world simulation applications, however, coming up with appropriate distributions for input data is a
major task from the standpoint of time and resource requirements. Regardless of the sophistication of the
analyst, faulty models of the inputs will lead to outputs whose interpretation could give rise to misleading
recommendations.

There are four steps in the development of a useful model of input data:

1. Collect data from the real system of interest. This often requires a substantial time and resource com­
mitment. Unfortunately, in some situations it is not possible to collect data (for example, when time
is extremely limited, when the input process does not yet exist, or when laws or rules prohibit the
collection of data). When data are not available, expert opinion and knowledge of the process must
be used to make educa,ted guesses.

2. Identify a probability distribution to represent the input process. When data are available, this step
typically begins with the development of a frequency distribution, or histogram, of the data. Given
the frequency distribution and a structural knowledge of the process, a family of distributions is
chosen. Fortunately, as was described in Chapter 5, several well-known distributions often provide
good approximations in practice.

3. Choose parameters that determine a specific instance of the distribution family. When data are available,
these parameters may be estimated from the data.

269

DISCRETE-EVENT

4. Evaluate the chosen distribution and the associated parameters for goodness of fit. Goodness offit
may be evaluated informally, via graphical methods, or formally, via statistical tests. The chi-square
and the Kolmogorov-Smimov tests are standard goodness-of-fit tests. If not satisfied that the chosen
distribution is a good approximation of the data, then the analyst returns to the second step, chooses
a different family of distributions, and repeats the procedure. If several iterations of this procedure
fail to yield a fit between an assumed distributional form and the collected data, the empirical form
of the distribution may be used, as was described in �ection 8.1.5.

Each of these steps is discussed in this chapter. Although software is now widely available to accomplish
Steps 2, 3, and 4-including such stand-alone programs as Expertfit®- and Stat:Fit® and such integrated
programs as Arena's Input Processor and @Risk's BestFit®-it is still important to understand what the soft·
ware does, so that it can be used appropriately. Unfortunately, software is not as readily available for input
modeling when there is a.relationship between two or more variables of interest or when no data are available.
These two topics are discussed toward the end of the chapter.

9.1 DATA COLLECTION

Problems are found at the end of each chapter, as exercises for the reader, in textbooks about mathemiitics,
physics, chemistry, and other technical subjects. Years and yeaf!J of working these problems could give the
reader the impression that data are readily available. Nothing could be further from the truth. Data collection
is one of the biggest tasks in solving a real problem. It is one of the most important and difficult problems
in simulation. And, even when data are available, they have rarely been recorded in a form that is directly
useful for simulation input modeling.

"GIGO," or "garbage-in-garbage-out," is a basic concept in computer science, and it applies equally in
the area of discrete-system simulation. Even when the model structure is valid, if the input data are inaccu­
rately collected, inappropriately analyzed, or not representatiye of the environment, the simulation output
data will be misleading and possibly damaging or costly when used for policy or decision making.

Example 9.1: Tbe Laundromat
As budding simulation students, the first two authors bad assignments to simulate the operation of an ongoing
system. One of these systems, which seemed to be a rather simple operation, was a self-service laundromat with
I 0 washing machines and six dryers.

However, the data-collection aspect of the problem rapidly became rather enormous. The interarrival­
time distribution was not homogeneous; it changed by time of day and by day of week. The laundromat
was open 7 days a week for 16 hours per day, or 1 12 hours per week. It would bave been impossible to cover
the operation of the lanndromat with the limited resources available (two students who were also taking four
other courses) and with a tight time constraint (the simulation was to be completed in a 4-week peri6d).
Additionally, the distribution of time between arrivals during one week might not have been followed during
the next week. As a compromise, a sample of times was selected, and the interarrival-time distributions were
classified according to arrival rate (perhaps inappropriately) as "hi�" "medium," and �·tow."

Service-time distributions also presented a difficult problem from many perspectives. The proportion of
customers demanding the vanous service combinations had to,be.observed and recorded. The simplest case
was the customer desiring one washer followed by one dryer. However, a customer might choose two washing
machines followed by one dryer, one dryer only, and so on. The customers used numbered machines, and it
was possible to follow the customers via-that reference, rather than remembering them by personal charac­
teristics. Because of the dependence between washer demand and dryer demand for an individual customer,

INPUT MODELING 271

it would have been inappropriate to treat the service times for washers and dryers separately as independent
variables. - ·

Some customers waited patiently for their clothes to complete the washing or drying cycle, and then they
removed their clothes promptly. Others left the premises and returned after their clothes had finished their
cycle on the machine being used. In a very busy period, the manager would remove a customer's clothes after
the cycle and set them aside in a basket. It was decided that service termination would be measured as tbat
point in time at which the machine was emptied of its contents.

Also, machines would break down from time to time. The length of the breakdown varied from a few
moments, when the manager repaired the machine, to several days (a breakdown on Friday night, requiring
a part not in the laundromat storeroom, would not be fixed until the following Monday). The short-term
repair times were recorded by the student team. The long-term repair completion times were estimated by
the manager. Breakdowns then became part of the simulation.

Many lessons can be learned from an actual experience at data collection. The first five exercises at the
end of this chapter suggest some situations in which the student can gain such experience.

The following suggestions might enhance and facilitate data collection, although they are not all
inclusive.

I. A useful expenditure of time is in planning. This could begin by a practice or preobserving session.
Try to collect data while preobserving. Devise forms for this purpose. It is very likely that these
forms will have to be modified several times before the actual data collection begins. Watch for
unusnal circumstances, and consider how they will be handled. When possible, videotape the system
and extract the data later by viewing the tape. Planning is important, even if data will be collected
automatically (e.g., via computer data collection), to ensure that the appropriate data are available.
When data have already been collected by someone else, be sure to allow plenty of time for converting
the data into a usable format.

2. Try to analyze the data as they are being collected. Figure out whether the data being collected are
adequate to provide the distributions needed as input to the simulation. Find out whether any data
being collecled are useless to the simulation. There is no need to collect superfluous data.

3. Try to combine homogeneous data sets. Check data for homogeneity in successive time periods
and during the same time period on successive days. For example, check for homogeneity of data
from 2:00 P.M. to 3:00 P.M. and 3:00 P.M. to 4:00 P.M., and check to see whether the data are holno­
geneons for 2:00 P.M. to 3:00 P.M. on Thursday and Friday. When checking for homogeneity, an initial
test is to see whether the means of the distributions (the average interarrival times, for example) are
the same. The two-sample t test can be used for this purpose. A more thorough analysis would
require a test of the equivalence of the distributions, perhaps via a quantile-quantile plot (desCribed
later).

4. Be aware of the possibility of data censoring, in which a quantity of interest is not observed in its
entirety. This problem most often occurs when the analyst is interested in the time required to

. complete some process (for example, produce a part, treat a patient, or have a component fail), but
the process begins prior to, or finishes after the completion of, the observation period. Censoring can
result in especially long process times being left out of the data San!ple.

S. To discover whether there is a ·relationship between two variables; build a scatter .diagram.
Sometimes an eyeball scan of the scatter diagram will indicate whether there is a relationship
between two variables of interest. Section 9.7 describes models for statistically dependent input
data.

6. Consider the possibility that a sequence of observations that appear to 1>e independent actually has
autocorrelation. Autocorrelation can exist in successive time periods or for successive customers.

DISCRETE-EVENT SYSTEM SIMULATION

For example, the service time for the ith customer could be related to the service time for the (i + n)th
customer. A brief introduction to autocorrelation was provided in Section 7.4.2, and some input
models that account for autocorrelation are presented in Section 9.7. 7. Keep in mind the difference between input data and output or performance data, and be sure to
collect input data. Input data typically represent the uncertain quantities that are largely beyond the
control of the system and will not be altered by changes made to improve the system. Output data,
on the other hand, represent the performance of the system when subjected to the inputs, performance
that we might be trying to improve. In a queueing simulation, the customer arrival times·are usually
inputs, whereas the customer delay is an output. Performance data are useful for model validation,
however-see Chapter I 0. -

Again, these are just a few suggestions. As a rule, data collection and analysis must be approached with
great care.

9.2 IDENTIFYING THE DISTRIBUTION WITH DATA

In this section, we discuss methods for selecting families of input distributions when data are available. The
specific distribution within a family is specified by estimating its parameters, as described in Section 9.3.
Section 9.6 takes up the case in which data are unavailable.

-

9.2.1 Histograms

A frequency distribution or histogram is useful in identifying the shape of a distribution. A histogram is
constructed as follows:

1. Divide the range of the data into intervals. (Intervals are usually of equal width; however, unequal
widths may be used if the heights of the frequencies are adjusted.)

2. Label the horizontal axis to conform to the intervals selected.
3. Find the frequency of occurrences within each interval.
4. Label the vertical axis so that the total occurrences can be plotted for each interval.
5. Plot the frequencies on the vertical axis.

The number of class intervals depends on the number of observations and on the amount of scatter or
dispersion in the data. Hines, Montgomery, Goldsman, and Borrow [2002] state that choosing the nmnber
of class intervals approximately equal to the square root of the sample size often works well in practice.
If the intervals are too wide, the histogram will be coarse, or blocky, and its shape and other details will not
show well. If the intervals are too narrow, the histogram will be ragged and will not smooth the data.
Examples of ragged, coarse, and appropriate histogra_ms of the same data are shown in Figure 9 . 1 . Modern
data-analysis software often allows the interval sizes to be changed easily and interactively until a good
choice is found.

The histogram for continuous data corresponds to the probability density function of a theoretical dis­
tribution. If continuous, a line drawn through the center point of each class interval frequency should result
in a shape like that of a pdf.

-

Histograms for discrete data, where there are a large number of data points, should have a cell for each
value in the range of the data. However, if there are few data points, it could be necessary to combine adjacent

INPUT MODEUNG

7 r-----------------------------�

Upper limit of cell

(a)

15
Upper limit of cell

(b)

W r-----------------------------.

3 7 t l 15
Upper limit of cell

(c)

19 23

Figure 9.1 Ragged, coarse, and appropriate histograms: (al original data-too ragged; (b) combining
adjacent cells-too coorse; (c) combining adjacent cells-appropriate.

cells to eliminate the ragged appearance of the histogram. If the histogram is associated with discrete data,
it should look like a probability mass function.

Example 9.2: Discrete Data
The number of vehicles arriving at the northwest corner of an intersection in a 5-minute period between
7:00 A.M. and 7:05 A.M. was monitored for .five workdays over a 20-week period. Table 9.1 shows the resulting
data. The first entry in the table indicates that there were 12 5-ll).inute periods during which zero vehicles
arrived, 10 periods during which one vehicle arrived, and so on. .

The number of automobiles is a disc.rete variable, and there. are ample 4ata, so the histogram may have
a cell for each possible value in the range of the data. The resulting histogram is shown in Figure 9 .2.

274

18
16

1;- 14
"
!l 12
l

(l;. 10
8
6
4
2

DISCRETE-EVENT SYSTEM SIMUfATION

Table 9.1 Number of Arrivals in a 5-Minute Period

Arrivals Arrivals
per Period Frequency per Period

0 12 6
I 10 7
2 19 8
3 17 9
4 10 10
5 8 I I

0 1 2 3 4 5 6 7 8 9 10 11
Number of arrivals per period

Frequency

7
5
5
3
3

Figure 9.2 Histogram of number of arrivals per period.

.t

Example 9.3: Continuous Data
Life tests were performed on a random sample of electronic components at 1 .5 times the nominal voltage,
and their lifetime (or time to failure), in days, was recorded:

79.919 3.081 0.062 1.961 5.845
3.027 6.505 0.021 0.013 0.123 .
6.769 . 59.899 1 . 192 34.760 . 5.009

1 8.387 0.141 43.565 24.420 0.433
144.ti95 2.663 17.967 0.091 9.003

0.941 0.878 3.371 2.157 7.579
0.624 5.380 3.148 7.078 23.960
0.590 1.928 0.300 0.002 0.543
7.004 31.764 1.005 1 .147 0.219
3.217 14.382 1.008 2.336 4.562

INPUT MODELING

Table 9.2 Electronic Component
Data

Component Life
(Days)

0 S xi < 3
3 :s; xi < 6
6 S xi < 9
9 S xi < l2

1 2 :s; xi < 15 .
15 :S xi < l8
1 8 S -) < 21
2l :S .tj < 24
24 :S .tj < 27
27 :S.tj <.30
30 :S xi <33
33 !> xi < 36

Frequency

23
10
5
1
1
2
0
1
1
0
I . I

275

Lifetime, usually considered a continuous variable, is recorded here to three-decimal-place accuracy. The
histogram is prepared by placing the data in class intervals. The range of the data is rather large, from 0.002
day to I 44.695 days. However, most of the values (30 of 50) are in the zero..to-5-day range. Using intervals
of width three results in Table 9.2. The data of Table 9.2 are then used to prepare the histogram shown
in Figure 9.3.

9.2.2 Selecting the Family of Distributions

In Chapter 5, some distributions that arise often in simulation were described. Additionally, the shapes of
these distributions were displayed. The purpose of preparing a histogram is to infer a known pdf or pmf.
A family of distributions is selected on the basis of what might arise in the context being investigated along
with the shape of the histogram. Thus, if interarrival-time data have been collected, and the histogram has a
shape similar to the pdf in Figure 5.9, the assumption of an exponential distribution would be warranted.
Similarly, if measurements of the weights of pallets of freight are being made, and the histogram appears

: j

276 DISCRETE-EVENT SYSTEM SIMULATION

Chip life

Figure 9.3 Histogram of component life.

symmetric about the mean with a shape like that shown in Figure 5 . 1 1 , the assumption of a normal distribution
would be warranted.

The exponential, normal, and Poisson distributions are frequently encountered and are not difficult to
analyze from a computational standpoint. Although more difficult to analyze, the beta, gamma, and Weibull
distributions provide a wide array of shapes and should not be overlooked during modeling of an underlying
probabilistic process. Perhaps an exponential distribution was assumed, but it was found not to fit the data.
The next step would be to examine where the lack of fit occurred. If the lack of fit was in one of the tails of
the distribution, perhaps a gamma or Wejbull distribution would fit the data more adequately.

There are literally hundreds of probability distributions that have been created; many were created with
some specific physical process in mind. One aid to selecting distributions is to use the physical basis of the
distributions as a guide. Here. are some examples:

Binomial: Models the number of successes in n trials, when the trials are independent with common
success probability, p; for example, the number of defective computer chips found in a lot of n chips .

. Negative Binomial (includes the geometric distribution): Models the number of trials required to
achieve k successes; for example, the number of computer chips that we must inspect to find 4 defec-
� �

.

Poisson: Models the number of independent events that occur in a fixed amount of time or spate; for
example; tlie number of customers that arrive to a store during l hour, or the number of defects found
in .30 square meters of sheet metal.

Normal: Models tlie distribution of a process that can be thought of as the sum of a number of com­
. ponent processes; for example, a time. to assemble a product that is the sum of the times required for

each assembly operation. Notice that the normal distribution admits negative values, which could be
impossible for process times.

INPUT MODELING

Lognormal: Models the distribution of a process that can be thought of as the product of (meaning to
multiply together) a number of component processes-for example, the rate on an investment,· when
interest is compounded, is the product of the returns for a number of perlods.

Exponential: Models the time between independent events, or a process time that is memoryless
(knowing how much time has passed gives no information about how much additional time will pass
before the process is complete)-for example, the times between the arrivals from a large population
of potential customers who act independently of each other. The exponential is a highly variable
distribution; it is sometimes overused, because it often leads to mathematically tractable models.
Recall that, if the time between events is exponentially distributed, then the number of events in a
fixect period of time is Poisson.

Gamma: An extremely flexible distribution used to model nonnegative random variables. The gamma
can be shifted away from 0 by adding a constant

Beta: An extremely flexible distribution used to model bounded (fixed upper and lower limits) random
variables. The beta can be shifted away from 0 by adding a constant and can be given a range larger
than [0, I I by multiplying by a constant

Erlang: Models processes that can be viewed as the sum of several exponentially distributed
processes-for example, a computer network fails when a computer and two backup computers fail,
and each has a time to failure that is exponentially distributed. The Erlang is a special cai;e of the
gamma.

Weibull: Models the time to failure for components-for example, the time to failure for a disk drive.
The exponential is a special case of the Weibull.

Discrete or Continuous Uniform: Models complete uncertainty: All outcomes are .equally likely.
This distribution often is used inappropriately, when there are no data.

Triangular: Models a process for which only the minimum, most likely, and maximum values of the
distribution are known; for example, the minimum, most likely, and maximum time required to test
a product. This model is often a marked improvement over a uniform distribution.

Empirical: Resamples from the actual data collected; often used when no theoretical distribution
seems appropriate.

Do not ignore physical characteristics of the process· when selecting distributions. Is the process naturally
discrete or continuous valued? Is it bounded, or is there no natural bound? This knowledge, which does not
depend on data, can help narrow the family of distributions from which to choose. And keep in mind that there
is no ''true" distribution for any stochastic input process. An input model is an approximation of reality, so the
goal is to obtain an approximation that yields useful results from the simulation experiment.

The reader is encouraged to complete Exercises 6 through I I to leani · more about the shapes of the
distributions mentioned in this section. Examining the variations in shape as the parameters change is very
instructive.

9.2.3 Quantile-Quantile Plots

The construction of histograms; as discussed in Section 9.2. 1 , and the recognition of a distributional shape,
as discuSsed in Section 9.2.2, are necessary ingredients for selecting a family of distributions to represent a
sample of data. However, a histogram is not as useful for evaluating the fit of the chosen distribution. When
tQere is a small number of data points, say 30 or fewer, a histogram can be rather ragged. Further, our
perception of the fit depends on the widths of the histogram intervals. But, even if the intervals are chosen
well, grouping data into cells makes it difficult to compare a histogram to a continuous probability density
function. A quantile-quantile (q - q) plot is a useful tool for evaluating distribution fit, one that does not
suffer from these problems.

278 DISCRETE-EVENT SYSTEM SIMULATION

If X is a random variable with cdf F, then the q-quantile of X is that value ysuch that F(1J = P(X::;; 1J = q,
for 0 < q < l . When F has an inverse, we write y = F-1(q).

Now let {x., i = 1, 2, . . . , n} be a sample of data from X. Order the observations from the smallest to the
largest, and de�ote these as {yp j 1, 2, . . . , n}, where y1 $ y2 :5 . . . :5 yn. Letj denote the ranking or order
number. Therefore,j = 1 for the smallest andj = n for the largest. The q - q plot is based on the fact that y1 ·
is an estimate of the (j - l/2)/n quantile of X. In other words,

Now suppose that we have chosen a distribution with cdf F as a possible representation of the distribu­
tion of X. If F is a member of an appropriate family of distributions, then a plot of y1 versus F-1((j - 1/2)/n)
will be approximately a straight line. IfF is from an appropriate family of distril>utions and also has appro- ·

priate parameter values, then the line will have slope 1. On the other hand, if the assumed distribution is inap­
propriate, the points will deviate from a straight line, usually in a systematic manner. The decision about
whether to reject some hypothesized model is subjective.

Example 9.4: Normal Q - Q Plot
A robot is used to install the doors on automobiles along an assembly line. It was thought that the installa­
tion times followed a normal distribution. The robot is capable of measuring installation times accurately.
A sample of 20 installation times was automatically taken by the robot, with the following results, where the
values are in seconds:

99.79 99.56 100. 17 100.33
100.26 100.41 99.98 99.83
100.23 100.27 100.02 100.47
99.55 99.62 99.65 99.82
99.96 99.90 100.06 99.85

The sample mean is 99.99 seconds, and the sample variance is (0.2832)2 seconds2• These values can serve
as the parameter estimates for the mean and variance of the normal distribution. The observations are now
ordered from smallest to largest as follows:

j Value j Value j WUue j Value

99.55 6 99.82 I I 99.98 16 100.26
2 99.56 7 99.83 12 100.02 17 100.27
3 99.62 8 99.85 13 100.06 1 8 100.33 .
4 99.65 9 99.90 14 100.17 19 100.41
5 99.79 10 99.96 15 100.23 20 100.47

The ordered observations are then plotted versus F"1((j - 112)/20), for j ;, 1, 2, . . . , 20, where F is the cdf of
the normal distribution with mean 99.99 and variance (0.2832)2, to obtain a q - q plot. The plotted values
are shown in Figure 9.4, along with a histogram of the data that has the density function of the normal dis­
tribution superimposed. Notice that it is difficult to tell whether the data are well represented by a �ormal

INPUT MODELING

99.4

•
•

Figure 9.4

•
•

•

• •
· "

, .

99.8
Seconds

Histogram and q

279

•
•

•
:

• •

100.2 100.6

q plot of the installation times.

distribution from looking at the histogram, but the general perception of a straight line is quite. clear in the
q - q plot and supports the hypothesis of a normal distribution.

In the evaluation of the linearity of a q - q plot, the following should be considered:

1. The observed values will never fall exactly on a straight line.
2. The ordered values are not independent; they have been ranked. Hence, if one point is above a

straight line, it is likely that the next point will also lie above the line. And itis unlikely that the points
will be scattered about the line. .

3. The variances of � extremes (largest and smallest values) are much higher than the variances in the
middle of the plot. Greater discrepancies can be accepted at the extremes. The linearity' of the pOints
in the middle of the plot is more important than the linearity at the extremes.

Modem data-analysis softwaie often includes tools for generating q - q plots, especially for .the normal
distribution. The q - q plot can also be used to compare two samples of data to see.whether they can be
represented by the same distribution (that is, that they are homogeneous). If xl' Xz• • . • , xn are a sample of the
random variable X, and Zp Z:l• ••• , zn are a santple of the random variable Z, then plotting the ordered values
of X versus the ordered values of Z will reveal approximately a straight line if both santples are well represented
by the same distribution (Chambers, Cleveland, and Tukey (1983}).

--

280 DISCRETE-EVENT SYSTEM SIMULATION

9.3 PARAMmR ESTIMADON

After a family of distributions has been selected, the next step is to estimate the parameters of the distribution.
Estimators for many useful distributions are described in this section. In addition, many software packages­
some of them integrated into simulation languages-are now available to compute these estimates.

9.3•1 Preliminary Statistics: Sample Mean and Sample Variance

In a number of instances, the sample mean, or the sample mean and sample variance, are used to estimate
the parameters of a hypothesized distribution; see Example 9.4. In the following paragraphs, three sets of
equations are given for computing the sample mean and sample variance. Equations (9. 1) and (9.2) can be
used when discrete or continuous raw data are available. Equations (9.3) and (9.4) are used when the data
are discrete and have been grouped in a frequency distribution. Equations (9.5) and (9.6) are used when the
data are discrete or continuous and have been placed in class intervals. Equations .(9.5) and (9.6) are approxi­
mations and should be used only when the raw data are unavailable.

If the observations in a sample of size n are Xl' X2, . . . , x •. the sample mean (X) is defmed by

(9.1)

and the sample variance, S2, is defined by

(9.2)

If the data are discrete and have been grouped in a frequency distribution, Equations (9.1) and (9.2) can
be modified to provide for much greater computational efficiency. The sample mean can be computed as

and the sample variance as

where k is the number of distinct values of X and� is the observed frequency of the value � of X.

Example 9.5: Grouped Data

(9.3)

(9.4)

The dan; in Table 9.1 can be analyzed t? obtain n = lOO,J; = 12, X1 = O,fz = 10, � = 1 , . . . , L�a1.0X1 = 364,
and "' . = f.. X .2 = 2080. From Equanon (9.3), · k;=l J J . .

and, from Equation (9.4),

X =
364

= 3.64
IOO

82 =
2080 - 100(3.64)2 _

7.63
99

281

The sample standard deviation, S, is just the square root of the sample variance. In this case, S = M = 2.76.
Equations (9.1) and (9.2) would have yielded exactly the same results for X and S2•

It is preferable to use the raw data, if possible, when the values are continuous. However, data some­
times are received after having been placed in class intervals. Then it is no longer possible to obtain the exact
sample mean and variance. In such cases, the sample mean and sample variance are approximated from the
following equations:

(9.5)

and

(9.6)

where� is the observed frequency in the jth class interval, mi is the midpoint of the jth interval, and c is the
number of class intervals.

Example 9.6: Continuous Data in Class Intervals
Assume that the raw data on component life shown in Example 9.3 either was discarded or was lost.
However, the data shown in Table 9.2 are still available. To approximate values for X and S2, Equations (9.5)
and (9.6) are used. The following values are created:/1 = 23, m1 = I .5,fz = 10, m2 = 4.5, . . . , r;:Jimi = 614

"' 49 2 -
and ki=tf;mj = 37,226.5. With n 50, X is approximated from Equation (9.5) as

x = 614
= 12.28

50

Then, S2 is approximated from Equation (9.6) as

and

37,226.5- 50(12.28)2 605.849
49

s 24.614

Applying Equations (9.1) and (9.2) to the original data in Example 9.3 results in X = 1 1 .894 and S = 24.953.
Thus, when the raw data are either discarded or lost, inaccuracies could result.

9.3.2 Suggested Estimators

Numerical estimates of the distribution parameters are needed to reduce the family of distributions to a specific
distribution and to test the resulting hypothesis. Table 9:3 contains suggested estimators for distribu­
tions often used in simulation, all of which were described in Chapter 5. Except for an adjustment to remove
bias in the estimate of cr2 for the normal distribution, these estimators are the maximum-likelihood estima­
tors based on the raw data. (If the data are in class intervals, these estimators must be modified.) The reader

282 DISCRETE-EVENT SYSTEM SIMULATION

Table 9.3 Suggested Estimators for Distributions Often Used in Simulation

Distribution Parameter(s)

Poisson a

Exponential A.

Gamma {3, 8

Normal P. a
'

Lognormal P. a
'

Wei bull a, {3
with v= O

Beta

Sug�;ested Estimator(s)

[3 (see Table A.9)

iJ=-l:
X

[l = X
(12

= sl (unbiased)

X (after taking In of the data)

[Jl = s' (after taking In of the data)

. x
f3o = s

A A tJJJ•I) f11 = Pi-1 - r<]J1_1)
See Equations (9.12) and (9.15)

forf(P) andj'(/j)
Iterate until convergence

'f'<]J,J+ '¥<]3, -A> = ln(G1l

'¥(/j2) +'¥(/j1 - p,) = ln(G,)

where '¥ is the digamma function,

G, =(n;.1x,f and
a, =(IT.,o - x,>)"'

is referred to FIShman [1973] and Law and Kelton [2000] for parameter estimates for the uniform, binomial,
and negative binomial distributions. The triangular distribution is usually employed when no data are avail­
able, with the parameters obtained from educated guesses for the minimum, most likely, and maximum
possible values; the uniform distribution may also be used in this way if only minimum and maximum values
are available.

·

Examples of the use of the estimators ate given in the following paragraphs. The reader should keep in
mind that a parameter is an unknown coriStant, but the estimator is a statistic (or random variable), because
it depends ()ri the sample values. To distinguish the two clearly here, if, say, a parameter is denoted by a, the
estimatorwill be denoted by. a:

Example 9.7: Poisson Distribution

Assume that the anival data in Table 9. 1 require analysis. By comparison with Figure 5. 7, an examination
of Figure 9.2 suggests a Poisson distributional assumption with unknown paia.meter a. From Table 9.3, the
estimator of a is X, which was found in Example 9.5. Thus, a = 3.64. Recall that the true mean and vari­
ance are equal for the Poisson distribution. In Example 9.5, the sample variance was estimated as S2 = 7.63.
However, it should never be expected tnat the sample mean and the sample variance will be precisely equal,
because each is a random variable.

Example 9.8: Lognormal Distribution

The rates of return on 10 investments in a portfolio are 18.8, 27 .9, 21 .0, 6. 1, 37.4, 5.0, 22.9, 1 .0, 3. 1 and 8.3
percent. To estimate the parameters of a lognormal model of these data, we first take the natural log of the
data and obtain 2.9, 3.3, 3.0, 1 .8, 3.6, 1 .6, 3 . 1, 0, 1 . 1, and 2.1. Then we set [1 = X = 2.3 and a2 = S2 1 .3·

Example 9.9: Normal Distribution

The parameters of the normal distribution, p. and <r2, are estimated by X and S2, as shown in Table 9.3.
The q - q plot in Example 9.4 leads to a distributional assumption that the installation times are normal.
From Equations (9.1) and (9.2), the data in Example 9.4 yield [1 = X = 99.9865 and a = S2 = (02832i
second2•

Example 9.10:. Gamma Distribution

The estimator f3 for the gamma distribution is chosen by the use of Table A.9, from Choi and Wette [1969].
Table A.9 requires the computation of the quantity liM, where

(9.7)

Also, it can be seen in Table 9.3 that (;J is given by

. l
(;) = = (9.8)

X

In Chapter 5, it was stated that lead time is often gamma distributed. Suppose that the lead times (in days) ·

associated with 20 orders have been accurately measured as follows:

Lead Tll!le Lead 1ime
Order (Days) Order (Days)

1 70.292 l l 30.215
2 10.107 12 17.137
3 48.386 l3 44;024
4 20.480 14 10.552
5 13.053 15 37.298
6 25.292 . 16 16.314
7 14.713 17 . 28.073
8 39.166 18 39.019
9 17.421 19 32.330

10 13.905 20 36.547

284 DISCRETE-EVENT SYSTEM SIMULATION

To estimate {J and 6, it is first necessary to compute M from Equation (9.7). Here, X is found, from
Equation (9. 1), to be ·

Then,

Next,

Then,

and

x = 564·32 = 28.22
20

1n x = 3.34

20
L, ln X, = 63.99 i�t

M = 3.34 -
63·99 = 0.14

20

liM = 7.1 4

B y interpolation i n Table A.9, P = 3.728. Finally, Equation (9.8) results in

Example 9.11: Exponential Distribution

A 1 9 = - = 0.035
28.22

Assuming that the data in Example 9.3 come from an exponential distribution, the parameter estimate, can be determined. In Table 9.3, i is obtained from X as follows:

� 1 1 II. = -= = 0.084 per day
. X 1 1.894

Example 9.12: Weibull Distribution
Suppose that a random sample of size n, X., X2, • • • , x •. has been taken and that the observations are assumed
to come from a Weibull distribution. The likelihood function derived by using the pdf given by Equation
(5.47) can be shown to be

L(a, J3) = P;, [n xt'>]exp[-t(x,)P] a i•t ,., a {9.9)

The maximum-likelihood estimates are those values of a and /3 that maximize L(a, /3) or, equivalently,
maximize lnL(a, fj), denoted by l(a, /3). The maximum value of l(a, /3) is obtained by taking the partial
derivatives at(a, f3)Jaa and iJl(a, f3)/df3, setting each to zero, and solving the resulting equations, which after
substitution .become

/(/3) = 0 (9.10)

and

where

(1 •)''P a= -L,xf
n i=J

• n"' ' XPin X
f(/3) = !!.+ L, ln xi - ""•·t. ' p '

/3 ,., L, i=l x,

285

{9. 1 1)

(9.12)

The maximum-likelihood estimates, a and P, are the solutions of Equations (9. 1 0) and (9.1 1). First,
{3 is found via the iterative procedure explained shortly. Then a is found from Equation (9 . 1 1), with /3 = {3.

Equation (9.10) is nonlinear, so)t is necessary to use a numerical-analysis technique to solve it In Table 9.3,
an iterative method for computing P is given as

(9. 13)

Equation (9.1}) employs Newton's method in reaching P, where Pi is the jth iteration, beginning with an initial
estimate for P 0, given in Table 9.3, as follows:

(9.14)

If the initial estimate, /3 0, is sufficiently close to the solution /J, then P J approaches /3 as j � =. In Newton's
method, {J is approached through increments of size f(fji_,) IJ'<ft1_). Equation (9. 12) is used to compute

f(fji_1) and Equation (9. 15) is used to compute, f'(jji-1) as follows:

(9.15)

Equation (9.15) can be derived from Equation (9. 12) by differentiatingf(/3) with respect to f3. The iterative
process continues until J<ft,) = Q, for example, until lf<P)I� 0.001.

Consider the data given in Example 9.3. These data concern the failure o,_f electronic components and looks
to come from an exponential distribution. In Example 9. 1 1 , the parameter II. was estimated on the hypothesis
that the data were from an exponential distribution. If the hypothesis that the data came from an exponential
distribution is rejected, an alternative hypothesis is that the data come from a Weibull distribution. The Weibull
distribution is suspected because the data pertain to electronic component failures, �hich occur �uddenly.

Equation (9.14) is used to compute P 0• For the data in Example 9.3, n = 50, X = I 1 .894, X2 = 141.467,
and L, ::, x; = 37,575.850 ; so S2 is found by Equation (9.2) to be

82
= 37,578.850 -50(141.467) = 622.650

49

and S = 24.953. Thus,

� = 1 1 .894 = 0.477 0 24.953

To compute /31 by usi�g Equation (9.13) requires the calculation ofj(P 0) andf'(P0) from Equations (9.12)
50

• 50
and (9. 15). The following additional values are needed: L 1=1 X1fl. = 1 15.125, L1=1 ln X, = 38.294,

50 " SO A, L 1=1Xt" ln X1 = 292.629, and L ,=1 X, (In XY = 1057.781 . Thus,

and

1 <P > = � + 38.294- 50<292·629> 16.024
0 0.477 1 15.125

J'(/Jo) �- 50(1057.781) + 50(292.629)2 = _356.1 10
(0.477)2 1 15.125 (1 15.125)2

Then, by Equation (9.13),

fJA 0.477- 16.024 0.522 I -356. 1 10

After four iterations, I/(JJ3 >I � 0.001, at which point P = [34 = 0.525 is the approximate solution to
Equation (9.10). Table 9.4 contains the values needed to compJete each iteration.

Now, a can be computed from Equation (9. 1 1) with fJ = fJ = 0.525, as follows:

1/0.525
a = [13�:8] 6.227

If P 0 is sufficiently close to P, the procedure converges quickly, usually in four to five iterations.
However, if the procedure appears to be diverging, try other initial gues"ses for P 0-for example, one-half the
initial estimate or twice the initial estimate.

•

The difficult task of estimating parameters for the Weibull distribution by hand emphasizes the value of
having software support for input modelirig. ·

j

0
1
2
3

Table 9.4 . Iterative Estimation of Parameters of the Weibull Distribution

pj
"' l:,xf'
i=l

0.477 1 15. 125
0.522 129.489
0.525 130.603
0.525 130.608

"' l:,XP'InX. . . i=l

292.629
344.713 .
348.769
348.786

50 • l:,x:' (lnX,)2
i=J

1057.781
1254. 1 1 1
1269.547
1269.614

t<P) f'<Pj>
16.024 -356.110

1 .008 -313.540
0.004 -310.853
0.000 -310.841

pj+l
0.522
0.525
0.525
0.525

INPUT MODELING

betaMLE := proc (X, n)
local Gl , G2 , betal , beta2 , eqns, solns ;
Gl : = product (X [il . i=l . . n) A {l/n) ;
G2 : = product (l-X [i) , i=l • . n) A (l/n) ;
eqns := {Psi (betal) - Psi (betal + beta2) = ln (Gl) ,

Psi (beta2) - Psi (betal + beta2) = ln (G2) } ;
solns : = fsolve (eqns, {betal=O . . infinity, beta2=0 . . infinity} l :
RETURN (solns) ;
end;

Figure 9.5 Maple procedure to compute the maximum likelihood estimates for the beta distribution
parameters.

Example 9.13: Beta Distribution

287

The per�ntage of customers each month who bring in store coupons must be between 0 and 100 percent.
Observations at a store for eight months gave the values 25%, 74%, 20%, 32%, 81%, 47%, .3 1 %, and 8%.
To fit a beta distribution to these data, we first need to rescale it to the interval (0, 1) by dividing all the values
by 100, to get 0.25, 0.74, 0.70, 0.32, 0.81 , 0.47, 0.31,.0.08.

·

The n1aximum-likelihood estimators of the parameters /Jp /32 solve the system of equations shown in
Table 9.3. Such equations can be solved by modem symbolic/numerical calculation programs, such as
�aple; a Map!� procedure for the beta parameters is shown in Figure 9.5. In this case, the solutions are
fJ1 L47 and Ji2= 2.16.

9.4 GOODNES5-0F·FIT TESTS

Hypothesis testing was discussed in Section 7.4 with respect to testing random numbers. In Section 7.4.1,
the Kolmogorov-8mirriov test and the chi-square test were introduced. These two tests are applied in this
section to hypotheses about distributional fonns ofinput data.

Goodness-of-fit tests provide helpful guidance for evaluating the suitability of a potential input model;
however, there is no single correct distribution in a real application, so you should not be a slave to the verdict
of such a test. It is especially important to underStand the effect of sample size. If very little data are available,
then a goodness-of-fit test is unlikely to reject any candidate distribution; but if a lot of data are available, then
a goodness-of-fit test will likely reject all candidate distributions. Therefore, failing to reject a candidate distri­
bution should be taken as one piece of evidence in favor of that choice, and rejecting an input model as only
one piece of evidence against the chOice.

. · ·

9.4.1 Chi·Square Test

One procedure for testing the hypothesis that a random sample of size n of the random variable X follows
a specific distributional form is the chi-square goodness-of-fit test. This test formalizes the intuitive idea of
comparing the histogram of the data to the shape of the candidate density or mass function. The test is valid
for large sample sizes and for both discrete and continuous distributional assumptions when parameters are
estimated by maximum likelihood. The test pi:ocedUre begins by arranging the n observations.into a set of
k class intervals or reDs. The test statistic is given by · ·

(9.16)

SIMULATION

where 01 is the observed frequency in the ith class interval and E1 is the expected frequency in that class
interval. The expected frequency for each class interval is computed as E1 np;, where p1 is the theoretical,
hypothesized probability associated with the ith class interval.

It can be shown that zJ approximately follows the chi-square distribution with k- s - I degrees of free­
dom, where s represents the number of parameters of the hypothesized distribution estimated by the sample
statistics. The hypotheses are the following:

H0: The random variable, X, conforms to the distributional assumption with the parameter(s) given by
the parameter estimate(s).

H1: The random variable X does not conform.

The critical value X�k-s-l is found in Table A.6. The null hypothesis, H0, is rejected if X� > X�.k-s+
When applying the test, if expected frequencies are too small, X� will reflect not only the departure of

the observed· from the expected frequency, but also the smallness of the expected frequency as well.
Although there is no general agreement regarding the minimum size of Ei' values of 3, 4, and 5 have been
widely used. In Section 7.4. 1 , when the chi-square test was discussed, the minimum expected frequency five
was suggested. If an E1 value is too small, it can be combined with expected frequencies in adjacent class
intervals. The corresponding 0; values should also be combined, and k should be reduced by one for each
cell that is combined.

If the distribution being tested is discrete, each value of the random variable should be a class interval,
unless it is necessary to combine adjacent class intervals to meet the minimum-expected-cell-frequency
requirement. For the discrete case, if combining adjacent cells is not required,

P; = p(x;) = P(X = x)

Otherwise, p1 is found by summing the probabilities of appropriate adjacent cells.
If the distribution being tested is continuous, the class intervals are given by [aH, a), where aH and a1

are the endpoints of the ith class interval. For the continuous case with assumed pdf j{x), or assumed cdf
F(x), p1 can be computed as

For the discrete case, the number of class intervals is determined by the number of cells resulting after
combining adjacent cells as necessary. However, for the continuous case, the number of class intervals must
be specified. Although there are no general rules to be folloWed, the recommendations in Table 9.5 are made
to .aid in determining the number of class intervals for continuous data.

Table 9.5 Recommendations for Number of Class
Intervals for Continuous Data

Sample Size,
n

20
50

100
>100

Number of Class Intervals,
k

Do not use the chi-square test
5 to 10

10 to 20
.Jn to n/5

INPUT MODELING

Example 9.14: Chi-Square Test Applied to Poisson Assumption
In Example 9.7, the vehicle-arrival data presented in Example 9.2 were analyzed. The histogram of the data,
shown in Figure 9.2, appeared to follow a Poisson distribution; hence the parameter, a = 3.64, was found.
Thus, the following hypotheses are formed:

H0: the random variable is Poisson distributed.
H1: the random variable is not Poisson distributed.

The pmf for the Pojsson distribution was given in Equation (5. 19):

() --, x= O, l, 2, ...
le-aax

p x = x!
0, otherwise

For a= 3.64, the probabilities associated with various values of X are obtained from Equation (9.17):

p(O) = 0.026
p(l) ;; 0.096
p(2) = 0.174
p(3) :;; 0.21 1
p(4) = 0.192
p(5) = 0.140

p(6) = 0.085
p(7) = 0.044
p(8) = 0.020
p(9) 0.008
p(10) 0.003
p(�l l) = 0.001

(9.17)

From this information, Table 9.6 is constructed. The value of E1 is given by np0 = 100(0.026) = 2.6. In a
similar manner, the remaining E1 values are computed. Since E1 = 2.6 < 5, E1 and E2 are combined. In that
case, 01 and 02 are also combined, and k is reduced by one. The last five class intervals are also combined,
for the same reason, and k is further reduced by four.

The calculated x5 is 27.68. The degrees of freedom for the tabulated value of X2 is k - s - l = 7 - 1 -
1 = 5. Here, s = l , since one parameter, a was estimated from the data. At the 0.05 level of significance, the
critical value X5.os.s is 1 1. 1 . Thus, H0 would be rejected at level of significance 0.05. The analyst, therefore,
might want to search for a better-fitting model or use the empirical distribution of the data.

Table 9.6 Chi-square GoodnesS-oF-fit Test for Example 9. 14

Observed FreiJuency, Expected Frequency, (01-E1)2
X; 0; E; _E_;_

0 12 } 22 �:: } 12.2 } 7.87
1 10

. 2 19 17.4 0.15
3 17 21.1 0.80
4 10 19,2 4.41
5 8 14.0 2.57
6 7 8.5 0.26
7 5 4.4
8 5 2.0 l 9 3 17 0.8 7.6 1 1.62

10 3 0.3
:1: 1 1 1 0.1

100 100.0 27.68

1 , ·.' ; ;

290 DISCRETE-EVENT SYSTEM SIMUlATION

9.4.2 Chi-Square Test with Equal Probabilities

If a continuous distributional assumption is being tested, class intervals that are equal in probability rather
than equal.in width of interval should be used. This has been recommended by a number of authors (Mann and
Wald, 1942; Gumbel, 1943; Law and Kelton, 2000; Stuart, Ord, and Arnold, 1998]. It should be noted that
the procedure is not applicable to data collected in class intervals, where tbe raw data have been discarded
or lost.

Unfortunately, there is as yet no method for figuring out the probability associated with each interval that
maximizes the power for a test of a given size. (The power of a test is defined as the probability of rejecting
a false hypothesis.) However, if using equal probabilities, then pi 1/k. We recommend

so substituting for pi yields

and solving for k yields

(9. 18)

Equation (9.18) was used in coming up with the recommendations for maximum number of class intervals
in Ta�le 9.5. . .

. . if the assumed distribution is normal, exponential, or Weibull, the method described in this section is
straightforward. Example 9.15 indicates how the procedure is accomplished for the exponential distribution.
If the assumed distribution is gamma (but not Erlaug) or certain other distributions, then the computation of
endpoints for class intervals is complex and could require numerical integration of the density function.
Statistical-analysis software is very helpful in such cases.

Example 9.15� Chi�Square Test for Exponential Distribution
In Example 9.1 1, the failure data presented in Example 9.3 were analyzed. The hlstogri!ID of �e data, shown
in Figure 9.3', appeared· to follow an exponential distribution, so the parameter l = II X = 0.084 was
computed. Thus, the following hypotheses are formed:

H0: the random variable is exponentially distributed.
H1: the random variable is not exponentially distributed.

In oriler to perform the chl�square �t with intervals of equal probability, the endpoints of the class inter-
. vals.must be found. Equation (9.18) indicates that the number of intervals should be less than or equal to n/5.

Here, n = 50, and so k ::; 10. In Table. 9.5, it is recommended that 7 to 10 class intervals be used. Let k = 8;
then each ipterval will have probability p = 0.125. The endpoints for each interval are computed from the cdf
for the exponential distribution, given in Equation (5.28), as follows:

(9.19)

INPUT MODELING 291

where a. represents the endpoint of the ith interval, i = 1, 2, . . . , k. Since F(a) is the cumulative area from
zero to � -. F(a.) ip, so Equation (9. 19) can be written as I I

or

e-.w, = l- ip

Taking the logarithm of both sides and solving for a; gives a general result for the endpoints of k equiprob­
able intervals for the exponential distribution:

a1 = -i ln(l - ip), i -= 0, l , . . . , k (9.20)

Regardless of the value of l, Equation (9.20) will always result in a0 = 0 and ak = ""· With i = 0.084 and
k = 8, a1 is computed from Equation (9.20) as

l
ln(l -0.125) = 1 .590

0.084 .

Continued application of Equation (9.20) for i = 2, 3, . . . , 7 results in a2, . . . , a7 as 3.425, 5.595, 8.252, 1 1 .677,
16.503, and 24.755. Since k = 8, a8 = =. The first interval is [0, 1.590), the second interval is [1.590, 3.425),
and so on. The expectation is that 0.125 of the observations will fall in each interval. The observations, the
expectations, and the contributions to the calculated value of xJ are shown in Table 9.7. The calculated
value of z2 is 39.6. The degrees of freedom are given by k - s l = 8 - 1 1 6. At a = 0.05, the tabulated
value of X� is 12.6. Since x2 > z�056, the null hypothesis is rejected. (The value of X�.Ol.6 is 16.8, so the 0.05,6 0 . .

0 01) null hypothesis would also be rejected at level of significance a = . .

Table 9.7 Chi-Square Goodness-of-Fit Test for Example 9. 1 5

Class Observed Frequency. Expected Frequency,

Interval oi E; El
[0, 1 .590) 19 6.25 26.01
[1.590, 3.425) 10 6.25 2.25
[3.425, 5.595) 3 6.25 0.81
(5.595, 8.252) 6 6.25 0.01
[8.252, 1 1.677) 6.25 4.41
[1 1.677, 16.503) 6.25 4.41
[16.503, 24.755) 4 6.25 0.81
[24.755, oo} 6 6.25 0.01

so 50 39.6

292 DISCRETE-EVENT SYSTEM SIMUlATION

9.4.3 Kolmogorov-Smimov Goodness-of.Fit Test

The chi-square goodness-of-fit test can accommodate the estimation of parameters from the data with a resultant
decrease in the degrees of freedom (one for each parameter estimated). The chi-square test requires that the data
be placed in class intervals; in the case of a continuous distriootional assumption, this grouping is arbitrary.
Changing the number of classes and the interval width affects the value of the calculated and tabulated chi-square.
A hypothesis could be accepted when the data are grouped one way, rut rejected when they are grouped another
way. Also, the distribution of the chi-square test statistic is known only approximately, and the power ef the test
is sometimes rather low. As a result of these considerations, goodness-of-fit tests other than the chi-square, are
desired. The Kolmogorov-Smimov test formalizes the idea behind examining a q - q plot

·

The Kolmogorov-Smirnov test was presented in Section 7.4.1 to test for the uniformity of numbers.
Both of these uses fall into the category of testing for goodness of fit Any continuous distributional assump­
tion can be tested for goodness of fit by using the method of Section 7.4.1.

The Kolmogorov-Smimov test is particularly useful when sample sizes are small and when no param­
eters have been estimated from the data. When parameter estimates have been made, the critical values in
Table A.8 are biased; in particular, they are too conservative. In this context, "conservative'' means that the
critical values will be too large, resulting in smaller 1Ype I (a) errors than those specified. The exact value
of a can be worked out in some instances, as is discussed at the end of this section.

The Kolmogorov-Smirnov test does not take any special tables when an exponential distribution is
assumed. The following example indicates how the test is applied in this instance. (Notice that it is not nec­
essary to estimate the parameter of the distribution in this example, so we may use Table A.8.)

Example 9.16: Kolmogorov-Smimov Test for Exponential Distribution
Suppose that 50 interarrival times (in minutes) are collected over the following 1 00-minute interval (arranged
in order of occurrence):

0.44 0.53 2.04 2.74 2.00 0.30 2.54 0.52 2.02 1.89 1 .53 0.21
2.80 0.04 1 .35 8.32 2.34 1 .95 0.10 1 .42 0.46 O.o7 1 .09 0.76
5.55 3.93 1 .07 2.26 2.88 0.67 1 . 12 0.26 4.57 5.37 0.12 3.19
1 .63 1 .46 1.08 2.06 0.85 0.83 2.44 !.02 2.24 2. 1 1 3.15 2.90
6.58 0.64

The null hypothesis and its alternate are formed as follows:

H0: the interwival times are exponentially distributed.
H1: the interarrival times are not exponentially distribpted.

The data were collected over the interval from 0 to T = 100 minutes. It can be shown that, if the under­
lying distribution of interarrival times { T1, T2, . . . J is exponential, the arrival times are uniformly distributed
on the interval (0, T). The arrival times Tl' T1 + T2, T1 + T2 + T3, . . . , T1 + .. . + T are obtained by adding
interarrival times. The arrival times are then normalized to a (0, 1) interval ; that the Kolmogorov­
Smimov test, as presented in Section 7.4.l ,.can be applied. On a (0, I) interval, the points will be [T1/T,
(T1 + T2)fT, .. . , (T1 + · · · + T50)fT]. The resulting 50 data points are as follows:

0.0044 0.0097 0.0301 0.0575 0.0775 0.0805 0.1059 0.1 1 1 1 0.1 3 13 0.1502
0.1655 0.1676 0.1956 0.1960 0.2095 0.2927 0.3161 0.3356 0.3366 0.3508
0.3553 0.3561 0.3670 0.3746 0.4300 0.4694 0.4796 0.5027 0.5315 0.5382
0.5494 0.5520 0.5977 0.6514 0.6526 0.6845 0.7008 0.7154 0.7262 0.7468
0.7553 0.7636 0.7880 0.7982 0.8206 0.8417 0.8732 0.9022 0.9680 0.9744

INPUT MODEliNG 293

Following the procedure in Example 7.6 produces a D+ of 0. 1054 and a v- of 0.0080. Therefore, the
Kolmogorov-Smirnov statistic is D = max(0.1054, 0.0080) = ·o. l054. The critical value of D obtained from ·
Table A.8 for a level of significance of a= 0.05 and n 50 is Do.os = 1.36 f J;;. = 0.1923; but D = 0.1054, so
the hypothesis that the interarrival times are exponentially distributed cannot be rejected.

The Kolmogorov-Smimov test has been modified so that it can be used in several situations where the
parameters are estimated from the data. The computation of the test statistic is the same, but different tables
of critical values are used. Different tables of critical values are required for different distributional assump­
tions. Lilliefors [1967] developed a test for normality. The null hypothesis states that the population is one
of the family of normal distributions, without specifying the parameters of the distribution. The interested
reader might wish to study Lilliefors' original work; he describes how simulation was used to develop the
critical values.

Lilliefors [1969] also modified the critical values of the Kolmogorov-Smimov test for the exponential
distribution. Lilliefors again used random sampling to obtain approximate critical values, but Durbin (1975]
subsequently obtained the exact distribution. Connover [1998] gives examples ofKolmogorov-Smimov tests
for the normal and exponential distributions. He also refers to several other Kolmogorov-Smimov-type tests
that might be of interest to the reader.

A test that is similar in spirit to the Kolmogorov-Smirnov test is the Anderson-Darling test. Like the
Kolmogorov-Smimov test, the Anderson-Darling test is based on the difference between the empirical cdf and
the fitted cdf; unlilce the Kolmogorov-Smimov test, the Anderson-Darling test is based on a more compre­
hensive measure of difference (not just the maximum difference) and is more sensitive to discrepancies in ·the
tails of the distributions. The critical values for the Anderson-Darling test also depend on the candidate distri­
bution and on whether parameters have been estimated. Fortunately, this test and the Kolrilogorov-Smimov test
have been implemented in a number of software packages that support simulation-input modeling.

9.4.4 p·Values and "Best Fits"

To apply a goodness-of-fit test, a significance level must be chosen. Recall that the significance level is the
probability of falsely rejecting H0: the random variable conforms to the distributional assumption. The tra­
ditional significance levels are 0. 1, 0.05 and 0.01 . Prior to the availability of high-speed computing, having
a small set of standard values made it possible to produce tables of useful critical values. Now most statisti­
cal software computes critical values as needed, rather than storing them in tables. Thus, the analyst can
employ a different level of significance-say, 0.07.

However, rather than require a prespecified significance level, many software packages compute a
p-value for the test statistic. The p-value is the significance level at which one would just reject H0 for the
given value of the test statistic. Therefore, a large p-value tends to indicate a good fit (we would have to
accept a large chance of error in order to reject), while a small p-value suggests a poor fit (to accept we would
have to insist on almost no risk).

Recall Example 9.14, in which a chi-square test was used to check the Poisson assumption for the vehi­
cle-arrival data. The value of the test statistic was X�= 27 .58, with 5 degrees of freedom. The p-value for this
test statistic is 0.00004, meaning that we would reject the hypothesis that the data are Poisson at the 0.00004
significance level. (Recall that we rejected the hypothesis at the 0.05 level; now we know that we would also
to reject it at even lower levels.)

The p-value can be viewed <:15 a measure of fit, with larger values being better. This suggests that we
could fit every distribution at our disposal, compute a test statistic for each fit, and then choose the distribu­
tion that yields the largest p-value. We know of no input modeling software that implements this specific
algorithm, but many such packages do include a "best. fit" option, in which the software recommends an
input model to the user aftir evaluating all feasible models. The software might also take into account other
factors--such as whether the data are discrete or continuous, bounded or unbounded-but, in the end, some

294 DISCRETE-EVENT SYSTEM SIMULATION

summary measure of fit, like the p-value, is used to rank the distributions. There is nothing wrong with this,
but there are several things to keep in mind:

1. The software might know nothing about the physical basis of the data, whereas that information can
suggest distribution families that are appropriate. (See the list in Section 9 .2.2.) Remember that the
goal of input modeling is often to fill in gaps or smooth the data, rather than find an input model that
conforms as closely as possible to the given sample.

2. Recall that both the Erlang and the exponential distributions are special cases of the gamma and that
the exponential is also a special case of the more flexible Weibull. Automated best-fit procedures tend
to choose the more fl�xible distributions (gamma and Weibull over Erlang and exponential), because
the extra flexibility allows closer conformance to the data and a better summary measure of fit. But
again, close conformance to the data does not always lead to. the most appropriate input model.

3. A summary statistic, like the p-value, is just that, a summary measure. It says little or nothing about
where the lack of fit occurs (in the body of the distribution, in the right tail, or in the left tail). A human,
using graphical tools, can see where the lack of fit occurs and decide whether or not it is important for
the application at hand.

Our recommendation is that automated distribution selection be used as one of several ways to suggest
candidate distributions. Always inspect the automatic selection, using graphical methods, and remember that
the final choice is yours.

9.5 FlmNG A NONSTATIONARY POISSON PROCESS

Fitting a nonstationary Poisson process (NSPP) to arrival data is. a difficult problem, in general, because we
seldom have knowledge about the appropriate form of the arrival rate function A. (t). (See Chapter 5, Section
5.5 for the definition of a NSPP). One approach is to choose a very flexible model with lots of parameters and
fit it with a method such as maximum likelihood; see Johnson, Lee, and Wilson [1994] for an example of this
approach. A second method, and the one we consider here, is to approximate the arrival rate as being constant
over some basic interval of time, such as an hour, or a day, or a month, but varying from time interval to time
interval. The problem then becomes choosing the basic time interval and estimating the arrival rate within
each interval.

Suppose we need to model arrivals over a time period, say [0, T]. The approach that we describe is most
appropriate when it is possible to observe the time period [0, T] repeatedly and count arrivals. For instance,
if the problem involves modeling the arrival of e-mail throughout the business day (8 A.M. to 6 P.M.), and we
believe that the arrival rate is approximately constant over half-hour intervals, then we need to be able to
count arrivals during half-hour intervals for several days. If it is possible to record actual arrival times, rather
than counts, then actual arrival times are clearly better since they can later be grouped into any interval
lengths we desire. However, we will assume from here on that only counts are available.

Divide the time period [0, T] into k equal intervals of length 11t = Tlk. For instance, if we are considering
a 1 0-hour business day from 8 A.M. to 6 P.M. and if we allow the rate to change every half hour, then T = I 0,
k= 20, and 11t= 112. Over n periods of observation (e.g., n days), let Cij be the number of arrivals that occurred
during the ith time interval on the jth period of observation. In our example, C23 would be the number of
arrivals from 8:30 A.M. to 9 A.M. (second half-hour period) on the third day of observation.

The estimated arrival rate during the ith time period, (i - 1)11t < t � i 11t, is then just the average number
of arrivals scaled by the length of the time interval:

' l • A.(t) =-L,Cij
nl1t j=l

(9.21)

INPUT MODELING 295

Table 9.8 Monday E-mail Arrival Data for NSPP Example

Number of Arrivals

Time Period Day l Day 2 Day] Estimated Arrival Rate (arrivals/hour)

8:00-8:30 12 14 10 24
8:30-9:00 23 26 32 54
9:00-9:30 27 19 32 52
9:30-10:00 20 13]2 30

After the arrival rates for each time interval have been estimated, adjacent intervals whose rates appear to be
the same can be combined.

For instance; consider the e-mail arrival counts during the first two hours of the business day on three
Mondays, shown in Table 9.8. The estimated arrival rate for 8:30--9:00 is

1
-- (23+26+32) = 54 arrivals/hour
3(1 / 2)

After seeing these results we might consider combining the interval 8:30--9:00 with the interval 9:00--9:30,
becaus� the rates are so similar. Note also that the goodness-of-fit tests described in the previous section can
be apphed to the data from each time interval individually, to check the Poisson approximation.

9.6 SELECTING INPUT MODELS WITHOUT DATA

Unfortunately, it is often necessary in practice to develop a simulation model-perhaps for demonstration
purposes or a preliminary study--before any proeess data are available. In this case, the modeler must be
resourceful in choosing input models and must carefully check the sensitivity of results to the chosen models.

There are a number of ways to obtain information about a process even if data are not available:
Engineering data: Often a product or process has performance ratings provided by the manufacturer

(for example, the mean time to failure of a disk drive is 10000 hours; a laser printer can produce
8.pages/�ute; the cutting speed of a tool is 1 em/second; etc.). Company rules might specify time
or productJon standards. These values provide a starting point for input modeling by fixing a central
value.

Expert op�on: �� �o peop�e ��o are experie?ced �ith the process or similar processes. Often, they
. can prov1de optm_ustJc, pessmustlc, and most-likely tJmes. They might also be able to say whether the

pr�s is nearly �nstan� o� hi�hly variable, and they might be able to define the source of variability.
Physical or conventional limitations: Most real processes have physical limits on performance-for

example, computer data entry cannot be faster than a person can type. Because of company policies,
there could be upper limits on how long a process may take. Do not ignore obvious limits or bounds
that narrow the range of the input process.

The nature of the process: The description of the distributions in Section 9.2.2 can be used to justify
a particular choice even when no data are available. .

When data are not available, the uniform, triangular, and beta distributions are often used as illput models.
The uniform can be a poor choice, because the upper and lower bounds are rarely just as likely as the central

296 DISCRETE-EVENT SYSTEM SIMULATION

values in real processes. If, in addition to upper and lower bounds, a most-likely value can be given, then the
triangular distribution can be used. The triangular distribution places much of its probability near the most­
likely value, and much less near the extremes. (See Section 5.4.) If a beta distribution is used, then be sure
to plot the density function of the selected distribution; the beta can take unusual shapes.

A useful refinement is obtained when a minimum, a maximum, and one or more "breakpoints" can be
given. A breakpoint is an intermediate value together with a probability of being less than or equal to that
value. The following example illustrates how breakpoints are used.

Example 9.17
For a production-planning simulation, the sales volume of various products is required. The salesperson
responsible for product XYZ-123 says that no fewer than l 000 units will be sold (because of existing con­
tracts) and no more than 5000 units will be sold (because that is the entire market for the product). Given her
experience, she believes that there is a 90% chance of selling more than 2000 units, a 25% chance of selling
more than 3500 units, and only a I% chance of selling more than 4500 units.

Table 9.9 summarizes this information. Notice that the chances of exceeding certain sales goals have
been translated into the cumulative probability of being less than or equal to those goals. With the informa­
tion in this form, the method of Section 8.1.5 can be employed to generate simulation-input data.

When input models have been selected without data, it is especially important to test the sensitivity
of simulation results to the distribution chosen. Check sensitivity not only to the center of the distribution,
but also to the variability or limits. Extreme sensitivity of output results to the input model provides a
convincing argument against making critical decisions based on the results and in favor of undertaking data
collection.

For additional discussion of input modeling in the absence of data, see Pegden, Shannon, and Sadowski
[1995].

9.7 MULTIVARIATE AND TIME-SERIES INPUT MODELS

In Sections 9.1-9.4, the random variables presented were considered to be independent of any other vari­
ables within the context of the problem. However, variables may be related, and, if the variables appear in a
simulation model as inputs, the relationship should be investigated and taken into consideration.

Example 9.18
An inventory simulation �eludes the lead time and annual demand for industrial robots. An increase in
demand results in an increase in lead time: The final assembly of the robots must be made according to the
specifications of the purchaser. Therefore, �her than treat lead time and demand as independent random
variables, a multivariate input model should be developed.

Table 9.9 Summary of Soles Information

1
2
3
4

Interval
(Sales)

!OOO � x � 2000
2000 < x � 3500
3500 < x � 4500
4500 < x � 5000

Cumulative
. Frequency, c1

0. 10
0.75
0.99
1.00

INPUT MODELING

Example 9.19
A simulation of the web-based trading site of a stock broker includes the time between arrivals of orders to
buy and sell. Investors tend to react to what other investors are doing, so these buy and sell orders arrive in
bursts. Therefore, rather than treat the time between arrivals as independent random variables, a time-series
model should be developed.

We distinguish multivariate input models of a fixed, finite number of random variables (such as the two
random variables lead time and annual demand in Example 9.1 8) from time-series input models of a (con­
ceptually infinite) sequence of related random variables (such as the successive times between orders in
Example 9 .19). We will describe input models appropriate for these examples after reviewing two measures
of dependence, the covariance and the correlation.

9.7.1 Covariance and Correlation

Let X1 and X2 be two random variables, and let Jl.; = E(X;) and 0'� = V(X) be the inean and variance of
Xi' respectively. The covariance and correlation are measures of the linear dependence between X1 and X2•
In other words, the covariance and correlation indicate how well the relationship between X1 and X2 is
described by the model

(Xl -p.l) = fJ(X2 -p.2).+ t:

where *' is a random variable with mean 0 that is independent of X2. If, in fact. (X1 - p.1) = p (X2 - Jl.i), then
this model is perfect. On the other hand, if X1 and � are statistically independent. then p = 0 and the model
is of no value. In general, a positive value of P indicates that X1 and X2 tend to be above or below their means
together; a negative value of p indicates that they tend to be on opposite sides of their means.

The covariance between XI and x2 is defined to be

(9.22)

The value cov(Xl' X2) = 0 implies p = 0 in our model of dependence, and cov(XI' �) < 0 (>0) implies p < 0 (>0).
The covariance can take any value between -co and ""· The correlation standardizes the covariance to be

between -1 and I :

(9.23)

Again, the value corr(XI' �) = 0 implies P = 0 in our model, and corr(X1, X2) < 0 (>0) implies p < 0 (>0).
The closer p is to -1 or l , the stronger the linear relationship is between X1 and Xz.

Now suppose that we have a sequence of random variables XI' Xz, X3, • • • that are identically distributed
(implying that they all have the same mean and variance), but could be dependent We refer to such a
sequence as a time series and to cov(X,, X,+h) and corr(X,, Xr+h) as the lag-h autocovariance and lag-h auto·
correlation, respectively. If the value of the autocovariance depends olily on h and not on t, then we say that
the time series is covariance stationary; this concept is discussed further in Chapter I I . For a covariance-
stationary time series, we use the shorthand notation

·

p,. = corr(X,, x,.,)

for the lag-h autocorrelation. Notice that autocorrelation measures the dependence between random variables
that are separated by h - l others in the time series.

298 DISCRETE-EVENT SYSTEM SIMULATION

9.7.2 Multivariate Input Models

If X1 and X2 each are normally distributed, then dependence between them can be modeled by the bivariate
normal Qistribution with parameters /li, 112· crt, cr�. and p = corr(X" X2). Estimation of 11" 112· cr�, and cri was
described in Section 9.3.2. To estimate p, suppose that we have n independent and identically distributed
pairs (XII, X21), (X12, X.,.), . . . , (XIn' X2n). Then the sample covariance is

I (� - -) = - £.JXyX21 -nX1X2 n- 1 1•1

where XI and x2 are the sample means. The correlation is estimated by

• cov(X�> X� p = • • <

<11<12

where &1 and &2 are the sample variances.

Example 9.20: Example 9.18 Continued

(9.24)

(9.25)

Let X1 represent the average lead time to deliver (in months), and � the annual demand, for industrial robots.
The following data are available on demand and lead time for the last ten years:

lead time demand

6.5 103
4.3 83
6.9 1 16
6.0 97
6.9 1 1 2
6.9 104
5.8 106
7.3 109
4.5 92
6.3 96

Standard calculations give XI = 6.14, a, = 1.02, x2 = 101.80, and &2 = 9.93 as estimates of !1 ' C1 ' IL
d ' l "' . th . l l r:z, an <12, respective y • • o estimate e correlation, we need

10 l.;xljX21 = 6328.5
J=l <

Therefore, � = [6328.5 -(10)(6.14)(101.80)]/(10- 1) = 8.66, and

• = 8•66 - 0.86 p (1.02)(9.93)

Clearly, lead time and demand are strongly dependent Before we accept this model, however, lead time and
demand should be checked individually to see whether they are represented well by normal distributions.

INPUT MODEUNG 299

In particular, demand is a discrete-valued quantity, so the continuous normal distribution is certainly at best
an approximation.

The following simple algorithm can be used to generate bivariate normal random variables:

Step l. Generate Z1 and Z2, independent standard normal random variables (see Section 8.3. 1) .
Step 2. Set X1 = P.1 + cr1Z1

Step 3. Set X2 112 +cr2 (pz, +�l- iz2)
Obviously, the bivariate normal distribution will not be appropriate for all multivariate-input modeling

problems. It can be generalized to the k-variate normal distribution to model the dependence among more
than two random variables, but, in many instances, a normal distribution is not appropriate in any form. We
provide one method for handling nonnormal distributions in Section 9.7.4. Good references for other mod­
els are Johnson [1987] and Nelson and Yamnitsk:y [1998] .

9.7.3 Time·Series Input Models

If xl' X:v x3, . . . is a sequence of identically distributed, but dependent and covariance-stationary random vari­
ables, then there are a number of time series models that can be used to represent the process. We will
describe two models that have the characteristic that the autocorrelations take the form

for h = 1 , 2, . . . Notice that the lag-h autocorrelation decreases geometrically as the lag increases, so that
observations far apart in time are nearly independent. For one model to be shown shortly, each X, is normally
distributed; for the other model, each X, is exponentially distributed. More general time-series input models are described in Section 9.7.4 and in Nelson and Yamnitsk:y [1998].

AR(1) MODEL Consider the time-series model

(9.26)

for t = 2, 3, . . . , where t1• �· . . . are independent and identically (normally) distributed with mean 0 and
variance cr! , and -1 < if/ < 1. If the initial value X1 is chosen appropriately (see shortly), then XI' X2, . . . are
all normally distributed with mean fl, variance a; /(1 -if/2) , and

ph = ifih
for h = 1, 2, This time-series model is called the autoregressive order-1 model, or AR(l) for short.

Estimation of the parameter if/ can be obtained from the fact that

the lag-1 autocorrelation. Therefore, to estimate if/, we first estimate the lag-1 autocovariance by

1 •-1
�<x,,x,+l> = -1 2.;(x, -i><x,+l -x) n- <=l

. 1 (n-1 _) = -, - 2.;X,X,+1 - (n- l)X2 n-1 r=l
(9.27)

300 DISCRETE-EVENT SYSTEM SIMULATION

and the variance u2 = var(X) by the usual estimator 82• Then

Finally, estimate J1. and u! by jl = X and

respectively.
The following algorithm generates a stationary AR(1) time series, given values of the parameters !p, fl,

and u;:

Step 1. Generate X1 from the normal distribution with mean J1. and v;mance u! /(1 . !p2) . Set t = 2.

Step 2. Generate 81 from the normal distribution with mean 0 and variance u;.

Step 3. Set X, = J.l. + !p (XH - J.l.) + 81•

Step 4. Set t = t + 1 and go to Step 2.

EAR(l) MODEL Consider the time-series model

X = {tPX,_1 , with probability tP
· ' !pX,_1 + 8,, with probability 1-tP (9.28)

for t = 2, 3, . • . , where 82, 83, • . . are independent and identically (exponentially) distributed with mean Ill
and 0 ::; !p < l . If the initial value X1 is chosen appropriately (see shortly), then X1, X2, • • • are all exponen­
tially distributed with mean 1/l and

for h = 1 , 2, This time�series model is called the exponential autoregressive order-1 model, or EAR(l) for
short. Only autocorrelations greater than 0 can be represented by this model. Estimation of the parameters
proceeds as for the AR(l) by setting tf = p, the estimated lag-1 autocorrelation, and setting i = ti X·

The following algorithm generates a stationary EAR(l) time series, given values of the parameters tP and l:

Step 1. Generate X1 from the exponential distribution with mean 1/A.. Set t = 2.

Step 2. Generate U from the uniform distribution on [0, 1]. If U :;;; !p, then set

Otherwise, generate 81 from the exponential distribution with mean 1/l and set

X, = !pX,_1 + 8,

Step 3. Set t = t + 1 and go to Step 2.

INPUT MODELING

Example 9.21: Example 9.19 Continued
The stock broker would typically have a large sample of data, but, for the sake of illustration, suppose that
the following twenty time gaps .between customer buy and sell orders had been recorded (in seconds): 1 .95,
1 .75, . 1 .58, 1 .42, 1 .28, 1 . 15, 1 .04, 0.93, 0.84, 0.75, 0.68, 0.61, 1 1 .98, 10.79, 9.71, 14.02, 12.62, 1 1.36, 10.22,
9.20. Standard calculations give X = 5.2 and u2 = 26.7. To estimate the lag-! autocorrelation, we need

19
:E x,x,+) = 924. 1
i�l

Thus, &;'V = [924. 1 -(20-1)(5.2)2}/(20-1) = 21.6, and

A 21 .6 0 8 p = = .
26.7

Therefore, we could model the interarrival times as an EAR(!) process with i = l/5.2 = 0.192 and � = 0.8,
provided that an exponential distribution is a good model for the intlivitllnol

9.7.4 The Normal-to-Anything Transformation

The bivariate normal distribution and the AR(l) and EAR(l) time-series models are useful input models that
are easy to fit and simulate. However, the marginal distribution is either normal or exponential, which is cer­
tainly not the best choice for many applications. Fortunately, we can start with a bivariate normal or AR(l)
model and transform it to have any marginal distributions we want (including exponential).

Suppose we want to simulate a random variable X with cdf F(x). Let Z be a standard normal random
variable (mean 0 and variance 1), and let <ll(z) be its cdf. Then it can be shown that

R = <I>(Z)

is a U(O, 1) random variable. As we learned in Chapter 8, if we have a U(O, 1) random variable, we can get
X by using the inverse cdf transformation

We refer this as the normal to anything transformation, or NORTA for short.
Of course, if all we want is X, then there is no reason to go to this trouble; we can just generate R directly,

using the methods in Chapter 8. But suppose we want a bivariate random vector (X1, X2) such that X1 and X2
are correlated but their distributions are not normal. Then we can start with a bivariate normal random vec­
tor (Z1, 2.t) and apply the NORTA transformation to obtain

There is not even a requirement that F; and Fz be from the same distribution family; for instance, r; could be
an exponential distribution and Fz a beta distribution.

The same idea applies for time series. If z, is generated by an AR(l) with N(O, 1) marginals, then

302 DISCRETE-EVENT SYSTEM SIMULATION

will be a time-series model with marginal distribution F(x). To insure that z, is N(O, l), we set J1. = 0 and a;=
1 tfJ2 in the AR(l) model. ·

Although the NORTA method is very general, there are two technical issues that must be addressed to
implement it:

1. The NORTA approach requires being able to evaluate that standard normal cdf, lfl(z), and the inverse
cdf of the distributions of interest, F1 (u) . There is no closed-form expression for <ll(z) and no closed­
form expression for F1 (u) for many distributions. Therefore, numerical approximations are required.
Fortunately, these functions are built into many symbolic calculation and spreadsheet programs, and
we give one example next In addition, Bratley, Fox, and Schrage [1 987] contains algorithms for many
distributions.

2. The correlation between the standard normal random variables (Zl' Z2) is distorted when it passes
through the NORTA transformation. To be more specific, if (Zl' �) have correlation p, then in

NORTARho :� proc (rhoX, n)
local Zl , Z2 , Ztemp, Xl, X2 , Rl , R2 , rho, rhoT, lower, upper ;
randomize (123456) ;
Zl : = [random [normald [O , l]] (n)] :
ZTemp : = [random[normald [O , l] l (n)] :
Z2 := [0] :

set up bisection search
rho : = rhoX:
if (rhoX < 0) . then

lower : = - 1 :
upper ·(= 0 :

else
lower 0 :
upper· L

fi :
Z2 := rho*Zl + sqrt (l -rho'2) *ZTemp :
Rl := statevalf [cdf , normald [O , l]] (Zl) :
R2 : = statevalf [cdf, normal d [O , ll l (Z2) :
Xl : = statevalf [icdf, exponential [l , O]] (Rl) :
X2 : = statevalf [icdf, beta (l , 2]] (R2) :
rhoT : = describe (linearcorrelation] (Xl, X2) ;
do bisection search until 5% relative error
while abs (rhoT - rhoX) /abs (rhoX) > 0 . 05 do

i£ (rhbT > rhoX) then
upper · - rho:

else
lower :: rho:

fi :
rho := evalf ((lower + upper) /2) :
Z2 : = rho*Zl + sqrt (l-rho'2) *ZTemp :
Rl : = statevalf [cdf, normald (O , l]] (Zl) :
R2 := statevalf [cdf, normald (O, l]] (Z2) :
X1 : = statevalf [icdf, exponential [l , O]] (Rl) :
X2 : = statevalf [icdf,beta [l, 2]] (R2) :
rhoT : = describe (linearcorrelat ion] (Xl, X2) ;

end do;
RETURN(rho) ;
end;

Figure 9.6 Mople procedure to estimote the bivariate normal correlation required for the NORTA method.

INPUT

general X1 = F;"1[ifl(Z1)] and X2 = F;-1[<1l(Z2)] will have a correlation Px '1: p. The difference is
often small, but not always.

The second issue is more critical, because in input-modeling problems we want to specify the bivariate
or lag- 1 correlation. Thus, we need to find the bivariate normal correlation p that gives us the input correla­
tion Px that we want (recall that we specify the time series model via the lag-1 correlation, Px = corr(X,. X1+1)).
There has been much research on this problem, including Carlo and Nelson [19%, 1 998] and Biller and
Nelson [2003]. Fortunately, it has been shown that Px is a nondecreasing function of p, and p and Px will
always have the same sign. Thus, we can do a relatively simple search based on the following algorithm:

Step 1. Set p = Px to start.

Step 2. Generate a large number of bivariate normal pairs (Zp Z1) with correlation p, and transform them
into (XI' X1)'s, nsing the NORTA transformation.

Step 3. Compute the sample correlation between (X1; X2), using Equation (9.24), and call it pT. If PT > Px.
then reduce p and go to Step 2; if PT < Px. then increase p and go to Step 2. If PT "' Px then stop.

Example 9.22
·
--------------------------,-­

Suppose we needed X1 to have an exponential distribution with mean l , X1 to have a beta distribution with
/31 = 1, /32 = 112, and the two o£ them to have correlation Px = 0.45. Figure 9.6 shows a procedure in Maple
that will estimate the required value of p. In the procedure, n is the number of sample pairs used to estimate
the correlation. Running this procedure with n set to 1000 gives p = 0.52.

9.8 SUMMARY

Input-data collection and analysis require major time and resource commitments in a discrete-event simula­
tion project. However, regardless of the validity or sophistication of the simulation model, unreliable inputs
can lead to outputs whose subsequent interpretation could result in faulty recommendations.

This chapter discussed four steps in the development of models of input data: collecting the raw
data, identifying the underlying statistical distribution, estimating the parameters, and testing for goodness
of fit.

Some suggestions were given for facilitating the data-collection step. However, experience, such as that
obtained by completing any of Exercises I through 5, will increase awareness of the difficulty of problems
that can arise in data collection and of the need for planning.

Once the data have been collected, a statistical model should be hypothesized. Constructing a histogram
is very useful at this point if sufficient data are available. A distribution based on the underlying process and
on the shape of the histogram can usually be selected for further investigation.

The investigation proceeds with the estimation of parameters for the hypothesized distribution.
Suggested estimators were given for distributions used often in simulation. In a number of instances, these
are functions of the sample mean and sample variance.

The last step in the process is the testing of the distributional hypothesis. The q - q plot is a useful
graphical method for assessing fit. The Kolmogorov-Smirnov, chi-square, and Anderson-Darling good­
ness-of-fit tests can be applied to many distributional assumptions. When a distributional asSumption is
rejected, another distribution is tried. When all else fails, the empirical distribution could be used in .the
model.

Unfortunately, in some situations, a simulation study must be undertaken when there is not time or
resources to collect data on which to base input models. When this happens, the analyst mnst use any available

··�· _,. .:.:.__..�·�· ·�·· · ·

304 DISCRETE-EVENT SYSTEM SIMULATION

information-such as manufacturer specifications and expert opinion-to construct the input models. When
input models are derived without the benefit of data, it is particularly important to examine the sensitivity of
the results to the models chosen.

Many, but not all, input processes can be represented as sequences of independent and identically dis­
tributed random variables. When inputs should exhibit dependence, then multivariate-input models are
required. The bivariate normal distribution (and more generally the multivariate normal distribution) is often
.used to represent a finite number of dependent random variables. Time-series models are useful for repre­
senting a (conceptually infinite) sequence of dependent inputs. The NORTA transformation facilitiu:es devel­
oping multivariate-input models with marginal distributions that are not normal.

REFERENCES

BILLER, B., AND B. L. NELSON [2003], "Modeling and Generating Multivariate Time Series with Arbitrary
Marginals Using an Autoregressive Teclmique," ACM Transactions on Modeling and Computer Simulation, Vol. 13,
pp. 21 1-237.

BRATLEY, P., B. L. FOX, AND L. E. SCHRAGE [1987], A Guide to Simulation, 2d ed., Springer-Verlag, New York.
CARIO, M. C., AND B. L. NELSON [1996], "Autoregressive to Auything: Time-Series Input Processes for Simulation,"

Operations Research Letters, Vol. 19, pp. 5 1-58.
CARIO, M. C., AND B. L. NELSON [1998], "Numerical Methods for Fitting and Simulating Autoregressive-to­

Auything Processes," INFORMS Journal on Computing, Vol. 10, pp. 72-81.
CHOI, S. C., AND R. WE'ITE [1969], "Maximum Likelihood Estimation of the Parameters of the Gamma Distribution

and Their Bias," Teclmometrics, Vol. 1 1, No. 4, pp. 683-890.
CHAMBERS, I. M., CLEVELAND, W. S., AND TUKEY, P. A. [1983], Graphical Methods for Data Analysis, CRC

Press, Boca Raton, FL.
CONN OVER, W. I. [1998), Practical Nonparametric Statistics, 3d ed., W!ley, New York.
DURBIN, J. [1975], "Kolmogorov-Smimov Tests When Parameters Are Estimated with Applications to Tests of

Exponimtiality and Tests on Spacings," Biometrika, Vol. 65, pp. 5-22.
FISHMAN, G. S. (1973], Concepts and Methods in Discrete Event Digital Simulation, Wiley, New York
GUMBEL, E. J. [1943], "On the Reliability of the Classical Chi-squared Test," Annals of Mathematical Statistics, VoL 14,

pp. 253ff.
HINES, W. W., D. C. MONTGOMERY, D. M. GOLDSMAN, AND C. M. BORROR (2002], Probability and Statistics

in Engineering and Management Science, 4th ed., Wiley, New York.
JOHNSON, M. A., S. LEE, AND J. R. WILSON (1994], "NPPMLE and NPPSIM: Software for Estimating and

Simulating Nonhomogeneous Poisson .Processes Having Cyclic Behavior," Operations Research Letters, Vol. 15,
pp. 273-282.

JOHNSON, M. E. [1987], Multivariate Statistical SimulaJion, Wiley, New York.
LAW, A. M., AND W. D. KELTON [2000], Simulation Modeling & Analysis, � ed., McGraw-Hill, New York.
LU..LIEFORS, H. W. [1967], "On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown,"

JoUI7Ul.l of the American Statistical Association, Vol. 62, pp. 339-402.
LILLIEFORS, H. W. [1969], "On the Kolmogorov-Smimov Test for the Exponential Distribution with Mean Unknown,"

Journal of the American Statistical Association, Vol. 64, pp. 387-389.
MANN, H. B., AND A. W ALD [1942], "On the Choice of the Number of Intervals in the Application of the Chi-squared

Test," Annals of Mathematical Statistics, Vol. 18, p. 50ff.
NELSON, B. L., AND M. Y AMNITSKY (1998], "'nput Modeling Tools for Complex Problems," in Proceedings of the

1998 Winter Simulation Conference, eds. D. Medeiros, E. Watson, J. Carson, and M. Manivannan, pp. 105-1 12, The
Institute for Electrical and Electronics Engineers, Piscataway, NJ.

PEGDEN, C. D., R. E. SHANNON, AND R. P. SADOWSKI (1995], Introduction to Simulation Using SIMAN, 2d ed.
McGraw-Hill, New York.

STUART, A., J. K. ORD, AND E. ARNOLD [1998], Kendall's Advanced Theory of Statistics; 6th ed., Vol. 2, Oxford
University Press, Oxford, NY. ·

INPUT MODEUNG

EXERCISES

1. In a college library, collect the following infOrmation at the books return counter:
arrival of students for returning books
serVice time taken by the counter clerk

305

Consolidate the data collected and verify whether it follows any standard distribution. (Prior penni · · f: ed th .
. SSIOn rom concern .au ontJ.es may be required)

2. � to a bank having single window operation. Collect information on arrival of customers, service tune,
_
etc. The �pe of transaction may vary from customer to customer. From service times observed, classtfy accordt

.
ng to �e type �f �on and fit arrival and service parameters separately for each type of transaction. (Prior pemnssmn from concerned authorities may be required.)

3. Go to a �jor traffic intersection, and record the interarrival-time distributions from each direction. Some amvals want to go straight, some tum left, some turn right. The interarrival-tim d" ...:b ti' · · d · e ISt.u U On vanes unng the day and by day of the week. Every now and then an accident occurs . .
4. Go to a. gr�e� store: and construct the interarrival and service distn"butions at the checkout counters, These dtstnb.utions IDlgh� vary by time of day and by day of week. Record, also, the number ofservice channels av&lable at all ttrnes. (Make sure that the management gives permission i:o perform this study.)
5. Go to a laundromat, and "relive" the authors' data-collection experience discussed in Example 9. 1 . (Make sure that the management gives permission to perform this study.)
6. Draw the pdf of normal distribution with J.l. = 6, a= 3 .
7. On one figure, draw the pdfs of the Erlang distribution where 8 = 1/2 and k = I, 2, 4, and 8
8. On one figure, draw the pdfs of the Erlang distribution where 8= 2 and k = 1, 2, 4, and 8.
9. Draw the pdf of Poisson distribution with a= 3, 5, and 6.

10. Draw the exponential pdf with A. = 0.5. In the same sheet, draw the exponential pdf with A. = 1.5.
11. Draw the exponential pdf with A.= l. In the same sheet, draw the exponential pdf with A.= 3.
12. The following data are generated randomly from a gamma distribution:

1.691
1 . 1 16
3.810
2.649
1 .843

1 .437
4.435
4.589
2.432
2.466

8.221
2.345
5.313
-1.581
2.833

Compute the maximum-likelihood estimators jJ and e.

5.976
1 .782

10.90
2.432
2.361

13. The following data are generated randomly from a Weibull distribution where v = o;

7.936 5.224 3.937 6.513
4.599 7.563 7.172 5.132
5.259 2.759 4.278 2.696
6.212 2.407 1.857 5.002
4.612 2.003 . 6.908 3.326

ji
, I\ ·I ii

306 DISCRETE-EVENT SYSTEM SIMULATION

Compute the maximum-likelihood estimators & and fj. (This exercise requires a programmable calcu­
lator, a computer, or a lot of patience.)

14. Time between failures (in months) of a particular bearing is assumed to follow normal distribution. The
data collected over 50 failures are

11.394 10.728 6.680 8.050 8.382
8.740 8.287 7.979 5.857 13.521

12.000 9.496 . 9.248 6.529 12.137
1 1.383 8. 135 1 1.752 10.040 8.615
8.686 6.416 9.987 1 1 .282 4.732
9.344 7.019 6.735 12.176 4.247

10.099 6.254 5.557 9.376 5.780
7. 129 7.835 9.648 4.381 5.801
8.334 9.454 8.486 7.256 10.963

10.544 10.433 10.425 10.Q78 7.709

Using K�Iffiogorov-Smirnov test, check whether the distribution follows normal.

15. Show that·ihe:Kolmogorov-Smimov test statistic for Example 9.16 is D == 0.1054.

16. Records pertaining to the monthly number of job-related injuries at an underground coalrnine were
being studied by a federal agency. The values for the past 100 months were as follows:

Injuries per Month

0
1
2
3
4
5
6

Frequency of Occurrence

35
40
13
6
4

(a) Apply the chi-square test to these data to test the hypothesis that the underlying distribution is
Poisson. Use the level of significance a== 0.05.

(b) Apply the chi-square test to these data to test the hypothesis that the distribution is Poisson with
mean 1.0. Again let a= 0.05. ·

(c) What are the differences between parts (a) and (b), and when might each case arise?

17. The interarrival time of tools for repair to a service station is assumed to follow exponential with A.= I. The data collected from 50 such arrivals are

1 .299 0.234 1 . 182 0.943 0.038
0.010 2.494 1 . 104 0.330 0.324
0.059 1 .375 ' 1 .660 1 .748 0.706
2.198 0.537 0.904 1.910 0.387
3.508 2.784 0.237 1 .137 0.990

INPUT MODEUNG

1.002
1.000
0.861
0.812
0.465

1 .594
0.143
1 .952
1.035
0.451

0.404
0.697
0.016
0.688
0.507

1.467
0.442
0.167
0.565
0.224

Based on appropriate test, check whether the assumption is valid.

0.905
0.395
2.245
0.1 55
1 .44 1

18. The time spent by customers (in minutes) based on a study conducted in the college canteen is

13. 125
14.151
16.365
13.650
13.763
16.643
21.285
12.995
14.300 '
18.778

12.972
17.541
18.946.
15.336
18.518
16.71 2
1 3.299
19.540
8.497

1 1 . 186

18.985
17.251
1 1 . 154
16.990
16.493
12.759
16.589
17.761
19. 149
16.263

12.041
13.400
1 1 .159
18.265
15.869
14.926
13.887
16.290
14.035
14.438

Using appropriate methods, determine how the time is distributed.

14.658
15.559
14.883
18.719
13.291
14.412
15.853
14.624
17.076
15.741

307

19. The time required for the transmission of a message (in minutes) is sampled electronically at a communi­
carious center. The last 50 values in the sample are as follows:

7.936
4.599
5:259
6.212
8.761
3.785
3.535

. 3.502
5.289
4.646

4.612
5.224
7.563
2.759
4.502
3.742
5.061
4.266
6.805
5.963

2.407
2.003
3 .937
7. 172
6.188
4.682
4.629
3.129
3.827
3.829

4.278
1.857
6.908
6.513
2.566
4.346
5.298
1 .298
3.912
4.404

5.132
2.696
5.002
3.326
5.5 15
5.359
6.492
3.454
2.969
4.924

How are the transmission times distributed? Develop and test an appropriate model

20. The time spent (in minutes) by a customer in a bus stop awaiting to board a bus is

'.: .. •

1 .07
7. 19
6.62

1 1.27
7.28

10.69
1 6.25
6.10
3.00

14.12

1 1.81
12.32
20.21
12.53
7.59

12.81
6.72
9.58
8.01
9.33

13.75
13.92
14.13
14.46
1 Ll6

308 DISCRETE-EVENT SYSTEM SIMULATION

10.38 1 1 .13 3.56 4.57 17.85
1 1 .97 16.96 5.04 13.77 6.60
14.34 11 .70 1 1 .95 9.24 9.65
13.88 8.93 12.72 9.00 0.89
13.39 10.37 20.53 9.92 3.49

Using appropriate methods, determine how the time is distributed.

21. Daily demands for transmission overhaul kits for the D-3 dragline were maintained by Earth Moving
Tractor Company, with the following results:

0 2 0 0 0
I 0 1 1 1
0 I 0 0 0
2 0 1 0 I
0 1 0 0 2
I 0 1 0 0
0 0 0 0 0
I 0 I 0 1
0 0 3 0 l
1 o o o o·

How are the daily demands distributed? Develop and test an appropriate model.

22. A simulation is to be conducted of a job shop that performs two operations: milling and planing, in
that order. It would be possible to collect data about processing times for each operation, then generate
random occurrences from each distribution. However, the shop manager says that the times might
be related; large milling jobs take lots of planing. Data are collected for the next 25 orders, with the
following results in minutes:

Milling Planing Milling Planing
Tinu! Time Time Tinu!

Order (Minutes) (Minutes) Order (Minutes) (Minutes)

1 12.3 10.6 14 24.6 16.6
2 20.4 13.9 15 28.5 21.2
3 1 8.9 14.1 16 1 1.3 9.9
4 16.5 10.1 17 13.3 10.7
5 8.3 8.4 18 21.0 14.0
6 6.5 . 8.1 19 19.5 13.0
7 25.2 16.9 20 15.0 1 1 .5
8 17.7 13.7 2 1 1 2.6 9.9
9 10.6 10.2 22 1 4.3 13.2

10 13.7 12. 1 23 17.0 12.5
1 1 26.2 16.0 24 21.2 14.2
1 2 3o.4 1 8.9 25 28.4 19.1

7.7

(a) Plot milling time on the horizontal axis and planing time on the vertical axis. Do tbese data seem
dependent?

INPUT MODELING

(b) Compute the sample correlation between milling time and planing time.
(c) Pit a bivariate normal distribution to these data.

309

23. Write a computer program to compute the maximum-likelihOOd estimators (a, /:J) of the Weibull distri-
bution. Inputs to the program should include the sample size, n·, the observations x x x · a A. ' !' 2t• • •'l' 'l'

stopping criterion, E (stop when I f({Ji) Is e) ;.and a print option, OPT (usually set = 0). Output w:Uld
be the estimates a and /:J. If OPT '= l , addition� output would be printed, as in Table 9.4, showing
convergence. Make the program as "user friendly" as possible.

24. Examine a computer-software librazy or simulation-support environment to which you · have access.
Obtain documentation on data-analysis software that would be useful in solving exercises 7 through 24.
Use the software as an aid in solving selected problems.

25. The duration of calls in minutes over a telephone line is

2.058 6.407 0.565 0.641 5.989 0.435 0.278 3.447 l l.461 1 .658 2.91 3 2.689 4.747 2.587

Develop an input model for the call duration data.

26. The following data represent the time to perform transactions in a bank, measured in minutes: 0.740,
1.28, 1 .46, 2.36, 0.354, 0.750, 0.912, 4.44, O. l l4, 3.08, 3.24, 1. 10, 1.59, 1.47, 1.17, 1.27, 9. 12, 1 1 .5,
2.42, 1.77. Develop an input model for these data.

27. Two types of jobs (A and B) are released to the input buffer ofajob shop as orders arrive, and the arrival
of orders is uncertain. The following data are available from the last week of production:

Day Number of Jobs Number of A's

I 83 53
2 93 62
3 1 12 .66
4 65 41
5 78 55

Develop an input model for the number of new arrivals of each type each day.

:ZS. The following data are available on the processing time at a machine (in minutes): 0.64, 0.59, l , f, 3.3,
0.54, 0.04, 0.45, 0.25, 4.4, 2.7, 2.4, 1 . 1 , 3.6, 0.61, 0.20, 1.0, 0.27, 1.7, 0.04, 0.34. Develop an input
model for the processing time.

·

29 • . In the process of the development of an inventory simulation model, demand for a component is
1 2 3 4 3 5 4 3
4 4 6 6 5 4 6 4
5 7 5 .5 7 1 5 2
3 4 3 4 2 8 7 2
3 8 4 4 5 3 1 6

Using appropriate model, identify how the demand is distributed.

3o. Using the web, research some of the input-modeling software packages mentioned in this chapter. What
are their features? What distributions do they include?

1 0
Verification and Validation ol
Simulation Models

One of the most important and difficult tasks facing a model developer is the verification and validation of
the simulation model. The engineers and analysts who use the model outputs to aid in maldng design
recommendations and the managers who make decisions based on these recommendations-justifiably look
upon a model with some degree of skepticism about its validity. It is the job of the model developer to work
closely with the end users throughout the period of development and validation to reduce this skepticism and
to increase the model's credibility.

The goal of the validation process is twofold: (I) to produce a model that represents true system behavior
closely enough for the model to be used as a substitute for the actual system for the purpose of experimenting
with the system, analyzing ·system behavior, and predicting system performance; and (2) to increase· to an
acceptable level the credibility of the model, so that the model will be used by managers and other decision
makers.

Validation should not be seen as an isolated set of procedures that follows model development, but rather
as an integral part of model development Conceptually, however, the verification and validation process
consists of the following components:

310

1 . Verification i s concerned with building the model correctly. It proceeds by the comparison of the con­
ceptual model to the computer representation that implements that conception. It asks the questions: Is
the model implemented correctly in the simulation software? Are the input parameters and logical
structure of the model represented correctly?

2. Validation is concerned with building the correct model. It attempts to confirm that a model is an
accurate representation of the real system. Validation is usually achieved through the calibration of
the model, an iterative process of comparing the model to actual system behavior and using the

VERIFICATION AND VALIDATION OF SIMULATION 3 1 1

discrepancies between the two, and the insights gained, to imprnve the model. This process is
repeated until model accuracy is judged to be acceptable.

This chapter describes methods that have been recommended and used in the verification and validation
prncess. Most of the methods are informal subjective comparisons; a few are formal statistical procedures.
The use of the latter procedures involves issues related to output analysis, the subject of Chapters I I and 12.
Output analysis refers to analysis of the data produced by a simulation and to drawing inferences from these
data about the behavior of the real system. To summarize their relationship, validation is the process by which
model users gain confidence that output analysis is makil)g valid inferences about the real system under study.

Many articles and chapters in texts have been· written on verification and validation. For discussion of
the main issues, the reader is referred to Balci [1994, 1998, 2003], Carson [1986, 2002], Gass [1983],
Kleijnen [1995], Law and Kelton [2000], Naylor and Finger [1967], Oren [1981], Sargent [2003], Shannon
[1975], and van Horn [1969, 197 1]. For statistical techniques relevant to various aspects of validation, the
reader can obtain the foregoing references plus those by Balci and Sargent [1982a,b; 1984a], Kleijnen
[1987], and Schruben [1980}. For case studies in which validation is emphasized, the reader is referred to
Carson et al. [198 la,b], Gafarian and Walsh [1970], Kleijnen [1993], and Shechter and Lucas [1980].
Bibliographies on validation have been published by Balci and Sargent [1984b] and by Youngblood [1993].

1 0. 1 MODEL BUILDING, VERIFICAnON, AND VALIDAnON

The first step in model building consists of observing the real system and the interactions among their
various components and of collecting data on their behavior. But observation alone seldom yields sufficient
understanding of system behavior. Persons familiar with the system,. or any subsystem, should be questioned
to take advantage of their special knowledge. Operators, technicians, repair and maintenance personnel,
engineers, supervisors, and managers understand certain aspects of the system that might be unfamiliar to
others. As model development proceeds, new questions may arise, and the model developers will return to
this step of learning true system structure and behavior.

The second step in model building is the construction of a conceptual model-a collection of assump­
tions about the components and the structure of the system, plus hypotheses about the values of model input
parameters. As is illustrated by Figure 10. 1, conceptual validation is the comparison of the real system to the
conceptual model.

The third step is the implementation of an operational model, usually by using simulation software and
incorporating the assumptions of the conceptual model into the worldview and concepts of the simulation
software. In actuality, model building is not a linear process with three steps. Instead; the model builder will
return to each of these steps many times while building, verifying, and validating the model. Figure 10.1
depicts the ongoing model building process, in which the need for· verification and validation causes
continual comparison of the real system to the conceptual model and to the operational model and induces
repeated modification of the model to improve its accuracy.

1 0.2 VERIFICAnON OF SIMULATION MODELS

The purpose of model verification is to assure that the conceptual model is reflected accurately in the
operational model. The conceptual model quite often involves S<!me degree of abstraction about system opera­
tions or some amount of simplification of actUal operations. Verification asks the following·question: Is the
conceptual model (assumptions about system components and system structure, parameter value8; abstractions,
and simplifications) accurately represented by the operational model?

312

Calibration
and

validation

Conceplllal model

DISCRETE-EVENT SYSTEM SIMULATION

l . Assump!ions on system components

1-. _ _.1 2. Structural assump!ions. which define
the interactions between system
componeniS

3. Input paramerers and data assumptions

Model
verification

Operational model
'-----+-! (Computerized

repteSentation)

Figure 1 0.1 Model building, verification, and validation.

Many common-sense suggestions can be given for use in the verification process:

1. Have the operational model checked by someone other than its developer, preferably an expert in the
simulation software being used.

2. Make a flow diagram that includes each logically possible action a system can take when an event
occurs, and follow the model logic for each action for each event type. (An example of a logic flow
diagram is given in Figures 2.2 and 2.3 for the model of a single-server queue.)

3. Closely examine the model output for reasonableness under a variety of settings of the input parameters.
Have the implemented model display a wide variety of output statistics, and examine all of them closely.

4. Have the operational model print the input parameters at the end of the simulation, to be sure that
these parameter values have not been changed inadvertently.

s. Make the operational model as self-documenting as possible. Give a precise definition of every vari­
able used and a general description of the purpose of each submodel, procedure (or major section of
code), component, or other model subdivision. .

6. H the operational model is animated, verify that what is seen in the animation imitates the actual
system. Examples of errors that can be observed through animation are automated guided vehicles
(AGVs) that pass through one another on a unidirectional path or at an intersection and entities that
disappear (unintentionally) during a simulation.

1. The Interactive Run Controller (IRC) or debugger is an essential component of successful simulation

model building. Even the best of simulation analysts makes mistakes or commits Iogical.errors when

building a model. The IRC assists in finding and correcting those errors .in the following ways:
(a) The simulation can be monitored as it progresses. This can be accomplished by advancing the
·

simulation ontil a desired time has elapsed, then displaying model information at that time.
Another possibility is to advance the simulation until a particular condition is in effect, and then
display information.

VERIFICATION AND VAUDATION OF SIMULATION MODELS 313

(b) Attention can be focused on a particular entity line, of code, or procedure. For instance, every time
that an entity enters a specified procedure, the simulation will pause so that information can be
gathered. As another example, every time that a specified entity becomes active, the simulation
will pause.

(c) Values of selected model components can be observed When the simulation has paused, the current
value or status of variables, attributes, queues, resources, counters, and so on can be observed.

(d) The simulation· can be temporarily suspended, or paused, not only to view information, but also
to reassign values or redirect entities.

· · ·

8. Graphical interfaces are recommended for accomplishing verification and validation [Borts-cheller and
Saulnier, 1992]. The graphical representation of the model is essentially a form of self-documentation.
It simplifies the task of understanding the model.

These suggestions are basically the same ones any software engineer would follow.
Among these common-sense suggestions, one that is very easily implemented, but quite often overlooked,

especially by students who are learning simulation, is a close and thorough examination of model output for
reasonableness (suggestion 3). For example, consider a model of a complex network of queues consisting of
many service centers in series and parallel configurations. Suppose that the mode]er is interested mainly in the
response time, defined as the time required for a customer to pass through a designated part of the network.
During the verification (and calibration) phase of model development, it is recommended that the program
collect and print out many statistics in addition to response times, such as utilizations of servers and time.:
average number of customers in various subsystems. Examination of the utilization of a server, for example,
might reveal that it is unreasonably low (or high), a possible error that could be caused by wrong specifi!:ati1>n
of mean service time, or by a mistake in model logic that sends too few (or too many) customers to this
particular server, or by any number of other possible parameter misspecifications or errors in logic.

In a simulation language that automatically collects many standard statistics (average queue lengths,
average waiting times, etc.), it takes little or no extra programming effort to display almost all statistics of
interest. The effort required can be considerably greater in a general-purpose language such as Jiwa, C, or
C++, which do not have statistics-gathering capabilities to aid the programmer.

1\vo sets of statistics that can give a quick indication of model reasonableness are current contents and
total count. These statistics apply to any system having items of some kind flowing through it, whether these
items be called customers, transactions, i nventory, or vehicles. "Current contents" refers to the number of
items in each component of the system at a given time. "Total count" refers to the total number of items that
have entered each component of the system by a given time. In some simulation software, these statistics are
kept automatically and can be displayed at any point in simulation time. In other simulation software, simple
counters might have to be added to the operational model and displayed at appropriate times. If the current
contents in some portion of the system are high, this condition indicates that a lruge number of entities are
delayed. If the output is displayed for successively longer simulation run times and the current contents tend
to grow in a more or less linear fashion, it is highly likely that a queue is unstable and that the server(s) will
fall further behind as time continues. This indicates possibly that the number of servers is too small or that a
service time is misspecified. (Unstable queues were discussed in Chapter 6.) On lbe other hand, if the total
count for some subsystem is zero, this indicates that no items en�red that subsySfem-again, a highly suspect
occurrence. Another possibility is that the current count and total count are equal to one. This could indicate
t)lat an entity has captured a resource, but never freed that resource. Careful evaluation of these statistics for
various run lengths can aid in the detection of mistakes in model logic and data misspecifications. ·Checking
for output reasonableness will usually fail to detect the more subtle errors, but it is one of the quickest ways
to discover gross errors. To aid in error detection, it is best for the model develope.-to forecast a reasonable
range for the value of selected output statistics before making a run of the model. Sui:h a forecast reduces the
possibility of rationalizing a discrepancy and failing to investigate the cause of uiiiiSIIal output.

314 DISCRETE-EVENT SYSTEM SIMULATION

For certain models, it is possible to consider more than whether a particular statistic is reasonable. It is

possible to compute certain long-run measures of performance. For example, � seen in Cha�ter 6, the

analyst can compute the long-run server utilization for a large number of queuemg systems :VIIhout �ny

special assumptions regarding interarrival or service-time distributions. Typically, the only Information

needed is the network configuration, plus arrival and service rates. Any measure of performance that can be

computed analytically and then compared to its simulated counterpart provides another valuable tool for

verification. Presumably, the objective of the simulation is to estimate some measure of performance, such

as mean response time, that cannot be computed analytically; but, as illustrated by the formulas i� Chapter 6

for a number of special queues (M/M/1, MIG/I , etc.), all the measures of perform�c� in
.
a queueing system

are interrelated. Thus if a simulation model is predicting one measure (such as utilization) correctly, then

confidence in the model's predictive ability for other related measures (such as response time) is increased

(even though the exact relation between the two measures is, of course, unknown in general and varies �m

model to model). Conversely, if a model incorrectly predicts utilization, its prediction of other quantities,

such as mean response time, is highly suspect. . .
Another important way to aid the veri{ication process is the oft-neg�e�ted docume�tation phase. If

a model builder writes brief comments in the operational model, plus defimtions of all vanables and para­

meters, plus descriptions of each major section of the operational model, it becomes �uc� simp�er for some­

one else, or the model builder at a later date, to verify the model logic. Documentation IS also Important as

a means of clarifying the logic of a model and verifying its completeness.
. . .

A more sophisticated technique is the use of a trace. In general, a trace IS a detailed computer pnn�out

which gives the value of every variable (in a specified s�t of variab!es) in a comp�ter pr_ogra.m_. every time

that one of these variables changes in value. A trace desrgned specrfrcally for use m a srmulation program

would give the value of selected variables each time the simulation clock was incremented (i.e., each time

an event occurred). Thus, a simulation trace is nothing more than a detailed printout of the state of the

simulation model as it changes over time.

Example 10.1 .
When verifying the operational model (in a general purpose language such as FORTRAN, Pascal, C or C++,

or most simulation languages) of the single-server queue model of Example 2.1, an 3J!a!yst made a run over

1 6 units of time and observed that the time-average length of the waiting line was La = 0.4375 customer,

which is certainly reasonable for a short run of only 16 time units. Nevertheless, the analyst decided that a

more detailed verification would be of value.
The trace in Figure 10.2 gives the hypothetical printout from simulation time CLOCK= 0 to CLOCK =

.
16

for the simple single-server queue of Example 2 1. This example illustrates how an �rr_or can be fo!'nd wrth

a trace, when no error 'Yas apparent from the examination of the summary output statistics (such as L1). Note

that at simulation time CLOCK = 3, the number of customers in the system is NCUST 1, but the server

is idle (STATUS = 0). The source of this error could be incorrect logic, or simply not setting the attribute

STATUS to the value 1 (when coding in a general purpose language or most simulation languages).

In any case, the error must be found and corrected. Note that the less sophisticated practice of exa�n­

ing the summary measures, or output, did not d�tect the error. By using equation (6.1), � reader can venfy

that i0 was computed correctly from the data (La is the time-average value of NCUST nunus STATUS):

� (0- 0)3 + (1 -0)2+(0 - 0)6+ (l-0)1 + (2 - 1)4
La =·

7
= -'- = 0.4375

16

3 + 2 + 6 + 1 + 4

a s previously mentioned. Thus, the output measure, ia, had a reasonable value and was compute_<� correctly

from the data, but its value was indeed wrong because the attribute STATUS was not assunung correct

VERIFICATION AND VAUDATION OF SIMULATION MODELS

Definition of Variables:
CLOCK = Simulation clock
EVTYP
NCUST
STATIJS

CLOCK
CLOCK
CLOCK
CLOCK
CLOCK
CLOCK

"' Event type {start, anival, departure. or stop)
Number of customers in system at lime 'CLOCK'
Status of server (!-busy, 0-idle)

EVTYP 'Arrival'
EVTYP = 'Depart'

NCUST = O STATIJS = O
NCUST = I STATUS = 0
NCUST = 0 STATUS = 0
NCUST = I STATUS = 0
NCUST = 2 STATUS = I
NCUST = I STATUS = I

Figure 1 0.2 Simulation Trace of Example 2. 1 .

3 1 5

values. A s i s seen from Figure l 0.2, a trace yields information o n the actual history of the model that i s more
detailed and informative than the summary measures alone.

. Most simulation software has a built-in capability to conduct a trace without the programmer having to
do any extensive programming. In addition, a 'print' or 'write' statement can be used to implement a .ttacing
capability in a general-purpose language.

As can be easily imagined, a trace over a large span of simulation time can quickly produce an extremely
large amount of computer printout, which would be extremely cumbersome to check in detail for correct­
ness. The. purpose �f the trace is to verify the correctness of the computer program by making detailed paper­
and-pencil calculatrons. To make this practical, a simulation with a trace is usually restricted to a very short
period of time. It is desirable, of course, to ensure that each type of event (such as ARRIVAL) occurs at least
once, so that its consequences and effect on the model can be checked for accuracy. If an event is especially
rare in occurrence, it may be necessary to use artificial data to force it to occur during a simulation of short
duration. This is legitimate, as the purpose is to verify that the effect on the system of the rare event is as
intended.

Some software allows a selective trace. For example, a trace could be set for specific locations in the model
or could be triggered to begin at a specified simulation time. Whenever an entity goes through the desiguated
locations, the simulation software writes a time-stamped message to a trace file. Some simulation software
allows tracing a selected entity; any time the desiguated entity becomes active, the trace is activated and time­
stamped messages are written. This trace is very useful in following one entity through the entire model.
Another example of a selective trace is to set it for the occurrence of a particular condition. For example, when­
ever the queue before a certain resource reaches· five or more, tilm on the trace. This allows running the
simulation until something unusual occurs, then examining the behavior from that point forward in time.
Different simulation software packages support tracing to various extents. fu practice, it is often implemented
by the model developer by adding printed messages at appropriate points into a model. .

Of the three classes of techniques-the common-sense techniques, thorough documentation, and
traces-it is recommended that the first two always be carried out Close·examination of model output for
reasonableness is especially valuable and informative. A generalized trace may provide voluminous data, far
more than can be used or examined carefully. A selective trace can provide useful information on key model
components and keep the amount of data to a manageable leveL

I � : :

316 DISCRETE-EVENT SYSTEM SIMULATION

10.3 CALIBRATION AND VALIDATION OF MODELS

Verification and validation, although conceptually distinct, usually are conducted simultaneously by the

modeler. Validation is the overall process of comparing the model and its behavior to the real system and its

behavior. Calibration is the iterative process of comparing the model to the real system, making adjustments

(or even major changes) to the model, comparing the revised model to reality, making additional adjustments,

comparing again, and so on. Figure 10.3 shows the relationship of model calibration to the overall Yalidation

process. The comparison of the model to reality is carried out by a variety of tests-some subjective, others

objective. Subjective tests usually involve people, who are knowledgeable about one or more aspects of the

system, making judgments about the model and its output. Objective tests always require data on the system's

behavior, plus the corresponding data produced by the model. Then one or more statistical tests are performed

to compare some aspect of the system data set with the same aspect of the model data set. This iterative process

of comparing model with system and then revising both the conceptual and operational models to accom­

modate any perceived model deficiencies is continued until the model is judged to be sufficiently accurate.

A possible criticism of the calibration phase, were it to stop at this point, is that the model has been

validated only for the one data set used-that is, the model has been "fitted" to one data set. One way to alle­

viate this criticism is to collect a new set of system data (or to reserve a portion of the original system data)

to be used at this final stage of validation. That is, after the model has been calibrated by using the original

system data set, a "final" validation is conducted, using the second system data set. If unacceptable discrep­

ancies between the model and the real system are discovered in the "final" validation effort, the modeler must

return to the calibration phase and modify the model until it becomes acceptable.

Validation is not an either/or proposition-no model is ever totally representative of the system under study.

1n addition, each revision of the model, as pictured in Figure 1 0.3, involves some cost, time, and effort. The

modeler must weigh the possible, but not guaranteed, increase in model accuracy versus the cost of increased

validation effort. Usually, the modeler (and model users) have some maximum discrepancy between model

predictions and system behavior that would be acceptable. If this level of accuracy cannot be obtained within the

budget constraints, either expectations of model accuracy must be lowered, or the model must be abandoned.

Real
system

Compare model

to reality

Compare revised

model to reality

Compare second

revision to reality

Revise

Revise

Revise

Figure 1 0.3 Iterative process of calibrating a model.

VERIFICATION AND VALIDATION OF SIMULATION MODELS 317

As
_
an aid in the validation process, Naylor and Finger [1967] formulated a three-step approach that has

been wtdely followed:

1. Build a model that has high face validity.
2. Validate model assumptions.
3. Compare the model input-output transformations to corresponding input-output transformations for

the real system.

The next five subsections investigate these three steps in detail.

1 0.3. 1 Face Validity

The first goal of the simulation modeler is to construct a model that appears reasonable on itS face to model
users and �thers wh� are knowledgeable about the real system being simulated. The potential users of a model
s�ould be mvolved

_
m �od�l �onstruction from its conceptualization to its implementation, to ensure that a

htgh degree of reahsm IS bmlt mto the model through reasonable assumptions regarding system structure and
through reliable da�. :o�entia� u�ers and knowledgeable persons can also evaluate model output for reason­
ableness and can atd m tdentlfymg model deficiencies. Thus, the users can be involved in the calibration
p�oc�ss as the model is improved iteratively by the insights gained from identification of the initial model defi­
ct�nctes. A�other advantage of user involv��ent is the in�rease in the model's perceived validity, or credibility,
wtthout ":'�'�h a mana�er would not be wtlhng to trust stmulation results as a basis for decision making.

Sensttlvtty analysts can also be used to check a model's face validity. The model user is asked whether
the m�del behaves �n the ex�ected way when one or more input variables is changed. For example, in most
queuemg syste��' tf

_
the am val rate of customers (or demands for service) were to increase, it would be

expecte� that ut1hzat10ns of servers, len�s of lines, and delays would tend to increase (although by how
much mtght well be unknown). From expenence and from observations on the real system (or similar related
systems!, the model user and model builder would probably have some notion at least of the direction of
change m model output when an input variable is increased or decreased. For most large-scale simulation
models, there are many input variables and thus many possible sensitivity tests. The model builder must
att�mpt to C�O?Se the most critical input variables for testing if it is too expensive or time consuming to vary
�II mp�t v�nables.

_
�f �eal system data are available for at least two settings of the input parameters, objec­

ttve sctentlfic sensttlvtty tests can be conducted via appropriate statistical techniques.

1 0.3.2 Validation of Model Assumptions

Model �sm�ptions fall in
_
to two general classes: structural assumptions and data assumptions. Structural �sumptlons

_
mvolve questiOns of how the system operates and usually involve simplifications and abstrac­

tions of r�hty. For example, consider the customer queueing and service facility in a bank. Customers can
form one

_
hne, or there can be an individual line for each teller. If there are many lines, customers could be

served stnctly on a first-come-first-served basis, or some customers could change lines if one line is moving
faster. The nu�ber of �ellers coul� be �xed or _variable. These structural assumptions should be verified by
actual o�s�rvat10n dunn� appropnate time penods and by discussions with managers and tellers regarding
bank pohctes and actual tmplementation of these policies.

.
Data assumptions should be based on the collection of reliable data and correct statistical analysis of the

data.
_
(Example :u discussed similar issues for a model of a laundromat.) For example, in the bank study

prev10usly mentioned, data were collected on

1. interarrival times of customers during several 2-hour periods of peak loading ("rush-hour" traffic);
2. interarrival times during a slack period; .

DISCRETE-EVENT SYSTEM SIMULATION
318

3. service times for commercial accounts;
4. service times for personal accounts.

The reliability of the data was verified by consultation with bank managers, wh? identifi� typical rus�

hours and typical slack times. When combining two or more data sets col�ected at different umes, data reli­

ability can be further enhanced by objective statistical tests for homogene1� of data. (Do two data sets {X; l

and { Y.} on service times for personal accounts, collected at two different Urnes, �orne from the same par�nt

population? If so, the two sets can be combined.) Additional tests might be r�mred, to �est �or correlatiOn

in the data. As soon as the analyst is assured of dealing with a random sample (1.e., correlation IS not present),

the statistical analysis can begin. . .
·

The procedures for analyzing input data from a random samp�e wer� discussed in de�1l m Chapter 9.

Whether _done manually or by special-purpose software, the analysis consists of three steps.

1. Identify an appropriate probability distribution.

2. Estimate the parameters of the hypothesized distribution. _ .

3. Validate the assumed statistical model by a goodness-of-fit test, such as the chi-square or Kolmogorov-

Smimov test, and by graphical methods.

The use of goodness-of-fit tests is an important part of the validation of data assumptions.

1 0.3.3 Validating Input-Output Transformations

The ultimate test of a model, and in fact the only objective test of the model as a whole, is th� model's ability

to rediat the future behavior of the real system when the model input data match the real mp�ts and when

a ;!icy implemented in the model is implemented at some point in the system. Furthermore, 1f the level of

· t · bles (e g the arrival rate of customers to a service facility) were to increase or decrease, the
some mpu vana - .,

d - - 1 · tan I th r
model should accurately predict what would happen in the real system un er sum ar cucums _ _ces. n o _ e

words, the structure of the model should be accurate enough for the �ode! to make good pred1ctwns, not JUSt

for one input data set, but for the range of input data
_
se� that are of_ mterest. . .

In this phase of the validation process, the model Is viewed as an mput-output transformatiOn-that IS, the

model accepts values of the input parameters and transforms these inputs into output measures of performance.

It is this correspondence that is being validated. _ _ .

Instead of validating the model input-output transformations by pred1ctmg th� f�ture, the modeler

could use historical data that have been reserved for validation purposes only-that IS, If one data set has

been used to develop and calibrate the model, it is recommended that a separate data set be used as the final

. validation test Thus, accurate "prediction of the past" can replace prediction of the future for the purpose

of validating the model.

A model is usually developed with primary interest in a specific set of system responses to be measured

under some range of input conditions. For example, in a queueing system, the respo�ses may be server

utilization and customer delay, and the range of input conditions (or input �ariables) may mclude two or three

servers at some station and a ,choice of scheduling rules. In a productwn
_

system, the respo_nse may be

throughput (i.e., production per hour), and the input conditions may be a c�mce of several ma�h�nes that run

at different speeds, with each machine having its own breakdown and mrunten�ce ch�cte�sucs.
_

_

In any case, the modeler should use the main responses of int
_
erest -� the pnmary cntena for validating

a modeL If the model is used tater for a purpose different from 1ts ongmal p�se, the 11_1�del should be

al
·.
dated · n terms of the new responses of interest and under the possibly new mput conditions.

rev 1 1 . . th · f the
A necessary condition for the validation of input-output transformations IS at some verswn o

system under study exist, so that system data under at least one set of input conditions can
_
be collected to

compare to model predictions. If the system is in the planning stages and no system operatmg data can be

VERIFICATION AND VALIDATION OF SIMULATION MODELS 319

collected, complete input-output validation i s not possible. Other types o f validation should be conducted,
to the extent possible. In some cases, subsystems of the planned system may exist, and a partial input-output
validation can be conducted.

·

P�esumably, the model will be used to compare alternative system designs or to investigate system
behavwr under a range of new input conditions. Assume for now that some version of the system is operating
and that the model of the existing system has been validated. What, then, can be said about the validity of
the model when different inputs are used?-that is, if model inputs are being changed to represent a new
system design, or a new way to operate the system, or even hypothesized future conditions, what can be said
about the validity of the model with respect to this new but nonexistent proposed system or to the system
under new input conditions?

First, the responses of the two models under similar input conditions will be used as the criteria for com­
parison of the existing system to the proposed system. Validation increases the modeler's confidence that the
model of the existing system is accurate. Second, in many cases, the proposed system is a modification of
the existing system, and the modeler hopes that confidence in the model of the existing system can be trans­
ferred to the model of 1he new system. This transfer of confidence usually can be justified if the new model
is a r�latively minor modification of the old model in terms of changes to the operational model (it may be
a maJor change for the actual system). Changes in the operational model ranging from relatively minor to
relatively major include the following:

1. minor changes of single numerical parameters, such as the speed of a machine, the arrival rate of
customers (with no change in distributional form of interarrival tiines), the number of servers in a
parallel service center, or the mean time to failure or mean time to repair of a machine;

2. minor changes of the form of a statistical distribution, such as the distribution of a service time or
a time to failure of a machine;

3. major changes in the logical structure of a subsystem, such as a change in queue discipline for a
waiting-line model or a change in the scheduling rule for a job-shop model;

4. major changes involving a different design for the new system, such as a computerized inventory
control system replacing an older noncomputerized system, or an automated storage-and-retrieval
system replacing a warehouse system in which workers pick items manually using fork trucks.

_ If the change to the operational model is minor, such as in items 1 or 2, these changes can be carefully ver­
Ified and output from the new model accepted with considerable confidence. If a sufficiently similar subsystem
exists elsewhere, it might be possible to validate the submodel that represents the subsystem and then to inte­
grate this submodel with other validated submodels to build a complete model. In this way, partial validation
of the substantial model changes in items 3 and 4 might be possible. Unfortunately, there is no way to validate
the input-output transformations of a model of a nonexisting system completely. In any case, within time and
budget constraints, the modeler should use as many validation techniques as possible, including input-output
validation of subsystem models if operating data can be collected on such subsystems.

_ Example 10.2 will illustrate some of the techniques that are possible for input-output validation and will
discuss the concepts of an input variable, uncontrollable variable, decision variable, output Dr response vari­
able, and input-output transformation in more detail.

Example 10.2: The Fifth National
-
Bank of Jaspar

The Fifth National Bank of Jaspar, as shown in Figure 10.4, is planning to expand its drive-in service at the

�mer of Main Street. Currently, there is one drive-in window serviced by one teller. Only one or two transac­
tions are allowed at the drive-in window, so it was assumed that each service time was a random sample from ·

some underlying population. Service times {S;, i = 1, 2, . . . , 90} and interarrival times {A;; i = I, 2, . . . , 90}
were collected for the 90 customers who arrived between 1 1 :00 A.M. and 1 :00 P.M. on a Friday. This time slot

320

Main Street

Jaspar

s

e
e
I

DISCRETE-EVENT SYSTEM SIMULATION

Figure 10.4 Drive-in window at the Fifth National Bank.

was selected for data collection after consultation with management and the teller because it was felt to be
representative of a typical rush hour.

Data analysis (as outlined in Chapter 9) led to the conclusion that arrivals could be modeled as a Poisson
process at a rate of 45 customers per hour and that service times were approximately normally distributed,
with mean l . l minutes and standard deviation 0.2 minute. Thus, the model has two input variables:

1. interarrival times, exponentially distributed (i.e., a Poisson arrival process) at rate A = 45 per hour;
z. service times, assumed to be N(l. l , (0.2)2).

Each input variable has a level: the rate (A= 45 per hour) for the interarrival times, and the mean l . l minutes
and standard deviation 0.2 minute for the service times. The interarrival times are examples of uncontrollable
variables (i.e., uncontrollable by management in the real system). The service times are also treated as uncon­
trollable variables, although the level of the service times might be partially controllable. If the mean service
time could be decreased to 0.9 minute by installing a computer terminal, the level of the service-time variable
becomes a decision variable or controllable parameter. Setting all decision variables at some.level constitutes
a policy. For example, the current bank policy is one teller (D1 = 1), mean service time D2 = 1 . 1 minutes, and
one line for waiting cars (D3 = 1). (D1, D2, . . . are used to denote decision variables.) Decision variables are
under management's control; the uncontrollable variables, such as arrival rate and actual arrival times, are not
under management's control. The arrival rate might change from time to time, but such change is treated as
being due to external factors not under management control.

A model of current bank operations was developed and verified in close. consultation with bank
management and employees. Model assumptions were validated, as discussed in Section I 0.3.2. The resulting

VERIFICATION AND VAll DATION OF MODELS

model is now viewed as a "b�ack box" that takes all input-variable specifications and transforms them into a �t of o
.
utput or response v:mables .

.
The output variables consist of all statistics of interest generated by the

su�ml�tton
_
about the model s �ehav10r. For e�ample, management is interested in the teller's utilization at the

dnve-m ;vmdow (�er�nt of tim� the teller ts busy at the window), average delay in minutes of a customer
from arrtval to

.
begmnmg of sefV!ce, and the maximum length of the line during the rush hour. These input

and outpu� vartables are shown in Figure 10.5 and are listed in Table IO.l , together with some additional
output vanables. The uncontrollable input variables are denoted by X, the decision variables by D, and the

Random
variables

Poisson arrivals

rate = 45/hour

One teller

o,

Decision Mean service time

variables 02 ! . 1 minutes

One line

o, 1

M
0
D
E
L

"Black box"

Teller's utilization

Y, = p

Average delay

Maximum line length

y3

Input variables ---------. Model - Output variables

Figure 10.5 Model input-output transformation.

Table 1 0.1 Input and Output Variables for Model of Current Bank Operations

Input Variables

D = decision variables
X= other variables

Poisson arrivals at rate = 45/hour

Xu, Xll, ...
Service times, N (02, 0.22)

x21> X22, . . .

D1 = I (one teller)
D2 = !.1 minutes (mean service time)
D3 = I (one line)

Model Output Variables, Y

Variables of primary interest
to management (YJ> Y2, Y3)

f1 = teller's utilization
Y2 = average delay
Y3 = maximum line length
Other output variables of

secondary interest
Y4 = observed arrival rate
Y5 = average service time
Y6 = sample standard deviation of service

times
Y1 average length of waiting line

322 DISCRETE-EVENT SYSTEM SIMULATION

output variables by Y. From the "black box" point of view, the model takes the inputs X and D and produces
the outputs Y, namely

(X, D)!....., Y
or

/(X, D) = Y
Here f denotes the transformation that is due to the structure of the model. For the Fifth National Bank study,
the exponentially distributed interarrival time generated in the model (by the methods of Chapter 8) between
customer n - 1 and customer n is denoted by X1 •. (Do not confuse X1• with A.; the latter was an observation
made on the real system.) The normally distributed service time generated in the model for customer n is
denoted by X2n. The set of decision variables, or policy, is D = (Dh D2, D3.= (1, 1 .1 , 1) for current opera­
tions. The output, or response, variables are denoted by Y = (Yh Y2, • • • , Y1) and are defined in Table 10. 1.

For validation of the input-output transformations of the bank model to be pessible, real system data
must be available, comparable to at least some of the model output Y of Table 1 0.1. The system responses
should have been collected during the same time period (from 1 1:00 A.M. to 1 :00 P.M. on the same Friday)
in which the input data {A;, S;} were collected. This is important because, if system response data were
collected on a slower day (say, an arrival rate of 40 per hour), the system responses such as teller utilization (Z1),
average delay (Zz), and maximum line length (Z:J) would be expected to be lower than the same variables
during a time slot when the arrival rate was 45 per hour, as observed. Suppose that the delay of successive
customers was measured on the same Friday between 1 1 :00 A.M. and 1 :00 P.M. and that the average delay
was found to be Zz = 4.3 minutes. For the purpose of validation, we will consider this to be the true mean
value Jlo = 4.3.

When the model is run with generated random variates· X1• and X2n, it is expected that observed values
of average delay, Y2, should be close to Zz = 4.3 minutes. The generated input values (X1• and X2n) cannot be
expected to replicate the actual input values (A. and S.) of the real system exactly, but they are expected to
replicate the statistical pattern of the actual inputs. Hence, simulation-generated values of Y2 are expected to
be consistent with the observed system variable, Zz = 4.3 minutes. Now consider how the modeler might test
this consistency.

The modeler makes a small number of statistically independent replications of the model. Statistical
independence is guaranteed by using nonoverlapping sets of random numbers produced by the random­
number generator or by choosing seeds for each replication independently (from a ·random number table).
The results of six independent replications, each of 2 hours duration, are given in Table 1 0.2.

Table 1 0.2 Results of Six Replications of the First Bank Model

Replication

I
2
3
4
5
6

Sample mean
Standard deviation

r.
(Arrivals/Hour)

5 1
40
45.5
50.5
53
49

Ys
(Minutes)

1 .07
l.l2
1.06
l.IO
1.09
1.07

Y2 = Average Delay
(Minutes)

2.79
l.l2
2.24
3.45
3.13
2.38
2.51
0.82

VERIFICATION AND VALIDATION OF SIMULATION MODELS 323
Observed arrival rat� f4 and s�ple average service time Ys for each replication of the model are also note� to be comp�ed With the Specified values of 45/hour and l . l minutes, respectively. The validation test conststs of com��ng the system response, namely average delay Zz = 4.3 minutes, to the model responses y: Formally, a stausucal test of the null hypothesis ' 2'

H0 : E(I;) = 4.3 minutes
versus (10.1)

H1 : E(l;) * 4.3 minutes

�s co?ducted . . If fl_o is not rejected, then, on the basis of this test, there is no reason to consider the model
m�ahd. If Ho IS rejected, the current version of the model is rejected, and the modeler is forced to seek ways
to lmpro�e �e model, as illustrated by Figure 10.3. As formulated here, the appropriate statistical test is the
t test, which IS conducted in the following manner:

Choose a level of significance, a, and a sample size, n. For the barik model, choose

a = 0.05, n = 6

�ompute the sample mean, I; , and the sample standard deviation, S, over the n replications by using EquatiOns (9. 1) and (9.2): '

and

- 1 n Y2 = -L Y2, = 2.51 minutes n i=t ...::., i=I (Y2i - 1';)2 •

[� · -]112
S =

n- l
=0.82 mmute

where Yz;, i = 1, . . . , 6, are as shown in Table 10.2.
G�t the critic�! value of t from Table A.5. For a two-sided test, such as that in equation (10.1), use 1al2. •-I• for a one-sJded test, use ta.n-.

1 or -ta,n-1> as appropriate (n - 1 being the degrees of freedom). From Table A.5, 10.025,5 = 2.571 for a two-sided test.
Compute the test statistic

f - JL t = -2 __ 0 o sj-.[n

where Jlo is the specified value in the null hypothesis, H0 Here Jlo = 4.3 minutes, so that

2.5 1-4.3 10 =
0.82/.J6

-5.34

(10.2)

.
For the two-si�ed tes� if ltol > tal2.n--l• reject Ho. Otherwise, do not reject H0• [For the one-sided test with Hi · �(Yz) > Jlo, reject H0 1f t > ta,n-1; with H1 : E(Yz) < JL0, reject H0 if t < -ta.n-i ·l Smce ltl = 5.34 > to.ozs,s = 2.571, reject Ho, and conclude that the model is inadequate in its prediction of average customer delay.
Recall that, in the testing ofliypotheses, rejection of the null hypothesis Ho is a strong conclusion, because

P(H0 rejected I H0 is true) = a (10.3)

r
· · . . ·. ·

324 DISCRETE-EVENT SYSTEM SIMULATION

and the level of significance a is chosen small, say a = 0.05, as was done here. Equation (1 0.3) says that the
probability of making the error of rejecting H0 when H0 is in fact true is low (a = 0.05)-that is, the proba­
bility is small of declaring the model invalid when it is valid (with respect to the variable being tested). The
assumptions justifying a t test are that the observations (Y2;) are normally and independently distributed. Are
these assumptions met in the present case?

1. The ith observation Y2i is the average delay of all drive-in customers who began service during the
ith simulation run of 2 hours; thus, by a Central Limit Theorem effect, it is reasonable to assume that
each observation Y2; is approximately normally distributed, provided that the number of customers it
is based on is not too small.

2. The observations Y21, i = I, . . . , 6, are statistically independent by design-that is, by choice of the
random-number seeds independently for each replication or by use of nonoverlapping streams.

3. The t statistic computed by Equation (10.2) is a robust statistic-that is, it is distributed approximately
as the t distribution with n - I degrees of freedom, even when Y21, Y22, • • • are not exactly normally
distributed, and thus the critical values in Table AS can reliably be used.

Now that the model of the Fifth National Bank of Jaspar has been found lacking, what should the modeler
do? Upon further investigation, the modeler realized that the model contained two unstated assumptions:

l. When a car arrived to find the window immediately available, the teller began service immediately.
2. There is no delay between one service ending and the next beginning, when a car is waiting.

Assumption 2 was found to be approximately correct, because a service time was considered to begin
when the teller actually began service but was not considered to have ended until the car had exited the drive­
in window and the next car, if any, had begun service, or the teller saw that the line was empty. On the other
hand, assumption l was found to be incorrect because the teller had other duties-mainly, serving walk-in
customers if no cars were present-and tellers always finished with a previous customer before beginning
service on a car. It was found that walk-in customers were always present during rush hour; that the transac­
tions were mostly commercial in nature, taking a considerably longer time than the time required to service
drive-up customers; and that, when an arriving car found no other cars at the window, it had to.wait until the
teller finished with the present walk-in customer. To correct this model inadequacy, the structure of the model
was changed to include the additional demand on the teller's time, and data were collected on service times
of walk-in customers. Analysis of these data found that they were approximately exponentially distributed
with a mean of 3 minutes.

The revised model was run, yielding the results in Table !0.3. A test of the null hypothesis H0 : E(Y2)
4.3 minutes [as in equation (10. 1)) was again conducted, according to the procedure previously outlined.

Choose a = 0.05 and n = 6 (sample size).
Compute f; = 4. 78 minutes, S = 1.66 minutes.
Look up, in Table A.5, the critical value t0.15•5 = 2.571 .
Compute the test statistic t0 = (f; -fl0)/ sj.Jn = 0.710.
Since Ito! < to.025,s = 2.571 , do not reject Ho. and thus tentatively accept the model as valid.
Failure to reject H0 must be considered as a weak conclusion unless the power of the test has been esti­

mated and found to be high (close to I)-that is, it can be concluded only that the data at hand (Y2I> • • • , Y26)
were not sufficient to reject the hypothesis H0 : flo = 4.3 minutes. In other words, this test detects no incon­
sistency between the sample data (Y2" • • • , Y26) and the specified mean flo· · The power of a test is the probability of detecting a departure from H0 : fl = flo when in fact such a depar­
ture exists. In the validation context, the power of the test is the probability of detecting an invalid model.

VERIFICATION AND VALIDATION OF SIMULATION MODELS 325
Table 1 0.3 Results of Six Replications of the Revised Bonk Model

y4 Ys Yz = Average Delay
ReplicaJion (Arrivals/Hour) (Minutes) (Minutes)

1 5 1 1.07 5.37
2 40 l . l l ! .98
3 45.5 1.06 5.29
4 50.5 1.09 3.82
5 53 1 .08 6.74
6 49 1.08 5.49

Samp1e mean
4.78

Standard deviation
1.66

The po�er �! also � expressed
_
as 1 m�us the probability of a Type n, or p, error, where p = P(Type 11

err?r) - P(fa11ing to reJect Hoi HI IS true) IS the probability of accepting the model as valid when it is not
vahd

To consider failure � reject H0 as a strong conclusion, the modeler would want p to be small. Now, p
depends on the sample size n and on the true difference between E(Y2) and flo = 4.3 minutes-that is, on

5 = !E(Yz) -.Uol
(T

wh�re a, the �opulation s��d deviation of an individual Y21, is estimated by s. Tables A lO and A l l are typical operati�g-characten�hc (OC) curves, which are graphs of the probability of a Type rr error /3(5) versus 5 for given sample size n. :rable A:IO is for a two-sided t test; Table A. I I is for a one-sided 1 test. Suppose that the modeler would !Ike to reJect H0 (mod�! validity) with probability at least 0.90.if the true mean d�Iay of the model, E(Y2), dtffered from the average delay in the system, J.lo = 4.3 minutes by 1 · t Then 15 IS estimated by ' mmu e.

8 = IE(l';) -floi _ _ I_ = 0 60 s 1 .66 .

For the two-sided test with a = 0.05, use of Table AI 0 results in

/3(6) = /3(0.6) = 0.75 for n = 6

!o guarantee th
_
at fJ <5J 5, 0.1 0, ':' w� desired by the modeler, Table A. I 0 reveals that a sample size of approx­

Imately n =. 30 mdependent ��hca�ons would be required-that is, for a sample size n = 6 and assuming that
the po�u�aho� standard devtahon U: 1 .66, �e probability of accepting H0 (model validity), when in fact th�
mod� l is mvahd (!E(Y2) -J.lol = I rrunute), IS fJ = 0. 75, which is quite high. If a I-rninute difference is critical
and If �e modeler wants to

.
control the risk of declaring the model valid wjlen model predictions are as much

� 1 m1�ute �ff, a s�ple Size
_
of n 30 replications is required to achieve a power of 0.9. If this sample size

IS too h1gh, etther a higher fJ nsk (lower power) or a larger difference 5 must be considered.
In ge�eral, it is alw�ys best to �ontrol the Type U error, or fJ error, by specifying a critical difference 15

and choosmg a s�ple SIZe by making use of an appropriate OC curve. (Computation of power and use of
OC curves f�r a Wide range of tests i s

_
d�cussed in Hines, Montgomery, Goldsman, and Borror [2002].)

In summary, m the context of model validation, the Type I error is the rejection of a valid model and is easily

326 DISCRETE-EVENT SYSTEM SIMULATION

Table 1 0.4 Types of Error in Model Validation

Statistical Tenninology

Type I: rejecting H0 when H0
is true

Type II: failure to reject H0
when H1 is true

Modeling Tenninology

Rejecting a valid model

Failure to reject an
invalid model

Associated
Risk

a

f3

controlled by specifying a small level of significance a (say a = 0. 1, 0.05, or 0.01). The Type II error is the
acceptance of a model as valid when it is invalid. For a fixed sample size n, increasing a will decrease f3, the
probability of a Type II error. Once a is set, and the critical difference to be detected is selected, the only
way to decrease f3 is to increase the sample size. A Type II error is the more serious of the two types of errors;
thus, it is important to design the simulation· experiments to control the risk of accepting an invalid model.
The two types of error are summarized in Table 10.4, which compares statistical terminology to modeling
terminology.

Note that validation is not to be viewed as an either/or proposition, but rather should be viewed in the
context of calibrating a model, as conceptually exhibited in Figure 10.3. If the current version of the bank
model produces estimates of average delay (Y2) that are not close enough to real system behavior (Jlo = 4.3
minutes), the source of the discrepancy is sought, and the model is revised in light of this new knowledge.
This iterative scheme is repeated until model accuracy is judged adequate.

Philosophically, the hypothesis-testing app�oach tries to evaluate whether the simulation and the real
system are the same with respect to some output performance measure or measures. A different, but closely
related, approach is to attempt to evaluate whether the simulation and the real-system performance measures
are close enough by using confidence intervais.

We continue to assume that there is a known output performance measure for the existing system,
denoted by Jlo, and an unknown performance measure of the simulation, Jl, that we hope is close. The
hypothesis-testing formulation tested whether Jl = Jlo; the confidence-interval formulation tries to bound
the difference IJL - Jlol to see whether it is � t:, a difference that is small enough to allow valid decisions to
be based on the simulation. The value of t: is set by the analyst.

Specifically, if Y is the simulation output, and Jl = E(Y), then we execute the simulation and form a
confidence interval for Jl, such as Y ± t a/2,._1 S / .J;;. The determination of whether to accept the model as valid
or to refine the model depends on �e best-case and worst-case error implied by the confidence interval.

1. Suppose the confidence interval does not contain Jlo· (See Figure 10.6(a).)
(a) If the best-case error is > t:, then the difference in performance is large enough, even in the best

case, to indicate that we need to refine the simulation model.
(b) If the worst-case error is � t:, then we can accept the simulation model as close enough to be

considered valid.
(c) If the best-case error� �. t:, but the worst-c�e error is :- t:, then a�ditional simulation replica-

tions are necessary to shnnk the confidence 10terval until a conclusiOn can be reached.
2. Suppose the confidence interval does contain JLo- (See Figure 10.6(b).)

(a) If either the best-case or worst-case error is > t:, then additional simulation replications are
necessary to shrink the confidence interval until a conclusion can be reached.

(b) If the worst -case error is � t:, then we can accept the simulation model as close enough to be
considered valid.

' i . \ 1.) ,· l'• \ � .. : . .

VERIFICATION AND VALIDATION OF SIMULATION MODELS

best case

worst case

(a)

worst case

(b)

Jlo

best case 1---1

Jlo

Figure 10.6 Validation of the inpul-output transformation (a) when the true value falls outside
(b) when the true value falls inside, the confidence interval.

'

327

In Example 10:2, Jlo = 4.3 minutes, and "close enough" was t: = I minute of expected customer delay. A 95% confidence 10terval, based on the 6 replications in Table 10.2, is

Y ± 1o025 sf .J;;
2.5 I ± 2.57 1(0.82/ .J6>

�ielding the interval [1 .65, 3.37]. As in Figure 10.6(a), Jlo = 4.3 falls outside the confidence interval. Since
10 the best case J3.37 - 4.3J = 0.93 < I, but in the worst case J l .65 - 4.31 = 2.65 > I , additional replications
are needed to reach a decision.

1 0.3.4 Input-Output Validation: Using Historical Input Data
Wh�n using artificially generated data as input data, as was done to test the validity of the bank models in �ectwn 10.3.3, the modeler expects the model to produce event patterns that are compatible with, but not iden­tical to, the eve�t �at�rns that occurred in the real system during the period of data collection. Thus, in the ban� model, art1fic1al 10put data (X1., X2n, n = I , 2, . . . } for interarrival and service times were generated, and re�hcates of th: output �ata Y2 were compared to what was observed in the real system by means of the hypoth­eSIS test stated 10 equation (I 0. 1). An alternative to generating input data is to use the actual historical record (A., s., n = I , 2, . . . }, to drive the simulation model and then to compare model output with system data

'

.
To implement this technique for the bank model, the data AI, A2· · · · and s" s2•· · · would have

.
to be ent:red into the

.
model into arrays, or stored in a file to be read as the need arose. Just after customer n arrived at time t. � L i=l A,, customer n + I would be scheduled on the future event list to arrive at future time t.+A

�+l (w1thou_t any random numbers being generated). If customer n were to begin service at time t�, a servrce complet
_
wn would b: scheduled to occur at time t� + s. This event scheduling without random­n_umber

_
generation could b� Implemented quite easily in a general-purpose programming language or most Simulation languages by us10g arrays to store the data or reading the data from a file.

. When using this technique, the modeler hopes that the simulation will duplicate as closely as possible the
_
1mp�rtant events that occurred in the real system. In the model of the Fifth National Bank of Jaspar, the arnval Urnes and service durations will exactly duplicate what happened in the real system on that Frida bet':"een l � :

_
00 �.M. and I :00 P.M. If the mode� is sufficiently accurate, then the delays of customers, len� of hnes, ut1hzatwns of servers, and departure !lmes of customers predicted by the model will be close to what actually happened in the real system. It is, of course, the model-builder's and model-user's judgment that determines the level of accuracy required. .

: !

< .

328 DISCRETE-EVENT SYSTEM SIMULATION

To conduct a validation test using historical input data, it is important that all the input data (An, Sn, . . .)

and all the system response data, such as average delay (�). be collected during the same time period.

Otherwise, the comparison of model responses to system responses, such as the comparison of average delay

in the model (f z) to that in the system (�). could be misleading. The responses (f2 and �) depend both on

the inputs (An and s.) and on the structure of the system (or model). Implementation of this technique could

be difficult for a large system, because of the need for simultaneous data collection of all input variables and

those response variables of primary interest In some systems, electronic counters and devices are. used to

ease the data-collection task by automatically recording certain types of data. The following example was

based on two simulation models reported in Carson et al. [l98 la, b], in which simultaneous data collection

and the subsequent validation were both completed successfully.

Example 10.3: The Candy Factory

The production line at the Sweet Lil' Things Candy Factory in Decatur consists of three machines that make,

· package, and box their famous candy. One machine (the candy maker) makes and wraps individual.pieces of

candy and sends them by conveyor to the packer. The second machine (the packer) packs the individual

pieces into a box. A thii:d machine (the box maker) forms the boxes and supplies them by conveyor to the

packer. The system is illustrated in Figure 10.7.
Each machine is subject to random breakdowns due to jams and other causes. These breakdowns cause

the conveyor to begin to empty or fill. The conveyors between the two makers and the packer are used as a

temporary storage buffer for in-process inventory. In addition to the randomly occurring breakdowns, if the

candy conveyor empties, a packer runtime is interrupted and the packer remains idle until more candy is

produced. If the box conveyor empties because of a long random breakdown of the box machine, an operator

manually places racks of boxes onto the packing machine. If a conveyor fills, the corresponding maker

becomes idle. The purpose of the model is to investigate the frequency of those operator interventions that

require manual loading of racks of boxes as a function of various combinations of individual machines and

lengths of conveyor. Different machines have different production speeds and breakdown characteristics, and

longer conveyors can hold more in-process inventory. The goal is to hold operator interventions to an accept­

able level while maximizing production. Machine stoppages (whether due to a full or an empty conveyor)

cause damage to the product, so this is also a factor in production.

A simulation model of the Candy Factory was developed, and a validation effort using historical inputs

was conducted. Engineers in the Candy Factory set aside a 4-hour time slot from 7:00 A.M. to 1 1 :00 A.M. to

Conveyors

for boxes

figure 1 0.7 Production line at the candy factory.

VERIFICATION AND VALIDATION OF SIMULATION MODELS 329

coli� data on an existing production line. For each machine-say, machine i-time to failure and downtim
duration

e

Til• Dil, Ta. D,-z, . ..
were �llected. F�r machine i(i =: 1, 2, 3), TIJ is the jth runtime (or time to failure), and � is the successive
dow;�me. A ru?tune, �J: can be mterru��d by a full or empty conveyor (as appropriate), bot resumes when
�on ttions are �g?�· Ininal

. �
ystem c.ond1ttons at 7:00 A.M. were recorded so that they could be duplicated

I? the model as m1ttal cond11!ons at ume 0. Additionally, system responses of primary interest-the produc­
tion lev� I (�) •

.
and the number (�) and time of occurrence (ZJ) of operator interventions-were recorded fo

companson With model predictions.
r

The system input data, Til and D;1, were fed into the model and used as runtimes and random downtimes
The structure of the mo�l dete�ned the occurrence of shutdowns due to a full or empty conveyor and th�
occurrence of operat�r mterventions. Model response variables (I';, i = 1, 2, 3) were collected fer compari­
son to the correspondmg system response variables (Z;. i = 1, 2, 3). '!'h� closeness of model predictions to system performance aided the engineering staff considerably in
convmcmg management of the v�dity of the model. These results are shown in Table 10.5. A simple dis­
pia� �uch as Table 10.5 can be qmte effective in convincing skeptical engineers and managers of a model's
val1d1ty-peibaps more effectively than the most sophisticated statistical methods! :W.th only one set ?f histori�al. input and output data, only one set of simulated output data can be
o?tat�ed, .and thus no s1mple statistical tests are possible that are based on summary measures. but, · f K
h1stoncal mput data sets are collected, and K observations Zu. Z,-z, . . • , Z;K of some system respons� varia�le
Z;, are collec�, such that the output measure Z1i corresponds to the jth input set, an objective statistical tes� �mes

.�
s1ble. For example, Zi1 could be the average delay of all customers who were served during the

� the jth mput data s:t was collected. With the K input data sets in hand, the modeler now runs the model
K times, once for each mput set, and observes the simulated results w, w w 0 din z
· - 1 K c · . ll• t2• . . . , iK c rrespon g to �
� - . , · . . ; . onunumg the same example, WIJ would be the average delay predicted by the model for th;
Jth mput set The data available for comparison appears as in Table 10.6.

If the K input data sets are fairly homogeneous, it is reasonable to assume that the K observed differ­
ences di= Zij - Wij,j = 1 , . . . , K, are identically distributed. Furthermore if the collection oftheK sets of ' t
data was separated · ti d'ff

' mpu

. . m me-say, on 1 erent days-it is reasonable to assume that the K differences d d
are statistically indepen�ent and, hence, that the differences db . . . , dK constitute a random sample. �� ·�;
c�es, each Zi and w; IS a sample .average over customers, and so (by the Central Limit Theorem) the
differen�s 0 =

.
Z¥ - WIJ ·� approximately normally distributed with some mean Jld and variance q2• The

appropn�te statistical test IS then a t test of the �ull hypothesis of no mean difference:
4

Ho : Jld= O
versus the alternative of significant difference:

Table 1 0.5 Validation of the Candy-Factory Model

Respot�Se, i

1. Production level
2. Number of operator

interventions
3. Time of occimence

System, Z1

897,208
3

7:22, 8:41, 10:10

Model, Y,

883,150
3

7:24, 8:42, 10:14

' ,_. · ·-:

330 DISCRETE-EVENT SYSTEM SIMULATION

Table 1 0.6 Comparison of System and Model Output Measures for ldenticaf Historical Inputs

Input Data
Set

2
3

K

System
Output,

z,i

Model
Output,

wij

Observed
. Difference,

dj

di = Zil - wil
d2 = Z,1 - Wa
d3 = Zi3 - Wi3

Squared Deviation
from Mean,

(d) - d)'

(d, d)'
(d, -d)'
(d., -d)'

(dK -d)'

s' = -1-±(d. -d)'
d K - 1 1=, ' .

The proper test is a paired t test (Zil is paired with Wil, �ch having been pm?uced br the first input data
_
set,

and so on). First, compute the sample mean difference, d and the sample vanance, Sd, by the formulas given
in Table I 0.6. Then, compute the t statistic as

d-J1.d t - --o - sJJK (10.4)

(with J1.d = 0}, and get the critical value tai2, K-l from Table A.5, wh�re a is the presp�ified significance �eve!
and K _ 1 is the number of degrees of freedom. 1f I tal > ta12,K-I• reJect the hypothesiS H0 of no mean differ­
ence, and conclude that the model is inadequate. If ltol !> tan,K-l• do not reject Ha. and hence conclude that
this test provides no evidence of model inadequacy.

Example 10.4: The Candy Factory, Continued
Engineers at the _Sweet Lil' Things Candy Factory decided to expand �e Irutlal �alidatJ.on effort reporte� m
Example 10.3. Electronic devices were installed that could automatJ.cally momtor one of the productiOn
lines, and the validation effort of Example 10.3 was repeated with K = 5 sets of i�put data. The system and
the model were compared on the basis of production level. The results are shown m Table 10.7 ·

Table 10.7 . Validation of the Candy-Factory Model (Continued)

Input System Model Observed Squared Deviation
Data Set, Production, Production, Difference, from Mean,

j Z11 Wu dj (dj - d)'

1 897;,208 883,150 14,058 7.594 x W
2 629,126 630,550 -1,424 4.580 x 107
3 735,229 741,420 -6,191 1 .330 X 107
4 797,263 788,230 9,033 1.362 X 107
5 825,430 814,190 1 1,240 3.4772 x 10'

d = 5,343.2 s; = 7.580 x 107

VERIFICATION AND VALIDATION OF SIMULATION MODELS 331

A paired t test was conducted to test H0 ; J1.d 0, or equivale)ltly, H0 ; E(Z1) = E(W1), where Z1 is the system
production level and W1 is the production level predicted by the simulated model. Let the level of significance
be a= 0.05. Using the results in Table 10.7, the test statistic, as given by equation (10.4), is

d 5343.2 to = s)JK
=

8705.85/../5
1.37

From Table A.5,.the critical value is tan,K-l = to.025.4=2.18• Since I tal = 1 .37 < t0.025,4 = 2.78, the null hypoth­
esis cannot be rejected on the basis of this test-that is, no inconsistency is detected between system
response and model predictions in terms of mean production level. If H0 had been rejected, the modeler
would have searched for the cause of the discrepancy and revised the model, in the spirit of Figure 1 0.3.

1 0.3.5 Input - Output Validation: Using a Turing Test

In addition to statistical tests, or when no statistical test is readily applicable, persons knowledgeable about
system behavior can be used to. compare model output to system output. For example, suppose that five
reports of system petformance over five different days are prepared, and simulation output data are used to
produce five "fake" reports. The 10 reports should all be in exactly the same format and should contain infor­
mation of the type that managers and engineers have previously seen on the system. The 10 reports are ran­
domly shuffled and given to the engineer, who is asked to decide which reports are fake and which are real.
If the engineer identifies a substantial number of the fake reports, the model builder questions the engineer
and uses the information gained to improve the model. lf the engineer cannot distinguish between fake and
real reports with any consistency, the modeler will conclude that this test provides no evidence of model
inadequacy. For further discussion and an application to a real simulation, the reader is referred to Schruben [1980]. This type of validation test is commonly called a Thring test. Its use as model development proceeds
can be a valuable tool in detecting model inadequacies and, eventually, in increasing model credibility as the
model is improved and refined.

10.4 SUMMARY

Validation of simulation models is of great importance. Decisions are made on the basis of simulation results;
thus, the accuracy of these results should be subject to question and investigation.

Qilite often, simulations appear realistic on the sutface because simulation models, unlike analytic mod­
els, can incorporate any level of detail about the real system. To avoid being "fooled" by this apparent real­
ism, it is best to compare system data to model data and to make the comparison by using a wide variety of
techniques, including an objective statistical test, if at all possible .

. As discussed by Van Hom [1969, 1971], some of the possible validation techniques, in order of increas­
ing cost-to-value ratios, include

1. Develop models with high face validity by consulting persons knowledgeable about system behav­
ior on both model structure, model input, and model output. Use any existing knowledge in the form
of previous research and studies, observation, and experience.

2. Conduct simple statistical tests of input data for homogeneity, for randonmess, and for goodness of
fit to assumed distributional forms.

3. Conduct a Turing test. Have knowledgeable people (engineers, managers) compare modeloutput to
system output and attempt to detect the difference .

. - , ---.-:-------- -

332
DISCRETE-EVENT SYSTEM SIMULATION

4. Compare model output to system output by means of statistical tests.

5. After model development, collect new system data and repeat techniques 2 to 4.

6. Build the new system (or redesign the old one) conforming to the simulation results, collect data on the

new system, and use the data to validate the model (not recommended if this is the only technique used).

7. Do little or no validation. Implement simulation results without validating. (Not recommended.)

It is usually too difficult, too expensive, or too time consuming to use all possible validation tec!miques

for every model that is developed. It is an important part of the model-builder's task to choose those valida­

tion techniques most appropriate, both to assJife model accuracy and to promote model credibility.

REFERENCES

BALCL 0. [1 994], "Validation, Verification and Testing Techniques throughout the Life Cycle of a Simulation Study,"

Annals of Operations Research, Vol. 53, pp. 121-174.

BALCL 0. [l998] "Verification, Validation, and Testing," in HandbookqfSimulalion,J. Banks,ed.,John Wiley, New Yodc.

BALCI, 0. [2003], "Verification, Validation, and Certification of Modeling and Simulation Applications." in

Proceedings of the 2003 Winter Simulation Conference, ed. by S. Chick, P. J. Sanchez, D. Ferrin. and D. J. Morrice,

pp. 150-158, Association for Computing Machinery, New York.

BALCI, 0., AND R. G. SARGENT [1982a], "Some Examples of Simulation Model Validation Using Hypothesis

Testing," in Proceedings of the Winter Simulalion Conference, ed. by H. J. Highland, Y. W. Chao, and 0. S. MadrigaL,

pp. 620-629, Association for Computing Machinery, New York.

BALCI, 0., AND R. G. SARGENT [1982b], "Validation of Multivariate Response Models Using Hotelling's Two-

Sample 'P Test," Simulalion, Vol 39, No. 6 (Dec}, pp. 185-192.

BALCI. 0., AND R. G. SARGENT (1984a], "Validation of Simulation Models via Simultaneous Confidence Intervals,"

American Journal of Mathematical Management Sciences. VoL 4, Nos. 3 & 4, pp. 375-406.

BALCI, 0., AND R. G. SARGENT [1984b], "A Bibliography on the Credibility Assessment and Validation of

Simulation and Mathematical Models," Simuleuer, Vol. 15, No. 3, pp. 15-27.

BORTSCHELLER. B. J., AND E. T. SAULNIER [1992], "Model Reusability in a Graphical Simulation Package," in

Proceedings of the Winter Simulalion Conference, ed. by J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,

pp. 764-772, Association for Computing Machinery, New York.

CARSON, J. S. [2002], "Model Verification and Validation," in Proceedings of the Winter Simulalion Conference, ed.

by E. Yiicesan, C.-H. Chen, J. L. Snowdon, and J. M. Chames, pp. 52-58, Association for Computing Machinery,

New Yoik.
CARSON, J. S., N. WILSON, D. CA.AAOLL, AND C. H. WYSOWSKI [1981a], "A Discrete Simulation Model of a

Cigarette Fabrication Process." Proceedings of the Twelfth Modeling and Simulation Conference, University of

Pittsburgh, P A.
CARSON, J. S., N. WILSON, D. CARROLL, AND C. H. WYSOWSKI [l981b], "Simulation of a Filter Rod

Manufacturing Process," Proceedings of the 1981 Winter Simulalion Conference, ed. by T. L Oren, C. M. Delfosse,

and C. M. Sbub, pp. 535-541 , Association for Computing Machinery, New York.

CARSON, J. S., [1986], "Convincing Users of Model's Validity is Challenging Aspect of Modeler's Job,'' Industrial

Engineering, June, pp. 76--85.
GAFARIAN, A. V., AND J. E. WALSH [1970], "Methods for Statistical Validation of a Simulation Model for Freeway

Traffic near an On-Ramp," Transportation Research, Vol. 4, p. 379-384.

GASS, S. I. [1983], "Decision-Aiding Models: Validation, Assessment, and Related Issues for Policy Analysis,"

Operations Research, Vol. 31, No. 4, pp. 601-663.

HINES, W. W., D. C. MONTGOMERY, D. M. GOLDSMAN, AND C. M. BORROR [2002]; Probability and Statistics

in Engineering, 4th ed., Wiley, New York.
KLEIJNEN, J. P. C. [1987], Statistical Tools for Simulation Practitioners, Marcel Dekker, New York.

KLEDNEN, J. P. C. (1993], "Simulation and Optimization in Production Planning: A Case Study," Decision Support

Systems, Vol. 9, pp. 269-280.

VERIFICATION AND VALIDATION OF SIMULATION MODELS 333

KLEIJNEN, J. P. C.
_
[1995], "Theory and Methodology: Verification and Validation of Simulation Models," Euro ean

Journal of OperatiOnal Research, Vol. 82, No. l, pp. 145-162.
'P

LAW, A. M., AND W. D. KELTON [2000], Simulation Modeling and Analysis, 3d ed., McGraw-Hill New York.
NAYLOR, T. H., AND J. M. FINGER [1967], "Verification of Computer Simulation Models " Ma�gement Science

Vol. 2, pp. B92-Bl01.
' '

OREN, T. �19�1], "Concepts �d
_
Criteria to As�ess Acceptability of Simulation Studies: A Frame of Reference,"

Commumcatwns of the Association for Computmg Machinery, Vol. 24, No. 4, pp. 1 80-89.
S��· R. G. [2003], "Verification and Validation of Simulation Models," in Proceedings of the 2003 Winter

S1mulatwn Conference, ed. by S. Chick, P. J. Sanchez, D. Petrin, and D. J. Morrice pp 37-48 As · ti' "
Computing Machinery, New York.

• · , soc1a on .or

SCHEcr;R, M., AND R. C. LUCAS [1980], "Validating a Large Scale Simulation Model of Wilderness Recreati
Travel, lnteifaces, Vol. 10, pp. 1 1-18.

on

SCHRUBEN, L. W. [1980], "Estab�hing � Credibility of Simulations," Simulation, Vol. 34, pp; !01-105. �HANNON, R. E. [1975], �yst�ms ��m�t:uwn: The Art and Science. Prentice-Hall, Englewood Cliffs, N.J.
AN!IORN, R. L. [l969], 'Validation, rn The Design ofComputer Simulation Experiments ed. by· T H Naylor D k
Umverstty Press, Durham, N.C.

• · · • u e

VAN HORN, R. L. [1971], "V ��on of Simulation Results," Management Science, Vol. 17, pp. 247-258.
YOUNGBI£?D, S. M. [�9931 Literature Review and Commentary on the Verification, Validation and Accreditation

of Models, m Proceedmgs of the Summer Computer Simulalion Conference, Laurel, MD.

EXERCISES

1. A simulation model.o� a job shop was developed to investigate different schedulliJg rules. To validate
the model, the sc�eduhng rule currently used was incorporated into the model and the resulting output
w� compared agamst observed system behavior. By searching the previous year's database records it was
est�ed that the average number of jobs in the shop was 22.5 on a given day. Seven independen� repli­
ca�ons ?f the model were run, each of 30 days' duration, with the following results for average number
of JObs m the shop:

18.9 22.0 19.4 22.1 19.8 21 .9 20.2

(a) Devel?P and conduct a sta�sti�al test to evaluate whether model' output is consistent with system
behavtor. Use the level of stgmficance a= 0.05.

·

(b) What is the power of this test if a difference of two jobs is viewed as critical? What sample size is
needed to guarantee a power of 0.8 or higher? (Use a = 0.05.)

2. Sys� data for the jo? shop of Exercise I revealed that the average time spent by a job in the shop was
ap�roxunately 4 working days. The model made the following predictions, on seven independent repli­
cattons, for av�rage time spent in the shop:

3.70 4.21 4.35 4.13 3:83 4.32 4.05

(a) � �del output consistent with system behavior? Conduct a statistical test, using the level of
stgmficance a = 0.01.

(b) Ifit is important to de�t a difference of 0.5 day, what sample size is needed to have a power of 0.90?
Interpret your results m tenns of model validity or invalidity. (Use a = 0.01.)

3. For the job shop of Exercise I , four sets of input data were collected over four different 1 0-day · ods
together with the average number of jobs in the shop (Z;) for each period. The input data were �ed t�

334 DISCRETE-EVENT SYSTEM SIMULATION

drive the simulation model for four runs of 10 days each, and model predictions of average number of

jobs in the shop (f;) were collected, with these results:

21.7
24.6

2

19.2
21 . 1

3

22.8
19.7

4

19.4
24.9

(a) Conduct a statistical test to check the consistency of system output and model output. Use the level

of significance a = 0.05. . . ired (b) If a difference of two jobs is viewed as impo�t t? detect, ��at_ sample s�ze �s requ
_

to guaran­

tee a probability of at least 0.80 of detecting thiS difference 1f It 10deed exists . (Use a - 0.05.)

Find several examples of actual simulations rep?rted in the literature in whic� th� authors �iscuss vali�
4. dation of their model. Is enough detail given to JUdge the adequacy of �e validation effort. If s�, co

_
m

th rted alidation with the criteria set forth in this chapter. D1d the authors use any validation
pare

.
e repo .

di
v

ed . this chapter? [Several potential sources of articles on simulation applications
techmque not scuss 10 ·

p d' t
include the journal Inteifaces and Simulation, and the Winter Simulation Conference rocee mgs a

www.informs-cs.org.]

5. (a) Compare validation in simulation to the validation of theo?es i
al
n

_
th
d

e
_
phys�cal ;!�:��s

p
.
hysical sys (b) Compare the issues involved and the techniques available ,or v 1 auon o m ·

terns versus models of social systems. . . .
(c) Contrast the difficulties, and compare the techniques, 10 val1dat10g a model of a manually

-
�perat�

warehouse with fork trucks and other manually operated vehicles, versllS � model of a fac1hty w1th

automated guided vehicles, conveyors, and an_ auto":'ated sto�ge-and-retneval system. . _
(d) Repeat (c) for a model of a production system 10volv10g cons1dera�le manual labor and human dec!

sion making, versus a model of the same production system after It has been automated.

1 . 1
Output Analysis for a Single
Model

Output analysis is the examination of data generated by a simulation. Its purpose is either to predict the
performance of a system or to compare the performance of two or more alternative system designs. nus
chapter deals with the analysis of a single system; Chapter 12 deals with the comparison of two or more sys­
tems. The need for statistical output analysis is based on the observation that the output data from a
simulation exhibits random variability when random-number generators are used to produce the values of
the input variables-that is, two different streams or sequences of random numbers will produce two sets of
outputs, which (probably) will differ. If the performance of the system is measured by a parameter (), the
result of a set of simulation experiments will be an estimator 0 of 9. The precision of the estimator 0 can
be measured by the standard error of e or by the width of a confidence interval for e. The purpose of the
statistical analysis is either to estimate this standard error or confidence interval or to figure out the number
of observations required to achieve a standard error or confidence interval of a given size-or both.

Consider a typical output variable, Y, the total cost per week of an inventory system; Y should be treated
as a random variable with an unknown distribution. A simulation run of length 1 week provides a single
sample. observation from the population of all possible observations on Y. By increasing the run length, the
sample size can be increaSed to n observations, fl' Y2, . . . , Yn, based on a run length of n weeks. However,
these observations do not constitute a random sample, in the classical sense, because they are not statistically
independent. In this case, the inventory on hand at the end of one week is the beginning inventory on hand
for the next week, and thus the value of Y; has some influence on the value of Yi+l' Thus, the sequence of
random variables fl ' Y2, . . • , Yn, could be autocorrelated (i.e., correlated with itself). nus autocorrelation,
which is a measure of a lack of statistical independence, means that classical methods of statistics, which
�sume independence, are not directly applicable to the analysis of these output data. The methods must be
.properly modified and the simulation experiments properly designed for valid inferences to be made . .

335

DISCRETE-EVENT SYSTEM SIMULATION

336

In addition to the autocorrelation present in most simulation output data. the specification of the initial

conditions of the system at time 0 can pose a problem for the simulation analyst and could influence the

output data. For example, the inventory on hand and the number of backorders at time 0 would most likely

influence the value of Yl' the total cost for week l . Because of the autocorrelation, these initial conditions

would also influence the costs (Y1, . • • , Yn) for subsequent weeks. The specified initial conditions, if not

chosen well, can have an especially deleterious effect pn attempting to estimate the steady-state (long-run)

performance of a simulation model. For purposes of stati�cal analysis, the effect of the initial conditions is

that the output observations might not be identically distributed and that the initial observations might not be

representative of the steady-state behavior of the system.

Section 1 1 . 1 distinguishes between two types of simulation-transient versus steady state-and defines

commonly used measures of system performance for each type of simulation. Section 1 1 . 2 illustrates by

example the inherent variability in a stochastic (i.e., probabilistic) discrete-event simulation and thereby

demonstrates the need for a statistical analysis of the output. Section 1 1 .3 covers the statistical estimation of

performance measures. Section 11.4 discusses the analysis of transient simulations, Section 1 1 .5 the analysis

of steady-state simulations.

1 1 .1 TYPES Of SIMULAnONS WITH RESPECT TO OUTPUT ANALYSIS

In the analyzing of simulation output data. a distinction is made between terminating or transient simulations

and steady-state simulations. A terminating simulation is one that runs for some duration of time T E' where

E is a specified event (or set of events) that stops the simulation. Such a simulated system "opens" at time 0

under well-specified initial conditions .and "closes" at the stopping time Tr The next four examples are

terminating simulations.

Example 11.1
The Shady Grove Bank opens at 8:30 A.M. (time 0) with no customers present and 8 of the 11 tellers work-

ing (initial conditions) and closes at 4:30 P.M. (time T£ == 480 minutes). Here. the event E is merely the fact

that the bank has been open for 480 minutes. The simulation analyst is interested in modeling the interaction

between customers and tellers over the entire day, including the effect of starting up and of closing down at

the end of the day.

Example 11.2

Consider the Shady Grove Bank of Example 1 1. 1 , but restricted to the period from 1 1 :30 A.M. (time 0) to

. 1 :30 P.M., when it is especially busy. The simulation run length is TE = 120 minutes. The initial conditions at

time 0 (1 1 :30 A.M.) could be specified in essentially two ways: (1) the real system could be observed at 1 1:30

on a number of different days and a distribution of number of customers in system (at 1 1 :30 A.M.) could be

estimated, then these data could be used to load the simulation model with customers at time 0; or (2) the

model could be simulated from 8:30 A.M. to 1 1:30 A.M. without collecting output statistics, and the ending

conditions at 1 1:30 A.M. used as initial conditions for the 1 1:30 A.M. to 1:30 P.M. simulation.

Example 1 1.3
A communications system consists of several components plus several backup components. It is represented

schematically in FigUre 1 1 . 1 . Consider the system over a period of time, TE' until the system fails. The stopping

event E is defined by E = lA fails, or D fails. or (B and C both fail) } . Initial conditions are that all components

are new at time 0.

MODEL

Figure 1 1 .1 E I xomp e of o communications system.

Notice that, in the bank model of Exam I 1
Ex�ple 1 1

:
3, the stopping time TE is gene�l

e
u! . 1 , �e stop�ing time T E = 480 minutes is known, but in =�o

t
�I::;i:;�e

a�:�r
)
ep:sents th� total ti�e u���:�::;:t��

a�=�� facb TE is proba
.
bly �e output

.
E • e mean ttme to system failure. .

. wn. ne goal of :he Simulation

Example UA
A widget-manufacturing .
first shift of

process runs contmuously from Monda .

catal
each workweek is used to load inventory buffi d

y mommgs until Saturday mornings The

ysts needed to mak the fi
ers an chemical tank ·th

·

. e nal product (28 varieties f ·
s WI the components and

::!:al� througho�t the week, except for the last sh� ;��et). :r:ese c?mponents and catalysts are made

· us, most mventory buffers are
Y mg t, whtch IS used for cleanup a d •

:;.,'!,� •:dd• buHt "P to "''" �= :.��';.� :: :::.::..�' wret. o.ring tire frr< "ohi"::;;
policies for load� e , ts system dunng the first shift (time 0 to time T

- 8
n �n some part of the process. It is

. mg mventory buffers.
E- ours) to study various. schedulin

In the simulating of a terminating s stem

g

:��/=�i:t
t: ��;r

o��:;:l�� ;::��i:n:����E
or:::���::;1ti:��e����;�i�;��

=.�.:::: .. � ;'.::!':;',!� ;:.:::::: :,��;.:�M:::;b�::::.::;<�t
o�d.�. ::��:::

�p<ct of tire lmok'• -- woh " ili< flow of :.o�' •�•I•w• """'" w<re lot<"'tol ;, ""'" ,..,;
e system nught be considered as a nonterrninati

y �r ?peration of automated teller machines the

system of Example 1 1 3 If th &:
ng one. Sinular comments 1

• n

most . .
• . e .ailed component were re Ia d d

app y to the communications

co 'd
im��rtant, If the simulation analyst were interested

p . ce an the system continued to operate and

nsi eu:iu as a nonte · ti
m studying its Jon beh

' '
time 0 ntil the

mnna ng system. In Example 1 1 3 how . . g-run avior, it might be

u first system failure at time T The
. ' ever, mterest ts in its short-run behavior fro

•;::: 00 boP. the obj<ctim .r tire ,1,!;,u,. ':/:a"';,""';,;" '""""''"" " """Uie �d to he "�,;,..::;
:unple 1 1 .4 is a terminating system too I

. als Y t nature of the system.

the vanables of interest the
· '

· 1 ts 0 an example of a transient (o · .

(at time 0) to full
ru::e m-process inventory levels which·

. . r nonstattonary) stmulation:

or near full (lll time 8 hours)
, are mcreasmg from zero or near zero

A nonterm· (
·

Ex
. ma mg system is a system that runs con .

amples mclude assembly lines that shut do
infr ttnuously,

.
or at least over a very long period of tim.

- - '"""" md - �"""'"'·-prod"'""'""""'"'._ .. ,.,.:;
police d�patching and patrolli:Iig operations fire d

systems such as the Internet, hospital emergency rooms

� A •mulotion of , oon-g ,,,,;.,. ,::""""' .00 �tinoowJy OJ<rntffig '""""'"' """""":

e a_naly�t and runs for some analyst-specified pe
-�� s;lllulauon ll�e ? under initial conditions defined by

specification of these initial and stopping co d'ti
n o ttme TE. (Stgmficant problems arise concerning the

wants to study steady-state, or long-run pro
n � on7 problems that we discuss later.) Usually, the analyst

' pe es o the system-that is, properties that are not influenced

338 DISCRETE-EVENT SYSTEM SIMULATION

by the initial conditions of the model at time 0. A steady-state simulation is a simulation whose objective is
to study long-run, or steady-state, behavior of a nonterminating system. The next two examples are steady­
state simulations.

Example 11.5
Consider the widget-manufacturing process of Example 1 1.4, beginning with the second shift when the
complete production process is under way. It is desired to estimate long-run production levels and production
efficiencies. For the relatively long period of 13 shifts, this may be considered as a steady-state simulation.
To obtain sufficiently precise estimates of production efficiency and other response variables, the analyst
could decide to simulate for any length of time, TE (even longer than 13 shifts)-that is, To is not determined
by the nature of the problem (as it was in terminating simulations); rather, it is set by the analyst as one
parameter in the design of the simulation experiment.

Example 11.6
HAL Inc., a large computer-service bureau, has many customers worldwide. Thus, its large computer system
with many servers, workstations, and peripherals runs continuously, 24 hours per day. To handle an increased
work load, HAL is considering additional CPUs, memory, and storage devices in various configurations.
Although the load on HAL's computers varies throughout the day, management wants the system to be able
to accommodate sustained periods of peak load. Furthermore, the time frame in which HAL's business will
change in any substantial way is unknown, so there is no fixed planning horizon. Thus, a steady-state
simulation at peak-load conditions is appropriate. HAL systems staff develops a simulation model' of the
existing system with the current peak work load and then explores several possibilities for expanding capacity.
HAL is interested in long-run average throughput and utilization of each computer. The stopping time, TE,
is determined not by the nature of the problem, but rather by the simulation analyst, either arbitrarily or with
a certain statistical precision in mind.

1 l .2 STOCHASTIC NATURE OF OUTPUT DATA

Consider one run of a simulation model over a period of time [0, TE] . Since the model is an input-output
transformation, as illustrated by Figure 10.5, and since some of the model input variables are random vari­
ables, it follows that the model output variables are r-411dom variables. Three examples are now given to illus­
trate the nature of the output data from stochastic simulations and to give a preliminary discussion of several
important properties of these data. Do not be concerned if some of these properties and the associated
terminology are not entirely clear on a first reading. They will be explained carefully later in the chapter.

Example 11.7: Able and Baker, Revisited
Consider the Able-Baker technical-support call center problem (Example 2.2) which involved customers
arriving according to the distribution of Table 2. 1 1 and being served either by Able, whose service-time
distribution is given in Table 2.12, or by Baker, whose service-time distribution is given in Table 2. 13. The
purpose of the simulation is to estimate Able's utilization, p, and the mean time spent in the system per
customer, w, over the first 2 hours of the workday. Therefore, each run of the model is for a 2-hour period,
with the system being empty and idle at time 0. Four statistically independent runs were made by using four
distinct streams of random numbers to generate the interarrival and service times. Table 1 1. 1 presents the
results. The estimated utilization for run r is given by P, and the estimated average system time by w,
(i.e., w, is the sample average time in system for all customers served during run r). Notice that, in this
sample, the observed utilization ranges from 0.708 to 0.875 and the observed average system time ranges from
3.74 minutes to 4.53 minutes. The stochastic nature of the output data {p" p2, p3' p4 } and {wl' W2, W3, W4}
is demonstrated by the results in Table 1 1 . 1 .

OUTPUT ANALYSIS FOR A SINGLE MODEL

�abl� 1 1. 1 Results of Four Independent Runs of 2-Hour urahon of the Able-Boker Queueing Problem
Run, Able 's Utiliwion

r p,
0.808

2 0.875
3 0.708
4 0.842

Average System Tune
w, (Minutes)

'

3.74
4.53
3.84
3.98

339

. . There �e two general questions that we will addr b . . utilizations P, r = 1, . . . , 4: ess y a statistical analysis--say, of the observed

L estimation of the true utilization p = E(·) .
2. �stimation of the error in our point estin:;te

bfn ��gle nu�ber, called a point estimate;
mterval. ' e orrn either of a standard error or of a confidence

These question� are addressed in Section 1 1 .4 for terminatin .
.

. methods of statistics may be used beca p' , • , g Slm�ations, such as Example 1 1 .7. Classical · de de . . use •· A· PJ• and P4 constitute a d . � pen . nt and Identically distributed. In addition = E(,) .
ran om sample-that IS, they are IS an unbiased estimate of the true mean t-1· . '

p P, IS the parameter being estimated, so each p'
1 1 10 . u l lzatlon p. The analys· f E I . , . of Section 1 1 .4. A survey of statistical m th ds . IS o X<l_IDP e l l.7 Js considered in Example [1980]. Additional guidance may be found in

e
A�exo

ap�Iicable to te_rrrunating simulations is given by Law Kelton [2000], and Nelson [2001].
po los and SeJla [1998], Kleijnen [1987], Law and The next example illustrates the effects of correlation - run mean measures of performance of a system.

and IOitJ.al conditiOns on the estimation of long-

Example 11.8 �nsider a single-server queue with Poisson arrivals at a �ute) and service times that are normally distributed
:�verage rate of

_
one every 10 minutes (.l= 0. 1 per ffilnutes.• This is an M/G/1 queue which w d 'b

' Ith mean 9.5 mmutes and standard deviation 1 75 th
' as escn ed and anal zed · s · · e true long-run server utilization is p = .lE(S) = (0 1)(9 5) - 0 / m �tJ.on 6.4. 1 . By Equation (6. 1 1), such a system, because we can analyze it math ti

. II : . - . �- We typically would not need to simulate occur in trying to estimate the long-run mean
:::

e
c�:�u� we sunulate it here t_o illustrate difficulties. that

Suppose we run a single simulation for a total f 5oo0
q' defined by Equation (6.4).

0 S �. S 5000), where Lit) is the number of custo:ers in th
trunu�� an� obser;e the output process LQ{(t), continuous-time process a little easier to I . . e W&ting hoe at time t minutes. To make this te al f . ana yze, we divide the time . te I [0 5000 . rv s 0 1000 trunutes and compute the avera

10 rva •) mto five equal subin-ally. Specifically, the average number of custor!e n�m
th
ber of custorne� in queue for each interval individu-. ers 10 e queue from time (j - 1) 1000 toj(lOOO) is

y I Jj(IOOO)
i = 1000 U-l)lOOOLQ(t)dt, j = 1, . . . , 5 (11 . 1)

•The range of a service time is restricted to ±5 standani d
covers well over 99.999% of the normal distribution.

ev.attons, to exclude the possibility of a negative service time; that range

r----- - ---- - -1
I
I I I
l
i
I l :\

i c
I , ,
J i i� :
ll !� ll ·.· ' \;

��r .
'lil . . '·l'· h · I Ii .:

I l j \• 1 I

;I': .\1 ; I ·. : � '
"(, , 1

i l !
\ 1 '
i \ : ! I , J I

I I .. '

!t Li \

DISCRETE-EVENT SYSTEM SIMULATION
340

Th y = JIOOO L (t)dt /1000 is the time-weighted average number of customers in the queue from time 0 to
US, I 0 Q • "al . 1000 Y. = J2ooo L (t)dt / 1000 is the same average over [1000, 2000), and so on. Equation (11.1) IS a spec!

ttme ' 2 Q
. " " f · t IOOO • y y l rovide an example of "hatching o raw simu a-

case of Equation (6.4). The observatiOns { yl' Y2, �·th
4' y 5 p

lied batch means. The use of batch means in
tion data-in this case,_LQ� (t), 0 s; t _.::;; 5000_}-� 5 5

e £1 ar
�o� simply notice that hatching transforms the

analyzing o�tput data IS discussed 10 Sec
{
�o

(
n
) 0 � � <o�OOOJ into a discrete-time batch-means process

continuous-time queue-length process, Q t ' - - '
. 1 2 3 4 5} where each Y is an estimator of LQ. 2 E h { Yi, l = , . , 't : Its f thr� statistically independent replications are shown in Table 1 1 . . ac
The s1mu atlon resu ? .

rs For re lication 1, y . is the batch mean for
replication, or run, uses a dlstmct stream of �ndom nu�b� : / and y . are ljdefmed for batch j for
bate? j

_
(the jth interval), a� de

1
fin!d

b
�y

1
��:���n

g�:� !�� �:���e�� over ��ch replication, Y, ., for repli·
rephcat10ns 2 and 3, respective Y· ta e ·

cations r = 1,2,3.2 That is,
I 5 · (1 1 .2)

y - -:L,Y r = l, 2, 3 ,. - 5 j=l ,j ,

. . . f take batch averages first, then average the batch means, or just
It probably will not surpnse you that, ' we

h. I th rds each y is equivalent to the time average
average everything together, we get the same t mg. n � er wo , . (6

4) · · · a1 [0 5000) for replication r as g1ven by Equation · ·
over the enure 10terv , . bT , . t hastic simulations both within a single replication

Table 1 1:2 illustrate� th� inherent _vana I ���::i�� within replication 3, in which the average queue
and across different �epl�cauons. Co�slder the

I w of / = 7.67 customers during the frrst 1000 minutes to
len� over the batchmg mtervals var:es f:::�ir� subini�rval of 1000 minutes. Table 1 1 .2 also shows the
a high of y33= 20.36

_
cus�omer

c
s dunng

y t y to y the average queue lengths over the intervals 4000
variability across rephcat10ns. omp_are. t5 o 25 35'

to 5000 minutes across all three rephc�tiO�
S. . I t makes only one replication of this model and gets

Suppose, for the moment, that a Sl�U atlon ana ys
How recise is the estimate? This

the result Y;. = 3.75 customers as an estl�ate of �ean
��

eu
�

1:���· e��r of y
p
or by forming a confidence

question is usually answered by attempt�ng to estimate e s � y y
I . y could be regarded as a

interval. The simulation analyst mig�t thmk that the five b
�
t�

d�;::�en�t, and
,
i� fac:�hey are autocorrelated,

rimdom sample; however, the terms m the sequence are no 10 , .

Table 1 1 .2 Botched Average Queue Lenglh lor Three

Independent Replications

Replication

Batching I 2, I 3,
Interval Batch, 1,

(Minutes) j ylj y2j y3j
1 3.61 2.9 1 7.67

[0, 1000)
[1000, 2000) 2 3.21 9.00 . 19.53

[2000, 3000) 3 2.18 16. 15 20.36

[3000, 4000) 4 6.92 24.53 8. 1 1

[4000, 5000) 5 2.82 25.19 12.62

[0, 5000) Y;. = 3.75 f,.= 15.56 f,. = 13.66

b
· t· th bar as in Y indicates an average.

2The dot, as in the subscript r·. indicates summation over the second su scnp , e , r •·
"<2·.

OUTPUT ANALYSIS FOR A SINGLE MODEl 341

because all of the data are obtained from within one replication. If Y1 l' . . . , Y15 were mistakenly assumed to
be independent observations, and their autocorrelation were ignored, the usual classical methods of statistics
might severely underestimate the standard error of �., possibly resulting in the simulation analyst's thinking
that a high degree of precision had been achieved. On the other hand, the averages across the three replica­
tions, �., i; ., and �., can be regarded as independent observations, because they are derived from three
different replications.

Intuitively, Ya and Y12 are correlated because in replication 1 the queue length at the end of the time
interval [0, 1000) is the queue length at the beginning of the interval [1000, 2000)-similarly for any two
adjacent batches within a given replication. If the system is congested at the end of one interval, it will be
congested for a while at the beginning of the next time interval. Similarly, periods of low congestion tend to
follow each other. Within a replication, say for Y,p Y �· . . . , Y r5' high values of a batch mean tend to be
followed by high values and low values by low. This tendency of adjacent observations to have like values
is known as positive autocorrelation. The effect of ignoring autocorrelation when it is present is discussed in
more detail in Section 1 1 .5.2.

·

Now suppose that the purpose of the M/G/1 queueing simulation of Example 1 1 .8 is to estimate "steady­
state" mean queue length, that is, mean queue length under "typical operating conditions over the long run."
However, each of the three replications was begun in the empty and idle state (no customers in the queue and
the server available). The empty and idle initial state means that, within a given replication, there will be a
higher-than- "typical'' probability that the. system will be uncongested for times close to 0. The practical
effect is that an estimator of LQ-say, Y,. for replication r-will be biased low [i.e., E(Y,.) < LQ]. The extent
of the bias decreases as the run length increases, but, for short-run-length simulations with atypical initial
conditions, this initialization bias can produce misleading results. The problem of initialization bias is
discussed further in Section 1 1 .5 . 1 .

1 1 .3 MEASURES OF PERFORMANCE AND THEIR ESTIMATION

Consider the estimation of a performance parameter, e (or ¢), of a simulated system. It is desired to have a
point estimate and an interval estimate of e (or ¢). The length of the interval estimate is a measure of the
error in the point estimate. The simulation output data are of the form { Y" Y2, • • • , Y.l for estimating e; we
refer to such output data as discr�te-time data, because the index n is discrete valued. The simulation output
data are of the form { Y(t), 0 :<:; t :<:; TE} for estimating ¢; we refer to such output data as continuous-time data,
because the index t is continuous valued. For example, Y; might be the delay of customer i, or the total cost
in week i; Y(t) might be the queue length at time t, or the number of backlogged orders at time t. 'fl\e param­
eter e is an ordinary mean; ¢ will be referred to as a time-weighted mean. Whether we call the performance
parameter e or ¢ does not really matter; we use two different symbols here simply to provide a distinction
between ordinary means and time-weighted means.

1 1 .3.1 Point Estimation

The point estimator of e based on the data { Y" . . . , Y.J is defined by

1 n
e = -L.r. n i=l

(1 1.3)

where e is a sample mean based on a sample of size n. Computer simulation languages may refer to this as
a "discrete-time," "collect," "tally" or "observational" statistic.

, , ,-:

· , ;
- j

342 DISCRffi-EVENT SYSTEM SIMULATION

The point estimator 9 is said to be unbiased for 0 if its expected value is 0-that is, if

E(iJ) =0 (1 1 .4)
In general, however,

(1 1 .5)

d E(9) 0 is called the bias in the point estimator 0. It is desirable to have estimator� that are unbiased, �� if this is not possible have a small bias relative to the magnitude of 0. Examples o: estun�tors of th� form
of Equation (1 1 .3) incl�de w and wi.l of Equations (6.5) and (6.7), in which case f; IS the time spent m the
(sub)system by customer i. 1 gth · The point estimator of tP based on the data { f(t), 0 s t s T2}, where T2 IS the simulation run en , IS
defined by

A ' 1T' !P=- Y(t)dt T. 0 E
(1 1 .6)

. s· . ul . 1 may refer to this as a "continuous-and is called a time average of f(t) over [0, T8]. un ation angnages .
time" "discrete-change" or "time-persistent" statistic. In general, '

(1 1.7) E (B) ¢ 0

and i is said to be biased for 4J. £�-gain, we would like to obtain unbiased or 1ov:'-bias estimators. Examples
of time averages inelude L and La of Equations (6.3) and (6.4) and lj of Equation (11 .

_
1).

• I ted Oth Generally, 8 and 41 are regarded as mean measures of performance of th� syste� be�ng slmu a . . er
uall can be put into this common framework. For example, constder estunat10n of the proportion measures us Y . In th · 1 ti let of days on which sales are lost through an out-of-stock situation. e sunu a on,

_ {1; if out of stock on day i
y: - . ' 0, otherwtse

With n equal to the total number of days, 9 defined by Equation (11.3) is a point �timator. of 9, the propor­
. tion of out-of-stock days. For a second example, consider estimation of the proportion of ttme qu�e length
is greater than ko customers (for example, k0 = 10). If LQ(t} represents simulated queue length at time t, then
(in the simulation) define {1 , if LQ(t) > ko

Y(t) = . 0, otherwiSe

The� $, as defined by Equation (1 1 .6), is a point estimator of 4J, the proP?�� of tim� that the queue le?�
is greater than ko customers. Thus, estimation of proportions or probabilities IS a special case of the estima
tion of means. . · 'l Q tiles A rforrnance measure that does not fit this common framework IS a

_
�uantile or

_
percent! e. uan

d ·be
pe

the level of pe. rforrnance that can be delivered with a given probabtlity, p. For msta�, �uppose that escn ·

· • · te easured m rmnutes Then y represents the delay in queue that a customer expenences m a semce sys m, m ·

the 0.85 quantile of y is the value 9 such that
Pr{Y S 8} = p (1 1.8)

where p = 0.85 in this case. As a percentage, O is the lOOpth or 85th percentil� of customer delay. Therefore,
85% of all customers will experience a delay of 0 minutes or less. Stated differently, a customer has only

MODEL 343
a 0.15 probability of experiencing a delay of longer than 9 minutes. A widely used perfonnance measure is the median, which is the 0.5 quantile or 50th percentile.

Th� problem of estimating a quantile is the inverse of the problem of estimating a proportion or probability. Consider Equation (1 1 .8). In estimating a proportion, 8 is given and p is to be estimated; but, in estimating a quantile, p is given and 9 is to be estimated. ·

The most intuitive method for estimating a quantile is to form a histogram of the observed values of Y, then find a value 8 such that lOOp% of the histogram is to the left of (smaller than) 8. For instance, if we observe n = 250 customer delays { Y1, . • • , Y 250}, then an estimate of the 85th percentile of delay is a value 8 such that (0.85)(250) = 212.5 = 213 of the observed values are less than or equal to 9. An obvious estimate is, therefore, to set 8 equal to the 213th smallest value in the sample (this requires sorting the data). When the output is a continuous-time process, such as the queue-length process { LQt), 0 s; t s; TE}, then a histogram gives the fraction of time that the process spent at each possible level (queue length in this example). However, the �ethod for quantile estimation remains the same: Find a value 8 such that lOOp% of the histogram is to the left of 8.

1 1 .3.2 Confidence-Interval Estimation

To understand confidence intervals fully, it is important to understand the difference between a measure of error and a measure of risk. One way to make the difference clear is to contrast a confidence interval with a prediction interval (which is another useful output-analysis tool).
Both confidence and prediction intervals are based on the premise that the data being produced by the simulation is represented well by a probability model. Suppose that model is the normal distribution with mean 0 and variance 112, both unknown. To make the example concrete, let �· be the average cycle time for parts produced on the ith replication (representing a day of production) of the simulation. Therefore, 9 is the mathematical expectation of � . • and 11 is represents the day-to-day variation of the average cycle time. Suppose our goal is to estimate 8. If we are planning to be in business for a long time, producing parts day after day, then 0 is a relevant parameter, because it is the long-run mean daily cycle time. Our average cycle time will vary from day to day, but over the long run the average of the averages will be close to 9.
The natural estimator for 9 is the overall sample mean of R independent replications, Y .. = I:, f;.t R.

But Y .. is not 8, it is an estimate, based on a sample, and it has error. A confidence interval is a measure of that error. Let

S2 = -'-f <r - Y .. i R- l ,., '·

be the sample variance across the R replications. The usual confidence interval, which assumes the Yr are
normally distributed, is

- s
Y.. ± ta/l.R-1 ,[ii

where tall,R-l is the quantile of the t distribution with R - 1 degrees of freedom that cuts off a/2 of the area
of each tail. (See Table A.5.) We carmot know for certain exactly how fur Y .. is from 9, but the cnnfidence inter­
val attempts to bound that error. Unfortunately, the confidence interval itself may be wrong. A confidence
leve� such as 95%, tells us how much we can trust the interval to actually bound the error between Y .. and 8.
The more replications we make, the less error there is in Y . . , and our confidence interval reflects that because
t an.R-lS I .fii will tend to get smaller as R increases, converging to 0 as R goes to infinity.

344 DISCRm-EVENT SYSTEM SIMULATION

Now su se we need to make a promise about what the average cycle ti_me will t:e o� a particular day.
A good gue!fs our estimator f .. , but it is unlikely to be exactly right. E':'en 6 ttself, which IS the c:nter

v
o�th:

distribution is not likely to be the actual average cycle time on any particulru: day, because the �tl� e u!..
I · ' · A p•edt'cti'on 'mterval on the other hand, is designed to be wtde enough to contam ac eye e time vanes. ' '

. . · 1 · f · k· average cycle time on any particular day with high probability. A prediction mterva Is a measure o ns , a
confidence interval is a measure of error.

The normal-theory prediction interval is

The length of this interval will not go to 0 as R increases. In fact, in the limit it becomes

to reflect the fact that, no matter how much we simulate, our daily average cy�le time
_
still varies.

ed. ti"on m· terval 18' a measure of risk, and a confidence mterval ts a measure of error. In summary, a pr ac
· u1 · k, • b · aking more and more replications but we can never stm ate away r1S We can Simulate away error Y m

' . · · b aki which is an inherent part of the system. We can, however, do a better JOb of evaluating nsk y m ng more
replications.

Example 11.9 · ·

· · f f tu · imula-Suppose that the overall average of.the average cycle time on 120 replications o a manu ac nng s
tion is 5.80 hours, with a sample standard deviation of 1.60 hours. Since to.o25.l l9 == 1.98, a 95% confidence
interval for the long-run expected daily average cycle time is 5.80 ± 1.98�1.60(.[Ji{J) or 5.80 ± 0.29 hours.
Thus, our best guess of the long-run average of the daily average cycle times IS 5.80 hours, but there could
be as much as ±0.29 hours error in this estimate. .

On any particular day, we are 95% confident that the average cycle time for all parts produced on that
day will be

5.80 ± 1 .98(1.60)�1 +
I
�

5 80 + 3 l8 hours The ±3.18 hours reflects the inherent variability in the daily average cycle times and :e fact ilia� we want �0 be 95% conftdent of covering the actual average cycle time on a particular day (rather
than simply covering the long�run average).

1 1 .4 OUTPUT ANALYSIS FOR TERMINATING SIMULATIONS

Consider a terminating simulation that runs over a simulated time interval [0, TEl � results in observa�o�
y y The sample size n may be a fixed number, or it may be a random variable (say, the num r o
ob���arl�ns that occur durln� time TE). A common goal in simulation is to estimate

OUTPUT ANALYSIS FOR A SINGLE MODEl

When the output data are of the fonn { Y(t), 0 ::; t ::; TEl, the goal is to estimate

1/1 == E (..!.._ r Y(t) dt)
TE .0

345

The method used in each case is the method of independent replications. The simulation is repeated a total of R times, each run using a different random number stream and independently chosen initial conditions (which includes the case that all runs have identical initial conditions). We now address this problem.

1 1 .4.1 Statistical Background

Perhaps the most con.fusing .aspect of simulation output analysis is distinguishing _ within-replication data from across-replication data, and understanding the properties .and. uses of each. The issue Can be further confused by the fact that simulation languages often provide only summary measures, like sample means, sample variances, and confidence interval;;, rather than all of the raw data. Sometimes theSe summary measures are all the simulation language provides without a lot of extra work.
To illustrate the key ideas, think in tenus of the simulation of a �anufacturing .system .and two perfonnance measur�s of that system, the cycle time for parts (time from release into the factory until completion) and the work in process (WIP, the total number-of parts in the-factory at any time). In computer applications, these two measures could correspond to the response time and the length of the task queue at the CPU; in a service application, they could be the time to fulfill a customer's request and the number of requests on the "to do" list; in a supply-chain application, they could be the order fill time and the inventory level. Similar measures appear in many systems.
Here is the usual set up for something like cycle time: Let Yij be the cycle time for the jth part produced in the ith replication; If each replication represents two shifts of production, then the number of parts p�uced in each replication might differ. Table I 1.3 shows, symbolically, the results of R replications. The across-replication data are fonned by summarizing within-replication data: f;. is the sample mean

of the n, cycle times from the ith replication, s; is· the sample variance of the same data, and

(1 1 .9)

is a confidence-interval half-width based on this dataset.
From the across-replication data, we compute ovefll)l statistics, the average of the daily cycle time averages

yll
Yzl

YRI

- I R -
Y .. = -L,Y,.

· . { 1 1 . 10) R •=•

Table 11.3 Within- and Acros�eplicolion
Cycle-Time Doia

· · · ·

Within-Rep Data

fll r�.�
Yn

.. . " y� . . .
Yn .. . y/ln/1

Across,Rep Data

f.., S1\ H1
Y,.,s:, H2

�., s;, a.
- 2 Y .. , S , H

346 DISCRETE-EVENT SYSTEM SIMULATION

the sample variance of the daily cycle time averages

2 1 f - - 2 s = - ""� .-f ..)
R-1 ;.,

and finally, the confidence-interval half-width

(1 1 . 1 1)

(1 1 .12)

The quantity st.JR is the standard error, which is sometimes interpreted as the average error in f .. a5 an esti­
mator of 6. Notice that S2 is not the average of the within-replication sample variances, S12; rather, it is the
sample variance of the within-replication averages � ., � ., ... , YR ...

Within a replication, work in process (WIP) is a continuous-time output, denoted f;(t). The stopping
time for the ith replication, TE , could be a random variable, in general; in this example, it is the end of the
second shift. Table 1 1 .4 is an �b�tract representation of the data produced.

The within-replication sampte mean and variance are defined appropriately for continuous-time data:

- 1 iT� y;. = - J;(t) dt
T o E,

(1 1 . 13)

and

2 1 f.T4 - 2 S. = - (Y.(t)-Y.) dt J I 0 J I E,
(1 1.14)

A definition for Hi is more problematic, but, to be concrete; take it to be

s. H, = z .. ,2 .Jt. . (1 1 . 15)

Frankly, it is difficult to conceive of a situation in which H1 is relevant, a topic we discuss later. Although the
definitions of the within-replication data change for continuous-time data, the acro-ss-replication statistics are

. unchanged. and this is a critical observation.

Table 1 1.4 Within- and A<::ross-Replicalion
WIP Data

Within-Rep Data Across-Rep Data

f.(t),O$ t � Te, �-.s�.H,
Y2(t),O � t :S: Te, Y,_., s;.H2

Y,(t),O s; t ::;; TE, � .• s;,H.
Y .. ,S2, 1:

OUTPUT ANALYSIS FOR A SINGLE MODEL 347

Here are the key points that must be understood:

• The overall sample average, f .. , and the individual replication sample averages, �-· are always
unbiased estimators of the expected daily average cycle time or daily average WIP.

• Across-replication data are independent (since they are based on different random numbers), are
identically distributed (since we are running the same model on each replication), and tend to be
normally distributed if they are averages of within-replication data, as they are here. This implies that
the confidence interval f .. ± H is often pretty good.

• Within-replication data, on the other hand, might have none of these properties. The individual cycle
times may not be identically distributed (if the first few parts of the day find the system empty); they
are almost certainly not independent (because one part follows another); and whether they are
normally distributed is difficult to know in advance. For this reason, s: and H,, which are computed
under the assumption of independent and identically distributed (i.i.d.) data, tend not to be useful
(although there are exceptions).

• There are situations in which f .. .and f;. are valid estimators of the expected cycle time for an indi­
vidual part or the expected WIP at any point in time, rather than the daily average. (See Section 1 1 .5
on steady-state simulations.) Even when this is the case, the confidence interval Y .. ± H is valid, .and
�. ± H1 is not. The difficulty occurs because s; is a reasonable estimator of the variance of the cycle

time, but Sfln1 and SJITE· are not good estimators of the Var[�.]-more on this in Section 1 1.5.2.
l

Example 11.10: The Able-Baker Problem, Continued
Coosider Example 1 1.7, the Able-Baker technical-support call center problem, with the data for R = 4
replications given in Table I L l . The four utilization estimates, P,. are time averages of the form of Equation
(11 . 13). The simulation produces output data of the form {1, if Able is busy at time t

f (t) = r 0, otherwise

and P, Y,. as computed by Equation (1 1 .13) with TE = 2 hours. Similarly, the four average system times,
w1, ... , w4, are analogous to �- of Table 1 1.3,: where Yri is the actual time spent in system by customer i on

replication r.
First, suppose that the analyst desires a 95% confidence interval for Able's tnie utilization, p. Using

Equation (1 1 .1 0) compute an overall point estimator

f.= p = 0.808+0.875+0.708+0.842 - 0.808
4

Using_ Equation (1 1 . 1 1), compute its estimated variance:

82 = (0.808 -0.808)2 +· .. +(0.842-0.808)2 (o.on)z
4- 1

Thus, the standard error of p = 0.808 i s estimated by s.e .. (jJ) = stJ4 = 0.036. Obtain t0.0253 = 3.18 from
Table A.5, and compute the 95% confidence interval half-width by (1 1 . 12) as

s
H = t0.025.3 .J4 = (3. 18)(0.036) = 0.1 14

I
I
I

348 DISCRETE-EVENT SYSTEM SIMULATION

giving 0.808 ± 0. 1 14 or, with 95% confidence,

0.694 $ p $ 0.922

In a similar fashion, compute a 95% confidence interval for mean time in system w:

so that

or

Thus, the 95% confidence

• 3.74 + 4.53 + 3.84+ 3.98 4 02 . te w = - . mmu s
4

82 (3.74 -4.02)2 + · : ·+ (3.98 -4.02)2 (0.352)2
3 - 1

s .
H = t002S,3 .J4 = (3. 18)(0.1 76) = 0.560

4.02 - 0.56 $ w $ 4.02 = 0.56

for w is 3.46 S w S 4.58.

1 1 A.2 Confidence Intervals with Specified Precisian

By Expression (1 1 .12), the half-length H of a 100(1 - a)% confidence interval for a mean 6, based on the t
distribution, is given by

s
H = t -
. .a11,R-! JR

where S2 is the sample variance and R is the number of replications. Suppose that an error criterion e is
specified; in other words, it is desired to estimate e by ·r . . to within ±e w�th hlgh probability-say, at least
. 1 - a. Thus, it is desired that 1,1 sufficiently large. sample size, R, be taken to satisfy

When the sample size, R, is fixed, no guarantee can be given for the resulting error. But if the sample size
can be increased, an error criterion can be specified.

Assume that an initial sample of size R0 replications has been observed-that is, the simulation analyst
initially makes R0 independent replications. We must have R0 � 2, with 10 or more being desirable. The !4J
replications will be used to obtain an initial estimate S� of the population variance o-2• To meet the hl,llf­
length criterion, a sample size R must be chosen such that R :?! R0 and

H (1 1 .16)

Solving for R iri Inequality (1 1 .23) shows that R is the sq�allest integer satisfying R :?! R0 and

(l l . l7)

OUTPUT ANALYSIS FOR A SINGLE MODEL

Since tall,R
-t :?! za�2, an initial estimate for R is given by

R <! (Za;So)1
349

(1 l. l8)

where Zan is the I 00(1 - a/2) percentage point of the standard normal distribution from Table A.3. And
since t!%12.R-I "' Zan for large R (say, R :?! 50), the second ineq1,1ality for R is adequate when R is large. After
determining the final sample size, R, coUeet R - R0 additional observations (i.e., make R -R� a(iditional repli­
cations, or start over and make R total replications) and form the 100(1-0:)% confidenCe iriterv31 for e by

- s - s
Y..- tan.R-! JR S 6 5o Y.. + t;,n.R-l (1 1 .19)

where Y .. and s:i. are computed on the basis of aU R replications, Y .. by Equation (1 1 .10), and S2 by Equation .

(I I . I I). The half-length of the confidence interval given by Inequality (ll . l9) should be approximately, e or
smaller; however., with the additional R - R0 observations, the variance estimator S2 could differ somewhat
from the initial estimate s;, possibly causing the half-length to be greater than desired. If the confidence
interval (IIJ9) is too large, the procedure may be repeated, using Inequality (l l . l7), to determine an even
larger sample size.

·

EJample 11.11 . . .
Suppose that it is desired to estimate Able's utiliZation in 'Example 1 1.7 to within ±0.04 with probability
0.95. An initial sample of size R0 = 4 is taken, with the results given in Thble 1 1.1 . An initial estim�te of the
population variance is S� = (0.072)2 = 0.005 18. (See Example 1 1 .10 for the relevant data.) The error criterion
is .e = 0.04, and the .confidence coefficient is 1 - a = 0.95. From Inequality (1 l . l 8), the final sample size
must be at least as large as

Next, Inequality (1 1.17) can be used to test possible candidates (R = 13, 14, • • .) for final sample size, as follows:

R 13 14 15

2.18 2.16 2.14

15.39 15.10 14.83

Thus, R = 15 is the smallest integer satisfying Inequality (1 1 .17), so R - R0 = 15 - 4 = 1 1 additional repli­
cations are needed. After obtaining the additional outputs, we would again need to compute the half-width
H to ensure that it is as small as is desired.

1 1 .4.3 Quantiles

To present the interval estimator fo� q�tiles, it is helpful tO review tlie interval estimator for a mean in the
special case when the mean represents a proportion or probability, p. In this book, we have chosen to treat a
proportion or probability as just a special case of a mean. However, in many statistics texts, probabilities are
treated separately.

. .
: ' > '

350 DISCRm-EVENT SYSTEM SIMULATION

When the number of independent replications Yl' • • • , YR is large enough that tall.n-t i:: Zq�2, the confidence
interval for a probability p is often written as

where p is the sample proportion (tedious algebra shows that this formula for the half-width is precisely
equivalent to Equation (1 1 .12) when used in estimating a proportion).

As mentioned in Section 1 1.3, the quantile-estimation problem is the inverse of the p£0!?ability-estimation
problem: Fmd () such that Pr{ Y � 6} = p. Thus, �estimate the p quantile, we find that value 6 such that I OOp%
of the data in a histogram of Y is to the left of () (or stated differently, the npth smallest value of Y1, . . . , YR).

Extending this idea, an approximate (I - a) 100% confidence interval for () can be obtained by finding
two values: 61 that cuts of 100p1% of the histogram and 6. that cuts off lOOp.% of the histogram, where

(1 1 .20)

(Recall that we know p.) In terms of sorted values, el is the Rpl smallest value (rounded down) and e. is the
Rp. smallest value (rounded up), of Yl' . . . ,Y8•

·

Example 11.12
Suppose that we want to estimate the 0.8 quantile of the time to failure (in hours) for the communications
system in Example 1 1.3 and form a 95% confidence interval for it. A histogram of R = 500 independent
replications is shown in Figure 1 1.2.

2000 6000 10000 14000 18000 22000
y

Figure 1 1 .2 Failure data in hours for 500 replications of the communications system.

OUTPUT ANALYSIS FOR A SINGLE MODEL 351

The point estimator is e = 4644 hours, because 80% of the data in the histogram is to the left of 4644
.

Equivalently, it is the 500 x 0.8 = 400th smallest value of the sorted data.
.

To obtain the confidence interval we first compute

Pt = p-z t2�p(l -p) =0 8- 1 96�0·8<0·2) - 0 765 a R - l . .
499 - '

P = p+z �p(l -p) =0 8+ 1 96 O.S(0.2) - 0 835 u all R-.1 . • 499 -
.

The lower bound of the confidence interval is el = 4173 (the 500xpl = 382itd smallest value, rounding
down); the upper bound of the confidence interval is e. = 5 1 19 hours (the 500 X p = 418th smallest value
roun- �

• '

1 1 .4.4 Estimating Probabilities and Quantiles from Summary Data

Kno':"ing
.
th: equation for the confidence interval half-width is important if all the simulation software

prov��es IS Y:. and H and you need to work out the number of replications required to get a prespecified
prec1s1on, or If you ��d to estimate a probability or quantile. You know the number of replications, so the
sample standard deviation can be extracted from H by using the formula

With this information, the method in Section 1 1 .4.2 can be employed.
. The �ore difficult problem is estimating a probability or quantile from summary data. When all we have

�vadable IS the sample �ean and confidence-interval halfwidth (which gives us the sample standard devhi­
non), then one approach IS to use a normal-theory approximation for the probabilities or quantiles we desire
specifically '

and

Pr{�. � c) "" Pr{ Z � c�Y .. }

The f<!llowing example illustrates how this is done.

Example 11.13
:rom 25 replications of the manufacturing simulation, a 90% confidence interval for the daily average wn
IS 218 ± 32. What is the probability that the daily average WIP is less than 3501 What is the 85th pereentil• of daily average WIP? ·

First, we extract the standard deviation:

S =
Hfi = 32..fi5 = 93
to.os,'IA 1.71

i

I , ' \ j r :.1 : .
'

,[!
I . :.1

352 DISCRETE-EVENT SYSTEM SIMULATION

Then, we use the normal approximations and Table A.3 to get

Pr{f,, ::> 350} = Pr{ Z ::> 350 �218} = Pr{Z ::> 1.42} = 0.92

and
B = Y..+ Zo8SS = 218+1 .04(93) = 315 parts

There are shortcomings to obtaining.our probabilities and quantiles this way. The approximation depends
heavily on whether the output variable of interest is normally distributed. If the output variable itself is not an
average, then this approximation is suspect. Therefore, we expect the approximation to work well for state­
ments about the average daily cycle time, for instance, but very poOrly for the cycle time of an individual part.

. 1 1 .5 OUTPUT ANALYSIS FOR STEADY·STATE SIMULAnONS

Consider a single run of a simulation model whose purpose is tocestimate a stetuly"state, or long-run; charac­
teristic of the system. Suppose that the single run produces observations Y1, Y2, • • • , which, generally, are samples
of an autocorrelated time series. The steady-state (or long-run) meastire of performance, e. is defined by

. 1 n
6 = lim-l',r;

n-+- n f;:::l
(11 .21)

with probability I, where the value of 6 is independent of the initial conditions. (The phrase "with p�bability I"

means that essentially all simulations of the model, using different random numbers, will produce series
Y., i ::: 1, 2, . . . whose sample average converges to 6.) For example, if Y1 was the time customer i spent talk­

u;g to an operator, then 6 would be the long-run average time a customer spends talking. to an operator; and,
because e is defined as a limit, it is independent of the call center's conditions at time 0. Similarly, the steady�
state performance for a continuous-time output m�Ure { Y(t), t <=: 0}, such as the number of customers in the
call center's hold queue, :is defined as

· ·

with probability 1 .
Of course, the simulation analyst could decide to stop the simulation after some number of observations­

say, n--bave been collected; or the simulation analyst could decide to simulate for some length of time T E
that determines n (although n may vary.from run to run). The sample size n (or TE) is a design choice; it is
not inherently determined by the nature of the problem. The simulation analyst will choose simulation run
length (n or TE) with several considerations in mind:

1. Any bias in the PQint estimator that is due to artificial or arbitrary initial conditions. (The bias can be
severe if run length is too short, but generally it decreases as run length increases.).

2. The desired precision of the .point estimator, as measured by the standard error or confidence interval
half-width.

3. Budget constraints on computer resources.

The next subsection discusses initialization bias and the following Sl.lbsections outline two methods of
esnmating point-estimator variability. For clarity of presentation, we discuss only estimation of e from a
discrete-time output process. Thus, when discussing one replication (or run), the notation

MODEl

will be used; if several replications have been made, the output data for replication r will be denoted by

Y,p Y,2, Y,p . . . (1 1 .22)

1 1 .5.1 Initialization Bias in Steady-State Simulations

There are several methods of reducing the point-estimator bias caused by using artificial and unrealistic initial
conditions in a steady-state simulation. The first method is to initialize the simulation in a state that is more
representative of long-run conditions. This method is sometimes called intelligent initialization. Examples
include

1. setting the inventory levels, number of backorders, and number of items on order and their arrival
dates in an inventory simulation;

·

2. placing customers in queue and in service in a queueing simulation;
3. having some components failed or degraded in a reliability simulation.

There are at least two ways to specify the initial conditions intelligently. If the system exists, collect data
on it and use these data to specify more nearly typical initial conditions. This method sometimes requires a large

· data-collection effort. In addition, if the system being modeled does not exist-for example, if i� is a variant of
an existing syste!Il--'lhis method is impossible to implement. Nevertheless, it is recommended that simulation
analysts use any available data on existing systems to help initialize the simulation, as this will usually be better
than assuming the system to be "completely stocked," "empty and idle," or "brand new" at time 0.

A related idea is to obtain initial conditions from a second model of the system that has been simplified
enough to make it mathematically solvable. The queueing models in Chapter 6 are very useful for this
purpose. The simplified model can be solved to find long-run expected or most likely conditions-such as the
expected number of customers in the queue-and these conditions can be used to initialize the simulation.

A second method to reduce the impact of initial conditions, possibly used in conjunction with the first,
is to divide each �imulation run in�o two phases: first, an initialization phase, from time 0 to time T0, followed
by a data-collectton phase from time T0 to the stopping time T0 + TE-that is, the simulation begins at time
0 under specified initial conditions /0 and runs for a specified period of time T0• Data collection on the
response variables of interest does not begin until time T0 and continues until time T + T The choice of T
is. quite important, because the system state at time T0, denoted by /, should be more �earl� representative o�
steady-state. behavior than are the original initial conditions at time 0, /0• In addition, the length T11 of the
data-collection phase should be long enough to guarantee sufficiently precise estimates of steady-state
behavior. Notice that the system state, /, at time T0 is a random variable and to say that the system has reached
an approximate steady state is to say that the probability distribution of the system state at time T. is
sufficiently close to' the steady-state probability distribution as to make the bias in point estimates of respo�se
variables negligible. Figure 1 1.3 illustrates the two phases of a steady-state simulation. The effect of starting
a simulation run of a queueing model in the empty and idle state, as well as several useful plots to aid the
simulation analyst in choosing an appropriate value of T0, are given in the following example.

Example 11.14
Consider the M/G/1 queue discussed in Example 1 1 .8. Suppose that a total of 10 independent replications
were made (R = 10), each replication beginning in the empty and idle state. The total simulation run length
on each replication was T0 + TE = 15,000 minutes. The response variable was queue length, LQ(t, r), at time t,

354

Speci6ed initial
conditions,

/o
0

"Steady-state" initial
conditions,

I

Initialization phase
of length T0

DISCRETE-EVENT SYSTEM SIMUlATION

Data-collection phase
of length TE

figure 1 1 .3 Initialization and data collection phases of a steady-state simulation run.

where the second argument, r, denotes the replication (r = 1, . . . , 10). The raw output data were hatched, as in
Example 1 1 .8, Equation (l l . l), in hatching intervals of lOOO minutes, to produce the following batch means:

I f'<IOOOl
Y>i = -- L1/t, r)dt

1000 (j-1)1000
(11.23)

for replication r= 1, . . . , 10 and for batcbj = I, 2, . . . , 15. The estimator in Equation (1 1 .23) is simply the time­
weighted-average queue length over the time interval [U- 1) 1000, j(1 000)), similar to that in Equation (6.4).
The 15 batch means for the 10 replications are given in Table 1 1.5.

Normally we average all the batch means within each replication to obtain a replication average.
However, our goal at this stage is to identify the trend in the data due to initialization bias and find out when
it dissipates. To do this, we will average corresponding batch means across replications and plot them (this
idea is usually attributed to Welch (1983]). Such averages are known as ensemble averages. Specifically, for
each batch j, define the ensemble average across all R replications to be

(1 1.24)

(R = 10 here). The ensemble averages Y.i'j = 1, ... , 15 are displayed in the third column of Table 1 1 .6. Notice
that f.1 = 4.03 and Y.2 = 5.45 are estimates of mean queue length over the time periods (0, 1000) and [1000,
2000), respectively, and they are less than all other ensemble averages r.,(j = 3, ... , 15) . The simulation
analyst may suspect that this is due to the downward bias in these estimators, which in tum is due to the
queue being empty and i.dle at time 0. This downward bias is further illustrated in the plots that follow.

Figure 1 1 .4 is a plot of the ensemble averages, Y.i' versus lOOOj, forj = 1, 2, . . . , 15. The actual values, Y.J'
are the discrete set of points · in circles, which have been connected by straight lines as a visual aid.
Figure 1 1 .4 illustrates the downward bias of the initial observations. As tinte becomes larger, the effect o(the
initial conditions on later observations lessens and the observations appear to vary around a common mean.
When the simulation analyst feels that this point has been reached, then the data-collection phase hegins.

Table 1 1.6 also gives the cumulative average sample mean after deleting zero, one, and two batch means
from the beginning-that is, using the ensemble average batch means Y.J' when deleting d observations out
of a total of n observations, compute

- 1 � ­
Y .. (n, d) = - ""- Y

n-d J=d+l
(11.25)

The results in Table 1 1 .6 for the M/G/1 simulation are for d= 0, l, and 2, and n = d + 1, • . . , 15. These cumulative
averages with deletion, namely f .. (n, d), are plotted for comparison purposes in Figure 1 1 .5. We do not
recommend using cumulative averages to determine the initialization phase, for reasons given next

"!· ..
..

1J
�

·.

,

"'"

"'

"'

.....

�

0\

00

to-.

'0

,

"'"

"'

N

..... .

�]
�

1:0:

- � ; [' ('l O\ -g tn V'l -r-: · cri "1 f11 � c;.O � f11 -; � "1#" � - M ("f) N f""- M O\

0 00 � \0 - "o:t � - N O � V"! ;,O t-: C'! O'; o\ '-q. � "1 N OO - N N O M N ('I"} OO

a � � � � � � � � g ...t i/i ...t ...t r-i t-= oe r-: ...; .,.;

r- 00 oo 0\ oo 0\ � � 00 N o "l o ti1 o ('f'} .- - C'! M M � � � <"l � M ..O :: M

- � \O "V \0 � 0\ ('t') N \0 � � � � .-; � <'1 � � <"! - N - - N - 0\ -c:t - 1"

r- ;;li � � oo ..., ;; :g a- � "� ...t � r-: "� � .,.; . "! o N - - - M - 0\ - ct

g ('l') � "¢ - "¢ 00 � - «i V) . f""- ('f"} t'"'-- 0\ . V) � M oO t4 � r..: N � S -.i �

� � � � ;::a:; ::! ;o � ;q vi oO c\ ..0 \0 C"i � �; !;i

� � =; S! = � a � ::t � M � �· � � � vi tf'i oO �·

0\ � � \0 0 \0 N - � 0\
"! � N o; � "! � � oo ..., - N N - - Vl tn - - N

N � S Vl O\ V} N O\ t"'\ ..:..
� ori r-i <'! "l "l ": "! � � N N - - N N N N O\ -

� &i = � � � � c; � �. 'C) � oO oO N O � N N vi

� !q � � � �· � � (! �
• 'C 0 ('I • • • • • 0 N - N - N oe:t Vl Vl O -

.-. 8 <"> Vl N ..:t O\ "<t OO ..:r t-1 i � t"-: ff"! Vl "! � l': � M O\ - - - M N Vl "'t N

- - � N OO M N "'=t ('f"); QO \0 0\ \0 \0 - 0\ - Vl O\ l"
� C"i r..: \lS N d: � .cO ..j.

- N t"f't "'=t V) \0 1:""" 00 0\ =

355

I , I I l I

356 DISCRETE-EVENT SYSTEM SIMULATION

Table 1 1 .6 Summary of Data for M/G/1 Simulation: Ensemble Batch Means and Cumulative Means,

A d 0v 1 0 Replications verage er

Run
Length

T

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000
1 1,000
12,000
13,000
14,000
15,000

Y.J
1 1

Batch

j

I
2
3
4
5
6
7
8
9

10
I I
1 2
1 3
14
15

Cumulative Cumulative

Avemge Average Avemge

Batch Mean, (No Deletion), (Delete 1).
Y.; ¥ .. (j. 0} f .. {j. l)

4.03 4.03
5.45 4.74 5.45

6.72 8.00 5.83
6.61 6.37 5.96
6.54 6.33 6.04

8.15 6.39 6.86
7. l l 8.33 6.67

6.77 7.16 7.50
9.70 7.10 7.48

7.90 1 1 .25 7.51
8 . 18 10.76 7.8 1
8.29 9.37 7.94

7.28 7.89 8.21

7.76 7.88 8.17

8.76 7.94 8.21

figure 1 1 .4 Ensemble averages Y.i for M/G/1 queue.

Cumulative
Avemge

(Delete 2),
f .. {j, 2}

-

8.00
7 . 18
6.90
7.21
7.44
7.45
7.77
8.20
8.49
8.58
8.46
8.40
8.43

ANALYSIS FOR A SINGLE MODEL

f..(n, d)

� No deletion

-. Delete !.

o--o---o Delete 2

2 3 4 5 6 7 8 9 10 I I 12 13 14 15 n
0 3000 6000 9000 12,000 15,()()()

Figure 1 1 .5 Cumulative average queue length Y .. (n, d) versus time 1 OOOn.

From Figures 1 1.4 and 1 1.5, it is apparent that downward bias is pr�nt. and this initialization bias in
the point estimator can be reduced by deletion of one or more observations. For the 15 ensemble. average
batch means, it appears that the first two observations have considerably more bias than any of the remaining ones.
The effect of deleting first one and then two batch means is also illustrated in Table 1 1.6 and Figure 1 1 .5.
A$ expected, the estimators . increase in value as more data are deleted;· that is, Y .. (l5, 2) = 8.43 and
Y .. (15, 1) = 8.21 are larger than f .. (l5, 0) = .7.94 . It also appears from Figure 1 1 .5 that Y .. (n, d) is increasing
for n = 5, 6, . .. , l l (and all (1 = 0, 1, 2), and thus there may still be some initialization bias. It seems, however,
that deletion of the first two batches removes most of the bias.

Unfortunately, there is no wide)y accept:�<d, objective, and proven technique to guide how much data to
delete to reduce initialization bias to a negligible level. Plots can, at times, be misleading, but .they are still
recommended. Several points should be kept in mind:

1. Ensemble averages, such as Figure 11.4, will reveal a smoother and more precise trend as the number
of replications', R, is increased. Since each elisemble average is the sample mean of i.i.d. observa­
tions, a confidence interval based on.the t distribution can be placed around. each point. as.shown in
Figure 1 1.6,:and these intervals can be. used to judge whether or not the plot is precise enough to
judge that bias has diminished. This is the preferred method to determine a deletion point.

2. Ensemble averages can be smoothed further by plotting a moving average, rather than _the original
ensemble averages. In a moving average, eAch plotted point is actually the average ofseveral adjacent
ensemble averages. Specifically, thejth plot point would be

I � . i.j L r .. 2m+ l i�J-m

358

0
Batch number

DISCRETE-EVENT SYSTEM SIMULATION

b---b----t:. Ensemble average

o--o--a Lower confidence limit

o--o--o Upper confidence limit

Figure 1 1 .6 - Ensemble averages Y.; for M/G/1 queue with 95% confidence intervals.

for some m � 1, rather than the original ensemble average Y.i . The value of m is typically chosen by

trial and error until a smooth plot is obtained. See Law and Kelton [2000] or Welch [1983] for further

discussion of smoothing.
3. Cumulative averages, such as in Figure 1 1 .5, become less variable as more data are �vera�ed.

Therefore, it is expected that the left side of the curve will always be less smooth than the nght stde.

More importantly, cumulative averages tend to converge m�re slowly to lo�g�ru� perf�rmance than

do ensemble averages, because cumulative averages contain all observations, mcludmg the most

biased ones from the beginning of the run. For this reason, cumulative a�erages s�u� b� used �nly

if i_i is not feasible to compute ensemble averages, such as whe
_
n ?nly � �mgle replicati�n IS possible.

4. Simulation data, especially from queueing models, usually exhib1t positive autocorre�a�10n. The m?re

correlation present, the · longer it takes for Y.i to approach steady state. The positive correlation

between successive observations (i.e., batch means) Y.PY.2, ••• can be seen in Figure 1 1 .4.

s. 1n most simulation studies, the analyst is interested in several different output performance measures

at once, such as the number in queue, customer waiting time, and utilization of the servers. U�o�­

tunately, different performance measures could approach stead� ��te. at �iffe�ent rates. Thus, I� IS
important to examine each performance measure individually for lmtialization b1as and use a deletion

point that is adequate for all of them.

There has been no shortage of solutions to the initialization-biru: pro�lem .. Unf?�ately, f?r every

"solution" that works-well in some situations, there are other situations m which e1ther 1t1s not apphcable or

it performs poorly. lnlportant ideas include testing for bias (e.g., Kelton and Law [1983], Schruben [1980],

Goldsman, Schruben, and Swain [1994]); modeling the bias (e.g., Snell and Schruben [1985]); and randomly

sampling the initial conditions on multiple replications (e.g., Kelton [1989]).

:, :·:· .· �-�'-.. : '. � .. '1'·.� •';'. ··: ' ·. . . . _, .

OUTPUT ANALYSIS FOR A SINGLE MODEL 359

1 1 .5.2 Error Estimation for Steady-State Simulation

If { Y1, • • • ,Y } are not statistically independent, then S2/n, given by Equation (1 1 . 1 1), is a biased estimator of
the true varlance, V(6) . This is almost always the case when { Y" . . . , Y. l is a sequence of output observa­
tions from within a single replication. In this situation, Y1, Y2, • • • is an autocorrelated sequence, sometimes
called a time series. Example 1 1 .8 (the M/G/1 queue) provides an illustration of this situation.

Suppose that our point estimator fo� 6 is the sample mean Y = L,� YJn. A general result from mathe-
matical statistics is that the variance of Y is3 ,_,_ ·

_ 1 n n
V(Y) = 2 L,L,cov(Y,., Y)

n i=l j=l
(1 1 .26)

where cov(Y;, Y;) = V(Y;). To construct a confidence interval for 6, an estimate of V(Y) is required. But obtain­
ing an estimate of (1 1.26) is pretty much hopeless, because each term cov(Y; , lj) could be different, in general.
Fortunately, systems that have a steady state will, if simulated long enough to pass the transient phase (such
as the production-line startup in Example 1 1.4), produce an output process that is approximately covariance
stationary. Intuitively, stationarity implies that Y;+k depends on Yi+l in the same marmer as Yk depends on Y1•
In particular, the covariance between two random variables in the time series depends only on the number of
observations between them, called the lag.

For a covariance-stationary time series, { Y1, Y2, • • •) , define the lag-k autocovariance by

Y1 = cov(Y,, 1';.1) = cov(t;, Y,.,) (1 1 .27)

which, by definition of covariance stationarity, is not a function of i. For k = 0, Yo becomes the population
variance a2-that is,

(1 1 .28)

The lag-k autocorrelation is the correlation between any two observations k apart. It is defined by

P = h._ k (Jl (11 .29)

and has the property that
-l :s; p1 :s; 1, k = 1, 2, . . .

If a time series i s covariance stationary, then Equation (1 1 .26) can be simplified substantially. Tedious algebra
shows tha,t

V(Y) = - 1 + 2I, 1 - - p,
0"2 [n-1 (k)]
n 1=1 n

(1 1.30)

where pk is the lag-k autocorrelation given by Equation (1 1 .29).
When pk > 0 for all k (or most k), the time series is said to be positively autocorrelated. In this case, large

observations tend to be followed by large observations, small observations by small ones. Such a series will tend
to drift slowly above and then below its mean. Figure l l .7(a) is an example of a stationary time series exhibit­
ing positive autocorrelation. The output data from most queueing simulations are positively autocorrelated.

On the other hand, if some of the pk < 0, the series Y1, Y2, • • • will display the characteristics of negative
autocorrelation. In this case, large observations tend to be followed by small observations, and vice versa.
Figure ll .7(b) is an example of a stationary time series exhibiting negative autocorrelation. The output.of
certain inventory simulations might be negatively autocorrelaied.

'Tills general result can be derived from the fact that. for two random variables f1 and Y2, V(Y1 ± Y2) = V(Y1) + V(Y2) ± 2cov(Yl' Y,J.

I . r

i L I

360 DISCRETE-EVENT SVSTEM SIMULATION

!',

(a)

{b)

(c)

Figure 1 1 .7 (o) Stationary time series � exhibiting positive autocorrelation; (b) sfaiiooarytime series Y;
exhibiting negative autocorrelation; (c) nG>niMionary time series with on upward trend.

Figure l l. 7(c) also shows an example of a: time series with an upward tretld. Such a time series is not

stationary; the probability distribution of Y, is changing with the index i. . . •

Why does autocorrelation make it difficult to estimate v(Y)? Recall that the standard estimator for the

variance of a sample mean is S2/n. By using Equation (1 1.30), it can be shown [Law, 1977] that the expected

value of the varianee estimator S2/n is
· ·

(1 1 .31)

FOR A SINGLE MODEL

where

B= n/c - 1
n - 1

(1 1 .12)

and c is the qu�tity in brackets in Equation (1 1 .30). The effect of the autocorrelation on the oxestimator S2/n
is derived by an examination of Equations (I 1.30) and (1 1 .32). There are essentially three possibilities:

Case 1

If the Y1 are independent, then pk = 0 for k = I, 2, 3, Therefore, c = 1+ 2I,:::(l -k/n)p1 = l and

Equation (1 1 .30) reduces to the familiar a2/n. Notice also that B = 1, so S2/n is an unbiased estimator of V(Y).
The Y1 will always be independent when they are obtained from different replications; that independence is
tbe primary reason that we prefer experiment designs calling for multiple replications.

ease 2

If the autocorrelations p< are primarily positive, then c = 1 + 21:::: (1 -kln)p1 > 1 , so that n/c < n, and hence

B < I . Therefore, S2/n is biased low as an estimator of V(Y). If this correlation were ignored, the nominal
100(1 - a)% confidence interval given by Expression (l l .l2) would be too short, and its true confidence
coefficient would be less than 1 - a. The practical effect would be that the simulation analyst would have unjus­
tified confidence (in the apparent precision of tbe point estimator) due to the shortness of the confidence
interval. If the correlations pk are large, B could be quite small, implying a significant underestimation.

Case 3

If the autocorrelations p, are substantially negative, then 0 s; c < I, and it follows that B > 1 and S2/n is biased
high for V(f). In other words, the true precision of the point estimator Y would be greater than what is indi­
cated by its variance estimator Slfn, because

As a result, the nominal 100(1 - a)% confidence interval of Expression (1 1 . 12) would have true confidence
coefficient greater than 1 - a. This error is less serious than Case 2, because we are unlikely to make incor­
rect decisions if our estimate is actually more precise than we think it is.

A simple example demonstrates why we are especially concerned about positive correlation: Suppose
you want to know how students on a university campus will vote in an upcoming election. To estimate their
preferences, you plan to solicit 100 responses. The standard experiment is to randomly select 100 students
to poll; call this experiment A. An alternative is to randomly select 20 students and ask each of them to state
their preference 5 times in the same day; call this experiment B. Both experiments obtain 1 00 responses, but
clearly an estimate based on experiment B will be less precise (will have larger variance) than an estimate
based on experiment' A. Experiment A obtains 100 independent responses, whereas experiment B obtains

· only 20 independent responses and 80 dependent ones. The five opinions from any one student are perfectly
positively correlated (assuming a student names the same candidate all five times). Although this is an
extreme example, it illustrates that estimates based on positively correlated data are more variable than esti­
mates based on independent data. Therefore, a confidence interval or other measure of error should account
correctly fur dependent data, but S2/n does not.

Two methods for eliminating or reducing the deleterious effects of autocorrelation upon estimation of a
mean are given in tbe following sections. Unfortunately, some simulation languages either use or facilitate
the use of S2/n as an estimator of V(f), ttie variance of the sample mean, in all situations. If used uncritically
in a simulation with positively autocorrelated output data, the downward bias in S2/n and the.resulting

362 DISCRETE-EVENT SYSTEM SIMULATION

shortness of a confidence interval for f) will convey the impression of much greater precision than actually
exists. When such positive autocorrelation is present in the output data, the true variance of the point
estimator, Y, can be many times greater than is indicated by S2/n.

1 1 .5.3 Replication Method for Steady-State Simulations

If initialization bias in the point estimator has been reduced to a negligible level (through some combination
of intelligent initialization and deletion), then the method of independent replications can be used to estimate
point-estimator variability and to construct a confidence intervaL The basic idea is simple: Make R replica­
tions, initializing and deleting from each one the same way.

If, however, significant bias remains in the point estimator and a large number of replications are used
to reduce point-estimator variability, the resulting confidence interval can be misleading. This happens
because bias is not affected by the number of replications (R); it is affected only by deleting more data
(i.e., increasing T0) or extending the length of each run (i.e., increasing Te>· Thus, increasing the number of
replications (R) could produce shorter confidence intervals around the "wrong point" Therefore, it is important
to do a thorough job of investigating the initial-condition bias.

If the simulation analyst decides to delete d observations of the total of n observations in a replication,
then the point estimator of 9 is f .. (n, d), defined by Equation (1 1.25)-that is, the point estimator is the
average of the remaining data. The basic raw output data, { Y,r r = 1 , . .. , R; j = 1, .. . , n}, are exhibited in
Table 1 1 .7. Each Y,j is derived in one of the following ways:
Case 1

Y.; is an individual observation from within replication r; for example, Y,j could be the delay of customer j
in a queue, or the response time to job j in a job shop.
Case 2

Y.; is a batch mean from within replication r of some number of discrete-time observations. (Batch means
are discussed further in Section 1 1 .5 5.)
Case 3

Y.; is a batch mean of a continuous-time process over time intervalj; for instance, as in Example 1 1. 1 4, Equation
(1 1 .23) defines Yti as the time-average (batch mean) number in queue over the interval [1000 (j- 1), 1000)).

In Case 1, the number d of deleted observations and the total number of observations n might vary from
one replication to the next, in which case replace d by d, and n by n,. For simplicity, assume that d and n are
constant over replications. In Cases 2 and 3, d and n will be constant.

Replication

1

2

R

Table 1 1 .7 Raw Output Data from o Steady-Stole Simulation

Observatioll.S

1 . .. d d + i . .. n

r,.l .. . Yl.d yl,d + 1 . . . Y, .•

Yz.l . .. y�d y�d + 1 .. . y2.•

YR. I . . . YR,d f R.d+ I ... YR.•
r., . . . f .• f., •• , . . . ' ..

Replication
Averages

�.(n, d)

Y,.(n, d)

f..(n, d) ·

f .. (n, d)

OUTPUT ANALYSIS FOR A SINGLE MODEL 363

When using the replication method, each replication is regarded as a single sample for the purpose of
estimating 9. For replication r, define

·

1 •

Y,.(n, d) = - I r'i
n-d j=<�+I (1 1.33)

as the sample mean of all (nondeleted) observations in replication r. Because all replications use different
ran

_
dom-number streams and all are initialized at time 0 by the same set of initial conditions (!;), the repli­

cation averages

�.(n, d) �.(n, d)

are independent and identically distributed random variables-that is, they constitute a random sample from
some underlyil!g population having unknown mean

9 • .4 = E [f,.(n, d)]

The overall point estimator, given in Equation (1 1.25), is also given by

- l f -Y .. (n, d) = -kf, .(n, d)
R r=l

as can be seen from Table I 1 .7 or from using Equation (I 1.24). Thus, it follows that

(11 .34)

(1 1 .35)

also. If d and n are chose� sufficiently large, then 9.4 "' 9, and Y .. (n, d) is an approximately unbiased
estimator of 9. The bias in Y .. (n, d) is e •. d-9.

For convenience, when the value of n and d are understood, abbreviate Y,:.(n,d) (the mean of the undeleted
observations from the rth replication) and Y .. (n, d) (the mean of f..(n, d), � .(n, d) by Y,:. and Y .. ,
respecti_vely. To estimate the standard error of Y .. , first compute the sample variance,

S = -k(f, .-Y ..) = - kf,. - RY.. 2 1 f - - 2 1 (f -2 -2)
R - l ,.,1 R-1 r=l

The standard error of is given by
. - s s.e.(Y •.) = .JR

A 100(1 - a)% confidence interval for IJ, based on the 1 distribution, is given by

- . s - s Y. ·- I a12.R-l .Jii S f) S Y.. + f «12.R-l .JR

(1 1.36)

(1 1.37)

(11 .38)

! , ;

364 DISCRETE-EVENT SYSTEM SIMUlATION

where t is the 100(1 - a/2) percentage point of a t distribution with R - l degrees of freedom. This

confide��terval is valid only if the bias of F.: is approximately zero.
As a rough rule, the length of each replication, beyond the deletion point, should be at least ten times

the amount of data deleted. In other words, (n d) should at l�st IOd (or more generally, T8 should be at
least lOT.). Given this run length, the number of replications should be as many as time permits, up to about
25 replic�tions. Kelton [1986] established that there is little value in dividing the available time into more
than 25 replications, so, if time permits making more than 25 replications of length T0 + I OT0, then make 25
replications of longer than T0 + IOT0, instead. Again, these are rough rules that need not be followed slavishly.

Example 11.15
Consider again the M/G/1 queueing simulation of Examples l l .8 and 1 1. 14. Suppose that the sim,ulaition

analyst decides to make R = 10 replications, each of length T8 = 15,000 minutes, each starting at time 0 in

the empty and idle state, and each initialized for T0 = 2000 minutes before data collection begins. The raw

output data consist of the batch means defined by Equation (1 1 .23); recall that each batch mean is simply

the average number of customers in queue for a 1000-minute interval. The first two batch means are deleted

(d= 2). The purpose of the simulation is to estimate, by a 95% confidence interval, the long-run time-average

queue length, denoted by LQ.
The replication averages i-:_.(lS,2),r = 1,2, ... ,10, are shown in Table 1 1 .8 in the rightmost column. The

point estimator is computed by Equation (1 1 .35) as

F .. (l5,2) = 8.43

Its standard error is given by Equation (1 1 .37) as

s.e.(Y . . (l5,2)) 1.59

Table 1 1 .8 Data Summary for M/G/1 Simulation by Replication

· Replication,
r

I
2
3
4
5
6
7
8
9
10

Y . . =(l5,d)
R
r,-z

Y,..
,.,.

S2
s

S t..JlO = s.e.(Y ..)

Sample Mean for Replication r

(No Deletion) (Delete I) (Delete 2)

�.(15,0) ¥,.(15,1) �.(15.2)

3.:::7 3.24 3.25
i6.25 17.20 17.83
15.19 15.72 15.43
7.24 7.28 7.71
2.93 2.98 3.1 1
4.56 4.82 4.91
8.44 8.96 9.45
5.06 5.32 5.27
6.33 6.14 6.24

10.10 10.48 1 1 .07

7.94 8.21 8.43

826.20 894.68 938.34

21.75 24.52 25.30
4.66 4.95 5.03

1 .47 1.57 1.59

ANALYSIS FOR A SINGLE MODEL

and using a = 0.05 and t0025_9 = 2.26, the 95% confidence interval for long-run mean queue length is given
by Inequality (I 1.38) as

8.43-2.26(1.59) � Li.! :s; 8.43 + 2.26 (1 .59)

or

4.84 :s; 41 � 12.02

The simulation analyst may conclude with a high degree of confidence that the long-run mean queue length
. is between 4.84 and 12.02 customers. The confidence interval computed here as given by Inequality (1 1 .38)
should be used with caution, because a key assumption behind its validity is that enough data have been
deleted to remove any significant bias due to initial conditions-that is, that d and n are sufficiently large
that the bias 6n.d - 6 is negligible.

Example 11.16
Suppose that, in Example I US, the simulation analyst had decided to delete one batch (d= 1) or no batches

0). The quantities needed to compute 95% confidence intervals are shown in Table 1 1 .8. The resulting
95% confidence intervals are computed by Inequality (1 1.38) as follows:

(d = 1) 4.66 = 8.2 1 -2.26(1.57) :s; LQ � 8.21 + 2.26(1.57) = 1 1 .76

(d = 0) 4.62 = 7.94-2.26(1.47) � Li.! � 7.94+ 2.26(1.47) = 1 1 .26

Notice that, for a fixed total sample size, n, two things happen as fewer data are deleted:

1. The confidence interval shifts downward, reflecting the greater downward bias in F .. (n, d) as d
decreases.

2. The standard error of f..(n, d), namely S t.fii, decreases as d decreases.

In this example, F .. (ll, d) is based on a run length of TE = lOOO(n - d) = 15,000 -IOOOd minutes. Thus, as
d decreases, T8 increases, and, in effect, the. sample mean F .. is based on a larger "sample size" (i.e., longer
run length). In general, the larger the sample size, the smaller the standard error of the point estimator. This
larger sample size can be due to a longer run length (TE) per replication, or to more replications (R).

Therefore, there is a trade-off between reducing bias and increasing the variance of a point estimator,
when the total sample size (R and T0 + T8) is fixed. The more deletion (i.e., the larger T0 is and the smaller
T8 is, keeping T0 + TE fixed), the less bias but greater variance there is in the point estimator.

Recall that each .batch in Examples 1 1 . 15 and 1 1. 16 consists of 1000 minutes of simulated time.
Therefore, discarding d 2 batches really means discarding 2000 minutes of d:i.ta, a substantial amount
It is not uncommon for very large deletions to be necessary to overcom.e the initial conditions.

1 1 .5.4 Sample Size in Steady-State Simulations.

Suppose it is desired to estimate a long-run performance measure, 6, within ±E. with confidence 1 00(1 a)%.
In a steady-state simulation, a specified precision may be achieved either by increasing the number of repli­
cations (R) or by increasing the run length (T8). The first solution, controlling R, is carried out as given in
Section 1 1 .4.2 for terminating simulations.

i ll 'l

366 DISCRETE-EVENT SYSTEM SIMULATION

Example 11.17 ·
. .

Consider the data in Table 1 1 .8 for the MIG/I queueing simulation as an initial sample of SJ.ZeR0 -_I?- Ass�g
that d = 2 observations were deleted, the initial estimate of variance is S� = 25.30. Suppose that 1t IS desired_ to
estimate long-run mean queue length, LQ, within e = 2 customers with 90% �nfiden:e: � �al sample siZe
needed must satisfy Inequality (Il . l7). Using a= 0.10 in Inequality (I I . l8) yields an 1mt1al estimate:

R � (z.o.:S0 J = 1.645
2

2
�25.30) _ 17 .I

Thus, at least ·18 replications will be needed. Proceeding as in Example I l. l l, next try R= 18, R = 19, . . . as
follows:

R 18 19

to.os.R-l L74 L73

co.os.;-ISO J 19.15 18.93

R = 19 � (t S !e f = 18.93 is the smallest integer R satisfying Inequality (1 1 .17), so a total sample size of
R = 19 re;n��ti�ns is needed to estimate LQ to within ±2 customers .. Therefore, R - R0 = 19 - 10 = 9
additional replicatimis are needed to achieve the specified error. An alternative to increasing R is to increase total run length T0 + TE w1thm each_ �phcatlo�. If_ the
calculations in Section 1 1.4.2, as illustrated in Example 1 1. 17, indicate that R -R0 additional �phcanons
are needed beyond the initial number, R0, then an alternative is to increase run length (T0 + T,) m �e same
proportion (R/R0) to a new run length (R!Rr)(T0 + TE). Thus, ad�ition�l data will

_
be deleted, fro� time 0 to

time (R/Rr)T 0' and more data will be used to compute the �Oint eslm_llltes, �s Illustrated by F1gure 1 1 .�.
However, the total amount of simulation effort is the same as 1f we had simply mcreased the num�er �f repli­
cations but maintained the same run length. The advantage of increasing total run length per rephcauon and
deleting a fixed proportion [T J(T + T)] of the total run length is that any residual bias in the point estima­
tor should be further reduced b; the £additional deletion of �ata at the beginning of the run. A possible

Initialization

I phase
0 To

0

Data collection
phase

Figure 1 1.8 Increasing runlength to achieve specified accuracy.

+ TE)

367

disadvantage of the method is that, in order to continue the simulation of all R replications [from time T0 + TE

to time fY./R0) (T0 + TE)J, it is necessary to have saved the state of the model at time T0 + TE and to be able
to restart the model and run it for the additional required time. Otherwise, the simulations would have to
be remn from time 0, which could be time consuming for a complex model. Some simulation languages have
the capability to save enough information that a replication can be continued from time T E onward, rather
than having to start over from time 0.

Example 11.18
In Example l l . l7, suppose that run length was to be increased to achieve the desired error, ±2 customers.
SinceR/R0= 19/10 1 .9, the ruri lengthshould be almost doubled to (R/R0)(T0 + TE) = 1.9(15,000) = 28,500
minutes. The data collected from time 0 to time (R/R0)T0 = 1.9(2000) = 3800 minutes would be deleted, and
the data from time 3800 to time 28,500 used to compute new point estimates and confidence intervals.

1 1 .5.5 Batch Means for Interval Estimation in Steady-State Simulations

One disadvantage of the replication method is that data must be deleted on each replication and, in one sense,
deleted data are wasted data, or at least lost information. This suggests that there might be merit in using
an experiment design that is based on a single, long replication. The disadvantage of a single-replication
design arises when we try to compute the standard error of the sample mean. Since we only have data from
within one replication, the data are dependent, and the usual estimator is biased.

The method of batch means attempts to solve this problem by dividing the output data from one repli­
cation (after appropriate deletion) into a few large batches and then treating the means of these batches as if
they were independent When the raw output data after deletion form a continuous-time process, (Y(t), T0 �
t :5. T0 + TE}, such as the length of a queue or the level of inventory, then we form k batches of size m = TE/k
and compute the batch means as

- I ijm Y , _ Y(t+T0)dt } m (j-l)m

for j = l , 2, . . . , k. In other words, the jth batch mean is just the time-weighted average of the process over
the time interval [T0 + (j - I)m, T0 + jm), exactly as in Example 1 1 .8.

When the raw output data after deletion form a discrete-time process, (Y;, i = d + l , d + 2, . . . , n}, such
as the customer delays in a queue or the cost per period of an inventory system, then we form k batches of
size m = (n - d)lk and compute the batch means as

for j = 1, 2, . . . , k (assuming k divides n - d eV!:nly, otherwise round down to the nearest integer). That is, the
batch means are formed as shown here:

Starting with either continuous-time or discrete-time data, the variance of the sample mean is estimated by

s2 1 k <i' - YY
- = -1:-} -k k j:J k - 1

(1 1 .39)

DISCRETE-EVENT SYSTEM SIMULATION

where Y is the overall sample mean of the data after deletion. As was discussed in Section 1 1 .2, the batch

means Y;, � , � are not independent; however, if the batch size is sufficiently large, successive batch means

will be approximately independent, and the variance estimator will be approximately unbiased.

Unfortunately, there is no widely accepted and relatively simple method for choosing an acceptable

batch size m (or equivalently choosing a number of batches k). But there are some general guidelines that

can be culled from the research literature:

• Schmeiser [1982] found that for a fixed total sample size there is little benefit from dividing it into

more than k = 30 batches, even if we could do so and still retain independence between the batch

means. Therefore, there is no rea.Son to consider numbers of batches much greater than 30, no matter

how much raw data are available. He also found that the performance of the confidence interval, in

terms of its width and the variability of its width, is poor for fewer than 10 batches. Therefore, a

number of batches between 10 and 30 should be used in most applications.

• Although there is typically autocorrelation between batch means at all lags, tbe Iag-1 autocorrelation

p, =corr(�.�+,) is usually studied to assess the dependence between batch means. When the lag-1

autocorrelation is nearly 0, tben the batch means are treated as independent. This approach is based on

the observation that the autocorrelation in many stochastic processes decreases as the lag increases.

Therefore, all lag autocorrelations should be smaller (in absolute value) than the lag-1 autocorrelation.

• The lag-1 autocorrelatio!l between batch means can be estimated as described shortly. However,

the autocorrelation should not be estimated from a small number of batch means (such as the 10 � k � 30

recommended above); there is bias in tbe autocorrelation estimator. Law and Carson [1979] suggest

estimating the lag-1 autocorrelation from a large number of batch means based on a smaller batch size

(perhaps 100 � k � 400). When the autocorrelation between these batch means is approximately 0, then

the autocorrelation will be even smaller if we rebatch the data to between 10 and 30 batch means based

on a larger batch size. Hypothesis tests for 0 autocorrelation are available, as described next.

• If the total sample size is to be clwsen sequentially, say to attain a specified precision, then it is helpful

to allow the batch size and number of batches to grow as the run length increases. It can be shown that

a good strategy is to allow the number of batches to increase as the square root of tbe sample size after

first finding a batch size at which the lag-1 autocorrelation is approximately 0. Although we will not

discuss this point further, an algorithm based on it can be found in Fishman and Yarberry [1997]; see

also Steiger and Wilson {2002].

Given these insights, we recommend the following general strategy:

1. Obtain output data from a single replication and delete as appropriate. Recall our guideline: collect-

ing at least 10 times as much data as is deleted.
·

2. Form up to k = 400 batches (but at least 100 batches) with the retained data, and compute the batch

means. Estimate the sample lag-1 autocorrelation of the batch means as

" r.:::<� -f)(�+l -f)
p

, = I,�,(� -fi

3. Check the correlation to see whether it is sufficiently small.
(a) If p1 � 0.2a , then rebatch the data into 30 � k � 40 batches, and form a confidence interval using

k 1 degrees of freedom for tbe t distribution and Equation (1 1 .39) to estimate tbe variance of f.

(b) If p1 > 0.2 , then extend the replication by 50% to 100% and go to Step 2. If it is not possible to

extend the replication, then rebatch the data into approximately k = 10 batches, and form the

confidence interval, using k'-1 degrees of freedom for the t distribution and Equation (1 1 .39) to

estimate the variance of Y.

OUTPUT ANALYSIS FOR A SINGLE MODEl 369

4• As an a�itio� check on the confidence interval, examir.e the batch means (at the Jar er or smaller
batch s1ze) for mdependence, using the following test (S f ·

g
·

[1998].) Compute the test statistic
. ee, or mstance, Alexopoulos and Sella

: C < Zp then accept tbe independen� of the batch means, where fJ is the Type [error level of the
�

_
(such as �-1, 0.05, 0.01). OtherwiSe, extend the replication by 50% to 100% and 0 t Ste 2

If 1t IS not poss1ble to
_
extend the replication, then rebatCh tbe data into approximately k = 1 t bat�hes �d

fo� tbe c
th
onfide�ce mten:_al, using k- 1 degrees of freedom for the t distribution and �<'nuation (I I 39) to

estlmate e vanance of Y.
·""� ·

�is
_
procedure: includin� the final check, is conservative in several respects. First if th 1 - I 1

non IS substantially negative then we proceed to form the confidence in
. '

.
e ag . autocorre. a-

correlation tends to make the confidence interval wider than necessary
te������w

an
ay. A do

b
nu

t
nant negat

h
lve

will cause us to mak · d · · , • error, u not one t at
. . . e mcorrect eclSlons. The requirement that p, < 0.2 at 100 < k < 400 batche ·

stnng��t and will tend to force us to get more data (and therefore create larger batches) if there i: �pr��
of pos

d
1tive d

h
ependence. And finally, the hypothesis test at)he end has a probability of fJ of forcing us �0 get

more ata w en none are really needed But this se t' · b d ·
·

is typically much great th th . f
co� . rva ISm IS Y eslgn; the cost of an incorrect deeision

er an e cost o some add1tional computer run time. .
The batch-means approach to confidence-interval estimation is illustrated in the next example.

Example 11.19
Rc:consider th� MIG/� sim�lation of Example 1 1 .8, except . that the mean service time is chan ed from 9 5
mmutes to 7 nunutes

_
(unplymg a long-run server utilization of 0.7). Suppose that we want to estima� the stead· _

state expected delay m queue, wQ' by a 95% confidence interval To illustrate the method ofb tch
y

that one run of the model h bee ad . .
· a means, assume

m fro -
as � m e, Slmulatm� 3000 customers after the deletion point. We then form batch

eans . m k - 100 batches of s1ze m = 30 and estunate tbe lag-1 autocorrelation to be p = 0.346 > 0 2 Th
we dec1d

�
� exten? the

_
simulation to 6000 customers after the deletion point, and again1 we estimate fu� ,a:_

s
j

autocorr� ation. This estunate, � on k = I 00 batches of size m = 60, is jJ1 = 0.004 < 0.2.
. . Hav1.ng passed the correlation check, we rebatch the data into k = 30 batches of size m = 200 The po· t

estimate IS the overall mean
· m .

- I 6000 _ Y =-I_� = 9.04
6000 j=l

minutes. The variance of Y, computed from the 30 batch means, is

s2
k

Thus, a 95% confidence interval is given by

30(29)
0.604

7.45 = 9.04-2.04(0. 777) � w Q � 9.04 + 2.04(0.777) = 10.63

! ·
.

I l l :
; i II' !
'\

l i I \
· 'j

DISCRETE-EVENT SYSTEM SIMULATION
370

Thus we assert with 95% confidence that true mean delay in queue, w Q' is between 7 .4� and 10.63 min�tes.

If th�se results are not sufficiently precise for practical use, the run length should be mcreased to ach1eve

greater precision. th 1 · h th ·
As a further check on the validity of the confidence interval, we c�n apply e corre atlon ypo es1s

test. To do so, we compute the test statistic from the k = 30 batches of SIZe m = 200 used to form the confi-

dence interval. This gives
C = -0.3 1 < 1 .96 = Zo.os

confirming the lack of correlation at the 0.05 significance level.
_
Not!ce that: at this sm

_
all number of �atches,

the estimated lag- ! autocorrelation appears to be slightly
_
negative, 11lustratmg our pomt about the d1fficulty

of estimating correlation with small numbers of observatiOns.

1 1 .5.6 Quantiles

Constructing confidence intervals for quantile estimates in a steady-state simulation can be tricky, e�pecially

· · · · ch as L (t) the number of customers m queue
if the output process of interest IS a contmuous-tlme process, su Q '

at time t In this section we outline the main issues. .

Tabng the easier c�se first, suppose that the output process from a single _replication (afte� appropnate

deletion of initial data) is yd+l ' . . • , Yn. To be concrete, Y; might be the _delay m queue ?f the tth customer.

Then the point estimate of the pth quantile can be obtained as before, e1ther from the histogram: �e d��a

or from the sorted values. Of course, only the data after the deletion point ar� used
_
- Suppos� we 11!_ :r

e
:��

· d 1 t e· b th quantile estimate from the rth. Then the R quanule esumates, e., . . . , e •.
cattons an e , e e . .
pendent and identically distributed. Theu average IS . I f . e. = - ,�_}; R ;='

It can be used as the point estimator of e; and an approximate confidence interval is

. s
e.± tai2.R·l .JR

where $2 is the usual sample variance of 8, . · . , 8 •·

. What i� only a single replication is obtained? Then �he sam� reasoning applies i� we le� 0; be the q�:�
tile estimate from within the ith batch of data. This reqmres sortmg the da�, or �ormmg � histogram, Wit .

each batch. If the batches are large enough, then these within-batch quantile estimates w1ll also be approXI-

mately i.i.d. · h thod ply However
When we 'have a continuous-time output process, then, in princ1ple, t e same me .

s ap · '
we must be careful not to transform the data in a way that changes the proble�. In particular, v:e canno��:�
form batch means-as we have done throughout this chapter-and then estimate �e quantile

_
from

batch means. The p quantile of the batch means of LQ(t) is not the same as the p qu�nttle of LQ(t) 1tself. �;us,

the quantile point estimate must be formed from the his
_
togram o� th� raw data-either from each run, I we

make replications, or within each batch, if we make a smgle rephcauon.

1 1 .6 SUMMARY

This cha ter emphasized the idea that a stochastic discrete-event simul�tion i� a statistical experiment.
Therefor�, before sound conclusions can be drawn on the basis of the s1mulat1on-generated output data,

OUTPUT ANALYSIS FOR A SINGLE MODEL 371

a proper statistical analysis is required. The purpose of the simulation experiment is to obtain estimates of
the performance measures of the system under study. The purpose of the statistical analysis is to acquire
some assurance that these estimates are sufficiently preci$e for the proposed use of the model.

A distinction was made between terminating simulations and steady-state simulations. Steady-state
simulation output data are more difficult to analyze, because the simulation analyst must address the problem
of initial conditions and the choice of run length. Some suggestions were given regarding these problems,
but unfortunately no simple, complete, _and satisfactory solution exists. Nevertheless, simulation analysts
should be aware of the potential problems, and of the possible solutions-namely, deletion of data and
increasing of the run length. More advanced statistical techniques (not discussed in this text) are given in
Alexopoulos and Seila [1998], Bratley, Fox, and Schrage [1996],.and Law and Kelton [2000].

The statistical precision of point estimators can be measured by a standard-error estimate or by a confi­
dence interval. The method of independent replications was emphasized. With this method, the simulation
analyst generates statistically independent observations, and thus standard statistical methods can be
employed. For steady-state simulations, the method of batch means was also discussed.

The main point is that simulation output data contain some amount of random variability; without some
assessment of its size, the point estimates cannot be used with- any degree of reliability.

REFERENCES

ALEXOPOULOS, C., AND A. F. SElLA [1998], "Output Data Analysis," Chapter 7 in Handbook of Simulation, J.
Banks, ed., Wiley, New York.

BRATLEY, P., B. L. FOX, AND L. E. SCHRAGE [1996],A Guide to Simulation, 2d ed., Springer-Verlag, New York.
FISHMAN, G. S., AND L. S. YARBERRY [1997], "An Implementation of the Batch Means Method," INFORMS

Journal on Computing, Vol. 9, pp. 296-310. '
GOLDSMAN, D., L. SCHRUBEN, AND J. J. SWAIN [1994], 'Tests for Transient Means in Simulated Time Series,"

Naval Research Logistics, Vol. 41, pp. 17 1-187.
KELTON, W. D. [1986], "Replication Splitting and Variance for Simulating Discrete-Parameter Stochastic PrOcesses,"

Operations Research Letters, Vol. 4, pp. 275-279. ·
KELTON, W. D. [1989], "Random Initialization Methods in Simulation," liE Transactions, Vol. 21, pp. 355-367.
KELTON, W. D., AND A. M. LAW [1983], "A New Approach for Dealing with the Startup Problem in Discrete Event

Simulation," Naval Research Logistics Quarterly, Vol. 30, pp: 641-658.
KLEUNEN, J. P. C. [1987], Statistical Tools for Simulation Practitioners, Dekker, New York.
LAW, A. M. [1977], "Confidence Intervals in Discrete Event Simulation: A Comparison of Replication and Batch

Means," Naval Research Logistics Quarterly, Vol. 24, pp. 667-78.
LAW, �- M. [1980], "Statistical Analysis of the Output Data from Terminating Simulations," Naval. Research Logistics

Quarterly, Vol. 27, pp. 13 1-43.
LAW, A. M., AND J. S. CARSON [1979], "A Sequential Procedure for Determining the Length of a Steady-State

Simulation," Operations Research, Vol. 27, pp. 101 1-1025.
LAW, A. M., AND W. D. KELTON [2000], Simulation Modeling atid Analysis, 3d ed., McGraw-Hill, New York.
· NELSON, B. L. [200 1], �'Statistical Analysis of Simulation Results," Chapter 94 in Handbook of Industrial Engineering,

3d ed., G. Salvendy, ed., Wiley, New York.
SCHMEISER, B. [1982], "Batch Size Effects in the Analysis of Simulation Output," Operations Research, Vol. 30,

pp. 556-568.
SCHRUBEN, L. [1980], "Detecting Initialization Bias in Simulation Output," Operations Research, Vol. 30, pp. 569-590.
SNELL, M., AND L. SCHRUBEN [1985], "Weighting Simulation Data to Reduce mitialization _Effects," liE

Transactions, Vol. 17, pp. 354-363.
STEIGER, N. M., AND J. R. Wilson [2002], "An Improved Batch Means Procedure for Simulation Output Analysis,"

Management Science, Vol. 48, pp. 1569-1586.
.

WELCH, P. D. [1983], 'The Statistical Analysis of Simulation Results," in The Computer Peiformnnce Modeling
Handbook, S. Lavenberg, ed., Academic Press, New York, pp. 268--328.

372 DISCRETE-EVENT SYSTEM SIMULATION

EXERCISES

1. Suppose that, in Example 1 1 . 14, the simulation analyst decided to investigate the bias by using batch
means over a batching interval of 2000 minutes. By definition, a batch mean for the interval [(j -I) 2000,
j (2000)) is defined by

Y -
1 - f j(2000) L (t) dt

J 2000 Juc1>2000 Q

(a) Show algebraically that such a batch mean can be obtained from two adjacent batch means over the
two halves of the interval

(b) Compute the seven averaged batch means for the intervals [0, 2000), [2000, 4000), . . . for the MIG/I
simulation. Use the data (f . .) in Table 1 1 .6 (ignoring f.15 = 8.76).

(c) Draw plots of the type used in Figures 1 1 .4 and 1 1 .5. Does it still appear that deletion of the data
over [0, 2000) (the first "new" batch mean) is sufficient to remove most of the point-estimator
bias?

2. Suppose, in Example 1 1 .14, that the simulation analyst could only afford to run 5 independent replica­
tions (instead of 1 0). Use the batch means in Ta�le 1 1.5 for replications 1 to 5 to compute a 95%
confidence interval for mean queue length LQ. Investigate deletion of initial data. Compare the results
from using 5 replications with those from using 10 replications.

3. In Example 1 1.7, suppose that management desired 95% confidence in the estimate of mean system
. time w and that the error allowed was e = 0.4 minute. Using the same initial sample of size R0 = 4 (given
in Table 1 1 . 1), figure out the required total sample size.

4. Simulate the dump-truck problem in Example 3:4. At first, make the run length TE 40 hours. Make
four independent replications. Compute a 90% confidence interval for mean cycle time, where a cycle
time for a given truck is the time between its successive arrivals to the loader. Investigate the effect of
different initial conditions (all trucks initially at the loader queue, versus all at the scale, versus all trav­
eling, versus the trucks distributed throughout the system in some manner).

5. Consider an (M, L) inventory system, in which the procurement quantity, Q, is defined by

-{M- l iff < L
Q - 0 if l ?. L

where l is the level of inventory o n hand plus on order at the end of a month, M is the maximum inven·
tory level, and L is the reorder point M and L are under management control, so the pair (M, L) is called
the inventory policy. Under certain conditions, the analytical solution of such a model is possible, but

the computational effort can be prohibitive. Use simulation to investigate an (M, L) inventory system
with the following properties: The inventory status is checked at the end of each month. Backordering
is allowed at a cost of $4 per item short per month. When an order arrives, it will first be used to relieve
the backorder. The lead time is given by a uniform distribution on the interval (0.25, 1.25) months. Let
the beginning inventory level stand at 50 units, with no orders outstanding. Let the holding cost be $1

per unit in inventory per month. Assume that the inventory position is reviewed each month. If an order
is placed, its cost is $60 + $5Q, where $60 is the ordering cost and $5 is the cost of each item. The time
between demands is exponentially distributed with a mean of 1/15 month. The sizes of the demands fol-
low this distribution:

MODEL

Demand Probability

1
2
3
4

In
l /4
1/8
1/8

(a) Make four independent replications, each of run length 100 months preceded by a 12-month
initialization period, for the (M, L) = (50, 30) policy. Estimate long-run mean monthly cost with a
90% confidence interval.

·

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean
monthly cost within $5.

· ·

6. Reconsider Exercise 6, except that, if the inventory level at a monthly review is zero or negative, a rush
order for Q units is placed. The cost for a rush order is $120+$12Q, where $120 is the ordering cost and
$12 is the cost of each item. The lead time for a rush order is given by a uniform distribution on the
interval (0.10, 0.25) months.
(a) Make four independent replications for the (M, L) policy, and estimate lo�g��n mean monthly cost

with a 90% confidence interval. ·
. .

(b) Using the results of part (a), estimate the total number of replications needed to estimate mean
monthly cost within $5.

7. Suppose that the items in Exercise 6 are perishable, with a selling price given by thefollowing data:

On the Shelf(Months)

0- 1
1 -2
>2

Selling Price

$10
5
0

Thus, any item that has been on the shelf greater than 2 months cannot be sold. The age is measured at
the time the demand occurs. If an item is outdated, it is discarded, and the next item is brought forward.
Simulate the system for 100 months.

(a) Make four independent replications for the (M, L) = (50, 30) pOlicy, and estimate long-run mean
monthly cost with a 90% confidence interval. .

(b) ·Using the results of part (a), estimate the total number of replications needed to estimate mean
monthly cost within $5.

At first, assume that all the items in the beginninginventory are fresh. Is tbis a good assumption? What
effect does this "all-fresh" assumption have on the estimates of long- run mean monthly cost? What can
be done to improve these estimates? Carry out a complete analysis.

8. Consider the following inventory system:

(a) Whenever the inventory level falls to or below 10 units, an order is placed. Only one order can be
outstanding at a time.

(b) The size of each order is Q; Maintaining an inventory costs $0.50 per day per item in inventory.
Placing an order incurs a fixed cost, $10.00.

(c) Lead time is distributed in ac�ordance with a discrete uniform distribution between zero and 5 days.
(d) If a demand occurs during a period when the inventory level is zero, the sale is lost at a cost of $2.00

per unit.

OISCRETE-�ENT SYSTEM SIMULATION .

(e) The number of customers each day is given by the following distribution:

Number of Customers per Day

l
2
3
4

Probability

0.23
0.41
0.22
0.14

(f) The demand on the part of each customer is Poisson distributed with a mean of 3 units.
(g) For simplicity, assume that an·demands occur at noon and that all orders are placed immediately

thereafter.

Assume further that orders are received at 5:00 P.M., or after the demar.d that occurred on that day.
Consider the poiicy having Q = 20 .. Make five independent replications, each of length 100 days, and
compute a 90% confidence interval for long-run mean daily cost. Investigate the effect of initial inven­
tory level and existence of an outstanding order on the estimate of mean daily cost. Begin with an initial
inventory of Q + I 0 and no outs.tanding orders.

9. A store selling Mother's Day cards must decide 6 months in advance on the number of cards to stock.
Reordering is not allowed. Cards cost $0.45 and sell for $1 .25. Any .cards not sold by Mother's Day go
on sale for $0.50 for 2 weeks. However, sales of the remaining cards is probabilistic in nature accord­
ing to the following distribution:

32% of the time, all cards remaining get sold.

40% of the time, 80% of all cards remaining are sold.

28% of the time, 60% of all cards remaining are sold.

Any cards left after 2 weeks are sold for $0.25. The card-shop owner is not sure how many cards can be
sold, but thinks it is somewhere (i.e., uniformly distributed) between 200 and 400. Suppose that the
card-shop owner decides to order 300 cards. Estimate the expected total profit with an error of at most
$5.00. (Hint: Make three or four initial replications. Use these data to estimate the total sample size
needed..Each replication consists of one Mother's Day.)

·

10. A very large mining operation has decided to control the inventory of high-pressure piping by a
"periodic review, order up to M" policy, where M is a target level. The annual demand for this piping is
normally distri�uted, with mean 600 and variance 800. This demand occurs fairly uniformly over
the year. The lead time for resupply is Erlang distributed of order k = 2 with its mean at 2 months.
The cost of each unit is $400. The inventory carrying charge, as a proportion of item cost on an annual
basis, is expected to fluctuate normally about the mean 0.25 (simple interest), with a standard deviation
of 0.01. The cost of making a review and placing an order is $200, and the cost of a backorder is
estimated to be $100 per unit backordered. Suppose that the inventory level is reviewed every 2 months,
and let M = 337.

(a) Make five independent replications, each of run length 100 months, to estimate long-run mean
monthly cost by means of a 90% confidence interval:

· ·

(b) Investigate the effects of initial conditions. Calculate an appropriate number of monthly observa­
tions to delete to reduce initialization bias to a negligible level.

OUTPUT ANALYSIS FOR A SINGLE MODEL 375

11. Consider some number, say N, of MIMI! queues in series. The MIMI! queue, described in Section 6.4,
has Poisson arrivals at some rate A customers per hour, exponentially distributed service times with
mean 1/p, and a single server. (Recall that "Poisson arrivals" means that interarrjval times are exponen­
-tially distributed.) By MIMil queues in series, it is meant that, upon completion of seniice at a given
server, a customer joins a waiting line for the next server. The system can be shown as follows:

All service times are exponentially distributed with mean lip, and the capacity of each waiting lipe is
assumed to be unlimited. Assume that A = 8 customers per hour and lip. 0.1 hour. The measure of
performance is response time, which is defined to be the total time a customer is in the system.

(a) By making appropriate simulation runs, compare the initialization bias for N = I (i.e., one MIMI!
queue) to N = 2 (i.e., two MIMI! queues in series). Start each system with all servers idle and no
customers present. The purpose of the simulation is to estimate mean response time.

(b) Investigate the initialization bias as a function of N, for N = I , 2, 3, 4, and 5.
(c) Draw some general conclusions concerning initialization bias for "large" queueing systems when at

time 0 the system is assumed to be empty and idle.

12. Jobs enter a job shop in random ·fashion according to a Poisson process at a stationary overall rate, two
every 8-hour day. The jobs are of four types. They flow from work station to work station in a fixed
order, depending on type, as shown next. The proportions of each type are also shown.

Type Flow through Stations Proportion

I l , 2, 3, 4 0.4
2 1, 3, 4 0.3
3 2, 4, 3 0.2
4 1 , 4 0. 1

Processing times per job at each station depend on type, but all times are (approximately) normally
distributed with mean and s.d. (in hours) as follows:

Station

Type 1 2 3 4

1 (20, 3) (30, 5) ('75, 4) (20, 3)
2 (18, 2) (60, 5) (10, I)
3 (20, 2) (50, 8) (10, I)
4 (30, 5) (15, 2)

Station i will have c; workers (i = 1, 2, 3, 4). Each job occupies one worker at a station for the duration
of a processing time. All jobs are processed on a first-in-fust-out basis, and all queues for waiting jobs
are assumed to have unlimited capacity. Simulate the system for 800 hours, preceded by a 200-hour
initialization period. Assume that c1 = 8, c2 = 8, c3 20, c4 = 7. Based on R = 5 replications, compute a

· 97.5% confidence interval for average worker utilization at each of the four stations. Also, compute a

. · .. : �- , ·_,.::: : . .• _< :._ ... :.:.:. .. �.'

376 DISCRETE-EVENT SYSTEM SIMUlATION

95% confidence interval for mean total response time for each job type, where a total response time is
the total time that a job spends in the shop.

13. Change Exercise 12 to give priority at each station to the jobs by type. Type I jobs have priority over
type 2, type 2 over type 3, and type 3 over type 4. Use 800 hours as run length, 200 hours as initialization
period, and R = 5 replications. Compute four 97.5% confidence intervals for mean total response time
by type. Also, run the model without priorities and compute the same confidence intervals. Discuss the
trade-offs when usingjirst in, first out versus a priority system.

14. Consider a single-server queue with Poisson arrivals at rate A.= 10.82 per minute and normally distributed
service times with mean 5.1 seconds and variance 0.98 seconds2• It is desired to estimate the mean time in
the system for a customer who, upon arrival, finds i other customers in the system-that is, to estimate

W; =E<W lN= i) for i = 0, 1, 2, . . .

where W is a typical system time and N is the number of customers found by an arrival. For example,

w0 is the mean system time for those customers who find the system empty, w1 is the mean system time

for those customers who find one other customer present upon arrival, and so on. The estimate w1 of w1

will be a sample mean of system times taken over all arrivals who find i in the system. Plot w1 vs i.

Hypothesize and attempt to verify a relation betw�n w; and i.

(a) Simulate for a 10-hour period with empty and idle initial conditions.

(b) Simulate for a 1 0-hour. period after an initialization of one hour. Are there observable differences in

the results of (a) and (b)'? .
(c) Repeat parts (a) and (b) with service times exponentially distributed with mean 5.1 seconds.

(d) Repeat parts (a) and (b) with deterministic service times equal to 5.1 seconds.

(e) Find the number of replications needed to estimate w0, w1, • • • , w6 with a standard error for each of

at most 3 seconds. Repeat parts (a)-(d), but using this number of replications.

15. At Smalltown U., there is one specialized graphics workstation for student use located across campus

from the computer center. At 2:00 A.M. one day, six students arrive at the workstation to complete an

assignment. A student uses the workstation for 10 ± 8 minutes, then leaves to go to the computer center

to pick up graphics output. There is a 25% chance that the run will be OK and the student will go to

sleep. If it is not OK, the student returns to the workstation and waits until it becomes free. The roundtrip

from workstation to computer center and back takes 30 ± 5 minutes. The computer becomes inaccessible

at 5:00 A.M. Estimate the probability, p, that at least five of the six students will finish their: assignment in

the 3-hour period. First, makeR = 10 replications, and compute a 95% confidence interval for p. Next,

work out the number of replications needed to estimate p within ±.02, and make this number of repli·

cations. Recompute the 95% confidence interval for p.

16. Four workers are spaced evenly along a conveyor belt. Items needing processing arrive according to a

Poisson process at the rate 2 per minute. Processing time is exponentially distributed, with mean 1.6

minutes. If a worker becomes idle, then he or she takes the first item to come by on the conveyor. If a

worker is busy when an item comes by, that item moves down the conveyor to the next worker, taking '

20 seconds between two successive workers. When a worker finishes processing an item, the item leaves

the system. If an item passes by the last worker, it is recirculated on a loop conveyor and will return to

the first worker after 5 minutes.

Management is interested in having a balanced workload-that is, management would like worker

utilizations to be equal. Let pi be the long-run utilization of worker i, and let p be the average utiliza­

tion of all workers. Thus, p = (p1 + p2 + p3 + p,J/4. According to queueing theory, p can be estimated

' . . • -·�···"· 'Y";.•:-

OUTPUT ANALYSIS FOR A SINGLE MODEL 377

by P = Ale J1, where 1 = 2 arrivals per minute c = 4 servers and lip - 1 6 · · th ·

time Thus p - M ·11 ('114)1 6 0 8
' ' - · mmutes IS e mean serv1ce

· • - c,., · = · ; so, on the average, a worker will be busy 80% of the time.
(a) Ma� 5 independent replications, e

_
ach of run length 40 hours preceded by a one hour initialization

b
pe
al
nod. Compute 95% confidence mtervals for p, and p4. Draw conclusions concerning workload
ance.

(b) ���;:�e:e�:g5
��lications, test the hypothes!s Ho : PI ;= 0.8 at a level of significance a= 0.05.

. . . ? . _
1s nnportant to detect, detenrune the probability that such a deviation is detected

I? add111on, 1f 11 1s destred to detect such a deviation with probability at least 0.9 figure 0 1 th 1 ·

() R
slze needed to do so. (See any basic statistics textbook for guidance on hypoth;sis testin�)

e samp e

c epeat (b) for H0 : p4 = 0.8.
·

(d) From tbe results of (a)-(c), draw conclusions for management about the balancing of workloads.
17. At a small rock qu�, a sin�le power shovel dumps a scoop full of rocks at the loadin area a roxi­

�at�ly every
_
10 mmutes, w�th the actual time between scoops modeled well as bein

g
ex n��tiall

��
s:

�::�: ;��h::s:!:�
n
:;:

·
p��

ee scoops of rocks make a pile; whenever one �ile � rocks i�
;!

e
;;:ro��o:��

n
;�\:U�::: �=0� :�:��

3
f:�:)�:k

ti:eb It �
es appro

th
ximately 2j minutes

nnloaded and the . e nven to e processmg plant
.

• ret� to. load1?g area. The actual time to do these things (altogether) is modeled weli
as bemg normally distributed, With mean 27 minutes and standard deviation 12 minutes.
When �e true� ret�ms to �e load�g area, it will load and transport another pile if one is waitin to be
loaded, ot�erw1se, 1t stay

_
s tdle unttl another pile is ready. For safety reasons, no loading of th; truck

occurs until a complete pde (all three scoops) is waiting.
The quarry at · thi
th tru ks

0:� es 10 s manner for an 8-hour day. We are interested in estimating the utilization of
e c an t e expected number of piles waiting to be transported if an additional truck is purchased.

18. Big Bruin, Inc. plans to open a small grocery store in Juneberry NC Th h
out lanes w"th 1 be"

• · ey expect to ave two check-
. : h

1 one ane mg reserved for customers paying with cash .. The question they want to
answer IS. ow many grocery carts do they need?

D
�
ring business hours (6 A.M.-8 P.M.), cash-paying customers are expected to arrive at 8 per hour All 0

od
er

1
customers are �xpect� �o arrive at 9 per hour. The time between arrivals of each type c� be

m e ed as exponenttally d1stnbuted random variables.
Th� ti

_
me spen� shopping is modeled as normally distributed, with mean 40 minutes and s�dard

d�vt�t!On lO �mutes. The time required to check out after shopping can be modeled as to norman 1
:)
1ribut

�
V:'th (a) mean 4 minutes and standard deviation l minute for cash-paying !stomer:

mean IDJnutes and standard deviation l minute for all other customers.
· '

We will assu� that every customer uses a shopping cart and that a customer who finishes sho ·
lel!.ves the cart m the store so that it is available immediately for another customer. We will also

ppmg

that any customer who cannot obtain a cart immediately leaves the store, disgusted.
assume

!he primary performance measures of interest to Big Bruin are the expected number of shopping carts
10 use an

b
d
_
the expected number of customers lost per day. Recommend a number of carts for the store

remem enng that carts are expensive, but so are lost customers.
'

19. Develop a �imulation model of the total time in the system for an MIMII queue with service rate 11 = 1 ·
therefore, the traffic intensity is p - A/11 1 th · 1 · ·

r '
- r , . e amva rate. Use the stmulal!on, in conjunction with

378 DISCRETE-EVENT SYSTEM SIMULATION

the technique of plotting ensemble averages, to stUdy the effect of traffic intensity on initialization
bias when the queue starts empty. Specifically, see how the initialization phase T0 changes for
p = 0.5, 0.7, 0.8, 0.9, 0.95.

20. The average waiting data from 10 replication of a queuing system are

Replication Average Waiting Time

1 .77
2 2.50
3 1 .87
4 3.22
5 3.00
6 2.1 1
7 3.12
8 . 3.49
9 2.39

l O 3.49

Detennine 90% confidence interval for the average waiting time.

2L Consider Example 6. If it is required to estimate the average waiting time with an absolute error of 0.25

and confidence level of 90%, determine the nnmber of replications required.

22. In a queuing simulation with 20 replications, 90% confidence interval for average queue length is found
to be in the range 1 .72-2.41 . Determine the probability that the average queue length is less than 2.75.

23. Collect papers dealing with simulation output analysis and study the tools used.

.. 1 2
Comparison and Evaluation of
Alternative System Designs

Chapter l l dealt with the precise estimation of a measure of performance for one system. This chapter
discusses a few of the many statistical methods that can be used to compare two or more system designs on
the basis of some performance measure. One of the most importarit uses of simulation is the comparison of
alternative system designs. Because the observations of the response variables contain random variation,
statistical analysis is needed to discover whether any observed differences are due to differences in design or
mere! y to the random fluctuation inherent in the models.

The comparison of two system designs is computationally easier than the simultaneous comparison of
multiple (more than two) system designs. Section 12.1 .discusses the case of two system designs, using two
possible statistical teclmiques: independent sampling and correlated sampling. Correlated sampling is also
known as the common random numbers (CRN) technique; simply put, the same random numbers are used
to simulate both alternative system designs. If implemented correctly, CRN usually reduces the variance of
the estimated difference of the performance measures and thus can provide, for a given sample size, more
precise estimates of the mean difference than can independent sampling. Section 12.2 extends the statistical
�echniques of Section 12. 1 to the comparison of multiple (more than two) system designs; using the
Bonferroni approach to confidence-interval estimation, screening, and selecting the best The Bonferroni
approach is limited to twenty or fewer system designs, but Section 12.3 describes how a large number of
complex system designs can sometimes be represented by a simpler metamodel. Finally, for comparison and
evaluation of a very large number of syst�m designs that are related in a less structured way, Section 1 2.4
presents optimization via simulation.

379

380 DISCRETE-EVENT SYSTEM SIMULATION

1 2. 1 COMPARISON OF TWO SYSTEM DESIGNS

Suppose that a simulation analyst desires to compare two possible configurations of a system. In a queueing
system, perhaps two possible queue disciplines, or two possible sets of servers, are to be compared. In a
supply-chain inventory system, perhaps two possible ordering policies will be compared. A job shop could
have two possible scheduling rules; a production system could have in-process inventory buffers of various
capacities. Many other examples of alternative system designs can be provided.

The method of replications will be used to analyze the output data. The mean performance meruiure for
system i will be denoted by £W = 1 ,2). If it is a steady-state simulation, it will be assumed that deletion of data,
or other appropriate techniques, have been used to ensure that the point estimators are approximately unbiased
estimators of the mean performance measures, 8r The goal of the simulation experiments is to obtain point and
interval estimates of the difference in mean performance, namely 81 - 82• Three methods of computing a
confidence interval for 81 - 82 will be discussed, but first an example and a general framework will be given.

Example 12.1
A vehicle-safety inspection station performs three jobs: (l) brake check, (2) headlight check, and (3) steer­
ing check. The present system has three stalls in parallel; that is, a vehicle enters a stall, where one attendant
makes all three inspections. The current system is illustrated in Figure 12.l(a). Using data from the existing
system, it has been assumed that arrivals occur completely at random (i.e., according to a Poisson process)
at an average rate of 9.5 per hour and that the times for a brake check, a headlight check, and a steering check
are normally distributed with means of 6.5, 6, and 5.5 minutes, respectively, all having standard deviations
of approximately 0.5 minute. There is no limit on the queue of waiting vehicles.

An alternative system design is shown in Figure 12. 1 (b). Each attendant will specialize in a single task,
and each vehicle will pass through three work stations in series. No space is allowed for vehicles between
the brake and headlight check, or between the headlight and steering check. Therefore, a vehicle in the brake
or headlight check must move to the next attendant, and a vehicle in the steering check must exit before the
next vehicle can move ahead. The increased specialization of the inspectors suggests that mean inspection
times for each type of check will decrease by 10%: to 5.85, 5.4, and 4.95 minutes, respectively, for the brake,
headlight, and steering inspections. The Safety Inspection Council has decided to compare the two systems
on the basis of mean response time per vehicle, where a response time is defmed as the total time from a
vehicle arrival until its departure from the system.

Cars arrive

Cari; arrive

Brake
inspection

Thiee attendants

(a)

Headlight
check

(b)

Steering
check

Figure 1 2.1 Vehicle safety inspection station and a possible alternative design.

� ;·, , -.... ,

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 381
When c��paring two syste�s, such as those in Example 12.1, the simulation analyst must decide on a run _len�th T E for each _model _(! = I '

.
2), and a number of replications R, to be made of each model. From replicatiOn r of system 1, the stmulatiOn analyst obtains an estimate y of the mean rf 8 I E 1 1 ri pe orrnance measure r n

.
��mp e 2. 1 , Y,; would be the �verage response time observed during replication r for system ; (r = 1 : . . . , R,, t - 1 , 2). The data, together wtth the two summary measures the sample means y-

a d th 1 0 s' 0 0 0 '
·
i ' n e samp e van�nces

.
, , are exhtbtted m Table 12. 1 . Assuming that the estimators y . are (at least ap

·
proximately) unbtased, tt follows that "

81 = E(Y), r = I , . . . , Rl ; 82 = E(Y,2), r = I, . . . , R2

.
In Example

_
12. 1 , �e Safety Inspection Council is interested in a comparison of the two system destgns, so the stmulation analyst decides to compute a confidence interval for 8 _ (} th di"" between th t rf

1 2' · e . uerence

,
e w_o mean pe �rmance measures. The confidence interval is used to answer two questions: (_I) �ov. lar�e ts the mean dtfference, and how precise is the estimator of mean difference? (2) Is there a stgmfic�nt dtfference between the two systems? This second question will lead to one of three possible conclusiOns:

1. If the con�dence inte�val (c.i.) for 81 - 82 is totally to the left of zero, as shown in Figure l22(a), then there ts strong evtdence for the hypothesis that 8 - (} < 0 or equivalently 8 < D I 2 • I u2•

Table 1 2.1 Simulation Output Data and Summary Measures for
Comparing Two Systems

Replication

System 1 2 . . .

I r, , r,, . . .

2 yl2 Y,, . . .

0

f. , - Y.,

0

0

Sample
R, Mean

YR, I l',
-

YR22 l',

(a)

f., - Y.,
(b)

f., - Y.,
(c)

Sample
Variance

s' I
s' 2

Figure 1 2.2 Three confidence intervals that can occur in the comparing of two systems.

.:J

DISCRETE-EVENT SYSTEM SIMULATION

In Example 12. 1, 81 < 82 implies that the mean response time for system I (the original system) is smaller
than for system 2 (the alternative system).

2. If the c.i. for 81 - 82 is totally to the right of zero, as shown in Figure 12.2(b), then there is strong
evidence that 8, - 82 > 0, or equivalently, 8, > 82.

In Example 12. 1, 81 > 82 can be interpreted as system 2 being better than system 1, in the sense that system
2 has smaller mean response time.

3. If the c.i. for 81 - 82 contains zero, then, in the data at hand, there is no strong statistical evidence
that one system design is better than the other.

Some statistics textbooks say that the weak conclusion 81 82 can be drawn, but such statements can be
misleading. A "weak" conclusion is often no conclusion at all. Most likely, if enough additional data were
collected (i.e., R; increased), the c.i. would s}lift, and definitely shrink in length, until conclusion 1 or 2 would
be drawn. In addition to one of these three conclusions, the confidence interval provides a measure of the
precision of the estimator of 8, - 82'

In this chapter, a two-sided 100(1-a)% c.i. for 81 82 will always be of the form

- -
f.1 -Y.2 ± t.n.vs.e.(Y.l -f.2)

where f; is the sample mean performance measure for system i over all replications

1 R, Y., = -_LY.
R, .-.1 n

(12. 1)

(12.2)

and v is the degrees of freedom associated with the variance estimator, tafl,v is the 100(1 - a/2) percentage
point of a t distribution with v degrees of freedom, and s.e.(·) represents the standard error of the specified
point estimator. To obtain the standard error and the degrees of freedom, the analyst uses one of three
statistical techniques. All three techniques assume that the basic data, Yri of Table 12.1 , are approximately
normally distributed. This assumption is reasonable provided that each Y,; is itself a sample mean of obser­
vations from replication r (which is indeed the situation in Example 12.1).

By design of the simulation experiment, Y,1(r = I, . . . , R1) are independently and identically distributed
(i.i.d.) with mean 81 and variance a� (say). Similarly, Y rz(r = l, . . . , �) are i.i.d. with mean 82 and variance
ai (say). The three techniques for computing the confidence interval in (12. 1), which are based on three
different sets of ·assumptions, are discussed in the following subsectious.

There is an important distinction between statistically significant diffe�ences and practically significant
differences� sEtems performance. Statistical �ficance answers the following question: Is the observed
difference rl-r2 larger than the variability in rl- r2 ? This question can be restated as: Have we collected
enough data to be confident that the difference we observed is real, or just chance? Conclusions I and 2
imply a statistically significant difference, while Conclusion 3 implies that the observed difference is not
statistically significant (even though the systems may indeed be different). Statistical significance is a function
of the simulation experiment and the output data.

Practical significance answers the following question: Is the true difference 81 - 82 1arge enough to matter
for the decision we need to malre1 In Example 12. 1, we may reach the conclusion that 81 > 82 and decide
that system 2 is better (smaller expected response time). However, if the actual difference 81 - 82 is very
small-say, small enough that a customer would not notice the improvement- then it might not be worth
the cost to replace system 1 . with system 2. Practical significance is a function of the actual difference
between the systems and is independent of the simulation experiment.

COMPARISON AND EVAlUATION OF AlTERNATIVE SYSTEM DESIGNS 383

. Confide�:e intervals do not �swer the question of practical significance directly. Instead, they bound (wtth probabtltty I a) the true dtfference 81 - 02 within the range .

Whether a difference within these bounds is practically significant depends on the particular problem.

12.1 .1 Independent Sampling with Equal Variances

Independent sampling means that different and independent random number streams will be used to simulate
the

.
rn:o sysu;ms. This implies that all the observations of simulated system I , namely { frl, r = I , . . . , R1}, are

statlst�cally Independent
_

of all the observations of simulated system 2, namely { Yrz, r =.J, . . . , R2}. By
Equation (12.2) and the mdependence of the replications, the variance of the sample mean, Y, , is given by

i = 1, 2

For independent sampling, r,- and f, are statistically independent; hence,

V(Y:1 -Y.2) = V(Y.1)+V(Y.2)
a2 a2 _L+_l_
Rl R;_

(12.3)

In some cases, it is reasonable to assume that the two variances are equal (but unknown in value)· that · a2 2 Th , IS, 1 = a2 . e data can be used to test ihe hypothesis of equal variances; if rejected, the method of Section
12.1.2 must be used. In a steady-state simulation, the variance af decreases as the run length T�1 increases;
there�ore, it �ght be possible to adjust the two run lengths, T�1 and T�1, to achieve at least approximate equaltty of a, and a;.

If . . 2 2 tt ts reasonable to assume that a, a2 (approximately), a two-sample-t confidence-interval approach can be used. The point estimate of the mean performance difference is

with 1':, given by Equation (12.2). Next, compute the sample variance for system i by

1 R, -
S� = -· _L(Y. -Y.i

t Rl - 1 r=l n .,

1 R; 2 -2) _LYri -R,I:,
r=l

(12.4)

(12.5)

No.te that S,2 is an unbiased estimator of the variance cr:. By assumption, a; = a{= a2 (say), so a pooled
estunate of a2 is obtained by

82 = (� - l)S� + (R;_ - l)Si
P R, +�-2

384 DISCRETE-EVENT SYSTEM SIMULATION

which has V= R1 + R2 2 degrees of freedom. The c.i. for 81 82 is then given by Expression (12.1)_ with
the standard error computed by

- - HI s.e.(Y - Y) = S - + -., -2 P R, R2 (12.6)

This standard error is an estimate of the standard deviation of the point estimate, which, by Equation (12.3),
is given by a�l/ R1 + UR2 •

In some cases, the simulation analyst could have R1 = R2, in which case it is safe to use the c.i. in
Expression (12. 1) with the standard error taken from Equation (12.6), even if the variances (� and a�) are
not equal. However, if the variances are unequal and the sample sizes differ, it has been shown that use of
the two-sample-t c.i. could yield invalid confidence intervals whose true probability of containing 81 - 82 is
much less than I a. Thus, if there is no evidence that a� = a22 , and if R1 ¢ R2, the approximate procedure
in the next subsection is recommended.

1 2. 1 .2 Independent Sampling with Unequal Variances

If the assumption of equal variances cannot safely be made, an approximate I 00(1 - a)% c.i. for 81 82 can
be computed as follows. The point estimate and sample variances are computed by Equations (12.4) and
(12.5). The standard error of the point estimate is given by

(12.7)

with degrees of freedom, v, approximated by the expression

(12.8)

rounded to an integer. The confidence interval is then given by Expression (12.. 1), using the standard error of
Equation (12.7). A minimum number of replications R1 2: 6 and R2 2: 6 is recommended for this procedure.

12.1 .3 Common Random Numbers (CRN)

CRN means that, for each replication, the same random numbers are used to simulate both systems.
Therefore, R1 and R2 must be equal, say R1 = R2 = R. Thus, for each replication r, the two estimates, Y,1 and
Y,2• are no longer independent, hot rather are correlated. However, independent streams of random numbers
are used on different replications, so the pairs (Y,I'fs2) are mutually independent when r ¢ s. (For example,
in Table 12. 1 , the observation r, I is correlated with yl2' but r,l is independent of all other observations.) The
purpose of using CRN is to induce a positive correlation between Y,1 and Y 1'2 (for each r) and thus to achieve
a variance reduction in the point estimator of mean difference, �-y2 • In general, this variance is given by

(12.9)

where p12 is the correlation between Y,1 and Yr2. [By definition, P12 = cov(Y,., f.2) /a,o; , which does not
depend on r.]

COMPARISON AND ALTERNATIVE SYSTEM DESIGNS 385

Now compare the variance of Y1-Y2 arising from the use of CRN [Equation (12.9), call it VeRN to the
variance arising from the use of independent sampling with equal sample sizes [Equation (12.3) with
R1 = Rz = R, call it �ND]. Notice that

v - v - 2p,20'10'2
CRN - IND R (12. 10)

If CRN works as intended, the correlation p12 will be positive; hence, the second term on the right side of
Equation (12.9) will be positive, and, therefore,

VCRN < �ND
That is, the variance of the point estimator will be smaller with CRN thim with independent sampling.
A smaller variance (for the same sample size R) implies that the estimator based on CRN is more precise,
leading to a shorter confidence interval on the difference, which implies that smaller differences in performance
can be detected.

To compute a 100(1 - a)% c.i. with correlated data, first compute the differences

which, by the definition of CRN, are i.i.d.;. then compute the sample mean difference as

I �< D=-LD R r=l r

(Thus, .5 = f1 -Y2.) The sample variance of the differences {D,} is computed as

(12. 1 1)

(12. 12)

(12. 13)

which has degrees of �m v= R l. The 100(1 - a)% c.i. for 81 - 82 is given by Expression (12. 1), with
the standard error of Y1 -Y2 estimated by

(12.14)

Because SDrJii of Equation (12. 14) is an estimate of .jV;;; and Expression (12.6) or (12.7) is an estimate
of .,JV;;;;, CRN typically will produce a c.i. that is shorter for a given sample size than the c.i. produced by
independent sampling if p12 > 0. In fact, the expected length of the c.i. will be shorter with use of CRN if

p12 > 0. 1 , provided R > 10. The larger R is, the smaller p12 can be and still yield a shorter expected length
[Nelson 1987].

For any problem, there are many ways of implementing common random numbers. It is never enough
to simply use the same seed on the random-number generator(s). Each random number used in one model
for some pUfP9se should be used for the same purpose in the second model-that is, the use of the random
numbers must be synchronized. For example, if the ith random number is used to generate a service time at

DISCRETE-EVENT SYSTEM SIMULATION

work station 2 for the 5th arrival in model I, the ith random number should be used for the very same purpose
in model 2. For queueing systems or service facilities, synchronization of the common random numbers
guarantees that the two systems face identical work loads: both systems face arrivals at the same instants of
time, and these arrivals demand equal amounts of service. (The actual service times of a given arrival in the
two models may not be equal; they could be proportional _if the server in one model were faster than the server
in the other model.) For an inventory system, in comparing of different ordering policies, synchronization
guarantees that the two systems face identical demand for a given product. For production or reliability
systems, synchronization guarantees that downtimes for a given machine will occur at exactly the same times
and" will have identical durations, in the two models. On the other hand, if some aspect of one of the systems
is totally different from the other system, synchronization could be inappropriate-or even impossible to
achieve. In summary, those aspects of the two system designs that are sufficiently similar should be simulated
with common random numbers in such a way that the two models "behave" similarly; but those aspects that
are totally different should be simulated with independent random numbers.

Implementation of common "random numbers is model dependent, but certain guidelines can be given
that will make CRN more likely to yield a positive correlation. The purpose of the guidelines is to ensure
that synchronization occurs:

1. Dedicate a random-number stream to a specific purpose, and use as many different streams as
needed. (Different random-number generators, or widely spaced seeds on the same generator, can be
used to get two different, nonoverlapping streams.) In addition, assign independently chosen seeds
to each stream at the beginning of each replication. It is not sufficient to assign seeds at the begin­
ning of the first replication and then let the random-number generator merely continue for the second
and subsequent replications. If simulation is conducted in this manner, the fust replication will be
synchronized, but subsequent replications might not be.

2. For systems (or subsystems) with external arrivals: As each entity enters the system, the next inter­
arrival time is generated, and then immediately all random variables (such as service times, order
sizes, etc.) needed by the arriving entity and identical in both models are generated in a fixed order
and stored as attributes of the entity, to be used later as needed. Apply guideline I : Dedicate one
random-number stream to these external arrivals and all their attributes.

3. For systems having an entity performing given activities in a cyclic or repeating fashion, assign a
random-number stream to this entity. (Example: a machine that cycles between two states: up-down­
up-down-. . . . Use a dedicated random-number stream to generate the uptimes and downtimes.)

4. If synchronization is not possible, or if it is inappropriate for some part of the two models, use inde­
pendent streams of random numbers for this subset of random variates.

Unfortnnately, there is no guarantee that CRN will always induce a positive correlation between com­
parable runs of the two models. It is known that if, for each input random variate X, the estimators Y,1 and
Y are increasing functions of the random variate X (or both ru:e decreasing functions of X), then p12 will
b� positive. The intuitive idea is that both models (i.e., both Y,1 and Y,2) respond in the same direction to
each input random variate, and this results in positive correlation. This increasing or decreasing nature of
the response variables (called 11Uinotonicity) with respect to the input random variables is known to hold for
certain queueing systems (such as the GIIG/c queues), when the response variable is customer delay, so
some evidence exists that common random numbers is a worthwhile technique for queueing simulations.
(For simple queues, customer delay is an increas'ng function of service times and a decreasing function of
interarrival times.) Wright and Ramsay [1979] reported a negative correlation for certain inventory simula­
tions: however. In summary, the guidelines recently described should be followed, and some reasonable
notion that the response variable of interest is a monotonic function of the random input variables should
be evident.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 387

Example 12.1: Continued

The two inspection systems shown in Figure 12. 1 will be compared by using both independent sampling and
CRN, in order to illustrate the greater precision of CRN when it works.

·Each vehicle arriving to be inspected has four input random variables associated with it

A. interarrival time between vehicles n and n + 1

s;n brake inspection time for vehicle n in model 1

s,;21 = headlight inspection time for vehicle n in model }

s�>l = steering inspection time for vehicle n in model I

For model 2 (of the proposed system), mean service times are decreased by 10%. When using independent
sampling, different values of service (and interarrival) times would be generated for models I and 2 by using
different random numbers. But when using CRN, the random number generator should be used in such a way
that exactly the same values are generated for A1, A2, A3, . . . in both models. For service times, however, we
do not want the same service times in both models, because the mean service·time for model 2 is 10%
smaller, but we do want strongly correlated service times. There are at least two ways to do this:

1. Let S�11(i = I, 2, 3; n = I, 2, ...) be the service times generated for model 1; then use S�0 -O.IE(S�1�)
as the service times i n model 2. In words, we take each service time from model I and subtract 10%
of its true mean.

2. Recall that normal random variates are usually produced by flfSt generating a standard normal variate
and then using Equation (8.29) to obtain the correct mean and variance. Therefore, the service times
for, say, a brake inspection rould be generated by

(1 2. 15)

where Z�'1 is a standard normal variate, <:1 = 0.5 minute, but E(S�'l) = 6.5 minutes for model I and
E(S�n) = 5.85 minutes (10% less) for model 2. The other two inspection times would be generated
in a similar fashion. To implement (synchronized) common random numbers, the simulation analyst
would generate identical z;il sequences (i = 1, 2, 3; n = 1, 2, . . .) in both models and then use the
appropriate version of Equation (12.15) to generate the inspection times.

For the synchronized runs, the service times for a vehicle were generated at the instant of arrival (by
guideline 2) and stored as an attribute of the vehicle, to be used as needed. Runs were also made with non­
synchronized common random numbers, in which case one random number stream was used as needed.

Table 1 2.2 gives the average response time for each of R = 10 replications, each of run length 1 6
hours. I t was assumed that two cars were present a t time 0 , waiting to be inspected. Column 1 gives the
outputs from model I . Mode1 2 was run with independent random numbers (column 21) and with common
random numbers without synchronization (column 2C*) and with synchronization (column 2C). The purpose
of the simulation is to estimate mean difference in response times for the two systems.

For the two independent runs (I and 21), it was assumed that the variances were not necessarily equal,
so the method of Section 1 2. 1 .2 was applied. Sample variances and the standard error were computed by
Equations (1 2.5) and (1 �.7), yielding

and

s: = 1 18.9,

(y- y-
)

1 1 8.9
+

244.3
= 6.03 s.e . . 1 - ,21 =

10 10

388 DISCRETE-EVENT SYSTEM SIMULATION

Table 1 2.2 Comparison of System Designs for the Vehicle-Safety Inspection System

Observed
Average Response Time for Model Differences

Replication I 21 2C* 2C D1.2C* DI�C
I 29.59 51 .62 56.47 29.55 -26.88 0.04

2 23.49 5 1 .91 33.34 24.26 -9.85 -o.77

3 25.68 45.27 35.82 26.03 -10.14 -Q.35

4 41.09 30.85 34.29 42.64 6.80 -1.55

5 33.84 56.15 39.07 32.45 -5.23 1.39

6 39.57 28.82 32.07 37.91 7.50 1.66

7 37.04 41 .30 51.64 36.48 -14.00 0.56

8 40.20 73.06 41.41 41 .24 -1.21 -1.04

9 61 .82 23.00 48.29 60.59 13.53 1.23

10 44.00 28.44 22.44 41 .49 21.56 2.51

Sample mean 37.63 43.04 -1.85 0.37

Sample variance 1 1 8.90 244.33 208.94 1.74

Standard error 6.03 4.57 0.42

with degrees of freedom, v, equal to 17, as given by Equation (12.8). The point estimate is Y1 -Y21 = -5.4
minutes, and a 95% c.i. [Expression (12.1)] is given by

-5.4 ± 2.1 1(6.03)

or

(12. 16)

.The 95% confidence interval in Inequality (12.16) contains zero, which indicates that there is no strong
evidence that the observed difference, -5.4 minutes, is due to anything other than random variation in the output
data. In other words, it is not statistically significant Thus, if the simulation analyst had decided to use inde­
pendent sampling, no strong conclusion would be possible, because the estimate of 81 - 82 is quite imprecise.

For the two sets of correlated runs (1 and 2C*, and I and 2C), the observations are paired and analyzed
as given in Equations (12. 1 1) through (12. 14). The point estimate when not synchronizing the random
numbers is given by Equation (12.12) as

D = -1.9 minutes

the sample variance by S� (with v = 9 degrees of freedom), and the standard error by s.e.(D) = 4.6. Thus, a
95% c.i. for the true mean difference in response times, as given by expression (12.1), is

-1.9 ± 2.26(4.6)

or

(12.17)

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 389

Again, no strong conclusion is possible, because the confidence interval contains zero. Notice, however,
that the estimate of 81 - 82 is slightly more precise than that in Inequality (12.16), because the length of the
interval is smaller.

When compfete synchronization of the random numbers was used, in run 2C, the point estimate of the
mean difference in response times was

D = 0.4 minute

the sample variance was S� = 1 .7 (with v = 9 degrees of freedom), and the standard error was s.e.(D) = 0.4.
A 95% c.i. for the true mean difference is given by

(12.18)

The confidence interval in Inequality (12. 1 8) again contains zero, but it is considerably shorter than the
previous two intervals. This greater precision in the estimation of (}1 - (}2 is due to the use of synchronized
common random numbers. The short length of the interval in Inequality (12. 18) suggests that the true
difference, 81 - 82, is close to zero. In fact, the upper bound, 1 .30, indicates that system 2 is at most 1.30
minutes faster, in expectation. If such a small difference is not practically significant, then ihere is no need
to look further into which system is truly better.

·

As is seen by comparing the confidence intervals in inequalities (12. 16), (12. 17), and (12. 18), the
width of the confidence interval is reduced by 18% when using nonsynchronized common random numbers,
by 9l% when using common random numbers with full synchronization. Comparing the estimated variance
of D when using synchronized common random numbers with the variance of �-� when using
independent sampling shows a variance reduction of 99.5%, which means that, to achieve precision com­
parable to that achieved by CRN, a total of approximately R = 209 independent replications would have
to be made.

The next few examples show how common random numbers can be implemented in other contexts.

Example 12.2: The Dump-Truck Problem, Revisited
Consider Example 3.4 (the dump-truck problem), shown in Figure· 3.7. Each of the trucks repeatedly goes
through three activities: loading, weighing, and traveling. Assume that there are eight trucks and that, at time 0,
all eight are at the loaders. Weighing time per truck on the single scale is uniformly distributed between 1
and 9 minutes, and travel time per truck is exponentially distributed, with mean 85 minutes. An unlimited
queue is allowed before the loader(s) and before the scale. All trucks can be traveling at the same time.
Management desires to compare one fast loader against the two slower loaders currently being used. Each
of the slow loaders can fill a truck in from I to 27 minutes, uniformly distributed. The new fast loader can
fill a truck in from 1 to 19 minutes, uniformly distributed. The basis for comparison is mean system response
time, where a response time is defined as the duration of time from a truck arrival at the loader queue to that
truck's departure from the scale.

To implement synchronized common random numbers, a separate and distinct random number stream
was assigned to each of the eight trucks. At the beginning of each replication (i.e., at time 0), a new and inde­
pendently chosen set of eight seeds was specified, one seed for each random number stream. Thus, weighing ·
times and travel times for each truck were identical in both models, and the loading time for a given truck's
ith visit to the fast loader was proportional to the loading time in the original system (with two slow loaders).
Implementation of common random numbers without synchronization (e.g., using one random number
stream to generate all loading, weighing, and travel times as needed) would likely lead to a given random
number being used to generate a loading time in model 1 but a travel time in model 2, or vice versa, and from
that point on the use of a random number would most likely be different in the two models. ·

390 DISCRETE-EVENT SYSTEM SIMUlATION

Table 1 2.3 Comparison of System Designs for the Dump Truck Problem

Average Response Time for Model

Replication I 21 2C Differences,

(2 Loaders) (I Loader) (I Loader) D/,2C

I 21 .38 29.01 24.30 -2.92

2 24.06 24.70 27.13 -3.07

3 21 .39 26.85 23.04 -1.65

4 21.90 24.49 23.15 -1.25

5 23.55 27. 18 26.75 -3.20

6 22.36 26.91 25.62 -3.26

Sample mean 22.44 26.52 -2.56

Sample variance 1 .28 2.86 0.767

Sample standard 1.13 1.69 0.876

deviation

Six replications of each model were run, each of run length TE = 40 hours. The results are shown in

Table 12.3. Both independent sampling and CRN were used, to illustrate the advantage of CRN. The first

column (labeled model I) contains the observed average system response time for the existing system with

two loaders. The columns labeled 2I and 2C are for the alternative design having one loader; the independent

sampling results are in 21, and the CRN results are in the column labeled 2C. The rightmost column, labeled

D lists the observed differences between the runs of model I and model 2C. t.2C'
• '" II

. . . ted For independent sampling assuming unequal vanances, the ,o owmg summary statistics were compu

by using Equations (12.2), (12.5), (12.7), (12.8), and (12.1) and the data (in columns 1 and 21) in Table 12.3:

Point Estimate: }'1 -f21 = 22.44-26.52 = -4.08 minutes

Sample variances: S� = 1.28, Si, 2.86

Standard Error: s.e.(f1 -f2) = (S; I R1 + Si1 I R2)112 = 0.831
Degrees of freedom: v = 8.73 "' 9

95% c.i. for 01 - 02: -4.08 ± 2.26(0.831) or -4.08 ± 1.878
. 5.9�:::: 81 02 ::;; -2.20

For CRN, implemented by the use o(synchronized common random numbers, the following summary

statistics were computed by using Equations (12. 12), (12.13), (12.14), and (12.1) plus the data (in columns

1 and 2C) in Table 12.3:
·

Point Estimate: . i5 = f1 -f2c = -2.56 minutes

Sample variance: S� = 0.767

Standard Error: s.e.(D) = S0 J.Jii = 0.8761 ../6 0.358

Degrees of freedom: v = R - 1 = 5

95% c.i. for 01 - 82: -2.56 ± 2.57(0.358) or -2.56 ± 0.919

3.48 ::;; 01 82 ::;; -1.641

By comparing the c.i. widths, we see that the use of CRN with synchronization reduced c.i. width
by 50%. This reduction could be important if a difference of as much as, say, 5.96 is considered ptactically

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 391

significant, but a difference of at most 3.48 is not. Equivalently, if equal precision were desired, independent
sampling would require approximately four times as many observations as would CRN: approximately 24
replications of each model instead of six.

To illustrate how CRN can fail when not implemented correctly, consider the dump-tmck model again.
There were eight trucks, and each was assigned its own random number stream. For each of the six replica­
tions, eight seeds were randomly chosen, one seed for each random number stream. Therefore, a total of 48
(6 times 8) seeds were specified for the correct implementation of common random numbers. When the
authors first developed and ran this example, eight seeds were specified at the beginning of the first replica­
tion only; on the remaining five replications the random numbers were generated by continuing down the
eight original streams. Since comparable replications with one and two loaders required different numbers
of random variables, only the first replications of the two models were synchronized. The remaining five
were not synchronized. The resulting confidence interval for 81 - 02 under CRN was approximately the same
length as, or only slightly shorter than, the confidence interval under independent sampling. Therefore, CRN
is quite likely to fail in reducing the standard error of the estimated difference unless proper care is taken to
guarantee synchronization of the random number streams on all replications.

·Example 12.3
In Example 2.5, two policies for replacing bearings in a milling machine were compared. The bearing-life
distribution, assumed discrete in Example 2.5 (Table 2.22), is now more realistically assumed to be contin­
uous on the range from 950 to 1950 hours, with the first column of Table 2.22 giving the midpoint of 10
intervals of width 100 hours. The repairperson delay-time distribution of Table 2.23 is also assumed contin­
uous, in the range from 2.5 to 17.5 minutes, with interval midpoints as given in the first column. The prob­
abilities of each interval are given in the second colunms of Tables 2.22 and 2.23.

Tbe two models were run by using CRN and, for illustrative purposes, by using independent sampling, each
for R = 10 replications. The purpose was to estimate the difference in mean total costs per 10,000 bearing hours,
with the cost data given in Example 2.5. Tbe estimated total cost for the two policies is given in Table 12.4.

Table 1 2A Total Costs for Alternative Designs of Bearing
Replacement Problem

Total Cost for Difference in
Policy · Total Cost

Replication r
2 II IC DIC.2

I 13,340 17,010 17,556 4,216
2 12,76o 17,528 17,160 4,400
3 13,002 17,956 17,808 4,806
4 13,524 17,920 18,012 4,488
5 1 3,754 18,880 18,200 4,446
6 13,318 17,528 17,936 4,618
7 13,432 17,574 18,350 4,918
8 14,208 17,954 19,398 5,190
9 13,224 18,290 . 17,612 4,388
10 13,178 17,360 17,956 4,778

Sample mean 13,374 17,800 4,624
Sample variance 160,712 276,188 87,353

.! '!

392 DISCRETE-EVENT SYSTEM SIMULATION

Policy 1 was to replace each bearing as it failed. Policy 2 was to �epl�ce all three bearin�s whenever one

bearing failed. Policy 2 was run first, and then policy 1 was run, usmg mde�endent sampling (column 11),

and using CRN (column lC). The 95% confidence intervals for mean cost difference are as follows:

Independent sampling: $4426 ± 439
CRN: $4625 ± 21 1

(The computation of these confidence intervals is left as an exercise for t�e reader.? . .
Notice that the confidence interval for mean cost difference when usmg CRN IS approximately 50% of

the length of the confidence interval based on independent sampli�g. Theref�re,
_
for �e same computer costs,

(i.e., for R = 10 replications), CRN produces estimates that are twice as precise m th1s e�ample. IfCRN were

used, the simulation analyst could conclude with 95% confidence that the mean cost difference between the

two policies is between $4414 and $4836.

1 2. 1 .4 Confidence Intervals with Sp�ified Precision

Section 1 1.4.2 described a procedure for obtaining confidence intervals with specified precision. Confidence

intervals for the difference between two systems' performance can be obtained in an analogo�s man�er.

Suppose that we want the error in our estimate of 81 - 82 to be less than ±�:
_
(th� quantity E rmght be

a practically significant difference). Therefore, our goal is to find a number of replicatiOns R such t!Jat

H = ta12,vS.e.(i', - i'2) :'> € (12. 19)

As in Section 1 1 .4.2, we begin by making R0 ;:: 2 replications of each system to obtain � initial estimate of

s.e.(f.- Y,). We then solve for the total number of replications R <': R0 needed to
_
ac?ieve the half-length

criterion (12.19). Finally, we make an additional R - R0 replications (or a fresh R replications) of each system,

compute the confidence interval, and check that the half-length criterion has been attained.

Example 12.1: Continued .
Recall that R0 = 10 replications and complete synchronizati?n of the random �um�rs YI�lded th

_
e 95?'o

confidence interval for the difference in expected response time of the two vehicle-mspectlon stations m

Inequality (12. 1 8); this interval can be rewritten as 0.4 ± O-?� rninut�s- �lthoug� system 2 appears �o have

the smaller expected response time, the difference is not statistically s1gmficant, smce �e confi�e�ce mterval

contains o. Suppose that a difference larger than ±0.5 minute is considered to be practically significant We

therefore want to make enough replications to obtain a H ::> E = 0.5.
_

The confidence interval used in Example 12.1 was i5 ± ta12./lo_,S0 I JR:, with the specific values D = 0.4,

R - 10 t = 2 26 and S2 = 1.7. To obtain the desired precision, we need to find R such that
, 0 - ' 0.025,9 ' D

t s a/2,R-l D :'> €
.JR

Therefore, R is the smallest integer satisfying R <': R0 and

R <':ca/2,:-ISD J
Since t < t a conservative estimate for R is given by a/2.R-I - a/2.Ro-t ' (t s)2

R <': a/2,:-1 D

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS

Substituting t0.025_9 = 2.26 and � = 1. 7, we obtain

R ;:: (2.26)2(1.7) = 34.73
(0.5)2

implying that 35 replications are needed, 25 more th� in the initial experiment.

12.2 COMPARISON OF S£VERAL SYSTEM DESIGNS

393

Suppose that a simulation analyst desires to compare K alternative system designs. The comparison will be
made on the basis of some specified performance measure, e,, of system i, for i = 1, 2, . . . , K. Many differ-

. ent statistical procedures have been developed that can be used to analyze simulation data and draw statisti­
cally sound inferences concerning the parameters e.- These procedures can be classified as being either
fixed-sample-size procedures or sequential-sampling (or multistage) procedures. In the first type, a prede­
termined sample size (i.e., run length and number of replications) is used to draw inferences via hypothesis
tests or confidence intervals. Examples of fixed-sample-size procedures include the interval estimation of
a mean performance measure (Section 11 .3) and the interval estimation of the difference between mean
performance measures of two systems [as by Expression (12.1) in Section 12.1]. Advantages of fixed­
sample-size procedures include a known or easily estimated cost in terms of computer time before running
the experiments. When computer time is limited, or when a pilot study is being conducted, a fixed-sample-size
procedure might be appropriate. In some cases, clearly inferior system designs may be ruled out at this early
stage. A major disadvantage is that a strong conclusion could be impossible. For example, the confidence
interval could be too wide for practical use, since the width is an indication of the precision of the point
estimator. A hypothesis test may lead to a failure to reject the null hypothesis, a weak conclusion in general,
meaning that there is no strong evidence one way or the other about the truth or falsity of the null hypothesis.

A sequential sampling scheme is one in which more and more data are collected until an estimator with
a prespecified precision is achieved or until one of several alternative hypotheses is selected, with the prob­
ability of correct selection being larger .than a prespecified value. A two-stage (or multistage) procedure is
one in which an initial sample is used to estimate how many additional observations are needed to draw
conclusions with a specified precision. An example of a two-stage procedure for estimating the performance
measure of a single system was given in Section 1 1 .4.2 and 12.1.4.

The proper procedure to use depends on the goal of the simulation analyst Some possible goals are the
following:

1. estimation of each parameter, e;;
2. comparison of each performance measure, e,, to a control, 81 (where 81 could represent the mean

performance of an existing system);
3. all pairwise comparisons, ei - �, for i * j;
4. selection of the best e; (largest or smallest).

The first three goals will be achieved by the construction of confidence intervals. The number · of such
confidence intervals is C = K, C = K - 1, and C = K(K- 1)/2, respectively. Hochberg and Tamhane [1987]
and Hsu [1996] are comprehensive references for such multiple-comparison procedures. The fourth goal
requires the use of a type of statistical procedure known as a multiple ranking and selection procedure.
Procedures to achieve these and other goals are discussed by Kleijnen [1975, Chapters II and V], who also
discusses their relative merit and disadvantages: Goldsman arid Nelson [1998] and Law and Kelton [2000]

394 DISCRETE-EVENT SYSTEM SIMULATION

discuss those selection procedures most relevant to simulation. A comprehensive reference is Bechhofer,
Santner, and Goldsman [1995]. The next subsection presents a fixed-sample-size procedure that can be used
to meet go�s I, 2, and 3 and is applicable in a wide range of circumstances. Subsections 12.2.2-12.2.3 present
related procedures to achieve goa1 4.

12.2.1 Bonferroni Approach to Multiple Comparisons

Suppose that C confidence intervals are computed and that the ith interval has confidence coefficient I - ar
Let S. be the statement that the ith confidence interval contains the paramete� (or difference of two parame­
ters) being estimated. This statement might be true or false for a given set of data, but the procedure leading
to the interval is designed so that statement S; will be true with probability 1 - ar When it is desi�d to make
statements about several parameters simultaneously, as in goals I , 2 and 3, the analyst would hke to have
high confidence that all statements are true simultaneously. The Bonferroni inequality states that

c
p (all statements S, are true, i = 1, . . . , cr � 1- I ll; = 1- a£

j=l

where a£ = I �=, IX; is called the overall error probability. Expression (1 2.20) can be restated as

P (one or more statements S; is false, i = 1, . . . C) ::; a£
or equivalently,

P (one or more of the C confidence intervals does not
contain the parameter being estimated) ::; aE

(12.20)

Thus, a provides an upper bound on the probability of a false conclusion. To conduct an experiment that
involves£ making C comparisons, first select the overall error probability, say aE = 0.05 or 0.10. The individ­
ual a. may be chosen to be equal (a. = aEIC), or unequal, as desired. The smaller the value of al the wider
thejth confidence interval will be. For example, if two 95% c.i.'s (a1 = a2 = 0.05) are constructed, the over­
all confidence level will be 90% or greater (a£= a1 + a2 = 0.10). If ten 95% c.i.'s are fOnstructed (a; 0.05,
i = 1, . . . , 10), the resulting overall confidence level could be as low as 50% (a£ = I�,a, "' 0.50), which is
far too low for practical use. To guarantee an overall confidence level of 95%, when I 0 comparisons are
being made, one approach is to construct ten 99.5% confidence intervals for the parameters (or differences)
of interest

The Bonferroni approach to multiple confidence. intervals is based on expression (12.20). A major
advantage is

.
that it holds whether the models for the alternative designs are run with independent sampling

or with common random numbers.
The major disadvantage of the Bonferroni approach in making a large number of comparisons is the

increased width of each individual interval. For example, for a given set of data and a large sample size, a
99.5% c.i. will be z0_ooJZo.025

= 2.807/1 .96 = 1 .43 times longer than a 95% c.i. For.small sample sizes-:-sa�,
for a sample of size 5-a 99.5% c.i. will be t0_0025.it0_025,4 = 5.598/2.776 = 1.99 ttmes longer than an t�d�­
vidual 95% c.i. The width of a c.i. is a measure of the precision of the estimate. For these reasons, 1t ts
recommended that the Bonferroni approach be used only when a small number of comparisons are being
made. Twenty or so comparisons appears to be the practical upper limit.

Corresponding to goals 1, 2, and 3, there are at least three possible ways of using the Bonferroni
Inequality (12.20) when comparing K alternative system designs:

1. (Individual c.i. 's): Construct a 100(1 - a)% c.i. for parameter 8; by using Expression (1 1 . 12), in
which case the number of intervals is C= K. If independent sampling were used, the K c.i.'s would be

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 395

mutually independent, and thus the overall confidence level would be (1 - a1) x (I - �) x · · · x (1 - ac),
which is larger (but not much larger) than the right side of Expression (12.20). This type of proce­
dure is most often used to estimate multiple parameters of a single system, rather than to compare
systems-and, because multiple parameter estimates from the same system are likely to be dependent,
the Bonferroni inequality typically is needed.

2. (Comparison to an existing system): Compare all designs to one specific design-usually, to an
existing system: that is, construct ·a 100(1 - a)% c.i. for (}; - 81(i = 2, 3, . . . , K), using Expression
(12. 1). (System 1 with performance measure 81 is assumed to be the existing system). In this case,
the number of intervals is C = K - I . This type of procedure is most often used to compare several
competitors to the present system in order to learn which are qetter.

3. (All pairwise comparisons): Compare all designs to each other-that is, for any two system designs
i *- j, construct a 100(1 - a)% c.i. for (}; - �· With K designs, the number of confidence intervals
computed is C = K(K - 1)/2. The overall confidence coefficient would be bounded below by
1 - aE = 1- I I,.i a" (which follows by Expression (12.20)). It is generally believed that CRN will
make the true overall confidence level larger than the right side of Expression (12.20), and usually
larger than will independent sampling. The right side of Expression (12.20) can be thought of as
giving the worst case (i.e., the lowest possible overall confidence level).

Example 12.4
Reconsider the vehicle-inspection station of Example 12. 1 . Suppose that the construction of additional space
to hold one waiting car is being considered. The alternative system designs are the following:

1. existing system (parallel stations);
2. no space between stations in series;
3. one space between brake and headlight inspection only;
4. one space between headlight and steering inspection only.

Design 2 was compared to the existing setup in Example 12. 1. Designs 2, 3, and 4 are series queues, as
shown in Figure 12.1(b), the only difference being the number or location of a waiting space between two
successive inspections. The arrival process and the inspection times are as given in Example 12.1. The basis
for comparison will be mean response time, 8,, for system i, where a response time is the total time it takes
for a car to get through the system. Confidence intervals for 82 - 81' 83 - 81' and 84 - 81 will be constructed,
each having an overall confidence level of 95%. The run length TE has now been set at 40 hours (instead of
the 16 hours used in Example 12.1), and the number of replications R of each model is 10. Common �andom
numbers will be used in all models, but this does not affect the overall confidence level, because, as men­
tioned, the Bonferroni Inequality (12.20) holds regardless of the statistical independence or dependence of
the data.

Since the overall error probability is aE = 0.05 and C = 3 confidence intervals are to be constructed, let
a; = 0.05/3 = 0.0167 for i = 2,3,4. Then use Expression (12.1) (with proper modifications) to construct C = 3
confidence intervals with a= a; = 0.0161 and degrees of treedom v= 10 - 1 = 9. The standard erior is computed
by Equation (12.14), because common random numbers are being used. The output data Y . are displayed in
Table 12.5; Yri is the sample mean response tlrn.e for replication r on system i (r= 1, . . . , 1� i ;, 1, 2, 3, 4). The
differences D,; = Y,1 - Y,; are also shown, together with the sample mean differences, D_1, averaged over all
replications as in Equation (12.12), the sample variances s�, . and the standard error. By Expression (12. 1), the
three confidence intervals, with overall confidence coefficient at least I - aE' are given by

. . · - - · � ·-.-,. --·-·: ' -. - - . --�- --��---- - -- --:':.��: : · .

I· .
DISCRITE-EVENT SYSTEM SIMULATION

Table 12.5 Analysis of Output Data for Vehicle Inspection System When Using·CRN

Avemge Response 1ime Observed Difference
for System Design with System Design 1

Replication, 1, 2, 3, 4,

r Y,t yr2 Y,3 ynl Dl'l D,3 Dr4

1 63.72 63.06 57.74 62.63 0.66 5.98 1.09

2 32.24 31.78 29.65 31.56 0.46 2.59 0.68

3 40.28 40.32 36.52 39.87 -0.04 3.76 0.41

4 36.94 37.71 35.71 37.35 . -0.77 1.23 -0.41

5 36.29 36.79 33.81 36.65 -0.50 2.48 -0.36

6 56.94 57.93 51.54 57.15 -0.99 5.40 -0.21

7 34.10 33.39 31.39 33.30 0.71 2.71 0.80

8 63.36 62.92 57.24 62.21 0.44 6.12 1.15

9 49.29 47.67 42.63 47.46 1.62 6.66 1.83

10 87.20 80.79 67.27 79.60 6.41 19.93 7.60

Sample mean, D., 0.80 5.686 1.258

Sample standard deviation, S 0, 2.12 5.338 2.340

Sample variance, S�, 4.498 28.498 5.489

Standard error, S 0 t.fR 0.671 1.688 0.741
'

The value of ta, tz,R-t = t0.001l3•9 = 2.97 is obtained from Table A.5 by interpolation. For these data, with 95%
confidence, it is stated that

-1.19 $ 81 - 82 $ 2.79
0.67 :;; 81 � :;; 10.71

-0.94 $ 81 - 84 $ 3.46

The simulation analyst has high confidence (at least 95%) that all three confidence statements are correct
Notice that the c.i. for 81 - 82 again contains zero; thus, there is no statistically significant difference between
design 1 and design 2, a conclusion that supports the previous results in Example 12. 1 . The c.i. for 81 - 83
lies completely above zero and so provides strong evidence that 81 - 83 >. 0-that is, that design 3 is better
than design 1 because its mean response time is smaller. The c.i. for 81 - 84 contains zero, so there is no
statistically significant difference between designs 1 and 4. .

If the simulation analyst now decides that it would be desirable to compare designs 3 and. 4, more si!Jll.dation
runs would be necessary, because it is not formally correct to decide which confidence intervals to compute
after the data have been examined. On the other hand, if the simulation analyst had decided to compute all

· possible confidence intervals (and had made this decision before collecting the data, Y), the number of confi­
dence intervals would have been C = 6 and the three c.i.'s would have been t0.0042•9 /t0.0083,9 = 3.32/ 2.97 = 1.12
times (or 12%) longer. There is illways a trade-off between the number of intervals (Q and the width of each
interval. The simulation analyst should carefully consider the possible conclusions before running the simulation
experiments and choose those runs and analyses that will provide the most useful information. In particular, the
number of confidence intervals computed should be as small as possible-preferably, 20 or less.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 397

For purposes of illustration, 10 replications of each of the four designs were run, using independent
sampling (i.e., d.!_fferent random numbers for all runs). The results are presented in Table 12.6, together with
sample means (}',), sample standard deviations (S1), and sample variances (s;), plus the observed difference
of sample means <f1 -i::) and the standard error (s.e.) of the observed difference. It is observed that all three
confidence intervals for 81 - 6;(i = 2, 3, 4) contain zero. Therefore, no strong conclusion is possible from
these data and this sample size. By contrast, a sample size of ten was sufficient, when using CRN, to provide
strong evidence that design 3 is superior to design L

Notice the large increase in standard error of the estimated difference with independent sampling versus
with common random numbers. These standard errors are compared in Table 1 2.7. In addition, a careful
examination of Tables 12.5 and 1 2.6 illustrates the superiority of CRN. In Table 1 2.5, in all lO replications,
system design 3 has a smaller average response time than does system design L By comparing replications
l and 2 in Table 1 2.5, it can be seen that a random-number stream that leads to high congestion and large
response times in system design I, as in the first replication, produces results of similar magnitude across all
four system designs. Similarly, when system design l exhibits relatively low congestion and low response
times, as in the second replication, all system designs produce relatively low average response times. This
similarity of results on each replication is due, of course, to the use of common random numbers across
systems. By contrast, for independent sampling, Table 12.6 shows no such similarity across system designs.
In only 5 of the I 0 replications is the average response time for system design 3 smaller than that for system
design I, although the average difference in response times across all lO replications is approximately the
same magnitude in each case: 5.69 minutes when using CRN, and 5.89 minutes when using independent

Table 12.6 Analysis of Output Data for the Vehicle-Inspection
System that Uses Independent Sampling

Average Response 1ime for System Design

Replication, I, 2, 3, 4,
r Y,t Y,2 Y,3 ynl

I 63.72 59.37 52.00 59.03

2 3224 50.06 47.04 49.97

3 40.28 60.63 53.21 60. 18

4 36.94 46.36 40.88 45.44

5 36.29 68.87 50.85 66.65

6 56.94 66.44 60.42 66.03

7 34. 10 27.51 26.70 27.45

8 63.36 47.98 40.12 47.50

9 49.29 29.92 28.59 29.84

10 87.20 47.14 41.62 46.44

Sample mean f1 50.04 50,43 44.14 49.85

si 17.70 13.98 10.76 13.64

s; 313.38 195.54 1 !5.74 185.98

ill r, -0.39 5.89 0.18

s.e.(}'1 fi l 7.13 6.55 7.07

DISCRm-EVENT SYSTEM SIMULATION

Table 1 2.7 Comparison of Standard Errors Arising from CRN with
those from Independent Sampling, for the Vehicle-Inspection Problem

Standard Error When Using

Difference in CRN !rule pendent Percentage

Sample Means sampling Sampling Increase

fl f2 0.67 7.13 1064%

v. 1.69 6.55 388%

f, - f4 0.74 7.07 955%

sampling. The greater variability of independent sampling is reflected also in the standard errors of the point
estimates: ±1.69 minutes for CRN versus ± 6.55 minutes for independent sampling, an increase of 388%1 as
seen in Table 12.7. This example illustrates again the advantage of CRN.

As stated previously, CRN does not yield a variance reduction in all simulation models. It is recom­
mended that a pilot study be undertaken and varianCes estimated to confirm (or possibly deny) the assumption
that CRN will reduce the variance (or standard error) of an estimated difference. The reader is referred to the
discussion in Section 12.L3.

Some of the exercises at the end of this chapter provide an opportunity to compare CRN and independent
sampling and to compute simultaneous confidence intervals under the Bonferroni approach.

1 2.2.2 Bonferroni Approach to Selecting the Best

Suppose that there are K system designs, and the ith design has expected performance Br At a gross level,
we are interested in which system is best, where "best" is defined to be having maximum expected
performance.' At a more refined level, we could also be interested in how much better the best is relative to
each alternative, because secondary criteria that are not reflected in the performance measure 81 (such as eaSe
of installation, cost to maintain, etc.) could tempt us to choose an inferior system if it is not deficient by much.

If system design i is the best, then 81 - maxi., 8i is equal to the difference in performance between the
best and the second best. If system design i is not the best, then 81 -maxi_i 8i is equal to the difference
between system i and the best. The selection procedure we describe in this section focuses on the parameters
8, -maxi-' B; for i :: 1 , 2, . . . , K.

Let i* deQote the (unknown) index of the best system. As a general rule, the smaller the true difference
8,� - maxi_"� is, and the more certain we want to be that we find the best system, the more replications are
required to achieve our goal. Therefore, instead of demanding that we find i*, we can compromise and ask
to find i* with high probability whenever the difference betWeen system i* and the others is at least some
practically' significant amount. More precisely, we want the probability that we select the best system to be
at least 1 - a whenever 9,� - maxi_..�8i 2! E. If there are one or more systems that are within E of the best,
then we will be satisfied to select either the beat or any one of the near beat. Both tbe probability of correct selec�
tion, I - a, and the practically significant difference, E, will be under our control.

The following procedure achieves the desired probability of correct selection (Nelson and Matejcik
[1995]). And because we are also interested in how much each system differs from the best, it also forms
100(1- a)% confidence intervals for 8i" - maxi•"� for i = 1 , 2, . . . , K. The procedure is valid for normally
distributed data when either CRN or independent sampling is being used.

1ff "besr' is defined to be having minimum expected performance, then the procedure in.thls section is easily modified, as we
illustrate in the example.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 399

Two·Stage Bonferroni Procedure

1. Specify the practically significant difference E, the probability of correct selection 1 a, and the
. first-stage sample size R0 � 10. Let t = tMK-I).R,-I '

2. Make R0 replications of system i to ob�n 1:';1, Y2" ... , Y Ro·�' for systems i = l , 2, . . . , K.
3. Calculate the first-stage sample means t:i' i 1, 2, . . . , K. For all i "'-j, calculate the sample variance

of the difference, 2

- Y . -(f - f)}2
I') ·l •J

'2 2 LetS = max;. iS", the largest sample variance.
4. Cali::ulate the second-stage sample size,

where f.l means to round up.
5. �e R R0 additional replications of system i to obtain the output data YRo+l.i'YRo+2.i' for i = 1 , 2, . . . ,

6. Calculate the overall sample means
- } R
f, = -l:Y" R r•l

for i 1 , 2, . . . , K.
7. Select the system with largest f: as the best. '

Also form the confidence intervals

min{O, Y, -max f. - E) :5: 81 -max8. � max[O, Y - maxY + E) pi J pi J l jl:i J

for i = 1 , 2, . . . , K.
The confidence intervals in Step 7 are not like the usual ± �tervals presented elsewhere in this chapter.

Perhaps tbe most useful interpretation of them is as follows. Let i be the index of the system selected as best.
Then, for each of the other systems i, we make one of the declarations:

·

• If Y, -� + e � 0 , then declare system i to be inferior to the beat.

• · If Y, -Y; +£ > 0, then declare system i to be statistically indistinguishable from the best (and, there­
fore, system i might be the best).

Example 12.4: Continued
Recall that, in Example 12.4, we considered K = 4 different designs for the vehicle-inspection station. Suppose
that we would like 0.95% confidence of selecting the best (smallest expected response time) system design when

2Notice that S;; is algebraically equivalent to Si, the sample variance of D, Y,; for r: 1, 2, ... , R0•
'ff it is more convenient, a total of R replications can be generated from system i by restarting the entire experiment

400--�D�IS�C�Rfl�E���VE=N�T�S�YS�T�EM�S=IM=U���T=IO�N
the best differs from the second best by at least two minutes. This is a minimization problem. so we focus on the
differences 91 - min j¢i � for i = I, 2, 3, 4. Then we can apply the 1\vo-Stage Bonferroni Procedure as follows:

1. IE = 2 minutes, l - a = 0.95, R0 = l 0, and t = t0.0167•9 = 2.508.
1. The data in Table 12.5, which was obtained by using CRN, is employed.
3. From Table 12.5, we get s;2 S� = 4.498, s;3 = s� .. = 28.498, and S�4 = S!, = 5.489. By similar

calcultions, we obtain Si3 = 1 1 .857, S� = 0. 1 19, and Si4 = 9.849.

4. Since S2 = s:3 28.498 is the largest sample variance,

R
max{ lO,

f (2.508):;28.498) l} = max{lo, r 44.81} = 45

S. Make 45 - 10 = 35 additional replications of each system.
6. Calculate the overall sample means

l 45
Y1 = -l,Y

45 r•l n

for i = l, 2, 3, 4. _

7. Select the system with smallest Y, as the best.
Also, form the confidence intervals

min{O, Y, - min Y1. - 2} s; 91 - min 91. s; max{O, Y, - min � +2 }
)M j#.i J(:t

for i = 1 , 2, 3,4.

1 2.2.3 Bonferroni Approach to Screening

When a two-stage procedure is not possible, or when there are many systemS, it could be useful to divide the
set of systems into those that could be the best and those that can. be eliminated from further consideration.
For this purpose, a screening or subset selection procedure is useful. The following procedure, due to Nelson
et al. [200 l], guarantees that the retained subset contains the tme best system with probability ;?: I - a when the
data are normally distributed and either independent sampling or CRN is used. The subset may contain all
K of the systems, only one system, or some number in between, depending on the number of replications and
the sample means and sample variances.

sCree�ing Procedure

1. Specify the probability of correct selection 1 - a and common sample size from each system, R ;;: 2.
Let t= ta/(IH),R-\'

2. Make R replications of system i to obtain Y1i' Y2i' . . . , YRi for systems i = l ,2, .. . ,K.

3. Calculate the sample means f. for i = 1 , 2, . . . ,K. For all i * j, calculate the sample variance of the
difference,

COMPARISON ANO EVALUATION OF ALTERNATIVE SYSTEM DESIGNS

2 I R - - . Su = -L(Yrl -Y. -(Y. -Y.)i
R - 1 r=t � ., ·;

4. If bigger is better, then retain system i in the selected subset if

If smaller is better, then retain system i in the selected subset. if

- - sif ri ::;;; rj +t iR for allj ¢;j

All system designs that are not retained can be eliminated from fui:ther consideration. ·

Example 12.4: Continued · ·

·

401

Sup� we want to see whether any ofthe designs for the vehicle-inspection station can be eliminated · the basts of only the 10 replications in Table 12.5. Summaries of the sample ineims and variances of the d
?;.

· ferences are as follows: · 1

s�
I
2
3

50.04

2

49.24

2

4.498

3

44.35

3

28.498
1 1.857

4

48.78

4

5.489
O. l l9
9.84

The appropriate critical value to obtain 95% confidence that the selected subset contains the tme best is t = to.ot67,9 � 2.508. Recall that smaller response time is better. Applying the Subset Selection Procedure
system destgns 1 , 2, and 4 can all be elimina� because

· · '

}', 50.04 $ }'3 + t1Ji. = 44.35.+ 2.5osl8��98
= 48.58

}'2 ::: 49.24 $ }'3 +tf: = 44.35+ 2.508l \�7 = 47.08

rsr ·. . f9.84 .
� = 48.78 $}'3 +tv--; = 44.35+2.5osv¥o± = 46.84

Thus, in this case there was adequate data to select the best, system design 3, with 95% confidence. Had more than one system survived the subset selection, then we could perform additional analysis on that subset, perhaps using the 1\vo-Stage Bonferroni Procedure.

402 DISCRETE-EVENT SYSTEM SIMULATION

12.3 METAMODEUNG

Suppose that there is a simulation output rt(sponse variable, f, that is related to k independent variables, say
xl'x2, ·- · ·xk. The dependent variable, f, is a random variable, while the independent variables Xl'Xz' . . . ,xk are
called design variables and are usually subject to control. The true relationship between the variables f and x
is represented by the (often complex) simulation model. Our goal is to approximate this relationship by
a simpler mathematical function called a metamodel. In some cases, the analyst will know the exact form
of the functional relationship between fandx1,x2, • • • ,xk, say f= j(XpXz• . . . ,xk). However, in most cases, the
functional relationship is unknown, and the analyst must selec.t an appropriate f containing unknown para­
meters, and then estimate those parameters from a set of data (f, x). Regression analysis is one method for
estimating the parameters.

Example 12.5
An insurance company promises to process all claims it receives each day by the end of the next day. It has
developed a simulation model of its proposed claims-processing system to evaluate how hard it will be to
meet this promise. The actual number and types of claims that will need to be processed each day will vary,
and the number may grow over time. Therefore, the company would like to have a model that predicts the
total processing time as a function of the number of claims received.

The primary value of a metamodel is to make it easy to answer "what if" questions, such as, what the
processing time will be if there are x claims. Evaluating a functionj, or perhaps its derivatives, at a number
of values of x is typically much easier than running a simulation experiment for each value.

12.3.1 Simple Unear Regression

Suppose that it is desired to estimate the relationship between a single independent variable x and a dependent
variable f, and suppose that the true relationship between f and x is suspected to be linear. Mathematically,
the expected value of f for a given value of x is assumed to be

(12.21)

where Po is the intercept on the f axis, an unknown constant; and P, is the slope, or change in f for a unit change
in x, also an unknown constant It is further assumed that each observation of f can be described by the model

(12.22)

where E is a random error with mean zero and constant variance a2• The regression model given by
Equation (1222) involves a single variable x and is commonly called a simple linear regression model.

Suppose that there are n pairs of observations (f1, x1), (f2, x2), _ •• ,(f., x.). These observations can be
used to estimate Po and P1 in Equation (12.22). The method of least squares is commonly used to form the
estimates. In the method of least squares, Po and P1 are estimated in such a way that the sum of the squares
ofthe deviations between the observations and the regression line is minimized. The individual observations
in Equation (12.22) can be written as

(12.23)

where El' ez are assumed to be uncorrelated random variables.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 403

Each E; in Equation (12.23) is given by

(12.24)
and �epresents the diff�rence �tween the o�served response, Y;, and the expected response, p0 + p1x,,
predtcted by the model m Equat10� (�2.21): Ftg�re 12.3

_
shows how E; is related to x;.Y;, and E(fJtJ

The sum of squares of the devtatlons gtven m Equation (12.24) is given by

L = f. E2 = fo (f - R -p x)2 4.J 1 � i f'O l i i=l i=l
and L is called the least-squares function. It is convenient to rewrite f. as follows: I

(12.25)

(12.26)

where P� = Po +P1x and x= IxJn. Equation (12.26) is often called the transformed linear regression i=l
model. Using Equation (12.26), Equation (12.25) becomes

n
L = Irr. -p� -P1 (x; -x)]2 i=l

.
To

_
minimize L: find au ap� and au a pi , set each to zero, and solve for p; and A. Taking the partial

denvauves and settmg each to zero yields

np; = fr,
i=l

P1I (x, -x)2 = Ir,<x, -x)
i=l i=1

Equations (12.27) are often called the "normal equations;" which have the solutions

y

E(y, - X;) � Po + P1x;

Y � Po + p,x, + e,

• n y
P� = f=:L...L

£=• n

--------����- � }� I I I I I I
X;

Figure 1 2.3 Relationship of •; to x;, Y,, and E(lj jx;).
X

(12.27)

(12.28)

, ,
' � .

404 DISCRETE-EVENT SYSTEM SIMULATION

and
. �� Y,(x. -:X) A �I=(I I

/3, =
� · - 2 "-'•=t (x, -x)

The numerator in Equation (12.29) is rewritten for computational purposes as

• • ' x. Y, (L.)(L·)
� _ � . /=I I /=] I

sxy = ""' Y,(x, - x) = .i.J x,Y,
i=t i=t n

(12.29)

(1230)

where Sxy denotes the corrected sum of cross products of x and Y. The denominator of Equation (12.29) is
rewritten for computational purposes as . .

. .
S.., = L(x, -:X)2 = Lx:

i=l i=l n

where Sxx denotes the corrected sum of squares of x. The value of Po can be retrieved easily as

Example 12.6: . Calculating Po and A

(12.31)

(12.32)

The simulation model of the claims-processing system in Example 12.5 was executed with initial conditions
x = I 00, 150, 200, 250, and 300 claims received the previous day. Three replications were obtained at each
setting. The response Y is the number of hours required to process x claims. The results are shown in Table 12.8.
The graphical relationship between the number of. claims received and total processing time is shown in

Table 1 2.8 Simulafion Results for Processing Time Given
x Claims

Number of Claims x Hours of Processing Time Y
100 8.1
100 7.8
100 7.0
150 9.6
150 8.5
150 9.0
200 10.9
200 13.3
200 1 1.6
250 12.7
250 14.5
250 14.7
300 16.5
300 17.5
300 16.3

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS

•

15.0

B
12.5 i 0 u

B
e 10.0 i=

7.5
•

5.0
50 300 350

Number of items

Figure 1 2.4 Relationship between number of claims and
hours of processing time.

405

Figure 12.4. Such a display is called a scatter diagram. Examination of this scatter diagram indicates that there is a strong relationship between number of claims and processing time. The tentative assumption of the linear model given by Equation (12.22) appears to be reasonable. ·

With the processing tim� as the Y1 values (the dependent variables) and the number of claims as thex. values (the independent variables), /30 and p, can be found by the following computations: n = 15, L;:, x, � 3000,
� 15

�
15 2 �

15
"-'•=t Y, = 178, "-'•=1 X1 = 675,000, "-'•=1x1 Y, = 39080, and :X = 3000/ 15 = 200.

From Equation (12.30) Sxy is calculated as

sxy = 39,080
<3000)(178)

= 3480
15

From Equation (12.31), Sxx is calculi1ted as

(3000)2 S,,. = 675,000 - -- = 75,000
15

Then, A is calculated from Equation (12.29) as

P,
=

sxy
=

3480
=

o.0464
s,.,. 75,000

As shown in Equation (12.28), P� isjustf, or
., 178
/30 = - "' 1 1.8667

15

406 DISCRETE-EVENT SYSTEM SIMULATION

To express the model in the original terms, compute A from Equation (12.32) as

Po = 1 1 .8667 -0.0464(200)= 2.5867

Then an estimate of the mean of Y given x, E(Y I x), is given by

(12.33)

For a given number of claims, x, this model can be used to predict the number of hours required to process
them. The coefficient A has the interpretation that each additional claim received adds an expected 0.0464
hours, or 2.8 minutes, to the expected total processing time.

Regression analysis is widely used and frequently misused. Several of the common abuses are briefly men­
tioned here. Relationships derived in the manner of Equation (12.33) are valid for values of the independent
variable within the range of the original data. The linear relationship that has been tentatively assumed may not
be valid outside the original range. In fact, we know from queueing theory that mean processing time may
increase rapidly as the number of claims approaches the capacity of the system. Therefore, Equation (12.33)
can be considered valid only for 100 s; x s; 300. Regression models are not advised for extrapolation purposes.

Care should be taken in selecting variables that have a plausible causal relationship with each other. It is
quite possible tO develop statistical relationships that are unrelated in a practical sense. For example, an attempt
might be made to relate monthly output of a steel mill to the weight of reports appearing on a manager's desk
during the month. A straight line may appear to provide a good model for the data, but the relationship between
the two variables is tenuous. A strong observed relationship does not imply that a causal relationship exists
between the variables. Causality can be inferred only when analysis uncovers some plausible reasons for its
existence. In Example 12.5 it is reasonable that starting with more claims implies that more time is needed to
process them. Therefore, a relationship of the form of Equation (12.33) is at least plausible.

1 2.3.2 Testing for Significance of Regression

In Section 12.3.1, it was assumed tliat a linear relationship existed between Y and x. In Example 12.5, a scatter
diagram, shown in Figure 1 2.4, relating number of claims and processing time was prepared to evaluate
whether a linear model was a reasonable tentative assumption prior to the calculation of A and A. However,
the adequacy of the simple linear relationship should be tested prior to using the model for predicting the
response, Y� given an independent variable, Xr There are several tests which may be conducted to aid in deter­
mining model adequacy. Testing whether the order of the model tentatively assumed is correct, commonly
called the "lack-of-fit test," is suggested. The procedure is explained by Box and Draper [1987], Hines,
Montgomery, Goldsman, and Borror [2002], and Montgomery [2000].

Testing for the significance of regression provides another means for assessing the adequacy of the
model. The hypothesis test deseribed next requires the additional assumption that the error component E1 is
normally distributed. Thus, the complete assumptions are that the errors are NID(O, o-2)-that is. normally
and independently distributed with mean zero and constant variance o-2• The adequacy of the assumptions
can and should be checked by residual analysis, discussed by Box and Draper [1987], Hines, Montgomery,
Goldsman, and Borror [2002], and Montgomery [2000].

Testing for significpnce o(regression is one of many hypothesis tests that can be developed from the .
variance properties of fJ. and flt. The interested reader is referred to the references just cited for extensive
discussion of hypothesis testing in regression. Just the highlights of testing for significance of regression are
given in this section.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS

Suppose that the alternative hypotheses are

H0 : /11 = 0
Hl : {Jl :;e O

407

Failure to reject H0 indicates that there is no linear relationship between x and Y. This situation is illnstrated
in Figure 12.5. Notice that two possibilities exist In Figure 12.5(a), the implication is that x is of little value
in explaining the variability in Y, and that y = Y is the best estimator. In Figure 12.5(b), the implication is
that the true relationship is not linear.

Alternatively, if H0 is rejected, the implication is thaf x is of value in explaining the variability in Y. This
situation is illustrated in Figure 1 2.6. Here, also, two possibilities exist. In Figure l2.6(a), the straight-line
model is adequate. However, in Fi� 12.6(b), even though there is a linear effect ofx, a model with higher­
order terms (such as r, xl, . . .) is necessary. Thus, even though there may be significance of regression,
testing of the residuals and testing for lack of fit are needed to confirm the adequacy of the model.

The appropriate test statistic for significance of regression is given by

y

•
•

•

y

• • •
• • •
• • • • •

(a)

y

• • •
• •
•

•
• •• • • • •
• •• • • •

• • • • • • • •
. ·

(b)
X

Figure 12.5 Failure to reject H0 : {31 = 0.

y

(a) (b)

Figure 12.6 H0 : {31 = 0 is rejected.

(12.34)

. < _ .>;�··<;·�v�; : -. · .

408 DISCRETE-EVENT SYSTEM SIMULATION

where MSE is the mean sqt.iared error. The error is the difference between the observed value, f., and the predicted
value, y,, at x, or e, = Y, -y,. The sqt.iared error is given by L ;=, e;, and the mean squared er:or, given by

n 2
MSE = I_.!L. •=• n-2

(12.35)

is an unbiased estimatOr of a2 = V(i:.). The direct method can be used to calculate � � e;: Calculate each Y1,
2 2 r L,,=l ,

compute e, , and sum all the e, values, i = 1, 2, . . . , n. However, it can be shown that

i:_e,2 = syy -[J,s"' (12.36)
i=l

where SYY, the corrected sum of squares of Y, is given by

(12.37)

and Sxy is given by Equation (12.30). Equation (12.36) could be easier to use than the direct method.
The statistic defined by Equation (12.34) has the t distribution with n - 2 degrees of freedom. The null

hypothesis H0 is rejected if lt01 > ta1211_2•

Example 12.7: Testing for Significance of Regression
Given the results in Example 12.6, the test for the significance of regression is conducted. One more computation
is needed prior to conducting the test That is, L ;=, f,2 = 2282.94. Using Equation (12.37) yields

s = 2282.94 - 078)2
= 170.6734 yy 15

Then I.::.e; is computed according to Equation (12.36) as 15
I,e; = 170.6734-0.0464(3480)= 9.2014
i=l

/
Now, tile value of MSi is calculated from Equation (12.35):

MS = 9·2014 = 0.7078 E 13

The value of t0 can be calculated by using Equation (12.34) as

t = 0·0464 15.13 0 ../0.7078175000

Since t0_025,13 = 2.16 from Table A.5, we reject the hypothesis that P1 = 0. Thus, there is significant evidence
that x arid Y are related.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 409

1 2.3.3 Multiple Linear Regression

If the simple linear regression model of Section 12.3.1 is inadequate, several other possibilities exist. There
could be several independent variables, so that the relationship is of the form

(12.38)

Notice that this model is still linear, but has more than one independent variable. Regression models having
the form shown in Equation (12.38) are called multiple linear regression models. Another possibiiity is that
the model is of a quadratic form such as

(12.39)

Equation (12.39) Is also a linear model which may be transformed to the form of Equation (12.38) by letting
x1 = x andx2 = r.

Yet another possibility is a model of the form such as

Y = Po + P,x, + P2x2 + PJxh + E

which is also a linear modeL The analysis of these three models with the forms just shown, and r.elated
models, can be fou.nd in Box and Draper [1987], Hines, Montgomery, Go1dsman, and Borror [2002],
Montgomery [2000], and other applied statistics texts; and also in Kleijnen [1987, 1998], which is concerned
primarily with the application of these models in simulation.

1 2.3.4 Random-Number Assignment for Regression

The assignment of random-number seeds or streams is part of the design of a simulation experiment.4
Assigning a different seed or stream to different design points (settings for xl' x2, _ . . xm in a multiple linear
regression) guarantees that the responses Y from different design points will be statistically independent.
Similarly, assigning the same seed or stream to different design points induces dependence among the cor­
responding responses, by virtue of their all having the same source of randomness.

Many textbook experimental designs assume independent responses across design points. To conform
to this assumption, we must assign different seeds or streams to each design point. However, it is often use­
ful to assign the same random number seeds or streams to all of the design points-in other words, to use
common random numbers. . . .

The intuition behind common random numbers for metamodds is that a fairer comparison among design
points is achieved if the design points are subjected to the same experimental conditions, specifically the
same source of randomness. The mathematical justification is as follows: Suppose we fit the simple linear
regression Y; = Po + P, x, + E; and obtain least squares estimates Po and A. Then an estimator of the expected
difference in performance between design points i andj is

Po + P,x, -cPo + P,x) = [3, (x, -xi)

when xi and xi are fixed design points, A determines the estimated difference between design poi�ts i and j,
or for that matter between any other two values of x. Therefore, common random numbers can be
expected to reduce the variance of A and, more generally, reduce the variance of all of the slope terms in a
multiple linear regression. Common random numbers typically do not reduce the variance of the intercept
term, p0•

'This section is based on Nelson (1992].

DISCRETE-EVENT SYSTEM SIMULATION

The least-squares estimators fie and A are appropriate regardless of whether we use common random
numbers, but the associated statistical analysis is affected by that choice. For statistical analysis of a meta­
model under common random numbers, see Kleijnen [I 988] and Nelson [1992].

12.4 OPTIMIZATION VIA SIMULATION

· Consider the following examples.5

Example 12.8: Materials Handling System (MHS)
Engineers need to design a MHS consisting of a large automated storage and retrieval device, automated
guided vehicles (AGVs), AGV stations, lifters, and conveyors. Among the design variables they can control
are the number of AGVs, the load per AGV, and the routing algorithm used to dispatch the AGVs.
Alternative designs will be evaluated according to AGV utilization, transportation delay for material that
needs to be moved, and overall investment and operation costs.

Example 12.9: Liquified Natural Gas (LNG) Transportation
A LNG transportation system will consist of LNG tankers and of loading, unloading, and storage facilities.
In order to minimize cost, designers can control tanker size, number of tankers in use, number of jetties at
the loading and unloading facilities, and capacity of the storage tanks.
Example 12.10: Automobile Engine Assembly
In an assembly line, a large buffer (queue) between workstations could increase station utilization-because
there will tend to be something waiting to be processed--but drive up space requirements and work-in-process
inventory. An allocation of buffer capacity that minimizes the sum of these competing costs is desired.

Example 12.11: Traffic Signal Sequencing
Civil engineers want to sequence the traffic signals along a bnsy section of road to reduce driver delay and
the congestion occurring along narrow cross streets. For each traffic signal, the length of the red, green, and
green-tum-arrow cycles can be set individually.

Example 12.12: On-Line Services
A company offering on-line information services over the Internet is changing its computer architecture from
central mainframe computers to distributed workstation computing. The numbers and types of CPUs, the
network structure, and the allocation of processing tasks all need to be chosen. Response time to customer
queries is the key performance measure.

What do these design problems have in common? Clearly, a simulation model could be useful in each,
and all have an implied goal of finding the best design relative to some performance measures (cost, delay,
etc.). In each CX3!Ilple, there are potentially a very large number of alternative desigris, ranging from tens to
thousands, and certainly more than the 2 to 10 we considered in Section 12.2.2. Some of the examples con­
tain a diverse collection of decision variables: discrete (number of AGVs, number of CPUs), continuous
(tanker size, red-cycle length) and qualitative (routing strategy, algorithm for allocating processing tasks).
Thj.s makes developing a metamodel, as described in Section 12.3, difficult.

All of these problems fall under the general topic of "optimization via simulation," where the goal is to
minimize or maximize some measures of system perfonnance and system performance can be evaluated only
by running a .computer simulation. Optimization via simulation is a relatively new, but afready vast, topic,
and commercial software has become widely available. In this section, we describe the key issues that should
be considered in undertaking optimization via simulation, provide some pointers to the available literature,
and give one example algorithm.

ssome of these descriptions are based on Boesel, Nelson, and Ishii [20031.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 41 1

1 2.4.1 What Does 'Optimization via Simulation' Mean?

Optimization is a .key tool used by operations researchers and management scientists, and there are well­
developed algorithms for many classes of problems, the most famous being linear programming. Much of the
work on optimization deals with problems in which all aspects of the system are treated as being known with
certainty; most critically, the performance of any design (cost, profit, makes pan, etc.) can be evaluated exactly.

In stochastic, discrete-event simulation, the result of any simulation run ·is a random variable. For
notation, letx1, x2, • • • , xm be the m controllable design variables and let Y(x1, x2, • • • , xm) be the observed sim­
ulation output performance on one run. To be concrete, xl' x2, x3 might denote the number of AGV s, the load
per AGV, and the routing algorithm used to dispatch the AGVs, respectively, in Example 12.8, while
Y(xl' Xi• xJ could be total MHS acquisition and operation cost.

What does it mean to "optimize" Y(x1, x2, . . . , xm) with respect to x1, x2, . . . , xm? Y is a random variable,
so we cannot optimize the actual value of Y. The most common definition of optimization is

maximize or minimize E (Y (x1, Xi• . . . , xm)) (12.40)

In other words, the mathematical expectation, or long-run average, of performance is maximized or mini­
mized. This is the default definition of optimization used in aU commercial packages of which we are aware.
In our example, E(Y(x1, x2, x)) is the expected, or long-run average cost of operating the MHS with x1
AGVs, x2 load per AGV, and routing algorithm x3• . .

[t is important to note that (12.40) is not the only possible definition, however. For instance, we might
want to select the MHS design that has the best chance of costing less than $D to purchase and operate,
changing the objective to

maximize Pr (Y (xl' x2, x3) $; D)

We can fit this objective into formulation (12.40) by defining a new performance measure

and maximizing E (Y'(x1, x2, x3)) instead.
A more complex optimization problem occurs when we want to select the system design that is most

likely to be the best. Such an objective is relevant when one-shot, rather than long-run average, performance
matters. Examples include a Space Shuttle launch, or the delivery of a unique, large order of products.
Bechliofer, Santner, and Goldsman [1995] address this problem under the topic of "multinomial selection."

We have been assuming that a system design xl' x2, • • • , xm can be evaluated in terms of a single per­
formance measure, Y, such as cost. Obviously, this may not always be the case. In the MHS example, we
might also be interested in some measure of system productivity, such as throughput or cycle time. At pres­

. ent, multiple objective optimization via simulation is not well developed; Therefore, one of three strategies
is typically employed:

1. Combine all of the performance measures into a single measure, the most common being cost. For
instance, the revenue generated by each completed product in the MHS could represent productivity
and be included as a negative cost.

2. Optimize with respect to one key performance measure, but then evaluate the top solutions with
respect to secondary performance measures. For instance, the MHS could be optimized with respect
to expected cost, and then the cycle time could be compared for the top 5 designs. This approach
requires that information on more than just the best solution be maintained.

j
I , I .
I . . • .

1 i) . I

412 DISCRETE-EVENT SYSTEM SIMULATION

3. Optimize with reSpect to one key perfonnance measure, but consider only those alternatives that meet
certain constraints on the other perfonnance measures. For instance, the MHS conld be optimized with.
respect to expected cost for those alternatives whose expected cycle time is less than a given threshold.

1 2.4.2 Why is Optimization via Simulation Difficult?

Even when there is no uncertainty, optimization can be very difficult if the number of design variables is large,
the problem contains a diverse collection of design variable types, and little is known about the structure of
the performance function. Optimization via simulation adds an additional complication: The performance of
a particnlar design cannot be evaluated exactly, but instead must be estimated. Because we have estimates, it
is not possible to conclude with assurance that one design is better than another, and this uncertainty frustrates
optimization algorithms that try to move in improving directions. In principle, one can eliminate this compli­
cation by making so many replications, or such long runs, at each design point that the performance estimate
has essentially no variance. In practice, this could mean that very few alternative designs will be explored,
because of the time required to simulate each one. .

The existence of sampling variability forces optimization via simulation to make compromises. The fol­
lowing are the standard ones:

IIi Guarantee a prespecified probability of correct selection. The Two-Stage Bonferroni Procedure in
Section 12.2.2 is an exari:lple of this approach, which allows the analyst to specify the desired chance
of being right. Such algorithms typically require either that every possible design be simulated or that
a strong functional relationship among the designs (such as a metamodel) apply. Other algorithms can
be found in Goldsman and Nelson [1998].

• Guarantee asymptotic convergence. There are many algorithms that guarantee convergence to the
global optimal solution as the simulation effort (number of replications, length of replications)
becomes infinite. These guarantees are useful because they indicate that the algorithm tends to get to
where the analyst wants it to go. However, convergence can be slow, and there is often no guarantee
as to how gond the reported solution is when the algorithm is terminated in finite time (as it must
be in practice). See Andrad6ttir [1 998] for specific algorithms that apply to discrete- or continuous­
variable problems.

• Optimal for deterministic counterpart. The idea here is to use an algorithm that would find the
optimal solution if the peiformance of er1ch design could be evaluated with certainty. An example
might be applying a standard nonlinear programming algorithm to the simulation optimization prob­
lem. It is typically up to the analyst to make sure that enough simulation effort is expended (replica­
tions or run length) to insure that such an algorithm is not misled by sampling variability. Direct
application of an algorithm that assumes deterministic evaluation to a stochastic simulation is not
recommended.

• Robust heuristics. Many heuristics have been developed for deterministic optimization problems that
do not guarantee finding the optimal solution, but nevertheless been shown to be very effective on dif­
ficult, practical problems. Some of these heuristics use randonmess as part of their search strategy, so
one might argue that they are less sensitive to sampling variability than other types of algorithms.
Nevertheless, it is still important to make sure that enough simulation effort is expended (replications
or run length) to insure that such an algorithm is not misled by sampling variability.

Robust heuristics are the most common algorithms found in commercial optimization via simulation
software. We provide some guidance on their use in tbe next section. See Fu [2002] for a comprehensive
discussion of optimization theory versus practice.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 413

12A.3 Using Robust Heuristics

By a "robust heunstic" we mean a procedure that does not depend on strong problem structure-such as
continuity or convexity of E(Y(xl''"' x.,))-to be effective, can be applied to problems with mixed types of
decision variables, and-ideally-is tolerant of some sampling variability. Genetic algorithms (GA) and tabu
search (TS) are two prominent examples, but there are many others and many variations of them. Such
heuristics form the core of most commercial implementations. To give a sense of these heuristics, we
describe GA and TS next We caution the reader that only a high-level description of the simplest version of
each procedure is provided. The commercial implementations are much more sophisticated.

·

Suppose that there are k possible solutions to the optimization via simulation problem. Let X = (�, 'S·· .. ,
xk} denote the solutions, where the ith solution xi= (xil' x,1, . . . , xim) provides specific settings for the m d�­
sion variables. The simulation output at solution X; is denoted Y (x); this could be the output of a single repli­
cation, or the average of several replications. Our goal is to find the solution x* that minimizes E(Y(x)).

On each iteration (known as a "generation"), a GA operates on a "population" of p solutions. Denote
the population of solutions on the jth iteration as P(J) = (x1()), 'S(J), . . . , xP(J) } . There may be nmltiple
copies of the same solution in P(j), and P(J) may contain solutions that were discovered on previous
iterations. From iteration to iteration, this population evolves in such a way that gond solutions tend to sur­
vive and give birth to new, and hopefully better, solutions, while inferior solutions tend to be removed from
the population. The basic GA is given here:

Basic GA

Step 1. Set the iteration counter j = 0, and select (perhaps randomly) an initial population of p solutions
P(O) = { x1(0), . . . , xpCO)} .

Step 2. Run simulation experiments to obtain perfonnance estimates Y(x) for all p solutions xU) in P(J).

Step 3. Select a population of p solutions from those in P(J) in such a way that those with smaller Y(x) values
are more likely, but not certain, to be selected. Denote this population of solutions as PU + 1).

Step 4. Recombine the solutions in P(j + 1) via crossover (which joins parts of two solutions X; (j + 1) and
xt(j + 1) to form a new solution) and mutation (which randomly changes a part of a solution X; (j + 1).

Step S. Setj = j + I and go to Step 2.

nie GA can be terminated after a specified number of iterations, when little or no improvement is noted
· in the population, or when the population contains p copies of the same solution. At termination, the solu­
tion x* that has the smallest Y(x) value in the last population is chosen as best (or alternatively, the solution
with the smallest Y(x) over all iterations could be chosen).

GAs are applicable to almost any optimization problem, becanse the operations of selection, crossover,
and mutation can be defined in a very generic way that does not depend on specifics of the problem.
However, when these operations are not tuned to the specific problem, a GA's progress can be very slow.
Commercial versions are often self-tuning, meaning that. they update selection, crossover, and mutation
parameters during the course of the search. There is some evidence that GAs are tolerant of sampling vari­
ability in Y(x) because they maintain a population of solutions rather than focusing on improving a current­
best solution. In other words, it is not critical that the GA rank the solutions in a population o'f solutions
.perfectly, because the next iteration depends on the entire popolation, not on a single solution.

TS, on the other hand, identifies a current best solution on each iteration and then tries to improve it
·Improvements occur by changing the solution via "moves." For example, the solution (x1, X.• x3) could be changed

414 SYSTEM SIMUlATION

to the solution (x1 + I, �· XJ) by the move of adding 1 to the first decision variable (perhaps x1 represents the
number of AGVs in Example 12.8, so the move would add one more AGV). The "neighbors" of solution x are
all of those solutions that can be reached by legal moves. TS finds the best neighbor solution and moves to it
However, to avoid making moves that return the search to a previously visited solution, moves may become "tabu''
(not usable) for some number of iterations. Conceptually, think about how you would find your way through
a maze: If you took a path that lead to a dead end, then you would avoid taking that path again (it would be tabu).

The basic TS algorithm is given next. The description is based on Glover [1989].

Basic TS

Step 1. Set the iteration coonter j = 0 and the list of tabu moves to empty. Select an initial solution x* in X
(perhaps randomly).

Step 2. Find the solution x that minimizes Y(x) over all of the neighbors of x* that are not reached by tabu
moves, running whatever simulations are needed to do the optimization.

Step 3. If Y (x) < Y(x*), then x* = x' (move the current best solution to x').

Step 4. Update the list of tabu moves and go to Step 2.

The TS can be terminated when a specified number of iterations have been completed, when some num­
ber of iterations has passed without changing x*, or when there are no more feasible moves. At termination,
the solution x* is chosen as best.

TS is fundamentally a discrete-decision-variable optimizator, but continuous decision variables can be dis­
cretized, as described in Section 12.4.4. TS aggressively pursues improving solutions, and therefore tends to
make rapid progress. However, it is more sensitive to random variability in Y(x), because x* is taken to be the
true best solution so far and attempts are made to improve it. There are probabilistic versions of TS that should
be less sensitive, however. An important feature of commercial implementations of TS, which is not present in
the Basic TS, is a mechanism for overiding the tabu list when doing so is advantageous.

Next, we offer two suggestions for using commercial products that employ a GA, TS, or other robust
heuristic controlling sampling variability, and restarting.

Control Sampling Variability

In many cases, it will up to the user to determine how much sampling (replications or run length) will be
undertaken at each potential solution. This is a difficult problem in general. Ideally, sampling should increase
as the heuristic closes in on the better solutions, simply because it is much more difficult to distinguish solu­
tions that are close in expected performance from those that differ widely. Early in the search, it may be easy
for the heuristic to identify good solutions and search directions, because clearly inferior solutions are being
compared to much better ones, but late in the search this might not be the case.

If the analyst must specify a fixed number of replications per solution that will be used through the
search, then a preliminary experiment should be conducted. Simulate several designs, ·some at the extremes
of the solution space and some nearer the center. Compare the apparent best and apparent worst of these
designs, using the approaches in Section 12. 1 . Using the technique described in Section 12. 1 .4, find the min­
imum for the number of replications required to declare these designs to be statistically significantly differ­
ent. This is the minimum number of replications that should be used.

After the optimization run has completed, perform a second set of experiments on the top 5 to 10 designs
identified by the heuristic. Use the comparison techniques in Section 12.2-12.2.3 to rigorously evaluate
which are the best or near-best of these designs.

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 415

Restarting

Because robust heuristics provide no guarantees that they converge to the optimal solution for optimization
via simulation, it makes sense to run the optimization two or more times to see which run yields the best solu­
tion. Each optimization run should use different random number seeds or streams and, ideally, shotild start �m different initial solutions. Try starting the optimization at solutions on the extremes of the solution space,
m th� cen�r of th� space, and at rando�y generated solutions. If people familiar with the system suspect that
certarn designs will be good, be sure to mclude them as possible starting solutions for the heuristic.

1 2.4.4 An Illustration: Random Search

� �s section, w� pr�sent an algorithm for optimization via simulation known as random search. The spe­
cific rrnplementatton IS based on Algorithm 2 in Andrad6ttir [1998], which provides guaranteed asymptotic
convergence under. certai� conditions. Thus, it will find the true optimal solution if permitted to run long
enough. However, m practice, convergence can be slow, and the memory requirements· of this particular ver­
sion of randOm search can be quite large. Even though random search is not a "robust heuristic," we will also
use it to demonstrate some strategies we would employ in conjunction with such heuristics and to demon­
strate why optimization via s�mulation is tricky even with what appears to be an uncomplicated algorithm.

. The random-search algorithm that we present requires that there be a finite number of possible system
des1gns (although that number may be quite large). This might seem to rule out problems with continuous
decision variables, such as conveyor speed. In practice, however, apparently continuous decision variables
can often be discretized in a reasonable way. For instance, if conveyor speed can be anything from 60 to 120
f� per minute,

_
little may be lost by treating the possible conveyor speeds as 60, 61, 62, ... , 120 feet per

rrnnute (61 possible values). Note, however, that there are algorithms designed specifically for continuoUs­
variable problems (Andrad6ttir [1998]).

Again: let the� possible solutions to the optimization via simulation problem be denoted { xl' �· . . . , x1},
where the 1th solution xi = (x;1• xi1, . . . , xim) provides specific settings for the m decision variables. The sim­
ulation output at solution xi is denoted Y (xi); this could be the output of a single replication or the average
of several replications. Our goal is to find the solution x* that minimizes E(Y(x)).

On each iteration of the random-search algorithm, we compare a current good solution to a randomly
chosen competitor. If the competitor is better, then it becomes the current good solution. When we terminate
the search, the solution we choose is the one that has been visited most often (which means that we expect
to revisit solutions many times).

Random·Search Algorithm

Step 1. Initialize counter variables C(i) =.0 for i = 1, 2, . . . , k. Select an initial solution ;o, and set C(io) = 1 .
(C(i) counts the number of times we visit solution i.)

Step 2. Choose another solution l from the set of all solutions except i0 in such a way that each solution has
an equal chance of being· selected.

Step 3. Run simulation experiments at the two solutions i0 and i' to obtain outputs Y(i!l) and Y(i'). lf Y(i') < Y(1'0),
. then set i0= t. (See note following Step 4.)

· ·

. Step 4. Set C(i!l) = C(i0) + 1. If not done, then g� to Step 2. If done, then select as the estimated optimal
solution xi* such that C(i*) is the largest count.

Note that, if the problem is a maximization problem, then replace Step 3 with

Step 3. Run simulation experiments at the two solutions i0 and i' to obtain outputs Y(i0) and Y(i'). IfY(i') > Y(io),
then set i0 = (.

.416 DISCRETE-EVENT SYSTEM SIMULATION

One of the difficult problems with many optimization-via-simulation algorithms is knowing when to
stop. (Exceptions include algorithms that guarantee a probability of correct selection.) 1Jpical rules might
·be to stop after a certain number of iterations, stop when the best solution has not changed much in several
iterations, or stop when all time available to solve the problem has been exhausted. Whatever rule is used,
we recommend applying a statistical selection procedure, such as the TWo-Stage Bonferroni Procedure in
Section 1 2.22, to the 5 to 10 apparently best solutions. This is done to evaluate which among them is the
true best with guaranteed confidence. If the raw data from the search have been saved, then these data can
be used as the first-stage sample for a two-stage selection procedure (Boesel, Nelson, and Ishii [20()3]).

Example 12.13: Implementing Random Search
Suppose that a manufacturing system consists of 4 stations in series. The zeroth station always has raw mate­
rial availabie. When the zeroth station completes work on a part, it passes the part along to the first station,
then the first passes the part to the second, and so on. Buffer space between stations 0 and I, I and 2, and
2 and 3 is limited to 50 parts total. If, say, station 2 finishes a part but there is no buffer space available in
front of station 3, then station 2 is blocked, meaning that it cannot do any further work. The question is how
to allocate these 50 spaces to minimize the expected cycle time per part over one shift.

Letx1 be the number of buffer spaces in front of station i. Then the decision variables are x1, x2, x3 with
the constraint that x1 · + � + x, = 50 {it makes no sense to allocate fewer buffer spaces than we have avail­
able). This implies a total of 1326 possible designs (can you figure out how this number is computed?).

To simplify the presentation of the random-search algorithm, let the counter for solution (xl' x2, x3) be
denoted as

Random Search Algorithm

Step 1. Initialize 1 326 counter variables C(x1, �· x3) = 0, one for each of the possible solutions (xl' x2, x3).
Select an initial solution, say (x1 = 20, x2 = 15, x3 = 15) and set C(20, 15, 15) = l .

Step 2. Choose another solution from the set of all solutions except (20, 15, 15) in such a way that each solu­
tion has an equal chance of being selected. Suppose (I I , 35, 4) is chosen.

Step 3. Run simulation experiments at the two solutions to obtain estimates of the expected cycle time Y(20,
15, 15) and Y(l l , 35, 4). Suppose that Y(20, 15, 15) < Y(l l , 35, 4). Then (20, 15, 15) remains as the current
good solution.

Step 4. Set C(20, 15, 15) = C(20, 15, 15) + 1 .

Step 2.. Choose another solution from the set of all solutions except (20, 15 , 15) in such a way that each solu­
tion has an equal chance of being selected. Suppose (28, 1 2, 10) is chosen.
Step 3. Run simulation experiments at the two solutions to obtain estimates of the expected cycle time Y(20,
· 15, 15) and Y(28, 12, 10). Suppose that Y(28, 12, 10) < Y(20, 15, 15). Then (28, 12, 10) becomes the current
good solution.
Step 4. Set C(28, 1 2, 10) = C(28, 12, 1 0) + 1 .
Step 2. Choose another solution from the set of all solutions except (28, 12, 10) in such a way that each solu­
tion has an equal chance of being selected. Suppose (0, 14, 36) is chosen.
Step 3. Continue ...

When the search is terminated, we select the solution (xl' x2, .x,) that gives the largest C(xl' x2, x3) count.
As we discussed earlier, the top 5 to 1 0 solutions should then be subjected to a separate statistical analysis
to determine which among them is the true best (with high confidence). In this case, the solutions with the
largest counts would receive the second analysis.

I I I
I

COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 417

Despite the apparent simplicity of the Random-Search Algorithm, we have glossed over a subtle issue
that often arises in algorithms with provable performance. In Step 2, the algorithm must randomly choose
a solution such that all are equally likely to be selected (except the current one). How can this be accom­
plished in Example 12. 13? The constraint that x1 + x2 + x3 = 50 means that xl' x2 and x3 cannot be sampled
independently. One might be tempted to sample x1 as a discrete uniform random variable on 0 to 50, then
sample x2 as a discrete uniform on 0 to 50 - x1, and finally set � = 50 - x1 - x2• But this method does not
make all solutions equally likely, as the following illustration shows: Suppose that x1 is randomly sampled to
be 50. Then the trial.solution must be (50, 0, 0); there is only one choice; But if x1 = 49, then both (49, 1 , 0) and
(49, 0, 1) are possible. Thus, x1 = 49 should be more likely than x1 = 50 if all solutions with x1 + � + x3 = 50
are to be equally likely.

1 2.5 SUMMARY

This chapter provided a basic introduction to the comparative evaluation of alternative system designs based
oo data collected from simulation runs. It was assumed that a fixed set of alternative system designs had been
selected for consideration. Comparisons based on confidence intervals and the use of common random num- ·

bers were emphasized. A brief introduction to metamodels-whose purpose is to describe the relationship
between design variables and the output response-and to optimization via simulation-whose purpose is to
select the best from among a large and divJ:�rse collection of system designs-was also provided. There are
many additional topics of potential interest (beyond the scope of this text) in the realm of statistical analysis
techniques relevant to simulation. S�me of these topics are

1. experimental design models, whose purpose is to discover which factors have a significant impact on
the performance of system alternatives;

2. output-analysis methods other than the methods of replication and hatch means;
3. variance-redaction techniques, which are methods to improve the statistical efficiency of simulation

experiments (common random numbers being an impOrtant example).

The reader is referred to Banks [1998] and Law and Kelton [2000] for discussions of these topics and
of others relevant to simulation.

The most important idea in Chapters I I and 12 is that simulation output data reqnire a statistical analysis
in order to be interpreted correctly. In particular, a statistical analysis can provide a measure of the precision of
the results produced by a simulation and can provide techniques for achieving a specified precision.

REFERENCES

ANDRAD6TIIR, S. [1998], "Simulation Optimization," Chapter 9 in Handbook of Simulation, J. Banks, �., Wiley,
New York.

BANKS, J., ed. [1998].Handlwok of Simulation, Wrley, New York.
BECHHOFER, R. E., T. J. SANTNER, AND D. OOLDSMAN [1995], Design and Analysis for Statistical Selection,

Screening and Multiple Comparisons, Wiley, New York.
BOESEL, J., B. L. NELSON, AND N. JSHll [2003], "A Framework for Simulation-Optimization Soflware," liE

Transactions, VoL 35, pp. 221-229.
BOX. G. E. P., AND N. R. DRAPER [1987], Empirical Model-Building and Response Surfaces, Wiley, New York.
FU, M. C. [2002], "Optimization for Simulation: Theory vs. Practice," INFORMS Journal on Computing, Vol. 14,

pp. 192-215.
GLOVER, F. {1989], "Tabu Search-Part L" ORSA Journal on Computing, VoL l, pp. 190-206.

GOLDSMAN, D., AND B. L. NELSON [1998], "Comparing Systems via Simulation," Chapter 8 in Handbook of
Simulation, J. Banks, ed., Wdey, New York.

418 DISCRETE-EVENT SYSTEM SIMULATION

HINES, W. W., D. C. MONTGOMERY, D. M. GOLDSMAN, AND C. M. BORROR [2002], Probability and StaJistics
in Engineering, 4th ed., Wiley, New York.

HOCHBERG Y., AND A. C. TAMHANE [1987], Multiple Comparison Procedures, Wiley, New York.
HSU, J. C. [1996], Multiple Comparisons: Theory and Metlwds, Chapman & Hall, New York.
KLEUNEN, J. P. C. [1975], Statistical Techniques in Simulation, Parts I and II, Dekker, New York.
KLEUNEN, J. P. C. [1987], Statistical Tools for Simulation Practitioners, Dekker, New York.
KLEUNEN, J. P. C. [1988], "Analyzing Simulation Experiments with Common Random Numbers," Management

Science, Vol. 34, pp. 65-74.
KLEUNEN, J. P. C. [1998], "Experimental Design for Sensitivity Analysis, Optimization, and Validation of Simulation

Models," Chapter 6 in Handbook of Simulation, J. Banks, ed., Wiley, New York.
LAW, A. M., AND W. D. KELTON [2000], Simulation Modeling and Analysis, 3d ed., McGraw-Hill, New York.
MONTGOMERY, D. C. [2000], Design and Analysis of Experiments, 5th ed., Wiley, New York.
NELSON, B. L., AND F. J. MA TEJCIK [1995], "Using Common Random Numbers for Indifference-Zone Selection and

Multiple Comparisons in Simulation," Management Science, Vol. 41, pp. 1935-1945.
NELSON, B. L., J. SWANN, D. GOLDSMAN, AND W.-M. T. SONG [2001], "Simple Procedures for Selecting the Best

System when the Number of Alternatives is Large," Operations Research, Vol. 49, pp. 950-963.
NELSON, B. L. [1987], "Some Properties of Simulation Interval Estimators Under Dependence Induction," Operations

Research Letters, Vol. 6, pp. 169-176.
NELSON, B. L. [1992], "Designing Efficient Simulation Experiments," 1992 Winter Simulation Conference

Proceedings, pp. 126-132.
WRIGHT, R D., AND T. E. RAMSAY, JR [1979], ''On the Effectiveness of Common Random Numbers," Management

Science, Vol..25, pp. 649-656.

EXERCISES

1. Reconsider the dump-truck prolilem of Example 3.5, which was also analyzed in Example 12.2. As
business expands, the company buys new trucks, making the total number of trucks now equal to 16.
The company desires to have a sufficient number of loaders and scales so that the average number of
trucks waiting at the loader queue plus tb.e average number at the weigh queue is no more than three.
Investigate the following combinations of number of loaders and number of scales:

Number of
Scales

1
2

Number of Loaders
2 3 4

The loaders being considered are the "slow" loaders in Example 12.2. Loading time, weighing time, and
travel time for each truck are as previously defined in Example 12.2. Use common random numbers to
the greatest extent possible when comparing alternative systems designs. The goal is to find the small­
est number of loaders and scales to meet the company's objective of an average total queue length of no
more than three trucks. In your solution, take into account the initialization conditions, run length, and
number of replications needed to achieve a reasonable likelihood of valid conclusions.

2. In Exercise 1 1 .5, consider the following alternative (M, L) policies:

Investigate the relative costs of these policies, using suitable modifications of the simulation model
developed in Exercise 1 1 .5. Compare the four system designs on the basis of long-run mean monthly
cost First make four replications of each (M, L) policy, using common random numbers to the greatest

r COMPARISON AND EVALUATION OF ALTERNATIVE SYSTEM DESIGNS 419

L
Low High
30 40

Low 50 (50, 30) (50, 40)
M

High 100 (100, 30) (100, 40)

extent possible. Each replication should have a 12-month initialization phase followed by a 100-month
data-collection phase. Compute confidence intervals having an overall confidence level of 90% for mean
monthly cost for each policy. Then estimate the additional replications needed to achieve confidence
intervals that do not overlap. Draw conclusions as to which is the best policy.

3. Reconsider Exercise 1 1 .6. Compare the four inventory policies studied in Exercise 2, taking the cost of
rush orders into account when computing monthly cost.

4. In Exercise 1 1 .8, investigate the effect of the order quantity on long-run mean daily cost. Each order
arrives on a pallet on a delivery truck, so the permissible order quantities, Q, are multiples of 10 (i.e., Q
may equal 10, or 20, or 30, . . .). In Exercise 1 1 .8, the policy Q = 20 was investigated.

(a) First, investigate the two policies Q = 10 and Q = 50. Use the run lengths, and so on, suggested in
Exercise 1 1 .8. On the basis of these runs, decide whether the optimal Q, say Q*, is between I 0 and
50 or is greater than 50. (The cost curve as a function of Q should have what kind of shape?)

(b) Using the results in part (a), suggest two additional values for Q and simulate the two policies. Draw
conclusions. Include an analysis of the strength of your conclusions.

5. In Exercise 1 1 . 1 0, find the number of cards Q that the card shop owner should purchase to maximize
the profit with an error of approximately $5.00. Use the following expression to generate Q value

Q = 300 ± 100

For each run, generate a uniform random variate to get the Q value and for that Q value compute profit.
'

6. In Exercise l l .IO, investigate the effect of target level M and review period N on mean monthly cost.
Consider two target levels, M, determined by ±10 from the target level used in Exercise l l . l 0, and consider
review periods N of l month and 3 months. Which (N, M) pair is best, according to these simulations?

7. Reconsider Exercises l l . l2 and l l . l3, which involved the scheduling rules (or queue disciplines) first­
in-first-out (FIFO) and priority-by-type (PR) in a job shop. In addition to these two rules, consider
a shortest imminent operation (SIO) scheduling rule. For a given station, all jobs of the type with the
smallest mean processing time are given highest priority. For example, when using an SIO rule at sta­
tion l, jobs are processed in the following order: type 2 first, then type l, and type 3 last. 1\vo jobs of
the same type are processed on a FIFO basis. Develop a simulation experiment to compare the FIFO,
PR, and SIO rules on the basis of mean total response time over all jobs.

8. In Exercise l l . l2 (the job shop with FIFO rule), fmd the minimum number of workers needed at
each station to avoid bottlenecks. A bottleneck occurs when average queue lengths at a station increase
steadily over time. (Do not confuse increasing average queue length due to an inadequate number of
servers with increasing average queue length due to initialization bias. In the former case, average queue
length continues to increase indefinitely and server utilization is 1 .0. In the latter case, average queue
length eventually levels off and server utilization is less than l .) Report on utilization of workers
and total time it takes for a job to get through the job shop, by type and over all types. (Hint: If server

. -�-- . .,..-,-- --...----.--.---. �.-

420 DISCRETE-EVENT SYSTEM SIMULATION

utilization at a work station is 1.0, and if average queue length tends to increase linearly as simulation
run length increases, it is a good possibility that the work station is unstable and therefore is a bottle­
neck. In this case, at least one additional worker is needed at the work station. Use queueing theory,
namely llc1J.L < I , to suggest the minimum number of workers needed at station l . Recall that A. is the
arrival rate, 1/J.L is the ovefall mean service time for one job with one worker, and c1 is the number of
workers at station i. Attempt to use the same basic condition, A.lc1/l < 1, to suggest an initial number of
servers at station i for i = 2, 3, 4.)

9. (a) Repeat Exercise 8 for the PR scheduling rule (see Exercise 1 1.13).
(b) Repeat Exercise 8 for the SIO scheduling rule (see Exercise 12.7).
(c) Compare the minimum required number of workers for each scheduling rule: FIFO, versus PR,

versus SIO.

10. With the minimum number of workers found in Exercises 9 and 10 for the job shop of Exercise 1 1. 12,
consider adding one worker to the entire shop. This worker can be trained to handle the processing at
only one station. At which station should this worker be placed? How does this additional worker affect
mean total res(lOnse time over all jobs?. Over type I jobs? Investigate the job shop with and without the
additional worker for each scheduling rule: FIFO, PR, SIO.

11. In Exercise 1 1 .16, suppose that a buffer of capacity one item is constructed in front of each worker.
Design an experiment to investigate whether this change in system design has a significant impact upon
individual. worker utilizations (p1, p2, p3 and p4). At the very least, compute confidence intervals for
p� - p: and p� P!, where p;, is utilization for worker i when the buffer has capacity s.

12. A clerk in the admissions office at Small State University processes requests for admissions materials.
The time to process requests depends on the program of interest (e.g., industrial engineering, manage­
ment science, computer science, etc.) and on the level of the program (Bachelors, Masters, Ph.D.).
Suppose that the processing time is mode1'!d well as normally distributed, with mean 7 minutes and stan­
dard deviation 2 minutes. At the beginning of the day it takes the clerk some time to get set to begin
working on requests; suppose that this time is modeled well as exponentially distributed, with mean 20
minutes .. The admissions office typically receives between 40 and 60 requests per day.

Let X be the number of applicatiOnS received On a day, and let f be the time required tO process them
(including the set-up time). Fit a metamodel for E(Y!x) by making n replications at the design points
x = 40, 50, 60. Notice that, in this case, we know that the correct model is

E(Yjx) = flo + /l1x = 20+ 1x

(Why?) Begin with n = 2 replications at each design point and estimate flo and Pr Gradually increase the
number of replications and observe how many are required for the estimates to be close to the true values.

13. Repeat lhe previous exercise using CRN: How do the results change'?

14. The usual statistical analysisusedto test for /l1 * O does notholdifwe useCRN. Wheredoesitbreakdown?

15. Riches and Associates retains its cash reserves primarily in the form of certificates of deposit (Ci:>s),
which earn interest at an annual rate of 8% .. Periodically, however; withdrawals must be made froro these
CDs in order to pay supplierS, etc. These cash outflows are made through a checking account that earns
no interest. The need for cash cannot be predicted with certainty. Transfers from CDs to checking can .
be made instantaneously, but there is a "substantial penalty" for early withdrawal from CDs. Therefore,
it might make sense for R&A to make use of the overdraft protection on their checking account, which
charges interest at a rate of $0.00033 per dollar per day (i.e., 12% per year) for overdrafts.

COMPARISON AND EVALUATION OF AlTERNATIVE SYSTEM DESIGNS 421

R&A likes simple policies in which it transfers a fixed amount, a fixed number of times, per year.
Currently, it makes 6 transfers per year, of $18,250 each time. Your job is to find a policy that reduces
its long-run cost per day.

Judging from historical patterns, demands for cash arrive a rate of about l per day, with the arrivals being
modeled well as a Poisson process. The amount of cash needed to satisfy each demand is reasonably rep­
resented by a lognormally distributed random variable with mean $300 and standard deviation $150.

The penalty for early withdrawal is different for different CDs. It averages $150 for each withdrawal
(regardless of size), but the actual penalty can be modeled as a uniformly distributed random variable
with range $100 to $200.

Use cash level in checking to determine the length of the initialization phase, Make enough replications
that your confidence interval for the difference in long-run cost per day does not contain zero. Be sure
to use CRN in your experiment design.

16. If you have access to commercial optimization-via-simulation software, test how well it works as the
variability of the simulation outputs increases. Use a simple model, such as Y = x2 + e, where e is a
random variable with a N(O, 112) distribution, and for which the optimal solution is known (x = 0 for
minimization, in this case). See how quickly, or whether, the software can find the true optimal solution
as 112 increases. Next, try more complex models with more than one design variable.

17. For Example 12.12, show why there are 1326 solutions. Then derive a way to sample xl' x2, and x3 su.ch
that x1 + :s· + XJ = 50 and all outcomes are equally likely.

18. A critical electronic component with mean time to failure of x years can be purchased for 2x thousand
dollars (thus, the more reliable the component, the more expensive it is). The value of x is restricted to
being between 1 to 10 years, and lhe actual time to failure is modeled as exponentially distributed.
The mission for which the component is to be used lasts one year; if the component fails in less than
one year, then there is a cost of $20,000 for early failure. What value of x should be chosen to minimize
the expected total cost (purchase plus early failure)?

To solve this problem, develop a simulation that generates a total cost for a component with mean time
to failure of x years. This requires sampling an exponentially distributed random variable with mean x,
and then computing the total cost as 2000x plus 20,000 if the failure time is less than I. Fit a quadratic
metamodel in x and use it to find the value of x that minimizes the fitted model. [Hints: Select several
values of x between 1 and 10 as design points. At each value of x, let the response variable Y(x) be the

· average of at least 30 observations of total cost.]

19. The demand for an item follows N(IO, 2). It is required to avoid the shortage. Let Q be the order quan­
tity. Assuming Q to be an integer between I 0 and 150, determine the optimal value for Q that maximizes
the probability, so that the shortage is equal to zero. Use random search algorithm.

20. H you have access, use any optimization via simulation software to solve Exercise 19.

21. Explore the possibility of applying metaheuristics to search for near-optimal solution using simulation
models.

Part Y
Applicatio�s

423

I : I

. I
1 3

Simulation of Manufacturing and
Material-Handling Systems

Manufacturing and material-handling systems provide one of the most important applications of simulation.
Simulation has been used successfully _as an aid in the design of new production facilities, warehouses, and
distribution centers. It has also been used to evaluate suggested improvements to existing systems. Engineers
and analysts using simulation have found it valuable for evaluating the impact of capital investmentS in
equipment and physical facility and of proposed changes to material handling and layout. They have also
found it useful to evaluate staffing and operating rules and proposed rules and algorithms to be incorporated
into production control systems, warehouse-management control software, and material-handling controls.
Managers have found simulation useful in providing a "test drive" before making capital investments, without
disrupting the existing system with untried changes.

Section 13.1 provides an introduction and discusses some of the features of simulation !Dodels of ·

manufacturing and material-handling systems. Section 13.2 discussed the goals of manufacturing simulation
and the most common measures of system performance. Section 13.3 discusses a number of the issues
common to many manufacturing and material-handling simulations, including the treatment of downtimes and
failure, and trace-driven simulations using actual historical data or historical order files. Section 13.4 provides
brief abstracts of a number of reported simulation projects, with references for additional reading. Section 13.5
gives an extended example of a simulation of a small production line, emphasizing the experimentation and
analysis of system performance to achieve a desired throughput. For an overview of simulation software for
manufacturing and material-handling applications, see Section 4.7.

425

426 SIMULATION

1 3. 1 MANUFACTURING AND MATERIAL-HANDLING SIMULAnONS

As do all modeling projects, manufacturing and material-handling simulation projects need to address· the
issues of scope and level of detail. Consider scope as analagous to breadth and level of detail as analagous to
depth. Scope describes the boundaries of the project: what's in the model, and what�s not For a subsystem,
process, machine, or other component, the project scope determines whether the object is in the model. Then,
once a component or subsystem is treated as part of a model, often it can be simulated at many different levels
of detail.

The proper scope and level of detail should be determined by the objectives of the study and the ques­
tions being asked. On the other hand, level of detail could be constrained by the availability of input data" and
the knowledge of how system components work. For new, nonexistent systems, data availability might be
limited, and system knowledge might be based on assumptions.

Some general guidelines can be provided, but the judgment of experienced simulation analysts working
with the customer to define, early in the project, the questions the model is being designed to address
provides the most effective basis for selecting a proper scope and a proper level of detail.

Should the model simulate each conveyor section or vehicle movement, or can some be replaced by a
simple time delay? Should the model simulate auxiliary parts, or the handling of purchased parts, or can the
model assume that such parts are always available at the right location when needed for assembly?

At what level of detail does the control system need to be simulated? Many modern manufacturing
facilities, distribution centers, baggage-handling systems, and other material-handling systems are computer .
controlled by a management-control software system. The algorithms built into such control software play a
key role in system performance. Simulation is often used to evaluate and compare the effectiveness of
competing control schemes and to evaluate suggested improvements. It can be used to debug and fine-tune
the logic of a control system before it is installed.

These questions are representative of the issues that need to be addressed in choosing the correct level
of model detail and scope of a project In turn, the scope and level of model detail limit the type of questions
that can be addressed by the model. In addition, models can be developed in an iterative fashion, adding
detail for peripheral operations at later stages if such operations are later judged to affect the main operation
significantly. It is good advice to start as simple as possible and add detail only as needed.

1 3. 1 . 1 Models of Manqfacturing Systems

Models of manufacturing systems might have to take into account a num!Jer of characteristics of such systems,
some of which are the following:

Physical layout
Labor

Shift schedules
Job duties and certification

Equipment
Rates and capacities
Breakdowns

Time to failure
Ttme to repair
Resources needed for repair

Maintenance
PM schedule
Ttme and resources required
Tooling and fixtures

' SIMULATION OF MANUFACTURING AND MATERIAL-HANDLING SYSTEMS

Wodtcenters
Processing
Assembly
Disassembly

Product
. Product flow, routing, and resources needed
Bill of materials

Production schedules
Made-to-stock
Made-to-order

Customer orders
Line items and quantities

Production control
Assignment of jobs to work areas
Task selection at workcenters
Routing decisions

Supplies
Ordering
Receipt and storage
Delivery to workcenters

Storage
Supplies
Spare parts
Work-in-process (WIP)
Fmished goods

Packing and shipping
Order consolidation
Paperwork
Loading of trailers

1 3. 1 .2 Madels of Material Handling Systems

427

In manufacturing systems, it is not unusual for 80 to 85% of an item's total time in system to be expended
on material handling or on waiting for material handling to octur. This work-in-process (WIP) representS a
vast investment, and reductions in WIP and associated delays can result in large cost savings. Therefore, for
some studies, detailed material-handling simulations are cost effective.

In some production lines, the material-handling system is an essential component For example, auto­
motive paint shops typically consist of a power-and-free conveyor system that transports automobile bodies
or body parts through the paint booths.

In warehouses, distribution centers, and flow-throqgh and cross-docking operations, material handling
is clearly a key component of any material-flow modeL Manual warehouses typically use manual fork trucks
to move pallets from receiving dock to storage and from storage to shipping dock. More automated distri­
bution centers might use extensive conveyor systems to support putaway, order picking, order sortation, and
consolidation.

Models of material-handling systems often have to contain some of the following types of subsystems:

Conveyorli
Accumulating
Nonaccumulating

428

Indexing and other special purpose
Fixed window or random spacing
Power and free

Transporters
Unconstrained vehicles (e.g., manually guided fork trucks)

DISCRETE-EVENT SYSTEM SIMULATION

Guided vehicles (automated or operator controlled, wire guided chemical paths, rail guided)
Bridge cranes and other overhead lifts

Storage systems
Pallet storage
Case storage
Small-part storage (totes)
Oversize items
Rack storage or block stacked ·

Automated storage and retrieval systems (ASIRS) with storage-retrieval machines (SRM)

1 3. 1 .3 Some Common Material-Handling Equipment

There are numerous types of material-handling devices common to manufacturing, warehousing, and distri­
bution operations. They include unconstrained transporters, such as carts, manually driven fork-lift truc!'s,
and pallet jacks; guided path transporters, such as AGVs (automated guided vehicles); and fixed-path
devices, such as various types of conveyor. .

The class of UQconstrained transporters, sometimes called free-path transporters, includes carts, fork-lift
trucks, pallet jacks, and other manually driven vehicles that are free to travel throughout a facility uncon­
strained by a guide path of any kind. Unconstrained transporters are not constrained to a network of pathS and
may choose an alternate path or move around an obstruction. In contrast, the guided-path transporters move
along a ftxed path, such as chemical trails on the floor, wires imbedded in the floor, or infrared �ghts pia�
strategically, or by self-guidance, using radio communications, laser guidance and dead reckomng, and rail.
Guided-path transporters sometimes contend with each other for space along their paths and usually have
limited options upon meeting obstacles and congestion. Examples of guided-path transporters include the
automated guided vehicle (AGV); a rail-guided turret truck for storage and retrievals of pallets in rack storage;
and a crane in an ASIRS (automated storage and retrieval system). .

The conveyor is a fixed-path device for moving emities from point to point, following a fixed path with
specific load, stopping or processing points, and unload points. A conveyor system can consist of numerous
connected sections with merges and diverts. Each section can be of one of a number of different types.
Examples of conveyor types include belt, powered and gravity roller, bucket, chain, tilt tray. and power-and-free,
each with its own characteristics that must be modeled accurately.

Most conveyor sections can be classified as either accumulating or nonaccumulating. An accumulating
conveyor section runs continuously. If the forward progress of an item is halted while on the accumu­
lating conveyor, slippage occurs, allowing the item to remain stationary and items behind it to continue
moving until they reach the stationary item. Some belt and most roller conveyors operate in this manner.
Only items that will not be damaged by bumping into each other can be placed on an accumulating conveyor.

In contrast, after an item is on a nonaccumulating conveyor section, its spacing relative to other items does
not change. If one item stops moving, the entire section stops moving, and hence all items on the section stop.
For example, nonaccumulating conveyor is used for moving televisions not yet in cartons, for they must be
kept at a safe distance from each other while moving from one assembly or testing station to the next Bucket
conveyors, tilt-tray conveyors, some belt conveyors, and conveyors designed to carry heavy loads (usually,
pallets) are nonaccumulating conveyors.

SIMULATION OF MANUFACTURING AND MATERIAl-HANDUNG SYSTEMS 429

Conveyors can also be classified as fixed-window or random spacing. In ftxed-window spacing, items
on the conveyor must always be within zones of equal length, which can be pictured as lines drawn on a belt
conveyor or trays pulled by a chain. For example, in a tilt-tray conveyor, continuously moving trays of fixed
size are used to move items. The control system is designed to induct items in such a way that each item is
in a separate tray; thus it is a nonaccumulating fixed-window conveyor. In contrast, with random spacing,

. items can be anywhere on the conveyor section relative to other items. To be inducted, they simply require
sufficient space.

Besides these basic types, there are innumerable types of specialized conveyors for special purposes. For
example, a specialized indexing conveyor may move fo:i:ward in increments, always maintaining a ftxed dis­
tance between the trailing edge of the load ahead and the leading edge of the load behind. Its purpose is to
form a "slug" of items, equally spaced apart, to be inducted all together onto a transport conveyor. For the
local behavior of some systems-that is, the performance at a particular workstation or induction point-a
detailed understanding and accurate model of the physical workings and the control logic are essential for
accurate results;

1 3.2 GOALS AND PERFORMANCE MEASURES

The purpose of simulation is insight, not numbers. Those who purchase and use simulation software and
services want to gain insight and understanding into how a new or modified system will work. Will it meet
throughput expectations? What happens to response time at peak periods? Is the system resilient to short-term
surges? What is the recovery time when short-term surges cause congestion and queueing? What are the
staffing requirements? What problems occur? If problems occur, what is their cause and how do they arise?
What is the system capacity? What conditions and loads cause a system to reach its capacity?

Simulations are expected to provide numeric measures of performance, such as throughput under a
given set of conditions, but the major benefit of simulation comes from the insight and understanding gained
regarding system operations. Visualization through animation and graphics provides major assistance in the
communication of model assumptions, system operations, and model results. Often, visualization is the
major contributor to a model's credibility, which in tum leads to acceptance of the model's numeric outputs.
Of course, a proper experimental design that includes the right range of experimental conditions plus a rigorous
analysis and, for stochastic simulation models, a proper statistical analysis is of utmost importance for the
simulation analyst to draw correct conclusions from simulation outputs.

The major goals of manufacturing-simulation models are to identify problem areas and quantify system
performance. Common measures of system performance include the following:

• thfoughput under average and peak loads;
• system cycle time (how long it takes to produce one part);
• utilization of resources, labor, and machines;
• bottlenecks and choke points;
• queueing at work locations;
• queueing and delays caused by.material-handling devices and systems;
• WIP storage needs;
• staffing requirements;
• effectiveness of scheduling systems;
• effectiveness of control systems.

Often, material handling is an important part �f a manufacturing system and its performance.
Non-manufacturing material-handling systems include warehouses, distribution centers, cross-docking

430 DISCRETE-EVENT SYSTEM SIMULATION

operations, baggage-handling systems at airports and container terminals. The major goals of these non­
manufacturing material-handling systems are similar to those identified for manufacturing systems. Some
additional considerations are the following:

• how long it takes to process one day of customer orders;
• effect of changes in order profiles (for distribution centers);
• trucldtrailer queueing and delays at receiving and shipping docks;
• effectiveness of material-handling systems at peak IO{Ids;
• rec<ivery time from short-term surges (for example, with baggage-handling).

1 3.3 ISSUES IN MANUFACTURING AND MATERIAL·HANDUNG SIMULAnONS

There are a number of modeling issues especially important for the achievement of accurate and valid
simulation models of manufacturing and material-handling systems. Two of these issues are the proper
modeling of downtimes and whether, for some inputs, to use actual system data or a statistical model of those
inputs.

1 3.3.1 Modeling Downtimes and Failures

Unscheduled random downtimes can have a major effect on the performance of manufacturing systems.
Many a\)thors have discussed the proper modeling of downtime data (Williams [1994]; Clark [1994]; Law
and Kelton [2000]). This section discusses the problems that can arise when downtime is modeled incor­
rectly and suggests a number of ways to model machine and system downtimes correctly.

Scheduled downtime, such as for preventive maintenance, or periodic downtime, such as for tool replace­
ment, also can have a major effect on system performance. But these downtimes are usually (or should be)
predictable and can be scheduled to minimize disruptions. In addition, engineering efforts or new technology
might be able to reduce their duration. .

There are a number of alternatives for modeling random unscheduled downtime, some better than
others:

l. Ignore it.
2. Do not model it explicitly, but increase processing times in appropriate proportion.
3. Use constant values for time to failure and time to repair.

·

4. Use statistical distributions for time to failure and time to repair.

Of course, alternative (I) generally is not the suggested approach. This is certainly an irresponsible
modeling technique if downtimes have an impact on the results, as they do in aimost all situations. One sit­
uation in which ignoring downtimes could be appropriate, with the full knowledge of the customer, is to
leave out those catastrophic downtimes that occur rarely and leave a production line or plant down for a long
period of time. In other words, the model would incorporate normal downtimes bl!t ignore those catastrophic
downtimes, such as general power failures, snow storms, cyclones, and hurricanes, that occur rarely but stop
all production when they do occur. The documented scope of the project should clearly state the assumed
operating conditions and those conditions that are not included in the model. If it is generally known that a
plant will be closed for some number of snow days per year, then the simulation need not take these down­
times into account, for the effect of any given number of days can easily be factored into the simulation
results when making annual projections.

The second possibility, to factor into the model the effect of downtimes by adjusting processing times
applied to each job or part, might be an acceptable approximation under limited circumstances. If each job

SIMULATION OF MANUFACTURING AND MATERIAL-HANDLING SYSTEMS

or part is subject to a large number of small delays associated with downtime of equipment or tools, then the
total of such delays may be added to the pure processing time to arrive at an adjusted processing time. If total
delay time and pure processing time are random in nature, then an appropriate statistical distribution should
be used for the total adjusted processing time. If the pure processing time is constant while the total delay
time in one cycle is random and variable, it is almost never accurate to adjust the processing time by a
constant factor. For example, if processing time is usually I 0 minutes but the equipment is subject to down­
times that cause about a 10% loss in capacity, it is not appropriate to merely change the processing time to a
constant 1 1 minutes. Such a deterministic adjustment might provide reasonably accurate estimates of overall
system throughput, but will not provide accurate estimates of such local behavior as queue and buffer
space needed at peak times. Queueing and short-term congestion are strongly influenced by randoumess and
variability.

The third possibility, using constant durations for time to failure and time to repair, might be appropri­
ate when, for example, the downtime is actually due to preventive maintenance that is on a fixed schedule.
In almost all other circumstances, the fourth possibility, modeling time to failure and time to repair by appro­
priate statistical distributions, is the appropriate technique. This requires either actual data for choosing a sta­
tistical distribution based on the techniques in Chapter I I , or, when data is lacking, a reasonable assumption
based on the physical nature of the causes of downtimes.

The nature of time to failure is also important. Are times to failure completely random in nature, a
situation due typically to a large number of possible causes of failure? In this case, exponential distribution
might provide a good statistical model. Or are times to failure, rather, more regular-typically, due to some
major component-say, a tool-wearing out? In this case, a uniform or (truncated) normal distribution could
be more nearly appropriate. In the latter case, the mean of the distribution represents the average time to failure,
and the distribution places a plus or minus around the mean.

Time to failure can be measured in a number of different ways:

1. by wall-clock time;
2. by machine or equipment busy time;
3. by number of cycle times;
4. by number of items produced.

Breakdowns or failures can be based on clock time, actual usage, or cycles. Note that the word breakdown
or failure is used, even though preventive maintenance could be the reason for a downtime. As mentioned,
breakdowns or failures can be probabilistic or deterministic in duration.

Actual usage breakdowns are based on the time during which the resource is used. For example, wear
on a machine tool occurs only when the machine is in use. Time to failure is measured against machiae-busy
time and not against wall-clock time. If the time to failure is 90 hours, then the model lCeeps track of total
bnsy time since the last downtime ended, and, when 90 hours is reached, processing is interrupted and a
downtime occurs.

t;::lock-time breakdowns might be associated with scheduled maintenance-for example, changes of
fluids every three months when a complete lubrication is required. Downtimes based on wall-clock time may
also be used for equipment that is always busy or equipment that "runs" even when it is not processing parts.

Cycle breakdowns or failures are based on the number of times the resource is used. For example, after
every 50 uses of a tool, it needs to be sharpened. Downtimes based on number of cycle times or number of
items produced are implemented by generating the number of times or items and, in the model, simply count­
ing until this number is reached. 'I)rpical uses of downtimes based on busy time or cycle times may be for
maintenance or tool replacement.

Another issue is what happens to a part at a machine when the breakdown or failure occurS. Possibilities
include scrapping the part, rework, or simply continuing processing after repair. In some cases-for example,

� '1:
!! 1'.

('

432 DISCRETE-EVENT SYSTEM SIMULATION

when preventive maintenance is due-the part in the machine may complete processing before the repair
(or maintenance activity) begins.

Time to repair can also be modeled in two fundamentally different ways:

1. as a pure time delay (no resources required);
2. as a wait time for a resource (e.g., maintenance person) plus a time delay for actual repair.

Of course there are many variations on these methods in actual modeling situations. When a repair or main­
tenance �rson is a limited resource, the second approach will be a more accurate model and provlde more
information.

The next example illustrates the importance of using the proper approach for modeling downtimes and
of the consequences and inaccurate results that sometimes result from inaccurate assumptions.

Example 13.1: Effect of Downtime on Queueing
Con�ider a single machine that processes a wide variety of parts that arrive in random mixes at random times.
Data analysis has shown that an exponentially distributed processing time with a mean of 7.5 minutes
provides a fairly accurate representation. Parts arrive at random, time between arrivals being exponentially
distributed with mean 10 minutes. The machine fails at random times. Downtime studies have shown that
time-to-failure can be reasonably approximated by an exponential distribution with mean time l 000 minutes.
The time to repair the resource is also exponentially distributed, with mean time 50 minutes. When a failure
occurs, the current part in the machine is removed from the machine; when the repair has been completed,
the part resumes its processing.

When a part arrives, it queues and waits its turn at the machine. It is desired to estimate the size of this
queue. An experiment was designed to estimate the average number of parts in the queue. To illustrate the
effect of an accurate treatment of downtimes, the model was ron under a number of different assumptions.
For each case and replication, the simulation run length was 100,000 minutes.

Table 13.1 shows the average number of parts in the queue for six different treatments of the time
between breakdowns. For each treatment that involves randomness, five replications of those treatments and
the average for those five replications are shown.

Case A ignores the breakdowns. The average number in the queue is 2.31 parts. Across the 5 inde­
pendent replications, the averages range from 2.05 to 2.70 parts. This treatment of ·breakdowns is not
recommended.

Case 8 increases the average service time from 7.5 minutes to 8.0 minutes in an attempt to approximate
the effect of downtimes. On average, each downtime and repair cycle is 1050 minutes, with the machine
down for 50 minutes. Thns the machine is down, on the average in the long run, 50/l050 = 4.8% of total
time. Thus, some have argued that downtime has approximately the same effect as increasing the processing

Table 13.1 Average Number of Parts in Queue for Machines with Breakdowns

Case lst Rep 2nd Rep 3rd Rep 4th Rep 5th Rep Avg Rep

A Ignore the breakdowns 2.36 2.05 2.38 ·2.05 2.70 2.31
B. Increase service time to 8.0 3.32 2.82 3.32 2.81 4.03 326
C. All random 4.05 3.77 4.36 3.95 4.43 4.1 1
D . Random processing,

deterministic breakdowns 3.24 2.85 3.28 3.05 3.79 3.24
E. All deterministic 0.52
F. Deterministic processing,

Random breakdowns 1.06 . 1.04 1.10 1.32 1.16 1.13

SIMULATION OF MANUFACTURING.AND MATERIAL-HANDLING SYSTEMS 433

time of each part by 4.8%, which is about 7.86 minutes. Therefore, an assumed constant 8 minutes per part
should be (it is argued) a conservative approach. For this treatment of downtimes, the average number of
parts in the queue, over the five replications, is about 3.26 parts. Across the 5 replications, the range is from
2.81 to 4.03 parts. (Note that the variability as shown in the range of values is very small compared to the
other cai;es.) The treatment in Case B might be appropriate under some limited circumstances, but, as was
discussed in a previous section, it is not appropriate under the assumptions of this example.

The proper treatment, shown as Case C, treats the randomness in processing and breakdowns properly,
with the assumed correct exponential distributions. The average value is about 4. n parts waiting for the
machine. Across the 5 replications, the average queue length ranges from 3.77 to 4.43 parts. The average
number waiting differs from that of Case B by almost one part.

Case D is a simplification that treats the processing randomly, but treats the breakdowns as determinis­
tic. The results average about 3.24 parts in the queue. The range of averages is from 2.85 to:J .79 parts, quite
a reduction in variability from Case C.

Case E treats all of the times as deterministic. Only one replication is needed, because additional repli­
cations (using the same seed) will reproduce the result. The average value in the queue is 0.52 parts, well
below the value in Case C, or any other case for that matter. The conclusion: Ignoring randomness is dan­
gerous and leads to totally unrealistic results.

Case F treats arrivals and processing as deterministic, but breakdowns are random. The average number
of parts in the queue at the machine is about 1 . 13. The range is from 1.04 to 1 .32 parts. For �orne machines
and processing in manufacturing environments, Case F is the realistic situation: Processing times are con­
stant, and arrivals are regulated-that is, are also constant. The reader is left to consider the inaccuracies that
would result from making faulty assumptions regarding the nature of time to failure and time to repair.

In conclusion, there can be significant differences between the estimated average numbers in a queue,
based on the treatment of randomness. The results using the correct treatment of randomness can be far
different from those nsing alternatives. Often, one is tempted by the unavailability of detailed data and the
availability of averages to want to use average time to failure as if it were a constant. Example 13 . 1 illustrates
the dangers of inappropriate assumptions. Both the appropriate technique to use and the appropriate statistical
distribution depend on the available data and on the situation at hand.

As discnssed by Williams [1994], the accurate treatment of downtimes is essential for achieving valid
models of manufacturing systems. Some of the essential ingredients are the following:

• avoidance of oversimplified and inaccurate assumptions;
• careful collection of downtime data;
• accurate representation of time to failure and time to repair by statistical distributions;
• accurate modeling of system logic when a downtime occurs, in terms both of the repair-time logic and

of what happens to the part currently processing:

1 3.3.2 Trace-driven Models

Consider a model of a distribution center that receives customer orders that must be processed and shipped in
one day. One modeling question is how to represent the day's set of orders. A typical order will contain one

· or more line items, and each line item can have a quantity of one or more pieces. For example, when you buy
a new stereo, you might purchase an amplifier, a tuner, and a CD player (all separate line items, each having
a quantity of one piece), and 4 identical speakers (another line item with a quantity of 4 pieces). The overall
order profile can have a major impact on the performance of a particular system design. A system designed to
handle large orders going to a small number of customers might not perform well if order profiles shift toward
a larger number of customers (or larger number of separate shipments) with one or two items per order.

434 DISCRETE-EVENT SYSTEM SIMUlATION

One approach is to chacacteri.ze the order profile by using a discrete statistical distribution for each variable
in an order:

1. the number.of line items
2. for each line item, the number of pieces.

If these two variables are statistically independent, then this approach might provide a valid model of the order
profile. For many applications, however, these two variables may be highly correlated in ways that could be
difficult to characterize statistically. For example, an apparel and shoe company. has six large customers (the
large department stores and discount chains), representing 50% of sales volume, which typically order dozens
or hundreds of line items and large quantities of many of the items. At the opposite pole, on any given day
approximately 50% of the orders are for one or two pairs of shoes (just-in-time with a vengeance!). For this
company, the number of line items in an order is highly positively correlated with the quantity ordered; that .
is, large orders with a large number of line items also usually have large quantities of many of the line items.
And small orders with only a few line items typically order small quantities of each item.

What would happen if the two variables, number of line items and quantity per line item, were modeled
by independent statistical distributions? When an order began processing, the model would make two ran­

dom uncorrelated draws, which could result in order profiles quite different from those found in practice.
Such an erroneous assumption could result, for example, in far too large a proportion of orders having one
or two line items with large unrealistic quantities. .

Another common but more serious error is to assume that there is an average order and to simulate only
the number of orders in a day with each being the typical order. In the author's experience, analyses of many
order profiles has shown (1) that there is no such thing as a typical order and (2) that there is no such thing
as a typical order profile.

An alternative approach, and one that has proven successful in many studies, is for the company to pro­
vide the actual orders for a sample of days over the previous year. Usually, it is desirable to simulate peak
days. A model driven by actual historical data is called a trace-driven model.

A trace-driven model eliminates all possibility of error due to ignoring or misestimating correlations in
the data. One apparent limitation could be a customer's desire, at times, to be able to simulate hypothesized
changes to the order profile, such as a higher proportion of smaller orders in terms of both line items and
quantities. In practice, this limitation can be removed by adding "dials" to the order-profile portion of the
model, so that a simulation analyst can "dial up" more or less of certain characteristics, as desired. One
approach is to treat the day's orders as a statistical population from which the model draws samples in a ran­

dom fashion. This approach makes it easy to change overall order volume without modifying the profile.
A second related approach.would be to.subdivide a day's orders into subgroups based on number of line
items, quantities or other numeric parameters, and then sample in a specified proportion from each subgroup.
By changing the proportion of each subgroup, different order profiles can be "dialed up" and fed into the
model. A third approach is to use factors to adjust the number of daily orders, the number of line items, and/or
the quantities. In practice one of dtese approaches might be as accurate as can be expected for hypothesized
future order profiles and might provide a cost effective and reasonably accurate niode� especiaUy for testing
the robustness of a system design for assumed changes in order characteristics.

Other examples of trace-driven models include the foUowing:

• orders to a custom job shop, using actual historical orders;
• product mix and quantities, and production sequencing, for an assembly line maldng 100 styles and

sizes of hot-water heaters;
• time to failure and downtime, using actual maintenance records;
• Truck arrival times to a warehouse, using gate records.

SIMUlATION OF MANUFACTURING AND MATERIAL-HANDLING SYSTEMS 435

Whether to make an input variable trace-driven or to characterize it as a statistical distribution depends on a
number of issues, including the nature of the variable itself, whether it is correlated with or independent of
other variables, the availability of accurate data, and the questions being addressed.

13.4 CASE SnJDIES OF 1HE SIMULAnON OF MANUFACTURING AND MATERIAL
HANDUNG SYSTEMS

The Winter Simulation Conference Proceedings, l1E Magazine, Modem Material Handling and other periodicals
are excellent sources of information for short cases in the simulation of manufacturing and material-handling
systems.

An abstract of some of the papers from past Winter Simulation Conference Proceedings will provide
some insight into the types of problems that can be addressed by simulation. These abstracts have been par­
aphrased and shortened where appropriate; our goal is to provide an indication of the breadth of real-world
applications of simulation.

Session:
Paper:
Authors:
Abstract:

Session:
Paper:
Authors:
Abstract:

Session:
Paper:
Authors:

Semiconductor Wafer Manufacturing
Modeling and Simulation of Material Handling for Semiconductor Wafer Manufacturing
Neal G. Pierce and Richard Stafford
This paper presents the results of a design study to analyze the interbay material-handling
systems for semiconductor wafer manufacturing. The authors developed discrete-event
simulation models of the performance of conventional cleanroom material handling including
manual and automated systems. The components of a conventional cleanroom material­
handling system include an overhead monorail system for interbay (bay-to-bay) transport,
work-in-process stockers for lot storage, and manual systems for intrabay movement.
The authors constructed models and experiments that assisted with analyzing cleanroom
material-handling issues such as designing conventional automated material-handling systems
and specifying requirements for transport vehicles.

Simulation in Aerospace Manufacturing
Modeling Aircraft Assembly Operations
Harold A. Scott
A simulation model is used to aid in the understanding of complex interactions of aircraft
assembly operations. Simulation helps to identify the effects of resource constraints on
dynamic process capacity and cyCle time. To analyze these effects, the model must capture
job and crew interactions at the control code level. This paper explores five aspects of
developing simulation models to analyze crew operations on aircraft assembly lines:

Representing job precedence relationships
Simulating crew members with different skill and job proficiency levels
Reallocating crew members to assist ongoing jobs
Depicting shifts and overtime
Modeling spatial constraints and crew movements in the production area.

Control of Manufacturing Systems
Discrete Event Simulation for Shop Floor Control .
J. S. Smith, R. A. Wysk, D. T. Sturrock, S. E. Ramaswamy, G. D. Smith, S; B. Joshi

436

Abstract:

I · . f
.·\ :

Session:
Paper:
Authors:

� . . Abstract:

Session:
Paper:
Authors:
Abstract:

Session:
Paper:
Authors:
Abstract:

Ses�ion:
Paper:
Authors:
Abstract:

Session:
Paper:

DISCRETE-EVENT SYSTEM SIMULATION

This paper describes an application of simulation to shop floor control of a flexible
manufacturing system. The simulation is used not only as an analysis and evaluation tool,
but also as a "task generator" for the specification of shop floor control tasks. Using this
approach, the effort applied to the development of control logic in the simulation is not
duplicated in the development of the control system. Instead the same control logic is used
for the control system as was used for the simulation. Additionally, since the simulation
implements the control, it provides very high fidelity performance predictions. The paper
describes implementation experience in two flexible manufacturing laboratories.

Flexible Manufacturing
Developing and Analyzing Flexible Cell Systems Using Simulation
Edward F. Watson and Randall P. Sadowski
This paper develops and evaluates flexible cell alternatives to support an agile production
environment at a mid-sized manufacturer of industrial equipment Three work cell alterna­
tives were developed based on traditional flow analysis studies, past experience, and com­
mon sense. The simulation model allowed the analyst to evaluate each cell alternative under
current conditions as well as anticipated future conditions that included changes to product
demand, product mix, and process technology.

Modeling of Production Systems
Inventory Cost Model for Just-in-Time Production
Mahesh Mathur
This paper presents a simulation model used to compare setup and inventory carrying costs
with varying lot sizes. While reduction of lot sizes is a necessary step towards implementa­
tion of Just-in-Time (JIT) in a job shop environment, a careful cost study is required to
determine the optimum lot size under the present set-up conditions. The simulation model
graphically displays the fluctuation of carrying costs and accumulation of set-up costs on a
time scale in a dynamic manner. The decision of the optimum lot size can then be based on
realistic cost figures.

Analysis of Manufacturing Systems
Modeling Strain of Manual Work in Manufacturing Systems
I. Ehrhardt, H. Herper, and H. Gebhardt
This paper describes a simulation model that considers manual operations for increasing
the effectiveness of planning logistic systems. Even though there is ever increasing automa­
tion, there are vital tasks in production and logistics that are still assigned to humans.
Present simulation modeling efforts rarely concentrate on the manual activities assigned to
humans.

Manufacturing Case Studies
Simulation Modeling for Quality and Productivity in Steel Cord Manufacturing
C. H. Turkseven and G. Ertek
The paper describes the application of simulation modeling to estimate and improve quality
and productivity performance of a steel cord manufacturing system. It focuses on wire
fractures, which can be an important source of system disruption.

Manuf�cturing Analysis and Control
Shared Resource Capacity Analysis in Biotech Manufacturing

SIMULATION OF MANUFAGURING AND MATERIAL-HANDLING SYSTEMS 437

Author:
Abstract:

Session:
Paper:

Authors:
Abstract

P. V. Saraph
This paper discusses an application of simulation in analyzing the capacity needs of a shared
resource, the Blast Freezer, at one of the Bayer Corporation's manufacturing facilities.
The simulation model was used to analyze the workload patterns, run different workload
scenarios, taking into consideration uncertainty and variability, and provide recommenda­
tions on a capacity increase plan. This analysis also demonstrated the benefits of certain
operational scheduling policies. The analysis outcome was used to determine capital invest­
ments for 2002.

Manufacturing Analysis and Control
Behavior of an Order Release Mechanism in a Make-to-Order Manufacturing System with
Selected Order Acceptance
A. Nandi and P. Rogers
The authors used a simulation model to evaluate a controversial policy, namely, holding
orders .in a pre-shop pool prior to their release to the factory floor. In a make-to-order manu­
facturing system, if capacity is fixed and exogenous due dates are inflexible, having orders
wait in a pre-shop pool may cause the overall due date performance of the system to.deteri­
orate. The model was used to evaluate an alternative approach, the selective rejection of
orders. for dealing with surges in demand while maintaining acceptable due date perforniance.

1 3.5 MANUFACTURING EXAMPLE: AN ASSEMBLY-UNE SIMULATION

This section describes a model of a production line for the final assembly of "gizmos". It then focuses on
how simulation can be used to analyze system performance.

1 3.5.1 System Description and Model Assumptions

At a manufacturing facility, an engineering team has designed a new production line for the final �se�bly of
gizmos. Before making the investment to install the new syst�m, some team members

_
propose usmg Simu�a­

tion to analyze the system's performance, specifically to predict system throughput (gizmos pe� 8-hour shift,
on the average). In aQdition, the engineers desire to evaluate potential improvements to the designed s�stem.
One such potential improvement is adding buffer space for holding work-in-process (WIP) between adJacent
workstations. · ·

. .
The team decides to develop a simulation model and conduct an analysis. The team's p�m� objective

is to predict throughput (completed gizmos per shift on the average) for the !liven system design and to eval­
uate whether it meets the desired throughput.' In addition, should throughput be less than expected, the team
wants to use the model to help in identifying bottlenecks, gaining insight into the system's dynamic behavior
and evaluating potential design improvements. .

The proposed production line has six workstations and a special rack for WIP storage betw�n adJa�nt
stations. There are four manual stations, each having its own operator, and two automated stations, which
share a single operator. The six stations perform production tasks in the following sequence:

Station 1: initial manual station begins final assembly of a new gizmo
Station 2: manual assembly station
Station 3: manual assembly station
Station 4: automatic assembly station
Station 5: automatic testing station
Station 6: manual packing station

438 DISCRETE-EVENT SYSTEM SIMULATION

At each manual station, an operator loads a gizmo onto a workbench, perfonns some tasks, and on
completion unloads the gizmo and places it into the WIP storage for the next workstation. The operator takes
10 seconds and 5 seconds for the loading and unloading tasks, respectively.

The WIP storage racks between each pair of adjacent stations have limited capacity. If a . station
completes its tasks on a gizmo but the downstream rack is ful� the gizmo must remain in the station, block­
ing any further work. ln. the initial design, the WIP storage racks have the capacities shown in Table 13.2.
(By assumption, the WIP storage preceding Station 1 is always kept full at 4 units; since it is assumed to
always be full, its specific capacity plays no role.) The system design with capacities given in Table 13.2 is
called the Baseline confignration.

From time to time, a tool will fai� causing unscheduled downtime or unexpected extra work at a manual
or automated station. In addition, all operators are scheduled to take a 30-minute lunch break at the same
time. Work is interrupted and resumes where it left off after lunch. This interrupt/resume rule applies to
operator tasks including assembly work, parts resupply, and repairs during a downtime.

At the automatic stations, a machine perfonns an assembly or testing task. The automatic stations might
have unscheduled (random) downtimes, but they continue to operate during the operator's lunch break. One
operator services both machines to load and unload gizmos (10 seconds and 5 seconds, respectively). After
being loaded, a machine processes the gizmo without further operator intervention unless a downtime occurs.
At all stations, the operator perfonns repairs as needed whenever the station experiences a downtime.

Table 13.3 gives the total assembly time and parts resupply times for each station, plus the number of
parts in a batch. The assembly time for the manual stations is assumed to vary by plus/minus 2 seconds
(uniformly distributed) from the times given in Table 13.3. Parts resupply time does not occur for each
gizmo, but rather after a batch of parts has been assembled onto the gizmo. The machines at stations 4 and
5 do not consume parts.

Each station is subject to unscheduled (random) downtime. Manual stations 1-3 illlve tool failures or
other unexpected problems. The automatic stations occasionally jam or have some other problem that
requires the assigned operator to fix it. Station 6 (packing) is not subject to these downtimes. Thble 13.4

Station

2

3
4
5
6

Table 13.2 Capacity of WIP Storage Suffers for
Baseline Configuralion

Rack Before Station 2 3 4 5

Buffer Capacity 4 2 2 2

Table 13.3 ·· Assembly and Parts Resupply Times

Assembly per Parts Resupply 1ime
Gizmo (Seconds) Part Number (seconds per Batch)

40 A 10
B 15

38 c 20
D 15

38 E 30
35
35
40 F" 30

•: At station 6, the part number (F) represents the shipping containers.

6

2

No. of Parts
per Batch

15
to
8

1 4
25

32

SIMULATION OF MANUFACTURING AND MATERIAl-HANDliNG SYSTEMS 439

Table 13.4 Assumptions and Data for Unscheduled Downtimes

MTTF MITR Expected
- Station TTF (Minutes) TTR (Minutes) +1- Availability

Exponential 36.0 Unifonn 4.0 1.0 90%
2 Exponential 4.5 Unifonn 0.5 0.1 90%
3 Exponential 27.0 Unifonn 3.0 t .O 90%
4 Exponential 9.0 Unifonn 1 .0 0.5 90%
5 Exponential 18.0 Unifonn 2.0 l.O 90%

shows time to failure (TTF) and time to repair (TfR) distributional assumptions and the assumed mean time
to failure (MTTF), mean time to repair (MTfR) and spread (+1-) of repair times. For example, at Station 1 ,
repair time is uniformly distributed with mean 4.0 minutes plus or minus 1 .0 minutes-that is, unifon:i:lly
distributed between 3.0 and 5.0 minutes. Failure can only occur when an operator or machine. is working;
hence, TTF is modeled by measuring only busy or processing time until a failure occurs.

The primary model output or response is average throughput during the assumed 7.5 working hours per
8-hour shift. The model also measures detailed station utilization, including busy or processing time, idle or
starved time (no parts ready for processing), blocked time (part cannot leave station, because downstream
WIP buffer is full), unscheduled downtime, and time waiting for an operator.

Station starvation occurs when the operator and station are ready to work on the next gizmo, the just­
completed gizmo leaves the station, but upstream conditions cause no gizmo to be ready for this production
step. In short, the upstream WIP buffer is empty.

Station blockage occurs when a station completes all tasks on a gizmo, but cannot release the part
because the downstream WIP buffer is full. For both starvation and blockage, production time is lost at the
given station and cannot be made up.

When an operator services more than one station, as does the operator servicing Stations 4 and 5, it is
possible for both stations to need the operator at the same time. This could cause additional delay at the
station and is measured by a "wait for operator" state. Blockage, starvation, and wait-for-operator at each
station will be measured in order to help explain any throughput shortfall, should it occur, and to assist in
identifying potential system improvements.

1 3.5.2 Presimulation Analysis

A presimillation analysis, taking into account the average station cycle time as well as expected station avail­
ability (90%), indicates that each station, if unhindered, can achieve the desired throughput. This initial
analysis is carried out as described in this section.

From the assumed downtime data, the team was able to estimate expected station availability, under the
(ideal) assumption of no interaction between stations. The expected availability shows each station's individual
availability during working (nonlunch, nonbreak) hours, assuming that the operator can always place a
completed gizmo into the downstream rack storage and the next gizmo is ready to begin work at the station.
Expected availability is computed by M1TF/(MTIF + MTTR), or expected busy time during a downtime
"cycle" divided by the length of a downtime cycle (a busy cycle plus a repair cycle) and is given in Table 13.4,
This calculation ignores certain aspects of the problem, including the parts resupply times and any delay
caused by having only one operator to service both Stations 4 and 5. . . .

The design goal for the modeled system is 390 finished gizmos per 8-hour shift. After taking lunch into
account, each shift has up to 7.5 hours of available work time. With unscheduled (random) downtime expected
to be 10% of available time, this further reduces working time to 0.90 x 7.5 hours 6.75 hours. This implies

440 OISCRETE·EVENT SYSTEM SIMULATION

Table 1 3.5 Estimoted Totol Cycle Time ot Eoch Stotion

Station Formula to Estinwte Cycle T1111e (Seconds) Estimate (Seconds)

I 10 + 40 + 5 + 10115 + 15/10 57.2
2 10 + 38 +5 + 2018 + 15/14 56.6
3 10 + 38 + 5 + 30125 54.2
4 10 + 35 + 5 50.0
5 10 + 35 + 5 50.0
6 10+ 40 + 5 + 30132 55.9

that the station with the slowest total cycle time must be able to produce 390 gizmos in the available
6.75 hours. Therefore the total cycle time per gizmo at each station must not exceed 6.75 hours/390 =
62.3 seconds.

·

Now, total cycle time consists of assembly, testing or packing time, and parts resupply time (as given
in Table 13.3), plus gizmo loading time of 10 seconds and unload time of 5 seconds. Parts resupply is not
taken on evecy gizmo, but rather after a given number of gizmos corresponding to using all parts in a given
batch of parts. For example, using the values in Table 13.3 for Station I , parts resupply will take 10 seconds
evecy 15 gizmos for Part A, plus 15 seconds evecy 10 gizmos for Part B, for a total time on the average of
10/15 + 15110 seconds per gizmo.

Using this information, the (minimum) total cycle time for each station is estimated in Table 13.5. These
presimulation estimates indicate, first, that each theoretical cycle time is well below the requirement of 62.3
seconds. Secondly, they indicate that Stations 1 and 2 are potential bottlenecks, if there are any.

As the simulation analysis will later show, Station l experiences blockage due to Station 2 downtime, and
Station 2 occasionally experiences starvation due to downtiine at Station 1 and blockage due to downtime at
Station 3. These blockage and starvation conditions reduce the available work time below the calculated 90%·
hence, for the Baseline Configuration, they reduce the design throughput well below the desired value:
390 gizmos per shift. In summacy, a presimulation analysis, although valuable, at best can provide a rough
estimate of system performance. As the simulation will show, ignoring blockage and starvation gives an overly
optimistic estimate of system throughput.

1 3.5.3 Simulation Model and Analysis of the Designed System

Using the. simulation model, the first experiment was conducted to estimate system performance of tlie
system as designed. The simulation analyst on the team made 10 replications of the model, each having a
2-hour warm-up or initialization followed by a 5-day simulation (each day being ;24 hours). A 95% confi­
dence interval was computed for mean throughput per shift:

95% CI for mean throughput: (364.5, 366.8), or 365.7 ± 1 . 14.

With 95% confidence, the model predicts that mean (or long-ron average) throughput will be between 364.5
and 366.8 gizmos per 8-hour shift with the system as designed. This is well below the design throughput,
390 gizmos per shift.

·

The team decided to conduct further analyses to identify possible bottlenecks and potential areas of
improvement. - -

1 3.5.4 Analysis of Station Utilization

At this point, the team desired to have some explanation of the shortfall in throughput. They suspected that
perltaps it had to do with the small WIP buffer capacity and the resulting blockage and starvation. The same

SIMULATION OF MANUFACTURING ANO MATERIAl·HANOliNG SYSTEMS 441

Table 1 3.6 Detailed Stotion Utilization for Boseline Configuration

StatiJ:m % Down % Blocked % Starved % Wait for Operator

I (8.8,9.6) (1 1 .4, i2.5) (0.0,0.0) (0.0,0.0)
2 (8.2,8.4) (8.0,8.8) (4.9,5.6) (O.O,M)
3 (7.9,8.6) (9.9,10.4) (6.1 ,6.9) (0.0,0.0)
4 (8.9,9.6) (2.0,2.8) (7.5,8.2) (13.1, 14.4)
5 (8.3,9.0) (0.0,0.2) (19.4,20.4) (3.9,4.7)

model was used to estimate detailed workstation utilization in hopes that it would provide an explanation of
throughput shortfall. Table 13.6 contains 95% confidence-interval estimates for the first five workstations for
percent of time down, blocked, starved, and waiting for an operator. (Waiting for operator affects only
stations 4 and 5, as these two stations share one operator. The other stations have a dedicated operator: In
addition to the utilization statistics in Table 13.6, the operators have a 30-minute lunch per 8-hour shift,
representing 6.25% of available time.)

From the results in Table 13.6, it appears that blockage and starvation explain some portion of the short­
fall in throughput. In addition, another possible explanation surfaces: Station ·4 experiences a significant time
waiting for the single operator that services stations 4 and 5. This delay at Station 4 could result in a full WIP
buffer, which in tum wonld help explain the blockage at Station 3 preceding it. Percent of time bl<icked is higher
than percent starved for Stations 1 to 3, so it appears that downstream delays could be a significant bottleneck.

The team proposed some possible system improvements:

l. having two operators to service Stations 4 and 5 (instead of the currently proposed one operator);
2. increasing the capacity of some of the WIP buffers;
3. a combination of both.

The expense of additional WIP storage space induced the team to desire to keep total buffer space as small
as possible, and to require an additional operator only if absolutely necessary, while achieving the design
goal of 390 gizmos per shift.

1 3.5.5 Analysis of Potential System Improvements

To evaluate the addition of an operator and larger WIP buffers, the modei was revised appropriately to allow
these changes, and a new analysis was conducted. In this analysis, the capacity pf each WIP ouffer for Stations
2 - 6 was allowed to increase by one unit above the Baseline value given in Tab!� 13.2. In addition, the effect
of a second operator at Stations 4 and 5 is considered. These possibilities result .in a total of 64 scenarios or
model configurations. (Why?) Making IO replications per scenario resultS in a total of 640 simulation runs.

To facilitate the analysis, the team decided to use the Common Random Number �hnique discussed in
Section 1 2. 1 3. To implement it with proper synchronization, each source of random variability was identi­
fied and assigned a dedicated random-number stream. In this model, processing time, TTF, and TTR are
modeled by statistical distribUtions at each of the six workstations. Therefore, a total of 1 8 random-number
streams were defined, with 3 used at each workstation. In this. way, in each set of runs, each workstation
experienced the same workload and random downtimes no matter which configuration was being simulated.
For a given number of replications the CRN technique, also known as correlated sampling, is expected to
give shorter confidence intervals for differences in system performance;

The model configurations with the most improvement in system throug�put, compared with me Baseline
configuration, are shown in Table 13.7. These configurations were chosen for fur>�tcr evaluation because

. . · '.:

�2 DISCRETE-EVENT SYSTEM SIMUlATION

Table 1 3.7 Improvement in Syslem Throughpul for Alternalive Configurations

increase in Mean
Number of ThroughpuJ per Shift
Operators Buffer Capacities (Compared to Baseline)
Stations Ave.

4 & 5 Buffer 2 Buffer 3 Buffer 4 Buffer 5 Buffer6 Total Diff. CJ Low Cl High

2 3 3 3 2 2 l 3 3 1.7 30.3 33.1
2 3 3 3 2 3 14 31 .7 30.4 33.0
2 3 3 2 2 3 13 30.0 28.6 31 .3
2 3 3 3 I 3 13 29.8 28.6 3 1.0
2 3 3 2 2 2 12 29.7 28.1 31.3
2 3 3 3 1 2 12 29.5 28.1 31 .0
2 3 3 2 l 3 12 26.6 25.4 27.9
2 2 3 3 2 2 12 26.6 25.1 28.1
i 2 3 3 2 3 13 26.6 25.0 28.1
2 3 2 3 2 3 13 26.5 25.0 28.0
2 3 2 3 2 2 12 26.4 253 27.5
2 3 3 2 1 2 l l 26.3 25.1 27.5

each shows a potential improvement in throughput of approximately 25 units or more-that is, the lower end
of the 95% confidence interval is 25 or higher. The values shown for "Ave Diff' represent the increase in
throughput compared to the Baseline configuration. Recall that the Baseline throughput was previously esti­
mated, with 95% confidence, to be in the interval (364.5, 366.8). Being conservative, the engineering team
would like to see an improvement of 390 - 364.5 = 25.5 gizmos per shift. The top six configurations in
Table 13.7 have a lower confidence interval larger than 25.5 and hence are likely candidates for achieving the
!iesired throughput. Interpreted statistically: The lower end of the confidence interval is larger than 25.5,
s'o the results yield a 95% confidence that mean throughput will increase by 25.5 or more in the top six
corifigurations listed in Table 13.7.

Note that all the most improved configurations include two operators at Stations 4 and 5. Tbe simulation
results for configurations with one operator (not shown here) indicate that a 390 throughput cannot be
achieved with one operator, at least not with the buffer sizes considered. '

Some configurations can be ruled out because a less expensive option achieves a similar throughput.
Consider, for example, the first two configurations in Table 13.7. They are identical except for Buffer 6
capacity. Since WIP buffer capacity is expensive, the smaller total buffer capacity will be the less expensive
option. Clearly, there is no need to expand from 2 to 3 units at Buffer 6. The "Total" column can assist in
quickly ruling out configurations that do no better than a similar one with smaller total buffer capacity.

The model configuration that increases throughput by 25.5 or better and has the smallest total buffer
capacity is the fifth one in Table 13.7, with capacities of (3,3,2,2,2) for Buffers 2 to 6, respectively. On these
oonsiderations, this system design becomes the team's top candidate for further evaluation. Tbe next step
(not included here) would be to conduct a financial analysis of each alternative configuration.

1 3.5.6 Concluding Words: The Gizmo Assembly-Une Simulation

Real-life <;Xamples similar to this example model include assembly lines for automotive parts and automo­
bile bodies, automotive pollution-control assemblies, consumer items such as washing machines, ranges, and

SIMUlATION OF MANUFACTURING AND MATERIAL·HANDLING SYSTEMS

dishwashers, and any number of other assembly operations with a straight flow and limited buffer space
between workstations. Similar models and analyses may also apply to a job shop with multiple products;
variable routing, and limited work-in-process storage.

13.6 SUMMARY

This chapter intrOduced some of the ideas and concepts most relevant to manufacturing and material handling
simulation. Some of the key points are the importance of modeling downtimes acctirately, the advantages
of trace-driven simulations with respect to some of the inputs, and the need in some models for accurate!
modeling of material-handling equipment and the control software.

REFERENQS·

BANKS, J. [1994], "Software for Simulation," in 1994 Winter Simulation Conference Proceedings, eds. J. D. Tew,
S. Manivannan, D. A. Sadowski, and A. F. Seila, Associatioo for Computing Machinery, New York, pp. 26-33.

CLARK, G. M. [1994], "Introduction to Manufaclllring Applications,'' in 1994 Winter Simulation Conference
Proceedings, eds. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, Association for Computing Machinery,
New York, pp. I5-2L

EHRHARDT, I., H. HERPER, AND H. GEBHARDT (1994], "Modelling Strain of Manual Work in Manufaclllring
Systems," in 1994 Winter Simulation Conference Proceedings, eds.J. D. Tew, S. Manivannan, D. A. Sadowski, and
A. F. Seila, Association for Computing Machinery, New York, pp. 1044-1049.

LAW, A. M. AND W. D: KELTON [2000], Simulation Modeling and Analysis, 3d ed., McGraw-Hill, New York.
NANDI, A., AND P. ROGERS [2003], "Behavior of an Order Release Mechanism in a Make-to-Order Manufacturing

System with Selected Order Acceptance,� in 2()()3 Winter Simulation Conference Proceedings, eds. S. E. Chick, P. J.
Sanchez, D. Ferrin, and D. J. Morrice, Association for Computing Machinery, New York, pp. 1251-1259.

PIERCE, N. G., AND R. STAFFORD [1994], "Modeling and Simulation of Material Handling for Semiconductor Wafer
Fabrication," in /994 Wmter Simulmion Conference Proceedings, eds. J. D. Tew, S. Manivannan, D. A Sadowski, and
A. F. Seila, Association for Computing Machinery, New York, pp. 900-906.

SARAPH, P. V. [2003], "Shared Resource Capacity Analysis in Biotech Manufacturing," in 2003 Winter Simulation
Conference Proceedings, eds. S. E. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, Association for Computing
Machinery, New York, pp. 1247-1250.

SCOIT, H. A. [1994], "Modeling Aircraft. Assembly Operations," in 1994 WiuJer Simulation Conference Proceedings,
eds. J. P. Tew, S. Manivannan, D. A. Sadowski, and A. F. SeiJa, Association for Computing Machinery, New York,
pp. 920-927.

SMITII, J. S., et al. [1994], "Discrete Event Simulation for Shop Floor Contto1," in 1994 Winter Simulation Conference
Proceedings, eds. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila, Association for Computing Machinery,
New York, pp. 962-969.

TURKSEVEN, C. H., AND G. ERTEK [2003], "Simulation Modeling fur Quality and Productivity in Steel Cotd
Manufacturing;' in 2003 Wmter Simulation Conferenee Proceedings, eds. S. E. Chick; P. J. Sanchez, D. Ferrin, and
D. J. Morrice, Association for Computing Machinery, New York, pp. 1225-1229.

WATSON, E. F., AND R. P. SADOWSKI [1994], "Developing and Analyzing Flexible Cell Systems Using Simulatiooi'
in 1994 Winter Simulmion Conference Proceedings, eds. J; D. Tew, S. Manivannan, D, A. Sadowski, and A. F. Seila,
Association for Computing Machinery, New York, pp. 978-985.

WILLIAMS, E. J. [1994], "Downtime Data-Its Collection, Analysis, and Importance,� in 1994 Winter Simulation
Conference Proceedings, eds. J. D. Tew, S. Manivannan, D. A. Slidowski, and A. F. Seila, Association for Computing

. Machinery, New York, pp. 1040-1043.

\ I .) !

444 DISCRETE-EVENT SYSTEM SIMJLATION

EXERCISES ·

Instructions to the student: Many of the following exercises contain material-handling equipment such as
conveyors and vehicles. The student is expected to use any simulation language or simulator that supports
modeling conveyors and vehicles at a high level.

Some of the following exercises use the uniform, exponential, normal or triangular distributions.
Virtually all simulation languages and simulators support these, plus other distributions. The use of �e ftrst
three distributions was explained in the note to the exercises in Chapter 4; the use of the triangular is
explained in the exercise that requires. it For reference, the properties of these distributions, plus others used
in simulation, are given in Chapter 5, and random-variate generation is covered in Chapter 8.

I. A case sortation system consists of one infeed conveyor and 12 sortation lanes, as shown in the follow­
ing schematic (not to scale):

60 fl --------1

�--
15 ft 1 !

Cases enter the system from the left at a rate of 50 per minute at random times. All cases are 18 by 12
inches and travel along the 18 inch dimension. The incoming mainline conveyor is 20 inches wide and
60 feet in length (as shown). The sortation lanes are numbered I to 12 from left to right, and are 18
inches wide and 15 feet in length, with 2 feet of spacing between adjacent lanes. (Estimate any other
dimensions that are needed.) The infeed conveyor runs at 180 feet/minute, the sortation lanes at 90
fee.tlminute. All conveyor sections are accumulating, but, upon entrance at the left, incoming cases are
at least 2 feet apart from leading edge to leading edge. On the sortation lanes, the cases accumulate with
no gap between them. '

Incoming cases are distributed to the 12 lanes in the following proportions:

6% 7 I I%
2 6% 8 6%
3 5% 9 5%
4 24% 10 5%
5 15% I I 3%
6 14% 12 0%

The 12th lane is an overflow lane; .it is used only if one of the other lanes fill and a divert is not possible.

At the end of the sortati<in lanes, there is a group of operators who scan each case with a bar-code scanc
ner, apply a label and then place it on a pallet. Operators move from lane to lane as necessary to avoid
allowing a lane. to. fill. 'fhere is one pallet per lane, each holding 40 cases. When a pallet is full, assume
a new empty one is immediately available. If a lane fills to I 0 cases and another case arrives at the divert
point, this last case continues to move down the uO-foot mainline conveyor and is diverted into lane 12,
the overflow lane. ·

SIMULATION OF MANUFAGURING AND MATERIAL-HANDLING SYSTEMS 445

Assume that one operator can handle 8.5 cases per minute, on the average. Ignore walking time and
assignment of an operator to a particular lane; in other words, assume the operators work as a group
uniformly spread over all 12 lanes.

(a) Set up an experiment that varies the number of operators and addresses the question: How many
operators are needed? The objective is to have the minimum number of operators but also to avoiJ
overflow.

(b) · For each experiment in part (a), report the following output statistics:

Operator utilization
Total number of cases palletized
Number of cases palletized by lane
Number of cases to the overflow lane

(c) For each experiment in part a, verify that all cases are being palletized. In other words, verify that
the system can handle 50 cases per minute, or explain why it cannot.

2. Redo Exercise I to a greater level of detail by modeling operator walking time and operator assignment
to lanes. Assume that operators walk at 200 feet per minute and that the walking distance from one lane
to the next is 5 feet. Handling time per case is now·assumed to be 7.5 cases per minute. Devise a set of
rules that can be used by operators for lane changing. (For example, change lanes to that lane with the
greatest number of cases only when the current lane is empty or the other lane reaches a certain level.)
Assume that each operator is assigned to a certain number .of adjacent lanes and handles only those
lanes. However, if necessary, two operators (but no more) may be assigned to one lane-.,..-that is, operator
assignments may overlap.

(a) If your lane-changing rule has any numeric parameters, experiment to find the best settings. Under
these circumstances, how many operators are needed? What is the average operator utilization?

(b) Does a model that has more detail, as ddes.Exercise 2a when compared to Exercise I, always have
greater accuracy? How about this particular model? Compare the results of Exercise 2a to the results
for Exercise I . Are the same or different conclusions drawn? · ·

(c) Devise a second lane-changing rule. Compare results between the two rules. Compare total walk­
ing time or percent of time spent walking between the two rules:
Suggestion: A lane-changing rule could have one or two "triggers". A one-trigger rule might state
that, if a lane reached a certain level, the operator moved to that lane. (Without modification, such
a rule could lead to excessive operator movement, if two lanes had about the same number of cases
near the trigger level.) A two-trigger rule might state that, if a lane reached a certain level and the
operator's current lane became empty, then change to the new lane; but ifaclane reaches a specified
higher "critical" level, then the operator immediately changes lanes.

(d) Compare your results with those of other stUdents who may have used a different lane�changing
rule.

3. Parts carried by the AGV system arrive through three intersections are

Intersection Jnterarrival Time (Minutes)

11 10 ± 4
u 8 ± 2
13 20 ± 6

446 DISCRETE-EVENT SYSTEM SIMULATION

The parts are to be assembled in any one of the assembly stations A l or A2. The assembly time is

p

s

w
II 12 D

A I

. .. .]l o(, ..,. .)o
6 6 6 3 6

3

6

A2

6

6

7 ± 2 minutes. After assembly, parts are sent to the output station P. If both A l and A2 are free, parts
have an equal probabili� of going to either A l or A2. AGV is required to take the arriving part to
assembly station and assembled part to output station. Once AGV becomes free, it responds to any
waiting call, otherwise it is sent to staging area S. All links are unidirectional and the distances are shown
in meters. The AGV speed is 40 meters per minute. Delay the start of the assembly operations for
30 minutes after parts start aniving to allow a buildup of parts. Simulate the system for 10,000 minutes.
Determine the number of AGVs required to ensure that there is always a part available for the assembly

· operations. ·

4. Redo the simulation with the assumption that the assembly times are different in A l and A2 as

Assembly Station Assembly Time (Minutes)

AI
A2

9 ± 2
7 ± 2

Hence if both AI and A2 are free, ihe part is taken to the assembly station A2.

5. In a machine shop, there are four machines M l , M2, M3, and M4. They are identical in all respects and
served by AGVs. Parts arrive with interanival time following exponential with a mean of 5 minutes.
Machines do not have any buffer space. So an aniving part at the input area must first gain access to a
free machine before it can be moved to the machine. When a machine finishes an operation, an AGV is
requested and the machine is to be made free only after the part has been picked up by the· AGV.
Processing time follows normal with a mean of 8 minutes and a standard deviation of 2 minutes. It takes
30 seconds to load and.unload the parts. AGV takes the finished parts to the output station and the AGV
is free to respond tO other requests, or is sent to the input area that �es as a staging area. The AGVs
move at a speed of 25 meters per minute. The dimensions shown are in meters, and the intersections
are 0 meter in length. Simulate this system for 2,500 minutes. Change the number of AGVs and analyze
the impact on parts waiting _time.

· ·

SIMULATION Of MANUFACTURING AND MATERIAL-HANDLING SYSTEMS 447

20 20 10

INPUT
10

I Ml I I M2 I
10

I M4 I 1 M3 I
10 OU11'UT

6. Reconsider Exercise 5. Assume that two types of parts are aniving and the parts are to be processed in
more than one machine. Parts arrive with interarrival time following exponential with a mean of 5 minutes.
The sequence of operation and the percentage of part types are

Part Type Percentage Sequence

Process time at the machines are

A 60 Ml, M2, M4
B 40 M2, M3

Machine Process Time

M l N(8,2)
M2 4 ± 2
M3 N(8,1)
M4 9 ± 2

Simulate this system for 2,500 minutes. Change the number of AGVs and analyze the impact on parts
waiting time.

7. Develop a model for Example 13 . 1 and attempt to reproduce qualitatively the results found in the text
regarding different assumptions for simulating downtimes. Do not attempt to get exactly the siune
numerical results, but rather to show the same qualitative results.

(a) Do your models support the conclusions discussed in the text? Provide a discussion and conclu­
- sions.

(h) Make a plot of the number of entities in the queue versus time. Can you tell when failures occurred?
After a repair, about how long does it take for the queue to get back to "normal"?

8. In Example 13.1, the failures occorred at low frequency compaied with the processing time of� entity.
Tune to failure was 1000 minutes, and interarrival time was 10 minutes, implying that few entities would
experience a failure. But, when an entity did experience a failure (of 50 minutes, on average), it was sev-
eral times larger than the processing time of 7.5 minutes.

·

Redo the model for Example 13.1, assuming high-frequency failures. Specjfically, assume that the time
to failure is exponentially distributed, with mean 2 minutes, and the time to repair is eJ�,ponentially

i · I

. I

I
I I I

I
l
'

1 \

DISCRETE-EVENT SYSTEM SIMUlATION

distributed, with mean 0. 1 minute or 6 seconds. As compared with the low-frequency case, entities will
tend to experience a number of short downtimes.

For low-frequency versus high-frequency downtimes, compare the average number of downtimes expe­
rienced per entity, the average duration of downtime experienced, the average time to complete service
(including downtime, if arty), and the percent of time down.

Note that the percentage of time the machine is down for repair should be the same in both c�ses:

50/(1000 + SO) = 4.76%
6 sec/(2min-t:6 sec) = 4.76%

Verify percentage downtime from the simulation results. Are the results identical? . . . close? Should they
be identical, or just close? As the simulation run-length increases, what should happen to percentage of
time down?

·

With high-frequency failures, do you come to the same conclusions as were drawn in the text regarding
the different ways to simulate downtimes? Make recommendations regarding how to model low-frequency
versus high-frequency failures.

9. Redo Exercise 1 1 (hased ou.Example 13.1), but with one change: When an entitv experiences a downtime,
it must be reprocessed from the beginning. If service time is random, take a new dmw uuu. t.h..; ..;.ouaJd
distribution. If service time is constant. it starts over again. How does this assumption affect the results?

10. Redo Exercise l l (based on Example 13.1), but with one change: When an entity experiences a down­
time, it is scrapped. How does scrapping entities on failure affect the results in the low-frequency and
in the high-frequency sitliations? What are your recommendations regarding the handling of low-vecius
high-frequency downtimes when parts are scrapped?

11. Sheets of metal pass sequentially through 4 presses: shear, punch, form, and bend. Each machine is
subject to downtime and die change. The parameters for each machine are as follows:

Process Time to Time to No. of Sheets to Time to
Rate Failure Repair a Die Change Change Die

Press (per min.) (min.) (min.) (no. sheets) · (min.)

Shear 4.5 100 8 500 25
Punch 5.5 90 10 400 ' 25
Form 3.8 180 9 750 25
Bend 3.2 240 20 600 25

'

Note that processing time is given as a rate-for example, the shear press works at a rate of 4.5 sheets
per minute. A�sume that prpcessing time is constant The automated equipment makes the time to
change a die fairly constant. so it is assumed to be always 25 minutes. Die changes occur between
stamping of two sheets after the number shown in the table have gone through a machine. Time to failure
is assumed to be exponentially distributed, with the mean given in the table. Time to repair is assumed
to be uniformly distributed, with the mean taken from the table and a half-width of 5 minutes. When a
failure occurs, 20% of,the sheets are scrapped. The remaining 80% are reprocessed at the failed machine
after the repair.

Assume that an unlimited supply of material is available in front of the shear press, which processes one
sheet after the next as long as there is space available between itself and the next machine, tbe punch press.

SIMUlATION OF MANUFACTURING AND MATERIAL-HANDLING SYSTEMS 449

In general, one machine processes one sheet after another continuously, stopping only for a downtime,
for a die change, or because the available buffer space between itself and the next machine becomes full.
Assume that sheets are taken away after bending at the bend press. Buffer space is divided into 3 s�pa­
rate areas, one between the shear and the punch presses, the second between the punch and form presses,
and the last between form arid bend.

(a) Assume that there is an unlimited amount of space between machines. Run the simulation for 480
hours (abOut 1 month with 24 hour days, 5 days per week). Where do backups occur? If the total
buffer space for all three buffers is limited to 15 sheets (not counting before shear or after bend),
how would you recommend dividing this space among the three adjacent pairs of machines? Does
this simulation provide enough information to make a reasonable decision?

(b) Modify the model so that there is a finite buffer between adjacent machines. When the buffer
becomes full and the machine feeding the buffer completes a sheet, the sheet is not able to exit the
machine. It remains in the machine blocking additional work. Assume that total buffer space is 1 5
sheets for the 3 buffers.

Use the recommendation from part (a) as a starting point for each buffer size. Attempt to minimize the
number of runs. You are allowed to experiment with a maximum of 3 buffer sizes for each buffer. (How
many runs does this make?) Run a set of experiments to determine the allocation of buffer space that
maximizes production. Simulate each alternative for at least 1000 hours.

Report total production per hour on the average, press utilization (broken down by percentage of time
busy, down, changing dies, and idle), and average number of sheets in each buffer.

- 1 4
Simulation of Computer Systems

!t is only natural that simulation is used extensively to simulate computer systems, because of their great unportance to �e e�ezyday o�ratio�s of business, industry, government, and universities. In this chapter, we �ook at the motivations for Simulatmg computer systems, the different types of approaches used, and the mte�lay between characte�s�cs of the model a;:d implementation strategies. We begin the discussion by loo�ng
_
at gen�ral charactenstJ.cs of computer-system simulations. Next, we lay the groundwork for investi­�atlng �1mulatJ.on o: computer system� by l?oking at various types of simulation tools used to perfonn those sn�mlations. In sectiOn 14.3, we descnbe different ways that input is presented or generated for these simu­l�t!ons. We next work through an example of a high-level computer system one might simulate, paying atten­tio� to problems of

_
model constt:nction and output analysis. In section 14.5, we tl!rn to the central prooessing umt (CPU) and pomt out what IS generally simulated and how. Following this, we consider simulation of memory systems, in section 14.6.

14.1 INTRODUCTION

Computer systems are incredibly complex. A computer system exhibits complicated behavior at time scales
fu:>m the time to "flip" a transistor's state (on the order of l(J·Il seconds) to the time it takes a human to inter­
act with it (o� the order

_
of seconds or minutes). Computer systems are designed hierarchically, in an effort

to �age th_is compleXIty: Figure 14.1 illustrates the point. At a high level of abstraction (the system level),
one unght VIe:' computational activity in tenns of tasks circulating among servers, queueing for service
·v.:hen a server IS �usy. � lower level in the hierarchy can view the activity as being among components of a
�1ven pr�essor (Its registers, its memory hierarchy). At a lower level still, one views the activity of func­
tional untts that together make up a central processing unit, and, at an even lower level one can view the
logical circuitry that makes it all happen.

'

450

SIMULATION OF COMPUTER SYSTEMS

, ..- · · · · ····� �y[;]) �- f ·t1�ne j
register file •••

•
• / I L2 cache I

/ �------- -- - - 1 •·· I I
/ 1 Main memoxy l

ComputerSystem Level •• / :_ _ _ _ _ _ _ _ _ _ _ _ _ ...!

.·· EJ EJ"EJ : .�

./

......... •·•
• : .. -............ �i�k F ... ann ,

,... L< , Proeessor Level
'

"' _,.,.,.,.,.,.,.,. ····-·��-··-··*"'""'"� ,., .. _ �---....... -...... .
• • •

Gate Level
• ,. _,,_,, ",_.,.,"'"''-''"''""�"'"'''"

t�"·-··········-·--·········"-'"'''-"'"'�··�� .. ·

CPU Level

Figure 14.1 Different levels of abstraction in computer systems.

451

Simulation is used extensively at every level of this hierarchy, with some results from one level
being used at another. For instance, engineers working on designing a new cbip will begin by partitioning
the chip functionally (e.g., the subsystem that does arithmetic, the subsystem that interacts with memory,
and so on), establish interfaces between .the subsystems, then design and test the subsystems individually.
Given a subsystem design, the electrical properties of the circuit are first studied by using a circuit simula­
tor that solves differential equations describing electrical behavior. At this level, engineers worlc to ensure
the correctness of signals' timing throughoot the circuit and to ensure that the electrical properties
fall within the parameters intended by the design. Once tliis level of validation has been achieved, the elec­
trical behavior is abstracted into logical behavior (e.g., signals fonnerly thought of as electrical waveforms
are now thought of as logical 1 's and O's). A different type of simulator is next used to test the correctness
of the circuit's logical behavior. A common testing technique is to present the design with many different
sets of logical inputs ("test vectors") for wbich the desired logical outputs are known. Discrete-event simu­
lation is used to evaluate the logical response ()f the circuit to eaCh test veetor and is also used to evaluate
timing (e.g., the time required to load a register with a datum from the main memory). Once a chip's
subsystems are designed and tested, the designs are integrated, .and then the whole system is subjected to
testing, again by simnlation.

ll

'

452 DISCRETE-EVENT SYSTEM SIMUlATION

At a higher level, one simulates by using functional abstractions. For instance, a memory chip could be
modeled simply as an array of numbers, and a reference to memory as just an indexing operation. A special
type of description language exists for this level, called "register-transfer-language" (see, for instance, Mano
1 993). This is like a programming language, with reassigned names for registers and other hardware specific
entities and with assignment statements used to indicate data transfer between hardware entities. For exam­
ple, the following sequence loads into register r3 the data whose memory address is in register r6, subtracts
one from it, and writes the result into the memory location that is word adjacent (a word in this example is
4 bytes in size) to the location first read:

r3 M [r6] ;

r3 = r3 - l ;

r6 r6+4 ;

M !r6l = r3 ;

A simulator of such a language might ascribe deterministic time constants to the execution of each of these
statements. This is a useful level of abstraction to use when one needs to express sequencing of data trans­
fers at a low level, but not so low as the gates themselves .. The abstraction makes sense when one is content
to assume that the memory works and that the time to put a datum in or out is a known: constant. The "known
constant" is a value resulting from analysis at a lower level of abstraction. Functional abstraction is also
commonly used to simulate subsystems of a central processing unit (CPU), in the study of how an execut-
ing program exercises special architectural features of the CPU.

·

At a higher level still, one might study how an Input-Output (I/0) system behaves in response to exe­
cution of a computer program. The program's behavior may be abstracted to the point of being modeled, but
with some detailed description of I/0 demands (e.g., with a Markov chain that with_ some specificity
describes an I/0 operation as the Markov chain transitions). The behavior of the I/0 devices may be
abstracted to the point that all that is considered is how long it takes to complete a specified I/0 operation.

.Because of these abstractions, one can simulate larger systems, and simulate them more quickly. Continuing
in this vein, at a higher level of abstraction still, one dispenses with specificity altogether. The execution of
a program is modeled with a randomly sampled CPU service interval; its I/0 demand is modeled as a ran­
domly sampled service time on a randomly sampled I/0 device.

Different levels of abstraction serve to answer different sorts of questions about a computer system, and
different simulation tools exist for each level. Highly abstract models rely on stochastically modeled behav­
ior to estimate high-level system performance, such as throughput (average number of 'jobs" processed per
unit time) and mean response time (per job). Such models can also incorporate system failure and repair and
can estimate metrics such as mean time to failure and availability. Less abstract models are used to evaluate
specific systems components. A study of an advanced CPU design might be aimed at estimating the through­
put (instrUctions executed per unit time); a study of a hierarchical memory system might seek to estimate the
fraction of time that a sought lllemory reference was found immediately in the examined memory. As we
have already seen., more detailed models are used to evaluate functional correctness of circuit design.

1 4�2 SIMULAnON TOOLS

Hand in hand with different abstraction levels, one finds different tools used to perform and evaluate simu­
lations. We next examine different types of tools and identify important characteristics about their function
and their use.

An important characteristic of a tool is how it supports model building. In many toots; one constructs net­
works of components whose local behavior is already known and already programmed into the tool. This is a
powerful paradigm for complex model construction. At the low end of the abstraction hierarchy, electrical

SIMUlATION OF COMPUTER SYSTEMS 453

circuit simulators and gate-level simulators are driven by network descriptions. Likewise, at the high end of
the abstraction hierarchy, tools that simulate queueing networks and Petri nets are driven by network descrip­
tions, as are sophisticated commercial communication-system simulators that have extensive libraries of pre­
programmed protocol behaviors. Some of these tools allow one to incorporate user-programmed behavior, but
it appears this is not the norm as a usage pattern. . . . A very significant player in computer-systems des1gn at lower levels of abstraction IS the VHDL lan­
guage (e.g., see Ashenden [200 1]). VHDL is the result of a U.S. effort in the 1980's to standardize '?e l�n­
guages used to build electronic systems for the government It has since und��one ��·IEEE stan?ard1zat10n
process and is widely used throughout the industry. As a language for descnbmg d1gttal electromc systems,
VHDL serves both as a design specification and as a simulation specification. VHDL is a rich language, full
both of constructs specific to digital systems and the constructs one expects to fmd . in a procedural pro­
gramming language. It achieves its dual role by imposing a clear separation between system topology and
system behavior. Design specification is a matter of topology; simulation specification is a ruatter of behav­
ior. Libraries of predefined subsystems and behaviors are widely available, but the language itself very much
promotes user-defined programmed behavior. VHDL is also innovative in its use o� abstract interfaces (e.g.,
to a functional unit) to which different "architectures" at different levels ofabstractlon may be attached. For
instance, the interface to the Arithmetic Logical Unit (ALU) would be VHDL "siguals" that identify the
input operands, the operation to be applied to them, and the output. One could attach to this interface an
architecture that in a few lines of code just performs the operation�i(an addition is specified, just one
VHDL statement assigus the output sigual to be the sum (using the VHDL addition operator) of the two input
signals. An alternative architecture could completely specify the gate-level logical design of the ALU.
Models that interact with the ALU interface cannot tell how the semantics of the interface are implemented.
This separation of interface from architecture supports modular construction of models and allows one to
validate a new submodel architecture by comparing the results it returns to the interface with those returned
by a different architecture given the same inputs. A substantive treatment of VHDL is well beyond the scope
of this book. VHDL is widely used in the electrical and computer engineering community, but is hardly used
outside of it.

One drawback to VHDL is that it is a big language, requires a substantial VHDL compiler, and vendors
typically target the commercial market at prices that exclude academic research. Of course, other �imulati�n
languages exist, and this text describes several in Chapter 4. Such languages are good for modehng certam
types of computer systems at a high level, but are not designed or suited for expressi?n �f computer-�ystems
modeling at lower levels of the abstraction hierarchy. As .a result, when computer sc1enttsts need to s1mulate
specialized model behavior, they will often write a simulation (or a simulator) from scratch. For example,

_
1f

a new policy for moving data between memories in a hierarchy is to be considered, an existing language w1ll
not hive that policy preprogrammed; when a new architectural.feature in a CP� is designed, the mod�ler
will have to describe that feature and its interaction with the rest of the CPU, usmg a general programmmg
language. A class of tools exists that use a general programming language to express simulation-model
behavior, among them SimPack (Fishwick [1992]), C++SIM (Little and McCue [1994]), CSIM (Schwet

_
man

[1986]), Awesime (Grunwald [19951), and SSF (Cowie et al. [1999]). This type of tool defines objeCts
and libraries for use with such languages as C, C++, Java. Model behavior is expressed as a computer
program that manipulates these predefined objects. The technique

_
is especially pow�rfu

.
l when used with

object-oriented languages, because the tool can define base-class objects whose behavtor IS extended by the
modeler.

Some commercial simulation languages do support interaction with general progranlming languages;
however, simulation languages are not frequently used in the academic computer-science wo;td. Cost is

_
a

partial explanation. Commercial packages are developed with commerci�l needs �nd commerc1al budgets m
mind, yet computer scientists can usually develop what they need relatively qm�kly, themselves. Another
explanation is a matter of emphasis: Simulation languages tend to include a nch number of predefined

454 DISCRETE-EVENT SYSTEM SIMUlATION

simulation objects and actions and allow access to a programming language to express object behavior; a
simulation model is expressed primarily in the constructs of the simulation language, and the model is eval­
uated either by compiling the model (using a simulation-language-specific compiler) and running it or by
using a simulation-language-specific interpreter.

One of the many advantages to such an approach is that the relative rigidity of the programming model
makes possible graphical model building, thereby raising the whole model-building endeavor to a higher
level of abstraction. Some tools have so much preprogrammed functionality that it is possible to design and
run a model without writing a single line of computer code.

By contrast, programming languages with simulation constructs tend to define a few elemental simula­
tion objects; a simulation model is expressed principally via the notions and control flow of the general pro­
gramming language, with references to simulation objects interspersed. To evaluate the model, one compiles
or interprets the program, using a compiler or interpreter associated with the general programming language,
as opposed to one associated with the simulation language. The former approach supports more mpid model
development in contexts wher� the language is tuned to the application; the latter approach supports much
greater generality in the sorts of models that can be expressed.

Among tools supporting user-programmed behavior, a fundamental chamcteristic is the worldview that
is supported. In the following two subsections, we look closely at process orientation as it is expressed in
SSF, then at an event-oriented approach using a Java base framework.

14.2.1 Process Orientation

A process-oriented view (see Chapter 3) implies that the tool must support sepamtely schedulable threads of
control. Threading is a fundamental concept in progmmming, and a discussion of its capabilities and imple­
mentation serves to highlight important issues in simulation modeling. Fundamentally, a "thread" is a sepa­
mtely schedulable unit of execution control, implemented as part of a single executing process (as seen by
the opemting system; see Nutt [2004]). An opemting system has the notion of sepamte processes (which
might internet), which typically have their own sepamte and independent memory spaces. A group of threads
opemte in the same process memory space, with each thread having allocated to it a relatively small portion
of that spacefor its own use. That space is used to contain the thread's state, which is the full set of all infor­
mation needed to restart the thread after it is suspended. State would include register values and the thread's
runtime stack, which holds variables that are local to the prOcedures called by the thread. Once a thread is
given control, it runs until it yields up control, either via an explicit statement that serves simply to relinquish
control or by blocking until signaled by another thread to continue.

These ideas are made more concrete by discussing them in the context of a Java implementation of SSR
Java defines the Thread class; a subclass of Thread defines the execute method, which is defined in
the thread body. Threads coordinate with each other through "locks," which provi�e mutually exclusive
access to code segments. Every instance of a Java object has an associated lock (and almost every variable
in Java is an object). A thread tries to execute a code fragment protected by the lock for object obj via the Java
statement

synchronized (obj) { /• code fragment •/ }

A thread must acquire the lock before executing the code fragment, and only one thread has the Jock at a
time. A thread that executes a synchronized statement at an instant at which another thread holds the
lock blocks-which could mean suspension, depending on the thread scheduler. Java threads can also coor­
dinate through wait and notify method calls, also associated with an object's lock. A thread·that executes
obj . wait () suspends. Actually, multiple threads can execute obj • wait () , and each will suspend.
Eventually some thread executes obj . notify () , and the thread scheduler releases one of the suspended
threads to continue. 1

SIMUlATION OF COMPUTER SYSTEMS 455

These notions can be used to implement process orientation in a Java simulator. Each simulation process

derives from the Java Thread class. One additional thread will maintain an event list; processing for that

thread involves removing the least-time event from the event list, reanimating the simulation p�ocess thread

(or threads) associated with that event, and blocking until those threads have completed. While � process

thread is executing, it may cause additional events to be inserted into the scheduler �ead'� event hst. When

a process tlliead completes, it needs to block and to signal the scheduler threa� that 1t 1s fimshed. 'W_e accom­

plish all this by using two locks per simulation process. One of these locks IS the one Ja�a prov�des auto­

matically for every object (and a simulation process thread is an object). The other lock 1s a vanable each

simulation object defines, which we'll call lock. A suspended process thread blocks on a call

lock . wait () ; it remains blocked there until the scheduling thread executes �oti�y () on that �an;e

object variable. After the scheduler does this, it blocks by calling wait () on the s�u�atlon. process obje:t s

own built-in lock. So the simulation process thread notifies the scheduler that 1t Is fm1shed by calhng

notify () on its own built-in lock. .
SSF code we discussed earlier in Chapter 4 (Figures 4.1 4 and 4.15) illustrates some of these pomts.

Recall that this code models a single server with exponentially distributed interarrival times and positive nor­

mal service times. A cursory glance shows the model to be legitimate Java code that uses SSF base classes.

SSF defines five base classes around which simulation frameworks are built (discussed in Chapter 4).

The key one for discussing process orientation is the process cl�s; derived classes �rrivals in Figure 4. 1:
and Server in Figure 4.15 are examples of it. The base class specifies that method actio� be the thr�d body,

each derived class overrides the base-class definition to specifY its own thread's behav10r. Every object of a

given class derived from process defines a separate thread of control, but all execute the s.ame thread code �dy.

The wai tFor statement used in Arrival's thread body suspends the thread; 1ts argument spec1fies

how long in simulation time the thread suspends. The Java thread-based scheduli�g mech�ism we descri�
earlier enables implementation of wai tFor to cause a "wake-up" event to be mserted mto t?e sch�ulm.g

�·s event list, time stamped with the current time plus the wait For argument. Here vanable u�e IS

the future-event time; method insertProcess puts the process into the event q?eu�. A non-Simple

process (e.g., one implemented with a Java thread) goes through a sequence of synchromzation steps to reach

the noti fy () method. (We will say more about.Simple processes in 14.2.2.) The sc�eduler.thread has

blocked on the process's native lock; this notify () releases it. The process then un�ediately calls

wait () on its lock variable, which suspends the thread until the scheduler executes not �fy () on �at

same variable. From the point of view of the code fragment executing wai tFor, the statement follow1�g

the waitFor call executes precisely at the time implied by the waitFor argument. The code m

Figure 14.2 (taken from an SSF implementation) illustrates this.

public void waitFor (long timeinterval) {
time = owner.owner. clock + timeinterval ;
owner . owner . insertProcess (this) ;
if (I isSimple ()) {

synchronized(lockl {
synchroni zed (thisl {

notify() ;
}
try{lock.wait (l ; }
catch(InterruptedException e l {)

Figure 14.2 SSF implementation of waitFor statement.

456 DISCRETE-EVENT SYSTEM SIMULATION

The call to wait On in the Server's action has a slightly different implementation. The code implementing
waitOn first attaches the process to the in Channel's list of processes that are blocked on it, then engages
in the same lock synchronization sequence as wai tFor to block itself and release the scheduler thread. The
semantics of releasing a blocked process are defirjed in terms of SSF Events. An out Channel object to
which an Event object is written has almost always been "mapped" to an inChannel object. When an
Event is written to an out Channel at time t, the outChannel's write method computes the time t + d
at which the Event is available o n the .associated inChannel (d is a function of delays declared when the
out Channel is created, the mapTo method is called, and the write method is called), and an internal event
is put on the scheduler's event list, with time stamp t + d. The scheduler executes this event (no SSF process
does) and releases all processes blocked on the inChannel to which the Event arrives. Each of these is able
to get a copy of the Event so delivered, by calling the in Channel's acti veEvents method.

From these descriptions, we see that, normally, each event has a thread overhead cost 2 thread reani­
mations, and 2 thread suspensions. Depending on how thread context switching is implemented, this cost
ranges from heavy to very heavy, as compared with a purely event-oriented view. These costs can be avoided
in SSF by designing processes to be simple, as is described next.

1 4.2.2 Event Orientation

From a methodological point of view, the process-oriented view is distinguished from the event-oriented view
in terms of the focus of the model description. Process orientation allows for a continuous description, with
pauses or suspensions. Event orientation does not. From an implementation point of view, the key distin­
guishing feature of process-oriented simulation is the need to support suspension and reanimation, which
leads us to threads, as we have seen. In SSP, though, we see that the difference between process and event ori­
entation is not very large: The SSF world encompasses both. The only .difference is that, for SSF to be event
oriented, its processes need to be simple, a technical term for the case when every statement in action that
might suspend the process would be the last statement executed under normal execution semantics.

The implementation of wai tFor in Figure 14.2 computes the time when the suspensipn is lifted and
puts a reanimation event in the event list Synchronization by threads through locks is used only if the
process is not simple. An implementation of wai tOn would be entirely similar. If every SSF process in a
model is simple, there is no true code suspension, and the model is essentially event oriented. The action
body for a simple process is just executed from its normal entry point when the condition that releases that
process from "suspension" is satisfied. The only way an Event that is written into an out Channel is deliv­
ered is if the recipient had called wai tOn for the cprresponding inChannel at a time prior to that at which
the Event was written. Thus, we see that some of the "events" implicit in an SSF model with event orien­
tation are kernel events, which decide whether model events ought to be executed as a result Writing to an
out Channel schedules a kernel event at the Event's receive time, but the kernel's processing of that event
determines whether an action body is called. Nevertheless, execution of action bodies constitutes the
essential "event processing" when SSF is used in a purely event-oriented view. It is interesting that, from a
conceptual point of view, there is very little difference between process-oriented and event-oriented SSE

To conclude this discussion on tools, we remark that flexibility is the key requirement in computer-systems
simulation. Flexibility in most contexts means the ability to use the full power of a general programming lan­
guage. This requires � level of programming expertise that is not needed by users of commercial graphically
oriented modeling packages. The implementation requirements of an object-oriented event-oriented approach
are much less delicate than those of a threaded simulator, and the amount of simulator overhead involved in
delivering an event to an object is considerably less than the cost of a context switch in a threaded system.
For these reasons, most of the simulators written from scratch take the e-Vent-oriented view. However, the
underlying simulation framework necessarily provides a lower level of abstt:action an<!. so forces a modeler
to design and implement more model-management logic. The choice between using a process-oriented or an

I

SIMULATION OF COMPUTER SYSTEMS 457

event-oriented simulator-or writing one's own�is a function of the level of modeling ease, versus execution
speed.

To summarize this section, we present a table that lists different levels of abstraction in computer -systems
simulation, the sorts of questions whose answers are sought front the models, and the sorts of tools typically
used for modeling. The level of abstraction decreases as one descends through Table 14. 1 .

1 4.3 MODEL INPUT

Just as there are different levels of abstraction in computer-systems simulation, there are different means of
providing input to a model. The model might be driven by stochastically generated input, or it might be given
trace input, measured from actual systems. Simulations at the high end of the abstraction hierarchy most typ­
ically use stochastic input; simulations at lower levels of abstraction commonly employ trace input
Stochastic input models are particularly useful when one wishes to study system behavior over a range of
scenarios; it could be that all that is required is to adjust an input model paiameter and rerun the simulation.
Of course, using randomly generated input raises the question of how real or representative the input is; that
doubt frequently induces systems people to prefer trace data on lower level simulations. Using a trace means
one cannot explore different input scenarios, but traces are nseful when directly comparing two different.
implementations of some policy or some mechanism on the same input. The realism ·of the input gives the
simulation added authority.

In all cases, the data used to drive the simulation is intended to exercise whatever facet of the computer
system is of interest High-level systems simulations accept a stream of job descriptions; CPU simulations
accept a stream of instruction descriptions; memory simulations accept a stream of memory references; and
gate-level simulations accept a stream of logical signals.

Computer systems modeled as queueing networks (recall Chapter 7) typically interpret "customers" as
computer programs; servers typically represent services such as attention by the CPU or an Input-Output
(1/0) system. Random sampling generates customer interarrival times; it may also be used to govern routing
and time in serviCe. However, it is common in computer-systems contexts to have routing and service times
be state dependent (e.g., the next server visited is already specified in the customer's description, or could
be the attached server with least queue length).

Interarrival processes have historically been modeled as Poisson processes (where times between suc­
cessive arrivals have an exponential distribution). However, this assumption has fallen from favor as a result
of empirical observations that significantly contradict Poisson assumptions in current computer and com­
munication systems. The real value of Poisson assumptions lies in tractability for mathematical analysis, so,
as simulationists, we can discard them with little loss.

In the subsections to follow, we look at the mathematical formulation of common input models, sto-
chastic input models for virtual memory, and direct-execution techniques.

'

Table 14.1 Decreasing Abstraction and Model Results

Typical System Model Results Tools

CPU Networlc job throughput, queueing networlc,
job response time Petri net simulators. scratch

Processor instruction throughput, VHDL, scratch
time/instruction

Memory System miss rates, response time VHDL, scratch
ALU timing, correctness VHDL, scratch
Logic N�ork timing, correctness VHDL, scratch

458 DISCRETE-EVENT SYSTEM SIMULATION

14.3.1 Modulated Poisson Process

Stochastic input models ought to reflect the real-life phenomenon called burstiness----that is, brief periods when
traffic intensity is much higher than normal. An input model sometimes used to support this, retaining a useful

· level of mathematical tractability, is a Modulated Poisson Process, or MPP. (See Fischer and Meier-Hellstern,
[1993).) The underlying framework is a continuous-time Markov ch� (CIMC), whose details we sketch so as
to employ the concept later. A CIMC is always in some state; for descriptive purposes, states are named by the
integers: 1, 2, The CIMC remains in a state for a random period of time, transitions randomly to another
state, stays there for a random period of time, transitions again, and -so on. The CfMC behavior is completely
described by its generator matrix, e = { qij I . For states i * j, entry qij describes the rate at which the chain tran­
sitions from state i into state j (this is the total transition rate out of state i, times the probability that it transitions
then into state;). The rate describes how quickly the transition is made; its units are transitions per unit simula­
tion time. Diagonal element q . . is the negated sum of all rates out of state i : qu = -"' . _ q, 1-. An operational y . �}�/ . view of the CIMC is that, upon entering a state i, it remains in that state for an exponentially distributed period
of time, the exponential having rate -q •r When making the transition, it chooses state j with probability -
q . .lq . .. Many CIMCs are ergodic, meaning that, if it is left to run forever, every state is visited infinitely IJ f.J .
often. In an ergodic chain, tr. denotes state i's stationary probability, which we can interpret as the long-term
average fraction of time the

'
CTMC is in state i. A critical relationship exists between stationary probabili­

ties and transition rates : For every state i,

H,rq,_j = rHjqjj
i�i f#.i

If we think of qiJ as describing a probability "flow" that is enabled when the CTMC is in state i, then these
equations say that, in the long term, the sum of all flows out of state i is the same as the sum of all flows into
the state. We will see in the example that follows that we can use the balance equations to build a stochastic
input with desired characteristics. To complete the definition of a MPP, it remains only to associate a cus­
tomer arrival rate A. with state i. When the CIMC is in state i, customers are generated as a Poisson process
with rate Ar

'

To illustrate, let us consider an input process that is either OFF, ON, or BURSTY (the output rate is much
higher in the BURSTY state than in the ON state). We wish for the process to be OFF half of the time-on
average, for l second-and, when it is not OFF, we wish for it to be BURSTY for 10% of the time. We will
assume that the CTMC transitions into BURSTY only from the ON state and transitions out of BURSTY only
into the ON state. We will say that state 0 corresponds to OFF, I to ON, and 2 to BURSTY. Our problem
statement implies that tr0 = 0.5, 1r1 = 0.45, and 112 = 0.05. The only transition from OFF is to ON, and the mean
OFF time is l, so we infer that %.1 = l. The balance equation for state 0 can be rewritten as

0.5 = 0.45ql,O

and hence q 1,0 = (0.5/0.45). The balance equation for state 1 can be rewritten as

0.45((0.5/ 0.45) + ql,2) = 0.5 + 0.05q2,1

and the balance equation for state 2 is

The equations for states 1 and 2 are identical; mathematically, we don't have enough conditions to force a
unique solution. If we add the constraint that a BURSTY period lasts, on average, l/10 of a second, we
thereby define that q2.1 = 10 and, hence, that q1_2 = (0.5/0.45). Operationally, the simulation of this CTMC is

SIMULATION OF COMPUTER SYSTEMS 459

straightforward. In state 0, one samples an exponential with mean l to dete�e
_
the state's holding �e.

Following this period, the CTMC transitions into state l and �pies a holdin� �e from an exponential
with mean 0.45, after which it transitions to OFF or BURSTY With equal probability. In the BURSTY state,
it samples an exponential holding time with mean 0. 1. Now all that is left is for us to define the state-depend-
ent customer arrival rates. Obviously, \ = 0; for illustration, we choose � = 10 and � = 500.

_ . Figure 14.3 presents a snippet of code used to generate ti�es of arri�als i_n this process. Trans1�ons
between states are sampled by using the inverse-transform technique, descnbed m Chapter 9. (The vanable
ace computes the cumulative probability function in the dis�butio� described by the

_
row vector

p [state] .) Figure 14.4 plots total customers generated as a function of time-for � short penod of a sam­
ple run, and for a longer period. In the shorter run, we see regions where_ the graph �creases sharply; they
correspond to periods in the BURSTY state. While the CTMC is not in this state, a rrnxture of OFF and ?N
periods moves the accumulated packet count up at a much more gnid� rate. The MPP

_
model can de�nbe

burstiness, but the burstiness is limited in time scale. The longer run v1ews the data at a time scale that IS two
orders of magnitude larger, and we see that the irregularities are largely smoothed.

class mpp {

public static double Finish;
public static double time = 0 . 0 ;
public static double htime , etime;
public static int state = 0;
public static int total = 0 ;
public static Random stream;

public static void main (String argv [])

while (time < Finish) {

I I sim termination
II current clock
II transition times
II current state id
II total pkts emitted

11 generate exponential holding time, state-dependent mean
htime = time+exponential (stream, hold [state]) ;

11 emit packets until state transition time.
_
state d':'p':'ndent

11 rate . Note assignment made to etime in wh1le cond1t1on test
while ((etime = time+exponential (stream, l . Oirate [state]))

· < min (htime , Finish)) {
System . out . println (etime + ' ' • • + total) ;

total++ ;
time = · etime; II advance to packet issue time

time = htime;

II select next state
double . trans = stream. nextDouble () ;
double ace = P [state] [0] ;
int i = 0 ;

while (ace < trans) ace += P [statel [++i] ;
state = i ;

)
)

Figure 14.3 Java code generating MPP trace.

!' ; ..

. i

460 DISCRETE-EVENT SYSTEM SIMULATION

Tune

(a) Short run, small time scale

Time
(b) Long run, large time scale

Figure 14.4 Sample runs from MPP model.

In contrast to the Markovian essence of the MPP model, consider a traffic source that remains OFF for
an �xponentially distributed period of time with mean 1.0, but, when it comes ON, remains on for a period
of time sampled from a Pareto distribution. While it is ON, packets arrive as a Poisson process. As we will
see in the chapter on simulation of computer networks, the Pareto distribution is of particular interest because
it gives rise to "self-similarity," which informally means preservation of irregularities at multiple time scales.
Figure 14.5 parallels the MPP data, displaying accumulated packet counts as a function of time; it presents
behavior for the first 1000 units of time and for the first 100,000 units of time. Here, despite two orders of

-·-'---"--·

SIMULATION OF COMPUTER SYSTEMS

600

500

200

·MMP-Trace pareto• -

400 600
Tune

(a) Short run, small lime scale ·

Time

(b) Long run, large time scale

800 1000

100000

Figure 14.5 Sample runs from self-similar model.

461

magnitude of difference in run length, the visual impression of behavior is much the same between the two

traces. This sort of behavior is frequently seen in computer and communication systems; the· long lengths

reflect burstiness of packets, file lengths, and demand on a server.

14.3.2 Virtual-Memory Referencing

Randomness can also be used to drive models in the middle levels of abstraction. An example is a model of
program-ex:ecution behavior in a computer with virtual memory. (See Nutt [2004].) In such a system, the data
and instructions used by the program are organized in units called pages. All pages are the same size,
typically 210 to 212 bytes in size. The physical memory of a computer is divided into page frames, each capable

462 DISCRETE-EVENT SYSTEM SIMULATION

of holding exactly one page. The decision of which page to map to which frame is made by the operating
system. As the program executes, it makes memory references to the "virtual memory," as if it occupied a
very large memory starting at address 0 and were the only occupant of the memory. On every memory ref­
erence made by the program, the hardware looks up the identity of the page frame containing the reference
and translates the virtual address into a physical address. The hardware might discover that the referenced
page is not present in the main memory; this situation is called a page fault. When a page fault occurs, the
hardware alerts the operating system, which then takes over to bring in the referenced page from a disk and
decides which page frame should contain it. The operating system could need to evict a page from a page
frame to make room for the new one. The policy the operating system uses to decide which page to evict is
called the "replacement policy." The quality of a replacement policy is often measured in terms of the hit
ratio-the fraction of references made whose page frames are found immediately.

Vn:tual-memory systems are used in computers that support concurrent execution of multiple programs.
In order to study different replacement policies, one could simulate the memory-referencing behavior of
several different programs, simulate the replacement policy, and count the number of references that page
fault For this simulation to be meaningful, it is necessary that the stochastically generated references capture
essential characteristics of program behavior. VJrtual memory works well precisely because programs do tend
to exhibit a certain type of behavior; this behavior is called locality of reference. What this means intuitively
is that program references tend to cluster in time and space and that, when a reference to a new page is made
and the page is brought in from the disk, it is likely that the other data or instructions on the page will also
soon be referenced. In this way, the overhead of bringing in the page is amortized over all the references made
to that page before it is eventually evicted. A program's referencing behavior can usually be separated into a
sequence of "phases"; during each phase, the program makes references to a relatively small collection of
pages, called its working set. Phase transitions essentially change the program's working set The challenge
for the operating system is to recognize when the pages used by a program are no longer in its working set,
for these are the pages it can safely evict to make room for pages that are in some program's working set.

Figure 14.6 illustrates a stream of memory references taken from an execution of the commonly used
gee compiler. One graph gives a global picture; the other cuts out references to pages over number I 00 and
shows more fine detail. Each graph depicts points of the form (i, pi) where P; is the page number of the ith
reference made by the program (arithmetically shifted so that the smallest page number referenced is 10).
The phases are clearly seen; each member of the working set of a phase is seen as lines (which are really just
a concatenation of many points). One striking facet of this graph is how certain pages remain in almost all
working sets. However, other kinds of programs exhibit other behaviors. A common characteristic of scien­
tific programs is that the execution is dominated by an inner loop that sweeps over arrays of data; the pages
containing the instructions are in the working set throughout the loop, but data pages i'nigrate in and out.

Despite various differences, a near-invariant among program executions is the presence of phase-like
behavior and of working sets. In the building of a stochastic reference generator, it therefore makes sense to
focus modeling effort on phase and working-set defmition. As a starting point, we might, with every refer­
ence generated, randomly choose (with some small probability) whether to start a new phase (by changing
the working set). Given a working set, we would choose to refe,rence some page in the working set with high
probability and, if choosing to stay in the set, choose with. high probability the same page as the one last ref­
erenced in the working set. The inner loop of a prograp:� that generates references in this fashion appears in
Figure 14.7. Details of working-set definition are hidden inside of routine new_wrkset and might vary
with the type of program being modeled. For the purposes of illustration here, we wrote a version that
defined a working set by randomly choosing a working-set size between 2 and 8 and a maxirrium page num­
ber of 100. A working set of size n is constructed by randomly choosing a "center" page c from among all
pages, randomly choosing an in�er dispersion factor d from 2 to 6, and then randomly selecting a working
set from among all pages within distance d x n from center page c (with appropriate wraparound of page
numbers at the endpoints 0 and 100). In order to model the referencing pattern of a scientific program's

SIMULATION OF COMPUTER SYSTEMS

locality of reference

";�..; �����f � � ,; ; • : : :; ; · : : : :,���!��� ·;:;�iii!��-�!
·�� *'�- . �tHrtt�"'K�1 '

200000 .400000
Time

(a) gee, all references shown

: : : ; � : : : : : : : : : - .

:-·- : : �-:: :

Tune

(b) gee, references < 100 shown

locality of reference

463

figure 1 4.6 ScaHer-plotted referencing paHern cif gee com�ile�. Referenced page number is ploHed os

a function of reference number ("time"). Horizontal sequences md1cate frequent rereferences to the same

page number.

double ppt
double psw
double psp

0 . 0001; II Pr{ phase transition)
0 . 999; II Pr{ ref in ws }
0 . 9 ; II Pr{ reference same page)

II method new_wrkset () creates a new working set

DISCRETE-EVENT SYSTEM SIMULATION

II method from_wrkset () samples from the working set
II method not_from_wrkset () samples from outside the working set

int ref ;
int sv_ref ;
Random stream;

II last page referenced
II save ref
II random number stream

for (int i=O; i<length; i++) {
if (stream.nextDouble () < ppt) new wrkset () ;
if (stream.nextDouble (J < psw) { -

if (psp < stream.nextDouble ())
ref � sv_ref = from_wrkset () ;

II phase transition
II stay in working set?

II change page, in wrkset

else ref = not_from_wrkset () ; II step outside of wrkset

System. out .println (i + ' ' ' ' + ref) ;
ref sv_ref ;

figure 14.7 Java pseudocode for generating a reference trace.

instruction stream, we manipulated the logic illustrated above to "lock down" a working set for a long time
in the middle of the program execution. Figure 14.8 illustrates the result. As designed, phases and working
sets are precisely defmed.

The preceding example illustrates how one can in principle generate an execution path stochastically,
but simulations at the middle level of abstraction also commonly use traces. Studies of CPU design will use
a measured trace of instructions executed by a rurming program; studies of memory systems will use a meas­
ured trace of the addresses referenced by an executing program. Such traces get to be lengthy. A small piece
of a typical trace of memory references is shown here:

2 430d70
2 430d74
2 415130
0 1000acac
2 414134
1 7fffOOac
2 414138

The first number is a code describing the type of access; 2 represents an instruction fetch, 0 a data read, 1 a data
write. The second number represents a memory address, in hexadecimal. If the trace were also to describe the
instruction stream, a hexadecimal word giving the machine code of the instruction fetched could follow the mem­
ory address on every instmction fetch line. 1\vo or three words of memory are needed to represent onf< reference,
even when the information is efficiently packed (not as characters, as shown, which take much more space!).
Consider also the amount of computation needed to simulate a CPU or memory for the execution of a signifi­
cantly long run of a nontrivial program. These observations belp us understand the motivation for techniques
that compress the address trace and for techniques that' allow one to infer information about multiple systems
from a single pass through a long trace. We will say more about these techniques later in this chapter.

SIMULATION OF COMPUTER SYSTEMS 465

"wStrace'.'

20

Time

Figure 14.8 A synthetic trace modeling a scientific-program instruction slream.

Another method of generating input is called "direct execution" simulation. (For examples, see Covington
eta/. [1991], Lebeck and Wood [1997], Dickens etaL [1996]). One approach to it is illustrated in Figure 14.9.
Direct execution is like generating a trace and driving the simulation with that trace, all at once. Computer
programs are "instrumented" with additional code that observes the instructions the program executes and the

Simulation executable

r ---------� subroutine call• i--------;
l Simulation Model I 1 lns!rumented I
I and Control I I Progrnm :
�----------1 return reference '- ----- _ _ I

Figure 14.9 Direct-execution simulation.

466 DISCRETE-EVENT SYSTEM SIMULATION

memory and flO references the program makes as it executes. The instrumented program is compiled and
linked with a simulation kemel library. Execution control rests with the simulation kernel, which calls the.
instrumented program to provide the next instruction or reference that the program generates. The simulation
kernel uses the returned information to drive the model for the next step. The simulation model driven by the
program's execution can be of an entirely different CPU design, or a memory system, or even (given multiple
instrumented programs) the internals of a communications network. Direct-execution simulation solves
the problem of storing very large traces-the trace is consumed as it is being generated. However, it is tricky
to modify computer programs to get at the trace information and to coordinate the trace generator with
discrete-event simulator. The only practical way an ordinary simulator practitioner can use such methods is
when the system has a software tool for making such modifications, but this feature is not common.

1 4.4 HIGH-LEVEL COMPUTER-SYmM SIMULATION

In this section, we illustrate concepts typical of high-level computer simulations by sketching a simulation
model of a computer system that services requests from the World Wide Web.

Example 14.1
A company that provides a major website for searching and links to sites for travel, commerce, entertainment,
and the like wishes to conduct a capacity-planning study. The overall architecture of its system is shown in
Figure 14. 10. At the back end, one finds data servers responsible fur all aspects of handling specific queries
and updating databases. Data servers receive requests for service from application servers-machines dedi­
cated to running specific applications (e.g., a search engine) supported by the site. In front of the applications
are Web servers, which manage the interaction of applications with the World Wide Web; the portal to the
whole system is a load-balancing router that distributes requests directed to the website among the Web servers.

The goal of the study is to evaluate the site's ability to handle load at peak periods. The desired output
is an empirical distribution of the access response time. Thus, the high-level simulation model should focus

Figure 14.1 0 Website server system.

SIMULATION OF COMPUTER SYSTEMS 467

on the impact of timing at each level that is used, system factors that affect that timing, and the effects of
timing on contention for resources. To understand where those delays occur, let us consider the processing
associated with a typical query.

· All entries into the system are through a dedicated router, which examines the request and forwards it to
some Web server. Time is required to exercise the logic of looking at the request to discern whether it is a new
request (requiring load balancing) or part of an ongoing session. It is reasonable to assume one switching time
for a preexisting request and a different time for a new request. The result of the first step is selection of a Web
server and the enqueueing there of a request for service. A Web server can be thought of as having one queue
of threads of new requests, a second queue of threads that are suspended awaiting a response from an appli­
cation server, and a third queue of threads "ready" to process responses from application servers. An accepted
request from the router creates a new request thread. We may assume the Web server has adequate memory
to deal with all requests. It has a queueing policy that manages access to' the CPU; the distinction between new
requests and responses from application servers is maintained for the sake of scheduling and for the sake of
assigning service times, the distributions of which depend on the type. The servicing of a new request amounts
to identification of an application and the associated application server. A request for service is formatted and
forwarded to an application server, and the requesting thread joins the suspended queue. At an application
server, requests for service are organized along application types. A new request creates a thread that joins a
new-request queue associated with the identified application. An application request is modeled as a sequence
of sets of requests from data servers, interspersed with computational bursts-for example,

burst 1
reques t data from Dl , D3 , and DS

burst 2

request data from Dl and D2

burst 3

In this model, we assume that all data requests from a set must be satisfied before the subsequent computational
burst can begin. Query search on a database is an example of an application that could generate a long sequence
of bursts and data requests, with large numbers of data requests in each set We need not assume that every
execution of an application is identical in terms of data requests or execution bursts; these can be generated
stochastically. An application thread's state will include description of its location in its sequence and a list of
data requests still outstanding before the thread can execute again. Thus, for each application, we will maintain
a list of threads that are ready to execute and a list of threads that are suspended awaiting responses from data
servers. An application server will implement a scheduling policy over sets of ready application threads. A data
server creates a new thread to respond to a data request and places it in a queue of ready threads. Some
data �rver might implement memory-management policies and could require further coordination with the
application server to know when to release used memory. Upon receiving service, the thread requests data from
a disk, then suspends until the disk operation completes, at which point the thread is moved from the suspended
list to the ready list and, when executed, again reports back to the application server associated with the request
The thread suspended 'at the application server responds; eventually, the application thread· finishes and reports
its completion back to the Web-server thread that initiated it, which in turn communicates the results back over
the Internet

Stepping back from the details, we see that a simulation model of this system must specify a number of
features, listed in Table 14.2. All of these affecting timing in some way. The query-response-time distribu­
tion can be estimated by measuring, for each query, the time between at which a request first hits the router
and the time at which the Web-server thread communicates the results. From the set of simulated queries,
one can build up a histogram. As should be evident, a response time reflects a great many different factors
related to execution bursts, scheduling policies, and disk-access times. Deeper understanding of the system
is obtained by measuring behavior at each server of each type. One would look especially for evidence of

468 DISCRETE-EVENT SYSTEM SIMULATION

Table 14�2 Required Specification for Web System Model

Subsystem

Router
Web Server
Application Server
Data Server

Specijicalions

load-balancing policy, execution times
server count, queueing policy, execution times
server count, queueing policy, behavior model
server count, disk count, queueing policy,
memory policy, disk timing

bottlenecks. CPU bottlenecks would be reflected at servers with high CPU utilization; IO bottlenecks at disks
with high utilization. To assess system capacity at peak loads, we would simulate to identify bottlenecks,
then look to see how to reduce load at bottleneck devices by changes in scheduling policies, by binding of
applications to servers, or by increasing the number of CPUs or disks in the system. Normally, one must
resimulate a reconfigured system under the same load as before to assess the effects of the changes.

The website model is an excellent candidate for a threaded (process-oriented) approach to modeling.
The most natural process-oriented approach is to associate processes with servers. The simulation model is
expresSed from an abstracted point of view of the servers' operating system. Individual queries become
messages that are passed between server processes. In additional to limiting the number of processes, an
advantage of this approach is that it explicitly exposes the scheduling of query processing a� the u�er level.
The modeler has both the opportunity and the responsibility to provide the logic of schedultng actwns that
model processing done on behalf of a query. It is a modeling viewpoint that simplifies analy�is of server
behavior-an overloaded server is easily identified by the (modeler-observable) length of Its queue of
runnable queries. However, it is a modeling viewpoint that is a bit lower in abstraction than the first one and
requires more modeling and coding on the part of the user. ·

An event-oriented model of this system need not look a great deal different from the second of our
process-oriented models. A query passed as a message between servers have an obvious �vent-oriented
expression. A modeler would have to add to the logic, events, and event h�dlers that des:nbe the way a
CPU passes through simulation time. For example, consider a call to hold(qt) m a process-onented model to
express that the CPU is allocating qt units of service to a query, during which time it does nothing else. In

_
an

event-oriented model, one would need to define events that reflect "starting" and "stopping" the processmg
of a query, with some scheduling logic interspersed. Additional events and handlers need to be defined for
any "signaling" that might be done between servers in a process-oriented model-for example, when a data­
server process awaits completion of modeled 10 requests sent to its disks. A process-oriented approach, even
one focused on servers rather than queries, lifts the level of model expression to a higher level of abstraction
and reduces the amount of code that must be written. In a system as complex as the website, one must factor
complexity of expression into the overall model-development process.

· --------

1 4.5 CPU SIMULATION

Next, we consider a lower level of abstraction and look at the simulation of a central processing unit.
Whereas the high-level simulation of the previous example treated execution time of a program as a cons.tant,
at the lower level we do the simulation to discover what the execution time is. The input driving this stmu­
lation is a stream of instructions. The simulation works through the mechanics of the CPU's logical design
to find out what happens in response to that stream, how long it takes to execute the program, and where
bottlenecks exist in the CPU design. Our discussion illustrates some of the functionality of a modern CPU
and the model characteristics that such a simulation seeks to discern. Examples of such simulations include

OF COMPUTER SYSTEMS

those described in Cmelik and Keppel [1994], Bedicheck [1 995], Witchel and Rosenblum [1996], Austin,
Larson, and Ernst [2002], Bohrer et aL [2004] and Magnusson et al. [2002]. The view of the CPU taken in
our discussion is similar to that taken by the RSIM system (Hughes et al. [2002]).

The main challenge to making effective use of a CPU is to avoid stalling it; stalling happens whenever
the CPU commits to executing an instruction whose inputs are not all present. A leading cause of stalls is
the latency delay between CPU and main memory, which can be tens of CPU cycles. One instruction might
initiate a read-for example,

load $ 2 , 4 ($3 }

which is an assembly language statement that instructs the CPU to use the data in register 3 (after adding
value 4 to it) as a memory address and to put the data found at that address into register 2. If the CPU insisted
on waiting for that data to appear in register 2 before further execution, the instruction could stall the CPU
for a long time if the referenced address is not found in the cache. High-performance CPUs avoid this by
recognizing that additional instructions can be executed, up to the point where the CPU attempts to execute
an instruction that reads the contents of register 2-for example,

add $4 , $2 , $ 5

This instruction adds the contents of registers 2 and 5, and places the result in register 4. If the data expected
in register 2 is not yet present, the CPU will stalL So we see that, to allow the CPU to continue past a memory
load, it is necessary to (I) mark the target register as being unready, (2) allow the memory system to load the
target register asynchronously while the CPU continues on in the instruction stream, (3) stall the CPU if it
attempts to read a register marked as unready, and (4) clear the unready status when the memory operation
completes.

The sort of arrangement just described was frrst used in the earliest supercomputers, designed in the
1960s. Modern microprocessors add some additional capabilities to exploit instruction level parallelism
(ILP). We outline some of the current architecture ideas in use to illustrate what a simulation model of an
ILP CPU involves.

The technique of pipelining has long been recognized as a way of accelerating the execution of com­
puter instructions. (See Patterson and Hennessy [1997].) Pipelining exploits the fact that each instruction
goes sequentially through several stages in the course of being processed; separate hardware resources are
dedicated to each stage, permitting multiple instructions to be in various stages of processing concurrently.
A typical sequence of stages in an ILP CPU is as follows:

1. Instruction fetch: The instruction is fetched from the memory.
2, Instruction decode: The memory word holding the instruction is interpreted to discover what ,operation

is specified; the registers involved are identified.
·

3. Instruction issue: An instruction is "issued" when there are no constraints holding it back from being
executed. Constraints that keep an instruction from being issued include data not yet being ready in
an input register and unavailability of a functional unit (e.g., Arithmetic Logical Unit) needed to
execute the instruction.

4. Instruction execute: The instruction is perfonned.
S. Instruction complete: Results of the instruction are stored in the destination register.
6. Instruction graduate: Executed instructions are graduated in the order that they appear in the instruc­

tion stream.

Ordinary pipelines permit at most one instruction to be represented in each stage; the degree of parallelism
(number of concurrent instructions) is limited to the number of stages. ILP designs allow multiple instruc­
tions to be represented in some stages. This necessarily implies the possibility of executing some stages of

DISCRETE-EVENT SYSTEM SIMUlATION

successively fetched instructions out of order. For example, it is entirely possible for the nth instruction, I.,
to be constrained from being issued for several clock cycles while the next instruction, In+!' · is not so
constrained. An ILP processor will push the evaluation of In+1 along as far as it can without waiting on I ••

However, the instruction graduate stage will reimpose order and insist on graduating In before /n+r
ILP CPUs. use architectural slight of hand with respect to register useage to acrelerate performance.

An ILP machine typically has more registers available than appear in the instruction set Registers named in
instructions need not precisely be the registers actually used in the implementation of those instructions. This
is acceptable, of course, as long as the effect of the instructions is the same in the end. One factor motivating
this design is the possibility of having multiple instructions involving the same logical registers (those named
by the instructions themselves) actively being processed concurrently. By providing eachinstruction with its
own "copy" of a register, we eliminate one source of stails. Another factor involves branches-that is, instruc­
tions that interrupt the sequential flow of control. An ILP, encountering a branch instruction, will predict
whether the branch is taken or not and possibly alter the instruction stream as a result Various methods exist
to predict branching, but any of them will occasionally predict incorrectly. When an incorrect prediction is
made, the register state computed as a result of speculating on branch outcome needs to be discarded and
execution resumed at the branch point. Thus, another use of additional registers is to store the "speculative
register state." With dedicated hardware resources to track register useage fqllowing speculative branch
de.cision, speculative state can be discarded in a single cycle and control resumed at the mispredicted branch
point. In all of these cases, the hardware implements techniques for renaming the logical registers that appear
in the instructions to phy�ical registers, for maintaining the mapping of logical to physical registers, and for
managing physical register useage. ·

A simulation model of an ILP CPU will model the logic of each stage and coordinate the movement of
instructions from stage to stage. We consider each stage in tum.

An instruction-fetch stage could interact with the simulated memory system, if that is present. However,
if the CPU simulation is driven by a direct-execution simulation or by a trace file, there is little for a model
of this stage to do but get the next instruction in the stream. If a memory system is present, this stage could
look into an instruction cache for the next referenced instruction, stalling if a miss is suffered.

Following an instruction fetch, an instruction will be in the CPU's list of active instructions until it exits
altogether from the pipeline. The instruction-decode stage places an instruction in this list; a logical register
that appears as the target of an operation is assigned a physical register-registers used as operand sources
will have been assigned physical registers in instructions that defined their values. (Sequencing issues asso­
ciated with having multiple representations of the same register are dealt with at a later stage in the pipeline.)
Branch instructions are identified in this stage, predictions of branch outcomes are made, and resources for
tracking speculative execution are committed here.

Decoded instructions pass into the instruction-issue stage. The logic here is complex and very much
timing dependent An instmction cannot be issued until values in its input registers are available and a functional
unit needed to perform the instruction is available. An input value might be not yet in a register, for instance,
if that value is loaded from memory by a previous instruction and has not yet appeared. A functional unit
could be unavailable because all appropriate ones are busy with multicycle operations initiated by other
instructions. Implementation of the issue-stage model (and hardware) depends on marking registers and
functional units as busy or pending and on making sure that, when the state of a register or functional unit
changes, any instruction that cannot yet issue because of that register or functional unit is reconsidered for
issue.

Simulation of the instruction-execute stage is a matter of computing the result specified by the instruc·
tion (e.g., an addition). At this point, the action of depositing the result into a register. or memory is sched­
uled for the instruction-complete stage. This latter stage also cleans up the status bits associated with
registers and functional uniis fu.volved in the instruction and resolves the final outcome of a predicted branch.
If a branch was mispredicted, the speculatively fetched and processed instructions that follow it are removed

. ':� ' .
l

SIMUlATION OF COMPUTER SYSTEMS 471

from other pipeline stages, the hardware that tracks speculative instruction is released, and the instruction
stream is reset to follow the branch's other decision direction.

Between the instruction-issue and instruction-complete stages, instructions could get processed in an order
that does not correspond to the original instruction stream. The last stage, graduation, reorders them.
Architecturally, this permits an ILP CPU to associate an exception (e. g., a page fault or a division by zero) with
the precise instruction that caused it Simulation of this stage is a matter of knowing the sequence number of
the next instruction to be graduated, then graduating it when it appears.

Example 14.2
An example helps to show what goes on. Consider the following sequence of assembly-language instructions
for a hypothetical computer:

load $2 . 0 ($6} Il- load $2 from memory
mult $5, 2 I2- multiply $5 with constant 2
add $4, 12 I3 - add constant 12 to $4
add $5, $2 I4 · $5 <- $5 + $2
add $5, $4 IS· $5 <- $5 + $4

Let us suppose that the register load misses the first-level cache but hits in the second-level cache, resulting
in a delay of 4 cycles before the register gets the value. Suppose further that separate hardware exists for
addition and multiplication, that addition takes one cycle, and that multiplication takes 2 cycles to complete.
Time is assumed to advance in units of a single clock tick.

Table 14.3 shows a timeline of when each instruction is in each stage. Cycles in which an instruction
cannot proceed through the pipeline are marked as "stall" cycles. Processing is most easily understood by
tracing individual instructions through.

11. After being fetched in cycle 1 , the decOde of II assigns physical register $p 1 as the target of the
load operation and marks $pl as unready. No constraints prohibit 1 1 from being issued in cycle 3 nor exe­
cuted in cycle 4. Because the memory operation takes 4 cycles to finish, 11 is stalled in cycles 5-S. Cycle 9
commits the data from memory to physical register $p 1 and clears its unready flag; the instruction is graduated
in cycle 10.

12. Instruction 12 is fetched in cycle 2 and has physical register $p2 allocated to receive the results of
the multiplication in the cycle-3 decode stage; $p2's unready flag is raised. No constraints keep 12 from

lnsUCycle I

II fetch
12
13
14
15

InsUCycle 8

II stall
12 stall
13 stall
14 stall
15 stall

Table 14.3 Pipeline Stages, ILP CPU Simulation

2 3 4 5

decode issue execute stall
fetch decode issue execute

fetch decode issue
fetch decode

fetch

9 10 1 1 12

complete graduate
stall stall graduate
stall stall stall graduate
stall issue execute complete
stall stall stall stall

6 7

stall stall
stall complete

execute complete
stall stall

decode stall

13 14

graduate
issue complete

I

472 DISCRETE-EVENT SYSTEM SIMULATION

being issued in cycle 4 or executed in cycle 5, but the 2-cycle delay of the multiplier means the result is not
committed to register $p2 until cycle 7, at which point the $p2 unready flag is cleared. The instruction
remains stalled through cycles 8-10, awaiting the graduation of II.

13. Instruction I3 is fetched in cycle 3 and has physical register $p3 allocated to receive the results of
its addition in the cycle-4 decode stage. The $p3 unready flag is raised. There are no constraints keeping I3
from being issued in cycle 5 and executed in cycle 6, with results written into $p3 in cycle 7, at which time
$p3's unready flag is cleared. I3 must stall, however, during cycles 8-1 1, awaiting the graduation of 12.

14. Instruction 14 is fetched in cycle 4 and has physical register $p4 allocated to receive the results of
the addition during the cycle-5 decode stage. $p4's unready flag is raised at that point. Physical registers $p 1
and $p2 are operands to the addition; 14 stalls in cycles 6--9, waiting for their unready flags to clear. It then
passes the remaining stages without further delay, clearing the $p4 unready flag in cycle 12.

15. Instruction I5 is fetched in cycle 5 and has physical register $p5 allocated to receive the results of
its addition in the cycle-6 decode stage, at which point the $p5 unready flag is set. Physical registers $p3 and
$p4 contain the addition's operands; I5 stalls through cycles 7-12, waiting for their unready flags both to
clear. From that point forward, I5 passes through the remaining stages without further delay.

The performance benefit of pipelining and ILP can be appreciated if we compare the execution time of
this sequence on a nonpipelined, non-ILP machine. Assuming that each stage must be performed for each
instruction but that one instruction is processed in its entirety before another one begins, 51 cycles are needed
to execute II through 15. With the advanced architectural features, only 15 cycles are needed. The example
illustrates both the parallelism that pipelining exposes and the latency tolerance that the ILP design supportS.
Even though 1 1 stalls for four cycles while awaiting a result from memory, the pipeline keeps moving other
instructions through to some extent. The bottom line for someone using a model like this is the rate at which
instructions are graduated, as this reflects the effectiveness of the CPU design. Secondary statistics would
try to pinpoint where in the design stalls occur that might be alleviated (e.g., if many stalls occur because of
waiting for the multiplier (no such stalls occur in the example), then one could consider including an addi­
tional multiplier in the CPU design).

Our explanation of the model's workings was decidedly process oriented, taking the view of an instruc­
tion. However, the computational demands of a model like this are enormous, owing to the very large number
of instructions that must be simulated to assess the CPU design on, say, a single program ron. The relatively
high cost of context switching would deter use of a normal process-oriented language. One could implement
what is essentially a process-oriented view by using eventg.;-each time an instruction passes through a stage,
an event is scheduled to take that instruction through the next stage, accounting for stalls. The amount of
simulation work accomplished per event is thus the amount of work done on behalf of one instruction in
one stage. An alternative approach is to eschew explicit events altogether and simply use a cycle-by-cycle
activity scan. At each cycle, one would examine each active instruction to see whether any activity associ­
ated with that instruction can be done. An instruction that was at one stage at cycle j will, at cycle j + I, be
examined for constraints that would keep it at cycle j. Finding none, that instruction would be advanced to
the next stage. An activity-scanning approach has the attractiveness of eliminating event-list overhead, but
the disadvantage of expending computational effect on checking the status of a stalled instruction on every
cycle during which it is stalled. Implementation details and model behavior largely determine whether an
activity-scanning approach is faster than an event-oriented approach (with the nod going to activity scanning
when few instructions stall).

1 4.6 MEMORY SIMULATION

One of the great challenges of computer architecture is finding ways to deal effectively with the increasing
gap in operation speed between CPUs and main memory. A factor of 100 in speed is not far from the mark.

SIMULATION OF COMPUTER SYSTEMS 473

The main technique that has evolved is to build hierarchies of memories. A relatively small memory-the
Ll cache-operates at CPU speed. A larger memory-the L2 cache-is larger and operates more slowly.
The main memory is larger still and slower still. The smaller memories hold data that was referenced recently
and nearby data that one hopes will also be referenced soon. Data moves up the hierarchy on demand and
ages out as it becomes disused, to make room for the data in current use. For instance, when the CPU wishes
to read memory location 100,000, hardware will look for it in the Ll cache; if it fails to find it there, it will
look in the L2 cache. If it is found there, an entire block containing that reference is moved from the L2 cache
into the L l cache. If it is not found in the L2 cache, a (larger) block of data containing location 10,000 is
copied from the main memory to the L2 cache, and part of that block (containing location 10,000 of course)
is copied into the L l cache. It could take 50 cycles or more to accomplish this. After this cost has been
suffered, the hope and expectation is that the CPU will continue to make references to data in the block brought
in, because accesses to L1 data are made at CPU speeds. Fortunately, most prograrns exhibit locality of
reference at this scale (as well as at the paging scale discussed earlier in the chapter), so the strategy works.
However, after a block ceases to be referenced for a time, it is ejected from the L 1 cache. It could remain in
the L2 cache for a while and later be brought back into the L 1 cache if any element of the block is referenced
again. Eventually a block remains unreferenced long enough so that it is ejected also from the L2 cache.

The astute reader will realize that data that is written into an L I cache by the CPU creates a consistency
problem, in that a memory address then has different values associated with it at different levels of the memory
hierarchy. One way of dealing with this is to write through to all cache levels every time there is a write­
the new value is asynchronously pushed from L l through L2 to the main memory. An alternative method
copies back a block from one memory level to the lower level, at the point the block is being ejected from
the faster level. The write-through strategy avoids writing back blocks when they are ejected, whereas the
write-back strategy requires that an entire block be written back when ejected, even if only one word of
the block was modified, once. One of the roles simulation plays is to compare performance of these two
write-back strategies, taking into consideration all costs and contention for the resources needed to support
writing back modifications. .

Like paging systems, the principle measure of the quality of a memory hierarchy is its hit ratio at each
· level. As with CPU models, to evaluate a memory hierarchy design, one must study the design in response
to a very long string of memory references. Direct-execution simulation can provide such a reference stream,
as can long traces of measured reference traffic. Nearly every caching system is a demand system, which

. means that a new block is not brought into a cache before a reference is made to a word in that block.
Decisions left still to the designer include whether to write-through or write-back modifications, the replace-
ment policy, and the "set associativity." ·

The concept of set associativity arises in response to the.cost of the mechanism used to look for a match.
Imagine we have an L2 cache with 2 million memory words (an actual figure from an actual machine): The
CPU references location 10000-the main memory has, say, 212 words, so the L2 cache holds but a rmnute
fraction of the memory. How does the hardware find out whether location 10000 is in the �2 cache? I� u�es
what is called an associative memory, one that associates search keys with data. One quenes an associative
memory by providing some search key. If the key is found in the memory, then the data associa� wi� the
key is returned; otherwise, indication of failure is given. In the caching context, the search key ts denved
from the reference address, and the return data is the data stored at that address. Caches must be very v�ry
fast, which means that the search process has to be abbreviated. This is accomplished by dedicating
comparison hardware with every location in the associative memory. Presented with a search key, every com­
parator looks for a match. with the key at its location. At most one comparator will see a match and return
the data; it is possible that none will. A fully associative cache is one where any address can appear any­
where in the cache. This means building the cache to have a unique comparator associated with every address
in the cache; doing so is prohibitively expensive. Tricks are played with memory addr_esses in order to redu�
the costs greatly. The idea is to piutition the address space into sets. Figure 14. 1 1 Illustrates how a 48-btt

474

k bits

I I I
high-{)rder bit 47 46 45

key

, I
16

s bits

I
15

setid

I
8

DISCRETE-EVENT SYSTEM SIMULATION

b bits

I I I
7 2 l 0 low-{)rder bit

block offset

Figure 14. 1 1 48-bit address partitioned for cache.

memory address might be partitioned in key, set id, and block offset Any given memory address is mapped
to the set identified by its set-id address bits. This scheme assigns the first block of 2b addresses to set O,
the second block of 2b addresses to set I , and so on, wrapping around back to set 0 after 2s blocks have
been assigned. Each set is give a small portion of the cache-the set size-typically, 2 or 4 or 8 words. Only
those addresses mapped to the same set compete for storage in that space. Only as many comparators are
needed as there are words in the set Given an address, the hardware uses the set-id bits to identify the set
number and the key bitS to identify the key. The hardware matches the keys of the blocks already in the iden­
tified set to comparator inputs and also provides the key of the sought address as input to all the comparators.
Comparisons are made in parallel; in the case of a match, the block-offset bits are used to index into the
identified block to select the particular address being referenced.

The overall size of this cache is seen to be the total number of sets times the set size. One role of simu­
lation is to work out, for a given cache size, how the space ought to be partitioned into sets. This is largely
a cost consideration, for increasing the set size (thereby reducing the number of sets) typically increases the
hit ratio. However, if a set size of 4 yields a sufficiently large hit ratio, then there is little point to increasing
the set size (and cost).

Least·Recently Used (LRU) is the replacement policy most typically used. When a reference is made
but is not found in a set, some block in the set is ejected to make room for the one containing the new
reference. Under LRU, the block selected for ejection is the one which, among all blocks in the set, was last
referenced most distantly in the past

·

LRU is one of several replacement policies known as stack policies. (See Stone [1990].) These are char­
acterized by the behavior that, for any reference in any reference string, if that reference misses in a cache
of size n, then it also misses in every cache of size m < n, and that, if it hits in a cache of size m, then it hits
in every cache of size n > m. Simulations ·can exploit this fact to compute the miss �atio of many different
set sizes, in just one pass of the reference string! Suppose that we do not wish to consider any set size larger
than 64. Now we conduct the simulation with set sizes of 64 . . Every block in the cached set is marked with
a priority-namely, the temporal index of the last reference made to it (e.g., the block containing the first
reference in the string is marked with I, the block containing the second reference is marked with a 2 (over­
writing the I, if the same as the previous block), etc.). When a block must be replaced, the one with the
smallest index is selected. Imagine that the simulation organizes and maintains the contents of a cached set
in LRU order, with the most recently referenced block first in the order. The stack distance of a block in this
list is its distance from the front; the most recently referenced block has stack distance I, the block refer­
enced next most recently has stack distance 2, the LRU block has stack distance 64. Presented with a refer­
ence, the simulation searches the list of cache blocks for a match. If no match is found, then, by the stack
property, no match will be found in any cache of a size smaller than 64, on this reference, for this reference
string. If a match is found and the block has stack distance k, then no match will be found in any cache
smaller than size k, and a match will always be found in a cache of size larger than k. Rather than record a
hit or miss, one increments the fCh element of a 64-element array that records the number of matches at each
LRU leveL To find out how many hits occurred in a cache of size n, one sums up the counts of the first n
elements of the array. Thus, with a' little arithmetic at the end of the run, one can count (for each set cache)
the number of hits for every set of every size between I and 64.

. I .

SIMULATION OF COMPUTER SYSTEMS 475

reference trace A ·B C A D B A D C D F C B F E hits array

stack distance I 0

stack distance 2

stack distance 3
5

Figure 1 4. 12 LRU stack evolution

Figure 14. 12 illustrates the evolution of an LRU list in response to a reference string. Under each
reference (given as a alphabetic symbol rather than actual memory address) is the state of the LRU stack after
the reference is processed. The horizontal direction from left to right symbolizes the trace, read from left to
right A hit is illustrated by a circle, with an arrow showing the migration of the symbol to the top of the
heap. The "hits" array counts the number of hits found at each stack distance. Thus we see that a cache of
size I will have the hit ratio 0/15, a cache of size I will have the hit ratio l/15, and a cache of size-3 will
have the hit ratio 6/15.

In the context of a set-associative cache simulation, each set must be managed separately, as shown in the
figure. In one pass, one can get hit ratios for varying set sizes, but it is important to note that each change in
set size corresponds to a change in the overall size of the entire cache. This technique alone does not let us in
one pass discover the hit ratios for all the different ways one might partition a cache of a given capacity (e.g.,
256 sets with set size I versus 128 sets with set size 2 versus 64 sets with set size 4). It actually is possible to
evaluate all these possibilities in one pass, but the technique is beyond the scope of this discussion.

1 4.7 SUMMARY

This chapter looked at the broad area of simulating computer systems. It emphasized that computer-system
simulations are performed at a number of levels of abstraction. Inevitably, it discussed a good deal of computer
science along with the simulation aspects, for in computer-systems simulation the two are inseparable.

The chapter outlined fundamental implementation issues behind computer-system simulators-principally,
how process orientation is implemented and how object-oriented concepts such as inheritance are fruit­
fully employed. Next it considered model input, ranging from stochastically generated traffic, to stochastically
generated memory-referencing patterns, to measured traces and direct-execution techniques. The chapter was
brought to a conclusion by looking at examples of simulation at different levels of abstraction: a WWW-site
server system, an instruction-level CPU simulation, and simulation of set-associative memory systems. .

The main point is that computer-system simulators are tailored to the tasks at hand. Appropriate levels
of abstraction need to be chosen, as must appropriate simulation techniques.

REFERENCES

ASHENDEN, PJ. [2001], The Designer's Guide to VHDL, 2d ed� Morgan Kaufmann, San Fransisco.
AUSTIN T., E. LARSON, AND D. ERNST [2002], "SimpleScalar: An Infrastructure for Computer System Modeling,"

IEEE Computer, Vol. 35, No. 2, pp. 59-67.
BEDICHECK, R.C. [1995], ''Talisman: Fast and Accurate Multicomputer Simulation," Proceedings of the 1995 ACM

SIGMETRICS Conference, pp. 14-24, Ottawa, ON, May.
BOHRER P., M. ELNOZAHY, A GHEITH, G. LEFURGY, T. NAKRA, J. PEJERSON, R. RAJAMONY, R. ROCKHOLD,

H. SHAFl, R. SIMPSON, E. SPEIGHT, K. SUDEEP, E� VAN HENSGERGEN, AND L. ZHANG [2004], ''Mambo-A
Full System Simulator for the PowerPC Architecture," Performani:e Evaluation Review, Vol. 3 1, No. 4, 8-12 .

--�. �---r ..-- ---- - .--"""'c:::,,;,;,,t,?.k�-: - - - . . . � ·��!l!o.!;,�i�·.:·: : ��· �-- . . ' . . ' . . '

476 DISCRETE-EVENT SYSTEM SIMULATION

CMEUK, B., AND D. KEPPLE [1994], "Shade: A Fast Instruction-Set Simulator for Execution Profiling," Proceedings
of the 1994 ACM SIGMETRICS Conference, pp. 128-137, Nashville, TN, May.

COVINGTON, R., S. DWARKADA. J. JUMP, S. MADALA, AND J. SINCLAIR [1991], "Efficient Simulation of
Parallel Computer Systems," International Journal on Computer Simulation, vol. l , No. 1, 1991.

COWIE, J., A. OGIELSKI. AND D. NICOL [1999]; "Modeling the Global Internet," Vol. I, No. I, pp. 42-50.
DICKENS, P., P. HEIDELBERGER, AND D. NICOL [1996], "Parallelized Direct Execution Simulation of Message

Passing Programs," IEEE Trans. on Parallel and Distributed Systems, Vol. 7, No. 10, pp. 1090-1 105.
FISCHER, W., AND K. MEIER-HELLSTERN [1993], "The Markov-Modulated Poisson (MMPP) Coqkbook,"

Performance Evaluation, Vol. 18, No. 2, pp. 149-171.
·

FISHWICK, P. [1992], "SIMPACK: Getting Started with Simulation Programming in C and C++," Proceedings of the
1992 Winter Simulation Conference, pp. 154-162, Washington, DC.

GRUNWALD, D. [1995], User's Guide to Awesime-II, Department of Computer Science, Univ. of Colorado, Boulder, CO.
HENNESSY, J.L., AND D.A. PAITERSON [1997], Computer Organization and Design, The Hardware/Software

Interface, 2d ed., Morgan Kaufmann Publishers, Inc., Palo Alto, CA.
HUGHES, C., V. PAl, P. RANGANATHAN, AND S. ADVE [2002], "RSIM: Simulating Shared Memory

Multiprocessors with ILP Processors," IEEE Computer, Vol. 35, No. 2, pp. 40-49.
LEBECK, A., AND D. WOOD [1997], "Active Memory: A New Abstraction for Memory System Simulation," ACM

Transactions on Modeling and Computer Simulation, Vol. 7, No. 1, pp. 42-77.
LITTLE. M.C., AND D.L. McCue [1994], "Construction and Use of A Simulation Package in C++;' C User's Journal,

VoL 3, No. 12.
MAGNUSSON, P., M. CHRJSTENSSON, J. ESKILSON, D. FORSGREN, G. HALLBER, 1: HOGBERG, F. LARS­

SON, A. MOESTEDT, AND B. WERNER [2002), "SIMICS: A Full System Simulation Platform;' IEEE Computer,
Vol. 35, No. 2, pp. 50-58.

MANO, M. [1993], Computer Systems Architecture, 3d ed., Prentice Hall, Englewood Cliffs, NJ.
NUTT, G. [2004], Operating Systei!IS, A Modem Prespective, 3d ed., Addison-Wesley, Reading MA.
SCHWEI'MAN, H. [1986], "CSIM: AC-Based, Process-Oriented Simulation Language," Proceedings of the 1986

Wmter Simulation Conference, pp. 387-396.
SCHWETMAN, H.D. [2001], "CSIM 19: A Powerful Tool for Building Systems Models," Proceedings of the 2001

Wmter Simulation Conference, pp. 250-255.
STONE, H. [1990], High Perfomumce Computer Architecture, Addison-Wesley, Reading MA.
WITCHEL, E., AND M. ROSENBLUM [1996], "EMBRA: Fast and Flexible Machine Simulation;· Proceedings of the

1996 ACM SIGMETRJCS Conference, pp. 68-79, Phlledelphia, PA, May.

EXERCISES

1. Sketch the logic of an event-oriented model of an MIM/1 queue. Estimate the number of events executed
when processing the arrival of 5000 jobs. How many context switches on aver<.ge does a process­
oriented implementation of this queue incur if patterned after the SSF implementation of the single-server
queue in Chapter 4?

2. For each of the systems listed, sketch the logic of a process-oriented model and of an event-oriented
model. For both approaches, develop and simulate the model in any language:

• a central-server queueing model: when a job leaves the CPU queue, it joins the UO queue with
shortest length.

• a queueing model of a database system, that implements fork join: a job receives service in two
parts. When it first enters the server it spends a small amount of simulation time generating a
random number of requests to disks. It then suspends (freeing the server) until such time as all
the requests it made have finished, and then enqueues for its second phase of service, where it
spends a larger amount of simulation time, before finally exiting. Disks may serve requests from
various jobs concurrently, but serve them using FCFS ordering. Your model should report on the 1

SIMULATION OF COMPUTER SYSTEMS 477

statistics of a job in service-how long (on average) it waited for phase 1, how long it waits on
average for its UO requests to complete, and how long it waits on average for service after its
UO requests complete.

3. Consider a three-state (OFF, ON, and BURSTY) Markov Modulated Process with the following
characteristics .
(a) The MMP is in ON state for 90% of the time on average.
(b) The MMP is in BURSTY state for 5% of the time on average.
(c) OFF to ON transitions probability is 0.8 and OFF to BURSTY is 0.05.
(d) ON to OFF transition probability is 0.9 and ON to BURSTY is 1 .
(e) BURSTY to ON transition probability is 0.5 and BURSTY to OFF is 0.5.

If the time spent in OFF state is exponential with a mean of 0.3, determine exponential mean values of
time spent in ON and BURSTY states by means of simulation.

4. Recall the pseudo-code for generating reference traces (Figure 14.7). Write routines new wrkset,
from_ wrkset, and not_ from_ wrkset to model the following types of programs:

-

(a) a scientific program with a large working set during initialization, a small working set for the bulk of
the computation, and a different working set to complete the computation. (You will need to modify
the control code in the figure slightly to force phase transitions in desired places);

(b) a program whose working set always contains a core set of pages present in every phase, with the
rest of the pages clustered elsewhere in the address space.

5. Consider computer network with three printers (a, b, and c). The type of printer (a or b or c) is selected
by the user and some users are high-priority users. Simulate the model using any simulator or language.

6. Using any simulator or language you like, model the router-to-Web-server logic of the system described
in section 14. 1. Pay special attention to the load-balancing mechanism that the router employs.

7. Using any simulator or language you like, model the interaction between application server and data
server described in section 14.4. Pay special attention to the logic of requesting multiple data services
and of waiting until all are completed until advancing to the next burst.

8. Consider the following language for describing CPU instructions:
op rl r2

The preceding expressions describe an operation, where

op=l means add, op=2 means subtract . Each. require l cycle .
op=3 means mult . rl receives tbe result rl op r2 . A multiplication 2

cycles .

op=4 means a load from memory, into rl, using tbe value in r2 as the memory
address . Every lOth load requires 4 cycles, tbe remaining loads require 1 .

op=S means a store t o memory, storing tbe data found i n rl, using the value in
r2 as the memory address . Each store requires 1 cycle .

Write a CPU simulation along the lines of that described in 14.5 that accepts a stream of instructions in
the fonnat just described. Your simulator should use a logical-to-physical register mapping, use the
timing information previously sketched, and use stall instructions as described in the example.

9. integrate the trace generator created in Problem 4 with the one-pass simulator written in the preVious
problem, in effect creating a pseudo "direct-execution simulator."

10. Analyze the log of WWW requests to your site's server, produce a stochastic model of the request
stream, and simulate it.

1 5
Simulation of Computer Networks

1 5. 1 INTRODUCTION

Computers and the networks that connect them have become part of modem working life. In this chapter, we
illustrate by example some of the ways that discrete-event simulation is used to understand network systems,
the software that controls them, and the traffic that they carry.

Like computer systems, network systems exhibit complexity at multiple layers. Networked systems �e
designed (with varying degrees of fidelity) in accordance with the so-called Open System Interconnection
(OSI) Stack Mode (Zimmerman, 1980). The fundamental idea is that each layer provides �n servi-:es
and guarantees to the layer above it An application or protocol at a particular layer commumcates only With
protocols directly above and below it in the stack, implementing communication with a corresponding appli­
cation or protocol at the same stack layer in a different device. Simulation is used to stlldy behavior at all
these layers, although not generally all in the same modeL Different layers encapsulate different levels of
communication abstraction.

The Physical Layer is concerned with the communication of a raw bit-stream, over a physical medium.
The specification of a physical layer has to address all the physical aspects of the communication: volta�e
or radio signal strength, standards for connecting a physical device to the medium, and so on. Models of this
layer describe physics.

. . . .
The Data Link Layer implements the communication of so-called tkJta-frames, which con tam a hrmted

chunk of data and some addressing information. Protocols at the Data Link Layer interact with the physical
layer to send and receive frames, but also provide the service of "error-free" communication to the layer
above it Protocols at the Data Link Layer must therefore implement error-detection and retransmission when
needed. A critical component of avoiding errors is access control, which ensures that at most one device is
transmitting at a time on a. shared }Iledium. Techniques for access control have significant impact on how
long it takes to deliver data and on the overall capacity of the network to move data. Simulation plays an

478 I
J

SIMULATION OF COMPUTER NElWORKS 479

important role in understanding tradeoff's between access-control techniques; in this chapter, we will look at
some protocols and the characteristics that simulation reveals.

The Network Layer is responsible for all aspects of delivering data frames across subnetworks. A given
frame may cross multiple physical mediums en-route to its final destination; the Network Layer is responsible
for logical addresses across subnets, for routing across subnets, for flow control, and so on. The success of
the Internet is due in no small part to widespread adaption of the Internet Protocol, more commonly known
as W (Comer, 2000). W specifies a global addressing scheme that allows communication between devices
across the globe. The specification of W packets includes fields that describe the type of data being carried
in the packet, the size of the packet, the protocol suitable for interpreting the packet, source/destination address­
ing information, and more. The Network Layer provides error-free end-to-end delivery of packets to the layer ·

above it. Simulation is frequently used to study algorithms that manage devices (routers) that implement the
Network Layer.

The Transport Layer accepts a message from the layer above, segments it into packets that are passed
to the Network Layer for transmission, and provides the assurance that received packets are delivered to the
layer above in the order in which they appear in the original message, error free: without loss, and without
duplication. Thus, the Transport Layer protocol in the sending device coordinates with the Transport Layer
protocol in the receiving device in such a way that the receiving device can infer packet-order information.
Variants of the Transmission Control Protocol (TCP) are most commonly used at this layer of the stack
(Comer, 2000). Dealing with packet loss is the responsibility of the transport layer. Packet loss,is distinct
from error-free transmission-a packet could be transmitted to a routing device without error, only to find
that device does not have the buffering capacity to store it; the packet is received without error, but is deliber­
ately dropped. Transport layer protocols need to detect and react to packet loss, becaUse they're responsible
for replacing the packets that are dropped. One of the ways they do this is to apply flow-control algorithms
that simultaneously try to utilize the available bandwidth fully, yet avoid the loss of packets. Simulation has
historically played a critical role in stlldying the behavior of different transport protocols, and in this chap­
ter we will examine simulation ofTCP.

The first four OSI layers are well defmed and separated in actllal implementation. The remaining three
have not emerged so strongly in practice. Officially the Session Layer is responsible for the creation, main­
tenance, and termination of a "session" abstraction, a session being a prolonged period of interaction
between two entities. Above this one finds the Presentation Layer, whose specification includes conversion '
between data formats. An increasingly important conversion function is encryption/decryption. Finally, the
Application Layer serves as the interface between users and network services. Services typically associated
with the Application Layer include email, network management tools, remote printer access, and sharing of
other computational resources.

Any simulation of networking must include models of data trafJi.c, and so we begin the discussion there.
At the time of this writing, the field of traffic modeling is very active, and we bring to the discussion key
elements of an exciting area of current work.

Devices with traffic they wish to transmit must somehow gain access to the networks that carry traffic.
Our second area of discussion then considers the problem of how devices coordinate to use the network
medium� sometimes called Media Access Control (MAC) protocols. Historically, simulation has played an
important role in helping engineers to understand the performance of different MAC protocols.

Finally, we describe the Transport Control Protocol (TCP) and discuss how simulation plays an impor­
tant role in its study.

1 5.2 TRAFFIC MODEUNG

Our discussion of network simulation begins with modeling of the data traffic that the networks carry. We'll
consider two levels of detail for this, corresponding to two different levels of abstraction. The first is at the

4 _.;__80'------------------------'-0.:.:.IS..;.CR_ET_E_-_EV---"ENT SYSTEM SIMULATION

application level: consideration of how commonly used network applications create demand for a network.
Such models are appropriate when one's interest is in the details of a relatively small network and the impact
that its native applications have on it. The second level of abstraction is of aggregated application flows. This
level is appropriate when one's focus is on the Internet's core infrastructure, where the global impact of
global traffic needs to be represented.

One of the easiest models of traffic-load generation is that of moving files across the network. Our interest
here is not in the mechanics of the protocols that accomplish the movement so much as it is in the model of
the traffic load that is offered to the network. Simulation studies that model file transfer typically are focused
on the impact that the traffic has on servers holding the files. A given transfer can be characterized by the
size of the file and by the rate at which its bytes are presented to the network. We usually also characterize
how often a user initiates an ftp transfer. A simple model of a file-transfer request process is as an on-off
source, whose off period is randomly distributed (e.g., an exponential think time) and whose on period is
driven by the arrival of a file. The on period lasts as long as needed to push or pull a file of the referenced
length. File size is sampled from another probability distribution. Measurements suggest that a heavy-tailed
distribution is appropriate. This is especially appropriate given the level of music-sharing activity on the
Internet.

Another significant source of application traffic is the World Wide Web. Traffic associated with web
pages is more complex than individual file transfers and so bears separate treatment. We describe a model
expounded upon in (Barford and Crovella [1998]), called Surge. Here we model the delay between succes­
sive sessions with an intersession delay distribution. Within a session, a number of different URLs will be
accessed, with another delay time between each such access; this is illustrated in Figure 15.1 .

The Surge model incorporates a number o f important characteristics of files, most importantly, including

• the distribution of file sizes, among all files on a web server,
• the distribution of the file sizes of those files that are actually requested,
• temporal locality of file-referenced file.

The first and third characteristics, coupled with a model of referencing pattern, essentially define the second
characteristic. Suppose that we've selected the first k files already-call them.t;./2, • • • ,J;,-and suppose that
this set of references is organized in a Least-Recently-Used stack. We select the (k + l)'t file by sampling an
integer from a stack -distance distribution. If that sample has value j, the next file selected has position j in
the LRU stack (position 1 being the last file referenced). Empirical studies of reference strings of files
suggest that a lognormal distribution is appropriate. This distribution places significant weight on small
values; hence, it induces temporal locality of reference. When the stack-distance sample is larger than the
number of files in the LRU stack, a new file is sampled from the set of files not yet in the reference stream.

This description gives a general, but simplistic idea of the structuie of Surge. Its authors pay much attention
to issues of identifying distributional parameters that are internally consistent and that produce traffic that
can be validated against real traffic. Our goal here is to introduce the fundamental notions behind a model
of web traffic.

Models of other interesting and important application types can be found in the literature. We expect
that the Internet will increasingly support telephony-"voice over IP (VoiP)" (Black [2001]), and so
attendant models should be developed. A sampling of the current literature suggests that a VoiP source be

Figure 1 5.1 Nested on-<:>ff periods in Surge WWW traffic generation.

SIMULATION OF COMPUTER NETWORKS 481

modeled as an on-off process, where both phases have distributions with tails somewhat heavier than
exponential (e.g., an appropriate Weibull). Increasingly, the Internet will be used to stream video content.
Models for video are more complex, because they must capture a number of facets of video compression, at
different time-scales.

·

All of the application models we've considered describe the traffic workload offered to a network by
individual programs. There are contexts in which a modeler needs instead to consider the impact of aggregated
application flows on a network device. One could create the aggregate stream by piecing together many
individual application streams-or one could start with an aggregated model in the first place. We next
consider direct models of aggregated offered load.

Classical models of telephone traffic assume that aggregated call arrivals to the telephony network
follow a Poisson distribution and that call completions likewise are Poisson. The early days of modeling and
engineering data networks made the same assumption. However, with time, it became clear that this assumption
didn't match reality well. In telephony, the increased use of faxes, and then Internet connections, radically
transformed the statistical behavior of traffic. 'IWo things emerged as being particularly different: First, data
traffic exhibits a burstiness that flies in the face of the exponential's memoryless property. MMP processes
described in Chapter 14 can be used to introduce burstiness explicitly into the arrival pattern of packets to a
data network. However, studies indicate that the durations of burstiness aren't Markovian, as in the MMP
model. Instead, traffic seems to exhibit long-term temporal dependence-correlations in the number of
active sessions that extend past what, statistically, can be expected from MPP models.

Researchers noticed that there is tremendous variance in the size of files transferred within a session.
It seemed that a heavy-tailed distribution like the Pareto does a good job of capturing this spread. Heavy-tailed
distributions have the characteristic that, infrequently, very very large samples emerge. These large samples are
large enough relative to their probability to exert a very significant influence on the moments of the distribution;
in some cases, the integral defining variance diverges. It was hypothesized then that long-range dependence in
session counts was due to the correlations induced by the concurrency of very long-lived sessions.

A model that appears to capture these explanations is the "Poisson Pareto Burst Process" (Zukernan et al.
[2003]), in which bursts (e.g., sessions) of traffic arrive as a Poisson process. Each session length has dura­
tion sampled from a Pareto distribution. Bursts may be concurrent More formally, let t; be the arrival time
of the ith burst, equal to tH + e1 where e, is sampled from an exponential, and let b1 be the Pareto-sampled
duration of that burst, and let d, = t, + bi be the finishing time of the ith burst. The state at t, X(t), is the number
of bursts � with ti � t � �-

The Pareto distribution with parameters a and b has the probability distribution function

D(x) = l -(; J
for x � b. The distribution has mean (ab)l(a - 1) and variance al?/((a-l)l(a-2)). One can sample a Pareto
with these parameters, using the inverse transform technique:

x = b X (1.0- U)"l.OI

In this equation U is a uniformly distributed random variable.
It is instructive to consider bow traffic is analyzed for evidence of long-range dependence and whether

the style of synthetic traffic generation described here exhibits it. Let X1, X2, • • • , be a stationary time series,
whose samples have mean J.L and variance u2• The autocorrelation function p(k) describes how well
correlated are samples k apart in the time series:

p(k)= E[(X, -J.L)(X,., - J.L)]
0"2

482 DISCRETE-EVENT SYSTEM SIMULATION

The sample autocorrelation function can be constructed from an actual sample by estimating the expectation
in the numerator. Long-range dependence is observed when p(k) decays slowly as a function of k. Long-range
dependence is more formally defined in terms of the autocorrelation function, if there exists a real number
a E (0, 1}, and a constant f3 > 0 such that

The denominator of this limit describes how slowly p(k) needs to go to zero as k increases. The smaller a is,
the slower is the degradation. H = I a/2 is known as the Hurst parameter for the sequence. Values of H with
0.5 < H < 1 .0 define long-range dependence; the larger H is, the more significant is the long-range dependence.

To see evidence that PPBP does yield long-range dependence, we ran an experiment where the mean
burst interarrival time was I second and the Pareto parameters were a = l . l and b = 10. We computed the
sample autocorrelation function, shown in Figure 15.2. Here we see directly that the autocorrelation decays
very slowly. We also used the SELFIS tool (Karaglannis et al. [2003]) to estimate the Hurst parameter; all
of its estimators indicate strong long-range dependence in the sampled series.

Burstiness is not the only consideration in traffic modeling. Traffic intensity exhibits a strong diurnal
characteristic-that is, source intensity varies with the source's time of day; furthermore, weekends and
holidays behave differently still. To accommodate time-of-day considerations, one can allow the exponential
burst interarrival distribution �f the PPBP to have a parameter that is dependent on the time of day.

The PPBP describes the number of active sessions X(t) as a function of time. X(t) may be transformed
into packet arrival rates, and hence into packets, by including a packet-rate parameter A. The process
.1\.X(t) thus gives an arrival rate of packets from an aggregated set of sources to a network device that handles
such.

Autocorrelation of PMPP
T t + r I l T I I I _ I I I I

+ autocorrelation + + +
+

+ +

l 8
+

+ � 0.1 1-

J
-

+

0.0 1 L--1--1 -l1l--...i.1-..l..-1 _.L_ 1 _1..-1 -li:___J.i_..J.._ I _.L_ I _L_I _IL__JI_...LJI
I 2 4 8 16 32 64 128 256 512 1024 2048 4092 8192 16384

Index Distance

Figure 1 5.2 Autocorrelation function of aggregated stream of 50 sources.

SIMULATION OF COMPUTER NETWORKS 483

The main point to be understood about traffic-modeling is that models of aggregated traffic ought to
exhibit characteristics of aggregation, whereas application traffic ought to focus on what makes the applica­
tions distinct. Next, we look at how traffic acquires a shared medium for carrying traffic.

1 5.3 MEDIA ACCESS CONTROL

Computers in an office or university environment are usually integrated into a local area network (LAN).
Computers access the network through cables (a.k.a. wireline), although an increasing fraction access
it through radio (wireless). In either case, when a computer wishes to use the network to transmit some
information, it engages in a Media Access Control (MAC) protocol.

.

Different MAC protocols give traffic different characteristics. Simulation is an extremely important tool
for assessing the behavior of a given protocol. A MAC protocol gives traffic specific qualities of latency
(average and maximum are usually interesting) and throughput. The behavior of these qualities as a function
of "offered load" (traffic intensity) is of critical interest, for some protocols allow throughput to actually
decrease as the demands on the network go up-a lose-lose situation.

1 5.3.1 Token-Passing Protocols

One class of MAC protocols is based on the notion of a "token," or permission to transmit In the "polling
protocol" variation, a master controller governs which device on the shared medium may transmit (Kurose
and Ross [2002]). The controller selects a network device and sends it the token. If the recipient has "frames"
(the basic unit of transmission) buffered up, it sends them, up to a maximum number of frames. The con­
troller listens to the network and detects when the token holder either has selected not to transmit or has
finished transmission. The controller then selects another network device and sends it the token. Devices are
visited in round-robin fashion.

One drawback of the polling protocol is that the controller is a device with separate functionality from
the others. A more homogeneous approach is achieved by using a token bus protocol. In this approach a
device is programmed to transmit frames (again up to a maximum number) when it receives a token, but is
programmed to pass the token directly to a different specified network device after it is finished. There is no
controller; the network devices pass the token among themselves, effectively creating a decentralized round­
robin polling scheme.

A drawback of both types of token-passing protocol is that a single failure can stop the network in its
tracks-in the case of the polling protocol, the network stops if the controller dies; in the case of the token
bus, a token passed to a dead device in effect gets lost In the latter case, one can detect that a device failed
to pass the token on and so amend the protocol to deal with like failures.

Token-passing networks are "fair:' iri the sense that each device is assured its turn within each round.
The overhead of access control is the time that the network spends on transmitting the token (rather than
data) and the time that. the network is idle long enough for a device to ascertain that a transmission has ended
or is not going to occur. An important characteristic of token-paSsing protocols is that the throughput (bits
per second of useful traffic) is monotone nondecreasing as a function of the "offered load" (traffic that the
network is requested to carry). To illustrate this point, Figure 15.3 plots data from a set of experiments on a
modeled lO Mbits (I 0 million bits per second) network, with lO devices, evenly spaced, with a latency delay
of 25.6 J.Lsec between the most distant pair. (We use this figure in order to compare this network with one
managed by using Ethernet, later.) Five different experiments are displayed on the graph; right now, we are
interested only in the one labeled "token bus, PoisSQn." The experiments .assume that the data frame is 1500
bytes long and that the token is lO bytes long. They assume that, once a-device gains ihe tOken, it may send
at most one frame and then must release the token. This set of data uses a Poisson process to generate frame

484 DISCRETE-EVENT SYSTEM SIMUlATION

Througbput versus Offered Load
le+07 r------,1----..-1----�.----��-----.-.

X

8e+06 t-

£ 6e+06 r- -

J 4e+06 -

�+06

X •
"

token bus, poisson +

token bus, pareto bulk x -
ethemet, poisson, exp. backoff "

ethernet, poisson, fixed backoff a
ethernet, pareto bulk, exp. backoff •

i I l i 0
o
�------���+�06�----�4e�+�06�-----6e�+�06�--��8�e+�06�-----��e +07

Offered Load (bps)

Figure 1 5.3 Throughput versus Offered Load, for Token Bus and Ethernet MAC protocols, Poisson and
Bulk Pareto arrival processes, Exponential and Fixed Backoff lfor Ethernet).

arrivals. The x-axis gives the "offered load," measured here as the total sum of bits presented to the network
before the simulation end time, divided by the length of the simulation run. The y-axis plots the measured
throughput For each off-time rate, we run l O independent experiments. For each experiment, we plot the
observed pair (offered load, throughput). For the experiment of interest, the throughput increases linearly
with the offered load, right up to network saturation. It is interesting to note, though, the impact of a change
in the traffic-arrival pattern. We replaced the Poisson arrival process with the arrival process that defines an
PPBP, a Poisson bulk arrival process. where the number of frames in each bulk arrival is a truncated Pareto.
We use the same Pareto parameters as before (a = 1.1 and b = 10) and reduced the arrival by a factor of the
inverse Pareto mean ((a-1)/(ab)) to obtain the same average bit-arrival rate. The set of data points associ­
ated with the label "token bus, Pareto bulk" reflect the impact of this change. Throughput grows linearly with
offered load until the bus is roughly 60% utilized. For larger loads, we begin to see some deviations from
linear. For a point (x, y) off the diagonal, the difference between x and y reflects the volume of unserved
frames at the end of the simulation-the frames in queue. This is no surprise; queueing theory tells us that
we should expect significant queue lengths when the arrival pattern is highly variant

Another important aspect is the average time a frame awaits transmission after arrival. Knowledge of
queueing theory and the protocol's operation identifies two factors that ought to contribute to growth in the
queuing length. One factor is the time required by a token to reach a new frame arrival. As the offered load
increases, the amount of work that the token encounters and must serve prior to reaching the new arrival
increases linearly. A second factor is from queueing theory; the view from a station is of an M/G/1 queue.
In this view, the service time incorporates the time spent waiting for a token to arrive, a mean that increases
with the offered load. A job's average time in an M/G/1 queue grows with 11(1-p), where p = lip is the ratio
of arrival rate to service-c9mpletion rate. As t\le offered load grows, p increases; this fact explains the second
factor of waiting-time growth. As p approaches unity, the asymptotic waiting time increases rapidly.

SIMULATION OF COMPUTER NElWORKS

le+06

100000 1:-

I 10000

] � :>.
� 1000
Q "" " ·;;

100 " " "' 0' '0

I

X' -X •• •• • j! X I !i �·-IIi.
X X I

X X X X •

Queueing time versus Offered Load
I ' I

X a . ll a .. fliP I!
X • • • X � - • � :/1 � XJf
,;< x� "• x• >II<X " " "' t .1'.:1 >f "JJ< �

� X'J: • -. •• " ,.11 .:..X....x �·. xa �
'lo•>O< x • -. !f"' x�·xw }(IIi • "", X � X X lll X

I X

�

•

"
'

rn " "
I
"

+� +.

+ -

Jl
-:

.. "
10 1:-� '

,
1l ..
0 I

I I:-

0.1
0

I
�+06

token bus, poisson +
token bus, pareto bulk x

ethernet, poisson, exp. backoff " .,
ethernet, poisson, fixed backoff rn

ethemet, pareto bulk, exp. backoff •
I I I

4e+06 6e+06
Offered Load (bps)

8e+06 le+07

485

Figure 1 5.4 Average Queue Delay versus Offered Load: for Token Bus and Ethernet MAC protocols, for
Poisson and Bulk Pareto arrival processes, and for Exponential and Fixed Backoff (for Ethernet).

Figure 15.4 confirms this intuition, plotting the average time a frame waits in queue between the time
of its arrival and the time at which it begins transmission. Again we execute 10 independent experiments for
a given offered load and plot the raw pair (x, q), where x is the average number of bits presented to the
network per second in that run and q is the average time a job is enqueued. Units of queueing delay are "slot
times", the length of time required for a bit to traverse a cable at the limit of what is permissible for Ethernet
(25.6 J1sec). The extreme range of queueing delays observed for the five experiment types encourages our
use of a log scale on the y-axis. Tracking data from the experiments by using Poisson arrivals, we see stability
in the growth pattern, up to the point where the bus is fully saturated. We know to expect extremes there.
What is very interesting, though, are the extremely high average queueing delays experienced under the
"bulk Pareto" assumptions. If nothing else, these kinds of experiments point out the importance of the traffic
model in the analyzing of network behavior.

A straight-forward.implementation of a token-bus protocol models devices, the bus, and the explicit and
continuous passing of the token among stations. However, this implementation has an undesirable charac­
teristic. Under low traffic load, the model creates a discrete event approximately every 10.84 f.!Sec, the time
it takes to transmit a token between adjacent stations. Under low traffic load, the token could completely
cycle through the network many times before reaching a point in simulation time when there is a frame
available for transmission. Unless the simulation has some particular reason for pushing the token around an
otherwise idle network (e.g., if, at each hop, there is a nonzero probability of the token's being lost or
corrupted, forcing the protocol to detect and react), there are more efficient ways of executing the simula­
tion, at the cost of incorporating extra logic. We may suppose that each device samples the next future time

at which a batch of frames arrives. Before that time, if the device has no frames to transmit, it will make no

further demands on the network. When the simulation has reached a time at which no frame is being

486 DISCRETE-EVENT SYSTEM SIMUlATION

transmitted and no device has a frame waiting for transmission, we perform a calculation to advance simulation
time past an epoch during which the only activity is token passing. Because the time required to circulate the
token around the ring is computable, and the next time at which a frame is available at any station is known,
we can advaoce simulation time to the cycle in which the next frame is transmitted and save ourselves the
computational effort of getting to that place by pushing a token around.

1 5.3.2 Ethernet

Token-based access protocols have been popular, but they have drawbacks when it comes to network
management In particular, every time a device is added to or removed from the network, configuration actions
must be taken to ensure that a new device gets the token and that a removed device is never again sent the
token. The Ethernet access protocol is a solution to this problem (Spurgeon [2000]). A device attached to an
Ethernet cable has no specific idea of other devices on that cable; however, when it wants to use the cable, it
must coordinate with such other devices. Consider the problem-a device has a frame to send; when can it
send it? Ethernet is a decentralized protocol, meaning that there is no controller granting access. A device can
"listen" to the Ethernet cable to see whether it is currently in use. If the cable is already in use, the device holds
off until the cable is free. However, two or more devices could independently and more or less simultaneously
decide to transmit, shortly after which the transmission on the cable is garbled. Both devices can detect this
"collision" (e.g., by comparing what they are transmitting on the cable with what they are receiving from the
cable). Collision detection and reaction to it is the one of the key components of the Ethernet protocol; it is a
so-called Carrier Sense Multiple Access/Collision Detection (CSMA/CD) protocol.

The format of an Ethernet frame is illustrated in Figure 15.5. The 8-byte preamble is a special sequence
of bits (alternating 1 's and O's, except for the last bit which is also a ' l') that listeners on the cable recoguize
and use to prepare to examine the next frame field, a 6-byte Destination address that may specify one device,
a group of devices, or a broadcast to all listening devices. After scanning the full Destination address,
a device listening to the cable knows whether it is an intended recipient. The next 6 bytes identify the send­
ing device; then comes a 2-byte field describing the number of data bytes. The data follow, and the frame is
terminated with a 4-byte code used for error detection.

When a device decides to transmit, it begins in the knowledge that it is possible for another device to
begin also, not yet having heard the new transmission. Ethernet specifications on network design ensure that
any transmission will be heard by another device within o = 25.6 J.I.Sec. This is called a slot time. The worst
case is that the device begins to transmit at time t, yet before time t + 0, a device at the other end of the cable
decides to transmit and does so just before time t + o, and another o time is needed

·
by the first device to

detect the collision.
The length of the data portion of an ethemet frame is not specified by the protocol. However, there is a

lower bound on the allowable length of the data portion. The framt;! must be large enough so that it takes
longer than 2 slot times to transmit it. This bound ensures that, if a collision does occur, the sending device
will be transmitting when the effects of the collision reach it, and hence it can detect the collision. This
minimum is 46 bytes of data; furthermore, a frame is not permitted to carry more than 1500 bytes of data.

Some of the complexities of Ethernet exist because of physics. An accurate simulation of Ethernet must
therefore pay attention to the delicacies of signal latency. The model used to generate Ethernet performance
figures specifically accounts for signal latency. It assumes that the devices are evenly spaced along a cable

size (bytes) 8 6 6 2 4

Preamble Destination Soun:e Length Data Cyclic Redundancy
MAC adrs MAC adrs Check

field

Figure 1 5.5 Format of Ethernet Frame.

SIMUlATION OF COMPUTER NETWORKS 487

that requires a full slot time (25.6 JlSec) for a signal to traverse. When a device listens to the cable to see
whether it is free, the model really answers the question of whether the device can, at that instant, hear any
transmission that might have already started. This is a matter of measuring the distance between a sending
device and a listening device, computing the signal latency time between them, and working out whether the
sender started longer ago than that latency. Likewise, when a device has a frame to send and is listening to
the cable to find out when it is idle, its view of the cable state is one that accounts for a certain delay between
when a transmission ends and when that end is seen by an observer.

A device with a frame to send listens to the cable and, if it hears nothing begins to transmit. If it
successfully transmits the frame without collision and has another frame to send, i t waits 2 slot times before
making the attempt. If a device wanting to send a frame hears that the cable is in use, it simply waits until
the cable is quiet and then begins to transmit. The most interesting part of Ethernet is its approach to
collisions. If a device transmitting a frame F detects a collision, it continues to transmit-but jumbled-long
enough to ensure that it transmits a full minimum friune's worth of bits. This 'jamming" ensures that all
devices on the cable detect the collision. Next, it backs off and waits a while before trying to send F again.

The backoff period following a collision has been a topic of some study, one in which simulation has
played an important role. If the backoff time is short, there is a chance of not overly increasing the

.
delay time

of a frame but there is also a significant chance of incurring another collision. On the other hand, If the back­
off time is

,
large, one reduces the risk of a subsequent collision, but ensures that the delay of the frame in the

system will be large. Over time, the following strategy, called "expone�tial backoff", has
.

become the
Ethernet standard. Following the mth collision while attempting to transnut frame F, the devtce randomly
samples an integer k from (0, 2m-lj, and waits 2k slot times before making another attempt If 10 attempts
are made without success, the frame is simply dropped. The term "exponential backoff' describes the
doubling in length of the mean backoff time on each successive collision. Successive collisions are meas­
ures, of a sort, of the level of congestion in the network. A device strives to reduce its contribution to the
congestion, and so enable other frames to get through and relieve the congestion: . Simulation is a useful tool to investigate both backoff schemes and other vanants of Ethernet one nught
consider. We did experiments (assuming Poisson arrivals) on exponential backoff and on "fixed" backoff­
where after a collision occurs, the sender chooses ke [0, 4] slot times to wait, uniformly at random.
Fi� 15.3 illustrates the effects on throughput. Under exponential backoff, through�! increases linearly
with offered load until after about 60% utilization. For greater load, throughput hovers tn the 70% of band­
width regime, without significant degradation. The story is quite different under fixed back?ff. When offered
load is 70% of the network bandwidth, the throughput plummets from 60+% and settles m at around 40%
of bandwidth-under higher load, the network delivers poorer service. Queueing delays are affected too, as
one would expect. Under high load, the delays under fixed backoff are an order of magnitnde larger than
those urider exponential backoff. . .

A final set of experiments used the same Poisson bulk arrival process, with Pareto-based
.
bulk am

_
vals,

assuming exponential backoff. The results are similar to those fo� the token b
_
us: large and

.
highly vanable

queueing delays, and some deviation of throughput from linear at high load. This set of expenments suggests

that Ethernet may be more sensitive to the Pareto's high variaoce than is the token-bus protocol.

1 5.4 DATA UNK LAYER

A network is far more complicated than the single channel seen by a MAC protocol. A frame might be sent

and received many times,. by many devices, before it reaches its ultimate destination. Consequently, data

traveling at the physical layer contains at least two addresses. One address �s a hard�are address o� �e

intended endpoint of the current hop. This address (like an Ethernet address) IS recognizable by a
.
deVIce s

network-interface hardware. The second address is the ultimate destination's network address, typtcally an

488 DISCRETE-EVENT SYSTEM SIMUlATION

IP �ss. Diff�rent types of d:vices m� up the network. A hub is a device that simply copies every bit
received o� one mterface to all Its other mterfaces. Hubs are useful for com1ecting separated networks, but
have the �Isadvantage that the connection brings those networks into the same Ethernet collision domain. � bridge makes the same sort of com1ection, but keeps component subnetworks in different collision
domams.

_
For every frame he�d on one i��ace, the bridge takes the destination address and looks up in a

table th� m�rface through which that destmatton can be reached. The bridge has nothing to do if one reaches
th� destma�on through the same interface as that through which the frame was observed-the destination
w�ll recogmze the frame for itself. However, if the destination is reached through a different interface the
bndge ��s �e responsibility of injecting the frame through that interface, moving it closer to its ulti:nate
goal. In mJecUng the f�ame: the bridge acts like a source on that subnetwork, engaging in that subnetwork's
MAC �rot�!. The bndge m effect moves a frame from one collision domain and puts it into another. It can
also �ndg� dtffe:ent subdomain technologies (e.g., different types of Ethernet). Contexts where one would
const

_
der su�ulauon

_
study of MAC protocols on one subdomain are the sqrts of contexts where one would

use stmulation and mvolve models of bridges . . � bridge invo�ves only the physical layer and the data link layer. There is a practical limit on devices
retam�g the physt�al ad�sses of other devices, particularly devices that are in different administrative
domams. A router ts a devtce that can connect more widely dispersed networks, by making its connections
at the �e":ork Layer. J: frame coming in to a router on one interface is pushed up to the IP layer, where the
IP desunauon address IS extracted; the IP address determines which interface should be used to forward the
packet The forwarding tables used to direct traffic flow are the result of �mplex routing algorithmr, such
as ?5�F �oy [1998]) and BOP (van Beijum {2002]). Simulation is frequently used to study variants and
optirmzatlons of these protocols. .

We �ill see that network s:rvices commonly used provide users with delivery of data error free and in
�e order !t -:vas sent. These attnbutes are provided in spite of the real possibility that data will be corrupted
m tra�smtsston or lost in transmission. A router is one place where a frame might be lost, for, if the router
ex�nences a temporary burst of traffic, all to be routed through a particular interface, buffers holding frames
wwtmg to be forwarded co�ld become exhausted. We think of the traffic flowing through a router as being
a set of flows, each flow bemg defined by the source-destination pair involved. When the arrivals become
bursty, and the_ rou�r's buffe� becomes saturated, arrivals that carmot be buffered are deliberately dropped.
M?st flows actively mvolv� 1� the burst will l�se frames. Under TCP, data loss is the signal that congestion
exists,

_
and TCP reac� by stgmficantly decreasmg the rate at which it injects traffic into the network. But it

takes t:J.me to �etect this loss-a lot more time than it takes to route frames through the router. One idea that
has been studted extensively (by using simulation) is Random &rly Detection (RED) (Floyd and Jacobson
{1993]) queue management. The idea behind RED is to have a router continuously monitor the number of
frames enqueu� for transmission and, when the average length exceeds a threshold, proactively attempt to
�?ttle back arnval rates before the arrivals overwhelm the buffer and cause all of the flows to suffer. RED
�tstts �ch �e and, with some pro?ability, either preemptively discards it, or marks a "congestion bit" that
IS avwlable m the TCP header, but ts not much used by most TCP implementations. RED chooses a few
flows to suffer for the hoped-for sake of the network as a whole. Complexity abounds in finding effective
RED parame�rs (e.g., threshold queue length, probability of dropping a visited frame) and in assessing
�deo�s and tmpacts that use of RED could have. Simulation, of course, has played and will play a key role
m making these assessments.

1 5.5 TCP

The T�ansP?rt Control Proto_col _
(TCP) (Comer [2000]) establishes a com1ection between two devices, both

of whtch VIew the commumcauon as a stream of bytes. TCP ensures error-free, in-order delivery of that

SIMUlATION OF COMPUTER NETWORKS 489

Server Bridge Router Client

Figure 1 5.6 Data How from TCP sender to TCP receiver, passing through network devices.

stream. As we have seen, data frames might be discarded (in response to congestion) somewhere between
the sender and receiver; TCP is responsible for recognizing when data loss occurs and for retransmitting data
that have gone missing. TCP mechanics are focused on avoiding loss, detecting it, and rapidly responding to
it. A number ofTCP variants have been proposed and studied; all of these studies use simulation extensively
to determine the protocol's behavior under different operating conditions. .

Our discussion of TCP serves to illustrate further how different components of networking layers come
together. Figure l5.6 illustrates data flow from a server to a client. 1\vo applications intending to communi­
cate establish "sockets" at each side. Sockets are viewed by the applications as buffers into which data could
be written and out of which data might be read. Calls to sockets are sometimes blocking calls, in the sense
that, if a socket buffer carmot accept more data on a write, or has no data to provide on a read, the calling

processes blocks. On the server side, the TCP implementation is responsible for removing data from the
socket's buffer and sending it down through the protocol stack to the network. Once on the network, the data
pass through different devices. In this figure, we illustrate a bridge (which involves remapping of hardware

addresses and does not look at the IP address) and a router (which must decode the IP address to find out

the interface through which the data is passed). The client host's IP recognizes that the data ought to go up

the stack to TCP, and the client side TCP is responsible for releasing the data to the socket-but only a

contiguous stream of data. If the router drops a frame of this flow, the client-side TCP must somehow detect

and communicate this absence to the server-side TCP.
TCP segments the data flow into segments. Figure 15.7 illustrates the header (in 32-bit words) that is

placed .around the data. First, note that the only addressing information is "port number" at the source and
destination machines-IP is responsible for knowing (and remembering) the identity of the machines

involved. From TCP's point of view, there is just a source and a destination. SeqN and AckN are descriptors
of points in the data flow, viewed as a stream of bytes, each numbered. SeqN is then the "sequence number"

of the first byte in the segment. At the begimiing of a com1ection, a sender and receiver agree upon an initial

sequence number (usually random); the SeqN value is this initial number plus the byte index within the
stream of the frrst byte carried in the segment Because the segment size is fixed, the receiver can infer the

precise subsequence of the byte stream contained in the segment The AckN field is critical for detecting lost
segments. Every time a TCP receiver sends a header about the flow (e.g., in accordance with acknowledge­

ment rules), it puts into the AckN field the sequence number of the next byte it needs to receive to maintain
a contiguous flow. Since TCP provides a contiguous data stream to the layer above, the value in AckN is the

initial sequence number plus the index of the next byte it would provide to that layer, if it were available.

The linkage of this value with packet loss is subtle. TCP requires a receiver to send an acknowledge for every

segment it receives and requires a sender to deteCt within a certain time limit whether a segment it has sent

490

Header
Lenglh

DISCRETE-EVENT SYSTEM SIMULATION

Source port number Destination port number

(SeqN) Sequence Number

(Acl:N) Acknowledgement Number

U A[ill[S
R C Y
G K N

Checksum

F
I Receiver Wmdow Size
N

Pointer to W'gent data

Options

Data

Figure 1 5.7 TCP header format.

has been aclrnowledged. Now imagine the effect if 3 segments are sent, and the second one is lost en route. Assume the initial sequence number is 0. The first segment is received, and the receiver sends back an acknowledgement with AckN equal to (say) 961 (and the ACK flag set to 1 to indicate that the AckN field is valid). The �d se�ment is rece!ved. but the receiver notices that the value of SeqN is a segment larger than expected-It notices the hole. So it sends back an acknowledgement, but AckN in that header is again 961. The second segment sent is not acknowledged, of course, but interestingly, neither is the third. Evenrually the TCP sender times out while waiting for these acknowledgements and resends the unac­knowledged packets. The only other field in this header, that is critical to our discussion is the Receiver win­dow size, which is included in an Acknowledge to report how many bytes of buffer are currently available tl1 receive data from the sender. · ·

One can visu� TCP as sliding a send window over the byte stream. Within the send window are bytes that have been sent, but not yet acknowledged. TCP controls the rate at which it injects segments into the network by maintaining a congestion window size, which at any time is the largest the send window is allowed to get. If the send-window size is smaller than the congestion-window size and there are data to send, TCP is free to send it, up until the point where the send window has the same size as the congestion window. When the TCP sender has stopped for this reason, an incoming acknowledgement can reduce the size of the send ":in?ow (because bytes at the lower end of the window are now acknowledged), and so free more transnnsston. .
TC� tri� to fin� just how muc� band�idth it can use for its connection by experimenting with the congestlon-:-rndo': Size. When the wmdow IS too small, there is bandwidth available .but it isn't being used. When the wmdow ts too large, the sender contributes to congestion in the network:, and the flow could suffer data loss as a result TCP's philosophy is to grow the congestion window aggressively until there is indication that i� has

.overshot the (�ilknown) target size, then fall back and advance more slowly. This all is formally descnbed rn terms of vanables cwnd and ssthresh. TCP is in slow start mode whenever cwnd < ssthresh but . ,

SIMULATION OF COMPUTER NfTWORKS 491

in congestion avoidance mode whenever cwnd > ssthresh. Both variables change as TCP executes; cwnd
grows with acknowledgements a certain way in slow-start, and a different way in congestion-avoidance;
ssthresh changes when packets are lost. When a TCP connection is first established, cwnd is typically set to
one segment size and ssthresh typically is initialized to a value like 216• TCP starts in slow-start mode, which
is distinguished by the characteristic that, for every segment that is acknowledged, cwnd grows by a
segment's worth of data.

Consider how cwnd behaves during slow start by thinking about TCP sending out segments in rounds.
In the first round, it sends out one segment, then immediately stalls, because the send-window and conges­
tion-window sizes are equal. When the acknowledgement eventllally rerums, the sender issues two segments
as the second round-it replaces the segment that was acknowledged and sends another, because cwnd
increased by l . The sender stalls until acknowledgements come in. The two acknowledgements for the
second round enable the sender to issue four segments: half of these due to replacing the ones acknowledged,
the other half due to the one-per-acknowledgement increase of cwnd role during slow start. The number of
segments issued thus doubles in successive rounds.

Any one of a number of things can halt the doubling of the number of segments sent each round. One
is detection of packet loss, the effects of which are to set ssthresh to be half the size of the send window, set
the send-window size to zero, and set cwnd to allow retransmission of one segment (the one in the lost packet).
Another way TCP ceases to double the number of segments sent each round is due to the rule that the
congestion window may not be increased to exceed certain limits-an internally imposed buffer size at the
sender side, or the size of the "receiver window"-the field in ACKs which reports how much space is
available for new data. Finally, the doubling effect changes also if cwnd grows to exceed ssthresh, and so
puts TCP into congestion-avoidance mode. Within congestion-avoidance mode, cwnd increases, but much
more slowly. Inmitively, cwnd increases by one segment for every full round that is sent and acknowledged
(as opposed to increasing by one segment with every segment that is acknowledged). This is sometimes
described as increasing cwnd by 1/cwnd with every acknowledgement

Simulation is an excellent tool for understanding how TCP works and many of the subleties of its behav­
ior; we now examine simple examples of that behavior. The first topology is that of a server, a client, and a
800 kbps link between them. The server is to send a 300000 byte file to the client. We attach a monitor that
emits a tcpdump fonnatted trace (see www . tcpdump . org) of every TCP packet that passes (in either
direction) through the server's network interface. Postprocessing of this trace yields information about how
TCP variables of interest behave. In the first siruation, we plot the values of SeqN in packets sent by the
server and the values of AckN in packets sent by the receiver in response for the first six rounds, assuming
an initial sequence number of 0. This is illustrated in Figure 15.8, where the Y-axis is logarithmic in order to
illustrate interesting behavior at different scales. The TCP connection is requested by the client at time 192,
the first step in TCP's three-way handshake that results in the server sending the ftrst segment at time 192.3
(not acrually shown in the graph, to allow higher resolution to later rounds). The SeqN in the header of that
segment is 1, the index of the first byte in the segment. It takes approximately 100 ms for the segment to
reach the client, and another 100 ms for the client's acknowledgment to reach the monitoring point, at time
192.5. (The exact figures are a little different, as they account for the transmission delay caused by the link
bandwidth.) The ACK bit of that segment is set, and the AckN value in the header is %1-the index of the
next byte the receiver expects to see. The server's send window now being empty, and cwnd having advanced
from 1 to 2 by virtlle of the received acknowledgement, the server immediately sends two segments, one with
SeqN equal to 961 , the next with SeqN equal to 961 + 960 = 1921. The graph shows overlapping marks for
byte index 961, one from the acknowledgement header, and one from the next segment the server sends. The
delay between the server's sending of a segment and the ultimate acknowledgement of that segment is known
as the round-trip time, or RTT. In this example, the network is as simple as it can. be, and the RTT is just the
sum of the time to send a segment across the link plus the time to send an acknowledgement back-here, a
value very close to 200 ms. At times. 192.3 and 192.5, the server stopped sending segments just as soon as

492

ll ., -=
£
>. l:ll

DISCRETE-EVENT SYSTEM SIMULATION

IOCOOO ���----,----------,----------r-------�
SeqN +
AckN x

10000

1000

+ +

+ X

,.

I
1 +X X X
"

100 �--------��-----------�----------J_ ________ __J
192 192.5 193 193.5 194

Simulation time {sec)

Figure 1 5.8 Early rounds of TCP connection on 800 kbps/1 00 ms link, with tcpdump probe at fhe
server's network interface.

its s�nd window and �e congestion window were the same size. After one RTI, acknowledgements from the
prev1ous round come m; they allow the server to double the number of segments sent from one round to the
ne�t. For ';'unds thr� and four (at times 192.7 and 192.9, approximately), the graph shows the slight stag­
genng of Urnes associated with acknowledgements coming in and new segments going out

Figure 15.8 shows how, in slow-start mode, upon receiving a burst of acknowledgements, the server
generates a burst of new segments. A moment's reflection shows that, if the acknowledgement for the first
segment in that burst is received while the burst is continuing, then the burst will continue ad infinitum. For

�t the �nstant that critical acknowledgement is received, the send window must be smaller than the conges�
uon wmdow, and the send window will not grow after this point, while the congestion window will We can
c�mpute

_
the size of the congestion window at which this phenomenon occurs-it is when the congestion

wmdow 1s large enough that the time needed to transmit that many bytes is precisely the RTI. Back-of-the­
env�lope c_aJcula�o�s �ndicate that this is 20000 bytes, or just under 21 segments. In these experiments, the
receiver ��o:V 1s lllll1ted to 32 segments, so this saturation happens before the flow is limited by that buffer.
SSFNet m1t1altzes ssthresh to 65396 bytes, so this saturation point is reached in slow-start, before cwnd
reaches ssthresh and triggers congestion-avoidance mode. Since cwnd starts with value 1 and doubles with
every round, the server saturates its sends in the middle of the 6th round. This is observed in Figure 15 8 in
the round that starts just after time 193.5.

· '

In Figure 15.9, we illustrate this same experiment, along with another that is identical-save that the
link latency is 300 ms. A larger epoch of �imulation time is illustrated. There is an interesting kink in the
SeqN data set for the 100 ms network, in the vicinity of SeqN = 65K. The "slope" of the data set decreases
perceptibly. Up to this point, for every acknowledgement received two new segments are transmitted and
they are marked in the tcpdump trace as occurring at the same instant (SSFNet does not ascribe time ad�ance

SIMULATION OF COMPUTER NE1WORKS

0 0 q
§
.9
::> "' 0 e
!) ., .s
8
>. l:ll

IOCOOO

90000 r-

80000 r-

70000

60000 r-

50000 r-

40000 r-

30000 r-

20000

10000 �� ,.ll! •
0
192

fl l

I

194

!ltr
.IJ

I I I
ft ' t

196 198 200
Simulation time {sec)

r

-

-

-

-

-

f •

SeqN, l OO ms ..
AckN, 100 ms x
SeqN, 300 ms ,.
AckN, 300 ms rn

202

Figure 1 5.9 TCP connections between server and client: ond 800 kbps/1 00-ms link, and an 800
kbps/300-ms link.

493

to protocol actions, only to network transmission). At the point of the kink, the value of cwnd becomes equal
to the receiver window, 32 segments. The sender window becomes iimited by the size of the receiver win­
dow, rather than by cwnd, so, after the kink, there is a one-to-one .correspondence between receipt of an
acknowledgement and transmission of another segment. Now consider the experiments using a 300 ms

latency. As we'd expect, rounds happen approximately every 600 ms. To saturate the link, the sender window

has to become three times as large as in the first experiment-almost 64 segments. However, this will never

happen, because the send window will be limited by the receiver window, at 32 segments. Indeed, we see
that the change in slope of the SeqN trace happens at the same byte index as it did with the first experiment.
Likewise, we see visually that there's a gap in transmission time between each successive round.

As a final example of how simulation illustrates the behavior of TCP, we consider an experiment

designed to induce packet loss. The topology is that of a server, a router, and a client. Again, the server is to

send 300000 bytes to the client. Both server and client connect with the router. The link between server and
router has 8 Mbps of bandwidth and 5-rns latency. The link between client and router has 800 kbps of band­

width and 100-rns latency. The router's interface with the client has a 6000-byte buffer. If a packet arrives to

that interface and there is insufficient buffer space available, the packet is dropped. From earlier analysis of

TCP, we can foresee, in part, what will happen. In the slow-start phase, the server begins to double the num­
ber of segments with each successive round. However, it can push packets towards the router 10 times faster

than the router can push packets to the client, so a queue will fonn at the interface. The buffer holds at most

6 packets, so we expect that, in the round where 8 packets ate sent, there will be packet loss. Figure 15.10

illustrates this experiment, adding a trace of cwnd behavior to that of SeqN and AckN (once again meas­

ured at the server's network interface). The effects of the packet loss are visually distinctive. Around time

193.5, the server begins to receive a sequence of acknowledgements that all carry the same AckN value.

494 DISCRETE-EVENT SYSTEM SIMULATION

100000

SeqN
90000 AckN X

cwnd ----

80000

� 70000

§ 60000 .!2
� 50000 I a

I 40000
£ =

30000 • tt ----
20000

10000 .�J L
�92 193 194 195 196 197 198 199

Simulation time (sec)

Figure 1 5.10 TCP connection suffering loss.

These acknowledgements were sent in response to packets that were sent after a loss. Recall that TCP rules
on AckN specify that the receiver identify the sequence number of the next byte it needs to receive to
advance the sequence of contiguously received bytes; hence, the repeated AckN identifies the beginning of
the first lost segment At the point at which the loss is observed, the send-window size is approximately
25000 bytes; in reaction to the loss, ssthresh is set to half this value, cwnd is set to l , and the sender window
collapses to size zero in order to cause the retransmission of all segments (from the first lost one forward).
In the region between times 193 and 194, we see the impact that loss has on cwnd and how the slow-start
doubling of cwnd with each round begins anew. (Notice the small periods of sharply increased growth at
times 194.6, 194.8, and 195.) However, this time, congestion-avoidance mode is entered when cwnd reaches
ssthresh; shortly after time. l95; thereafter, it grows more or less linearly with time. This particular transfer
ends just before cwnd reaches a size that will allow loss once again; had the transfer advanced that far, TCP's
treatment of cwnd would look very much like the period from 193.8 on.

As these simple examples show, TCP's relatively simple rules create complex behavior. Simulation is an
indispensable tool for predicting how TCP will behave in any given context and for understanding that behavior.

1 5.6 MODEL CONSTRUCTION

SSFNet is a versatile tool for buildi.ng and rui.alyzing network simulations, used in the previous section to
look at how TCP behaves. Suggested homework projects encourage use of SSFNet, and so we describe the
general process SSFNet uses in constructing a simulation from an input model. We then illustrate this
process, in pari, by describing the contents of one input ftle used in the last subsection. This is not a users'
manual for SSFNet; very complete documentation exists at www . ssfnet . org. Our aim here to is give a
sense of the approach and to encourage readers to investigate further.

SIMULATION OF COMPUTER NETWORKS 495

1 5.6.1 Construction

Input to SSFNet is in the form of so-called Domain Modeling Language (DML) files. At the simplest level,
a DML file contains just a recursively defmed list of attribute--value pairs, where an attribute is a string and
a value may be either a string or a list of attribute--value pairs. This structure naturally induces a tree, where
interior nodes are attributes (labeled with the attribute string name) and leaves are values of type string
(rather than of type list). To illustrate, consider this DML list:

Net
frequency 1000000
host [id 0

interface id 0 bitrate 800000]
nhi route dest 1 (0) interface o

host id 1
interface id 0 bitrate 800000]
nhi_route dest default interface 0 l

l ink attach 0 (0) attach 1 (0) latency 0 . 1. l

This has some elements of SSFNet DML structure worth noting. Description of a network, elements within
the network, and connections between them use a hierarchical naming convention known as the Network­
Host-Interface convention, or just NHL The network is defined in terms of links between interfaces, and each
interface has an id number that is unique among all interfaces owned by a common host That host has an id
number that is unique among all hosts in a common net Each net has an id, unique among all nets contained
in the same parent net, and so on. The NHI address 0.1.2(4) refers to an interface named 4, within a host
named 2, within a net named 1 , within a net named 0. Within a net, a reference such as 2(4) is understood
to mean interface 4 associated with the uniquely named host 2 within that understood net. The NHl address
of an interface is derived from the nesting described within a DML file. The first interface to appear in the
preceding example.has NHI address 0(0); the second interface to appear has address 1(0). The link attrib­
ute in this example specifies two endpoints of the link, in NHI addressing (using the attach attribute), and
a link latency of l 00 ms.

The recursive structure of DML allows it be oxparsed easily and allows one to construct a parse-tree
whose interior nodes are attributes and whose leaves are string-valued values. The parse-tree associated with
the previous example is illustrated in Figure 15. 1 1 . This data structure gives a handy way of methodolically
building a model from a DML description. The SSFNet engine recursively traverses the tree and configures
core SSFNet objects (such as host). Attributes or values within the tree can be referenced glObally by the
sequence of attribute labels on nodes from the root to the target This .Proves to be useful: one can embed in
a DML file a "library" of attribute--value pairs and reference elements of that library.

SSFNet recognizes a variety of attributes, many of which are described in Table 15.1.

1 5.6.2 Example

Finally, we illustrate some of these ideas by looking at the DML input file for one of our TCP examples.
The file is presented in Figure 15 .12 (annotated with line numbers for easier reference).

In this particular file, lines 1-8 are comments describing the architecture. Line 10 tells the SSFNet
model parser where to find format descriptions of certain constructs; when the parser enCounters these
constructs in the DML file, it will check against the schema to ensure format correctness. Line 1 2 starts the

496 DISCRETE-EVENT SYSTEM SIMULATION

0(0) 1(0) 0.1.

Figure 1 5.1 1 Parse tree of simple DMl example.

Table 1 5. 1 Common Attributes in SSFNet DMl Models

Attribute Value

Net
frequency
traffic
pattern
servers

link
host
graph
Protoco!Session
interface

route

dictionary

list describing a network
number of discrete ticks per simulation second
list of traffic patterns
description of traffic pattern, in terms of receiver (client) and server (sender).
list describing a set of servers to which a client might connect-including their NHI
identities and port numbers
list describing interfaces to be connected, and associated latency
list describing a host, and diverse attributes it may have
list of protocols in a host's protocol stack
list specifying a protocol
a list describing a connection to the network; attributes include
connection bandwidth, and target file for storing monitoring information.
description of a forwarding tahle entry for IP. The dest attribute identifies the
destination being described; the interface attribute describes which interface
packets for that destination should be routed.
a list of constants that can be referenced elsewhere within the DML file

overarching list "Net" followed by a list Line 14 specifies a clock resolution of 1 microsecond. Lines 15-20
describe the netwodc's traffic, a single pattern that includes host 0 as client The "servers" attribute gives a
list of servers, in this case a single one at NHI address 1 (0) (meaning host 1, interface), using port 10.

The "link" attribute at line 24 describes two interfaces to be connected: the one at NHI address 0(0), and
the one at NHI address 1(0). The latency across this link is specified to be 0.1 seconds.

A host contains protocols and interfaces to the network. The host beginning at line 28 is given NHI id 1
and contains a "graph" of protocol sessions. Each model of a software component is described as such a
session. The order of appearance in the graph is important, descending from higher to lower in the stack.
Each protocol session describes its type (e.g., server, client, TCP, IP), and the Java class that describes its
behavior. These classes are constructed, by using certain methologies, to be composable; builders of simulation
models (in contrast to developers of modeling components these builders use) need not develop new classes,

J
i

.h 0

�� 0

"E G>
.5
Gi a.. X G>

� 1 G> c:
CD 0.. E ·;;;
0

0
c: 0
� u a: ·o
8.. ..
CD 0) 0 ::> 0)

0 �

§ I i " i
c:

..9
m .!: ""il "'0 � .

!
c: ·a

�
�

E
t:3

� C"C -
.,;

�

1
]

��
-
! �:: ::1 : � l . .

�: �-; . i!
�.

� -� � •,

1: s e -
!i!

497

498 DISCRETE-EVENT SYSTEM SIMULATION

but the methodology specifies how one does. A protocol session of a given type may include attributes
specific to that type. For example, the tcpServer protocol beginning at line 32 specifies the port through
which it is accessible (I 0). Line 37 begins the declaration of the tcpSessionMaster, a component that man­
ages all TCP sessions. Characteristics of its version of TCP are described by including a list of attributes
defined in a list held elsewhere in the DML file. The statement _ find . dictionary . tcpini t causes
the contents of the named list to essentially be inserted at the point of the statement The string . di c­
tionary . tcpini t names the list in terms of how to find it in the file: "." is the highest level list,
"dictionary" is the name of an attribute in that list, "tcpinit" is the attribute associated with the
sought list, an attribute of the value-list of dictionary. This list starts at line 82.

We quickly describe the meaning of each attribute not obvious from the comments, in order to illustrate
the diversity of parameters in SSFNet's implementation of TCP. RcvWndSize, SendWndSize, and
SendBuf f erSize describe units of MSS and limit buffer useage (which affects TCP behavior, as we have
already seen). A missing segment will be retransmitted up to MaxrexmitTimes times before the TCP
session is aborted. TCP _SLOW_ INTERVAL and TCP _FAST_ INTERVAL give timer values used to
determine when enough time has gone by so that a transmitted segment has not yet been acknowledged. If
a TCP session is inactive for MaxidleTime seconds, it is terminated. delay_ ack and fast _recovery
are Boolean flags that describe whether to use particular optimizations known for TCP.

Back within the specification of the host (at lines 40-43), we find attributes whose values are files into
which the system saves descriptions of how TCP variables behaved during the simulation. Following this
(at line 40) is tJle inclusion of the IP protocol. This, in tum, is followed by declaration of the server's shigle
interface, given id 0 for NHI coordinates and specified to have a bandwidth of 800 Kbits per second. The last
attribute for the server is an "nhi_route", an element in IP's forwarding table, described in NHI coordi­
nates. The server is not a router and so needs only to direct traffic from IP to one interface. Attribute-value
pair dest default says to route everything throuib the interface to follow, 0.

Specification of the second host is similar. In this case, the uppermost ProtocolSession is that of a client
that requests data, through a socket Attributes for the client include the simulation time at which it initiates
the request. (It actually specifies a window of simulation time in which this occurs, to provide some jitter
when multiple clients are to start more or less simultaneously). The length of the transfer being requested is
an attribute (line 60). The rest of this host's Protoco!Sessions are similar to the server's, although we don't
save so much information about TCP's behavior at this host.

1 5.7 SUMMARY

In this chapter, we touched on some important topics related to simulation of computer networks. Traffic
modeling-at different levels of abstraction-is. a crucial element of simulating and modeling networks.
We'emphasized the importance of non-Poisson arrivals models, in some cases to better match characteristics
of specific applications,. in others to be sure to explain and capture long-range dependence.

· Next, we focused on the Data L� layer and on the Media Access Control algorithms. We examined the
token-bus and ethemet protocols, discussed subleties of their simulation, and showed by example how
significant an impact traffic-model assumptions can have on · network performance. Following this, we
mentioned issues at the Data Link layer for which simulation has been a critical tool for investigation.

Much of the traffic on the Internet is carried by using TCP. We described TCP's basic rules and used
simulation to illustrate some of the consequences of these rules. Finally, we skoo;hed how one builds network
models in the SSFNet simulator.

This chapter has barely scratched the surface of how networking uses simulation. Our hope is that what
we discuss leads a student to explore more deeply any one of a number of fas<;inating areas of networking
that can be explored only with simulation. The exercises are designed to do this and to teach the student some
skill in using SSP and SSFNet

SIMULATION OF COMPUTER NE1WORKS 499

REFERENCES

BARFORD, P., AND M. CROVELLA [1998], "An Architecture for a WWW Workload Generator," Proceedings of the
1998 SIGMEfRJCS Conference, Madison, WI, pp. 151-160.

BLACK, U. [2001], "Voice Over IP," Prentice HalL Upper Saddle River, NJ.
COMER, D. [2000], "Networking with TCPIIP Volume 1: Principles, Protocols, and Architecture, 4th ed.," Prentice

Hall, Upper Saddle River. NJ. .. ,
_

.

FLOYD, S., AND V. JACOBSON [1993], "Random Early Detection Gateways for Congestion Avoidlini:e," IEEF/ACM
Transactions on Networking, Vol. I, No. 4, pp. 397-413.

KARAGIANNIS T., M. FAWUTSOS, AND M. MOLLE [2003], "A User-Friendly Self-Similarity Analysis Toot;•
ACM SIGCOMM Computer Communication Review, Vol. 33, No. 3, pp. 81-93.

KUROSE, J., AND K. ROSS [2002], Computer Networking: A Top·Down Approach Featuring the Imernet, 2d ed.,
Addison-Wesley, Reading, MA. -

MOY, J. [1998], OSPF: Anatomy of an Internet Routing Protocol, Addison-Wesley, Reading, MA.
SPURGEON, C. [2000], Ethernet: The Definitive Guide, O'Reilly, Cambridge MA.
VAN BEUNUM, I. [2002], BGP: Building Reliable Networks with the Border Gateway Protocol, O'ReiUy, Cambridge,

MA.
ZIMMERMAN, H. [1980], "OSI reference model-the ISO model of architecture for open system interoonnection"

IEEE Transactions on Communications, Vol. COM-28, No. 4, pp. 425-432.
ZUKEMAN, M., D. NEAME, AND R. ADDIE [2003], "Internet Thlffic Modeling and Future Technology Implications,"

Proceedings of the 2003 lnfoCom Conference, San Franciso, CA.

EXERCISES

1. Surv�y literature in models of Voice-over-IP traffic, and build a simulator that creates traffic load cor­
responding to one model of particular interest

2. Create a Markov-Modulated Poisson process (see chapter 14) and a Poisson-Pareto Burst Process that
yield the same average bit-rate traffic demand. Acquire the SELFIS tool for analyzing long-rimge
dependence (it's free), and compare traces from the MMP and PPBP models.

3. Get from www . bcnn . net the SSP models for the Ethernet protocol experiments reported in this chapter.
Design and perform a sensitivity analysis of throughput as a function of the physical distance .between
ethemet ports. Likewise, design and perform a sensitivity analysis of throughput as a function of
maximum frame size.

4. Acquire the SSFNet simulator from www . ssfnet. org (free for academic use) and the TCP inodels
described in this chapter from www . bcnn. net.

• Look into how TCP behavior changes in each case by increasing the bandwidth by a factor of
10.

• Investigate how TCP behavior changes in each case by reducing the link latency by a factor of
10.

• Work out how TCP behavior changes in each case by increasing the buffer limits expressed in
the DML file by a factor of 10.

. . -�-. -. . -. . -.-. . -. �.

. APPENDIX

Table A. 1 · Random Digits ·

94737 08225 35614 24826 88319 05595 58701 57365 74759
87259 85982 13296 89326 74863 99986 68558 06391 50248
63856 14016 18527 1 1634 96908 52146 53496 51730 03500

Appendix
66612 54714 46783 61934 30258 . 61674 07471 67566 31635
30712 58582 05704 23172 86689 94834 99057 55832 21012

69607 24145 43886 86417 05317 30445 33456 34029 09603
37792 27282 94107 41967 21425 04743 42822 281 1 1 09757
01488 56680 73847 64930 l l l08 44834 45390 86043 23973
66248 97697 38244 50918 55441 5 1217 54786 04940 50807
51453 03462 61 157 65366 61 130 26204 15016 85665. 97714

92168 82530 19271 86999 96499 12765 20926 25282 391 19
36463 07331 5459o 00546 03337 41583 46439 40173 46455
47097 78780 04210 87084 44484 75377 57753 41415 09890
80400 45972 441ll 99708 45935 03694 81421 60170 58457
94554 13863 88239 91624 00022 40471 78462 96265 55360

31567 53597 08490 73544 72573 30961 12282 97033 13676
07821 24759 47266 21747 72496 77755 50391 59554 3 1 177
09056 10709 69314 1 1449 40531 02917 95878 74587 60906
19922 37025 80731 26179 16039 01518 82697 73227 13160
29923 02570 80164 36108 73689 26342 35712 49137 13482

29602 29464 99219 20308 82109 03898 82072 85199 13103
94135 94661 87724 88187 62191 70607 63099 40494 49069
87926 34092 34334 55064 43152 01610 03126 47312 59578
85039 19212 59160 83537 54414 1 9856 90527 21756 64783
66070 38480 74636 45095 86576 79337 39578 40851 53503

78166 82521 79261 12570 10930 47564 77869 16480 43972
94672 07912 26153 10531 12715 . 63142 88937 94466 3 1388
56406 70023 27734 22254 27685 675 1 8 63966 33203 70803
67726 57805 94264 77009 08682 18784 47554 59869 66320
07516 45979 76735 46509 17696 67177 92600 55512 17245

43070 22671 00152 81326 89428 16368 57659 79424 57604
36917 60370 ' 80812 87225 02850 471 1 8 23790 55043 75l 17
03919 82922 02312 3 1 1o6 44335 05573 17470 25900 91980
46724 22558 64303 78804 05762 70650 561 17 06707 90035
16108 61281 86823 20286 14025 24909 38391 12183 89393

74541 75808 89669 87680 72758 60851 55292 95663 88326
82919 31285 01850 72550 42986 575 1 8 0 1 159 01786 98 145
3 1388 26809 .77258 99360 92362 21979 41319 75739 98082
17190 75522 15687 07161 99745 48767 03121 20046 28013
00466 88068 68631 98745 978 10 35886 14497 90230 69264

500

502 DISCRETE-EVENT SYSTEM SIMULATION

Table A.2 Random Normal Numbers

0.23 �.17 0.43 2.18 2.13 0.49 2.72 �.18 0.42
0.24 -l.l7 0.02 · 0.67 �.59 �.13 �.15 �.46 1.64

-l.l6 �.17 0.36 -1 .26 0.91 0.71 -1.00 -1.09 �.02
�.02 �.19 �-04 1.92 0.71 �-90 �.21 -1 .40 -;0.38

0.39 0.55 0.13 2.55 �.33 �.05 -0.34 -1.95 �.44

0.64 �.36 0.98 �.21 �.52 �.02 �.15 �.43 0.62
-1.90 0.48 �.54 0.60 �.35 -1.29 �.57 0.23 1.41
-1.04 �.70 -1.69 1 .76 0.47 �.52 �.73 0.94 -1.63
-.78 O.l l �.91 -1.13 0,07 0.45 �.94 1 .42 0.75
0.68 1.77 �.82 -1.68 -2.60 1.59 �.72 �.80 0.61

�.02 0.92 1.76 �.66 OJ8 -1 .32 1.26 0.61 0.83
�.47 1.04 0.83 -2.05 1.00 �.70 l .l2 0.82 0.08
�.40 1.40 1 .20 0.00 0.21 -2.13 �.22 1 .79 0.87
�.75 0.09 -1.50 0.14 -2.99 �.41 �.99 �.70 0.51
�.66 ..:1.97 0.15 -1.16 �.60 0.50 1.36 ! .94 0.11

�.44 �-09 �.59 1.37 0.18 1.44 �.80 2.1 1 -1.37
1.41 -2.71 �.67 1.83 0.97 0.06 �.28 0.04 �.21
1.21 �-52 �.20 �.88 �.78 0.84 -1.08 �-25 0.17
0.07 0.66 �.5 1 �-04 �.84 0.04 1 .60 �.92 1.14

�.08 0.79 �.09 -l.l2 _:1.13 0.77 0.40 0.69 �.12

0.53 . �.36 -2.64 0.22 �.78 1.92 �.26 1 .04 -1.61
-1.56 1.82 -1.03 1.!4 �.12 �.78 �.12 1 .42 �.52

0.03 -1.29 �.33 2.60 �.64 1.19 �-13 0.91 0.78
1.49 1 .55 �.79 1.37 0.97 0.17 0.58 1 .43 -! .29

-1.19 1.35 0.16 1.06 �.17 0.32 �.28 0.68 0.54

-1.19 -!.03 �.12 1 .07 0.87 -1.40 �.24 �.81 0.31
0.'11 -! .95 �.44 �.39 �.15 -1.20 -L98 0.32 2.91

-1.86 0.06 0.19 -1.29 0.33 1.51 �.36 �;80 �.99
0.16 0.28 0.60 �.78 0.67 0.13 �.47 �.18 �.89
1.21 -1.19 �-60 -1.22 0.07 -1.13 !.45 0.94 0.54

�.82 0.54 �.98 �.13 1 .52 0.77 0.95 �.84 2.40
0.75 �.80 �.28 Ln �.16 �.33 2.43 -1.1 1 1.63
0.42 ll.31 1 .56 0.56 0.64 �.78 0.04 1.34 �.01

-1.50 -1.78 �.59 0.16 0.36 1.89 -1.19 0.53 �.97
�.89 0.08 0.95 �.73 1 .25 -1.04 �.47 �.68 �.87

0.19 0.85 1.68 �.57 0.37 �.48 �.17 2.36 �.53
0.49 0.32 -2.08 -1.02 2.59 �.53. 0.15 O.l l 0.05

-1.44 0.07 �.22 �.93 _:_1.40 0.54 -1.28 -0.15 0.67
�.21 �.48 1.21 0.67 . -LlO �.75 �.37 0.68 �.02
�.65 �.12 0.94 �.44 -1.21 �.06 -1.28 -1.51 1.39

0.24 �.83 1 .55 0.33 �.59 -1.24 ·0.70 0.01 0.15
�.73 1.24 0.40 �.61 0.68 �.69 0.07 �.23 �-66
-1.93 0.75 �.32 0.95 !.35 1.51 �.88 0.10 -1.19

0.08 0.16 0.38 �-96 1.99 �.20 0.98 0.16 0.26
�.47 -1.25 0.32 0.51 -!.04 0.97 2.60 �.08 1 . 19

APPENDIX

Table A.3 Cumulative. Normal Distribution

la

0.0
0.1
0.2
0.3
0.4

o.s
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
2.1
2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.3
3A

3.5
3.6
3.7
3.8
3.9

r 1 - 'n
· l/I(Za) = ..fiiie • du = J - a

0.00 0.01

0.500 00 0.503 99
0.539 83 0.543 79
0.579 26 0.583 17
0.617 91 0.621 72
0.655 42 0.659 10

0.691 46 0.694 97
0.725 75 0.729 07
0.758 03 0.761 15
0.788 14 0.791 03
0.815 94 0.818 59

0.841 34 0.843 75
0.864 33 0.866 50
0.884 93 0.886 86
0.903 20 0.904 90
0.919 24 0.920 73

0.933 19 0.934 48
0.945 20 0.946 30
0.955 43 0.956 37
0.964 07 0.964 85
0.971 28 0.971 93

0.977 25 0.977 78
0.982 14 0.982 57
0.986 10 0.986 45
0.989 28 0.989 56
0.991 80 0.992 02

0.993 79 0.993 96
0.995 34 0.995 47
0.996 53 0.996 64
0.997 44 0.997 52
0.998 13 0:998 19

0.998 65 0.998 69
0.999 03 0,999 06
0.999 31 0.999 34
0.999 52 0.999 53
0.999 66 0.999 68

0.999 77 0.999 78
0.999 84 0.999 85
0.999 89 0.999 90
0.999 93 0.999 93
0.999 95 0.999 95

0.02 0.03

0.507 98 0.51 1 97
0.547 76 0.551 72
0.587 06 0.590 95
0.625 5 1 0.629 30
0.662 76 0.666 40

0.698 47 0.701 ?4
0.732 37 0.735 65
0.764 24 0.767 30
0.793 89 0.796 73
0.821 21 0.823 81

0.846 13 0.848 49
0.868 64 0.870 76
0.888 77 0.890 65
0.906 58 0.908 24
0.922 19 0.923 64

0.935 74 0.936 99
0.947 38 0.948 45
0.957 28 0.958 1 8
0.965 62 0.966 37
0.972 57 0.973 20

0.978 3(0.978 82
0.983 00. 0.983 41
0.986 79 0.987 1 3
0.989 83 0.990 10
0.992 24 0.992 45

0.994 13 0.994 30
0.995 6,0 0.995 73
0.996 74 0.996 83
0.997 60 0.997 67
0.998 25 0.998 31

0.998 74 0.998 78
0.999 10 0.999 .13
0.999 36 0.999 38
0.99955 0.999 57
0.999 69 0.999 70

0.999 78 0.999 79
0.999 85 0.999 86
0.999 90 0.999 90
0.999 93 0.999 94
,0.999 96 0.999 96

503

0.04 la

0.515 95 o.o
0.555 67 Q.1
0.594 83 0.2
0.633 07 0.3
0.67003 0.4

0.705 40 0.5
0.738 91 0.6
0.770 35 0.7
0.799 54 0.8
0.826 39 0.9

0.850 83 1.0
0.872 85 . 1;1
0.1!92 51 1.2
0.909 88 1.3
0.925 06 1.4

0.938.22 1.5
0.949 so 1.6
0.959 07 1.7
0.967 11 1:8
0.973 81 1.9

0.979 �2 ��-0.983 82
0.987 45 2.2
0.99036 2.3
0.992 66 2.4

0.994 46 2.5
0.995 85. 2;6 .
0.996 93 i..7
0.997 74 :u
0.998 36 2;9

0.998 82 3.0
0.999 16 3.1
0.999 40 3.2
0.999 58 3.,3

. 0.99971 . ' 3A.

0.999 80 3.S
0.999 86 3.Ci
0.999 91 3.7
0.999 94 3.8
0.999 96 3.9

(colllinued overleaf)

·--·-· �· -· .

504 DISCRETE-EVENT SYSTEM SIMULATION

Table A.3 (continued}

Za 0.05 0.06 O.ff1 0.08 0.09 za
0.0 0.51 9 94 0.523 92 0.527 90 0.53 1 88 0.535 86 0.0

0.1 0.559 62 0.563 56 0.567 49 0.571 42 0.575 34 0.1
u 0.598 7 1 0.602 57 0.606 42 0.610 26 0.61409 0.2
0.3 0.636 83 0.640 58 0.644 3 1 0.648 03 0.65 1 73 0.3

0.4 0.673 64 0.677 24 0.680 82 0.684 38 0.687 93 . 0.4

0.5 0.708 84 0.712 26 0.715 66 0.719 04 0.722 40 0.5
u 0.742 15 0.745 37 0.748 57 0.751 75 0.754 90 0.6

0.7 0.773 37 0.776 37 0.779 35 0.782 30 0.785 23 0.7

0.8 0.802 34 0.805 10 0.807 85 0.810 57 0.8 13 27 0.8

0.9 0.824 94 0.83 1 47 0.833 97 0.83646 0.838 9 1 0.9

1.0 0.853 14 0.855 43 0.857 69 0.859 93 . 0.862 14 1.0

1.1 0.874 93 0.876 97 0.879 00 0.88 1 00 0.882 97 1.1
1.2 0.894 35 0.1!96 16 0.897 96 0.899 73 0.90 1 47 1.2
1.3 0.9 1 1 49 0.91 3 08 0.914 65 0.9 1 6 2 1 0.917 73 1.3

lA 0.926 47 0.927 85 0.929 22 0.930 56 0.93 1 89 1A
1.5 0.939 43 0.94062 0.941 79 0.942 95 0.944 08 1.5
u 0.950 53 0.95 1 54 0.952 54 0.953 52 0.954 48 u
L7 0.959 94 0.%0 80 0.96 1 64 0.962 46 0.963 27 1.7

1.8 0.967 84 0.968 56 0.969 26 0.969 95 0.970 62 1.8

1.9 0.974 41 0.975 00 0.975 58 0.976 15 0.976 70 1.9
2.0 0.979 82 0.980 30 0.98077 0.98 1 24 0.981 69 z.o
2.1 0.984 22 0.984 6 1 0.985 00 0.985 37 0.985 74 l.l
2.2 0.987 78 0.988 09 0.988 40 0.988 70 0.988 99 2.2
2.3 0.990 6 1 0.990 86 0.991 I I 0.99 1 34 0.991 58 2.3
2.4 0.992 86 0.993 05 0.993 24 0.993 43 0.993 61 2.4
2.5 0.994 6 1 0.994 77 0.994 92 0.995 06 0.995 20 2.5
2.6 0.995 98 0.996 09 0.996 2 1 0.996 32 0.996 43 2.6
2.7 0.997 02 0.997 1 1 0.997 20 0.997 28 0.997 36 2.7

2.8 0.997 8 1 0.997 88 0.997 95 0.998 01 0.998 07 2.8
2.9 0.998 4 1 0.998 46 0.998 5 1 0.998 56 0.998 61 2.9

3.0 0.998 86 0.998 89 0.998 93 0.998 97 0.999 00 3.0
3.1 0.999 1 8 0.999 2 1 0.999 24 0.999 26 0.999 29 3.1
3.2 0.999 42 0.999 44 0.99946 0.999 48 0.999 50 3.2
3.3 0.999 60 0.999 6 1 0.999 62 0.999 64 0.999 65 3.3
3A 0.999 72 0.999 73 0.999 74 0.999 75 0.999 76 3A
3.5 0.999 8 1 0.999 8 1 0.999 82 0.999 83 0.999 83 3.5
3.6 o.999 a·1 0.999 87 0.999 88 0.999 88 0.999 89 3.6
3.7 0.999 9 1 0.999 92 0.999 92 0.999 92 0.999 92 3.7

3.8 0.999 94 0.999 94 0.999 95 0.999 95 0.999 95 3.8

3.9 0.999 96 0.999 96 0.999 96 0.999 97 0.999 97 3.9

Source: W. W. Hines and D. C. Montgomery, Probability and Stodstics in Engineering and Ml11Ulgement Science, 2d ed., © 1980,

pp. 592-3. Reprinted by permission of Jobn Wiley &. Sons, Inc., New York.

APPENDIX

X .01. .05

0 .990 .95 1
I 1 .000 .999
2 1.000
3
4
5

X 1.0 1 . 1

0 368 .333
I .736 .699
2 .920 .900
3 .981 .974
4 .996 . . 995
5 .999 .999
6 1.000 1 .000
7
8

X 2.2 2.4

0 . I l l .091
I .355 .308
2 .623 .570
3 .819 .779
4 ' .928 .904
5 .975 .964
6 .993 .988
7 .998 .997
8 1.000 .999
9 l .ooO

10
l 1
12
13
14
15
16

505

Table A.4 Cumulative Poisson Distribution

a= Mean

. I .2 .3 .4 .5 .6 .7 .8 .9 X

.905 , . .819 .741 .670 .61J7 .549 .497 .449 .407 0

.995 .982 .963 .938 .910 .878 .844 .809 .1n I
1 .000 .999 .996 .992 .986 .977 .966 .953 .937 2

1 .000 1.000 .999 .998 .997 .994 .991 .987 3
1.000 1 .000 1 .000 .999 .999 .998 4

1 .000 1 .000 1 .000 5

a=.Mean

1.2 1.3 1.4 1.5 1.6 1 .7 1.8 1.9 2.0 X

.301 .273 .247 .223 .202 . 183 .165 . !50 . 135 0

.663 .627 .592 .558 .525 .493 .463 .434 .406 I

.879 .857 .833 .809 .783 .757 .73 1 .704 .677 2

.966 .957 .946 .934 .921 .907 .891 .875 .857 3

.992 .989 .986 .981 .976 .970 .964 .956 ;947 4

.998 .998 .997 .996 .994 .992 .990 .987 .983 5
1 .000 1 .000 .999 .999 .999 .998 .997 .997 .995 6

1.000 1 .000 1.000 1 .000 .999 .999 .999 7
1 .000 1.000 1.000 8

a = Mean

2.6 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 X

.074 .061 .050 .030 .018 .01 1 .CYJ7 .004 .002 0

.267 .231 .199 .136 .092 .061 .040 .027 .017 l

.518 .469 .423 .321 .238 . 174 .125 .088 .062 2

.736 .692 .647 .537 .433 .342 265 .202 . 151 3
.877 .848 .815 .725 .629 .532 .440 .358 .285 4
.951 .935 .916 .858 .785 .703 .616 .529 .446 5
.983 .976 .966 .935 .889 .831 .762 .686 .606 6
.995 .992 .988 .973 .949 .913 .867 .809 .744 7
.999 .998 .996 .990 .979 .961J .932 .894 .847 8

1 .000 .999 .999 .997 .992 .983 .968 .946 .916 9
1.000 1 .000 .999 .997 .993 .986 .975 .957 10

1 .000 .999 .998 .995 .989 .980 I I
1 .000 .999 .998 .996 .991 12

1.000 .999 .998 .996 13
1 .000 .999 .999 14

1.000 .999 15
1.000 16

(contmued overleaf)

506 DISCRETE-EVENT SYSTEM SIMULATION

· Table A.4 (continued)

a = Mean
X 6.5 7.0 7.5 8.0 9.0 10.0 12.0 14.0 16.0 18.0 20.0 X

0 .002 .001 .001 0

1 .01 1 .007 ·.005 .003 .001 1

2 .043 .030 .020 .014 Jl06 .003 .001 2

3 . 1 12 .082 .059 .042 . 021 .010 .002 3
4 .224 .173 . 132 . 100 .055 .029 .008 .002 4

5 .369 .301 .241 . 191 .1 16 .067 .020 .006 .001 5

6 .527 .450 .378 .313 .207 .130 . . 046 . .014 .004 .001 6

7 .673 .599 .525 .453 .324 .220 .090 .032 .010 .003 .001 7

8 .792 .729 . .662 .593 .456 .333 .155 .062 .022 .007 .002 8

9 .877 .830 .776 .717 .587 .458 .242 .109 .043 .015 .005 9

10 .933 :9()1 .862 .816 .706 .583 .347 .176 .077 .030 .Ol l 10

1 1 .966 .947 .921 .888 .803 .697 .462 .260 .127 .055 .021 1 1

12 .984 .973 .957 .936 .876 .792 .576 .358 . 193 .092 .039 12

13 .993 .987 .978 .966 .926 .864 .682 .464 .275 .143 .066 13

14 .997 .994 .990 .983 .959 .917 .772 .570 .368 .208 . 105 14

15 .999 .998 .995 .992 .978 .95 1 .844 .669 .467 .287 .157 15

16 1 .000 .999 .998 .996 .989 .973 • 899 .756 .566 .3?5 .221 16 .

17 1 .000 .999 .998 .995 .986 .937 ,827 .659 .469 .297 17

1 8 1 .000 .999 .998 .993 .963 .883 .742 .562 .381 18
19 1 .000 .999 .997 .979 . 923 .812 . .651 .470 19

20 1.000 . .998 .988 .952 .868 .731 .559 20

21 .999 .994 .971 .911 .799 .644 21

22 1 .000 .997 .983 .942 .855 .721 22

23 .999 .991 .963 .899 .787 23
24 .999 .995 .978 .932 · .843 24

25 1.000 .997 .987 .955 .888 25

26 .999 .993 .972 .922 26

27 .999 .996 .983 .948 27

28 1 .000 .998 .990 .966 28

29 .999 .994 .978 29

30 .999 .997 .987 30

3 1 1.000 .998 .992 31

32 .999 .995 32

33 1 .000 .997 33

34 .999 34

35 .999 35

36 1 .000 36

Source: J. Banks and R. G. Heikes. Hant/b()()k of Tables and Graphs for the Industrial Engineer onJ M011Gger, C 1984, pp. 34-35.
Reprinted by permission of John: Wiley and Sons, Inc., New Yorlc. ·

APPENDIX

Table A.S Percentage Points of The Student's t Distribution with v Degrees of Fteedom

.

v 1o.oos 10.01 ,0.025 to.os 10.10

1 63.66 31 .82 12.71 6.31 3.08
2 9.92 6.92 4.30 2.92 1 .89
3 5.84 4.54 3.18 2.35 1.64
4 4.60 3.75 2.78 2.13 1.53

5 4.03 3.36 2.57 2.02 1.48
6 3.71 3.14 2.45 1.94 1.44

· 1 3.50 3.00 2.36 1.90 1.42
8 3.36 2.90 2.31 1.86 1.40
9 3.25 2.82 2.26 1 .83 1 .38

10 3.17 2.76 2.23 1.81 1.37
1 1 3. 1 1 2.72 2.20 1.80 1.36
12 3.06 2.68 2.18 1 .78 1.36
13 3.01 2.65 2.16 1.77 1.35
14 2.98 2.62 2.14 1.76 1 .34

15 2.95 2.60 2.13 1.75 1.34
16 2.92 2.58 2.12 1 .75 1.34
17 2.90 2.57 2. 1 1 1.74 . 1.33
18 2.88 2.55 2.10 1.73 1.33
19 2.86 2.54 2.09 1.73 1.33

20 2.84 2.53 2.09 1.72 1.32
21 2.83 2.52 2.08 1.72 1.32
22 2.82 2.51 2.07 1.72 1.32
23 2.81 2.50 2.07 1.71 1.32
24 2.80 2.49 2.06 · 1.7 1 1 .32

25 2.79 2.48 2.06 1.71 1.32
26 2.78 2.48 2.06 1.71 1.32
27 2.77 2.47 2.05 1.70 1.31
28 2.76 2.47 2.05 1 .70 1.31
29 2.76 2.46 2.04 1.70 1.31

30 2.75 2.46 . 2.04 1.70 1.31
40 2.70 2.42 2.02 1 .68 1.30
60 2.66 2.39 2.00 1 .67 1.30

120 2.62 2.36 1.98 1 .66 1 .29
"' 2.58 2.33 1 .96 1.645 1.28 .

Source: Robert E. Shannon, Systems Simulation: TheM onJ Science, C 1975, p. 37S. Reprinted by permission of
Prentice Hall, Upper Saddle River, NJ.

· · ·

507

i. f 8 . .
� i - ::t
c: m � -.... gl � � "" "
� �
i!:. �
-� � z .., "'

$

t
�
>
�

l
iq �·
@

P1
'!'

w

�
�
11
[
.:r
?i
�­
�· "
g,

�

:£
.... 2

J
....
�
�
J:
'15>
� t' �

§: 8 � 25

� N :: o P · ?O 9\ �
N. · w W N

w· r::; ::: o yt � � �
00 - w �

� ·� § �
o., ;..... "' C:

-�· s. § �
L..t ;..... \o t.A

·�· § � e: i..h 0\' � �-

v,
v, I

1 161 .4
2 18.51
3 10.13
4 7.7 1
5 6.61
6 5.99
7 5.59
8 5.32
9 5.12

10 4.96
1 1 4.84
1 2 4.75
13 4.67
14 4.60
15 4.54
16 4.49
17 4.45
18 4.41
1 9 4.38
20 4.35
21 4.32
22 4.30
23 4.28
24 4.26
25 4.24
26 4.23
27 4.21
28 4.20
29 4.18
30 4.17
40 4.08
60 4.00

120 3.92
"" 3.84

� � � �- t5 � !::':l � D: . � � � !:::? �

;s � g:: � lj � ;t al; $ t:. t t:; = �
b tn Oo � 4> b "' tw � "" N Oo � b

00 -...I O'> V. .j>,. al; -1>- -1>- t -1>- -1>- ;!S W W
� � � �- � w � � w b ; w : �

QO,J V1 � w - \0 -.l
� � w o

t:. t t> = i!S
� th iv '.o b-.

� � � � �
� ;..... Qo Ln N

· - - - - -
\.0 00 -....J O\ V\

W VJ W I.;.) W OOJ VI .;:a. N
"' f...> � W Oo

w w w w w
c::J', � W N O
N bo � O �

� � � � �
\O t.l'l tv OO Lh

� � � � � ;!:: � � � � � � id � � � tj � �
;.... lh Oo Oo b'l i..u � \o � _ � N \o � � ;...... \o_ � � o

� � � � p � � � � � � � � � � � � �· � ;.J:io. ·t-.> 00 w - \0:. 0\ � N 0 00 0\ .;::... · tv 0 00 Ul W

�: ;:::;- � :: 0

� t5 � � D:
lu Oo W Oo N

t5 !::':l � � �
=- � N � N

� � � � � .
� W \o iJl

tv N N ...- ­W N - \0 00 � � O � Lu

tv - - - ­- \0 00 -.l O\
;._ Oo t.n t..> O

\0 00 ·......,J· 0\ V\ � � t-.,) ;oo.,.. <:::

..., ..., , _ _ - - - , ...,
,.., !'-> $=' , P' � !'-> $=' ;-I �"' a. 0 "" ·"" _, ;:;; 'f � gg . t:

� � OO ::h t;; � ;,_ lh Oo ;.....

;o ;l � ;;: �
O Vt O � oo

- - - - -0'\ t..h � N -
i.o tn ,;...... a.. ;......

� t;:; � O -.o
:....:. � o o-. N

w : \0 0\
� � !:: �

- \0 -l t..h ;.... w tu .o � U\ OO t-J

\0 -.l t.J'I W

$ � :g �

-.1 0\ ..P.. N !...l t.J O., :...:a 00 t..h - -

�t

fN

�

Table A.7 Percentage Points of The F Dis.tribution with a = 0.05

Degrees of Freedom for the Numerator

2 3 4 5 6 7 8 9 10 12 IS 20 24 30 40

199.5 2 15.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0 249.1 250.1 251.1
19.00 19.16 1 9.25 1 9.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47
9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59
6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72.
5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 " 4.56 4.53 4.50 4.46
5.14 4.76 4.53 4.39 4.28 . 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77
4.74 4.35 4.12 3.97 3.87 ·3.79 3.73 3.68 3.64 3.57 . 3.51 3.44 3.41 3.38 3.34
4.46 4.07 3.84 3.69 3.58 . 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04
4.26 3.86 3.63 3.48 3.37 3.29 3.23 3. 18 3.14 3.07 3.01 2.94 2.90 2.86 2.83
4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66
3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53
3.89 3.49 3.26 3. 1 1 ·3.00 2.91 2.85 2.80 2.75 2.69 2,62 2.54 2.51 2.47 2.43
3.81 3.41 3.18 3.03 2.92 2.83 2.7? 2.71 2.67 2.60 2.53 2.46 2.42 2.38. 2.34 .

3.74 3.34 3 . 1 1 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 . 2.35 2.31 ·2.27
3.68 3.29 3.06 2.90 2.79 . 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20
3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2 . 15
3.59 3.20 2.96 2.81 . 2.70 . · 2.61 2.55 2.49 2.45 2.38 . 2.31 2.23 2.19 2.15 2:10
3.55 3.16 2.93 2.77 2.66 2.58 2.51 "2.46 2.4!" 2.34 2.27 2.19 " 2.15 2. 1 1 . .2.06
3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2. 1 1 2.07 2.03
3.49 3.10 2.87 2.71 .2.60 . ;t.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99
3.47 3.07 2.84 2.68 " 2.57 2.49 2.42 2.37 2.32 2.25 2. 18 2.10 2.05 2.01 1.96
3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 . 1 .98 1 .94
3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91
3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.1 1 2.03 1.98 1 .94 1 .89'
3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 · 1.96 . 1.92 1.87
3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1 .95 1 .90 1.85
3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1 .84
3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 . 2.19 2.12 . 2.04 1.96 1.91 L87 L82
3.33 2.93 2.70 2.55 2.43 2.35 · 2.28 2.22 2.18 2.10 2.03 1 .94 1 .90 1.85 1.81
3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1 .89 1 .84 1 .79
3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1 .84 1 .79 1 .74 1 .69
3. 15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1 .92 1 .84 1 .75 1 .70 1 .65 1.59
3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1 .91 1.83 1.75 1 .66 1.61 1.55 1 .55
3.00 2.60 2.37 2.21 2.10 2.01 . 1 .94 1 .88 1 .83 1.75 1.67 1.57 1.52 1 .46 1.39

----· -·-··--�--·-···-··------·- .

60 120

252.2 253.3
19.48 19.49

8.57 8.55
. 5.69 5.66

4.43 4.40
3.74 3.70
3.30 3.27
3.01 2.97
2.79 2.75
2.62 2.58
2.49 2.45
2.38 2.34
2.30 2.25
:i.22 2.18
2.16 2.1 1
2. 1 1 2.06
2.06 2.0)
2.02 1.97 .
1.98 1.93
1.95 1 .90
1.92 1 .87
1 .89 1 .84
1.86 1.81
1 .84 1.79
1.82 1 .77
1.80 1 .75.
1.79 1 .73
1.77 1.71
1 .75 1 .70
1.74 1 .68
1.64 1.58
l .53 1 .47
1.43 1.35
1 .32 1.22

"G f
>
0.
(j' rl (1)
�

co (1)
a'
�
Q...
:? (1)
() ::r k c 0 Cil
l2
& iT
§..
g
� ::r
<:::

i
m
Q...
., Cil
!t
-�

�

254:3
19.50

8.53
5.63
4.36
3.67
3.23
2.93
2.71
2.54
2.40
2.30
2.21
2. 13
2.07
2.01
1.96
1.92

. 1.88
1 .84
1.81
1.'78
1 .'16

�:;z.o 1.71
1 .69
1.67
1 .65
1.64
1 .62
1.51
1 .39
1.25
1.00

Source: W. W: llines and D. C. Montgomery, Probability and Statistics in Engineering and Matu:Igement Science, 2d ed., © 1980, p. 599. Reprinted by pennission of John Wiley

& Sons, Inc., New York.

:g
.01)

0
v;
g

�
�
...... � s:
......
�
c:

�
0 z

�
�

;�,
ti
r.�

'

DISCRETE-EVENT SYSTEM SIMULATION

Table A.8 Kolmogorov-Smirnov Critical Values

Degrees of
Freedom

(N) DO.IO Do.os DMI
1 0.950 0.975 0.995 .
2 0.776 0.842 0.929
3 0.642 0.708 0.828
4 0.564 0.624 0.733
5 0.510 0.565 0.669
6 0.470 0.521 0.618
7 0.438 0.486 0.577
8 0.4 1 1 0.457 0.543
9 0.388 0.432 0.514

10 0.368 0.410 0.490
I I 0.352 0.391 0.468
12 0.338 0.375 0.450
13 0.325 0.361 0.433
14 0.314 0.349 Q.418
15 0.304 0.338 0.404
1 6 0.295 0.328 0.392
17 0.286 0.318 0.38 1
1 8 0.278 0.309 0.371
19 0.272 0.301 0.363
20 0.264 0.294 0.356
25 0.24 0.27 0.32
30 0.22 0.24 0.29
35 0.21 0.23 0.27

Over 1.22 1.36 1.63
35 .[ii .JN 1N

Source: F. J. Massey, "The Kolmogorov-Smimov Test for Goodness of
Fit.� The Journal of/he American Statistical Association, Vol. 46. C 1951,
p. 70. Adapted witb pennission of the American Statistical Association.

APPENDIX

Table A.9 Maximum likelihood Estimates of the Gamma Distribution

liM f3 JIM f3 liM f3
0.020 0.0187 2.700 1.494 >Hl300 5.3 1 1
0.030 0.0275 .2.800 1 .545 . lo:600 5.461
0.040 0.0360 2.900 1 596'. io,900 5.6 1 1
0.050 0.0442 3.000 1 .646 .1 1.200 5.761
0.060 0.0523 3.200 1 .748 1 1.500 5.9 1 1
0.070 0.0602 3.400 1 .849 1 1.800 6.061
0.080 0.0679 3.600 1.950 ' 12.100 6.2 1 1
0.090 0.0756 3.800 2.051 12.400 6.362
0.100 0.0831 4.000 2.151 12.700 6.512
0.200 0.1532 4.200 2.252 13.000 6.662
0.300 0.2178 4.400

'
2.353. 13.300 6.812

0.400 0.2790 4,600 2.453 13.600 6.962
0500 0.3381 4.800 2.554 13.900 7.1 12
0.600 0.3955 . 5.000 2:654 14.200 7.262
0.700 0.4517 5.200 2.755 14.500 7.412
0.800 0.5070 5.400 2.855 14.800 7.562
0.900 0.5615 5.600 2.956 15.100 7.712
1.000 0.6155 5.800 3.056 15.400 7.862
1.100 0.6690 6.000 3.156 15.700 8.013
1 .200 0.7220 6.200 3.257 ' 16.000 ·"' -" .•• 8.163
1 .300 0.7748 6.400 3.357 16.300

'
8.313

1 .400 0.8272 6.600 3.457 16.600 ' : . 8.463
1 .500 0.8794 6.800 3.558 16.900 8.613
1.600 0.9314 7.000 3.658 17.200 8.763
1.700 0.9832 7.300 3.808 17.500 8.913
1 .800 1.034 7.600 3.958 17.800 9.063
1.900 1 .086 7.900 4.109 18.100 9.213
2.000 1.137 8.200 4.259 . 18.400 9.363
2.100 l.I88 8.500 4.409 18.700 9.513
2.200 1 .240 8.800 4.560 19.000 9.663
2.300 1.291 9.100 4.710 19.300 9.813
2.400 1 .342 9.400 4.860 19.600 9.963
2.500 1.393 9.700 5.010 . 20.000 .. 10.16
2.600 1.444 10.000 5.160

Source: S. C. Choi and R. Wette, "Maximum Likelihood EstimateS. of the Gamma Distribution and
Their Bias:' Technometrics, Vol. I I , No. 4, Nov. © 1969, pp. 688-9:Adapted witb pennission of tile
American Statistical Association.

512

:;: ... ·[� 0
:=- ·
:3 J:> "' J:> 0
It

OISCRffi-EVENT SYSTEM SIMUlATION

Table A.lO Operating Characteristic Curves for The Two-Sided t Test for
. Different Values of Sample Size n

0.70

0.60

0.50

0.40

0 0.8
:t:

'0 � 0.4
J:>

� 0.2

0

6
(a) a 0.05

0 0.2 0.4 0.6 0.8 1..0 1.2 1.4 1.6 1.8
6

(b) a = O.Ql
Source: C. L. ferris, F. E. Grubbs, and C. L. Weaver, "Operating Chamcteristics for tile Common
Statistical Tes!S of Significance," Anntds of Mmhemotical Statistics, June 1946. Reproduced with
pennission of The Institute of Matbematical Statistics.

APPENDIX

Table A. I I . Operating Characteristic Curves lor the One-Sided t Test for
Different Values of Sample Size n
1.00 ,--.,..-.,...-=:O'C"'"-r---r----r--.,r--.--.,..-
0.90 1--+-+-+-+1

:;: 0.80 1--+-+-+­
.a o.1o
a 8 0.60
� '0 0.50

-� 0.40 1-+--1--+-­
� 0.30 1--l--1--1--1-� 1-+--1--+--+� - 0.20

0.10 1-+--1--
0 L--L--L-­

-0.8 .-0.4 O � M M U U U U U U W U U U U � D
6

1.00

0.90

:;: o.so

..
• _§ 0.70
c.. § 0.60 � 0.50 � 0.40] 0.30

£ 0.20

0.10

0
-0.8 -0.4

(a) a = 0.05

[] �� � -� � !\. � � r-r--.. \\ '\ 1\ 1\-. 1"- 1'--.. 1'-.... ,\ \ \ [\.. ":-.... !""--

. \1\ 1\ 1\.
;:1

II 1\ ,\ \, II
8 CA�\\\1 � �

�-\
w \\ �-

�� 1'-�\ ·'-to-..]'..

I'-..

!\. '?.-��� �J' I'... !'-... ['.. � �--.. 1',._

��3
'"'r-.

......... 1'--..

1'--.. t--
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

6
(b) a = 0.01

Source: A. H. Bowker and G. J. Lieberman, Engineering Statistics; 2d ed , © 1972, p. 203. Reprinted
by pennission of Prentice Hall, Upper Saddle River, NJ.

Index

A
Able-Baker call center problem, 62-63, 68,

338--339, 347-348
Abstraction, 451-452

in computer systems. 450--452
Acceptance-rejection technique, 254-260

gamma distribution, 259-260
nonstationary Poisson process (NSPP),

258-259
Poisson distribution, 255-258

Accumulating conveyor section, 428--429
Across-replication cycle-time data, 345.:..347
Activities, 61

defined, 8
Activity.scanning approach, 66-68
Actual average cycle time, 344
Actual usage breakdowns, 431
AGV dispatching systems, 8
AGVs, See Automated guided vehicles (AGVs)
ALGOL, 87-88
Alteinative system designs, 379-422

.-. �-�.-·-. . -. -. --. . -

common random numbers (CRN), 384-392
comparison of, 393-401 ·

Bonferroni approach to multiple
comparisons, 394-398

Bonferroni approach to screening, 400-401
Bonferroni approach to selecting the best,

398-400

multiple linear regression, 409
random-number assignment for

regression, 409--410
simple linear regression, 402-406
testing for significance of regression,

406-408
1\vo-Stage Bonferroni Procedure,

399-401
comparison of two system designs, 380-393
confidence intervals with specified ·

precision, 392-393
independent sampling:

with equal variances, 383-384 .
with unequal variances, 384

optimization via simulation, 410--417
systems performance, statistically and

practically significant differences in,
382

American Statistical Association (ASA), 6
Ample-server system, 205
Analytical methods, 12
Anderson-Darling test, 293
Application Layer, 479
Application Program Interface (API), 106-107
Applied Research Laboratory, United States

Steel Corporation, 88
Approximation for the M/G/c/oo queue, 205
Arena, 14, 1 10-l l l

Input Analyzer, 1 1 1

515

516

Arena (continued)
Input Processor, 270
Output and Process Analyzer, 1 1 6
Professional Edition (PE), 1 10
and SIMAN simulation language, I l l
Standard Edition (SE), 1 10
website, 1 10

Arithmetic Logical Unit (ALU), 453
Arrays, storing records in, 79
Arrival process, queueing systems, 181-182
Arrivals class, 107-108
AS/RS (automated storage and retrieval

system), 428
Assembly-line simulation, 437-443

potential system improvements, analysis of,
441-442

presimulation analysis, 439-440
simulation model and analysis of the

designed system, 440
station utilization, analysis of, 440-441
system description and model assumptions,

437-439
Association for Computing Machinery/Special

Interest Group on Simulation
(ACM/SIGSIM), 6

Associative memory, 473-474
@Risk's BestFit, 270
Attributes, 61

defined, 8
Autocorrelation tests, 233-235

for random numbers, 228-229
Automated guided vehicles (AGVs), 3 12, 428
Automated material handling systems

(AMHS), 8
Automobile engine assembly problem, 410
AutoMod, 14, 1 1 1

animation. 1 1 1
AutoStat, I l l
AutoView, 1 1 1
templates, 1 1 1
website, 1 10
worldview, 1 1 1

AutoStat, 15, 1 1 6
Auto View, 1 1 1
Average of the averages, 343
Average system time, 1 86-187
Awesime, 453

B
Baseline configuration, 438
Batch me�s, 340, 367, 370

Bernoulli distributions, 141
Bernoulli process, 141
Bernoulli trials, 141-142
Best fits, 293-294
Beta distributions, 141, 164-165

physical basis of, 277
. suggested estimators, 281-287

BGP, 488
Bias, in point estimator, 341-342
Binomial distributions, 140-142

physical basis of, 276
Bonferroni approach:

to multiple comparisons, 394-398
to screening, 400-401
to selecting the best, 398-400

Bonferroni inequality, 394
Bootstrapping, 65
Bottom of a list, 78-79
Branch instructions, 470
Branches, 470
Breakpoints, 296
Bridge, 488
Bucket conveyors, 428
Burstiness, 458

and traffic modeling, 482-483
Business process simulation, 7

c
C, 260, 313-314, 453
C++, 79, 260, 3 13-314, 453
C++SIM, 453
Calibration, 316
Call-center analysis, 8
Calling population, queueing systems, 20,

179-180
Cancellation of an event, 64
Carrier Sense Multiple Access/Colijsion

INDEX

Detection (CSMA/CD) protocol, 486
Carrying stock in inventory, 36
Central processing unit (CPU), 450, 452
Chains, See Lists
Chi-square distributions, 508
Chi-square test, 231-233, 270, 287-289

computations for, 232-233
with equal probabilities, 290-291

Classes, 79
Clock. 61

and Java, 93
Clock-time breakdowns, 431
Combined linear congruential generators,

226-228

I
I
�

I

Commercial simulation languages, 453
Common random numbers (CRN), 379,

384-392
Component life, histograms of, 276
Computer systems:

complexity of, 450
levels of abstraction in, 450-451
simulation of, 450-477

Computer-network simulations, 478-499
data link layer, 487-488
Media Access Control (MAC) protocol,

483-487
Transport Control Protocol (fCP), 488-494

Computer-systems simulations, 450-477
CPU simulation, 468-472
event orientation, 456-457
high-level computer simulations, 466-468
memory simulations, 472-475
model input, 457-466

Modulated Poisson Process (MPP),
458-461

virtual-memory referencing, 461-466
process orientation, 454-456
simulation tools, 452-457

Conceptual model, construction of, 3 1 1
Conditional event, 62
Conditional wait, 62
Confidence intervals, with specified precision,

392-393
Confidence-interval estimation, 343-344

statistical background, 345-348
Congestion window size, 490
Conservation equation, 188-189
Construction engineering applications,

simulation, 7
Continuous data, histograms for, 274-275
Continuous distributions, 146-165

beta distribution, 164-165
Erlang distribution, 15 1-153
exponential distribution, 147-150
gamma distribution, 150-15 1
normal distribution, 153-159
triangular distribution, 244-245
uniform distribution, 146-147
Weibull distribution, 159-160

Continuous model, 1 1-12
Continuous random variables, 132-134
Continuous system, 1 1
Continuous uniform distributions, physical

basis IJf, 277 .
Continuous-time data, 341
Control and Simulation Language (CSL), 88

517

Control sampling variability, 414
Conventional limitations, as source of process

information, 295
Conveyor sections, classification of, 428
Conveyors, classification of, 428-429
Convolution of distributions, 261
Correlated sampling, 379, 441

·, Covariance-stationary process, 297, 359
' CPU simulations, 457, 468-472

Critical path, 5 1
CSIM, 453
Cumulative averages, 358 .
Cumulative distribution function (edt),

134-136
Cumulative normal distribution, 503-504
Cumulative Poisson distribution, 505-506
Current contents and model reasonableness,

3 1 3
Cycle breakdowns or failures, 431

D

Data assumptions, 317
Data collection, guidelines for, 270-272
Data Link Layer, 478-479, 487-488

protocols !lt. 4 79
Data-frames, 478-479
Debugger, 312 .
Dedicated random-number stream, 386
Delay, 61, 187
Delmia!QUEST, 1 14

website, l lO
Design variables, 402
Deterministic duration, 62
Deterministic simulation models, 1 1
Direct execution, defined, 465
Direct-execution simulation, 465-466, 473

· Discrete data, histograms for, 273
Discrete distributions, ·141 � 146, 250-254

Bernoulli trials and the Bernoulli
distribution, 141

binomial distribution, 142-143
discrete uniform distribution, 252-253
empirical discrete. distribution, 250-252
geometric and negative binomial

distributions, 143-144
geometric distribution, 253-254
physical basis of, 277
Poisson distribution, 144-145

Discrete model, 12 ··

Discrete random variables; 132, 141
Discrete system, 9

518

Discrete uniform distributions, 252-253
Discrete-event models, 60
Discrete-"event simulation, 12, 60, 451

concepts in, 61-78
defined. 63

Discrete-time data, 341
Distribution applications, simullition, 7
Distribution of maximum ignorance, 141
Documentation, 314
Domain Modeling Language (DML) files, 495
Doubly-linked lists, 83
Dump-truck problem, 73-77, 389-392
Dynamic allocation, and linked lists, 8 1
Dynamic simulation models, 1 1

E
ECSL, 88
Ehrhardt, I., 436
Empirical dis�butions, 169-171, 245-249

discrete distributions, 250-252
physical basis of, 276

Emulation, 8
End of downtime, 66
End of runtime, 66
End-loading event (EL), 75
Endogenous events/activities, 9

· Engineering data, as source of process
information, 295

Ensemble averages, 354; 357-358
Entities, 3, 6 1 , 79

defined, &
Ergodic chains, 458
Erlang distributions, 1 51-153

and convolution method, 261-262
physical basis of; 277

Ertek, G., 436
Ethernet, 483, 486-487

· Ethernet frame, format of, 486
Event Class, 95
Event list, 6 1
Event methods, Java, 93
Event notices, 61 , 78
Event orientation, 456-457
Events, 9, 21 , 6 1
Event-scheduling simulation, 69-78

· checkout-counter simulation problem,
72-73

dump-truck problem, 7'J-,77
single-channel queue, 69-72

Event-scheduling simulation program, overall
structure of, 93-94

INDEX

Event-scheduling/time-advance algorithm, 64-65
Exogenous events, 64 ·

Expectation, 136-137
Experimentation and statistical-analysis tools,

1 15-1 1 6
common features, 1 15
products, 1 16

Arena's Output and Process Analyzer,
1 1 6

AutoStat, 1 16
OptQuest, 1 17
SimRunner, 1 17

Expert option, as source of process
information, 295

·

ExpertFit, 270
Exponential backoff, 487
Exponential distributions, 1 68; 182, 275--276

physical basis of, 277
suggested estimators, 281

Extend, 14, I l l
website, 1 10

F
Face validity, 317
Family of distributions, selecting, 275--277
FEL, 61, 63-66

end-loading event (EL) on, 75
Fields, 78
FIFO (first in, first out), 20
Finite population models:

compared to infinite models, 179-180
steady-state behavior of, 208-2 1 1

First-in-first-out (FIFO), 182
"Fixed'' backoff, 487
FIXed-sample-size procedures, 393-394
Fixed-window conveyors, 429
Flexibility, in simulation tools, 456-457
Flexsim, 14

animation, 1 1 1-1 12
sirO.ulation models, 1 1 1
website, 1 10

Flexsim Software Products, Inc., 1 12
FORTRAN, 78-79, 87-89, 93, 260, 314
Forwarding tables, 488
Frames, 483
Free-path transporters, 428
Frequency tests, 229-233

chi-square test, 231-233
Kolmogorov-Srnirnov test, 2J0-233
for random numbers, 229 ·

Fully associative cache, 473

INDEX

Functional abstraction, 452
Future event list (FBI.), See FEL
FutureEventList, 93

G
GA., See Genetic algorithms (GA)
Gamma distributions, 139-14 1 , 150-15 1 ,

181-182, 276 .
acceptance-rejection technique, 259-260
maximum likelihood estimates of, 5 1 1
physical basis of, 3 14
suggested estimators, 281

Garbage-in-garbage-out (GIGO), 270
GASP (General Activity Simulatiou Program),

87-88
GASP IV, 88

gee compiler, 462
Gebhardt, H., 436
General Simulation Program, 87-88
Generation, 413
Generator matrix, 458
Genetic algorithms (GA), 413--414
Geometric and negative binomial distributions,

143-144
Geometric distributions, 140, 150, 253-254
GIG0, 270
Goodness-of-fit tests, 287-294

best fits, 293-294
chi-square test, 287-288
chi-square test with equal probabilities,

290-291
Kolmogorov-Srnirnov test, 292-293
p-values, 293-294

Gordon, Geoffrey, 88
GPSS (General Purpose Simulation System):

development of, 88
simulation in, 102-106

GPSS/360, 86-87
GPSSIH, 14, 86-88, 93, 102
· single-server queue simulation in, 102-105
GPSS/NORDEN, 88
Graphical interfaces, and

verification/validation, 313

H
Head of a list, 78
Head pointer, 78
Health care applications, simulation, 7
Heavy-tailed distributions, 479--483
Henriksen, James 0., 88

Herper, H., 436
High-level computer simulations, 466-468
Histograms, 272-275

of component life, 276
for continuous data, 274-275
for discrete data, 273

Hit ratio, 462, 473-475
Hixson, Harold, 87
Hubs, 488
Hurst parameter, 482
Hyperexponential distribution, 141

I

mM, s&
Imagine That, Inc., I l l
Imminent event, 63-64
in_service Variablt<, I 08
inChannel classes, 107
Independent replications, 345
Independent sampling, 379

with equal variances, 383-384
with unequal variances, 384

Infinite population models, compared to finite
models, 180

Infinite-population Markovian models, steady­
state behavior of, 1 94-208

single-server queues with Poisson
arrivals/unlimited capacity, 1 95--201

Initial conditions, 336
Initialization method, 93, 97
Input modeling, 269..:.309

· data collection, 270-272
defined, 269
fitting a nonstationary Poisson process

(NSPP), 294-295
goodness-of-fit tests, 287-289

best fits, 293-294
chi-square test, 287-289
chi-square test with equal probabilities,

290-291
Kolmogorov-Srnirnov test, 292-293
p-values, 293-294

identifying the distribution with data, 272-279
histograms, 272-275
quantile-quantile (q--q) plots, 277-279
selecting the fam1Iy of distributions,

275-277
parameter estimation, 280-287

· sample mean and sample variance,
280-281

suggested estimators, 281-287

Input modeling (continued)
steps in development of a useful model of

input data, 269-270
Input models:

multivariate and time-series input models,
296-303

covariance and correlation, 297
multivariate input models, 298-299
normal-to-anything transformation

(NOliTA), 301-303
time-series input models, 299-301

without data, selecting, 295-296
Input-Output (JJO) system, 452-457
Input-output transformations:

validation process, 3 18-327 ·

using historical input data, 327-33 1
Institute for Operations Research and the

Management Sciences: College ·on
Simulation (INFORMS/CS), 6

Institute of Electrical and Electronics ·

Engineers: Computer Society
(IEEE/CS), 6

Institute of Electrical and Electronics
Engineers: Systems, Man and
Cybernetics Society (IEEE/SMCS), 6

Institute of Industrial Engineers (liE), 6
Instruction complete, 469
l!lstruction decode, 469
Instruction execute, 469
Instruction fetch, 469
Instruction graduate, 469
Instruction issue, 469
Instruction level parallelism (ILP), 469
Instruction-complete stage, 470-471
Instruction-decode stage, 470
Instruction-execute stage, 470
Instruction-fetch stage, 470
Instruction-issue stage, 470
Insurance company problem, 402
Intelligent initialization, 353
Interactive Run Controller (IRC), 312
Interarrival processes,. 457
Internet Protocol (IP), 479
Inventory and supply-chain systems, 140
Inventory policy, 372
Inventory systems:

and random num�r synchronization,
385-386

simulation of, 35-42
nev,:s dealer's problem, 36-39
order-up-to-level inventory system, 40-42

Inverse-transform technique, 240-254

INDEX

continuous distributions without a closed-
form inverse, 249-250

discrete distributions, 250-254
empirical distributions, 245-249
exponential distribution, 240-243
triangular distribution, 244-245
uniform distribution, 243-244
Weibull distribution, 244 ·

IP (Internet Protocol), 479

J
Java, 79, 8 1:-82, 92, 260, 3 13, 453

online resources for learning, 93-94
simulation in, 93-102
single-server queue simulation in, 95-102
/Thread/ class, 454

Java simulation progrnm, overall structure of, 95
Joshi, S. B., 435
Just-in-Time (JIT), 436

K

Kiviat, Phillip J., 88
Kohnogorov-Smirnov critical values, 5 10
Kolmogorov-Smimov test, 230-233, 270

calculations for, 233
as goodness-of-fit test, 292-293

L

Ll cache, 4 73
Lack -of-fit test, 406
Lag, 234, 359

· Lag-h autocorrelation, 297
Lag-b autocovariance, 297
Last-in-first-out (LIFO), 182
Lead time, 40, 140
Lead-time demand, 47-49.
Least Recently Used (LRU), 474

stack evolution, 475
Least-squares function, 403
Linear congruential method, 223-226

or random-number generation, 223-226
Linked lists, 78
Liquified natural gas (LNG) transportation

·
problem, 410

List processing, 64, 78-83
basic properties/operations performed on

lists, 78-79
. defined, 78

INDEX

using arrays for. 79:-81
future event list and dump-truck problem,

82--83
list for dump trucks at weigh queue, 79:-8 1

Lists, 6 1
Local area network (LAN), 483
Locality of reference, 462
Logistics applications, simulation, 7
Lognormal distributions, 141, 163-164

pdf of, 163
physical basis of, 276
suggested estimators, 281-282

Long-range dependence, 48 1-482
Long-run average system time, 187
Long-run time-average number, 185
Lost sales case, 40

M
MAC protocol, 479, 487-488
Main program, Java, 93
"Making up backorders;" 40
Manufacturing and material-handling systems,

425-449
assembly-line simulation, 437-443

potential system improvements, 441-442
presimulation analysis, 439-440
simulation model and analysis of the

designed system, 440
station utilization, 440-441
systeni description and model

assumptions, 437-439
case studies of the simulation of, 435-437
defined, 425
goals and performance measures, 429-430
manufacturing and material-handling

simulations, trace-driven mndels,
433-435

manufacturing-simulation models, major
goals of, 429

modeling issues in, 430-435
modeling downtimes and failures,

430-433
non-manufacturing material-handling

systems, 429-430
simulation projeets, 426-429

material-handling equipment, 428-429
models of manufacturing systems,

. 426-427
models of material handling systems,

427-428
Manufacturing applications, simulation, 6

Markov chain transitions, 452
Markovian models, 195
Markowitz, Harry, 88
Materials handling system (MHS) problem, 410
Mathur, Mahesh, 436
Maximum density, 224
Maximum period, 224
Maximum-likelihood estimators, 281
Measures of performance, 3

confidence-interval estimation, 343-344
point estimation, 341-343

Media Access Control (MAC) protocol,
479, 483-487

Ethernet, 486-487
token-passing protocols, 483-486

Median-spectrum test, 229
Memory simulations, 457, 472-475
Memoryless property, 149, 166
Metaheuristics, 1 15
Metamodeling, 402
Micro Analysis and Design, Inc., U3 ·

Micro Saint, 14, 113
website, l l 0

Microsoft Windows XP, 109
Mid pointer, 83
Military applications, simulation, 7
Milling-machine-bearings-�placement -policy

problem, 391
Min-time event method, Java, 93
Mixed congruential method, of random­

number generation, 223
MIM/c/KIK queue, steady-state probabilities

for, 208
Mode, 137
Model assumptions:

types of, 3 17
validation of, 3 17-31 8

Model building, verification and validation,
3 1 1

Model input, 457-466
computer-systems simulations, 457 .

Modulated Poisson Process (MPP),
458-461

virtual-memory referens;ing, 461-466
Model input-output transformations, validation

process, 3 18-327
Turing test, 331

Model reasonableness, 318
indicators of, 314

Models, 9, 61, 335-378
defined, 3
types of, 1 1

. Modulated Poisson Process (MPP), 458-461
Monotonicity, 386
Monte Carlo simulation, 1 1
Multiple linear regression models, 409
Multiple ranking and selection procedure, 393
Multiplicative congruential method, of random-

number generation, 223
Multiplier, 223
Multiserver queues, 201-204

with Poisson arrivals and limited capacity
(MJM/c/N/oo), 206-208

Multistage procedures, 393
Multivariate and time-series input models:

covariance and correlation, 296-297
normal-to-anything transformation

(NORTA), 301-303

N
Nance, Richard, 86
Nandi, A., 437
National Institute of Standards and Technology

(NIST), 6
Nature of the process, as source of process

information, 295
Negative binomial distributions, 140-141,

143-144
physical basis of, 277

Network Layer, 479, 488
Networked systems design, 478

Application Layer, 479
Data Link Layer, 478-479
Network Layer, 479, 488
Physical Layer, 478
Presentation Layer, 479
Session Layer, 479
traffic modeling. 479-483
Transport Layer, 479

Network-Host-Interface (NHI) convention, 495
Networks, 478-499

of queues, 21 1-213
nextDouble Method, 100
Nonaccumulating conveyor section, 428
Non-manufacturing material-handling systems,

430
Nonstationary Poisson process (NSPP),

168-169
acceptance-rejection technique, 258-259
fitting, 294-295

Nonstationary simulation, 337
Nonterminating system, 337

Nonzero autocorrelation, 234
Normal distributions, 153-157, 275-276

pdf of, 153-154
physical basis of, 277
special properties of, 153-154
suggested estimators, 281
transforming to, 155
using the symmetry property of,. 156

"Normal equations," 403

INDEX

Normal-theory prediction interval, 344
Normal-to-anything transformation (NORTA),

301-303
NSPP, See Nonstationary Poisson process

(NSPP)
Nth moment, 136
Number of Servers is Infinite (MJG/oo/oo), 205
Numerical methnds, 12

0
Offered load, 191
On-line information services problem, 410
Open System Interconnection (OSI) Stack

Mode, 478
Operating characteristic curves, 512-513
Operational model, implementation of,

31 1-312
Optimization, 1 1 5
Optimization via simulation, 410-416

defined, 41 1-412
difficulty of, 412
random search, 415-417
robust heuristics, 413-414

control sampling variability, 414
restarting, 415

OptQuest, 15, 1 13, 117
Order-up-to-level inventory system, 40-42
OSPF, 488
outChannel classes, 107
Output analysis, 3 1 1

defined, 335
measures of performance and their

estimation, 341-344
for a single model, 335-378
for steady-state simulations, 352-370

batch means for interVal estimation,
367-368

error estimation, 359-362
initialization bias, 353-358
quantiles, 370
replication method, 362-365

INDEX

sample size, 365-367
stochastic nafure of output data, 338-341
for terminating simulations, 344-352

· confidence intervals with specified
precision, 348-35 1

estimating probabilities and quantiles
from summary data, 351-352

statistical background, 345-348
Overall error probability, 394-395
Owen, D.G., 87

p
Packet loss, 4 79
Page fault, 462
Page frames, 461

· Pages (units), 461-462
Parallel service mechanisms, 182
Parameter estimation, 280-287

sample mean and sample variance, 280-281
suggested estimators, 281-287

Pareto distribution, 460
Pascal, 3 14
Pegden, C. Dennis, 89
Pending customer, 182
Periodic downtime, 430
Petri nets, 453
Physical Layer, 478
Physical or conventional funitations, as source ·

of process information, 295
Picture formatting, 105
Pierce, Neal G., 435
Point estimate, 339
Point estimation, 341-342
Point estimator:

bias in, 341-342
unbiased, 341

Poisson iurlval process, 181-182
Poisson distributions, 140-141, 143-144,

275-276
acceptance-rejection teclmique, 255-258
physical basis of, 277
suggested estimator, 281 ·

Poisson Pareto Burst Process, 481
Poisson probability mass function, 144
Poisson process, 165-169

nonstationary, 168-169
properties of, 167

Pooled process, 167
Positive autocorrelation, 341
Power of a test, 290

Presentation Layer, 479
Primary event, 62
Pritsker, Alan, 88
Probability density function (pdf), 132
Probabilicy distribution, 132
Probability mass function (pmf), 132
Procedure, 412
ProcessArrival, 98
ProcessDeparture, 98
Process-interaction approach, 66-68
Program documentation, 15

523

Programmable logic controllers (PLCs), 8
Programming languages, and random-variate-

generation libraries, 239
Progress reports, 1 5
Project management applications, simulation, 6
Project reports, 15
ProN1ode1, 14, 1 13

OptQuest Optimizer for, 1 13
website, 1 10

Proof Animation, 102
Protocols, at the Data Link Layer, 478
ProtocolSession, 496, 498
Pseudo-random numbers, generation of, .

222-223
P-values, 293-294

Q
Quantile-quantile (q-q) plots, 277-279
Quantiles, 370
Quest, 14
Queue behavior, 182
Queue discipline, 182
Queueing, 431

effect of downtime on (problem), 432-433
Queueing Event Simulation Tool (QUESJ'),

1 14 Queueing models, 178-218
defined, 178

Queueing networks, 453, 457
Queueing notation, 184

for parallel server systems, 184
Queueing problems, costs in, 194
Queueing systems, 138-140

Able-Baker call center problem, 32-35
arrivals, 20
calling population, 20
characteristics, 179-184

arrival process, 181-182
calling population, 179-180

Queueing systems (continued)
service mechanism, 1 82-1 84
service times, 1 82
system capacity, 180

examples of, 1 80
long-run measures of perfonnance of,

185-1 94
average time spent in system per

customer, 1 86-188
server utilization, 189-193
time-average number in system, 185-186

measures of performance in, 3 14
services, 20
simulation of, 20-35
single-channel queue, 20
single-channel queue problem, 25-30
waiting line, 20

Queueing theory, 178, 406
Queues, See also Lists

defined, 1 84
networks of, 21 1-213

R
Ramaswamy, S. E., 435
RAND Corporation, 88
RAND() function, Excel, 22
Random digits, 501
Random Early Detection (RED), 488
Random normal numbers, 45-47, 502
Random number synchronization, 385-386
Random numbers:

defined, 221
distribution of, 22-23
frequency tests for, 229
generation of, 223·

combined linear congruential generators,
22(}:..228

random-number streams, 228
techniques for, 223-228

pdf for, 222
properties of, 221-222
pseudo-random numbers, generation of,

222-223
routines; 223
tests for, 228-235

autocorrelation tests, 229, 233-235
frequency tests, 229, 230-233

Random search, 415-417
implementation problem, 416

INDEX

Random splitting, 167
Random unscheduled downtime, modeling,

430-43 1
Random-number generation, 221-238
Random-number generators, 386
Random-search algorithm, 415
Random-spacing conveyors, 428
Random-variate generation, 239-266

acceptance-rejection technique,
254-260

gamma distribution, 259-260
nonstationary Poisson process (NSPP),

258-259
Poisson distribution, 255-257

inverse-transform technique, 240-254
special properties, 260-263

convolution method, 261-262
direct transformation for the normal and

lognormal distributions, 260-261
Random-variate generators, 241

Java, 93
Records, 78
"Register-transfer-language," 452
Regression analysis, 402, 406
Reitman, Julian, 88
Reliability function, 152
Report generator, Java, 93
ReportGeneration method, 100
Residual analysis, 406
Robust heuristics, 413-414

control sampling variability, 414
restarting, 415

Rogers, P., 437
Routers, 479, 488
Routines, 223
Routing algorithms, 488
Runs test, 229
Runtime, 181
RVEXPO, l02-l03

s
Sadowski, Randall P., 436
Sample mean, 280-28 1
Sample variance, 280-281
Sampling numbers, 229
Saraph, P. V., 437
Scalable Simulation Framework (SSF),

106-109
Scale parameter, 150
Scatter diagram, 405

I j

INDEX

Scheduled downtime, 430
Scott, Harold A., 435
Screening procedure, 400
Secondary event, 62
Seed, 223

. Selective trace, 3 L5
SELFIS tool, 482
Semiconductor manufacturing applications,

simulation, 6
Sensitivity analysis, 317
Sequential sampling scheme, 393
Server utilization, 1 89'-193

and service variability, 199-201
and system perfonnance, 1 92-193

Server utilization in G/GII/""/"" queues, 189
Server utilization in G/G/c/oo/oo queues, 191
Service according to priority (PR), 1 82
Service completion, 66
Service in random order (SIRO), 182
Service mechanism, queueing systems,

182-184
Service rate, 189
Service times, queueing systems, 1 82
service-time variable, 270
Service-time distributions, and data collection,

270
Session Layer, 479
Set associativity, 473
Sets, See Lists
Shape parameter, 150
Shortest processing time first (SPT), 1 82
Short -term congestion, 431
Significance of regression, testing for,

406-407
Significant differences in, 382
SIMAN (SIMulation ANalysis), 89

and Arena, I l l
SIMAN V, 86
SimPac� 453
Simple linear regression, 402-406
SimRunner, 15, 1 17
SIMSCRIPT, 87
SIMSCRIPT II, 88
SIMUL8, 14, 1 14-1 15

website, l lO
SIMULA, 87-88
Simulation:

advantages of, 5-6
applications of, 6-8
of computer systems, 450-477
defined, 5

disadvantages of, 5
examples, 19-59
in GPSS, 102-106
of inventory systems, 35-46
in Java, 93-102
of large-scale systems, 8
lead-time demand, 47-50
and numeric measures of performance, 429
optimization via, 410-417
of queueing systems, 20-35
random normal numbers, 45-47
reliability problem, 43-45
in SSF, 106-109
statistical models in, 1 3 1-177
step.s in, 1 9
uses of, 4
types of, with respect to output analysis,

336-338
when not to use, 4-5

Simulation analysis, 178
Simulation cloc� 21-22
Simulation Language for Alternative Modeling

(SLAM), 89
. Simulation languages, 14, 341

and random numbers, 221
Simulation libraries, 93
Simulation models:

calibration, 3 16
compared to optimization models, 5
conceptual model, construction of, 3 1 1
input-output transformations, validation

process, 3 18-327
model building, 3 1 1-312
observation, 295

. operational model, implementation of,
3 l l-3 12

validation of, 316-326
verification process, 3 1 1�315

Simulation packages, 60-61
advanced techniques, 83
world views, 66-67

Simulation programming languages (SPLs),
86-87

Simulation software:
history of, 87-89

Advent (1 961-65), 87
Consolidation and Regeneration

(1979-86), 89
Expansion Period (197 1-78), 88
Formative Period (1966-70), 88
Integrated Environments (1987-present), 89

526

Simulation software: (continued)
Period of Search (1955-60), 87

packages, 109-115
animation, 109
Arena, 1 10-l l l
AutoMod, I l l
common characteristics, 109
Extend, 1 l l-123
features, 109-1 10
Flexsim, 1 12
Micro Saint, 1 13
process-interaction worldview, 1 10
ProModel, 1 13
QUEST, l l4
SIMUL8, 1 14-1 15
and tracing, 3 15
WITNESS, 1 15

selection of, 89-92
animation and layout features, 9 1
checkout counter example simulation, 93
features, 89-92
output features, 92
runtime environment, 91
vendor support and product

documentation, 92
Simulation study, steps in, 12-16

data collection, 14
documentation and reporting, 15
experimental design, 15
implementation, 1 6
model conceptualization, 14
model translation, 14
problem fortnulation, 12
production runs and analysis, 15
setting ofobjectives/overall project plan, 12
validation, 15
verification, 14

Simulation trace, 3 14-31 5
Simulation-language-specific interpreter, 454
Simulation-model building process, phases of,

13, 16
Single-channel queuing simulation; interarrival

times/service times, generation of, 20
Singly-linked lists, 82-83
SLAM II, 86, 89
Slot time, 485
Smith, G. D., 435
Smith, J. S., 435
Society for Computer Simulation (SCS), 6
Sockets, 489
Specialized conveyors, 429-430

Special-purpose simulation languages, 4
Speculative register state; 470
SSP, 93, 106-109
SSFNet, 492-498

construction, 495-498

INDEX

DML models, common attributes in, 496
DML structure, 495-496
documentation, 494-497
example, 495-498

SSQueue class, 93
Stacie distance, 474
Stacie policies, 474
Stafford, Rlcbard, 435
Stat::Fit, 270
State, threads, 454
State of a system, 9, 21, 61
Static simulation model, 1 1
Stationary probability, 458
Statistical duration, 62
Statistical models, 137-141

Bernoulli distributions, 141
beta distributions, 141
binomial distributions, 141-143
gamma distributions, 150-15 1
inventOrY and supply-chain systems, 140
limited data, 141
lognormal distributions, 141
negative binomial distributions, 143-144
Poisson distributions, 140-14 3
queueing systems, 1 38-140
reliability and maintainability, 140
unifortn distributions, 141
Weibull distributions, 139-140

Statistical models in simulation, 13 1-177
Statistical-analysis software, 290
Steady-state behavior:

of finite-population model, 208-21 1
of infinite-population Markovian models,

194-208
Steady-state simulations, 338-339

batch means for interval estimation,
367-369 .

error estimation, 359-362
initialization bias, 353-358
output analysis for, 352-370
quantiles, 349
replication method, 362-364
sample size, 365-367

Stochastic input models, 457
and burstiness, 458

Stochastic nature of output data, 338-341 f

I

INDEX

Stochastic simulation model, l l
Stopping time, 336
Structural assumptions, 3 17-3 1 8
Sturrocie, D. T. , 435
Subset selection procedure, 400-401
Successive times to failure, 182
Suggested estimators, 281-282

beta distributions, 282, 287
exponential distributions, 282, 284
gamma distributions, 282
lognortnal distributions, 282
normal distributions, 282
Poisson distributions, 282
Weibull distributions, 282, 284

Supply chain applications, simulation, 7
Surge model, 480
System capacity, queueing systems, 180
System environment, defined, 8
System state, See State of a system
Systems, 43, 450-472

components of, 8-9
continuous, 9
defined, 8
discrete, 9
event orientation, 456-457
with external arrivals, 386
model of, 9
process orientation, 454-456
simulation tools, 452-457

Systems Modeling Corporation, 89
Systems perfortnance, distinction between

statistically and practically significant
differences in, 382·

T
Table-lookup generation scheme, 249
Tabu search (fS), 413-414
Tail of a list, 78
TCP, See Transport Control Protocol (TCP)
tcpdump, 49 1
TcpServer protocol, 498
TcpSessionMaster, 498
Terminating simulation, defined, 336
Terminating simulations, output analysis for,

344-352
Testing for the significance of regression,

406-408
problem, 408

Thinning, 258
Threads, 454-455

Three-phase approach, 68
Tilt-tray conveyors, 428
Time average, 342
Time series, 359

defined, 297
Time to failure, 1 82, 244, 43 1
Time to repair, modeling, 43 1
Time-integrated average, 1 86
Time-series input models, 296
Tocher, K.D., 87
Token bus protocol, 483
Token-passing protocols, 483-486
Top of a list, 78
Total count, and model reaw.nableness, 3 1 3
TotalCustomers, 98
Trace-driven models, 433-435

defined, 433
examples of, 434

Tracing, 3 14-3 15
Traffic modeling, 479-483
Traffic signal sequencing problem, 410
Transactions, 102
Transfortned linear regression model, 403
Transient behavior, 77
Transient simulation, 337
Transport Control Protocol (TCP), 479, 480,

488-494
AckN field, 489-491
bandwidth, 490
congestion window size, 490
cwnd variable, 491-494
header fortnat, 490
Receiver window size, 490
round-trip time (RTf), 49 1-492
segments, 489-490
send window, 490
SeqN field, 489-494
slow start mode, 49 1
sockets, 489
ssthresh variable, 491-494

Transport Layer, 479

527

Transportation modes and traffic applications,
simulation, 7

Triangular distribution, 161-163, 244-245
density function for, 245
mode, median, and mean for, 162
pdf of, 161-162

Triangular distributions, 248-250
physical basis of, 277

Truncated nortnal distributions, 182
Turing test, 331

Si1

528

Turkseven, C. H., 436
1\vo-Stage Bonferroni Procedure, 399-400

u
Unbiased point estimator, 341 Unconditional wait, 62
Uniform distributions, 141, 146-147 Unscheduled random downtimes, 430-433

v
Validation, 3 10-334

defined, 3 1 0
Validation process, 316-327

face validity, 3 1 7-318
goal of, 3 10
input-output lrllllsformations, 3 1 8-327 thtee�step approach to, 3 I 7 validation of model assumptions, 3 1 7-318 Variance heterogeneity test, 229 Vehicle-safety inspection system, comparison of system designs for, 387-388 Verification, defined, 3fO

Verification process, 3 1 1-315 guidelines for, 312-313
V}fi)L Janguage, 453-454
VIrtual memocy, 462
VIrtual-memocy referencing,. 461-466 Visual Basic, 260
Visualization, and model credibility, 429 Voice over IP (VoiP), 480

w
Warehouse management systems (WMS), 8 Watson, Edward R, 436
Website server problem, 466-468

INDEX

Weibul! distributions, 139-141 , 159-160, 182, 276
physical basis of, 277
suggested estimators, 281 , 303 Wmter Simulation Conference (WSC), 6, 86, 435

papers:
Behavior of an Order Release Mechanism in a Make-to-Qrder Manufacturing System with Selected Order Acceptance, 437

Developing and Analyzing Flexible Cell Systeins Using Simulation, 436 Discrete Event Simulation for Shop Floor Control, 435
Inventozy Cost Model for Just-in-nme Production, 436
Modeling Aircraft Assembly Operations, 435
Modeling and Simulation of Material Handling System for Semiconductor Wafer Manufacturing, 435 Modeling Strain of Manual Work in Manufacturing Systems, 436 Shared Resource Capacity Analysis in Biotech Manufacturing, 436 Simulation Modeling for Quality and Productivity in Steel Cord Manufacturing, 436

Within-replication cycle-time data, 345-346 WITNEss, 14, 1 15
website, I I O

WITNESS Optimizer, 1 5
Wolverine Software, 88, l 02 Working set, 462
Work-in-process (WIP), 345, 427, 437 World Wide Web, and application traffic, 480 Wysk, R. A., 435

j

