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1 
Introduction to Simulation 

A simulation is the imitation of the operation of a real-world process or system over time. Whether done by 
hand or on a computer, simulation involves the generation of an artificial history of a system and the obser­
vation of that artificial history to draw inferences concerning the operating characteristics of the real system. 

The behavior of a system as it evolves over time is studied by developing a simulation model. This 
model usually takes the form of a set of assumptions concerning the operation of the system. These assump­
tions are expressed in mathematical, logical, and symbolic relationships between the entities, or objects of 
interest, of the system. Once developed and validated, a model can be used to investigate a wide variety of 
"what if" questions about the real-world system. Potential changes to the system can first be simulated, in 
order to predict their impact on system performance. Simulation can also be used to study systems in the 
design stage, before such systems are built. Thus, simulation modeling can be used both as an analysis tool 
for predicting the effect of changes to existing systems and as a design tool to predict the performance of 
new systems under varying sets of circumstances. 

In some instances, a model can be developed which is simple enough to be "solved" by malhematical 
methods. Such solutions might· be found by the use of differential calculus, probability theory, algebraic 
methods, or other mathematical techniques. The solution usually consists of one or more numerical param­
eters, Which are calle,d measures of performance of the system. However, many real-world systems are so 
compiex that models of these systems are virtually impossible to solve mathematically. In these instances, 
numerical, computer-based sirmilation can be used to imitate the behavior of the system over time. From the 
simulation, data are collected as if a real system were being observed. This simulation-generated data is used 
to estimate the measur�s of performance of the system. 

This book provides an introductory treatment of .the concepts and methods of one form of simulation 
modeling-discrete-event simulation modeling. The first chapter initially discusses when to use simulation, 
its advantages and disadvantages, and actual areas of its application. Then the concepts of system and model 
are explored. Finally, an outline is given of the steps in building and using a simulation model of a system. 

3 



4 DISCRETE-EVENT SYSTEM SIMULATION 

1 .1 WHEN SIMULATION IS THE APPROPRIATE TOOL 

The availability of special-purpose simulation languages, of massive computing capabilities at a decreasing 
cost per operation, and of advances in simulation methodologies have made simulation one of the most 
widely used and accepted tools in operations research and systems analysis. Circumstances under which sim­
ulation is the appropriate tool to nse have been discusst;d by many authors, from Naylor et al. [ 1966] to 
Shannon [1998]. Simulation can be used for the following purposes: 

1. Simulation enables the study of, and experimentation with, the internal interactions of a complex 
system or of a subsystem within a complex system. 

2. Informational, organizational, and environmental changes can be simulated, and the effect of these 
alterations on the model's behavior can be observed. 

3. The knowledge gained during the designing of a simulation model could be of great value toward 
suggesting improvement in the system under investigation. 

4, Changing simulation inputs and observing the resulting outputs can produce valuable insight into 
which variables are the most important and into how variables interact. 

5. Simulation can be used as a pedagogical device to reinforce analytic solution methodologies. 
6. Simulation can be used to experiment with new designs or policies before implementation, so as to 

prepare for what might happen. 
7. Simulation can be used to verify analytic solutions. 
8. Simulating different capabilities for a machine can help determine the requirements on it. 
9. Simulation models designed for training make learning possible without the cost and disruption of 

on-the-job instruction. 
10. Animation shows a system in simulated operation so that the plan can be visualized. 
11. The modem system (factory, wafer fabrication plant, service organization, etc.) is so complex that 

its internal interactions can be treated only through simulation. 

1 .2 WHEN SIMULATION IS NOT APPROPRIATE 

This section is based on an article by Banks and Gibson [ 1997], who gave ten rules for evaluating when sim­
ulation is not appropriate. The first rule indicates that simulation should not be used when the problem can 
be solved by common sense. An example is given of an automobile tag facility serving customers who arrive 
randomly at an average rate of 100/hour and are served at a mean rate of 12/hour. To determine the mini­
mum number of servers needed, simulation is not necessary. Just compute 100/12 = 8.33 indicating that nine 
or more servers are needed. 

The second rule says that simulation should not be used if the problem can be solved analytically. For 
example, under certain conditions, the average waiting time in the example above can be found from curves 
that were developed by Hillier and Lieberman [2002]. 

The next rule says that simulation should not be used if it is easier to perform direct experiments. An 
example of a fast-food drive-in restaurant is given where it was less expensive to stage a person taking orders 
using a hand-held terminal and voice communication to determine the effect of adding another order station 
on customer waiting time. 

The fourth rule says not to use simulation if the costs exceed the savings. There are many steps in com­
pleting a simulation, as will be discussed in Section l .l l, and these must be done thoroughly. If a simula­
tion study costs $20,000 and the savings might be $10,000, simulation would not be appropriate. 

Rules five and siX indicate that simulation should not be performed if the resources or time are not available. 
If the simulation is estimated to cost $20,000 and there is only $10,000 available, the suggestion is not to 
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venture into a simulation study. Similarly, if a decision in needed in two weeks and a simulation will take a 
month, the simulation study is not advised. 

Simulation takes data, sometimes lots of data. If no data is available, not even estimates, simulation is 
not advised. The next rule concerns the ability to verify and validate the model. If there is not enough time 
or if the personnel are not available, simulation is not appropriate. 

If managers have unreasonable expectations, if they ask for too much too soon, or if the power of sim­
ulation is overestimated, simulation might not be appropriate. 

Last, if system behavior is too complex or can't be defined, simulation is not appropriate. Human behav­
ior is sometimes extremely complex to model. 

1 .3 ADVANTAGES AND DISADVANTAGES OF SIMULATION 

Simulation is intuitively appealing to a client because it mimics what happens in a real system or what is 
perceived for a system that is in the design stage. The output data from a simulation should directly corre­
spond to the outputs that could be recorded from the real system. Additionally, it is possible to develop a 
simulation model of a system without dubious assumptions (such as the same statistical distribution for every 
random variable) of mathematically solvable models. For these and other reasons, simulation is frequently 
the technique of choice in problem solving. 

In contrast to optimization models, simulation models are "run" rather than solved. Given a particular 
set of input and model characteristics, the model is run and the simulated behavior is observed. This process 
of changing inputs and model characteristics results in a set of scenarios that are evaluated. A good solution, 
either in the analysis of an existing system or in the design of a new system, is then recommended for 
implementation. 

Simulation 'has many advantages, but some disadvantages. These are listed by Pegden, Shannon, and 
Sadowski [1995]. Some advantages are these: 

1. New policies, operating procedures, decision rules, information flows, organizational procedures, 
and so on can be explored without disrupting ongoing operations of the real system. 

2. New hardware .designs, physical layouts, transportation systems, and so on can be tested without 
committing resources for their acquisition. 

3. Hypotheses about how or why certain phenomena occur can be tested for feasibility. 
4. · Time can be compressed or expanded to allow for a speed-up or slow-down of the phenomena under 

investigation. 
5. Insight can be obtained about the interaction of variables. 
6. Insight can be obtained about the importance of variables to the performance of the system. 
7. Bottleneck analysis can be performed to discover where work in process, infonnation, materials, and 

so on are being delayed excessively. 
8. A simulation study can help in understanding how the system operates rather than how individuals 

think the system operates. . 
9� "What if' questions can be answered. This is particularly useful in the design of new systems. 

Some disadvantages are these: 

1. Model building requires special training. It is an art that is learned over time and through experience. 
Furthermore, if two models are constructed by different competent individuals, they might have 
similarities, but it is highly unlikely that they will be the same. 
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2. Simulation results can be difficult to interpret Most simulation outputs are essentially random vari­
ables (they are usually based on random inputs), so it can be hard to distinguish whether an obser­
vation is a result of system interrelationships. or ofrandonmess. 

3. Simulation modeling and analysis can be time consuming and expensive. Skimping on resources for 
modeling and analysis could result in a simulation model or analysis that is not sufficient to the task. 

4. Simulation is used in some'cases when an analytical solution is possible, or even preferable, as was 
discussed in Section 1.2. This might be particularly tiue in the simulation of some waiting lines 
where closed-form queueing models are available. 

In defense of simulation, these four disadvantages, respectively, can be offset as follows: 

1. Vendors of simulation software have been actively developing packages that contain models that 
need only input data for their operation. Such models have the generic tag "simulator" or "template." 

2. Many simulation software vendors have developed output-analysis capabilities within their packages 
for performing very thorough analysis. 

3. Simulation can be performed faster today than yesterday and will be even faster tomorrow, because 
of advances in hardware that permit rapid running of scenarios and because of advances in many sim­
ulation packages. For example, some simulation software contains constructs for modeling material 
handling that uses such transporters as fork-lift trucks, conveyors, and automated guided. vehicles. 

4. Closed-form models are not able to analyze most of the complex systems that are encountered in 
practice. In many years of consulting practice by two of the authors, not one problem was encoun­
tered that could have been solved by a closed-form solution. 

1 .4 AREAS OF APPLICATION 

The applications of simulation are vast The Wmter Simulation Conference (WSC) is an excellent way to learn 
more about the latest in simulation applications and theory. There are also numerous tutorials at both the 
beginning and the advanced levels. WSC is sponsored by six technical societies and the National Institute 
of Standards and Thchnology (NIST). The technical societies are American Statistical Association (ASA), 
Association for Computing Machinery/Special Interest Group on Simulation (ACM/SIGSIM), Institute of 
Electrical and Electronics Engineers: Computer Society (IEEEICS), Institute of Electrical and Electronics 
Engineers: Systems, Man and Cybernetics Society (IEEEISMCS), Institute of Industrial Engineers (liE), 
Institute for Operations Research and the Management Sciences: College on Simulation (INFORMS/CS) and 
The Society for Computer Simulation (SCS). Note that IEEE is represented by two bodies. Information about 
the upcoming WSC can be obtained from www . wintersim. org. WSC programs with full papers are 
available from www . informs- cs. org /wscpapers . html. Some presentations, by area, from a recent 
WSC are listed next: 

Manufacturing AppliCations 
Dynamic modeling of continuous manufacturing systems, using analogies to electrical systems 
Benchmarking of a stochastic production planning model in a simulation test bed 
Paint line color change reduction in automobile assembly 
Modeling for quality and productivity in steel cord manufacturing 
Shared resource capacity analysis in biotech manufacturing 
Neutral information model for simulating machine shop operations 

Semiconductor Manufacturing 
Constant time interval production planning with application to work-in-process control 
Accelerating products under due-date oriented dispatching rules 
Design framework for automated material handling systems in 3()()..mm wafer fabrication factories 
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Making optimal design decisions for next-generation dispensing tools 
Application of cluster tool modeling in a 3()().;mm wafer fabrication fact�ry . Resident-entity based simulation of batch chamber tools in 300-mm serruconductor manufactunng . 

Construction Engineering and Project Management 
Impact of multitasking and merge bias on procurement of complex equipment 
Application of lean concepts and simulation for drainage operations maintenance crews 
Building a virtual shop model for steel fabrication 
Simulation of the residential lumber supply chain 

Military Applications . 
Frequency-based design for terminating simulations: A peace-enforcement example 
A multibased framework for supporting military-based interactive simulations in 3D environments 
Specifying the behavior of computer-generated forces without programming 
Fidelity and validity: Issues of human behavioral representation 
Assessing technology effects on human performance through trade-space development and evalu-
ation 
Impact of an automatic logistics system on the sortie-generation process 
Research plan development for modeling and simulation of military operations in urban terrain 

Logistics, Supply Chain, and Distribution Applications 
. · Inventory analysis in a server-computer manufacturing environment 

Comparison of bottleneck detection methods for AGV systems 
Semiconductor supply-network simulation 
Analysis of international departure passenger flows in an airport terminal 
Application of discrete simulation techniques to liquid natural gas supply chains 
Online simulation of ped�:strian flow in public buildings 

Transportation Modes and Traffic 
Simulating aircraft-delay absorption 
Runway schedule determination by simulation optimization 
Simulation of freeway merging and diverging behavior 
Modeling ambulance service of the Austrian Red Cross . 
Simulation modeling in support of emergency firefighting in Norfolk 
Modeling ship arrivals in ports 
Optimization of a barge transportation system for petroleum delivery 
Iterative optimization and simulation of barge traffic on an inland waterway 

Bnslness Process Simulation 
·Agent-based modeling and simulation of store performance for personalized pricing 
VISualization of probabilistic business models 
Modeling and siinulation of a telephone call center 
Using simulation to approximate subgradients of convex performance measures in service systems 
Simulation's role in baggage screening at airports 
Human-fatigue risk simulations in continuous operations 
Optimization of a telecommunications billing system 
Segmenting the customer base for maximum returns 

Health Care 
Modeling front office and patient care in ambull!!ory health care practices . . 
Evaluation of hospital operations between the emergency department and a medical telemetry untt 
Estimating maximum capacity in an emergency room 
Reducing the length of stay in an emergency department 
Simulating six-sigma improvement ideas for a hospital el?ergency department 
A simulation-integer-linear-programming-based tool for scheduling emergency room staff 
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Some general trends in simulation application f, 11 growing, including in such areas as insurance o 
: are a� .o ows: At pres�nt, simulation for risk analysis is 

is call-center analysis, which is not amenabl� t
: 

q
:ns pncmgd a�d :Ortfoho �ysis. Another growing area 

large-scale systems such as the internet backbone w· 
eu

l
mg mo e s

ks 
ecause of Its complexity. Simulation of 

. • rre ess networ and supply chain . ware and software mcrease their capability to handle tre I larg 
, s are gmwmg as hard-

Las I · . ex me Y e numbers of entities in abl · t y, stmulatron models of automated material h dr 
a reason e tune. 

for tbe development and functional testing of contr I 
an mg s

f
ystems (AMHS) are being used as test beds 

d I . . o -system so tware Called an 1 . : th . . mo e IS connected m real time to the control syst fi 
· emu auon, e stmulauon 

h 
- em so tware or to a software em !at . 't · · . t e same responses to a control system as the real AMHS d (� 

u or, t IS used to provtde 
photo e�e, or a command to start picking an order). Softwar��ev�� 

example, a box.blocking or �learin� a 
AMHS mstallation and commissioning, to reduce the time spent in th?���

t c.an b�gm much earlier dunng 
ware while attempting to ramp up a new system . . e on trymg to debug control soft-. or contmue runnmg an exisf M dnven by control systems at various levels-from h' h I I . mg one. odels have been 
management systems (WMS) or AGV dis t hi 

tg - eve supernsory systems, such as warehouse 
controllers (PLCs) controlling merges o 

pa c ng systems, to such low-level control as programmable logic n a conveyor system. 

1.5 SYSTEMS AND SYSTEM ENVIRONMENT 

To model a system, it is necessary to understand the conce t f is defined as a group of objects that are joined together . 
p o a syste� and t�e sys�m boundary. A system 

the accomplishment of some purpose. An exam le . 
m so:e �gular mteractton or mt_erdependence toward 

machines, component parts, and workers opera� J
-��

n
� p� uctton system m�ufacturmg automobiles. The 

vehicle. y ong an assembly lme to produce a high-quality 
A system is often affected by changes occurring outside the s ste . . the system environment [Gordon. 1978] In od l' . � m. Such changes are srud to occur in 

between the system and its envir�nrnent
. 
Thi�d 

: t.ng systems, II ts necessary to decide on the boundary 
In the case of the factory system f�r exam 

7ets�n may depend on. the purpose of the study. 
sidered to be outside the influence oftlre facto 

p d h
e �tors controllmg the arrival of orders may be con­

of supply on demand is to be considered the� 
:n �ere o� �art�� the environment. However, if the effect 

orders, and this relationship must be con�idered an a�i�i� 
��o�s tp betwee� �actory

_
output and arrival of 

system, there could be a limit on the maximum . t t 
y 
th 

e system. Surularly, m the case of a bank 
this would be regarded as a constraint imposed b

m
th
eres r�te at can be paid. For the study of a single bank, 

th b . . Y e envrronment. In a study of th ffi f on e anking mdustry, however, the setting of the limit ld b . . e e ects o monetary laws wou e an activtty of the system. (Gordon, 1978] 

1.6 COMPONENTS OF A SYSTEM 

�n order. to understand and analyze a system, a number of terms n . . . mterest m the system. An attribute is a property of an e tity A 
eed .t� be defined. An enttty ts an ObJect of 

fied length. If a bank is being studied, customers . n . n actmty
_ 
�resents a time period of speci­

accounts might be an attribute and making d 
�gh� be one of th� enttttes, the balance in their checking 

T . ' epostts D11ght be an activity · 
he collectiOn of entities that compose a s stem fo · 

. · system for another study [Law and Kelton 2000r F 
r one s�udy ffilght onl� be a subset of the overall 

to determine the number of tellers needed to r�vi�: 
;:rnpl�, If the afor:�ntioned bank is being studied 

as that portion of the bank consisting of the re:ular telle� 
=ng and recetvmg, .�e s!st:m can be defined 

of the study is expanded to determine the numbe f 
. the customers Watting m line. If the purpose 

sell traveler's checks etc.) the definition of th 
r o spectal tellers needed (to prepare cashier's checks to · ' ' e system must be expanded. · ' 
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The state of a system is defined to be that collection of variables necessary to describe the system at any 
time, relative to the objectives of the study. In the study of a bank, possible state vari�tbles are the number of 
busy tellers, the number of customers waiting in line or being served, and the arrival time of the next cus­
tomer. An event is defined as an instantaneous occurrence that might change the state of the system. The term 
endogenous is used to describe activities and events occurring within a system, and the term exogenous is 
used to describe activities and events in the environment that affect the system. In the bank study, the arrival 
of a customer is an exogenous event, and the completion of service of a customer is an endogenous event. 

Table l.l lists examples of entities, attributes, activities, events, and state variables for several systems. 
Only a partial listing of the system components is shown. A complete list cannot be developed unless the 
purpose of tbe study is known. Depending on the purpose, various aspects of the system will be of interest, 
and then the listing of components can be completed. 

1.7 DISCRETE AND CONTINUOUS SYSTEMS 

Systems can be categorized as discrete or continuous. "Few systeniS in practice are wholly discrete or con­
tinuous, but since one type of change predominates for most systems, it will usually be possible to classify 
a system as being either discrete or continuous" [Law and Kelton, 2000]. A diScrete system is one in which 
the state variable(s) change only at a discrete set of points in time. The bank is an example of a discrete 
system: The state variable, the number of customers in the bank, changes only when a customer arrives or 
when the service provided a customer is completed Figure 1.1  shows how the number of customers changes 
only at discrete points in time. 

A continuous system is one in which the state variable(s) change continuously over time. An example 
is the head of water behind a dam. During and for some time after a rain storm, water flows into the lake 
behind the dam. Water is drawn from the dam for flood control and to make electricity. Evaporation also 
decreases the water level. Figure 1.2 shows how the state variable head of water behind the dam changes for 
this continuous system. 

1.8 MODEL OF A SYSTEM 

Sometimes it is of interest to study a system to understand the relationships between its components or to 
predict how the system will operate under a new policy. To study tbe system, it is sometimes possible to 
experiment with the system itself. However, this is not always possible. A new system might not yet exist; it 
could be in only hypothetical form or at the design stage. Even if the system exists, it might be impractical 
to experiment with it. For example, it might not be wise or possible to double the unemployment rate to dis­
cover the effect of employment on inflation. In the case of a bank, reducing the numbers of tellers to study 
the effect on the length of waiting lines might infuriate the cnstomers so gread y that they move their accounts 
to a competitor. Consequently, studies of systems are often accomplished with a model of a system. 

We had a consulting job for the simulation of a redesigned port in western Australia. At $200 millions 
for a loading/unloading berth, it's not advisable to invest that amount only to find that the berth is inadequate 
for the task. 

A model is defined as a representation of a system for the pitrpose of studying the system. For most stud­
ies, it is only necessary to consider those aspects of the system that affect the problem under investigation. 
These aspects are represented in a model of the system; the modei, by definition, is a simplification of the 
system. On the other hand, the model should be sufficiently detailed to permit valid conclusions to be drawn 
about the real system. Different models of the same system conld be required as the purpose of investigation 
changes. 
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0�----------------------� 
Time 

Figure 1 . 1  Discrete-system state variable. 

Time 

figure 1.2 Continuous-system state variable. 

Just as the components of a system were entities, attributes, and activities, models are represented 

similarly. However, the model contains only those components that are relevant to the study. The components 

of a model are discussed more extensively in Chapter 3. 

1 .9 TYPES OF MODELS 

Models can be classified as being mathematical or physical. A mathematical model uses symbolic notation 

and mathematical equations to represent a system. A simulation model is a particular type of mathematical 

model of a system. 
Simulation models may be further classified as being static or dynamic, deterministic or stochastic, and 

discrete or continuous. A static simulation model, sometinles called a Monte Carlo simulation, represents a, 

system at a particular point in time. Dynamic simulation models represent systems as they change over time. 

The simulation of a bank from 9:00 A.M. to 4:00 P.M. is an example of a dynamic simulation. 

Simulation models that contain no random variables are classified as deterministic. Deterministic mod­

els have a known set of inputs, which will result in a unique set of outputs. Deterministic arrivals would occur 

at a dentist's office if all patients arrived at the scheduled appointment time. A stochastic simulation model 

has one or more random variables as inputs. Random inputs lead to random outputs. Since the outputs are 
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random, they can be considered only as estimates of the true characteristics of a model. The simulation of 
a bank would usually involve random interarrival times and random service times. Thus, in a stochastic 
simulation, the output measures-the average number of people waiting, the average waiting time of a 
customer-must be treated as statistical estimates of the true characteristics of the system. 

Discrete and continuous systems were defined in Section 1.7. Discrete and continuous models are 
defined in an analogous manner. However, a discrete simulation model is not always used to model a dis­
crete system, nor is a continuous simulation model always used to model a continuous system. Tanks and 
pipes are modeled discretely by some software vendors, even though we know that fluid flow is continuous. 
In addition, simulation models may be mixed, both discrete and continuous. The choice of whether to use a 
discrete or continuous {or both discrete and continuous) simulation model is a function of the characteristics 
of the system and the objective of the study. Thus, a communication channel could be modeled discretely 
if the characteristics and movement of each message were deemed important. Conversely, if the flow of 
messages in aggregate over the channel w�e of importance, modeling the system via continuous simulation . 
could be more appropriate. The models considered in this text are discrete, dynamic, and stochastic. 

1.10 DISCRETE·EVENT SYSTEM SIMULATION 

This is a textbook about discrete-event system simulation. Discrete-event systems simulation is the model­
ing of systems in which the state variable changes only at a discrete set of points in time. The simulation 
models are analyzed by numerical methods rather than by analYtical methods. Analytical methods employ 
the deductive reasoning of mathematics to "solve" the modeL For example, differential calculus can be used 
to compute the minimum-cost policy for some inventory models. Numerical methods employ computational 
procedures to "solve" mathematical models. In the case of simulation models, which employ numerical 
methods, models are "run" rather than solved-that is, an artificial history of the system is generated from 
the model assumptions, and observations are collected to be analyzed and to estimate the true system 
performance measures. Real-world simulation models are rather large, and the amount of data stored and 
manipulated is vast, so such runs are usually conducted with the aid of a computer. However, much insight 
can be obtained by simulating small models manually. 

In summary, this textbook is about discrete-event system simulation in which the models of interest are 
analyzed numerically, usually with the aid of a <;omputer. 

1.11 SlEPS IN A SIMULATION STUDY 

Figure 1.3 shows a set of steps to guide a model builder in a thorough and sound simulation study. Similar 
figures and discussion of steps can be found in other sources [Shannon, 1975; Gordon, 1978; Law and 
Kelton; 2000]. The number beside each symbol in Figure 1.3 refers to the more detailed discussion.in the 
text. The steps in a simulation study are as follows: 

Problem formulation. Every study should begin with a statement of the problem. If the statement 
is provided by the policymakers, or those that have the problem, the analyst must ensure that the problem 
being described is clearly understood. If a problem·statement is being developed by the analyst, it is important 
that the policymakers understand and agree with the formulation. Although not shown in Figure 1.3, there 
are occasions where the problem must be reformulated as the study progresses. In many instances, policy­
makers and analysts are aware that there is a problem long before the nature of the problem is known. 

SeHing of objectives and overall praject plan; The objectives indicate the questions to be 
answered by simulation. At this point, a determination shonld be made concerning whether simulation is the 
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2,----'----. Setting of 
objectives 
and overall 
project plan 

figure 1.3 Steps in a simulalion study. 
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appropriate methodology for the problem as formulated and objectives as stated. Assuming that it is decided 
that simulation is appropriate, the overall project plan should include a statement of the alternative systems to 
be considered and of a method for evaluating the effectiveness of these alternatives. It should also include 
the plans for the study in terms of the number of people involved, the cost of the study, and the number of 
days required to accomplish each phase of the work, along with the results expected at the end of each stage. 

Model conceptualization. The construction of a model of a syStem is probably as much art as sci­
ence. Pritsker [ 1998] provides a lengthy discussion of this step. '�!though it is not possible to provide a set 
of instructions that will lead to building successful and appropriate models in every instance, there are some 
general guidelines that can be followed" [Morris, 1%7]. The art of modeling is enhanced by an ability to 
abstract the essential features of a problem, to select and modify basic assumptions that characterize the sys­
tem, and then to enrich and elaborate the model until a useful approximation results. Thus, it is best to start 
with a simple model and build toward greater complexity. However, the model complexity need not exceed 
that required to accomplish the purposes for which the model is intended. Violation of this principle will only 
add to model-building and computer expenses. It is not necessacy to have a one-to-one mapping between the 
model and the real system. Only the essence of the real system is needed. 

It is advisable to involve the model user in model conceptualization. Involving the model user will both 
enhance the quality of the resulting model and increase the confidence of the model user in the application 
of the model. (Chapter 2 describes a number of simulation models. Chapter 6 describes queueing models that 
can be solved analytically. However, only experience with real systems-versus textbook problems-can 
"teach" the art of model building.) 

Data collection. There is a constant interplay between the construction of the model and the col­
lection of the needed input data [Shannon, 1975]. As the complexity of the model changes, the required data 
elements can also change. Also, since data collection takes such a large portion of the total time required to 
perform a simulation, it is necessacy to begin it as early as possible, usually together with the early stages of 
model building. 

The objectives of the study dictate, in a large way, the kind of data to be collected. In the study of a bank, 
for example, if the desire is to learn about the length of waiting lines as the number of tellers change, 
the types of data needed would be the distributions of interarrival times (at different times of the day), the 
service-time distributions for the tellers, and historic distributions on the lengths of waiting lines under vacying 
conditions. This last type of data will be used to validate the simulation modcl. (Chapter 9 discusses data 
collection and data analysis; Chapter 5 discusses statistical distributions that occur frequently in simulation 
modeling. See also an excellent discussion by Henderson [2003].) 

Model translation. Most real-world systems result in models that require a great deal of informa­
tion storage and computation, so the model must be entered into a computer-recognizable format We use the 
term "program" even though it is possible to accomplish the desired result in many instances with little or 
no actual coding. The modeler must decide whether to program the model in a simulation language, such as 
GPSSIH (discussed in Chapter 4), or to use special-purpose simulation saftware. For manufacturing and 
material handling, Chapter 4 discusses Arena®, AutoMod™, Extend™, Flexsirn, MicroSaint, ProModel®, 
Quest®, SIMUL8®, and WITNESS™. Simulation languages are powerful and flexible. However, if the 
problem is amenable to solution with the simulation software, the model development time is greatly 
reduced. Furthermore, most of the simulation-software packages have added features that enhance their flex­
ibility, although the amount of flexibility varies greatly. 

Verified? Verification pertains to the computer program prepared for the simulation model. Is the 
computer program performing properly? With complex models, it is difficult, if not impossible, to translate 
a model successfully in its entirety without a good deal of debugging; if the input parameters and logical 
structure of the model are correctly represented in the computer, verification has been completed. For the 
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most part, common sense is  used in completing this step. (Chapter 10 discusses verification of simulation 

models, and Balci [2003] also discusses this topic.) 

· Validated? Validation usually is achieved through the calibration of the model, an iterative process 

of comparing the model against actual system behavior and using the discrepancies ��een the two, and the 

insights gained, to improve the model. This process is repeated until m�el accuracy IS Judg�. a�ptable. In 

the example of a bank previously mentioned, data was collected concermng the �e�gth of wrutmg line� u�der 

current conditions. Does the simulation model replicate this system measure? This 1s one means of validation. 

(Chapter 10 discusses the validation of simulation models, and ]3alci [2003] also discusses this topic.) 

Experimental design. The alternatives that are to be simulated must be determined. Often, the 

decision concerning which alternatives to simulate will be a function of runs that have been completed and 

analyzed. For each system design that is simulated, decisions need to be m
.
ade. concerning the length of the 

initialization period, the length of simulation runs, and the number of replications to.� made of �ch run. 

(Chapters 11 and 12 discuss issues associated with the experimental des1gn, and Kle!Jnen [1998] discusses 

this topic extensively.) 

Production runs and analysis. Production runs, and their subsequent analysis, are used t� esti­
mate measures of performance for the system designs that are being simulated. (C��ters 

.
1 1  and 1

.
2 d1sc?ss 

the analysis of simulation experiments, and Chapter 4 discusses software to rud m this step, mcludmg 
AutoStat (in AutoMod), OptQuest (in several pieces of simulation software), SirnRmrner (in Pro Model), and 
WITNESS Optimizer (in WITNESS). 

More Runs? Given the analysis of runs that have been completed, the analyst determines whether 
additional runs are needed and what design those additional experiments �hould follow. 

Documentation and reporting. Tbere are two types of documentation: program and �rogress. 

Program documentation is necessacy for numerous rea5ons. If the program is going to be used
. 
ag�n by the 

same or different analysts, it could be necessary to understamlhow th\) program operates. This Will cre�te 

confidence in the program, so that model users and policyrnakers cim make decisions based on the �a_IYSIS. 
Also, if the program is to be modified by the same or a different analyst, this step can �e greatly facilitated 

by adequate documentation. One experience with an inadequately documented program IS �sually enough �o 

convince an analyst of the necessity of this important step. Another reason f�r d�menting a �rogram IS 

so that model users can change parameters at will in an effort to learn the relanons�ps ��e:;n mput para­

meters and output measures of performance or to discover the input parameters that optimiZe some output 

measure of performance. . . . 
Musselman [1998] discusses progress reports that provide the important, written history of a sunulanon 

project Project reports give a chronology of work done and decisions made. This can prove to be of great 

value in keeping the project on course. . . 

Musselman suggests frequent reports (monthly, at least) so that even those not mvolved m the day�to­

day operation can keep abreast The awareness of these others can often enhance the su�essful completion 

of the project by surfacing misunderstandings early, when �e problem can be sol:ed easily. Musselman also 

suggests maintaining a project log providing a comprehensive record of accomplishments, change requests, 

key decisions, and other items of importance. 
On the reporting side, Musselman suggests frequent deliverable�. These �ay or �y not 

_
be the results 

of major accomplishments. His maxim is that "it is better to work 
_
wtth many mtermedi�te n:Hestones than 

with one absolute deadline." Possibilities prior to the final report mclude a model specifican�n, prototype 

demonstrations animations, training results, intermediate analyses,. program documentation, pro.gress 

reports, and p�sentations. He suggests that these deliverables should be timed judiciously over the life of 

the project. 
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The result of all the analysis should be reported clearly and concisely in a final report. This will enable the model users (now, the decision makers) to review the final formulation, the alternative systems that were addressed, the criterion by which the alternatives were compared, the results of the experiments, and the recom­mended solution to the problem. Furthermore, if decisions have to be justified at a higher level, the· final report should provide a vehicle of certification for the model user/decision maker and add to the credibility of the model and of the model-building process. 
Implementation. The success of the implementation phase depends on how well the previous I I  steps have been performed. It is also contingent upon how thoroughly the analyst has involved the ultimate model user during the entire simulation process. If the model user has been thoroughly involved during the model-building process and if the model user understands the nature of the model and its outputs, the like­lihood of a vigorous implementation is enhanced [Pritsker, 1995]. Conversely, if the model and its underlying assumptions have not been properly communicated, implementation will probably suffer, regardless of the simulation model's validity. 
The simulation-model building process shown in Figure 1.3 can be broken down into four phases. The first phase, consisting of steps I (Problem Formulation) and 2 (Setting of Objective and Overall Design), is a period of discovery or orientation. The initial statement of the problem is usually quite "fuzzy," the initial objectives wiU usually have to be reset, and the original project plan will usually have to be fine-tuned. These recalibrations and clarifications could occur in this phase, or perhaps will occur after or during another phase (i.e., the analyst might have to restart the process). 
The second phase is related to model building and data collection and includes steps 3 (Model Conceptualization), 4 (Data Collection), 5 (Model 'Translation), 6 (Verification), and 7 (Validation). A con­tinuing interplay is required among the steps. Exclusion of the model user during this phase can have dire · implications at the time of implementation. 
The third phase concerns the running of the modeL It involves steps 8 (Experimental Design), 9 (Production Runs and Analysis), and 10 (Additional Runs). This phase must have a thoroughly conceived plan for experimenting with the simulation model. A discrete-event stochastic simulation is in fact a statis­tical experiment The output variables are estimates that contain random error, and therefore a proper statis­tical analysis is required. Such a philosophy is in contrast to that of the analyst who makes a single run and draws an inference from that single data point. 
The fourth phase, implementation, involves steps I I  (Documentation and Reporting) and 1 2  (Implementation). Successful implementation depends on continual involvement of the model user and on the successful completion of every step in the process. Perhaps the most crucial point in the entire process is step 7 (Validation), because an invalid model is going to lead to erroneous results, which, if implemented, could be dangerous, costly, or both: 

REFERENCES 

BALCI, 0. [2003], "Verification, Validation, and Certification of Modeling and Simulation Applications," in Proceedings of the Wlnter Simulation Conference, Ed., S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, New Orleans, LA. Dec. 7-1 0, pp. 150-158. 
BANKS, J., AND R. R. GillSON [ 1 997], "Don't Simulate When: 1 0  Rules for Determining when Simulation Is Not Appropriate," !IE Solutions, September. 
GORDON, G. { 1 978], System Simulation, 2d ed., Prentice-Hall, Englewood Cliffs, NJ. HENDERSON, S. G. [2003], "Input Model Uncertainty: Why Do We Care and What Should We Do About It? " in Proceedings of the Winter Simulation Conference, Ed., S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, New Orleans, LA, Dec. 7-lO, pp. 90-100. 
Hlll..IER, F. S., AND G. J. LIEBERMAN [2002], Introduction to Operations Research, 7th ed., McGraw-Hill, New York. 

17 INTRODUCTION TO SIMULATION 

· · · Anal · Opt' ·-A.: and Validation of Simulation KLEUNEN, J. P. C. [ 1998], "Experimental Design for Sensttlvlly YSIS, tmtuu.oon, 
Models" in Handbook of Simulation, Ed� Jerry Banks, John Wiley, New York. . 
W A M

, 
AND W D KELTON [2000], Simulation Modeling and Analysis, 3d ed., McGraw-Hill, New York. LA • · ·• · 

. · · ""I 13 N 1 2  MORRIS w T I 1 9671 "On the Art o f  Modeling," Management Sczence, vv • , o. · 

rk 
, . . ' 

''Guidelines for success;' in Handbook of Simulation, Ed.,Jeny Banks..!ohn Wile!, New Yo . MUSSELMAN, K. J. [ 1 998t!NTFY. D S BURDICK AND K. CHU [ 1 966}, Computer Simulation Techniques, Wiley, NAYLOR, T. H., J. L BA , · . • 

New York
e

. 
D R E SHANNON AND R. P. SADOWSKI [ 1995], Introduction to Simulation Using SIMAN, 2d ed., PEGDEN, . ., . . • 

McGraw-Hill, New York. 
s N w Y! rk. PRITSKER, A.' A. B. [l995J, Introduction to Simulation and S� !I, 4th ed., Wiley � on_s, e o 

John PRITSKER, A. A. B. [ 1998], "Principles of Simulation Modeling, m Handbook of S1mulatton, Ed., Jerry Banks, 
Wiley, New York. 

· 
E 1 ood Cl'"" NJ 5] Sy t Simulation· The Art and Science Prentice-Hall, ng ew IuS, • ���g�· �- �· �: ��8]' .. �=ction to the

. 
Art and Science of Slmulation," in Proceedings 

_
of the Winter Simulation 

C .� ' ·Eds· D J • Medeiros E. F. Watson, J. S. Carson, and M. S. Manivannan, Washmgton, DC, Dec. 1 3-16, on1erence, ., . . , 
pp. 7-14. 

EXERCISES 

1, Name entities, attributes, activities, events, and state variables for the following systems: 
(a) University library 
(b) Bank 
(c) Call center 
(d) Hospital blood bank 
(e) Departmental store 
(f) Fire service station 
(g) Airport 
(b) Software organization 

2. Consider the simulation process shown in Figure 1 :3. 

(a) Reduce the steps by at least two by combining similar activities. Give Y?ur ration�!:. . (b) Increase the steps by at least two by separating current steps or enlargmg on extstmg steps. Gtve 
your rationale. 

A simulation of a major traffic intersection is to be conducted, with the �bjective of improvi�g the �ur-
3' rent traffic flow. Provide three iterations, in increasing order of complexity, of steps 1 and 2 m the stm-

ulation process of Figure 1 .3. 

A · lation is to be conducted of cooking a spaghetti dinner to discover at what
_ 
time a perso� �ould 

4• s;�� order to have the meal on the table by 7:00 P.M. Read a recipe for prepanng a spaghetti dion�r 
or ask a friend or relative for the recipe). As best you can, trace w�t you understand to be �eeded: m ( 
e data-collection phase of the simulation process of Figure 1.3, m order. t?. perform a stmu�atlon � which the model includes each step in the recipe. What are the events, actiVIIles, and state vanables 

in this system? 
s. List down the events and activities applying for master's program in a university. 

Read an article on the application of simulation related to your major area of_ study or in teres� in �e 
6' current WSC Proceedings, and prepare a report on how the author accomphshes the steps giVen m 

Figure 1.3. 
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7. ?et a copy of a recent WSC Proceedings and report on the different applications di ed · mterest to you. scuss m an area of 

8. Get a copy of a recent WS� Proceedings and report on the most unusual application that you can find . . 9. Go to the Wmter Simulation Conference website at· www . • 

(a) What advanced tutorials were offered at th 
. . . ��ers�m. org and address the following: 

. (b) Where and when will the next WSC be hel�frevmus or are planned at the next WSC? 

10. Go to the Winter Simulation Conference website at www winte . (a) When was the largest (in attendance) WSC d h • 

rs�m. org and address the following: 
(b) ·1n· h cal . 

• an ow many attended? · 

w at endar year, from the be · · gmnmg of WSC, was there no Conference? (c) What was the largest expanse of time, from the beginning of WSC bet 
. . 

Conference? 
· ' ween occurrences of the 

(d) Be · · '
th . . . ·  gmrung WI the 25th WSC, can you discern a .pattem for the location o( the Conference? 11. Search the web for "Applications of discrete simulation" and prepare a report based on th findi 12. Search the web for "Manuf: tu · 

. 
la . ., 

e ngs . 
. ac nng SIIDu uon and prepare a report based on the findings. 13. Search the web for "Call ce te · 1 · " n r SIIDU atton and prepare a report based on the findings. 

•. � 1, o, S I , , 

2 
Simulation Examples 

This chapter presents several examples of simulations that can be performed by devising a simulation table 
either manually or with a spreadsheet. The simulation table provides a systematic method for tracking system 
state over time. These examples provide insight into the methodology of discrete-system simulation and the 
descriptive statistics used for predicting system performance. 

The simulations in this chapter are carried out by following three steps; 

1. Determine the characteristics of each of the inputs to the simulation. Quite often, these are modeled 
as probability distributions, either continuous or discrete. 

2. Construct a simulation table. Each simulation table is different, for each is developed for the prob­
lem at hand. An example of a simulation table is shown in Table 2.1.  In this example, there are p 
inputs, x9,j= I ,  2, . . . , p, and one response, yi' for each of repetitions (or, trials) i =1, 2, . . .  , n. Initialize 
the table by filling in the data for repetition I .  

· 

3. For each repetition i, generate a value for each of the p inputs, and evaluate the function, calculat­
ing a value of the response yi' The input values may be computed by sampling values from the 
distributions chosen in step l .  A response typically depends on the inputs and one or more previous 
responses. 

This chapter gives a number of simulation examples in queueing, inventory, reliability, and network 
analysis. The two queueing examples provide a single-server and two-server system, respectively. (Chapter 6 
provides more insight into queueing models.) The first of the inventory examples involves a problem that 
has a closed-form solution; thus, the simulation solution can be compared to the mathematical solution. The 
second inventory example pertains to the classic order-level model. 

Next, there is an example that introduces the concept of random normal numbers and a model for the 
simulation of lead-time demand. The examples conclude with the analysis of a network. 

19 . 
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Table 2.1 Simulation Table 

Inputs 

2. 1 SIMULATION OF QUEUEING SYSTEMS 

DISCRffi·EVENT SYSTEM SIMULATION 

Response 
y, 

A queueing system is described by its calling population, the nature of the arrivals, the service mechanism, the system capacity, and the queueing discipline. These attributes of a queueing system are described in detail in Chapter 6. A simple single-channel queueing system is portrayed in Figure 2. 1. In the single-channel queue, the calling population is infinite; that is, if a unit leaves the calling popula­tion and joins the waiting line or enters service, there is no change in the arrival rate of other units that could need service. Arrivals for service occur one at a time in a random fashion; once they join the waiting line, they are eventually served. In addition, service times are of some random length according to a probability distribution wl:\ich does not change over time. The system capacity has no limit, meaning that any number of units can wait in line. Finally, units are served in the order of their arrival (often called FlFO: first in, first out) by a single server or channel. 
Arrivals and services are defined by the distribution of the time between arrivals and the distribution of service times, respectively. For any simple single- or multichannel queue, the overall effective arrival rate must be less than the total service rate, or the waiting line will grow without bound. When queues grow without bound, they are termed "explosive" or unstable. (In some re-entrant queueing networks in which units return a number of times to the same server before finally exiting from the system, the condition that arrival rate be less than service rate might not guarantee stability. See Harrison and Nguyen [1995] for more explanation. Interestingly, this type of instability was noticed first, not in theory, but in actual manufacturing in semicon­ductor manufacturing plants.) More complex situations can occur-for example, arrival rates that are greater than service rates for short periods of time, or networks of queues with routing. However, this chapter sticks to the most basic queues. 

o o o  0 
Server 

Calling population 
Waiting line 

Figure 2. 1 Queueing system. 
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. . . stems it is necessary to understand the Prior to our introducing several stmulatio�s of queue
(Th
mg sy , 

ts are studied systematically in d simulation clock. ese concep concepts of system state, events, :an 
ber of units in the system and the status of the server, busy or Chapter 3.) The state of the system IS the num . change in the state of the system. In a . . tan that causes an mstantaneous idle. An event ts a set of cucums ces 

"bl e ts that can affect the state of the system. . th are only two posst e ev n . single-channel queuemg system, ere 
th . I t) and the completion of service on a umt (the They are the entry of a unit into the system ( e

th
amva eve

th
n 

nt"t bet"ng serviced (if one is being serviced), . · t m includes e server, e u . departure event). The queuemg sys e . . Th . 1 ti clock is used to track simulated ume. and the units in the queue (if any are _wmt1ng)� � :.•mu :,:eds in the manner shown in the flow diagram If a unit has just completed service, the stmu �;i��/states: It is either busy or idle. of Figure 2.2. Note that the server has �nly two:: 
te The flow diagram for the arrival event is shown The arrival even� oc�urs when a umt 

r
e�'::r i�:�� b:y; therefore, either the unit begins service imme­in Figure 2.3. The umt wtll find the serve e . f! II the course of action shown in Figure 2.4. If the diately, or it enters the queue for the server. The umt ? 

-
��s 

d the queue is empty, the unit begins service. server is busy, the unit enters the queue. If the server ts I 
_
e an . b "die while the queue ts nonempty. It is not posstble for the server to ? I 

"ther will become idle or will remain busy with the next After the completion of a semce, the serve�et 
tatu of the queue is shown in Figure 2.5. If the queue unit. The relationship of these two outcomes � _e s 
·u :e b s If the queue is empty, the server will be idle is not empty, another unit will enter the server It WI u y. 

Figure 2.2 Service just completed flow diagram. 

No 

Figure 2,3 Unit entering system Row diagram. 
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I Server l Busy 

status I Idle 
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Queue status 

Not empty Empty 

Enter queue Enter queue 

lmposslble Enter service 

Figure 2.4 Potential unit actions upon arrival. 

Queue status 

Not empty Empty 

Figure 2.5 Server outcomes after the completion of service. 

after a service is completed. These two possibilities are shown as the shaded portions of Figure 2.5. It is impossible for the server to become busy if the queue is empty when a service is completed. Similarly, it is impossible for the server to be idle after a service is completed when the queue is not empty. Now, how can the events described above occur in simulated time? Simulations of queueing systems gen­erally require the maintenance of an event list for determining what happens next. The event list tracks the future times at which the different types of events occur. Simulations using event lists are described in Chapter 3. This chapter simplifies the simulation by tracking each unit explicitly. Simulation clock times for arrivals and departures are computed in a simulation table customized for each problem. In simulation, events usually occur at random times, the randomness imitating uncertainty in real life. For example, it is not known with certainty when the next customer will arrive at a grocery checkout counter, or how long the bank teller will take to complete a transaction. In these cases, a statistical model of the data is developed either from data collected and analyzed or from subjective estimates and assumptions. 
The randomness needed to imitate real life is made possible through the use of "random numbers." Random numbers are distributed unifonnly and independently on the interval (0, 1). Random digits are unifonnly distributed on the set {0, l ,  2, . . .  , 9}.  Random digits can be used tofoirn random numbers by selecting the proper number of digits for each random number and placing a decimal point to the left of the value selected. The proper number of digits is dictated by the accuracy of the data being used for input purposes. If the input distribution has values with two decimal places, two digits are taken from a random digits table (such as Table Al)  and the decimal point is placed to the left to form a random number. Random numbers also can be generated in simulation packages and in spreadsheets (such as Excel). For example, Excel has a macro function called RANDO that returns a "random" number between 0 and 1 .  When numbers are generated by using a procedure, they are often referred to as pseudo-random numbers. Because the procedure is fully known, it is always possible to predict the sequence of numbers that will be generated prior to the simulation. The most commonly used methods for generating random numbers are discussed in Chapter 7. 

In a single-channel queueing simulation, interarrival times and service times are generated from the dis­tributions of these random variables. The examples that follow show how such times are generated. For simplicity, assume that the times between arrivals were generated by rolling a die five times and recording the up face. Table 2.2 contains a set of five interarrival times generated in this manner. These five interarrival times are used to compute the arrival times of six customers at the queueing system. 
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Table 2.2 lnterarrival and Clock Times 

Jnterarrival Arrival 

Customer Time Time on Clock 

0 

2 2 2 

3 4 6 

4 1 7 

5 2 9 

6 6 15 

· ed to am've at clock time 0. This starts the clock in operation. The second The first customer ts assum . 
. 

· 1 t 1 k · · 'ts lat at clock time 2. The third customer amves four ttme uruts ater, a c oc customer amves two ttme uru er, 
time �;�:n�n

dme of interest is the service time. Table 2.3 contains service times generated �t rand?m 
from a distribution of service times. The oitly possible service times are one, two, three, and four tlffie u":'ts. 
A · that all four values are equally likely to occur, these values could have been generated 

_
by placmg ssumm

be
g 

thr h four on chips and drawing the chips from a hat with replacement, bemg sure to the num rs one oug . · be hed t · I te the th b 1 ted Now the interarrival times and servtce times must mes o stmu a �cord e num ers � ec 
. As is shown in Table 2.4, the first custOmer arrives at clock time 0 and 

�mg��:::y��::::�:::::ch requires two minutes. Service is completed at clock time 2._ The sec
l
ond

k mun 1 
• . fi · bed clock time 3 Note that the fourth customer amved at c oc . customer arrive� at clock ttme 2 :md JStil ru

l 
s 

k � 9 This occ� because customer 3 did not finish service time 7, but servtce could not begm un c oc e · . 
until;�:\�:;!· 

designed specifically for a single-channel queue that serves customers on a first-in-first-on� 
(FIFO) basis. It keeps track of the clock time at which each event occurs. The secon� colurnn

f 
o
h
f rab�e · · a1 even while the last column records the clock tlffie o eac ep records the clock ttme of each amv 

f e�ents in chronological order is shown in Table 2.5 and Figure 2.6. 

:!�::�!;.�E=,��=�=�,���::=:r:� :�::� 
even

F
t

t�gure
imula

2
ti
6
on

de
d
p�

s
c�!:: ��;�;:r

c��tomers iti the system at the various clock times. �t is a v
C
isual imag

2
e 

· 

fro 1 k · 0 t clock t:Jme 2 ustomer of the event listing of Table 2.5. Customer I is in the system m c �oc ttme o 
. 

· 
, k arrives at clock time 2 and departs at clock time 3. No customers are m the system from clpck ttme 3 to cloc . 

Table 2.3 Service Times 

Service 

Customer Time 

1 2 

2 l 
3 3 

4 2 

5 l 
6 4 
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Table 2.4 Simulation Tobie Emphasizing Clock Times 

B c D 
Arrival Time Service Service 

Tune Begins Time 
(Clock) (Cleek) (Duration) 

0 0 2 
2 2 I 
6 6 3 '  
7 9 2 
9 1 1  I 

15 15 4 

Table 2.5 Chronological Ordering of Events 

Event Type 

Atrival 

Departure 
Ani val 

Departure 
Ani val 

· Anival 

I I 
I I 
I I 1 2 1 
I I 
I I 
I I 

Departure 

Ani val 

Departure 
Departure 
Ani val 

Departure 

Customer 
Number 

I 

1 

2 

2 

3 

4 
3 

5 

4 
5 

6 

6 

Oock time 

Clock 
Time 

0 

2 

2 

3 

6 

7 

9 

9 

I I  

12 

15 

19  

6 

Figure ·2.6 Number of customers in the system. 

E 
Time Service 

Ends 
(Clock) 

2 

3 

9 

1 1  

12 

19 

20 

SIMULATION EXAMPLES 25 

time 6. During some time periods, two customers are in the system, such as at clock time 8, when customers 
3 and 4 are both in the system. Also, there are times when events occur simultaneously, such as at clock time 9, 
when customer 5 arrives and customer 3 departs. 

Example 2.1 follows the logic described above while keepiilg track of a number of attributes of the system. 
Example 2.2 is concerned with a two-<:hamiel queueing system. The flow dia� for a multichannel queueing 
system are slightly different from those for a single-channel system. The development and interpretation of 
these flow diagrams is left as an exercise for the reader. 

Example 2.1: Single,Channel Queue 
A small grocery store has only one checkout counter. Customers arrive at this checkout counter at random 
times that are from 1 to 8 minutes apart. Each possible value of interarrival time has the same probability of 
occurrence, as shown in Table 2.6. The ser\tice times vary from 1 to 6 minutes, with the probabilities shown 
in Table 2.7. The problem is to analyze the system by simulating the arrival and service of 100 customers. 

In actuality, 100 customers is too small a sample size to draw any reliable conclusions. The accuracy of 
the results is enhanced by increasing the sample size, as is discussed in Chapter 1 I .  However, the purpose 
of the exercise is to demonstrate how simple simulations can be carried out in a table, either manually or with 
a spreadsheet, not to recommend changes in the grocery store. A second issue, discussed thoroughly in 
Chapter 1 1, is that of initial conditions. A simulation of a grocery store that starts with an empty system is 
not realistic unless the intention is to model the system from startup or to model until steady-state operation 
is reached. Here, to keep calculations simple, starting conditions and concerns are overlooked� 

· Table 2.6 Distribution of Time Between Arrivals 

1ime between 
Arrivals Cumulative Random Digit 

(Minutes) Probability Probability Assignment 

I 0.125 0.125 001-125 

2 . 0.125 0.250 126-250 

3 0.125 0.375 251-375 

4 0.125 0.500 376-500 

5 0.125 0.625 501-625 

6 0.125 0.750 626-750 

7 0.125 0.875 . 751-875 

8 0.125 1.000 876-000 

Table 2.7 Service-Time Distribution 

· Service Tune Cumulative Random Digit 

(Minutes) Probability Probability Assignment 

1 0.10 0.10 01-10 

2 0.20 0.30 I l -30 

3 0.30 . 0.60 3 1 -60 

4 0.25 0.85 61-85 

5 0.10 0.95 86-95 

6 0.05 1.00 96-00 
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A set of unifonnly distributed random numbers is needed to generate the arrivals at the checkout counter. 
Such random numbers have the following properties: 

1. The set of random numbers is uniformly distributed between 0 and I .  
2. Successive random numbers are Independent. 

With tabular simulations, random digits such as those found in Table A. I in the Appendix can be con­
verted to random numbers. Random digits are converted to random numbers by placing a decimal point 
appropriately. Since the probabilities in Table 2.6 are accurate to 3 significant digits, three-place random 
numbers will suffice. It is necessary to list 99 random numbers to generate the times between arrivals. Why 
only 99 numbers? The first arrival is assumed to occur at time 0, so only 99 more arrivals need to be 
generated to end up with l 00 customers. Similarly, for Table 2.7, two-place ra'ndom numbers will suffice. 

The rightmost two columns of Tables 2.6 and 2.7 are used to generate random arrivals and random service 
times. The third column in each table contains the cumulative probability for the distribution. The rightmost 
column contains the random digit assignment. In Table 2.6, the first random digit assignment is 001-125. 
There are 1000 three-digit values possible (001 through 000). The probability of a time-between-arrival of 
l rmnute is 0. 125, so 1 25 of the I 000 random digit values are assigned to such an occurrence. Times between 
arrival for 99 customers are generated by listing 99 three-digit values from Table A I and comparing them 
to the random digit assignment of Table 2.6. 

For manual simulations, it is good practice to start at a random position in the random digit table and 
proceed in a systematic direction, never re-using the same stream of digits in a given problem. If the same 
pattern is used repeatedly, bias could result from the same pattern's being generated. 

The time-between-arrival detennination is shown in Table 2.8. Note that the first random digits are 064. 
To obtain the corresponding time between arrivals, enter the fourth column of Table 2.6 and read I minute 
from the first column of the table. Alternatively, we see that 0.064 is between the cumulative probabilities 
0.00 I and 0.125, again resulting in I minute as the generated time. 

Service times for the first 18 and the lOOth customers are shown in Table 2.9. These service times were 
generated via the methodology described above, together with the aid of Table 2.7. (The entire table can 
be generated by using the Excel spreadsheet for Example 2. 1 at www.bcnn.net.) The first customer's service 
time is 4 minutes, because the random digits 84 fall in the bracket 6 1-85-or, alternatively, because the 
derived random number 0.84 falls between the cumulative probabilities 0.61 and 0.85. 

Table 2.8 Time-Between-Arrival Determination 

Time between Tune between 
Random A"ivals Random Arrivals 

Customer Digits (Minutes) Customer Digits (Minutes) 

I - 1 1  413 4 
2 064 I 12 462 4 
3 1 12 I 13 843 7 
4 678 6 14 738 6 
5 289 3 15  359 3 
6 871 7 16 888 8 
7 583 5 17  902 8 
8 139 2 18  2 12  2 
9 423 4 

10 039 I 100 538 5 

t 

I 
r l 
t 
I 
I I 
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Table 2.9 Service Times Generated 

Service Service 

Tune Random Time 
Random (Minutes) 

Customer Digits (Minutes) Customer Digits 

4 I I  94 5 
I 84 

32 3 2 12 
2 18  4 

5 1 3  · 79 
3 87 

92 5 
8 1  4 14 

4 46 3 
06 I 15 

5 21  2 
91 5 16 

6 
17 73 4 

79 4 7 55 3 
8 09 I 18  

9 64 4 
2 

38 3 100 26 
10 

. . . th . ulation table These tables are designed for the problem 
The essence of a manual simulation IS e SI� 

d The simulation table for the single-channel 
at hand, with columns adde:J to answe� the :u:s�ons :t:bl� already seen in Table 2.4. The first step is to 
queue, shown in Table 2.10, IS an extensiOn o t e ype 

The first customer is assumed to arrive at time 0. 
initialize the table by �lling in cells_ for the �.rrst �s;m��stomer was in the system for 4 minutes. After the 
Service begins immediately and fimshes at lime 

b
. 

ed 
e 

the random numbers for interarrival time, service 
first customer, subsequent rows in the ta�le are as o� r example the second customer arrives at time L 
time, and the completion t!me o: �e pre�J:us cust:7:���out perso�) was busy until that time. The second 
But service could not begm until time 4, 

. 
e serv� 

d ustomer was in the system for 5 minutes. Skip 
customer waited in the queue for

_ 
three 

d
nunut�\\: ����e �ixth customer does not arrive until time 18, at 

down to the fifth customer. Service en s at t m ' 
'die for two minutes This process continues for . - be The server (checkout person) was 1 • 

which time service gan. . be dded to collect statistical measures of perfonnance, 
all lOO customers. The �gh�mos� two column�h:: 

se;;e:'s idle time (if any) since the previous customer 
such as each customer s lime m system :m. 

tal fonned as  shown for service times, time customers 
de arted In order to compute summary statJsllcs, to s are . . 
s �nd in

.
the system, idle time of the server, and time the customers wait �� the queue. 

p 
Some of the findings from the simulation in Table 2.10 are as follows. 

�- The average waiting time for a customer is 1.74 minutes. This is computed in the followi�g manner: 

Average waiting time 
(minutes) 

total time customers wait in queue (minutes) 

total numbers of customers 

174 74 . 
= - = L mmutes 

100 

. - 0 46 This is computed in the following 
2. The probability that a customer has to wait m the queue IS . • 

manner: 
numbers of customers who wait 

probability(wait) = total number of customers 

= � = 0.46 
100 
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3. 'The proportion of idle time of the server is 0.24. This is computed in the following manner: 

probability of idle 
server 

total idle time of server (minutes) = 
total run time of simulation (minutes) 

= .!.2.!. = 0.24 418 

The probability of the server's being busy is  the complement of 0.24, namely, 0.76. 
4. The average service time is 3.17 minutes. This is computed in the following manner: 

Average service time 
(minutes) 

total service time (minutes) 
total number of customers 

317 3 17 . - =  . rmnutes 
1 00 

29 

i This result can be compared with the expected service time by finding the mean of the service-time 
distribution, using the equation 

E(S)= :L,sp(s) 
s=O 

Applying the expected-value equation to the distribution in Table 2.7 gives 

Expected service time = 
1(0.10) + 2(0.20) + 3(0.30) + 4(0.25) + 5(0.10) + 6(0.05) = 3.2 minutes 

'The expected service time is slightly higher than the average service time in the simulation. The 
longer the simulation, the closer Ute average will be to E(S). 

5. The average time between arrivals is 4.19 minutes. This is computed in the following manner: 

Average time between 
arrivals (minutes) 

sum of all times 
between arrival (minutes) 

number bf arrivals - 1 ·  

= � = �.19 minutes 

One is subtracted from the denominator because the fi,rst arriVal is assumed to occur at time 0. This 
result can be compared to the expected .time'' between arrivals by finding the mean of the discrete 
uniform distribution whose endpoints are (J "'. 1 and b = 8. The mean is given by 

) 
a+b. 1 + 8  4 5  . 

E(A =' --= -. = . rmilutes 
2 2 

The expected time .between arrivals is slightly higher than the average. However, as the simulation 
becomes longer, the average value of the time between arrivals should approach the theoretical 
mean, E(A). 
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6. The average waiting time of those who wait is 3.22 minutes. This is computed in the following lllltnner. 

Average waiting time of 
those who wait 

(minutes) 
=:: 

total time customers wait in queue (minutes) 
total number of customers that wait 

174 3 22 . = - =  . mmutes 
54 

7. The average time a customer spends in the system is 4.91 minutes. This can be found in two ways. First, the computation can be achieved by the following relationship: 

Average time customer 
spends in the system 

(minutes) 

total time customers spend in the 
system (minutes) 

total number of customers 

491 4 91 . = - = . mmutes 
100 

The second way of computing this same result is to realize that the following relationship must hold: 

Average time 
customer spends 

in the system 
(minutes) 

average time 
customer spends 

waiting in the 
queue (minutes) 

average time 
customer spends 

+ in service 
(minutes) 

From findings 1 and 4, this results in 

Average time customer spends in the system = 1.74 + 3.17 4.91 minutes 
A decision maker would be interested in results of this type, but a longer simulation would increase the accuracy of the findings. However, some tentative inferences can be drawn at this point. About half of the customers have to wait; however, the average waiting time is not excessive. The server does not have an undue amount of idle time. More reliable statements about the results would depend on balancing the cost of waiting against the cost of additional servers. 
Excel spreadsheets have been constructed for each of the examples in this chapter. The spreadsheets can be found at www.bcnn.net. The spreadsheets have a common format. The first sheet is One-Trial. The second sheet is Experiment. The third sheet is entitled Explain. Here, the logic in the spreadsheet is discussed, and questions pertaining to that logic are asked of the reader. Use the default seed '12345' to reproduce the One-Trial output shown in the examples in the text, and use the appropriate number of trials (or replications) to reproduce the Experiment shown in the text, again using the default seed '12345'. Exercises relating to the spreadsheets have been prepared also. These are the last set of exercises at the end of this chapter. The first set of exercises is for manual simulation. The spreadsheets allow for many entities to flow through the system. (In Example 2.1, the entities are customers.) For instance, the spreadsheet for Example 2.1 has I 00 customers going through the system, and the number of trials can vary from one to 400. Let's say that 200 trials are selected. Then, 200 trials of the simulation, each of I 00 customers, will be conducted. 
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For Example 2.1, the frequency of waiting time in queue for the first trial of
.
H� custom�rs .is �h�wn in 

Pi re 2 7 (Note· In all histograms in the remainder of this chapter, the upper lillllt of th� bm ts m�tcated 
on�e 1; ;nd on ;he x-axis, even if the legend is shown centered w�thin the bin.) As rnenttoned �evtously, 
46% of �ern did not have to wait, and 42% waited less than four llllnutes .�ut �ore than zero 

.
llllnutes). 

From the Ex riment sheet of the Excel spreadsheet, the average wrutmg tim� over 50 tnals was 1 .50 
minutes. Figure f: shows a histogram of the 50 average w�ting times for the 50 tnals. The overall average 
(1.50 minutes) is just to the right of the two most popular bms. 

. The exercises ask that you experiment with this spreadsheet. But, you �an also expen�en� o�ur 
f
��� 

to discover the effect 'Of randomness and of the input data. For example, what if you run 400 tnals ms o · 
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Does the shape of the distribution in Figure 2.8 change? What if you run 25 trials instead of 50? How much 
does the shape change as you generate new trials? 
Example 2.2: The Able-Baker Call Center Problem 
This example il�ustrates the simulation procedure when there is more than one service channel. Consider a 
computer techmcal support center where personnel take calls and provide service. The time between calls 
ranges from 1 to 4 minutes, �th distributi?n as shown in Table 2.1 I .  There are two technical support 
�ple>-A�le and

_
B�r. Able ts more expenenced and can provide service faster than Baker. The distribu­

tions
. 
of �err servtce �es are shown in Tables 2.12 and 2.13. Times are usually a continuous. measure. 

But, m thi� and <;fuer ttme-b� examples in'this chapter, we make them discrete for ease of explanation. 
The stmulatton proceeds m a manner similar to Example 2.1 ,  except that it is more complex because 

of the two s�rv�rs. A simplif�ing rule is tha� Able g�s the c�l if both technical support people are idle. 
Able has semonty. (The solutiOn would be different tf the dectsion were made at random or by any other 
rule.) 

The problem is _to fin� how well the current arrangement is working. To estimate the system measures 
of perfo�ce, a stmul�tiOn of the first 1<J? �lers �s made. A simulation with more callers would yield 
more reliable results, but, for purposes of this tllustratton, a 1 00-caller simulation has been selected. 

Table 2.1 1  lnterarrival Distribution of Calls for Technical Support 

Time between Cwnulalive Random-Digit 
Arrivals (Minutes) Probability Probability Assignment 

l 0.25 0.25 01-25 
2 0.40 0.65 26-65 
3 0.20 0.85 66-85 
4 0.15 1.00 86-00 

Table 2.1 2  Service Distribution of Able 

Service Time Cwnulative Random-Digit 
(Minutes) Probability Probability Assignment 

2 0.30 0.30 01-30 
3 0.28 0.5.8 31-58 
4 0.25 .0.83 59-83 
5 0.17 1.00 84-00 

Table 2.13 SerVice Distribution of Baker 

Service Time Cumillative · Random-Digit 
(Minutes) ' .  Probability Probability Assignment 

3 0.35 0.35 Ol-35 
4 0.25 0.60 36-60 
5 0.20 0.80 61-80 
6 0.20 1 .00 81-00 
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The simulation proceeds in accordance with the following set of steps: 

Step l. For Caller k, generate an interarrival time Ak. Add it to the previous anival time T k-1 to get the anival 
time of Caller k as Tk Tk-t + Ak. 

· 

Step 2. If Able is idle, Caller k begins service with Able at the current time T rww· 

Able's service completion time, T fin.. A is given by T fin..A = T""" + T sw:.A where T sw:,A is the service time generated 
from Able's Service Time Distribution. 

Caller k's time in system, T zys' is given by T foi,A - Tk. 

Because Able was idle, Caller k's delay, T.,..;" is given by T...,it = 0. 

If Able is busy, but Baker is idle, Caller k begins service with Baker at the current time T;,_: Baker's service 
completion time, T fin.B is given by T finJJ = T now +  T .m.B where T !;VCJJ is the service time generated from Baker's 
Service Time Distribution. 

· 

Caller k's time in system, Tsys' is given by 
Because Baker was idle, Caller k's delay, T wail' is given by T wait =  0. 

Step 3. If Able and Baker are both busy, then calculate the time at which the first one becomes available, as 
follows: 

· · 

T beg = min (T fin..A, T fin .B). 

Caller k begins service at T beg' When service for Caller k begins, set T ww = T beg' 

Then compute T fin..A or T fin,B as in Step 2. 
Caller k's time in system, T:;ys' is given by T:;ys = Tfi...,_ Tk or Tsys Tj;..s - Tk, as appropriate. 
The preceding steps have been implemented in an Excel spreadsheet that is available on the website 

www.bcnn.net. The reader is strongly encouraged to examine the Excel spreadsheet with. particular emphasis 
on how the cell values are calculated. Also, there are exercises at the end of this chapter that ask the reader 
to run a variety of experiments using the spreadsheet. 

· · · 
· 

A portion of the output in the Excel spreadsheet is given in Table 2.14 to Clarify the steps previously 
listed. Caller 1 arrives at clock time 0 to get the simulation started. Able is idle, so Caller 1 begins service 
with Able at clock time 0. The service time, 2 minutes, is generated from information given in Table 2.12 by 

following the procedure in Example 2.1 .  Thus, Caller 1 completes service at clock time 2 minutes and was 

not 'delayed. . 
An interarrival time of 2 minutes is generated from Table 2.1 1 by following the procedure in Example 2.1. 

So, the anival of Caller 2 is at clock time 2 minutes. Able is idle at the time, havingjust completed service 

on Caller 1 ,  so Caller 2 is served by Able. 
· 

Now, skip down to Caller 4, serviced by Able from clock time 8 minutes to clock �e 12 minutes. Note 

that Caller 5 arrives at clock time 9 minutes. Because Able is busy with Caller 4 at that time, but Baker is 

available, Baker services Caller 5, completing service at clock time 12 minutes. 
For the trial under discussion (the simulation of 100 callers), the frequency diagram shown in Figure 2.9 

(from the Excel spreadsheet in www.bcnn.net) shows that 62 of 100 (62%) of the callers had no delay, 12% 

had a delay of one or two minutes, and so on. 
The !fistribution in Figure 2.9 is skewed to the right. Push 'Generate NeW Trial' repeatedly and notice 

that this is usually what happens, but not always. 'Generate New Trial' .recalculates the spreadsheet for one 

trial (100 callers). One trial does not: provide sufficient information on which to fonn a conclusion, but this 

is one of the great advantages to having the spreadsheet....:...fue effect of variability is quite evident. 
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. Figure 2.1 0 Frequency of caller delay for experiment of 400 trials. 
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In Table 2.14, it is seen that the total customer delay was 2 1 1  minutes, or about 2.1 minutes per caller. 

It is also seen in Thble 2.14 that the total time in system was 564 minutes, or about 5.6 minutes per caller. 

In. the second sheet of the spreadsheet, we run an experiment with 400 trials (each trial consisting of the 

simulation of 100 callers) to generate Figure 2.10. It is seen that about 19% of the average delays (7S of 400) 

are longer than one minute. Only 2.75% ( l l  of 400) are longer than 2 minutes. 

In summary, one server cannot handle all the callers, and three servers would probably be more than are 

necessary. Adding an additional server would surely reduce the waiting time to nearly zero; however, the cost 

of waiting would have.to be quite high to justify an additional server. 

2.2 SIMULATION OF INVI!NTORY SYSTEMS 

An important class of simulation problems involves inventory systems. A simple inventory system is shown 

in Figure 2.1 I .  This inventory system has a periodic review of length N, at which time the inventory level 

is checked. An orderi s  made to bring the inventory up to the level M. At the end of the first review period, 

an order quantity, Ql' is placed. In this inventory system, the lead time (i.e., the length of time between 

the placement and receipt of an order) is zero. Demands are not usually known with certainty, so the order 
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Figure 2.1 1  Probabilistic order-level inventory system. 

quantities are probabilistic. �mand is shown as being unifonn over the time period in Figure 2.1 L In actuality, demands are not usually umfonn and do fluctuate over time. One possibility is that demands all occur at the beginning of the cycle. Another is that f:be lead time is random of some positive length . 
. Notice that, in the second cycle, the amount in inventory drops below zero, indicating a shortage. In Figure 2.1 1 , these units are backordered; when the order arrives, the demand for the backordered items is satisfied first. To avoid shortages, a buffer, or safety, stock would need to be carried. 
Carrying stock in inventory has an associated cost attributed to the interest paid on the funds borrowed to buy the items (this also could be considered as the loss from not having the funds available for other investm��t purposes). Other costs can be placed in the carrying or holding cost colunm: renting of storage space, hiring of guards, and so on. An alternative to carrying high inventory is to make more frequent reviews and, conseq�ently, m�re �equent purchases or replenishments. This has an associated cost: the ordering cost. �so, there ts a cost m bemg short. Customers could get angry, with a subsequent loss of good will. Larger mventories decrease the possibilities of shortages. These costs must .be traded.off in order to minimize the total cost of an inventory system. 
The total cost (or total profit) of an inventory system is the measure of perfonnimce. This can be affected by the policy alternatives. For example� in Figure 2.1 1, the decision matrer can control the maximum inven­tory level, M; and the length of the cycle, N. What effect does changing N have on the various costs? 

. In an (M, _N) inventory. s!stem, the even� that may occur are the demand for items in the inventory, the r�vte� of the m;ent?ry posttion, and the receipt of an order at the end of each review period. When the lead 
time IS zero, as m Figure 2.1 1, the last two events occur simultaneously. · 

In �e following example f�r deciding how many newspapers to buy, only a single time period of specified len?ili � relevant, and only � smgle proc�rnent 
_
is made. Inventory remaining at the end of the single time pen<>? ts sold for scrap or 

_
dtscard�. A wtde vartety of real-world problems are of this form, including the stocking of spare parts, pertshable Items, style goods, and special seasonal items [Hadley and Whitin, 1963]. 

Example 2.3: The News Dealer's Problem 
A classical inventory problem concerns the purchase and sale of newspapers. The newsstand buys the papers for 33 cents each and sells them for 50 cents each. Newspapers not sold at the end ofthe day are sold as scrap for 5 cents each. Newspapers can be purchased in bundles of 10. Thus, the newsstand can buy 50, 60, and so on. There � three type� of

_
ne�sdays: "good"; "fair"; and "poor''; they have the probabilities 0.35, 0.45, and 0.20, respectively. �e distnbution of newspapers demanded on each of these days is given ,in Table 2.15. The problem 'Is to compute the optimal number of papers the newsstand should purcliase. This will be accomplished by sinmlating demands for 20 days and recording profits from sales each day. 
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Table 2.1 5  Distribution of Newspapers 
Demanded Per Day 

lJemand Probability Distribution 

Demand Good Fair Poor 

40 0.03 0.10 0.44 
50 0.05 0.1 8  0.22 
60 0.15 0.40 0.16 
70 0.20 0.20 0.!2 
80 0.35 0.08 0.06 

90 0.15 0.04 0.00 
100 om 0.00 0.00 

The profits are given by the following relationship: 

( revenue ) ( cost o
. 
f ) ( lost profit from) (salvage from sale) profit = - - + 

from sales · newspapers excess demand of scrap papers 
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From the problem statement, the revenue from sales is 50 cents for each paper sold. The cost of newspapers 
is 33 cents for each paper purchased. The lost profit from excess demand is 1 7  cents for each paper demanded 
that could not be provided. Such a shortage cost is somewhat controversial, but makes the problem much more 
interesting. The salvage value of scrap papers is 5 cents each. 

Tables 2.16 and 2.17 provide the random digit assignments for the types of newsdays and the demands 
for those newsdays. To solve this problem by simnlation requires setting a policy of buying a certain number 
of papers each day, then simulating the demands for papers over the 20-day time period to detennine the total 
profit. The policy (number of newspapers purchased) is changed to other values and the simulation repeated 
until the best value is found. 

The simulation table for the decision to purchase 70 newspapers is shown in Table 2.18. 
On day l ,  the demand is for 80 newspapers, but only 70 newspapers are available. The revenue from the 

sale of70 newspapers is $35.00. The lost profit for the excess demand of 10 newspapers is $1 .70. The profit 
for the first day is computed as follows: 

Profit $35.00 - $23.1 0 - $1.70 + 0 $10.20 

On the fourth day, the demand is less than the supply. The revenue from sales of 50 newspapers is $25.00. 
1\venty newspapers are sold for scrap at $0.05 each yielding $1.00. The daily profit is determined as follows: 

Profit = $25.00 - $23.10 - 0 + $1.00 = $2.90 

Table 2.1 6  Random Digit Assignment for Type of Newsday 

Cumulative Random Digit 

Type of Newsday Probability Probability Assignment 

Good 0.35 0.35 01-35 

Fair 0.45 0.80 36-80 

Poor . 0.20 1.00 8 1-00 
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Table 2. 1 7  Random Digit Assignments for Newspapers Demanded 

Cumulative Distribution Random Digit Assignment 

Demand Good Fair Poor Good Fair Poor 

40 O.Q3 0. 1 0  0.44 01-03 01-10 0 1-44 
50 0.08 0.28 0.66 04-08 1 1-28 45-66 
60 0.23 0.68 0.82 09-23 29-68 67-82 
70 0.43 0.88 0.94 24-43 69-88 83-94 
80 0.78 0.96 1.00 44-78 89-96 95-00 
90 0.93 1 .00 1.00 79-93 97-00 

100 1 .00 1 .00 1.00 94-00 

Table 2.18 Simulation Table for Purchase of 70 Newspapers 

Random 
Digits for Random Revenue Lost Profit Salvage 

Type of Type of Digits for from from Excess from Sale Daily 
Day Newsday Newsday Demand Demand Sales Demand of Scrap Profit 

I 58 Fair 93 80 $35.00 $ 1.70 - $ 10.20 
2 17 Good 63 80 35.00 1.70 - 10.20 
3 2 1  Good 3 1  70 35.00 - - 1 1 .90 
4 45 Fair 19 50 25.00 1.00 2.90 
5 43 Fair 9 1  80 35.00 1 .70 - 10.20 
6 36 Fair 75 70 35.00 - 1 1.90 
7 27 Good 84 90 35.00 3.40 8.50 
8 73 Fair 37 60 30.00 0.50 7.40 
9 86 Poor 23 40 20.00 - 1 .50 -1.60 

1 0  1 9  Good 02 40 20.00 1.50 -1 .60 
l l  93 Poor 53 50 25.00 - 1.00 2.90 
1 2  45 Fair 96 80 35.00 1 .70 - 10.20 
1 3  47 Fair 3 3  60 30.00 - 0.50 7.40 
14 30 Good 86 90 35.00 3.40 - 8.50 
1 5  12 Good 1 6  60 30.00 - 0.50 7.40 
1 6  4 1  Fair 07 40 20.00 1.50 -1.60 
17 65 Fair 64 60 30.00 - 0.50 7.40 
1 8  57 Fair 94 80 35.00 1 .70 - 10.20 
1 9  1 8  Good 55 80 35.00 1 .70 10.20 
20 98 Poor 1 3  40 20.00 1.50 -1.60 

$600.00 $1 7.00 $ 1 0.00 $13 1.00 

The profit for the 20-day period is the sum of the daily profits, $131 .00. It can also be computed from the 
totals for the 20 days of the simulation as follows: 

Total profit = $600.00 - $462.00 + $17.00 - $ 10.00 = $131 .00 

where the cost of newspapers for 20 days is (20 x $0.33 x 70) = $462.00. In general, because the results of 
one day are independent of previous days, inventory problems of this type are easier than queueing problems 
when solved in a spreadsheet such .as is shown in www.bcnn.net and discussed shortly. 

Figure 2. 12 shows the result of 400 trials, each of twenty days, with a policy of purchasing 70 newspa­
pers per day. For these trials, the average total (20-day) profit was $ 137.61 .  The minimum 20-day profit was 
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Figure 2.12 Frequency of total (20-day) profits with purchasing of 70 newspapers per day. 
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$64.70 and the maximum was $186. 10. Figure 1 . 12  shows that only 45 of the 400 trials resulted in a total 
20-day profit of more than $ 1 60. 

The manual soiution shown in Table 2.18 had a profit of $131.00. This one 20-day is not far �o� the 
average over the 400 trials, $ 1 37.61;  but the result for one 20-day simulation could have �n the IUI�tmum 
value or the maximum value. Such an occurrence demonstrates the usefulness of conductmg many trials. 

On the One Trial sheet, look at the Daily Profit that results when clicking the button 'Generate New 
Trial'. The results vary quite a bit both in the histogram called 'Frequency of Da�ly Profit' (showing w?at 
happened on each of the 20 days) and in the total profits for those 20 days. The hts�o�s are almost hke 
snowflakes, in that no two are alike! The frrst two histograms generated are shown m Ftgure 2. 13. 
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Figure 2.13 First two histograms of doily prokt. 
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Example 2.4: Simulation of an Order-Up-To-Level Inventory System Consider a situation in which a company sells refrigerators. The system they use for maintaining inventory is to review the situation after a fixed number of days (say N) and make a decision about what is to be done. The policy is to order up to a level (the order up to level-say, M), using the following relationship: 
Order quantity = (Order-up-to level) - (Ending inventory) + (Shortage quantity) 

Let's say that the order-up-to level (M) is I I  and the ending inventory is three. Further, let's say that the review period (N) is five days. Thus, on the fifth day of the cycle, 8 refrigerators will be ordered from the supplier. If there is a shortage of two refrigerators on the fifth day, then 13  refrigerators will be ordered. (There can't be both ending inventory and shortages at the same time.) If there were a shortage of three refrigerators, the first three received would be provided to the customers when the order arrived. That's called "making up backorders." The lost sales case occurs when customer demand is lost if the inventory is not available. 
The number of refrigerators ordered each day is randomly distributed as shown in Table 2.19. Another source of randomness is the number of days after the order is placed with the supplier before arrival, or lead time. The distribution of lead time is shown in Table 2.20. Assume that the orders are placed at the end of the day. If the lead time is zero, the order from the supplier will arrive the next morning, and the refrigerators will be available for distribution that next day. If the lead time is one day, the order from the supplier arrives the second morning after, and will be available for distribution that day. The simulation has been started with the inventory level at 3 refrigerators and an order for 8 refrigera­tors to arrive in 2 days' time. The simulation table is shown in Table 2.21 .  Following the simulation table for several selected days indicates how the process operates. The order for 8 refrigerators is available on the morning of the third day of the first cycle, raising the inventory level from zero refrigerators to 8 refrigerators. Demands during the remainder of the first cycle reduced the ending inven­tory level to 2 refrigerators on the fifth day. Thus, an order for 9 refrigerators was placed. The lead time for this order was 2 days. The order for 9 refrigerators was added to inventory on the morning of day 3 of cycle 2. 

Table 2. 19  Random Digit Assignments for Daily Demand 

Cumulative Random Digit 
Demand Probability Probability Assignment 

0 0.10 0.10 01-10 
I 0.25 0.35 1 1-35 
2 0.35 0.70 36-70 
3 0.21 0.91 71-91 
4 Q.09 1.00 92-00 

Table 2.20 Random Digit Assignments for lead Time 

Lead Tune Cumulative Random Digit 
(Days) Probability Probability Assignment 

1 0.6 0.6 i-6 
2 0.3 0.9 7-9 
3 0.1 1.0 0 
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Notice that the beginning inventory on the fifth day of the fourth cycle was 2. An order for 3 refrigerators 
on that day led to a shortage condition. One refrigerator was baclrordered on that day. 1\velve refrigerators were 
ordered ( 1 1 + 1), and they had a lead time of one day. On the next day, the demand was two, so additional short­
ages resulted. 

At the beginning of the next day, the order had arrived. Three refrigerators were used to make up the 
backorders and there was a demand for one refrigerator, so the ending inventory was 8. 

From five cycles of simulation, the average ending inventory is approximately 2.72 (68/25) units 0 5 
of 25 days, a shortage condition existed. 

· n 

� �s example, there �annot be more than one order outstanding from the supplier at any time, but there 
are st�auons where lead times are so long that the relationship shown so far needs to be modified to the 
followmg: 

Order quantity = (Order-up-to level) - (Ending inventory) - (On "riler) + (Shortage quantity) 

This relationship makes sure that extra ordering doesn't occur. To make an estnn· ate f th fri . . . .. . . o e mean re gem-tors '� e�ding mventory by usmg stmulauon, many trials would have to be simulated. The Excel spreadsheet solution m www.bcnn.net offers an opportunity to perform such a simulation. 
The Excel spreadsheet _aii�ws 

.
for nume

.
rous changes in the input. The policy can be changed (i.e., the values of M and N). �e distribution of daily demand and lead time can be changed within the limits of the demand and lead �m_e-that is, demand can be 0, l, 2, 3, or 4 refrigerators per day and lead times can be 1 ,  2,. or 3 days. Clicking on Generate New Trial will recalculate the spreadsheet. Looking at fi after th · th 0 · . one gure 

. 
ano 

. 
er m e ne Tnal sheet, wtth the values as given in the problem statement above shows that there IS no consistent result. 

Howe�er, �g
. 
�e �umber of trials to 100 in the Experiment sheet and recalculating the spreadsheet produces little van

_
abthty m the avemge Inventory. It's usually in the range from 2.69 to 3.01, leaving the val�es �e same as m the pro�lem definition above. Nor is there much change in the distribution of the average endmg mventory, as shown m Figure 2.14. 
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Figure 2.1 4  Average ending inventory for J 00 trials (each 25 days). 
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2.3 OTHER EXAMPLES OF SIMULATION 

This section includes examples of the simulation of a reliability problem, a borobing mission, the generation of 
the lead-time demand distribution when given the distributions of demand and lead time, and an activity network. 

Example 2.5: A ReUability Problem 
A milling machine has three different bearings that fail in service. The distribution of the life of each bearing 
is identical, as shown in Table 2.22. When a bearing fails, the mill stops, a repairperson is called, and a new 
bearing is installed. _The delay time of the repairperson's arriving at the milling machine is also a random 
variable having the distribution given in Table 2.23. Downtime for the mill is estimated at $10 per minute. 
The direct on-site cost of the repairperson is $30 per hour. It takes 20 minutes to change one bearing, 30 minutes 
to change two bearings, and 40 minutes to change three bearings. A proposal has been made to replace all 
three bearings whenever a bearing fails. Management needs an evaluation of the proposal. The total cost per 
10,000 bearing-hours will be used as the measure of performance. 

Table 2.24 represents a simulation of 15 bearing changes under the current method of operation. Note 
that there are instances where more than one bearing fails at the same time. This is unlikely to occur in practice 
and is due to using a rather coarse grid of 100 hours for bearing life. It will be assumed in this example that 
the times are never exactly the same and thus no more than one bearing is changed at any breakdown. 
The cost of the current system is estimated as follows: 

Cost of bearing = 45 bearings x $32/bearing = $1,440 
Cost of delay time = (I 10 + 1 10 + 105) minutes x $ 10/minute = $3,250 
Cost of downtime during repair =  45 bearings x 20 minutes/bearing x $ 10/minute = $9,000 
Cost of repairpersons = 45 bearings x 20 minutes/bearing x $30/60 minutes $450 
Total cost $1 ,440 + $3,250 +$9,000 + $450 = $14,140 

The total life of the bearings is (22,300 + 18,700 + 18,600) = 59,600 hours. Therefore, the total cost per 
10,000 bearing-hours is ($14,140/5.96) = $2,372. 

Table 2.25 is a simulation of the proposed method. Note that the random digits are not shown. For the 
ftrst set of bearings, the earliest failure is at 1 ,000 hours. All three bearings are replaced at that time, even 
though the remaining bearings had more life in them. For example, Bearing l would have lasted 700 addi­
tional hours. 

Bearing 
Life 

(Houn;) 

1000 
1 100 
1200 

1300 

1400 

1500 

1600 

1700 

1800 

1900 

- �- - --- �-�. ·  --.,----- - , ,-, . ! �·!�.·:":-· 

Table 2.22 Bearing-life Distribution 

Cumulative 
Probability Probability 

0.10 0.10 

0. 13  0.23 

0.25 0.48 

0.13 0.61 

0.09 0.70 

. 0.12 0.82 

0.02 0.84 

0.06 0.90 

0.05 0.95 

0.05 1.00 

Ra.rulom Digit 
Assignment 

01-10 

l l-23 

24-4S 
49�61 
62-70 
71-82 

. 83-84 

85-90 

91-95 

96-00 
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Table 2.23 Delay-Time Distribution 

Delay Tzme Cumulative Random Digit 
(Minutes) Probability Probability Assignment 

5 0.6 0.6 1-6 
10 0.3 0.9 7-9 
15 0.1 1.0 0 

Table 2.24 Bearing Replacement under Current Method 

Bearing 1 Bearing 2 Bearing 3 

Life Delay Life Delay Life 
R1Y' (Hours) RD (Minutes) RD (Hours) RD (Minutes) RD (Hours) 

1 67 1,400 7 10 71 1 ,500 8 
2 55 1,300 3 

10 18 1,100 
5 21 1,100 3 5 17 1,100 

3 98 1 ,900 I 5 79 1 ,500 3 5 65 1,400 
4 76 1,500 6 5 88 1,700 I 5 03 1,000 
5 53 1,300 4 5 93 1,800 0 15 54 1,300 
6 69 1,400 8 10 77 
7 80 1,500 

1,500 6 5 17 1,100 
5 5 08 1,000 9 10 19 1,100 

8 93 1,800 7 10 21  1,100 8 10 09 1,000 
9 35 1,200 0 15 13 1,100 3 5 61 1,300 
10 02 1,000 5 5 03 · 1 , 100 2 5 84 1,600 
I I  99 1,900 9 10 14 
12 65 

1,000 I 5 1 1  1,100 
1,400 4 5 5 1 ,000 0 15 25 1,200 

13 53 1,300 7 10 29 1,200 
14 87 

2 5 86 1,700 
1,700 1 5 07 1,000 4 5 65 1 ,400 

15 90 1,700 2 5 20 1,100 3 5 44 1,200 
Total 1 10 1 10 

"RD, random digits. 

The cost of the proposed system is estimated as follows: 

Cost of bearings = 45 bearings x $32/bearing = $1 440 
Cost of delay time = 1 10 minutes x $10/minute = $1 100 
Cost of dow?time during repaiis = 15 sets x 40 minu

,
tes/set x $10/minute = $6 000 

Cost of reparrpersons = 15 sets x 40 minutes/set x $30/60 minutes = $300 
' 

Total cost = $1,440 + $1,100 + $6,000 + $300 = $8,840 

RD 
6 

2 
2 

9 

8 

3 
6 
7 

I 
0 
5 

2 

8 

3 

4 

Delay 
(Minutes) 

5 

5 
5 

10 
10 

5 
5 

10 

5 

15 

5 
5 

10 

5 

5 

105 

The total life of the bearings is ( 17 000 x 3) - 51 000 h Th 
hours is ($8,840/5.1) = $1,733. 

' - , ours. erefore, the total cost per 10,000 bearing-

The new policy generates a savings. of $634 per 10 000 h 
. 

f b · · 
continuously, the savings are about $556 I:Jer year. 

, ours o eanng-life. If the machine runs 

There are two Excel spreadsheet models for Example 2.5 at www.bcnn.net These are Exam le 2 �::��:::::�� �d �xarnple 2.5P (the propo�ed
-
sys�em). Much flexibility is offered with resp!t to

-�� 
e · e user can change the distribution of bearing life (making sure that the cumulative 
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Table 2.25 Bearing Replacement under Proposed Method 

Bearing 1 Bearing 2 Bearing 3 First 

Life Life Life Failure Delay 

(Hours) (Hours) (Hours) (Hours) (Minutes) 

I 1 ,700 1,100 1,000 1,000 10 

2 1,000 1,800 1,200 1,000 5 

3 1,500 1,700 1,300 1 ,300 5 

4 1,300 1,100 1,800 1,100 5 

5 1,200 1 , 100 1,300 1,100 5 

6 1 ,000 1,200 1 ,200 1,000 10 

7 1,500 1,700 1,200 1 ,200 5 

8 1,300 1,700 1,000 1,000 10 

9 1,800 1,200 1,100 1 , 100 15 

10 1 ,300 1,300 1,100 1,100 5 

I I  1,400 1 ,300 1,900 1 ,300 10 

12 1,500 1,300 1,400 1,300 5 

13 1,500 1 ,800 1,200 1,200 10 

14 1,000 1,900 1,400 1,000 5 

15 1,300 1,700 1,700 1 ,300 5 

Total 
1 10 

probability is exactly 1 .00). The distribution of delay time can be changed (again, making sure that the 

cumulative probability is exactly 1 .00). Also, the parameters of the problem can be changed (bearing cost 

per unit, and so forth). As in other spreadsheet models, the number of trials can be varied from I to 400. 

Finally, in the Experiment sheet, the endpoints of the bins can be changed for observing the frequency of 

total cost for 10,000 hours of bearing life. 

Example 2.6: Random Normal Numbers 

Consider a bomber attempting to destroy an ammunition depot, as shown in Figure 2.15. (This bomber has 

conventional rather than laser-guided weapons.) If a bomb falls anywhere on the target, a hit is scored; oth­

erwise, the bomb is a miss. The bomber flies in the horizontal direction and carries 10 bombs. The aiming 

point is (0, 0). The point of impact is assumed to be normally distributed around the aiming point with a stan­

d!l!"d deviation of 400 meters in the direction of flight and 200 meters in the perpendicular direction. The 

problem is to simulate the operation and make statements about the number of bombs on target. 

Recall that the standardized normal variate, Z, having mean 0 and standard deviation 1, is distributed as 

X -p 
Z = -­

a 

where X is a normal random variable, Jl is the mean of the distribution of X, and a is the standard deviation 

of X. Then, 
X = Zax 
Y= Zay 

where (X, Y) are the simulated coordinates of the bomb afterit has fallen. With ax= 400 and ay = 200 we have 

X = 400Z. 
l 

Y = 200Z. 1 
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Ammunition Depot 

Meters 

Figure 2.1 5  Ammunition depot. 

The i andj subscripts.have been added to indicate that the values of Z should be different What are these Z values
. 
and whe�e � they be found? The values of Z are random nonnal numbers. These can be generated from umfonnly �s�bu� random numbers, as wiU be discussed in Chapter 7, A small sample of random nonnal numbers Is giVen m Table A.2. The table of random nonnal numbers is used in the same way as the tab!� ?f random numbers: that is, start at a random place in the table and proceed in a systematic direction, avotding overlap. 

An example of one bomber's run wiU indicate how the simulation is perfonned. Table 2.26 shows the results of a simulated run: The random no� numbers in Table 2.26 are shown to four-decimal-place accuracy. 
The runemoruc RNNx stands for random nonnal number to compute the x coordinate" and corresponds to Z;- The first random nonnal number used was 2.2296, generating the x-coordinate 400(2.2296) = 891.8. The random nonnal number to generate the y-coordinate was -{). 1932, resulting in the y-coordinate -38.6. Taken 

together, (891.8, -38.6) is a miss, for it is off the target As shown in Table 2.26, there were 5 hits and 5 misses. 

Table 2.26 Simulated Bombing Run 

X Coonlinate Y Coordinate 
Bomb RNN, (400 RNN,) RNN (200 RNN) Result" y 

I 2.2296 891.8 -().1932 -38.6 Miss 
2 -2.0035 -801.4 1 .3034 260.7 Miss 
3 -3.1432 -1257.3 0.3286 65.7 Miss 
4 -().7968 -318.7 -1.1417 -228.3 Miss 
5 1.0741 429.6 0.7612 152.2 Hit 
6 0. 1265 50.6 -o.3098 -62.0 Hit 
7 0.06 1 1  24.5 -LI066 -221.3 Hit 
8 1.2182 487.3 0.2487 49.7 Hit 
9 -().8026 -321.0 -1.0098 -202.0 Miss 

10 0.7324 293.0 0.2552 -51 .0 Hit 

"Total. 5 hits, 5 IWSSe.s 

SIMULATION 
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Figure 2.1 6  Results of 400 trials of the bombing mission. 

The spreadsheet for Example 2.6 at www.bcnn.net makes it possible to conduct lots of experiments. 
Note that the target shown in the One Trial sheet is fleXible. It can be changed by editirig the (X, Y) coordi­
nates, shown in green, so long as a convex shape is maintained. With the standard deviation in the x-direction 
set at 400 meters and the standard deviation in the y-direction set at 200 meters, and with the shape of the 
target unchanged, an experiment was run with 400 trials (each trial being 10 bombs). A result is shown in 
Figure 2.16. 

Notice that the results range from two hits to ten hits. The average is 6. 72 hits. If only one mission (trial) 
is run, a very misleading result could occur, but Figure 2.1 6  provides useful descriptive infonnation. For 
instance, 44% [(175/400) x 100%] of the bombing runs there are six or fewer hits. In about 71% of the cases, 
[(283/400) x 100%] there were six, seven, or eight hits. 

Example 2.7: Lead-Time Demand 
Lead-time demand occurs in an inventory system when the lead time is not instantaneous. The lead time is 
the time from placement of an order until the order is received. Assume that lead time is a random variable. 
During the lead time, demands also occur at random. Lead-time demand is thus a random variable defined 
as the sum of the demands over the lead time, or "T D., where i is the time period of the lead time, kt=O t 
i = O, 1, 2, . . . ; D;is the demand dnring the ith time period; and Tis the lead time. The distribution of lead-time 
demand is found by simulating many cycles of lead time and building a histogram based on the results. 

A firm sells bulk rolls of newsprint The daily demand is given by the following probability distribution: 

Daily Demand (Rolls) 3 4 5 6 

Probability 0.20 0.35 0.30 0. 15  

The lead time is  the number of days from placing an order until the firm receives the order from the 
supplier. In this instance, lead time is a random variable given by the following distribution: 

Lead Time (Days) 

Probability 0.36 

2 3 
0.42 0.22 
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Table 2.27 shows the random digit assignment for demand and Table 2.28 does the same for lead time. 
The incomplete simulation table is shown in Table 2.29. The random digits for the first cycle were 57. This 
generates a lead time of 2 days. Thus, two pairs of random digits must be generated for the daily demand. 
The first of these pairs is 1 1, which leads to the demand 3. This is followed by the demand 5. The lead-time 
demand for the ftrSt cycle is 8. After many cycles are simulated, a histogram is generated. Click on "Generate 
New Trial" repeatedly to see the effect of randomness on a 20-cycle trial. 

Although the probabilities for each value of lead-time demand can be generated in this case, sim:ulation 
can also be used to sample from one or more distributions. The resulting distribution of lead-time demand 

Table 2.27 Random Digit Assignment for Demand 

Cumulative Random Digit 
Daily Demand Probability Probability Assignment 

3 0.20 0.20 01-20 

4 0.35 0.55 21-55 

5 0.30 0.85 56-85 

6 0.15 1 .00 86-00 

Table 2.28 Random Digit Assignment lor Lead Time 

Lead Time Cumulative Random Digit 
(Days) Probability Probability Assignment 

I 0.36 0.36 01-36 

2 0.42 0.78 37-78 

3 0.22 1.00 79-00 

Table 2.29 Simulation Table lor lead-Time Demand 

Random Lead Random 

Digits for Time Digits Lead-Time 
Cycle Lead Time (Days) for Demand Demand Dem&ui 

57 2 1 1  3 

64 5 8 

2 33 1 37 4 4 
3 46 2 13 3 

80 5 8 

4 91 3 27 4 
66 5 

47 4 13 

SIMULATION EXAMPLES 
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Figure 2. 1 7  Frequency of lead-time demand. 

Figure 2. 1 8  Activity network. 
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might � like that in Figure 2.17. This result was obtained from simulating 20 cycles of lead-time demand, 

using the Excel spreadsheet found at www.bcnn.net. 
Suppose you have a project that requires the completion of a number of activities. Some activities must 

be carried out sequentially; others can be done in parallel. The project can be represented by a network of 
activities, as shown in Figure 2.18. There are three paths through the network, each path representing a 
sequence of activities that must be completed in order. The activities on two different paths can be carried 
out in parallel. 

In the activity network in Figure 2.18, the arcs represent activities and the nodes represent the start or 

end of an activity. The time to complete all activities on a path is the sum of the activity times along the path. 

To complete the entire project, all activities must be completed; therefore, project completion time is the 

maximum over all path completion times. 
The topmost path is along the path Start � A� B � Finish. The middle path Is along the path Start � 

C � Finish. The bottom path is given by Start � Finish. 
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Example 2.8: Project Simulation 
Here's a concrete example using Figure 2.18. Let's say that three friends wanted to cook bacon, eggs, and 
toast for breakfast for some weekend visitors. Each friend was going to prepare one of the three items. The 
activities might be as follows: 

Top path: Start ....; A Crack eggs 
A ....; B Scramble eggs 
B ....; Finish Cook eggs 

Middle path: Start ....; c Make toast 
c ....; Finish Butter toast 

Bottom path: Start ....; Finish Fry the bacon 

Let's say that the times to accomplish each of the activities in preparing this breakfast are variable and 
can be represented by a uniform distribution between· a lower and upper limit, as shown in Figure 2. 18. You 
want to know something about the preparation time so that you can tell the visitors to be at the breakfast table 
on time. Perhaps you want to estimate the probability of preparing breakfast within a specified amount 
of time. 

The activity times are shown on. the arcs of the activity network. For example, the activity time from 
Start ....; A (i.e., crack the eggs) is assumed to be uniformly distributed between 2 and 4 minutes. That means 
that all times between 2 an!-1 4 are equally likely to occur. The expected value, or mean time, for this activ­
ity is the midpoint, three minutes. 

Applyirig that logic, the expected value along the topmost path is nine minutes, which is determined by 
adding the three expected values (3 + 3 + 3). The shortest possible completion time, which is determined by 
adding the smallest values, is six minutes (2 + 2 + 2). The largest possible time along the top path is twelve 
minutes (4 + 4 + 4). 

· 

Similarly, the expected value through the middle path is nine minutes, while the smallest and largest 
times are six and twelve minutes, respectively. The bottom path has the same expected value and the same 
extreme values. 

The time that the project will be completed is the maximum time through any of the paths. (Thinking 
again about the preparation of this breakfast, the time that everything will be ready is when the eggs, the toast 
and the bacon are ready.) But, since activity times are assumed to have some random variability, the times 
through the paths are not constant. 

Pritsker [1995] showed how such a project could be analyzed with a simulation of independent replica­
. tions of the activity times. For a uniform distribution, a simulated activity time is given by 

Simulated Activity Time = Lower limit + (Upper limit - Lower limit) * Random number 

With a table of random numbers, the time for each simulated activity· can be computed manually. For 
example, for activity Start ....; A, if the random number is 0.7943, the simulated activity time is 2 + (4 -2) * 
0.7943 = 3.5886, or 3.59 minutes. 

The Experiment worksheet in the Excel workbook for Example 2.8 found at www.bcnn.netaliows from 
I to 400 trials and computes the average, median, minimum and maximum values. With 400 trials and using 
the defauit seed, the results are as follows: 

Mean 10. 12  minutes 
Minimum 6.85 minutes 
Maximum 12.00 minutes 

SIMULATION EXAMPLES 
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Th e  so-called critical path i s  the path that takes the longest time; that is, its time i s  the project comple­

tion time. For each of the 400 trials, the experiment determines which path was critical, with these results: 

Top path 30.00% of the trials 
Middle path 31.25% 
Bottom path 38.75% 

We conclude that the chance of the bacon being the last item ready is 38.75%. Is this a fluke? Wh� aren't 

the paths each represented about 1/3 of the time? The answer to this question is left �or a later �xerciSe. 

Lastly, the project completion times were placed in � frequency
. 
chart. These differ each time that �� 

spreadsheet is recalculated, but, in any large number of tnals, the bas1c shape ?f the frequency chart (or �s 

to gram) will remain roughly the same. Starting from the default seed, the resultmg frequen�y chart for proJect 

completion time is shown in Figure 2.19. Inferences that could be drawn include the followmg·. 

1 3.5% of the time (54 of 400), the breakfast will be ready in 9 minutes or less. 
20.5% of the time (82 of 400), it will take from 1 1  to 1 2  minutes. 

2.4 SUMMARY 

This chapter introduced simulation concepts by means of examples, to illustrate gene�! areas of a�plication 

and·to motivate the remaining chapters. In the next chapter, we give a more systematic presentatiOn of the 

basic concepts. . b 
Ad-hoc simulation tables were used in completing each example. Events m the tables were generat� Y 

using uniformly distributed random numbers and, . in one case, random n�rmal numbers .. The examples �llus­

trate the need for working out the characteristics of the input data, generating �dom vanables from the mput 

models, and analyzing the resulting response. The queueing ex�ples, especially the two-channel queue, 

illustrate some of the complex dependencies that can occur-in this example, between subse�uent customers 

visiting the queue. Because of these. complexities, the ad-hoc simulation tabl� approach falls, or becomes 

· unbearably complex, even with relatively simple networks of queues. For th1s and other reasons, a more 
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systematic methodology, such as the event scheduling approach described in Chapter 3, is needed. These subjects 
are treated in more detail in the remaining chapters of the text. 

Examples are drawn principally from queueing and inventory systems, because a large number of sim­
ulations concern problems in these areas. Additional examples are given in the areas of reliability, static sim­
ulation, the generation of a random sample from an unknown distribution, and project management. All of 
the examples are modeled using Excel. These are available at www.bcnn.net. 
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EXERCISES 

Manual Exercises 

Most of these exercises could also be solved in Excel. For hints on implementation iii Excel, study the 
spreadsheet solutions at www.bcnn.net and read the "Explain" worksheet, as appropriate for the problem 
being solved. Another suggestion for solving these exercises in Excel is to take advantage of the VB func­
tions in the spreadsheet solutions in www.bcnn.net. Start with a supplied example, delete the existing inputs 
and simulation table in the One Trial worksheet, and use what remains. On the Experiment worksheet, 
change the response in the cell just below the word "Link." 

1. The daily demand for a product is found to follow the distribution as 

Demand Probability 

10  0.25 
1 1  0.35 
12 0.30 
1 3  0.10 

Det.ermine the total demand for the next 10 days. 

2. A baker is trying to figure out how maily dozens of bagels to bake each day. The probability distribupon 
of the number of bagel customers is as follows: ' · 

Number of Customers!Day 8 10 12 14 · 
Probability 0.35 0.30 0.25 0.10 

. . Customers order I, 2, 3, or 4 dozen bagels according to the following probability distribution. 

Number of Dozen Ordered/Customer I 
Probability 0.4 

2 
0.3 

3 . i. 4 

·o.2 o.1 

i 
! I I'· i I 
i ! ! 
� F. ¥ 
! 

I i l 
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Bagels sell for $8.40 per dozen. They cost $5.80 per dozen to make. All bagels not sold at the end of 
the day are sold at half-price to a local grocery store. Based on 5 days of simulation, how many dozen 
(to the nearest 5 dozen) bagels should be baked each day? 

3. Develop and interpret flow diagrams analogous to Figures 2.2 and 2.3 for a queueing system with 
i channels. 

4. There is only one telephone in a public booth of a railway station. The following tables indicate the 
distributions of callers' arrival time and duration of the calls. 

Time between arrivals (Minutes) 5 

Probability 0.20 

Call duration (Minutes) 2 3 

Probability 0.15 0.6 

6 7 

0.70 0. 10 

4 5 

0.15 0. 1 

Simulate for 100 arrivals of the current system. It is proposed to add another telephone to the booth. 
Justify the proposal based on the waiting time of callers. 

S. The random variables A. B, and C are distributed as 

A - N(Jt = 1 10, a2 = 1 10) 

B - N(p. = 300, a2 = 230) 

C - N(Jt = 50, a2 = 60) 
Simulate 50 values of random variable 

M = 2A+B 
c 

Prepare a histogram of the resulting values, using class intervals of width equal to 3. 

6. Given A, B, and C, which are uncorrelated random variables. Variable A is normally distributed with Jl = 100 

ap.d a2 = 400. Variable B is discrete uniformly distributed with probability distribution given by p(b) = 115 

with b = 0, I, 2, 3 and 4. Variable C is distributed in accordance with the following table. 

Value ofC Probability 

10 .10 
20 .25 
30 .50 
40 .15 

Use simulation to estimate the mean of a new variable D, that is defined as 

D = (A - 25B)I(2C) 

Use a sample of size 10. 
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7. Estimate, by simulation, the average number of lost sales per week for an inventory system that functions 
as follows: 

· 

(a) Whenever the inventory level falls to or below 10 units, an order is placed. Only one order can be 
outstanding at a time. 

(b) The size of each order is equal to 20 l, where l is the inventory level when the order is placed. 
(c) If a demand occurs during a period when the inventory level is zero, the sale is lost. 
(d) Daily demand is normally distributed, with a mean of 5 units and a standard deviation of 1.5 umts. 

(Round off demands to the closest integer during the simulation, and, if a negative value results, give 
it a demand of zero.) 

(e) Lead time is distributed uniformly between zero and 5 days-integers only. 
(f) The simulation will start with 1 8  units in inventory. 
(g) For simplicity, assume that orders are placed at the close of the business day and received after the 

lead time has occurred. Thus, if lead time is one day, the order is available for distribution on the 
morning of the second day of business following the placement of the order. 

(h) Let the simulation run for 5 weeks. 

8. AGV is used to carry components between two assembly stations, namely A and B. Three types of 
components (CI,  C2, and C3) from station A are assembled at station B. The interarrival titne of C l ,  
C2, and C 3  are 

Component lnterarrival Time (Minutes) 

C l  
C2 
C3 

7 ± 2  
3 ± I  
8 ± 3  

The AGV can take only three components at a time. It takes 90 seconds to travel (to and fro) and 30 
seconds to unload at station B. The AGV waits at station A till it gets the full load of three components. 
Simulate the system for I hour and detennine the average waiting times of the three components. 

9. The random variables K1, K2, and K3 are distributed as 

Kl - 20 ±  10 
K2 - 12 :t 10 
.ld - 5 ± 4 

Simulate 100 values of random variable 

and compute tbe average value. 

M _ 2Kl + K2 
K3 

10. Consider the assembly of two steel plates, each plate having a hole. drilled in its center. The plates are to 
be joined by a pin. The plates are aligned for assembly relative to the bottom left corner (0,0). The hole 
placement is centered at (3, 2) on each plate. The standard deviation in each direction is 0.0045. The hole 
diameter is normally distributed, with a mean of 0.3 and a standard deviation of 0.005. The pin diameter 
is also distributed normally, with a mean of 0.29 and a standard deviation of 0.004. What fraction of pins 
will go through the assembled plates? Base your answer on a simulation of 50 observations. 

SIMUlATION EXAMPLES 

Hint Clearance = Min(hl' �) - [(x1 - x2)2 + (y1 - y2)2]5 -p, where 

h . =  hole diameter, i = plate 1 ,  2 p = pin diameter 
x. = distance to center of plate hole, horizontal direction, i = l, 2 
y; = distance to center of plate hole, vertical direction, i = l, 2 
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11. In the exercise above, the pin will wobble if-it is too loose. Wobbling occurs if Min (hp h2) - p ;;:: 
0.006. What fraction of the assemblies wobble? (Conditional probability-i.e., given that the pins go 
through) 

12. Three points are chosen at random on the circumference of a circle. Estimate the probability that they 
all lie on the same semicircle, by Monte Carlo sampling methods. Perform 5 replications. 

13. 'IWo theorems from statistics are as follows: 

Theorem 1 Let Z1, Z2, • • •  , Zk be normally and independently distributed random variables with mean 
f.l = 0 and variance <J

2 I. Then the random variable 
· 

z2 = Zi + z� + ... + zt 
is said to follow the chi-squared distribution with k degrees of freedom, abbreviated xi. 
Theorem 2 Let Z - N (0, I) and V be a chi-square rando!fl variable with k degrees of freedom. If Z 
and V are independent, then the random variable 

z T - --

- .JVik 

is said to follow the t distribution with k degrees of freedom, abbreviated tk. 

Generate a t-distributed random variate with 3 degrees of freedom. Use the following random values in 
the order' shown: 

random digits 
6729 
1837 
2572 
8 134 
5251 

random normal numbers 
1.06 

-{).72 
0.28 
-{).18  
-o.63 

14. Students arrive at the university library counter with interarrival times distributed as 

Time between arrivals (Minutes) 5 . 6  7 8 

Probability 0. 1 0.4 0.3 0.2 

The time for a transaction at the counter is 9istributed as 

Transaction time (Minutes) 2 3 4 5 

Probability 0.15 0;5 0.2 0.15 
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I� more than two students are in the queue, an arriving student goes away without joining the queue. 
S1mulate the system and determine the balking rate of the students. 

15. The sketch of a city golf link is given. Using simulation determine the area of the golf link. 

2000 m 

3000 m 

16. In Example 2.2, assume that the average delay with another server, Charlie, is virtually zero. But another 
server costs $20/hour. lf the average caller delay costs $200 per hour, at what point is it advisable to add 

. another server? 

17. In Example 2.7, the only way to _h�ve a lead-time demand of 3 or 4 is to have lead time of one day and 
a de�and of 3 or �-. The pro�abihty of that happening is 0.36(0.20 + 0.35) = 0. 198. Using this logic, 
what IS the probab1hty of havmg lead-time demand equal I I  or 12? (Use computation, not simulation.) 

18. In Example 2.3, what is the probability of having demand equal to 50 p�pei"s, immaterial of the type f 
the day? (Use computation, not simulation.) 

0 

Spreadsheet Exercises 

19. In Example 2. 1, assume that the interarrival times are distributed as 

Interarrival time (Minutes) 

Probability 

2 4 

0.15 0.2 

6 

0.3 

8 10 

0.2 0. 15 

Run
_ 
the experiment for 50 trials. Is there any difference between the bin frequencies shown and those 

of F1gure 2.8? 

20. In Ex�ple 2. 1, assume that �e service time i� uniformly distributed between 1 and 6 minutes (consider 
�nly mte_ge

_
rs). Run the expenment for 100 trials. Analyze the impact of this change, over the waitin 

time statistics. 
g 

21. 

22. 

Run the experiment in Example 2. 1 for 25, 50, I 00, 200, and 400 trials. (All trials are with different sets 
of ��do� numbers.) What 

_
are the differences in the minimum and maximum values of the average 

wru.ting times? If there are differences, how do you explain them? 

Re-do Example 2.2 �ith 10 experiments of 150 trials each. What is the probability that a caller has an 
average delay of 4 mmutes or more? 

23. In Example 2.2, conduct � experiment of 400 trials. Explain the large spread between the minimum 
average delay and the max�mum average delay. 
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24. In Example 2.2, run 10 experiments with 50 trials each and 10 experiments with 400 trials each. Explain 
the differences in output that you observe, if any, between the two experiments. 

25. In Example 2.2, modify the spreadsheet so that the number of calls taken by Able and Baker can be 
displayed. What fraction did each take in an experiment of 400 trials? 

26. In Example 2.3, determine the best policy for ordering newspapers assuming zero opportunity cost. 
Compare the result with that obtained assuming positive opportunity cost. 

. 

27. In Example 2.3, assume that due to competition the newsstand can bargain and buy papers for 30 cents 

each. Verify whether there will be any change in the ordering policy obtained earlier. (All other costs 

remain unchanged.) 

28. In Example 2.3, analyze the effect of change in probability of newsdays to 0.25, 0.5, and 0.25 for good, 

fair, and poor types, respectively. 

29. At what bearing cost in Example 2.5 is the total cost per 10,000 hours virtually the same for the current 

and proposed systems? Base your estimate on I 0 experiments of the current system and of the proposed 

system, each experiment consisting of 400 trials. 

30. Change the cell widths on the experiment in the Excel spreadsheet for Example 2.5 (current or pro­
posed) to a width of $50 beginning below the minimum value (for example, if the minimum value is 
$1528.46, let the first cell begin at $1500). What is the advantage of doing this? 

31. Using the spreadsheet for Example 2.5 (proposed), run 10 experiments of 40 trials each, and record the 
range (maximum value-minimum value) of the results. Next, compute the average range. Then, do the 
same as before, except use 400 trials in each experiment. If there is a difference, how do you explain it? 

32. In Example 2.5 (proposed), assume the following delay-time distribution: 

Delay time (Minutes) 4 8 12 16 

Probability 0.25 0.25 0.25 0.25 

Re-run the model and check the impact of this change in the final decision. 

33. Set a, = 400 metres and aY = 400 metres in the spreadsheet for Example 2.6. Leave the target intact. 

Conduct a simulation with 200 trials. Determine the average number of hits. 

34. Set ax = 2 ay metres in the spreadsheet for Example 2.6. Leave the target intact. What is the value of 

a, if the average number of hits is to be about 6.0, based on one experiment of 400 trials. 

35. In Example 2.7, suppose you wanted a better estimate of the distribution of lead-time demand: Would 

·you (I). increase the number of cycles on the"One Trial" worksheet? or (2) increase the number of tri­

als on the "Experiment" worksheet? Explain your answer. 

36. In Example 2.7, let the demand probabilities be equal for the possible values 3, 4, 5, and 6. Run an 

experiment with 400 trials. Compare the average lead-time demand from using the original input data 

and from using the new input data. 

37. In Example 2.7, let the lead-time probabilities be equal for the possible values I ,  2, and 3.  Run an exper­

iment with 400 trials. Compare the average lead-time demand from using the original input data and 

from using the new input data. 
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38. In Example 2.8, recalculate the spreadsheet 20 times, each with 400 trials. Record the number of times 
that the middle path was the longest What is your best guess of the true mean of the fraction of time 
that the middle path is taken? 

39. In the above exercise, what is the smallest value and the largest value encountered for the number of 
times that the middle path was selected? What·if you had conducted one simulation, gotten the smallest 
(or largest) value, and reported that as the result? How could you argue yourself out of that jam? 

40. In Example 2.8, suppose the third pathway (the bottom one in Figure 2.18) is changed so that it consists 
of six U(l ,  2) activities. Modify the spreadsheet to accommodate this. Which is the most frequently 
occurring path now? What insight does this exercise provide? 

41. Using Excel, generate 1000 values in a column, using the formula = - 10 * LN(RAND()). 
(a) Compute descriptive statistics about the data in that column, including the minimum value, the maxi­

mum value, the mean, the median, and the standard deviation. 
(b) Tabulate the values into 10 bins, each of width equal to five: the first bin beginning at 0, and the 

eleventh bin for overflow (if any). 
(c) Does the histogram resemble any distribution with which you are familiar? If so, what is its name? 

Hint: Use FREQUENCY in Excel to forin bins. 

42. Using Excel, generate 12 columns, each with �0 values, using the formula 
= RANDO. 

In cell Ml,  place the formula 
= SUM(Al :Ll)-6 and copy it to the 249 cells below Ml  in column M. 

(a) Compute descriptive statistics about the data in that column, including minimum value, maximum 
value, mean, median, and standard deviation. 

(b) Thbulate the values with 9 bins: the first bin will include all values less than or equal to -3.5; the 
next six bins are of width one; the last bin will include all values greater than 3.5. 

(c) Does the histogram resemble any distribution with which you are familiar? If so, what is its name? 

Hint l :  Use FREQUENCY in Excel to form bins. 

Hint 2: The values in Column M can be used instead of those in Table A2. 

43. Using Excel, generate 1000 random numbers in the range (0-1000) and form a frequency table with 10  
class intervals. 

44. Using Excel, generate 100 random numbers equally distributed between 23 and 87. 

45. Consider Example 2.5. If the proposed system is modified as follows: whenever a bearing fails, two 
bearings are replaced 

(a) The one that has failed and 
(b) another one, out of the.other two remaining bearings with longest operational time. 

Using Excel, simulate the system and compare the cost with previous policy of changing all the three 
bearings. 

I 
I 

46. 
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Consider the simulation of a management game. There are three players A, B, and C. Each player has 

two strategies which they play with equal probabilities. The players select strategies independently. The 

· following table gives the payoff. 

Payoff 

Strategies A B c 

Al-B l -C l  1 0  -5 5 

Al -B l -C2 0 8 2 

Al-B2-Cl 9 3 -2 

Al-B2-C2 -4 5 9 

A2-Bl-Cl 6 1 3 

A2-Bl-C2 0 0 10 
A2-B2-Cl 6 10 -6 
A2-B2-C2 0 4 6 

Simulate 100 plays and determine the payoffs. 
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General Principles 

�his chapter develops a common framework for the modeling of complex systems by using dis_crete-event 
simulation. It covers the basic building blocks of all discrete-event simulation models: entities and attributes, 
activities, and events. In discrete-event simulation, a system is modeled in terms of-its state at each point in 
time; of the entities that pass through the system and the entities that represent system resources; and of the 
activities and events that cause the system state to change. Discrete-event models are appropriate for those 
systems for which changes in system state occur only at discrete points in time. 

The simulation languages and software (collectively called simulation packages) described in Chapter 4 
are fundamentally packages for discrete-event simulation. A few of the packages also include the capability 
to model continuous variables in a purely continuous simulation or a mixed discrete-continuous model. The 
discussion in this chapter focuses on the discrete-event concepts and methodologies. The discussion in 
Chapter 4 focuses more on the capabilities of the individual packages and on some of their higher-level 
constructs. 

This chapter introduces and explains the fundamental concepts and methodologies underlying all 
discrete-event simulation packages. These concepts and methodologies are not tied to any particular pack­
age. Many of the packages use different terminology from that used here, and most have a number of higher­
level constructs designed to make modeling simpler and more straightforward for their application domain. 
For ·example, this chapter discusses the fundamental abstract concept of an entity, but Chapter 4 discusses 
more concrete realizations of entities, such as machines, conveyors, and vehicles that are built into some of 
the packages to facilitate modeling in the manufacturing, material handling, or other domains� 

Applications of simulation in specific contexts are discussed in Part Five of this text. Topics covered 
include !he simulation of manufacturing and material handling systems in Chapter 13, the simulation of 
computer systems in Chapter 14, and the simulation of communications systems in Chapter 15. 

Section 3.1 covers the general principles and concepts of discrete-event simulation, the event 
scheduling/time advance algorithm, and the three prevalent world views: event scheduling, process interaction, 
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and activity scanning. Section 3.2 introduces some of the notions of list processing, one of the more impor­
tant methodologies used in discrete-event simulation software. Chapter 4 covers the implementation of the 
concepts in a number of the more widely used simulation packages. 

3.1 CONCEPTS IN DISCRETE-EVENT SIMULATION 

The concept of a system and a model of a system were discussed briefly in Chapter 1. This chapter deals 
exclusively with .dynarnic, stochastic systems (i.e., involving time and containing random elements) that 
change in a discrete manner. This section expands on these concepts and proposes a framework for the 
development of a discrete-event model of a system. The major concepts are briefly defined and then 
illustrated by examples: 

System A collection of entities (e.g., people and machines) that interact together over time to accom­
plish one or more goals. 

Model An abstract representation of a system, usually containing structural, logical, or mathematical 
relationships that describe a system in terms of state, entities and their attributes, sets, processes, 
events, activities, and delays. 

System state A collection of variables that contain all the informatioq necessary to describe the sys-
tem at any time. 

Entity Any object or component in the system that requires explicit representation in the model 
(e.g., a server, a customer, a machine). 

Attributes The properties of a given entity (e.g., the priority of a waiting customer, the routing of a 
job through a job shop). 

List A collection of (permanently or temporarily) associated entities, ordered in some logical fashion 
(such as all customers currently in a waiting line, ordered by "first come, first served," or by priority). 

Event An instantaneous occurrence that changes the state of a system (such as an arrival of a new cus­
tomer). 

Event notice A record of an event to occur at the current or some future time, along with any associ-
ated data necessary to execute the event; at a minimum, the record includes the event type and the 
event time. 

Event list A list of event notices for future events, ordered by time of occurrence; also known as the 
future event list (FEL ). 

Activity A duration of time of specified length (e.g., a service time or interarrival time), which is 
. known when it begins (although it may be defined in terms of a statistical distribution). 
Delay A duration of time of unspecified indefinite length, which is not known until it ertds (e.g., a 

customer's delay in a last-in-first-out waiting line which, when it begins, depends on future arrivals). 
Clock A variable representing simulated time, called CLOCK in the examples to follow. 

Different simulation, packages use different terminology for the same or similar concepts-for example, lists 
are sometimes called sets, queues, or chains. Sets or lists are used to hold both entities and event notices. The 
entities on a list are always ordered by some rule, such as first-in-first-out or last-in-first-out, or are ranked 
by some entity attribute, such as priority or due date. The future event list is always ranked by the event time 
recorded in the event notice. Section 3.2 discusses a number of methods for handling lists and introduces 
some of the methodologies for efficient processing of ordered sets or lists. 

An activity typically represents a service time, an interarrival time, or any other processing time whose 
duration has been characterized and defined by the modeler. An activity's duration may be specified in a 
number of ways: 
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1. Deterministic-for example, always exactly 5 minutes; 
2. Statistical-for example, as a random draw from among 2, 5, 7 with equal probabilities; 
3. A function depending on system variables and/or entity attributes-for example, loading time for an 

iron ore ship as a function of the ship's allowed cargo weight and the loading rate in tons per hour. 

However it is characterized, the duration of an activity is computable from its specification at the instant it 
begins. Its duration is not affected by the occurrence of other events (unless, as is allowed by some simulation 
oar.k:ages, the model contains logic to cancel an event). To keep track: of activities and their expected comple­
tion time, at the simulated instant that an activity duration begins, an event notice is created having an event 
time equal to the activity's completion time. For example, if the current simulated time is CLOCK = 100 
minutes and an inspection time of exactly 5 minutes is just beginning, then an event notice is created that spec­
ifies the type of event (an end-of-inspection event), and the event time (100 + 5 105 minutes). 

In contrast to an activity, a delay's duration is not specified by the modeler ahead of time, but rather is 
determined by system conditions. Quite often, a delay's duration is measured and is one of the desired out­
puts of a model run. Typically, a delay ends when some set of logical conditions becomes true or one or more 
other events occur. For example, a customer's delay in a waiting line may be dependent on the number and 
duration of service of other customers ahead in line as well as the availability of servers and equipment. 

A delay is sometimes called a conditional wait, an activity an unconditional wait. The completion of 
an activity is an event, often called a primary event, that is managed by placing an event notice on the FEL. 
In contrast, delays are managed by placing the associated eqtity on another list, pefhaps representing a waiting 
line, u"ntil such time as system conditions permit the processmg of the entity. The completion of a delay is 
sometimes called a conditional or secondary event, but such events are not represented by event notices, nor 
do they appear on the FEL. 

The systems considered here are dynamic, that is, changing over time. Therefore, system state, entity 
attributes and the number of active entities, the contents of sets, and the activities and delays currently 
in progress are all functions of time and are constantly changing over time. Tnne itself is represented by a 
variable called CLOCK. 
Example 3.1: Call Center, Revisited 
Consider the Able-Baker call center system of Example 2.2. A discrete-event model has the following 
components: 

System state 
LQ(t), the number of callers waiting to be served at time t; 
Lit), 0 or 1 to indicate Able as being idle or busy at time t; 
L,(t), 0 or 1 to indicate Baker as being idle or busy at time t. 

Entities Neither the callers nor the servers need to be explicitly represented, except in terms of the 
state variables, unless certain caller averages are desired (compare Examples 3.4 and 3.5). 

Events 
Arrival event; 
Service completion by Able; 
Service completion by Baker. 

Activities 

Interarrival time, defined in Table 2.11;  
Service time by Able, defined in Table 2.12; 
Service time by Baker, defined in Table 2.13. 

Delay A caller�s wait in queue until Able or Baker becomes free. j I I 
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Cumulative 
Entities Future smti.stics 

System and event and 
Clock state attributes Set I Set 2 . . . list, FEL counters 

I (x, y, z, . .. ) .(3, It)- Type3 event to 
occur at lime It 

(I, tiJ - Type 1 event to 
occur at lime t2 

Figure 3.1 Prototype system snapshot at simulation time I. 

The definition of the model components provides a static description of the model. In addition, a 
description of the dynamic relationships and interactions between the components is also needed. Some 
questions that need answers include: 

1. How does each event affect system state, entity attributes, and set contents? 
. 

2. How are activities defined (i.e., deterministic, probabilistic, or some other mathematical equation)? 
What event marks the beginning or end of each activity? Can the activity begin regardless of syst:m 
state or is its begiuning conditioned on the system being in a certain state? (For example, a machin­
ing ,;activity" cannot begin unless the machine is idle, not broken, and not in mainten��e.) 

3. Which events trigger the beginning (and end) of each type of delay? Under what cond11Ions does a 
delay begin or end? 

·. " . ,. 4. What is the system state at time 0? What events should be generated at lime 0 to pnme the model­
that is, to get the simulation started? 

A discrete-event simulation is the modeling over time of a system all of whose state changes occur at 
discrete points in time-those points when an event occurs. A discrete-event s�ulation (hereafter called a 
simulation) proceeds by producing a sequence of system snapshots (or system Images) that represent the 
evolution of the system through time. A given snapshot at a given time (CLOCK = t) includes not onl� �e 
system state at time t,  but also a list (the FEL) of all activities currently in progress and when each such ac11�1ty 
will en"d, the status of all entities and current membership of .all sets, plus the current values of cumulatiVe 
statistics and counters that will be used to calculate summary statistics at the end of the simulation. A prototype 
system snapshot is shown in Figure 3.1. (Not all models will contain every element exhibited in Figure 3. 1 .  
Further illustrations are provided in the examples in this chapter.) 

3.1 . 1  The Event Scheduling/nme Advance Algorithm 

The mechanism.for advancing simulation time and guaranteeing that all events occur in correct chronological 
order is based on the future event list (FEL). This list contains all event notices for events that have been 
scheduled to occur at a future time. Scheduling a future event means that, at the instant an activity begins, 
its duration is computed or drawn as a sample from a statistical distribution; and that the end-activity event, 
together with its event time, is placed on the future event list In the real world, most future events are not . 
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scheduled but merely happen-such as random breakdowns or random arrivals. In the model, such random 
events are represented by the end of some activity, which in tum is represented by a statistical distribution. 

At any given time t, the FEL contains all previously scheduled future events and their associated event 
times (called t1;t2, . .. in Figure 3.1 ). The FEL is ordered by event time, meaning that the events are arranged 
chronologically-that is, the event times satisfy 

Time t is the vatu�: of CLOCK, the current value of simulated time. The event associated with time t 1 is called 
the imminent event; that is, it is the next event that will occur. After the system snapshot at simulation time 
CLOCK = t has been updated, the CLOCK is advanced to simulation time CLOCK = tl' the imminent event 
notice is removed from the FEL, and the event is executed. Execution of the imminent event means that a new 
system snapshot for time t1 is created, one based on the old snapshot at time t and the nature of the immi­
nent event. At time t1, new future events may or might not be generated, but if any are, they are scheduled 
by creating event notices and putting them into their proper position on the FEL. After the new system snap­
shot for time t 1 has been updated, the clock is advanced to the time of the new imminent event and that event 
is executed. This process repeats until the simulation is over. The sequence of actions that a simulator 
(or simulation language) must perform to advance the clock and build a new system snapshot is called the 
event-scheduling/time-advance algorithm, whose steps are listed in Figure 3.2 (and explained thereafter). 

The length and contents of the FEL are constantly changing as the simulation progresses, and thus its 
efficient management in a computerized simulation will have a major impact on the efficiency of the com­
puter program representing the model. The management of a list is called list processing. The major list pro­
cessing operations performed on a FEL are removal of the imminent event, addition of a new event to the 
list, and occasionally removal of some event (called cancellation of an event). As the imminent event is usu­
ally at the top of the list, its removal is as efficient as possible. Addition of a new event (and cancellation of 
an old event) requires a search of the list. The efficiency of this search depends on the logical organization 
of the list and on how the search is conducted. In addition to the FEL, all the sets in a model are maintained 
in some logical order, and the operations of addition and removal of entities from the set also require effi­
cient list-processing techniques. A brief introduction to list processing in simulation is given in Section 3.2. 

The removal and addition of events from the FEL is illustrated in Figure 3.2. Event 3 with event time t1 
represents, say, a service completion event at server 3. Since it is the imminent event at time t, it is removed 
frCim the FEL in step 1 (Figure 3.2) of the event-scheduling/time-advance algorithm: When event 4 (say, an 
arrival event) with event time t* is generated at step 4, one possible way to determine its correct position on 
the FEL is to conduct a top-down search: 

If t* < t2, 
If t2 S t* < t3, 
If t3 S t* < t4, 

place event 4 at the top of the FEL. 
place event 4 second on the list. 
place event 4 third on the list. 

place event 4 last on the list. 

(In Figure 3.2, it was assumed that t* was between t2 and t3.) Another way is to conduct a bottom-up search. 
The least efficient way to maintain the FEL is to leave it as an unordered list (additions placed arbitrarily at 
the top or bottom), which would require at step 1 of Figure 3.2 a complete search of the list for the imminent 
event before each clock advance. (The imminent event is the event on the FEL with the lowest event time.) 

The system snapshot at time 0 is defined by the initial conditions and the generation of the so-called exoge­
nous events. The specified initial conditions define the system state at time 0. For example, in Figure 3.2, if t = O, 
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Old system snapshot at time t 

CWCK 

t 

System 
state Future event list 

(5, l, 6) (3, t1) - Type 3 event to occur at time t1 
(I, liJ -Type I event to occur at time t2 
(I, 13) - Type 1 event to occur at time 13 

(2, r.) -Type 2 event to occur at time 14 

Event-scheduling/time-advance algorithm 

Step {. Remove the event twticefor the imminent event 
(event 3, time t 1) from FEL. 

Step 2. Advance CWCK to imminent event time 
(i.e., advance CWCKfrom t to t1). 

. . .  

Step 3. Execute imminent event: update system state, 
change entity attributes, and set membership as needed. 

Step 4. Generate future events (if necessary) and 
place their event notices on FEL, ranked by event time. 
(Example: Event 4 to occur at time t*, where tz < t*< t3.) 

Step 5. Update cumulative statistics and counters. 

New system snapshot at time l1 

System 
CWCK state . . .  Future event list . . .  

II (5, I, 5) (I, �) -Type I event to occur at time t2 
(4, t*) - Type 4 event to occur at time t* 
(I, t3) - Type I event to occur at time 13 

(2, In) - Type 2 event to occur at time In 

figure 3.2 Advancing simulation lime and updating system image. 
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then the state (5, I, 6) might represent the initial number of customers at three different points in the system. 
An exogenous event is a happening "outside the system" that impinges on the system. An importlint example is 
an arrival to a queueing system. At time 0, the first anival event is generated arid is scheduled on the FEL (mean­
ing that its event notice is placed on the FEL). The interarrival time is an example of an activity.' When the clock 
eventually is advanced to the time of this first arrival, a second anival event is generated. First, an interanival 
time is generated, a*; it is added to the current time, CLOCK = t; the resulting (future) event time, t + a* =  t*, 
is used to position the new arrival event notice on the FEL. This method of generating an external anival stream 
is called bootstrapping; it provides one example of how future events are generated in step 4 of the event­
schedulingltime-advance algorithm. Bootstrapping is illustrated in Figure 3.3. The first three interanival times 
generated are 3.7, 0.4, and 3.3 time units. The end of an interanival interval is an example of a primary event. 

A second example of how future events are generated (step 4 of Figure 3 .2) is provided by a service 
completion event in a queueing simulation. When one customer completes service, at current time CLOCK = t, 
if the next customer is present, then a new service time, s*, will be generated for the next customer. The next 
service completion event will be scheduled to occur at future time t* = t + s*, by placing onto the FEL a new 
event notice, of type service completion, with event time t*. In addition, a service-completion event will be 
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Arrival 2 

Time O 3.7 4.1 
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At simulated time 1, assumed to be lhe instant 
of lhe nih arrival, generate interarrival 

time a*, computet* 1 + a•, and schedule 

3 

\ future arrival on PEL to 
occur at future time I* 

n n +  l . . .  Arrival 

7.4 CLOCK t 
a* 

" / 
Between successive arrival events, other 

types of events may occur, causing 
system slate to change 

t* . . .  Time 

Figure 3.3 Generation of an external arrival stream by bootstrapping. 

gene� and scheduled at the � o� an arrival event provided that, upon arrival, there is at least one idle server m the �rver group. A_ se';lce tune is an example of an activity. Beginning service is a conditional �ven� because �� o�urrence IS triggered only on the condition that a customer is present and a server is free 
en:1ce ��pletion IS an �xample of � primary event. Note that a conditional event, such as beginnin� se:vice, 1s tt:ggered by a pnmary event occurring and by certail) conditions prevailing in the system. Only prtmary events appear on the FEL. 

A third impo�t example is the �teroate generation of runtimes and downtimes for a machine subject to breakdowns. At tune 0: the first runtime will be generated, and an end-of-runtime event will be schednled. Whenever an end-of-runtime event occurs, a downtime will be generated, and an end-of-downtime event will be schedul� on �e FEL. When the CLOCK is eventually advanced to the time of this end-of-downtime event, a runtune 1s generated, and an end-of-runtime event is scheduled on the FEL In th · · 

and d tim · all a! 
. 1s way, runtunes 

. . �wn es continu ! temate throughout the simulation. A runtime and a downtime are examples of actiVIties, �d end _of runtmul and end of dnwntime are primary events. 
Every Simulation must have a stopping event, here called E, which defines how long the simulation will run. There are generally two ways to stop a simulation: 

l. �t time 0, schedul� a sto� sim�tion event at � specifled future time T E' Thus, before simulating, it I
T
s �o

40
wn that the simulation will !On over the tune interval [0, TE]. Example: Simulate a job shop for 

E- hours. 
2. Run.length TE is determined by !he �ulation itself. Generally, TE is the time of occurrence of some s�ified e�nt E. Examples: TE IS the time of the lOOtb service completion at a certain service center 

TE t;; the tune of break�own of a complex system. TE is the time of disengagement or total kill (whichever_ occurs first) m a combat simulation. TE is the time at which a distribution center ships the last carton m a day's orders. 

In case 2, TE is �ot kn�wn ahead of time. Indeed, it could be one of the statistics of primary interest to be produced by the stmulauon. 

3.1 .2 World Views 

Whe� usi�g a simulation_ package or even when doing a manual simulation, a modeler adopts a world view o: onen�on for dev:lopmg a 
.
model. The most prevalent world views are the event-scheduling world view, as dtscussed m the prevtous section, the process�interaction world view, and the activity-scanning world view. 

::·.::7 .-,. 

! i 
I I I 
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Even if a particular package does not directly support one or more of the world views, understanding the 
different approaches could suggest alternative ways to model a given system. 

To summarize the previous discussion, when using the event-scheduling approach, a simulation analyst 
concentrates on events and their effect on system state. This world view will be illustrated by the manual 
simulations of Section 3.1.3 and the Java simulation in Chapter 4. 

When using a package that supports the process-interaction approach, a simulation analyst thinks in 
tenns of processes. The analyst defines the simulation model in terms of entities or objects and their life 
cycle as they flow through the system, demanding resources and queueing to wait for resources. More 
precisely, a process is the life cycle of one entity. This life cycle consists of various events and activities. 
Some activities might require the use of one or more resources whose capacities are limited. These and other 
constraints cause processes to interact, the simplest example being an entity forced to wait in a queue (on a 
list) because the resource it needs is busy with another entity. The process interaction approach is popular 
because it has intuitive appeal and because the simulation packages that implement it allow an analyst to 
describe the process flow in terms of high-level block or network constructs, while the interaction among 
processes is handled automatically. 

In more precise terms, a process is a time-sequenced list of events, activities and delays, including 
demands for resources, that define the life cycle of one entity as it moves through a system. An example of 
a "customer process" is shown in Figure 3.4. In this figure, we see the interaction between two customer 
processes as customer n + 1 is delayed until the previous customer's "end service event'' occurs. Usually, 
many processes are active simultaneously in a model, and the interaction among processes could be quite 
complex. 

Underlying the implementation of the process interaction approach in a simulation package, but usually 
hidden from a modeler's view, events are being scheduled on a future event list and entities are being placed 
onto lists whenever they face delays, causing one process to temporarily suspend its execution while other 
processes proceed. It is important that the modeler have a basic understanding of the concepts and, for the 
simulation package being used, a detailed understanding of the built-in but hidden rules of operation. 
Schriber and Brunner [2003] provide understanding in this area. 

Both the event-scheduling and the process-interaction approach use a variable time advance-that is, 
when all events and system state changes have occurred at one instant of simulated time, the simulation clock 
is advanced to the time of the next imminent event on the FEL. The activity-scanning approach, in contrast, 
uses a fixed time increment and a rule-based approach to decide whether any activities can begin at each 
point in simulated time. 

Customern 

End 
Arrival Begin service 
event Delay service Activity event 

)( )( I·�" I 

Time lillie 

Begin End 
Arrival service service 
event Delay Activity event 

Tune Time 
Customer n + 1 

Figure 3.4 Two interacting cu�romer process.es in o single-server queue. 
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With the activity-scanning approach, a modeler concentrates on the activities of a model and those 
conditions, simple or complex, that allow an activity to begin. At each clock advance, the conditions for each 
activity are checked, and, if the conditions are true, then the corresponding activity begins. Proponents claim 
that the activity-scanning approach is simple in concept and leads to modular models that are more easily 
maintained, understood, and modified by other analysts at later times. They admit, however, that the repeated 
scanning to discover whether an activity can begin results in slow runtime on computers. Thus, the pure 
activity-scanning approach has been modified (and made conceptually somewhat more complex) by what is 
called the three-phase approach, which combines some of the features of event scheduling with activity scan­
ning to allow for variable time advance and the avoidance of scanning when it is not necessary, but keeps the 
main advantages of the activity-scanning approach. 

In the three-phase approach, evevts are considered to be activities of duration zero time units. With this 
definition, activities are divided into two categories, which are called B and C. 

B activities activities bound to occur; all primary events and unconditional activities. 
C activities activities or events that are conditional upon certain conditions-being true. 

The B-type activities and events can be scheduled ahead of time, just as in the event-scheduling 
approach. This allows variable time advance. The FEL contains only B-type events. Scanning to learn 
whether any C-type activities can begin or C-type events occur happens only at the end of each time advance, 
after all B-type events have completed. In summary, with the three-phase approach, the simulation proceeds 
with repeated execution of the 3 phases until it is completed; 

Phase A Remove the imminent event from the FEL and advance the clock to its event time. Remove 
from the FEL any other events that have the same event time. 

Phase B Execute all B-type events that were removed from the FEL. (This could free a number of 
resources or otherwise change system state.) 

Phase C Scan the conditions that trigger each C-type activity and activate any whose conditions 
are smet. Rescan until no additional C-type activities can begin and no events occur. 

The three-phase approach improves the execution efficiency of the activity-scanning method. In addi­
tion, proponents claim that the activity scanning and three-phase approaches are particularly good at han­
dling complex resource problems in which various combinations of resources are needed to accomplish 
different tasks. These approaches guarantee that all resources being freed at a given simulated time will all 
be freed before any available resources are reallocated to new tasks. 

Example 3.2: Call Center, Back Again 
The events and activities were identified in Example 3.1. Under the three-phase approach, the conditions for 
beginning each activity in Phase C are as follows: 

Activity 
Service time by Able 
Service time by Baker 

Condition 
A caller is in queue and Able is idle 
A caller is in queue, Baker is idle and Able is busy 

Using the process-interaction approach, we view the model from the viewpoint of a caller and its "life 
cycle." Considering a life cycle as beginning upon arrival, a customer process is pictured in Figure 3.4. 

In summary, as will be illustrated in Chapter 4, the process-interaction approach has been adopted by 
the simulation packages most popular in the USA. On the other hand, a number of activity-scanning 
packages are popular in the UK and Europe. Some of the packages allow portions of a model to be event­
scheduling based, if that orientation is convenient, mixed with the process-interaction approach. Finally, 
some of the packages are based on a flow chart, block diagram or network structure, which upon closer 
examination turns out to be a specific implementation of the process-interaction concept. 
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3.1 .3 Manual Simulation Using Event Scheduling 

In the conducting of an event-scheduling simulation, a simulation table is used to record the successive 
system snapshots as time advances. 

Example 3 3: Single-Channel Queue 
_ 

Reconsider
. 
the grocery store with one checkout counter that was simulated in

_ 
Example 2.� by an ad hoc 

method. The system consists of those customers in the waiting line plus the
_ 
one (If any) checking out. A stop­

ping time of 60 minutes is set for this example. The model has the followmg components: 

System state (LQ(t), LS(t)), where LQ(t) is the number of customers in the waiting line, and LS(t) is 
the number being served (0 or 1) at time t. . . . 

Entities The server and customers are not explicitly modeled, except m terms of the state vanables. 
Events 

Arrival (A); 
Departure (D); . Stopping event (E), scheduled to occur at time 60. 

Event notices 
(A, t), representing an arrival event to occur at futu�e time t; 
(D, t), representing a customer departure at future time t;

_ (E, 60), representing the simulation stop event at future time 60. 
Activities 

Interarrival time, defined in Table 2.6; 
Service time, defined in Table 2.7 

Delay Customer time spent in waiting line. 

The event notices are written as (event type, event time). In this model, the FEL will �wa�s contain 
either two or three event notices. The effect of the arrival and departure events was first shown m F1gures 2.2 
and 2.3 and is shown in more detail in Figures 3.5 and 3.6. 

The simulation table for the checkout counter is given in Table 3.1 .  The reader should cover al� system 
· tarti' · th the first and attempt to construct the next snapshot from the prev1ous one snapshots except one, s ng WI • . . 

-11 b · d t' a1 t those I · · Fi. 
3 5 and 3 6 The interarrival times and serv1ce t1mes w1 e 1 en 1c o and tht< event og1c m 1gures . . . 

used in Table 2.10: 

Interarrival Times 6 3 7 5 2 4 J . . .  

Service Times 4 2 5 4 5 4 4 . . .  

Initial conditions are that the first customer arrive at time 0 and begin service. This is reflected in Table 3.1  

b the s stem sna shot at time zero (CLOCK = 0), with L:_ . .  fl) = 0, LS(O) = I ,  and both a de��ure event y
d · 

y
al t 

p 
the FEL Also the simulation is scheduled to stop at time 60. Only two statistics, server an arnv even on · • . . · · d fi d b t tal erver busy ·1· · d ·unum queue length will be collected. Server utlltzatlon IS e me Y o s ut1 1zatton an max ' - gth MQ 'll be accumu­time (B) divided by total time (TE). Total busy time, B, and maXIm

_
u� queue len . 

, , WI 
* d * lated as the simulation progresses. A column headed "�omments" IS mcluded to atd the reader. (a an s 

th enerated interarrival and service times, respectively.) . . _ . are e g 
th t m snapshot at time CLOCK = 0 is complete, the simulation begtns. At ttme 0, As soon as e sys e 

· ed f th FEL the imminent event is (A, 1). The CLOCK is advanced to time I ,  and (A, I )  IS remov rom e .  · 
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Figure 3.5 Execution of the arrival event 

Because LS(t) = I for P ::;; t ::;; I (i .e., the server was busy for I minute), the cumulative busy time is increased 
from B = 0 to B = I .  By the event logic in Figure 3.6, set LS(l )  = I (the server becomes busy). The FEL is 
left with three future events, (A, 2), (D, 4), and (E, 60). The simulation CLOCK is next advanced to time 2, 
and an arrival event is executed. The interpretation of the remainder of Table 3.1 is left to the reader. 

The simulation i n  Table 3.1 covers the time interval {0,23]. At simulated time 23, the system empties, 
but the next arrival also occurs at time 23. The server was busy for 21 of the 23 time units simulated, and the 
maximuin queue length was two. This simulation is, of course, too short to draw any reliable conclusions. 
Exercise 1 asks the reader to continue the simulation and to compare the results with those in Example 2. 1 .  
Note that the simulation table gives the system state at all times, not just the listed times. For example, from 
time I I  to time 15, there is one customer in service and one in the waiting line. 

When an event-scheduling algorithm is computerized, only one snapshot (the current one or partially 
updated one) is kept in computer memory. With the idea of implementing event scheduling in Java or some 
other general-purpose language, the following rule should be followed. A new snapshot can be derived only 
from the previous snapshot, newly generated random variables, and the event logic (Figures 3.5 and 3.6). 
Past snapshots should be ignored for advancing of the clock. The current snapshot must contain all 
information necessary to continue the simulation. 

GENERAL PRINCIPLES 

Figure 3.6 Execution of the departure event. 

Table 3.1 Simulation Table for Checkout Counter !Example 3.3) 

System State 

Clock LQ(t) LS(t) Future Event List Comment 

0 0 1 (A, 1) (D, 4) (E, 60) First A occurs 
(a* = 1) Schedule next A 
(s* = 4) Schedule first D 

I 1 1 (A. 2) (D, 4) (E, 60) Second A occurs: CA. I)  
(a* = 1 )  Schedule next A 
(Customer delayed) 

2 2 1 (D, 4) (A, 8) (E, 60) Third A occurs: CA. 2) 
(a* = 6) Schedule next A 
(fwo customers delayed) 

4 1 1 (D, 6) (A, 8) (E, 60) Hrst D occurs: (D, 4) 
(s* = 2) Schedule next D 
(Customer delayed) 

6 0 1 (A, 8) (D, 1 1 )  (E, 60) Second D occurs: (D, 6) 
(s* = 5) Schedule next D 
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Table 3. I (continued) 

Cumulative 
System State Statistics 

Clock LQ(t) LS(t) Fllt:Ure Everu List Comment B MQ 

8 I I (D, 1 1) (A, 1 1 )  (E, 60) Fourth A occurs: (A, 8) 8 2 
(a* 3 Schedule next A 
(Customer delayed) 

I I  I 1 (D, 15) (A, 1 8) (E, 60) Fifth A occurs: (A, 11)  1 1  2 
(a* = 7) Schedule next A 
Third D occurs: (D, 1 1 )  
(s* = 4),Schedule next D 
Customer delayed 

15 0 1 (D, 16) (A, 18) (E, 60) Fourth D occurs: (D, 15) 15 2 
(s* I) Schedule next D 

16 0 0 (A, 18) (E, 60) Fifth D occurs: (D, 16) 16 2 

1 8  0 1 (D. 23) (A, 23) (E, 60) Sixth A occurs 1 6  2 
(a* = 5) Schedule next A 
(s* = 5) Schedule next D 

23 0 I (A, 25) (D, 27) (E, 60) Seventh A occurs: (A, 23) 21 2 
(a* 2) Schedule next Arrival 
Sixth D occurs: (D. 23) 

Example 3.4: The Checkout-Counter Simulation, Continued 
Suppose that, in the simulation of the checkout counter i n  Example 3.3, the simulation analyst desires to esti­
mate mean response time and mean proportion of customers who spend 5 or more minutes in the system. 
A response time is the length of time a customer spends in the system. In order to estimate these customer 
averages, it is necessary to expand the model in Example 3.3 to represent the individual customers explicitly. 
In addition, to be able to compute an individual customer's response time when that customer departs, it will 
be necessary to know that customer's arrival time. Therefore, a customer entity with arrival time as an attrib­
ute will be added to the list of model components in Example 3.3. These customer entities will be stored in 
a list to be called "CHECKOUT LINE"; they will be called Cl, C2; C3, . . . .  Finally, the event notices on the 
FEL will be expanded to indicate which customer is affected. For example, (D, 4, Cl) means that customer 
Cl will depart at time 4. The additional model components are the foUowing: 

Entities ( Ci, t), representing customer Ci who arrived at time t 

Event notices 
(A, t, Ci), the arrival of customer Ci at future time t 
(D, t, Cj), the departure of customer Cj at future time t 

Set "CHECKOUT LINE;' the set of all customers currently at the checkout counter (being served or 
waiting to be served), ordered by time of arrival 

Three new cumulative statistics will be collected: S, the sum of customer response times for all customers · 

who have departed by the current time; F, the total number of customers who spend 5 or more minutes at 
the checkout counter; and ND, the total number of departures up to Lte current simulation time. These three· 
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Table 3.2 Simulation Table for Example 3.4 

System State Cumulative Statistics 

Clock LQ(t) LS(t) CHECKOUT liNE Future Event List s ND F 

0 0 I (Cl,O) (A,I,C2) (0,4, C 1) (E,60) 0 0 0 

I I I (CI,O) (C2, 1) (A,2,C3) (D,4,C1) (E,60) 0 0 0 

2 2 1 (C1,0) (C2,1) (C3,2) (D,4,Cl) (A,8,C4) (E,60) 0 0 0 

4 I 1 (C2,1 ) (C3,2) (D,6,C2) (A,8,C4) (E, 60) · 4 I 0 

6 0 I (C3,2) (A,8,C4) (D,I 1,C3) (E,60) 9 2 I 

8 I I (C3,2) (C4,8) (D, l l,C3) (A,I I.C5) (E,60) 9 2 I 

I I  1 I (C4,8) (C5,l l ) (D,15,C4) (A,I8,C6) (E,60) 18  3 2 

15 0 I (C5, l l) (D,16,C5) (A,18,C6) (E,60) 25 4 3 

16 0 0 (A,l8,C6) (E,60) 30 5 4 

18 0 1 (C6,18) (D,23,C6) (A,23,C7) (E,60) 30 5 4 

23 0 I (C7,23) (A,25,C8) (D,27,C7) (E.60) 35 6 5 

cumulative statistics will be updated whenever the departure event occurs; the logic for collecting these 
statistics would be incorporated into step 5 of the departure event in Figure 3.6. 

The simulation table for Example 3.4 is shown in Table 3.2. The same data for interarrival and service 
times will be used again; so Table 3.2 essentially repeats Table 3.1, except that the new components are 
included (and the comment column has been deleted). These new components are needed for the computa­
tion of the cumulative statistics S, F, and N D' For example, at time 4, a departure event occurs for customer Cl. 
The customer entity C l  is removed from the list called "CHECKOUT LINE"; the attribute ... time of arrival" 
is noted to be 0, so the response time for this customer was 4 minutes. Hence, S is incremented by 4 minutes. 
N D is incremented by one customer, but F is not incremented, for the time in system was less than five 
minutes. Similarly, at time 23, when the departure event (D, 23, C6) is being executed, the response time for 
customer C6 is computed by 

· 

Response time CLOCK TIME - attribute "time of arrival" 

23 18 

5 minutes 

Then S is incremented by 5 minutes, and F and ND by one customer. 
.For a simulation run length of 23 minutes, the average response time was SIN 0 = 3516 = 5.83 minutes, 

and the observed proportion of customers who spent 5 or more minutes in the system was FIND= 0.83. Again, 

this simulation was far too short to regard these estimates as having any degree of accuracy. The purpose of 

Example 3.4, however, was to illustrate the notion that, in many simulation models, the information desired 

from the simulation (such as the statistics SIND and FIND) to some extent dictates the structure of the modeL 

Example 3.5: The Dump-Truck Problem 
Six dump trucks are used to haul coal from the entrance of a small mine to the railroad. Figure 3.7 provides 
a schematic·of the dump-truck operation. Each truck is loaded by one of two loaders. After a loading, the 
truck immediately moves to the scale, to be weighed as soon as possible. Both the loaders and the scale have 
a first-come-first-served waiting line (or queue) for trucks. Travel time from a loader to the scale is consid­
ered negligible. After being weighed, a truck begins a travel time (during which time the truck unloads) and 
then afterward returns to the loader queue. The distributions of loading time, weighing time, and travel time 
are given in Tables 3.3, 3.4, and 3.5, respectively, together with the random digit assignment for generating 
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Figure 3.7 Dump truck problem. 
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Table 3.3 Distribution of loading Time for the Dump Trucks 

Loading Cumulative Random Digit 
Time Probability Probability Assignment 

5 0.30 0.30 1-3 
10 0.50 0 .. 80 4-8 
15 0.20 1.00 9-{) 

Table 3A Distribution of Weighing Time for the Dump Trucks 

Weighing 
Time 

12 
16 

Probability 

0.70 
0.30 

Cumulative 
Probability 

0.70 
1.00 

Random Digit 
Assignment 

1-7 
8-0 

Table 3.5 Distribution of Travel Time for the Dump Trucks 

Travel Cumulative Random Digit 
Time Probability Probability Assignment 

40 0.40 0.40 1-4 
60 0.30 0.70 5-7 
80 0.20 0.90 8-9 

100 0.10 1.00 0 

these variables by using random digits from Table A. I .  The purpose of the simulation is to estimate the 
loader and scale utilizations (percentage of time busy). The model has the following components: 

System state [LQ(t), L(t), WQ(t), W(t)], where 
LQ(t) = number of trucks in loader queue 
L(t) = number of trucks (0, l, or 2) being loaded 
WQ(t) = number of trucks in weigh queue 
W(t) = number of trucks (0 or I )  being weighed, all at simulation time t 

I 

Event notices 
(ALQ, t, DTf), dump truck i arrives at loader queue (ALQ) at time t 
(EL, t, DTi), dump truck i ends loading (EL) at time t 
(EW, t, DTi), dump truck i ends weighing (EW) at time t 

Entities The six dump trucks (DTI, . . •  , DTh) 
Lists 

Loader queue, all trucks waiting to begin loading, ordered on a first-come-first-served basis 
Weigh queue. all trucks waiting to be weighed, ordered on a first-come-first-served basis 

Activities Loading time, weighing time, and travel time 

Delays Delay at loader queue, and delay at scale 
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The simulation table is given in Table 3.6. It has been assumed that five of the trucks are at the loaders 
and one is at the scale at time 0. The activity times are taken from the following list as needed: 

Loading Ttme 10 5 5 10 15 10 10 

Weighing Ttmes 12  12  12  16 12 16 

'Ii:avel Times 60 100 40 40 80 

When an end-loading (EL) event occurs, say for truck j at time t, other events might be triggered. If the scale 
is idle [W(t) = 0], truckj begins weighing and an end-weighing event (EW) is scheduled on the FEL; other­
wise, truckj joins the weigh queue. If, at this time, there is another truck waiting for a loader, it will be 
removed from the loader queue and will begin loading by the scheduling of an end-loading event (EL) on 
the FEL. Both this logic for the occurrence of the end-loading event and the appropriate logic for the other 
two events, should be incorporated into an event diagram, as in Figures 3.5 and 3.6 of Example 3.3. The con­
struction of these event-logic diagrams is left as an exercise for the reader (Exercise 2). 

As an aid to the reader, in Table 3.6, whenever a new event is scheduled, its event time is written as 
"t+ (activity time)." For example, at time 0, the imminent event is an EL event with event time 5. The clock 
is advanced to time t ;=: 5, dump truck 3 joins the weigh queue (because the scale is occupied), and truck 4 
begins to load. Thus, an EL event is scheduled for truck 4 at future time 10, computed by (present time) + 
(loading time) = 5 + 5 = 10. 

In order to estimate the loader and scale utilizations, two cumulative statistics are maintained: 

BL = total busy time of both loaders from time to time t 
Bs = total busy time of the scale from 0 to time t 

Both loaders are busy from time 0 to time 20, so B L = 40 at time t = 20-but, from time 20 to time 24, only 
one loader is busy; thus, BL increases by only 4 minutes over the time interval [20, 24]. Similarly, from time 
25 to time 36, both loaders are idle (L(25) = 0), so BL does not change. For the relatively short simulation in 
Table 3.6, the utilizations are estimated as follows: 

A l ad ·� · 4912 
0 32 verage o er uu tlon = 76" = • 

. 
Average scale utilization = 

76 
= 1 .00 
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Clock 
t LQ(t) 

0 3 

5 2 

10 1 

10 0 

12 0 

20 0 

24 0 

25 0 

36 0 

52 0 

64 0 
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Table 3.6 Simulation Tobie for Dump-Truck Operction (Example 3.5) 

Lists 
System Stille 

Leader Weigh 
L(t) WQ(t) W(t) Queue Queue 

2 0 I DT4 
DT5 
DT6 

2 I I DT5 DT3 
DT6 

2 2 I DT6 DT3 
DT2 

2 3 1 DT3 
DT2 
DT4 

2 2 I DT2 
DT4 

l 3 I DT2 
DT4 
DT5 

I 2 I DT4 
DT5 

0 3 I DT4 
DT5 
DT6 

0 2 I DT5 
DT6 

0 I I DT6 

0 0 I 

·-

Future Event 
List 

(EL, 5, DT3) 
(EL, 10, DT2) 
(EW, 12, DTI) 

(EL, 10, DT2) 
(EL. 5 + 5, DT4) 
(EW, I2, DTI) 

(EL, IO, DT4) 
(EW, I2, DTI) 
(EL, 10 + IO, DT5) 

(EW, 12, DTI) 
(EL, 20, DT5) 
(EL, I 0 + 15, DT6) 

(EL, 20, DT5) 
. (EW, 12 + I2, DT3) 

(EL, 25, DT6) 
(ALQ, 12 + 60, DTI) 

(EW, 24, DT3) 
(EL, 25, DT6) 
(ALQ, 72, DTI) 

(EL, 25, DT6) 
(EW, 24 + I2, DT2) 
(ALQ, 72, DTI) 
(ALQ, 24 + IOO, DT3) 

(EW, 36, DT2) 
(ALQ, 72, DTI) 
(ALQ, I24, DT3) . 

(EW, 36 + I6, DT4) 
(ALQ, 72, DTI) 
(ALQ, 36 + 40, DT2) 
(ALQ, I24, DT3) 

(EW, 52 + 12, DT5) 
(ALQ, 72, DTI) 
(ALQ, 76, DT2) 
(ALQ, 52 + 40, DT4) 
(ALQ, I24, DT3) 

(ALQ, 72, DTl) 
(ALQ, 76, DT2) 
(EW, 64 + I6, DT6) 
(ALQ, 92, DT4) 
(ALQ, 124, DT3) 
(ALQ, 64 + 80, DT5) 

Cumulative Statistics 

BL Bs 

0 0 

IO 5 

20 10 

20 10 

24 12 

40 20 

44 24 

45 25 

45 36 

45 52 

45 64 

(continued overleiJf) 
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Table 3.6 (continued) 

Lists 
System State Cumulotive Stiltistics 

Clock !JJader Weigh Future Event 
t LQ(t) L(t) WQ(t) W(t) Queue Queue List BL Bs 

72 0 I 0 I (ALQ, 76, DT2) 45 72 
(EW, 80, DT6) 
(EL, 72 + 10, DTl) 
(ALQ, 92, DT4) 
(ALQ, 124, DT3) 
(ALQ, 144, DTS) 

. .  

76 0 2 0 I (EW, 80, DT6) 49 76 
(EL, 82, DTI) 
(EL, 76 + IO, DT2) 
(ALQ, 92, DT4) 
(ALQ, 124, DT3) 
(ALQ, 144, DT5) 

These estimates cannot be regarded as accurate estimates of the long-run "steady-state" utilizations of the 
loader and scale; a considerably longer simulation would be needed to reduce the effect of the assumed 
conditions at time 0 (five of the six trucks at the loaders) and to realize accurate estimates. On the other hand, 
if the analyst were interested in the so-called transient behavior of the system over a short period of time 
(say I or 2 hours), given the specified initial conditions, then the results in Table 3.6 can be considered rep­
resentative (or constituting one sample) of that transient behavior. Additional samples can be obtained by 
conducting additional simulations, each one having the same initial conditions but using a different stream 
of random digits to generate the activity times. 

· 

Table 3.6, the simulation table for the dump-truck operation, could have been simplified somewhat by not 
explicitly modeling the dump trucks as entities-that is, the event notices could be written as (EL, 1), !Uld so 
on, and the state variables used to keep track merely of the number of trucks in each part of the system, not 
which trucks were involved. With this representation, the same utilization statistics could be collected. On the 
other hand, if mean "system" response time, or proportion of trucks spending more than 30 minutes in 
the "system," were being estimated, where "system" refers to the loader queue and loaders and the weigh 
queue and scale, then dump truck entities (D:i'i), together with an attribute equal to arrival time at the loader 
queue, would be indispensable. Whenever a truck left the scale, that truck's response time could be computed 
as current simulation time (I) minus the arrival-time attribute. This new response time would be nsed to update 
the cumulative statistics: S = total response time of all trucks that have been through the "system" and F = 

number of truck response times that have been greater than 30 minutes. This example again illustrates the 
notion that, to some exten� the complexity of the model depends on the performance measures being estimated. 

Example 3.6: The Dump-Truck Problem Revisited 
The events and activities were identified in Example 3.5. Under the activity-scanning approach, the condi­
tions for beginning each activity are as follows: 

Activity 
Loading time 
Weighing time 
Travel time 

· Condition 
Truck is at front of loader queue, and at least one loader is idle. 
Truck is at front of weigh queue, and weigh scale is idle. 
· Truck has just completed a weighing. 
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f--------- Dump-trock process -------------1 

Delay 

ALQ 

Loading 

EL 

Delay Weigh 

EW 

Travel lime 

Figure 3.8 The dump-truck process. 

ALQ 

Using the process-interaction approach, we view the model from the viewpoint of one dump truck and 
its "life cycle." Considering a life cycle as beginning at the loader queue, we can picture a dump-truck 
process as in Figure 3.8. 

3.2 UST PROCESSING 

List processing deals with methods for handling lists of entities and the future event list. Simulation pack­
ages provide, both explicitly for an analyst's use and covertly in the simulation mechanism behind the lan­
guage, facilities for an analyst or the model itself to use lists and to perform the basic operations on lists. 

Section 3.2.1 describes the basic properties and operations performed on lists. Section 3.2.2 discusses 
the use of arrays for processing lists and the use of array indices to create linked lists, arrays being a simpler 
mechanism for describing the basic operations than the more general dynamically allocated linked lists dis­
cussed in Section 3.2.3. Finally, Section 3.2.4 briefly introduces some of the more advanced techniques for 
managing lists. 
· 

The purpose 'of this discussion oflist processing is not to prepare the reader to implement lists and their 
processing in a general-purpose language such as FORTRAN, C++, or Java, but rather to increase the 
reader's understanding of lists and of their underlying concepts and operations. 

3.2.1 Lists: Basic Properties and Operations 

As has previously been discussed, lists are a set of ordered or ranked records. In simulation, each record rep­
resents one entity or one event notice. 

Lists are ranked, so they have a top or head (the first item on the list); some way to traverse the list 
(to find the second, third, etc. items on the list); and a bottom or tail (the last item on the list). A head pointer 
is a variable that points to or indicates the record at the top of the list. Some implementations of lists also 
have a tail pointer that points to the bottom item on the list 

For purposes of discussion, an entity, along with its attributes or an event notice, will be referred to as a 
record. An entity identifier and its attributes are fields in the entity record; the event type, event time, and 
any other event-related data are fields in the event-notice record. Each record on a list will also have a field 
that holds a "next pointer" that points to the next record on the list, providing a way to traverse the list. Some 
lists also require a "previous pointer," to allow for traversing the list from bottom to top. 

For either type of list, the main activities in list processing are adding a record to a list and removing a 
record from a list More specifically, the main operations on a list are the following: 

1. removing a record from the top of the list; 
2. removing a record from any location on the list; 
3. adding an entity record to the top or bottom of the list; . 
4. adding a record at an arbitrary position in the list, one specified by the ranking rule. 

-. ..... 1 . ' .  
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The first and third operations, removing or adding a reeord to the top or bottom of the list, can be carried out in 
minimal time by adjusting two record pointers and the head or tail pointer, the other two operations require at least 
a pal1ial search through the list Making these two operations efficient is the goal of list-processing techniques. 

In the event -scheduling approach, when time is advanced and the imminent event is due to be executed, 
the removal operation takes place first-namely, the event at the top of the FEL is  removed from the FEL. 
If an arbitrary event is being canceled, or an entity is removed from a list based on some of its attributes (say, 
for example, its priority and due date) to begin an activity, then the.second removal operation is performed. 
When an entity joins the back of a first-in-first-out queue implemented as a list, then the third operation, 
adding an entity to the bottom of a list, is performed. Finally, if a queue has the ranking rule earliest due date 

first, then, upon arrival at the queue, an entity must be added to the list not at the top or bottom, but at the 
position determined by the due-date ranking rule. 

For simulati�n on a computer, whether via a general-purpose language (such as FORTRAN, C++, or 
Java) or via a simulation package, each entity record and event notice is stored in a physical location in com­
puter memory. There are two basic possibilities: (a) All records are stored in arrays. Arrays_ hold successive · 

records in contiguous locations in computer memory. They therefore can be referenced by an array index that 
can be thought of as a row number in a matrix. (b) All entities and event notices are represented by struc­
tures (as in C) or classes (as in Java), allocated from RAM memory as needed, and tracked by pointers to a 
record or structure. 

Most simulation packages use dynamically allocated records and pointers to keep track of lists of itetus, 
as arrays are conceptually simpler, so the concept of linked lists is first explained through arrays and array 
indices in Section 3.2.2 and then applied to dynamically allocated records and pointers in Section 3.2.3. 

3.2.2 Using Arroys for List Processing 

The array method of list storage is typical of FORTRAN, but it may be used in other procedural languages. 
Most versions of FORTRAN do not have actual record-type data structures, but a record may be imple­
mented as a row in a 2-dimensional array or as a number of parallel arrays. For convenience, we use the nota­
tion R(i) to refer to the i-th record in the array, however it may be stored in the language being used. Most 
modern simulation packages do not use arrays for list storage, but rather use dynamically allocated records-'­
that is, records that are created upon first being needed and destroyed when they are no longer needed. 

Arrays are advantageous in that any specified record, say the i-th, can be retrieved quick:ly without 
searching, merely by referencing R(i). Arrays are disadvantaged when items are added to the middle of a list 
or the list must be rearranged. In addition, arrays typically have a fixed size, determined at compile time or 
upon initial allocation when a program first begins to execute. In simulation, the maximum number of 
records for any list could be difficult (or impossible) to predict, and the corrent number of them in a list may 
vary widely over the course of the simulation run. Worse yet, most simulations require more than one list; if 
they are kept in separate arrays, each would have to be dimensioned to the largest the list would ever be, 
potentially using excessive amounts of computer memory. 

In the use of arrays for storing lists, there are two basic methods for keeping track of the ranking of 
records in a list. One method is to store the first record in R(l ), the second in R(2), and so on, and the last 
in R(tailptr), where tailptr is useq to refer to the last item in the list. Although simple in concept and easy to 
understand, this method will be extremely inefficient for all except the shortest lists, those of less than five 
or so records, for adding an item, for example, in position 4.1 in a list of I 00 itetus, will require that the last 
60 records be physically moved down one array position to make space for the new record. Even if the list 
were a first-in--first-out list, removing the top item from the list would be inefficient, as all remaining itetus · 
would have to be physically moved up one position in the array. The physical rearra:ngement .metho� of 
managing lists will not be discussed further. What is needed is a method to track and rearrange 'the logtcal 
ordering of items in a list without having to move the records physically in computer memory. · 
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In the second method, a variable called a head pointer, with name headptr, points to the record at the 
top of the list. For example, if the record in position R( 1 1) were the record at the top of the list, then headptr 
would have the value 1 1 .  In addition, each record has a field that stores the index or pointer of the next record 
in the list. For convenience, let R(i, next) represent the next index field. 

Example 3.7: A List for the Dump Trucks at the Weigh Queue 
In Example 3.5, the dump-truck problem, suppose that a waiting line of three dump trucks occurred at the 
weigh queue, specifically, DT3, DT2, and DT4, in that order, at exactly CLOCK time 10 in Table 3.6. 
Suppose further that the model is tracking one attribute of each dump truck: its arrival time at the weigh 
queue, updated each time it arrives. Finally, suppose that the entities are stored in records in an array dimen­
sioned from I to 6, one record for each dump truck. Each entity is represented by a record with 3 fields: the 
first is an entity identifier; the second is the arrival time at the weigh queue; the last is a pointer field to "point 
to" the next record, if any, in the list representing the weigh queue, as follows: 

[DTi, arrival time at weigh queue, next index] 

Before its first arrival at the weigh queue, and before being added to the weigh queue list, a dump truck's 
second and third fields · are meaningless. At time 0, the records would be initialized as follows: 

R(l) = [ DTI,  0.0, 0] 

R(2) = [ DT2, 0.0, 0] 

R(6) = [ DT6, 0.0, 0] 

Then, at CLOCK time 10 in the simulation in Table 3.6, the list of entities in the weigh queue would be 
defined by 

headptr·= 3 

R(l) = [ DTI,  0.0, 0] 

R(2) = [ DT2, 10.0, 4] 

R(3) = [ DT3, 5.0, 2] 

R(4) = [ DT4, 10.0, 0] 

R(5) = [ DT5, 0.0, 0] 

R(6) = [ DT6, 0.0, 0] 

tailptr = 4 

To traverse the list, start with the head pointer, go to that record, retrieve that record's next pointer, and 
proceed, to create the list in its logical order-for example, 

headptr = 3 

R(3) = [ DT3, 5.0, 2] 

R(2) = [ DT2, 10,0, 4] 

R(4) = [ DT4, 10.0, 0] 

The zero entry for next pointer in R(4), as well as tailptr = 4, indicates that DT4 is at the end of the list. 

'--'-�--'-"-"-'-'' ''"-"' :-"-'··. •:z...i '·�-:;..: . '.' '•',., ... .. .. 

GENERAL PRINCIPLES 81 

Using next pointers for a first-in-first-out list, such as the weigh queue in this example, makes the operations . 
of adding and removing entity records, as dump trucks join and leave the weigh queue, particularly simple. 
At CLOCK time 12, dump truck DT3 begins weighing and thus leaves the weigh queue. To remove the DT3 
entity record from the top of the list, update the head pointer by setting it equal to the next pointer value of 
the record at the top of the list: 

headptr = R(headptr, next) 

In this example, we get 

headptr = R(3, next) = 2 

meaning that dump truck DT2 in R(2) is now at tli.e top of the list. 
Similarly, at CLOCK time 20, dump truck DT5 arrives at the weigh queue and joins the rear of the 

queue. To add the DT5 entity record to the bottom of the list, the following steps are taken: 

R(tailptr, next) = 5 (update the next pointer field of the previously last item) 

tailptr = 5 (update the value of the tail pointer) 

This approach becomes slightly more complex when a list is a ranked list, such as the future event list, or an 
entity list ranked by an entity attribute. For ranked lists, to add or remove an item anywhere except to the 
head or tail of the list, searching is usually required. See Example 3.8. 

Note that, in .the dump-truck problem, the loader queue could also be implemented as a list using the 
same six records and the same array, because each dump-truck entity will be on at most one of the two lists 
and, while loading, weighing or traveling, a dump truck will be on neither list. 

3.2.3 Using Dynamic Allocation and Linked Lists 

In procedural languages, such as C++ and Java, and in most simulation languages, entity records are dynam­
ically created when an entity is created and event notice records are dynamically created whenever an event 
is scheduled on the future event list. The languages themselves, or the operating systems on which they are 
running, maintain a linked list of free chunks of computer memory and allocate a chunk of desired size upon 
request to running programs. (Another use of linked lists !) When an entity "dies," that is, exits from the sim­
ulated system, and also after an event occurs and the event notice is no longer needed, the corresponding 
records are freed, making that chunk of computer memory available for later reuse; the language or operating 
system adds the chunk to the list of free memory. 

hi this text, we are not concerned with the details of allocating and freeing computer memory, so we will 
assume that the necessary operations occur as needed. With dynamic allocation, a record is referenced by a 
pointer instead of by an array index. When a record is allocated in C++ or Java, the allocation routine returns 
a pointer to the allocated record, which must be stored in a variable or a field of another record for later use. 
A pointer to a record can be thought of as the physical or logical address in computer memory of the record. 

In our example, we will use a notation for records identical to that in the previous section (3.2.2): 

Entities: [ ID, attributes, next pointer ] 
Event notices: [ event type, event time, other data; next pointer ] 

but we will not reference them by the array notation R(i) as before, because it would be misleading. If for 
some reason we wanted the third item on the list, we would have to traverse the list, counting items until we 
reached the third record. Unlike in arrays, there is no way to retrieve the i-th record in a linked list directly, 
because the actual records could be stored at any arbitrary location in computer memory and are not stored 
contiguously, as arrays are. 
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Figure 3. 9 The dump-truck Future event list as a linked list. 

Example 3.8: The Future Ev�nt List and the Dump-Truck Problem 
Beginning from Table 3.6, event notices in the dump-truck problem of Example 3.5 are expanded to include 
a pointer to the next event notice on the future event list and can be represented by 

[event type, event time, DTi, nextptr], 

-for example, 

[EL, 10, DT3, nextptr] 

where EL is the end-loading event to occur at future time I 0 for dump truck DTI, and the field nextptr points to 
the �ext record on the FE�. Keep in mind that the records may be stored anywhere in computer memory, and in 
particular are not necessarily stored contiguously. Figure 3.9 represents the future event list at CLOCK time 10, 
taken from Table 3.6. The fourth field in each record is a pointer value to the next record in the future event list 

. The C++ and Java languages, and other general-purpose languages, use different notation for referenc­
mg data from pointer variables. For discussion purposes, if R is a pointer to arecord, then 

R-7eventtype, R-7eventtime, R-7next 

�e the event type, the event time and the next record for the event notice that R points to. For example, if R IS set equal to the head pointer for the PEL at CLOCK time 10, then 

so that 

R-7eventtype = EW 
R-7eventtime = 12 
R-7next is the pointer for the second event notice on the PEL, 

R-7next-7eventtype = EL · 

R-7next-7eventtime = 20 
R-7next-7next is the pointer to the third event notice on the FEL 
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If one of the pointer fields is zero (or null), then that record is the last item in the list, and the pointer 
variable tailptr points to that last record, as depicted in Figure 3.9. 

What we have described are called singly-linked lists, because there is a one-way linkage from the 
head of the list to its tail. The tail pointer is kept mostly for convenience and efficiency, especially for 
lists for which items are added at the bottom of the list. Of course, a tail pointer is not strictly necessary, 
because the last item can always be found by traversing the list, but it does make some operations more 
efficient. 

For some purposes, it is desirable to traverse or search a list by starting at the tail in addition to the head. 
For such purposes, a doubly-linked list can be used. Records on a doubly-linked list have two pointer 
fields, one for the next record and one for the previous record. Good references that discuss arrays, singly­
and doubly-linked lists, and searching and traversing of lists are Cormen, et al. [2001]  and Sedgewick 
[1998]. 

3.2.4 Advanced Techniques 

Many of the modern simulation packages use techniques and representations of lists that are more efficient 
than searching through a doubly-linked list. Most of these topics are too advanced for this text. The purpose 
of this section is to introduce some of the more advanced ideas briefly. 

One idea to speed up processing or doubly-linked lists is to use a middle pointer in addition to a head 
and tail pointer. With special techniques, the mid pointer will always point to the approximate middle of the 
list. Then, when a new record is being added to the list, the algorithm first examines the middle record to 
decide whether to begin searching at the head of the list or the middle of the list. Theoretically, except for 
some overhead due to maintenance of the mid pointer, this technique should cut search times in half. A few 
advanced techniques use one or more mid pointers, depending on the length of the l ist. 

Some advanced algorithms use list representations other than a doubly-linked list, such as heaps or trees. 
These topics are beyond the scope of this text. Good references are Cormen, et a/. [200 1] and Sedgewick 
[1998]. 

3.3 SUMMARY 

This chapter introduced the major concepts and building blocks in simulation, the most important being 
entities and attributes, events, and activities. The three major world views-event scheduling, process 
interaction, activity scanning-were discussed. Finally, to gain an understanding of one of the· most 
important underlying methodologies, Section 3.2 introduced some of the basic notions of list processing. 

The next chapter will provide a survey of some of the most widely used and popular simulation 
packages, most of which either use exclusively or allow the process-interaction approach to simulation. 

REFERENCES 

CORMEN, T. H., C. E. LEISEROON, AND R. L. RIVEST [2001], Introduction to Algorithms, 2nd e<t, McGraw-Hill, 
New York. 

SCHRIBER, T. J., AND D. T. BRUNNER [2003], "Inside Simulation Software: How it Works and why it Matters," 
Proceedings of the 2003 Winter Simulation Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds., 
New Orleans., LA, Dec. 7-10, pp. 1 13-123. 

SEDGEWICK, R. [1998], Algorithms in C++, 3d ed., Addison-Wesley, Reading, MA. 

-
.
--

. .'.•->, •:·-;·;.,: .. -· 



l : � 

84 DISCRETE-EVENT SYSTEM SIMULATION 

EXERCISES 

lnslructions to the reader: For most exercises, the reader should first conslruct a model by explicitly defining 
the following: 

1. system state; 

2. system entities and their attributes; 

3. sets, and the entities that may be put into the sets; 

4. events and activities; everit notices; 

5. variables needed to collect cumulative statistics. 

Second, the reader should either ( l )  develop the event logic (as in Figures 3.5 and 3.6 for Example 3.3) in 
preparation for using the event-scheduling approach, or (2) develop the system processes (as in Figure 3.4) 
in preparation for using the process-interaction approach. 

Most problems contain activities that are uniformly distributed over an interval [a, b]. When conducting 
a manual simulation, assume that a, a +  I, a +  2, . . .  , b are the only possible values; that is, the activity time 
is a discrete random variable. The discreteness assumption will simplify the manual simulation. 

1. {a) Using the event-scheduling approach, continue the (manual) checkout-counter simulation in 
Example 3.3, Table 3.1. Use the same interarrival and service times that were previously gene1ated 
and used in Example 2.1. Whea the last interarrival time is used, continue the simulation until time 
60 using the data in Tables 2.8 and 2.9. 

(b) Do exercise l(a) again, adding the model components nec·essary to estimate mean response time 
and proportion of customers who spend 5 or more minutes in the system. (Hint: See Example 3.4, 
Table 3.2.) 

(c) Comment on the relative merits of manual versus computerized simulations. 

2. Give the detailed flow chart for the simulation of a single-server queueing system. 

3. In the dump-lruck problem of Example 3.5, it is desired to estimate mean response time and the pro­
portion of response times which are greater· than 30 ntinutes. A response time for a !ruck begins when 
that !ruck arrives at the loader queue and ends when the !ruck finishes weighing. Add the model com� 
ponents and cumulative statistics needed to estimate these two measures of system perfonnance. 
Simulate for 8 hours. 

4. Consider a single-server queueing system with arrival and service details as: 
Interarrival times 3 2 6 2 4 5 
Service times 2 5 5 8 4 5 
Prepare a table similar to Table 3.2 for the given data Stop simulation when the clock reaches 20. 

5. Continue the table that is prepared in Exercise 4 till C5 leaves the system. 

6. The data for Table 3.2 are changed to the following: 
Interarrival times 4 5 2 8 3 7 
Service times 5 3 4 6 2 7 
Prepare a table in the manner of Table 3.2 with a stopping event at time 25. 

7. Redo Example 2.2 (the Able-Baker call center problem) by a manual simulation, using the event­
scheduling approach. 
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8. Redo Example 2.4 (the (M, N) inventory system) by a manual simulation, using the event-scheduling 

approach . .  

9. Redo Example 2.5 (the bearing-replacement problem) b y  a manual simulation, using the event­

scheduling approach. 

10. Redo Example 3.5 with the following data: 
Loading times 5 10 5 5 10  5 10 10  
Weighing times 12  12  12  16 16 12 12  16 
Travel times 80 80 100 40 100 40 60 40 
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4 
Simulation Software 

In this chapter, we first discuss the history of simulation software. Simulation software has a history that is 
just reaching middle age. We base this history on our collective experience, articles written by Professor 
Richard Nance, and panel discussions at the annual Winter Simulation Conference. 

Next, we discuss features and attributes of simulation software. If you were about to purchase simula­
tion software, what would concern you? Would it be the cost, the ease of learning, the ease of use, or would 
it be the power to model the kind of system with which you are concerned? Or would it be the animation 
capabilities? Following the discussion of features, we discuss other issues and concerns related to the selection 
of simulation software. 

Software used to develop simulation models can be divided into three categories. First, there are the 

general-purpose programming languages, such as C, C++, and Java Second, there are simulation programming 

languages, examples being GPSS!lf'M, SIMAN V®and SLAM fi®, Third, there are the simulation environments. 
This category includes many products that are distinguished one way or another (by, for example, cost, 

application area, or type of animation), but have common characteristics, such as a graphical user interface 
and an environment that supports all (or most) aspects of a simulation study. Many simulation environments 
contain a simulation programming language, but some take a graphical approach similar to process-flow 
diagramming. 

In the first category, we discuss simulation in Java. Java is a general-purpose programming language that 
was not specifically designed for use in simulation. Java was chosen since it is widely used and widely avail­
able. Today very few people writing discrete-event simulation models are using programming languages 
alone; however, in certain application areas, some people are using packages bas�d on Java or on another 
general-purpose language. Understanding how to develop a model in a general-purpoSe language helps to 
understand how the basic concepts and algorithms discussed in Chapter 3 are implemented. 

In the second category, we discuss GPSS/H, a highly structured process-interaction simulation lan­
guage. GPSS was designed for relatively easy simulation of queuing systems, such as in job shops, but it 
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has been used to simulate systems of great complexity. It was fust introduced by IBM; today, there are various 
implementations of GPSS, GPSS/H being one of the most widely used . .  

In the third category, we have selected a number of simulation software packages for discussion. There 
are-many simulation packages currently available; we have selected a few that have survived and thriven for 
a number of years, to represent different approaches for model-building. 

One of the important components of a simulation environment is the output analyzer, which is used to 
conduct experimentation and assist with analyses. To illustrate the range of desirable characteristics, we look 
at four tools incorporated into some of the simulation environments. 1Jpically these statistical analysis tools 
compute summary statistics, confidence intervals, and other statistical measures. Some support warmup 
determination, design of experiments, and sensitivity analyses. Many packages now offer optimization tech­
niques based on genetic algorithms, evolutionary strategies,. tabu search, scatter search, and other recently 
developed heuristic methods. In addition to the support for statistical analysis and optimization, the simula­
tion environments offer data management, Scenario definition, and run management Data management 
offers support for managing all the input and output data associated with the analyses. 

4.1 HISTORY OF SIMULATION SOFTWARE 

Our discussion of the history of simulation software is based on Nance [1995], who breaks the years from 
1955 through 1986 into five periods. Additional historical information is taken from a panel discussion at the 
1992 Winter Simulation Conference entitled "Perspectives of the Founding Fathers" [Wilson, 1992], during 
which eight early users of simulation presented their historical perspectives. We add a sixth and most recent 
period: 

1955-60 
196 1-65 
1966-70 
197 1-78 
1979-86 
1987-? 

The Period of Search 
The Advent 
The Formative Period 
The Expansion Period 
The Period of Consolidation and Regeneration 
The Period of Integrated Environments 

The following subsections provide a brief presentation of this history. As indicated in [Nance, 1995], 
there were at least 137 simulation programming languages reported as of 1981, and many more since then. 
This brief history is far from all-inclusive. The languages and packages we mention have stood the test of 
time by surviving to the present day or were the historical forerunner of a package in present use. 

4. 1 .1 The Period of Search ( 1 955-60) 

In the early years, simulation was conducted in FORTRAN or other general-purpose programming language, 
without the support of simulation-specific routines. In the fust period (1955-1960), much effort was expended 
on · the search for unifying concepts and the development of reusable routines to facilitate simulation. The 
General Simulation Program of K.D. Tocher and D.O. Owen [Tocher, 1960] is considered the fust "language 
effort." Tocher identified and developed routines that could be reused in subsequent simulation projectS. 

4.1 .2 The Advent ( 1 961-65) 

The forerunners of the simulation programming languages (SPLs) in use today appeared in the period 1961- 65. 
As Harold Hixson said in [Wilson, 1992], "in the beginning there were FORTRAN, ALGOL, and GPSS"-that 
is, there were the FORTRAN-based packages (such as SIMSCRIPT and GASP), the ALGOL descendent 
SIMULA, and GPSS. 
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The first process interaction SPL, GPSS was developed by Geoffrey Gordon at IBM and appeared in 
about 1961.  Gordon developed GPSS (General Purpose Simulation System) for quick simulations of com­
munications and computer systems, but its ease of use quickly spread its popularity to other application 
areas. GPSS is based on a block-diagram representation (similar to a process-flow diagram) and is suited for 
queuing models of all kinds. As reported by Reitman in [Wilson, 1992]. as early as 1965 GPSS was con­
nected to an interactive display terminal that could interrupt ·and display intermediate results, a foreshadow 
of the interactive simulations of today, but far too expensive at the time to gain widespread use. 

Harry Markowitz (later to receive a Nobel Prize for his work in pol'tfolio theory) provided the·major con­
ceptual guidance for SIMSCRIPT, first appearing in 1963. The RAND Corporation developed the language 
under sponsorship of the U.S. Air Force. SIMSCRIPT originally was heavily influenced by FORTRAN, but, 
in later versions, its developers broke from its FORTRAN base and created its own SPL. The initial versions 
were based on event scheduling. 

Phillip J. Kiviat of the Applied Research Laboratory of the United States Steel Corporation began 
the development of GASP (General Activity Simulation Program) in 1961. Originally, it was based on the 
general-purpose programming language ALGOL, but later a decision was made to base it on FORTRAN. 
GASP, like GPSS, used flowchart symbols familiar to engineers. It was not a language proper, but rather a 
collection of FORTRAN routines to facilitate simulation in FORTRAN. 

Numerous other SPLs were developed during this time period. Notably, they included SIMULA, an 
extenSion of ALGOL, developed in Norway and widely used in Europe, and The Control and Simulation 
Language (CSL), which took an activity-scanning approach. 

4.1 .3 The Formative Period ( 1966-70) 

During this period, concepts were reviewed and refined to promote a more consistent representation of each 
language's worldview. The major SPLs matured and gained wider usage. 

Rapid hardware advancements and user demands forced some languages, notably GPSS, to undergo 
major revisions. GPSS/360, with its extensions to earlier versions of GPSS, emerged for the ffiM 360 com­
puter. Its popularity motivated at least s� other hardware vendors and other groups to produce their own 
implementation of GPSS or a look-alike. 

SIMSCRIPT II represented a major advancement in SPLs. In its free-form English-like language and 
"forgiving" compiler, an attempt was made to give the user major consideration in the language design. 

ECSL, a descendent of CSL, was developed and became popular in the UK. In Europe, SIMULA added ·the concept of classes and inheritance, thus becoming a precursor of the modem object-oriented program­
ming languages. 

4.1 .4 The Expansion Period ( 1971-78) 

Major advances in GPSS during this period came from outside ffiM. Julian Reitman of Norden Systems 
headed the development of GPSS/NORDEN, a pioneering effort that offered an interactive, visual online 
environment. James 0. Henriksen of Wolverine Software developed GPSSIH, released in 1977 for ffiM 
mainframes, later for mini-computers and the PC. It was notable for being compiled and reportedly 5 to 30 
times faster than standard GPSS. With the. addition of new features, including art interactive debugger, it has 
become the principal version of GPSS in use today. 

Alan Pritsker at Purdue made major changes to GASP, with GASP IV appearing in 1974. It incorporated 
state events in addition to .time events, thus adding support for the activity-scanning worldview in addition 
to the event-scheduling worldview. 

Efforts were made during this period to attempt to simplify the modeling process. Using SIMULA, an 
attempt was made to develop a system definition from a high-level user perspective that could be translated 
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automatically into an· executable model. Similar efforts included interactive program generators, the 
"Programming by Questionnaire," and natural-language interfaces, together with automatic mappings to

_ 
the 

language of choice. As did earlier over-optimistic beliefs in automatic programming, these efforts ran mto 
severe limitations in the generality of what could be modeled-that is, they ran into the unavoidable com­
plexity of real-world systems. Nevertheless, efforts to simplify simulation modeling continue, with the most 
success seen in simulation systems designed for application to narrow domains. 

4.1 .5 Consolidation and Regeneration ( 1979-86} 

The fifth period saw the beginnings of SPLs written for, or adapted to, desktop computers and the micro­
computer. During this period, the predominant SPLs extended their implementation to many computers and 
microprocessors while maintaining their basic structure. 

1\vo major descendants of GASP appeared: SLAM II and SIMAN. The Simulation Language for 
Alternative Modeling (SLAM), produced by Pritsker and Associates, Inc., sought to provide multiple mod­
eling perspectives and combined modeling capabilities [Pritsker and Pegden, 1979]-that is, it had an event· 
scheduling perspective based on GASP, a network worldview (a variant of the process-interaction 
perspective), and a continuous component. With SLAM, you could select one worldview or use a mix of 
all three. 

SIMAN (SIMulation ANalysis) possessed a general modeling capability found in SPLs such as GASP 
IV, but also had a block-diagram component similar in some respects to that in SLAM and GPSS. C. Dennis 
Pegden developed SIMAN as a one-person faculty project over a period of about two years; he later founded 
Systems Modeling Corporation to market SIMAN. SIMAN was the first major simulation language exe­
cutable on the ffiM PC and designed to run under MS-DOS constraints. Similar to GASP, SIMAN allowed 
an event-scheduling approach by programming in FORTRAN with a supplied collection of FORTRAN rou­
tines, a block-diagram approach (another variant of the process-interaction world view) analogous in some 
ways to that of GPSS and SLAM, and a continuous component. 

4.1 .6 Integrated Environments ( 1987-Present) 

The most recent period is notable by the growth of SPLs on the personal computer and the emergenct) of 
. simulation environments with graphical user interfaces, animation, and other visualization tools. Many of 
these environments also contain input-data analyzers and output analyzers. Some packages attempt to sim­
plify the modeling process by the use of process-flow or block diagramming and of "fill-in-the-blank" 
windows that avoid the need to learn programming syntax. Animation ranges from schematic-like represen-
tations to 2-D and 3-D scale drawings. · 

Recent advancements have been made in web-based simulation. Much discussion has taken place con­
cerning a role for simulation in supply-chain management. The combination of simulation and emulation 
shows promise. . . 

Information about various software packages is given in Section 4.7, includmg the websJtes of the ven­
dors. A view of current developments in simulation software is available from these websites. 

4.2 SELECl'ION OF SIMULADON SOFTWARE 

This chapter includes a brief introduction to a number of simulation-software pack�ges. Every two years, 
ORIMS Today publishes a simulation-software survey [Swain, 2003]. The 2003 1ssue had 48 products, 
including simulation support packages such as input-data analyzers. 
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Table 4.2 Runtime Environment 

Feature Description 

Execution speed Many runs needed for scenarios and replications. Impacts 
development as well as experimentation 

Model size; number of variables and Should be no built-in limits 
attributes 
Interactive debugger Monitor !he simulation in detail as it progresses. Ability to 

break, trap, run until, step; to display statos, attributes 
and variables; etc. 

Model status and statistics Display at any time during simulation 
Runtime license Ability to change parameters and run a model (but not to 

change logic or bnild a new model) 

Table 4.3 Animation and layout Features 

Feature Description 

Type of animation True to scale or iconic (such as process-flow diagram) 
Import drawing and object files From CAD (vector formats) drawings or icons (bit-mapped or 

raster graphics) 
Dimension 2-D, 2-D wilh perspective, 3-D 
Movement Motion of entities or status indicators 
Quality of motion Smoolh or jerky 
Libraries of common objects Extensive predrawn graphics 
Navigation Panning, zooming, rotation 
Views User defined, named 
Display step Control of animation speed 
Selectable objects Dynamic status and statistics displayed upon selection 
Hardware requirements Standard or special video card, RAM reqnirements 

There are many features that are relevant when selecting simulation software [Banks, 1996]. Some of 
these features are shown, along with a brief description, in Tables 4.1 to 4.5. We offer the following advice 

· when evaluating and selecting simulation software: 

1. Do not focus on a single issue, such as ease of use. Consider lhe accuracy and level of detail obtainable, 
ease of learning, vendor support, and applicability to your applications. 

· 2. Execution speed is important. Do not think exclusively in terms of experimental runs that take place 
at night and over the weekend. Speed affects development time. During debugging, an analyst might 
have to wait for the model to run up to the point in simulated time where an error occurs many times 
before the error is identified. 

3. Beware of advertising claims and demonstrations. Many advertisements exploit positive features of 
the software only. Similarly, the demonstrations solve the test problem very well, but perhaps not 
your problem. 

4. Ask the.vendor to solve a small version of your problem. 
5. Beware of "checklists" with "yes" and "no" as the entries. For example:, many packages claim to 

have a conveyor entity. However, implementations have considerable variation and level of fidelity. 

,. , .  ' ·�;·.·-· • ' .  



Table 4.4 Output Features 

Feature Description 

Scenario manager Create user-defined scenarios to simulate 

Run manager Make all runs (scenarios and replications) and save results for 

future analyses 

Warmup capability For steady-state analysis 

Independent replications Using a different set of random numbers 

Optimization Genetic algorithms, tabu search, etc. 

Standardized reports Summary reports including averages, counts, minimum and 

maximum, etc. 

Customized reports Tailored presentations for managers 

Statistical analysis Confidence intervals, designed experiments, etc. 

Business graphics Bar charts, pie charts, time lines, etc. 

Costing module Activity-based costing included 

File export Input to spreadsheet or database for cusrom processing and analysis 

Database maintenance Store output in an organized manlier 

Table 4.5 Vendor Support and Product Documentation 

Feature Description 

Training Regularly scheduled classes of high quality 

Documentation Quality, completeness, online 

Help system General or context-sensitive 

Tutorials For learning the package or specific features 

Support Telephone, e-mail, web 

Upgrades, maintenance Regularity of new versions and maintenance releases that 

address customer needs 

Track record Stability, history, customer relations 

Implementation and capability are what is important. As a second example, most packages offer a 
runtime license, but these vary considerably in price and features. 

6. Simulation users ask whether the simulation model can link to and use code or routines written in 
external languages such as C, C+t, or Java. This is a good feature, especially when the external 
routines already exist and are suitable for the purpose at hand. However, the more important question 
is whether the simulation package and language are sufficiently powerful to avoid having to write 
logic in any external language. 

7. There may be a significant trade-off between the graphical model-building environments and ones 
based on a simulation language. Graphical model-building removes the learning curve due to language 
syntax, but it does not remove the need for procedural logic in most real-world models and the 
debugging to get it right. Beware of "no programming required" unless either the package is a 
near-perfect fit to your problem domain or programming (customized procedural logic) is possible 
with the supplied blocks, nodes, or process-flow diagram-in which case "no programming 
required" refers to syntax only and not the development of procedural logic. 
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4.3 AN EXAMPLE SIMULATION 

Example 4.1: The Checkout Counter: A Typical Single-Server Queue 
The system, a grocery checkout counter, is modeled as a single-server queue. The simulation will run until 
1000 customers have been served. In addition, assume that the iriterarrival times of customers are expo­
nentially distributed with a mean of 4.5 minutes, and that the service times are (approximately) normally 
distributed with a mean of 3.2 minutes and a standard deviation of 0.6 minute. (The approximation is that 
service times are always positive.) When the cashier is busy, a queue forms with no customers turned 
away. This example was simulated manually in Examples 3.3 and 3.4 by using the event-scheduling point 
of view. The model contains two events: the arrival and departure events. Figures 3.5 and 3.6 provide the 
event logic. 

The following three sections illustrate the simulation of this single-server queue in Java, GPSS/H, and 
SSE Although this example is much simpler than models that arise in the study of complex systems, its 
simulation contains the essential components of all discrete-event simulations. 

4.4 SIMULATION IN JAVA 

Java is a widely used programming language that bas been used extensively i� simulation. It does not, how­
ever, provide any facilities directly aimed at aiding the simulation analyst, who therefore must program all 
details of the event-scheduling/time-advance algorithm, the statistics-gathering capability, the generation of 
samples from specified probability distributions, and the report generator. However, the runtime library does 
provide a random-number generator. Unlike with FOR1RAN or C, the object-Qrientedness of Java does support 
modular construction of large models. For the most part, the special-purpose simulation languages hide the 
details of event scheduling, whereas in Java all the details must be explicitly programmed. However, to a 
certain extent, simulation libraries such as SSP (Cowie 1999) alleviate the development burden by providing 
access to standardized simulation functionality and by hiding low-level scheduling minutiae. 

There are many online resources for learning Java; we assume a prior working knowledge of the 
language. Any discrete-event simulation model written in Java contains the components discussed in Section 4.3: 
system state, entities and attributes, sets, events, activities and delays, and the components listed shortly. To 
facilitate development and debugging, it is best to organize the Java model in a modular fashion by using 
methods. The following components are common to almost all models written in Java: 

Clock A variable defining simulated time 
Initialization method A methOd to define the system state at time 0 
Min-time event method A method that identifies the illllllinent event, that is, the element of the future 

event list (FutureEventList) that has the smallest time-stamp 
Event methods For each event type, a method to update system state (and cumulative statistics) when 

that event occurs 
Random-variate generators Methods to generate samples from desired probability distributions 
Main program To maintain overall control of the event-scheduling algorithm . 
Report generator A method that computes summary statistics from cumulative statistics and prints a 

report at the end of the simulation 

The overall structure of a Java simulation program is shown in Figure 4. L This flowchart is an expansion 
of the event-scheduling/time-advance algorithm outlined in Figure 3.2. (The steps mentioned in Figure 4.1 
refer to the five steps in Figure 3.2.) 

The simulation begins by setting the simulation Clock to zero, initializing cumulative statistics to zero, 
generating any initial events (there will always beat leasfone) and placing them on the FutureEventList, 
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Initialize subroutine: 
l. Set CLOCK = 0. 
2. Set cumulative statistics to 0. 
3. Generate initial events, and 

place on FEL. 
4. Define initial system state. 

No 

Report generator: 
! .  Compute summary statistics. 
2. Print report. 

DISCRETE-EVENT SYSTEM SIMULATION 

Steps I and 2 

Time-advance subroutine: 
I .  Find imminent even� say i. 
2. Advance CLOCK to imminent-event 

lime. 

Steps 3-5 

Event subroutine i: 
l. Execute eventi: update 

system state, entity 
attributes, set membenhip. 

2. Collect cumulative 
statistics. 

3. Generate future events and 
piBce on FEL. 

Figure 4.1 Overall structure of on event-scheduling simufolion program. 

and defining the system state at time 0. The simulation program then cycles, repeatedly passing the current 
least-time event to the appropriate event methods until the simulation is over. At each step, after finding 
the imminent event but before calling the event method, the simulation Clock is advanced to the time of the 
imminent event. (Recall that, during the simulated time between the occUtrence of two successive events, the 
system state and entity attributes do not change in value. Indeed, this is the definition of discrete-event 
simulation: The system state changes only when an event occurs.) Next, the appropriate event method is 
called to execute the imminent event, update cumulative statistics, and generate future events (to be placed 
on the FutureEventList). Executing the imminent event means that the system state, entity attributes, 
and set membership are changed to reflect the fact that the event has occurred. Notice that all actions in an 
event method iake place at one instant of simulated time. The value of the variable Clock does not change 
in an event method. If the simulation is not over, control passes again to the time-advance method, then to 
the appropriate event method, and so on. When the simulation is over, control passes to the report generator, 
which computes the desired summary statistics from the collected cumulative statistics and prints a report. 

The efficiency of a simulation model in terms of computer runtime is deterntined to a large extent by the 
techniques used to manipulate the FutureEventList and other sets. As discussed earlier in Section 4.3, I 
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removal of the imminent event and addition of a new event are the two main operations performed on the 
FutureEventList. Java includes general, efficient data structures for searching and priority lists; it is 
usual to build a customized interface to these to suit the application. In the example to follow, we use 
customized interfaces to implement the event list and the list of waiting customers. The underlying priority­
queue organization is efficient, in the sense of having access costs that grow only in the logarithm of the 
number of elements in the list. 

Example 4.2: Single-Server Queue Simulation in Java 
The grocery checkout counter, defined in detail in Example 4.1, is now simulated by using Java. A version 
of this example was simulated manually in Examples 3.3 and 3.4, where the system state, entities and attrib­
utes, sets, events, activities, and delays were analyzed and defined. 

Class Event represents an event. It stores a code for the event type (arrival or departure), and 
the event time-stamp. It has associated methods (functions) for creating an event and accessing its data. 
It also has an associated method compareTh, which compares the event with another (passed as an argument) 
and reports whether the first event should be considered to be smaller, equal, or larger than the argument 
event. The methods for this model and the flow of control are shown in Figure 4.2, which is an adaptation 
of Figure 4. 1 for this particular problem. Table 4.6 lists the variables used for system state, entity attributes 
and sets, activity durations, and cumulative and summary statistics; the functions used to generate samples 
from the exponential and normal distributions; and all the other methods needed. 

main program 
Remove imminent event from FutureEventList. 
Advan·ce simulation time to event time. 

main program 
Call event routine based on event type. 

No 

call ProcessArriva!O 
Execute arrival event 

call ProcessDepsrtur 
Execute departure event. 

Figure 4.2 Overall structure of Java simulation of a single-server queue. · 
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Table 4.6 Definitions of Variables, Funcfions, and Subroutines in the Java Model of the 
Single-Server Queue 

Variables Description 

System state 
QueueLength Number of customers enqueued 

(but not in service) at cwrent.simulated time 
NumberinService Number being served at current simulated time 

Entity attributes and sets 
Customers FCFS Queue of customers in system 

Future event list 
FutureEventList Priority-ordered list of pending events 

Activity durations 
MeaninterArrivalTime The interanival time between the previous 

customer's arrival and the next arrival 
MeanServiceTime The service time of the most recent customer to 

begin service 
Input parameters 

MeaninterarrivalTime Mean interarrival time (4.5 minutes) 
MeanServiceTime Mean service time (3.2 minutes) 
SIGMA Standard deviation of service time (0.6 minute) 
Total Customers The stopping criterion- number of customers to be 

served (1000) 
Simulation variables 

Clock The current value of simulated time 
Statistical Accumulators -
LastEventTime Tune of occurrence of the last event 
TotalBusy Total busy time of server (so far) 
MaxQueueLength Maximum length of waiting line (so far) 
SumResponseTime Sum of customer response times for all 

customers who have departed (so far) 
NumberOfDepartures Number of departures (so far) 
LongService Number of customers who spent 4 or more 

minutes at the checkout counter (so far) 
Summary statistics 

RHO � BusyTime/Clock Proportion of time server is busy (here the value 
of Clock is the final value of simulated time) 

AVGR Average response time (equal to 
SumResponseTime/TotalCUstomers} 

PC4 Proportion of customers who spent 4 or more 
minutes at the checkout counter 

Functions Description 

eXponential (mu) Function to generate samples from an exponential 
distribution with mean mu 

normal (xmu, SIGMA) Function to generate samples from a normal 
distribution wii:h mean xmu and standard deviation 
SIGMA 

(continued overleaf) 
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Methods 

Initialization 

ProcessArrival 

ProcessDeparture 

ReportGeneration 

- �·-' . , ,  "!'-( ' '  . �---�� 

Table 4.6 (continued) 

Description 

Initialization method 
Event method that executes the arrival event 
Event method that executes the departure event 
Report generator 
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The entry point of the program and the location of the control logic is through class Sim, shown in 
Figure 4.3. Variables of classes EventList and Queue are declared. As these classes are all useful for 
programs other than Sim, their declarations are given in other files, per Java rules. A variable of the Java 
built-in class Random is also declar�d; instances of this class provided random-number streams. The main 
method controls the overall flow of the event-scheduling/time-advar�ce algorithm. 

class S im { 

II Class Sim variables 
publ ic static double Clock, MeaninterArrivalTime, MeanServiceTime , 

SIGMA, LastEventTime , I TotalBusy, MaxQueueLength, SumResponseTime; 
publ ic static long NumberOfCUstomers, QueueLength, NumberinService, 

TotalCUstomers, Number.OfDepartures , · LongService; 

public final static int 
public final static int '"'""'"'�"''·" 2 ;  

public static EVentList Futu�eEventList ; 
public static Queue Customer!.! ; 
publ ic static Random stream; ' 

public static void main (String argv [] ) 

J' 
MeaninterArrivalTime 4 . S f, MeanServiceTime � 3 . 2 ;  
SIGMA = 0 . 6 ;  TotalCUstomers = 1000;  

long seed = Long .parseLong (argv [O ] ) ;  
stream = new Random ( seed) ; II init ialize rng stream 

FutureEventList = new EventList ( ) ; 
Customers = new Queue ( ) ; 

Initialization ( ) ;  

11 Loop until first �TotalCUstomers" have departed 
while (NumberOfDepartures < TotalCUstomers J { 

Event evt = 
'

(EVent) FutureEventList. getMin ( ) ; II get imminent event 
II be rid of it FutureEventList . dequeue ( ) ; 

Clock = evt . get_time ( ) ; 
if ( evt. get_type ( J  == arrival 
else ProcessDeparture (evt ) ; 

) 
ReportGeneration ( ) ; 

II advance in time 
ProcessArrival (evt ) ; 

Figure 4.3 Jovo main program for the single-server queue simulation. 
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The main program method first gives values to variables describing model parameters; it creates 
instances of the random-number generator, event list, and custQmer queue; and then it calls method 
Initialization to initialize other variables, such as the statistics-gathering variables. Control then 
enters a loop which is exited only after Total Customers custOmers have received service. Inside the 
loop, a copy of the imminent event is obtained by calling the getMin method of the priority queue, and then 
that event is removed from the event list by a call to dequeue. The global simulation time Clock is set to the 
time-stamp contained in the imminent event, and then either ProcessArri val or ProcessDeparture 
is called, depending on the type of the event. When the simulation isjmally over, a call is made to method 
ReportGeneration to create and print out the final report. 

A listing for the Sim class method Initialization is given in Figure 4.4. The simulation clock, 
system state, and other variables are initialized. Note that the first arrival event is created by generating a 
local Event variable whose constructor accepts the event's type and1time. The event time-stamp is gener­
ated randomly by a call to Sim class method exponential and is, passed to the random-number stream 
to use with the mean of the exponential distribution from which to•.sample. The event is inserted into the 
future event list by calling method enqueue. This logic assumes that the system is empty at simulated time 
Clock= 0, so that no departure can be scheduled. It is straightforward to modify the code to accommodate alter­
native starting conditions by adding events to FutureEventList and customers as needed. 

Figure 4.5 gives a listing of Sim class method ProcessArrival, which is called to process 
each arrival event. The basic logic of the arrival event for a single-s�rver queue was given in Figure 3.5 
(where LQ corresponds to QueueLength and LS corresponds to NumberinService). First, the new 
arrival is added to the queue CUstomers of customers in the system. Next, if the server is idle 
(NumberinService = = 0) then the new customer is to go immediatelY into service, so sim class method 
ScheduleDeparture is called to do that scheduling. An arrival �,.an idle queue does not update the 
cumulative statistics., except possibly the maximum queue length. An a,rrtval to a busy queue does not cause 
the scheduling of a departure, but does increase the total busy time by the amount of simulation time between 
the current event and the one immediately preceding it (because, if the server is busy now, it had to have had 
at least one customer in service by the end of processing the previous event). In either case, a new arrival is 
responsible for scheduling the next arrival, one random interarrival time into the future. An arrival event is 
created with simulation time equal to the current Clock value plus an exponential increment, that event 
is inserted into the future event list, the variable LastEventTime recording the time of the last event 
processed is set to the current time, and control is returned to the maid method of class sim. 

public static void Initialization ( )  
Clock = 0 .  0 ;  

QueueLength = 0 ;  
NumberinService 0 ;  

LastEventTime 0 . 0 ;  

TotalBusy = 0 ; 

MaxQueueLength 0 ;  

SumResponseTime 0 ;  

NumberQfDepartures = 0 ;  

LongService 0 ;  

II create f i rst arrival event 
Event evt 

new Event (arriva l ,  exponential (  stream, MeaninterArrivalTime) ) ;  
FutureEventList. enqueue ( evt ) ;  

Figure 4.4 Java initialization method for the single-server queue simulation. 

. �---�-:--·-r-:-"--.-,---

publ ic static void ProcessArrival (Event evt) 
Customers . enqueue (evt ) ; 

QueueLength++ ;  
11  if the server i s  idle , f etch the event, do statistics 

ll and put into service 
if ( NumberinService = �  O) scheduleDeparture { ) ; 
else TotalBusy += ( Clock - LastEventTime) ; II server is busy 

II adjust max queue length statistics 
i f  (MaxQueueLength < QueueLength) MaxQueueLength QueueLength; 

II schedule the next arrival 
Event next arrival � 

new Event(arrival,  Clock+exponentia l { stream, MeaninterArrivalTime) ) ;  

FutureEventList . enqueue { next_arrival ) ;  

LastEventTime Clock; 

r.gure 4.5 java arrival event method for the single-server queue simulation. 
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Sim class method ProcessDeparture, which executes the departure event, is listed in Figure 4.6, as 
is method scheduleDeparture. A flowchart for the logic of the departure event was given in Figure 3.6. 
After removing the event from the queue of all customers, the number in service is exanlined. H there are 
customers waiting, then the departure of the next one to enter service is scheduled. Then, cumulative 
statistics recording the sum of all response times, sum of busy time, number of customers who used more than 
4 minutes of service time, and number of departures are updated. (Note that the maximum queue length 
cannot change in value when a departure occurs.) Notice that customers are removed from Customers in 

public static void scheduleDeparture ( )  
double ServiceTirne ; 

II get the j ob at the head of the queue 
while { {  serviceTirne = normal ( stream, MeanServiceTime, SIGMA) ) < o ) ; 
Event depart = new Event (departure , Clock+ServiceTime) ; 
FutureEventList . enqueue ( depart ) ;  

NurnberinService = �; 
QueueLength- - ;  

} 

publ i c  static void ProcessDeparture (Event e) { 
II get the customer description 
Event finished = (Event) customers . dequeue ( l ; 

II if there are customers in .the queue then schedule 

II the departure of the next one 

} 

i f ( QueueLength > o ) ScheduleDeparture ( ) ; 
else NumberinServi�e = 0 ;  

1 1  measure the response time and add t o  the sum 
double response = (Clock finished. get_time ( ) ) ;  
SumResponseTime += response ;  
i f ( response > 4 . 0  ) LongService++; II record long service 
TotalBusy += (Clock LastEventTime ) ;  
NumberOfDepartures++; 

LastEventTime = Clock; 

Figure 4.6 Java departure event method for the single-server queue simulation. 



100 DISCRETE-EVENT SYSTEM SIMULATION 

FIFO order; hence, the response time response of the departing customer can be computed by subtracting 
the arrival time of the job leaving service (obtained from the copy of the arrival event removed from the 
Customers queue) from the current simulation time. After the incrementing of the total number of depar­
tures and the saving of the time of this event, control is returned to the main program. 

Figure 4.6 also gives the logic of method ScheduleDeparture, called by both Process­
Arrival and ProcessDeparture to put the next customer into service. The Sim class method normal, 
which generates normally distributed service times, is called until it produces a nonnegative sample. A new 
event with type departure is created, with event time equal to the current simulation time plus· the service 
time just sampled. That event is pushed onto FutureEventList, the number in service is set to one, and 
the number waiting (Queue Length) is decremented to reflect the fact that the customer entering service is 
waiting no longer. 

. 
�e report generator, sim class method ReportGeneration, is listed in Figure 4.7. The summary 

statistics, RHO, AVGR, and PC4, are computed by the formulas in Table 4.6; then the input parameters are 
printed, followed by the summary statistics. It is a good idea to print the input parameters at the end of the sim­
ulation, in order to verify that their values are correct and that these values have not been inadvertently changed. 

Figure 4.8 provides a listing of Sim class methods exponential and normal,  used to generate random 
variates. Both of tltese functions call method next Double, which is defined for the built-in Java Random 
class generates a random number uniformly distributed on the (0,1)  interval. We use Random here for sim­
plicity of explanation; superior random-number generators can be built by hand, as described in Chapter 7. 

public static void ReportGeneration ( )  { 
double RHO = TotalBusy/Clock; 
double AVGR SumResponseTime/TotalCustomers ;  
double PC4 = { (double) LongService) /TotalCustomers; 

System.out .print ( "SINGLE SERVER QUEUE SIMULATION " ) ; 
System.out .println ( " - GROCERY STORE CHECKOUT COUNTER " ) ; 
System . otit . println ( •\tMEAN INTERARRIVAL TIME 

+ Mean!nterArrivalTime ) ;  
System . out.println ( " \tMEAN SERVICE TIME 

+ MeanServiceTime ) ;  
System . out.println( " \tSTANDARD DEVIATION OF SERVICE TIMES 

+ SIGMA ) ; 
System.out .println { " \tNUMBER OF CUSTOMERE SERVED 

+ TotalCUstomers ) ;  
System .out . println ( ) ; 
Systern.out . println ( " \tSERVER UTILIZATION 

+ RHO ) ; 
Systern.out .println { " \tMAXIMUM LINE LENGTH 

+ MaxQueueLength ) ;  
System.out.println ( " \tAVERAGE RESPONSE TIME 

+ AVGR + " MINUTES" ) ; 
Systern. out . println ( " \tPROPORTION WHO SPEND FOUR " )  · 

System. out . pr
.
intln ( "\t MINUTES OR MORE IN SYSTEM , 

+ PC4 ) ; 
·system. out . println ( " \  tSIMULATION RUNLENGTH 

+ Clock + " MINUTES" ) ; . 

System . out . println ( " \tNUMBER OF DEPARTURES 
+ TotalCustoll]ers ) ; . 

Figure 4.7 Java report generator for the single-server queue simulation. 

SIMULATION SOFTWARE 

public static double exponential (Random rng, double mean} { 
return -mean*Math. log ( rng.nextDouble ( )  ) ;  

public static double SaveNormal ;  
public static int NumNormals = 0 ;  
public static final double PI 3 . 1415927 

public static double normal (Random rng, double mean, double sigma) { 
double ReturnNormal;  
II should we generate two normals? 
if (NumNormals = =  0 ) { 

double r1 = rng. nextDouble ( ) ; 
double r2 = rng. nextDouble ( ) ; 
ReturnNormal = Math . sqrt (·2*Math . log (r1 l l *Math. cos (2*PI*r2 ) ; 

SaveNormal = Math. sqrt ( ·2*Math . log ( r1 ) ) *Math. sin (2*PI*r2 ) ;  

NumNormals 1 ;  
else { 
NumNormals 0 ;  
ReturnNormal = ·saveNormal ; 

return ReturnNormal *sigrna + mean 

Figure 4.8 Random-variate generators for the single-server queue simulation. 
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The techniques for generating exponentially and normally distributed random variates, discussed in Chapter 8, 

are based on first generating a U(O,l) random number. For further explanation, the reader is referred to 

Chapters 7 and 8. 
The output from the grocery-checkout-counter simulation is shown in Figure 4.9. It should be empha-

sized that the output statistics are estimates that contain random error. The values shown are influenced by 

the particular random numbers that happened to have been used, by the initial conditions at time 0, and by 

the run length (in this case, 1000 departures). Methods for estimating the standard error of such estimates 

are discussed in Chapter 1 1 .  
In some simulations, i t  i s  desired to stop the simulation after a fixed length o f  time, say TE 1 2  hours = 

720 minutes. In this case, an additional event type, stop event, is defined and is scheduled to occur by sched­

uling a stop event as part of simulation initialization. When the stopping event does occur, the cumulative 

SINGLE SERVER QUEUE SIMULATION - GROCERY STORE CHECKOUT COUNTER 
MEAN INTERARRIVAL TIME 
MEAN SERVICE TIME 
STANDARD DEVIATION OF SERVICE TIMES 
NUMBER OF CUSTOMERE SERVED 

SERVER UTILIZATION 
MAXIMUM LINE LENGTH 
AVERAGE RESPONSE TIME. 
PROPORTION WHO SPEND POUR 

MINUTES OR MORE IN SYSTEM 
SIMULATION RUNLENGTH 
NUMBER OF DEPARTURES 

4 . 5  
3 . 2  
0 . 6  
1000 

0 . 671 
9 . 0  
6 . 375 MINUTES 

0 . 604 
4728. 936 MINUTES 
1000 

Figure 4.9 Output from the Java single-server queue simulation. 
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statistics will be updated and the report generator called. The main program and method Initialization 
will require minor changes. Exercise I asks the reader to make these changes. Exercise 2 considers balking of 
customers. 

4.5 SIMULAnON IN GPSS 

GPSS is a highly structured, special-purpose simulation programming language based on the process-interaction 
approach and oriented toward queueing systems. A block diagram provides a convenient way to describe the 
system being simulated. There are over 40 standard blocks in GPSS. Entities called transactions may be 
viewed as flowing through the block diagram. Blocks represent events, delays, and other actions that affect 
transaction flow. Thus, GPSS can be used to model any situation where transactions (entities, customers, 
units of traffic) are flowing through a system (e.g., a network of queues, with the queues preceding scarce 
resources). The block diagram is converted to block statements, control statements are added, and the result 
is a GPSS model. 

The first version of GPSS was released by IDM in 1961.  It was the first process-interaction simulation 
language and became popular; it has been implemented anew and improved by many parties since 1961, with 
GPSS/H being the most widely used version in use today. Example 4.3 is based on GPSS/H. 

GPSS/H is a product of Wolverine SoftWare Corporation, Annandale, VA (Banks, Carson, and Sy, 1995; 
Henriksen, 1999). It is a flexible, yet powerful tool for simulation. Unlike the original IDM implementation, 
GPSS/H includes built-in file and screen 1/0, use of an arithmetic expression as a block operand, an inter­
active debugger, faster execution, expanded control statements, ordinary variables and arrays, a floating­
point clock, built-in math functions, and built-in random-variate generators. 

The animator for GPSS/H is Proof Animation™, another product of Wolverine SoftWare Corporation 
(Henriksen, 1999). Proof Animation provides a 2-D animation, usually based on a scale drawing. It can run 
in postprocessed mode (after the simulation has finished running) or concurrently. In postprocessed mode, 
the animation is driven by two files: the layout file for the static background, and a trace file that contains 
commands to make objects move and produce other dynamic events. It can work with any simulation pack­
age that can write the ASCII trace file. Alternately, it can run concurrently with the simulation by sending 
(he trace file commands as messages, or it can be controlled directly by using its DLL (dynamic link library) 
version. 

Example 4.3: Single-Server Queue Simulation in GPSS/11 
Figure 4. 10 exhibits the block diagram and Figure 4. 1 1  the GPSS program for the grocery-store checkout­
counter model described in Example 4.2. Note that the program (Figure 4. 1 1 ) is a translation of the block 
diagram together with additional definition and control statements. 

· 

In Figure 4.10, the GENERATE block represents the arrival event, with the interarrival times specified 
by RVEXP0(1,&/AT). RVEXPO stands for "random variable, exponentially distributed," the 1 indicates the 
random-number stream to use, and &!AT indicates that the mean time for the exponential distribution comes 
from a so-called ampervariable &lAT. Ampervariable names begin with the "&" character; Wolverine added 
ampervariables to GPSS because the original IDM implementation had liwited support for ordinary global 
variables, with no user freedom for naming them. (In the discussion that follows, all nonreserved words are 
shown in italics.) 

The next block is a QUEUE with a queue named SYSTIME. It should be noted that the QUEUE block 
. is not needed for queues or waiting lines to form in GPSS. The true purpose of the QUEUE block is to work 
in conjunction with the DEPART block to collect data on queues or any other subsystem. In Example 4.3, 

I 
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GENERATE 

QUEUE 

QUEUE 

SEIZE 

DEPART 

ADVANCE 

RVNORM(l, & MEAN,.& STDEV) 

RELEASE 

DEPART 

TEST 

Figure 4.10 GPSS block diagram for the single-server queue simulation . 

we want to measure the system response time-:-that is, the time a transaction spends in the system. Placing 
a QUEUE block at the point that transactions enter the system and placing the counterpart of the QUEUE 
block, the DEPART block, at the point that the transactions complete their processing causes the response 
times to be collected automatically. The purpose of the DEPART block is to signal the end of data collection 
for an individual transaction. The QUEUE and DEPART block combination is not necessary for queues to 
be modeled, but rather is used for statistical data collection. 

The next QUEUE block (with name LINE) begins data collection for the waiting line before the cashier . 
The customers may or may not have to wait for the cashier. Upon arrival to an idle Checkout counter, or after 
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SIMULATE 

* 
* Define Ampervariables 

* 

* 

* 

* 

TER 

* 

INTEGER 

REAL 

LET 

LET 

LET 

LET 

&LIMIT 

&IAT, &MEAN, &STDEV, &COUNT 

&IAT=4 . 5  

&MEAN=3 . 2  

&STDEV= . 6  

&LIMIT=1000 

Write Input Data to File 

PUTPIC FILE=OUT, LINES=S, (&IAT, &MEAN , &STDEV, &LIMIT) 

Mean interarrival time 

Mean service time 

Standard deviation of service time 

Number of customers to be served 

* * .  ** minutes 

* * .  ** minutes 

** 4 ** minutes 

***** 

GPSS/H Block Section 

GENERATE RVEXPO ( 1 ,  &IAT) Exponential arrivals 

QUEUE . SYSTIME Begin response time data collection 

QUEUE LINE Customer joins wait-ing line 

SEIZE CHECKOUT Begin checkout at 
'
qash register 

DEPART LINE Customer starting service leaves queue 

ADVANCE RVNORM ( 1 , &MEAN , &STDEV) Customer' s service ' time 

RELRASE CHECKOUT Customer leaves checkout area 

DEPART SYSTIME End response time data collection 

TEST GE M1 , 4 , TER Is response time GE 4 minutes? 

BLET &COUNT=&C0UNT+1 If so, add 1 to counter 

TERMINATE 1 

START &LIMIT Simulate for required 'number 

Write Customized Output Data to File 

PUTPIC FILE=OUT, LINES=7, (FR (CHECKOUT) /10 0 0 , QM (LINE) , 

QT ( SYSTIME) , &COUNT/N (TER) ,AC1 , N (TER) ) 

Server utilization 

Maximum l ine length 

Average response time 

Proportion who spend four minutes 

or, more in the system 

Simulation runlength 

Number of departures 

END 

* * *  
..  
* * .  * *  minutes 

• • •  

* * * *  * *  minutes 

**** 

Figure 4. 1 1  GPSS/H program for the single-server queue simulation. 

advancing to the head of the waiting line, a customer captures the cashier, as represented by the SEIZE block 
with the resource named CHECKOUT. Once the transaction representing a customer captures the cashier 
represented by the resource CHECKOUT, the data collection for the waiting-line statistics ends, as repre­
sented by the DEPART block for the queue named LINE. The transaction's service time at the cashier is 
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represented by an ADVANCE block. RVNORM indicates "random variable, normally distributed." Again, 
random-number stream I is being used, the mean time for the normal distribution is given by ampervariable 
&MEAN, and its standard deviation is given by ampervariable &STDEV. Next, the customer gives up the use 
of the facility CHECKOUT with a RELEASE block. The end of the data collection for response times is indi­
cated by the DEPART block for the queue SYSTlME. 

Next, there is a TEST block that checks to see whether the time in the system, M I ,  is greater than or 
equal to 4 minutes. (Note that Ml is a reserved word in GPSSIH; it automatically tracks transaction total 
time in system.) In GPSSIH, the maxim is ''if true, pass through." Thus, if the customer has been in the sys­
tem four minutes or longer, the next BLET block (for block LET) adds one to the counter &COUNT. If not 
true, the escape route is to the block labeled TER. That label appears before the TERMINATE block whose 
purpose is the removal of the transaction from the system. The TERMINATE block has a value "1" indicat­
ing that one more transaction is added toward the limiting value (or "transactions to go"). 

The control statements in this example are all of those lines in Figure 4. 1 1  that precede or follow the 
block section. (There are eleven blocks in the model from the GENERATE block to the TERMINATE 
block.) The control statements that begin with an "*" are comments, some of which are used for spacing pur­
poses. The control statement SIMULATE tells GPSSIH to conduct a simulation; if it is omitted, GPSSIH 
compiles the model and checks for errors only. The ampervariables are defined as integer or real by control 
statements INTEGER and REAL. It seems that the ampervariable &COUNT should be defined as an inte­
ger; however, it will be divided later by a real value. If it is integer, the result of an integer divided by a real 
value is truncation, and that is not desired in this case. The four assignment statements (LET) provide data 
for the simulation. These four values could have been placed directly in the program; however, the preferred 
practice is to place them in ampervariables at the top of the program so that changes can be made more eas­
ily or the model can be modified to read them from a data file. 

To ensure that the model data is correct, and for the purpose of managing different scenarios simulated, 
it is good practice to echo the input data. This is accomplished with a PUTPIC (for "put picture") control 
statement The five lines following PUTPIC provide formatting information, with the asterisks being mark­
ers (called picture formatting) in which the values of the four ampervariables replace the asterisks when 
PUTPIC is executed. Thus, "**.**" indicates a value that may have two digits following the decimal point 
and up to two before it 

The STARr control statement controls simulation execution. It starts the simulation, sets up a 
"termination-to-go" counter with initial value its operand (&LlMff), and controls the length of the simulation. 

After the simulation completes, a second PUTPIC control statement is used to write the desired output 
data to the same file OUT. The printed statistics are all gathered automatically by GPSS. The first output in 
the parenthesized list is the server utiliz<ition. FR{CHECKOUT )11000 indicates that the fractional utilization 
of the facility CHECKOUT is printed. Because FR(CHECKOUT) is in parts per thousand, the denominator 
is provided to compute fractional utilization. QM(LlNE) is the maximum value in the queue LINE during 
the simulation. QT(SYSTIME) is the average time in the queue SYSTIME. &COUNT!N(TER) is the number 
of customers who had a response time of four or more minutes divided by the number of customers that went 
through the block with label TER, or N(TER). ACI is the clock time, whose last value gives the length of the 
simulation. 

The contents of the custOm output file OUT are shown in Figure 4.12. The standard GPSSIH output file 
is displayed in Figure 4.13. Although much of the same data shown in the file OUT can be found in the stan­
dard GPSSIH output, the custom file is more compact and uses the language of the problem rather than GPSS 
jargon. There are many other reasons that customized output files are usefuL For example, if 50 replications 
of the model are to be made and the lowest, highest, and average value of a response are desired, this can be 
accomplished by using control statements, with the results in a very compact form, rather than extracting the 
desired values from 50 standard output files. 
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Mean interarrival time 
Mean service time 
Standard deviation of service time 
Number of customers to be served 

Server uti l i zation 
Maximum line length 
Average response time 
Proportion who spend four minutes 

or more i n  the system 
Simulation runlength 
Number of departures 

4 . 5 0  minutes 
3 . 2 0  minutes 
0 . 60 minutes 
1 0 0 0  

0 . 67 6  
7 
6 .  33 minutes 
0 . 646 

4767 . 2 7  minutes 
1 0 0 0  

Figure 4.1 2  Customized GPSS/H output report for the single-server queue simulation. 

RELATIVE CLOCK: 4767 . 27 4 0  ABSOLUTE CLOCK: 4767 . 27 4 0  

BLOCK CURRENT TOTAL BLOCK CURRENT TOTAL 
1 1 0 0 3  TER 1 0 0 0  
2 1 0 0 3  
3 1 0 0 3  
4 1 0 0 0  
5 1 0 0 0  
6 1 0 0 0  
7 1 0 0 0  
8 1 0 0 0  
9 1 0 0 0  
1 0  6 4 6  

- -AVG-UTIL -DURING--
FACILITY TOTAL AVAI L  UNAVL ENTRIES AVERAGE CURRENT PERCENT . SEI ZING PREEMPTING 

TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT 
CHECKOUT 0 . 676 1 0 0 0  3 . 2 24 AVAIL 

QUEUE MAXIMUM A"VERAGE TOTAL ZERO PERCENT AVERAGE $AVERAGE QTABLE CURRENT 
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER CONTENTS 

SYSTIME 8 l .  3 3 1  1 0 0 3  0 6 . 3 2 5  6 . 2 3 5  3 
LINE 7 0 . 655 1 0 0 3  3 34 3 3 . 3  3 . 11 1  4 . 665 3 

RANDOM ANTITHETIC INITIAL CURRENT SAMPLE CHI- SQUARE 
STREAM VARIATES POSITION POS ITION COUNT UNIFORMITY 

1 OFF 1 0 0 0 0 0  1 0 3004 3 004 0 .  83 

Figure 4.1 3  Standard GPSS/H output report for the single-server queue simulation. 

4.6 SIMULATION IN SSF 

The Scalable Simulation Framework (SSF) is an Application Program Interface (API) that describes a set of 
capabilities for object-oriented, process-view simulation. The API is sparse and was designed to allow imple­
mentations to achieve high perfonnance (e.g. on parallel computers). SSF APis exist for both C++ and in Java, 
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and implementations exist in both languages. SSF has a wide user base--particularly in network simulation 
by using the add-on framework SSFNet (www . ssfnet . org). Our chapter on network simulation uses 
SSFNet. 

The SSF API defines five base classes. process is a class that implements threads of control; the 
action method of a derived class contains the execution body of the thread. The Enti ty class is used to 
describe simulation objects. It contains ·State variables, processes, and communication endpoints. The 
inChannel and out Channe l classes are communication endpoints. The Event class defines messages 
sent between entities. One model entity communicates with another by "writing" an Event into an 
out Channe l; at some later time, it is available at one or more inChannels. A process that expects 
input on an inehanne l can suspend, waiting for an event on it. These points, and others, will be elabo­
rated upon as we work through an SSF implementation of the single-server queue. 

Source code given in Figure 4.14 expresses the logic of arrival generation in SSF for the single-server 
queue example. The example is built on two SSF processes. One of these generates jobs and adds them to 
the system; the other services the enqueued jobs. Class SSQueue is a class that contains the whole simula­
tion experiment. It ·uses the auxiliary classes Random (for random-number generation) and Queue (to 
implement FIFO queueing of general objects). SSQueue defines experimental constants ("public static 
final" types) and contains SSF communication endpoints out and in, through which the two processes 
communicate. SSQueue also defines an inner class arrival, which stores the identity and arrival time of 
each job. 

Class Arrivals is an SSF process. Its constructor stores the identity of the entity that owns it, and 
creates a random-number generator that is initialized with the seed passed to it. For all but the initial call, 
method action generates and enqueues a new arrival, then blocks (via SSF method waitFor) for an 
inter-arrival time; on the first call, it by-passes the job-generation step and blocks for an initial interarrival 
time. The call to waitFor highlights details needing explanation. An SSQueue object calls the 
Arrival constructor and is saved as the "owner." This class contains an auxiliary method exponen­
tial, which samples an exponential random variable with specified mean by using a specified random­
number stream. It also contains methods d2t and t 2 d  that translate between a discrete "tick"-based 
integer clock and a double-precision floating-point representation. In the wait For call, we use the same 
code seen earlier to sample the exponential in double-precision format, but then use d2 t to convert it into 
the simulator's integer clock fonnat. The specific conversion factor is listed as a SSQueue constant, 
1 09 ticks per unit time. 

SSF interprocess communication is used sparingly in this example. Because service is nonpreemptive, 
when a job's service completes, the process providing service can examine the list of waiting customers (in 
variable owner. Waiting) to see whether it needs to give service to anotJ!er customer. Thus, the only time 
the server process needs to be told that there is a job waiting is when a job arrives to an empty system. This 
is reflected in Arrivals . action by use of its owner's out channel. 

A last point of interest is that Arrivals is, in SSF terminology, a "simple" process. This means 
that every statement in action that might suspend the process would be the last statement executed 
under nonnal execution semantics. The Arrivals class tells SSF that it is simple by overriding a 
default method iss imple to return the value true, rather than the. default value (false). The key reason 
for using simple processes is performance--they require that no state be saved, only the condition under 
which the process ought to be reanimated. And, when it is reanimated, it starts executing at the first line 
of action. 

· 

Figure 4.15 illustrates the code for the server process. Like process Arrival, its constructor is 
called by an instance of SSQueue and is given the identity of that instance and a randorn-number seed. 
Like Arrival, it is a simple process. It maintains state variable in_service to remember the 
specifics of a job in service and state variable service_ time to remember the value of the service time 



'" �·_ . ...-...:.:.. __ :_· -·-· ·:., 

108 

II SSF MODEL OF JOB ARRIVAL PROCESS 
class SSQueue extends Entity { 

private static Random rng; 
public static final double MeanServiceTime = 3 . 2 ;  

public static final double SIGMA 0 . 6 ;  
public static final double  MeaninterarrivalTime = 4 . 5 ;  

public static final long ticksPerUnitTime = rooooooooo;  
public long generated=O ;  
public Queue Waiting; 
outChannel out ; 
inChannel in; 

DISCRETE-EVENT SYSTEM SIMULATION 

public static long TotalCUstomers=O , MaxQueueLength=O ,  TotalServiceTime=O;  
public static long LongResponse=O,  SumResponseTime=O, jobStart ; 

class arrival 

} 

long id, arrival_time ; 
public arrival (long num, long a) { id=num; arrival_time a; ) 

class Arrivals extends process 
private Random rng; 

} 
} 

private SSQueue owner; 
public Arrivals  (SSQueue _owner, long seed) { 

super {_owner} ; owner z _owner; 
rng = new Random (seed) ; 

public boolean isSimple ( )  return true ; ) 
public void action ( )  { 

if ( generated++ > o ) 
II put a new CUstomer on the queue with the present arrival time 
int Size = owner .Waiting.numElements ( ) ;  
owner.Waiting. enqueue { new arrival (generated, now ( ) ) ) ;  
if ( Size == 0) owne r . out . write ( new Event ( )  ) ;  II signal start of burst 

waitFor (owner . d2t ( owner. exponential ( rng, owner. MeaninterarrivalTime) )  ) ;  

Figure 4.14 SSF ModeLof Job-Arrival Process. 

sampled for the job in service. When the SSF kernel calls act ion, either a job has completed service, or 
the Arrival process has just signaled Server though the inChannel. We distinguish the cases by 
looking at variable in_service, which will be nonnull if a job is in service, just now completed. 
In this case, some statistics are updated. After this task is done, a test is made for customers waiting for 
service. The first waiting customer is dequeued from the waiting list and is copied into the in service 
variable; the process then samples a service time and suspends through a waitFor caU. If IiQ customer 
was waiting, the process suspends on a wait On statement until an event from the Arrival process 
awakens it. 

SSF bridges the gap between models developed in pure Java and models developed in languages specif­
ically designed for simulation. It provides the flexibility offered by a generalcprogramming language, yet has 
essential support for simulation. 
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II SSF MODEL OF SINGLE SERVER QUEUE ACCEPTING JOBS 
class Server extends process { 

private Random rng; 
private SSQueue owner ; 
private arrival in_service; 
private long service_time; 

public Server (SSQueue _owner, long seed) { 
super (_owner) ; 
owner = _ownerl 
rng = new Random (seedl ; 

} 
public boolean isSimple ( )  { return true; } 
public void action ( )  { 

11 executes due to being idle and getting a job, or by service time expiration. 
II if there . is a job awaiting service, take it out 6£ the queue 
11 sample a service time, do statistics, and wait for the service epoch 

11 if in service is not nul l ,  we entered because of a job completion 
i f {  in_service 1 null l { 

owner.TotalServiceTime += service_time ; 
long in_system (now ( )  -in_service . arrival_timel ; 
owner. SumEesponseTime in system; 
if ( owner . t2d ( in_system) > 4 . o  ) owner . LongResponse++; 
in_service = null ;  
i f (  owner.MaxQueueLength < owner.Waiting. numElements ( )  + 1 ) 

owner.MaxQueueLength owner.Waiting .numElements ( )  + 1;  
owner .TotalCustomers++ ; 

if ( owner.Waiting . numElements ( ) > 0 l ( 
in_service = (arrival ) owner.Waiting .dequeue ( ) ; 
se.rvice_time !: - 1 ;  
while ( service_time < 0 .0  l 
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service_time = owner . d2t (owner. normal ( rng, owner.MeanServiceTime, owner. SIGMA) ) ;  
II model service time 

) 
j 

waitFor ( service_time ) ;  
else { 

waitOn(· owner. in ) ;  II we await a wake-up call 

Figure 4.1 5  SSF Model of Single-Server Queue : Server. 

4.7 SIMULATION· SOFTWARE 

All the simulation packages described in later subsections run on a PC under Microsoft Windows 2000 or 
XP. Although in terms of specifics the packages all differ, generaUy they have many things in common. 

Common characteristics include . a graphical user interface, animation, and automatically collected 
outputs to measure system performance. In virtually all packages, simulation results may be displayed in 
tabular or grapJlical form in standard reports and interactively while running a simulation. Outputs from 
different scenarios can be compared graphicaUy or in tabular form. Most provide statistical analyses that 
include confidence intervals for performance measureS and comparisons; plus a variety of other analysis 
methods. Some of the statistical-analysis modules are described in Section 4.8. 
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All the packages described here take the process-interaction worldview. A few also allow event-scheduling 
models and mixed discrete-continuous models. For animation, some emphasize scale dmwings in 2-D or 3-D; 
others emphasize iconic-type animations based on schematic dmwings or process-flow diagmms. A few 
offer both scale drawing and schematic-type animations. Almost all offer dynamic business graphing in the 
form of time lines, bar charts, and pie charts. 

In addition to the information contained in this chapter, the websites given below can be investigated: 

Arena 
www. arenasimulation . com/ 
AutoMod 
www . automod . com 
Delmia/QUEST 
www. delmia . com and www . 3ds . com 
Extend 

. www. imaginethatinc . com/ 
Flexsim 
www . flexsim. com/ 
Micro Saint 
www . maad . com 
Pro Model 
www . promodel . com/ 
SIMUL8 
www. s imul B . com/ 
WITNESS 
www . witness- for - simulation . com/ 

4.7.1 Arena 

Arena Basic, Standard, and Professional Editions are offered by Systems Modeling Corporation [Bapat and 
Sturrock, 2003]. Arena can be used for simulating discrete and continuous systems. A recent addition to the 
Arena family of products is OptQuest for Arena, an optimization software package (discussed in Section 4.8.2.} 

The Arena Basic Edition is targeted at modeling business processes and other systems in support of 
high-level analysis needs. It represents process dynamics in a hierarchical flowchart and stores system 
information in data spreadsheets. It has built-in activity-based costing and is closely integmted with the 
flowcharting software Visio. 

The Arena Standard Edition is designed for more detailed models of discrete and continuous systents. 
First released in 1993, Arena employs an object-based design for entirely gmphical model development. 
Simulation models are built from gmphical objects called modules to define system logic and such physical 
components as machines, opemtors, and clerks. Modules are represented by icons plus associated data entered 
in a dialog window. These icons are connected to represent entity flow. Modules are organized into collections 
called templates. The Arena template is the core collection of modules providing general-purpose features for 
modeling all types of applications. In addition to standard features, such as resources, queues, process logic, 
and system data, the Arena template includes modules focused on specific aspects of manufacturing and mate­
rial-handling systents. Arena SE can also be used to model combined discrete/continuous systents, such as 
pharmaceutical and chemical production, through its built-in continuous-modeling capabilities. 

The Arena Professional Edition enhances Arena SE with the capability to craft custom simulation 
objects that mirror components of the real system, including temiinology, process logic, data, performance 
metrics, and animation. The Arena family also includes products designed specifically to model call centers 
and high-speed production lines, namely Arena Contact Center and Arena Packaging. 
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At the heart of Arena is the SIMAN simulation language. For animating simulation models, Arena's 
core modeling constructs are accompanied by standard graphics for showing queues, resource status, and 
entity flow. Arena's 2-D animations are created by using Arena's built-in drawing tools and by incorporating 
clip ait, AutoCAD, Visio, and other graphics. 

Arena's Input Analyzer automates the process of selecting the proper distribution and its parameters for 
representing existing data, such as process and interarrival times. The Output Analyzer and Process Analyzer 
(discussed in Section 4.8.2) automate comparison of different design alternatives. 

4.7.2 AutoMod 

The AutoMod Product Suite is offered by Brooks Automation [Rohrer, 2003]. It includes the AutoMod 
simulation package, AutoStat for experimentation and analysis, and Auto V1ew for making A VI movies of the 
built-in 3-D animation. The main focus of the AutoMod simulation product is manufacturing and material­
handling systems. AutoMod's strength is in detailed, large models used for planning, opemtional decision 
support, and control-systems testing . 

AutoMod has built-in templates for most common material-handling systems, including vehicle 
systems, conveyors, automated storage and retrieval systems, bridge cranes, power and free conveyors, and 
kinematics for robotics. With its Tanks and Pipes module, it also supports continuous modeling of fluid and 
bulk-material flow. 

The pathmover vehicle system can be used to model lift trucks, humans walking or pushing carts, auto­
mated guided vehicles, trucks, and cars. All the movement templates are based on a 3-D scale drawing 
(drawn or imported from CAD as 2-D or 3-D}. All the components of a template are highly parameterized. 
For example, the conveyor template contains conveyor sections, stations for load induction or removal, 
motors, and photo-eyes. Sections are defined by length, width, speed, acceleration, and type (accumulating 
or nonaccumulating}, plus other specialized parameters . Photo-eyes have blocked and cleared timeouts that 
facilitate modeling of detailed conveyor logic. 

In addition to the material-handling templates, AutoMod contains a full simulation programming 
language. Its. 3-D animation can be viewed from any angle or perspective in real time. The user can freely 
zoom, pan, or rotate the 3-D world. 

An AutoMod model consists of one or more systems. A system can be either a process system, in which 
flow and control logic are defined, or a movement system based on one of the material-handling templates. 
A model may contain any number of systems, which can be saved and reused as objects in other models. 
Processes can contain complex logic to control the flow of either manufactUring materials or control 
messages, to contend for resources, or to wait for user-specified times. Loads can move between processes 
with or without using movement systems. 

In the AutoMod worldview, loads (products, parts, etc.) move from process to process and compete for 
resources (equipment, opemtors, vehicles, and queues). The load is the active entity, executing action state­
ments in each process. To move between processes, loads may use a conveyor or vehicle in a movement 

· syste.m. 
AutoS tat, described in Section 4.8.2, works with AutoMod models to provide a complete environment 

for the user to define scenarios, conduct experimentation, and perform analyses. It offers optimization based 
on an evolutionary strategies algorithm. 

4.7 .3 Extend 

The Extend family of products is offered by Imagine That, Inc. [Krahl, 2003]. Extend OR, Industry, and 
Suite are used for simulating discrete and mixed discrete-continuous systems; Extend CP is for continuous 
modeling only. Extend combines a block-diagram approach to model-building with a development environment 
for creating new blocks. 



DISCRET£-EVENT 

Each Extend block has an icon and encapsulates code, parameters, user interface, animation, and online 
help. Extend includes a large set of elemental blocks; libraries of blocks for specific application areas, such 
as manufacturing, business processes, and high-speed processes, are also available. Third-party developers 
have created Extend libraries for vertical market applications, including supply-chain dynamics, reliability 
engineering, and pulp and paper processing. 

Models are built by placing and connecting blocks and entering the parameters on the block's dialog 
window. Elemental blocks in Extend include Generator, Queue, Activity, Resource Pool, and Exit The active 
entities, called items in Extend, are created at Generator blocks and move from block to block by way of 
item connectors. Separate value connectors allow the attachment of a calculation to a block parameter or the 
retrieval of statistical information for reporting purposes. Input parameters can be changed interactively during 
a model run and can come from external sources. Outputs are displayed dynamically and in graphical and 
tabular format The Industry and Suite products also provide an embedded database for centralized infor-
mation management. 

_ 

Extend provides iconic process-flow animation of the block diagram. For scaled 2-D animation, Proof 
Animation [Henriksen, 2002] from Wolverine Software is included in the Suite product. Collections of 
blocks representing a sub model, such as a subassembly line or functional process, can be grouped into a hier­
archical block on the model worksheet; hierarchical blocks can also be stored in a library for reuse. 
Parameters from the submodel can be grouped and displayed at the level of the hierarchical block for access 
to model I/0. Extend supports the Microsoft component object model (COM/ActiveX), open database con­
nectivity (ODBC), and Internet data exchange. Activity-based costing, statistical analysis of output data with 
confidence intervals, and the Evolutionary Optimizer are included. 

For creating new blooks, Extend comes with a compiled C-like programming environment The mes­
sage-based language includes simulation-specific functions and supports custom interface development 
Extend has an open architecture; in most cases, the source code for blocks is available for custom develop­
ment. The arChitecture also supports linking to and using code and routines written in external languages. 

4.7.4 Flexsim 

Flexsim simulation software is developed and owned by Flexsim Software Products, Inc. of Orem, Utah 
(Nordgren, 2003). Flexsim is a discrete-event, object-oriented simulator developed in Gt+, using Open GL 
technology. Animation can be shown in tree view, 2-D, 3-D, and virtual reality. All views can be shown con­
currently during the model development of run phase. It integrates Microsoft's Visual Gt+ IDE and com­
piler within a graphicai 3�D click-and-drag simulation environment. 

Flexsim software is used to build models that behave like the actual physical or conceptual systems they 
represent. A simulation model of any flow system or process can be created in Flexsim by using drag-and­
drop model-building objects. 

Flexsim is used to improve produCtion efficiencies and reduce operating costs through simulation, 
experimentation, and optimization of dynamic flow systems. Engineers and managers use Fl.exsim to evalu­
ate plant capacitj, balance packaging and manufacturing lines, manage bottlenecks, solve work-in-process 
problems, justify capital expenditures, plan equipment maintenance schedules, establish proper inventory 
levels, improve order-picking systems, and optimize production rates. Flexsim allows end users to introduce 
and simulate new conditions for the model and to analyze their effects and results in order to fmd ways to 
improve the system being studied. By using Flexsim, efficiencies-increased throughput and decreased 
costs-<:an be identified, tested, and proven prior to implementing them in the actual system. The results of 
each simulation can be analyzed graphically through 3-D animation and through statistical reports and 
graphs, which are all also useful in communicating a model's purpose and results to both technical and 
nontechnical aU<Uences. 

-
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4.7 .5 Micro Saint 

Micro Saint is offered by Micro Analysis and Design, Inc. [Bloechle and Schunk, 2003]. Micro Saint is a 
general-purpose, discrete-event, network simulation-software package for building models that simulate 
real-life processes. With Micro Saint models, users can gain useful information about processes that might 
be too expensive or time-consuming to test in the real world. 

_ 

Micro Saint does not use the terminology or graphic representations of a specific industry. A Micro Saint 
model can be built for any process that can be represented by a flowchart diagram. The terms that are used 
are defined by the user. In addition, the icons and background for the Action View animation and the flow­
charting symbols are custornizable. Micro Saint provides two views of the simulation model. The network 
diagram view shows the process flowchart in action, and Action View provides a realistic 2-D picture of the 
process. . . .  

Micro Saint supports the development of models of various complexity to match the user's needs. 
Simple, functional models can be built by drawing a network diagram and filling in the task-timing infor­
mation. More complex models can also be built that include dynamically changing variables, probabilistic 
and taCtical branching logic, sorted queues, conditional task execution, animation, optimization, and exten­
sive data collection. 

A separate module (called COM Services) is available that enables Micro Saint to exchange data with 
other software applications and makes it easy to customize the model. In addition, OptQuest optimization is 
included with Micro Saint and is designed to automatically search for and find optimal or hear-optimal solu­
tions to the model. 

4.7.6 ProModel 

ProModel is offered by PROMQDEL Corporation [Harrell, 2003]. It is a simulation and animation tool 
designed to model manufacturing systems. The company also offers MedModel for healthcare systems and 
ServiceModel for service systems. ProModel offers 2-D animation with an optional 3-D like perspective 
view. ProModel's animation is generated automatically as the model is developed. 

ProModel has manufacturing-oriented modeling elements and rule-based decision logic. Some systems 
can be modeled by selecting from ProModel's set of highly parameterized modeling elements. In addition, 
its simulation programming language provides for modeling special situations not covered by the built-in 
choices. . 

The modeling elements in ProModel are parts (entities), locations, resources, path networks, routing and 
processing logic, and arrivals. Parts arrive and follow the routing and processing logic from location to loca­
tion. Resources are used to represent people, tools, or vehicles that transport parts between locations, per­
form an operation on a part at a location, or perform maintenance on a location or other resource that is 
down. Resources may travel on path networks with given speeds, accelerations, and pickup and setdown 

· travel times. The routing and processing element allows user-defined procedural logic in ProModel's simu­
lation-programming language. 

ProModel incluctes logic for automatically generating cost data associated with a process. Costs can be 
added for location usage, resources, and entities. 

ProModel comes complete with an output viewer, allowing for straightforward data presentation and 
useful graphics and charts, such as state diagrams. 

Pro Model's runtime interface allows a user to define multiple scenarios for experimentation. SimRunner 
(discussed in Section 4.8.2) adds the capability to perform an optimization. It is based on an evolutionary­
strategy algorithm, a variant of the genetic algorithm approach. The OptQuest Optimizer (OptQuest for 
ProModel) is available as an add-on product 
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4.7.7 QUEST 

QUES'f® is offered by Delmia Corp. QUEST (Queuing Event Simulation Tool) is a manufactudng-oriented sim­
ulation package. QUEST combines an object-based, true 3-D simulation environment with a graphical user 
interface and material-flow modules for modeling labor, conveyors, automated guided vehicles, kinematic 
devices, cranes, fluids, power and free conveyors, and automated storage and retrieval systems. QUEST 
models incorporate 2-D and 3-D CAD geometry to create a virtual factory environment. 

Delmia also offers a number of workcell simulators, including IGRJP® for robotic simulation and pro­
gramming and ERGOTM for ergonomic analyses. Robots and human-based workcells that are simulated in 
IGRIP and ERGO can be imported into QUEST models both visually and numerically. 

Delmia provides even further integration with QUEST and other manufacturing technologies through 
PROCESS ENGINEERTM, Delmia's process-planning environment. The Manufacturing Hub infrastructure 
behind this software consists of an object-oriented database for storing Product, Process, and Resource 
objects that are configuration-managed and effectivity-controlled. A QUEST model is automatically created 
from the information stored in the database, and the resulting model can be linked to tlie database for auto­
matic update purposes. QUEST can be used to introduce and update resource-specific information and model 
output results into the Manufacturing Hub for use in other products. 

A QUEST model consists of elements from a number of element classes. Built-in element classes 
include AGVs and transporters, subresources, buffers, conveyors, power and free systems, labor, machines, 
parts, container parts, and processes. Each element has associated geometric data and parameters that define 
its behavior. Parts may have a route and control rules to govern part flow. Commonly needed behavior logic 
is selected from comprehensive menus, many parameter-driven. 

For uniqu� problems, Delmia's QUEST Simulation Control Language (SCL) can be used. This struc­
tured simulation-programming language provides distributed processing with access to all system variables. 
SCL allows expert users to define custom behaviors and to gain control over the simulation. 

Delmia QUEST's open arc)litecture allows the advanced user to perform batch simulation runs to auto­
matically collect and tabulate data by using the Batch Control Language (BCL). Replications and parameter 
optimization are controlled with batch command files or by the OptQuest optimization software, as described 
in Section 4.8.2. 

Output is available both numerically (with the statistical reporting mechanisms) and visually (with a 
resulting virtual factory-like animation). Statistical output results are available internally through the graph­
ical user interface or externally through HTML and can be customized by using XML or QUEST's own 
BCL. Digital movies can be created from the animation, or a read-only encrypted version of the model can 
be authored for viewing and experimentation in QUEST Express TM, a "lite" version of QUEST. 

4.7.8 SIMUL8 

SIMUL8 is provided by SIMUL8 Corporation and was first introduced in 1995. In SIMUL8, models are created 
by drawing the flow of work with the computer mouse, using a series of icons and arrows to represent the 
resources and queues in the system. Default values are provided for all properties of the icons, so that the 
animation can be viewed very early in the modeling process. Drilling down in property boxes opens up 
progressively more detailed properties. The main focus of SIMUL8 is service industries where people are 
processing transactions. 

Like some other packages, SIMUL8 has the concepts of "Templates" and "Components." Templates, or 
prebuilt simulations, focus on particular recurring decision types that can be quickly parameterized to fit a 
specific company issue. Components are user-defined icons that can be reused and shared across a company's 
simulations. This reduces the time to build simulations, standardizes how some situation are handled across 
a corporation, and often removes much of the data-collection phase of a simulation study. 

SOFTWARE 

SIMUL8 Corporation's approach to business is different from most of the other packages here in that 
they claim to be aiming to spread simulation very widely across businesses, rather than concentrate it in the 
hands of dedicated and highly trained simulation professionals. This means they have very different pricing 
and support policies, but it also means the software has to contain features that watch how the product is 
being used and provide assistance if some potentially invalid analysis is conducted. 

SIMUL8 saves its simulation model and data in XML format so that it will be easy to transfer it to and 
from other applications. It provides some nonsimulation features that make it possible for the model-builder 
to create custom user interfaces in spreadsheet, dialog, or wizard form. SIMUL8 has a VBA interface and 
supports ActiveX/COM so that external applications can build and control SIMUL8 simulations. 

The product is available in two levels, Standard and Professional. The two levels provide the same sim­
ulation features, but Professional adds 3-D, "VIrtual Reality" views of the simulation, and database links to 
corporate databases and has certain features that are likely to be useful only to full-time simulation modelers. 
SIMUL8 Professional comes with a license to distribute simulations with a free SIMUL8 Viewer. 

4.7.9 WITNESS 

WITNESS is offered by the Lanner Group and has separate versions for manufacturing and service indus­
tries. It contains many elements for discrete-part manufacturing and also contains elements for continuous 
processing, such as the flow of fluids through processors, tanks, and pipes. 

WITNESS models are based on template elements. These may be customiz·: ri ,,n�l '· mnbined into mod­
ule elements and templates for reuse. The standard machine elements can h :  ; ingk. btch, production, 
assembly, multisiation, or multicycle. Other discrete modeling elements inclu• : t'Hd<ipi;; iypes of conveyor, 
tracks, vehicles, labor, and carriers. The behavior of each element is describe•.' .. ,it dttail form in the 
WITNESS user interface. 

.J , ,  .. ' . . 
The models are displayed in a 2-D layout animation with multiple windc:1., and <.H:-pli!y layers; there are 

optional process-flow displays and element-routing overlays. Models can be ,;,ji\g,·d a! :t"Y point in a model 
run and saved at any run point for future reload. . 

· 
. . · 

Optional WITNESS modules include WITNESS VR, an integrated virn d  i�·:1En: .HI ':lew of the work­
ing model, where there is full mouse control of the camera flight and posi!iPi l  Opt.••>i' . '' ";·1, too, for post­
processed VR with multiscreen projection and various headset technologies. 0! i· ,·r \•.i ! 'fr'TS S modules include 
links to CAD systems, a model documentor, and the WITNESS Optimizer 01• > h ·� it}. • I'll' ,,·ci ion below. 

WITNESS has object-model and ActiveX control for simulation emb-:1 
· niH I in� htdes direct data 

links to Microsoft Excel, MINITAB, and any OLEDB database source. XMi · .  1u -;aves offer addi-
tional linkage functionality. 

4.8 EXPERIMENTAnON AND STATISnCAL·ANALYSIS TOOLS 

4.8.1 Common features 

Virtually all simulation packages offer various degrees of support for statistical analysis of simulation out­
puts. lri recent years, many packages have added optimization as one of the analysis tools. To support analy­
sis, most packages provide scenario definition, run-management capabilities, and data export to spreadsheets 
and other external applications. 

Optimization is used to find a "near-optimar· solution. The user must define an objective or fitness func­
tion, usually a cost or cost-like function that incorporates the trade-off between additional throughput and. 
additional resources. Until recently, the methods available for optimizing a system had difficulty coping with 
the random and nonlinear nature of most simulation outputs. Advances in the field of metaheuristics have 
offered new approaches to simulation optimization, ones based on artificial intelligence, neural networks, 
genetic algorithms, evolutionary strategies, tabu search, and scatter search. 
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4.8.2 Products 

This section briefly discusses Arena's Output and Process Analyzer, AutoS tat for AutoMod, OptQuest 
(which is used in a number of simulation products) Md SimRunner for ProModel. 

Arena's Output and Process Analyzer 

Arena comes with the Output Analyzer and Process Analyzer. In addition, Arena uses OptQuest for 
optimization. 

The Output Analyzer provides confidence intervals, comparison of multiple systems, and warm-up 
determination to reduce initial condition biases. It creates various plots, charts, and histograms, smoothes 
responses, and does correlation analysis. To compute accurate confidence intervals, it does internal hatching 
(both within and across replications, with no user intervention} and data truncation to provide stationary, 
independent, and normally distributed data sets. 

The Process Analyzer adds sophisticated scenario-management capabilities to Arena for comprehensive 
design of experiments. It allows a user to define scenarios, make the desired rnns, and analyze the results. It 
allows an arbitrary number of controls and responses. Responses can be added after runs have been com­
pleted. It will rank scenarios by any response and provide summaries and statistical measures of the 
responses. A user can view 2-D and 3-D charts of response values across either replications or scenarios. 

AutoStat 

AutoStat is the run manager and statistical-analysis product in the AutoMod product family [Rohrer, 2003]. 
AutoS tat provides a number of analyses, including warm-up determination for steady-state analysis, absolute 
and comparison confidence intervals, design of experiments, sensitivity analysis, and optimization via an 
evo1utionary strategy. The evolutionary-strategies algorithm used by AutoStat is well suited to finding a near­
optimal solution without getting trapped at a local optimum. 

With AutoStat, an end user can define any number of scenarios by defming factors and their range of 
values. Factors include single parameters, such as resource capacity or vehicle speed; single cells in a data 
file; and complete data flies. By allowing a data file to be a factor, a user can experiment with, for example, 
alternate production schedules, customer orders for different days, different labor schedules, or any other 
numerical inputs typically specified in a data file. Any standard or custom output can be designated as a 
response. For each defined response, AutoStat computes descriptive statistics (average, standard deviation, 
minimum, and maximum} and confidence intervals. New responses can be defined after runs are made, 
because AutoStat archives and compresses the standard and custom outputs from all rnns. Various charts and 
plots are available to provide graphical comparisons. 

AutoS tat supports correlated sampling (see ·chapter 12) using common random numbers. This sampling 
technique minimizes variation between paired samples, giving a better indication of the true effects of model 
changes. 

AutoStat is capable of distributing simulation rnns across a local area network and pulling back all 
results to the user's machine. Support for multiple machines and CPU's gives users the ability to make many 
more runs of the simulation than would otherwise be possible, by using idle machines during off hours. This 
is especially useful in multifactor analysis and optimization, both of which could require large numbers of 
runs. AutoStat also has a diagnostics capability that automatically detects "unusual" runs, where the defini­
tion of "unusual" is user-defmable. 

AutoStat also works with two other products from AutoSimulations: the AutoMod Simulator, a spread­
sheet-based job-shop simulator; and AutoSched AP, a rule-based simula�ion package for finite-capacity 
scheduling in the semiconductor industry. 

OptQuest 

OptQuest® was developed by Dr. Fred Glover of the University of Colorado, cofounder of OptTek Systems, 
Inc. [April et al., 2003]. 

OptQuest is based on a combination of methods: scatter search, tabu search, linear/integer program­
ming, and neural networks. Scatter search is a population-based approach where existing solutions are com� 
bined to create new solutions. Tabu search is then superimposed to prohibit the search from reinvestigating 
previous solutions, and neural networks screen out solutions likely to be poor. The combination of methods 
allows the search process to escape local optimality in the quest for the best solution. 

Some of the differences between OptTek's methods and other methods include 

• the ability to avoid being trapped in locally optimal solutions to problems that contain nonlinearities 
(which commonly are present in real-world problems}; 

• the ability to handle nonlinear and discontinuous relationships that are not specifiable by the kinds of 
equations and formulas that are used in standard mathematical programming formulations; 

• the ability to solve problems that involve uncertainties, such as those arising from uncertain supplies, 
demands, prices, costs, flow rates, and queuing rates. 

SimRunner 

SimRunner was developed by PROMODEL Corporation out of the simulation-optimization research of 
Royce Bowden, Mississippi State University [Harrell et al., 2003]. It is available for ProModel, MedModel, 
and ServiceModel. 

SimRunner uses genetic algorithms and evolution strategies, which are variants of evolutionary algorithms. 
Evolutionary algorithms are population-based direct-search techniques. A user first specifies input factors 
(integer or real-valued decision variables) composed of ProModel macros and then specifies an objective 
function composed of simulation-output responses. SimRunner manipulates the input factors within boundaries 
specified by the user seeking to minimize, to maximize, or to achieve a user-specified target value for the 
objective function. The optimization-output report includes a confidence interval on the mean value of the 
objective function for each solution evaluated over the course of the optimization and displays 3-D plots of 
the simulation's output-response surface for the solutions evaluated. In addition to the multivariable 
optimization module, SimRunner has a utility for helping users estimate the end of the warm-up phase 
(initialization bias} of a steady-state simulation and the number of replications needed to obtain an estimate of 
the objective function's mean value to within a specified percentage error and confidence level. 

REFERENCES 

APRIL, J., F. GLOVER, J. P. KELLY, AND M. LAGUNA [2003], "Practical Introduction to Simulation Optimization," 
Proceedings of the 2003 Winter Simulation Conference, S. Chick, P. J. Sanchez, D. Ferrira, and D. 1. Morrice, eds., 
New Orleans, LA, Dec. 7-10, pp. 7 1-78. 

BANKS, 1., 1. S. CARSON, AND 1. N. SY [1995], Getting Started . with GPSSIH, ld ed., Wolverine Software 
Corporation, Annandale, VA. 

BANKS, 1. [1996], "Interpreting Software Checklists," ORIMS Today, June. 
BAPAT, V. AND D. STURROCK [2003]. "The Arena Prodlict Family: Enterprise Modeling Solutions:' Ptvceedings OJ 

the 2003 Winter Simulation Conference, S. Chick, P. 1. Sanchez, D. Ferrin, and D. 1. Morrice, eds., New Orleans, LA 
Dec. 7-10, pp. 210- 217. 

BLOECHLE, W. K., AND D. SCHUNK [2003], "Micro Saint Sharp Simulation Software:' Proceedings of the 200� 
Winter Simulation Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds., New Orleans, LA, Dec. 7-10 
pp. 182-187. 



1 18 DISCRITE-EVENT SYSTEM SIMULATION 

COWIE, J. [1999], "Scalat.le Simulation Framework API Reference Manual," www. ssfnet.  org/SSFdocs/ 
ssfapiManual . pdf. 

CRAIN, R. C., AND J. 0. HENRIKSEN [ 1999], "Simulation Using GPSS/H," Proceedings of the 1999 Wmter Simulation 
Conference, P. A. Farrington, H. B. Nembhard, D. T. Sturrock, G. W. Evans, eds., Phoenix, AZ, Dec. 5--'8, pp. 182-187. 

HARRELL, C. R .. B. K. GHOSH, AND R. BOWDEN [2003], Simulation Using ProModel, 2d ed., New York: 
McGraw-Hill. 

HARRELL, C. R., AND R. N. PRICE {20031, "Simulation Modeling Using Pro Model," Proceedings of the 2003 Winter 
Simulation Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds., New Orleans, LA, Dec. 7-10, pp. 
175-181 .  

HENRIKSEN, J. 0. [ 1999], "General-Purpose Concurrent and Post-Processed Animation with Proof;' Proceedings of 
the 1999 Winter Simulation Conference, P. A. Farrington, H. B. Nembhard, D. T. Sturrock, G. W. Evans, eds., 
Phoenix, AZ, Dec. 5--'8, pp. 17fi-181. 

KRAHL, D. [2003], "Extend: An Interactive Simulation Environment," Proceedings of the 2003 Winter Simulation 
Conference, S. Chick, P. 1. Sanchez. D. Ferrin, and D. J. Morrice, eds., New Orleans, LA, Dec. 7-10, pp. 188-196. 

MEHfA, A., AND I. RAWLS [1999], "Business Solutions Using Witness:' Proceedings of the 1999 Winter Simulation 
Conference, P. A. Farrington, H. B. Nembhard, D. T. Sturrock, G. W. Evans, eds., Phoenix, AZ, Dec. 5--'8, pp. 230-233. 

NANCE, R. E. [ 1995], "Simulation Pmgramming Languages: An Abridged History," Proceedings of the 1995 Winter 
Simulation Conference, X. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, eds., Arlington, VA, Dec. 
1 3-16, pp. 1 307-13 13. 

NORDGREN, W. B. [2003], "Fiexsim Simulation Environment:' Proceedings of the 2003 Winter Simulatwn 
Conference, S. Chick, P. J. Sanchez, D. Ferrin, and D. 1. Morrice, eds., New Orleans, LA, Dec. 7-10, pp. 197-200. 

PRITSKER., A. A. B., AND C. D. PEGDEN [ I979], lntroductwn to Simulation and SLAM, John Wiley, New York. 
ROHRER, M. W. [2003], "Maximizing Simulation ROI with AutoMOO:' Proeeedings of the 2003 Wmter Simulatwn 

Conference, S. Chick, P. 1. Sanchez, D. Ferrin, and D. J. Morrice, eds., New Orleans., LA, Dec. 7-10, pp. 201-209. 
SWAIN, J. J. [2003], ·:simulation Reloaded: Sixth Bietmial Survey of Discrete-Event Software Tools," ORJMS Today, 

August, Vol. 30, No. 4, pp. 46-57. 
TOCHER, D. D., AND D. G. OWEN [1960], 'The Automatic Programming of Simulations," Proceedings of the Second 

International Conference on Operational Research, 1. Banbury and J. Maitland, eds., pp. 50-68. 
WILSON, J. R., et al. [ 1992], "The Wmter Simulation Conference: Perspectives of the Founding Fathers:· Proceedings 

of the 1992 Winter Simulation Conference, 1. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, eds., Arlington, VA, 
Dec. 13-16, pp.37--62. 

EXERCISES 

For the exercises below, reader should code the model in a general-purpose language (such as C, C++, or 
Java), a special-purpose simulation language (such as GPSS/H), or any desired simulation package. 

Most problems contain activities that are unifonnly distributed over an interval [a,b]. Assume that all 
values between a and b are possible; that is, the activity time is a continuous random variable. 

The unifonn distribution is denoted by U (a, b), where a and b are the endpoints of the interval, or by m ± h, 
where m is the mean and h is the "spread" of the distribution. These four parameters are related by the equations 

a+b b-a 
m= -- h = --

2 2 

a = m-h b = m+ h  

Some of the unifonn-random-variate generators available require specification of a and b; others require 
m and h. 

Some problems have activities that are asswned to be nonnally distributed, as denoted by N(f.l, u2), 
where f.L is the mean and 0'2 the variance. (Since activity limeS are nonnegative, the nonnal distribution is 
appropriate only if f.L 2:: ku, where k is at least 4 and preferably 5 or largeL If a negative value is generated, it 
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is discarded.) Other problems use the exponential distribution with some rate /.. or mean 11/... Chapter 5 
reviews these distributions; Chapter 8 covers the generation of random variates having these distributions. 
All of the languages have a facility to easily generate samples from these distributions. For C, C++. or Java 
simullitions, the student may use the functions given in Section 4.4 for generating samples from the nonnal 
and exponential distributions. 

1. Make the necessary modifications to the Java model of the checkout counter (Example 4.2) so that the 
simulation will run for exactly 60 hours. 

2. In addition to the changes in Exercise I, assume that an arriving customer does not join the queue if 
three or more customers are waiting for service. Make necessary changes to the Java code and run the 
modeL 

3. Implement the changes in Exercises I and 2 in any of the simulation packages. 

4. Ambulances are dispatched at a rate of one every 15 ± lO minutes in a large metropolitan area. Fifteen 
percent of the calls are false alanns, which require 12 ± 2 minutes to complete. All other calls can be 
one of two kinds. The first kind are classified as serious. They constitute 15% of the non-false alarm 
calls and take 25 ± 5 minutes to complete. The remaining calls take 20 ± 10 minutes to complete. 
Assume that there are a very large number of available ambulances, and that any number can be on call 
at any time. Simulate the system until 500 calls are completed. 

5. In Exercise 4, estimate the number of ambulances required to provide I 00% service. 

6. (a) In Exercise 4, suppose that there is only one ambulance available. Any calls that arrive while the 
ambulance is out must wait. Can one ambulance handle the work load? 

(b) Simulate with x ambulances, where x = 1 ,2,3, or 4, and compare the alternatives on the basis of length 
of time a call must wait, percentage of calls that must wait, and percentage of time the ambulance 
is out on call. 

7. Passengers arrive at the security screening area at Chattahoochee Airport according to a time given by 
N(20, 3) seconds. At the first point, the boarding pass and ID are checked by one of two people in a time 
that is distributed N(l2, I )  seconds. (Passengers always pick the shortest line when there is an option.) 
The next step is the X-ray area which takes a time that is N(l5, 2) seconds; there are two lanes open at 
all times. Some l5% ofthe people have to be rechecked for a time that N(IOO, 10) seconds. The number of 
recheckers needed is to be detennined. Simulate this system fo� eight hours with one and two recheckers. 

8. A superhighway connects one large metropolitan area to another. A vehicle leaves the first city every 
20 ± 15 seconds. Twenty percent of the vehicles have l passenger, 30% of the vehicles have 2 passengers, 
10% have 3 passengers, and 10% have 4 passengers. The remaining 30% of the vehicles are buses, 
which cany 4() people. It takes 60 ± 10 minutes for a vehicle to travel between the two metropolitan 
areas. How long does it take for 5000 people to arrive in the second city? 

9. A restaurant has two sections, that is, meals section and tiffin section. Customers arrive at the restaurant 
at the rate of one every 60 ± 30 seconds. Of the arriving customers, 50% take only tiffin and 50% take 
only meals. Immaterial of the type of the customer, it takes 75 ± 40 seconds to provide service. Assuming 
that there are sufficient.number of servers available, determine the time taken to serve 100 customers. 

10. Re-do Exercise 9, assuming that of the arriving customers, 50% take only tiffin, 30% take only meals, 
and the remaining 20% take a combination of meals and tiffin. 

11. For Exercise 10, what is the maximum number of servers needed during the course of simulation? 
Reduce the number of servers one by one and determine the. total time to complete I 00 serviCes. 
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12. Customers arrive at an Internet center at the rate of one every 15 ± 5 minutes. 80% of the customers 
check simply their email inbox, while the remaining 20% download and upload files. An email customer 
spends 5 ± 2 minutes in the center and the download customer spends 15 ± 5 minutes. Simulate the service 
completion of 500 customers. Of these 500 customers, detennine the number of email and download 
customers and compare with the input percentage. 

13. An airport has two concourses. Concourse I passengers arrive at a rate of one every 15 ± 2 seconds. 
Concourse 2 passengers arrive at a rate of one every 10 ± 5 seconds. It takes 30 ± 5 seconds to walk 
down concourse I and 35 ± 10 seconds to walk down concourse 2. Both concourses empty into the main 
lobby, adjacent to the baggage claim. It takes 10 ± 3 seconds to reach the baggage claim area from the 
main lobby. Only 60% of the passengers go to the baggage claim area. Simulate the passage of 500 pas­
sengers through the airport system. How many of these passengers went through the baggage claim 
area? In this problem, the expected number through the baggage claim area can be computed by 
0.60(500)=300. How close is the simulation estimate to the expected numb�r? Why the difference? 

14. In a multiphasic screening clinic, patients arrive at a rate of one every 5 ± 2 minutes to enter the audi­
ology section. The examination takes 3 ± 1 minutes. Eighty percent of the patients were passed on to 
the next test with no problems. Of the remaining 20%, one-half require simple procedures that take 2 ± 
I minutes and are then sent for reexamination with the same probability of failure. The other half are 
sent home with medication. Simulate the system to estimate how long it takes to screen and pass 200 
patients. (Note: Persons sent home with medication are not considered «passed.") 

15. Consider a bank with four tellers. Tellers 3 and 4 deal only with business accounts; Tellers 1 and 2 deal 
only with general accounts. Clients arrive at the bank at a rate of one every 3 ± 1 minutes. Of the clients, 
33% are business accounts. Clients randomly choose between the two tellers available for each type of 
account. (Assume that a customer chooses a line without regard to its length and does not change lines.) 
Business accounts take 15 ± 10 minutes to complete, and general accounts take 6 ± 5 minutes to com­
plete. Simulate the system for 500 transactions to be completed. What percentage of time is each type 
of teller busy? What is the average time that each type of c

.
ustomer spends in the bank? 

16. Repeat Exercise 15, but assuming that customers join the shortest line for the teller handling their type 
of account. 

17. In Exercises 15 and 16, estimate the mean delay of business customers and of general customers. (Delay 
is time spent in the waiting line, and is exclusive of service time.) Also estimate the mean length of the 
waiting line, and the mean proportion of customers who are delayed longer than 1 minute� 

18. Three different machines are available for machining a special type of part for 1 hour of each day. The 
processing-time data is as follows: 

Machine 

1 
2 
3 

Time to Machine One Part 

20 ± 4 seconds 
10 ± 3 seconds 
15 ± 5 seconds 

Assume that parts arrive by conveyor at a rate of one every 15 ± 5 seconds for the first 3 hours of the 
day. Machine 1 is available for the first hour, machine 2 for the second hour, and machine 3 for the third 
hour of each day. How many piuts are produced in a day? How large a storage area is needed for parts 
waiting for a machine? Do parts "pile up" at any particular time? Why? 
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19. People arrive at a self-service cafeteria at the rate of one every 30 ± 20 seconds. Forty percent go to the 
sandwich counter, where one worker makes a sandwich in 60 ± 30 seconds. The rest go to the main 
counter; where one server spoons the prepared meal onto a plate in 45 ± 30 seconds. All customers must 
pay a single cashier, which takes 25 ± 10 seconds. For all customers, eating takes 20 ± 10 minutes. After 
eating, 10% of the people go back for dessert, spending an additional 10 ± 2 minutes altogether in the 
cafeteria Simulate until I 00 people have left the cafeteria. How many people are left in the cafeteria, 
and what are they doing, at the time the simulation stops? 

20. Customers arrive at a nationalized bank at the rate of one every 60 ± 40 seconds. 60% of the customers 
perfonn money transactions and the remaining 40% do other things such as getting the draft, updating 
passbooks, etc., which require 3 ± 1 and 4 ± 1 minutes, respectively. Currently, there are separate coun­
ters for both the activities. Customers feel that if single window concept is introduced, average waiting 
time could be reduced. Justify by simulating 200 iu-rivals. 

· 

21. In Exercise 20, in single window system, if an arriving customer balks if three or more customers are in 
the queue, detennine the number of customers balked in each category. 

22. Loana Tool Company rents chain saws. Customers arrive to rent chain saws at the rate of one every 
30 ± 30 minutes. Dave and Betty handle these customers. Dave can rent a chain saw in 14 ± 4 minutes. 
Betty takes 10 ± 5 minutes. Customers returning chain saws arrive at the same rate as those renting chain 
saws. Dave and Betty spend 2 minutes with a customer to check in the returned chain saw. Service is 
first-come-first-served. When no customers are present, or Betty alone is busy, Dave gets these returned 
saws ready for rerenting. For each saw, this maintenance and cleanup takes him 6 ± 4 minutes and 10 ± 6 
minutes, respectively. Whenever Dave is idle, he begins the next maintenance or cleanup. Upon finishing 
a maintenance or cleanup, Dave begins serving customers if one or more is waiting. Betty is always 
available for serving customers. Simulate the operation of the system starting with an empty shop at 
8:00 A.M., closing the doors at 6:00 P.M., and getting chain saws ready for re-renting until 7:00 P.M. 

From 6:00 until 7:00 P.M., both Dave and Betty do maintenance and cleanup. Estimate the mean delay 
of customers who are renting chain saws. 

23. The Department of Industrial Engineering of a university has one Xerox machine. Users of this machine 
arrive at the rate of one every 20 ± 2 minutes and use it for 15 ± 10 minutes. If the machine is busy, 
90% of the users wait and finish the job, while the I 0% of the users come back after 10 minutes. Assume 
that they do not balk again. Simulate for 500 customers and find out the probability that a balking 
customer need not wait during the second attempt. 

24. Go Ape! buys a Banana IT computer to handle all of its web-browsing needs. Web-browsing employees 
arrive every 10 ± 10 minutes to use the computer. Web-browsing takes 7 ± 7 minutes. The monkeys that· 
run the computer cause a system failure every 60 ± 60 minutes. The failure lasts for 8 ± 4 minutes. When 
a failure occurs, the web-browsing that was being done resumes processing from where it was left off. 
Simulate the operation of this system for 24 hours. Estimate the mean system response time. (A system 
response time is the length of time from arrival until web-browsing is completed.) Also estimate the mean 
delay for those web-browsing employees that are in service when a computer system failure occurs. 

25. Able, Baker, and Charlie are three carhops at the Sonic Drive-In (service at the speed of sound! ). Cars 
arrive every 5 ± 5 minutes. The carhops service customers at the rate of one every 10 ± 6 minutes. 
However, the customers prefer Able over Baker, and Baker over Charlie. If the carhop of choice is busy, 
the customers choose the first available carhop. Simulate the system for 1000 service completions. 
Estimate Able's, Baker's, and Charlie's utilization (percentage Of time busy). 

26. Jiffy Car Wash is a five-stage operation that takes 2 ± 1 minutes for each stage. There is room for 6 cars 
to wait to begin the car wash. The car wash facility holds 5 cars, which move through the system in 
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order, one car not being able to move until the car ahead of it moves. Cars arrive every 2.5 ± 2 minutes 
for a wash. If the car cannot get into the system, it drives across the street to Speedy Car Wash. Estimate 
the batking rate per hour. That is, how many cars drive off per hour? Simulate for one 12-hour day. 

27. · Consider the three machines A, B, and C pictured below. Arrivals of parts and processing times are as 
indicated (times iri ininutes ). 

100 ± 10 

10 ± 6  

Machine A processes type I parts, machine B processes type II parts, and machine C processes both 
types of parts. All machines are subject to random breakdown: machine A every 400 ± 350 minutes with 
a down time of 1 5  ± 14 minutes, machine B every 200 ± 150 minutes with a downtime of 10 ± 8 min­
utes, and machine C almost never, so its downtime is ignored. Parts from machine A are processed at 
machine C as soon as possible, ahead of any type ll parts from machine B. When machine A breaks 
down, any part in it is sent to machine B and processed as soon as B becomes free, but processing begins 
over again, taking 100 ± 20 minutes. Again, type l parts from machine A are processed ahead of any 
parts waiting at B, but after any part currently being processed. When machine B breaks down, any part 
being processed resumes processing as soon as B becomes available. All machines handle one part at a 
time. Make two independent replications of the simulation. Each replication will consist of an 8-hour 
initialization phase to load the system with parts, followed by a 40-hour steady-state run. (Independent 
replications means that each run uses a different stream of random numbers.) Management is interested 
in the long-run throughput [i.e., the number of parts of each type (J and II) produced per 8-hour day], 
long-run utilization of each machine, and the existence of bottlenecks (long "lines" of waiting parts, as 
measured by the queue length at each machine). Report the output data in a table similar to the following: 

Run I Run 2 Average of2 Runs 

Utilization A 

Utilization B 

Etc. 

Include a brief statement summarizing the important results. 

28. Students are arriving at the college office at the rate of one every 6 ± 2 minutes to pay the fees. They 
hand over the forms to one of the two clerks available and it takes l 0 ± 2 minutes for the clerk to verify 
each form. Then the forms are sent to a single cashier who takes 6 ± l minute per form. Simulate the 
system for 100 hours and determine the 

(a) utilization of each clerk 
(b) utilization of the cashier 
(c) average time required to process a form (clerk + cashier) 

29. People arrive at a visa office at the rate of one every 15 ±10 minutes. There are three officers (A, B, and 
C) who scrutinize the applications for a duration of 30 ± 10 minutes. From the past records, it is found 
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that on an average, 25% of the applications are rejected. Visa applicants form a single line and go to the 
officer whoever becomes free. If all the three are free, customers always select officer B who is believed 
to be considerate. Simulate for 500 visa applicants and determine 

a) How many of them selected officer B ?  
b)  How many visa applications are rejected? 

30. People arrive at a microscope exhibit at a rate of one every 8 ± 2 minutes. Only one person can see the 
exhibit at a time. It takes 5 ± 2 minutes to see the exhibit A person can buy a "privilege" ticket for $1 
which gives him or her priority in line over those who are too cheap to spend the buck. Some 50% of the 
viewers are willing to do this, but they make their decision to do so only if one or more people are in line 
when they arrive. The exhibit is open continuously from 10:00 A.M. to 4:00 P.M. Simulate the operation 
of the system for one complete day. How much money is generated from the sale of privilege tickets? 

31. Two machines are available for drilling parts (A-type and B-type). A-type parts arrive at a rate of one 
every 10 ± 3 minutes, B-type parts at a rate of one every 3 ± 2 minutes. For B-type parts, workers choose 
an idle machine, or if both drills, the Dewey and the Truman, are busy, they choose a machine at random 
and stay with their choice. A-type parts must be drilled as soon as possible; therefore, if a machine is 
available, preferably the Dewey, it is used; otherwise the part goes to the head of the line for the Dewey 
drill. All jobs take 4 ± 3 minutes to complete. Simulate the completion of 100 A-type parts. Estimate the 
mean number of A-type parts waiting to be drilled. 

32. A computer center has two color printers. Students arrive at a rate of one every 8 ± 2 minutes to use the 
color printer. They can be interrupted by professors, who arrive at a rate of one every 12 ± 2 minutes. There 
is one systems analyst who can interrupt anyone, but students are interrupted before professors. The 
systems analyst spends 6 ± 4 minutes on the color printer and then returns in 20 ± 5 minutes. Professors 
and students spend 4 ± 2 minutes on the. color printer. If a person is interrupted, that person joins the 
head of the queue and resumes service as soon as possible. Simnlate for 50 professor-or-analyst jobs. 
Estimate the interruption rate per hour, and the mean length of the waiting line of students. 

33. Parts are machined on a drill press. They arrive at a rate of one every 5 ± 3 minutes, and it takes 3 ± 2 
minutes to machine them. Every 60 ± 60 minutes, a rush job arrives, which. takes 12 ± 3 minutes to 
complete. The rush job interrupts any nonrush job. When the regular job returns to the machine, it stays 
only for its remaining process time. Simulate the machining of 1 0  rush jobs. Estimate the mean system 
response time for each type of part (A response time is the total time that a part spends in the system.) 

34. Pull system is used to assemble items in an assembly line. There are two stations. Station I receives 
items at the rate of one every 12 ± 3 minutes. The operator in station I takes 14  ± 4 minutes, while the 
station II operator takes 1 5  ± 2 minutes. The space between the two stations can accommodate only 
three parts. Hence, if the space is full, the station I operator has to wait till the station H operator removes 
one part Simulate the system for 8 hours of operation. 

35. For Exercise 34, comment on the output of the model as to whether it will give the true utilization of the 
station I server. 

36. A patient arrives at the Emergency Room at Hello-Hospital about every 40 ± 19 minutes. Each patient 
will be treated by either Doctor Slipup or Doctor Gutcut. Twenty percent of the patients are classified 
as NIA (need immediate attention) and the test as CW (can wait). NIA patients are given the highest 
priority (3), see a doctor as soon as possible for 40 ± 37 minutes, but then iheir priority is reduced to 2 
and they wait until a doctor is free again, when they receive further treatment for 30 ± 25 minutes and 
are then discharged. CW patients initially receive the priority 1 and are treated (when their torn comes) 
for 15 ± 14 minutes; their priority is then increased to 2, they wait again until a doctor is free and receive 
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I 0 ± 8 minutes of final treatment, and are then discharged. Simulate for 20 days of continuous operation, 
24 hours per day. Precede this by a 2-day initialization period to load the system with patients. Report 
conditions at times 0 days, 2 days, and 22 days. Does a 2-day initialization appear long enough to load 
the system to a level reasonably close to steady-state conditions? (a) Measure the average and maximum 
queue length of NIA patients from anival to first seeing a doctor. What percent do not have to wait at 
all? Also tabulate and plot the distribution of this initial waiting time for NIA patients. What percent 
wait less than 5 minutes before seeing a doctor? (b) Tabulate and plot the distribution of tot,al time in 
system for all patients. Estimate the 90% quantile-that is, 90% of the patients spend less than x amount 
of time in the system. Estimate x. (c) Tabulate and plot the distribution of remaining time in system 
from after the first treatment to discharge, for all patients. Estimate the 90% quantile. (Note: Most 
simulation packages provide the facility to automatically tabulate the distribution of any specified 
variable.) 

37. People anive at a newspaper stand with an interanival time that is exponentially distributed with a mean 
of 0.5 minute. Fifty-five percent of the people buy just the morning paper, 25% buy the morning paper 
and a Wall Street Journal. The remainder buy only the Walt Street Journal. One clerk handles the Wall 
Street Journal sales, another clerk morning-paper sales. A person buying both goes to the Wall Street 
Journal clerk. The time it takes to serve a customer is normally distributed with a mean of 40 seconds 
and a standard deviation of 4 seconds for all transactions. Collect statistics on queues for each type of 
transaction. Suggest ways for making the system more efficient Simulate for 4 hours. 

38. Bernie remodels houses and makes room additions. The time it takes to finish a job is normally dis­
tributed with a mean of 1 7  elapsed days and a standard deviation of 3 days. Homeowners sign contracts 
for jobs at exponentially distributed intervals having a mean of 20 days. Bernie has only one crew. 
Estimate the mean waiting time (from signing the contract until work begins) for those jobs where a 
wait occurs. Also estimate the percentage of time the crew is idle. Simulate until I 00 jobs have been 
completed. 

39. In a certain factory, the too I crib is manned by a single clerk. There are two types of tool request and the 
time to process a tool request depends on the type of tool request as 

Type of Request 

1 
2 

Interarrival 1ime (Second) 

Exponential with mean 420 
- Exponential with mean 300 

Service 1ime (Second) 

Normal (300,75) 
Normal (100,40) 

The clerk has been·serving the mechanics on PCPS basis. Simulate the system for one day operation 
(8 hours). 

40. In Exercise 39, the management feels that the average number of waiting mechanics can be reduced if 
Type 2 requests are served ahead of 1)pe 1. Justify. 

41. The interarrival time for parts needing processing is given as follows: 

lnterarrival 1ime (Set;onds) 

10-20 
20-30 
30-40 

Proportion 

0.20 
0.30 
0.50 " 
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There are three types of parts: A, B, and C. The proportion of each part, and the mean and standard 
deviation of the normally distributed processing times are as follows: 

Part Type 

A 
B 
c 

Proportion 

0.5 
0.3 
0.2 

Mean 

30 seconds 
40 seconds 
50 seconds 

Standard Deviation 

3 seconds 
4 seconds 
7 seconds 

Each machine processes any type of part, one part at a time. Use simulation to compare one with two 
with three machines working in parallel. What criteria would be appropriate for such a comparison? 

42. Orders are received for one of four types of parts. The interarrival time between orders is exponentially 
distributed with a mean of 10 minutes. The table that follows shows the proportion of the parts by type 
and the time to fill each type of order by the single clerk. 

Part Type Percentage Service Time (Minutes) 

A 40 N(6.1,  1.3) 
B 30 N(9.1, 2.9) 
c 20 N(1 1.8, 4.1) 
D 1 0  N(l5. I, 4.5) 

Orders of types A and B are picked up immediately after they are filled, but orders of types C and D 
must wait 10 ± 5 minutes to be picked up. Tabulate the distribution of time to complete delivery for all 
orders combined. What proportion take less than 15 minutes? What proportion take less than 25 
minutes? Simulate for an 8-hour initialization period, followed by a 40-hour ron. Do not use any data 
collected in the 8-hour initialization period. 

43. Three independent widget-producing machines all require the same type of vital part, which needs 
frequent maintenance. To increase production it is decided to keep two spare parts on hand (for a total 
of 2 + 3 = 5 parts). After 2 hours of use, the part is removed from the machine and taken to a single 
technician, who can do the required maintenance in 30 ± 20 minutes. After maintenance, the part is 
placed in the pool of spare parts, to be put into the first machine that requires it The technician has other 
duties, namely, repairing other items which have a higher priority and which anive every 60 ± 20 · 
minutes requiring 15 ± 15 minutes to repair. Also, the technician takes a 15-minute break in each 2-hour 
time period. That is, the technician works 1 hour 45 minutes; takes off 15 minutes, works 1 hour 45 
minutes, takes off 15 minutes, and so on. (a) What are the model's initial conditions-that is, where are 
the parts at time O.and what is their condition? Are these conditions typical of "steady state"? (b) Make 
each replication of this experiment consist of an 8-hour initialization phase followed by a 40-hour 
data-collection phase. Make four statistically independent replications of -the experiment all in one 
computer ron (i.e.; make four rons with each using a different set of random nurnbers); (c) Estimate the 
mean number of busy machines and the proportion of time the technician is busy. (d) Parts are estimated 
to cost the company $50 per part per 8-hour day (regardless of how much they are in use). The cost of 
the technician is $20 per hour. A working machine produces widgets worth $100 for each hour of 
production. Develop an expression to represent total cost per hour which can be attributed to widget 
production (i.e., not all of the technician's time is due to widget production). Evatuate this expression, 
given the results of the simulation. 
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The Wee Willy Widget Shop overhauls and repairs all types of widgets. The shop consists of five work 
stations, and the flow of jobs through the shop is as depicted here: 

c 

Regular jobs arrive at station A at the rate of one every 15 ± 13 minutes. Rush jobs arrive every 4 ± 3 
hours and are given a higher priority except at station C, where they are put on a conveyor and sent 
through a cleaning and degreasing operation along with all other jobs. For jobs the first time through a 
station, processing and repair times are as follows: 

Number Processing and/or 
Machines Repair Times 

Station or Workers (Minutes) Description 

A 1 1 2 ± 21 Receiving clerk 
B 3 40 ± 20 Disassembly and parts 

replacement 
c 20 Degreaser 
D 4 50 ± 40 Reassembly and 

adjustments 
E 3 40 ± 5  Packing and shipping 

The times listed above hold for all jobs that follow one of the two sequences A � B � C � D � E or 
A �  B � D  � E. However, about 10% of the jobs coming out of station D are sent back to B for further 
work (which takes 30 ± 10 minutes) and then are sent to D and finally to E. The path of these jobs is as 
follows: 

1 00 ±  10 

10 ± 6 
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Every 2 hours, beginning 1 hour after opening, the degreasing station C shuts down for routine maintenance, 
which takes 10 ± I minute. However, this routine maintenance does not begin until the current widget, if 
any, has completed its processing. 

(a) Make three independent replications of the simulation model, where one replication equals an 8-hour 
simulation run, preceded by a 2-hour initialization run. The three sets of output represent three 
typical days. The main performance measure of interest is mean response time per job, where a 
response time is the total time a job spends in the shop. The shop is never empty in the morning, 
but the model will be empty without the initialization phase. So run the model for a 2-hour initial­
ization period and collect statistics from time 2 hours to time 10 hollrs. This "warm-up" peri()() will 
reduce the downward bias in the estimate of mean response time. Note that the 2-hour Waim-up is a 
device to load a simulation model to some more realistic level than empty. From each of the three 
independent replications, obtain an estimate of mean response time. Also obtain an overall estiml)te, 
the sample average of the three estimates. 

(b) Management is considering putting. one additional worker at the busiest station (A, B, D, or E). 
Would this significantly improve mean response time? 

(c) As an alternative to part (b), management is considering replacing machine C with a faster one that 
processes a widget in only 14 minutes. Would this significantly improve mean response time? 

45. A building-materials firm loads trucks with two pay loader tractors. The distribution of truck-loading 
times has been foqnd to be exponential with a mean loading_ time of 6 minutes. The truck interarrival 
time is exponentially distributed with an arrival rate of 16 per hour. The waiting time of a truck and 
driver is estimated to cost $50 per hour. How much (if any) could the firm save (per 10 hour day) if an 
overhead hopper system that would fill any truck in a constant time of 2 minutes is installed? (Assume 
that the present tractors could and would adequately service the conveyors loading the hoppers.) 

46. A milling-machine department has 10 machines. The runtime until failure occurs on a machine is expo­
nentially distributed with a mean of 20 hours. Repair times are uniformly distributed between 3 and 7 hours. 
Select an appropriate run length and appropriate initial conditions. 

(a) How many repair persons are needed to ensure that the mean number of machines running is greater 
than eight? 

(b) If there are two repair persons, estimate the number of machines that are either running or being served. 

47. Jobs arrive every 300 ± 30 seconds to be processed through a process that consists of four operations: 
OPlO requires 50 ± 20 seconds, OP20 requires 70 ± 25 seconds, OP30 requires 60 ± 15 seconds, OP40 
requires 90 ± 30 seconds. Simulate this process until 250 jobs are completed; then combine the four 
operations of the job into one with the distribution 240 ± 100 seconds and simulate the process with this 
distribution. Does the average time in the system change for the two alternatives? 

48. Ships arrive at a harbor at the rate of one every 60 ± 30 minutes. There are six berths to accommodate 
them. They also need'the service of a crane for unloading and only one crane is available. After unloading, 
10% of the ships stay for refuel before leaving, while the others leave immediately. Ships do not require 
the use of crane for refueling. It takes 7 ± 3 hours for unloading and 60 ± 20 minutes for refueling. 
Assume that the crane is subjected to routine maintenance once in every 100 hours, and it takes 5 ± 2 
hours to complete the maintenance. The crane's unloading operation is not interrupted for maintenance. 
The crane is taken for maintenance as early as possible after completing the current unloading activity. 
Simulate the system for unloading 500 ships that require refueling. 

49. Two types of jobs arrive to be processed on the same machine. Type 1 jobs arrive every 80 ± 30 seconds 
and require 35 ± 20 seconds for processing. TYpe 2 jobs arrive every 100 ± 40 seconds and require 
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20 ± 15 seconds for processing. Engineering has judged that there is excess capacity on the machine. 
For a simulation of 8 hours of operation of the system, find X for JYpe 3 jobs that arrive every X ±  0.4X 
seconds and require a time of 30 seconds on the machine so that the average number of jobs waiting to 
be processed is two or less. 

SO. Using spreadsheet software, generate 1000 uniformly distributed random values with mean 10 and 
spread 2. Plot these values with intervals of width 0.5 between 8 and 12. How close did the simulated 
set of values come to the expected number in each interval? 

51. Using a spreadsheet, generate 1000 exponentially distributed random values with a mean of 10. What is 
the maximum of the simulated values? What fraction of the generated values is less than the mean of 10? 
Plot a histogram of the generated. values. (Hint: If you cannot find an exponential generator in the 
spreadsheet you use, use the formula -10*LOG(1-R), where Ris a uniformly distributed random number 

· from 0 to 1 and LOG is the natural logarithm. The rationale for this formula is explained in Chapter 8 
on random-variate generators.) 

• ,(7:._1 

Part I I  

Mathematical and Statistical 
Models 
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5 
Statistical Models in Simulation 

In modeling real-world phenomena, there are few situations where the actions of the entities within the 
system under study can be predicted completely. The world the model-builder sees is probabilistic rather 
than deterministic. There are many causes of variation. The time it takes a repairperson to fix a broken 
machine is a function of the complexity of the breakdown, whether the repairperson brought the proper 
replacement parts and tools to the site, whether another repairperson asks for assistance during the course of 
the repair, whether the machine operator receives a lesson in preventive maintenance, and so on. To the 
model-bnilder, these variations appear to occur by chance and cannot be predicted. However, some statistical 
model might well describe the time to make a repair. 

An appropriate model can be developed by sampling the phenomenon of interest Then, through educated 
guesses·( or using software for the purpose), the model-builder would select a known distribution form, make 
an estimate of the parameter(s) of this distribution, and then test to see how good a fit has been obtained. 
Through continued efforts in the selection of an appropriate distribution form, a postulated model could be 
accepted. This multistep process is described in Chapter 9 . 

. Section 5.1 contains a review of probability terminology and concepts. Some typical applications of 
statistical models, or distribution forms, are given in Section 5.2. Then, a number of selected discrete and 
continuous distributions are discussed in Sections 5.3 and 5.4. The selected distributions are those that 
describe a wide variety of probabilistic events and. further, appear in different contexts in other chapters of 
this text Additional discussion about the distribution forms appearing in this chapter, and about distribution 
forms mentioned but not described. is available from a number of sources [Hines and Montgomery, 1990; 
Ross, 2002; Papoulis, 1990; Devore, 1999; Walpole and Myers, 2002; Law and Kelton, 2000]. Section 5.5 
describes the Poisson process and its relationship to the exponential distribution. Section 5.6 discusses 
empirical distributions. 
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5.1 RMEW OF TERMINOLOGY AND CONCEPTS 

1. Discrete random variables. Let X be a random variable. If the number of possible values of X is finite, or 
countably infinite, X is called a discrete random variable. The possible values of X may be listed as. xi' x2, • • • •  

In the finite case, the list tenninates; i n  the countably infinite case, the list continues indefinitely. 

Example 5.1 
The number of jobs arriving each week at a job shop is observed. The random variable of interest is. X, where 

X = number of jobs arriving each week 

The possible values of X are given by the range space of X, which is denoted by Rx. Here Rx = { 0, 1, 2, . . .  } . 
Let X be a discrete random variable. With each possible outcome X; in RX' a number p(x) = P(X = x) 

gives the probability that the random variable equals the value of xr The numbers p(x), i = I, 2, . . . , must sat­
isfy the following two conditions: 

1. p(x) � 0, for all i 
2. L.:. p(x; } = 1 

The collection of pairs (x., p(x)), i = 1, 2, . . .  is called the probability distribution of X, and p(x,) is called the 
probability mass function (prnf) of X. 

Example 5.2 
Consider the experiment of tossing a single die. Define X as the number of spots on the up face of the die 
after a toss. Then Rx = { 1, 2, 3, 4, 5, 6 } .  Assume the die is loaded so that the probability that a given face 
lands up is proportional to the number of spots showing. The discrete probability distribution for this random 
experiment is given by 

2 3 4 5 6 

1121 2/21 3/21 4/21 5/21 6/21 

The conditions stated earlier are satisfied-that is, p(xi) � 0 for i =  1, 2, . . .  , 6 and L.:1 p(x,) = 1121+ · · · +  
6/21 = 1. The distribution i s  shown graphically in Figure 5.1. 

2. Continuous random variables. If the range space Rx of the random variable X is an interval or a 
collection of intervals, X is called a continuous random variable. For a continuous random variable X, the 
probability that X lies in the interval [a, b] is given by 

P(a $ X $  b) = J: f(x) dx (5. 1 )  

The functionf(x) i s  called the probability density function (pdt) of the random variable X. The pdf satisfies 
the following conditions: 

a. f(x) � 0 for all x in Rx 

b. J f(x)dx = 1 
Rx 

c. f(x) = 0 if x is not in Rx 

As a result of Equation (5.1}, for any specified value x0, P(X = x0) = 0, because 

J�' f(x) dx = 0 
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p(x) 

6/21 

5/21 

4/21 1-

3/21 f-

2121 f-

1121 1- I 
2 3 4 5 6 X 

Figure 5.1 Probabilily ma�s function for loaded-die example. 

f(x) 

X 

Figure 5.2 Graphical interpretation of P(a < X <  b). 

P(X ;, x0) = 0 also means that the following equations hold: 

P(a $ X $  b) = P(a < X $  b) = P(a S X  < b) =  P(a < X <  b) 

1 33 

(5.2) 

The graphical interpretation of Equation (5.1)  is shown in Figure 5.2. The shaded area represents the 
probability that X lies in the interval [a, b]. 

Example 5.3 . . 
The life of a device used to inspect cracks in aircraft wings is given by X, a continuous random vanable 

assuming all values in the range x � 0. The pdf of the lifetime, in years, is as follows: l.!.[x/2 x � O  
f(x} =  2 ' 

0, otherwise 
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Figure 5.3 pdf for inspection-device life. 

This pdf is shown graphically in Figure 5.3. The random variable X is said to have an exponential distribution 
with mean 2 years. 

The probability that the life of the device is between 2 and 3 years is calculated as 

P(2 ;0; X :o; 3) =.!.J3 
e-'12dx 

2 2 

= -e-312 + e-1 = --0.223 + 0.368 = 0.145 

3. Cumulative distribution functiOn. The cumulative distribution function (cdf), denoted by F(x), measures 
the probability that the random variable X assumes a value less than or equal to x, that is, F(x) = P(X :o; x). 

If X is discrete, then 

· If X is continuous, then 

F(x) = LP(x, ) 
all r,<x 

F(x) = [f(t)dt 

Some properties of the cdf are listed here: 

a. F is a nondecreasing function. If a < b, then F(a) :o; F(b). 
b. lim,__,_,_ F(x) = l 
c. lim,_,_ F(x) = 0 

All probability questions about X can be answered in terms of the cdf. For example, 

P(a < X  ;O; b) = F(b) - F(a) for all a < b  

.\,, ... ·,�� ... ·. • ' :  

(5.3) 

(5.4) 

(5.5) L 
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For continuous distributions, not only does Equation (5.5) hold, but also the probabilities in Equation (5.2) 
are equal to F(b) - F(a). 

Example 5.4 
The die-tossing experiment described in Example 5.2 has a cdf given as follows: 

X (-oo, 1) [ I, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, oo) 
F(x) 0 l/21 3/21 6/21 10/21 15/21 21/21 

where [a, b) = (a :o; x < b ) .  The cdf for this example is shown graphically in Figure 5.4. 
If X is a discrete random variable with possible values x1, x2, . . .  , where x1 < x2 < . . .  , the cdf is a step 

function. The value of the cdf is constant in the interval [xH, x) and then takes a step, or jump, of size p(x) 
at xi' Thus, in Example 5.4, p(3) = 3/21,  which is the size of the step when x = 3.  

Example 5.5 
The cdf for the device described in Example 5.3 is given by 

The probability that the device will last for less than 2 years is given by 

P(O :o; X :o; 2) = F(2)-F(O) = F(2) = l-e-1 = 0.632 

F(x) 

Figure 5.4 cdf for looded�ie exomple. 

-� . . --. --.-. -
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The probability that the life of the device is between 2 and 3 years is calculated as 

as found in Example 5.3. 

P(2 S X S 3) = F(3)-F(2) = (1-[312 )-(1-e-' )  
= -e-312 +[1 =-0.223+0.368 = 0. 145 

4. Expectation. An important concept in probability theory is that of the expectation of a random variable. 
If X is a random variable, the expected value of X, denoted by E(X), for discrete and continuous variables is 
defined as follows: 

E(X) = I, x1 p (xi) if X is discrete (5.6) a11 i 
and 

E(X) = [ xj(x)dx if X is continuous (5.7) 

· The expected value E(X) of a random variable X is also referred to as the mean, Jl, or the first moment of X. 
The quantity E(X!'), n � I, is called the nth moment of X, and is computed as follows: 

E(X") ..;  I,x;p(x,) if X is discrete (5.8) 
ali i  

and 

E(X" ) = [ x" f(x)dx if X is  continuous (5.9) 

The variance of a random variable, X, denoted by V(X) or var(X) or a2, is defined by 

V(X) = E[(X - E[X])2] 

A useful identity in computing V(X) is given by 

V(X) = E(X2) - [E(X)]l (5. 10) 

The mean E(X) is a measure of the central tendency of a random variable. The variance of X measures 
the expected value of the squared difference between the random variable and its mean. Thus, the variance, 
V(X), is a measure of the spread or variation of the possible values of X around the mean E(X). The standard 
deviation, a, is defined to be the square ro.ot of the variance, a2• The mean, E(X), and the standard deviation, 
a =  �V(X), are expressed in the same units. 

Example 5.6 
The mean. and variance of the die-tossing experirnen(described in Example 5.2 are computed as follows: 

E(X) = l(.!..) + 2 (2.) + :· ·+6 (�) = 91 = 4.33 21 21 21 21 

To compute V(X) from Equation (5. 10), first compute E(X2) from Equation (5.8) as follows: 

E(X ) = 1  - + 2  - +· · ·+6  - = 21 2 2 ( 1 ) 2 ( 2 ) 2 ( 6 ) 21 21 . . 21 
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Thus, 

V(X) = 21-(�: J = 21 - 18.78 = 2.22 

and 

a = �V(X) = 1 .49 

Example 5.7 
The mean and variance of the life of the device described in Example 5.3 are computed as follows: 

E(X) = �r xe-'12dx = -xe-'12[ + r e-'12dx 

= 0+-e-'12 = 2 years I I� 112 0 

To compute V(X) from Equation (5.10), first compute E(X2) from Eq�ation (5.9) as follows: 

Thus, 

giving 

V(X) = 8 - 22 = 4 years2 

and 

a =  �V(X) = 2 years 
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With a mean life of 2 years and a standard deviation of 2 years, most analysts would conclude that actual 
lifetimes, X, have a fairly large variability. 

5. The mode. The mode is used in describing several statistical models that appear in this chapter. In the 
discrete case, the mode is the value of the random variable that occurs most frequently. In the continuous 
case, the mode is the value at which the pdf is maximized. The mode might not be unique; if the modal value 
occurs at two values of the random variable, the distribution is said to be bimodal. 

5.2 USEFUL STATISTICAL MODELS 

Numerous situations arise in the conduct of a simulation where an investigator may choose to introduce prob­
abilistic events. In Chapter 2, queueing, inventory, and reliability examples were given. In a queueing system, 
interarrival arid service times are often probabilistic. In an inventory model, the time between demands and 
the lead times (time between placing and receiving an order) can be probabilistic. In a reliability model, the 
time to failure could be probabilistic. In each of these instances, the simulation analyst desires to generate 
random events and to use a known statistical model if the underlying distribution can be found. In the following 
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paragraphs, statistical models appropriate to these application areas will be discussed. Additionally, statistical 
models useful in the case of limited data are mentioned. 

1. Queueing systems. In Chapter 2, examples of waiting-line problems were given. In Chapters 2, 3, and 
4, these problems were solved via simulation. In the queueing examples, interarrival- and service-time patterns 
were given. In these examples, the times between arrivals and the service times were always probabilistic, as is 
usually the case. However, it is possible to have a constant interarrival time (as in the case of a line moving at 
a constant speed in the assembly of an automobile), or a constant service time (as in the case of robotized spot 
welding on the same assembly line). The following example illustrates how probabilistic interarrival times 
might occur. 

Example 5.8 
Mechanics arrive at a centralized tool crib as shown in Table 5. 1 .  Attendants check in and cheek out the 
requested tools to the mechanics. The collection of data begins at 10:00 A.M. and continues until 20 differ­
ent interarrival times are recorded. Rather than record the actual time of day, the absolute time from a given 
origin could have been computed. Thus, the first mechanic could have arrived at time zero, the second 
mechanic at time 7: 1 3  (7 minutes, 13 seconds), and so on. 

Example 5.9 
Another way of presenting interarrival data is to find the number of arrivals per time period. Here, such 
arrivals occur over approximately I 112 hours; it is convenient to.look at l 0-minute time intervals for the first 
20 mechanics. That is, in the first 10-minute time period, one arrival occurred at 1 0:05::03. In the second 
time period, two mechanics arrived, and so on. The results are summarized in Table 5.2. This data could then 
be plotted in a histogram, as shown in Figure 5.5. 

Table 5.1 Arrival Data 

Arrival Arrival lnterarrival Time 
Number (Hour: Minutes: :Seconds) (Minutes::Seconds) 

10:05::03 
2 10:12::16 7:: 13  
3 10:15::48 3::32 
4 10:24::27 8::39 
5 10:32:: 19 7::52 
6 10:35::43 3::24 
7 10:39::51 4::08 
8 10:40::30 0::39 
9 10;41 :: 17  0::47 

10 10:44: : 12 2::55 
l l  10:45::47 1::35 
12  10:50::47 5::00 
13 1 1 :00::05 9:: 18  
14 1 1 :04::58 4::53 
15 1 1:06::12 1:: 14 
16 1 1: 1 1::23 5:: 1 1  
17  1 1: 16::31 5::08 
18  1 1 : 17:: 1 8  0::47 
19 1 1:21::26 4::08 
20 1 1:24::43 3:: 17  
2 1  1 1:3 1:: 19 6::36 
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Table 5.2 Arrivals in Successive Time Periods 

Time Number of Time Number of 
Period Arrivals Period Arrivals 

I 1 6 I 
2 2 7 3 
3 1 8 3 
4 3 9 2 
5 4 

Number of arrivals in 1 0-minute period 
figure 5.5 Histogram of arrivals per time period. 

The distribution of time between arrivals and the distribution of the number of arrivals per time period 
are important in the simulation of waiting-line systems. "Arrivals" occur in numerous ways; as machine 
breakdowns, as jobs coming into a jobshop, as units being assembled on a line, as orders to a warehouse, as 
data packets to a computer system, as calls to a call center, and so on. 

Service times could be constant or probabilistic. If service times are completely random, the exponen­
tial distribution is often used for simulation purposes; however, there are several other possibilities. It could 
happen that the service times are constant, but some random variability causes fluctuations in either a posi­
tive or ·a negative way. For example, the time it takes for a lathe to traverse a tO-centimeter shaft should 
always be the same. However, the material could have slight differences in hardness or the tool might wear; 
either event could cause different processing times. In these cases, the normal distribution might describe the 
service time. 

· A special case occurs when the phenomenon of interest seems to follow the normal probability distri­
bution, but the random variable is restricted to be greater than or less than a certain value. In this case, the 
truncated normal distribution can be utilized 

The gamma and Weibull distributions are also used to model interarrival and service times. (Actually, 
the exponential distribution i s  a special case of both the gamma and the Weibull distributions.) The 
differences between the exponential, gamma, and Weibull distributions involve the location of the modes of 
the pilfs and the shapes of their tails for large and small times. The exponential distribution has its mode at the 
origin, but the gamma and Weibull distributions have their modes at some point P-0) that is a function of 
the parameter values selected. The tail of the gamma distribution is long, like an exponential distribution; the 
tail of the Weibull distribution can decline more rapidly or less rapidly than that of an exponential distribution. 
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In practice, this means that, if there are more large service times than an exponential distribution can account 
for, a Wei bull distribution might provide a better model of these service times. 

2. /nventory and supply-cluJin systems. In realistic inventory and supply-chain systems, there are at least 
three random variables: (I) the number of units demanded per order or per time period, (2) the time between 
dem�ds, an� (3) the lead time. (11le lead time is defined as the time between the placing of an order for 
stocking the mventory system and the receipt of that order.) In very simple mathematical models of inven­
tory systems, demand is a constant over time, and lead time is zero, or a constant. However, in most real­
world cases, and, hence, in simulation models, demand occurs randomly in time, and the number of unit� 
demanded each time a demand occurs is also random, as illustrated by Figure 5. 6. 

Distributional assumptions for demand and lead time in inventory theory texts are usually based on 
�athe��cal

_ 
tractability, but those assumptions could be invalid in a realistic context. In practice, the lead­

llme d
_
1strtbu11on �an oft:�n be fitted fairly well by a gamma distribution [Hadley and Whitin, 1963]. Unlike 

analytiC models, s1mulatton models can accommodate whatever assumptions appear most reasonable. 
. The ge�metric, Poisson, and negative binomial distributions provide a range of distribution shapes that 

s�sfy a �anety of de�nd �Items. The geometric distribution, which is a special case of the negative bino­
nual, has_ Its mode a� um�, g1v_en �t �t l�t o�e demand has occurred. If demand data are characterized by 
a long tail, the negative bmonual distrtbullon nught be appropriate. The Poisson distribution is often used to 
model demand because it is simple, it is extensively tabulated, and it is well known. The tail of the Poisson 
di�tributio� is gen�rally shorte� than that of

_ 
the negative binomial, which means that fewer large demands 

wdl occur If a Po1sson model IS used than if a negative binomial distribution is used (assuming that both 
models have the same mean demand). 

3. Reliability and maintainability. TiJ,ne to failure has been modeled with numerous distributions includ­
ing the exponential, gamma, and Weilbuli. If only random failures occur, the time-to-failure distributlon may 
be modeled as exponential. The gamma distribution arises from modeling standby redundancy, where each 
comp?nent has. an expon�ntial time

_ 
to failure. The Weibull distribution has been extensively used to repre­

se�t lime to frulure, and 1ts nal1lre IS such that it can be made to approximate many observed phenomena 
[Hmes and Montgomery, 1990]. When there are a number of components in a system and failure is due to 

12 1-

2 I I  I I I I 
2 3 4 5 

Time (weeks) 

r�gure 5.6 Random demands in time. 
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the most serious of a large number of defects, or possible defects, th� Weibull distribution seems to do 
particularly well as a model. In sil1lations where most failures are due to wear, the normal distribution might 
very well be appropriate [Hines and Montgomery, 1990]. The lognormal distribution has been found to be 
applicable in describing time to failure for some types of components. 

4. Limited data. In many instances, simulations begin before data collection has been completed. There 
are three distributions that have application to incomplete or limited data. These are the uniform, triangular, 
and beta distributions. The uniform distribution can be used when an interarrival or service time is known to 
be random, but no information is immediately available about the distribution [Gordon, 1975]. However, 
there are those who do not favor using the uniform distribution, calling it the "distribution of maximum igno­
rance" because it is not necessary to specify more than the continuous interval in which the random variable 
may occur. The triangular distribution can be used when assumptions are made about the minimum. maxi­
mum, and modal values of the random variable. Finally, the beta distribution provides a variety of distribu­
tional forms on the unit interval, ones that, with appropriate modification, can be shifted to any desired 
interval. The uniform distribution is a special case of the beta distribution. Pegden, Shannon, and Sadowski 
[ 1995] discuss the subject of limited data in some detail, and we include further discussion in Chapter 9. 

5. Other distributions. Several other distributions may be useful in discrete-system simulation. The 
Bernoulli and binomial distributions are two discrete distributions which might describe phenomena of interest 
The hyperexponential distribution is similar to the exponential distribution, but its greater variability might 
make it useful in certain instances. 

5.3 DISCRETE DISTRIBUTIONS 

Discrete random variables are used to describe random phenomena in which only integer values can occur. 
Numerous examples were given in Section 5.2-for example, demands for inventory items. Four distribu­
tions are described in the following subsections. 1. Bernoulli trials and the Bernoulli distribution. Consider an experiment consisting of n trials, each of 
which can be a success or a failure. Let � = I if the jth experiment resulted in a success, and let X. = 0 if 
the jth experiment resulted in a failure. The n Bernoulli trials are called a Bernoulli process if the tdals are 
independent, each trial has only two possible outcomes (success or failure), and the probability of a success 
remains constant from trial to trial. Thus, 

and 

lp, .x1 = 1, j = I, 2, . . . , n 

p1(x)= p(x) 1 - p = q, .xi = O, j =  1, 2, . . . , n 

0, otherwise 
(5. 1 1) 

For one trial, the distribution given in Equation (5. 1 1 )  is called the Bernoulli distribution. The mean and 
variance of Xi are calculated as follows: 

E(�) = O · q + l · p =p 
and 

V(X) = £(02 · q) + (l2  • p)] -p2 =p(l -p) 
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2. Binomial distribution. The random variable X that denotes the number of successes in n Bernoulli 
trials has a binomlal distribution given by p(x), where 

l(n) p' tf-', x = 0, 1, 2, . . .  , n p(x) = x 
0, otherwise 

(5.12) 

Equation (5.12) is motivated by computing the probability of a particular outcome with all the successes, Cl\Ch 
denoted by S, occurring in the first x trials, followed by the n - x failures, each denoted by an F-that is, 

where q = I - p. There are . 

x oftbese n-x of these �� 
P(SSS . . . . . . .. • .  SS FF ........• . FF) = p'q•-• 

(
n

) n l  
x 

= x!(n -x)l 

outcomes having the required number of S's and F's. Therefore, Equation (5.12) results. An easy approach 
to calculating the mean and variance of the binomial distribution is to consider X as a sum of n independent 
Bernoulli random variables, each with mean p and variance p(1 - p) = pq. Then, 

and the mean, E(X), is given by 

E(X) = P + p + . . .  + p np (5.13) 
and the variance V(X) is given by 

V(X) = pq + pq + · · · + pq = npq (5.14) 

Example 5.10 
A production process manufactures computer chips on the average at 2% nonconforming. Evety day, a random 
sample of size 50 is taken from the process. If the sample contains more than two nonconforming chips, the 
process will be stopped. Compute the probability that the process is stopped by the sampling scheme. 

Consider the sampling process as n = 50 Bernoulli trials, each with p 0.02; then the total number of 
nonconforming chips in the sample, X, would have a binomial distribution given by 

· j(50) x 50-x 
p(x) = x (0.02) (0.98) , x = 0, 1, 2, . . .  , 50 

0, otherwise 

It is much easier to compute the right-hand side of the following identity to compute the probability that 
more than two nonconforming chips are found in a sample: 

P(X > 2) = 1 - P(X � 2) 

The probability P(X � 2) is calculated from 
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2 (50) P(X � 2)= L (0.02)'(0.98)50-x 
x.O X 

= (0.98)50 + 50(0.02)(0.98)49 + 1225(0.02)2(0.98)48 
= 0.92 
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Thus, the probability that the production process is stopped on any day, based on the sampling process, is 
approximately 0.08. The mean number of nonconforming chips in a random sample of size 50 is given by 

and the variance is given by 

E(X) = np = 50(0.02) 1 

V(X) = npq = 50(0.02)(0.98) 0.98 

The cdf for the binomial distribution has been tabulated by Banks and Heikes [1984] and others. The tables 
decrease the effort considerably for computing probabilities such as P(a < X �  b). Under certain conditions 
on n and p, both the Poisson distribution and the normal distribution may be used to approximate the bino­
mial distribution [Hines and Montgomety, 1990]. 

3. Geometric and Negative Binomial distributions. The geometric distribution is related to a sequence 
of Bernoulli trials; the random variable of interest, X, is defined to be the number of trials to achieve the first 
success. The distribution of X is given by 

p(x)= {q'-'p, x = 1, 2, . . . 
0, otherwise 

(5.15) 

The event {X x} occurs when there are x - I failures followed by a success. Each of the failures has an 
associated probability of q = 1 - p, and each success has probability p. Thus, 

The mean and variance are given by 

and 

P(FFF · · · FS) = q•-• p 

l E(X) = -
P 

V(X) = .!L  
l 

(5.16) 

(5. 17) 

· More generally, the negative binomial distribution is the distribution of the number of trials until the kth 
success, for k =  I, 2, . . . .  If Y has a negative binomial distribution with parameters p and k, then the distribu­
tion of Y is given by 

l(y - 1) y-k k - k k 1 k
' 

2 q p ' Y- , + , + , . . . p(y) =  k - I  

0, otherwise 
(5. 1 8) 

Because we can think of the negative binomial random variable Y as the sum of k independent geometric 
.random variables, it is easy to s� that E(Y) kip and V(X) = kqlp'l. 
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Example 5.11 
Forty percent of the assembled ink-jet printers are rejected at the inspection station. Find the probability that 
the first acceptable ink-jet printer is the third one inspected. Considering each inspection as a Bernoulli trial 
with q = 0.4 and p 0.6 yields 

p(3) = 0.42(0.6) = 0.096 

Thus., in only about 10% of the cases is the first acceptable printer the third one from any arbitniry starting 
point To determine the probability that the third printer inspected is the second acceptable printer, we use 
the negative binomial distribution (5.18), 

4. Poisson distribution. The Poisson distribution describes many random processes quite well and is 
mathematically quite simple. The Poisson distribution was introduced in 1837 by S. D. Poisson in a book 
concerning criminal and civil justice matters. (The title of this rather old text is "Recherches sur 1a proba­
bilite des jugements en matiere criminelle et en matiere civile." Evidently, the rumor handed down through 
generations of probability theo� professors concerning the o�gin of the Poisson distribution is just not true. 
Rumor has it that the Poisson distribution was frrst used to model deaths from the kicks of horses in the 
Prussian Army.) 

The Poisson probability mass function is given by !e·aax 
p(x) = --;!• 

- 0,  

x = O, ! ,  . . .  
(5.19) 

otherwise 

where a> 0. One of the important properties of the Poisson distribution is that the mean and variance are 
both equal to a,. that is, 

E(X) = a = V(X) 

The cumulative distribution function is given by 

(5.20) 

The pmf and cdf for a Poisson distribution with a =  2 are shown in Figure 5.7. A tabulation of the cdf is 
given in Table A.4. 

Exam:ple 5.12 
A computer repair person is "beeped" each time there is a call for service. The number of beeps per hour is 
known to occur in accordance with a Poisson distribotion with a mean of a =  2 per hour. The probability of 
three beeps in the next hour is given by Equation {5. 19) with x = 3, as follows: 

· 

p(3) 
= e-zz3 (0.135) (8) 

0.18 
3! 6 
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p(x) 

0.30 i-

0.25 i-

0.20 f-

0.15 i-

0.10 

0.05 

0 2 3 
I I 

4 5 6 X 
(a) 

F(x) 

Figure 5.7 Poisson pmf and cdf. 

This same result can be read from the left side of Figure 5. 7 or from Table A.4 by computing 

F(3) - F(2) = 0.857 0.677 = 0.1 8  

Example 5.13 
In Example 5.12, find the probability of two or more beeps in a 1-hour period. 

P(2 or moi:e) = l - p(O) -p(1) = 1 - F(1) 
l - 0.406 = 0.594 

X 

The cumulative probability, F{l ), can be read from the right side of Figure 5.7 or from Table A.4 . .  

Example 5.14 

145 

The lead-time demand in an inventory system is the accumulation of demand for an item from the point at 
which an order is placed until the order is received-that is, 

(5.21 )  

where L i s  the lead-time demand, D ., is the demand during the ith time period, and T is the number of time 
periods during the lead time. Both D; and T may be random variables. 

An inventory manager desires that the probability of a stockout not exceed a certain fraction. during the 
lead time. For example, it may be stated that the probability of a shortage during the lead tirne not exceed 5%. 

lf the lead-time demand is Poisson distributed, the determination of the reorder point is great!.y facilitated. 
The reorder point is the level of inventory at which a new order is placed. 
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Assume that the lead-time demand is Poisson distributed with a mean of a =  10 units and that 95% 
protection from a stockout is desired. Thus, it is desired to find the smallest value of x such that the proba­
bility that the lead-time demand does not exceed x is greater than or equal to 0.95. Using Equation (5.20) 
requires finding the smallest x such that 

F(x) = � ['0 lO
' � 0.95 """ · r  i=O l .  

The desired result occurs atx =  15, which can be found by using Thble A.4 or by computation of p(O), p(1), . . . .  

• ' 5.4 CONDNUOUS DISTRIBUDONS 

Continuous random variables can be used to describe random phenomena in which the variable of interest 
can take on any value in some interval-for example, the time to failure or the length of a rod. Eight distri­
butions are described in the following subsections. 

1. Uniform distribution. A random variable X is uniformly distributed on the interval (a, b) if its pdf is 
given by 

· 

The cdf is given by 

Note that 

f(x) = jL a <;; x 5, b  

0, otherwise 

r x < a  
x-a a 5, x < b  F(x) =  - , b-a 
1, x � b  

x -x P(x1 < X <  x2) =  F(x2 ) - F(x1 ) = -2--1 
b-a 

(5.22) 

(5.23) 

is proportional to the length of the interval, for all x1 and x2 satisfying a 5, x, < x2 5 b. The mean and variance 
of the distribution are given by 

and 

E(X) =  a+b 
2 

V(X) = (b-a)2 
12 

The pdf and edf when a I and b = 6 are shown in Figure 5.8. 

(5.24) 

(5.25) 

The uniform distribution plays a vital role in simulation. Random numbers, uniformly distributed between 
zero and I, provide the means to· generate random events. Numerous · methods for generating uniformly 
distributed random numbers have been devised; soroe will be discussed in Chapter 7. Uniformly distributed 
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f(x) F(x) 

0.2 

0.1 

X X 

Figure 5.8 pdf and cdf for uniform distribution. 

random numbers are then used to generate samples of random variates from all other distributions, as will be 
discussed in Chapter 8. 

· 

Example S.lS 

A simulation of a warehouse operation is being developed. About every 3 minutes, a call comes for a fork­
lift truck operator to proceed to a certain location. An initial assumption is made that the time between calls 
(arrivals) is uniformly distributed with a mean of 3 minutes. By Equation (5.25), the uniform distribution 
with a mean of 3 and the greatest possible variability would have pararoeter values of a =  0 and b = 6 minutes. 
With very limited data (such as a mean of approximately 3 minutes) plus the knowledge that the quantity of 
interest is variable in a random fashion, the uniform distribution with greatest variance can be assumed, at 
least until more data are available. 

Example S.16 

A bus arrives every 20 minutes at a specified stop beginning at 6:40 A.M. and continuing until 8:40 A.M. A cer­
tain passenger does not know the schedule, but arrives randomly (uniformly distributed) between 7:00A.M. and 
7:30 A.M. every moroing. What is the probability that the passenger waits more than 5 minutes for a bus? · 

The passenger has to wait more than S minutes only if the arrival time is between 7:00 A.M. and 7:15 A.M. 
or between 7:20 A.M. and 7:30 A.M. If X is a random variable that denotes the number of minutes past 7:00A.M. 
that the passenger arrives, the desired probability is 

P(O < X <  IS) + P(20 < X <  30) 

Now, X is a uniform random variable on (0,30). Therefore, the desired probability is given by 

15 20 5 
F(l5)+ F(30) - F(20) = 

30 
+ 1 -

30 
= 6 

i. Exponential distribution. A random variable X is said to be exponentially distrib�ted with parameter 
A >  0 if its pdf is given by 

j(x) = {Ae-.u, x � O  
0, elsewhere 

The density function is shown in Figures 5.9 and 5.3. Figure 5.9 also. shows the cdf. 

(5.26) 

The exponential distribution has been used to model interarrival times when arrivais are completely 
random and to model service times that are highly variable. In these instances, A is a rate: arrivals per hour 
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f(x) 

X 

Figure 5.9 Exponential density function and cumulative distribution function. 

/(x) 

2.8 3.0 X 

Figure 5.1 0  pdfs for several exponential distributions. 

or services per minute. The exponential distribution has also been used to model the lifetime of a component 
that fails catastrophically (instantaneously), such as a light bulb; then A is the failur� rate. . Several different exponential pdf's are shown in Figure 5.10. The value of the mtercept on the vertical 
axis is always equal to the value of A. Note also that all pdf's eventually intersect. (Why?) 

The exponential distribution has mean and valiance given by 

I 1 
E(X) = l and V(X) "' 

ll
2 (5.27) 

Thus, the mean and standard deviation are equal. The cdf can be exhibited by integrating Equation (5.26) to obtain 

. (5.28) 
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Example 5.17 
Suppose that the life of an industrial lamp, in thousands of hours, is exponentially distributed with failure 
rate A II 3 (one failure every 3000 hours, on the average). The probability that the lamp will last longer 
than its mean life, 3000 hours, is given by P(X > 3) = 1 - P(X :::; 3) = I - F(3). Equation (5.28)is used to 
compute F(3), obtaining 

P(X > 3) 1 - (1 - e-313 ) = e-1 = 0.368 

Regardless of the value of A, this result will always be the same! That is, the probabilitY that an exponential 
random variable is greater than its mean is 0.368, for any value of ll. 

The probability that the industrial lamp will last between 2000 and 3000 hours is computed as 

P(2 :::; X :;; 3) = F(3) - F(2) 

Again, from the cdf given by Equation (5.28), 

F(3)- F(2) = (1 - e-313) - (1 -e-213) 
= -0.368 + 0.5 1 3 =  0.145 

One of the most important properties of the exponential distribution is that it is "memoryless," which 
means that, for all s � 0 and t � 0, 

P(X >  s + tiX > s) = P(X >  t) (5.29) 

Let X represent the life of a component (a battery, light bulb, computer chip, laser, etc.) and assume that 
X is exponentially distributed. Equation (5.29) states that the probability that the component lives for at least 
s + t hours, given that it has survived s hours, is the same as the initial probability that it lives for at least t hours. 
If the component is alive at time s (if X >  s), then the distribution of the remaining amount of time that it 
survives, namely X-s, is the same as the original distribution of a new component That is, the component does 
not ''remember'' that it has already been in use for a time s. A used component is as good as new. 

That Equation (5.29) holds is shown by examining the conditional probability 

P(X > s+t j X > s) 
P(X > s+ t) 

P(X > s) 
(5.30) 

Equation (5.28) can be used to determine the numerator and denominator of Equation (5.30), yielding 

P(X > s+t j X > s) =  
e·l(s+t) 

= P(X > t) 

Example 5.18 . 
Find the probability that the industrial lamp in Exiunple 5.17 will last for another 1000 hours, given that it 
is operating after 2500 hours. This determination can be found using Equations (5.29) and (5.28), as follows: 

. P(X > 3.5 I X  > 2.5) = P(X > 1) = e�113 = 0.717 

Example 5.18 illustrates the menwryless property-namely, that a used component that follows an 
exponential distribution is  as  good as a new component. The probability that a new component will have 
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a life r than 1000 hours is also equal to 0.717. Stated in general, suppose that a component which
_
has a 

lifeti: follows the exponential distribution with parameter )l is observed and fo�nd � be operatmg �� 
arb. tun' Then the distribution of the remaining lifetime is also exponential With parameter . an 1trary e. • . th 1 ro rty (The geo-The exponential distribution is the only continuous distribution that has e memory ess P pe · 

metric distribution is the only discrete distribution that possesses the me�or_Yle�s pr
_
operty.) 

fi . 
3. Gamma distribution. A function used in defining the gamma distribution 1s the gamma unction, 

which is defined for all P > 0 as 

By integrating Equation (5.31) by parts, it can be shown that 

f({j) = ({j- 1)f({j- 1)  

If  p is an integer, then, by using f(l) = 1 and applying Equation (5.32), i t  can be seen that 

r<P> = <P - 1)! 

(5.3 I) 

(5.32) 

(5.33) 

The gamma function can be thought of as a generalization of the factorial notion to all positive numbers, not 
just integers. 

0 'f • pdf · · b A random variable X is gamma distributed with parameters P and 1 Its IS pven Y l PO ({jOx)f!-t e·fJ9•, x > 0 
f(x) = nm 

o, otherwise 

(5.34) 

p is called the shape parameter, an? (J �s called the scale para.rneter. Several gamma distributions for 0 
and various values of P are shown m F1gure 5.10a. 

Figure 5.10a 
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The mean and variance of the gamma distribution are given by 

and 

The cdf of X is given by 

I E(X) = -
0 

{I -r {jO ({jet)fJ-I e -fJ9< dt, x > 0 F(x)= • f(p) 
� 

. 

x � O  

151 

(5.35) 

(5.36) 

(5.37) 

When P is an integer, the gamma distribution is related to the exponential distribution in· the following manner: If the random variable, X, is the sum of P independent, exponentially distributed random variables, each with parameter {jO, then X has a gamma distribution with parameters jJ and 0. Thus, if 

where the pdf of� is given by 

g(x.) = {({j(J)e -fJ9•, ,  x 2: 0  
1 0, otherwise 

(5.38) 

and the JS are mutually independent, then X has the pdf given in Equation (5.34). Note that, when p = 1, an exponential distribution results. This result follows from Equation (5.38) or from letting p = l in Equation (5 .34). 4. Erlang distribution. The pdf given by Equation (5.34) is often referred to as the Erlang distribution of order (or number of phases) k when P = k, an integer. Erlang was a Danish telephone engineer who was an early developer of queueing theory. The Erlang distribution could arise in the following context: Consider a series of k stations that must be passed through in order to complete the servicing of a customer. An. addi­tional customer cannot enter the first station until the customer in process has negotiated all the stations. Each station has an exponential distribution of serviee time with parameter kO. Equations (5.35) .and (5.36), which state the mean and variance of a gamma distribution, are . valid regardless of the value of p. However, when P= k, an integer, Equation (5.38) ruay be used to derive the mean of the distribution in a fairly strilight­forward manner. The expected value of the sum of random variables is the sum of the expected value of each random variable. Thus, · 

The expected value of each of the exponentially distributed � is given by IlkO. Thus, 
. 

l l 1 1 E(X) = -+-+ . .  · + - = -
kO kO k O  0 

If the random variables X. are independent, the variance of their sum is the sum of the variances, or } 

...... , , �<· lW' • 
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When J3 = k, a positive integer, the cdf given by Equation (5.37) may be integrated by parts, giving l H e-<e'(kOxi 1-I, . , x > O  F(x) = •=o z !  
0, x .$ 0  

(5.39) 

which is the sum of Poisson terms with mean a= kOx. Tables of the cumulative Poisson distribution may be 
used to evaluate the cdfwhen the shape parameter is an integer. 

Example 5.19 
A college professor of electrical engineering is leaving home for the summer, but would like to have a light 
burning at all times to discourage burglars. The professor rigs up a device that will hold two light bulbs. The 
device will switch the current to the second bulb if the first bulb fails. The box in which the light bulbs are 
packaged says, "Average life 1000 hours, exponentially distributed." The professor will be gone 90 days 
(2160 hours). What is the probability that a light will be burning when' the summer is over and the professor 
returns? 

The probability that the system will operate at least x hours is called the reliability function R(x): 
R(x) = l - F(x) 

In this case, the total system lifetime is given by Equation (5.38) with J3 = k = 2 bulbs and kO = 1/1000 per 
hour, so 6= 1/2000 per hour. Thus, F(2l60) can be determined from Equation {5.39) as follows: 

' e-<2l(li:ZOOOl(2160l[(2)(l/2000)(2160)]' F(2160) = 1 -L.:..__ __ �::.;.;...:::..�=� 
i=O i! 

= l-e·2.l6� (2.16)' = 0.636 .t... ., i=O l -

Therefore, the chances are about 36% that a light will be burning when the  professor returns. 

Example 5.20 
A medical examination is given in three stages by a physician. Each stage is exponentially distributed with 
a mean service time of 20 minutes. Find the probability that the exam will take 50 minutes or less. Also, 
compute the expected length of the exam. In this case, k = 3 stages and k e = 1120, so that e = 1/60 per minute. 
Thus, F(50) can be calculated from Equation (5.39) as follows: 

2 e-<JXII60X�l[(3){1!60)(50)]' F(SO)= l-I, .1 i=O l .  

The cumulative Poisson distribution, shown in Table A.4, can be used to calculate that 

F(50) = 1 - 0.543 = 0.457 

The probability is 0.457 that the exam will take 50 minutes or less. The expected length of the exam is found 
from Equation (5.35): 

· · · 

E(X) = 1 = -1- = 60 minutes 
(} 1!60 
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� a�di�n •
. 
the_ variance of X is V(X) = llj382 = 1200 minutes2-incidentally, the mode of the Erlang 

distribution 1s gtven by 

Thus, the modal value in this example is 

k-1  Mode = ­
kO 

3-1 Mode = 3(1/60) = 40 minutes 

(5.40) 

. �· N_o�� distribution. A random variable X with mean -oo < p, < co and variance az � 0 has a n�rmal 
distribution if 1t has the pdf 

1 ·r l (X.-p,)2] · f(x) = 
a..fi'1& exp -2 -;;- , _, < x < co  (5.41) 

�: normal distribution is u�ed so o�en that the �o�on X- N(p,, al) has been adopted by many authors to 
lndtca«: th�t the random vanable X ts normally distributed with mean p, and variance q2. The normal pdf is 
shown m F1gure 5 . 1 1 .  

Some of  the special properties of the normal distribution are listed here: 

1. �m·:- f(x) � O
_ 
and lim,..,w f(x) = 0; the value of j(x) approaches .zero as x approaches negative 

infinity and, similarly, as x approaches positive infinity. 
2. j(p.-x) = j(p. + x); the pdf is symmetric about p, . 
3. The maximum value of the pdf occurs at x = p,; the mean and mode are equal. 

The cdf for the normal distnbution is given by 

F(x)= P(X !. x)=  r,;-:exp -- - dt J• l [ 1 (t-p,)2] 
- av2n 2 a (5.42) 

' . 
It is �ot possible to evaluate Equation (5.42) in closed form. Numerical methods could be used, but it appears 
that tt would be necessary to evaluate the integral for each pair (p,, a2). However, a transformation of 

JL 
Figure 5.1 1 pdf of the oormaldiflribulion, 
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variables, z "'  (t - p.)/a, allows the evaluation to be independent of f.l and a. If X - N(f.l, a2), let Z"' (X - p.)/ a 
to obtain 

The pdf 

( x-p.) 
F(x) = P(X � x) "' P  z � a 

= J(x-p)kt _1_ e-i'!2dz 
- fiH 

J(x-p)kt (X-f.l) 
"' _ IP(z)dz "" <1> a 

1 't2 . 
tP(Z) "'  Jii/-• , -"" < Z < "" (5.44) 

is the pdf of a normal distribution with mean zero and variance 1. Thus, Z - N(O, 1) and it is said that Z has 
a standard normal distribution. The standard normal distribution is shown in Figure 5. 12. The cdf for the 
standard normal distribution is given by 

squ�on (5.45) has been widely tabulated The probabilities <l>(z) for Z <:: 0 are given in Table A.3. 
Several examples are now given that indicate how Equation (5.43) anq Table A.3 are used. 

Example 5.21 
Suppose thatit is known that X - N(50, 9). ColllJjute F(56) P(X � 56). Using Equation (5.43) get 

F(56) = <�>( 56;50 }= <1>(2) = 0.9772 

from ThbleA.3. The intuitive interpretation is shown in Figure 5. 13. Figure 5.13(a) shows the pdf of X- N(SO, 9) 
with the specific value, Xo = 56, marked. The shaded portion is the desired probability. Figure 5.13(b) shows the 
standard normal distribution or Z - N(O, 1) with the value 2 marked; x0 = 56 is 2a(where a =  3) greater than 
the mean. It is helpful to rnalre both sketches such as those in Figure 5.13 to avoid confusion in figuring out 
required p.robabilities. 

p = O 

Figure 5.1 2  pdf of the standard normal distribution. 
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/(x) 

(a) 

<P (z) 

Figure 5.13 Transforming to the standard normal distribution. 

Example 5.22 
The time in hours required to load an oceangoing vessel, X, is distributed as N(12,4). The probability that 
the vessel will be loaded in less than l O  hours is given by F(lO), where ) 

= <1>(-1) ;: 0.1587 

The value of <I> ( -l)  = 0.1587 is looked up in Table A.3 by using the symmetry property of the normal dis­
tribution. Note that <1>(1) = 0.8413. The complement of0.8413, or 0.1587, is contained in the tail, the shaded 
portion of the standard normal .distribution shown in Figure 5.14(a). In Figure 5.14(b), the symmetry property 
is used to work out the shaded region to be <1>('-1) "' 1 - <1>(1) = 0.1587. [From this logic, it can be seen that 
<1>(2) = 0.9772 and <1>(-2) 1 - <1>(2) = 0.0228. In general, <1>(-x) = 1 - <l>(x).] 

The probability that 12  or more hours will be required to load the ship can also be discovered by 
inspection, by using the symmetry property of the normal pdf and the mean as shown by Figure 5.15. 
The shaded portion of Figure 5.15(a) shows the problem as originally stated [i.e., evaluate P(X < 12)]. Now, 
P(X > 12) = 1 - F(l2). The standardized normal in Figure 5.15 (b) is uSed to evaluate F(l2) = <1>(0) = 0.50. 
Thus, P(X > 12) = 1 0.50 = 0.50. [The shaded portions in both Figure 5.15(a) and (b) contain 0.50 of the 
area under the normal pdf.] 

- -

The probability that between 10 and l2 lmurs will be required to load a ship is given by 

P(IO � X �  12) = F(12) - F(lO) = 0.5000 ,;.. ().1587 = 0.341 3  

using earlier results presented i n  this example. The desired area is  shown in the shaded portion of 
Figure S.l6(a). The equivalent problem shown in terms of the standardized normal distribution is shown in 
Figure 5.16(b). The probability statement is F(12) -.F(lO) = <1>(0) - <I>(-1) = 0.5000 - 0.l58T - 0.3413, from 
Table A.3. 

· 
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(a) 

¢ (z) 

- I f.L= O  
(b) 
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Figure 5.14 Using the symmetry property of the normal distribution. 

f(x) 

cP = 4  

JL = 12  

(a) 

¢ (z) 

f.L = ()  
(b) 

Figure 5. 1 5  Evaluation of prObability by inspection. 
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f(x) 

0.341 3  

f.L =  1 2  

(a) 

¢ (z) 

- 1 JL = O 

(b) 

Figure 5. 1 6  Transformation to standard normal for vessel�oading problem. 

Example 5.23 

. 157 

The time to pass through a queue to begin self-service at a cafeteria bas been found to be N(l5, 9). The 
probability that an arriving customer waits between 14 and 17 minutes is computed as follows: 

P(l4 � X �  17) = F(17)- F(l4) = <I>c7; 15)- <1>( 14; 15) 
= <1>(0.667) -<I>( -{).333) 

The. shaded area shown in Figure 5.17(a) represents the probability F(17) F(14). The shaded area shown 
in Figure 5.17(b) represents the equivalent probability, <1>(0.667) <1>(-{).333), for the standardized normal 
distribution. From Table A.3, <1>(0.667) = 0.7476. Now, <1>(-0.333) 1 - <1>(0.333) 1 - 0.6304 = 0.3696. 
Thus, <1>(0.667) - <1>(-0.333) = 0.3780. The probability is 0.3780 that the customer will pass through the 
queue in a time between 14 and 17  minutes. 

Example 5.24 
Lead-time demand, X, for an item is approximated by a normal distribution having mean 25 and variance 9. 
It is desired to compute the value for lead time that will be exceeded only 5% of the time. Thus, the prob­
lem is to find x0 such that P(X > xJ = 0.05, .as shown by the shaded area in Figure 5.18(a). The equivalent 
problem is shown as the shaded area in Figure 5.18(b). Now, 
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f(x) 

14 p = 15 17 X 
(a) 

� (z) 

Figure 5.1 7  Transformation to standard normal for cafeteria problem. 

f(x) 

� (z) 

p = O z.os 
(b) 

X 

Figure 5.1 8  Finding Xo for lead-lime-demand problem. 
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or, equivalently, 

41( Xo ;25) =  0.95 

From T3.ble A.3, it can be seen that 41(1.645) = 0.95. Thus! x0 can be found by solving 

or 

-25 = 1.645 3 

x0= 29.935 

1 59 

Therefore, in only 5% of the cases will demand during lead time exceed available inventory if an order to 
purchase is made when the stock level reaches 30. 

6. Weibull distribution. The random variable X has. a Weibull distribution if its JX1f lias the form 

lfJ(x v)ti-1 [ (x v)P] - __:_ exp - __:_ . , x :C  v f(x) = a a a 
0, otherwise 

(5.46) 

The three parameters of the Weibull . distribution are v (-oo < v < oo), which is the location parameter; 
a (a> 0), which is the scale parameter; and fJ (/3 > 0), which is the shape parameter. When v = 0, the Weibull 
pdf becomes 

l/!_(.:!.)P-1 exp[-(!_)p], X 2! 0 f(x) = a a a 
0, otherwise 

(5.47) 

Figure 5.19 shows several Weibull densities when V=  0 and a =  1. When /3 =  .1, the Weibull distribution is 
reduced to 

1 1 -xla > O ( -e , x _  f x)= a · 

0, otherwise 

which is an exponential distribution with_ parameter A=  lla. 
The mean and variance of the Weibull distribution are given by the following expressions: 

(5.48) 

(5.49) I 
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0.2 0.4 0.6 0.8 1 .0 1.2 1.4 1.6 1.8 20 2.2 2.4 2.6 2.8 3.0 X 

Figure 5. 19 Weibull pdls for v=O;a=t; P=t, l. 2,4. 

where r(.) is defined by Equation (5.31). Thus, the location parameter, v, has no effect on the variance; 
however, the mean is increased or decreased by v. The cdf of the Wei bull distribution is given by 

· 

Example 5.25 

F(x) x - v  � 
· 

10, x < v  

1-exp[-( �) J x � v  
(5.50) 

The time to failure for a component screen is known to have a Weibull distribution with v = 0, fJ =, l/3, and 
a =  200 hours. The mean time to failure is given by Equation (5.48) as 

E(X) 200r(3 + 1) = 200(3!) = 1200 hours 

The probability that a unit fails before 2000 hours is computed from Equation (5.50) as 

Example 5.26 

[ ( 2000)113] 
F(2000) = l -exp -

200 

= l -e-
3.

/iO 
= l - [2.1� = 0.884 

The time it takes for an aircraft to land and clear the runway at a major international airport has a Weibull 
distribution with v = 1 .34 minutes, fJ = 0.5, and a 0.04 minute. Find the probability that an incoming 

.�· 
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airplane will take more than 1.5 minutes to land and clear the runway. In this case P (X > 1 .5) is computed 
as follows: 

P(X !> 1 .5) = F(I.5) 

= 1-exp[ -(L50��34f] 
= 1 -e·2 :;:: l - 0.135 = 0.865 

Therefore, the probability that an aircraft will require more than 1.5 minutes to land and clear the runway 
is 0.135. 

7. Triangular distribution. A random variable X has a triangular distribution if itS pdf is given by · 

l(b=�)�c�a) ' a S x S b  

f(x) = __ 2(�c-_x..:...)_ b ..-
, < x .:::. c 

(c-b)(c- a) 
0, elsewhere 

(5.51) 

where a S  b S c. The moQe occurs at x =b. A triangular pdf is shown in Figure 5.20. The parameters (a, b, c) 
can be related to other measures, such as the mean and the mode, as follows: 

E(X) = 
a+b+c 

3 

From Equation (5.52) the mode can be determined as 

Mode = b = 3E(X) - (a + c) 

Because a S b S c, 

f(x) 

r.gure 5.20 pdf of the triangular distribution. 

(5.52) 

(5.53) 
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The mode is used more often than the mean to characterize the triangular distribution. As is shown in 
Figure 5.20, its height is 2/(c - a) above the x axis. The variance, V(X), of the triangular distribution is left 
as an exercise for the student. The cdf for the triangular distribution is given by 

0, x � a  
(x - a)2 a < x � b  

F(x)= (b-a)(c-a) ' (5.54) (c-xi 1 (c-b)(c-a) '  b < x � c  
1, x > c  

Example 5.27 
The central processing unit requirements, for programs that will execute, have a triangular distribution with 
a = 0.05 millisecond, b = 1 . 1  millis�onds, and c = 6.5 milliseconds . .  Find the probability that the CPU 
requirement for a random program is 2.5 milliseconds or less. The value of F(2.5) is from the portion of the 
cd( in the interval (0.05, 1 . 1) plus that portion in the interval (1 . 1 ,  2.5). By using Equation (5.54), both 
portions can be addressed at one time, to yield 

F(2.5) = 1 · (6·5-2·5)2 0.541 
(6.:5 -0.05)(6.5 - 1.1) 

Thus, the probability is 0.541 that the CPU requirement ·is 2.5 milliseconds or less. 

Example 5.28 
An electronic sensor evaluates the quality of memory chips, rejecting those that fail. Upon demand, the sen­
sor will give the minimum and maximum number of rejects during each hour of production over the past 
24 hours. The mean is also given. Without further information, the quality control department has assumed 
that the number of rejected chips can be approximated by a triangular distribution: The current dump of data 
indicates that the minimum number of rejected chips during any hour was zero, the maximum was 10, and 
the mean was 4. Given that a =  0, c = 10, and E(X) = 4, the value of b can be found from Equation (5.53): 

b = 3(4) - (0 +  10) = 2 
The height of the mode is 21(10 - 0) = 0.2. Thus, Figure 5.21 can be drawn. 

The median is the point at which 0.5 of the area is to the left and 0.5 is to the right. The median in this 
example is 3.7, also shown on Figure 5.21. Finding the median of the triangular distribution requires an 
initial location of the value to the left or to the right ofthe mode. The area to the left of the mode is computed 
from Equation (5.54) as 

22 F(2) = - = 0.2 20 
Thus, the median is between b and c. Setting F(x) = 0.5 in Equation (5.54) and solving for x = median yields 

with 

0.5= 1- (10-x)z 
(10)(8) 

x= 3.7 l·.: .. . � ... 
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f(x) 

3.7 4 
Median Mean 

X 

Figure 5.21 Mode, median, and mean for triangular distribution. 

This example clearly shows that the mean, mode, and median are not necessarily equal. 
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8. Lognormal distribution. A random variable X has a lognormal distribution if its pdf is given by l l [ (lox ")2 ] 
---exp ,... x > O  f(x) = J21iax 2a2 ' 
0, otherwise 

· where a2 > 0 The mean and variance of a lognormal random variable are 

E(X) = e�+u' 12 

V(X) = e2p+u' (e"'- 1) 
Three lognormal pdf's, all having mean 1, but variances 1/2, 1, and 2, are shown in Figure 5.22. 

0 2 
X 

Figure 5.22 pdf of the lognormal distribution. 

· . : .•.·•)<,_<., • .  

(5.55) 

(5.56) 
(5.57) 
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Notice that the parameters JL and a2 are not the mean and variance of the lognormal. These parameters 
come from the fact that when Y has a N(JL, a2) distribution then X = eY has a lognormal distribution with 
parameters Jl and a2• If the mean and variance of the lognormal are known to be JLL and a£, respectively, 
then the parameters JL and a2 are given by 

(5.58) 

(5.59) 

Example 5.29 
, The rate of return on a volatile investment is modeled as having a lognormal distribution with mean 20% and 

standard deviation 5%. Compute the parameters for the lognormal distribution. From the information given, 

we have JLL = 20 and a£ = 52
• Thus, from Equations (5.58) and (5.59}, 

a2 = ln(202 + 52 )== 0.06 
202 

9. Beta distribution. A random variable X is beta-distributed with parameters /31 > 0 and /32 > 0 if its pdf 
is given by 

3.0 

2.5 

2.0 

1 .0 

0.5 

0.0 

0.0 0.2 

O < x < l  

otherwise 

� ... , ' , ' , \ I \ I \ I \ 
,' \ 

I I I I 

0.4 0.6 

X 
0.8 1 .0 

Figure 5.23 The pdf's for several beta distributions, 

(5.60) 
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where B(/31, /32) = f(/31 )f(/32)ff(/31 + /32). The cdf of the beta does not have a closed form in general. 
The beta distribution is very flexible and has a finite range from 0 to 1, as shown in Figure 5.23. In prac­

tice, we often need a beta distribution defined on a different range, say (a, b), with a <  b, rather than (0, 1). 
This is easily accomplished by defirung a new random variable 

Y=a  + (b - a)X 

The mean and variance of Y are given by 

(5.61) 

and 

(5.62) 

5.5 POISSON PROCESS 

Consider random events such as the arrival of jobs at a job shop, the arrival of e-mail to a mail server, the 
arrival of boats to a dock, the arrival of calls to a call center, the breakdown of machines in a birgt< factory, 
and so on. These events may be described by a counting function N(t) defined for all t 2: 0. This counting . 
function will represent the number of events that occurred in [0, t]. Time zero is the point at which the obser­
vation began, regardless of whether an arrival occurred at that instant. For each interval [0, t], the value N(t) 
is an observation of a random variable where the only possible values that can be assumed by N(t) are the 
integers 0, 1 ,  2, . . . .  

The counting process, { N(t), t 2: 0 I, is said to be a Poisson process with mean rate A if the following 
assumptions are fulfilled: 

1. Arrivals occur one at a time. 
2. { N(t), t 2: 0 I has stationary increments: The distribution of the number of arrivals between t and t + s 

depends only on the length of the interval s, not on the starting point t. Thus, arrivals are completely 
at random without rush or slack periods . .  

3 •. {N(t), t 2: 0) has independent increments: The number of arrivals during nonoverlapping time inter­
vals are independent random variables. Thus, a large or small number of arrivals in one time interval 
has no effect on the number of arrivals in subsequent time intervals. Future arrivals occur completely 
at random, independent of the number of arrivals in past time intervals. 1 

If arrivals occur according to a Poisson process, meeting the three preceding assumptions, it can be 
shown that the probability that N(t) is equal to n is given by 

_ _ e_.,(At)" > _ P[N(t) - n] - for t _ 0 and n- 0, 1, 2, . . .  
n! (5.63) 

Comparing Equation (5.63) to Equation (5.19}, it can be seen that N(t) has the Poisson distribution with 
parameter a= At. Thus, its mean and variance are given by 

· 

E[N(t)] = a= At = V[N(t)] 
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0 

1+---A1---.-f+- Az --1 
Figure 5.24 Arrival process. 

For any times s and t such that s < t, the assumption of stationary incremen� implies 
_
that th� �dom 

variable N(t) -N(s), representing the number of arrivals in the interval from s to t, IS also Pmsson-d1stnbuted 
with mean .lt(t- s). Thus, 

e·;.<,_,J[.It(t-s)]" P[N(t)-N(s) = n] for n = 0, I, 2, . . .  
n! 

and 

E[N(t) -N(s)] = ./t(t- s) = V[N(t) -N(s)] 
Now consider the time at which arrivals occur in a Poisson process. Let the first arrival occur at time 

A the s�ond occur at time A + A  , and so on, as shown in Figure 5.24. Thus; AI' A:2, • • •  are successive 1' 1 2 
• • a! . th 

. a! [0 1 interarrival times. The first arrival occurs after time t if and only if there are no amv s m e mterv , t , 
so it is seen that 

{A, > tJ = {N(t) = OJ 

and, therefore, 

P(A1 > t) = P[N(t) = 0] = e-/.J 

the last equality following from Equation (5.63). Thus, the probability that the first arrival will occur in [0, t] 
is given by 

P(� :=;; t) = I-e-/.J 

which is the cdf for an exponential distribution with parameter .it. Hence, A1 is distributed ex�onen�all� with 
mean E(A ) = II .It. It can also be shown that all interarrival times, AI' A2, • • •  , are e�ponennally distnbu� 
and inde�ndent with mean II .it. As an alternative definition of a Poisson process, It c� be sho�n that, if 
interarrival times are distributed exponentially and independently, then the number of amvals by tlrne t, say 
N(t), meets the three previously mentioned assumptions and, therefore, is a Pois��n process. 

. . 
Recall that the exponential distribution is rnemoryless-that is, the probability of a future amval m a 

time interval of length s is independent of the time of the last arrival. The probability of the arri�al de�ends 
only on the length of the time interval, s. Thus, the memoryless property is related to the properties of mde-
pendent and stationary increments of the Poisson process. 

. . . 
Additional readings concerning the Poisson process may be obtained from many sources, mcluding 

Parzen [1999], Feller [1968], and Ross [2002]. 

Example 5.30 . . . . 
The jobs at a machine shop arrive according to a Poisson process With a m� of .It = 2 JOb� per h�ur. 
Therefore, .the interarrival times are distributed exponentially, with the expected tlme between amvals bemg 

E(A) = II .It =  t hour. 

-. -. - --;--- .....-:-- ·----
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5.5.1 Properties of a Poisson Process 

Several properties of the Poisson process, discussed by Ross (2002] and others, are useful in discrete-system 
simulation. The first of these properties concerns random splitting. Consider a Poisson process {N(t), t �  OJ 
having rate .It, as represented by the left side of Figure 5.25. 

Suppose that, each time an event occurs, it is classified as either a type I or a type II event. Suppose 
further that each event is classified as a type I event with probability p and type II event with probability 1-p, 
independently of all other events. 

Let N1(t) and Nz(t) be random variables that denote, respectively, the number of type I and type II events 
occurring in [0, t]. Note that N(t) = N1(t) + N2(t). It can be shown that N1(t) and Nit) are both Poisson 
processes having rates .ltp and .It(! -p), as shown in Figure 5.25. Furthermore, it can be shown that the two 
processes are independent. 

Example 5.31: (Random Splitting) 
Suppose that jobs arrive at a shop in accordance with a Poisson process having rate .it. Suppose further that 
each arrival is marked "high priority" with probability 113 and "low priority" with probability 2/3. Then 
a type I event would correspond to a high-priority arrival and a type II event would correspond to a low­
priority arrival. If N1(t) and Nz(t) are as just defined, both variables follow the Poisson process, with rates ./t/3 and 2./t/3, respectively. 

Example 5.32 
The rate in Example 5.3 1  is .It= 3 per hour. The probability that no high-priority jobs will arrive in a 2-hour 
period is given by the Poisson distribution with parameter a=  .ltpt = 2. Thus, 

-220 
P(O) = _e - = 0.135 0! 

Now, consider the opposite situation from random splitting, namely the pooling of two arrival streams. 
The process of interest is illustrated in Figure 5.26. It can be shown that, if N;(t) are random variables repre­
senting independent' Poisson processes with rates .It;; for i =  I and 2, then N(t) = N1(t) + Nit) is a Poisson 
process with rate .lt1 + �-
Example 5.33: (Pooled Process) 
A Poisson arrival stream with .lt1 = 10 arrivals per hour is combined (or pooled) with a Poisson arrival stream 
with � = 17 arrivals per hour. The combined process is a Poisson process with .It = 27 arrivals per hour. 

Figure 5.25 Random splitting. 

Figure 5.26 Pooled process. 

-.---.---� · :,;.:::0:.:.::·; 



168 DISC�ETE-EVENT SYSTEM SIMULATION 

5.5.2 Nonstationary Poisson Process 

If we keep the Poisson Assumptions l and 3, but drop Assumption 2 (stationary increments) then we have 
a nonstationary Poisson process (NSPP), which i� characterized by A.(t), the arrival rate at time t. The NSPP 
is useful for situations in which the arrival rate varies during the period of interest, including meal times for 
restaurants, phone calls <luring business hours, and orders for pizza delivery around 6 P.M. 

The key to working with a NSPP is the expected number of arrivals by time t, denoted by 

A(t) = J; A.(s)df 

To be useful as an arrival-rate function, A.(t) must be nonnegative and integrable. For a stationary Poisson 
process with rate A we have A (t) = Jlt, as expected. 

Let Tp T2, • • •  be the arrival times of stationary Poisson process N(t) with A = 1 ,  and let ?;. Tz, . . . be the 
arrival times for a NSPP N(t) with arrival rate l{t). The fundamental relationship for working with NSPPs 
is the following: 

T, = A(T;)  

7; = A-'(T,) 

In words, an NSPP can be transformed into a stationary Poisson process with arrival rate 1 ,  and a stationary 
Poisson process with arrival rate l can be transformed into an NSPP with rate A.{t), and the transformation 
in both cases is related to A(t). 

Example 5.34 
Suppose that arrivals to a Post Office occur at a rate of 2 per minute from 8 A.M. until 12 P.M., then drop to 
1 every 2 minutes until the day ends at 4 P.M. What is the probability distribution of the number of arrivals 
between 1 1  A.M. and 2 P.M'? 

Let time t = 0 correspond to 8 A.M. Then this situation could be modeled as a NSPP N(t) with rate 
function 

12, 
A.(t) = .!. 

2 ' 

The expected number of arrivals by time t is therefore 12t, 
A(t) = t 

- + 6  
2 ' 

0 S: t < 4  

4 S: t S: 8  

O S: t < 4  

Notice that computing the expected number of arrivals for 4 S: t S: 8 requires that the integration be done in 
two parts: 

J, 1• 1, t A(t) =  A(s)df = 2ds+ tds' = -+6 0 0 4 2 

Since 2 P.M. and 1 1  A.M. correspond to times 6 and 3, respectively, we have 
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P[N(6) -N(3) = k] = P[N(A(6))-N(A(3)) = k] 
= P[N(9)-N(6) = kl 

k! 

where N(t) is a stationary Poisson process with arrival rate l .  

5.6 EMPIRICAL DISTRIBUTIONS 
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An empirical distribution, which may be either discrete or continuous in form, is a distribution whose param­
eters are the observed values in a sample of data. This is in contrast to parametric distribution families (such 
as the exponential, normal, or Poisson), which are characterized by specifying a small number of parameters 
such as the mean and variance. An empirical distribution may be used when it is impossible or unnecessary 
to establish that a random variable has any particular parametric distribution. One advantage of an empirical 
distribution is that nothing is assumed beyond the observed values in the sample; however, this is also a dis­
advantage because the sample might not cover the entire range of possible values. 

Example 5.35: (Discrete) 
Customers at a local restaurant arrive at lunchtime in groups of from one to eight persons. The number of 
persons per party in the last 300 groups has been observed; the results are summarized in Table 5.3. The rel­
ative frequencies appear in Table 5.3 and again in Figure 5.27, which provides a histogram of the data that 
were gathered. Figure 5.28 provides a cdf of the data. The cdf in Figure 5.28 is called the empirical distri­
bution of the given data. 
Example 5.36: (Continuous) 
The time required to repair a conveyor system that has suffered a failure has been collected for the last 100 
instances; the results are shown in Table 5.4. There were 2 1  instances in which the repair took between 0 and 
0.5 hour, and so on. The empirical cdf is shown in Figure 5.29. A piecewise linear curve is formed by the 
connection of the points of the form [x, F(x)). The points are connected by a straight line. The first connected 
pair is (0, 0) and (0.5, 0.21); then the points (0.5, 0.21) and (1.0, 0.33) are connected; and so on. More detail 
on �s method is provided in Chapter 8. II 

Table 5.3 Arrivals per Party Distribution 

Arrivals per Relative Cumulative Relative 
Party Frequency Frequency Frequency 

I 30 0.10 0.10 
2 I IO 0.37 0.47 
3 45 0.15 0.62 
4 71  0.24 0.86 
5 12 0.04 0.90 
6 l3  0.04 0.94 
7 7 0.02 0.96 
8 12 0.04 1.00 
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Figure 5.27 Histogram of party size. 

Anivals per party 
" 

Figure 5.28 . Empirical cdf of party size. 

Table 5.4 Repair Times lor Conveyor 

Relative Cumulative 
Interval (Hours) Frequency Frequency Frequency 

0 < x � 0.5 21  0.21 0.21 
0.5 < x �  1.0 12 0.12 0.33 
l.O < x �  1 .5 29 0.29 0.62 
1.5 < x �  2.0 19 0.19 0.81 
2.0 < x � 2.5 8 0.08 0.89 
2.5 < x �  3.0 1 1  0. 1 1  1.00 
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5.7 SUMMARY 

1.5 2.0 
Repair times 
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Figure 5.29 Empirical cdf lor repair times. 
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X 

In many instances, the world the simulation analyst sees is probabilistic rather than deterministic. The pur­
poses of this chapter were to review several important probability distributions, to familiarize the reader with 
the notation used in the remainder of the text, and to show applications of the probability distributions in a 
simulation context. 

A major task in simulation is the collection and analysis of input data. One of the. first steps in this task 
is hypothesizing a distributional form for the input data. This is accomplished by comparing the shape of the 
probability density function or mass function to a histogram of the data and by an understanding that certain 
physical processes give rise to specific distributions. (Computer software is available to assist in this effort, 
as will be discussed in Chapter 9.) This chapter was intended to reinforce the properties of various distribu­
tions and to give insight into how these distributions arise in practice. In addition, probabilistic models of 
input data are used in generating random events in a simulation. 

Several features that should have made a strong impression on the reader include the differences 
between discrete, continuous, and empirical distributions; the Poisson process and its properties; and the 
versatility of the gamma and the Weibull distributions. 

· 
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EXERCISES 

1. Of the orders a job shop receives, 25% are welding jobs and 75% are machining jobs. What is the 
probability that 

(a) half of the next five jobs will be machining jobs? 
(b) the next four jobs will be welding jobs? 

2. Three different items are moving together in a conveyor. These items are inspected visually and defec­
tive items are removed. The previous production data are given as 

Accepted 
Rejected 

What is the probability that 

(a) one item is removed at a time? 
(b) two items are removed at a time? 

Item A 

25 
975 

(c) three items are removed simultaneously? 

Item B Item C 
280 190 
720 810 

3. A recent survey indicated that 82% of single women aged 25 years old will be married in their lifetime. 
Using the binomial distribution, find the probability that two or three women in a sample of twenty will 
never be married. 

4. The Hawks are currently winning 0..55 of their games. There are 5 games in the next two weeks. What 
is the probability that they will win more games than they lose? 

5. Joe Coledge is the third-string quarterback for the University of Lower Alatoona. The probability that 
Joe gets into any game is 0.40. 

· 

(a) What is the probability that the first game Joe enters is the fourth game of the season? 
(b) What is the probability that Joe plays in no more than two of the first five games? 

6. For the random �ariables X1 and Xz, which are exponentially distributed with parameter A= l ,  compute 
P(X1 + Xz > 2). 

7. Show that the geometric distribution is memoryless. 

8. Hurricane hitting the eastern coast of India· follows Poisson with a mean of 0.5 per year. Determine 

(a) the probability of more than three hurricanes hitting the Indian eastern coast in a year. 
(b) the ptobability of ilot hitting the Indian eastern coast in a year. 

9. Students' arrival at a university library follows Poisson with a mean of 20 per hour. Determine 

(a) the probability that there are 50 arrivals in the next I hour. 
(b) the probability that no student arrives in the next I hour. 
(c) the probability that there are 75 arrivals in the next 2 hours. 

10. Records indicate that 1 .8% of the entering students at a huge state university drop out of school by 
midterm. What is the probability that three or fewer students will drop out of a random group of 200 
entering students? 

11. Lane Braintwain is quite a popular student Lane receives, on the average, four phone calls a night 
(Poisson distributed). What is the probability that, tomorrow night, the number of calls received will 
exceed the average by more than one standard deviation? 

12. A car service station receives cars at the rate of 5 every hour in accordance with Poisson. What is the 
probability that a car will arrive 2 hours after its predecessor? 

13. A random variable X that has pmf given by p(x) = 1/(n+l )  over the range Rx= (0, I, 2, . . .  , n} is said to 
have a discrete uniform distribution. 

(a) Find the mean and variance of this distribution. Hint: 

d
'f :2 n (n + l)(2n+ l) 

an £... 1 = __;,-"""'---'-
'=' 6 

(b) If Rx = {a, a +  l, a +  2, . . . , b ) ,  compute the mean and variance of X. 

14. The lifetime, in years, of a satellite placed in orbit is given by the following pdf: 

f(x) =  . e , x _ {0 4 -<J... > O  
0, otherwise 

(a) What is the probability that this satellite is still "alive" after 5 years? 
(b) What is the probability that the satellite dies between 3 and 6 years from the time it is placed in orbit? 

15. The cars arriving at a gas station is Poisson distributed with a mean of lO per minute. Determine the 
number of pumps to be installed if the ftrm wants to have 50% of arriving cars as zero entries (i.e., cars 
serviced without waiting). 

16. (The Poisson distribution can be used to approximate the binomial distribution when n is large and p is 
small-say, p less than 0.1. In utilizing the Poisson approximation, let A= np .) In the production of ball 
bearings, bubbles or depressions occur, rendering the ball bearing unftt for sale. It has been noted that, on 
the average, one in every 800 of the ball bearings has one or more of these defects. What is the proba­
bility that a random sample of 4000 will yield fewer than three ball bearings with bubbles or depressions? 

17. For an exponentially distributed random variable X, find the value of It that satisfies the following 
relationship: 

· 

P(X � 3) = 0.9P(X � 4) 

18. The time between calls to a fire service station in Chennai follows exponential with a mean of 20 hours. 
What is the probability that there will be no calls during the next 24 hours? 
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19. The time to failure of a chip follows exponential with a mean of 5000 hours. 

(a) The chip is in operation for the past 1000 hours. What is the probability that the chip will be in 
operation for another 6000 hours? 

(b) After 7000 hours of operation, what is the probability that the chip will not fail for another 2000 hours? 

20. The headlight bulb of a car owned by a professor has an exponential time to failure with a mean of 100 
weeks. The professor has fitted a new bulb 50 weeks ago. What is the probability that the bulb will not 
fuse within the next 60 weeks? 

21. The service time at the college cafeteria follows exponential with a mean of 2 minutes. 

(a) What is the probability that two customers in front of an arriving customer will each take less than 
90 seconds to complete their transactions? 

(b) What is the probability that two customers in front will finish their transactions so that an arriving 
customer can reach the service window within 4 minutes? 

22. Determine the variance, V(X), of the triangular distribution. 

23. The daily demand for rice at a departmental store in thousands of kilogram is found to follow gamma 
distribution with shape parameter 3 and scale parameter 1/z. Determine the probability of demand 
exceeding 5000 kg on a given day. · 

24. When Admiral Byrd went to the North Pole, he wore battery-powered thermal underwear. The batter­
ies failed instantaneously rather than gradually. The batteries had a life that was exponentially distrib­
uted, with a mean of 12 days. The trip took 30 days. Admiral Byrd packed three batteries. What is the 
probability that three batteries would be a numb�r sufficient to keep the Admiral warm? 

25. In an ori?;anization 's service-complaints mail box, interarrival time of mails are exponentially distributed 
with a mean of 10 minutes. What is the probability that five mails will arrive in 20 minutes duration? 

26. The rail shuttle cars at Atlanta airport have a dual electrical braking system. A rail car switches to the 
standby system automatically if the first system fails. If both systems fail, there will be a crash! Assume 
that the life of a single electrical braking system is exponentially distributed, with a mean of 4,000 oper­
ating hours. If the systems are inspected every 5,000 operating hours, what is the probability that a rail 
car will not crash before that time? 

27. Suppose that cars arriving at a toll booth follow a Poisson process with a mean interarrival time of 
15 seconds. What is the probability that up to one minute will elapse until three cars have arrived? 

28. Suppose that an average of 30 customers per hour arrive at the Sticky Donut Shop in accordance with a 
Poisson process. What is the probability that more than 5 minutes will elapse before both of the next 
two customers walk through the door? 

29. Pmfessor Dipsy Doodle gives six problems on each exam. Each problem requires an average of 
30 minutes grading time for the entire class of 15 students. The grading time for each problem is expo­
nentially distributed, and the problems are independent of each other. 

(a) What is the probability that the Professor will finish the grading in 2i hours or less? 
(b) What is the most likely grading time? 
(c) What is the expected grading time? 
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30. An aircraft has dual hydraulic systems. The aircraft switches to the standby system automatically if the 
frrst system fails. If both systems have failed, the plane will crash. Assume that the life of a hydraulic 
system is exponentially distributed, with a mean of 2000 air hours. 

(a) If the hydraulic systems are inspected every 2500 hours, what is the probability that an aircraft will 
crash before that time? 

(b) What danger would there be in moving the inspection point to 3000 hours? 

31. Show that the beta distribution becomes the uniform distribution over the unit interval when /31 = f32 = 1 .  

32. Lead time of  a product in  weeks i s  gamma-distributed with shape parameter 2 and scale parameter 1 .  
What is  the probability that the lead time exceeds 3 weeks? 

33. Lifetime of an inexpensive video card for a PC, in months, denoted by the random variable X, is gamma­
distributed with /3 = 4 and 8 =  1116. What is the probability that the card will last for at least 2 years? 

34. In a statewide competitive examination for engineering admission, the register number allotted to the 
candidates is of the form CCNNNN, where C is a character like A, B, and C, etc., and N is a number 
from 0 to 9. Assume that you are scanning through the rank list (based on marks secured in the competitive 
examination), what is the probability that 

(a) the next five entries in the list will have numbers 7000 or higher? 
(b) the next three entries will have numbers greater than 3000? 

35. Let X be a random variable that is normally distributed, with mean 10 and variance 4. Find the values a 
and b such that P(a < X <  b) = 0.90 and IJL-al = l.u-bl. 

36. Given the following distributions, 

Normal ( 1 0, 4) 
Triangular (4, 10, 16) 
Uniform (4, 16) 
find the probability that 6 < X <  8 for each of the distributions. 

37. Demand for an item follows normal distribution with a mean of 50 units and a standard deviation of 
7 units. Determine the probabilities of demand exceeding 45, 55, and 65 units. 

38, The annual rainfall in Chennai is normally distributed with mean 129 em and standard deviation 32 em. 

(a) What is the probability of getting excess rain (i.e., 140 em and above) in a given year? 
(b) What is the probability of deficient rain (i.e., 80 em and below) in a given year? 

39. Three shafts are made and assembled into a linkage. The length .of each shaft, in centimeters, is 
distributed as follows: 

Shaft 1: N(60, 0.09) 
Shaft 2: N(40, 0.05) 
Shaft 3: N(50, 0.11) 

(a) What is the distribution of the length of the linkage? 
(b) What is the probability that the linkage will be longer than 150.2 centimeters? 

. -.--:-:--. .  �_ . ---;""�. �. · 



176 DISCRETE-EVENT SYSTEM SIMULATION 

(cj The tolerance limits for the assembly are ( 149.83, 150.21). What proportion of assemblies are 
within the tolerance limits? (Hint: If (X;l are n independent normal random variables, and if X,, has 
mean J.l; and variance a/, then the sum 

y XI + X2 +·· · + X. 

is normal with mean "" �  1 J.l,. and variance "" �  CT2 .) ;{,t,;; ,J;,;r•l 1 

40. The circumferences of battery posts in a nickel-cadmium battery are Weibull-distributed with v = 3.25 
centimeters, fJ = 1 /3, and a =  0.005 centimeters. 

(a) Find the probability that a battery post chosen at random will have a circumference larger than 3.40 
centimeters. 

(b) If battery posts are larger than 3.50 centimeters, they will not go through the hole provided; if they 
are smaller than 3.30 centimeters, the clamp will not tighten sufficiently. What proportion of posts 
will have to be scrapped for one of these reasons? 

41. The time to failure of a nickel-cadmium battery is Wei bull distributed with parameters v = 0, fJ = 1/4, 
and a =  112 years. 

(a) Find the fraction of batteries that are expected to fail prior to 1 .5 years. 
(b) What fraction of batteries are expected to last longer than the mean life? 
(c) What fraction of batteries are expected to fail between 1.5 and 2.5 years? 

42. The time required to assemble a component follows triangular distribution with a = lO  seconds and c 
25 seconds. The median is 15 seconds. Compute the modal value of assembly time. 

43. The time to failure (in months) of a computer follows Weibull distribution with location parameter = 0, 
scale parameter 2, and shape parameter = 0.35. 

(a) What is the mean time to failure? 
(b) What is the probability that the computer will fail by 3 months? 

· 44. The consumption of raw material for a fabrication firm follows triangular distribution with minimum of 
200 units, maximum of 275 units, and mean of 220 units. What is the median value of raw material 
consumption? 

45. A postal letter carrier has a route consisting of five segments with the time in minutes to complete each 
segment being normally distributed, with means and variances as shown: 

Tennyson Place 
Windsor Parkway 
Knob Hill Appartments 
Evergreen Drive 
Chastain Shopping Center 

N(38, 16) 
N(99, 29) 
N(85, 25) 
N(13, 20) 
N(52, 1 2) 

In addition to the times just mentioned, the letter carrier must organize the mail at the central office, 
which activity requires a time that is distributed by N(90, 25). The drive to the starting point of the route 
requires a time that is distributed N(lO, 4). The return from the route requires a time that is distributed 
N(l5, 4). The letter carrier then performs administrative tasks with a time that is distributed N(30, 9). 
(a) What is the expected length of the letter carrier's work day? 
(b) Overtime occurs after eight hours of work on a given day. What is the probability that the letter 

carrier works overtime on any given day? 
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(c) What is the probability that the letter carrier works overtime on two or more days in a six .<lay week? 
(d) What is the probability that the route will be completed within ±24 minutes of eight hours on any 

given day? (Hint: See Exercise 39.) 

46. The light used in the operation theater of a hospital has two bulbs. One bulb is sufficient to get the 
necessary lighting. The bulbs are connected in such a way that when one fails, automatically the other 
gets switched on. The life of each bulb is exponentially distributed with a mean of 5000 hours and the 
lives of the bulbs are independent of one. another. What is the probability that the combined life of the 
light is greater than 7000 hours? 

47. High temperature in Biloxi, Mississippi on July 2 1 ,  denoted by the random variable X, has the follow­
ing probability density function, where X is in degrees_ F. 12(x -85) ' 85� x � 92 

H9 
j(x) = 2(102 -x) 92 < x $ 102 

170 
0, otherwise 

(a) What is the varia!lce of the temperature, V(X)? (If you worked Exercise 22, this is quite easy.) 
(b) What is the median temperature? 
(c) What is the modal temperature? 

48. The time to failure of Eastinghome light bulbs is Weibull distributed with v = 1 .8 x 1()3 hours, fJ = 1/2, 
and a =  l/3 x 103 hours. 

(a) What fraction of bulbs are expected to last longer than the mean lifetime? 
(b) What is the median lifetime of a light bulb? 

49. Let time t::: 0 correspond to 6 A.M., and suppose thatthe arrival rate (in arrivals per hour) of customers 
to a breakfast restaurant that is open from 6 to 9 A.M. is !30, O $ t < l  

.:t(t) ::: 45, l $ t < 2  
20, 2 $ t $ 4  

Assuming a NSPP model is appropriate, do the following: (a) Derive A(t}. (b) Compute �e expected 
number of arrivals between 6:30 and 8:30 A.M. (c) Compute the probability that there are fewer than 60 
arrivals between 6:30 and 8:30 A.M. 



6 
Queueing Models 

Simulation is often used in the analysis of queueing models. In a simple but typical queueing model, shown 
in Figure 6.1, customers arrive from time to time and join a queue (waiting line), are eventually served, and 
finally leave the system. The teml "customer" refers to any type of entity that can be viewed as requesting 
"service" from a system. Therefore, many service facilities, production systems, repair and maintenance 
facilities, communications and computer systems, and transport and material-handling systems can be 
viewed as queueing systems. 

. 
Queueing models, whether solved mathematically or analyzed through simulation, provide the analyst 

w1th a powerful tqol for designing and evaluating the performance of queueing systems. '!Ypical measures 
�f system performance, include s�rver utilization (percentage of time a server is busy), length of waiting 
hnes, and delays of customers. QUite often, when designing or attempting to improve a queueing system, the 
analyst (or decision maker) is involved in tradeoffs between server utilization and customer satisfaction in 
terms of line lengths and delays. Queueing theory and simulation analysis are used to predict these measures 
of system performance as a function _of the input parameters. The input parameters include the arrival rate 
of customers, the service demands of customers, the rate at which a server works, and the number and 
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Calling population 
of potential customers 

Waiting line of 
customers 

Figure 6.1 Simple queueing model. 
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arrangement of servers. To a certain degree, some of the input parameters are under management's direct 
control. Consequently, the performance measures could be under their indirect control, provided that the 
relationship between the performance measures and the input parameters is adequately understood for the 
given system. 

For relatively simple systems, these performance measures can be computed mathematically-at great 
savings in time and expense as compared with the use of a simulation model-but, for realistic models of 
complex systems, simulation is usually required. Nevertheless, analytically tractable models, although usually 
requiring many simplifying assumptions, are valuable for rough-cut estimates of system performance. These 
rough-cut estimates may then be refined by use of a detailed and more realistic simulation model. Simple 
models are also useful for developing an understanding of the dynamic behavior of queueing systems 1and 
the relationships between various performance measures. This chapter will not develop the mathematical 
theory of queues but instead will discuss some of the well-known models. For an elementary treatment of 
queueing theory, the reader is referred to the survey chapters in Hillier and Lieberman [2005], Wagner ( 1975] 
or Winston (1997]. More extensive treatments with a view toward applications are given by Cooper (1990], 
Gross and Harris ( 1997], Hall (199 1  1 and Nelson [1995]. The latter two texts especially emphasize engineering 
and management applications. 

This chapter discusses the general characteristics of queues, the meanings and relationships of the 
important perfonnance measures, estimation of the mean measures of performance from a simulation, the 
effect of varying the input parameters, and the mathematical solution of a small number of important and 
basic queueing models. 

6.1 CHARACTERISTICS OF QUEUEING SYSTEMS 

The key elements of a queueing system are the customers and servers. The teml "customer" can refer to people, 
machines, trucks, mechanics, patients, pallets, airplanes, e-mail, cases, orders, or dirty clothes-anything 
that arrives at a facility and requires service. The term "server" might refer to receptionists, repairpersons, 

· mechanics, tool-crib clerks, medical personnel, automatic storage and retrieval machines (e.g., cranes), 
runways at an airport, automatic packers, order pickers, CPUs in a computer, or washing machines-any 
resource (person, machine, etc.) that provides the requested service. Although the terminology employed 
will be that of a customer arriving to a service facility, sometimes the server moves to the customer; for 
example, a repairperson moving to a broken machine. This in no way invalidates the models but is merely a 
matter of terminology. Table 6. 1 lists a number of different systems together with a subsystem consisting of 
"arriving c.ustomers" and one or more "servers." The remainder of this section describes the elements of a 
queueing system in more detail. 

6.1 .1 The Calling Population 

The pOpulation of potential customers, referred to as the calling population, may be assumed to be finite or 
infinite. For example, consider a bank of five machines that are curing tires. After an interval of time, 
a machine automatically opens and must be attended by a worker who removes the tire and puts an uncured 
tire into the machine. The machines are the "customers;' who "arrive" at the instant they automatically open. 
The worker is the "server," who "serves" an open machine as soon as possible. The calling population is 
fmite and consists of the five machines. 

In systems with a large population of potential customers, the calling population is usually assumed to 
be infmite. For such systems, this assumption is usually innocuous and, furthermore, it might simplify the 
model. Examples of infinite populations include the potential customers of a restaurant, bank, or other similar 
service facility and also very large groups of machines serviced by a technician. Even though the actual 
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Table 6.1 Examples of Queueing Systems 

System Cuszomers Server(s) 

Reception desk People Receptionist 
Repair facility Machines Repairperson 
Garage Trucks Mechanic 
Tool crib Mechanics Tool-crib clerk 
Hospital Patients Nurses 
Warehouse Pallets Fork-lift Truck 
Airport Airplanes Runway 
Production line Cases Case-packer 
Warehouse Orders Order-picker 
Road network Cars Traffic light 
Grocery Shoppers Checkout station 
Laundry Dirty linen Washing machines/dryers 
Job shop Jobs Machines/workers 
Lumberyard Trucks Overhead crane 
Sawmill Logs Saws 
Computer Jobs CPU, disk, CDs 
Telephone Calls Exchange 
Ticket office Football fans Clerk 
Mass transit Riders Buses, !rains 

population could be finite but large, it is generally safe to use infinit� popu
_
latio� models-provid:d thilt the 

number of customers being served or waiting for service at any g1ven lime IS a small proportton of the 
population of potential customers. . . . The main,difference between finite and infinite population models IS how the arnval rate IS defined. 
In an infinite population model, the arrival rate (i.e., the average number of arrivals per unit of time) is not 
affected by the number of �ustomers who have le� the calling population 

.. 
and joined �e queuei�g syste�. 

When the arrival process 1s homogeneous over time (e.g., there are no rush hours ), the an:val rate IS 
usually assumed to be constant. On the other hand, for finite calling-population models, the arr1val rate to 
the queueing system does depend on the number of customers being served and w�iting. To take an extre�e 
case, suppose that the calling population has one member, for example, a corporate Je� When � corporate Jet 
is being serviced by the team of mechanics who are on duty 24 hours per day, the am val rate IS �ro, because 
there are, no other potential customers Gets) who can arrive at the service facility (team of mechan1cs). A more 
typical example is that of the five tire-curing machines serviced by a single wor�er. When all �ve are closed 
and curing a tire, the worker is idle and the arrival rate is at a maximum, but the mstant a machme o�ns and 
requires service, the arrival rate decreases. At those times when �I five a:e open (so . four ma

.
ch1�es are 

waiting for service while the worker is attending the other one), the arrJVal rate IS .rero; that 1�, no arrJVal ls pos­
sible until the worker fmishes with a machine, in which case it .returns to the calhng population and becomes a 
potential arrival. It may seem odd that the arrival rate is at its �imum wh�n all �ve mac�nes are closed. But 
the arrival rate is defined as the expected number of arrivals m the next umt of time, so 1t becomes clear that 
this expectation is largest when all machines could potentially open in the next unit of time. 

6. 1 .2 System Capacity 

In �any queueing systems, there is a limit to the number of customers that may be i� �e .waiting line or 
system. For example, an automatic car wash might have room f�r ?nly 10 cars to wa1� 1� hne to enter the 
mechanism. It might be too dangerous (or illegal) for cars to wait m the street. An arr1vmg customer who 

·-· ·-· _, -· · i}tX,..Li.�.- • 

QUEUEING MODELS 181 

finds the system full does not enter but returns immediately to the calling population. Some systems, such 
as concert ticket sales for students, may be considered as having unlimited capacity, since there are no limits 
on the number of students allowed to wait 'to purchase tickets. As will be seen later, when a system has 
limited capacity, a distinction is made between the arrival rate (i.e., the number of arrivals per time unit) and 
the effective arrival rate (i.e., the number who arrive and enter the system per time unit). 

6.1 .3 The Arrival Process 

The arrival process for infinite-population models is usually characterired in terms of interarrival times of successive customers. Arrivals may occur at scheduled times or at random times. When at random times, the interarrival times are usually characterired by a probability distribution. In addition, customers may arrive one at a time or in batches. The batch may be of constant sire or of random sire. 
The most important model for random arrivals is the Poisson arrival process. If A. represents the inter­arrival time between customer n I and customer n (A1 is the actual arrival time of the first customer), then, for a Poisson arrival process, A. is exponentially distributed with mean II A. time units. The arrival rate is A. customers per time unit. The number of arrivals in a time interval of length t, say N(t), has the Poisson dis­tribution with mean A.t customers. For further discussion of the relationship between the Poisson distribution and the exponential distribution, the reader is referred to Section 5.5. 
The Poisson arrival process has been employed successfully as a model of the arrival of people to restau­rants, drive-in banks, and other service facilities; the arrival of telephone calls to a call center; the arrival of demands, or orders for a service or product; and the arrival of failed components or machines to a repair facility. A second important class of arrivals is scheduled arrivals, such as patients to a physician's office or scheduled airline flight arrivals to an airport. In this case, the interarrival times {A., n = I, 2, . . . } could be either constant or constant plus or minus a small random amount to represent early or late arrivals. A third situation occurs when at least one customer is assumed to always be present in the queue, so that the server is never idle because of a lack of customers. For example, the "customers" may represent raw material for a product, and sufficient raw material is assumed to be always available. 
For finite-population models, the arrival process is characterired in a completely different fashion. Define a customer as pending when that customer is outside the queueing system and a member of the poten­tial calling population. For example, a tire-curing machine is "pending" when it is closed and curing a tire, and it becomes "not pending" the instant it opens and demands service from the worker. Define a runtime of a given customer as the length of time from departure from the queueing system until that customer's next arrival to the queue. Let A1<il, A2<il, . . .  be the successive runtimes of customer i, and let S1(i), S2<Q, • • •  be the 

corresponding successive system times; that is, s::1 is the total time spent in system by customer i during the 
nth visit..Figure 6.2 illustrates these concepts for machine 3 in the tire-curing example. The total ,arrival process is the superposition of the arrival times of all customers. Figure 6.2 shows the first and second arrival of machine 3, but these two times are not necessarily two successive arrivals to the system. For instance, 

I· Attll + Si31 I A2(3l I sp) 
• f � ( 

Machine3: . Pending Open Pending Open 

1 (system time) 1 (system time) 

First arrival Second arrival 
ofmachine 3 of machine 3 

Figure 6.2 Arrival process for a finite-population model. 
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if it is assumed that all machines are pending at time 0, the frrst arrival to the system occurs at time 
A 1= min{Ai0, Ai2', A :31, A i4', Ai5ll. If A1 =A1<2l, then machine 2 is the first arrival (i.e., the first to open) after · 

time 0. As discussed earlier, the arrival rate is not constant but is a function of the number of pending 
customers. 

One important application of finite·population models is the machine-repair problem. The machines are 
the customers, and a runtime is also called time to failure. When a machine fails, it "arrives" at the queueing 
system (the repair facility) and remains there until it is "served" (repaired). Times to failure for a given class 
of machine have been characterized by the exponential, the Weibull, and the gamma distributions. Models 
with an exponential runtime are sometimes analytically tractable; an example is given in Section 6.5. 
Successive times to failure are usually assumed to be statistically independent, but they could depend on 
other factors, such as the age of a machine since its last major overhaul. 

6.1 .4 Queue Behavior and Queue Discipline 

Queue behavior refers to the actions of customers while in a queue waiting for service· to begin. In some 
situations, there is a possibility that incoming customers will balk (leave when they see that the line is too 
long), renege (leave after being in the line when they see that the line is moving too slowly), or jockey (move 
from one line to another if they think they have chosen a slow line). 

Queue discipline refers to the logical ordering of customers in a queue and determines which customer 
will be chosen for service when a server becomes free. Common queue disciplines include first-in-first-out 
(FIFO); last-in-first-out (LIFO); service in random order (SIRO); shortest processing time first (SPT); and 
service according to priority (PR). In a job shop, queue disciplines are sometimes based on due dates and on 
expected processing time for a given type of job. Notice that a FIFO queue discipline implies that services 
begin in the same order as arrivals, .but that customers could leave the system in a different order because of 
different-length service times. 

6.1 .5 Service Times and the Service Mechanism 

The service times of successive arrivals are denoted by S1, S2, S3, . . . They may be constant or of random 
duration. In the latter case, {S1, S2, S3, . . .  J is usually characterized as a sequence of independent and 
identically distributed random variables. The exponential, Weibull, gamma, lognormal and truncated normal 
distributions have all been used successfully as models of service times in different situations. Sometimes 
services are identically distributed for all customers of a given type or class or priority, whereas customers of 
different types might have completely different service-time distributions. In addition, in some systems, 
service times depend upon the time of day or upon the length of the waiting line. For example, servers might 
work faster than usual when the waiting line is long, thus effectively reducing the service times. 

A queueing system consists of a number of service centers and interconnecting queues. Each service 
center consists of some number of servers, c, working in parallel; that is, upon getting to the head of the line, 
a customer takes .the first available server. Parallel service mechanisms are either single server (c = 1), 
multiple server ( I  < c < oo ), or unlimited servers (c = oo ). A self-service facility is usually characterized as 
having an unlimited number of servers. 

Example 6.1 
Consider a discount warehouse where customers may either serve themselves or wait for one of three clerks, 
then finally leave after paying a single cashier. The system is represented by the flow diagram in Figure 6.3. 
The subsystem, consisting of queue 2 and service center 2, is shown in more detail in Figure 6.4. Other 
v-.uiations of service mechanisms include batch service (a server serving several customers simultaneously), 
and a customer's requiring several servers simultaneously. ln the discount warehouse, a clerk might pick 
several small orders at the same time, but it may take two of the clerks to handle one heavy item. 
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Arrivals 

Figure 6.3 Discount warehouse with three service centers. 

Service center 2 

EJ 
Arrivals 1 -, 1  Departures 

1 -, 1  
Figure 6.4 Service center 2, with ·c "' 3 parallel servers. 

Machine 2 Machine '3 

Departures 

Machine I �n Queue 2 � Capacity 1000 

Candy maker/ 

Queue 3 •I ·� 
Capacity 1000 _ 

. 

wrapper 

Example 6.2 

Packer Sealer/ 
wrapper 

Figure 6.5 Candy-production line. 
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A candy manufacturer has a production line that consists of three machines separated by inventory-in-proces 
buffers. The first machine makes and wraps the individual pieces of candy, the second packs 50 pieces in . 
box, and the third machine seals and wraps the box. The two inventory buffers have capacities of 1000 boxe 
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each. As illustrated by Figure 6.5, the system is modeled as having three service centers, each center having 
c I server (a machine), with queue capacity constraints between machines. It is assumed that a sufficient 
supply of raw material is always available at the fll'St queue. Because of the queue capacity constraints, 
machine I shuts down whenever its inventory buffer (queue 2) fills to capacity, and machine 2 shuts down 
whenever its buffer empties. ln brief, the system consists of three single-server queues in series with queue 
capacity constraints and a contisnuous arrival streain at the first queue. 

6.2 QUEUEING NOTATION 

Recognizing the diversity of queueing systems, Kendall [ 1953] proposed a notational system for parallel 
server systems which has been widely adopted. An abridged version of this convention is based on the format 
AIB/c/NIK. These letters represent the following system characteristics: 

A represents the interarrival-time distribution. 

B represents the service-time distribution. 

c represents the number of parallel servers. 

N represents the system capacity. 

K represents the size of the calling population. 

Common symbols for A and B include M (exponential or Markov), D (constant or deterministic), Ek (Erlang 
of order k), PH (phase-type), H (hyperexponential), G (arbitrary or general), and Gl (general independent). 

For example, M IM / 1/oo/oo indicates a single-server system that has unlimited queue capacity and an infi­
nite population of potential arrivals. The interarrival times and service times are exponentially distributed. 
When N and K are infinite, they may be dropped from the notation. For example, MIM/1 /oo/oo is often short­
ened to M/M/1 . The tire-curing system can be initially represented by GIG/11515. 

Additional notation used throughout the remainder of this chapter for parallel server systems is listed in 
Table 6.2. The meanings may vary slightly from system to system. All systems will be assumed to have a 
FIFO queue discipline. 

.Table 6.2 Queueing Notation for Parcillel Server Systems 

P. Steady-state probability of having n customers in system 
P. (t) Probability of n customers in system at time t 

. 

A. Arrival rate 

A., Effective arrival rate 

ll Service rate of one server 
p Server utilization 
A. Interarrival time between customers n - I and n 
s. Service time oftbe nth arriving customer 
w. Total time spent in system by the nth arriving customer 

w.a Total time spent in the waiting line by customer n 
L(t) The number of customers in system at time t 
LQ(t) The number of customers in queue at time t 
L Long-run time-average number of customers in system 
LQ Long-run time-average number of customers in queue 
w Long-run average time spent in system per customer 
wQ Long-run average time spent in queue per customer 
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6.3 LONG-RUN MEASURES OF PERFORMANCE OF QUEUEING SYSTEMS 

The primary long-run measures of performance of queueing systems are the long-run time-average number 
of customers in the system (L) and in the queue (LQ), the long-run average time spent in system (w) and in 
the queue (wQ) per customer, and the server utilization, or proportion of time that a server is busy (p). The 
term "system" usually refers to the waiting line plus the service mechanism, but, in general, can refer to any 
subsystem of the que!Jeing system; whereas the term "queue" refers to the waiting line alone. Other meas­
ures of performance of interest include the long-run proportion of customers who are delayed in queue 
longer than to time units, the long-run proportion of customers turned away because of capacity constraints, 
and the long-run proportion of time the waiting line contains more than ko customers. · 

This section defines the major measures of performance for a general GIG/ciNIK queueing system, 
discusses their relationships, and shows how they can be estimated from a simulation run. There are two 
types of estimators: an ordinary sample average, and a time-integrated (or time-weighted) sample average. 

6.3.1 Time-Average Number in System L 

Consider a queueing system over a period of time T, and let L(t) denote the number of customers in the system 
at time t. A simulation of such a system is shown in Figure 6.6. 

· 

Let T; denote the total time during [0, T] in which the system contained exactly i customers. In Figure 6.6, 
it is seen that T0 = 3, T1 = 12, T2 = 4, and T3 = I. (The line segments whose lengths total T1 = 12 are 
labelled "Tt in Figure 6.6, etc.) In general, I:o:r; = T. The time-weighted-average number in a system is 
defined by · 

L = -_Lt:r; =<�> ...!... 
A l � 

� (T ) T 1•0 i=O T (6. 1) 

For Figure 6.6, L = [0(3)+ 1(12) +2(4) + 3(1)]/20 = 23 /20 = 1 . 15 customers. Notice that Tj/Tis the proportion 
of time the system contains exactly i customers. The estimator L is an example of a time-weighted average. 

By considering Figure 6.6, it can be seen that the total area under the function L(t) can be decomposed 
into rectangles of height i and length T1• For example, the rectangle of area 3 x T3 has base running from 

L(J) 

3 
T3 

,......., 
I I 
I I 
I I 
I I 
I I 
I I T2 T2 I I 

2 r----' ....__, 
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I I 
I I 
I I 

Tl rl : 
I 
I T, T, 

....----' I 
I 
I 

I I 
I I I I T0 1  

0 2 4 8 12 14 16 18 T = 20 

Figure 6.6 Number in system, L(t), at time t. 
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t 7 to t = 8 (thus T3 = 1 ); however, most of the rectangles are broken into parts, such as the recfarl�le of 
area 2 x T2 which has part of its base between t = 5 and t = 7 and the remainder from t = 8 to t = 10 (thus T2 J,T , 
2 + 2 4). It follows that the total area is given by � � n; = L(t)dt, and, therefore, that "'-'•=0 0 

' I w I T L=-�iT. = -1 L(t)dt rf;t  · r o (6.2) 

The expressions in Equations (6. 1 )  and (6.2) are always equal for any queueing system, regardless of the 
number of servers, the queue discipline, or any other special circumstances. Equation (6.2) justifies the 
terminology time-integrated average. 

Many queueing systems exhibit a certain kind of long-run stability in terms of the� average performance. 
For such systems, as time T gets large, the observed time-average number in the system L approaches a limiting 
value, say L; which is called the long-run time-average number in system-that is, with probability 1 ,  

L = _!_ rr L(t )dl --+ L as T  --+ ""' rJo (6.3) 

The estimator l is said to be strongly consistent for L If simulation run length T is sufficiently long, the esti­
mator i becomes arbitrarily close to L. Unfortunately, for T < oo, i depends on the initial conditions at time 0. 

Equations (6.2) and (6.3) can be applied to any subsystem of a queueing system as well as they can to 
the whole system. If LQ(t) denotes the number of customers waiting in line, and T;Q denotes the total time 
during [0, T] in which exactly i customers are waiting in line, then 

(6.4) 

where i{J is the observed time-average number of customers waiting in line from time 0 to time T and LQ is 
the long-run time-average number waiting in line. 

Example 6.3 
Suppose that Figure 6.6 represents a single-server queue--that is, a G/G/1 /N/ K queueing system (N'?. 3, K'?. 3). 
Then the number of customers waiting in line is given by �(t) defined by {0 if L(t)= O  LQ(t) = L(t) - I  if L(t) '?. 1  

and shown in Figure 6. 7. Thus, T0Q = 5 + 10 = 15, J;Q = 2 + 2 = 4, and T2Q = I, Therefore, 

iQ 
0(!5)+ !(4)+2(!) = 0.3 customers 

20 

6.3.2 Average Time Spent in System Per Customer w 

If we simulate a queueing system for some period of time, say T, then we can record the time each customer spends 
in.the system during [0, T], say W1, W2, . . .  , WN> whereN is the number of arrivals during [0, T]. The average 
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Figure 6.7 Number waiting in line, LQ(t), at time t. 
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·time spent in system per customer, called the avemge system time, is given by the ordinary sample average 

1 N w = -l:W; 
N i=l 

(6.5) 

For stable systems, as N--+ co, 

w --+ w  (6.6) 

with probability 1, where w is called the long-run average system time. 
If the system under consideration is the queue alone, Equations (6.5) and (6.6) are written as 

I N 
wQ = -LW.Q --+ w

Q 
as N -+ co  

N 1=1 
(6.7) 

where W,Q is the total time ..:ustomer i spends waiting in queue, w Q 
is the observed average time spent in 

queue (called delay), and wa is the long-run average delay per customer. T�e estimators w and wQ are influ­
enced by initial conditions at time 0 and the run length T, analogously to L .  

Example 6.4 
For the system history show� in Figure 6.6, N= 5 customers arrive, W1 2, and W5= 20- 16 = 4, but W2, W3, 
and W4 cannot be computed unless more is known about the system. Assume that the system has a single 
server and a FIFO queue discipline. This implies that customers will depart from the system in the same 
order in which they arrived. Each jump upward of L(t) in Figure 6.6 represents an arrival. Arrivals occur at 
times 0, 3, 5, 7, and 16. Similarly, departures occur at times 2, 8, 10, and 14. (A departure may or may not 
have occurred at time 20.) Under these assumptions, it is apparent that W2 = 8 3 = 5, W3 = 10 - 5  = 5, 
w4 = 14 - 7  = 7, and therefore 

w = 2+5+5+7+ 4 = 23 = 4.6 time units 
5 5 
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Thus, on the average, an arbitrary customer spends 4.6 time units in the system. As for time spent in the waiting 
line, it can be computed that W,Q = �· �Q = 0, �Q = 8 - 5  = 3, �Q = 10- 7 = 3, and �Q = 0; thus, 

A O+O+ 3+ 3+0 
1 .2  time units WQ = 

5 

6.3.3 The Conservation Equation: l = lw 
For the system exhibited in Figure 6.6, there were N = 5 arrivals in T = 20 time units, and thus the observed 
arrival rate was i = NIT= l/4 customer per time unit. Recall that i = 1 . 15 and w = 4.6; hence, it follows that 

(6.8) 

This relationship between L, ,1., and w is not coincidental; it holds for almost all queueing systems or sub­
systems regardless of the number of servers, the queue discipline, or any other special . circumstances. 
Allowing T � oo and N � oo, Equation (6.8) becomes 

L = 1w (6.9) 

where i � 1, and 1 is the long-run average arrival rate. Equation (6.9) is called a conservation equation and 
is usually attributed to Little [1961]. It says that the average number of customers in the system at an arbi­
trary point in time is equal to the average number of arrivals per time unit, times the average time spent in 
the system. For Figure 6.6, there is one arrival every 4 time units (on the average) and each arrival spends 
4.6 time units in the system (on the average), so at an arbitrary point in time there will be (114) (4.6) = 1 .15 
customers present (on the average). 

Equation (6.8) can also be derived by reconsidering Figure 6.6 in the following manner: Figure 6.8 
shows system history, L(t), exactly as in Figure 6.6, with each customer's time in the system, W1, represented 
by a rectangle. This representation again assumes.a single-server system with a FIFO queue discipline. The 

L(t) 

Figure 6.8 System times, W1, for single-server FIFO system. 
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rectangles for the third and fourth customers are in two and three separate pieces, respectively. The ith 
rectangle has height I and length W1 for each i = I ,  2, . . .  , N. It follows that the total system time of all 
customers is given by the total area under the number-in-system function, L(t); that is, 

N T L W, = fo L(t)dt i=l 
Therefore, by combining Equations (6.2) and (6.5) with i = NIT, it follows that 

- I rr N I f A 

L = -J, 
L(t)dt = -- .t.,; W, = 1w 

T 0 T N  i=l 

(6.10) 

which is Little's equation (6.8). The intuitive and informal derivation presented here depended on the single­
server FIFO assumptions, but these assumptions are not necessary. In fact, Equation (6.10), which was the 
key to the derivation, holds (at least approximately) in great generality, and thus so do Equations (6.8) and 
(6.9). Exercises 14 and 15 ask the reader to derive Equations (6. 10) and (6.8) under different assumptions. 

Technical note: If, as defmed in Section 6.3 .2, W1 is the system time for customer i during [0, T], then 
Equation (6.10) and hence Equation (6.8) hold exactly. Some authors choose to define W1 as total system 
time for customer i; this change will affect the value of W1 only for those customers i who arrive before time 
T but do not depart until after time T (possibly customer 5 in Figure 6.8). With this change in definition, 
Equations (6. 10) and (6.8) hold only approximately. Nevertheless, as T � oo and N � oo, the error in 
Equation (6.8) decreases to zero, and, therefore, the conservation equation (6.9) for long-run measures of 
performance-namely, L = 1w-holds exactly. 

6.3.4 Server Utilization 

Server utilization is defined as the proportion of time that a server is busy. Observed server utilization, 
denoted by p, is defined over a specified time interval [0, T). Long-run server utilization is denoted by p. For 
systems that exhibit long-run stability, 

p � p as T � oo  

Example 6.5 . . . . . . . . . . 

Per Figirre 6.6 or 6.8, and assuming that the system has a single server, it can be seen that the server utilization 
is p = (total busy time)IT = <:L:1I;)IT = (T -T0)1T = 17120. 

Server utilization in G/G/1 /oo/oo queues 

Consider any single-server queueing system with average a{rival rate 1 customers per time unit, average service 
time E(S) = 1/Jl. time units, and infinite queue capacity and calling population Notice that E(S) = l!Jl. implies that, 
when busy, the server is working at the rate J1. customers per time unit, on the average; J1. is called the service rate. 
The server alone is a subsystem that can be considered as a queueing system in itself; hence, the conservation 
Equation (6.9), L = 1w, can be applied to the server. For stable systems; the average arrival rate to the server, say 
1,. must be identical to the average arrival rate to the system, 1 (certainly 1, :=; 1.....ccustomers caimot be served 
faster than they arrive-but, if 1, < 1, then the waiting line would tend to grow in length at an average rate of 
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U.t) - f.dt) 

3 

0 T = 20 

Figure 6.9 Number being served, U..t) - Lrjt), at time t. 

A. -A. customers per time unit, and so we would have an unstable system). For the server subsystem, the average 
system time is w = E(S) = Jl. -I� The actual number of customers in the server subsystem is either 0 or 1 ,  as shown 
in Figure 6.9 for the system represented by Figure 6.6. Hence, the average number, i,, is given by 

• 1 f.T T - T.  L, = - (L(t)- L,..(t)) dt = --0 
T o  "' T 

In this case, L, = 17nO = p. In general, for a single-server queue, the average number of customers being 
served at an arbitrary point in time is equal to server utilization. As T � oo, i = p � L = p. Combining 
these results into L = A.w for the server subsystem yields 

· ' ' 

A. p = A.E(S) = -
Jl. 

(6. 1 1) 

-that is,. the long-run server utilization in a single-server queue is equal to the average arrival rate divided 
by the average service rate. For a single-server queue to be stable, the arrival rate A. must be less than the 
service rate p.: 

or 

A. p = - < 1  
Jl. 

(6.12) 

If the arrival rate is greater than the service rate (A. > p.), the server will eventually get further and further 
behind, After a time, the server will always be busy, and the waiting line will tend to grow in length at an 
average rate of (A- Jl.) customers per time unit, because departures will be occurring at rate p. per time unit 
For stable single,server systems (A. < Jl. or p < 1), long-run measures of performance such as average queue 
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length LQ (and also L, w, and wQ) are well defined and have meaning. For unstable systems (A.> p.), long-run 
server utilization is 1, and long-run average queue length is infinite; that is, 

Similarly, L = w = wQ = oo. Therefore these long-run measures of performance are meaningless for unstable 
queues. The quantity Alp. is also called the offered load and is a measure of the workload imposed on the system. 

Server utilization in G/G/c/oo/oo queues 

Consider a queueing system with c identical servers in parallel. If an arriving customer fmds more than one 
server idle, the customer chooses a server without favoring any particular server. (For example, the choice of 
server might be made at random.) Arrivals occur at rate A. from an infinite calling population, and each server 
works at rate Jl. customers per time unit. From Equation (6.9), L = A.w, applied to the server subsystem alone, 
an argument similar to the one given for a single server leads to the result that, for systems in statistical 
equilibrium, the average number of busy servers, say L,, is given by 

L AE(S) = �  ' Jl. 

Clearly, 0 S Ls :s; c. The long-run average server utilization is defined by 

p =  
C CJl. 

(6. 13) 

(6.14) 

and so 0 :5 p :5 I. The utilization p can be interpreted as the proportion of time an arbitrary server is busy in 
the long run. 

The maximum service rate of the GIG!c/oofco system is cp., which occurs when all servers are busy. For 
the system to be stable, the average arrival rate A. must be less than the maximum service rate cp.; that is, the 
system is stable if and only if 

(6.15) 
or, equivalently, if the offered load Mp. is less than the number of servers c. If A. > cp., then arrivals are 
occurring, on the average, faster than the system can handle them, all servers will be continuously busy, and 
the waiting line will grow.  in length at an average rate of (A. - cp.) customers per time unit Such a system 
is unstable, and the long-run performance measures (L, LQ, w, and.wQ) are again meaningless for such systems. 

Notice that Condition (6.15) generalizes Condition (6.12), and the equation for utilization for stable 
systems, Equation (6.14), generalizes Equation (6. 1 1). 

. Equations (6.13) and (6.14) can also be applied when some servers work more than others, for example, 
when customers favor one server over others, or when certain servers serve customers only if all other servers 
are busy. In this case, the Ls given by Equation (6.13) is still the average number of busy servers, but p, as 
given by Equation (6.14), cannot be applied to an individual server. Instead, p must be interpreted as the average 
utilization of all servers. 

Example 6.6 
Customers arrive at random to a license bureau at a rate of A. =  50 customers per hour. Currently, there are 
20-clerks, each serving p. = 5 customers per hour on the average. Therefore the long-run; or steady-state, 
average utilization of a server, given by Equation (6.14), is 

· 
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and the average number of busy servers is 

A 50 
p = - = - = 0.5 

Cl1 20(5) 

A 50 
L = - = - = 10 ' 11 5 
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Thus, in the long run, a typical clerk is busy serving customers only 50% of the time. The office manager 
asks whether the number of servers can be decreased. By Equation (6.15), it follows that, for the system to 
be stable, it is necessary for the number of servers to satisfy 

A 
c > -

11 

or c > 5015 = 10. Thus, possibilities for the manager to consider include c = 1 1 ,  or c = 12, or c = 13, _ . . . 
Notice that c ;:: 1 1  guarantees long-run stability only in the sense that all servers, when busy, can handle the 
incoming work load (i.e., c11 > A) on average. The office manager could well desire to have more than 
the minimum number of servers (c = I I) because of other factors, such as customer delays and length of the 
waiting line. A stable queue can still have very long lines on average. 

Server utilization and system performance 

As wil! be illustrated here and in later sections, system performance can vary widely for a given value of 
utilization, p. Consider a G/G/1/oo/oo queue: that is, a single-server queue with arrival rate A, service rate 11. 
and utilization p = AI 11 < I .  

At one extreme, consider the D/D/1 queue, which has deterministic arrival and service times. Then all 
interarrival times {Ah A2, 0 0 . } are equal to E(A) = 1/A., and all service times {S1, S2, . . .  ) are equal to 
E(S) = l!JL Assuming that a customer arrives to an empty system at time 0, the system evolves in a completely 
deterministic and predictable fashion, as shown in Figure 6.10. Observe that L = p = Alji. w = E(S) = 11 -'. 
and LQ = wQ = 0. By varying A and 11. server utilization can assume any value between 0 and I, yet there is 
never any line whatsoever. What, then, causes lines to build, if not a high server utilization? In general, it is 
the variability of interarrival and service times that causes lines to fluctuate in length. 

L(t) 
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Server utilization = p = i _1 = /i 
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Figure 6.1 0 Deterministic queue (D/D/1). 
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Example 6.7 
Consider a physician who schedules patients every 10 minutes and who spends S; minutes with the ith 
patient, where { 9 minutes with probability 0.9 

S. = ' 12 minutes with probability 0_1 

Thus, arrivals are deterministic (A1 = A2 = o o •  = A -I = 10) but services are stochastic (or probabilistic), with 
mean and variance given by 

and 

E(S) = 9(0.9)+ 12(0.1) = 9.3 minutes 

V(S) = E(S12)- [E(S, )]2 

= 92(0.9) + 122(0.1) - (9.3)2 

= 0.81 minutes2 

Here, p = M11 = E(S)IE(A) = 9.3/10 = 0.93 < 1, the system is stable, and the physician will be busy 93% of 
the time in the long run. In the short run, lines will not build up as long as patients require only 9 minutes of 
service, but, because of the variability in the service times, 10% of the patients will require 12 ininutes, 
which in tum will cause a temporary line to form. 

· 

Suppose the system is simulate.d with service times, S1 = 9, S2 = 12, S3 = 9, S4 = 9, S5 = 9, · - - · Assuming 
that at time 0 a patient arrived to find the doctor idle and subsequent patients arrived precisely at times 
10, 20, 30, 0 0  ., the system evolves as in Figure 6. 11 .  The delays in queue are "W;Q = W2Q = 0, �Q = 22 - 20 = 2, 

W4Q = 3 1 -30 = 1, W5Q = 0. The occurrence of a relatively long service time (here S2 = 12) caused a waiting 
line to form temporarily. In general, because of the variability of the interarrival and service distributions, 
relatively small interarrival times and relatively large service times occasionally do occur, and these in turn 
cause lines to lengthen. Conversely, the occurrence of a large interarrival time or a small service time will 
tend to shorten an existing waiting line. The relationship between utilization, service and interarrival 
variability, and system performance will be explored in more detail in Section 6.4. 
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Figure 6.1 1 Number of patients in the doctor's office at time t_ 
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6.3.5 Costs in Queueing Problems 

In many queueing situations, costs can be associated with various aspects of the waiting line or servers. 
Suppose that the system incurs a cost for each customer in the queue, say at a rate of $10 per hour per 
customer. If customer j spends "jQ hours in the queue, then L ;=, ($1 0 · "jQ) is the total cost of the N customers 
who arrive during the simulation. Thus, the average cost per customer is 

f $ IO·W;Q 
= $IO·wci 

i=I N 

by Equation (6.7). If i customers per hour arrive (on the average), the average cost per hour is (i customers) ( $ IO ·wQ )= $10 - iw = $10 · L  /hour 
hour customer Q Q 

the last equality following by Little's equation (6.8). An alternative way to derive the average cost per hour 
is to consider Equation (6.2). If r;Q is the total time over the interval [0, T] that the system contains exactly i 
customers, then $10 ii;Q is the cost incurred by the system during the time exactly i customers are present 
�us, the total cost is :£:,($IO · ii;Q), and the average cost per hour is 

by Equation (6.2). In these cost expressions, iQ 
may be replaced by LQ (if the long-run number in queue is 

known), or by L or i (if costs are incurred while the customer is being served in addition to being delayed). 
The server may also impose costs on the system. If a group of c parallel servers (I ::; c < oo) have 

utilization p, and each server imposes a cost of $5 per hour while busy, the total server cost per hour is 

$5 - cp 

because cp is the average number of busy servers. If server cost is imposed only when the servers are idle, 
then the server cost per hour would be 

$5 · c(l -p) 

because c(l - p) = c - cp is the average number of idle servers. In many problems, two or more of these 
various costs are combined into a total cost. Such problems are illustrated by Exercises 5, 12, 17, and 20. 
In most cases, the objective is to minimize total costs (given certain constraints) by varying those parame­
ters that are under management's control, such as the number of servers, the arrival rate, the service rate, and 
the system capacity. 

6.4 STEADY-STATE BEHAVIOR OF INFINITE-POPULATION MARKOVIAN MODELS 

This section presents the steady-state solution of a number of queueing models that can be solved mathemat­
ically. For the infinite-population models, the arrivals are assumed to follow a Poisson process with rate .ll arrivals 
per time unit-that is, the interarrival times are assumed to be exponentially distributed with mean 11./l. Service 
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times may be exponentially distributed (M) or arbitrarily (G). The queue discipline will be FIFO. Because of 
the exponential-distributional assumptions on the arrival process, these models are called Markovian models. 

A queueing system is said to be in statistical equilibrium, or steady state, if the probability that the 
system is in a given state is not time dependent-that is, 

P(L(t) = n) = P,(t) = P, 

is independent of time t. 1\vo properties-approaching statistical equilibrium from any starting state, and 
remaining in statistical equilibrium once it is reached-are characteristic of many stochastic models, and, in 
particular, of all the systems studied in the following subsections. On the other hand, if an analyst were inter­
ested in the transient behavior of a queue over a relatively short period of time and were given some specific 
initial conditions (such as idle and empty), the results to be presented here would be inappropriate. A tran­
sient mathematical analysis or, more likely, a simulation model would be the chosen tool of analysis. 

The mathematical models whose solutions are shown in the following subsections can be used to obtain 
approximate results even when the assumptions of the model do not strictly hold. These results may be 
considered as a rough guide to the behavior of the system. A simulation may then be used for a more refined 
analysis. However, it should be remembered that a mathematical analysis (when it is applicable) provides the 
true value of the model parameter (e.g., L), whereas a simulation analysis delivers a statistical estimate (e.g., i) 
of the parameter. On the other hand, for complex systems, a simulation model is often a more faithful 
representation than a mathematical model. 

For the simple models studied here, the steady-state parameter L, the time-average number of customers 
in the system, can be computed as 

L = LnP. (6.16) 
n=O 

where {P.) are the steady-state probabilities of finding n customers in the system (as defined in Table 6.2). 
As was discussed in Section 6.3 and was expressed in Equation 6.3), L can also be interpreted as a long-run 
measure of performance of the system. Once L is given, the other steady-state parameters can be computed 
readily from Little's equation (6.9) applied to the whole system and to the queue alone: 

L 
w = -

,l 

(6.17) 

where .ll is the arrival rate and II is the service rate per server. 
For the G/G/c/oo/oo queues considered in this section to have a statistical equilibrium, a necessary and 

sufficient condition is that Ill (eli) < I,  where .ll is the arrival rate, II is the service rate of one server, and c is 
the number of parallel servers. For these unlimited capacity, infinite-calling-population models, it shall be 
assumed that the theoretical server utilization, p = ./l /(cii), satisfies p < I. For models with finite system 
capacity or finite calling population, the quantity ./l /(C}l) may assume any positive value. ·  

6.4.1 Single-Server Queues With Poisson Arr�als and Unlimited Capacity: M/G/1 

Suppose that service times have mean 111I and variance a2 and that there is one server. If p =.Ill II < I, then 
the MIG/I queue has a steady-state probability distribution with steady-state characteristics, as given in 
Table 6.3. In general, there is no simple expression for the steady-state probabilities P0, P1, P2, • • • •  When 
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Table 6.3 Steady-State Parameters of the M/G/1 
Queue 

A < fl, the quantity p = AI p is the server utilization, or long-l'Un proportion of time the server is busy. As is 
seen in Table 6.3, I - P0 = p can also be interpreted as the steady-state probability that the system contains 
one or more customers. Notice also that L - LQ = p is the time-average number of customers being served. 

Example 6.8 
Widget-making machines malfunction apparently at random and then require a mechanic's attention. It is 
assumed that malfunctions occur according to a Poisson process, at the rate A, 1 .5 per hour. Observation 
over several months has found that repair times by the single mechanic take an average time of 30 minutes, 
with a standard deviation of 20 minutes. Thus the mean service time lip 112 hour, the service rate is p = 2 
per hour and a2 (20)2 minutes2 = 1/9 hour2. The "customers" are the widget makers, and the appropriate 
model is the MIG/I queue, because only the mean and variance of service times are known, not their distri­
bution. The proportion of time the mechanic is busy is p = Alp= 1.5/2 = 0.75, and, by Table 6.3, the steady­
state time average number of broken machines is 

L = 0.15+ (1.5)2[(0.5)2 + 1/9] 
2(1 -0.75) 

= 0.75+ 1 .625= 2.375 machines 

Thus, an observer who notes the state of the repair system at arbitrary times would fmd an average of 2.375 
broken machines (over the long run). 

A closer look at the formulas in Table 6.3 reveals the source of the waiting lines and delays in an MIG/I 
queue. For example, � may be rewritten as 

p2 k\;2 
L = -- +-­Q 2(1-p) .2(1 -p) 

The first term involves only the ratio of the mean arrival rate, A, to the mean service rate, f.L As shown by 
the second term, if A and p are held constant, the average length of the waiting line (LQ) depends on the vari­
ability, a2, of the service times. If two systems have identical mean service times and mean interarrival times, 
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the one with the more variable service times (larger a 2) will tend to have longer lines on the average. 
[ntuitively, if service times are highly variable, there is a high probability that a large service time will occur 
(say, much larger than the mean service time), and, when large service times do occur, there is a higher -than-usual 
tendency for lines to form and delays of customers to increase. (The reader should not confuse "steady state" 
with low variability or short lines; a system in steady-state or statistical equilibrium can be highly variable 
and can have long waiting lines.) 

Example 6.9 
There are two workers competing for a job. Able claims an average service time that is faster than Baker's, but 
Baker claims to be more consistent, even if not as fast. The arrivals occur according to a Poisson process at 
the rate A, =  2 per hour (l/30 per minute). Able's service statistics are an average service time of 24 minutes 
with a standard deviation of 20 minutes. Baker's service statistics are an average service time of 25 minutes, 
but a standard deviation of only 2 minutes. If the average length of the queue is the criterion for hiring, which 
worker should be hired? For Able, .:t = 1130 per minute, 1/p = 24 minutes, a2 = 202 = 400 minutes2, p =Alp= 
24/30 = 415, and the average que�e length is computed as 

(1130)2[242 +400] 2 7 1 1  LQ = = . customers 
2(1-4/5) 

For B aker, A,"" 1130 per minute, lip = 25 minutes, a2 = 22 = 4 minutes2, p = 25/30 = 5/6, and the average 
queue length is 

(l /30f[252 +41 -'----'-"-----" = 2.097 customers 
2(1- 5/6) 

Although working faster on the average, Able's greater service variability results in an average queue length 
about 30% greater than Baker's. On the basis of average queue length, LQ, Baker wins. On the other hand, 
the proportion of arrivals who would find Able idle and thus experience no delay is P0 = I - p = 1/5 = 20%, 
but the pmportion who would find B aker idle and thus experience no delay is P0 = I p = 116 = 16.7%. 

One case of the M /G/1 queue that is of special note occurs when service times are exponential, which 
we describe next. 

The MIM/1 queue. Suppose that service times in an MIG/I queue are exponentially distributed, with 
mean 1/p.; then the variance as given by Equation (5.27} is a2. = l/p.2• The mean and standard:deviation of 
the exponential distFibution are equal, so the MIMI! queue will often be a useful approximate model when 
service times have standard deviations approximately equal to their means. The steady-state parameters, 
given in Table 6.4, may be computed by substituting a2 = llp 2  into the formulas in Table 6.3. Alternatively, 
L may be computed by Equation (6.16) from the steady-state probabilities P. given in Table 6.4, and then 
w, wQ, and LQ may be computed from Equations (6.17). The student can show that the two expressions for 
each parameter are equivalent by substituting p =.:tip into the right-hand side of each equation in Table 6.4. 

Example 6.10 · 

Suppose that the interarrival times and service times at a single-chair unisex hair-styling shop have been 
shown to be exponentially distributed. The values of .:t and p are 2 per hour and 3 per hour, respectively­
that is, the time between arrivals averages 1/2 hour, exponentially distributed, and the service time averages 
20 minutes, also exponentially distributed. The server utilization and the probabilities for zero, one, two, · 
three, and four or more customers in the shop are computed as follows: 
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From the calculations, the probability that the hair stylist is busy is I - P0 p = 0.67; thus, the proba­
bility that the hair stylist is idle is 0.33. The time-average number of customers in the system is given by 
Table 6.4 as 

A. 2 L -- = -- = 2 customers 
J.t - A.  3 - 2  

The average time an arrival spends i n  the system can be obtained from Table 6.4 or Equation (6.1 7} as 

L 2 w = - = - =  I hour 
A. 2 

The average time the customer spends in the queue can be obtained from Equation (6.17}  as 

l I 2 wQ = w -- = 1- - = - hour 
j.t 3 3 

Table 6.4 Steady-Stale Parameters of the 
M/M/1 Queue 

L 

w 

Jt p 
f.l -Jt = 1 -p 

l l 
f.l -Jt = f.l(I -p) 

_Jt
_

=
_P_ 

f.l(f.l-J..} f.l(l -p }  
;t2 p

2 

f.l{f.l - 1} = 1 -p 

. (� -;J Gr = (1 -p} p" 
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From Table 6.4, the time-average number in the queue is given by 

A.2 4 4 LQ = - - = - customers 
j.t(j.t - A.) 3(1} 3 

Finally, notice that multiplying w = wQ + 1/J.t through by A. and using Little's equation (6.9} yields 

Example 6.11 

A. 4 2 L = LQ +- = - +- = 2 customers 
j.t 3 3 
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For the MIMI! queue with service rate j.t 10 custo.mers per hour, consider how L and w increase as the 
arrival rate, A., increases from 5 to 8.64 by increments of 20%, and then to A. =  10. 

p 
L 
w 

5.0 

0.500 
1.00 
0.20 

6.0 

1.50 
0.25 

7.2 
. 

0.720 
2.57 
0.36 

8.64 

0.864 
6.35 
0.73 

10.0 

1.0 

For any MIG !I queue, if Alp �·J,  waiting lines tend to continually grow in length; the long-run measures of 
performance, L, w, wQ, and LQ are all infinite (L w = wQ La = oo); and a steady-state probability distri­
bution does not exist. As is shown here for A. < p., if p is close to 1, waiting lines and delays will tend to be 
long. Notice that the increase in average system time, w, and average number in system, L, is highly nonlinear 
as a function of p. For example, as A. increases by 20%, L increases first by 50% (from 1.00 to 1 .50), then 
by 7 1 %  (to 2.57), and then by 147% (to 6.35}. 

Example 6.12 
If arrivals are occurring at rate A. =  10 per hour, and mauagement has a choice of two servers, one who works 
at rate j.t1 = I I  customers per hour and the second at rate j.t2 = 12 customers per hour, the respective utiliza­
tions arep1 =Alj.t1 = 10/l l =0.909and p2=Alj.t2= 10/12= 0.833. IftheM/M/1 queue is used as an approximate 
model, then, with the first server, the average number in the system would be, by Table 6.4, 

L, = = 10 
1 - p, 

and, with ·the second server, the average number in the system would be 

L _ _f2_ _ 5  2 - -l - p2 .  
Thus, a decrease in service rate from 1 2  to I I  customers per hour, a mere 8.3% decrease, would result 

in an increase in average number in system frorri 5 to 10, which is a 100% increase. 

The effect of utilization and service variability 

For any M /G II queue, if lines are too long, they can be reduced by decreasing the server utilization p or by 
decreasing the service time variability, <r2• These remarks hold for almost all queues, not just the M/G/1 
queue. The utilization factor p can be reduced by decreasing the arrival rate A., b� increasing-the service rate p., 
or by increasing the number of servers, because, in general, p = Af(cj.t), where c is the number of parallel 
servers. The effect of additional servers will be studied in the following subsections. Figure 6. 1 2  illustrates 
the effect of service variability. The mean steady-state number in the queue, LQ, is plotted versus utilization 
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Figure 6.12 Mean number of customers waiting, LQ, in M/G/1 queue h�ving service distributi�ns with 
given cv. (Adapted from Geoffrey Gordon, System Simulation, 2nd ed., Prenhce-Hall, Englewood Cliffs, NJ, 1 978.) 

p for a number of different coefficients of variation. The coefficient of variation (cv) of a positive random 
variable X is defined as 

2 
V(X) 

(cv) = 
[E(X)f 

It is a measure of the variability of a distribution. The largerits value, the more variable is the distribution rel­
ative to its expected value. For deterministic service times, V(X) = 0, so cv = 0. For Erlang service times of order 
k, V(X) = ll(kJl2) and E(X) = 11 f1, so cv = 1 I .Jk. For exponential service times at service rate f1, the mean serv­
ice time is E(X) = liJl and the variance is V(X) "' l!J12, so cv = l. lf service times have standard deviation greater 
than their mean (i.e., if cv > 1), then the hyperexponential distribution, which can achieve any desired coeffi­
cient of variation greater than 1 ,  provides a gOod model. One occasion where it arises is g�ven in Exe

_
rc�se 16. 

The formula for LQ for any MIG!l queue can be rewritten in terms of the coeffictent of vanation by 
noticing that (cv)2 = G21(l!Jl)1 = G2Jl2. Therefore, 

p2(1 + ciJl2) 
L = !.-'--'-....:.. Q 2(1 -p) p2(1 + (cv)2) 

2(1 -p) 

=
c�2

p
) e+�v)2 ) . (6. 18) 
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The first term, p21( 1- p), is LQ for an MIMII queue. The second term, (1 + (cv)2)12, corrects the MIM!l 
formula to account for a nonexponential service-time distribution. The formula for wQ can be obtained from 
the corresponding MIMII formula by applying the same correction factor. 

6.4.2 Multiserver Queue: M/M/c/oo/oo 

Suppose that there are c channels operating in parallel. Each of these channels has an independent and iden­
tical exponential service-time distribution, with mean liJl. The arrival process is Poisson with rate A.. Arrivals 
will join a single queue and enter the fust available service channel. The queueing system is shown in 
Figure 6. 13. If the number in system is n < c, an arrival will enter an available channel. However, when 
n ;::: c, a queue will build if arrivals occur. 

The offered load is defined by I.JJl. If A. ;::: Cf.l, the arrival rate is greater than or equal to the maximum 
service rate of the system (the service rate when all servers are busy); thus, the system cannot handle the load 
put upon it, and therefore it has no statistical equilibrium. If A. >  Cf.l, the waiting line grows in length at the 
rate (A. - CJl) customers per time unit, on the average. Customers are entering the system at rate A. per time 
unit but are leaving the system at a maximum rate of CJl per time unit. 

For the MIMic queue to have statistical equilibrium, the offered load must satisfy I.Jjl < c, in which case 
A.l(cJl) = p, the server utilization. The steady-state parameters are listed in Table 6.5. Most of the measures 
of perfonnance can be expressed fairly simply in terms of P0, the probability that the system is empty, or 
L,�j�,, the probability that all servers are busy, denoted by P(L(oo) ;::: c), where L(oo) is a random variable 
representing the number in system in statistical equilibrium (after a very long time). Thus, P(L(oo) = n) = P., 
n = 0, 1 .  2 • . . . .  The value of P 0 is necessary for computing all the measures of performance, and the equation 
for P0 is somewhat more complex than in the previous cases. However, P0 depends only on c and p. A good 
approximation to P0 can be obtained by using Figure 6.14, where P0 is plotted versus p on semilog paper for 
various values c. Figure 6. 15 is a plot of L versus p for different values of c. 

The results in Table 6.5 simplify to those in Table 6.4 when c = 1, the case of a single server. Notice that 
the average number of busy servers, or the average number of customers being served, is given by the sim­
ple expression L - LQ = A.IJl = cp. 

Example 6.13 
Many early examples of queueing theory applied to practical problems concerning tool cribs. Attendants 
manage the tool cribs as mechanics, assumed to be from an infinite calling population, arrive for service. 
Assume Poisson arrivals at rate 2 mechanics per minute and exponentially distributed service times with 
mean 40 seconds. 

Calling population 
of potential customers 

� 
0 0 0 UJ 
Waiting line 

[EJ 
c parallel 
servers 

Figure 6. 1 3  Multiserver queueing system. 
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Table 6.5 Steady-State parameters for the M/M/c Queue 

p 

P(L(""') ;?; c) 

L 

w 

L - 4) 

A 
Cl1 

{[f (M 11 )"] + [(t)' (.!.)(.2_)'1}_
, 

•'"' n! 11 c! CI1-A � 

={[� (c:r ]+[(cp
>'(�)( ��p )Jr 

(M 11)' P0 (cpt P0 
c!(l -M ell) c!(l -p) 

+ 
(cp)"'1 P0 pP(L(oo) ;?; c) cp c(c!)(l - p)2 - cp + (1 - p) 

L 
A 

1 w - -
11 

(cp)'"'' P. AW - 0 
a c(c!)(l -pl 

A - = cp 
11 

pP(L(oo) ;?; c) 
(1-p) 

·
Now, A. = 2 per minute, and J.L = 60/40 = 3/2 per minute. The offered load is greater than 1 :  

;t 2 4 . - =-= > 1  
J.L 3/2 3 

so more than one server is needed if the system is to have a statistical equilibrium. The requirement for 
steady state is that c > A.! J.L = 4/3. Thus at least c 2 attendants are needed. The quantity 4/3 is the expected 
number of busy $ervers, and for c � 2, p= 41(3c) is the long-run proportion of time each server is busy. (What 
would happen if there were only c = 1 server'?) 

Let there be c = 2 attendants. First, P 0 is calculated as 

Po = {± (4/3)" +(±)2(!)( 2(312) ]}-I 
n=O n! 3 2! 2(3/2)-2  
{ 4 (16)( 1 ) }-I (15)-l 1 = 1+3+ 9 2 (3) = 3 = 5= 0·2 

Next, the probability that all servers are busy is computed as 

P(L(oo) ";!2) = (4/3)2 (!)=(�)(!). = _! = 0.533 
. .· 2!(1 -2/3) 5 3 5 15  

. 
' ' '· '  ' ·  � ·. ' 
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Po 

Ulilization factor 

Figure 6.1 4  Values of P0 for M/M/c/«> model. (From F. S. Hillier and G. J. Lieberman, Introduction to 
Operations Research, 5th ed., 1990, p. 6 1 6. Adapted with permission of McGraw-Hill, Inc., New York.) 

Thus, the time-average length of the waiting line of mechanics is 

L = (2/ 3)(Sil5) - 1.07 mechanics Q 1-213 
and .the time-average number in system is given by 

;t 16 4 12 . L = LQ +- = -+-= - =  2.4 mechanics 
J.L 15 3 5 

From Little's relationships, ·the average time a mechanic spends at the tool crib is 

L 2.4 . 
w = I= T = 1.2 nunutes 
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L 

0· 1  o�-O:i.l::----::ol::.2--0:i.3::----::ol-:.4--:o::':.5::------::o.76 --:o�.7:----:::o.-;;-s --;o"!-;.9;---;,-;;_o:--.1. 

Utilization factor 
p = Cfi 

Figure 6. 1 5  Values of L lor M/M/c/� model. (From F. S. Hillier and G. J. Lieberman, Introduction to 
Operations Research, 5th ed., 1 990, p. 6 1 7. Adapted with permission of McGraw-Hill, Inc., New York.) 

and the average time spent waiting for an attendant is 

Example 6.14 

wQ = w-.!.. = 1.2 - � = 0.533 minute 
J1 3 

Using the data of Example 6.13, compute P0 and L from Figures 6.14 and 6.15. First, compute 

A 2 2 
p = - = -- = - = 0.667 

CJl 2(3/2) 3 

Entering the utilization factor 0.667 on the horizontal axis of Figure 6.14 gives the value 0.2 for P0 on the 
vertical axis. Similarly, the value L = 2.4 is read from the vertical axis of Figure 6. 15. 

L 
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An Approximation for the M/G/c/oo Queue 

RecaU that formulas for LQ and wQ for the MIG/I queue can be obtained from the corresponding MIMI! formulas 
by multiplying them by the correction factor (I + (cv)2)/2, as in Equation (6. 18). Approximate formulas for 
the MIG!c queue can be obtained by applying the same correction factor to the MIMic formulas for LQ and 
wQ (no exact formula exists for I < c < oo). The nearer the cv is to I,  the better the approximation. 

Example 6.15 
Recall Example 6.13. Suppose that the service times for the mechanics at the tool crib are not exponentially 
distributed, but are known to have a standard deviation of 30 seconds. Then we have an MIG!c model, rather 
than an MIMic. The mean service time is 40 seconds, so the coefficient of variation of the service time is 

30 3 cv = - = - < I 
40 4 

Therefore, the accuracy of LQ and wQ can be improved by the correction factor 

1 + (cv)2 
2 

For example, when there are c = 2 attendants, 

1 + (3/4)2 
2 

25 = 0.78 
32 

LQ = (0. 78)(1.07) = 0.83 mechanics 

Notice that, because the coefficient of variation of the service time is less than I ,  the congestion in the 
system, as measured by LQ, is less than in the corresponding MIM/2 model. 

The correction factor applies only to the formulas for LQ and wQ. Little's formula can then be used to 
calculate L and w. Unfortunately, there is no general method for correcting the steady-state probabilities, P.,. 

When the Number of Servers is Infinite (M/G/oo/oo) 

There are at least three situations in which it is appropriate to treat the number of servers as infinite: 

1. when each· customer is its own server-in other words, in a self-service system; 
2. when service capacity far exceeds service demand, as in a so-called ample-server system; and 
3. when we want to know how many servers are required so that customers will rarely be delayed. 

The steady-state parameters for the MIG/oo queue are listed in Table 6.6. In the table, A is the arrival rate of 
the Poisson arrival process, and 11 J1 is the expected service time of the general service-time distribution 

'(including exponential, constant, or any other). 

Example 6.16 
Prior to introducing their new, subscriber-only, on-line computer information service, The Connection must plan 
their system capacity in terms of the number of users that can be logged in simultaneously. If the service is 
successful, customers are expected to log on at a rate of A =  500 per hour, according to a Poisson process, and 
stay connected for an average of l!Jl = 180 minutes (or 3 hours). In the real system, there will be an upper limit 
on simultaneous users, but, for planning purposes, The Connection can pretend that the number of simultaneous 
users is infinite. An MIG/oo model of the system implies that the expected number of simultaneous users is L = 
AIJl = 500(3) = 1500, so a capacity greater .than 1500 is certainly required. To ensure providing adequate capacity 
95% of the time, The Connection could allow .the number of simultaneous users to be theJJmallest value c such that 
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Table 6.6 Steady-State Parameters far the 
M/G/oo Queue 

Po 
e-»p. 
1 

w p. 

WQ 0 

'L 
A 
p. 

LQ 0 

P. 
n! 

n = O, 1, ... 

P(L(oo) :S c) =  tP.. = 0.95 
n=O 

The capacity c = 1564 simultaneous users satisfies this requirement. 

6.4.3 Multiserver Queues with Poisson Arrivals and Umited Capacity: M/M/c/N/oo 

Suppose that service times are exponentially distributed at rate J1, that there are c servers, and that the total 
system capacity is N 2: c customers. If an arrival occurs when the system is full, that arrival is turned away 
and does not enter the system. As in the preceding section, suppose that arrivals occur randomly according 
to a Poisson process with rate A. arrivals per time unit. For any values of A. and J.L such that p -:t. 1, the MIM!c/N 
queue has a statistical equilibrium with steady-state characteristics as given in Table 6.7 (formulas for the 
case p I can be found in Hillier and Lieberman [2005]). 

Table 6.7 Steady..State Parameters for the M/M/c/N 
Queue (N = System Capacity, a J../p., p A/(cp.)) 

Po 

w 

L 

P,a'p _o __ (l-pN-< _(N-c)pN-c(l-p)J 
c!(l-p)' 

A(l - PN) 
LQ 
A, 

1 
w + ­Q p. 

A,w 

l 
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The effective arrival rate, A.., is defined as the mean number of arrivals per time unit who enter and remain 
in the system. For all systems, A.. :S A; for the unlimited-capacity systems, A., = A; but, for systems such as the 
present one, which turn customers away when full, A., < A.. The effective arrival rate is computed by 

A., = A (l - PN) 

because I - P N is the probability that a customer, upon arrival, will find space and be able to enter the system. 
When one is usirig Little's equations ( 6.17) to compute mean time spent in system w and in queue w Q• A. must 
be replaced by A.,. · 

Example U7 
The unisex hair-styling shop described in Example 6.1 7  can hold only three customers: one in service, and 
two waiting. Additional customers are turned away when the system is full. The offered load is as pr�viously 
detennined, namely A./J.L = 213. 

In order to calculate the performance measures, first compute P0: [ 2 2 3 (2 )"-1]-l 
Po =  1 +-+-2: - = 0.415 

3 3 •=2 3 

The probability that there are three customers in the system (�e system is full) is 

(2/ 3)3 8 
P. = P.  =--P., = - = 0. 123 N 3 1 ! 12 0 65 

Then, the average length of the queue (customers waiting for a haircut) is given by 

(27/65)(2 / 3)(2/3) 2 2 LQ 213 
2 [1 - (2/3) - 2(2/3) (l - 2/ 3)] = 0.431 customer 

(1- ) 

Now, the effective arrival rate, A.,, is given by 

A., = 2 I -- = - = 1.754 customers per hour ( 8 ) 1 14 
65 65 

Therefore, .from Little's equation, the expected time spent waiting in queue is 

L 28 
· w = __g_ =-= 0.246 hour Q A., 1 14 . 

and the expected total time in the shop is 

1 66 
w = wQ +- = - = 0.579 hour 

J1 1 14 

One last application of Little's equation gives the expected number of customers in the shop (in queue and 
getting a haircut) as 

, 

66 . 
L = A.,w = - =  1.015 customers 

65 

}' 
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Notice that I - P0 = 0.585 is the average number of customers being served or, equivalently, the 
probability that the single server is busy_ Thus, the server utilization, or proportion of time the server is busy 
in the long run, is given by 

1 - f'o  = A.
, = 0.585 

Jl 

The reader should compare these results to those of the unisex hair-styling shop before the capacity 
constraint was placed on the system. Specifically, in systems with limited capacity, the offered load AIJl can 
assume any positive value and no longer equals the server utilization p = A/Jl. Notice that server utilization 
decreases from 67% to 58.5% when the system imposes a capacity constraint. 

6.5 STEADY-STATE BEHAVIOR OF FINITE-POPULATION MODELS (M/M/C/K/K) 

In many practical problems, the assumption of an infinite calling population leads to invalid results because 
the calling population is, in fact, small. When the calling population is small, the presence of one or more 
customers in the system has a strong effect on the distribution of future arrivals, and the use of an infinite­
population model can be misleading. Typical examples include a small group of machines that break down 
from time to time and require repair, or a small group of mechanics who line up at a counter for parts or 
tools. In the extreme case, if all the machines are broken, no new "arrivals" (breakdowns) of machines can 
occur; similarly, if all the mechanics are in line, no arrival is possible to th�e tool and parts counter. Contrast 
this to the infinite-population models, in which the arrival rate, A., of customers to the system is assumed to 
be independent of the state of the system. 

Consider a finite-calling-population model with K customers. The .time between the end of one service 
visit and the next call for service for each member of the population is assumed to be exponentially distributed, 
with mean 1/A. time units; service times are also exponentially distributed, with mean 1/Jl time units; there 
are c parallel servers, and system capacity is K, so that all arrivals remain for service. Such a system is 
depicted in Figure 6. 16. 

The steady-state parameters for this model are listed in Table 6.8. An electronic spreadsheet or a 
symbolic calculation program is useful for evaluating these complex formulas. For example, Figure 6.17 is 
a procedure written for the symbolic calculation program Maple to calculate the steady-state probabilities for 
the MIM/c/KIK queue. Another approach is to use precomputed queueing tables, . such as those found in 
Banks and Heikes [1984], Hillier and Yu [ 1981], Peck and Hazelwood [1958] or Descloux [1962]. 

The effective arrival rate A., has several valid interpretations: 

Example 6.18 

A., = long-run effective arrival rate of customers to the queue 

= long-run effective arrival rate of customers entering service 

= long-run rate at which customers exit from service 

= long-run rate at which customers enter the calling population 

(and begin a new runtime) 

= long-run rate at which customers exist from the calling population 

There are two workers who are responsible for 10 milling machines. The machines run on the average for 
20 minutes, then require an average 5-minute service period, both times exponentially distributed. Therefore, 
A. =  1/20 and Jl = 115. Compute the various measures of performance for this system. 

QUEUEING MODELS 
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Calling population 
K customers (maximum) 

Mean runtime !/A. 

Amval�--------------���� - - - - '\ 
/ I I I I I I I I I 
: c parallel servers : 1 Queue with mean 1 1 

service time 1 I I I 1/Jl 1 I I I I I I 
: I 
I . I 
1 System / ' - - - - - - ------------------ - ----------

Figure 6.1 6  Finite-population queueing model .. 

Table 6.8 Steady-State Parameters for the M/M/c/K/K Queue 

Po 

P, 

L 

LQ 

A., 

w 
WQ 

p 

,_, K A. " K K! A. " [ �(n) b) + �(K-n)!c!c,_.(J;) r rlm P
., 

n =O, 1, . . .  , c- 1  

K !  A. " (-) P0, n= c, c+ 1, . . .  , K 
(K-n)!c!c,_. Jl 

K 
L,nP, 

K 
I, (n-c)P, 

n=c+l 
K 
L,<K-n)A.J!, 
n=O 
L/A., 
LQI A., 
L - La 

=
A., 

c CJ.l 
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proc (lambda, mu, c, K) 
# re.turn steady-state probabilities for M/M/c/K/K queue 
# notice that p [n+1] is P_n, n=O , . . , K  
local crho, Kfac, cfac, p ,  n ;  
p : = vector (K+1 , 0 )  ;-
crho . - lambda/mu ; 
Kfac . - K ! ; 

c ! ;  cfac . ­

p [1] sum ( (Kfac/ (n ! * (K-n) ! ) ) *crho�n, n=O . .  c-1 )  + sum ( (Kfac/ (c� (n-c) * 
(K-n) ! *cfac) ) *crho�n , n=c . .  K) ; 

p [1]  := 1fp [1] ; 
for n from 1 to c-1  
do 

p [n+1] : = p [1] * (Kfac/ (n !  • (K-n) ! ) ) •crho�n; 
od; 
for n from c to K 
do 

p [n+l] : = p [1] * (Kfac/ (c� (n-c) • (K-n) ! •cfac) ) •crho�n; 
od; 
RETURN (evalm (p) ) ;  
end; 

Figure 6.1 7  Maple procedure Ia calculate P. far the M/M/c/K/K queue. 

All of the performance measures depend on P0; which is 

2-1 lQ 5 n 10 lO! 5 n 
I ·� +I � = o.o65 [ ( ) ]-1 n=O n Co) ·=c (10-n)!2!2"_2

(
z0) 

From Po, we can obtain the other P., from which we can compute the average number of machines waiting 
for service, 

the effective arrival rate, 

10 
LQ = I<n - 2)P, = 1.46 machines 

n=3 

A., = I (1 0 - n) � P, = 0.342 machines/minute 
. 10 ( 1 ) n=O 20 

and the average waiting time in the queue, 

wQ = L/..l, = 4.27 minutes 

Similarly, we can compute the expected �umber of machines being serviced or waiting to be serviced, 

10 
L =  InP.. = 3.17 machines 

n=O . 

The average number of machines being serviced is given by 

L-LQ = 3.17- 1.46 = 1.7l machines 
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Each machine must be either running, waiting to be serviced, or in service, so the average number of running 
machines is given by 

K- L = lO -3.17 = 6.83 machines 

A question frequently asked is this: What will happen if the number of servers is increased or decreased? 
If the number of workers in this example increases to three (c = 3), then the time-average number of running 
machines increases to 

K-L = 7.74 machines 

an increase of 0.91 machine, on the average. 
Conversely, what happens if the number of servers decreases to one? Then the time-average number of 

running machines decreases to 
K-L = 3.98 machines 

The decrease from two servers to one has resulted in a drop of nearly tlrree machines running, on the average. 
Examples 12, and 20 asks the reader to determine the optimal number of servers. 

Example 6.18 illustrates several general relationships that have beeq found to hold for almost all queues. 
If the number of servers is decreased, delays, server utilization, and the probability of an arrival having to 
wait to begin service all increase. 

6.6 NETWORKS OF QUEUES 

In this chapter, we have emphasized the study of single queues of the GIG/c/NI K type. However, many systems 
are naturally modeled as networks of single queues in which customers departing from one queue may be 
routed to another. Example 6.1 (see, in particular, Figure 6.3) and Example 6.2 (see Figure 6.5) are illustrations. 

The study of mathematical models of networks of queues is beyond the scope of this chapter; see, for 
instance, Gross and Harris [1997], Nelson [ 1 995], and Kleinrock [1976]. However, a few fundamental prin­
ciples are very useful for rough-cut modeling, perhaps prior to a simulation study. The following results 
assume a stable system with infinite calling population and no limit on system capacity: 

1. Provided that no customers are created or destroyed in the queue, then the departure rate out of a 
queue is the same as the arrival rate into the queue; over the long· run. 

2. l.f customers arrive to queue i at rate .:l,, and a fraction 0 ::;; Pii ::;; I of them are routed to queue j upon 
departure, then the arrival rate from queue i to queue j is .:l,pii over the long run. 

3. The overall arrival rate into queue j, ,li' is the sum of the arrival rate from all sources. If customers 
arrive from outside the network at rate ai, then 

,li = ai + IA.,pij alii 

4. If queue j has ci < oo parallel servers, each working at rate fli, then the long-run utilization of each 
server is 

and Pi < 1 is required for the queue to be stable. 
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5. If, for each queuej, arrivals from outside the network form a Poisson process with rate aP and if there 
are ci identical servicers delivering exponentially distributed service times with mean l!Jli (where ci may 

be oo), then, in steady state, queuej behaves like an MIM/ci queue with arrival rate A1 = a1 + L,11 , A.,p,i" 

Example 6.19 
Consider again the discount store described in Example 6.1 and shown in Figure 6.3. Suppose that customers 
arrive at the rate 80 per hour and that, of those arrivals, 40% choose self-service; then, the arrival rate ,to service 
center I is ).1 = (80)(0.40) = 32 per hour, and the arrival rate to service center 2 is � = (80}(0.6) = 48 per 
hour. Suppose that each of the c2 = 3 clerks at service center 2 works at the rate J1.2 = 20 customers per hour. 
Then the long-run utilization of the clerks is 

=�=0.8 pl (3)(20) 

All customers must see the cashier at service center 3. The overall arrival rate to service center 3 is 
� = ).1 + � = 80 per l:lour, regardless of the service rate at service center 1 ,  because, over the long run, the 
departure rate out of each service center must be equal to the arrival rate into it. If the cashier works at rate 
J1.3 = 90 per hour, then the utilization of the cashier is 

Example 6.20 

80 
p3 =-= 0.89 90 

At a Driver's License branch office, drivers arrive at the rate 50 per hour. All arrivals must first check in with 
one of two clerks, with the average check-in time being 2 minutes. After check in, 15% of the drivers need 
to take a written test that lasts approximately 20 minutes. AU arrivals must wait to have their picture taken 
and their license produced; this station can process about 60 drivers per hour. The branch manager wants to 
know whether it is adding a check-in clerk or adding a new photo station that will lead to a greater reduc­
tion in customer delay. 

To solve the problem, let the check-in clerks be queue 1 (with c1 = 2 servers, each working at rate J1.1 = 30 
drivers per hour}, let the testing station be queue 2 (with c2 = oo servers, because any number of people can 
be taking the written test simultaneously, and service rate J1.2 = 3 drivers per hour}, and let the photo station 
be queue 3 Ewith c3 = 1 server working at rate J1.3 = 60 drivers per hour). The arrival rates to each queue are 
as follows: 

j 

A1= a1 + L,p,1A., = 50 drivers per hour 
i=l 
3 

A1 = a1 +I, p,2A., = (0.15)A.1 drivers per hour 
i=i 
3 

A3= a3 + L,p,3A., = (1)� + (0.85)A., drivers per hour 
i=l 

Notice that arrivals from outside the network occur only at queue 1 ,  so a1 = 50 and a2 = a3 = 0. Solving this 
system of equations gives A.1 = � = 50 and � =  7.5. 

If we approximate the arrival process as Poisson, and the service times at each queue as exponentially 
distributed, then the check-in clerks can be approximated as an MIM/c1 queue, the testing station as an MIM/oo 
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queue, and the photo station as an M/M/c3 queue. Thus, under the current set-up, the check-in station is an 
M/M/2; using the formulas in Table 6.5 gives wQ = 0.0758 hours. If we add a clerk, so that the model is M/M/3, 
the waiting time in queue drops to 0.0075 hours, a savings of 0.0683 hours or about 4. 1 minutes. 

The current photo station can be modeled as an M/Mil queue, giving wQ = 0.0833 hours; adding a 
second photo station (M/M/2) causes the time in queue to drop to 0.0035 hours, a savings of 0.0798 hours, 

· or about 4.8 minutes. Therefore, a second photo station offers a slightly greater reduction in waiting time 
than does adding a third clerk. 

If desired, the testing station can be analyzed by using the results for an M/M/oo queue in Table 6.6. For 
instance, the expected number of people taking the test at any time is L = �IJ1.1 = 7.5/3 = 2:5. 

6.7 SUMMARY 

Queueing models have found widespread use in the analysis of service facilities, production and material­
handling systems, telephone and communications systems, and many other situations where congestion or 
competition for scarce resources can occur. This chapter has introduced the basic concepts of queueing models 
and shown how simulation, and in some cases a mathematical analysis, can be used to estimate the 
performance measures of a system. 

A simulation may be used to generate one or more artificial histories of a complex system. This simu­
lation-generated data may, in tum, be used to estimate desired performance measures of the system. 
Commonly used performance measures, including L, LQ, w, wQ, p, and A., were introduced, and formulas 
were given for their estimation from data. 

When simulating any system that evolves over time, the analyst must decide whether transient behavior 
or steady-state performance is to be studied. Simple formulas exist for the steady-state behavior of some 
queues, but estimating steady-state performance measures from simulation-generated data requires recog­
nizing and dealing with the possibly deleterious effect of the initial conditions on the estimators of steady­
state performance. These estimators could be severely biased (either high or low}, if the initial conditions are 
unrepresentative of steady state or if simulation run length is too short. These estimation problems are dis­
cussed at greater length in Chapter 1 1 .  

Whether the analyst i s  interested in transient or in steady-state performance of a system, it should be 
recognized that the estimates obtained from a simulation of a stochastic queue are exactly that-estimates. 
Every such estimate contains random error, and a proper statistical analysis is required to assess the accu­
racy of the estimate. Methods for conducting such a statistical analysis are discussed in Chapters 1 1  and 12. 

In the last three sections of this chapter, it was shown that a number of simple inodels can be solved 
mathematically. Although the assumptions behind such models might not be met exactly in a practical appli­
cation, these models can still be useful in providing a rough estimate of a performance measure. In many 
cases; models with exponentially distributed interarrival and service times will provide a conservative esti­
mate of system behavior. For example, if the model predicts that average waiting time, w, will be 12.7 
minutes, then average waiting time in the real system is likely to be less than 12.7 minutes. The conserva­
tive nature of exponential models arises because (a) performance measures, such as w and L, are generally 
increasing functions of the variance of interarrival times and service times (recall:the M/G/1 queue), and (b) 
the exponential distribution is fairly highly variable, having its standard deviation always equal to its mean. 
Thus, if the arrival process or service mechanism of the real. system is less variable

. 
than exponentially 

distributed interarrival or service times, it is likely that the average number in the systeni, L, and the average 
time spent in system, w, will be less than what is predicted by the exponential model. Of course, if the 
interarrival and service times are more variable than exponential random variables, then the MIM queueing 
models could underestimate congestion. 
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An important application of mathematical queueing models is determining the minimum number of servers 
needed at a work station or service center. Quite often, if the arrival rate it and the service rate J1 are known or 
can be estimated, then the simple inequality A/(cp} < I can be used to provide an initial estimate for the number 
of servers, c, at a work station. For a large system with many work stations, it could be quite time consuming to 
have to simulate every possibility (c1, c2, • • •  ) for the number of servers, C;, at work station i. Thus, a bit of math­
ematical analysis rough estimates could save a great deal of computer time and analyst's time. 

Finally, the qualitative behavior of the simple exponential models of queueing carries over to more 
complex systems. In general, it is the variability of service times and the variability of the arrival process that 
causes waiting lines to build up and congestion to occur. For most systems, if the arrival rate increases, or if 
the service rate decreases, or if the variance of service times or interarrival times increases, then the system 
will become more congested. Congestion can be decreased by adding more servers or by reducing the mean 
value and variability of service times. Simple queueing models can be a great aid in quantifying these 
relationships and in evaluating alternative system designs. 
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EXERCISES 

1. Identify the calling population, customer, and server in the following queueing situations: 

(a) university library 
(b) bank teller counter 
(c) Intef\].et router 
(d) police station 
(e) assembly line 

2. A two-runway (one runway for landing, one runway for taking off) airport is being designed for pro­
peller-driven aircraft The time to land an airplane is known to be exponentially distributed, with a mean 
of 1-l/2 minutes. If airplane arrivals are assumed to occ.ur at random, what arrival rate can be tolerated 
if the average wait in the sky is not to exceed 3 minutes? 

MODELS 

3. If customers arrive for service according to Poisson distribution with a mean of 5 per day, how fast the 
average service time (assume exponential) must be to keep average number in the system less than 4'! 

4. Give some examples from real-life situations for balking and reneging. 

5. Trucks arrive at a facility to be unloaded in a pattern, which can be characteriZed by the Poisson distri­
bution. The average rate of arrivals is 36 per hour, and the level of service is exponentially distributed 
with a mean service rate of 39 trucks per hour. Compute all the relevant statistics for the system, The 
drivers make Rs. 9 each hour and do not unload the trucks. How much expense, on the average, is 
incurred by the trucking company for idle time on the part of each driver for each visit to the facility?. 

6. Patients arrive for a physical examination aecording to a Poisson process at the rate 1 per hour. The 
physical examination requires three stages, each one independently exponentially distributed, with a 
service time of 15 minutes. A patient must go through all three stages before the next patient is .admit­
ted to the treatment facility. Compute the average number of delayed patients, La, for this system. (Hint: 
The variance of the sum of independent random variables is the sum of the variance.) 

7. Suppose that mechanics arrive randomly at a tool crib according to a Poisson process with rate it =  10  
per hour. I t  i s  known that the single tool clerk serves a mechanic in  4 minutes on the average, with a 
standard deviation of approximately 2 minutes. Suppose that mechanics make $15.00 per hour. Estimate 
the steady-state average cost per hour of mechanics waiting for tools. 

8. The arrival of customers at a teller counter follows Poisson with a mean of 45 per hour and teller's 
service time follows exponential with a mean of 1 minute. Determine the following: 

(a} Probability of having 0 customer in the system, 5 customers in the system, and 10 customers in the 
system. 

(b) Determine La, L, W 0, and W. 

9. A machine shop repairs small electric motors, which arrive according to a Poisson process at the rate 12 
per week (5-day, 40-hour workweek). An analysis of past data indicates that engines can be repaired, on 
the average, in 2.5 hours, with a variance of 1 hour2. How many working hours should a customer expect 
to leave a motor at the repair shop (not knowing the status of the system)? If the variance of the repair 
time could be controlled, what variance would reduce the expected waiting time to 6.5 hours? 

· 

10. Arrivals to a self-service gasoline pump occur in a Poisson fashion at dle rate 12 per hour. Service time 
has a distribution that averages 4 minutes, with a standard deviation of 1-1/3 minutes. What is the 
expected number of vehicles in the system? 

11. Classic Car Care has.one worker who washes cars in a four-step method-soap; rinse, dry, vacuum. The 
time to complete each step is exponentially distributed, with mean 9 minutes. Every car goes through 
every step before another car begins the process. On the average, one car every 45 minutes arrives for a 
wash job, according to a Poisson process. What is the average time a car waits to begin the wash job? What 
is the average number of cars in the car wash system? What js the average time required to wash a car'! 

12. Machines arrive for repair at the rate of six per hour folloWing Poisson. The mechanics mean repair time 
is 15 minutes, which follows exponential distribution. The down time cost for the broken down 
machines per hour is Rs. 300. Mechanics are paid Rs. 60 per hour. Determine the optimal number of 
mechanics to be employed .to minimize the total cost. 
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13. Given the following infonnation for a finite calling population problem with exponentially distributed 
runtimes and service times: 

K = IO 

_!._= 15 Jl. ±= 82 

c = 2  

Compute LQ and wQ. Find the value of A, such that LQ = U2. 
14. Suppose that Figure 6.6 represents the number in system for a last-in-first-out (LIFO) single-server sys­

tem. Customers are not preempted (i.e., kicked out of service), but, upon service completion, the most 
recent arrival next begins service. For this LIFO system, apportion the total area under L(t) to each indi­
vidual customer, as was done in Figure 6.8 for the FIFO system. Using the figure, show that Equations 
(6.10) and (6.8) hold for the single-server LIFO system. 

15. Repeat Exercise 14, but assuming that 
(a) Figure 6.6 represents a FIFO system with c = 2 servers; 
(b) Figure 6.6 represents a LIFO system with c = 2 servers: 

16. Consider a M/G/1 queue with the following type of service distribution: Customers request one of two 
types of service, in the proportions p and 1-p. 1)'pe i service is exponentially distributed at rate Jl.;, i = l ,  2. 
Let X; denote a type-i service time and X an arbitrary service time. Then E(XJ= l!Jl.i, V(X, )= 11 Jl.� and {xl with probability p X=  X2 with probability (1-p) 

The random variable X is said to have a hyperexponential distribution with parameters ( p.1, Jl.z, p). 
(a) Show that E(X) = plp.1 + (1-p)lp.2 and E(X2) = 2plp.� + 2(1-p)IJJ.i. 
(b) Use V(X) = E(Xl) - [E(X)]' to show V(X)= 2ptp.: + 2(1-p)lp.; -[plp.1 +(1-p)IJ1.2]2 • 
(c) FOr any hyperexponeritial random variable, if p.1 -:t. p.2 and 0 < p < I, show that its coefficient of vari­

ation is greater than 1-that is, (cvf = V(X)I[E(X)]2 > I .  Thus, the hyperexponential distribution 
provides .a family of statistical models for service times that are more variable than exponentially 
distributed service times. Hint: The algebraic expression for (cv)2, by using parts (a) and (b), can be 
manipulated into the fonn (cv)2 = 2p(1-p)(llp.1-llp.z)2/[E(X)j2 + I. 

(d) Many choices of p.1, p.2, and p lead to the same overall mean E(X) and (cvf. If a distribution with 
mean E(X) = 1 and coefficient of variation cv = 2 is desired, find values of p.1, Jl.z, and p to achieve 
this. Hint: Choose p = 114 arbitrarily; then solve the following equations for p.1 and p.2• 

I 
MODELS 

17. Orders are expected to arrive at a machining center according to Poisson process at a mean rate of 
30 per hour. The management has an option of two machines Ml (fast but expensive) and M2 
(slow inexpensive). Both machines would have an exponential distribution for machining times with 
M l having a mean of 1.2 minutes and M2 having a mean of 1.5 minutes. The profit per year is given by 
Rs. 72,000/W, where W is the expected waiting time (in minutes) for the orders in the system. Determine 
the upper bound on the difference in the average yearly cost that would justify buying M 1 rather than M2. 

18. In Example 6.18, increase the number of machines by 2, then compare the systems with c 1 ,  c = 2, 
and c = 3 servers on the basis of server utilization p (the proportion of time a typical server is busy). 

19. Vehicles pass through a toll gate at a rate of 90 per hour. The average time to pass through the gate is 
36 seconds. The arrival rate and service rate follow Poisson distribution. There is a complaint that the 
vehicles wait for a long duration. The authorities are willing to install one more gate to reduce the 
average time to pass through to 30 seconds, if the idle time of the toll gate is less than 10% and the present 
average queue length at the gate is more than five vehicles. Check whether the installation of the secood 
gate is justified. 

20. The arrival of employees at a tool crib can be described by a Poisson distribution. Service times are 
exponentially distributed. The rate of arrival averages 45 machinists per hour, while an attendant can 
serve an average of 50 men per hour. The machinists are paid Rs. 24 per hour, while the attendants are 
paid Rs. 15 per hour. Find the optimum number of attendants to place in the crib, assuming 8 hours and 
200 days per year. 

21. This problem is based on Case 8.1 in Nelson [1995]. A large consumer shopping mall is to be con­
structed. During busy times, the arrival rate of cars is expected to be l 000 per hour, and studies at other 
malls suggest that customers will spend 3 hours, on average, shopping. The mall designers would like 
to have sufficient parking so that there are enough spaces 99.9% of the time. How many spaces should 
they have? Hint: Model the system as an MIG/co queue where the spaces are servers, and find out how 
many spaces are adequate with probability 0.999. 

22. In Example 6.19, suppose that the overall arrival rate is expected to increase to 160 per hour. If the serv­
ice rates do not change, how many clerks will be needed at service centers 2 and 3, just to keep up with 
the customer load? 

23. A small copy shop has a self-service copier. Currently there is room for only 4 people to line up for the 
machine (including the person using the machine); when there are more than 4 people, then the addi­
tional people must line up outside the shop. The owners would like to avoid having people line up out­
side the shop, as much as possible. For that reason, they are thinking about adding a second self-service 
copier. Self-service customers have been observed to arrive at the rate 24 per hour, and they use the 
machine 2 minutes, on average. Assess the impact of adding another copier. Carefully state any assump­
tions or approximations you make. 

24. In anN machine one operator environment, five automatic machines are attended by one operator. Every 
time a machine completes a batch, the operator must reset it before a new batch is started. The time to 
complete a batch run is exponential with a mean of 45 minutes. The setup time is also exponential with 
a mean of 8 minutes. Determine 

(a) the average number of machines that are waiting for set up. 
(b) the probability that all the machines are working. 
(c) the average time a machine is down. 
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25. Search the web and find applications of queueing theory in production activities. 

26. Study the effect of pooling servers (having multiple servers draw from a single queue, rather than each 
having its own queue) by comparing the performance measures for two MIM/1 queues, each with anival 
rate A and service rate J.l, to an MIM/2 queue with anival rate 2A and service rate Jl for each server. 

27. A repair and inspection facility consists of two stations: a repair station with two technicians, and an 
inspection station with I inspector. Each repair technician works at the rate 3 items per hour; the inspec­
tor can inspect 8 items per hour. Approximately 10% of all items fail inspection and are sent back to the 
repair station. (This percentage holds even for items that have been repaired two or more times.) If items 
arrive at the rate 5 per hour, what is the long-run expected delay that items experience at each of the two 
stations, assuming a Poisson anival process and exponentially distributed service times? What is the 
maximum arrival rate that the system can handle without adding persormel? 

Part I l l  
Random Numbers 
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7 
Random-Number Generation 

Random numbers are a necessary basic ingredient in the simulation of almost all discrete sys�ms� Most 
computer languages have a subroutine, object, or function that will generate a random number. Similarly, 
simulation languages generate random numbers that are used to generate event tiQJ.es and other random vari­
ables. In this chapter, the generation of random numbers and their subsequent testing for randomness is 
described. Chapter 8 shows how random numbers are used to generate a random variable with any desired 

· probability distribution. 

7.1 PROPERTIES OF RANDOM NUMBERS 

A sequence of random numbers, R1, R2, • • •  , must have two important statistical properties: uniformity and 
independence. Each random number R; must be an independent sample drawn from a continuous uniform 
distril:iution between zero and 1-that is, the pdf is given by 

· f(x) = 
{1, 0 S x � 1 

0, · otherwise 

This density function is shown in Figure 7.1. The expected value ofeach R;1s given by 

and the variance is given.by 

V(R) = f x2dx-[ E(R)J = .:1? 11 -(.!.)2 = .!__.!.= _!_ 
0 ' 

. 3 0 2 3 4 12 
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Usually, random numbers are generated by a digital �uter, as part of the simulation. There are 
numerous methods that can be used to generate the values. Befure we describe some of these methods,· or 
routines, there are a number of important considerations that we should mention: 

1. The routine should be fast. Individual computations are inexpensive, but simulation could require 
many millions of random numbers. The total cost can be managed by selecting a computationally 
efficient n:tethod gf raruiom�num�r generation. 

2. The routine should be portable to different rompute�d, ideally, to different programming languages. 
This is desirable so that the simulation program will produce the same results wherever it is executed. 

3. The routine should have a sufficiently long cycle. The cycle length, or period, represents the length 
of the random number sequence before previous numbers begin to repeat themselves in an earlier 
order. Thus, if 10,000 even� are to be generated, the period should be many limes that long. 
A special �e of cycling is degenerating. A routine degenerates when the same random numbers appear 
repeatedly. Such an occurrence is certainly unacceptable. This can happen rapidly with some methods. 

4. The random numbers should be replicable. Given the starting point (or conditions) it should be 
possible to generate the same set of random numbers. completely independent of the system that is being 
simulated. This is helpful for debugging purposes and is a means of facilitating comparisons between 
systems (see Chapter 12). For the same reasons, it should be possible to easily specify different starting 
points, widely separated, within the sequence. 

5. Most important, the generated random numbers should closely approximate the ideal statistical prop­
erties of uniformity and independence. 

Inventing techniques that seem to generate random numbers is easy; inventing techniques that really do 
produce sequences that appear to be independent, uniformly distributed random numbers is incredibly diffi­
cult. There is now a vast literature and rich theory on the topic, and many hours of testing have been devoted 
to establishing the properties of various generators. Even when a technique is known tO be theoretically 
sound, it is seldom easy to implement it in a way that will be fast and portable. The goal of this chapter is to 
make the reader aware of the central issues in random-number generation, to enhance understanding and to 

f show some of the techniques that are used by those working in this area. 

7.3 TECHNIQUES FOR GENERATING RANDOM NUMBERS 

The. linear congruential method of Section 7.3.1 is the most widely used technique for generating random 
numbers, so we describe it in detail. We also report an extension of this method that yields sequences with 
a longer period. Many other methods have been proposed, and they are reviewed in Deatley, Fox, and Schrage 
[1996], Law and Kelton [2000], and Ripley [1987]. 

7 .3.1 Linear Congruential MethQci 

The linear congruential method, initially proposed by Lehmer [1951], produces a sequence of integers, 
xh x2, . .. between zero and m - l by following a recursive relationship: 

X;+t = (aX; +  c) mod m, i = 0, I, 2, . . .  (7. 1 )  

The initial value Xo is called the seed, a i s  called the multiplier, c i s  the increment, and m is the modulus. 
If c ¢ 0 in Equation (7 . l  ), then the form is called the mixed congruential method. When c = 0, the form is 
known as the multiplicative congruential method. The selection of the values for a, c, m, and X0 drastically 
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j(x) 

0 X 

Figure 7.1 pdf for random numbers. 

Some consequences of the uniformity and independence properties are the following: 

1. If the interval [0, l] is divided into n classes, or subintervals of equal length, the expected number of 
observations in each interval is Nln, where N is the total number of observations. 

2. The probability of observing a value in a particular interval is independent of the previous values 
drawn. 

7.2 GENERATION OF PSEUDO·RANDOM NUMBERS 

Notice that the title of this section has the word "pseudo" in it. "Pseudo" means false, so false random 
numbers are being generated! In this instance, "pseudo" is used to imply that the very act of generating 
random numbers by a known method removes the potential for true randomness. If the method is known, the 
set of random numbers can be replicated. Then an argument can be made that the numbers are not truly 
random. The goal of any generation scheme, however, is to produce a sequence of numbers between 0 and l 
that simulates, or imitates, the ideal properties of uniform distribution and independence as closely as 
possible. 

To be sure, in the generation of pseudo-random numbers, certain problems or errors can occur. These 
errors, or departures from ideal randomness, are all related to the properties stated previously. Some examples 
of such departures include the following: 

1. The generated numbers might not be uniformly distributed. 
2. The generated numbers might be discrete-valued instead of continuous-valued. 
3. The mean of the generated numbers might be too high or too low. 
4. The variance of the generated numbers might be too high or too low. 
5. There might be dependence. The following are examples: 

(a) autocorrelation between numbers; 
(b) numbers successively higher or lower than adjacent numbers; 
(c) several numbers above the mean followed by several numbers below the mean. 

Departures from uniformity and independence for a particular generation scheme often can be detected 
by such tests as those described in Section 7 .4. If such departures are detected, the generation scheme should 
be dropped in favor of an acceptable generator. Generators that pass the tests in Section 7.4 and teSts even 
more stringent have been developed; thus, there is no excuse for using a generator that has been found to be 
defective. 
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affects the statistical properties and the cycle length. Variations of Equation ( 7 . I )  are quite common in the 
computer generation of randof!l numbers. An example will illustrate how this technique operates. 

Example 7.1 
Use the linear congruential method to generate a sequence of random numbers with :xfJ = 27, a =  17, c = 43, 
and m = 100. Here, the integer values generated will all be between zero and 99 because of the value of the 
modulus. Also, notice that random integers are being generated rather than random numbers. These random 
integers should appear to be uniformly distributed on the integers zero to 99. Random numbers between zero 
and 1 can be generated by 

i = 1, 2, . . .  
m 

The sequence of X; and subsequent R; values is computed as follows: 

X0 = 27 

X1 = (17 ·27 + 43) mod 100 = 502 mod 100 = 2  
2 . 

R = - = 0.02 
I 100 

X2 = (17 ·2 +43) mod 100 = 77 mod 100 = 77 

77 
Rz = - = 0.77 

100 
X3 = (17·77 + 43) mod 100 1352 mod 100 = 52 

52 
� = - = 0.52 

100 

(7.2) 

Recall that a =  b mod m provided that (b - a) is divisible by m with no remainder. Thus, X1 = 502 mod 100, 
but 5021100 equals 5 with a remainder of 2, so that X1 = 2. In other words, (502 - 2) is evenly divisible by 
m = 100, so X1 = 502 "reduces" to X1 = 2 mod 100. (A shortcut for the modulo, or reduction operation for 
the case m = lOb, a power of 10, is illustrated in Example 7.3.) 

The ultimate test of the linear congruential method, as of any generation scheme, is how closely the gen­
erated numbers Rh R2, • • •  approximate uniformity and independence. There are, however, several secOndary 
properties that must be considered. These include maximum density and maximum period. 

First, notice that the numbers generated from Equation (7 .2) assume values only from the set I= ( 0, 1/m, 
21m. ••• , (m - 1)/m}, because each X; is an integer in the set (0, 1, 2, ..• , m - 1} .  Thus, each R; is discrete on !, 
instead of continuous on the interval [0, 1]. This approximation appears to be of little consequence if the 
modulus m is a very large integer. (Values such as m = 231 - 1 and m = 24<1 are in common use in generators 
appearing in many simulation languages.) By maximum density is meant that the values assurued by R;, 
i = 1,  2, .•. , leave no large gaps on [0, 1]. 

Second, to lielp achieve maximum density, and to avoid cycling (i.e., recurrence of the sarue sequence of 
generated numbers) in practical applications, the generatOr should have the largest possible period. Maximal 
period can be achieved by the proper choice of a, c, m, and Xfl [Fishman, 1978; Law and Kelton, 2000]. 

• For m a power of 2, say m = 2b, and c * 0, the longest possible period is P = m = 2b, which is achieved 
whenever c is relatively prime to m (that is, the greatest common factor of c and m is 1) and a =  I +  4k, 
where k is an integer. 
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• For m a power of 2, say m = 2h, and c = 0, the longest possible period is P = m/4 = 2b-2, which is 
achieved if the seed Xfl is odd and if the multiplier, a, is given by a = 3 + 8k or a = 5 + 8k, for some k 
= 0, 1, . . .. 

• Form a prinle number and c = 0, the longest possible period is P = m - 1, which is achieved whenever the 
multiplier, a, has the property that the smallest integer k such that a!' I is divisible by m is k = m - I .  

Example 7.2 
Using the multiplicative congruential method, find the period of the generator for a =  13, m = 26 = 64 and 
Xo 1 ,  2, 3, and 4. The solution is given in Table 7.1. When the seed is I or 3, the sequence has period 16. 
However, a period of length eight is achieved when the seed is 2 and a period of length four occurs when the 
seed is 4. 

In Example 7.2, m = 26 = 64 and c = 0. The maximal period is therefore P = m/4 16. Notice that this 
period is achieved by using odd seeds, Xfl = I and X0 = 3; even seeds, Xo 2 and X0 :::; 4, yield the periods 
eight and four, respectively, both less than the maximum. Notice that a =  13 is of the form 5 + 8k with k = I ,  
as  is required to achieve maximal period. 

When X0 = 1, the generated sequence assumes values from the set { I , 5, 9, 13, . . .  , 53, 57, 61 }. The 
"gaps" in the sequence of generated random numbers, R;, are quite large (i.e., the gap is 5/64 - 1/64 or 
0.0625). Such a gap gives rise to concern about the density of the generated sequertce. 

The generator in Example 7.2 is not viable for any application-its period is too short, and its density 
is insufficient. However, the example shows the importance of properly choosing a, c, m, and Xo. 

Speed and efficiency in using the generator on a digital computer is also a selection consideration. Speed 
and efficiency are aid� by use of a modulus, m, which is either a power of 2 or close to a power of 2. Since 
most digital computers use a binary representation of numbers. the modulo, or remaindering, operation of 
Equation (7.1) can be conducted efficiently when the modulo is a power of 2 (i.e., m .= 2b). After ordinary 
arithmetic yields a value for aX; + c, xi+l is obtained by dropping the leftmost binary digits in aXi + c and 

Table 7.1 Period Delerminalion Using Various 
Seeds 

i x, x, x, x, 
0 I 2 3 4 
I 13 26 39 52 
2 41  18 59 36 
3 21  42 63 20 
4 17 34 5 1  4 
5 29 58 23 
6 57 50 43 
7 37 10 47 
8 33 2 35 
9 45 7 

10 9 27 
1 1  53 3 1  
12 49 19 
13  6 1  55 
14 25 1 1  
1 5  5 15 
16 I 3 
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then using only the b rightmost binary digits. The following example illustrates, by analogy, this operation 
using m = I Oh, because most human beings think in decimal representation. 

Example 7.3 
Let m =  102 = 100, a =  19, c=O, and Xo = 63, and generate a seqnence of random integers using Equation (7.1). 

X0 = 63 
X1 = (19)(63) mod 100 = 1 197 mod 100 = 97 
X2 = (19)(97) mod l 00 = 1843 mod 100 = 43 

X3 = (19)(43) mod 100 = 817 mod 100 = 17 

When m is a power of 10, say m = J()b, the modulo operation is accomplished by saving the b rightmost 
(decimal) digits. By analogy, the modulo operation is most efficient for binary computers when m = 2h for 
some b > O. 

Example 7.4 
The last example in this section is in actual use. It has been extensively tested [Learmonth and Lewis, 1973; 
Lewis et al., 1969]. The values for a, c, and m have been selected to ensure that the characteristics desired 
in a generator are most likely to be achieved. By changing Xo, the user can control the repeatability of the 
stream. 

Let a = 75 = 16,807; m = 231 - 1 = 2,147,483,647 (a prime number); and c = 0. These choices satisfy the 
conditions that insure a period of P = m - I (well over 2 billion). Further, specify the seed Xo = 123,457. The 
first few numbers generated are as follows: 

X, 75(123,457) mod (231 - 1) =  2,074,941, 799 mod (231 - 1) 
x, = 2,074,941, 799 

X R1 = 
2
3: = 0.9662 

X2 = 75 (2,074,941, 799) mod (231 -1) = 559,872,160 
Xz R2 = ?J = 0.2607 

X3 = 75 (559,872,160) mod (231 - 1) = 1,645,535,613 
. 

X 
R3 = -3} = 0.7662 

2 

Notice that this routine divides by m + I instead of m; however, for such a large value of m, the effect 
is negligible. 

7.3.2 Combined Unear Congruential Generators 

As computing power has increased, the complexity of the systems that we are able to simulate has also 
increased. A random-number generator with period 231 - 1 "' 2  x J(Jl', such as the popular generator described 
in Example 7 .4, is no longer adequate for all applications, Examples include the simulation of highly reliable 
systems, in which hundreds of thousands of elementary events must be simulated to observe even a single failure 
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event, and the simulation of complex computer networks, in which thousands of users are executing hundreds 
of programs. An area of current research is the deriving of generators with substantially longer periods. 

One fruitful approach is to combine two or more multiplicative congruential generators in such a way 
that the combined generator bas gond statistical properties and a longer period. The following result from 
L'Ecuyer [1988] suggests how this can be done: 

If W�1, Wu, . . .  , W1,t are any independent, discrete-valued random variables (not necessarily identically 
distributed), but one of them, say W1,b is uniformly distributed on the integers from 0 to m1 - 2, then 

W. =(±w..i) mod � -1  
j=l 

is uniformly distributed on the integers from 0 to m1 - 2. 
To see how this result can be used to form combined generators, let X1,�o X1,2, • • •  , Xu be the ith output 

from k different multiplicative congruential generators, where the jth generator has prime modulus mi and 
the multiplier aj is chosen so that the period is mj - I .  Then the jth generator is producing integers xiJ that 
are approximately uniformly distributed on the integers from 1 to "'i - I ,  and W;J = XiJ - l is approximately 
uniformly distributed on the integers from 0 to mi - 2. L'Ecuyer (1988] therefore suggests combined gener­
ators of the form 

with 

Notice that the "(-J)f-1" coefficient implicitly performs the subti:action X;, I - 1; for example, if k = 2 then 

(-l)0(X - l) -(-1)1(X. - 1) =  � 2 (-1i-1X. .. i.t 1.2 £..J j=l '·1 
The maximum possible period for such a generator is 

_ (m1 - l)(mz - 1) · · · (m, - 1) 
p - 2<-1 

which is achieved by the generator described in the next example. 

Example 7.5 
For 32-bit computers, L'Ecuyer [1988] suggests combining k = 2 generators with m1 = 2,147,483,563, 
a1 = 40,014, '"2 = 2,147,483,399 and a2 = 40,692. This leads to the following algorithm: 

1. Select seed X1,0 in the range (1 ,2,14,74,83,5621 for the first generator, and seed X2.o in the range 
[1,2, 14,74,83,398] for the second. 
Setj= O. 

2. Evaluate each individual generator. 

X1J+1 40,014 X1J mod 2,147,483,563 
x2J+I = 40,692 X2J mod 2,147,483,399 
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3. Set 

XJ+l = (X1,J+I - X21+1) mod 2,147,483,562 

4. Return 

5. Setj = j + 1 and go to step 2. 

This combined generator has period (m1 - l)(m2 - I )12 = 2 x 1018• Perhaps surprisingly, even such a long 
period might not be adequate for all applications. See L'Ecuyer [1996, 1999) and L'Ecuyer et al. [2002) for 
combined generators with periods as· long as 2191 = 3 X IO�n. 

7.3.3 Random·Nurriber Streams 

The seed for a linear congruential random-number generator (seeds, in the case of a combined linear con­
gruential generator) is the integer value X0 that initializes the random-number sequence. Since the sequence 
of integers X0, X�o . . . , X,, X0, X1, . . .  produced by a generator repeats, any value in the sequence could be 
used to "seed" the generator. 

· 

For a linear congruential generator, a random-number stream is nothing more than a convenient way to 
· refer to a starting seed taken from the sequence Xo, X1, • • •  , Xp (for a combined generator, starting seeds for 

all of the basic generators are required); typically these starting seeds are far apart in the sequence. For 
instance, if the streams are b values apart, then stream i could be defined by starting seed 

xb(i-1) 

for i =  1 ,  2, . . .  , LPtbJ. Values of b = 100,000 were common in older generators, but values as large as b = 1()37 
· are  in use in modem combined linear congruential generators. (See, for instance, L'Ecuyer et al. [2002) for the 
implementation of such a generator.) Thus, a single random-number generator with k streams acts like k distinct 
virtual random-number generators, provided that the current value of seed for each stream is maintained. 
Exercise 2 1  illustrates one way to create streams that are widely separated in the random-number sequence. 

In Chapter 12, we will consider the problem of comparing two or more alternative systems via simula­
tion, and we will show that there are advantages to dedicating portions of the pseudorandom number 
sequence to the same purpose in each of the simulated systems. For instance, in comparing the efficiency of 
several queueing systems, a fairer comparison will be achieved if all of the simulated systems experience 
exactly the same sequence of customer arrivals. Such synchronization can be achieved by assigning a 
specific stream to generate arrivals in each of the queueing simulations. If the starting seeds for the streams 
are spaced far enough apart, then this has the same effect as having a distinct random-number generator 
whose only purpose is to generate customer arrivals. 

· 

7.4 TESTS FOR RANDOM NUMBERS 

The desirable properties of random numbers-uniformity and independence-were discussed in Section 7 . 1 .  
To check on wh_ether these desirable properties have been achieved, a number of  tests can be performed. 
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(Fortunately, the appropriate tests have already been conducted for most commercial simulation software.) 
The tests can be placed in two categories, according to the properties of interest uniformity, and independ­
ence. A brief description of two types of tests is given in this chapter: 

1. Frequency test. Uses the K.olmogorov-Srnimov or the chi-square test to compare the distribution of 
the set of numbers generated to a uniform distribution. 

2. Autocorrelation test. Tests the correlation between numbers and compares the sample correlation to 
the expected correlation, zero. 

In testing for uniformity, the hypotheses are as follows: 

H0 : Ri - U[O, l) 
H, : Rd U[O, l ]  

The null hypothesis, H0, reads that the numbers are distributed uniformly on the interval [0, I ] .  Failure to 
reject the null hypothesis means that evidence of nonuniformity has not been detected by this test. This does 
not imply that further testing of the generator for unifonnity is unnecessary. 

In testing for independence, the hypotheses are as follows: 

H0 : R1 - independently 
H1 : Ri f independently 

This null hypothesis, H0, reads that the numbers are independent. Failure to reject the null hypothesis means 
that evidence of dependence has not been detected by this test. This does not imply that further testing of the 
generator for independence is unnecessary. 

For each test, a level of significance a must be stated. The level a is the probability of rejecting the null 
hypothesis when the null hypothesis is true: 

a =  P(reject H0 I H0 true) 

The decision maker sets the value of a for any test Frequently, a is set to O.Ql or 0.05. 
If several tests are conducted on the same set of numbers, the probability of rejecting the null hypothe­

sis on at least one test, by chance alone [i.e., making .a  Type I (a) error], increases. Say that a =  0.05 and 
that five different tests are conducted on a sequence of nmnbers. The probability of rejecting the null hypoth­
esis on at least one test, by chance alone, could be as large as 0.25. 

Similarly, if one test is conducted on many sets of numbers from a generator, the probability of reject­
ing the null hypothesis on at least one test by chance alone [i.e., making a Type I (a) error], increases as more 
sets of numbers are tested. For instance, if 1 00  sets of numbers were subjected to the test, with a =  0.05, it 
would be expected that five of those tests would be rejected by chance alone. If the number of rejections in 
100 tests is close to I OOa, then there is no compelling reason to discard the generator. The concept discussed 
in this and the preceding paragraph is discussed further at the conclusion of Example 7 .8. 

If one of the well-known simulation languages or random-number generators is used, it is probably 
unnecessary to apply the tests just mentioned and described in Sections 7.4.1 and 7.4.2. However, random­
number generators frequently are added to software that is not specifically developed for simulation, such as 
.spreadsheet programs, symbolic/numerical calculators, and programming languages. If the generator 
that is at hand is not explicitly known or documented, then the tests in this chapter should be applied to 

. many samples of numbers from the generator. Some additional tests that are commonly used, but are not 
covered here, are Good's serial test for sampling numbers [1953, 1967), the median-spectrum test [Cox and 
Lewis, 1966; Durbin, 1967], the runs test [Law and Kelton 2000) and a variance heterogeneity test [Cox 
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and Lewis, 1966J. Even if a set of numbers passes all the tests, there is no guarantee of randomness; it is 
always possible that some underlying pattern has gone undetected. 

In this book, we emphasize empirical tests that are applied to actual sequences of numbers produced by 
a ·  generator. Because of the extremely long period of modern pseudo-random-number generators, as 
described in Section 7 .3.2, it is no longer possible to apply these tests to a significant portion of the period 
of such generators. The tests can be used as a check if one encounters a generator with completely unknown 
properties (perhaps one that is undocumented and buried deep in a software package), but they <;annot be 
used to establish the quality of a generator throughout its period. Fortunately, there are also families of 
theoretical tests that evaluate the choices for m, a, and c without actually generating any numbers, the most 
common being the spectral test. Many of these tests assess how k-tuples of random numbers fill up a 
k-dimensional unit cube. These tests are beyond the scope of this book; see, for instance, Ripley [1987J. 

In the examples of tests that follow, the hypotheses are not restated. The hypotheses are as indicated in 
the foregoing paragraphs. Although few simulation analysts will need to perform these tests, every simula­
tion user should be aware of the qualities of a good random-number generator. 

7 .4.1 Frequency Tests 

A basic test that should always be performed to validate a new generator is the test of uniformity. Two 
different methods of testing are available. They are the Kolmogorov-Srnirnov and the chi-square test Both 
of these tests measure the degree of agreement between the distribution of a sample of generated random 
numbers and the theoretical uniform distribution. Both tests are based on the null hypothesis of no significant 
difference between the sample distribution and the theoretical distribution. 

I. The Kolmogorov-Smirnov test. This test compares the continuous cdf, F(x), of the uniform distribu­
tion with the empirical cdf, SN(x), of the sample of N observations. By definition, 

F(x) = x, 0 ;S; x ;S;  1 

If the sample from the random-number generator is R 1,  R1, • . •  , RN, then the empirical cdf, SN(x), is defined by 

which are s; x 

As N becomes larger, SN(x) should become a better approximation to F(x), provided that the nnll hypothesis 
is true. 

In Section.5 .6, empirical distributions were described. The cdf of an empirical distribution is a step func­
tion with jumps at each observed value. This behavior was illustrated by Example 5.35. 

The Kolrnogorov-Srnirnov test is based on the largest absolute deviation between F(x) and SJ.x) over 
the range of the random variable-that is, it is based on the statistic 

D = max!F(x) -SJ.x)l (7.3) 

The sampling distribution of D is known; it is tabnlated as a function of N in Table A.S. For testing against 
a uniform cdf, the test procedure follows these steps: 

Step I. Rank the data from smallest to largest. Let R(Q• denote the ith smallest observation, so that 
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Step 2. Compute 

Step 3. Compute D max(D+, Ir). 

D+ = max 
lSiSN 

D" = max 
lS>iSN 
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Step 4. Locate in Table A.8 the critical value, D a• for the specified significance level a and the given sample 
size N. 

Step 5. If the sample statistic D is greater than the critical value, D,., the null hypothesis that the data are a 
sample from a uniform distribution is rejected. If D $ Da, conclude that no difference has been detected 
between the true distribution of [Rt> R1, . . .  , RN} and the uniform distribution. 
Example 7.6 
Suppose that the five numbers 0.44, 0.81,  0.14, 0.05, 0.93 were generated, and it is desired to perform a test for 
uniformity by using the Kolrnogorov-Srnirnov test with the level of significance. a =  0.05. First, the numbers 
must be ranked from smallest to largest. The calculations can be facilitated by use of Table 7.2. The top row 
lists the numbers from smallest (R(l)) to largest (R(s)). The computations for D+, namely i!N- �.1, and for Ir, 
namely Rm -, (i 1)/N, are easily accomplished by using Table 7.2. The statistics are computed as D+ = 0.26 
and rr = 0.21. Therefore, D max[0.26, 0.21 }  = 0.26. The critical value of D, obtained from Table AS for 
a= 0.05 and N = 5, is 0.565. Since the computed value, 0.26, is less than the tabulated critical value, 0.565, the 
hypothesis that the distribution of the generated numbers is the uniform distribution is not rejected. 

The calculations in Table 7.2 are illustrated in Figure 7.2, where the empirical cdf, SN(x), is compared 
to the uniform cdf, F(x). It can be seen that D+ is the largest deviation of SN(x) above F(x), and that n- is the 
largest deviation of SN(x) below F(x). For example, at Rol• the value of D+ is given by 3/5 - Rol = 0.60 ...0.44 = 
0.16, and that of D- is given by R(3) - 215 = 0.44 - 0.40 = 0.04. Although the test statistic D is defined by 
Equation (7.3) as the maximum deviation over all x, it can be seen from Figure 7.2 that the maximum devi­
ation will always occur at one of the jump points R(l)• R<1l, .. . ; thus, the deviation at other values of x need 
not be considered. 

2. The chi-square test. The chi-square test uses the sample statistic 

2 � (0 - E.)2 
Xo = £..., ' • 

i=l E, 

where 0, is the observed number in the ith class, E; is the expected number in the ith class, and n is the 
number of classes. For the uniform distribution, E;, the expected number in each class is given by 

N E, = ;  

Table 7.2 Calculations for Kolmogorov-Smirnov Test 

R<•) 0.05 0.14 0.44 0.81 
i/N 0.20 0.40 0.60 0.80 
i/N - R(ij 0.1 5  0.26 0.16 
R<� (i - 1)/N 0.05 0.04 0.21 

0.93 
1 .00 
O.o? 
0.13 
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figure 7.2 Comparison of F(x) and SN(x). 

for equally spaced classes, where N is the total number of observations. It can be shown that the sampling 
distribution of xa is approximately the chi-square distribution with n - 1 degrees of freedom. 
Example 7.7 
Use the chi-square test with a = 0.05 to test for whether the data shown next are uniformly distributed. 
Table 7.3 contains the essential computations. The test uses n = 10 intervals of equal length, namely [0, 0.1), 
[0.1 ,  0.2), • . •  , (0.9, l.O). The value of X� is 3.4. This is compared with the critical value x5.os,9 = 16.9 from 
Table A.6. Since x5 is much smaller than the tabulated value of Xao5,9, the null hypothesis of a uniform 
distribution is not rejected. 

0.34 0.90 0.25 0.89 0.87 0.44 0.12 0.21 0.46 0.67 
0.83 0.76 0.79 0.64 0.70 0.81 0.94 0.74 0.22 0.74 
0.96 0.99 0.77 0.67 0.56 0.41 0.52 0.73 0.99 0.02 
0.47 0.30 0.17 0.82 0.56 0.05 0.45 0.31 0.78 0.05 
0.79 0.71 0.23 0.19 0.82 0.93 0.65 0.37 0.39 0.42 
0.99 0.17 0.99 0.46 0.05 0.66 0. 10 0.42 0.18 0.49 
0.37 0.51 0.54 0.01 0.81 0.28 0.69 0.34 0.75 0.49 
0�72 0.43 0.56 0.97 0.30 0.94 0.96 0.58 0.73 0.05 
0.06 0.39 0.84 0.24 0.40 0.64 0.40 0.19 0.79 0.62 
0.18 0.26 0.97 0.88 0.64 0.47 0.60 0. 1 1  0.29 0.78 

Different authors have offered considerations concerning the application of the.z2 test In the application 
to a data set the size of that in Example 7.7, the considerations do not apply-that is, if 100 values are in the 
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Table 7.3 Computations for Chi-Square Test 

� 
Interval o, E, o, - E, (0, - £,)2 E, 

I 8 10 -2 4 0.4 
2 8 10 -2 4 0.4 
3 10 10 0 0 0.0 
4 9 10 -I I 0.1 
5 1 2  10 2 4 0.4 
6 8 10 -2 4 0.4 
7 10 10 0 0 0.0 
8 14 10 4 1 6  1.6 
9 10 10 0 (} 0.0 

10 1 1  10 I 1 0.1 
ron ron 0 3.4 

sample and from 5 to 10 intervals of equal length are used, the test will be acceptable. In general, it is 
recommended that n and N be chosen so that each E1 � 5. 

Both the Kolmogorov-Srnirnov test and the chi-square test are acceptable for testing the uniformity of 
a sample of data, provided that the sample size is large. However, the Kolmogorov-Srnirnov test is the more 
powerful of the two and is recommended. Furthermore, the Kolmogorov-Smirnov test can be applied to 
small sample sizes, whereas the chi-square is valid only for large samples, say N � 50. 

hnagine a set of I 00 numbers which are being tested for independence, one where the first I 0 values are 
in the range 0.0 1-0.10, the second 10 values are in the range 0.1 1-0.20, and so on. This set of numbers would 
pass the frequency tests with ease, but the ordering of the numbers produced by the generator would not be 
random. The test in the next section of this chapter is concerned with the independence of random numbers 
that are generated. 

7.4.2 Tests for Autocorrelation 

The tests for autocorrelation are concerned with the dependence between numbers in a sequence. As an 
example, consider the following sequence of numbers: 

0.12 
0.99 
0.68 

0.01 0.23 
0.15 0.33 
0.49 0.05 

0.28 0.89 
0.35 0.91 
0.43 . 0.95 

0.31 0.64 0.28 0.83 0.93 
0.41 0.60 0.27 0.75 0.88 
0.58 0. 19 0.36 0.69 0.87 

From a visual inspection, these numbers appear random, and they would probably pass .all.the �ts presented 
to this point. However, an examination of the 5th, lOth, 15th (every five numbers begmmng wtth the .fifth), 
and so on, indicates a very large number in that position. Now, 30 numbers is a rather small sample stze on 
which to reject a random number generator, .but the notion is that numbers in the sequence might be related. 
In this particular section, a method for discovering whether such a relationship exists � described: The n:la­
tionship would not have to be all high numbers. It is possible to have all low numbers m the locations bemg 
examined, or the numbers could alternate from very high to very low. 

The test to be described shortly requires the computation of the autocorrelation between every m num· 
bers (m is also known as the lag), starting with the ith number. Thus, the autocorrelation Pim between the 
following numbers would be of interest: R1, Ri+m• Ri+'lm•·"• R,<{M+t)m· The value M is the largest integer such 
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-z,/2 Za/2 

f..-- Fail to reject 
Figure 7.3 Failure to reject hypothesis. 

that i + (M + l )m :::; N, where N is the total number of values in the sequence. (Thus, a subsequence of length 
M + 2 is being tested.) 

A nonzero autocorrelation implies a lack of independence, so the following two-tailed test is appropriate: 

Ho : P,m = O 
H1 : P�m .= 0 

For large values of M, the distribution of the estimator of Pim• denoted P�. is approximately normal if the 
values R,, R�>m• R;.,2m•· . . , R;+<M+l)m are uncorrelated. Then the test statistic can be formed as follows: 

z = Pim 
0 (j. p,. 

which is distributed normally with a mean of zero and a variance of 1 ,  under the assumption of independ­
ence, for large M. 

The formula for P�m. in a slightly different form, and the standard deviation of the estimator, aP,m, are 
given by Schmidt and Taylor [1970] as follows: 

and 

P�m = -- l:Ri+�mR,.<k+l)m -0.25 A 1 [ M ] 
M + l  k=O 

.J13M+ 7  a.  = -'---
P.. l 2(M+ l) 

After computing Zo. do not reject the null hypothesis of independence if -zan ::> Zo ::> Zan where a is the 
level of significance and zan is obtained from Table A.3. Figure 7.3 illustrates this test. 

If Pim > 0, the subsequence is said to exhibit positive autocorrelation. In this case, successive values at 
lag m have a higher probability than expected of being close in value (i.e., high random numbers in the sub­
sequence followed by high, and low followed by low). On the other hand, if Pim < 0, the subsequence is 
exhibiting negative autocorrelation, which means that low random numbers tend to be followed by high ones, 
and vice versa. The desired property, independence (which implies zero autocorrelation), means that there is 
no discernible relationship of the nature discussed here between successive random numbers at lag m. 

Example 7.8 
Test for whether the 3rd, 8th, 13th, and so on, numbers in the sequence at the beginning of this section are 
autocorrelated using a =  0.05. Here, i 3 (beginning with the third number), m = 5 (every five numbers), 
N = 30 (30 numbers in the sequence), and M = 4 (largest integer such that 3 + (M + 1)5 ::; 30). Then, 
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and 

p35 = -1-[(0.23)(0.28)+ (0.28)(0.33)+ (0.33)(0.27) + (0.27)(0.05) 
4 + 1  
+(0.05)(0.36)]-0.25 

= -'0. 1945 

(j. = ..jl3(4)+7 - 0. 1280 
P.u 12(4 + 1) 

Then, the test statistic assumes the value 

Now, the critical value from Table A.3 is 

z = -
0.1945 = -1.516 0 0. 1280 

z0.025 = 1 .96 

Therefore, the hypothesis of independence cannot be rejected on the basis of this test. 
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ft can be observed that this test is not very sensitive for small values of M, particularly when the num­
bers being tested are on the low side. frnagine what would happen if each of the entries in the foregoing 
computation of P,m were equal to zero. Then p,. would be equal to -().25 and the calculated Z would have 
the value of -1.95, not quite enough to reject the hypothesis of independence. 

There are many sequences that can be formed in a set of data, given a large value of N. For example, 
beginning with the first number in the sequence, possibilities include (1) the sequence of all numbers, (2) the 
sequence formed from the first, third, fifth, . . .  , numbers, (3) the sequence formed from the first, fourth, . . . , 
numbers, and so on. If a =  0.05, there is a probability of 0.05 of rejecting a true hypothesis. If 10 independent 
sequences are examined, the probability of finding no significant autocorrelation, by chance alone, is (0.95)10 
or 0.60. Thus, 40% of the time significant autocorrelation would be detected when it does not exist. If a is 
0.10 and 10 tests are conducted, there is a 65% chance of finding autocorrelation by chance alone. In con­
clusion, in "fishing" for autocorrelation by performing numerous tests, autocorrelation might eventually be 
detected, perhaps by chance alone, even w�en there is.no autocorrelation present. 

7.5 SUMMARY 

This chapter described the generation of random numbers and the subsequent testing of the generated 
numbers for uniformity and independence. Random numbers are used to generate random variates, the sub­
ject of Chapter 8. 

Of the many types of random-number generators available, ones based on the linear congruential 
method are the most widely used, but they are being replaced by combined linear congruential generators. 
Of the many types of statistical tests that are used in testing random-number generators, two different types 
are described: one testing for uniformity, and one testing for independence. 

·The simulation analyst might never work directly with a random-number generator or with the testing of 
random numbers from a generator. Most computers and simulation languages have routines that generate a 
random number, or streams of random numbers, for the asking. But even generators that have been used for 
years, some of which are still in use, have been found to be inadequate. So this chapter calls the simulation 
analyst's attention to such possibilities, with a warning to investigate and confirm that the generator has been 
tested thoroughly. Some researchers have attained sophisticated expertise in developing methods for generating 
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and testing random numbers and the subsequent application of these methods. This chapter provides only a 
basic introduction to the subject matter; more depth and breadth are required for the reader to become a specia­
list in the area. The bible is Knuth [1998]; see also the reviews in Bratley, Fox, and Schrage [1996], Law and 
Kelton [2000],  L'Ecuyer [1998], and Ripley [1987]. 

One final caution is due. Even if generated numbers pass all the tests (those covered in this chapter and 
those mentioned in the chapter), some underlying pattern might have gone undetected without the generator's 
having been rejected as faulty. However, the generators available in widely used simulation languages have 
been extensively tested and validated. 
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EXERCISES 

1. Describe a procedure to physically generate random numbers on the interval [0, l] with 2-digit accuracy. 
(Hint: Consider drawing something out of a hat) 

2. List applications, other than systems simulation, for pseudo-random numbers-for example, video 
. gambling games. 

1: ·�: '• 
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3. H9w could random numbers that are unifonn on the interval [0, 1] be transfonned into random numbers 
that are unifonn on the interval [-1 1, 17]? Transformations to more general distributions are described 
in Chapter 8. 

4. Generate random numbers using multiplicative congruential method with X0 = 5, a 11, and m = 64. 
5. Repeat Exercise 4 with X0 = 6, 7, and 8. 
6. Generate four-digit random numbers by linear congruential method with X0 = 21 ,  a =  34, and c = 7. 
7. The sequence of numbers 0.54, 0.73, 0.98, 0.1 1, and 0.68 has been generated. Use the Kolmogornv-Smirnov 

test with a =  0.05 to learn whether the hypothesis that the numbers are uniformly distributed on the interval 
[0, 1] can be rejected. 

8. Generate 1000 random numbers between 0 and 99 using Excel. Conduct chi-square test with a =  0.05 
and verify whether the numbers are uniformly distributed. 

9. Figure out whether these linear congruential generators can achieve a maximum period; also, state 
restrictions on X0 to obtain this period: 

(a) the mixed congruential method with 

a = 2, 8 14, 749, 767, 109 
c = 59, 4&2, 661� 568, 307 

m = 248 
(b) the multiplicative congruential generator with 

a = 69, 069 
c :== O 

m = 232 
(c) the mixed congruential generator with 

a = 4951 
c = 247 

m = 256 
(d) the multiplicative congruential generator with 

a 6507 
c 0 

m =  1024 
10. Use the mixed congruential method to generate a sequence of three two-digit random numbers with 

X0 = 37 a = 7, c .:: 29, and m =  100. 
11. Additive congruential method employs the following expression to generate random numbers: 

Xn+l (XI + X,) mod m 

where X1 to x. are the seeds and Xn;.1 is the new random number. • Assuming n = 5, X1 = 20, X2 = 82, 
X3 = 42, X4 = 76, Xs = 59, and m = 100, generate 10 new random numbers. 

12. Write a computer program to generate random numbers using additive congruential method given in 
Exercise 1 1 .  
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13. If X0 = 3579 in Exercise 9(c), generate the first random number in the sequence. Compute the random 
numberto four-place accuracy. 

· 

14. Investigate the random-number generator in a spreadsheet program on a computer to which you have 
access. In many spreadsheets, random numbers are generated by a function called RAND or @RAND. 

(a) Check the user's manual to see whether it describes how the random numbers are generated. 
(b) Write macros to conduct each of the. tests described in this chapter. Generate 100 sets of random 

numbers, each set containing 100 random numbers. Perform each test on each set of random 
numbers. Draw conclusions. 

15. Consider the multiplicative congruential generator under the following circumstances: 

(a) a =  I I , m = 16, X0 = 7 
(b) a =  l l , m =  16, Xo = 8  
(c) a =  7, m = 16, X0 = 7 
(d) a = 7, m = 16, X0 = 8  

Generate enough values in each case to complete a cycle. What inferences can be drawn? Is maximum 
period achieved? 

16. For 16-bit computers, L'Ecuyer [1988] recommends combining three multiplicative generators, with 
m1 = 32,363, a1 = 157, m2 = 31 ,727, az = 146, m3 = 3 1 ,657, and a3 = 142. The period of this generator 
is approximately 8 x 1012• Generate 5 random numbers with the combined generator, using the initial 
seeds X;.o = 100, 300, 500, for the individual generators i = 1, 2, 3 .  

17. Search the web and find various other methods of generating random numbers. 

18. Use the principles described in this chapter to develop your own linear congruential random-number 
generator. 

19. Use the principles described in this chapter to develop your own combined linear congruential random-
number generator. 

20. The following is the set of single-digit numbers from a random number generator. 

6 7 0 6 9 9 0 6 4 6 
4 0 8 2 6 6 I 2 6 8 
5 6 0 4 7 1 3 5 0 7 

4 9 8 6 0 9 6 6 7 
1 0 4 7 9 2 0 1 4 8 
6 9 7 7 5 4 2 3 3 3 
6 0 5 8 2 5 8 8 3 1 
4 0 8 1 7 0 0 6 2 8 
5 6 0 8 0 6 9 7 0 0 
3 5 4 3 8 3 3 2 4 

Using appropriate test, check whether the numbers are uniformly distributed. 

21. In some applications, it is useful to be able to quickly skip ahead in a pseudo-random number sequence 
without actually generating al.l of the intermediate values. (a) For a linear congruential generator with 
c = 0, show that Xi+• = (a"X;) mod m. (b) Next, show that (a"X;) mod m = (a• mod m)X; mod m (this 
result is useful because a• mod m can be precomputed, making it easy to skip ahead n random numbers 
from any point in the sequence). (c) In Example 7.3, use this result to compute X5; starting with X0= 63. 
Check your' answer by computing X5 in the usual way. 

' . •. • ,.;•, 1 1 1• , ", •, •, , .  ' •'1\'• ' . 1' 1 • . '. ! ' :' 

8 
Random-Variate Generation 

This chapter deals with procedures for sampling from a variety of widely-used continuous and discrete 
distributions. Previous discussions and examples indicated the usefulness of statistical distributions in model­
ing activities that are generally unpredictable or uncertain. For example, interarrival times and service times 
at queues and demands for a product are quite often unpredictable in nature, at least to a certain extent. 
Usually, such variables are modeled as random variables with some specified statistical distribution, and stan­
dard statistical procedures exist for estimating the parameters of the hypothesized distribution and for testing 
the validity of the assumed statistical modeL Such procedures are discussed in Chapter 9. 

In this chapter, it is assumed that a distribution has been completely specified, and ways are sought to 
generate samples from this distribution to be used as input to a simulation modeL The purpose of the chap­
ter is to explain and illustrate some widely-used techniques for generating random variates, not to give a 
state-of-the-art survey of the most efficient techniques. In practice, most simulation modelers will lise either 
existing routines available in programming libraries or the routines built into the simulation language being 
used. However, some programming languages do not have built-in routines for all of the regularly used 
distributions, and some computer installations do not have random-variate-generation libraries; in such cases 
the modeler must construct an acceptable routine. Even though the chance of this happening is small, it is 
nevertheless worthwhil!! to understand how random-variate generation occurs. 

This chapter discusses the inverse-transform technique and, more briefly, the acceptance-rejection tech­
nique and special properties. Another technique, the composition method, is discussed by Devroye [1986], 
Dagpunar [1988], Fishman [1978], and Law and Kelton [2000]. All the techniques in this chapter assume 
that a source of uniform [0, 1]  random numbers, R�o R2, • . .  is readily available, where each R; has pdf 

{1, 0 ::;  x 5 I 
JR(x) = . 0, otherwtse 
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and cdf 10, x < O  
FR(x) = x, O � x : n  

1, x >  I 
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Throughout this chapter R and R1, R2, • • •  represent random numbers uniforinly distributed on {0,1] and gener­
ated by one of the techniques in Chapter 7 or taken from a random number table, such as Table A.l: 

8.1 INVERSE· TRANSFORM TECHNIQUE 

The inverse-transform technique can be used to sample from the exponential, the uniform, the Weibull, the 
triangular distributions and from empirical distributions. Additionally, it is the underlying principle for 
sampling from a wide variety of discrete distributions. The technique will be explained in detail for the expo­
nential distribution and then applied to other distributions. Computationally, it is the most straightforward, 
but not always the most efficient, technique. 

8.1 .1 Exponential Distribution 

The exponential distribution, discussed in Section 5.4, has the probability density function (pdf) 

f(x) = {A.e-Ax, x 2! 0  
0, x < O  

and the cumulative distribution function (cdf) 

r {1-[.lx x 2! 0  F(x) = Lf(t)dt = ' 
. � x < O  

. The parameter A can be interpreted as the mean number of occurrences per time unit. For example, if inter­
arrival times X1, X2, X3, • • •  had an exponential distribution with rate A, then A could be interpreted as the 
mean number of arrivals per time unit, or the arrival rate. Notice that, for any i, 

1 
E(X) = J: 

and so liA is the mean interarrival time. The goal hereis to develop a procedure for generating values X1, X2, 
x3, . . .  that have an: exponential distribution. 

The inverse-transform technique can be utilized, at least in principle, for any distribution, but it is most 
useful when the cdf, F(x), is of a form so simple that its inverse, F-1, Can be computed easily.1 One step-by­
step procedure for the inverse-transform technique, illustrated by the exponential distribution, consists of the 
following steps: 

Step 1. Compute the cdf of the desired random variable X. 

For the exponential distribution, the cdf is F(x) = I -e-Ar, x 2! 0. 
Step 2. Set F(X) = R on the range of X. 

For the exponential distribution, it becomes I-e-.u = R on the range x � 0. 
'The notation F·' denotes the solution of the equation r = F(x) in tenns of r; it does not denote !IF. 

RANDOM-VARIATE GENERATION 241 

X is a random variable {with the exponential distribution in this case), so 1 - e-AX is also a random variable, 
here called R. As will be shown later, R has a uniform distribution over the interval [0, 1]. 

Step 3. Solve the equation F(X) = R for X in terms of R. 

For the exponential distribution, the solution proceeds as follows: 

1 -e-.u = R  
e-.u= l-R  

-AX = ln{l- R) 

X =  _ _!_ ln(l - R) 
A 

{8. 1) 

Equation (8.1) is called a random-variate generator for the exponential distribution. ln general, Equation {8. 1) 
is written as X= F-1(R). Generating a sequence of values is accomplished through Step 4. 

Step 4. Generate (as needed) uniform random numbers R1, R2, R3, • • •  and compute the desired random 
variates by 

For the exponential case, F-1(R) = (-1/A) ln(l - R) by Equation (8.1), so 

xi 
1 

ln(l - RJ {8.2) 

for i =  1, 2, 3, . . .. One simplification that is usually employed in Equation (8.2) is to replace 1 - Ri by R;to yield 

(8.3) 

This alternative is justified by the fact that both Ri and 1 - Ri are uniformly distributed on [0, 1]. 

Example 8.1 
Table 8.1 gives a sequence of random numbers from Table A. I and the computed exponential variates, Xi, 
given oy Equation (8.2) with the value A =  1 .  Figure 8.1(a) is a histogram of 200 values, Rh R2, • • •  , Rwo from 
the uniform distribution, and Figure 8. 1(b) is a histogram of the 200 values, X1, X2, • . • • X200o computed by 
Equation (8.2). Compare these empirical histograms with the theoretiCal density functions in Figure 8.l (c) 
and (d). As illustrated here, a histogram is an estimate of the underlying density function. (This fact is used 
in Chapter 9 as a way to identifY distributions.) 

Table 8.1 Generation of Exponenti�;�l Variates Xi with Mean 1 , 
given Random Numbers Ri 

0. 1306 
0.1400 

2 3 

0.0422 . 0.6597 
0.04 3 1  1.078 

4 5 

0.7965 0.7696 
1 592 1.468 
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I X 
(c) 

(d) 

6 X 

Figure 8.1 {aJ Empirical histogram of 200 uniform random numbers; (b) empirical histogram of 200 exponential 
variates; (c) theoretical uniform density on [0, 1]; (d) theoretical exaanential density with mean l .  

Figure 8.2 gives a graphical interpretation of the inverse-transform technique. The cdf shown is FCx") = 
1-e-•, an exponential distribution with rate A. =  l. To generate a value X1 with cdf F(x), a random number R1 
between 0 and l is generated, then a horizontal line is drawn from R 1 to the graph of the cdf, then a vertical line 
is dropped to the x axis to obtain X1, the desired result. Notice the inverse relation between R 1 and X" namely 

and 

.In general, the relation is written as 

RANDOM-VARIATE GENERATION 

F(x) = I  e-• 

0 

I I l I 
l I I I 

I I 
I l 
I I 
I I 
I I 
I I 
I I 
I I 
1 I 
I I 
I I 
l I 
I I 
I I 
I I 
I I 
I I 
l I 
I I 

Figure 8.2 Graphical view of the inverse-transform technique. 

and 

X 

Why does the random variable X1 generated by this procedure have the desired distribution? Pick a value Xo 
and compute the cumulative probability 

(8.4) 

Th see the first equality in Equation (8.4), refer to Figure 8.2, where the fixed numbers Xo and F(AQ) are drawn 

· on their respective axes. It can be seen that X1 S .lQ  when and only when R1 S F(AQ). Since 0 $ F(AQ) S I , the 
second equality in Equation (8.4) fonows inunediately from the fact that R1 is uniformly distributed on [0, 1]. 
Equation shows that the cdf of X1 is F; hence, X1 has the desired distribution. 

8.1 .2 Uniform Distribution 

Consider a random variable X that is uniformly distributed on the interval [a, b]. A reasonable guess for 
generating X is given by 

· · · 

X = a + (b :... a)R · 

[Recall that R is always a random number on [0, l ].] The pdf of X is �ven by 

I I ' < < b !( -. -, a _x _  
x) =  o-a 

0, otherwise 

The derivation of Equation (8.5) fonows Steps I through 3 of Section 8.1.1 :  

' •  (8.5) 
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Step 1. The cdf is given by 

Step 2. Set F(X) = (X- a)l(b - a) = R. 

!0, x < a  
x -a 

F(x) = --, a S x S b  
b-a 
1, x > b  

DISCRETE-EVENT SYSTEM SIMULATION 

Step 3. Solving for X in tenns of R yields X= a +  (b a)R, which agrees with Equation (8.5). 

8.1 .3 Weibull Distribution 

The Weibull distribution was introduced in Section 5.4 as a model for time to failure for machines or elec­
tronic components. When the location parameter v is set to 0, its pdf is given by Equation (5.47): !../!_ xP-1 e-f.•la)� , x � 0 

f(x) = aP 
0, otherwise 

where a> 0 and /3> 0 are the scale and shape parameters of the distribution. To generate a Weibull variate, follow 
Steps 1 through 3 of Section 8.1 .1 :  

Step 1. The cdf is  given by F{X) ;;;; 1-e -<•Ia)�, x � 0. 

Step 2. Set F(J[)= l-e-<XIa)P = R. 

Step 3. Solving for X in terms of R yields 

X =  a[-ln{1 R)]11il (8.6} 

The derivation of Equation (8.6) is left as Exercise 10 for the reader. By comparing Equations (8.6) and (8.1 ), it 
can be seen that, if X is a Weibull variate, .then Xfl is an exponential variate with mean afl. Conversely, if Y is an 
exponential variate with mean p., then fl'/J is a Weibull variate with shape parameter f3 and scale parameter 
a·= pYfl. · 

8.1 ;4 · Triangular Distributit:»n 

Consider a random variable X that has pdf lx 0 S x S 1  
f(x) = Lx, 1 < x :1> 2  

0, otherwise 

as shown in Figure 8.3. This distribution is called a triangular distribution with endpoints (0, 2) and mode at I .  
Its cdf i s  given by 

0, x S O  
x2 0 < x S 1  
2' F(x) = 
1 - (2-4 1 < x S 2  

2 ' 
1, . x > 2  
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f(:r:) 

:r: 

Figure 8.3 Density function for a particular triangular distribution. 

For O S X S  1 ,  

and for l S X S 2, 

R = 1- (2-Xf 
2 
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(8.7) 

(8.8) 

By Equation (8. 7), 0 S X S 1 implies that 0 S R S t. in which case X =  ..fiR. By Equation {8.8), I s X ::;  2 
implies that t S R ::;  1, in which case X =  2-�2(1-R) .  Thus, X i s  generated by 

(8.9) 

Exercises 2, 3, and 4 give the student practice in dealing with other triangular distributions. Notic.:e that, if 
the pdf and cdf of the random variable X come in parts (i.e., require different formulas over different parts 
of the range of X), then the application of the jnverse-transform technique for generating X will result in 
separate formulas over different parts of the range of R, as in Equation (8.9). A general form of the triangular 
distribution was discussed in Section 5.4. 

· 

8.1 .5 Empirical Continuous Distributions 

If the modeler has been unable to fmd a theoretical distribution thllt provides a good model for the input data, 
then it may be necessary to use the empirical distribution of the data. one possibility is to simply resample 
the observed data itself. This is known as using the empirical distribution, and it makes particularly good 
sense when the input process is known to take on a fiilite number of values. see· Section 8.1 .  7 for an example 
of this type of situation and for a method for generating random inputs. 

· On the other hand, if the data are draYfn from what is believed to be a continuous-valued input process, 
then it makes sense to interpolate between the observed data pnints to fill fu the gaps. This section describes 
a method for defining and �nerating data from a continuous empirical distrii:!Ution. 
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Example 8.2 
Five observations of fire-crew response times (in minutes) to incoming alanns have been collected to be used 
in a simulation investigating possible alternative staffing and crew-scheduling policies. The data �e 

2.76 1.83 0.80 1.45 1.24 
Before collecting more data, it is desired to develop a preliminacy simulation model that uses a response-time 
distribution based on these five observations. Thus, a method for generating random variates from the 
response-time distribution is needed. Initially, it will be assumed that response times X have a range 0 :;; X:;; c, 
where c is unknown, but will be estimated by c = max  (Xi : i = I, ... , nj = 2.76, where {X;, i = 1, . . .  , nj are the 
raw data and n = 5 is the number of observations. 

Arrange the data from smallest to largest and let x(ll :;; x<2l :;; ••• ::> x<•> denote these sorted values. The 
smallest possible value is believed to be 0, so define x(o) = 0. Assign the probability !In = 115 to each interval 

i 

1 
2 
3 
4 
5 

F(x) 
1.0 

0.8 

Table 8.2 Summary of Fire-Crew Response-Time Data 

lmerva/ 
x<Hl <x :$; �Q 

0.0 < x :$; 0.80 
0.80 <X :5: 1.24 
1.24 <x !f 1.45 
1 .45 <X :5: 1.83 
1.83 <x :S: 2.76 

Probability CUIIW/ative Slope 
lin 
0.2 
0.2 
0.2 
0.2 
0.2 

Probability, i/n a; 

0.2 4.00 
0.4 2.20 
0.6 1.05 
0.8 1.90 
1.0 4.65 

{2.76. 1.0) 

1X1 = 1.45 + 1.90(0.71 - 0.60) 1.66 
I I I 

X1 
Response times 

Figure. 8.4 Empirical cdf of fire-crew response limes. 

X 
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x(Hl < x :>; x<•)• as shown in Table 8.2. The resulting empirical cdf, F(x), is illustrated in Figure 8.4. The slope 
of the ith line segment is given by 

The inverse cdf is calculated by 

when (i - I )In < R :>; iln. 

a. = x<•> -x(i-IJ = x<il -x(i-ll 
' iln- (i- l) ln lin 

• I ( (i - 1) I X = F" (R) = x<HJ +a, R--n- J (8.10) 

For example, if a random number R1 = 0.71 is generated, then R1 is seen to lie in the fourth interval 
(between 315 = 0.60 and 415 = 0.80); so, by Equation (8.1 0), 

X1 = x<4_1l +a4 (R1 -(4-1)/n) 
= 1.45 + 1 .90(0.71-0.60) 
= 1.66 

The reader is referred to Figure 8.4 for a graphical view of the generation procedure. 

In Example 8.2, each data point was represented in the empirical cdf. If a large sample of data is avail­
able (and sample sizes from several hundred to tens of thousands are possible with modem, automated data 
collection), then it might be more convenient (and computationally efficient) to first summarize the data into 
a frequency distribution with a much smaller number of intervals and then fit a continuous empirical cdf to 
the frequency distribution. Only a slight generalization of Equation (8.10) is required to accomplish this. 
Now the slope of the ith line segment is given by: 

a, 

where c;is the cumulative probability of the first i intervals of the frequency distribution and x(i-I) < x :;; x<•) 
is the ith interval. The inverse cdf is calculated as 

· 

(8. 1 1) 

Example 8.3 
Suppose that lOO broken-widget repair times have been colleeted. The data are summarized in Table 8.3 in 
teims of the number of observations in various intervals. For example, there were 31  observations between 
0 and 0.5 hour, 10 between 0.5 and 1 hour, and so on. Suppose it is Jaiown that all repairs take at least 15  
thlnutes, so that X� 0.25 hour always. Then w e  set x<oJ = ·0.25, as shown i n  Table 8.3 and Figure 8.5. . 

For example, suppose the first random number generated is R1 = 0.83. Then, since R1 is between 
c3 = 0.66 and c4 = 1.00, .. 

(8.12) 
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i 

1 
2 
3 
4 

Table 8.3 Summary of Repair-Time Data 

Interval 
(Hours) 

0.25 S x � 0.5 
0.5 <X� 1.0 
1.0 <x $ 1.5 
1.5 < x $ 2.0 

F(X) = r 

1.0 

0 

Frequency 

31 
10 
25 
34 

Rekrtive Cumulative 
Frequency Fl:equency, c1 

0.31 0.31 
0.10 0.41 
0.25 0.66 
0.34 1.00 

(2.0, 1.0) 

Repair times 

Slope 
a! 

0.81 
5.0 
2.0 
1.47 

Figure 8.5 Generating variates from the empirical dishibulion function for repdir-tinie data (X �  0.25). 

As another illustration; suppose that R2 = 0.33. Since c1 = 0.31 < R2 :::; 0.4 i = c2, 

x2 = x(l) + �(Rz -c, ) 

= 0.5+5.0(0.33-0.31) 

= 0.6 

The point (R2 = 0.33, X2 = 0.6) is also shown in Figure 8.5. 
Now reconsider the data of Table 8.3. The da� are reslricted in.the range 0.25 :::; X :::; 2.0, but the underlying 

dislribution might have a wider range. This provides one important reason for attempting to find a theoretical 
statistical distribution (such as the g�a or WeibuU) for the d3ta: that these distributions do allow a wider 
range-namely, 0 :::; X <  oo. Ori the other hand, an empirical dislribution adheres closely to what is present in 
the data itSelf, and the data are ofteri the best source of information available. 

When data are summarized in terms of frequ�ncy intervals, it is recommended that relatively short 
intervals be used, for doing so results in a more accurate portrayal of the underlying cdf. For example, for 
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the repair-time data of Table 8.3, for which there were n = 100 observations, a much more accurate estimate 
could have been obtained by using 10 to 20 intervals, certainly not an excessive number, rather than the four 
fairly wide intervals actually used here for purposes of illuslration. 

Several comments are in order: 

1. A computerized version of the procedure wiU become more inefficient as the number of intervals, n, 
increases. A systematic computerized version is often called a table-lookup generation scheme, 
because, given a value of R, the computer program must search an array of c1 values to find the 
interval i in which R lies, namely the interval i satisfying 

c1_1 < R S c1 

The more intervals there are, the longer on the average the search will take if it is implemented in the 
crude way described here. Tbe analyst should consider this trade-off between accuracy of the esti­
mating cdf and computational efficiency when programming the procedure. If a large number of 
observations are available, the analyst may well decide to group the observations into from 20 to 50 
intervals (say) and then use the procedure of Example 8.3--or a more efficient table-lookup proce­
dure could·be used, such as the one described in Law and Kelton [2000]. 

2. In Example 8.2, it was assumed that response tiines X satisfied 0 s; X s; 2.76. This assumption led to 
the inclusion of the points �0) = 0 and x(s) = 2.76 in Figure 8.4 and Table 8.2. If it is k:uown a priori 
that X falls in some other range, for example, if it is known that response times are always between 
15 seconds and 3 minutes-that is, 

· 

0.25 s; X s; 3.0 

-then the points x(Ol = 0.25 and x(6l = 3.0 would be used to estimate the empirical cdf of response 
times. Notice that, because of inclusion of the new point x<6l, there are now six intervals instead of 
five, and each interval is assigned probability 1/6 0.167. 

8.1 .6 Continuous Distributions without a Closed-Form Inverse 

A number of useful continuous distributions do not have a closed form expression for their cdf or its inverse; 
examples include the normal, gamma, and beta distributions. For this reason, it is often stated that the 
inverse-ttansform technique for random-variate generation is noi available for these distributions. It can, in 
effect, become available if we are willing to approximate the inverse cdf, or numerically integrate and search 
the cdf. Although this approach sounds inaccurate, notice that even a closed-form inver.se requires approxi­
mation in order to evaluate it on a computer. For exantple, generating exponentially distributed random 
variates via the inverse cdf X =  F-1(R) = -ln(l - R)f). requires a numerical approximation for the logarithm 
function. Thus, there is no essential difference between using an approximate inverse cdf and approximately 
evaluating a closed-form inverse. The problem with using approximate inverse cdfs is that some of them are 
computationally slow to ev3luate. 

. 

To illuslrate the idea, consider a simple approximation to the inverse cdf of the standard normal distri­
. bution, proposed by Schmeiser (1979]: 

RO.I3S -(1 - R)lll35 
X =  r' (R) "' __ .::..__....:.__ 

0.1975 

This approximation gives at least one-decimal-place accuracy for 0.0013499 s; R :::; 0.9986501.  Table 8.4 
compares the approximation with exact values (to four decimal places) obtained by numerical integration for 
several values of R. Much more accurate approximations exist that are only slightly more complicated · 

A good source of these approximations for a number of distributionS is Bratley, Fox, and Schrage [ 1 996]. 
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Table 8.4 Comparison of Approximate Inverse with 
Exact Values (To Four Decimal Places} for the Standard 
Normal Distribution 

R Approximate Inverse Exact Inverse 

0.01 -2.3263 -2.3373 
0.10 -12816 -1.28 13 
0.25 -0.6745 -0.67!3 
0.50 0.0000 0.0000 
0.75 0.6745 0.6713  
0.90 1.2816 1.2813 
0.99 2.3263 2.3373 

8.1 .7 Discrete Distributions 

All discrete distributions can be generated via the inverse-transform technique, either numerically through a 
table-lookup procedure or, in some cases, algebraically, the final generation scheme being in terms of a 
formula. Other techniques are sometimes used for certain distributions, such as the convolution technique for 
the binomial distribution; Some of these methods are discussed in later sections. This subsection gives examples 
covering both empirical distributions and two of the standard discrete d!stributions, the (discrete) uniform 
and the geometric. Highly efficient table-lookup procedures for these and other distributions are found in 
Bralley, Fox, and Schrage [ 1996] and in Ripley [ 1987]. 

Example 8.4: An Empirical Discrete DiStribution 
At the end of any day, the number of shipments on the loading dock of the IHW Company (whose main prod­
uct is the famous "incredibly huge widget") is either 0, I ,  or 2, with observed relative frequency of occur· 
renee of 0.50, 0.30, and 0.20, respectively. Intemal .consultants have been asked to develop a model to 
improve the efficiency of the loading and hauling operations; as part of this model, they will need to be able 
to generate values, X, to represent the number of shipments on the loading dock at the end of each day. 
The consultants decide to model X as a discrete random variable with the distribution given in Table 8.5 and 
shown in Figure 8.6. 

The probability mass function (pmf), p(x), is given by 

p(O) = P(X 0) = 0.50 
p(l) = P(X = I) 0.30 
p(2) = P(X = 2) 0.20 

Table 8.5 Distribution of 
Number of Shipments, X 

X 

0 
I 
2 

p(x) 

0.50 
0.30 
0.20 

F(x) 

0.50 
0.80 
1 .00 L· .. . 
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F(x) 

R1 = 0.73 - - - - - - - - - � 
I I 

0.5...._-----o, 
I 
:x1 =  1 
I I 
' 

0 

figure 8.6 Cdf of number of shipments, X. 

and the cdf, F(x) = P(X Sx), is given by 

\�.5 �:�< 1 
F(x) = 

0.8 1 S x < 2  

1 .0 2 :s; x  
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X 

Recall that the cdf of a discrete random variable always consists of horizontal line segments with jumps 
of size p(x) at those points, x, that the random variable can assume. For example, in Figure 8.6, there is a 
jump of size p(O) = 0.5 atx = 0, of size p(l) = 0.3 at x = 1, and of size p(2) = 0.2 at x = 2. 

For generating discrete random variables, the inverse transform technique becomes a table-lookup pro­
cedure, but; unlike in the case Of continuous variables, interpolation is not required. To illustrate the proce­
dure, suppose that R1 = 0.73 is generated. Graphically, as illustrated in Figure 8.6, first locate Rt 0.73 on 
the vertical axis next draw a horizontal line segment until i t  hits a ')ump" in the cdf, and then drop a per· 
pendicular to th� horizontal axis to get the generated variate. Here R1 = 0.73 is transformed to X1 = l.·This 
procedure is analogous to the procedure used for empirical continuous distributions in Section 8J.5 and 
illustrated in Figure 8.4, except that the final step, linear interpolation, is eliminated. 

The table-lookup procedure is facilitated by construction of a table such as Table 8.6. When Rt 0.73 
is generated, first find the interval in which R1 lies. In general, for R � Rt, if 

F(x .... 1) = r;...1 < R � r; = F(xiJ : (8. 13) 

then set X1 = x;. Here, r0 = 0; � = -<><>; xh .x:z, . • .  , Xn are the possible values of the random variable; and '• = 
p(x1) + ... + p(xkJ, k =  l, 2, . . . , n. For this example, n = 3, x1 = O, x2 =  l, and x3 =  2; hence, r1 = 0.5, 'z 0.8, 
and ,r3 = 1 .0. (Notice th�t rn 1.0 in all cases.) 

Table 8.6 Table for Gener­
ating the Discrete Variale X · 

l 
2 
3 

Input, Output, 
r; 

0.50 
0.80 
1 .00 

X; 

0 
I 
2 
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Since r1 = 0.5 < R1 = 0.73 :S r2 = 0.8, set X1 = x2 = I. The generation scheme is summarized as follows: lo, R s o.5 
X =  1, 0.5 < R :S 0.8 

2, 0.8 < R:S 1.0 

Example 8.4 iUustrated the table-lookup procedure; the next example illustrates an algebraic approach 
that can be used for certain distributions. 

Example 8.5: A Discrete Uniform Distribution 
Consider the discrete uniform distribution on { 1, 2, . . . , kj with pmf and cdf given by 

1 x = 1,2, . . .  , k  p(x)= -, 
k 

and 

0, x < l  

k' 
L :S x < 2  

2 2 :S x < 3  
· F(x) = k' 

k-1  k-l :S x < k -
k 

l, k S x  

Let x1 = i and r1 =p( l) + . . . + p(;c1) = F(x1) = i/k for i = 1 ,  2, . . .  , k. Then, from lnequality (8. 1 3), it can be seen 
that, if the generated random number R satisfies 

i- 1  i r. = - < R S r; = ­
•-t k ' k 

then X is generated by setting X =  i. Now Inequality (8.14) can be solved for i: 

i- l < Rk S i  
Rk $ i <Rk+1  

(8.14) 

(8.15) 

Letry l denote the smallest integer �y. For exampieJ7.82l = 8J5.13l = 6, and r -1.321 = - l. t<or y <: 0, ry l 
is a function that rounds up. This notation and Inequality (8.15) yield a formula for generating X, namely 

X = rRkl (8.16) 

For example, consider the generating of a random variate X that is mliformly distributed on ( l, 2, . . .  , 10}.  
The variate, X, might represent the riumber of pallets to be loaded onto a truck. Using Tabie A.l as a source 
of random numqers R and using Equation (8.16) with k = 1 0  yields 
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Rl = 0.78 xl = r7.8l = 8  
Rz = O.o3 X2 = ro.3l= 1 
� = 0.23 x3 = r23l = 3  
R4 = 0.97 X4 = r9.7l= l0 

The procedure discussed here can be modified to generate a discrete uniform random variate with any 
range consisting of consecutive integers. Exercise 13 asks the student to devise a procedure for one such case. 

Example 8.6: The Geometric Distribution 
Consider the geometric distribution with pmf 

p(x) = p(l - p'f, x = O, 1 , 2, ... 
where 0 < p < l .  Its cdf is given by 

j=O 

- p{l- (1 - py+l} 
1- (1 :- p) 

= 1- (1 - p)"l 

for X =  0, l ,  2, . . .  Using the inverse-transform technique [i.e., Inequality (8.13)], recall that a geomeiric random 
variable X will assume the value x whenever 

F(x-1) = 1 - (l - p't < R $ 1 - (1 -p)<+l = F(x) (8.17) 

where R is a generated random nomber assumed 0 < R < 1. Solving Inequality (8.17) for x proceeds as follows: 

(l- p),.1 S 1- R < (1 - p)' 
(x+ l)ln(l-p) S ln( l-R) < xln(l -p) 

But l :-p < l implies that ln(1 -p) < 0, so that 

ln(l-R) - l  S x  < ln(1-R) 
ln(l-p) ln(1-p) 

(8.18) 

Thus, X= x for that integer value of x satisfying Inequality (8.18). In brief, and using the round-up function r.l, 
we have 

x =fln(1-R) -·l 
ln(l-p) 

(8. 19) 

Since p is a fixed parameter, let P =  -1/ln(l -p). Then P> 0 and, by EquatiQn (8.19), X = r  -P In(l - R) -ll. 
By Equation (8.1), -P ln(l - R) is an exponentially distributed random variable with mean/}; so one way of 
generating a geometric variate with parameter p is to generate (by any method) an exponential variate with 
parameter p-1 = -ln(l - p ), subtract one, and round up; 
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Occasionally, there is needed a geometric variate X that can assume values { q, q + 1, q + 2, . . .  } with pmf 
p(x) = p(l -p'rq(x = q, q + 1, . . .  ). Such a variate X can be generated, via Equation (8.19), by 

One of the most common cases is q = 1. 

Example 8.7 

x = q+r ln(l -R) _ ll 
ln(l - p) 

(8.20) 

Generate three values from a geometric distribution on the range {X <?: 1 }  with mean 2. Such a geometric 
distribution has pmf p(x) = p(l -p'f""1(x = 1 , 2, . . .  ) with mean lip = 2, or p = ll2. Thus, X can be generated 
by Equation (8.20) with q = 1, p = 1/2, and 1/ln(l - p) = -1.443. Using Table A.l, R1 = 0.932, R2 = 0.105, 
and R3 = 0.687 yields 

X1 = I  +f  -1.443 1n(l-0.932) - Il 
= I  +f3.878 - ll =  4 

X2 = I  +f -1 .443 1n(I-0.105)- ll = I  

X3 = I  + f  -1.443 1n(I -0.687)- ll = 2 

Exercise 15 deals with an application of the geometric distribution. 

8.2 ACCEPTANCE-REJEcnON TECHNIQUE 

Suppose that an analyst needed to devise a method for generating random variates, X, uniformly distributed 
between 1/4 and 1. One way to proceed would be to follow these steps: 

Step 1. Generate a random number R. 

Step 2a. If R <?: ll4, accept X =  R, then go to Step 3. 

Step 2b. If R < ll4, reject R, and return to Step 1. 

Step 3. If another uniform random variate on [ ll4, 1] is needed, repeat the procedure beginning at Step 1. 
If not, stop. 

'Each time Step I is executed, a new random number R must be generated. Step 2a is an "acceptance" 
and Step 2b is a "rejection" in this acceptance-rejection technique. To summarize the technique, random 
variates (R) with some distribution (here uniform on [0, I]) are generated until some condition (R > 114) is 
satisfied. When the condition is finally satisfied, the desired random variate, X (here uniform on [1/4, 1]}, 
can be computed (X = R). This procedure can be shown to be correct by recognizing that the accepted val­
ues of R are conditioned values; that is, R itself does not have the desired distribution, but R conditioned on 
the event {R <?: 114} does have the desired distribution. To show this, take 114 :5 a <  b :5 1; then 

P(a < R :5 b l 114 :5 R :5 1) =  P(a < R :5 b) = b-a  
P(l/4 :5 R :5 1) 3 /4  

(8.21 )  

which is the correct probability for a uniform distribution on [ 114, 1]. Equation (8.21) says that the proba­
bility distribution of R, given that R is between ll4 and 1 (all other values of R are thrown out}, is the desired 
distribution. Therefore, if 1/4 :5 R :5 I, set X =  R. 
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The efficiency of an acceptance-rejection technique depends heavily on being able to minimize the 
number of rejections. In this example, the probability of a rejection is P(R < 114) = ll4, so that the number 
of rejections is a geometrically distributed random variable with probability of "success" being p = 3/4 and 
meali number of rejections (lip - 1) = 4/3 - 1 = 113. (Example 8.6 discussed the geometric distribution.) 
The mean number of random numbers R required to generate one variate X is one more than the number of 
rejections; hence, it is 4/3 = 1.33. In other words, to generate 1000 values of X would require approximately 
1333 random numbers R. 

In the present situation, an alternative procedure exists for generating a uniform variate on [114, 1]­
namely, Equation (8.5), which reduces to X= 1/4 + (3/4)R. Whether the acceptance-rejection technique or 
an alternative procedure, such as the inverse-transform technique [Equation (8.5)], is the inore efficient 
depends on several considerations. The computer being used, the skills of the programmer and the relative 
inefficiency of generating the additional (rejected) random numbers needed by acceptance-rejection should 
be compared to the computations required by the alternative procedure. In practice, concern with generation 
efficiency is left to specialists who conduct extensive tests comparing alternative methods (i.e., until a sim­
ulation model begins to require excessive computer runtime due to the generator being used). 

For the uniform distribution on [114, 1], the inverse-transform technique of Equation (8.5) is undoubt­
edly much easier to apply and more efficient than the acceptance-rejection technique. The main purpose of 
this example was to explain and motivate the basic concept of the acceptance-rejection technique. However, 
for some important distributions, such as the normal, gamma and beta, the inverse cdf does not exist in closed 
form and therefore the inverse-transform technique is difficult These more advanced techniques are sum­
marized by Bralley, Fox, and Schrage [1996], Fishman [1978], and Law and Kelton [2000]. 

In the following subsections, the acceptance-rejection technique is illustrated for the generation of ran­
dom variates for the Poisson, nonstationary Poisson, and gamma distributions. 

8.2.1 Poisson Distribution 

A Poisson random variable, N, with mean a>  0 has pmf 

e-aan. p(n) = P(N = n) = -1-, n = 0, 1, 2, ... 
n .  

More important, however, is that N can be interpreted as the number of arrivals from a Poisson arrival process 
in one unit of time. Recall from Section 5.5 that the interarrival times, A., A2, • • •  of successive customers are 
exponentially distributed with rate a (i.e., a is the mean number of arrivals per unit time); in addition, an 
exponential variate can be generated by Equation (8.3). Thus, there is a relationship between the (discrete) 
Poisson-distribution and the (continuous). exponential distribution: 

N = n  (8.22) 

if and only if 

(8.23) 

Equation (8.22), N = n, says there were exactly n arrivals during one unit of time; but Relation (23) says that 
the nth arrival occurred before time 1 while the (n + 1 )st arrival occurred after time I .. Clearly, these 
two statements are equivalent. Proceed now by generating exponential interarrival times until some arrival, 
say n + 1, -occurs after time 1; then set N = n. 

For efficient generation purposes, Relation (8.23) is usually simplified by first using Equation (8.3), 
A1 = (-l!a) ln R1, to obtain · 

• I •+I I L --lnR; :5 1 <  I, --lnR; 
1=1 a 1=1 a _ 



-
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Next multiply through by -a, which reverses the sign of the inequality, and use the fact that a sum of loga­
rithms is the logarithm of a product, to get 

n n ��:+t n+l 
InilR1 = l)n R, � -a > LlnR1 = InTI R1 

i=l i�t =iJ i:::::! 

flinally, use the relation e1•x = x for any number x to obtain 

(8.24) 

which is equivalent to Relation (8.23). The procedure for generating a Poisson random variate, N, is given 
by the following steps: 

Step 1. Set n 0, P = 1. 

Step 2. Generate a random number Rn+l• and replace P by P · Rn+l· 

Step 3. If P < e-«, then accept N = n. Otherwise, reject the current n, increase n by one, and return to step 2. 

Notice that, upon completion of Step 2, P is equal to the rightmost expression in Relation (8.24). 
The basic idea of a rejection technique is again exhibited; if P � e�11 in 

·
step 3, then n is rejected and the 

generation process must proceed through at least one more trial. 
How many random numbers will be required, on the average, to generate one Poisson variate, N1 

If N = n, then n + I random numbers are required, so the average number is given by 

E(N + l )  a + l 

which is quite large if the mean, a, of the Poisson distribution is large. 

Example 8.8 
Generate three Poisson variates with mean a= 0.2. First, compute e-« = e-{)·2 = 0.8187. Next, get a sequence 
of random numbers R from Table A.1 and follow the previously described Steps 1 to 3: 

Step l. Set n = O, P = l. 

Step 2. R1 = 0.4357, P = 1 · R1 = 0.4357. 

Step 3. Since P = 0.4357 < e--a = 0.8187, accept N = 0. 

Step 1-3. (R1 = 0.4146 1eads to N= 0.) 

Step 1. Set n = 0, P =  1 .  

Step 2. R 1  = 0.8353, P = 1 • R 1  = 0.8353. 

Step 3. Since P 2:: C11, reject n = 0 and return· to Step 2 with n = I. 

Step 2. R2 = 0.9952, P = R1R2 = 0.8313. 

Step 3. Since P 2:: e--a, reject n = l and return to Step 2 with n = 2. 
Step 2. R3 = 0.8004, P = R1R2R3 0.6654. 

Step 3. Since P < e-«, accept N = 2. 

RANDOM-VARIATE GENERATION 257 

The calculations required for the generation of these three Poisson random variates are summarized as 
follows: 

n R.,, p Accept/Reject Result 

0 0.4357 0.4357 P < e-a (accept) N = O  
0 0.4146 0.4146 P < e-a (accept) N = O  
0 0.8353 0.8353 P � e-a (reject) 
l 0.9952 0.8313 P ;:: e-a (reject) 
2 0.8004 0.6654 P < e'"" (accept) N = 2  

It took five random numbers, R, to generate three Poisson variates here (N = 0, N = 0, and N = 2), but i n  the 
long run, to generate, say, 1000 Poisson variates with mean a= 0.2, it would require approxiinately I OOO(a + 1) 
or 1200 random numbers. 

Example 8.9 
Buses arrive at the bus stop at Peachtree and North Avenue according to a Poisson process with a mean of one 
bus per 15 minutes. Generate a random .variate, N, which represents the number of arriving buses during 
a !-hour time slot. Now, N is Poisson distributed with a mean of four buses per hour. FlfSt compute C" = e4 = 
0.0183. Using a sequence of 12 random numbers from Table A.i yields the following summarized results: 

n Rn+l p Accept/Reject Result 

0 0.4357 0.4357 P � e·a (reject) 
1 0.4146 0.1806 P � e'"" (reject) 
2 0.8353 0.1508 P � e-« (reject) 
3 0.9952 0. 1502 P ;:: e-« (reject) 
4 0.8004 0.1202 P � e'"" (reject) 
5 0.7945 0.0955 P � e'"" (reject) 
6 0.1530 0.0146 P < e'"" (accept) N = 6  

It is immediately seen that a latger value of a (here a =  4) usually requires more random numbers; if l 000 
Poisson variates were desired, approximately lOOO(a + 1 )  = 5000 random numbers would be required. 

When a is large, say a2:: 15, the rejection technique outlined here becomes quite expensive, but fortunately 
an approximate technique based on the normal distribution works quite well. When the mean, a, is large, then 

N -a 
Z = --

.Ja 
is approximately normally distributed with mean zero and variance I ;  this observation suggests an approxi­
mate technique. First, generate a standard normal variate Z, by Equation (8.28) in Section 8.3.1, then gener­
ate the desired Poisson variate, N, by 

(8.25) 

where r.1 is the round-up function described in Section 8.1.7. (If a +-./aZ-0.5 < 0, then set N = 0.) The 
"0.5'' used in the formula malres the round-up function become a "round to the nearest integer" function. 
Equation (8.25) is not an acceptance-rejection technique, but, when nsed as an alternative to the acceptance­
rejection method, it provides a fairly efficient and accurate method for generating Poisson variates with a 

mean. 
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Table 8.7 Arrival Rate for NSPP Example 

t (min) 

0 
60 

1 20 
180 
240 
300 
360 
420 
480 

Mean Tune between Arrivals (min) 

15  
1 2  
7 
5 
8 
10 
15 
20 
20 

8.2.2 Nonstationary Poisson Process 

Arrival Rate A(t) (arrivals/min) 

1115 
1112 
1n 
115 
118 
1110 
1115 
1/20 
1/20 

Another type of acceptance-rejection method (which is also called "thinning") can be used to generate 
interarrival times from a nonstationary Poisson process (NSPP) with arrival rate A(t), 0 � t � T. A NSPP is 
an arrival process with an arrival rate that varies with time; see Section 5.5.2. 

Consider, for instance, the arrival-rate function given in Table 8.7 that changes every hour. The idea behind 
thinning is to generate a stationary Poisson arrival process at the fastest rate (1/5 customer per minute in the 
example), but "accept" or admit only a portion of the arrivals, thinning out just enough to get the desired time­
varying rate. Next we give the generic algorithm, which generates 1i as tbe time of the ith arrival. Remember 
that, in a stationary PoiSson arrival process, tbe times between arrivals are exponentially distributed. 

Step I. Let l* = IDaJ\:ostsr A(t) be the maximum of the arrival rate function and set t = 0 and i = L 
Step 2. Generate E from the exponential distribution with rate l* and let t =  t + E (this is the arrival time of 
the stationary Poisson process). 

Step 3. Generate random number R from the U(O, l )  distribution. If R �. A(t)ll* then 1i = t and i = i + L 
Step 4. Go to Step 2. 

The thinning algorithm can be inefficient if there are large differences between the typical and the max­
imum arrival rate. However, thinning.has the advantage that it works for any integrable arrival rate function, 
not just a piecewise-constant function as in this example. 

Example 8.10 
For the arrival-rate function in Table 8.7, generate the first two arrival times. 

Step I. l* = II13.Xos;1 s;rl(t) = 1/5, t =  0 and i = L 
Step 2. For random number R = 0.2130, E = -5 1n(0.213) = 13.13 and t = 0 + 13. 13 = 13. 13. 

Step 3. Generate R = 0.8830. Since R = 0.8830 '$ A(13J3)/l* = (1115)1(1/5) = 1/3, do not generate the arrival. 

Step 4. Go to Step 2. 

Step 2. For random number R = 0.5530, E = -5 1n(0.553) = 2.96, and t = 13. 1 3  + 2.96 = 1 6.09. 

Step 3. Generate R = 0.0240. Since R = 0.0240 :;;; l(l 6.09)/l* = (1115)/(115) = 1/3, set 7; = t = 1 6.09 and 
i = i + 1= 2. 

Step 4. Go to Step 2. 
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Step 2. For random number R 0.0001, E =  5 1n(0.0001) = 46.05 and t =  1 6.09 + 46.05 = 62.14. 

Step 3. Generate R 0.!443. Since R = 0. 1443 � l (62J4)/l* = (1/12)/(1/5) = 5/12, set 7; = t 62.!4 and 
i = i +  1 = 3. 

2. 

8.2.3 Gamma Distribution 

Several acceptance-iejection techniques for generating gamma random variates have been developed. (See 
Bratley, Fox, and Schrage [19%]; Fishman [1978]; and Law and Kelton[2000].) One of the more efficient is by 
Cheng [ 1977]; tbe mean number of trials is between l . l3  and 1 .47 for any value of the shape parameter {3 � l .  

If the shape parameter {3 is a n  integer, say {3 = k, one possibility is to use the convolution technique in 
Example 8.12, because the Erlang distribution is a special case of the more general gamma distribution. On 
the other hand, the acceptance-rejection technique described here would be a highly efficient method for the 
Erlang distribution especially if {3 = k were large. The routine generates gamma random variates with scale 
parameter 0 and shape parameter {3-that is, with mean 110 and variance 1/{302• The steps are as follows: 

Step I; Compute a =  l/(2{3 - 1)112, b = {3 - !n4. 

Step 2. Generate R1 and R2• Set V = Rtf(l-R1). 

Step 3. Compute X =  f3V•. 

Step 4a. If X > b + ({Ja +  1) ln(V) - In(R: R2) ,  reject X and return to Step 2. 

Step 4b. If X '5. b +({Ja + I) ln(V) - ln(R� JS.), use X as the desired variate. 

The generated variates from Step 4b will have mean and variance both equal to {3. If it is d�ired to have 
mean 1/0 and variance 11{302 as in Section 5.4, then include Step 5. 

(Step 5. Replace X by X/({38).) 

The basic idea of all acceptance-rejection methods is again illustrated here, but the proof of this exam­
ple is beyond the scope of this book. In Step 3, X =  f3V" = {J[Rtf(l-R1)]" is not gamma distributed, but rejec­
tion of certain values of X in Step 4a guarantees that the accepted values in Step 4b do have the gamma 
distribution. 

Example 8.11 
Downtimes for a high-production candy-making machine have been found to be gamma distributed with 
mean 2.2 minutes and variance 2.10 minutes2• Thus, l/0 = 2.2 and 11{302 2.10, which together iinply that 
{3 = 2.30 and 0 = 0.4545. 

Step I. a =  0.53, b = 0.91.  

Step 2. Generate R1 .; 0.832, R2 = 0.021. Set V = 0.8321(1 - 0.832) = 4.952. 

Step 3. Compute X =  2.3( 4.952)0.53 = 5.37. 

Step 4. X =  5.37 > 0.91 + [2.3(0.53) + I] 1n(4.952) - ln{(0.832)20.02l] = 8.68, so reject X and return to Step 2; 

Step 2. Generate R1 = 0.434, R2 = 0.716. Set V = 0.434/(l-Q.434) = 0.767. 

Step 3. Compute X =  2.3(0.767)0.53 = 2.00. 

Step 4. Since X =  2.00 � 0.9 1 + [2.3(0.53) +1] 1n(0.767}-ln[(0.434)2().716] = 2.32, accept X. 

Step 5. Divide X by {30 = 1.045 to get X =  1 .91 .  
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This example took two trials (i.e., one rejection) to generate an acceptable gamma-distributed random 
variate, but, on the average, to generate, say, 1000 gamma variates, the method will require between 1 1 30 
and 1470 trials, or equivalently, between 2260 and 2940 random numbers. The method is somewhat cum­
bersome for hand calculations, but is easy to program on the computer and is one of the most efficient 
gamma generators known. 

8.3 SPECIAL PROPERTIES 

"Special properties" are just as the name implies: They are variate-generation techniques that are based on 
features of a particular family of probability distributions, rather than being general-purpose techniques like 
the inverse-transform or acceptance-rejection techniques. 

8.3.1 Direct Transformation for the Normal and Lognormal Distributions 

Many methods have been developed for generating normally distributed random variates. The inverse-transform 
technique cannot easily be applied, however, because the inverse cdf cannot be written in closed form. The 
standard normal cdf is given by 

This section describes an intuitively appealing direct transformation that produces an independent pair of 
standard normal variates with mean zero and variance I. The method is due to Box and Muller [ 1958]. 
Although not as efficient as many more modem techniques, it is easy to program in a scientific language, 
such as FORTRAN, C, Gt+ , Visual Basic, or Java. We then show how to transform a standard normal vari­
ate into a normal variate with mean J1 and variance a2• Once we have a method (this or any other) for gen­
erating X from a N(jl, dl) distribution, then we can generate a lognormal random variate Y with parameters 
J1 and a2 by using the direct transformation Y = eX. (Recall that J1 and dl are not the mean and variance of 
the lognormal; see Equations (5.58) and (5.59).) 

Consider two standard normal random variables, Z1 and Z:!, plotted as a point in the plane as shown in 
Figure 8.7 and represented in polar coordinates as 

Z1 = B  C9S (J 
Z:! = B  sin (J (8.26) 

It is known that If = Z: + z; has the chi-square distribution with 2 degrees of freedom, which is equiva­
lent to an exponential distribution with mean 2. Thus, the radius, B, can be generated by use of Equation (8.3): 

B = (-2 lnR)112 (8.27) 

By the symmetry of the normal distribution, it seems reasonable to suppose, and indeed it is the case, that 
the angle is uniformly distributed between 0 and 2tt radians. In addition, the radius, B, and the angle, (}, are 
mutually independent. Combining Equations (8.26) and (8.27) gives a direct method for generating two inde­
pendent standard normal variates, Zt and Z:!, from two independent random numbers, R1 and R2: 

Z1 = (-2 1nRj'2cos(2ttJS) 

Z2 = (-2 JnR1 )112sin(2ttJS) 
(8.28) 
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Zraxis 

Figure 8.7 Polar representation of a pair of standard normal variables. 

To illustrate the generation scheme, consider Equation (8.28) with R1 = 0.1 758 and R2 = 0. 1489. Two 
standard normal raooom variates are generated as follows: 

zl = [-2ln(0.1758)]!12 cos(2tt0. 1489) = 1. 1 1  

Zz = [-2ln(0.1758)t12 sin(21t0.1489) = 1 .50 

To obtain normal variates X; with mean J1 and variance &, we then apply the transformation 

X; = Jl + aZ; (8.29) 

to the standard normal variates. For example, to transform the two standard normal variates into normal variates 
with mean J1 = 10 and variance & 4, we compute 

8.3.2 Convolution Method 

XI = 10 + 2(1 . 1 1) = 12.22 
X2 = 10 +2(1 .50) = I3.oo 

The probability distribution of a sum of two or more independent random variables is called a convolution 
of the distributions of the original variables. The convolution method thus refers to adding together two or 
more random variables to obtain a new random variable with the desired distribution. This technique can be 
applied to obtain Erlang variates and binomial variates. What is important is not the cdf of the desired ran­
dom variable, but rather its relation to other variates more easily generated. 

Example 8.12: Erlang Distribution 
As was discussed in Section 5.4, an Erlang random variable X with parameters (k, (J) can be shown to the 
sum of k independent exponential random variables, X;, i = 1, . . .  , k, each having mean 1/kfJ-that is, 
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The convolution approach is to generate X" X2, • • •  , x_k, then sum them to get X. In the case of the Erlang, each 
X1 can be generated by Equation (8.3) with 1/.t = llk6. Therefore, an Erlang variate can be generated by 

• I X= _L--In� 
. i=l k6 

= _ _!_1n(fi R, ) 
k6 1=1 

(8.30) 

It is more efficient computationally to multiply all the random numbers frrst and then to compute only one 
logarithm. 

Example 8.13 
Trucks arrive at a large warehouse in a completely random fashion that is modeled as a Poisson process with 
arrival rate A =  l 0 trucks per hour. The guard at the entrance Sj'lnds trucks alternately to the north and south 
docks. An analyst has <;!eveloped a model to study the loading/unloading process at the south docks and needs 
a model of the arrival process at the south docks alone. An interarrival time X between successive truck 
arrivals at the south docks is equal to the sum of two interarrival times at the entrance and thus it is the sum 
of two exponential random variables, each having mean 0.1 hour, or 6 minutes. Thus, X has the Erlang 
distribution with K = 2 and mean 116 = ?1 A =  0.2 hour. To generate the variate X, first obtain K = 2 random 
numbers from 'Thble A. ! ,  say R1 = 0.937.and R2 = 0.217. Then, by Equation (8.30), 

X =  0.1 ln[0.937(0.217)] 
= 0.159 hour = 9.56 minutes 

In general, Equation (8.30) implies that K uniform random number are needed for each Erlang variate 
generated. If K is large, it is more efficient to generate Erlang variates by other techniques, such as one of 
the many acceptance-rejection techniques for the gamma distribution given in Section 8.2.3, or by Bratley, 
Fox and Schrage [ 1 996], Fishman [1978], and Law and Kelton [2000] .  

8.3.3 More Special Properties 

There are many relationships among probability distributions that can be exploited for random-variate 
generation. The convolution method in the Section 8.3.2 is one example. Another particularly useful exam­
ple is the relationship between the beta distribution and the gamma distribution. 

Suppose that X1 has a gamma distribution with shape parameter /31 and scale parameter 61 = 11/31 , while 
X2 has a giunma distribution with shape parameter � and scale parameter � =  1/�, and that these two 
random variables are independent Then 

has a beta distribution with parameters /31 and � on the interval (0, I). If, instead, we want Y to be defined 
on the interval (a, b), then set 

Thus, using the acceptance-rejection technique for gamma variates defined in the previous section, we can 
generate beta variates, with two gamma variates required for each beta 
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Although this method of beta generation is convenient, there are faster methods based on 
acceptance-rejection ideas. See, for instance, Devroye [1986] or Dagpunar [1988]. 

8.4 SUMMARY 

The basic principles of random-variate generation via the inverse-transform technique, the acceptance­
rejection technique, and special properties have been introduced and illustrated by examples. Methods for 
generating many of the important continuous and discrete distributions, plus all empirical distributions, bave 
been given. See Schmeiser [ 1980] for an excellent survey; for a state-of-the-art treatment, the reader is 
referred to Devroye [1986] or Dagpunar [ 1 988]. 
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EXERCISES 

1. Develop a random-variate generator for X with pdf 

f(x) =  2 '  - _ x _ 
j3xz I <  < I  

0 , otherwise 

2. Develop a generation scheme for the triangular distribution with pdf 

f(x) =  

1 
Z

(x - 2), 

!( 2 - �) 
2 3 ' 

0, 

2 :5 x :5 3  

3 < x :5 6  

otherwise 

Generate I 0 values of the random variate, compute the sample mean, and compare it to the true mean 
of the distribution. 

' ,·. · .  
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3. Develop the triangular random-variate generator with range (0, 12) and mode 5. 

4. Develop a generator for a triangular distribution with range (I, 10) and a mean of 4. 

5. Given the following cdf for a continuous variable with range from -3 to 4, develop a generator for the 
variable. 

0, x � -3 
I X -3 < x � O  -+-
2 6 ' 

F(x) = 
I x2 0 < x � 4 -+-
2 32 ' 
I, x > 4  

6. Given the cdf F(x) = .0/! 6  on 0 � x � 2, develop a generator for this distribution. 

7. Given the pdfj(x) = xl/9 on 0 � x � 3, develop a generator for this distribution. 

8. The pdf of a random variable is 

1 1 5' 

f(x) = i· 
0, 

0 < x � 3  

3 < x � 9 

otherwise 

Develop the random-variate generator. 

9. The cdf of a discrete random variable X is given by 

F(x) = 
x(x+ 1)(2x + 1)

, n(n + 1)(2n + I) 
x = l, 2, . . .  , n  

When n = 4, generate tluee values of X, using R1 = 0.83, R2 = 0.24, and R3 = 0.57. 

10. Times to failure for an automated production process have been found to be randomly distributed with 
a Weibull distribution with parameters fJ = 2 and a =  10. Derive Equation (8.6), and then use it to 
generate five values from this Weibull distribution, using five random numbers taken from Table A. I .  

11. The details of time taken by a mechanic to repair a breakdown are 

Repair Time Range (Hours) 

1-2 
2-3 
3-4 
4-5 
5--6 
6-7 

Frequency 

15 
12 
14 
25 
32 
1 4  

Develop a lookup table and generate five repair times using random numbers. 
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12. In an inventory system, the lead time is found to follow uniform distribution with mean 10 days and half 
width 3 days. Generate five lead times. 

13. For a preliminary version of a simulation model, the number of pallets, X, to be loaded onto a truck at a load­
ing dock was assumed to be uniformly distributed between 8 and 24. Devise a method for generating X, 
assuming that the loads on successive trucks are independent Use the technique of Example 8.5 for discrete 
uniform distributions. Finally, generate loads for 10 successive trucks by using four-digit random numbers. 

14. Develop a method for generating values from a negative binomial distribution with parameters p and k, 
as described in Section 5.3. Generate 3 values when p = 0.8 and k= 2. [Hint: Think about the definition 
of the negative binomial as the number of Bernoulli trials until the kth suceess.] 

15. The weekly demand, X, for a slow-moving item has been found to be approximated well by a geometric 
distribution on the range {0, I, 2, . . .  } with mean weekly demand of 2.5 items. Generate I 0 values of X, 
demand per week, using random numbers from Table A. I.  (Hint: For a geometric distribution on the 
range {q, q + I,  . . .  } with parameter p, the mean is lip + q - 1.) 

16. In Exercise 15, suppose that the demand has been found to have a Poisson distribution with mean 2.5 
items per week. Generate 10 values of X, demand per week, using random numbers from Table A. I.  
Discuss the differences between the geometric and the Poisson distributions. 

17. Service time of a bank teller is found to follow normal with p. = 5 minutes and a= 1 minute. Generate 
five service times. 

18. The time to attend a breakdown call is found to follow exponential with a mean of 2 hours. Generate 
exponential random variates representing the time to attend. 

19. A machine is taken out of production either if it fails or after 5 hours, whichever comes first By running 
similar machines until failure, it has been found that time to failure, X, has the Weibull distribution with 
a= 8, /3 =  0.75, and v =  0 (refer to Sections 5.4 and 8.1 .3). Thus, the time until the machine is taken out 
of production can be represented as Y = min(X, 5). Develop a step-by-step procedure for generating Y. 

20. In an art gallery, the arrival of visitors follow Poisson with a mean of 4 per hour. Generate the arrivals 
for the next I hour. 

21. Develop a technique for generating a binomial random variable, X, via the convolution technique. [Hint: 
X can be represented as the number of successes in n independent Bernoulli trials, each success having 
probability p. Thus, X =  r:=t X,, where P(X1 = I) = p and P(X1 = 0) = I - p.] 

22. Develop an acceptance-rejection technique for generating a geometric random variable, X, with param­
eter p on the range { 0, I, 2, . . .  } . (Hint: X can be thought of as the number of trials before the first success 
occurs in a sequence of independent Bernoulli trials.) 

23. Write a computer program to generate exponential random variates for a given mean value. Generate 
1000 values and verify the variates generated using chi-square test 

24. Develop a computer program to generate binomial random variates with p = probability of success, 
n = number of trials, and x = random number between 0 and I .  

25. Write a computer program to generate 500 normal random variates of given p. and a values and prepare 
a histogram. 

26. Many spreadsheet, symbolic-calculation, and statistical-analysis programs have built-in routines for 
generating random variates from standard distributions. Try to find out what variate-generation methods 
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are used in one of these packages by looking at the documentation. Should you trust a variate generator 
if the method is not documented? 

27. Suppose that, somehow, we have available a source of exponentially distributed random variates with 
mean L Write an algorithm to generate random variates with a triangular distribution by transfonning 
the exponentially distributed random variates. [Hint: First transfonn to obtain uniformly distributed 
random variates.] 

28. A study is conducted on the arrival of customers in a bus stop during the post lunch period. The system 
starts at 12.30 P.M. and the arrival rate per hour during different intervals of time are 

Time Arrival Ratenlour 

l2.3Q-L30 P.M. 

L3Q-2.30 P.M. 

2.3Q-3.30 P.M. 

3.30-4.30 P.M. 

Generate arrivals from this NSPP. 

20 
35 
60 
80 

29. Generate 10 values from a beta distribution on the interval [0, 1] with parameters /31 = L47 and /32 = 2.16. 
Next �fonn them to be on the interval [-10, 20]. 

Part IV 
Analysis of Simulation Data 
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