DR. ALVIN'S PUBLICATIONS

DATA CLEANSING A EUROPEAN AUTOMOBILE DATASET

WITH PYTHON DR. ALVIN ANG

CONTENTS

<i>I.</i> 3	Step 1: Previewing the Data
Α.	Import all Libraries3
В.	Input Headers and Preview4
II. S	Step 2: Visualizing NaNs5
Α.	Replace "?" to NaN5
в.	Using MissingNo to Visualize NaNs6
C.	Count Number of NaNs in Each Column8
<i>III.</i>	Step 3: Dealing with Missing Data9
Α.	Drop all NaNs in the Price Column9
В.	Replace all NaNs in the Normalized Losses Column with The Mean
C.	Replace all NaNs in the Number of Doors Column with Most Occuring Frequency11
D.	Glancing at All Column Nans Again12
IV.	Step 4: Changing Columns Data Type13
V. 3	Step 5: Transform MPG to L/100km15
VI.	Step 6: Normalizing length + Width + Height16
Α.	Meaning of Normalizing Data17
VII.	About Dr. Alvin Ang

2 | P A G E

I. STEP 1: PREVIEWING THE DATA

The file is here https://www.alvinang.sg/s/auto.csv

https://www.alvinang.sg/s/Data Cleansing a European Automobile Dataset with Python by Dr Alvin Ang.ipynb

Realize that there are no headers!

	Α	В	C	D	E	F	G	H		J	K	L	М	N O	Р	QR	S	Т	U	V	W	Х	Y	Z
1	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548 dohc	four	130 mpfi	3.47	2.68	9	111	5000	21	27	13495
2	3	?	alfa-romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548 dohc	four	130 mpfi	3.47	2.68	9	111	5000	21	27	16500
3	1	?	alfa-romero	gas	std	two	hatchback	rwd	front	94.5	171.2	65.5	52.4	2823 ohcv	six	152 mpfi	2.68	3.47	9	154	5000	19	26	16500
4	2	164	audi	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	2337 ohc	four	109 mpfi	3.19	3.4	10	102	5500	24	30	13950
5	2	164	audi	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	2824 ohc	five	136 mpfi	3.19	3.4	8	115	5500	18	22	17450
6	2	?	audi	gas	std	two	sedan	fwd	front	99.8	177.3	66.3	53.1	2507 ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	15250
7	1	158	audi	gas	std	four	sedan	fwd	front	105.8	192.7	71.4	55.7	2844 ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	17710
8	1	?	audi	gas	std	four	wagon	fwd	front	105.8	192.7	71.4	55.7	2954 ohc	five	136 mpfi	3.19	3.4	8.5	110	5500	19	25	18920
9	1	158	audi	gas	turbo	four	sedan	fwd	front	105.8	192.7	71.4	55.9	3086 ohc	five	131 mpfi	3.13	3.4	8.3	140	5500	17	20	23875
10	0	?	audi	gas	turbo	two	hatchback	4wd	front	99.5	178.2	67.9	52	3053 ohc	five	131 mpfi	3.13	3.4	7	160	5500	16	227	?
11	2	192	bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3	2395 ohc	four	108 mpfi	3.5	2.8	8.8	101	5800	23	29	16430
12	0	192	bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3	2395 ohc	four	108 mpfi	3.5	2.8	8.8	101	5800	23	29	16925
13	0	188	bmw	gas	std	two	sedan	rwd	front	101.2	176.8	64.8	54.3	2710 ohc	six	164 mpfi	3.31	3.19	9	121	4250	21	28	20970
14	0	188	bmw	gas	std	four	sedan	rwd	front	101.2	176.8	64.8	54.3	2765 ohc	six	164 mpfi	3.31	3.19	9	121	4250	21	28	21105
		~							e	400 5	400	00.0		OOFF 1		404 5	0.04	0.40	~	404	1050	00	OF	O AFOF

A. IMPORT ALL LIBRARIES

Step 1: Previewing Data										
1a): Import All Libraries										
<pre>[25] import pandas as pd import missingno as msno import matplotlib.pylab as plt %matplotlib inline</pre>										

B. INPUT HEADERS AND PREVIEW

(26)		
¹²⁸¹ headers =	<pre>"symboling", "normalized-losses", "make", "fuel-type", "aspiration", "num-Of-doors", "body-style", "drive-wheels", "engine-location", "wheel-base", "tength", "kudath", "height", "engine-size", "sengine-size", "num-Of-cylinders", "engine-size", "stroke", "stroke", "stroke", "stroke", "stroke", "horsepower", "peak-rpm", "lighway-mgg", "ping"]</pre>	

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg	price
0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495
1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	16500
2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3.47	9.0	154	5000	19	26	16500
3	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3.40	10.0	102	5500	24	30	13950
4	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3.40	8.0	115	5500	18	22	17450

4 | PAGE

II. STEP 2: VISUALIZING NANS

A. REPLACE "?" TO NAN

2a) Replace All '?' with NaNs
[27] import numpy as np
replace "?" to NaN
df.replace("?", np.nan, inplace = True)
df.head(5)

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	
() 3	NaN	alfa- romero	gas	std	two	со
1	L 3	NaN	alfa- romero	gas	std	two	со
ź	2 1	NaN	alfa- romero	gas	std	two	h
4	3 2	164	audi	gas	std	four	
4	1 2	164	audi	gas	std	four	

B. USING MISSINGNO TO VISUALIZE NANS

2b) Using MissingNo to Visualize NaNs

COPYRIGHTED BY DR ALVIN ANG WWW.ALVINANG.SG

> msno.matrix(df)

C. COUNT NUMBER OF NANS IN EACH COLUMN

2c) Count Number of NaNs in Each Column [30] missing_data = df.isnull() [31] for column in missing_data.columns.values.tolist(): print(column) print(missing_data[column].value_counts()) print("")

```
symboling
False 205
Name: symboling, dtype: int64
normalized-losses
False 164
True
        41
Name: normalized-losses, dtype: int64
make
False 205
Name: make, dtype: int64
fuel-type
False 205
Name: fuel-type, dtype: int64
aspiration
False
       205
Name: aspiration, dtype: int64
  1. "normalized-losses": 41 missing data
```

- 2. "num-of-doors": 2 missing data
- 3. "bore": 4 missing data

Conclusion:

•

- 4. "stroke" : 4 missing data
- 5. "horsepower": 2 missing data
- 6. "peak-rpm": 2 missing data
- 7. "price": 4 missing data

III. STEP 3: DEALING WITH MISSING DATA

A. DROP ALL NANS IN THE PRICE COLUMN

Step 3: Dealing with Missing Data											
3a) NaNs in the 'Price' Column - Drop All NaNs											
<pre>[32] df.dropna(subset=["price"], axis=0, inplace=True) # "Price" column has 4 missing data # We simply delete the whole row # Reason: price is what we want to predict. # Any data entry without price data cannot be used for prediction; # therefore any row now without price data is not useful to us # Drop all rows with NaN values</pre>											

• Finally, we have dropped all rows with missing values (in the 'price' column).

sy	mboling	normalized- losses	make	fuel- type ^a	aspiration	num-of- doors	body- style	drive- wheels	engine- location	wheel- base	length	width	height	curb- weight	engine- type	num-of- cylinders	engine- size	fuel- system	bore :	stroke
		NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548	dohc	four	130	mpfi	3.47	2.68
1		NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	168.8	64.1	48.8	2548	dohc	four	130	mpfi	3.47	2.68
		NaN	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	171.2	65.5	52.4	2823	ohcv			mpfi	2.68	3.47
3		164	audi	gas	std	four	sedan	fwd	front	99.8	176.6	66.2	54.3	2337	ohc	four	109	mpfi	3.19	3.40
		164	audi	gas	std	four	sedan	4wd	front	99.4	176.6	66.4	54.3	2824	ohc	five	136	mpfi	3.19	3.40
196			volvo	gas	std	four	sedan	rwd	front	109.1	188.8	68.9	55.5	2952	ohc	four	141	mpfi	3.78	3.15
197		95	volvo	gas	turbo	four	sedan	rwd	front	109.1	188.8	68.8	55.5	3049	ohc	four	141	mpfi	3.78	3.15
198			volvo	gas	std	four	sedan	rwd	front	109.1	188.8	68.9	55.5	3012	ohcv		173	mpfi	3.58	2.87
199		95	volvo	diesel	turbo	four	sedan	rwd	front	109.1	188.8	68.9	55.5	3217	ohc		145	idi	3.01	3.40
200			volvo	gas	turbo		sedan	rwd	front	109.1	188.8	68.9	55.5	3062	ohc		141	mpfi	3.78	3.15

[33] df.reset_index(drop=True, inplace=True)

Reset the index because we dropped the rows

ompression- ratio	horsepower	peak- rpm	city- mpg	highway∙ mpi	price
9.0	111	5000	21		13495
9.0	111	5000	21	2'	16500
9.0	154	5000			16500
10.0	102	5500	24	31	13950
8.0	115	5500			17450
9.5	114	5400			16845
8.7	160	5300		2!	19045
8.8	134	5500			21485
23.0	106	4800	26	2'	22470
9.5	114	5400			22625

B. REPLACE ALL NANS IN THE NORMALIZED LOSSES COLUMN WITH THE MEAN

3b) NaNs in 'Normalized Losses' Column - Replace with Mean

[34] avg = df["normalized-losses"].astype("float").mean(axis=0)

print("Average of Normalized-Losses Column:", avg)

Average of Normalized-Losses Column: 122.0

[35] df["normalized-losses"].replace(np.nan, avg, inplace=True)

:	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size	fuel- system	bore	stroke	compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg	price
() 3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	13495
1	1 3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130	mpfi	3.47	2.68	9.0	111	5000	21	27	16500
2	! 1	NaN	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 152	mpfi	2.68	3.47	9.0	154	5000	19	26	16500
З	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109	mpfi	3.19	3.40	10.0	102	5500	24	30	13950
4	L 2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136	mpfi	3.19	3.40	8.0	115	5500	18	22	17450

symb	oling ^{norm}	alized- losses	make	fuel- type	aspiı
0 Drev	3 iously	122	alfa- romero	gas	
was	3	122	alfa- romero	gas	
NaN	1	122	alfa- romero	gas	
3	2	164	audi	gas	
fnow	replac	ed ¹⁶⁴	audi	gas	
196	Mean	95	volvo	gas	
197	-1	95	volvo	gas	
198	-1	95	volvo	gas	
199	-1	95	volvo	diesel	

10 | P A G E

C. REPLACE ALL NANS IN THE NUMBER OF DOORS COLUMN WITH MOST OCCURING FREQUENCY

We see that the Most Frequently Occuring is Four Doors.

We replace all NaNs in that column to "Four" doors.

D. GLANCING AT ALL COLUMN NANS AGAIN

3d) Glancing at All Columns NaNs

[39] msno.matrix(df)

#finally you see no more NaNs

IV. STEP 4: CHANGING COLUMNS DATA TYPE

- St	ep 4: Changin	g the Columns Data Type	
0	df.dtypes		
	#Normalized L #Bore and Str #Peak-rpm is #Price is obj	osses is object = it should be oke are objects = they should b object = it should be float ect = it should be float	integer De float
¢	symboling normalized-losses make fuel-type aspiration num-of-doors body-style drive-wheels engine-location wheel-base length width height curb-weight engine-type num-of-cylinders engine-size fuel-system bore stroke compression-ratio horsepower peak-rpm city-mpg highway-mpg price dtype: object	<pre>int64 object object object object object object float64 float64 float64 float64 float64 float64 object object object object int64 object object int64 object int64 object int64 object int64 object</pre>	

13 | P A G E

COPYRIGHTED BY DR ALVIN ANG WWW.ALVINANG.SG

14 | P A G E

[] df[["normalized-losses"]] = df[["normalized-losses"]].astype("int") df[["bore", "stroke"]] = df[["bore", "stroke"]].astype("float") df[["peak-rpm"]] = df[["peak-rpm"]].astype("float") df[["price"]] = df[["price"]].astype("float")

15 | P A G E

A. MEANING OF NORMALIZING DATA

- Normalizing is to switch the scale to 0 to 1.
- Before Normalizing...

	length	width	height
0	168.8	64.1	0.816054
1	168.8	64.1	0.816054
2	171.2	65.5	0.876254
3	176.6	66.2	0.908027
4	176.6	66.4	0.908027

• After Normalizing....

		length	width	height
	0	0.811148	0.890278	0.816054
	1	0.811148	0.890278	0.816054
	2	0.822681	0.909722	0.876254
	3	0.848630	0.919444	0.908027
	4	0.848630	0.922222	0.908027

17 | P A G E

VII. ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at <u>www.AlvinAng.sg</u>.

18 | P A G E