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Preface
Optimus is a Python library that works as a unified API for data cleaning,
processing, and merging. It can be used for small and big data on local and
big clusters using CPUs or GPUs. Data Processing with Optimus shows
you how to use the library to enhance your data science workflow.

The book begins by covering the internals of Optimus and showing you
how it works in tandem with existing technologies to serve users' data
processing needs. You'll then use Optimus to load and save data from text
data formats such as CSV and JSON files, explore binary files such as
Excel, and for columnar data processing with Parquet, Avro, and OCR.
Next, you'll learn about the profiler and profiler data types, a unique feature
of Optimus DataFrames that helps you get an overview of the data quality
in every column. You'll also create data cleaning and transformation
functions and add a hypothetical new data processing engine. Later, you'll
explore plots in Optimus such as histograms and box plots, and learn how
Optimus lets you connect to any other library, including Plotly and Altair.
Finally, you'll understand the advanced applications of Optimus, such as
feature engineering, machine learning, and NLP, along with exploring the
advancements in Optimus.

By the end of this book, you'll be able to easily improve your data science
workflow with Optimus.



Who this book is for
This book is for Python developers who want to explore, transform, and
prepare big data for machine learning, analytics, and reporting using Spark
and Dask on CPUs or GPUs. Beginner-level working knowledge of Python
is assumed.



What this book covers
Chapter 1, Hi Optimus!, shows us what Optimus is, why it was created, and
the goals of the project. We will get a good understanding of how Optimus
works internally, how it is different from the current technology, and how it
works in tandem with users to bring the best of the technology to serve
users' data processing needs.

Chapter 2, Data Loading, Saving, and File Formats, is all about how to use
Optimus to load and save data from text data formats such as CSV and
JSON files. Also, we will explore binary files such as Excel and some
optimized for columnar data processing such as Parquet, Avro, and OCR.
Lastly, we will learn how to connect to databases such as SQLite and
remote data storage such as Redshift.

Chapter 3, Data Wrangling, demonstrates how to concatenate data row- and
column-wise and how to use SQL-like syntax to merge data using left,
right, inner, and outer methods. Also, we'll learn how to pivot data tables to
put data in the shape needed for the next step in the data pipeline.

Chapter 4, Combining, Reshaping, and Aggregating Data, teaches us how
to group columns of data and apply summary statistics to each group of
data. From count, min, and max aggregation to more advanced stats such as
kurtosis and skew, we'll have all the tools to calculate any stats needed.

Chapter 5, Data Visualization and Profiling, demonstrates the profiler and
the profiler data types, an Optimus DataFrame unique feature that lets the
user have an overview of the data quality on every column. Data types such



as email, dates, URLs, string, and float let the user easily standardize
mismatches and missing data like any other library.

Chapter 6, String Clustering, uses string clustering techniques to let us
easily identify groups of similar strings and replace them with a unique
value.

Chapter 7, Feature Engineering, teaches us how to create new features for
machine learning models to learn from. We'll look at generating them by
combining fields, extracting values from messy columns, or encoding them
for better results.

Chapter 8, Machine Learning, shows us how to easily create machine
learning models and how Optimus will take care of the implementation
details and make the feature engineering work when possible, as well as
how to save the model after training and load it for future use.

Chapter 9, Natural Language Processing, shows us how to easily prepare
data to apply techniques such as a word cloud, data summarization, and
sentiment analysis, along with examples.

Chapter 10, Hacking Optimus, explores how to add new profiler data types
to better approach quality problems. Also, we will learn how to create data
cleaning and transformation functions and how to add a hypothetical new
data processing engine. To close, we will talk about the Optimus
Community, how to contribute to the project, and the next step in the
Optimus project.

Chapter 11, Optimus as a Web Service, demonstrates how Optimus can be
used as a web service with the help of various tools and plugins.



To get the most out of this book

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book's GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Data-Processing-with-Optimus. If
there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images

https://github.com/PacktPublishing/Data-Processing-with-Optimus
https://github.com/PacktPublishing/


We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here: https://static.packt-
cdn.com/downloads/9781801079563_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. Here is an example: "For example, calling df.display()
after any delayed function will require the final data to be calculated."

A block of code is set as follows:

from optimus import Optimus

op = Optimus("dask")

df = op.create.dataframe({"A":[0,1,2,3,4,5]})

df = df.cols.sqrt("A")

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

from optimus import Optimus

op = Optimus("dask")

df = op.create.dataframe({"A":[0,1,2,3,4,5]})

df = df.cols.sqrt("A")

Any command-line input or output is written as follows:

coiled install optimus/default

conda activate coiled-optimus-default

clbr://internal.invalid/book/OEBPS/_ColorImages.pdf


Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.
Here is an example: Enable WSL 2 by enabling the Virtual Machine
Platform optional feature.

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/


Share Your Thoughts
Once you've read Data Processing with Optimus, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for
this book and share your feedback.

Your review is important to us and the tech community and will help us
make sure we're delivering excellent quality content.

https://packt.link/r/1-801-07956-0


Section 1: Getting Started with Optimus
By the end of this section, you will have a good understanding of what
Optimus brings to the table in terms of improving the entire data processing
landscape.

This section comprises the following chapters:

Chapter 1, Hi Optimus!

Chapter 2, Data Loading, Saving, and File Formats



Chapter 1: Hi Optimus!
Optimus is a Python library that loads, transforms, and saves data, and also
focuses on wrangling tabular data. It provides functions that were designed
specially to make this job easier for you; it can use multiple engines as
backends, such as pandas, cuDF, Spark, and Dask, so that you can process
both small and big data efficiently.

Optimus is not a DataFrame technology: it is not a new way to organize
data in memory, such as arrow, or a way to handle data in GPUs, such as
cuDF. Instead, Optimus relies on these technologies to load, process,
explore, and save data.

Having said that, this book is for everyone, mostly data and machine
learning engineers, who want to simplify writing code for data processing
tasks. It doesn't matter if you want to process small or big data, on your
laptop or in a remote cluster, if you want to load data from a database or
from remote storage – Optimus provides all the tools you will need to make
your data processing task easier.

In this chapter, we will learn about how Optimus was born and all the
DataFrame technologies you can use as backends to process data. Then, we
will learn about what features separate Optimus from all the various kinds
of DataFrame technologies. After that, we will install Optimus and
Jupyter Lab so that we will be prepared to code in Chapter 2, Data
Loading, Saving, and File Formats.

Finally, we will analyze some of Optimus's internal functions to understand
how it works and how you can take advantage of some of the more



advanced features.

A key point: this book will not try to explain how every DataFrame
technology works. There are plenty of resources on the internet that explain
the internals and the day-to-day use of these technologies. Optimus is the
result of an attempt to create an expressive and easy to use data API and
give the user most of the tools they need to complete the data preparation
process in the easiest way possible.

The topics we will be covering in this chapter are as follows:

Introducing Optimus

Installing everything you need to run Optimus

Using Optimus

Discovering Optimus internals

Technical requirements
To take full advantage of this chapter, please ensure you implement
everything specified in this section.

Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more information about the requirements, please go to
the GPU configuration section.

To use RAPIDS on Windows 10, you will need the following:

Windows 10 version 2004 (OS build 202001.1000 or later)

CUDA version 455.41 in CUDA SDK v11.1



You can find all the code for this chapter in
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Introducing Optimus
Development of Optimus began with work being conducted for another
project. In 2016, Alberto Bonsanto, Hugo Reyes, and I had an ongoing big
data project for a national retail business in Venezuela. We learned how to
use PySpark and Trifacta to prepare and clean data and to find buying
patterns.

But problems soon arose for both technologies: the data had different
category/product names over the years, a 10-level categorization tree, and
came from different sources, including CSV files, Excel files, and
databases, which added an extra process to our workflow and could not be
easily wrangled. On the other hand, when we tried Trifacta, we needed to
learn its unique syntax. It also lacked some features we needed, such as the
ability to remove a single character from every column in the dataset. In
addition to that, the tool was closed source.

We thought we could do better. We wanted to write an open source, user-
friendly library in Python that would let any non-experienced user apply
functions to clean, prepare, and plot big data using PySpark.

From this, Optimus was born.

After that, we integrated other technologies. The first one we wanted to
include was cuDF, which supports processing data 20x faster; soon after
that, we also integrated Dask, Dask-cuDF, and Ibis. You may be wondering,

https://github.com/PacktPublishing/Data-Processing-with-Optimus


why so many DataFrame technologies? To answer that, we need to
understand a little bit more about how each one works.

Exploring the DataFrame technologies

There are many different well-known DataFrame technologies available
today. Optimus can process data using one or many of those available
technologies, including pandas, Dask, cuDF, Dask-cuDF, Spark, Vaex, or
Ibis.

Let's look at some of the ones that work with Optimus:

pandas is, without a doubt, one of the more popular DataFrame
technologies. If you work with data in Python, you probably use pandas
a lot, but it has an important caveat: pandas cannot handle multi-core
processing. This means that you cannot use all the power that modern
CPUs can give you, which means you need to find a hacky way to use
all the cores with pandas. Also, you cannot process data volumes greater
than the memory available in RAM, so you need to write code to
process your data in chunks.

Dask came out to help parallelize Python data processing. In Dask, we
have the Dask DataFrame, an equivalent to the pandas DataFrame, that
can be processed in parallel using multiple cores, as well as with nodes
in a cluster. This gives the user the power to scale out data processing to
hundreds of machines in a cluster. You can start 100 machines, process
your data, and shut them down, quickly, easily, and cheaply. Also, it
supports out-of-core processing, which means that it can process data
volumes greater than the memory available in RAM.



At the user level, cuDF and Dask-cuDF work in almost the same way
as pandas and Dask, but up to 20x faster for most operations when using
GPUs. Although GPUs are expensive, they give you more value for
money compared to CPUs because they can process data much faster.

Vaex is growing in relevance in the DataFrame landscape. It can
process data out-of-core, is easier to use than Dask and PySpark, and is
optimized to process string and stats in parallel because of its
underlying C language implementation.

Ibis is gaining traction too. The amazing thing about Ibis is that it can
use multiple engines (like Optimus but focused on SQL engines) and
you can write code in Python that can be translated into SQL to be used
in Impala, MySQL, PostgreSQL, and so on.

The following table provides a quick-glance comparison of several of these
technologies:



(*) Depends on the engine that's been configured

Figure 1.1 – DataFrame technologies and capabilities available in Optimus

There are some clear guidelines regarding when to use each engine:

Use pandas if the DataFrame fits comfortably in memory, or cuDF if
you have GPUs and the data fits in memory. This is almost always
faster than using distributed DataFrame technologies under the same
circumstances. This works best for real-time or near-real-time data
processing.

Use Dask if you need to process data greater than memory, and Dask-
cuDF if you have data larger than memory and a multi-core and/or
multi-node GPU infrastructure.



Use Vaex if you have a single machine and data larger than memory, or
Spark if you need to process data at terabyte scale. This is slow for
small datasets/datasets that fit in memory.

Now that you understand this, you can unleash Optimus's magic and start
preparing data using the same Optimus API in any of the engines available.

Examining Optimus design principles

A key point about Optimus is that we are not trying to create a new
DataFrame technology. As we've already seen, there are actually many
amazing options that cover almost any use case. The purpose of Optimus is
to simplify how users handle data and give that power to people who may
not have any technical expertise. For that reason, Optimus follows three
principles:

One API to rule them all.

Knowing the technology is optional.

Data types should be as rich as possible.

What do these mean? Let's look at each in detail.

One API to rule them all
Almost all DataFrame technologies try to mimic the pandas API. However,
there are subtle differences regarding what the same function can do,
depending on how you apply it; with Optimus, we want to abstract all this.

We'll go into more detail about this later, but here's a quick example: you
can calculate a column square root using the .cols accessor, like so:



from optimus import Optimus

op = Optimus("dask")

df = op.create.dataframe({"A":[0,-1,2,3,4,5]})

df = df.cols.sqrt("A")

If you want to switch from Dask to any other engine, you can use any of the
following values. Each one will instantiate a different class of the Optimus
DataFrame:

"pandas" to use Pandas. This will instantiate a pandas DataFrame.

"dask" to use Dask. This will instantiate a DaskDataFrame.

"cudf" to use cuDF. This will instantiate a CUDFDataFrame.

"dask_cudf" to use Dask-cuDF. This will instantiate a
DaskCUDFDataFrame.

"spark" to use PySpark. This will instantiate a SparkDataFrame.

"vaex" to use Vaex. This will instantiate a VaexDataFrame.

"ibis" to use Ibis. This will instantiate an IbisDataFrame.

An amazing thing about this flexibility is that you can process a sample of
the data on your laptop using pandas, and then send a job to Dask-cuDF or
a Spark cluster to process it using the faster engine.

Knowing the technical details is optional
pandas is complex. Users need to handle technical details such as rows,
index, series, and masks, and you need to go low level and use
NumPy/Numba to get all the power from your CPU/GPU.



With Numba, users can gain serious speed improvements when processing
numerical data. It translates Python functions into optimized machine code
at runtime. This simply means that we can write faster functions on CPU or
GPU. For example, when we request a histogram using Optimus, the
minimum and maximum values of a column are calculated in a single pass.

In Optimus, we try to take the faster approach for every operation, without
requiring extensive knowledge of the technical details, to take full
advantage of the technology. That is Optimus's job.

Some other DataFrame features that are abstracted in Optimus include
indices, series, and masks (the exception is PySpark). In Optimus, you only
have columns and rows; the intention is to use familiar concepts from
spreadsheets so that you can have a soft landing when you start using
Optimus.

In Optimus, you have two main accessors, .cols and .rows, that provide
most of the transformation methods that are available. For example, you can
use df.cols.lower to transform all the values of a column into lowercase,
while you can use df.rows.drop_duplicates to drop duplicated rows in the
entire dataset. Examples of these will be addressed later in this book.

Data types should be as rich as possible
All DataFrame technologies have data types to represent integers, decimals,
time, and dates. In pandas and Dask, you can use NumPy data types to
assign diverse types of integers such as int8, int16, int32, and int64, or
different decimals types, such as float32, float64, and so on.

This gives the user a lot of control to optimize how the data is saved and
reduces the total size of data in memory and on disk. For example, if you



have 1 million rows with values between 1 and 10, you can save the data as
uint8 instead of inf64 to reduce the data size.

Besides this internal data representation, Optimus can infer and detect a
richer set of data types so that you can understand what data in a column
matches a specific data type (URL, email, date, and so on) and then apply
specific functions to handle it.

In Optimus, we use the term quality to express three data characteristics:

Number of values that match the data type being inferred

Number of values that differ from the data type being inferred

Number of missing values

Using the df.cols.quality method, Optimus can infer the data type of every
loaded column and return how many values in the column match its data
types. In the case of date data types, Optimus can infer the date format.

The following list shows all the data types that Optimus can detect:

Integer.

Strings.

Email.

URL.

Gender.

Boolean.

US ZIP code.

Credit card.



Time and date format.

Object.

Array.

Phone number.

Social security number.

HTTP code.

Many of these data types have special functions that you can use, as
follows:

URL: Schemas, domains, extensions, and query strings

Date: Year, month, and day

Time: Hours, minutes, and seconds

Email: domains and domain extensions

The best part of this is that you can define your own data types and create
special functions for them. We will learn more about this later in this book.
We will also learn about the functions we can use to process or remove
matches, mismatches, and missing values.

Now that we've had a look at how Optimus works, let's get it running on
your machine.

Install ing everything you need to run
Optimus



To start using Optimus, you will need a laptop with Windows, Ubuntu, or
macOS installed with support for Python, PIP packages, and Conda. If
you are new to Python, PIP is the main package manager. It allows Python
users to install and manage packages that expand the Python standard
library's functionality.

The easiest way to install Optimus is through PIP. It will allow us to start
running examples in just a few minutes. Later in this section, we will see
some examples of Optimus running on a notebook, on a shell terminal, and
on a file read by Python, but before that, we will need to install Optimus
and its dependencies.

First, let's install Anaconda.

Install ing Anaconda

Anaconda is a free and open source distribution of the Python and R
programming languages. The distribution comes with the Python
interpreter, Conda, and various packages related to machine learning and
data science so that you can start easier and faster.

To install Anaconda on any system, you can use an installer or install it
through a system package manager. In the case of Linux and macOS, you
can install Anaconda using APT or Homebrew, respectively.

On Linux, use the following command:

sudo apt-get install anaconda # on Linux

For macOS and Windows, go to
https://www.anaconda.com/products/individual. Download the Windows

https://www.anaconda.com/products/individual


file that best matches your system and double-click the file after
downloading it to start the installation process:

brew cask install anaconda # on macOS

With Anaconda now installed, let's install Optimus.

Install ing Optimus

With Anaconda installed, we can use Conda to install Optimus:

As stated on the Conda website, Conda is provides "package, dependency,
and environment management for any language." With Conda, we can
manage multiple Python environments without polluting our system with
dependencies. For example, you could create a Conda environment that
uses Python 3.8 and pandas 0.25, and another with Python 3.7 and pandas
1.0. Let's take a look:

1. To start, we need to open the Anaconda Prompt. This is just the
command-line interface that comes with Conda:

For Windows: From the Start menu, search for and open
Anaconda Prompt.

For macOS: Open Launchpad and click the Terminal icon.

For Linux: Open a Terminal window.

2. Now, in the terminal, we are going to create a Conda environment
named Optimus to create a clean Optimus installation:

conda create -n optimus python=3.8



3. Now, you need to change from the (base) environment to the (optimus)
environment using the following command:

conda activate optimus

4. Running the following command on your terminal will install Optimus
with its basic features, ready to be tested:

pip install pyoptimus

5. If you have done this correctly, running a simple test will tell us that
everything is correct:

python -c 'import optimus; optimus.__version__'

Now, we are ready to use Optimus!

We recommend using Jupyter Notebook, too.

Install ing JupyterLab

If you have not been living under a rock the last 5 years, you probably
know about Jupyter Notebook. JupyterLab is the next generation of
Jupyter Notebook: it is a web-based interactive development environment
for coding. Jupyter (for short) will help us test and modify our code easily
and will help us try out our code faster. Let's take a look:

1. To install JupyterLab, go to the Terminal, as explained in the Installing
Optimus section, and run the following command:

conda install -c conda-forge jupyterlab

2. At this point, you could simply run Jupyter. However, we are going to
install a couple of handy extensions to debug Dask and track down GPU



utilization and RAM:

conda install nodejs

conda install -c conda-forge dask-labextension

jupyter labextension install dask-labextension

jupyter serverextension enable dask_labextension

3. Now, let's run Jupyter using the following command:

jupyter lab --ip=0.0.0.0

4. You can access Jupyter using any browser:



Figure 1.2 – JupyterLab UI

Next, let's look at how to install RAPIDS.

Install ing RAPIDS

There are some extra steps you must take if you want to use a GPU engine
with Optimus.



RAPIDS is a set of libraries developed by NVIDIA for handling end-to-end
data science pipelines using GPUs; cuDF and Dask-cuDF are among these
libraries. Optimus can use both to process data in a local and distributed
way.

For RAPIDS to work, you will need a GPU, NVIDIA Pascal™ or better,
with a compute capability of 6.0+. You can check the compute capability by
looking at the tables on the NVIDIA website: bit.ly/cc_gc.

First, let's install RAPIDS on Windows.

Installing RAPIDS on Windows 10
RAPIDS is not fully supported at the time of writing (December 2020), so
you must use the Windows Subsystem for Linux version 2 (WSL2). WSL
is a Windows 10 feature that enables you to run native Linux command-line
tools directly on Windows.

You will need the following:

Windows 10 version 2004 (OS build 202001.1000 or later). You must
sign up to get Windows Insider Preview versions, specifically to the
Developer Channel. This is required for the WSL2 VM to have GPU
access: https://insider.windows.com/en-us/.

CUDA version 455.41 in CUDA SDK v11.1. You must use a special
version of the NVIDA CUDA drivers, which you can get by
downloading them from NVIDIA's site. You must join the NVIDIA
Developer Program to get access to the version; searching for WSL2
CUDA Driver should lead you to it.

Here are the steps:

http://bit.ly/cc_gc
https://insider.windows.com/en-us/


1. Install the developer preview version of Windows. Make sure that you
click the checkbox next to Update to install other recommended
updates too.

2. Install the Windows CUDA driver from the NVIDIA Developer
Program.

3. Enable WSL 2 by enabling the Virtual Machine Platform optional
feature. You can find more steps here: https://docs.microsoft.com/en-
us/windows/wsl/install-win10.

4. Install WSL from the Windows Store (Ubuntu-20.04 is confirmed to be
working).

5. Install Python on the WSL VM, tested with Anaconda.

6. Go to the Installing RAPIDS section of this chapter.

Installing RAPIDS on Linux
First, you need to install the CUDA and NVIDIA drivers. Pay special
attention if your machine is running code that depends on a specific CUDA
version. For more information about the compatibility between the CUDA
and NVIDIA drivers, check out bit.ly/cuda_c.

If you do not have a compatible GPU, you can use a cloud provider such as
Google Cloud Platform, Amazon, or Azure.

In this case, we are going to use Google Cloud Platform. As of December
2020, you can get an account with 300 USD on it to use. After creating an
account, you can set up a VM instance to install RAPIDS.

To create a VM instance on Google Cloud Platform, follow these steps:

https://docs.microsoft.com/en-us/windows/wsl/install-win10%20
http://bit.ly/cuda_c


1. First, go to the hamburger menu, click Compute Engine, and select
VM Instances.

2. Click on CREATE INSTANCE. You will be presented with a screen
that looks like this:

Figure 1.3 – Google Cloud Platform instance creation



3. Select a region that can provide a GPU. Not all zones have GPUs
available. For a full list, check out
https://cloud.google.com/compute/docs/gpus.

4. Make sure you choose N1 series from the dropdown.

5. Be sure to select an OS that's compatible with the CUDA drivers (check
the options available here: https://developer.nvidia.com/cuda-
downloads). After the installation, you will be using 30 GB of storage
space, so make sure you assign enough disk space:

Figure 1.4 – Google Cloud Platform OS selection

6. Check the Allow HTTP traffic option:

https://cloud.google.com/compute/docs/gpus
https://developer.nvidia.com/cuda-downloads


Figure 1.5 – Google Cloud Platform OS selection

7. To finish, click the Create button at the bottom of the page:

Figure 1.6 – Google Cloud instance creation

Now, you are ready to install RAPIDS.

Installing RAPIDS
After checking that your GPU works with Optimus, go to
https://rapids.ai/start.html. Select the options that match your requirements
and copy the output from the command section to your command-line
interface:

https://rapids.ai/start.html


Figure 1.7 – Google Cloud Platform OS selection

After the installation process is complete, you can test RAPIDS by
importing the library and getting its version:

python -c 'import cudf; cudf.__version__'



Next, let's learn how to install Coiled for easier setups.

Using Coiled

Coiled is a deployment-as-a-service library for scaling Python that
facilitates Dask and Dask-cuDF clusters for users. It takes the DevOps out
of the data role to enable data professionals to spend less time setting up
networking, managing fleets of Docker images, creating AWS IAM roles,
and other setups they would have to handle otherwise, so that they can
spend more time on their real job.

To use a Coiled cluster on Optimus, we can just pass minimal configuration
to our Optimus initialization function and include our token provided by
Coiled in a parameter; to get this token, you must create an account at
https://cloud.coiled.io and get the token from your dashboard, like so:

op = Optimus(coiled_token="<your token here>", n_workers=2)

In this example, we initialized Optimus using a Coiled token, and set the
number of workers to 2. Optimus will initialize a Dask DataFrame and
handle the connection to the cluster that was created by Coiled. After this,
Optimus will work as normal.

When using Coiled, it's important to maintain the same versions between
the packages in the remote cluster and the packages in your local machine.
For this, you can install a Coiled software environment as a local conda
environment using its command-line tool. To use Optimus, we will use a
specific software environment called optimus/default:

coiled install optimus/default

https://cloud.coiled.io/


conda activate coiled-optimus-default

In the preceding example, we told coiled install to create the conda
environment and then used conda activate to start using it.

Using a Docker container

If you know how to use Docker and you have it installed on your system,
you can use it to quickly set up Optimus in a working environment.

To use Optimus in a Docker environment, simply run the following
command:

docker run -p 8888:8888 --network="host" optimus-df/optimus:latest

This will pull the latest version of the Optimus image from Docker Hub and
run a notebook process inside it. You will see something like the following:

To access the notebook, open this file in a browser:

    file://...

Or copy and paste one of these URLs:

    http://127.0.0.1:8888/?token=<GENERATED TOKEN>

Just copy the address and paste it into your browser, making sure it has the
same token, and you'll be using a notebook with Optimus installed in its
environment.

Using Optimus
Now that we have Optimus installed, we can start using it. In this section,
we'll run through some of the main features and how to use them.



The Optimus instance

You use the Optimus instance to configure the engine, as well as load and
save data. Let's see how this works.

Once Optimus has been installed on your system, you can use it in a Python
environment. Let's import the Optimus class and instantiate an object of it:

from optimus import Optimus

op = Optimus(engine=pandas)

In Optimus, we call a DataFrame technology an engine. In the preceding
example, we're setting up Optimus using Pandas as the base engine. Very
easy!

Now, let's instantiate Optimus using Dask in a remote cluster. For this, we'll
have to pass the configuration in the arguments to the Optimus function –
specifically, the session argument – which allows us to pass a Dask client:

from dask.distributed import Client

client = Client("127.0.0.105")

op = Optimus(engine="dask", session=client)

In the preceding code, we instantiated a Dask distributed client and passed
it to the Optimus initialization.

To initialize with a different number of workers, you can pass a named
argument as well:

op = Optimus(engine="dask", n_workers=2)

This will create a local client automatically, instead of passing just one, as
in the previous example.



Using Dask, you can now access more than 100 functions to transform
strings, as well as filter and merge data.

Saving and loading data from any source
Using the Optimus instance, you can easily load DataFrames from files or
databases. To load a file, simply call one of the available methods for
different formats (.csv, .parquet, .xlsx, and more) or simply the generic file
method, which will infer the file format and other parameters:

op.load.csv("path/to/file.csv")

op.load.file("path/to/file.csv")

For databases or external buckets, Optimus can handle connections as
different instances, which allows us to maintain operations and clean any
credentials and addresses that may or may not repeat on different loading
routines:

db = op.connect.database( *db_args )

op.load.database_table("table name", connection=db)

conn = op.connect.s3( *s3_args )

op.load.file("relative/path/to/file.csv", connection=conn)

On the other hand, to save to a file or to the table of a database, you can use
the following code:

df.save.csv("relative/path/to/file.csv", connection=conn)

df.save.database_table("table_name", db=db)

Now that we have started our engine and have our data ready, let's see how
we can process it using the Optimus DataFrame.



The Optimus DataFrame

One of the main goals of Optimus is to try and provide an understandable,
easy-to-remember API, along with all the tools needed to clean and shape
your data. In this section, we are going to highlight the main features that
separate Optimus from the available DataFrame technologies.

Using accessors
Optimus DataFrames are made to be modified in a natural language,
dividing the different methods available into components. For example, if
we want to modify a whole column, we may use the methods available in
the .cols accessor, while if we want to filter rows by the value of a specific
column, we may use a method in the .rows accessor, and so on.

An example of an operation could be column renaming:

df.cols.rename("function", "job")

In this case, we are simply renaming the function column to "job", but the
modified DataFrame is not saved anywhere, so the right way to do this is
like so:

df = df.cols.rename("function", "job")

In addition, most operations return a modified version of the DataFrame so
that those methods can be called, chaining them:

df = df.cols.upper("name").cols.lower("job")

When Optimus instantiates a DataFrame, it makes an abstraction of the core
DataFrame that was made using the selected engine. There is a DataFrame
class for every engine that's supported. For example, a Dask DataFrame is
saved in a class called DaskDataFrame that contains all the



implementations from Optimus. Details about the internals of this will be
addressed later in this book.

As we mentioned previously, to use most of these methods on an Optimus
DataFrame, it's necessary to use accessors, which separate different
methods that may have distinct behaviors, depending on where they're
called:

df.cols.drop("name")

The preceding code will drop the entire "name" column. The following
command returns a different DataFrame:

df.rows.drop(df["name"]==MEGATRON)

The preceding code will drop the rows with values in the "name" column
that match the MEGATRON value.

Obtaining richer DataFrame data
Optimus aims to give the user important information when needed.
Commonly, you will use head() or show() to print DataFrame information.
Optimus can provide additional useful information when you use display:

df.display()

This produces the following output:



Figure 1.8 – Optimus DataFrame display example

In the previous screenshot, we can see information about the requested
DataFrame, such as the number of columns and rows, all the columns,
along with their respective data types, some values, as well as the number
of partitions and the type of the queried DataFrame (in this case, a
DaskDataFrame). This information is useful when you're transforming
data to make sure you are on the right track.

Automatic casting when operating
Optimus will cast the data type of a column based on the operation you
apply. For example, to calculate min and max values, Optimus will convert
the column into a float and ignore non-numeric data:

dfn = op.create.dataframe({"A":["1",2,"4","!",None]})

dfn.cols.min("A"), df.cols.max("A")

(1.0, 4.0)



In the preceding example, Optimus ignores the "!" and None values and
only returns the lower and higher numeric values, respectively, which in
this case are 1.0 and 4.0.

Managing output columns
For most column methods, we can choose to make a copy of every input
column and save it to another so that the operation does not modify the
original column. For example, to save an uppercase copy of a string type
column, we just need to call the same df.cols.upper with an extra argument
called output_cols:

df.cols.capitalize("name", output_cols="cap_name")

This parameter is called output_cols and is plural because it supports
multiple names when multiple input columns are passed to the method:

df.cols.upper(["a", "b"],

              output_cols=["upper_a", "upper_b"])

In the preceding example, we doubled the number of columns in the
resulting DataFrame, one pair untouched and another pair with its values
transformed into uppercase.

Profiling

To get an insight into the data being transformed by Optimus, we can use
df.profile(), which provides useful information in the form of a Python
dictionary:

df = op.create.dataframe({"A":["1",2,"4","!",None],

                          "B":["Optimus","Bumblebee",

                               "Eject", None, None]})

df.profile(bins=10)



This produces the following output:

Figure 1.9 – Profiler output

In the preceding screenshot, we can see data, such as every column, along
with its name, missing values, and mismatch values, its inferred data type,
its internal data type, a histogram (or values by frequency in categorical
columns), and unique values. For the DataFrame, we have the name of the
DataFrame, the name of the file (if the data comes from one), how many
columns and rows we have, the total count of data types, how many missing
rows we have, and the percentage of values that are missing.

Visualization



One of the most useful features of Optimus is its ability to plot DataFrames
in a variety of visual forms, including the following:

Frequency charts

Histograms

Boxplots

Scatterplots

To achieve this, Optimus uses Matplotlib and Seaborn, but you can also get
the necessary data in Python Dictionary format to use with any other
plotting library or service.

Python Dictionary output
By default, every output operation in Optimus will get us a dictionary
(except for some cases, such as aggregations, which get us another
DataFrame by default). Dictionaries can easily be transformed and saved
into a JSON file, in case they are needed for a report or to provide data to
an API:

df.columns_sample("*")

String, numeric, and encoding tools

Optimus tries to provide out-of-the-box tools to process strings and
numbers, and gives you tools for the data preparation process so that you
can create machine learning models.

String clustering

String clustering refers to the operation of grouping different values that
might be alternative representations of the same thing. A good example of



this are the strings "NYC" and "New York City". In this case, they refer
to the same thing.

Processing outliers

Finding outliers is one of the most common applications for statistical
DataFrames. When finding outliers, there are various possible methods that
will get us different results, such as z-score, fingerprint, n-gram
fingerprint, and more. With Optimus, these methods are provided as
alternatives so that you can adapt to most cases.

Encoding techniques

Encoding is useful for machine learning models since they require all the
data going out or coming in to be numeric. In Optimus, we have methods
such as string_to_index, which allows us to transform categorical data into
numerical data.

Technical details

When dealing with distributed DataFrame technologies, there are two
concepts that arise that are an integral part of how Optimus is designed.
These are lazy and eager execution.

Let's explore how this works in Optimus.

Distributed engines process data in a lazy way
In Dask, for example, when you apply a function to a DataFrame, it is not
applied immediately like it would be in pandas. You need to trigger this



computation explicitly, by calling df.execute(), or implicitly, when calling
other operations that trigger this processing.

Optimus makes use of this functionality to trigger all the computation when
explicitly requested. For example, when we request the profile of a dataset,
every operation, such as histogram calculation, top-n values, and data
types inference, is pushed to a cluster in a directed acyclic graph (DAG)
and executed in parallel.

The following representation shows multiple operations being executed in
parallel being visualized in a DAG:

Figure 1.10 – Visualizing a DAG in Dask

Aggregations return computed operations
(eager execution)



As we mentioned earlier, distributed engines process aggregations in a lazy
way. Optimus triggers aggregation so that you can always visualize the
result immediately.

Triggering an execution
Optimus is capable of immediately executing an operation if requested.
This only applies to engines that support delayed operations, such as Dask
and PySpark. This way, we reduce the computation time when you know
some operations will change on your workflow:

df = df.cols.replace("address", "MARS PLANET",

                     "mars").execute()

In the preceding example, we're replacing every match with "MARS
PLANET" on the address column with "mars" and then saving a cache of
this operation.

However, there are some operations or methods that will also trigger all the
delayed operations that were made previously. Let's look at some of these
cases:

Requesting a sample: For example, calling df.display() after any
delayed function will require the final data to be calculated. For this
reason, Optimus will trigger all the delayed operations before requesting
any kind of output; this will also happen when we call any other output
function.

Requesting a profile: When calling df.profile(), some aggregations are
done in the background, such as counting for unique, mismatched, and
missing values. Also, getting the frequent values or the histogram



calculation of every column will require a delayed function to have been
executed previously.

When using a distributed DataFrame technology, when an operation is
executed, the data is executed and stored in every worker. In the case of
Dask, this function would be cache, which is called when we call execute
on our Optimus DataFrame. Note that if we call compute directly on a
Dask DataFrame instead, all the data will be brought to the client, which
might cause memory issues in our system if the data is too big.

Discovering Optimus internals
Optimus is designed to be easy to use for non-technical users and
developers. Once you know how some of the internals work, you'll know
how some transformations work, and hopefully how to avoid any
unexpected behavior. Also, you'll be able to expand Optimus or make more
advanced or engine-specific transformations if the situation requires it.

Engines

Optimus handles all the details that are required to initialize any engine.
Although pandas, Vaex, and Ibis won't handle many configuration
parameters because they are non-distributed engines, Dask and Spark
handle many configurations, some of which are mapped and some of which
are passed via the *args or **kwargs arguments.

Optimus always keeps a reference to the engine you initialize. For example,
if you want to get the Dask client from the Optimus instance, you can use



the following command:

op.client

This will show you the following information:

Figure 1.11 – Dask client object inside Optimus

One interesting thing about Optimus is that you can use multiple engines at
the same time. This might seem weird at first, but it opens up amazing
opportunities if you get creative. For example, you can combine Spark, to
load data from a database, and pandas, to profile a data sample in real time,
or use pandas to load data and use Ibis to output the instructions as a set of
SQL instructions.

At the implementation level, all the engines inherit from BaseEngine. Let's
wrap all the engine functionality to make three main operations:

Initialization: Here, Optimus handles all the initialization processes for
the engine you select.

Dataframe creation: op.create.dataframe maps to the DataFrame's
creation, depending on the engine that was selected.

Data Loading: op.load handles file loading and databases.

The DataFrame behind the DataFrame



The Optimus DataFrame is a wrapper that exposes and implements a set of
functions to process string and numerical data. Internally, when Optimus
creates a DataFrame, it creates it using the engine you select to keep a
reference in the .data property. The following is an example of this:

op = Optimus("pandas")

df = op.load.csv("foo.txt", sep=",")

type(df.data)

This produces the following result:

Pandas.core.frame.DataFrame

A key point is that Optimus always keeps the data representation as
DataFrames and not as a Series. This is important because in pandas, for
example, some operations return a Series as result.

In pandas, use the following code:

import pandas as pd

type(pd.DataFrame({"A":["A",2,3]})["A"].str.lower())

pandas.core.series.Series

In Optimus, we use the following code:

from optimus import Optimus

op = Optimus("pandas")

type(op.create.dataframe({"A":["A",2,3]}).cols.lower().data)

pandas.core.frame.DataFrame

As you can see, both values have the same types.

Meta



Meta is used to keep some data that does not belong in the core dataset, but
can be useful for some operations, such as saving the result of a top-N
operation in a specific column. To achieve this, we save metadata in our
DataFrames. This can be accessed using df.meta. This metadata is used for
three main reasons. Let's look at each of them.

Saving file information
If you're loading a DataFrame from a file, it saves the file path and
filename, which can be useful for keeping track of the data being handled:

from optimus import Optimus

op = Optimus("pandas")

df = op.load.csv("foo.txt", sep=",")

df.meta

You will get the following output:

{'file_name': 'foo.txt', 'name': 'foo.txt'}

Data profiling

Data cleaning is an iterative process; maybe you want to calculate the
histogram or top-N values in the dataset to spot some data that you want to
remove or modify. When you calculate profiling for data using df.profile(),
Optimus will calculate a histogram or frequency chart, depending on the
data type. The idea is that while working with the Actions data, we can
identify when the histogram or top-N values should be recalculated. Next,
you will see how Actions work.

Actions
As we saw previously, Optimus tries to cache certain operations to ensure
that you do not waste precious compute time rerunning tasks over data that



has not changed.

To optimize the cache usage and reconstruction, Optimus handles multiple
internal Actions to operate accordingly.

You can check how Actions are saved by trying out the following code:

from optimus import Optimus

op = Optimus("pandas")

df = op.load.csv("foo.txt", sep=",")

df = df.cols.upper("*")

To check the actions you applied to the DataFrame, use the following
command:

df.meta["transformations"]

You will get a Python dictionary with the action name and the column that's
been affected by the action:

{'actions': [[{'upper': ['name']}], [{'upper': ['function']}]]}

A key point is that different actions have different effects on how the data is
profiled and how the DataFrame's metadata is handled. Every Optimus
operation has a unique Action name associated with it. Let's look at the five
Actions that are available in Optimus and what effect they have on the
DataFrame:

Columns: These actions are triggered when operations are applied to
entire Optimus columns; for example, df.cols.lower() or df.cols.sqrt().

Rows: These actions are triggered when operations are applied to any
row in an Optimus column; for example, df.rows.set()or
df.rows.drop_duplicate().



Copy: Triggered only for a copy column operation, such as
df.cols.copy(). Internally, it just creates a new key on the dict meta with
the source metadata column. If you copy an Optimus column, a
profiling operation is not triggered over it.

Rename: Triggered only for a rename column operation, such as
df.cols.rename(). Internally, it just renames a key in the meta
dictionary. If you copy an Optimus column, a profiling operation is not
triggered over it.

Drop: Triggered only for a rename column operation, such as
df.cols.drop(). Internally, it removes a key in the meta dictionary. If you
copy an Optimus column, a profiling operation is not triggered over it.

Dummy functions

There are some functions that do not apply to all the DataFrame
technologies. Functions such as .repartition(), .cache(), and compute() are
used in distributed DataFrames such as Spark and Dask to trigger
operations in the workers, but these concepts do not exist in pandas or
cuDF. To preserve the API's cohesion in all the engines, we can simply use
pass or return the same DataFrame object.

Diagnostics

When you use Dask and Spark as your Optimus engine, you have access to
their respective diagnostics dashboards. For very complex workflows, it can



be handy to understand what operations have been executed and what could
be slowing down the whole process.

Let's look at how this works in the case of Dask. To gain access to the
diagnostic panel, you can use the following command:

op.client()

This will provide you with information about the Dask client:

Figure 1.12 – Dask client information

In this case, you can point to http://192.168.86.249:39011/status in your
browser to see the Dask Diagnostics dashboard:

http://192.168.86.249:39011/status


Figure 1.13 – Dask Diagnostics dashboard

An in-depth discussion about diagnostics is beyond the scope of this book.
To find out more about this topic, go to
https://docs.dask.org/en/latest/diagnostics-distributed.html.

Summary

https://docs.dask.org/en/latest/diagnostics-distributed.html


In this chapter, we learned about Optimus's basic capabilities and which of
the available engines is the most suitable, based on the infrastructure you're
using. You also learned why it is beneficial to use Optimus instead of a
vanilla DataFrame and what features separate Optimus from the DataFrame
technology that's available. Then, we learned how to install Optimus on
Windows, macOS, and Linux, both on the cloud and with external services
such as Coiled.

Finally, we took a deep dive into the internals of Optimus so that you have a
better understanding of how it works and how it allows you to get creative
and take full advantage of Optimus.

In the next chapter, we will learn how to load and save data from files,
databases, and remote locations such as Amazon S3.



Chapter 2: Data Loading, Saving, and
File Formats
Most of the data in the world is saved in files or databases, in local or
remote sources. In this chapter, we will learn how to load data from
multiple formats and data sources and how to save it, while looking at every
method that can be used in detail.

Optimus puts a heavy focus on data sources that have been optimized for
big data processing, such as Avro, Parquet, and ORC, and databases such
as BigQuery and Redshift, so that users have all the tools they need at
hand to cover their data processing needs.

From a developer's standpoint, Optimus follows the "batteries included"
paradigm, so you don't have to worry about installing extra libraries to
handle the Excel or Avro files that we use to handle this format. However,
in the case of databases, every engine has their own respective driver, so
including all the drivers inside a package would be problematic: it would be
a package that's almost 500 MB in size!

The topics we will be covering in this chapter are as follows:

How data moves internally

Loading a file

Creating a dataframe from scratch

Connecting to remote data sources

Saving a dataframe



Technical requirements

Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus use RAPIDS, which needs an
NVIDIA card. For more information about the requirements, please go to
the GPU configuration section of Chapter 1.

For databases, Optimus will need different database drivers to handle
different technologies. In the Connecting to databases section, we will
explain how to install every driver for every database technology.

You can find all the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

How data moves internally
Before we deep dive into how to load and save data, let's explore how
external storage systems, databases, CPUs, RAM, GPUs, and local storage
systems interact to get your data ready for processing.

We'll divide the process of loading data into four categories.

File to RAM

A file is loaded from disk to RAM using the CPU:

https://github.com/PacktPublishing/Data-Processing-with-Optimus


Figure 2.1 – Loading and saving data from a file using CPUs

File to GPU memory

A file is loaded from disk to GPU memory using the CPU. To save the file
to disk, the data is sent via the GPU to the CPU, and then to disk:

Figure 2.2 – Loading and saving data from a file using GPUs

Database to RAM

The data is extracted from a database and sent via a JDBC driver to RAM
on your local laptop or cluster:



Figure 2.3 – Loading and saving data from a database using CPUs

Database to GPU memory

In Optimus, the data is extracted from the database and sent via a JDBC
driver to RAM using the CPU. To save the data back to the database, the
data needs to be sent via the GPU to the CPU, and then to the JDBC driver
to the database:

Figure 2.4 – Loading and saving data from a database using GPUs

There are new technologies that skip the CPU altogether, such as
GPUDirect Storage. This can greatly improve  performance when you're
dealing with big data, though this has not been tested with Optimus at the
time of writing. For more information, visit
https://developer.nvidia.com/blog/gpudirect-storage/.

https://developer.nvidia.com/blog/gpudirect-storage/


When using Optimus, we will try to do minimal data movement, because
every move will incur time penalties. Later in this chapter, we will explain
the implications this has for every engine.

Loading a fi le
As explained in the previous chapter, to load a dataframe, we have the .load
accessor in the Optimus instance, which lets us to load from different
sources, such as the local filesystem, databases, and alternative filesystems
(S3, HDFS, and more).

The most useful and readable function from this accessor is df.load.file,
which allows us to infer encoding data on the loading process so that we
can forget about extra configuration when loading a new dataset. This
following is an example:

from optimus import Optimus

op = optimus("pandas")

df = op.load.file("my_file.json")

In the preceding code, we are simply loading a JSON file. Internally,
Optimus detects its format and creates the dataframe. It can also load
formats such as CSV, JSON, XML, Excel, Parquet, Avro, ORC, and HDF5.
If required, you can also call any specific method for its type, as shown
here:



Figure 2.5 – Specific file format loading methods available in Optimus

When loading a JSON file, in our example, it does not infer much, only the
encoding format and multi-line values support; but when a CSV file is
loaded, it may need to infer some parameters, such as the separation
character, the encoding format, line terminators, and other variants in the
possible formatting. Finding the correct params can be very frustrating and
time-consuming, but that is the way the file method was created.

The arguments of any of the methods available will be correctly inferred by
file when loading the data, but what if you need to load them manually?
The following table shows a list of the available arguments, including some
that are not related to the format of the file:



Figure 2.6 – Arguments available for file loading in Optimus

If we have any trouble with a tedious file trying to infer its parameters via
Optimus, we can always load using any of the specific methods available
for every format. These methods have the same name as the format we're
trying to load; one of the most frequently used formats is CSV, which may
require a bunch of arguments to work properly in some cases.

Now, let's learn how to load data in multiple formats, just in case we need
extra control. Let's start with CSV files.

Loading a local CSV fi le

A CSV file is a delimited text file that uses a comma to separate values.
Each line of the file is a data record. Each record consists of one or more
fields, separated by commas.

http://file/
http://fields/


Let's explore the CSV format a little bit, because it has more parameters
than any other loading function:

You can load a fixed number of rows using n_rows:

from optimus import Optimus

op = optimus("dask")

df = op.load.csv("data/file.csv", n_rows=5)

You can load without a header using the header argument:

df = op.load.csv("data/file.csv", header=None)

You can load and assign which value will be assumed as null by passing
it to null_vale:

df = op.load.csv("data/file.csv", null_value="Null")

You can load using a specific separator by passing a string to sep:

df = op.load.csv("data/file.csv", sep=";")

We can also use wildcards. This is very handy if we need to select multiple
files in a folder. Let's take a look.

Wildcards

Optimus also allows us to load multiple files with paths that match the
wildcard that was passed to the first argument of the loading method, as
follows:

from optimus import Optimus

Op = optimus("cudf")

df = op.load.csv("csv/*")



The preceding code will return a list of files – specifically, all the files in a
folder called csv. More advanced wildcards can also be used if required:

df = op.load.csv("csv/file-*.csv")

The preceding code will load all the files that start with file- and have csv as
their extension. This is especially useful, for example, for loading a series
of files that are automatically named by another program.

Single-character wildcard
The other wildcard character that's supported is the question mark, ?. It
matches any single character in that position in the name; for example:

df = op.load.csv("csv/file-?.csv")

In the preceding example, we're loading all the files whose name matches
file-(anything).csv in the csv directory, where (anything) is a single
character. This would load, for example, enumerated files such as dataset-
1.csv or dataset-9.csv, but also load dataset-a.csv. However, it wouldn't
load dataset-10.csv. For more specific formats, you can use character
ranges.

Character ranges

When you need to match a specific character, use a character range instead
of a question mark. For example, you can do this to find all the files that
have a digit in the name before the extension:

df = op.load.csv("csv/file-*[0-9].*.csv")

In this case, we're loading the files that have been enumerated from zero to
nine and include any strings before the extension. Files such as dataset-
0.final.csv and dataset-1.wip.csv will be included.



Loading large fi les

When handling big files that are not using distributed dataframe
technologies such as pandas, users will tend to use hacky ways to divide the
file into multiple chunks, in order to load data in memory and process it. In
Optimus, when you use the Dask or Vaex engines (which, as we learned in
Chapter 1, Hi Optimus!, can handle out-of-core sources), you'll be able to
load files that are bigger than your system's memory:

op = Optimus("dask")

df = op.load.csv("s3://my-storage/massive-file.csv")

In projects involving large datasets, you'll want to load from alternative
filesystems, such as S3 or HDFS. This is possible by using connections that
have already been set up.

Now, let's learn how to load a file from a remote data source.

Loading a fi le from a remote connection

If we need to access remote storage, a connection instance is needed. Using
a connection instance, we can load several files from the same source
without repeating every credential and parameter required to successfully
connect to it:

from optimus import Optimus

Op = optimus("dask")

conn = op.connect.s3(endpoint_url="s3://my-storage/")

df = op.load.csv("files/foo_file.csv", conn=conn)



In the preceding example, we're simply creating a connection to an S3
bucket and then loading a file from it, passing it as a parameter called
connection to load.csv. After that, we can reuse the conn instance to load
another file from the same source:

df2 = op.load.file("files/file_bar.xml", conn=conn)

In the preceding line of code, we are loading a different file, this time using
load.file, and passing the same conn instance. We learned how to configure
a connection for remote data loading previously in this chapter.

Now that we have learned how to load data from local and remote files, let's
learn how to load data from databases.

Loading data from a database

Another common use case when working with data wrangling is to load
tables from a database. This function can be very handy because you do not
need to save the data to a file, so it can be saved to memory. Therefore,
Optimus allows us to load the most common database kinds in our
workspace relatively easily:

from optimus import Optimus

Op = optimus("dask")

db = op.connect.mysql(host="localhost",

                      database="my_database")

df = op.load.database_table("foo_table", conn=db)

As you can see, we're creating a connection instance, but this time, it is
connecting to a MySQL database in a given address. Then, we load a



dataframe from a table on this database.

With Optimus, you can easily connect to more than 10 database
technologies. In the following sections, we'll learn more about this.

Special dependencies for every
technology

Every dataframe technology relies on different drivers to work, which
means that dozens of additional files are needed to work out of the box.
This will dramatically increase the size of the Optimus package. It is your
responsibility to install the driver you need to connect to the database.

In this section, we will look at some of the databases that are supported by
Optimus and where you can find the required file. Please take into account
that URLs can change over time. If a link is broken, a simple Google search
should get you the correct result.

Spark
When using Spark as your engine, you will need to pass the JDBC file path
so that Spark knows how to handle a specific database.

Use the following command:

Optimus("spark", jars="path/to/jars/folder")

The following is a list of database technologies where you can find every
driver. When working in a cluster, ensure that the file is accessible to every
node:

MySQL: https://dev.mysql.com/downloads/connector/j/

https://dev.mysql.com/downloads/connector/j/%20


MsSQL: https://search.maven.org/search?q=spark-mssql-connector

PostgreSQL: https://jdbc.postgresql.org/

Oracle: https://www.oracle.com/mx/database/technologies/appdev/jdbc-
downloads.html

SQLite: https://repo1.maven.org/maven2/org/xerial/sqlite-jdbc/

Redshift: https://docs.aws.amazon.com/redshift/latest/mgmt/configure-
jdbc-connection.html#download-jdbc-driver

Cassandra: https://mvnrepository.com/artifact/com.datastax.spark/spark-
cassandra-connector

Presto: https://repo1.maven.org/maven2/com/facebook/presto/presto-
jdbc/

BigQuery: https://storage.googleapis.com/spark-lib/bigquery/spark-
bigquery-latest.jar

Impala:
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-6-
15.html

NOTE
Some of these links may be outdated by the time you read this, so please identify the
latest version and download its respective installer or .jar file.

pandas and Dask
pandas and Dask rely on SQLAlchemy, which uses a different library
based on the database you want to access. The following is a guide to the

https://search.maven.org/search?q=spark-mssql-connector%20
https://jdbc.postgresql.org/%20
https://www.oracle.com/mx/database/technologies/appdev/jdbc-downloads.html%20
https://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector%20
https://repo1.maven.org/maven2/com/facebook/presto/presto-jdbc/%20
https://storage.googleapis.com/spark-lib/bigquery/spark-bigquery-latest.jar%20
https://www.cloudera.com/downloads/connectors/impala/jdbc/2-6-15.html%20


libraries you will need, depending on the database you want to connect to,
as well as the code repository, in case you need extra information:





Figure 2.7 – Database technologies for pandas and Dask

cuDF and Dask cuDF
In the case of cuDF/Dask-cuDF, Optimus use the same process as
pandas/Dask. Here, the data needs to be loaded into RAM before it's loaded
to the GPU memory. This means that the loaded dataframe must be
serialized from pandas/Dask to be converted into cuDF/Dask-cudf, which
will slow down the loading speed.

Vaex

Optimus also relies on SQLAlchemy to connect to databases, bring the data
to pandas, and convert it into Vaex. Please follow the pandas and Dask
section to install all the drivers you need.

Ibis
For PostgreSQL, SQLite, and MySQL (experimental as of January 2021),
Ibis relies on SQLAlchemy, so please follow the instructions in the pandas
and Dask section.

Now that we have explored the data loading options that are available, let's
see how we can optimize an already loaded dataframe.

Memory usage optimization
Data types can make a big difference in memory usage. Let's take pandas as
an example and see how many bytes some data types use per value:

int8 / uint8: Consumes 1 byte of memory, with a range between
-128/127 or 0/255.

bool: Consumes 1 byte, true or false.



float16/int16/uint16: Consumes 2 bytes of memory, with a range
between -32,768 and 32,767 or 0/65,535.

float32/int32/uint32: Consumes 4 bytes of memory, with a range
between -2,147,483,648 and 2,147,483,647.

float64/int64/uint64: Consumes 8 bytes of memory.

If the values of a column are from 0 to 255 and you are using float16 as the
data type, you are using 2 bytes per value instead of 1. So, converting this
column into uint can give you 50% more memory.

In this case, Optimus dataframes use the optimize method, which can help
us save memory on our machine once our data has been loaded. Let's see
how it works:

from optimus import Optimus

op = Optimus("dask")

df = op.create.dataframe({

    "a": [1000,2000,3000,4000,5000]*10000,

    "b": [1,2,3,4,5]*10000

})

df.size()

When we created the dataset, we entered *10000 into the arrays of each
column to increase the size of the dataframe. Later, we called df.size(),
which outputs the number of bytes the dataframe occupies in memory,
giving us the following result:

800128



So, if we run optimize and the columns meet the criteria, we can reduce
that number. This is useful for dealing with several large dataframes:

df = df.optimize()

df.size()

This will result in the following output:

150128

As we can see, the memory usage was heavily reduced; when working with
real data, this may vary a lot since data comes in unexpected forms. This
function takes some time to complete, so it must be used carefully.

In the previous examples, we used op.create.dataframe to quickly create
an example without files or external sources. Let's see how this works.

Creating a dataframe from scratch

If you want to create a dataframe from a Python dictionary, there's a method
available on the create accessor called dataframe that requires a named
dictionary that should contain an array of values for each entry:

df = op.create.dataframe({

"name":["OPTIMUS", "BUMBLEBEE", "EJECT"],

"function":["Leader", "Espionage",

            "Electronic Surveillance"]

})

In the preceding example, we're simply creating a new dataframe with two
rows and three values each. This may be handy for quickly testing
operations before loading a larger dataset.



Connecting to remote data sources

Unless your files are in your local disk, you are going to need to create a
connection to your data sources in a storage service. Optimus provides a
way to connect to these, even if it requires credentials.

Storage services are useful for making web-scale computing easier for
developers, allowing them to store and retrieve massive data, at any time,
from anywhere on the web.

To load from remote storage, we need to instantiate a connection. To
achieve this, we must simply call, for example, op.connect.hdfs for
connections to HDFS storage systems or op.connect.s3 for connections to
S3 storage systems. The resulting value can be saved for further reference
when you're loading a file from remote storage. More alternatives will be
addressed later in this section.

Let's look at an example:

conn = op.connect.s3(base_url="s3://bucket/", anon=False,

                     use_ssl=True)

In the preceding code, we are creating a connection to an Amazon S3
bucket by passing some storage options.

Next, we'll look at some of the available methods on op.connect and which
filesystems it represents:

file: Local or network filesystem (used by default when no connection
has been configured)

s3: Amazon S3



hdfs: Hadoop File System

gcs: Google Cloud Storage

adl: Microsoft Azure (Data Lake Storage)

abfs: Microsoft Azure (Blob Storage)

http / https: HTTP(S) filesystem

ftp: FTP filesystem

As we saw previously, we pass a base_url argument, including a piece of
the URL. When you do this, you can pass a relative path when loading a
file. This is useful if you want to change where your data comes from. Let's
look at another example:

conn = op.connect.s3(base_url="s3://bucket/")

To use the connection from the previous example, we can use the following
code:

df = op.load.file("files/my-remote-file.csv", conn=conn)

It will behave the same as the following code:

df = op.load.file("s3://bucket/files/my-remote-file.csv",

conn=conn)

In both examples, the same file will be loaded to df, thus inferring the
format. Next, we'll learn how to benefit from the connections that are
created using op.connect.

Connection credentials



You can connect to secure storage services using credentials, ensuring that
only certain users can access your stored data.

IMPORTANT NOTE
When you request your data, you may be exposing your credentials. If you're using this
approach, be sure that the environment you are working in is totally secure. A more secure
approach is to save the credentials in a local file in your cluster.

A more secure approach could be to place the credentials on a file in every
node in the cluster. Every engine has its own unique way of handling the
credentials. Please refer to each engine's documentation to learn about the
exact steps you must follow to configure it.

Let's learn how to do this for each of the major remote storage providers
and systems that are available.

Google Cloud Storage
Authentication for Google Cloud Storage, or GCS, requires us to use the
gcs method. This requires a token, which can be provided using a
GCSFileSystem from gcsfs. More details about this are available in the
gcsfs documentation:

gcs = GCSFileSystem(...)

conn = op.connect.gcs(token=gcs.session.credentials)

Azure
Microsoft Azure Storage comprises Data Lake Storage (Gen 1) and Blob
Storage (Gen 2). You can set them up using the adl and abfs methods,
respectively.

Authentication for adl requires tenant_id, client_id, and client_secret to
be in the options dictionary:



conn = op.connect.adl(tenant_id="<your tenant id>", client_id="

<your client id>", client_secret="<your client secret>")

Authentication for abfs requires account_name and account_key to be in
options:

conn = op.connect.abfs(account_name="<your account name>",

account_key="<your account key>")

S3
For S3, the basic requirements are key and secret, which must be passed to
s3:

conn = op.connect.s3(key="<your key>", secret="<your secret>")

However, if you don't want to write your URL every time you load a file,
you can set the base_url argument:

conn = op.connect.s3(base_url="s3://<your-bucket-address>/", key="

<your key>", secret="<your secret>")

Alternatively, you can pass the bucket's name:

conn = op.connect.s3(bucket="<your-bucket-name>", key="<your key>",

secret="<your secret>")

Authentication for s3 requires various arguments. The following list shows
every argument, along with an explanation, since not all of them are self-
explanatory:

anon: Whether access should be anonymous (default: False).

key and secret: For user authentication.

token: If authentication has been done with some other S3 client.

use_ssl: Whether connections are encrypted and secure (default: True).



client_kwargs: A dictionary is passed to the boto3 client, with keys
such as region_name or endpoint_url.

config_kwargs: A dictionary is passed to the s3fs.S3FileSystem, which
passes it to the boto3 client's config option.

requester_pays: Set to True if the authenticated user will assume
transfer costs, which is required by some providers of bulk data.

default_block_size, default_fill_cache: These concern the behavior of
the buffer between successive reads.

kwargs: Other parameters are passed to the boto3 Session object, such
as profile_name, to pick one of the authentication sections from the
configuration files referred to previously.

You can use any of the preceding terms like so:

conn = op.connect.s3(key="<your key>", secret="<your secret>",

anon=True, use_ssl=False)

In the preceding example, we are setting the basic authentication arguments
for S3 and including anon and use_ssl.
HDFS
Authentication for hdfs requires host, port, and user to be in options:

conn = op.connect.hdfs(host="<your host>", port="<your port>",

user="<your user>")

You can also pass a path to a Kerberos ticket cache to kerb_ticket:

conn = op.connect.hdfs(host="<your host>", port="<your port>",

user="<your user>", kerb_ticket="<your kerb ticket path>")



In the preceding example, we are setting the basic arguments and including
a Kerberos ticket cache on kerb_ticket.

As you can see, we can load from remote filesystems. Next, we will learn
how to load datasets from databases using the most common engines that
are available.

Connecting to databases
Connecting to databases can be very handy because you do not need to save
the data to a file so that it can be loaded in memory. This might seem trivial
if you are used to handling small files, but downloading big data datasets to
files to be converted into specific formats can be a very tedious and boring
task. This is where loading data directly from databases shines.

To create a connection to a database using Optimus, we can use any of the
available methods for database handling. There are a few differences
between this and remote filesystems, which we explained in the previous
section:

from optimus import Optimus

Op = optimus("dask")

db = op.connect.postgres(address="localhost", user="root",

                        password="12345678",

                         database="mydatabase")

In the preceding example, we're connecting to a PostgreSQL database using
certain credentials. If we want to list all the available tables in this database,
we can simply call db.tables(), which will give us a list of every table in the
connected database. It also allows us to test the connection to this database:



db.tables()

This gives us a result that's similar to the following:

['foo_table', 'bar_table']

Some of the available database engines Optimus can handle are MySQL,
SQLite, PostgreSQL, Oracle, Microsoft SQL Server, BigQuery, Redshift,
Cassandra, Presto, and Redis. Most of them have the same arguments
available, but here's a list of the most frequently used options for creating a
connection:

mysql: MySQL

sqlite: SQLite

microsoftsql: PostgreSQL

postgres: Oracle

oracle: Microsoft SQL Server

bigquery: BigQuery

redshift: Redshift

cassandra: Cassandra

presto: Presto

redis: Redis

As we mentioned previously, each method requires the following arguments
in order to make a proper connection to a database:

host: The host where the database is stored

port: The port where the database is available



user: Username

password: Password

database: The name of the database you want to connect to

Some of the engines that are available have specific arguments. Some of
them are as follows:

schema: Available on MySQL, Impala, BigQuery, PostgreSQL, and
Redshift

tns: Available on Oracle

service_name: Available on Oracle

sid: Available on Oracle

catalog: Available on Presto

keyspace: Available on Cassandra

table: Available on Cassandra

project: Available on BigQuery

dataset: Available on BigQuery

Once the setup is complete, we can load a dataframe from whatever source
it is stored on:

df = db.to_dataframe("my_table")

After loading the data, you can start processing it. Data processing will be
addressed in Chapter 3, Data Wrangling.



Now that you know how to load and process your data, you need to save it.
Let's see how this works.

Saving a dataframe
Saving on Optimus can be done by simply calling any of the methods
available on the save accessor of a dataframe instance. In this section, we'll
learn how to save to a local or remote filesystem, and also to a previously
established database or remote storage connection.

When saving data in files, it is important to understand which format to use
so that you can gain speed when reading or processing. There is plenty of
information available about how to select the correct date format. I like the
following for simplicity:



"Finding the right file format for your particular dataset can be tough.
In general, if the data is wide, has a large number of attributes, and is
write-heavy, then a row-based approach may be best. If the data is
narrower, has a fewer number of attributes, and is read-heavy, then a
column-based approach may be best."

(Datanami, https://www.datanami.com/2018/05/16/big-data-file-formats-
demystified/)

Saving to a local fi le

Saving methods are pretty similar to the loading methods available on the
Optimus instance, but, as we discussed previously, saving methods are
available in every dataframe instance, specifically in the save accessor:

df.save.csv("foo_output.csv", separator=";")

In the preceding code, we're saving the contents of the dataframe stored in
df to a local file called foo_output.csv, in CSV format. This time, we're
setting the separator to ;. This allows us to save it in a different format from
the incoming format.

When using a distributed engine such as Dask or Spark, it will save the
data in multiple files in a folder. The number of files will depend on the
number of partitions that have been configured. To save the dataframe in a
single file, it's necessary to pass True to an argument called single_file, as
shown here:

df.save.csv("foo_output.csv", single_file=True)

Now, let's learn how to save data to remote datastores.

https://www.datanami.com/2018/05/16/big-data-file-formats-demystified/


Saving a fi le using a remote connection

Just as in the loading methods, there's a conn argument available for saving
to a previously defined connection:

df.save.xml("files/foo_output.xml", conn=conn)

In the preceding example, we're saving our file in a filesystem that's been
configured in the conn variable. This instance may contain a connection to
a HDFS cluster, an S3 bucket, or any similar system.

Now, let's see how Optimus can save data in a different format from the
origin.

Saving in a different format
When saving, Optimus allows you to select a different file format from the
source:

from optimus import Optimus

Op = optimus("dask")

df = op.load.csv("files/foo_input.csv")

To save the data in JSON format, you just simple use the .save.json()
method:

df.save.json("files/foo_output.json")

In the preceding code, we're loading a CSV file and saving a JSON file.
However, you can also change certain aspects of the file, such as the
separator of a CSV file:

df = op.load.csv("files/foo_input.csv", sep=",")

df.save.csv("files/foo_output.csv", sep=";")



Alternatively, you can save the data to any other format that's supported in
Optimus, such as Avro, Parquet, or OCR, using their respective methods.

Saving a dataframe to a database table

To save a dataframe as a table on a database that had previously been
configured using connect, Optimus has a method called database_table in
the .save accessor of the Optimus dataframe:

from optimus import Optimus

op = optimus("dask")

df = op.load.csv("files/foo_input.csv")

df.save.database_table("foo_output_table", db=db)

In the preceding code, we're simply saving our dataframe in a table called
foo_output_table, in the database stored in db.

Loading and saving data in parallel

When loading and saving data, it can be very useful to use a distributed
engine since it can parallelize the data loading process using multiple
CPUs/GPUs cores at the same time, which means faster data loading times.

When creating an Optimus DataFrame, an object with a specific class is
created, depending on the engine that was configured when you initialized
the Optimus instance. For example, take a look at the following code:

op_dask = Optimus("dask", n_workers=4, threads_per_worker=1)

df = op_dask.load.csv("foo.csv")

op_pandas = Optimus("pandas")



df2 = op_pandas.load.csv("foo.csv")

Here, we're creating two different engines with two different dataframes: df,
which is a Dask Optimus DataFrame, and df2, which is a pandas
Optimus DataFrame. In this case, with Dask, you can configure the
number of threads with n_workers, which will load your file using four
parallel threads at the same time.

If your data fits in memory, it could be a good strategy to load it with the
Dask engine. This allows you to load your data in parallel and then convert
it into a pandas engine, as shown in the following code:

from optimus import Optimus

op_dask = Optimus("dask", n_workers=4, threads_per_worker=1)

df = op_dask.load.csv("foo.csv")

df = df.to_optimus_pandas()

NOTE
Dask can be configured to use thread or processes. Optimus configures Dask to use
processes by default, allowing them to manage strings in parallel. Threads, on the other
hand, are more convenient when processing numeric data. This is due to the Python Global
Interpreter Lock (GIL). Discussing how the GIL works is beyond the scope of this book.

When saving, you can parallelize the operation too, repartitioning the
dataframe and saving it to disk. But first, you need to convert the pandas
Optimus DataFrame into a Dask Optimus DataFrame. If you are working
with a pandas dataframe, you could try this:

df = df.to_optimus_dask()

df = df.repartition(4)

df.save.csv("output.csv", single_file=False)



In the preceding example, we are creating four files in the output.csv
folder. By default, Optimus's output is saved to a single file to ensure that
you can easily port it to any other package for visualization or reporting.

Summary
Loading and saving are the most used operations when wrangling data.
Optimus creates a flow that can assist in creating connections to data
sources that can be reused for loading and saving data. Optimus also
implements the most used file storage technologies such as Amazon S3 and
Google Cloud Storage, and database connections such as PostgreSQL and
MySQL, so that the user can have all the necessary tools at hand to make
their work easier.

In terms of databases, we looked at the drivers that are required for every
engine/database technology to save and load data from databases.

We also explored how to optimize dataframe memory usage – a very
important step if you are handling big data since you could save as much as
50% of your memory space.

In the next chapter, we will start exploring some basic methods for filtering,
deduplicating, and transforming data for further analysis.



Section 2: Optimus – Transform and
Rollout
By the end of this section, you will have learned how to merge, wrangle,
and transform data to prepare reports and create machine learning models.

This section comprises the following chapters:

Chapter 3, Data Wrangling

Chapter 4, Data Combining, Reshaping, and Aggregating Data

Chapter 5, Data Visualization and Profiling

Chapter 6, String Clustering

Chapter 7, Feature Engineering with Optimus



Chapter 3: Data Wrangling
Now that our data has been loaded in memory, we need to transform it so
that it meets our needs. First, we will discuss transforming, searching, and
replacing data, including strings, dates, emails, and URLs. When it comes
to numerical data, we will review the mathematical and trigonometric
functions available in Optimus.

To close this chapter, we will learn how to write some custom functions to
expand the possibilities of data wrangling and improve Optimus.

The topics we will cover in this chapter are as follows:

Exploring Optimus data types

Operating columns

Experimenting with user-defined functions

Technical requirements
Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more information about the requirements for this, please
go to the GPU configuration section of Chapter 1, Hi Optimus!.

You can find all the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Exploring Optimus data types

https://github.com/PacktPublishing/Data-Processing-with-Optimus


Data types are the soul of a dataframe: they define how a value is
represented in memory and, more importantly, how much memory it will
use. Every dataframe technology supported in Optimus has different data
types aimed to represent specific data. The most common are numeric
values, string values, and datetime values. You can find which data types
are supported in each technology by going to its respective website or
documentation. This information can be found in the Further reading
section of this chapter.

Besides internal data representation, Optimus tries to enrich the data to give
the user a better overview of how it can be wrangled. For example, when
you see a column that's of the email type, internally, it is just a string
column, but when the profiled is requested, it gives us feedback about how
many mismatches (data points that do not match the type) are on a column.
We'll talk more about the profiler later in this book.

Converting data types

Optimus is designed to let you convert into any data type you require,
regardless of what form the data takes. In the case of most dataframe
technologies, it will raise an error if you try to convert from non-compatible
data types, for example, from a non-integer value such as "optimus",
which is a string, to an integer.

Let's start creating some data for example purposes using a dictionary. In
this data, we'll be including some of the autobots and their jobs, but also
including some placeholder numeric values and a birth column to test some
functions:



df = op.create.dataframe({

    "name": ["optimus", "bumblebee", "eject", 2],

    "job": ["Leader", "Espionage", 1, 3],

    "id": [1, 2, 3, 4],

    "birth": ["22/10/10", "22/08/08", "23/07/07", "22/10/10"]

})

name        job                id  birth

(object)    (object)      (int64)  (object)

----------  ----------  ---------  ----------

optimus     Leader              1  22/10/10

bumblebee   Espionage           2  22/08/08

eject       1                   3  23/07/10

2           3                   4  22/10/10

Let's make a little test. By using df.data, you have access to the dataframe's
internal representation. If you are using the pandas engine, you will get a
pandas dataframe:

print(df.data)

print(type(df.data))

        name        job  id     birth

0    optimus     Leader   1  22/10/10

1  bumblebee  Espionage   2  22/08/08

2      eject          1   3  23/07/07

3          2          3   4  22/10/10

<class 'pandas.core.frame.DataFrame'>



As we can see, we printed the internal dataframe and its type, which gives
us a different result than calling print(df).

Let's see what happens when we try to convert the values of a string column
of that internal dataframe into integer values:

df.data["name"].astype(int)

This will raise the following error:

ValueError: invalid literal for int() with base 10: 'optimus'

With pandas, you can use pd.to_numeric() to handle this type of scenario.
However, it feels like it breaks the flow of how we operate over the
dataframe.

Now, let's see how Optimus can handle this.

Let's convert data type of the name column of that dataset into an integer:

df.cols.to_integer("name")

We'll see a result similar to the following:

     name  job                id  birth

  (int64)  (object)      (int64)  (object)

---------  ----------  ---------  ----------

        0  Leader              1  22/10/10

        0  Espionage           2  22/08/08

        0  1                   3  23/07/10

        2  3                   4  22/10/10

The to_integer method converts non-integer values into 0.



Now, let's convert data type of the "name" column into float using
to_float:

df.cols.to_float("name")

       name  job                id  birth

  (float64)  (object)      (int64)  (object)

-----------  ----------  ---------  ----------

        nan  Leader              1  22/10/10

        nan  Espionage           2  22/08/08

        nan  1                   3  23/07/10

          2  3                   4  22/10/10

Here, non-float compatible values are converted into nan (Not a Number).
If the dataframe doesn't internally support nan values (for example, a
pandas dataframe when using pandas before version 1.0), non-integer
values will be converted into 0.

On the other hand, converting an int column into a string will probably not
change how the value is shown to the user, but it will change the internal
column's data type:

df.cols.to_string("id")

As we will see, the id column data type changes from int to object:

name        job                 id  birth

(object)    (object)      (object)  (object)

----------  ----------  ----------  ----------

optimus     Leader               1  22/10/10

bumblebee   Espionage            2  22/08/08

eject       1                    3  23/07/10



2           3                    4  22/10/10

For datetime, we can convert a string into a datetime object so that we can
apply this function to extract dates elements such as day, month, year,
hours, minutes, and seconds.

For this function, you must include the format in the second argument. You
can also use the format keyword for this:

df.cols.to_datetime("birth", "YY/mm/dd")

As we will see, this will convert the birth column into a datetime data type:

name        job                id  birth

(object)    (object)      (int64)  (datetime64[ns])

----------  ----------  ---------  -------------------

optimus     Leader              1  2022-10-10 00:00:00

bumblebee   Espionage           2  2022-08-08 00:00:00

eject       1                   3  2023-07-10 00:00:00

2           3                   4  2022-10-10 00:00:00

When we convert the data types of a dataframe, we may be implicitly
transforming the values of a column, but that's not the intended behavior. If
we want to clean or transform the columns of a dataframe, we can use some
operations like the ones we'll be exploring next.

Operating columns
To understand column operations, first, we'll look at some of the most
common operations, which are for selecting columns. In Optimus, you have



the powerful select function, which provides multiple options for managing
most selection cases.

Selecting columns

The simplest use case for selecting a column is using its name:

df.cols.select("job").print()

You will get the job column data in response:

job

(object)

----------

Leader

Espionage

1

3

If you want to select multiple columns by their whole names, you can use a
Python list, like so:

df.cols.select(["name", "job"]).print()

This will return the name and job column data:

name        job

(object)    (object)

----------  ----------

optimus     Leader

bumblebee   Espionage

eject       1



2           3

As we already know, if we want to save the modified dataframe, we must
assign the result of the operation back to df, as shown here:

df = df.cols.select("name", "job", "id")

Another handy parameter is invert, which you can use to invert the
selection for a single or a list of files:

df.cols.select("job", invert=True).print()

This will return all the columns except the name column:

name               id

(object)      (int64)

----------  ---------

optimus             1

bumblebee           2

eject               3

2                   4

You can also apply regular expressions to select columns. For this example,
with the ^n. regular expression, you can get all the columns that start with
the letter n:

df.cols.select(regex="^n.").print()

name

(object)

----------

optimus

bumblebee

eject



2

To finish, you can select columns by data type, like so:

df.cols.select(data_type="int").print()

With this, you can get all the columns of the integer data type, in case you
want to filter out non-numeric data. However, this may not be useful in a
reports dataframe, for example:

       id

  (int64)

---------

        1

        2

        3

        4

Next, we'll look at moving columns.

Moving columns

To change the order of the columns of a dataset, you can use df.cols.move,
which can help us easily organize our columns. To use it, you must input
the columns (or a single column) into the function, telling it where to place
the selected columns relative to the reference column. Let's look at an
example:

df.cols.move(["name", "job"], "after", "id")

This will organize the columns of the dataset into the form ["id", "name",
"job"]. This order will also work if you pass "end" instead of "after" to



the position argument (the second one), and do not pass anything to ref_col
(the third one):

df.cols.move(["name", "job"], "end")

The position argument has four possible values:

"before": This moves the column or columns that were passed so that
they're before the one in ref_col.

"after": This moves the column or columns that were passed so that
they're after the one in ref_col.

"beginning": This puts the column or columns that were passed to the
beginning. Doesn't require any value for ref_col.

"end": This puts the column or columns that were passed to the end.
Doesn't require any value for ref_col.

Now, let's look at renaming columns.

Renaming columns

You can easily rename a column or a list of columns by simply using
df.cols.rename. This function uses just two arguments, in which you must
enter the name of the column whose name you want to change and the
name you want it to have. It also supports arrays for both arguments,
allowing multiple columns to be renamed by calling the function only once.
Let's look at both examples:

df = df.cols.rename(["name", "job"], ["string_name", "string_job"])

df = df.cols.move("id", "int_id")



The resulting dataframe that's been saved on df will contain the ["int_id",
"string_name", and "string_job"] columns.

Removing columns

Optimus has two main functions that allow us to filter the columns in a
dataset: drop and select. The first one allows us to choose which columns
will be removed from the dataset, while the second one will do the opposite,
removing all the columns that are not input.

If we call df.cols.drop("job"), the "job" column will be removed from the
dataset, leaving "id" and "name". If, instead, we call
df.cols.select("job"), only that column will be in the resulting dataset.
Also, multiple columns on an array are supported for both functions, as
shown here:

df.cols.select(["job", "name"])

In the preceding example, we are implicitly removing "id" from the dataset
by passing "id" and "name" to df.cols.select.

Input and output columns

One handy and powerful function you can find in Optimus is that you can
operate over one, multiple, or the whole set of columns and easily control
the output.

Some functions (specifically, every function that mutates the column
contents) can be configured so that it can be applied to a list of columns.



Optimus also allows us to save those mutated columns in a set of new
columns that have been appended to the dataset.

For example, df = df.cols.upper("name") will mutate the name column
and overwrite it, transforming the strings into uppercase (later, we will learn
how upper and other string functions work), and then save the resulting
dataframe to df, overwriting the previous one. Let's see every case,
including dynamically generated output column names, and entering the
entire dataset into one operation.

You can modify a single column by running the following command:

df = df.cols.upper("name")

Here, we are modifying "name" and creating 0 new columns.

You can modify multiple columns by running the following command:

df = df.cols.upper(["name", "job"])

Here, we are modifying "name" and "job" and creating 0 new columns.

You can modify a single column and save it to a new one by running the
following command:

df = df.cols.upper("name", output_cols="name_upper")

We are not modifying an existing column here; instead, we're creating
"name_upper" from the result of operating "name":

You can modify multiple columns and save to a new set of columns by
running the following command:

df = df.cols.upper(["name", "job"], output_cols=["name_upper",

"job_upper"])



We are not modifying a previously existing column here; instead, we're
creating "name_upper" and "job_upper" from the result of operating
"name" and "job".

You can modify multiple columns and save to a new set of columns
using a suffix by running the following command:

df = df.cols.upper(["name", "job"], "upper")

Again, we are not modifying an existing column; instead, we're creating
"name_upper" and "job_upper", but this time, the names are generated
dynamically, from the result of operating "name" and "job".

You can modify every column without adding any new columns by using
the star symbol; that is, "*":

df = df.cols.upper("*")

Here, we are modifying every column in the dataset.

Note that you can also chain operations, as shown here:

df = df.cols.upper("name").cols.lower("job")

This specific command will convert the name of the column into uppercase
and the job column into lowercase.

Now that we have a good understanding of how data types work and how to
manage input and output columns, let's see which functions we can apply to
them.

Managing functions



If you want to create, duplicate, delete, or rename one or more columns in
your dataset, the syntax is pretty similar to the basic operations shown
previously.

Calling the drop method will delete columns from the dataset:

df = df.cols.drop("job")

This will only delete the column called "job".

If you want to delete every column except one (or more), you can call keep:

df = df.cols.keep("id")

In the preceding example, we're deleting every column except id.

To rename columns, the output_cols argument is not optional. Let's look at
an example:

df = df.cols.rename("name", "first_name")

In the preceding code, we're simply renaming the name column to
first_name, but if we wanted to rename a series of columns instead of just
one, we would simply pass two lists of names.

The duplicate method works in a similar fashion – it just requires the
output_cols argument. Here you can see an example with two columns
instead of one:

df = df.cols.duplicate(["name", "id"], ["first_name", "id_number"])

For creating columns, there are plenty of options. The most common is set,
which can also set the content of an existing column, but in this case, we are
using it to create a new column filled with None:

df = df.cols.set("last_name", None)



If you created an empty column, you can replace all the None values with
any other value by using fill_na:

df = df.cols.fill_na("last_name", "Placeholder Value")

The fill_na method is also useful for an already existing and partially filled
column, as it will only set the values of the empty rows in the column.

String functions

The string function is self-descriptive. Let's see all the functions and some
brief descriptions of each. We'll look at examples of just a few of them
since some operations are pretty similar:



Figure 3.1 – String functions

Let's take the upper function to illustrate how this operation works. If you
want to operate over one column, do the following:

print(df.cols.upper("name"))

This transforms the column with "name" as its title:

name(object)    job(object)      id(int64)

--------------  -------------  -----------

OPTIMUS         leader                   1

BUMBLEBEE       espionage                2



EJECT           1                        3

2               3                        4

This was the most basic operation. Let's see how we can create a new
column with the output of the function instead of replacing the original:

print(df.cols.upper("name", "upper_name"))

This creates a new column named "upper_name" that contains the values
from name in uppercase:

name(object)    upper_name(object)    job(object)      id(int64)

--------------  --------------------  -------------  -----------

optimus         OPTIMUS               leader                   1

bumblebee       BUMBLEBEE             espionage                2

eject           EJECT                 1                        3

2               2                     3                        4

All the string functions can be applied to any data type. For example, you
can call df.cols.pad to an integer column, and Optimus will transform the
column's data type to string before applying the pad function:

print(df.cols.pad("id", 3, "0"))

This will modify the existing id column:

name(object)    upper_name(object)    job(object)      id(object)

--------------  --------------------  -------------  -----------

optimus         OPTIMUS               leader                 001

bumblebee       BUMBLEBEE             espionage              002

eject           EJECT                 1                      003

2               2                     3                      004



As we can see, Optimus tries to be less strict and convert the data type
instead of raising an error for operating columns that could be incompatible.
This is useful for concatenating the string values of a column with the
numeric values of another; for this, we can use the nest function. Let's take
a look.

Merging and splitting columns
When working with dates, names, addresses, or any fairly complex string
data, merging and splitting are useful functions. Optimus provides two
functions for this: df.cols.nest and df.cols.unnest.

To illustrate this, first, let's look at an example dataset with two columns
that will be split and merged for example purposes – one with a pair of
numbers in string format, which represents a point in a two-dimensional
space, and another one representing the point in another dimension. This
data is purely to demonstrate how to merge and split columns:

df = op.create.dataframe({

    "xy_position": ["42.8, 7.7", "23.3, 25.1", "35.6, 50.5", "52.7,

67.4"],

    "depth": [10.5, 50.1, 20.2, 97.0]

})

df.print()

xy_position          depth

(object)         (float64)

-------------  -----------

42.8, 7.7             10.5

23.3, 25.1            50.1



35.6, 50.5            20.2

52.7, 67.4            97

First, let's see how we can separate all the dimensions into three columns by
applying the unnest function to the first one:

df.cols.unnest("xy_position", separator=", ", output_cols=["x",

"y"], drop=True).print()

We'll get the following result:

          x           y        depth

   (object)    (object)    (float64)

-----------  ----------  -----------

       42.8         7.7         10.5

       23.3        25.1         50.1

       35.6        50.5         20.2

       52.7        67.4         97

As we can see, the resulting columns can now be operated as numeric
columns since they have matching formats.

On the other hand, let's say we run the nest function to join the two original
columns:

df.cols.nest(["xy_position", "depth"], separator=", ",

output_col="xyz_position", drop=True).print()

We will get the following result:

xyz_position

(object)

----------------

42.8, 7.7, 10.5



23.3, 25.1, 50.1

35.6, 50.5, 20.2

52.7, 67.4, 97.0

This results in a dataframe with just one column that includes all three
dimensions.

When you split any column, it transforms its values into a string before
creating new columns, so it behaves as expected. Similarly, when joining
two or more columns, the resulting column will tend to be a string,
regardless of the type of the input columns.

Search and replace
When we have a lot of string data, it may be useful to replace characters or
words inside the values of the columns. For this, we can use
df.cols.replace, which allows us to search for one or more values, words, or
substrings, and replace them with a given string.

Let's look at an example with some arbitrary names separated by characters
that will be replaced later. We'll use some autobots again for this:

df = op.create.dataframe({

    "name": ["Optimus, Prime", "Arcee, Ariel",

"Bumblebee/Maggiolino"]

})

df.print()

This will print out the following:

name      

(object)            

-----------------------



Optimus, Prime      

Arcee, Ariel

Bumblebee/Maggiolino

As we can see, the names in the column were entered using two different
separators, that is, ", " and "/". Now, let's run the replace function:

df.cols.replace("name", [", ", "/"], " ",

search_by="chars").print()

Here, we get the correct format for this specific case:

name

(object)

---------------------

Optimus Prime

Arcee Ariel

Bumblebee Maggiolino

In the previous example, we replaced all the ", " and "/" matches with a
single white space character (" ").

Numeric functions

Numeric functions can be divided into trigonometric and mathematical
functions. Like the string operation, it supports all the column types but
depends on their contents to work as expected:



Figure 3.2 – Trigonometric functions



Before illustrating how the sin function works, let's create some example
arbitrary data with numbers and a string. We will try to operate this later:

df = op.create.dataframe({ "values": [0.5, 2, "3.14"] })

df.print()

    values

  (object)

----------

      0.5

      2  

      3.14

As we can see, the values column is being inferred as an object column
because we entered "3.14" as a string, but this shouldn't be a problem when
we apply the sin function:

df.cols.sin("values").print()

We'll get the following output:

     values

  (float64)

-----------

0.479426  

0.909297  

0.00159265

In the preceding example, we can see how Optimus can infer a numeric
type when we apply a numeric function.

There are other functions available besides the trigonometric ones:



Figure 3.3 – Mathematical functions

Let's see how log works since it does have an extra argument, unlike some
of the others:

df.cols.log("values", 5).print()

We'll get the same columns, but this time, all the numbers in values will
have their logarithms:

     values

  (float64)

-----------



  -0.430677

   0.430677

   0.710946

As we can see, all the original values were replaced by its logarithm when 5
was used as a base.

Date and time functions

There are also several functions related to date and time:



Figure 3.4 – Date and time functions

Using any of these functions will facilitate changing the format or
extracting data from the values of a column. For example, let's say we have
the following dataset, which contains some arbitrary dates:

date

(object)

----------

01/21/2021

09/09/2020

03/07/2020

We can call df.cols.year to extract only the year from the values stored in
the date column:

df.cols.year("date")

We'll will get the following result:

date

(object)

----------

2021

2020

2020

On the other hand, date_format is a bit more advanced, requiring us to
input a new format, as shown here:

df.cols.date_format("date", output_format="%m-%d-%Y")

We'll get the following result:



date

(object)

----------

01-21-2021

09-09-2020

03-07-2020

Next, we'll look at URL functions.

URL functions

In Optimus, URLs are handled internally as strings. However, you can use
these functions to extract data from URLs if they've been formatted
correctly:



Figure 3.5 – URL functions

For example, you could create a new column with the domain, subdomain,
and port of a URL. Let's look at an example with a URL value:

from optimus import Optimus

op = Optimus("pandas")

data = {"A": ["https://www.hi-optimus.com:8080/index.php?a=1"] }  

df = op.create.dataframe(data)

df["port"] = df.cols.port("A")

df["subdomain"] = df.cols.subdomain("A")

df["domain"] = df.cols.domain("A")

Next, we'll look at email functions.

Email functions

As well as URLs, Optimus can handle emails, and provides some functions
to facilitate data extraction:

Figure 3.6 – Email functions

Let's look at an example of using some arbitrary emails:

df = op.create.dataframe({"A": ["optimus@cybertron.com"]})



df["username"] = df.cols.email_username("A")

df["domain"] = df.cols.email_domain("A")

In the previous examples, we followed a different approach; that is, creating
a new dataset by setting it as a property. If the output of the right-hand side
of the assignment is a dataframe with a single column, it will join the two
datasets.

Now that we've looked at all the functions that are available in Optimus,
let's learn how to write our very own functions.

Experimenting with user-defined
functions
Optimus tries to provide the most commonly used functions out of the box
so that you can focus on your work instead of writing code. Of course, there
are times when you will need to write custom functions to accomplish a
task.

Before we deep dive into user-defined functions (UDF), let's explore a
couple of scenarios regarding how data can be processed. Two such
scenarios are known as vectorized and non-vectorized execution. This is
important to understand because it can have a very big impact on
performance.

Vectorized execution refers to operations that are performed on multiple
components of a vector at the same time, in one statement. A vector is just a
list of elements like the following:

[0, 1, 2, 3, 4, 5]



In the case of non-vectorized operations, the functions are executed in
every element, one at a time. In the previous list, we need to pass every
element to execute an operation. That's why using vectorized functions can
improve processing times in our workflow. Let's see how this works in
Optimus.

In Optimus, a vector is a column like the following, with a sequence of
numbers. We'll use this for example purposes:

data = {"A": [0, 1,2,3,4,5], "B":[6,7,8,9,10,11] }df =

op.create.dataframe(data)

df.print()

        A          B

  (int64)    (int64)

---------  ---------

        0          6

        1          7

        2          8

        3          9

        4         10

        5         11

Now we will learn about using apply in Optimus.

Using apply

To apply a UDF in Optimus, you can define your own function and use the
df.cols.apply method. For example, to define a function that just adds 2 to
our whole column, run the following code:



def add_two(pandas_series):

    print(type(pandas_series))

    return pandas_series + 2

df.cols.apply("A", add_two).print()

This will output our whole dataset with the values of the "A" column
increased by 2:

        A          B

  (int64)    (int64)

---------  ---------

        2          6

        3          7

        4          8

        5          9

        6         10

        7         11

When you write your own UDF, you must take care of how to handle the
data that's passed to the function. In this case, because we are using the
pandas engine, the value that's passed to the function is a pandas series that
supports the plus operator being executed in a vectorized way.

But there are functions that can't be vectorized. For this, we can use the
mode="map" parameter to execute a function over every element:

def add_two(single_value):    

    print(type(single_value))

    return single_value + 2

df.cols.apply("A", add_two, mode="map").print()



In this case, print will be executed five times – once for every element:

<class 'int'>

<class 'int'>

<class 'int'>

<class 'int'>

<class 'int'>

<class 'int'>

        A          B

  (int64)    (int64)

---------  ---------

        2          6

        3          7

        4          8

        5          9

        6         10

        7         11

Also, remember that you can use the star, "*", to apply the function to
every column in the dataset:

def add_two(value):

    return value + 2

print(df.cols.apply("*", add_two))

This will add 2 to every element in every column (A and B) and print it:

        A          B

  (int64)    (int64)

---------  ---------



        2          8

        3          9

        4         10

        5         11

        6         12

        7         13

With that, we've learned how to process data in one or multiple columns.
Now, let's learn how to use multiple values from different columns to make
a calculation.

Calculations over multiple columns
Let's explore a popular function since we're talking about vectorized
functions: the Haversian distance. This represents the distance between
two points on the surface of a sphere and can be used to calculate the
distance between two points on Earth.

The interesting thing about this function is that it uses multiple calculations
that can be vectorized.

Here, we will use a popular data source from hotels in New York, and we
are going to calculate the distance from a particularly popular restaurant to
every hotel in the data.

Let's start by loading a dataframe from a file:

df = op.load.file("DCIGNP2AYL.txt")

Now, we can import the functions from Optimus and define our custom
function:

from optimus.functions import F



def haversine(lat1, lon1, lat2, lon2):    

    MILES = 3959

    lat1, lon1, lat2, lon2 = map(F.radians, [lat1, lon1, lat2,

lon2])

    dlat = lat2 - lat1

    dlon = lon2 - lon1        

    a = F.sin(dlat/2)**2 + F.cos(lat1) * F.cos(lat2) *

F.sin(dlon/2)**2

    c = 2 * F.asin(F.sqrt(a))  

    total_miles = MILES * c

    return total_miles

df["distance"] = haversine(40.671, -73.985, df["latitude"],

df["longitude"])

Then, we can use select and print to get the column with the previously
calculated distances:

print(df.cols.select("distance"))

This will print the following:

   distance

  (float64)

-----------

139.607

139.747

142.191

137.276

...



Exploring the whole script, we can see the use of from optimus.functions
import F. This will give you access to all the functions we explored in this
chapter, all of which can be used to create custom and more complex
calculations.

Supporting multiple engines

It is important to note that at the time of writing, in January 2021, cuDF and
Dask cuDF do not support UDF functions over strings. Also, UDF numeric
functions are not supported, so we need to rely on cuDF directly. Let's take
a look:

import numpy as np

import cudf

from cudf.datasets import randomdata

df = randomdata(nrows=10, dtypes={"a": float, "b": bool, "c": str},

seed=12)

def udf(x):

    if x > 0:

        return x + 5

    else:

        return x - 5

df["a"].applymap(udf)

For more complex logic (such as accessing values from multiple input
columns or rows), you'll need to use a Numba JITed CUDA kernel:

from numba import cuda

@cuda.jit



def multiply(in_col, out_col, multiplier):

    i = cuda.grid(1)

    if i < in_col.size: # boundary guard

        out_col[i] = in_col[i] * multiplier

The create function will multiply every element in column a and output the
result to column e.

Now, to apply the function, we will use the forall method. With forall, you
need to specify the size of the output and pass the data you want to process
into the dataframe:

size = len(df['a'])

df['e'] = 0.0

multiply.forall(size)(df['a'].data, df['e'].data, 10.0)

As you can see, this is a very different approach to applying a UDF. We
hope that, in the future, we can abstract it and make it more user-friendly.

For more information on how to apply UDF to cuDF and Dask-cuDF,
please read the RAPIDS docs: https://docs.rapids.ai/api/cudf/stable/guide-
to-udfs.html.

Summary
In this chapter, we learned about basic Optimus functions that were
designed to cover the most common work in dataframes, such as selecting,
moving, and dropping columns, and applying functions over strings,
numbers, dates, and more specific data, such as URLs and emails.

https://docs.rapids.ai/api/cudf/stable/guide-to-udfs.html


We also learned how to write custom functions and how to use vectorized
functions to access the full potential of our hardware.

In the next chapter, we will learn how to join multiple datasets so that we
can shape our data to our needs.

Further reading
Every engine handles a data type internally to represent numbers, strings,
and dates. The following links can help you find out about the different data
types in every engine:

pandas/Dask: https://pbpython.com/pandas_dtypes.html.

CuDF/Dask-cuDF. There is an open issue at
https://github.com/rapidsai/cudf/issues/3360.

Spark: https://spark.apache.org/docs/latest/sql-ref-datatypes.html.

https://pbpython.com/pandas_dtypes.html
https://github.com/rapidsai/cudf/issues/3360
https://spark.apache.org/docs/latest/sql-ref-datatypes.html


Chapter 4: Combining, Reshaping, and
Aggregating Data
When we must deal with multiple datasets simultaneously, it's important to
have the right tools that allow us to combine said datasets into a
homogeneous and uniform one. As we saw in the previous chapters,
Optimus provides us with transformation operations that allow us to prepare
a dataset whose format does not coincide with another, so that we can
combine them correctly later. Once transformed, it is possible to combine
them in various ways, such as via concatenation or union.

In this chapter, we'll learn how to concatenate and merge multiple datasets
using Optimus and review more complex transformations such as reshaping
and pivoting. To finish, we will learn how to aggregate data and how to
apply aggregation over a specific group of data.

Some of these concepts are maybe already known to those of you who have
come from the relational database world. If you are a novice, then don't
worry – we will try to explain this concept using some graphical support to
get you on track as quickly and easily as possible.

The topics we will be covering in this chapter are as follows:

Concatenating data

Joining data

Reshaping and pivoting

Aggregating and grouping



Technical requirements
Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more information about the requirements for this, please
go to the GPU configuration section of Chapter 1, Hi Optimus!.

You can find all the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Concatenating data
We call concatenation the process of joining two datasets, whether we're
taking their columns and including them in another or combining their
rows, resulting in a dataset whose number of rows is equal to the sum of the
number of rows of the datasets to be concatenated.

Let's look at an example of row concatenation:

df_a = op.create.dataframe({

    "id": [143, 225, 545],

    "name": ["Alice", "Bob", "Charlie"],

    "city": ["Plymouth", "Bradford", "Norwich"]

})

df_b = op.create.dataframe({

    "id": [765, 329, 152],

    "name": ["Dan", "Erin", "Frank"],

    "city": ["Bath", "Manchester", "Ripon"]

})

https://github.com/PacktPublishing/Data-Processing-with-Optimus


df_a and df_b can be concatenated as follows:

df_a.rows.append(df_b).print()

This results in the following output:

id        name       city

(int64)   (object)   (object)

---------  ----------  ----------

143       Alice      Plymouth

225       Bob        Bradford

545       Charlie    Norwich

765       Dan        Bath

329       Erin       Manchester

152       Frank      Ripon

In the previous example, we can see how the datasets are combined, giving
rise to a third dataframe with a larger number of rows but the same number
of columns. This is because the columns of the input datasets coincide.

But what if we omit a column from df_b?

df_b = df_b.cols.drop("city")

df_a.rows.append(df_b).print()

We will get the following result:

id        name       city

(int64)   (object)   (object)

--------- ---------- ----------

143       Alice      Plymouth

225       Bob        Bradford



545       Charlie    Norwich

765       Dan        nan

329       Erin       nan

152       Frank      nan

As you can see, all the missing values are filled with nan. A similar result
can occur if the datasets have different column names:

df_b = df_b.cols.rename("city", "city_b")

df_a.rows.append(df_b).print()

We'll get the following result:

id        name       city       city_b

(int64)   (object)   (object)   (object)

--------- ---------- ---------- ----------

143       Alice      Plymouth   nan

225       Bob        Bradford   nan

545       Charlie    Norwich    nan

765       Dan        nan        Bath

329       Erin       nan        Manchester

152       Frank      nan        Ripon

Now that we know the basics of how to concatenate two dataframes with
the same column names, we'll learn how to map the columns of two
different dataframes so that we can concatenate them without renaming
either.

Mapping



When we have two equal datasets with different column names, we can
pass a second argument called map, which allows us to map the columns of
each input dataframe to a set of output columns.

Let's look at an example:

df_a = op.create.dataframe({

    "id": [143, 225, 545],

    "name": ["Alice", "Bob", "Charlie"],

    "city": ["Plymouth", "Bradford", "Norwich"]

})

df_b = op.create.dataframe({

    "id_number": [765, 329, 152],

    "name": ["Dan", "Erin", "Frank"],

    "title": ["Bath", "Manchester", "Ripon"]

})

df_a and df_b can be concatenated as follows:

names_map = {

    "id_number": ("id", "id_number"),

    "name": ("name", "name"),

    "city": ("city", "title")

}

df_a.rows.append(df_b, names_map=names_map).print()

This gives us the following result:

id_number   name       city

(int64)     (object)   (object)



-----------  ----------  ----------

143         Alice      Plymouth

225         Bob        Bradford

545         Charlie    Norwich

765         Dan        Bath

329         Erin       Manchester

152         Frank      Ripon

In the preceding example, we're declaring a custom mapping before
concatenating, setting all the values from the id column of df_a and the
title columns of df_b to columns with different names in the resulting
dataframe.

But what if we want to concatenate on the column axis? We'll look at this
next.

Concatenating columns

By concatenating columns, we can get the columns of a dataframe and put
them in another. This will simply put the columns from one dataset into
another, keeping the same indices for the values of both datasets.

To concatenate the columns from one dataset into another, you can simply
call df.cols.concat(df_other), as follows:

df_a = op.create.dataframe({

    "id": [143, 225, 545],

    "name": ["Alice", "Bob", "Charlie"],

    "city": ["Plymouth", "Bradford", "Norwich"]



})

df_b = op.create.dataframe({

    "age": [25, 35, 45],

    "placeholder": ["foo", "bar", "baz"]

})

df_a.cols.concat(df_b).print()

This results in the following output:

id        name       city       age       placeholder

(int64)   (object)   (object)   (int64)   (object)

--------- ---------- ---------- --------- -------------

143       Alice      Plymouth   25        foo

225       Bob        Bradford   35        bar

545       Charlie    Norwich    45        baz

You can filter the columns of each dataset using cols.select, as follows:

df_a.cols.select(["id", "name"]).cols.concat(df_b.cols.select([

"age"])) .print()

This results in the following output:

id        name       age      

(int64)   (object)   (int64)  

--------- ---------- ---------

143       Alice      25        

225       Bob        35        

545       Charlie    45        



When our data is not organized correctly, it can create rows that pairs values
incorrectly. In that case, we can use a common column in both datasets that
tells us what value corresponds to what row. In this case, we can use an
operation called join.

Joining data
The join operation is used to merge entries from a data source to another
using a common column as a key to pair the data correctly. The concept of
joining is commonly seen in database technologies, in which we also see
the different types of joins, such as inner join, outer join, left join, and right
join. These joins are better represented in the following diagram:



Figure 4.1 – Inner, outer, left, and right joins

When joining data, we must identify the key column for both dataframes.
Let's look at an example:

df_a = op.create.dataframe({



    "id": [143, 225, 545, 765, 152],

    "name": ["Alice", "Bob", "Charlie", "Dan", "Frank"]

})

df_b = op.create.dataframe({

    "id": [225, 545, 765, 152, 329],

    "city": ["Bradford", "Norwich", "Bath", "Ripon", "Manchester"],

    "placeholder": ["BRA", "NOR", "BAT", "RIP", "MAN"]

})

In both datasets, we have a column called "id" with equal values but in a
different order. Calling df.cols.join requires us to input the on argument
with the title of the column, as follows:

df_a.cols.join(df_b, how="outer", on="id").print()

We'll get the following result:

id         name       city        placeholder

(object)   (object)   (object)    (object)

---------- ---------- ----------- -------------

143        Alice      nan        

225        Bob        Bradford    BRA

545        Charlie    Norwich     NOR

765        Dan        Bath        BAT

152        Frank      Ripon       RIP

329        nan        Manchester  MAN

As we can see, even when neither dataset is sorted, the result contains the
correct data. As for concat, all the missing information is filled with nan.



As we can see, we provided the "outer" to how, which means it will include
all the values from both datasets.

By default, the join function uses "left" in the how argument. Let's look at
an example of a left join (not including a value to that argument) so that we
can omit the nan value corresponding to "name" in the last row:

df_a.cols.join(df_b, on="id").print()

We'll get the following result:

id         name       city        placeholder

(object)   (object)   (object)    (object)

---------- ---------- ----------- -------------

143        Alice      nan        

225        Bob        Bradford    BRA

545        Charlie    Norwich     NOR

765        Dan        Bath        BAT

152        Frank      Ripon       RIP

However, there are still nan values on the city and placeholder columns.
To omit them, we can use inner on how, which is another kind of join
operation that will omit all the missing rows in both datasets:

df_a.cols.join(df_b, on="id", how="inner").print()

We'll get the following result:

id         name       city        placeholder

(object)   (object)   (object)    (object)

---------- ---------- ----------- -------------

225        Bob        Bradford    BRA



545        Charlie    Norwich     NOR

765        Dan        Bath        BAT

152        Frank      Ripon       RIP

When the key columns of each dataframe have different names, you can use
left_on and right_on instead of the on argument, like so:

df_a.cols.join(df_b, left_on="id_a", right_on="id_b")

The result will be ordered by default; that is, putting the key columns first,
then the columns from the left, and then the columns from the right, as
shown in the first example. If want to put the key column between the
columns from the left dataset and the columns from the right dataset, you'll
want to pass True to key_middle:

df_a.cols.join(df_b, left_on="id_a", key_middle=True).cols.names()

In the preceding example, we're joining the datasets and getting the names
of the columns in the resulting dataset, which results in the following:

["name", "city", "id", "placeholder"]

By default, the order of the columns in the resulting dataset will be ["id",
"name", "city", "placeholder"] instead.

Now that we know how to merge two datasets in various ways, let's learn
how to reshape and pivot a dataframe that requires such transformations.

Reshaping and pivoting
In some cases, you'll want to make some more radical transformations to
your dataset. In this section, we'll learn how to reshape an Optimus
DataFrame in various ways, including pivoting, staking, and melting.



Pivoting

Pivoting is the process of reshaping stacked data into a new dataframe with
simpler and less detailed data. It involves using the data of a column of
choice and using it as column labels. Then, you must use one or more
columns to group the data and calculate its values with the preferred
summarization or aggregation over the rest of the data. The following is an
example of this:

Figure 4.2 – How pivoting works

Let's look at an example of a dataset of sales that was made in a short
period of time:

df = op.create.dataframe({



    "date": ["1/1/21", "1/1/21", "1/2/21", "1/2/21", "1/3/21",

"1/3/21", "1/3/21", "1/3/21", "1/3/21"],

    "product": ["Coffee", "Coffee", "Tea", "Coffee", "Tea",

"Coffee", "Tea", "Tea", "Coffee"],

    "size": ["big", "big", "big", "big", "big", "small", "small",

"small", "small"],

    "price": [1.5, 1.5, 2, 1.5, 2, 1, 1.25, 1.25, 1]

})

Our dataset looks like this:

date        product     size              price

(object)    (object)    (object)      (float64)

----------  ----------  ----------  -----------

1/1/21      Coffee      big                1.5

1/1/21      Coffee      big                1.5

1/2/21      Tea         big                2

1/2/21      Coffee      big                1.5

1/3/21      Tea         big                2

1/3/21      Coffee      small              1

1/3/21      Tea         small              1.25

1/3/21      Tea         small              1.25

1/3/21      Coffee      small              1

Now, let's count how many sales per product were made each day:

df.pivot("date", groupby="product").print()

We'll get the following output:

product        1/1/21     1/2/21     1/3/21



(object)      (int64)    (int64)    (int64)

----------  ---------  ---------  ---------

Coffee              2          1          2

Tea                 0          1          3

As we can see, the default aggregation that was made is counting. We can
explicitly call it using the agg argument, which requires a tuple with the
name of the aggregation and the column to be calculated, as follows:

df.pivot("date", groupby="product", agg=("count", "date")).print()

The preceding code will get us the same output we received previously.

Now, let's make use of the agg argument for other purposes:

df.pivot("date", groupby="product", agg=("common", "size")).print()

We'll get the following output:

product     1/1/21      1/2/21      1/3/21

(object)    (object)    (object)    (object)

----------  ----------  ----------  ----------------

Coffee      big                 small

Tea         nan         big         ['big', 'small']

In the previous example, we are obtaining the most common size of each
product from the sales that were made on each date.

In the following example, we're looking at the mean of the prices of each
product instead:

df.pivot("date", groupby="product", agg=("mean", "price")).print()

We'll get the following output:

product          1/1/21       1/2/21       1/3/21



(object)      (float64)    (float64)    (float64)

----------  -----------  -----------  -----------

Coffee              1.5          2            1

Tea                 nan          1.5          1.5

It's also possible to group by various columns instead of one, as follows:

df.pivot("date", groupby=["product", "size"]).print()

We'll get the following output:

product     size           1/1/21     1/2/21     1/3/21

(object)    (object)      (int64)    (int64)    (int64)

----------  ----------  ---------  ---------  ---------

Coffee      big                 2          1          0

Coffee      small               0          0          2

Tea         big                 0          1          1

Tea         small               0          0          2

Pivoting is a special case of the inverse process of stacking. Let's learn what
stacking is and how we can use it.

Stacking

When stacking a dataset, the column labels will be passed to the values in a
dummy column and moved to match the column values, as shown here:



Figure 4.3 – How stacking works

To use stacking, we must know which column or columns represent the
index in the dataframe. The result of using this function will give us a
dataframe with a new index that contains the names of the rest of the
columns.

Let's look at an example of an inventory, similar to the previous example:

df = op.create.dataframe({

    "product": ["Coffee", "Coffee", "Tea", "Tea"],

    "size": ["big", "small", "big", "small"],

    "price": [1.5, 1, 2, 1.25],

    "cost": [0.24, 0.2, 0.32, 0.3]



})

This is what our dataset looks like:

product     size              price         cost

(object)    (object)      (float64)    (float64)

----------  ----------  -----------  -----------

Coffee      big                1.5          0.24

Coffee      small              1            0.2

Tea         big                2            0.32

Tea         small              1.25         0.3

To stack this, we need to call df.stack, as follows:

df.stack(index=["product", "size"]).print()

This will identify the first two columns as indices of the dataset. We'll see
the following output:

product     size        variable          value

(object)    (object)    (object)      (float64)

----------  ----------  ----------  -----------

Coffee      big         price              1.5

Coffee      big         cost               0.24

Coffee      small       price              1

Coffee      small       cost               0.2

Tea         big         price              2

Tea         big         cost               0.32

Tea         small       price              1.25

Tea         small       cost               0.3



The resulting dataset will require a name for each new column. By default,
it will assign "variable" and "value", but these names can be passed to the
function, as follows:

df.stack(index=["product", "size"], col_name="foo",

value_name="bar").print()

This will identify the first two columns as indices of the dataset. We'll see
the following output:

product     size        foo                 bar

(object)    (object)    (object)      (float64)

----------  ----------  ----------  -----------

Coffee      big         price              1.5

Coffee      big         cost               0.24

Coffee      small       price              1

Coffee      small       cost               0.2

Tea         big         price              2

Tea         big         cost               0.32

Tea         small       price              1.25

Tea         small       cost               0.3

So far, we've learned about pivoting and stacking and clarified that pivoting
is a special case of the inverse process of stacking, which is called
unstacking. We'll learn about this next.

Unstacking



Unstacking is the opposite of stacking. So, in this scenario, we must find
out which column or columns represents the index in the dataframe. Based
on that and the level that's passed to df.unstack, that index column will be
transformed into columns:

Figure 4.4 – How unstacking works

Let's see the result of unstacking the previously stacked dataframe:

df.unstack(index=["product", "size", "variable"]).print()

We'll get the following output:

product     size               cost        price

(object)    (object)      (float64)    (float64)



----------  ----------  -----------  -----------

Coffee      big                0.24         1.5

Coffee      small              0.2          1

Tea         big                0.32         2

Tea         small              0.3          1.25

To pass which level you want to unstack, use the level argument, as
follows:

df.unstack(index=["product", "size", "variable"], level=1).print()

Negative numbers will also work:

df.unstack(index=["product", "size", "variable"], level=-2).print()

In the preceding code, we are unstacking the second to last column in the
multi-index.

Also, the name of the column can be passed to level too:

df.unstack(index=["product", "size", "variable"],

level="size").print()

The preceding three examples will unstack the "size" index column, giving
us the following result:

product     variable            big        small

(object)    (object)      (float64)    (float64)

----------  ----------  -----------  -----------

Coffee      cost               0.24         0.2

Coffee      price              1.5          1

Tea         cost               0.32         0.3

Tea         price              2            1.25



In this section, we learned about unstacking and how it relates to pivoting
and stacking. Now, let's dig into a similar transformation that doesn't rely on
explicit indices but on columns we can set as identifiers.

Melting

Melting is used to change the dataframe format from wide to long, similar
to stack, but without indices. On the resulting dataframe, one or more
columns will work as identifiers. The rest will be the values of the previous
column (named "values" by default) and the identifier of those values
(named "variable"). You can exclude columns in this function. You can
see how melting works in the following diagram:

Figure 4.5 – How melting works



To use it, the minimal arguments that are required are just the identifier
columns:

df.melt(id_cols=["product","size"]).print()

In the preceding code, we just passed the identifier columns, but you can
also explicitly pass the values you want to get, as follows:

df.melt(id_cols=["product","size"], value_cols=["price",

"cost"]).print()

The preceding code will return the following output:

product     size        variable          value

(object)    (object)    (object)      (float64)

----------  ----------  ----------  -----------

Coffee      big         price              1.5

Coffee      small       price              1

Tea         big         price              2

Tea         small       price              1.25

Coffee      big         cost               0.24

Coffee      small       cost               0.2

Tea         big         cost               0.32

Tea         small       cost               0.3

To define the names of the resulting columns, you can use var_name and
value_name:

df.melt(id_cols=["product", "size"], var_name="foo",

value_name="bar").print()

This will result in the following output:

product     size        foo                 bar



(object)    (object)    (object)      (float64)

----------  ----------  ----------  -----------

Coffee      big         price              1.5

Coffee      small       price              1

Tea         big         price              2

Tea         small       price              1.25

Coffee      big         cost               0.24

Coffee      small       cost               0.2

Tea         big         cost               0.32

Tea         small       cost               0.3

As we can see, we can reduce the size of a dataset by using some of the
transformations we just learned how to apply, but if you're coming from the
relational database world, then you already know about aggregations, which
can reduce drastically the size of a dataset but cause them to lose resolution.

Aggregations

Aggregations are functions where the values of multiple rows are grouped
to form a single value.

Optimus comes with two ways to apply aggregations.

Using the cols accessor

Using the agg function

Let's look at both.

The cols accessor



For example, let's say you want to calculate the minimum value of a
column. In Optimus, you can do something like this:

from optimus import Optimus

op = Optimus("pandas")

df = op.load.file("foo.csv")

df.print()

This will print the following output:

name        job                id

(object)    (object)      (int64)

----------  ----------  ---------

optimus     Leader              1

optimus     Espionage           2

bumblebee   1                   3

bumblebee   3                   4

To get the minimum value, we can use the following code:

df.cols.min("id")

You will get the number 1 as output:

1

You can also pass a list of columns, like so:

df.cols.min(["id","name"])

You will receive the following output:

{'id': 1, 'name': 'bumblebee'}

Here, three things happened:



In contrast, when passing one column here, you don't just get the value
– you get a Python dictionary containing the column's name and its
value.

Unlike traditional dataframe technologies that return a dataframe object,
Optimus returns a Python dictionary.

This is useful for getting a single aggregation from our dataframe, but if
you want to get a set of aggregations, you can use a different method, as
we'll see next.

The agg method
Now, let's explore the agg dataframe method. With this method, you can
calculate one or multiple aggregations at the same time.

For example, if you want to calculate the minimum aggregation, you can
call the min method while passing {"id": "min"}, as shown here:

df.agg({"id": "min"})

This will return the following output:

1

Now, suppose that you want to apply multiple aggregations, such as min
and max:

df.agg({"name": "min", "id": "max"})

This will return the min value of the name column and the max value of
the id column:

{'name': 'bumblebee', 'id': 4}



Now that you know how to apply aggregation, here is the full list of
aggregations supported by Optimus. It is very important to consider that
some engines can make some aggregations in parallel. So, for example, you
can't calculate two aggregations using cols, like so:

print(df.cols.std("id"))

print(df.cols.min("id"))

However, you can use the agg function to pass the two parameters at the
same time, like so:

df.agg({"id":"std","name":min})

Dataframe engines are evolving every day. If you want to dig into which
functions can be parallelized, go to the relevant documentation.

To finish this section, here is a full list of all the aggregations supported by
Optimus:





Table 4.1 – Aggregation supported by Optimus

These aggregations will be performed on the whole dataset, without any
groups being taken into account. Now, let's learn what to do if we want to
limit the results to some groups.

Aggregating and grouping
Is a common use case to want to calculate the minimum, maximum, or any
other aggregation in a dataset while considering a common set of values in
another column. Here, we can use a practice called grouping. Let's try to
explain this concept using the following diagram:



Figure 4.6 – Sum values applying grouping

In the previous example, we are summing the sepal_lenght values that are
from the same species. Now, let's learn how to use grouping and
aggregation in Optimus.

For example, we have the following dataframe:

df = op.load.file("foo.csv")

df.print()



The dataframe contains the following data:

name        job                id

(object)    (object)      (int64)

----------  ----------  ---------

optimus     Leader              1

optimus     Espionage           2

bumblebee   1                   3

bumblebee   3                   4

Perhaps you want to calculate the minimum id of the optimus and
bumblebee values in the column name column. For this, the agg() function
supports the groupby param, which will use the common values in the
name column to calculate the minimum value in the id column. Let's see
how it works:

A = df.agg({"id":min}, groupby="name")

This will return a Python dictionary containing the keys for the group name
and the values for the minimum value of the group:

{'bumblebee': 3, 'optimus': 1}

After getting the Python dictionary, you can access the Bumblebee values
just by using the following command:

A["bumblebee"]

This will return an integer representing the min value for the "bumblebee"
group:

3



As you can see, the result is in a Python dictionary. The size of this result
may vary, depending on how big your dataset is, so be aware of that before
getting any results. You may want to request the output of this call in a
dataframe instead, which you can do by passing dataframe into the output
argument.

Summary
In this chapter, we learned about a lot of functions we can use to
concatenate, merge, join, aggregate, and group data. All these functions will
give you a lot of power to wrangle your data and shape it the way you need
in order to get insights from it, reformat your dataset for different uses, and
combine multiple datasets to get a better resolution of your data in the same
dataset.

In the next chapter, we will learn about the functions that Optimus provides
for profiling data so that we can get a better picture of it.



Chapter 5: Data Visualization and
Profil ing
When you are transforming data, you usually need to explore your data in
order to get a good understanding of how you can shape it to get insights
from it. You may need to check for missing values, ensure consistency
within a column, obtain a count of unique values, plot a histogram, get the
top n values, or produce descriptive analytics. Optimus gives us tools to
make all this and more happen.

In this chapter, we will deep dive into the profilers and their data types that
we saw in Chapter 3, Data Wrangling, and see how we can fully take
advantage of this feature to perform operations with specific data to set,
drop, or replace values as you require.

Optimus can also give information about the quality of the data and
provides the tools to process and transform our data easily.

The topics we will be covering in this chapter are as follows:

Data quality

Exploratory data analysis

Data profiling

Cache and flushing

Technical requirements



Optimus can work with multiple backend technologies to process data,
including GPUs. With GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more info about the requirements, please go to the GPU
configuration section in Chapter 1, Hi Optimus!.

You can find all the code in this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Data quality
In Optimus, we call the process of counting the number of values in a
column that match a specific profiler data type data quality. For example,
if the profiler data type in a column is URL, Optimus will count the number
of values in a column that do the following:

Match the URL format, such as "google.com".

Do NOT match the URL format, such as "google".

It will also count the null values.

Optimus has many data types in the profiler, which are inferred with a
combination of regular expressions and number type detection. For
reference, in the following table, we list the profiler data types and the
Python data types:

https://github.com/PacktPublishing/Data-Processing-with-Optimus




Figure 5.1 – Optimus profiler datatypes

These data types are inferred when you run the profiler. Also, you can
change the profiler if you are sure that a profiler datatype should have a
specific data type:

from optimus import Optimus

op = Optimus("pandas")

df = op.load.file("foo.csv")

df.cols.quality()

df.cols.quality will return the following:

{'name': {'match': 4,

  'missing': 0,

  'mismatch': 0,

  'profiler_dtype': {'dtype': 'str', 'categorical': True}},

'job': {'match': 2,

  'missing': 0,

  'mismatch': 2,

  'profiler_dtype': {'dtype': 'int', 'categorical': True}},

'id': {'match': 4,

  'missing': 0,

  'mismatch': 0,

  'profiler_dtype': {'dtype': 'int', 'categorical': True}}}

The quality method returns a dictionary, with the column names as the
keys, containing matches, mismatches, missing values, the name of the



source file (if applicable), and profiler_dtype, which is the abstract type
inferred by Optimus.

The first time you run the profiler, the data types of the columns are inferred
using a sample of the dataset. Let's see a case in which we want to change
the inferred data type for a column:

df = df.cols.set_dtype("salary", "int")

In the preceding code, we're changing the inferred data type of the salary
column. If we get the profiler or get the data quality stats for that column,
we'll get different results afterward. If we want to change the data type of
multiple columns, we can call df.cols.dtype, passing a dictionary as
follows:

df = df.cols.set_dtype({"salary": "int", "age": "str"})

In this case, we're setting a column to be taken as a string. This may result
in fewer mismatches in the data quality.

There are special data types that are internally treated as a string but are
constrained by a format, such as emails, URLs, and some datetime values.

In other cases, internally the values of datetime columns could be native
datetime types (if the selected engine supports it).

It is also possible to expand the data types supported by Optimus. We will
see more about this topic in the following chapters.

By setting a different data type, we're able to check the quality of our data
more precisely. Let's see more about it.

Handling matches, mismatches, and nulls



In Optimus, to identify the values of each row that meet a given condition
we use masks, which are simply rows of Boolean values that tell us if each
value meets that condition. For example, when obtaining the null mask of a
column with some null values, this mask will have the value False in all the
rows except those with null values, which will have True:

df = op.create.dataframe({"numbers": [1, 2, None, 4]})

df.mask.missing("numbers").print()

We will obtain the following result:

  numbers

   (bool)

---------

        0

        0

        1

        0

This mask is useful to perform different row operations, such as row
filtering or value replacing. We will see more about that later; first, we will
see how to handle matches and mismatches using masks.

Let's say we have the following dataset:

df = op.create.dataframe({"numbers": [1, 2, "Hello", 4, "World"]})

numbers

(object)

----------

1

2



Hello

4

World

If we want to know which values match the predominant data type (in this
case, int) we use mask.match, passing "int" as the second argument:

df.mask.match("numbers", "int").print()

We will get the following output:

  numbers

   (bool)

---------

        1

        1

        0

        1

        0

To filter using this mask, we can use select or drop, passing the mask as the
first argument:

df.rows.select(df.mask.match("numbers", "int")).print()

We will get the following output:

   numbers

  (object)

----------

         1

         2



         4

And we'll drop the row now:

df.rows.drop(df.mask.match("numbers", "int")).print()

We will get the following output:

numbers

(object)

----------

Hello

World

To replace the values using mask, we can do the following:

df.cols.set("numbers", value=0, where=df.mask.mismatch("numbers",

"int")).print()

In the preceding example, we're using mismatch instead of match. This
enables us to replace all the values that aren't numbers in a column. The
result of this is as follows:

   numbers

  (object)

----------

         1

         2

         0

         4

         0

By not passing a type into the mismatch method on mask, Optimus will
use the data type available inferred previously, if it's available:



df.cols.dtypes("numbers")

df.mask.mismatch("numbers")

The preceding code will behave the same as the following:

df.cols.dtypes("numbers")

df.mask.mismatch("numbers", df["numbers"].profile.dtypes() )

That means we can simply call the following code and still get the same
result:

df.cols.set("numbers", value=0, where=df.mask.mismatch("numbers"))

We'll also get the following output:

   numbers

  (object)

----------

         1

         2

         0

         4

         0

This is helpful if we don't know what type should be used in a column and
we have this information cached in our dataset.

We have learned how to handle data by its quality and how to clean our
data. Once it's clean we can use this data to get some statistics. Let's learn
how!

Exploratory data analysis



Exploratory Data Analysis (EDA) is a crucial step when you start
exploring your data. It can give you an overall overview of its main
characteristics, such as minimum and maximum values, as well as mean
and median values. Also, it can help you to detect patterns, data
inconsistencies, and outliers.

One of the first steps when exploring your data is to apply EDA techniques
so you can get a better understanding of the data you want to process. The
main goals of applying this technique are as follows:

To maximize insight into a dataset

To uncover the underlying structure

To extract important variables

To detect outliers and anomalies

There are four ways in which we can categorize EDA:

Single variable, non-graphical: Here, the data analysis is applied to
just one variable. The main purpose of univariate analysis is to describe
the data and find patterns that exist within it.

Single variable, graphical: Graphical methods for single variables can
be a very intuitive way to explore your columns. Some of the plots
available in Optimus are histograms, frequency charts, and box plots.

Multi-variable, non-graphical: When you want to analyze the
relationship between multiple variables you can rely on methods such as
cross-tabulation or statistics.



Multi-variable, graphical: These methods let you explore relationships
between multiple variables in a graphical way. Optimus can help here
with scatter plots and heat maps.

As you can see, in Optimus you can easily calculate almost every statistic
you will need to know your data in depth.

Before diving into some examples, let's load a dataframe that resembles a
store inventory:

from optimus import Optimus

op = Optimus("pandas")

df = op.load.file("store.csv")

df.print(10, ["name", "code"])

In the preceding code, we're calling print but, in this case, we are
requesting the first ten rows of this dataset, and just two columns. This will
print the following:

       id  name        code              price

  (int64)  (object)    (object)      (float64)

---------  ----------  ----------  -----------

        1  pants       L15              173.47

        2  shoes       SH                69.99

        3  shirt       RG30              30

        4  pants       J10               34.99

        5  pants       JG15             132.99

        6  shoes       B                 57.99

        7  pants       JG20             179.99



        8  pants       L20               95

        9  shirt       FT50              50

       10  pants       JG15             169.99

But let's instead get an insight into whole columns by applying some of the
available methods.

Single variable non-graphical methods

In Optimus, you can use certain methods to get non-graphical insights into
the data. Let's see some of them.

To calculate the minimum value in a column, use the following:

df.cols.min("id")

This will return the following output:

1

If you also want to calculate the maximum value in a column you can use
max, as shown here:

df.cols.max("id")

This will return the following:

504

On the other hand, if you want to calculate the mode, which is the most
common value in the columns, you can use the following:

df.cols.mode("price")

This will return a dictionary or a single value depending on the data:

50.0



To calculate the median value in a column, use this:

df.cols.median("price")

This will return a numeric value:

104.99

To calculate the interquartile range, which is the range between Q1 and Q3,
use this:

df.cols.iqr("id")

We'll get the following value:

130.01

To calculate the mean in the column, use this:

df.cols.mean("id")

This will return the following value:

121.30525793650794

Also, to calculate the standard deviation in the column we can use std:

df.cols.std("price")

We'll get a numeric value:

93.16652086384731

To calculate the variance in the column, use this:

df.cols.var("price")

We'll get the following value:

8680.000609873696

You can also calculate the skewness. This will tell you if the probability
distribution is skewed to left or right:



df.data["price"].skew()

We'll get a numeric value:

1.0015117495305208

And for the kurtosis, which is a measure of the "tailedness" of the
probability distribution, use this:

df.cols.kurtosis("price")

This will return the following value:

0.45556375186033016

We can also count some values by their possible properties. Let's see some
of them.

To count all the zeros in a column you can use the following:

df.cols.count_zeros("discount")

We'll get the number of zeroes in "discount":

294

To count all the null values in a column you can use the following:

df.cols.count_nulls("discount")

We'll get the following integer:

0

To count all the blank values in a column you can use the following:

df.cols.count_na("discount")

We'll get an integer value:

0

To count all the unique values in a column you can use the following:



df.cols.count_uniques("price")

This will return an integer with all the unique values in "price":

192

As we can see, you can easily get specific insights from a column by using
any of these methods. Now let's see how you can graphically explore your
data.

Single variable graphical methods

Graphical data inspection can be a very intuitive way to get an insight into
your data.

Optimus uses matplotlib and seaborn, a couple of very useful plotting
libraries. Also, remember that you can output your data in Python
dictionary format and use the library that best suits your needs.

Now, let's chart some data from our previously loaded dataset.

Histogram
A histogram tells us how many values are in each number of slices of
numeric data, for example, how many people are in certain age groups.

To get the histogram of a numeric column you can use the following:

df.cols.hist("id",5)

This will print a Python dictionary showing the lower and upper bounds and
the value count between them:

{'hist': {'price': [

{'lower': 5.0, 'upper': 103.3675, 'count': 250},  



{'lower': 103.3675, 'upper': 201.735, 'count': 179},  

{'lower': 201.735, 'upper': 300.1025, 'count': 39},

{'lower': 300.1025, 'upper': 398.47, 'count': 36}

]}}

To plot a histogram, you can use the following:

df.plot.hist()

This will display the following output:

Figure 5.2 – Histogram chart generated using Optimus

This chart gives us an insight into the distribution of a numeric column in a
numeric range. If the column is not numeric but categorical, you can create
a frequency chart.

Frequency
With the frequency method, you can count how many times a value is
present in one or multiple columns. By default, this is presented in
descending order.



In Optimus to get the top five frequent values of any (or every) column, you
can use the following:

df.cols.frequency("code", 5)

This will print a Python dictionary with the value and the count ordered in
descending order:

{'frequency': {'code': {'values': [

{'value': 'JG15', 'count': 60},

{'value': 'JG10', 'count': 43},

{'value': 'SK', 'count': 37},

{'value': 'L15', 'count': 33},

{'value': 'J15', 'count': 32}

]}}}

You can plot a frequency chart using the following:

df.plot.frequency("code", 40)

This will display 40 bars like this:



Figure 5.3 – Frequency chart generated using Optimus

Using this, you can find out the most frequent values in a column, as
detailed as the number entered in the second argument.

Now, let's learn about a more advanced visualization for numeric data.

Box plot
A boxplot is a standardized way of displaying the distribution of data based
on a five-number summary (minimum, first quartile (Q1), median, third
quartile (Q3), and maximum).

Box plots are useful for analyzing numeric columns. Let's see how to get
the data required to generate them:

df.cols.boxplot("price")

This will print a Python dictionary with all the data needed to print a
boxplot, such as mean, median, first and third quartile, whiskers, and outlier
points (also known as fliers):

{'price': {

    'mean': 121.30525793650794,

    'median': 104.99,

    'q1': 44.99,

    'q3': 175.0,

    'whisker_low': -150.02499999999998,

    'whisker_high': 370.015,

    'fliers': [

        {'price': 374.99},

        {'price': 395.0},



        {'price': 390.0},

        {'price': 395.0},

        {'price': 398.47},

        {'price': 380.0},

        {'price': 375.0}

    ],

    'label': 'price'

}}

To get a box plot with Optimus, you can use the following:

df.plot.box("age")

This will display the following plot:

Figure 5.5 – Box plot generated using Optimus

This kind of plot can tell you about your outliers and what their values are.
It can also tell you if your data is symmetrical, how tightly your data is
grouped, and if and how your data is skewed.



Now that we have learned about plots that can help us explore columns
individually, let's dig into other kinds of plots that may help us get a more
general insight into multiple variables.

Multi-variable non-graphical methods

To learn about the whole dataset and how its variables relate to each other,
you can use these types of methods. Let's discuss them.

Cross-tabulation
A cross-tabulation (also known as crosstab or contingency table) is a two-
dimensional table that records the frequency of respondents that have
specific characteristics described in the values of the table. It provides
valuable information about the relationship between two variables.

To get a crosstab in Optimus, you can use the following:

df = op.create.dataframe(A=[18,21,62,44], B=[45,42,25,21])

df.cols.crosstab("A", "B")

This will output the following:

{21: {18: 0, 21: 0, 44: 1, 62: 0},

25: {18: 0, 21: 0, 44: 0, 62: 1},

42: {18: 0, 21: 1, 44: 0, 62: 0},

45: {18: 1, 21: 0, 44: 0, 62: 0}}

You can also output this in a dataframe:

df.cols.crosstab("A", "B", output="dataframe")

This will print the following:

         A         21         25         42         45



  (object)    (int64)    (int64)    (int64)    (int64)

----------  ---------  ---------  ---------  ---------

        18          0          0          0          1

        21          0          0          1          0

        44          1          0          0          0

        62          0          1          0          0

As you can see, column A is maintained as an index. Let's see another way
to see the relation between two columns.

Correlation
The correlation of two variables can convey how related two columns are.
This value is represented in a numeric value between -1 and 1. A value of
-1 means the values of each column are inversely correlated and a value of
1 means each column depends on the other, or they may even represent the
same variable in different ways.

To get the correlation of two columns, you can use the following:

df = op.create.dataframe(A=[1,2,3,4], B=[4,5,0,7], C=[-1,-2,-5,-6])

df.cols.correlation(["A", "B"])

This will return a numeric value:

0.17541160386140586

If instead you pass more than two columns or even the whole dataset using
"*", you'll get a dictionary representing the correlation matrix:

df.cols.correlation("*")

This will display the following:

{'A': {'A': 1.0, 'B': 0.17541160386140586, 'C':

-0.9761870601839528},



'B': {'A': 0.17541160386140586, 'B': 1.0, 'C': 0.0},

'C': {'A': -0.9761870601839528, 'B': 0.0, 'C': 1.0}}

Let's see how we can get graphical insights of the whole dataset.

Multi-variable graphical methods

A great way to get an insight into more than one column (or even the whole
set of columns) is to use multi-variable graphical methods. Let's see some
of them.

Heat map
A heat map plot is a type of plot in Cartesian space that displays
information about two variables. It measures the magnitude of a
phenomenon in two dimensions with a color variation.

To get a heat map in a Python dictionary format you can use the following:

df.cols.heatmap("fare")

This will return the following output:

{'frequency': {'name': {'values': [{'value': 'optimus', 'count':

2},

    {'value': 'bumblebee', 'count': 2}]},

  'job': {'values': [{'value': '1', 'count': 1},

    {'value': 'Leader', 'count': 1},

    {'value': 'Espionage', 'count': 1},

    {'value': '3', 'count': 1}]},

  'id': {'values': [{'value': '1', 'count': 1},

    {'value': '2', 'count': 1},



    {'value': '4', 'count': 1},

    {'value': '3', 'count': 1}]

}}}

To plot a heat map from a specific column, use this:

df.plot.heatmap("price", "id", 30, 30)

This will display the following plot:

Figure 5.4 – Heat map generated using Optimus

As you can see, multiple values overlapping will be shown as a strong
yellow color to represent how many points there are in the cluster.

Correlation matrix
A correlation matrix will show us the correlation coefficients between all
the given columns. Let's load another dataset with more numeric columns
before plotting:

df = op.load.file("titanic3.xls")

df.plot.correlation("*")

This will display a correlation matrix between every column in df:



Figure 5.6 – Optimus correlation plot

Every pair of comparable columns has a color-coded value in it. This is
useful for seeing patterns in our data.

Remember that Optimus can give you all this data in Python dictionary
format, for example:

Histograms using df.cols.hist()

Frequency charts using df.cols.frequency()

Box plots using df.cols.boxplot()

Scatter plots using df.cols.scatter()

For a more general insight into the data, you can ask for a complete profile
of the dataset. Let's check that out.

Data profil ing
There is a handy function in Optimus called profile that returns useful stats
about our dataset. Let's see how to use it:



df.profile(bins=5)

This code will return a dictionary:

{'columns': {'id': {'stats': {'match': 504,

    'missing': 0,

    'mismatch': 0,

    'profiler_dtype': {'dtype': 'int', 'categorical': True},

    'frequency': [{'value': 1, 'count': 1},

     {'value': 332, 'count': 1},

     {'value': 345, 'count': 1},

     {'value': 344, 'count': 1},

     {'value': 343, 'count': 1}],

    'count_uniques': 504},

   'dtype': 'int64'},

  'name': {'stats': {'match': 504,

    'missing': 0,

    'mismatch': 0,

    'profiler_dtype': {'dtype': 'str', 'categorical': True},

    'frequency': [{'value': 'pants', 'count': 254},

     {'value': 'shoes', 'count': 134},

     {'value': 'shirt', 'count': 116}],

    'count_uniques': 3},

   'dtype': 'object'},

  'code': {'stats': {'match': 504,

    'missing': 0,

    'mismatch': 0,



    'profiler_dtype': {'dtype': 'str', 'categorical': True},

    'frequency': [{'value': 'JG15', 'count': 60},

     {'value': 'JG10', 'count': 43},

     {'value': 'SK', 'count': 37},

     {'value': 'L15', 'count': 33},

     {'value': 'J15', 'count': 32}],

    'count_uniques': 39},

   'dtype': 'object'},

  'price': {'stats': {'match': 504,

    'missing': 0,

    'mismatch': 0,

    'profiler_dtype': {'dtype': 'decimal', 'categorical':

False},

    'hist': [{'lower': 5.0, 'upper': 103.3675, 'count': 250},

     {'lower': 103.3675, 'upper': 201.735, 'count': 179},

     {'lower': 201.735, 'upper': 300.1025, 'count': 39},

     {'lower': 300.1025, 'upper': 398.47, 'count': 36}]},

   'dtype': 'float64'},

  'discount': {'stats': {'match': 294,

    'missing': 0,

    'mismatch': 210,

    'profiler_dtype': {'dtype': 'int', 'categorical': True},

    'frequency': [{'value': '0', 'count': 294},

     {'value': '5%', 'count': 65},

     {'value': '20%', 'count': 63},



     {'value': '15%', 'count': 54},

     {'value': '50%', 'count': 16}],

    'count_uniques': 6},

   'dtype': 'object'}},

'name': 'store.csv',

'file_name': ['store.csv'],

'summary': {'cols_count': 5,

  'rows_count': 504,

  'dtypes_list': ['float64', 'int64', 'object'],

  'total_count_dtypes': 3,

  'missing_count': 0,

  'p_missing': 0.0}

}

With this Python dictionary, you can get info about specific columns and
stats about the whole dataframe.

For dataframe stats, you can use profile.summary() to get the following:

cols_count: Number columns in the dataframe

rows_count: Number of rows in the dataframe

dtypes_list: List of dtypes in the dataframe

total_count_dtypes: Count of data types in the dataframe

missing_count: Number of missing values in the dataframe

p_missing: Percentage of missing values in the dataframe



Using profile.columns(), you can get info about every column in the
dataframe. Inside this, you can access two keys, stats and dtype.

In stats, you can get this info:

match: Number of values in the columns that match the profiler_dtype

missing: Number of missing values

Mismatch: Number of values in the column that do not match the
profiler_dtype, excluding null values

profiler_dtype: Datatype inferred by Optimus

Frequency: Top n values in descending order

Hist: Density of value in every bin

count_uniques: Number of unique values

Optimus will calculate a frequency or a histogram depending on the
datatype. It will calculate a histogram for numeric data types and a
frequency for string datatypes.

All this displayed info can give us a quick insight into what's in a dataset,
but by caching this metadata we can gain some time. Let's learn more about
that.

Cache flushing
Exploring big data can be a very time-consuming process. You need to
operate over a column, transform its data, check that the output is what you



want, and compare it with data in another column, including its frequency,
histogram, and descriptive analytics.

To help you accelerate your job, Optimus knows when it needs to
recalculate the profiler stats so you do not have to wait, which can be very
helpful if you are handling big data.

Internally, Optimus declares some Actions that trigger the column profile
recalculation. To get the full list of Actions that will require a recalculation,
you can use the following:

from optimus.helpers.constants import Actions

Actions.list()

Actions.list() will get us a Python list:

['profiler_dtype', 'lower', 'upper', 'proper', 'pad', 'trim',

'reverse', 'remove', 'left', 'right', 'mid', 'replace', 'fill_na',

'cast', 'is_na', 'z_score', 'nest', 'unnest', 'set',

'string_to_index', 'date_format', 'index_to_string',

'min_max_scaler', 'max_abs_scaler', 'apply_cols', 'impute',

'extract', 'abs', 'math', 'variance', 'slice', 'clip', 'drop',

'keep', 'cut', 'to_float', 'to_integer', 'to_boolean', 'to_string',

'years', 'append', 'port', 'domain', 'domain_scheme', 'subdomain',

'host', 'domain_params', 'domain_path', 'email_domain',

'email_user', 'select_row', 'drop_row', 'between_drop', 'sort_row']

If you look at these names, some of them match the functions to process
data that we have already used.

Summary
In this chapter, we learned how to get extract quality data from our data so
we can apply a transformation to shape it and start getting quality stats,



which can help us to understand the relations between the data and extract
better insights.

Also, we saw how Optimus can plot this data to put it in a format that is
easy to consume and understand.

Now that we know how to explore our data in depth, in the next chapter, we
will learn how to apply string clustering techniques to easily find groups of
different values that might be alternative representations of the same thing.



Chapter 6: String Clustering
Frequently when wrangling data, you will find columns that look as though
they have similar values, but they do not. To handle this task, Optimus
gives you some handy techniques through which you can easily detect
which strings are similar and group them, giving you some options that
could point to the best value in the group. We will explore all these
techniques in this chapter.

In this chapter, we will learn about the following topics:

Exploring string clustering

Key collision methods

Phonetic encoding

Nearest-neighbor methods

Applying suggestions

Technical requirements
Optimus can work with multiple backend technologies to process data,
including graphics processing units (GPUs). For GPUs, Optimus uses the
Real-Time Automated Personnel Identification System (RAPIDS),
which needs an NVIDIA card. For more information about the
requirements, please go to the GPU configuration section in Chapter 1, Hi
Optimus!.



You can find all the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Exploring string clustering
String clustering may be one of the most underrated data-cleansing
functions. To explain what string clustering is for, we can refer to the
definition from OpenRefine, which says: "find groups of different values
that could be alternative representations of the same thing":

For example, you may have a column with values like this:

A

(object)

-------------

Optimus

Optimus Prime

Prime

All these values can be represented as the same string since they reference
the same thing—for example, "Optimus" or "Optimus Prime" are valid
options, depending on the need. Optimus will give you the tools to apply
different string-clustering methods, suggest a value that best represents
what you want, and then replace the values to achieve a cohesive
representation of the data.

Optimus gives us the possibility to use different string-clustering methods,
from some fast and less accurate methods such as fingerprinting to more
advanced ones such as Levenshtein distance. Which one you will use

https://github.com/PacktPublishing/Data-Processing-with-Optimus


depends on your use case, the size of the data at hand, and the computing
power available to you.

All these methods tend to be a combination of operations over strings
already defined in Optimus, such as lowercase or
remove_special_symbols. We will be explaining every method in detail so
that you can have a better understanding of how they operate internally and
know which one adapts better to your use case. We will also be explaining
other terms related to the field—such as n-gram and Levenshtein distance
—so that you can understand what is happening when using this feature.

In Optimus, we can divide the methods available for that practice into two
groups: key collision methods and nearest-neighbor methods.

We will deep dive into the algorithms available in every group and how to
use them to normalize similar values.

Key coll ision methods
Key collision methods are based on the idea of creating a reduced and
meaningful representation of a value (a key) and putting equal ones
together in buckets.

Optimus has implemented three methods that fall into this category:
fingerprinting, n-gram fingerprinting, and phonetic fingerprinting.

Fingerprinting

A fingerprinting method is the least likely to generate false positives, which
is why Optimus defaults to this.



Optimus implements the same algorithm as OpenRefine, an open source
tool for working with messy data. The algorithm is described in the next
code block.

The process that generates a key from a string value is outlined here and
must be followed in this order:

1. Remove leading and trailing whitespace (for example, from " Optimus
Prime" to "Optimus Prime").

2. Change all characters to their lowercase representation (for example,
from "Optimus Prime" to "optimus prime").

3. Remove all punctuation and control characters (characters that help to
give form to the text but cannot be seen, such as a tab or a carriage
return, among others).

4. Update extended western characters with their American Standard
Code for Information Interchange (ASCII) representation (for
example, from "öptimus" to "optimus").

5. Divide the text string into individual tokens for every word after a
whitespace (for example, from "optimus prime" to ["optimus",
"prime"]).

6. Sort and remove duplicates in the tokens (for example, ["optimus",
"prime"]. Because o is lower than p, there is no modification in the
item order.

7. Finally, club the tokens together. The result would be ["optimus
prime"].



Now that we know how fingerprinting methods work, let's look at an
example using Optimus. First, we will create an Optimus dataframe, as
follows:

df = op.create.dataframe({

    "A": ["optimus", "prime optimus", "prime", "bumblebee",

"megatron", "MEGATRON"],

    "B": [1,2,3,4,5,6]

})

Let's apply a fingerprinting method to get the clusters from name. To
achieve that, we'll be using a method called string_clustering, passing the
name of the algorithm in the second argument—in this case, "fingerprint".
The code is illustrated in the following snippet:

clusters = df.string_clustering("A", "fingerprint")

clusters

This would give us the following output:

{ 'A': { 'bumblebee': { 'cluster': 'bumblebee',

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,

                        'total_count': 1},

         'megatron': { 'cluster': 'megatron',

                       'suggestions': ['megatron'],

                       'suggestions_size': 1,

                       'total_count': 2},

         'optimus': { 'cluster': 'optimus',

                      'suggestions': ['optimus'],



                      'suggestions_size': 1,

                      'total_count': 1},

         'optimus prime': { 'cluster': 'optimus prime',

                            'suggestions': ['optimus prime'],

                            'suggestions_size': 1,

                            'total_count': 1},

         'prime': { 'cluster': 'prime',

                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1}

}}

In this result, we're getting the clusters in a dictionary. Because the structure
of the result is the same for all the string-clustering methods later in this
chapter, we'll explain the result we get in detail.

You can also apply a fingerprinting method over a specific column, like
this:

print(df.cols.fingerprint("A"))

To transform and reduce column A to its fingerprint, we'll use the following
code:

A                      B

(object)         (int64)

-------------  ---------

optimus                1

optimus prime          2

prime                  3



bumblebee              4

megatron               5

megatron               6

Here's a summary of this result:

bumblebee, megatron, optimus, and prime have the same output.

prime optimus is converted to optimus prime because the token is
reordered.

N-gram fingerprinting

To understand this method, we should first talk about n-grams. An n-gram
can be a sequence of n things. In this case, an n-gram is a sequence of
characters—for example, a 2-gram of the optimus string is ["op", "pt",
"ti", "im", "mu", "us"]. If you take a closer look, to build a 2-gram you
need to take the two first characters of a string, then take the last character
of the last two characters you took and add the next one, and repeat the
process until you get to the end of the string.

NOTE
Optimus implements the same algorithm as OpenRefine, an open source tool for working
with messy data. The algorithm is described in the next code block.

An n-gram fingerprinting algorithm works like this:

1. Changes all characters to their lowercase representation.

2. Removes all punctuation, whitespace, and control characters (characters
that help to give form to the text but cannot be seen, such as a tab or a
carriage return, among others).



3. Creates all string n-grams.

4. Sorts the n-grams and removes duplicates.

5. Joins the sorted n-grams back together as a string.

6. Converts extended western characters to their ASCII representation.

The whole idea is to separate a string into small chunks. This is useful in
practice since there is no advantage of using big values for n-grams
compared to a fingerprinting method. However, using 2-grams and 1-grams
can find clusters that earlier methods couldn't, even with strings that have
minor differences, although they do yield several false positives.

Let's look at an example here:

df = op.create.dataframe({

    "A": ["optimus", "optimus prime", "prime", "bumblebee",

"megatron", "MEGATRON"],

    "B": [1,2,3,4,5,6]

})

To get the string clusters of this dataframe, we can use the same
string_clustering methods that we use to apply a fingerprinting algorithm
and pass the name of the algorithm in the second argument, as follows:

clusters = df.string_clustering("name, "ngram_fingerprint")

clusters

This would give us the following output:

{ 'A': { 'bumblebee': { 'cluster': 'beblbuebeelembum',

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,



                        'total_count': 1},

         'megatron': { 'cluster': 'ateggameonrotr',

                       'suggestions': ['megatron'],

                       'suggestions_size': 1,

                       'total_count': 2},

         'optimus': { 'cluster': 'immuoppttius',

                      'suggestions': ['optimus'],

                      'suggestions_size': 1,

                      'total_count': 1},

         'optimus prime': { 'cluster': 'immemuopprptrisptius',

                            'suggestions': ['optimus prime'],

                            'suggestions_size': 1,

                            'total_count': 1},

         'prime': { 'cluster': 'immeprri',

                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1}

}}

We get the preceding output because the regular fingerprinting algorithm
doesn't support changes well in the order or the repetitions of the characters
in its entries—for example, "Krzysztof", "Kryzysztof", and "Krzystof"
have varying lengths and varying fingerprints but share the same 1-gram
fingerprint because they use the same letters.

As with fingerprinting methods, you can also apply an n-gram fingerprint to
a column. In the following case, we will apply a method to A and output the



result to C:

print(df.cols.ngram_fingerprint("A", output_cols="C"))

This would print the following output:

A              C                             B

(object)       (object)                (int64)

-------------  --------------------  ---------

optimus        immuoppttius                  1

optimus prime  immemuopprptrisptius          2

prime          immeprri                      3

bumblebee      beblbuebeelembum              4

megatron       ateggameonrotr                5

megatron       ateggameonrotr                6

Phonetic encoding

Phonetic fingerprinting is a method to encode strings into a representation
that better matches the way they are pronounced. The main goal is to bucket
similar-sounding words and sentences. For example, "Reuben Meza" and
"Ruben Mesa" share the same phonetic fingerprint for English
pronunciation, but they have different fingerprints for both the preceding
regular and n-gram fingerprinting methods, no matter the size of the n-
gram.

There are several phonetic methods, such as the following:

Soundex

Metaphone



Double Metaphone

Match Rating Codex

New York State Identification and Intelligence System (NYSIIS)

Let's review them in a couple of paragraphs, based on their performance.

Soundex
Soundex was created by Robert C. Russell and Margaret King Odell, was
patented in 1918 and 1922, and is one of the most popular phonetic
algorithms. It was originally designed for American English; however, it is
available today in various language-specific versions such as French,
German, and Hebrew, which are not present in Optimus.

The Soundex algorithm functions like this:

1. Hold on to the first letter of the name and remove all the other instances
of a, e, i, o, u, y, h, and w.

2. Swap consonants with digits as follows (after the first letter):



Figure 6.1 – Character-number replacement in Soundex

3. If two or more letters with the same number are beside each other, we
will only keep the first letter. Any two letters that have the same
number, but are separated by h or w, will be considered as a single
number, and if they are separated by vowels, then they are considered
twice. This rule goes for the first letter as well.

4. If there are less letters in your word, due to which only 2 numbers can
be assigned, we will add zeros to the word until 3 numbers can be
assigned. If you have more than 3 numbers, only the first three will be
considered.

Now that we know how Soundex works, let's see it in action, as follows:



1. First, let's create a dataframe, like this:

df = op.create.dataframe({

    "A": ["optimus", "prime aptimus", "bumblebee", "megatron",

"MaGATRaN"],

    "B": [1,2,3,4,5,6]

})

2. To create a cluster using the soundex algorithm, we will use the
following code:

df.string_clustering("A", "soundex")

3. To get a Python dictionary with suggestions, we will use the following
code:

{ 'A': { 'bumblebee': { 'cluster': 'B514',

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,

                        'total_count': 1},

         'megatron': { 'cluster': 'M236',

                       'suggestions': ['megatron', 'MEGATRON'],

                       'suggestions_size': 2,

                       'total_count': 2},

         'optimus': { 'cluster': 'O135',

                      'suggestions': ['optimus', 'optimus

prime'],

                      'suggestions_size': 2,

                      'total_count': 2},

         'prime': { 'cluster': 'P650',



                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1}

}}

4. Now, let's see how to encode column A using Soundex. Here's the code
to accomplish this:

print(df.cols.soundex("A", output_cols="C"))

This would print the following dataframe:

A              C                   B

(object)       (object)      (int64)

-------------  ----------  ---------

optimus        O135                1

prime optimus  P651                2

prime aptimus  P651                3

bumblebee      B514                4

megatron       M236                5

MaGATRaN       M236                6

As we can see, similar-sounding strings were bucketed together. Looking at
the results, we can note the following:

megatron and MaGATRaN have the same phonetic fingerprint, M236,
because it does not consider the consonants.

prime optimus and prime aptimus have the same fingerprint, P651.

Metaphone



Metaphone is a phonetic algorithm created by Lawrence Phillips in 1990,
and is used for assigning indexes to words using their English
pronunciation. It improves on Soundex, by using various minor variances or
inconsistent spelling and pronunciation errors, to generate a more accurate
encoding, which then can be used with words or names that are similar to
each other.

The algorithm itself is lengthy and consists of a bunch of comparisons and
replacements. If you want to take a look, you can learn more about it at
https://en.wikipedia.org/wiki/Metaphone.

In Optimus, you would apply string clustering using Metaphone like this:

df.string_clustering("A", "metaphone")

{ 'A': { 'bumblebee': { 'cluster': 'BMBLB',

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,

                        'total_count': 1},

         'megatron': { 'cluster': 'MKTRN',

                       'suggestions': ['megatron', 'MEGATRON'],

                       'suggestions_size': 2,

                       'total_count': 2},

         'optimus': { 'cluster': 'OPTMS',

                      'suggestions': ['optimus'],

                      'suggestions_size': 1,

                      'total_count': 1},

         'optimus prime': { 'cluster': 'OPTMS PRM',

                            'suggestions': ['optimus prime'],

https://en.wikipedia.org/wiki/Metaphone


                            'suggestions_size': 1,

                            'total_count': 1},

         'prime': { 'cluster': 'PRM',

                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1}

}}

To get a closer look, let's apply metaphone to the A column, as follows:

print(df.cols.metaphone("A"))

This would give us the following output:

A                   B

(object)      (int64)

----------  ---------

OPTMS               1

PRM OPTMS           2

PRM APTMS           3

BMBLB               4

MKTRN               5

MKTRN               6

Looking at the results, we can note the following:

Megatron and MaGATRaN have the same phonetic fingerprint,
MKTRN.

Because Metaphone can get differences in pronunciation, prime
optimus and prime aptimus have different fingerprints, PRM OPTMS



and PRM APTMS.

Double Metaphone
The Double Metaphone is the second generation which improves further on
the Metaphone algorithm.

It is called Double as it can return either one or two code values for any
string, a primary and a secondary one. This can be useful for unclear cases
and also for variations in surnames under common ancestry.

Now, let's see an example of how to use the Double Metaphone method and
how it can produce one or a pair of codes.

First, let's create a dataframe, as follows:

df = op.create.dataframe({

    "A": ["optimus prime", "prime optimus", "prime", "bumblebee",

"megatron", "MEGATRON", "argenis leon"],

    "B": [1,2,3,4,5,6,7]

})

To get the string clusters of this dataframe, we can use the same function as
before, string_clustering, and pass the name of the algorithm in the second
argument. The code to accomplish this is illustrated in the following
snippet:

clusters = df.string_clustering("A, "double_metaphone")

clusters

This would give us the following output:

{ 'A': { 'argenis leon': { 'cluster': ('ARJNSLN', 'ARKNSLN'),

                           'suggestions': ['argenis leon'],



                           'suggestions_size': 1,

                           'total_count': 1},

         'bumblebee': { 'cluster': ('PMPLP', ''),

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,

                        'total_count': 1},

         'megatron': { 'cluster': ('MKTRN', ''),

                       'suggestions': ['megatron', 'MEGATRON'],

                       'suggestions_size': 2,

                       'total_count': 2},

         'optimus prime': { 'cluster': ('APTMSPRM', ''),

                            'suggestions': ['optimus prime'],

                            'suggestions_size': 1,

                            'total_count': 1},

         'prime': { 'cluster': ('PRM', ''),

                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1},

         'prime optimus': { 'cluster': ('PRMPTMS', ''),

                            'suggestions': ['prime optimus'],

                            'suggestions_size': 1,

                            'total_count': 1}

}}

Because Double Metaphone produces a couple of values, to make the string
clustering we calculate the double metaphone for every string and compare



every string with all others to calculate which one is closer.

To calculate how close two strings are, Optimus takes the first value of
every tuple and compares if they are equal. If not, the strings are not taken
as similar and are not suggested.

Now, let's apply double_metaphone to column A to see what happens, as
follows:

print(df.cols.double_metaphone("A"))

This would print the following output:

A                               B

(object)                  (int64)

----------------------  ---------

('APTMSLN', '')                 1

('PRMPTMS', '')                 2

('PRM', '')                     3

('PMPLP', '')                   4

('MKTRN', '')                   5

('MKTRN', '')                   6

('ARJNSLN', 'ARKNSLN')          7

Key collision methods are very quick; however, they tend to be too strict or
too lenient and have no way of tweaking how much difference between
strings we want to handle.

We'll look into alternatives now.

Match Rating Codex



The match rating approach (MRA) was developed by Western Airlines in
1977. It can be used for encoding and comparing homophonous words that
have the same pronunciation but different meaning, origin, or spelling.

The encoding rules just take the strings and transform them as follows:

Remove all vowels unless the string begins with one.

In the case of double consonants, remove the second one.

Join the first three and last three letters to reduce the codex to six letters.

After encoding the string, we will apply comparison rules, as follows:

If the length of both encoded strings differs by three characters or more,
no similarity comparison is made.

Obtain the minimum rating value by finding the length sum of the
encoded strings, as follows:

Figure 6.2 – String cluster method speed versus accuracy



Remove any matching characters found from left to right.

Find the similarity rating by subtracting the number of unmatched
characters by 6 in the longer string.

If the similarity rating is equal to or greater than the minimum rating,
the match is considered good.

A match is considered good if the similarity rating is equal to or more
than the minimum rating.

To apply the Match Rating Codex phonetic method in Optimus, we will use
the following code:

print(df.string_clustering("A", "match_rating_codex"))

This would print the following output:

{ 'A': { 'bumblebee': { 'cluster': 'BMBLB',

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,

                        'total_count': 1},

         'megatron': { 'cluster': 'MGTRN',

                       'suggestions': ['megatron', 'MEGATRON'],

                       'suggestions_size': 2,

                       'total_count': 2},

         'optimus': { 'cluster': 'OPTMS',

                      'suggestions': ['optimus'],

                      'suggestions_size': 1,

                      'total_count': 1},

         'optimus prime': { 'cluster': 'OPTPRM',



                            'suggestions': ['optimus prime'],

                            'suggestions_size': 1,

                            'total_count': 1},

         'prime': { 'cluster': 'PRM',

                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1}

}}

To get a better idea of how it works, let's apply match_rating_codex to
column A and check the output, as follows:

print(df.cols.match_rating_codex("A"))

This would give us the following output:

A              C                   B

(object)       (object)      (int64)

-------------  ----------  ---------

optimus        OPTMS               1

prime optimus  PRMTMS              2

prime aptimus  PRMTMS              3

bumblebee      BMBLB               4

megatron       MGTRN               5

MaGATRaN       MGTRN               6

In the first step, Match Rating Codex deletes the vowels, resulting in the
following outcome:

prime optimus and prime aptimus get the same value, PRMTMS.



MaGATRaN and megatron get the same value, MGTRN.

NYSIIS
The NYSIIS phonetic method was developed in 1970 by the New York
State Identification and Intelligence Center. It is similar to Soundex,
meaning that when there are homophones, we have to match them by using
indices for sound cues. The best part is the results; NYSIIS is more accurate
than Soundex since it returns fewer surnames under the same code.

The algorithm itself is very lengthy. To get a detailed explanation, you can
learn more about it at
https://en.wikipedia.org/wiki/New_York_State_Identification_and_Intellige
nce_System.

To use string clustering using NYSIIS in Optimus, you would run the
following code:

df.string_clustering("A", "nysiis")

This would give us the following clusters:

{ 'A': { 'bumblebee': { 'cluster': 'BANBLABY',

                        'suggestions': ['bumblebee'],

                        'suggestions_size': 1,

                        'total_count': 1},

         'megatron': { 'cluster': 'MAGATRAN',

                       'suggestions': ['megatron', 'MEGATRON'],

                       'suggestions_size': 2,

                       'total_count': 2},

         'optimus': { 'cluster': 'OPTAN',

https://en.wikipedia.org/wiki/New_York_State_Identification_and_Intelligence_System


                      'suggestions': ['optimus', 'optimus prime'],

                      'suggestions_size': 2,

                      'total_count': 2},

         'prime': { 'cluster': 'PRAN',

                    'suggestions': ['prime'],

                    'suggestions_size': 1,

                    'total_count': 1}

}}

To apply match rating encoding to one or more columns, you can run the
following code:

print(df.cols.nysiis("A"))

This would give us a result over column A, as illustrated here:

A              C                   B

(object)       (object)      (int64)

-------------  ----------  ---------

optimus        OPTAN               1

prime optimus  PRAN                2

prime aptimus  PRAN                3

bumblebee      BANBLABY            4

megatron       MAGATRAN            5

MaGATRaN       MAGATRAN            6

From the result, we can see that these strings are homophones, so we get the
following outcome:

prime optimus and prime aptimus get PRAN.



Megatron and MaGATRaN get MAGATRAN.

Now that we have explored key collision methods, let's see how nearest-
neighbor methods work.

Nearest-neighbor methods
A nearest-neighbor method gives a parameter that represents the threshold
of the distance between strings; any string pairs that have a distance value
closer to the specified one will be grouped together, as illustrated in the
following screenshot:

Figure 6.3 – Nearest neighbor with different radius values

Let's see some of those methods. For k-Nearest Neighbor (kNN) methods,
Optimus implements Levenshtein distance. Let's see how this works.

Levenshtein distance

The Levenshtein distance between two words is calculated as the minimum
number of single-character changes that need to be done to a word to
convert it into another.



In this example, let's look at the necessary steps to transform a string,
"AABBCC", to "ABZ".

Let's refer to "AABBCC" as String1 and "ABZ" as String2. We'll
proceed as follows:

First, delete "A" from String1 ("AABBCC" to "ABBCC").

Then, delete "B" from String1 ("ABBCC" to "ABCC").

Next, delete "C" from String1 ("ABCC" to "ABC").

Finally, substitute "Z" from String2 with "C" in String1 ("ABC" to
"ABZ").

Optimus will calculate the Levenshtein distance between all the strings in
the columns and select the ones with the shortest distance, as follows:

df = op.create.dataframe({

    "name": ["John Doe", "alice", "alice", "John Doe", "álice",

    "john doe", "doe, john", "alice", "joohn dooe"]

})

To get the clusters of this dataframe, we can use the same function as
before, string_clustering, and pass the name of the algorithm as the second
argument, as follows:

clusters = df.string_clustering("name", "levenshtein")

clusters

This would give us the following output:

{

    "name": {



        "John Doe": {

            "suggestions": [

                "John Doe", "john doe", "doe, john", "joohn dooe"

            ],

            "suggestions_size": 4,

            "total_count": 5

        },

        "alice": {

            "suggestions": ["alice", "álice"],

            "suggestions_size": 2,

            "total_count": 4

        }

    }

}

In this case, the method will suggest "John Doe", "john doe", "doe,
john", and "joohn dooe" as being like "John Doe".

It's important to know that besides Levenshtein, some other techniques can
be used for this purpose. These are not implemented in Optimus but are
mentioned here to give you the best overview of the techniques at hand, as
follows:

Jaro-Winkler distance: This distance is a formula consisting of five
parameters determined by two compared strings (A, B, m, t, l) and p
chosen from [0, 0.25].

Damerau-Levenshtein distance: Damerau-Levenshtein is a modified
version that also considers transpositions as single edits.



Hamming distance: Hamming distance is calculated using the number
of positions with the same symbol in both strings, provided both strings
are of the same length.

Q-gram: A q-gram is the sum of absolute differences between n-gram
vectors of both strings.

Jaccard index: Jaccard distance is calculated as 1 minus the quotient of
shared n-grams and all observed n-grams.

Longest common subsequence (LCS) edit distance: LCS edit distance
is defined as the minimum number of symbols that must be removed in
both strings until the resulting substrings are identical.

Cosine similarity: Cosine similarity is considered as 1 minus the cosine
similarity of both n-gram vectors.

Now that we have seen all the algorithms available in Optimus to bucket
similar strings, let's see how we can use a cluster to get our data into shape.

Applying suggestions
Once we get the clusters from our data, we can start selecting which
suggestions we'll be using in our transformed dataset. We can obtain the
clusters by running the following code:

clusters = df.string_clustering("name", "fingerprint")

In the previous example, we're getting clusters, which is a custom class
with a Python dictionary in it. Let's look at a representation of what we're
storing in clusters, as follows:

print(clusters)



This would give us the following output:

{

    "name": {

        "johndoe": {

            "suggestions": [

                "John Doe", "john doe", "doe, john", "jóhn dóe"

            ],

            "suggestions_size": 4,

            "total_count": 5

        },

        "alice": {

            "suggestions": ["alice", "álice"],

            "suggestions_size": 2,

            "total_count": 4

        }

    }

}

As we can see, here's a dictionary with one element called "name"; if more
columns were requested on df.string_clustering, then there'd be more
elements in the root of the dictionary. In "name", there's another
dictionary; this time, with each cluster of strings is a key to that dictionary,
which is a suggestion of the element that would replace all the values in
"suggestions". In "total_count", there's a count of the total of elements in
the dataframe that are part of the cluster, and on "suggestions_size", the
size of the list of suggestions is provided.



Let's say we don't want either of those values; in that case, we must set the
suggestions using clusters.set_suggestion, as shown in the following code
snippet:

clusters.set_suggestion("alice", "Alice")

clusters.set_suggestion("johndoe", "John Doe")

We can also set the suggestions by using the index, this being given by the
order of appearance of each suggestion in its respective dictionary. Here's
the code to accomplish this:

clusters.set_suggestion(0, "John Doe")

clusters.set_suggestion(1, "Alice")

By default, set_suggestion does search the suggestion in the first column of
a cluster, as illustrated in the following code snippet. If you want to specify
to which column we are setting the values, you can use the third argument:

clusters.set_suggestion(0, "John Doe", "name")

clusters.set_suggestion(1, "Alice", "name")

Alternatively, we can instead use set_suggestions (in plural) to set each
value in an ordered array, like this:

clusters.set_suggestions(["John Doe", "Alice"])

Once we set the values, we'll get the following results on clusters:

{

    "name": {

        "John Doe": {

            "suggestions": [

                "John Doe", "john doe", "doe, john", "jóhn dóe"



            ],

            "suggestions_size": 4,

            "total_count": 5

        },

        "Alice": {

            "suggestions": ["alice", "álice"],

            "suggestions_size": 2,

            "total_count": 4

        }

    }

}

To apply that replacement, we can use df.cols.replace, which can use a
dictionary with the following format:

{

    "name": {

        "John Doe": [

            "John Doe", "john doe", "doe, john", "jóhn dóe"

        ],

        "Alice": ["alice", "álice"]

    }

}

As easily as that, you can clean your data in a faster way instead of
manually finding similar entries on a column, which would take a while, if
you don't want an outlier to eventually show up.



Let's review every string cluster method available in Optimus. Be sure to
select the best method according to the size of the data you're handling. You
can see an overview of the methods here:

Figure 6.4 – String cluster method speed versus accuracy

Remember that processing time can grow higher with the Levenshtein and
string grouper methods, so if your data doesn't require that level of
accuracy, you can use any other method.

Summary
In this chapter, we learned about the methods we can use in Optimus to
group similar string values in a column using key collision and nearest-
neighbor methods and replace them with a single value that could represent
them better.

With the clustering already created, we learned how to explore suggestions,
modified them, and applied them to our data.



Also, we learned about different algorithms that are available in Optimus,
which to use depending on the type of data we're handling, and how
accurate/fast we need to get our clusters.

In the next chapter, we will learn how to start doing feature engineering to
our dataset as an introduction to the machine learning (ML) chapter.
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Chapter 7: Feature Engineering
Now that we have covered some considerable ground on how to shape our
data as needed, let's talk about feature engineering.

If you want to create a machine learning model, you input data. This input
data includes the features that an algorithm needs to create a model. These
features need to have specific characteristics; for example, it cannot have
null values or the data needs to comply and have specific probability
distributions.

With featuring engineering, you can prepare the input dataset so that it
complies with the algorithm's requirements, and also improve the
performance of the machine learning model, thereby creating new features
with data we already have.

So, in this chapter, we will be covering the following topics:

Handling missing values

Handling outliers

Binning

Variable transformation

One-hot encoding

Feature splitting

Scaling



Technical requirements
Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more information about the requirements, please go to
the GPU configuration section of Chapter 1.

You can find all the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Handling missing values
One of the most common scenarios when handling data is to find missing
values in your dataset.

Missing values are important to handle because, for example, many
machine learning algorithms cannot have missing values if you want them
to work properly. Or, if you are creating a report, you do not want to present
stats with an aggregation of null values.

It's important to notice that Optimus treats None and NaN (Not a Number)
values as interchangeable to indicate null values. To handle them, you can
do two things: remove the data or impute it. In this section, we will present
how Optimus can help with both tasks without providing an exhaustive
statistical explanation of when to use each method. Let's see how Optimus
can help us with both tasks.

Removing data



In this case, we will see how we can remove whole rows or columns that
contain missing values.

Removing a row
First, let's create a dataframe with some null values in many columns:

import numpy as np

df = op.create.dataframe({

    "A":[11,2,3,45,6,np.nan,2],

    "B":[1,2,np.nan,45,6,2,3],

    "C":[1,2,3,45,6,2,np.nan],

    "D":[1,2,3,45,6,2,np.nan],

    "E":[1,2,3,45,6,2,np.nan]

})

df.print()

         A           B           C           D            E

  (float64)   (float64)   (float64)   (float64)   (float64)

-----------  ----------  ----------  ----------  ----------

         11           1           1           1           1

          2           2           2           2           2

          3         nan           3           3           3

         45          45          45          45          45

          6           6           6           6           6

        nan           2           2           2           2

          2           3         nan         nan         nan

To remove all rows with missing values, use the following command:

print(df.rows.drop_na())



         A           B           C           D            E

  (float64)   (float64)   (float64)   (float64)   (float64)

-----------  ----------  ----------  ----------  ----------

         11           1           1           1           1

          2           2           2           2           2

         45          45          45          45          45

          6           6           6           6           6

Removing columns
To see how we can remove columns that contain null values, we must first
create a dataframe for it:

df = op.create.dataframe({

    "A":[11,2,3,45,6],

    "B":[1,2,None,45,6],

    "C":[1,2,3,45,6]

})

Let's print the dataframe to have a better idea of where the null values are:

df.print()

        A            B          C

  (int64)    (float64)    (int64)

---------  -----------  ---------

       11            1          1

        2            2          2

        3          nan          3

       45           45         45

        6            6          6



Then, delete the B column:

print(df.cols.drop("B"))

        A          C

  (int64)    (int64)

---------  ---------

       11          1

        2          2

        3          3

       45         45

        6          6

Remember that you can also pass a list of columns names, like so:

print(df.cols.drop(["A", "B"]))

In the previous example, we deleted columns A and B. Let's see how else
we can handle missing values.

Imputation

Imputation refers to updating missing data with alternate values. The reason
you may have missing data could be due to human error while filling in a
survey, or even interruptions in a data stream from a flow sensor.

Imputation is the preferable option compared to dropping because you
never know how the data you decide to drop can affect the model's
performance.

Optimus provides functions that can handle numerical string data. Let's see
how it works.



Numerical imputation
Optimus relies on the impute method. With this method, you can easily
handle continuous values. You can apply one of the following four
techniques to handle null values:

Mean

Median

Most frequent

Constant

Let's see some examples.

First, let's create a dataframe with a column of numbers:

import numpy as np

df = op.create.dataframe({"A":[1,2,3,45,6,2,np.nan]})

df.print()

This will print a column of integers with the last values represented as nan:

         A

  (float64)

-----------

          1

          2

          3

         45

          6

          2



        nan

Now we will use impute to calculate the median value of all the values and
apply it to the nan value:

df.cols.impute("A",data_type="continuous", strategy="mean")

Now, replace the nan value with 9.83333, which is the mean value:

          A

  (float64)

-----------

          1

          2

          3

         45

          6

          2

    9.83333

With the mean, you can apply the median strategy to replace nan, as
follows:

df.cols.impute("A",strategy="median").print()

You will get the following output:

          A

  (float64)

-----------

          1

          2



          3

         45

          6

          2

        2.5

Also, you can use the most frequent value (this is also known as categorical
imputation), like so:

print(df.cols.impute("A",strategy="most_frequent"))

You will get the following output:

          A

  (float64)

-----------

          1

          2

          3

         45

          6

          2

          2

If your data does not match any previous case, you can substitute the nan
value with whatever value you input:

print(df.cols.impute("A", strategy="constant",

                     fill_value=1))

This will print the following output:



          A

  (float64)

-----------

          1

          2

          3

         45

          6

          2

          1

Now that we know how to handle numeric columns, let's learn how to
handle string values.

String imputation
When it comes to string columns, Optimus only gives you the
most_frequent method to work with. Let's create a dataframe to work with:

df = op.create.dataframe({

    "A":[1,2,3,45,6,2,3],

    "B":["Optimus", "Bumblebee", "Eject", "Optimus",

         "Bumblebee", "Eject", np.nan]

})

It works in the same way as it does with string values:

print(df.cols.impute("B", strategy="most_frequent"))

 A    B

 1    Optimus

 2    Bumblebee



 3    Eject

45    Optimus

 6    Bumblebee

 2    Eject

 3    Bumblebee

As you can see, there are plenty of options to impute a missing value. Now,
it's time to learn how to handle outliers.

Handling outliers
An outlier is a data point that is far away and not similar to all the other data
points in a sample:

Figure 7.1 – Outlier (marked in red)

Outliers can be detected using graphical (box plots) and not graphical
methods, with the graphical methods being more intuitive. Let's talk about
the non-graphical statistical methods:

Tukey or percentiles



Z-score

Modified z-score

To show how Optimus can handle outliers, let's create a dataset with
positive and negative extrema while considering all the data. Their values
will be between 40 and -50:

df = op.create.dataframe(

         {"A":[1,2,3,45,6,-50,np.nan],

          "B":["Optimus","Bumblebee","Eject","Optimus",

               "Bumblebee","Eject",np.nan] })

Now, let's apply all three methods.

Tukey

Tukey is a mathematical method for detecting outliers. Here, quartiles are
used. Optimus uses this method to calculate lower and upper bounds, as
follows:

Lower bound: Q1 - 1.5*IQ

Upper bound: Q3 + 1.5*IQ

Here, Q1 is the first quartile, Q3 is the third quartile, and IQ is the
interquartile range.

In Tukey, every data point that falls outside this range of values is
considered an outlier.

Using the info method, you can get a general overview of this method:



df.outliers.tukey("A").info()

In the case of Tukey, you can get a count of the outliers and non-outliers
with the upper and lower bound values:

{

'count_outliers': 2,

'count_non_outliers': 4,

'lower_bound': -4.75,

'lower_bound_count': 1,

'upper_bound': 11.25,

'upper_bound_count': 1,

'q1': 1.25,

'median': 2.5,

'q3': 5.25,

'iqr': 4.0

}

The lower_bound and upper_bound values represent the limits after
which a value is considered an outlier. In this case, the values that are
considered to be outliers are those outside the range of -4.75 and 11.25.

Now, if you just want to get the outlier values, you can use the select
method:

print(df.outliers.tukey("A").select())

This will return a dataframe containing the outliers:

          A  B

  (float64)  (object)

-----------  ----------



         45  Optimus

        -50  Eject

If you want to drop the outliers, you can use the drop method:

print(df.outliers.tukey("A").drop())

As you will see, the value 45 is considered an outlier and was removed
from the dataset:

          A  B

  (float64)  (object)

-----------  ----------

          1  Optimus

          2  Bumblebee

          3  Eject

          6  Bumblebee

        nan  nan

You can also select the values above the upper bound and below the lower
bound using the select_upper_bound() and select_lower_bound()
methods, respectively:

Print(df.outliers.tukey("A").select_lower_bound())

By doing this, you will get the bottom outliers of the dataframe:

          A  B

  (float64)  (object)

-----------  ----------

        -50  Eject



If you want to select the data above the upper level bound, you can use
select_upper_bound(), like this:

print(df.outliers.tukey("A").select_upper_bound())

By doing this, you will get the top outliers of the dataframe:

          A  B

  (float64)  (object)

-----------  ----------

         45  Optimus

Tukey has other helpful methods you can use to get more information about
the Tukey method's outcome.

To count the non-outlier values, you can use the non_outliers_count
method:

df.outliers.tukey("A").non_outliers_count()

This will print the following output:

4

To count the outliers, use the following command:

df.outliers.tukey("A").count()

You will get the following output:

3

To get information about the quartiles and the whiskers, use the following
command:

df.outliers.tukey("A").whiskers()



The preceding example will print a Python dictionary that contains the
following values:

{'lower_bound': -4.75, 'upper_bound': 11.25, 'q1': 1.25, 'median':

2.5, 'q3': 5.25, 'iqr': 4.0}

Just like Tukey, you can use Z-score to get different bounds.

Z-score

The Z-score is a very useful concept in the field of statistics. It shows us
whether a data point is deviating from the mean for a set of values, and if it
is deviating, how far away it is. More specifically, the Z-score tells us how
much standard deviation a data point has, compared to the mean.

If any data point has a Z-score more than 22, the data point is very different
from the rest of the data points, and could be considered as an outlier.

In Optimus, you can indicate how many standard deviations away a point
should be from the mean so that it's considered an outlier, by using the
threshold parameter:

threshold=2

print(df.outliers.z_score("A", threshold).select())

This will return a dataframe containing the outlier:

          A

  (float64)

-----------

         31

        -21



To better understand this, let's calculate the Z-score of the A column:

print(df.cols.z_score("A"))

This will return the following output:

          A

  (float64)

-----------

  -0.224362

  -0.143592

 -0.0628213

    2.19875

    0.17949

   -2.00131

        nan

  -0.143592

   0.017949

If you want to get rid of the outlier, you can use the drop method, as
follows:

print(df.outliers.z_score("A", threshold).drop())

This will return the following output:

          A

  (float64)

-----------

          1

          2



          3

          6

        nan

          2

          4

          6

As with the Tukey method, we can get the data above and below the lower
and upper bounds, respectively.

If you want to select the data above the upper level bound, you can use
select_lower_bound(), like this:

print(df.outliers.z_score("A").select_lower_bound())

This will return the bottom outliers of the dataframe:

          A

  (float64)

-----------

        -21

To select the top ones, you can use the following command:

print(df.outliers.z_score("A").select_upper_bound())

This will get us the following output:

          A

  (float64)

-----------

         31



Similar to Tukey, in Z_score, you have info(), non_outliers_count(), and
threshold).count().

If you want to avoid misleading boundaries, you can pass a threshold to a
modified version of Z-score.

Modified Z-score

We use the Z-score to find out potential outliers, however, this can be
inaccurate, especially for smaller sample sizes, because the maximum Z-
score is, at most, (n−1)/sqrt(n).

Authors Iglewicz and Hoaglin recommend using the modified Z-score:

Mi=0.6745(xi−median(x))/MAD

Here, MAD denotes the median absolute deviation.

In Optimus, you can easily apply modified_z_score. Let's see how it
works.

The aforementioned authors also recommend using a threshold of 3.5:

print(df.outliers.modified_z_score("A", threshold=3.5).select())

          A

  (float64)

-----------

         31

        -21

As with the z_score method, you can check the modified Z-score values
using modified_z_score:



print(df.outliers.modified_z_score("A", threshold).select())

          A

  (float64)

-----------

     0.6745

    0.33725

          0

      9.443

    1.01175

      8.094

        nan

    0.33725

    0.33725

You can drop the outlier with the following command:

print(df.outliers.modified_z_score("A", threshold).drop())

You will get the following output:

        A

  (float64)

-----------

          1

          2

          3

          6

        nan

          2



          4

          6

Similar to the Z-score, with the modified Z-score, you also count with the
info, count, and non_outliers_count methods. All three methods group our
data to get the outliers, but we can also group this data in a custom way by
using binning. Let's take a look.

Binning
The idea of binning is to group some values into a specific category, thus
reducing the amount of unique values in a dataset.

For example, let's say we're creating a column of numbers, like so:

df = op.create.dataframe(A=[1,2,3,31,6,-21,np.nan,2,4,6])

          A

  (float64)

-----------

          1

          2

          3

         31

          6

        -21

        nan

          2

          4



Here, we can group the values in low, medium, and high bins. For this, we
can use the cut method:

df.cols.cut("A", bins = [0,4,6,35] ,

            labels = ["low", "medium","high"])

The cut method will assign the low value to any value between 0 and 4,
medium to any value between 4 and 6, and high to any value between 6
and 35:

A

(category)

------------

low

low

low

high

medium

nan

nan

low

low

It's important to talk about how bins work. Optimus will include the right-
most edge but not the left one. The bins we are using [0, 4, 6, 35] will be
represented as (0,4], (4,6], (6, 35]. This means that when binning, Optimus
will not take the 0 value but it will take 4 for the first bin, and will not take
4 but will take 6 for the second one:



Figure 7.2 – How cut works in Optimus

You can also apply cut to categorical data, as follows:

df = op.create.dataframe(A=["Maracaibo", "Caracas", "CDMX",

                            "Monterrey", "Bogota"])

print(df.cols.cut("A", ["Maracaibo", "Caracas", "CDMX",

                        "Monterrey", "Bogota"],

                  labels=["Venezuela", "Venezuela",

                          "Mexico", "Mexico", "Colombia"]))

This will return a dataframe in which we group every state to their
respective state:

A

(object)

----------

Venezuela

Venezuela

Mexico

Mexico



Colombia

Binning is commonly used to make a more robust model, thus preventing
overfitting at the cost of data loss and performance. It can be helpful for
categorical columns to unite values, thus reducing the total amount of
unique values.

However, it mainly provides categories for columns with numerical data,
sacrificing resolution. This may be redundant for some kinds of machine
learning algorithms.

Variable transformation
Some machine learning models, such as linear and logistic regression,
assume that the variables follow a normal distribution. More likely,
variables in real datasets will follow a more skewed distribution.

By applying several transformations to these variables, and mapping their
skewed distribution to a normal distribution, we can increase the
performance of our models.

Plotting a histogram or using Q-Q plots could give you an idea of whether
the data has a normal distribution or is skewed.

Next, we will look at four methods you can use to adjust your data
distribution.

Logarithmic transformation

This is the simplest and most popular among the different types of
transformations and involves a substantial transformation that significantly



affects the distribution shape.

We can use it (natural logarithmic ln or log base 10) to make extremely
skewed distributions less skewed, especially for right-skewed (or positively
skewed) distributions.

In Optimus, you can use the log method:

print(df.cols.log("A"))

This will apply the log to the column:

          A

  (float64)

-----------

          0

    0.30103

   0.477121

    1.65321

   0.778151

   0.845098

        nan

This method transforms the values from A into its logarithms. Another
method that can be used to transform positively skewed distributions is
square root. Let's take a look.

Square root transformation

Another simple transformation, this one has an average effect on the
distribution shape: it's weaker than logarithmic transformation, and it's also



used to reduce positively skewed distributions.

One advantage of square root transformation is that you can apply it to zero
values.

In Optimus, you can use the sqrt method for this:

print(df.cols.sqrt("A"))

          A

  (float64)

-----------

          1

    1.41421

    1.73205

     6.7082

    2.44949

    2.64575

        nan

As we already know, this method will return the transformed dataframe, but
now with square root values on the A column. As well as square root
transformation, you can use reciprocal transformation for right-skewed
distributions.

Reciprocal transformation

Reciprocal transformation is a powerful transformation with a radical effect.
The reciprocal reverses the order among values of the same sign, so large



values become smaller. The negative reciprocal preserves the order among
values of the same sign.

You should note that this function is not defined for zero.

In Optimus, you can use the reciprocal method like so:

print(df.cols.reciprocal("A"))

          A

  (float64)

-----------

          1

        0.5

   0.333333

  0.0222222

   0.166667

   0.142857

        nan

As you can see, the values shown here are the inverse of the input values.
You can use other known transformations such as exponential or power
transformations.

Exponential or power transformation

Power transformation has a reasonable effect on the distribution shape;
generally, we apply power transformation (power of two, usually) to reduce
left skewness.



In Optimus, you can use the pow or exp methods for this. Try and see
which one gives you better results:

print(df.cols.pow("A", 2))

          A

  (float64)

-----------

          1

          4

          9

       2025

         36

         49

        nan

As you can see, the values changed dramatically.

But what if we're not using a numerical column? For this, we have a method
called string_to_index. Let's take a look.

String to index

String to index assigns a numeric value to every identical value in a
column. Let's take a look at how it works.

First, let's create a dataframe that contains a couple of repeated values:

df = op.create.dataframe({

    "A":["Optimus","Bumblebee","Eject","Optimus","Eject"]

})



This will give you a dataframe that looks like this:

A

(object)

----------

Optimus

Bumblebee

Eject

Optimus

Eject

Now, let's apply the string_to_index method:

print(df.cols.string_to_index())

This will create a column and assign a value of 0 to Bumblebee, 1 to Eject,
and 2 to Optimus:

A             A_string_to_index

(object)                (int32)

----------  -------------------

Optimus                       2

Bumblebee                     0

Eject                         1

Optimus                       2

Eject                         1

In this example, we assigned an index to every value on A. We can do this
to allow machine learning algorithms to use this column as a numeric one.
Now, let's look at another method that also allows this but in a better way,
called one-hot encoding.



One-hot encoding
One-hot encoding is a process where categorical data is converted into an
alternate form that is much easier to use for machine learning algorithms,
which in turn results in better predictions.

To illustrate how it works, let's say we have the following dataframe:

df = op.create.dataframe({"A":["Optimus","Bumblebee","Eject",

"Megatron"], "B":

["Transformer","Transformer","Transformer","Decepticon"]})

A           B

(object)    (object)

----------  -----------

Optimus     Transformer

Bumblebee   Transformer

Eject       Transformer

Megatron     Decepticon

Most machine learning algorithms can only work with numbers, so, with
one-hot encoding, we will create a column containing the category name
and assign 0 or 1 to the row if the observation belongs to a specific
category:

print(df.encoding.one_hot_encoder("B"))

This will result in the following output:

A           B              B_Decepticon    B_Transformer

(object)    (object)            (uint8)          (uint8)

----------  -----------  --------------  ---------------

Optimus     Transformer               0                1



Bumblebee   Transformer               0                1

Eject       Transformer               0                1

Megatron     Decepticon               1                0

Here, Megatron belongs to the Decepticon category, so the number 1 is
assigned to the B_Decepticon column, while 0 is assigned to
B_Transformer.

However, if our values are more complex than just categories, we need to
apply other methods that split these values across multiple columns.

Feature splitt ing
Feature split is a technique that consists of splitting values from one column
to create new ones. A good example could be to split first names and last
names that have been saved in a single column into two separate ones, or
splitting a date into three columns with separate values for days of the
month, months, and years. The main goal of splitting a feature is to give a
machine learning algorithim data in small packages that it can interpret
better and, by the end, improve the machine learning model's performance.

For featuring splitting, we can use the unnest method, which we looked at
in Chapter 3. However, there, we focused on how we can produce features
to feed our machine learning algorithm.

First, let's start with a dataframe that contains some string values:

df = op.create.dataframe({"A":["Argenis Leon","Luis Aguirre","Favio

Vasquez",np.nan]})

print(df.cols.unnest("A"," ", drop=True))



The drop parameter will delete the column you are splitting, returning the
name and last name and any other column in the dataframe:

A_0         A_1

(object)    (object)

----------  ----------

Argenis     Leon

Luis        Aguirre

Favio       Vasquez

nan

Another popular case is to split dates into days, months, and years. First,
let's create a dataframe that contains some dates:

df = op.create.dataframe({"A":

["10/04/1980","20/05/1995","01/08/1990",np.nan]})

Now, let's split them into three columns while preserving the original
column:

df.cols.unnest("A", "/", splits=3,

               output_cols=["day","month","year"])

A                  day       month        year

(object)      (object)    (object)    (object)

----------  ----------  ----------  ----------

10/04/1980          10          04        1980

20/05/1995          20          05        1995

01/08/1990           1          08        1990

As we already know, unnest divides our values by a given separator, which
is very useful for data preparation for machine learning. Another way to



prepare data is by scaling numerical values. Let's take a look.

Scaling
Scaling consists of bringing numerical features in a dataset into the same
range of values. For example, in a dataset, you could expect to have an age
range between 30 and 75 years and salaries between 30,000 USD and
120,000 USD. Because the scale of both features is very different, this can
hurt the model's performance.  

Although scaling is not mandatory for many algorithms, some based on
distance calculations, such as k-NN or k-means, need to have scaled
continuous features to perform well.

To help you with this task, Optimus gives you three scaling methods:

Normalization

Standardization

Max abs scaler

To show you how they work, let's start by creating a simple dataframe:

df = op.create.dataframe({"A":[1.12,3.2,4.35,6.3,7.3,np.nan]})

Now, let's learn how to apply normalization.

Normalization

Normalization (also called min-max normalization) scales all the values in a
fixed range between 0 and 1. In Optimus, you can use the min_max_scaler



method by using the cols accessor, like so:

print(df.cols.min_max_scaler("A"))

Here, the output will be scaled:

          A

  (float64)

-----------

          0

    0.33657

   0.522654

   0.838188

          1

        nan

Remember that you can always use the output parameter to output the
result to another column, like so:

print(df.cols.min_max_scaler("A", output_cols="A_normalized"))

This is useful for maintaining both columns in the dataset, since the method
applies a function that cannot be reverted. Let's look at a similar method
called standard_scaler.

Standardization

Standardization (or Z-score normalization) rescales the values to ensure that
the mean is 0 and the standard deviation is 1. In Optimus, you can use the
standard_scaler method for this:

print(df.cols.standard_scaler("*"))



This will result in the following scaled column:

          A

  (float64)

-----------

   -1.51526

  -0.569926

 -0.0472666

   0.838981

    1.29347

        nan

As we can see, we'll get values over 1 and below 0, unlike normalization.
Another type of scaling method is max abs scaler. Let's take a look.

Max abs scaler

This method is used to scale a feature using its maximum absolute value.

This estimator modifies each of the features so that the maximum absolute
value for each of them is exactly 1.0, for the training set. It doesn't shift or
change the data, and so doesn't remove any of the consistency.

In Optimus, you can use the max_abs_scaler method like so:

print(df.cols.max_abs_scaler("*"))

In return, you will get a column that contains the scaled values:

          A

  (float64)

-----------



   0.153425

   0.438356

    0.59589

   0.863014

          1

        nan

As we can see, the maximum value of this result is 1.

We have plenty of options to scale the values of a column for different
cases.

Summary
In this chapter, we covered a lot of techniques for preparing our data to be
consumed by machine learning algorithms.

One of these techniques is imputation, which is useful for data that contains
null values. For data that contains unexpected values, we can apply outlier
handling.

By using binning, we can categorize numeric data. If our numeric data is
not correctly distributed, we can remove skewness by applying variable
transformations, using methods we looked at in the previous chapters.

On the other hand, one-hot encoding allows us to separate the values from a
column into multiple Boolean columns. We can split one value that contains
lots of data into multiple values by using feature split. Finally, we learned
how to scale our data by using multiple methods.



Now that you know about all these techniques, you can make your first
steps into machine learning.

In the next chapter, we will learn how to use the data we've prepared so far
to create models using the methods available in Optimus.



Section 3: Advanced Features of Optimus
In this section of the book, you will deep dive into advanced applications,
including feature engineering, machine learning, and natural language
processing functions available in Optimus.

This section comprises the following chapters:

Chapter 8, Machine Learning

Chapter 9, Natural Language Processing

Chapter 10, Hacking Optimus

Chapter 11, Optimus as a Web Service



Chapter 8: Machine Learning
Up to now, we have covered all the tools needed to create machine
learning (ML) models from data cleaning, data exploration, and feature
creation.

Now, we will explore how Optimus can help you easily create, evaluate,
and use the most common ML algorithms in a line of code. This way, you
won't have to use technologies other than Optimus.

So, in this chapter, we will learn about the following topics:

Optimus as a cohesive application programming interface (API)

Implementing a train-test split procedure

Training models in Optimus

Technical requirements
Optimus can work with multiple backend technologies to process data,
including graphics processing units (GPUs). For GPUs, Optimus uses the
Real-Time Automated Personnel Identification System (RAPIDS),
which needs an NVIDIA card. For more information about the
requirements, please go to the GPU configuration section in Chapter 1, Hi
Optimus!.

You can find all the code for this chapter
at https://github.com/PacktPublishing/Data-Processing-with-Optimus.

https://github.com/PacktPublishing/Data-Processing-with-Optimus


Optimus as a cohesive API
The main goal of Optimus is to create a cohesive API so that you can
handle data and create ML models in the simplest way possible. In
Optimus, you have the ml accessor, which will give you access to the ML
algorithms implemented in Optimus.

ML algorithms can be hard to implement in parallel—for example, density-
based spatial clustering of applications with noise (DBSCAN) is not
implemented in Spark. For Optimus, we implemented algorithms that were
common to all the libraries, and the ones that we considered as must-haves
but that were missed, in a specific library. First, let's see which library
empowers every Optimus engine, as follows:

pandas uses scikit-learn.

Dask uses Dask-ML.

cuDF uses cuML.

Dask cuDF uses cuML.

Vaex uses vaex.ml.

Spark uses MLlib.

Ibis has no ML library available yet.

With this said, now let's see which algorithms are implemented in every
library. Have a look at the following overview:



Figure 8.1 – Algorithms that are implemented in every library 

As with dataframes, Optimus tries to create a layer to abstract low-level
details. Let's enumerate some details so that you can be sure where Optimus
can add value, as follows:

As we saw, every engine has its own library to handle ML, so you do
not have to learn to use every library.

pandas/Dask algorithms rely heavily on NumPy, so you have to handle
some low-level data transformation when creating models.

Spark does not follow the scikit-learn API that follows the rest of the
ML libraries. So, if you want to use Spark, you need to learn a new API.

By creating a layer to abstract those details, we'll be providing a simpler
interface to Optimus' users. Now, let's see more about how Optimus can



help.

How Optimus can help

When you want to create a model, there is a process to ensure that your
model can get the best performance it can achieve. After being sure that you
have cleaned, prepareed, and feature engineered the data you now need, and
depending on the model you want to implement, you will need to split your
data into train and test data and evaluate your data using a k-fold method. A
general overview of how Optimus processes models internally is expressed
in the following diagram:



Figure 8.2 – Optimus process to create a model

Let's see how Optimus can help with this task.



Implementing a train-test split procedure
The main idea of splitting your data into two datasets is that you can train
your model in one and then test your model performance over new data.
When a dataset is split into a training and testing set, the majority of the
data goes to the training set and a small part of it is used for testing.

The subset used to fit a model is known as the training dataset. This
contains example inputs and outputs (I/Os) that will train the model fitting
the parameters.

On the other hand, when the inputs on the test dataset are provided to the
model, the resulting predictions made from those inputs are then compared
to the expected values to assess the model's accuracy.

When to use a train-test split procedure

A train-test split evaluation procedure can be used for classification or
regression problems.

The dataset to be used should be large enough to represent the problem
domain, covering every common case and enough uncommon cases.
Depending on this, it may require thousands or even millions of examples
in the whole dataset.

Unless the model has enough data, it won't be able to effectively map the
inputs to the outputs, and also wont have the required data in the test set, to
generate performance metrics for the model.

Another reason this procedure is handy is to get better computational
efficiency. Some of the models can be very expensive when it comes to



training, and multiple rounds of evaluation can be hard to deal with.

Test size

A train-test split evaluation has one key parameter, which is the split ratio
of our dataset. This is typically represented as a number between 0 and 1 for
either the train or the test set, which means that a test set that has a value of
0.2 will have 20% of the content from the original dataset.

There is no perect ratio or percentage for all the cases. We must allocate the
split in such a way that all the projects objectives are covered, including the
actual cost of training, evaluating and testing the model, and so on.

Common test sizes include test sets with sizes between 0.2 and 0.5.

Now that we know how to implement a train-test split model evaluation
procedure, let's look at how we can use it in Optimus.

In Optimus, this process is handled internally by the model, using
the test_size parameter. Let's suppose we want to apply a linear regression
model and use 20% of the data available as test data to test the model
performance. We can achieve this with the following code:

df.ml.linear_regression(['reclat','reclong'],

'mass(g)', test_size=0.2)  

In the previous example, we are applying a linear regression model to the
reclat and reclong columns of the dataset.

Repeatable train-test splits



Rows are assigned to the train and test sets randomly, so that the sample is
representative.

So, if you want to compare results, you'll want to set a seed for the pseudo-
random number generator used when splitting the dataset. This way, the
model will be fitted and evaluated using the same set of values from the
original dataset.

This can be achieved by setting the random_state argument on the
methods we'll be using to create our ML models.

Using k-fold cross-validation

Cross-validation or k-fold cross-validation is a commonly used technique
used to evaluate ML models. This consists of splitting the data into k groups
and comparing every one of the n parts with the rest. This method is easy to
understand and generally results in fewer biased models compared with a
train-split method. The method is better represented as follows:



Figure 8.3 – How k-fold cross-validation works

For example, if we test our model on five folds, we will process the data as
shown in Figure 8.3.

We'll review all these methods to get a better understanding of how to test
our models, but internally Optimus uses a k-fold technique.



Training models in Optimus
Now that we know how the test/train, split, and cross-validation processes
work, let me tell you something amazing. You don't have to struggle with
configuring and writing code to make this process work, as Optimus will do
the heavy lifting for you.

Let's see the ML models available in Optimus.

Linear regression

Linear regression is a supervised ML algorithm that is useful for finding out
how variables are linked to each other. By assigning a linear equation to the
data that we have, we can use fresh data and predict the output, as
illustrated in the following diagram:



Figure 8.4 – A line approximated to a cluster of points

In the preceding diagram, we can see a line that approximates a cluster of
points. Let's see how to calculate this approximation.

First, let's start by creating a dataset with the following code:

import numpy as np 

size = 10000 

data = { 

    'length':[round(random.uniform(1,2),1) for i in range(size)],  

    'width': [round(random.uniform(1,1.5),1) for i in

range(size)],  

    'height': [random.randint(20,50) for i in range(size)], 

    'type': [random.randint(0,1) for i in range(size)] 

} 

  

df = op.create.dataframe(data).repartition(4).execute() 

df['weight'] = df['height'] * df['width'] * df['length'] *

[random.uniform(1,1) for i in range(size)] 

df = df.cols.round('weight',1) 

This will create the following output:

     length        width     height       type     d_weight

  (float64)    (float64)    (int64)    (int64)    (float64)

-----------  -----------  ---------  ---------  -----------

        1.4          1.2         36          0         60.5

        1.1          1.4         20          1         30.8

        1.9          1.1         20          0         41.8



        1.2          1           30          1         36

        1.6          1.1         20          1         35.2

        1.8          1.4         39          0         98.3

        1.6          1.4         20          0         44.8

        1.4          1.4         21          0         41.2

        1.5          1.1         38          0         62.7

Now, you can predict a value using a linear regression model, like so:

lm = df.ml.linear_regression('height','d_weight', test_size=0.2,fit

_intercept=False) 

Also, you can predict the d_weight value using the height, like so:

lm.predict(36)

This will return the following output:

 [68.18919244183671] 

In this case, for a height of 36, the model will return a dimensional weight
of 68.18919244183671, but let's explore a little
what happened under the hood.

df.ml.linear_regression  will return an Optimus model object. If you
execute lm, it will return the following output:

<optimus.engines.pandas.ml.models.Model at 0x1f931014f48> 

This object has some additional functions that can help you to evaluate
and visualize your model.

To evaluate your model or how good your model is at predicting a value,
Optimus uses the R-squared (R²) coefficient of determination. This



indicates how well the regression predictions approximate the real data
points. In Optimus, you can check the accuracy like so:

print(lm.evaluate())

This will return the following output:

{'accuracy': 0.5518192755546748, 'standard deviation':

0.054855397528967634} 

It's hard to say whether it's now a good R² value. The threshold for a good
R² value depends widely on the domain, therefore it's most useful as a tool
for comparing different models.

If you want to know where the line intercepts with the axis, you can get this
information using the following line of code:

lm.intercept()

This will give you the following output:

-1.0359347377853823 

Or, if you want to get linear equation coefficients, you can use the following
code:

lm.coef() 

[1.9221350555037229] 

OK—now that we know how to predict and evaluate our model, let's go
back a little bit and see what happened inside df.ml.linear_regression. 

Optimus makes two important steps here related to what we learned in the
past section, as follows:

Train-test split 

K-fold cross-validation



Optimus first separates the data into train and test data. Optimus uses by
default 20% of the data for testing. You can set how much data you want to
use for this with the test_size property, like so:

lm = df.ml.linear_regression('height','d_weight', test_size=0.3) 

In k-fold cross-validation, Optimus takes five folds by default. It's
important to note that the accuracy we calculated previously is the mean of
all the R² calculations in every fold. If you want to know how to perform
every fold, you can use lm.scores to get the following output:

{'neg_mean_absolute_error': [-13.811269861612953,

-11.279855517497198, -12.091910783179417, -12.318287462375567,

-12.317722455904498], 'neg_mean_squared_error':

[-303.27443869789056, -219.26820300534945, -217.3260761387018,

-243.19541612297002, -238.7205727812638],

'neg_root_mean_squared_error': [-17.41477644696855,

-14.807707554018936, -14.741983453345137, -15.594723983545526,

-15.450584868582283], 'r2': [0.4539669486939144,

0.6245671700067864, 0.560437200131502, 0.5421392626142632,

0.5600087733488277]} 

To finish, let's plot a line produced for the linear regression algorithm that
better approximates all data points. For that, we will use the plot method.
You can see a representation of this here:



Figure 8.5 – Multiple linear regression

To make predictions using linear regressions, you can implement multiple
features.

Let's say we want to predict the d_weight value using the length, width,
and height properties. We can do this in the following way:

lm = df.ml.linear_regression(['length','width','height'],'d_weight'

, test_size=0.2,fit_intercept=False,)

And to predict, you can use the following line of code:

print(lm.predict([[1.4,1.38,25]])) 



Because you are using three independent variables, you are going to get
three coefficients. To print these, run the following line of code:

print(lm.coef()) 

You will get the following result:

[21.26987554210074, -10.097655140541706, 1.364351495308436] 

And to evaluate the model, as we saw, we can use the following code:

print(lm.evaluate()) 

{'accuracy': 0.9684722231977312, 'standard deviation':

0.0017256479289964421} 

As we can see, we improve the model accuracy by using more data features.

Logistic regression

Logistic regression is an ML algorithm that can predict the probability of
certain discrete values using continuous values. Let's see how this works,
using the iris dataset from scikit-learn. The following example consists of
50 samples from each of three species of iris plants:

import numpy as np

import pandas as pd

from sklearn.datasets import load_iris

 

iris = load_iris()

df = pd.DataFrame(data=np.c_[iris['data'], iris['target']], 

                  columns=iris['feature_names'] + ['target'])

df = op.create.dataframe(df)



We will get a larger dataset, so let's print it in two parts, as follows:

df.cols.select(['sepal length (cm)', 'sepal width (cm)',

'target']).print()

This will show the following output:

  sepal length (cm)    sepal width (cm)       target

          (float64)           (float64)    (float64)    

-------------------  ------------------  -----------

                5.1                 3.5            0

                4.9                 3              0

                4.7                 3.2            0

                4.6                 3.1            0

                5                   3.6            0

And here's the other part:

df.cols.select(['sepal length (cm)', 'sepal width (cm)',

'target']).print()

This will show the following output:

  petal length (cm)    petal width (cm)       target

          (float64)           (float64)    (float64)

-------------------  ------------------  -----------

                1.4                 0.2            0

                1.4                 0.2            0

                1.3                 0.2            0

                1.5                 0.2            0

                1.4                 0.2            0  



The flower species are represented as 0, 1, and 2, which correspond to
the setosa, versicolor, and virginica species. 

You can get the names using iris.target_names, resulting in the following
output:

array(['setosa', 'versicolor', 'virginica'], dtype='<U10') 

Now, to calculate a logistic regression model using a 20% test size, run the
following code:

lr = df.ml.logistic_regression([0,1,2,3],'target', test_size=0.2) 

This will return the model. Then, you can use predict to return the species
taking the features you input, as follows:

lr.predict([[5.1,3.5,1.4,0.2]]) 

This will return the following output:

[0.0] 

The preceding output relates to the setosa species.

Now, if you want to know the probability of each species taking the features
you input, you can use the following line of code:

lr.predict_proba([[5.1,3.5,1.4,0.2]]) 

This will return an array with the probability of every species, as follows:

[[8.76409999e-01, 1.23555395e-01, 3.46054257e-05]]

To get the accuracy of the model, you can use the following line of code:

lr.evaluate() 

This will result in the following output:

{'accuracy': 0.94, 'standard deviation': 0.9} 



As we can see, we have plenty of options to use logistic regression. Now,
we'll show we can get even more detailed information from our
classification models by generating some plots.

Model performance

The model performance refers to how well your model can predict future
data. Let's see how we can apply some evaluation methods depending on
the ML algorithm we use.

Confusion matrix
A confusion matrix is a table that can show the performance of a algorithm
on a set of test data. In this section, we will show how to use Optimus to
make confusion matrices more user-friendly and easy to understand.

To get a confusion matrix, you can simply call the following method in the
model:

lr.confusion_matrix()

This will result in the following confusion matrix plot:



Figure 8.6 – Confusion matrix 

What we are seeing here is this:

The true class of 11 items is 0. None were classified wrongly.

The true class of 11 items is 12, but one was wrongly classified as 2.

The true class of six items is 6. None were classified wrongly.

As you can see, by using a confusion matrix, we can have an idea of how
accurate a classifier is. Let's see how else we can measure the performance
of our model.

ROC
An AUC-ROC (area under the curve and receiver operating
characteristic, respectively) curve helps us visualize how well our ML
classifier is performing. Specifically, it tells how much a model is capable



of distinguishing between different classes. A higher AUC means a more
accurate prediction.

A higher x-axis value (near the right part of the plot) tells us there is a
higher number of false positives, while a higher y-axis value (near the top
part of the plot) indicates a higher number of true positives. To plot an
AUC-ROC curve, run the following line of code:

lr.roc_auc()

This results in the following output:

Figure 8.7 – ROC curve plot

Now, let's learn about another measurement technique called precision-
recall (PR).

PR curve plot



To understand the concept of precision and recall, we first need to
understand the four types of results we can get, so we can predict a value
for this, as follows:

True positive: The prediction is correct and the actual value is positive.

False positive: The prediction is wrong and the actual value is positive.

True negative: The prediction is correct and the actual value is
negative.

False negatives: The prediction is wrong and the actual value is
negative.

But what does this mean?

Suppose we have a camera system that can identify whether an object is a
human or a robot. These are the four possible outcomes:



Figure 8.8 – Types of results in an ML model

The precision and the recall are metrics that can measure the performance
of a model. The precision is the ratio of actually true positives—this
represents how precise a model is in guessing which elements are true. On
the other hand, recall is the ratio of relevant elements that are selected—it's
calculated by dividing the count of true positives by the sum of the count of
true positives and the count of false negatives.

In Optimus, you can plot the precision and recall from a model using the
following line of code:

lr.precision_recall()

This will result in a plot like this:



Figure 8.9 – PR curve plot

As you can see, by plotting a PR curve, you'll be able to know the trade-off
between the precision and the recall of your model.

K-means

K-means clustering is an unsupervised learning (UL) technique used
when we have unlabeled data, which means that you do not know which
categories or groups every observation belongs to. Optimus requires you to
define the number of clusters in which it will iteratively try to put every
data point inside a group. In Optimus, you can apply k-means clustering
using ml.k_means, like so:

km = df.ml.k_means([0,1,2,3],'target',3) 

km.predict([[5.1,3.5,1.4,0.2],[6.2,2.9,4.3,1.3]]) 

[0, 1] 



km.plot_clusters() 

The centroids are in X and every color represents one of the three clusters,
as illustrated in the following screenshot:

Figure 8.10 – K-means plot

Model evaluation
In Optimus, you can get the k-means evaluation score just by using the
scores method, like so:

km.scores() 

{

    'inertia': 139.82049635974974,

    'homogeneity_score': 0.6591265018049008,

    'completeness_score': 0.6598476779627759,

    'v_measure_score': 0.659486892724918,

    'adjusted_rand_score': 0.6201351808870379,

    'adjusted_mutual_info_score': 0.6552228479234864,



    'silhouette_score': 0.5061527484935536

} 

Let's see what every value means, as follows:

inertia: Inertia is a measure of how consisten clusters are.

homogeneity_score:This considers whether a cluster contains
datapoints that are only members of a single class.

completeness_score: This provides information about how samples can
be assigned to cluster, more specifically, all the samples with the same
true values should be assigned to the same cluster.

v_measure_score: This symmetric value can be used to determine the
compatibility of two assignments on the same data.

adjusted_rand_score: This generates a measure of how similar to
clusters are to each other, by looking at all the pairs of samples, and
counting the ones assigned to the same or different clusters.

adjusted_mutual_info_score: This is used to update the mutual
information (MI) score due to the chance between clustering
processes.

silhouette_score: This is used to evaluate the goodness of a clustering
technique.

Not knowing the number of centers

In some cases, we have no idea of how many clusters our dataset is divided
into. For this, we can use the elbow method.



It's called the elbow method because the chart resembles an arm with an
'elbow' (the point of inflection on the curve), which can be used as an
indication of how many clusters exist in our dataset.

The elbow method runs k-means clustering on the dataset k times. For each
iteration, the distortion score (or sum of squared errors) is calculated. The
idea is that this score could first decrease and then flatten, forming an elbow
shape. To create an elbow plot, we can use the following line of code:

km.plot_elbow(4, 11)

This will output a graph between 4 and 11 clusters, as illustrated in the
following screenshot:

Figure 8.11 – Elbow method plot between 4 and 11 clusters

If you want to plot a graph between two and eight clusters, you can use the
following line of code: 



km.plot_elbow(2,8)

This results in the following plot:

Figure 8.12 – Elbow method plot between two and eight clusters

In the last plot, we see a dashed line. This line defines the elbow of the
curve, and it can be used as the number of clusters in our dataset. To be
clear, this is a heuristic method, so it can be taken more as guidance than a
definite method to calculate the number of clusters.

In Figure 8.11, a dashed line was not drawn because an elbow could not be
identified.

PCA

For human beings, it is difficult to process information beyond three
dimensions. We can use some artifacts such as coloring the data dots or



assigning some shape and size to add extra dimensions, but when we are
handling hundreds or even dozens of dimensions, it's difficult (if not
impossible) to imagine how to visualize the dataset.

That is when PCA comes to our aid. PCA is a dimensionality-reduction
method in which you can reduce n dimensions to smaller numbers but still
conserve the information from the larger dataset. Let's take a look at how
we can reduce n features/columns to two, as follows:

df.ml.PCA([0,1,2,3], n_components=2).print(5) 

      PCA_0        PCA_1

  (float64)    (float64)

-----------  -----------

   -2.2647      0.480027

   -2.08096    -0.674134

   -2.36423    -0.341908

   -2.29938    -0.597395

   -2.38984     0.646835

Also, you can add any other column from the original dataframe. In this
case, let's add the target column and use it to plot the color of every species
so that we can easily differentiate the three clusters, as follows:

print(df.ml.PCA([0,1,2,3], 'target', n_components=2)) 

      PCA_0        PCA_1       target

  (float64)    (float64)    (float64)

-----------  -----------  -----------

   -2.2647      0.480027            0

   -2.08096    -0.674134            0



   -2.36423    -0.341908            0

   -2.29938    -0.597395            0

   -2.38984     0.646835            0

Then, we can plot the data, like so:

Figure 8.13 – PCA plot



At this point, we have seen how to create models using Optimus. Now, let's
see how we can save them to use them whenever we need to.

Loading and saving models

An important point after creating our model is to save it for further use in
the future. Happily, with Optimus, you can simply use the save method in
the model. Let's use our previously created logistic regression model as an
example, as follows:

lr.save('model.sav')

This will save a file named model.sav, in which our model is saved.

Now, to load our model back, we use the Optimus object we initially create,
like so:

m = op.load.model('model.sav')

If you want to check which model has been loaded, simply call the m
variable, which will print the following information:

LogisticRegression(n_jobs=1, solver='liblinear')

Now, to predict a value using some features, run the following line of code:

m.predict([[6.3,3.3,4.7,1.6]])

This will return 2 as the predicted species, as we can see here:

array([2.])

As you see, you can load and save models in Optimus with a single line of
code. This will help you to use your model in the future from a Jupyter
notebook to a web server, to be consumed remotely.



Summary
In this chapter, we learned about the available algorithms for each library in
Optimus to handle ML. We saw about train-test split evaluation and when
to use it.

We also learned about different training models such as linear regression,
logistic regression, k-means, random forest, and PCA.

Finally, we learned how to load and save those models for further use or
deployment.

In the next chapter, we will learn about how to use the natural language
function available in Optimus.



Chapter 9: Natural Language Processing
Terabytes of text data are created on a daily basis by users of all sorts of
software, from enterprise systems to social networks. All this unprocessed
data hides amazing opportunities to improve how businesses work.

In this chapter, we will learn how to clean and process our data in order to
prepare it to create features that can be used as input to create machine
learning models.

The topics we will be covering in this chapter are as follows:

Natural language processing

Removing unwanted strings

Stemming and lemmatization

word_tokenizer

Feature extraction from text

Technical requirements
Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more information about the requirements, please go to
the GPU configuration section in Chapter 1, Hi Optimus!.

You can find all the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

https://github.com/PacktPublishing/Data-Processing-with-Optimus


Natural language processing
Natural language processing (NLP) is an interdisciplinary sector that lies
between linguistics and computer science, primarily aligning with artificial
intelligence. While NLP deals with two types of data – text and audio –
Optimus is more focused on text data.

Unstructured data, which mostly comes from the web (for example, tweets
or Facebook comments), requires preprocessing before it can be further
analyzed. Optimus can help you here, as it has the main functions you will
need to finish your work. Let's explore how we can remove unwanted
strings first.

Removing unwanted strings
To perform NLP, we need to ensure the data doesn't have any special
characters, diacritics, HTML tags, or any other content that may make it
difficult for the algorithms to work properly.

To see what Optimus can do for you, let's load a dataframe with text to help
us demonstrate Optimus' features:

df = op.load.csv("text.csv", sep=";")

That will load a text we specially prepared from Wikipedia. Let's see its
content:

text

(object)

"<a>http://google.com</a> <span>Transformers is an American and

Japanese media franchise produced by the American toy company

Hasbro and Japanese toy company Takara Tomy. It follows the battles

http://google.com/


of sentient, living autonomous robots, often the Autobots and the

Decepticons, who can transform into other forms, such as vehicles

and animals. The franchise encompasses toys, animation, comic

books,

...

Now that we know the data, let's start transforming it.

Stripping the HTML

When getting data from websites, it is common to find HTML tags.
Because HTML tags are a way to show information in an internet browser,
they rarely add any value to most common NLP tasks, so we tend to remove
them.

To use HTML tags, you surround some text with any of the tags available.
Some of the tags commonly found are "div," "a," and "spam." In this case,
let's see how to remove all HTML tags:

print(df.cols.strip_html("text"))

This will print the following output:

text

(object)

"http://google.com Transformers is an American and Japanese media

franchise produced by the American toy company Hasbro and Japanese

toy company Takara Tomy. It follows the battles of sentient, living

autonomous robots, often the Autobots and the Decepticons, who can

transform into other forms, such as vehicles and animals. The

franchise encompasses toys, animation, comic books,

...

http://google.com/


As you can see, the HTML tags <a> and </a> have been removed. This
will give us cleaner values. Let's see how we can transform our strings even
more.

Removing stopwords

Other than URLs, HTML tags, and special characters, there are other words
that are not essential for sentiment analysis or text classification. Words
such as I, me, he, you, and so on just increase the size of the text without
affecting results, and thus, we should get rid of them.

For our task, we will use a premade collection of stopwords from NTLK, or
any NLP library. Alternatively, we can create our collection depending on
the task.

By default, Optimus will remove the stopwords in English. For this, you
can use the following code:

print(df.cols.remove_stopwords("name"))

This will remove the stopwords in the text. For example, you can see that
words such as "is," "an," "and," and "by" are removed in the following
code:

text

(object)

"<>http://google.com</> <span>transformers american japanese media

franchise produced american toy company hasbro japanese toy company

takara tomy. Follows battles sentient, living autonomous robots,

often autobots decepticons, transform forms, vehicles animals.

Franchise encompasses toys, animation, comic books



…

If you want to use another language, you can use the language argument.
Let's see an example passing "span"sh":

df.cols.remove_stopwor"s("t"xt", langua"e="span"sh")

Optimus relies on theNatural Language Toolkit (NLTK) to get the
stopword list. NLTK, as stated on its website, is a leading platform for
building Python programs to work with human language data.

To get the list of languages available, you can execute the following
commands:

from nltk.corpus import stopwords

print(stopwords.fileids())

This will print the following output:

['arabic', 'azerbaijani', 'danish', 'dutch', 'english', 'finnish',

'french', 'german', 'greek', 'hungarian', 'indonesian', 'italian',

'kazakh', 'nepali', 'norwegian', 'portuguese', 'romanian',

'russian', 'slovene', 'spanish', 'swedish', 'tajik', 'turkish']

If you want to get the list of stopwords in a specific language, you can use
the following command:

print(stopwords.words("english"))

This will give us a list of every stopword in English, as shown here:

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',

'you', "you're", "you've", "you'll", "you'd", 'your', 'yours',

'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she',

"she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself',

'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which',

'who', 'whom', 'this', ...



We will also convert all the text to lower case as text in Python is case-
sensitive.

Stopwords are not the only thing that may pollute our data. URLs should
also be removed from our data in most cases. Let's see how.

Removing URLs

As with HTML tags, it is almost certain that you will find Uniform
Resource Locators (URLs) when getting data from web pages. A URL is
just a piece of text that points to a location on the web.

Because we almost always want to get insight from the text and not from
URLs, we can remove them in Optimus using the remove_urls function, as
shown here:

print(df.cols.remove_urls())

Remember that if you don't use the column name, you will apply the
function to the whole dataframe:

text

(object)

"<a></a><span>Transformers is an American and Japanese media

franchise produced by the American toy company Hasbro and Japanese

toy company Takara Tomy. It follows the battles of sentient, living

autonomous robots, often the Autobots and the Decepticons, who can

transform into other forms, such as vehicles and animals. The

franchise encompasses toys, animation, comic books

...



As you can see, this will remove the substring http://google.com from the
text.

After removing URLs, we can remove other characters. Let's see how.

Removing special characters

Special characters such as . (dots) and ; (semicolons) typically don't add any
value, so we can remove them.

Optimus uses the symbols from the Python code library, which we will
import using the following command:

import string

string.punctuation

That will print the following output:

'!"#$%&\'()*+,-./:;<=>?@[\\]^_'{|}~'

As you can see, between these symbols are symbols such as $ and %.
These may be important to preserve to denote money or percentages in our
text, which could be useful when dealing with financial data or statistics.

To remove the special characters, you only need the following command:

print(df.cols.remove_special_chars("text"))

This will print the following output:

text

(object)

ahttpgooglecoma spanTransformers is an American and Japanese media

franchise produced by American toy company Hasbro and Japanese toy

company Takara Tomy It follows the battles of sentient living

http://google.com/


autonomous robots often the Autobots and the Decepticons who can

transform into other forms such as vehicles and animals The

franchise encompasses toys animation comic books

...

If for some reason you want to remove specific characters, then you can
always rely on the replace function. To remove hyphens, you can use this
command:

df.cols.replace("text", "-", "", "chars")

Or you can use a list to remove many characters, as seen here:

df.cols.replace("text", ["-", "*"], "", "chars")

That will replace – and * with a white space.

Now that we have removed useless text from our values, let's homogenize
our text by expanding contracted words.

Expanding contracted words

In our everyday verbal and written communication, a lot of us tend to
contract common words. One example is how "you are" becomes "you're."
Converting contractions into their natural form will help us gain further
insight.

First, let's create another dataset for this example:

df2 = op.create.dataframe({"text": ["I'll let you know when, it

shouldn't take long. Don't rush."]})

Then, we can call expand_contrated_words to expand our contracted
words, as shown here:



df2.cols.expand_contrated_words("text")

This will print the following output:

text

(object)

I will let you know when, it should not take long. Do not rush.

As you can see, the words "I'll," "shouldn't," and "Don't" were replaced by
"I will," "should not," and "do not," respectively.

Once we expand the contracted words, we'll need to reduce words to
minimal expressions using stemming and lemmatization.

Stemming and lemmatization
In any text, it is common to find a word in multiple forms. See these, for
example:

Truck

Trucks

Truck's

Trucks'

All these words have the unique root Truck. The words in the list are called
inflections.

The following is a quote from Wikipedia:



In grammar, inflection is the modification of a word to express
different grammatical categories such as tense, case, voice, aspect,
person, number, gender, and mood. An inflection expresses one or
more grammatical categories with a prefix, suffix, or infix, or another
internal modification such as a vowel change.

Changing a word from its inflected form to its root form is called word
normalization.

In natural language processing, there are two main techniques to achieve
this: stemming and lemmatization.

Stemming

While stemming, we use an algorithm to reduce the word to its stems. This
is not the case for lemmatization, in which we use the language's
morphological root.

There are many algorithms to get the stem of a word. Optimus supports the
Porter, Lancaster, and Snowball algorithms. Let's see how it works.

To apply stemming to a column in Optimus, you can use the following
command:

df.cols.stem_verbs("text")

This will return all the columns with the stemmed verbs using Porter (this is
the default param value):

text

(object)



transform american japanes media franchis produc american toy

compani hasbro japanes toy compani takara tomi follow battl

sentient live autonom robot often autobot decepticon transform form

vehicl anim franchis encompass toy anim comic book video game film

franchis began 1984 transform toy line compris transform mecha toy

takara diaclon microman toylin rebrand western markets1 term gener

1 cover anim televis seri transform comic book seri name divid

japanes british canadian spinoff respect sequel follow gener 2

comic book beast war Summary

...

An improved stemmer method is the snowball stemmer. Unlike the porter
or lancaster stemmer, it supports many languages.

You can use the stemmer parameter to change the stemmer you want to
use. For example, to apply the snowball stemmer, use this:

print(df.cols.stem_verbs("text", stemmer="snowball",

language="english"))

That will return the following output:

text

(object)

transform american japanes media franchis produc american toy

compani hasbro japanes toy compani takara tomi follow battl

sentient live autonom robot often autobot decepticon transform form

vehicl anim franchis encompass toy anim comic book video game film

franchis began 1984 transform toy line compris transform mecha toy

takara diaclon microman toylin rebrand western markets1 term

generat 1 cover anim televis seri transform comic book seri name

divid japanes british

...



The good thing about Snowball is that it supports multiple languages. As
the Snowball functionality is built using nltk, you can get the full list of
languages supported by importing nltk:

from nltk.stem import SnowballStemmer

print(", ".join(SnowballStemmer.languages))

We'll get the following result:

arabic, danish, dutch, english, finish, french, german, hungarian,

italian, norwegian, portuguese, romanian, russian, spanish, swedish

Let's now explore a little about the difference between the three stemmers
available in Optimus.

Overstemming and understemming
To get a clearer view of the features of the different stemmer algorithms,
let's explore them in three dimensions: languages supported, speed, and
aggressiveness, as shown in the following figure:

Figure 9.1 – Stemmer features



In general, Snowball is most appropriate when you need to stem, because it
is less aggressive, faster, and is available in many languages. In the words
of its creator, Martin Porter, it is an improved version of the Porter stemmer.

Lemmatization

Lemmatization is the process of reducing a word to its lemma or canonical
form. For example, "Playing," "Plays," and "Played" would be reduced to
"Play."

The reduced form is the linguistic root word. To differentiate this from the
stemming process, remember that the word was reduced using some kind of
algorithm.

In Optimus, you can call lemmatize_verbs, as shown in the following
code:

df.cols.lemmatize_verbs("text")

This will give the following output:

text

(object)

transformer american japanese medium franchise produce american toy

company hasbro japanese toy company takara tomy follow battle

sentient living autonomous robot often autobot decepticon transform

form vehicle animal franchise encompass toy animation comic book

video game film franchise begin 1984 transformer toy line comprise

transform mecha toy takara diaclone microman toyline

...



As we can see, the words "transformers," "produced," and "follows" were
changed to "transformer," "produce," and "follow," respectively.

Now that we have reduced every word to its minimal expression, let's
tokenize every word.

word_tokenizer
Word tokenization is the process of splitting a large sample of text into
words. This is a requirement in NLP tasks where each word needs to be
captured and subjected to further analysis, such as classifying and analyzing
them for a particular sentiment.

In Optimus, you just need to call word_tokenizer in the cols accessor, as in
the following code:

print(df.cols.word_tokenize("text","tokens")["text"])

You will then obtain a list of words for every row, as shown here:

text

(object)

['transformers', 'american', 'japanese', 'media', 'franchise',

'produced', 'american', 'toy', 'company', 'hasbro', 'japanese',

'toy', 'company', 'takara', 'tomy', 'follows', 'battles',

'sentient', 'living', 'autonomous', 'robots', 'often', 'autobots',

'decepticons', 'transform', 'forms', 'vehicles', 'animals',

'franchise', 'encompasses', 'toys', 'starting', '2019',

'incarnations', 'story', 'based', 'different', 'toy',

...

Now that we have every word in a list, let's explore how we can get extra
information for every word.



Part-of-speech tagging

This is the process in which you tag a word depending on its role as a part
of speech. The different parts of speech that there are include nouns,
pronouns, verbs, adjectives, adverbs, prepositions, conjunctions,
interjections, and others.

Each word in a sentence is a part of speech. Tagging those words with this
information is what is known as part-of-speech tagging. This includes
nouns, pronouns, verbs, adjectives, adverbs, prepositions, conjunctions,
interjections, and sub-categories of those parts.

Optimus will return a Python tuple adding one of the following constants
depending on the type of word detected. Optimus uses nltk, so the possible
result for every word is as follows:

CC: Coordinating conjunction

CD: Cardinal digit

DT: Determiner

EX: Existential there (as in "there is"; think of it as "there exists")

FW: Foreign word

IN: Preposition/subordinating conjunction

JJ: Adjective (for example, "big")

JJR: Adjective, comparative (for example, "bigger")

JJS: Adjective, superlative (for example, "biggest")

LS: List marker (for example, "1")



MD: Modal (for example, "could" or "will")

NN: Noun, singular (for example, "desk")

NNS: Noun plural (for example, "desks")

NNP: Proper noun, singular (for example, "Harrison")

NNPS: Proper noun, plural (for example, "Americans")

PDT: Predeterminer (for example, "all the kids")

POS: Possessive ending (for example, "parent's")

PRP: Personal pronoun (for example, "I," "he," or "she")

PRP$: Possessive pronoun (for example, "my," "his," or "hers")

RB: Adverb, very (for example, "silently")

RBR: Adverb, comparative (for example, "better")

RBS: Adverb, superlative (for example, "best")

RP: Participle (for example, "give up")

TO: For example, to go "to" the store

UH: Interjection (for example, "errrrrrrrm")

VB: Verb, base form (for example, "take")

VBD: Verb, past tense (for example, "took")

VBG: Verb, gerund/present participle (for example, "taking")

VBN: Verb, past participle (for example, "taken")

VBP: Verb, sing. present, non-3D (for example, "take")



VBZ: Verb, third-person sing. present (for example, "takes")

WDT: Wh-determiner (for example, "which")

WP: Wh-pronoun (for example, "who" or "what")

WP$: Possessive wh-pronoun (for example, "whose")

WRB: Wh-abverb where, (for example, "when")

To apply part-of-speech tagging in Optimus, use the following:

print(df.cols.pos("text"))

This will give us a tuple for every word in every row, as shown here:

text

(object)

[('transformers', 'NNS'), ('american', 'JJ'), ('japanese', 'JJ'),

('media', 'NNS'), ('franchise', 'NN'), ('produced', 'VBN'),

('american', 'JJ'), ('toy', 'NN'), ('company', 'NN'), ('hasbro',

'VBZ')

...

The following summarizes the results:

'transformers' and 'media' were detected as 'NNS', meaning "noun
plural."

'american' and 'japanese' were detected as 'JJ', meaning "adjective."

'produced' was detected as 'VBN', meaning "past participle."

'toy' and 'company' were detected as 'NN', meaning "noun, singular."

'hasbro' was detected as 'VBZ', meaning "third-person singular."



Part-of-speech tagging in itself may not be the solution to any particular
NLP problem. However, it is something that is done as a prerequisite to
simplify a lot of different problems such as text-to-speech conversion and
word-sense disambiguation.

Applying the transformation

Now that we have a good understanding of all the functions, let's apply
them together. Remember that you can chain the functions, as shown in the
following example:

(df

    .cols.strip_html()

    .cols.remove_urls()

    .cols.remove_special_chars()

    .cols.remove_stopwords()

    .cols.lemmatize_verbs()

    .cols.num_to_words()

    .cols.word_tokenizer())

This will transform our data to this:

text

(object)

['transformer', 'american', 'japanese', 'medium', 'franchise',

'produced', 'american', 'toy', 'company', 'hasbro', 'japanese',

'toy', 'company', 'takara', 'tomy', 'follows', 'battle',

'sentient', 'living', 'autonomous', 'robot', 'often', 'autobots',

'decepticons', 'transform', 'form', 'vehicle', 'animal',

'franchise', 'encompasses', 'toy', 'animation', 'comic', 'book',



'video', 'game', 'film', 'franchise', 'began', 'one', 'thousand',

',', 'nine', 'hundred', 'and', 'eighty-four', 'transformer',

...

Now that we have normalized and removed all the possible noise from our
string, it is time to transform our text to features that can be used as input
for creating our machine learning models.

Feature extraction from text
When using text in machine learning, we need to convert text to a list of
features a machine learning algorithm can understand. This means that we
need to convert text to numbers. To accomplish this, there are two
approaches that can be used with Optimus:

Bag of words

TF-IDF

Let's see how you can use these methods in Optimus.

Bag of words

In the bag of words approach, we take all the words and then count the
number of occurrences of each word.

After counting the number of occurrences of each word, because a corpus
can have millions of words, it can be useful to select the most frequent word
in the text, as shown in the following figure:



Figure 9.2 – Bag of words example

To apply bag of words in Optimus, you can use the following code:

_df = df.cols.bag_of_words("text")

This returns a big dataframe with all the strings as column names and the
word count in every row. Because it can be difficult to explore all the data,



let's print the first 10 values using the following code:

_df.cols.names()[:10]

This will return the following:

['1983',

'1984',

'1991',

'2001',

'2005',

'2007',

'2010s',

'2018',

'2019',

'20th']

To get the whole count, we can use the following code:

len(_df.cols.names())

That will return the total number of columns:

139

To print a sample of the whole dataframe, you could use _df:

Figure 9.3 – The displayed result of the dataframe in a notebook



As you can see, the words are sorted in alphanumeric order in this new
dataframe, with the number of words per value.

Let's see how to expand the version of bag of words with n-grams.

Using bigrams or trigrams over unigrams
(words)

An extended version of the bag of words approach is the bag of n-grams
approach. An n-gram is simply any sequence of n tokens (words). It can be
1-grams, 2-grams, 3-grams, and so on.

Let's see an example for every case using this text:

from nltk import ngrams

sentence = 'Transformers is the most amazing TV series.'

For 1-grams, it will output tuples with one value:

print(list(ngrams(sentence.split(), 1)))

[('Transformers',), ('is',), ('the',), ('most',), ('amazing',),

('TV',), ('series.',)]

For 2-grams, it will output tuples with two values, where the last value of
the tuple is the first in the continuous tuple:

print(list(ngrams(sentence.split(), 2)))

[('Transformers', 'is'), ('is', 'the'), ('the', 'most'), ('most',

'amazing'), ('amazing', 'TV'), ('TV', 'series.')]

Let's see what happens with 3-grams:

print(list(ngrams(sentence.split(), 3)))

[('Transformers', 'is', 'the'), ('is', 'the', 'most'), ('the',

'most', 'amazing'), ('most', 'amazing', 'TV'), ('amazing', 'TV',

'series.')



It is important to point out that bag of n-grams can be more informative
than a simple bag of words because it captures more information about the
context of each word. For example, ('most', 'amazing', 'TV') can give you
more information than just ('amazing',). However, this comes at a cost, as
bag of n-grams can produce a much larger and sparser feature set than bag
of words (filtering methods help to minimize this). Typically, 3-grams is
about as high as we want to go, as using n-grams beyond that rarely
increases performance because of sparsity.

To control the kind of n-gram you want to produce, just use the
ngram_range parameter as shown in the following code:

df.cols.bag_of_words("text", ngram_range= 2)

This will result in a dataframe with columns representing 2-grams, as
follows:

Figure 9.4 – HTML representation of the result of the method called

As we can see, using 2-grams allows us to count phrases instead of just
words. This can provide a complex insight into the data.

Now let's see how TF-IDF works.



TF-IDF
Another way to weigh the frequency of words in a document is by using
TF-IDF.

TF-IDF is a numerical statistic that is intended to reflect how important a
word is to a document in a collection or corpus. TF-IDF returns values
between 0 and 1 for every word. Words that appear in many documents
have a value closer to zero and words that appear in fewer documents have
values closer to 1.

For this example, let's load a file with a couple of rows. Each row
represents a document in TF-IDF:

df = op.load.file("text-e.csv")

Let's take a look at the data. The following command will print a dataset
resume:

print(df)

The dataset resume is shown here:

text(object)

"<a>http://google.com</a> <span>that'll Transformers is an American

and Japanese media franchise produced by American toy company

Hasbro and Japanese toy company Takara Tomy. It follows the battles

of sentient, living autonomous robots, often the Autobots and the

Decepticons, who can transform into other

forms, such as vehicles and animals. The franchise encompasses

toys, animation, comic books, video games and films. The franchise

began in 1984 with the Transformers toy line, comprising

transforming mecha toys from ...

Applying TF-IDF in Optimus is as simple as invoking the tf_idf method:



df.cols.tf_idf("text").to_dict()

This will return a dictionary with a lot of values:

{'1980s': [0.0, 0.07302266125566928],

'1983': [0.028561620660523312, 0.0],

'1984': [0.02032182833693315, 0.05195622490690069],

'1991': [0.028561620660523312, 0.0],

'1993': [0.0, 0.07302266125566928],

'2001': [0.028561620660523312, 0.0],

'2005': [0.028561620660523312, 0.0],

'2007': [0.057123241321046625, 0.0],

'2010s': [0.028561620660523312, 0.0],

'2018': [0.028561620660523312, 0.0],

'2019': [0.028561620660523312, 0.0],

'20th': [0.028561620660523312, 0.0],

'able': [0.0, 0.07302266125566928],

'action': [0.057123241321046625, 0.0],

'after': [0.057123241321046625, 0.0],

'afterward': [0.0, 0.07302266125566928],

'again': [0.057123241321046625, 0.0],

'aligned': [0.028561620660523312, 0.0],

'also': [0.0, 0.07302266125566928],

'alternate': [0.028561620660523312, 0.0],

...

In this case, we're using 5to_dict to get a better insight into the data. For big
dataframes like this, remember that you can filter out some specific



columns. Let's say that we want to filter the toys and 1984 columns:

df.cols.tf_idf("text")[["1984","toys"]].print()

This will print the following:

       1984         toys

  (float64)    (float64)

-----------  -----------

  0.0203218    0.0406437

  0.0519562    0.0519562

As we can see, the output only includes the two columns passed to the
brackets.

By using TF-IDF, we can get useful information from our data. For
example, we could use it to find out how popular a topic is in the comment
section of a website in comparison to others.

Summary
In this chapter, we covered all the functions available in Optimus to easily
clean and prepare your text data so you can start your NLP journey, from
simple operations, such as removing stopwords and URLs, to more
advanced ones, such as stemming and lemmatization.

We learned how to tokenize and tag the text in our datasets to efficiently
capture information from them.

After that, we explored a couple of methods to get features from text. We
saw how to use bag of words and TF-IDF to convert text to numbers that
can be used as input to machine learning algorithms.



In the next chapter, we will cover what we consider to be Optimus' most
advanced features, such as implementing your engine, creating custom data
transformation functions, and even plotting functionality.



Chapter 10: Hacking Optimus
So far, we have covered almost everything Optimus can do for you, from
data loading and data preparation to machine learning and natural language
processing.

In this chapter, you will deep dive into Optimus and learn how to expand
what Optimus can do for you. We will be covering the following topics:

Adding a new engine

Bumblebee

Joining the community

The future

Limitations

Technical requirements
Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which needs an
NVIDIA card. For more information about the requirements, please go to
the GPU configuration section of Chapter 1, Hi Optimus!.

You can find the code for this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Install ing Git

https://github.com/PacktPublishing/Data-Processing-with-Optimus


If you don't have Git installed, please go to the link that matches your
operating system. This will help you download the latest Optimus code to
your machine:

Windows: https://git-scm.com/download/win

Linux and Ubuntu/Debian, from the CLI: sudo apt install git-all

Mac: git –version and follow the instructions provided

Now, let's learn how to add a new engine to Optimus.

Adding a new engine
The ultimate thing you can do with Optimus is expand its functionality to
make it do whatever you want. In this section, we will explore how
Optimus is structured so that can know where to go to expand or add
specific functionality. To make this a complete exercise and understand
where every piece goes, we'll add a completely new engine, such as pandas,
Dask, cuDF, or Dask-cuDF. Here, we'll be adding Vaex as the engine of
choice.

Cloning the repository from GitHub

To start, let's clone a clean Optimus repository from GitHub. Be aware that
the file path and Optimus's internal structure may change a little in
upcoming releases:

1. First, let's clone the Optimus repository. From the CLI, enter git clone
https://github.com/ironmussa/Optimus.git.

https://git-scm.com/download/win
https://github.com/ironmussa/Optimus.git


The easiest way to test the new code in Optimus is by using a couple of
handy comments from a Jupyter Notebook.

In the first cell, add the following:

%load_ext autoreload

%autoreload 2

This will reload the Optimus code every time it changes automatically.

2. After that, insert the path to the folder where you cloned Optimus:

import sys

sys.path.insert(0, "../Optimus")

Now that we have the code in place, let's explore how it is organized.

How the project is organized

Most of the engines supported by Optimus have more functions in common
than not. Here, we can create some base classes that function as the core
implementation. This will form most of Optimus's functionality.

In the /optimus/engines/base path, we defined an abstract function and the
base implementation for loading and saving data, column and row
functions, masks, and dataframe creation.

Then, in every folder in /optimus/engines/, while following the engine's
naming convention, implement specific functionality for every engine:

/pandas. Pandas implementation

/dask. Dask Implementation

/cudf. Cudf Implementation



/dask_cudf. Dask cudf implementation

/spark. Spark Implementation

/vaex. Vaex implementation.

/ibis. Ibis implementation.

By deep diving inside each of these engine folders, you can find the specific
folder structure you need. The idea here is to implement the methods that
are not compatible with the base implementation.

In every engine folder, you can find the following:

/io. Loading, Saving and Database handling

/ml. Machine Learning Classes

/create.py. Dataframe creation.

/columns.py. Columns Functions.

/rows.py. Rows Functions.

/functions.py. Base functions that support rows a columns function.

String, Math and Trigonometric functions.

/engine.py. Handle client creation

/mask.py. Mask functions

Now that we know the general structure, let's explore how it works.

The entry point

When you start Optimus, you see that one of the main functions is def
optimus, which can be found in the /Optimus/optimus/optimus.py file. To
add a new engine, we need to do the following:



1. Add the new engine you want to add to the Engine class, as shown in
the following code block:

class Engine(Enum):

    PANDAS = "pandas"

    CUDF = "cudf"

    DASK = "dask"

    DASK_CUDF = "dask_cudf"

    SPARK = "spark"

    VAEX = "vaex"

    IBIS = "ibis"

Here, we added a constant called vaex.

2. After that, in the Optimus class, add the following code:

elif engine == Engine.VAEX.value:

    from optimus.engines.vaex.engine import VaexEngine

     op = VaexEngine(*args, **kwargs)

In Optimus, all the implementation engines are in
Optimus/optimus/engines/. In the preceding code, we imported the
VaexEngine implementation, but we haven't implemented anything yet.

3. To implement this, we will create the engine.py file and add the
following code:

from optimus.engines.base.engine import BaseEngine

from optimus.engines.vaex.create import Create

from optimus.engines.vaex.io.load import Load

from optimus.optimus import Engine



from optimus.version import __version__

import vaex

class VaexEngine(BaseEngine):

    __version__ = __version__

    def __init__(self, verbose=False):

        self.verbose(verbose)

        self.client = vaex

    @property

    def create(self):

        return Create(self)

    @property

    def load(self):

        return Load(self)

    @property

    def engine(self):

        return Engine.VAEX.value

All the engines we create must inherit from the BaseEngine class. This
class will enforce the fact that you need to implement the Create, Load,
and Engine classes.

4. Now, we need to implement the following in these functions:

a) In the Create class, the dataframe functions are implemented to
create dataframes using Python dictionaries and pandas. This is
implemented in Optimus/optimus/engines/vaex/create.py.

b) In the Load class, all the functions are implemented to load data files
that are in CSV, JSON, and XLS format. This is implemented in



Optimus/optimus/engines/vaex/io/load.py.

c) The Engine class will return the string describing the engine. This is
the string you created in the Engine class.

As an example, let's implement a really simple load csv function:

def csv(path):

    dfd = vaex.read_csv(path)

    return VaexDataFrame(dfd)

    df.meta = Meta.set(df.meta, value={"file_name": path,

"name": ntpath.basename(path)})

As you can see, we need to return a VaexDataFrame. Let's learn how
to implement VaexDataFrame. For this, we must create a file called
Optimus/optimus/engines/vaex/io/dataframe.py.

5. The first thing we must do is implement VaexDataFrame, which will
inherit BaseDataFrameClass and enforce the implementation of 15+
functions such as .cols, .rows, and .save to enforce a consistent API for
all the engines supported by Optimus:

from optimus.engines.base.basedataframe import BaseDataFrame

class VaexDataFrame(BaseDataFrame):

    def __init__(self, data):

        super().__init__(self, data)

6. To finish, let's test the load function:

df = op.load.csv("foo.csv")

7. Now, we can print our dataframe:

print(df)



name        function

(string)    (string)

----------  -----------------------

Optimus     leader

Bumblebee   espionage

eject       ELECTRONIC SURVEILLANCE

Now that we've created the Vaex Dataframe, let's learn how to add a
function that will allow us to operate over string and numeric data.

Base class functions

One of the core Optimus classes is the Functions class. It abstracts and
implements some core functionality that you can rely on when
implementing another engine. Let's see how it works.

String transformations
In the case of the Vaex implementation, and because it has some similarities
with the pandas dataframe, you could get some of the cols functions for
free.

Let's try the lower operations so that we can convert all the strings into
lowercase.

As the Vaex operation is the same as in all the other dataframes, using the
.str accessor, we can rely on the function that's already been implemented
in BaseClass:

print(df.cols.upper("name", output_cols="a"))



Also, you will have the print implementation for free. As usual, it will print
your dataset:

name        new_column    function                  phone_number

(string)    (string)      (string)                 (string)

----------  ------------  -----------------------  ----------------

-----

OPTIMUS     OPTIMUS       leader                   123-456-7890

BUMBLEBEE   BUMBLEBEE     espionage                123-456-7890

EJECT       EJECT         ELECTRONIC

SURVEILLANCE  optimus@cybertron.com

Let's explore how to implement a function that is not compatible with the
ones we've already implemented. In Vaex 4.0, slice does not have a step
parameter, so it is going to produce an error. Say you try to use the
following code:

df.cols.slice("name",sbtart=1, stop=3)

This will throw an error, similar to the following:

TypeError: str_slice() takes from 1 to 3 positional arguments but 4

were given

To fix this, we will use the base Functions class as a skeleton to create our
Vaex functions. Now, let's create the VaexFunctions class in the
Optimus/optimus/engines/vaex/functions.py file:

from optimus.engines.base.functions import Functions

class VaexFunctions(Functions):

    def slice(self, series, start, stop, step):

        # Step is not handle by Vaex for version 4.0

        return series.str.slice(start, stop)



If you take a close look, you will see that the step parameter is present in
the function. We will work like this to preserve and not break the
compatibility it has with other engines.

To finish, add the newly created Functions class to the Vaex DataFrame.
Just go to /Optimus/optimus/engines/vaex/dataframe.py and add the
following method:

@property

def functions(self):

   from ptimus.engines.vaex.functions import VaexFunctions

   return VaexFunctions()

Now, you can execute the following command:

print(df.cols.slice("name",start=1, stop=3))

You will receive the following sliced column:

name        function                  phone_number

(string)    (string)                 (string)

----------  -----------------------  ---------------------

pt          leader                   123-456-7890

um          espionage                123-456-7890

je          ELECTRONIC SURVEILLANCE  optimus@cybertron.com

Now that we have learned how to operate over string data, let's learn how to
add a function to operate over numeric data.

Numeric transformations
In the previous example, we learned how to map a Vaex function so that it
can be used in Optimus. Now, we will learn how to implement some



trigonometric functions.

Depending on the engine you want to implement, some functionality may
be part of the engine core's functionality, while others may depend on
external libraries such as NumPy.

This is the case with Vaex.

An important thing about how Optimus handles some operation is that it
ensures that the data type (string, numeric, or date) you are working on will
work with the function that you want to apply. In this example, we'll learn
how to implement a sine function that only works with numeric data.

As you already know, the Vaex functions are implemented in
Optimus/optimus/engines/vaex/functions.py. Since we've already
implemented a skeleton, let's add the sine function. Be sure to add the
numpy library at the top of the file:

import numpy as np

....

def sin(self, series):

    return np.sin(self.to_float(series))

Now, apply sin to the num columns and select it:

print(df.cols.sin("num")["num"])

We will get the following output:

        num

  (float64)

-----------

   0.808496



   0.14112

  -0.756802

Now that we are done with numeric transformations, let's cover applying
functions next.

Applying functions

When applying a function to a dataframe, Optimus provides you with three
options:

Vectorized: This method is fast, and operations are applied to multiple
pieces of data at the same time.

Partitioned: This is applied to partitioned data that's used in Dask.

Mapped: This method is slow. The operations area is applied to every
element.

Optimus provides these different modes because not all functions can be
vectorized. Next, we will learn how to implement a function using every
case.

To handle these three operations, Optimus implements the apply function.

In contrast to pandas, where the apply function is not vectorized, Optimus
has the mode parameter, which you can us to select how to apply a
function.

In the case of slice and sin, which we have already implemented, they are
vectorized under the hood. And surprise – the actual Optimus logic can



handle this without any changes needing to be made to the code. In the case
of mapped operations, we need to implement a little logic. Let's take a look:

1. Optimus implements the _map class in every engine to handle these
cases. For Vaex, go to the /Optimus/optimus/engines/vaex/columns.py
file and create the _map function:

from optimus.engines.base.dataframe.columns import

DataFrameBaseColumns

class Cols(DataFrameBaseColumns):

    def __init__(self, df):

        super(DataFrameBaseColumns, self).__init__(df)

    def _map(self, df, input_col, output_col, func, *args):

        return df.apply(func, arguments=(df[input_col], *args,),

vectorize=False)

2. Now, let's create a function with a very simple operation that will add
10 to our num columns:

def func(value):        

    return value + 10

print(df.cols.apply("num",func, mode="map")["num"])

This will return the following output:

        num

  (float64)

-----------

       12.2

       13

       14



Now that you have learned how to add functions that modify data in your
dataframe, let's take a step back and learn how to load data.

I/O operations

Think about that shiny new data format that you want to use but hasn't been
implemented in Optimus yet. This data format is probably already
implemented in some of the engines. So, let's learn how to add this
functionality to Optimus.

Loading data
To add new loading functionality, you need to address two important points:

Return a Vaex dataframe

Metadata

When loading data in any format, you should use the engine to load the
data, create the Optimus VaexDataFrame object, and return it. Let's take a
look:

1. First, you must create the Load class in
/Optimus/optimus/engines/vaex/io/load.py. As an example, let's create
a function that will load an HDF5 file:

class Load(BaseLoad):

    @staticmethod

    def hdf5(path, columns=None, *args, **kwargs):

        path = unquote_path(path)

        dfd = vaex.open(path)



        df = VaexDataFrame(dfd)

        df.meta= Meta.set(df.meta, value={"file_name": path,

"name": ntpath.basename(path)})

        return df

As you can see, we are passing a normal Vaex DataFrame to the
VaexDataFrame class to create an Optimus DataFrame. With this, we
are giving the original Vaex dataframe all the methods available in
Optimus, such as cols, rows, and mask.

One important point is that by convention, Optimus preserves some
extra data in the meta property. Here, we will save the filename and the
path in the df.meta property using the Meta class.

2. That's all that we need to do to create a data loader in Optimus. To load
and only show the column name data, you can use the following
command:

print(op.load.hdf5("foo.hdf5").cols.select("function"))

You will get the following output:

function

(string)

-----------------------

leader

espionage

Remember that you can always access the Vaex original data form by
using the following command:

df.data



To get the data

dataframe.  #  name    function                    

phone_number              num

  0  't'     ' leader'                   '123-456-

7890'             2.2

  1  'm'     ' espionage'                '123-456-

7890'             3

  2  'e'     ' ELECTRONIC

SURVEILLANCE'  'optimus@cybertron.com'    4

Now, let's learn how to save the data that we worked with.

Saving data
Let's suppose that we want to save our data in another HDF5 file.

The file for implementing this class is in the same folder that the Load class
it in, but in the save.py file; that is,
/Optimus/optimus/engines/vaex/io/save.py:

1. A simple function we can implement is as follows:

class Save():

    def hdf5(self, path, conn, *args, **kwargs):

        df = self.root.data

        df.export_hdf5(path, *args, **kwargs)

2. Here, we are simply getting the Vaex dataframe using .data from the
root param. root is a special property that's used to access the highest
level of a dataframe.

3. After that, we must simply call the Vaex method to save the file.



4. To finish, let's add our new create class to the VaexDateFrame
constructor.

5. In /Optimus/optimus/engines/vaex/dataframe.py, add the following
to the top of the file:

from optimus.engines.vaex.io.save import Save

6. Then, add the save method to the VaexDataFrame class:

@property

    def save(self):

        return Save(self)

7. Now, we can use the following command to save our dataframe in the
new_foo.hdf5 file:

df.save.hdf5("new_foo.hdf5")

Now, we'll move on to plotting the data.

Plots

As we saw in Chapter 5, Data Visualization and Profiling, Optimus can
handle four types of plots associated with specific visualizations:

Histogram and frequency using bar plots

Scatter plots

Box plots

Correlations



You can create the plot function in Optimus/optimus/plots/plots.py. Here,
you can add any methods you want to the Plot class; for example:

class Plot:

    def my_new_shiny_chart(a,b,c):

        # process your data using optimus functions

        # plot your data using matplotlib

The plotting function is built over the Optimus function and uses the same
code for all the engines. When converting the data into a pandas dataframe,
you have a lot of options for plotting. The problem here is that you may not
be able to handle them locally because of resource constraints. Using
Optimus functions for the already implemented engines ensures that you
can plot your chart without any problems arising.

After processing your data, you can use matplotlib (already an Optimus
requirement) to plot the data as required.

Since the plot method is implemented in the BaseDataFrame class, you
don't need to add it to the implementation of VaexDataFrame.

Profiler data types

The profiler data types are data types that are inferred by Optimus to help
you understand your data. As we mentioned in Chapter 1, Hi Optimus!,
Optimus brings some profiler data types out the box, such as URL, email,
and credit cards, besides the convectional int, floats, and dates.

In Optimus, you can create new profiler data types. The entry point is the
infer_profier_dtypes function in



Optimus/optimus/engines/base/columns.

This calls the infer_dtypes function, which is in charge of inferring every
value data type, for example, infer_dtypes in
Optimus/optimus/engines/base/functions. This function is to be added
step by step:

if is_list(value):

dtype = ProfilerDataTypes.ARRAY.value

elif is_null(value):

dtype = ProfilerDataTypes.NULL.value

elif is_bool(value):

dtype = ProfilerDataTypes.BOOLEAN.value

elif is_credit_card_number(value):

dtype = ProfilerDataTypes.CREDIT_CARD_NUMBER.value

elif is_zip_code(value):

dtype = ProfilerDataTypes.ZIP_CODE.value

...

As you can see, every sentence is trying to infer a data type. The order in
which the places are put can be tricky, so you may need to modify the way
the tree is constructed.

The best way to implement your own profiler data types, as well as your
own parser, is by inheriting and reimplementing these functions.

Let's say we want to implement a phone number data type. For this, we
could use a regular expression to check if a string is a phone number in a
specific format:



The following is an example of this:

def is_phone_number(value):

return re.match("^[+]*[(]{0,1}[0-9]{1,4}[)]{0,1}[-\s\./0-9]*$",

value)

In our if tree, we need to add this function like so:

...

elif is_phone_number(value):

dtype = "phone_number"

The dtype string is going to be our identifier so that Optimus can count
and infer the column data type. Ensure that the string you use doesn't
match any that are used by Optimus. To check the string with Optimus,
you can check the ProfilerDataTypes class in the
Optimus/optimus/helpers/contants file: df = op.load.csv("foo.csv"):

name        function                  phone_number

(object)    (object)                 (object)

----------  -----------------------  ---------------------

Optimus     leader                   123-456-7890

Bumblebee   espionage                123-456-7890

eject       ELECTRONIC SURVEILLANCE  optimus@cybertron.com

Now, to test this, we will use the following code:

print(df.cols.infer_dtypes())

This will print every data type that's been detected in every cell in the
dataframe, like so:

name        function     phone_number

(object)    (object)    (object)



----------  ----------  ---------------

string      string      phone_number

string      string      phone_number

string      string      email

Inside Optimus, this is used to infer the data type in a column that counts all
the data types that were detected in the column's cells.

Expanding Optimus can give you a lot of flexibility. Let's explore a special
use case, that is, how to add functionality to Optimus so that you can build a
user interface.

Bumblebee
Bumblebee is an open source, low-code web app that aims to make big data
preparation easy. It builds on top of Optimus so that you have all the
flexibility the library provides.

Bumblebee sends automatically generated Optimus code to a Python kernel
gateway to operate our datasets and configuration settings. All of this is
done over a secure connection.

For example, when we ask Bumblebee to load a file, it automatically
uploads the file to a place Optimus can find it (since it may not be able to
load the file from your local storage) and loads it using op.load.file.

Bumblebee has a broad range of available operations, and almost every
Optimus function is mapped as a user-friendly interface.

In the web app, we can take advantage of its profiling functionality to give
the user insight into the loaded data. This also includes loading the actual



values of the dataset into a table in real time:

Figure 10.1 – Bumblebee default view with a loaded dataframe



As we can see, once the data is loaded, the user will instantly get useful
information, such as the quality of the data, the distribution of any frequent
values, and the first rows of the dataset.

Before confirming some of the transformations that are available in
Bumblebee, we can look at a real-time preview of the data. This is useful
for testing:



Figure 10.2 – Preview of a lowercase operation

And of course, we can save the dataset locally, into remote file storage, or
simply download it via our browser.



The web app also allows you to export all the operations that were made in
the Optimus code, in case we want to migrate it to our advanced workflow:



Figure 10.3 – Exporting code to Optimus

Bumblebee has other features, such as user management, workspace
management, engine configuration management, column visualization
filters, and column searching.

Bumblebee and Optimus are open source projects, which means you can
contribute to them by performing pull requests, commits, and more.

Bumblebee was created by the same team that built Optimus. We designed
Optimus so that it can be easily extended so that you can build things such
as a full-featured frontend interface.

We are eager to see what people can build with Optimus, so don't hesitate in
joining the community if you have an idea or want to build something
amazing with this project.

Joining the community
As we have stated throughout this book, Optimus is an open source project.
Contributions go far beyond pull requests and commits. We are very happy
to receive any kinds of contributions, including the following:

Documentation updates, enhancements, designs, or bug fixes

Spelling or grammar fixes

README.md corrections or redesigns

Unit or functional tests

Triaging GitHub issues, especially for determining whether an issue
persists or is reproducible



Searching for #optimusdata on Twitter and helping someone else who
needs help

Blogging, speaking about, or creating tutorials about Optimus and its
many features

Helping others on Slack at slack.hi-optimus.com

We are always on Slack, so do not hesitate to reach out if you need any help
or want to share an idea about any of our projects. You can also open a
GitHub issue if you need any help with Bumblebee.

The future
The main goal of Optimus is to help you find the easiest way to wrangle
data, regardless of it data format/source or the infrastructure available to
you. Taking that into account, we are going to continue building a strong
foundation of methods and almost all the functions you will ever need to
wrangle your data.

Bumblebee was the second obvious step since it provides an easy-to-use UI
to load, explore, and wrangle data that's been built over Optimus. Our plan
with Bumblebee is to continue to preserve our vision of the overall Optimus
project. We will continue to put open source and easy to use tools in user's
hands so that they can get insight into their data as quickly and easily as
possible.

The third step was the Optimus API. With the Optimus API, we aimed to
give every user access to the power of Optimus, regardless of the
programming language being used. From JavaScript in the browser to

http://slack.hi-optimus.com/


Node.js to C++, you can access the power of any of the Optimus engines
from anywhere. We are sure that users will find creative and amazing ways
to use it.

We are very excited about the future of Optimus and Bumblebee. To
continue building a product that is useful for you, your feedback is vital. So,
once again, we invite you to keep telling us about yourself and how you use
– or plan to use – Optimus.

Limitations
We are working hard to create a unified API from the most popular
dataframe libraries. However, all the technologies are in different
development stages. Many issues have been flying under the radar, but here,
we want to highlight some of the most important ones.

Right now, the main limitations are as follows:

Creating a UDF for string processing in cuDF and Dask-cuDF since
they are not supported yet: https://github.com/rapidsai/cudf/issues/7301.

cuDF, Dask-cuDF, and Vaex database connections are handled using
Dask, which needs to load data as pandas dataframes and then convert
them into the appropriate format based on a certain engine.

Regex cuDF support is limited. For example, it still can handle
lowercase and uppercase characters at the same time:
https://github.com/rapidsai/cudf/issues/5217.

Summary

https://github.com/rapidsai/cudf/issues/7301
https://github.com/rapidsai/cudf/issues/5217


In this chapter, we did a deep dive into how Optimus was built and helped
you learn how to expand what Optimus can do, from creating a new engine
to loading and saving data and processing string and numeric data.

This can give you a lot of flexibility. You also learned how to build a full-
fledged frontend interface in which you can use Optimus as the backend to
process data on any of the engines that are available.

In the next chapter, we will talk about the Optimus server and how you can
use it to process data using an easy-to-use API.

If you find any other inconsistencies in the API, please let us know.



Chapter 11: Optimus as a Web Service
There's growing demand for web applications and services in general.
Nowadays, almost anything you can think of can be done by using just a
computer and an internet browser. So, why should data transformation lag
behind?

In this chapter, we will learn about how Optimus can be applied in a way
that can help our data wrangling process to be even more seamless. We can
also use what we learn to apply an easy way of data wrangling in our own
web tools.

The topics we will be covering in this chapter are as follows:

Introducing Blurr

Setting up the environment

Making requests

Optimus' features

Technical requirements
Optimus can work with multiple backend technologies to process data,
including GPUs. For GPUs, Optimus uses RAPIDS, which requires an
NVIDIA card. For more information about the requirements, please go to
the GPU configuration section in Chapter 1.

Blurr has very specific requirements. To learn more, visit
https://github.com/hi-primus/optimus.

https://github.com/hi-primus/optimus


IMPORTANT
The Blurr project is still in development stages, but the beta version will be available to the
readers by the time the book is published. You can refer to the GitHub repo
(https://github.com/hi-primus/optimus) for more updates.

You can find all the code in this chapter at
https://github.com/PacktPublishing/Data-Processing-with-Optimus.

Introducing Blurr
When creating a new project, tools play an important part in the
development process. Because of this, we created Blurr, a package that
provides us with a friendly API to make requests in a data wrangling
context.

Blurr provides a handful of different options for how we can use it to
develop or sketch a new project. It is even useful for quickly wrangling a
file without digging into it using Python with Optimus; just a browser and
an address are needed to request some transformations.

When using this tool, communication in a Python environment will be
handled automatically. All that is needed is an available Jupyter Kernel
Gateway address (we'll see more about this later):

https://github.com/hi-primus/optimus
https://github.com/PacktPublishing/Data-Processing-with-Optimus


Figure 11.1 – How Blurr and Optimus communicate

By making Blurr available in an endpoint, you'll be able to wrangle your
data from any kind of environment using any language that supports HTTP
requests, opening a range of possibilities.

Let's learn what projects can be made using Blurr:

A data wrangling web application

A file format transforming service

Also, Blurr can be used on already existing projects to add features such as
these:

Creating database dumps



Generating reports from collected data

Detecting discrepancies and outliers in your data

By configuring with just a few lines of code, you can also activate features
that will allow you to quickly request transformations by using JSON. You
can take advantage of this for debugging.

Now that we know what we can do, let's learn how to set up and use this
package.

Setting up the environment
Let's see how we can set up Blurr in a JavaScript environment.

Pre-requisites for Blurr

Before installing Blurr, we must know what Node.js is and how its package
manager works. Just having Node.js and NPM installed should be enough.
To install these packages, please go to the official documentation here:
https://nodejs.org/en/docs/guides/getting-started-guide/.

The Node.js installation will include NPM, which will already take us
halfway. We're now able to initialize a new Node.js project using npm init
on the command line. Now let's learn how to install the package.

Also, we're going to need Jupyter Kernel Gateway running in WebSocket
mode. To learn how to set up and initialize an instance, read the
documentation available here: https://jupyter-kernel-
gateway.readthedocs.io/.

https://nodejs.org/en/docs/guides/getting-started-guide/
https://jupyter-kernel-gateway.readthedocs.io/


Install ing the package

To install Blurr in an already set-up Node.js project, we can use the
following command in our Terminal or Command Prompt:

npm install hi-blurr

For yarn, use this:

yarn add hi-blurr

Once it's done, we'll have the package available for us to use in our Node.js
project, but first we'll need it imported in our code.

Importing the package

To use Blurr on our code, we can import it using require or import:

let { Blurr } = require("blurr")

The preceding code will make the Blurr class available to us. Let's see how
we can import it using ES6 imports in the following code:

import { Blurr } from "blurr"

This will also provide us with the Blurr class. Let's learn how to initialize
an instance with which we'll be able to start processing our datasets.

Creating a Blurr session

To create a Blurr session, we can run the following code:

let session = new Blurr({

    kernelAddress: "localhost:8888",



    downloadsFolder: "./download",

    downloadsAddress: "http://localhost:3000/download/"

    engineConfiguration: {

        engine: "dask",

        memory_limit: "2 GB"

    }

});

In the preceding code, we created a new Blurr instance and passed it to a
variable named session; in this instantiation, we're passing the address of a
Jupyter Kernel Gateway instance running in WebSocket mode that should
be capable of running Optimus.

The other parameter passed in the previous example is
engineConfiguration, in which you can select what engine you are willing
to use. In this case, we're passing "dask", which is the default engine, so in
this case, we can omit engineConfiguration. Refer to the following code:

let session = new Blurr({

    kernelAddress: "localhost:8888"

});

The previous code will behave the same as the earlier example.

We also defined downloadsFolder and downloadsAddress to use a
previously configured endpoint to handle our downloads. We'll discover
more about that later in this chapter.

We can use the created instance to start making requests, but first, let's see
what we can do if we want to use two engines in the same session.



Multiple engines in one session

By using the session instance, we can create multiple engines, as shown in
the following code:

blurr = session.engine({

    engine: "dask",

    memory_limit: "2 GB"

})

blurrPandas = session.engine({

    engine: "pandas"

})

In the preceding code, we're instantiating two engines in the same session
named blurr and blurrPandas. The variable session in the previous
example has the same.

If we don't want to specify certain parameters, we can simply use the name
of the engine as the only argument, as shown in the following code:

blurr = session.engine("dask")

blurrPandas = session.engine("pandas")

The last two examples will behave the same except for the one named
blurr, which will have some extra configuration in the first case.

Quickest setup

By default, you can pass all the methods available in an engine instance to a
session instance, so to quickly create an engine using dask, you can use the



following code:

let blurr = new Blurr({ kernelAddress: 'localhost:8888' })

In the preceding example, we're simply creating a session, but in this case,
we'll use it as an engine since it will create one by default once the first
request is made.

Now we have learned how to create sessions and engines, we can start
making requests.

Making requests
To make a request, there's a method called request available in every
session or engine instance using Blurr. It accepts a JavaScript object as an
argument to support compatibility with JSON and make it web-friendly.

The following is an example:

let response = await blurr.request({

    operation: "createDataframe",

    dict: {

        id: [0, 1, 2, 3],

        value: [1.5, 2.25, 11, 12.5]

    },

    saveTo: "df"

});

We used await to wait for the value of the promise. The.then() method can
be used as well. Either way, depending on the request, you may get the
same response – either a complete response or a status of what was



changed. If we check the content of response after running the previous
code, we'll get the following result:

{

    status: "ok",

    updated: "df",

    code: "df = op.create.dataframe({\"id\": [0, 1, 2, 3],

\"value\": [1.5, 2.25, 11, 12.5]}) "

}

In this case, we're getting a status telling us whether the request was
successful, what variables were updated, and the code that was executed.

If we don't pass a saveTo argument, Blurr will assign a variable name
automatically. This only applies to requests that don't transform other
dataframes but instead create them; otherwise, it'll overwrite the input
dataframe. We'll look at this later in this chapter. Refer to the following
code:

await blurr.request({

    operation: "createDataframe",

    dict: { test: [0, 1, 2, 3] }

});

We'll get the following output:

{

    status: "ok",

    updated: "df0",

    code: "df0 = op.create.dataframe({\"test\": [0, 1, 2, 3]})"

}



As is evident, Blurr assigned the name df0 to the dataframe created. Now
let's learn how to load a file instead of creating a dataframe from scratch.

Loading a dataframe

As you noticed in the previous example, we used an argument named dict
that is specific to the createDataframe operation. If instead you wish to
load a file, you can use an operation called loadFile and pass the address to
path. Let's see how in the following example:

let response = await blurr.request({

    operation: "loadFile",

    path: "Chapter 11/example.csv",

    saveTo: "df"

});

In the preceding example, we're asking Blurr (and therefore, Optimus) to
load a file stored in "Chapter 11/example.csv". In this case, it will be
loaded from the local storage of the remote kernel used to run Optimus on
Python:

{

    status: "ok",

    updated: "df",

    code: "df = op.load.file(path=\"Chapter 11/example.csv\")"

}

The preceding response tells us what was updated, the status of the request,
and the code that was executed in the kernel.



We can also use connections to, for example, load files from S3 filesystems.
We'll see more about that later in this chapter.

Let's see how we can save a dataframe.

Saving a dataframe

As with loading, you can save a dataframe into a file.

In this case, we'll be saving to the local Jupyter instance. To do this, you can
simply use the following request:

await blurr.request({

    operation: "saveFile",

    dfName: "df",

    path: "Chapter 11/example-saved.csv"

});

The preceding code will save the same dataframe into "Chapter
11/example-saved.csv", which will give us a similar response:

{

    status: "ok",

    code: "df.save.csv(path=\"Chapter 11/example-saved.csv\")"

}

In this case, there are no dataframes updated, but we still get the status and
the code executed. As we can see, we didn't specify what file type we were
going to save. In this case, Blurr extracted this from the name of the file,
but if we want to set the file type, we can pass it as an argument as shown in
the following code:



await blurr.request({

    operation: "saveFile",

    dfName: "df",

    path: "Chapter 11/example-saved.xls",

    type: "excel"

});

Or we can do so by calling a specific method, such as "saveParquet", as
shown here:

await blurr.request({

    operation: "saveParquet",

    dfName: "df",

    path: "Chapter 11/example-saved.parquet"

});

In both preceding examples, we would have a similar response. But what if
we want a link to download the dataset instead? Let's see a special operation
for this case in the following code:

await blurr.request({

    operation: "downloadFile",

    dfName: "df",

    path: "Chapter 11/example-saved.csv"

});

This request will work only if the Jupyter Kernel Gateway instance and the
Node.js process are running on the same machine and your Node.js process
has an endpoint configured for downloads. Refer to the following:

{



    status: "ok",

    url: "localhost:3000/public/Chapter 11/example-saved.csv",

    code: "df.save.csv(path=\"Chapter 11/example-saved.csv\")"

}

As we can see, the code in the response is not the real code executed, so it
doesn't expose the real location of the downloads folder. This is for security
reasons.

To load and save from a remote filesystem or a database, we'll have to learn
how to handle connections. This will be addressed at the end of this section.
Before that, let's learn how we can explore the dataframe we loaded.

Getting information from the dataset

The following is an example of a request with an output that won't be just a
status response:

await blurr.request({

    operation: "countRows",

    dfName: "df"

});

In the preceding example, we're requesting the number of rows of this
dataset. For that, we passed "countRows" as the name of the operation, but
since we're coming from Optimus, we can simply enter the name of the
method with its accessor, as shown in the following code:

await blurr.request({

    operation: "rows.count",



    dfName: "df"

});

This can be applied to methods available on Optimus instances. The content
of both responses will be as follows:

{

    status: "ok",

    content: 12,

    code: "df.rows.count()"

}

The attribute of the response named content will contain the output of the
operation requested. Let's see another example with a different response:

await blurr.request({

    operation: "columns",

    dfName: "df"

});

This will give us the following output:

{

    status: "ok",

    content: ["id", "name", "value"],

    code: "df.cols.names()"

}

In this case, we're requesting a list of every column. Now, content contains
an array of strings.



But what if we want to transform the columns in our dataframe instead?
Let's see some examples.

Transforming a dataset

Transforming is no different from what we already know, except for the
dfName parameter. That shall contain the name of the dataset we already
defined, as shown in the following code block:

await blurr.request({

    operation: "upper",

    columns: "name"

    dfName: "df"

});

Also, we can pass what we received from a previous response:

let dataframe = await blurr.request({

    operation: "loadFile",

    path: "Chapter 11/example.csv"

});

response = await blurr.request({

    operation: "upper",

    columns: "name"

    dfName: dataframe

});

This will extract the name from the updated attribute of the response.

The responses to the last two requests will be as follows:



{

    status: "ok",

    updated: "df",

    code: "df = df.cols.upper(columns=\"name\")"

}

By default, it'll save the transformed dataframe into the same input
dataframe. If you want to save it on another, just use saveTo as shown here:

await blurr.request({

    operation: "lower",

    columns: "name"

    dfName: "df",

    saveTo: "df_lower",

});

This will give us the following output:

{

    status: "ok",

    updated: "df",

    code: "df_lower = df.cols.lower(columns=\"name\")"

}

In the preceding example, we're creating a new variable for the transformed
dataframe with the name df_lower. Also, we're passing an argument
directly into the request. Let's see some alternatives for how we can pass
some arguments into our requests.

Passing arguments



Arguments can be passed into requests by using keywords, such as
columns: "name", but what if we want to pass unnamed arguments?

For that, we can use args, as shown in the following code block:

await blurr.request({

    operation: "min",

    dfName: "df",

    args: ["value"]

});

This will give us the following output:

{

    status: "ok",

    content: 0.5,

    code: "df.cols.min(\"value\")"

}

As you can see, we passed an argument without using keywords. This is
just for compatibility reasons. Usually, you may just pass the argument as
an attribute, in this case, columns, as follows:

await blurr.request({

    operation: "min",

    dfName: "df",

    columns: "value"

});

This will behave the same as the example before. You can also pass
arguments in a different attribute, named kwargs:



await blurr.request({

    operation: "min",

    dfName: "df",

    kwargs: { columns: "value" }

});

As demonstrated, you have plenty of alternatives to achieve the same
request. We recommend not using args or kwargs, but depending on your
need, you may want to use one of them.

But what if you want to check the content of your dataset rather than just
getting an insight into it? Let's see how you can do that.

Getting the content of the dataset

Blurr has a method that allows us to get this content in a Python dictionary.
In the response, the content will be shown as a JavaScript object with one
array per column. Let's look at the following code:

await blurr.request({

    operation: "display",

    dfName: "df",

    n: 4

});

This will give us the following results:

{

    status: "ok",

    content: {



        id: [1, 2, 3, 4],

        name: ["John", "Alice", "Bob", "Carol"],

        value: [5.25, 3.5, 0.5, 1.75]

    },

    status: "ok",

    code: "df.to_dict(n=4)"

}

This is useful to get a quick view of the content of the dataset.

Let's see what we can do to make slightly more complex requests by
passing multiple operations.

Multiple operations in one request

By passing an array, you can use the same request for multiple operations:

await blurr.request([{

    operation: "createDataframe",

    dict: { A: [0, 1] },

    saveTo: "df1"

}, {

    operation: "display",

    dfName: "df1"

}]);

We'll get the following result:

{

    status: "ok",



    content: {

        A: [0, 1]

    },

    status: "ok",

    code: "df = op.create.dataframe({\"A\": [0,

1]});  df.to_dict()"

}

In this response, we got the content of the dataframe we just created. This
represents the content of the last operation passed to the request.

We have learned how to handle dataframes by using requests. Let's now
learn how to handle connections (see Chapter 2) and clusters made by using
string clustering methods (see Chapter 6).

Using other types of data

When using Optimus, we don't just create variables to save dataframes; we
also create variables for connections to remote file storage systems and for
the results of a string clustering process. Let's see how Blurr handles this.

Connections
To create connections, you can simply use any of the operations available
with connect<Type>, where <Type> is the type of connection to be
created. This will behave the same as loadFile or createDataframe,
creating a variable and returning a status response. Let's see an example of
creating a connection to an S3 bucket using connectS3:

await blurr.request({

    operation: "connectS3",



    endpoint_url: "http://region.example.com",

    bucket: "example"

    saveTo: "conn"

}

This will give us the following response:

{

    status: "ok",

    updated: "conn",

    code:_"conn_=_op.connect.s3(endpoint_url=\

    "http://region.example.com\",_bucket=\"example\")"

}

Since we entered the data to create the connection, we won't need to check
its content, but that's not the case for string clusters, which are calculated.

String clusters
String clusters (data that is internally stored in dictionaries) allow us to get
feedback on the clusters and to use the methods available in the Clusters
class.

Let's use stringClustering on a dataframe:

await blurr.request([{

    operation: "loadFile",

    path: "Chapter 11/names.csv",

    saveTo: "df2"

}, {

    operation: "stringClustering",

    dfName: "df2",



    columns: "name"

}]);

This will give us a response that includes some content that will be useful
for replacing the values:

{

    status: "ok",

    updated: ["df2", "clusters"],

    code: "df2 = op.load.file(path=\"Chapter 11/names.csv\")\n

clusters = df2.string_clustering(\"name\")\n clusters",

    content: [

        {suggestion: "Alice", suggestions: ["Alice", "alice"],

suggestions_size: 2, total_count: 4},

        {suggestion: "Bob", suggestions: ["Bob", "bob"],

suggestions_size: 2, total_count: 2},

    ]

}

As we can see, we passed two operations in one request. The second one
will calculate and return the clusters and save them in a variable named
clusters. This name is assigned automatically, since we did not pass any
value to saveTo in the second operation.

To replace a suggestion from a cluster, you can use setSuggestion, as
shown in the following example:

await blurr.request({

    operation: "setSuggestion",

    suggestion: "Alice",

    value: "Alice Doe"



});

We'll get the following response:

{

    status: "ok",

    updated: "clusters",

    code: "clusters.set_suggestion("Alice", "Alice Doe")",

}

In the previous request, we adjusted the value of the cluster so that it could
be applied to our dataset by passing the name of the variable to the clusters
parameter.

We have learned how to load, save, and transform our data, and how to get
certain information from it, but the examples shown are not the only things
you can do using Blurr. Next, we'll see what features are available on Blurr.

As we can see, most of the names are the same, and others are just simply
the name of the method in camel case rather than in snake case (for
example, patternCounts instead of pattern_counts).

To get a complete list of the operations and features from Optimus available
on Blurr, you can view the documentation at https://hi-
bumblebee.gitbook.io/blurr/.

Summary
In this chapter, we learned about Blurr, a library that provides us with an
alternative to Python environments that can instead be used in a typical web
environment, opening up a range of possibilities.

https://hi-bumblebee.gitbook.io/blurr/


We learned how to set the tool up, how to use it, and how it compares with
Optimus, including some of the operations seen in previous chapters of this
book, so we can use them in this alternative workspace.

We looked at things such as loading, saving, profiling, and transforming.
More advanced features such as connections and clustering were also
illustrated, giving us a clearer view of what can be done using Blurr.
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