
DEEP LEARNING
MADE EASY

WITH R
A Gentle Introduction for Data Science.

Dr. N.D. Lewis

Copyright © 2016 by N.D. Lewis

All rights reserved. No part of this publication may be reproduced, dis-
tributed, or transmitted in any form or by any means, including photo-
copying, recording, or other electronic or mechanical methods, without
the prior written permission of the author, except in the case of brief quo-
tations embodied in critical reviews and certain other noncommercial uses
permitted by copyright law. For permission requests, contact the author
at: www.AusCov.com.

Disclaimer: Although the author and publisher have made every effort to
ensure that the information in this book was correct at press time, the
author and publisher do not assume and hereby disclaim any liability to
any party for any loss, damage, or disruption caused by errors or omissions,
whether such errors or omissions result from negligence, accident, or any
other cause.

Ordering Information: Quantity sales. Special discounts are available on
quantity purchases by corporations, associations, and others. For details,
email: info@NigelDLewis.com

Image photography by Deanna Lewis

ISBN: 978-1519514219
ISBN: 1519514212

Contents

Acknowledgements iii

Preface viii

How to Get the Most from this Book 1

1 Introduction 5
What is Deep Learning? . 6
What Problems Can Deep Learning Solve? 8
Who Uses Deep Learning? . 9
A Primer on Neural Networks . 11
Notes . 24

2 Deep Neural Networks 31
The Amazingly Simple Anatomy of the DNN 32
How to Explain a DNN in 60 Seconds or Less 33
Three Brilliant Ways to Use Deep Neural Networks 34
How to Immediately Approximate Any Function 42
The Answer to How Many Neurons to Include 48
The ABCs of Choosing the Optimal Number of Layers 49
Three Ideas to Supercharge DNN Performance 51
Incredibly Simple Ways to Build DNNs with R 57
Notes . 83

3 Elman Neural Networks 87
What is an Elman Neural Network? . 88
What is the Role of Context Layer Neurons? 88
How to Understand the Information Flow . 89
How to Use Elman Networks to Boost Your Result’s 91
Four Smart Ways to use Elman Neural Networks 92
The Easy Way to Build Elman Networks . 95
Here is How to Load the Best Packages . 95
Why Viewing Data is the New Science . 96
The Secret to Transforming Data . 100
How to Estimate an Interesting Model . 102
Creating the Ideal Prediction . 104
Notes . 106

i

4 Jordan Neural Networks 107
Three Problems Jordan Neural Networks Can Solve 108
Essential Elements for Effective Jordan Models in R 110
Which are the Appropriate Packages? . 110
A Damn Good Way to Transform Data . 112
Here is How to Select the Training Sample . 114
Use This Tip to Estimate Your Model . 115
Notes . 117

5 The Secret to the Autoencoder 119
A Jedi Mind Trick . 120
The Secret Revealed . 121
A Practical Definition You Can Run With . 124
Saving the Brazilian Cerrado . 124
The Essential Ingredient You Need to Know 125
The Powerful Benefit of the Sparse Autoencoder 126
Understanding Kullback-Leibler Divergence 126
Three Timeless Lessons from the Sparse Autoencoder 128
Mixing Hollywood, Biometrics & Sparse Autoencoders 128
How to Immediately use the Autoencoder in R 131
An Idea for Your Own Data Science Projects with R 137
Notes . 145

6 The Stacked Autoencoder in a Nutshell 147
The Deep Learning Guru’s Secret Sauce for Training 148
How Much Sleep Do You Need? . 149
Build a Stacked Autoencoder in Less Than 5 Minutes 153
What is a Denoising Autoencoder? . 155
The Salt and Pepper of Random Masking . 156
The Two Essential Tasks of a Denoising Autoencoder 156
How to Understand Stacked Denoising Autoencoders 157
A Stunningly Practical Application . 158
The Fast Path to a Denoising Autoencoder in R 166
Notes . 174

7 Restricted Boltzmann Machines 177
The Four Steps to Knowledge . 177
The Role of Energy and Probability . 179
A Magnificent Way to Think . 181
The Goal of Model Learning . 182
Training Tricks that Work Like Magic . 183
The Key Criticism of Deep Learning . 187
Two Ideas that can Change the World . 188
Secrets to the Restricted Boltzmann Machine in R 194
Notes . 201

8 Deep Belief Networks 205
How to Train a Deep Belief Network . 206
How to Deliver a Better Call Waiting Experience 207
A World First Idea that You Can Easily Emulate 209
Steps to Building a Deep Belief Network in R 212
Notes . 215

Index 222

Dedicated to Angela, wife, friend and mother

extraordinaire.

Acknowledgments

A special thank you to:

My wife Angela, for her patience and constant encouragement.

My daughter Deanna, for taking hundreds of photographs for
this book and my website.

And the readers of my earlier books who contacted me with
questions and suggestions.

iii

Master Deep Learning with this fun,
practical, hands on guide.
With the explosion of big data deep learning is now on the
radar. Large companies such as Google, Microsoft, and Face-
book have taken notice, and are actively growing in-house deep
learning teams. Other large corporations are quickly building
out their own teams. If you want to join the ranks of today’s
top data scientists take advantage of this valuable book. It will
help you get started. It reveals how deep learning models work,
and takes you under the hood with an easy to follow process
showing you how to build them faster than you imagined pos-
sible using the powerful, free R predictive analytics package.

NO EXPERIENCE REQUIRED - Bestselling decision sci-
entist Dr. N.D Lewis builds deep learning models for fun. Now
he shows you the shortcut up the steep steps to the very top.
It’s easier than you think. Through a simple to follow process
you will learn how to build the most successful deep learning
models used for learning from data. Once you have mastered
the process, it will be easy for you to translate your knowledge
into your own powerful applications.

If you want to accelerate your progress, discover the best in
deep learning and act on what you have learned, this book is
the place to get started.

YOU’LL LEARN HOW TO:

• Develop Recurrent Neural Networks

• Build Elman Neural Networks

• Deploy Jordan Neural Networks

• Create Cascade Correlation Neural Networks

• Understand Deep Neural Networks

Deep Learning Made Easy with R

• Use Autoencoders

• Unleash the power of Stacked Autoencoders

• Leverage the Restricted Boltzmann Machine

• Master Deep Belief Networks

Once people have a chance to learn how deep learning can
impact their data analysis efforts, they want to get hands on
with the tools. This book will help you to start building smarter
applications today using R. Everything you need to get started
is contained within this book. It is your detailed, practical,
tactical hands on guide - the ultimate cheat sheet for deep
learning mastery.

A book for everyone interested in machine learning, predic-
tive analytic techniques, neural networks and decision science.
Buy the book today. Your next big breakthrough using deep
learning is only a page away!

vi

Other Books by N.D Lewis
• Build Your Own Neural Network TODAY! Build

neural network models in less time than you ever imag-
ined possible. This book contains an easy to follow pro-
cess showing you how to build the most successful neural
networks used for learning from data using R.

• 92 Applied Predictive Modeling Techniques in R:
AT LAST! Predictive analytic methods within easy reach
with R...This jam-packed book takes you under the hood
with step by step instructions using the popular and free
R predictive analytic package. It provides numerous ex-
amples, illustrations and exclusive use of real data to help
you leverage the power of predictive analytics. A book
for every data analyst, student and applied researcher.

• 100 Statistical Tests in R: Is designed to give you
rapid access to one hundred of the most popular statis-
tical tests. It shows you, step by step, how to carry out
these tests in the free and popular R statistical pack-
age. The book was created for the applied researcher
whose primary focus is on their subject matter rather
than mathematical lemmas or statistical theory.

• Visualizing Complex Data Using R: Wish you had
fresh ways to present data, explore relationships, visual-
ize your data and break free from mundane charts and
diagrams? In this book you will find innovative ideas
to unlock the relationships in your own data and create
killer visuals to help you transform your next presenta-
tion from good to great. Visualizing complex relation-
ships with ease using R begins here.

For further details visit www.AusCov.com

vii

www.AusCov.com

Deep Learning Made Easy with R

Preface

This is a book for everyone who is interested in deep learn-
ing. Deep learning isn’t just for multinational corpo-
rations or large university research departments. The

ideas and practical information you’ll find here will work just as
well for the individual data scientist working for a small adver-
tising firm, the team of three decision scientists employed by a
regional pet foods company, the student completing a project
on deep learning for their coursework, or the solo consultant
engaged on a forecasting project for the local health author-
ity. You don’t need to be a genius statistician or programming
guru to understand and benefit from the deep learning ideas
discussed in this text.

The purpose of this book is to introduce deep learning tech-
niques to data scientists, applied researchers, hobbyists and
others who would like to use these tools. It is not intended to
be a comprehensive theoretical treatise on the subject. Rather,
the intention is to keep the details to the minimum while still
conveying a good idea of what can be done and how to do it
using R. The focus is on the “how” because it is this knowl-
edge that will drive innovation and actual practical solutions
for you. As Anne Isabella Richie, daughter of writer William
Makepeace Thackeray, wrote in her novel Mrs. Dymond “...if
you give a man a fish he is hungry again in an hour. If you
teach him to catch a fish you do him a good turn”.

This book came out of the desire to put the powerful tech-
nology of deep learning into the hands of the everyday prac-
titioner. The material is therefore designed to be used by the
individual whose primary focus is on data analysis and model-
ing. The focus is solely on those techniques, ideas and strategies
that have been proven to work and can be quickly digested and
deployed in the minimal amount of time.

On numerous occasions, individuals in a wide variety of
disciplines and industries, have asked “how can I quickly un-

viii

derstand and use the techniques of deep learning in my area of
interest?” The answer used to involve reading complex math-
ematical texts and then programming complicated formulas in
languages such as C, C++ and Java.

With the rise of R, using the techniques of deep learning is
now easier than ever. This book is designed to give you rapid
access. It shows you, step by step, how to build each type
of deep learning model in the free and popular R statistical
package. Examples are clearly described and can be typed
directly into R as printed on the page.

The least stimulating aspect of the subject for the practi-
tioner is the mechanics of calculation. Although many of the
horrors of this topic are necessary for the theoretician, they are
of minimal importance to the practitioner and can be elimi-
nated almost entirely by the use of the R package. It is in-
evitable that a few fragments remain, these are fully discussed
in the course of this text. However, as this is a hands on, role
up your sleeves and apply the ideas to real data book, I do not
spend much time dealing with the minutiae of algorithmic mat-
ters, proving theorems, discussing lemmas or providing proofs.

Those of us who deal with data are primarily interested in
extracting meaningful structure. For this reason, it is always
a good idea to study how other users and researchers have ap-
plied a technique in actual practice. This is primarily because
practice often differs substantially from the classroom or theo-
retical text books. To this end and to accelerate your progress,
numerous applications of deep learning use are given through-
out this text.

These illustrative applications cover a vast range of disci-
plines and are supplemented by the actual case studies which
take you step by step through the process of building the mod-
els using R. I have also provided detailed references for further
personal study in the notes section at the end of each chapter.
In keeping with the zeitgeist of R, copies of the vast majority
of applied articles referenced in this text are available for free.

ix

Deep Learning Made Easy with R

New users to R can use this book easily and without any
prior knowledge. This is best achieved by typing in the ex-
amples as they are given and reading the comments which
follow. Copies of R and free tutorial guides for beginners
can be downloaded at https://www.r-project.org/. If you
are totally new to R take a look at the amazing tutorials
at http://cran.r-project.org/other-docs.html; they do
a great job introducing R to the novice.

In the end, deep learning isn’t about mathematical lemmas
or proving theorems. It’s ultimately about real life, real peo-
ple and the application of machine learning algorithms to real
world problems in order to drive useful solutions. No matter
who you are, no matter where you are from, no matter your
background or schooling, you have the ability to use the ideas
outlined in this book. With the appropriate software tool, a
little persistence and the right guide, I personally believe deep
learning techniques can be successfully used in the hands of
anyone who has a real interest.

The master painter Vincent van Gough once said “Great
things are not done by impulse, but by a series of small things
brought together.” This instruction book is your step by step,
detailed, practical, tactical guide to building and deploying
deep learning models. It is an enlarged, revised, and updated
collection of my previous works on the subject. I’ve condensed
into this volume the best practical ideas available.

I have found, over and over, that an individual who has
exposure to a broad range of modeling tools and applications
will run circles around the narrowly focused genius who has
only been exposed to the tools of their particular discipline.
Knowledge of how to build and apply deep learning models
will add considerably to your own personal toolkit.

Greek philosopher Epicurus once said “I write this not for
the many, but for you; each of us is enough of an audience
for the other.” Although the ideas in this book reach out to
thousands of individuals, I’ve tried to keep Epicurus’s principle
in mind–to have each page you read give meaning to just one

x

https://www.r-project.org/
http://cran.r-project.org/other-docs.html

person - YOU.

A Promise
When you are done with this book, you will be able to imple-
ment one or more of the ideas I’ve talked about in your own
particular area of interest. You will be amazed at how quick
and easy the techniques are to use and deploy with R. With
only a few different uses you will soon become a skilled practi-
tioner.

I invite you therefore to put what you read in these pages
into action. To help you do that, I’ve created “12 Resources
to Supercharge Your Productivity in R”, it is yours for
FREE. Simply go to http: // www. AusCov. com and down-
load it now. It’s my gift to you. It shares with you 12 of the
very best resources you can use to boost your productivity in
R.

Now, it’s your turn!

xi

http://www.AusCov.com

How to Get the Most from this Book

This is a hands on, role up your sleeves and experiment
with the data and R book. You will get the maximum
benefit by typing in the examples, reading the reference

material and experimenting. By working through the numerous
examples and reading the references, you will broaden your
knowledge, deepen you intuitive understanding and strengthen
your practical skill set.

There are at least two other ways to use this book. You can
dip into it as an efficient reference tool. Flip to the chapter you
need and quickly see how calculations are carried out in R. For
best results type in the example given in the text, examine the
results, and then adjust the example to your own data. Alter-
natively, browse through the real world examples, illustrations,
case studies, tips and notes to stimulate your own ideas.

 PRACTITIONER TIP �

If you are using Windows you can easily upgrade to
the latest version of R using the installr package.
Enter the following:
> install.packages("installr")
> installr :: updateR ()

If a package mentioned in the text is not in-
stalled on your machine you can download it by typing
install.packages(“package_name”). For example, to down-
load the RSNNS package you would type in the R console:
> install.packages("RSNNS")

Once the package is installed, you must call it. You do this by
typing in the R console:
> require(RSNNS)

1

Deep Learning Made Easy with R

The RSNNS package is now ready for use. You only need to type
this once, at the start of your R session.

Functions in R often have multiple parameters. In the ex-
amples in this text I focus primarily on the key parameters
required for rapid model development. For information on ad-
ditional parameters available in a function type in the R console
?function_name. For example, to find out about additional
parameters in the elman function, you would type:
?elman

Details of the function and additional parameters will appear
in your default web browser. After fitting your model of inter-
est you are strongly encouraged to experiment with additional
parameters.

 PRACTITIONER TIP �

You should only download packages from CRAN
using encrypted HTTPS connections. This pro-
vides much higher assurance that the code you
are downloading is from a legitimate CRAN mir-
ror rather than from another server posing as one.
Whilst downloading a package from a HTTPS con-
nection you may run into an error message some-
thing like:
"unable to access index for repository
https://cran.rstudio.com/..."
This is particularly common on Windows. The in-
ternet2 dll has to be activated on versions before
R-3.2.2. If you are using an older version of R
before downloading a new package enter the fol-
lowing:
> setInternet2(TRUE)

I have also included the set.seed method in the R code

2

samples throughout this text to assist you in reproducing the
results exactly as they appear on the page.

The R package is available for all the major operating sys-
tems. Due to the popularity of Windows, examples in this book
use the Windows version of R.

 PRACTITIONER TIP �

Can’t remember what you typed two hours ago!
Don’t worry, neither can I! Provided you are logged
into the same R session you simply need to type:
> history(Inf)

It will return your entire history of entered com-
mands for your current session.

You don’t have to wait until you have read the entire book
to incorporate the ideas into your own analysis. You can expe-
rience their marvelous potency for yourself almost immediately.
You can go straight to the section of interest and immediately
test, create and exploit it in your own research and analysis.

.

 PRACTITIONER TIP �

On 32-bit Windows machines, R can only use up
to 3Gb of RAM, regardless of how much you have
installed. Use the following to check memory avail-
ability:
> memory.limit ()

To remove all objects from memory:
rm(list=ls())

3

Deep Learning Made Easy with R

As implied by the title, this book is about understanding
and then hands on building of deep learning models; more pre-
cisely, it is an attempt to give you the tools you need to build
these models easily and quickly using R. The objective is to
provide you the reader with the necessary tools to do the job,
and provide sufficient illustrations to make you think about
genuine applications in your own field of interest. I hope the
process is not only beneficial but enjoyable.

Applying the ideas in this book will transform your data
science practice. If you utilize even one idea from each chapter,
you will be far better prepared not just to survive but to excel
when faced by the challenges and opportunities of the ever
expanding deluge of exploitable data.

As you use these models successfully in your own area of ex-
pertise, write and let me know. I’d love to hear from you. Con-
tact me at info@NigelDLewis.com or visit www.AusCov.com.

Now let’s get started!

4

www.AusCov.com

Chapter 1

Introduction

In God we trust. All others must bring data.
W. Edwards Deming

In elementary school, Mrs. Masters my teacher, taught me
and my fellow students about perspective. Four students
were “volunteered” to take part, in what turned out to be

a very interesting experiment. Each volunteer was blindfolded
and directed towards a large model of a donkey. The first
student was led to the tail, and asked to describe what she
felt. The second student was lead to the leg, and again asked
to describe what he felt. The same thing was repeated for
the remaining two students, each led to a different part of the
donkey.

Because no one of the blindfolded students had complete
information, the descriptions of what they were feeling were
widely inaccurate. We laughed and giggled at the absurdity
of the suggestions of our fellow blindfolded students. It was
quite clearly a donkey; how could it be anything else! Once the
blindfold was taken off the students, they too laughed. Mrs.
Masters was an amazing teacher.

In this chapter I am going to draw a picture of the complete
“donkey” for you, so to speak. I’ll give an overview of deep
learning, identify some of the major players, touch on areas

5

Deep Learning Made Easy with R

where it has already been deployed, outline why you should
add it to your data science toolkit, and provide a primer on
neural networks, the foundation of the deep learning techniques
we cover in this book.

What is Deep Learning?
Deep learning is an area of machine learning that emerged
from the intersection of neural networks, artificial intelligence,
graphical modeling, optimization, pattern recognition and sig-
nal processing. The models in this emerging discipline have
been exulted by sober minded scholars in rigorous academic
journals1 “Deep learning networks are a revolutionary develop-
ment of neural networks, and it has been suggested that they
can be utilized to create even more powerful predictors.” Faster
computer processors, cheaper memory and the deluge of new
forms of data allow businesses of all sizes to use deep learning
to transform real-time data analysis.

Figure 1.1: The deep learning pyramid

Deep learning is about supervised or unsupervised learn-

6

CHAPTER 1. INTRODUCTION

ing from data using multiple layered machine learning mod-
els. The layers in these models consist of multiple stages of
nonlinear data transformations, where features of the data are
represented at successively higher, more abstract layers.

Figure 1.1 illustrates the deep learning pyramid. At the
base are the two core styles of learning from data, supervised
learning and unsupervised learning. The core element of non-
linear data transformation lies at the center of the pyramid,
and at the top, in this book, we consider various types of neu-
ral networks.

NOTE... �

There are two basic types of learning used in data
science:

1. Supervised learning: Your training data
contain the known outcomes. The model is
trained relative to these outcomes.

2. Unsupervised learning: Your training
data does not contain any known outcomes.
In this case the algorithm self-discovers rela-
tionships in your data.

As we work together through the core ideas involved in deep
learning and useful models using R, the general approach we
take is illustrated in Figure 1.2. Whatever specific machine
learning model you develop, you will always come back to this
basic diagram. Input data is passed to the model and filtered
through multiple non-linear layers. The final layer consists of
a classifier which determines which class the object of interest
belongs to.

7

Deep Learning Made Easy with R

Figure 1.2: General deep learning framework

The goal in learning from data is to predict a response vari-
able or classify a response variable using a group of given at-
tributes. This is somewhat similar to what you might do with
linear regression, where the dependent variable (response) is
predicted by a linear model using a group of independent vari-
ables (aka attributes or features). However, traditional linear
regression models are not considered deep because they do ap-
ply multiple layers of non-linear transformation to the data.

Other popular learning from data techniques such as de-
cision trees, random forests and support vector machines, al-
though powerful tools2, are not deep. Decision trees and ran-
dom forests work with the original input data with no trans-
formations or new features generated; whilst support vector
machines are considered shallow because they only consist of
a kernel and a linear transformation. Similarly, single hidden
layer neural networks are also not considered deep as they con-
sist of only one hidden layer3.

What Problems Can Deep Learning
Solve?
The power of deep learning models comes from their ability
to classify or predict nonlinear data using a modest number
of parallel nonlinear steps4. A deep learning model learns the
input data features hierarchy all the way from raw data input
to the actual classification of the data. Each layer extracts
features from the output of the previous layer.

8

CHAPTER 1. INTRODUCTION

Figure 1.3: Feed forward neural network with 2 hidden layers

The deep learning models we consider throughout this text
are neural networks with multiple hidden layers. The simplest
form of deep neural network, as shown in Figure 1.3, contains
at least two layers of hidden neurons, where each additional
layer processes the output from the previous layer as input5.

Deep multi-layer neural networks contain many levels of
nonlinearities which allow them to compactly represent highly
non-linear and/ or highly-varying functions. They are good at
identifying complex patterns in data and have been set work
to improve things like computer vision and natural language
processing, and to solve unstructured data challenges.

Who Uses Deep Learning?
Deep learning technology is being used commercially in the
health care industry, medical image processing6, natural-
language processing and in advertising to improve click through
rates. Microsoft, Google, IBM, Yahoo, Twitter, Baidu, Paypal
and Facebook are all exploiting deep learning to understand
user’s preferences so that they can recommend targeted ser-

9

Deep Learning Made Easy with R

vices and products. It is popping up everywhere, it is even on
your smartphone where it underpins voice assisted technology.

NOTE... �

The globally distributed and widely read IEEE7

Spectrum magazine reported8“the demand for
data scientists is exceeding the supply. These
professionals garner high salaries and large stock
option packages...” According to the McKinsey
Global Institute, the United States alone faces a
shortage of 140,000 to 190,000 data scientists with
the appropriate skills9. Whilst the Harvard Busi-
ness Review declared data science as the sexiest
job of the 21st century10.

You would be hard pressed to think of an area of commercial
activity where deep learning could not be beneficial. Think
about this for five minutes. Write down a list of your best
ideas.

Here is a list of areas I came up with:

• Process Modeling and Control11.

• Health Diagnostics12.

• Investment Portfolio Management13.

• Military Target Recognition14.

• Analysis of MRI and X-rays15.

• Credit Rating of individuals by banks and other financial
institutions16.

• Marketing campaigns17.

• Voice Recognition18.

10

CHAPTER 1. INTRODUCTION

• Forecasting the stock market19.

• Text Searching20.

• Financial Fraud Detection21.

• Optical Character Recognition22.

Richard Socher made his list, found a useful application, and
co-founded MetaMind23, an innovative company which special-
izes in medical image analysis and automated image recogni-
tion. Other data scientists, entrepreneurs, applied researchers,
and maybe even you, will soon follow Richard into this increas-
ingly lucrative space.

A Primer on Neural Networks
Neural networks have been an integral part of the data scien-
tist’s toolkit for over a decade24. Their introduction consider-
ably improved the accuracy of predictors, and the gradual re-
finement of neural network training methods continues to ben-
efit both commerce and scientific research. I first came across
them in the spring of 1992 when I was completing a thesis for
my Master’s degree in Economics. In the grand old and dusty
Foyles bookstore located on Charing Cross Road, I stumbled
across a slim volume called Neural Computing by Russell Beale
and Tom Jackson25. I devoured the book, and decided to build
a neural network to predict foreign exchange rate movements.

After several days of coding in GW-BASIC, my neural net-
work model was ready to be tested. I fired up my Amstrad
2286 computer and let it rip on the data. Three and a half
days later it delivered the results. The numbers compared well
to a wide variety of time series statistical models, and it out-
performed every economic theory of exchange rate movement I
was able to find. I ditched Economic theory but was hooked on
predictive analytics! I have been building, deploying and toying

11

Deep Learning Made Easy with R

with neural networks and other marvelous predictive analytic
models ever since.

Neural networks came out of the desire to simulate the phys-
iological structure and function of the human brain. Although
the desire never quite materialized26 it was soon discovered that
they were pretty good at classification and prediction tasks27.

They can be used to help solve a wide variety of problems.
This is because in principle, they can calculate any computable
function. In practice, they are especially useful for problems
which are tolerant of some error, have lots of historical or ex-
ample data available, but to which hard and fast rules cannot
easily be applied.

Figure 1.4: A basic neural network

A Neural network is constructed from a number of intercon-
nected nodes known as neurons. These are usually arranged
into a number of layers. A typical feedforward neural network
will have at a minimum an input layer, a hidden layer and an
output layer. The input layer nodes correspond to the num-
ber of features or attributes you wish to feed into the neural
network. These are akin to the co-variate s you would use in
a linear regression model. The number of output nodes corre-

12

CHAPTER 1. INTRODUCTION

spond to the number of items you wish to predict or classify.
The hidden layer nodes are generally used to perform non-linear
transformation on the original input attributes.

privins

school

gender

numchron

health

hosp

Class

Error: 1851.699954 Steps: 16767

Figure 1.5: Multi-Layer Perceptron

In their simplest form, feed-forward neural networks prop-
agate attribute information through the network to make a
prediction, whose output is either continuous for regression or
discrete for classification. Figure 1.4 illustrates a typical feed
forward neural network topology. It has 2 input nodes, 1 hid-
den layer with 3 nodes, and 1 output node. The information is
fed forward from the input attributes to the hidden layers and

13

Deep Learning Made Easy with R

then to the output nodes which provide the classification or re-
gression prediction. It is called a feed forward neural network
because the information flows forward through the network.

Figure 1.5 shows the topology of a typical multi-layer per-
ceptron neural network as represented in R. This particular
model has six input nodes. To the left of each node is the
name of the attribute in this case hosp, health, numchron,
gender, school and privins respectively. The network has
two hidden layers, each containing two nodes. The response or
output variable is called Class. The figure also reports the net-
work error, in this case 1851, and the number of steps required
for the network to converge.

The Role of the Neuron

Figure 1.6 illustrates the working of a biological neuron. Bi-
ological neurons pass signals or messages to each other via
electrical signals. Neighboring neurons receive these signals
through their dendrites. Information flows from the dendrites
to the main cell body, known as the soma, and via the axon
to the axon terminals. In essence, biological neurons are com-
putation machines passing messages between each other about
various biological functions.

At the heart of an artificial neural network is a mathemat-
ical node, unit or neuron. It is the basic processing element.
The input layer neurons receive incoming information which
they process via a mathematical function and then distribute
to the hidden layer neurons. This information is processed
by the hidden layer neurons and passed onto the output layer
neurons. The key here is that information is processed via
an activation function. The activation function emulates brain
neurons in that they are fired or not depending on the strength
of the input signal.

14

CHAPTER 1. INTRODUCTION

Figure 1.6: Biological Neuron. © Arizona Board of Regents
/ ASU Ask A Biologist. https://askabiologist.asu.edu/neuron-
anatomy. See also http://creativecommons.org/licenses/
by-sa/3.0/

NOTE... �

The original “Perceptron” model was developed
at the Cornell Aeronautical Laboratory back in
195828. It consisted of three layers with no feed-
back:

1. A “retina” that distributed inputs to the sec-
ond layer;

2. association units that combine the inputs
with weights and a threshold step function;

3. the output layer.

The result of this processing is then weighted and dis-

15

https://askabiologist.asu.edu/neuron-anatomy
https://askabiologist.asu.edu/neuron-anatomy
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Deep Learning Made Easy with R

tributed to the neurons in the next layer. In essence, neu-
rons activate each other via weighted sums. This ensures the
strength of the connection between two neurons is sized accord-
ing to the weight of the processed information.

Each neuron contains an activation function and a threshold
value. The threshold value is the minimum value that a input
must have to activate the neuron. The task of the neuron
therefore is to perform a weighted sum of input signals and
apply an activation function before passing the output to the
next layer.

So, we see that the input layer performs this summation on
the input data. The middle layer neurons perform the sum-
mation on the weighted information passed to them from the
input layer neurons; and the output layer neurons perform the
summation on the weighted information passed to them from
the middle layer neurons.

Figure 1.7: Alternative representation of neuron

Figure 1.7 illustrate the workings of an individual neuron.
Given a sample of input attributes {x1,...,xn} a weight wij is as-
sociated with each connection into the neuron; and the neuron
then sums all inputs according to:

16

CHAPTER 1. INTRODUCTION

f(u) = ∑n
i=1 wijxj + bj

The parameter bj is known as the bias and is similar to the
intercept in a linear regression model. It allows the network to
shift the activation function “upwards” or “downwards”. This
type of flexibility is important for successful machine learning29.

Activation Functions
Activation functions for the hidden layer nodes are needed to
introduce non linearity into the network. The activation func-
tion is applied and the output passed to the next neuron(s) in
the network. It is designed to limit the output of the neuron,
usually to values between 0 to 1 or -1 to +1. In most cases
the same activation function is used for every neuron in a net-
work. Almost any nonlinear function does the job, although for
the backpropagation algorithm it must be differentiable and it
helps if the function is bounded.

The sigmoid function is a popular choice. It is an “S” shape
differentiable activation function. It is shown in Figure 1.8
where parameter c is a constant taking the value 1.5. It is pop-
ular partly because it can be easily differentiated and therefore
reduces the computational cost during training. It also pro-
duces an output between the values 0 and 1 and is given by:

f (u) = 1
1 + exp (−cu)

There are a wide number of activation functions. Four of
the most popular include:

• Linear function: In this case:

f(u) = u

• Hyperbolic Tangent function: The hyperbolic tan-
gent function produces output in the range −1 to +1.
This function shares many properties of the sigmoid func-
tion; however, because the output space is broader, it is

17

Deep Learning Made Easy with R

sometimes more efficient for modeling complex nonlinear
relations. The function takes the form:

f(u) = tanh (cu)

• Softmax function: It is common practice to use a soft-
max function for the output of a neural network. Doing
this gives us a probability distribution over the k classes:

f(u) =
exp

(
u
T

)
∑

k exp
(

u
T

)
where T is the temperature (normally set to 1). Note that using
a higher value for T produces a ’softer’ probability distribution
over the k classes. It is typically used with a response variable
that has k alternative unordered classes. It can essentially be
viewed as a set of binary nodes whose states are mutually con-
strained so that exactly one of the k states has value 1 with
the remainder taking the value 0.

• Rectified linear unit (ReLU): Takes the form:

f(u) = max (0, u)

This activation function has proved popular in deep learning
models because significant improvements of classification rates
have been reported for speech recognition and computer vision
tasks30. It only permits activation if a neurons output is pos-
itive; and allows the network to compute much faster than a
network with sigmoid or hyperbolic tangent activation func-
tions because it is simply a max operation. It allows sparsity
of the neural network because when initialized randomly ap-
proximately half of the neurons in the entire network will be
set to zero.
There is also a smooth approximation which is sometimes used
because it is differentiable:

f(u) = log (1 + exp(u))

18

CHAPTER 1. INTRODUCTION

Figure 1.8: The sigmoid function with c = 1.5

Neural Network Learning
To learn from data a neural network uses a specific learning al-
gorithm. There are many learning algorithms, but in general,
they all train the network by iteratively modifying the connec-
tion weights until the error between the output produced by
the network and the desired output falls below a pre-specified
threshold.

The backpropagation algorithm was the first popular lean-
ing algorithm and is still widely used. It uses gradient descent
as the core learning mechanism. Starting from random weights
the backpropagation algorithm calculates the network weights
making small changes and gradually making adjustments deter-
mined by the error between the result produced by the network
and the desired outcome.

The algorithm applies error propagation from outputs to
inputs and gradually fine tunes the network weights to min-
imize the sum of error using the gradient descent technique.
Learning therefore consists of the following steps.

• Step 1:- Initialization of the network: The initial

19

Deep Learning Made Easy with R

values of the weights need to be determined. A neural
network is generally initialized with random weights.

• Step 2:- Feed Forward: Information is passed for-
ward through the network from input to hidden and
output layer via node activation functions and weights.
The activation function is (usually) a sigmoidal (i.e.,
bounded above and below, but differentiable) function
of a weighted sum of the nodes inputs.

• Step 3:- Error assessment: The output of the network
is assessed relative to known output. If the error is below
a pre-specified threshold the network is trained and the
algorithm terminated.

• Step 4:- Propagate: The error at the output layer is
used to re-modify the weights. The algorithm propagates
the error backwards through the network and computes
the gradient of the change in error with respect to changes
in the weight values.

• Step 5:- Adjust: Make adjustments to the weights us-
ing the gradients of change with the goal of reducing the
error. The weights and biases of each neuron are adjusted
by a factor based on the derivative of the activation func-
tion, the differences between the network output and the
actual target outcome and the neuron outputs. Through
this process the network “learns”.

The basic idea is roughly illustrated in Figure 1.9. If the par-
tial derivative is negative, the weight is increased (left part of
the figure); if the partial derivative is positive, the weight is
decreased (right part of the figure)31. Each cycle through this
learning process is called an epoch.

20

CHAPTER 1. INTRODUCTION

Figure 1.9: Basic idea of the backpropagation algorithm

NOTE... �

Neural networks are initialized by setting random
values to the weights and biases. One rule of
thumb is to set the random values to lie in the
range (-2 n to 2 n), where n is the number of input
attributes.

I discovered early on that backpropagation using gradient
descent often converges very slowly or not at all. In my first
coded neural network I used the backpropagation algorithm
and it took over 3 days for the network to converge to a solution!

Despite the relatively slow learning rate associated with
backpropagation, being a feedforward algorithm, it is quite
rapid during the prediction or classification phase.

Finding the globally optimal solution that avoids local min-
ima is a challenge. This is because a typical neural network
may have hundreds of weights whose combined values are used
to generate a solution. The solution is often highly nonlin-

21

Deep Learning Made Easy with R

ear which makes the optimization process complex. To avoid
the network getting trapped in a local minima a momentum
parameter is often specified.

Deep learning neural networks are useful in areas where
classification and/ or prediction is required. Anyone interested
in prediction and classification problems in any area of com-
merce, industry or research should have them in their toolkit.
In essence, provided you have sufficient historical data or case
studies for which prediction or classification is required you can
build a neural network model.

Here are four things to try right now:

1. Do an internet search using terms similar to “deep learn-
ing jobs”, “machine learning jobs” , "machine learning
jobs salary" and "deep learning jobs salary". What do
find?

2. Identify four areas where deep learning could be of per-
sonal benefit to you and/ or your organization. Now pick
the area you are most interested in. Keep this topic in
mind as you work through the remainder of this book. If
possible, go out and collect some data on this area now.
By the way, jot down your thoughts in your innovation
journal. Refer back to these as you work through this
text. If you don’t have an innovation/ ideas journal - go
out and get one! It will be your personal gold mine for
new and innovative solutions32.

3. If you are new to R, or have not used it in a while, re-
fresh your memory by reading the amazing FREE tutori-
als at http://cran.r-project.org/other-docs.html.
You will be “up to speed” in record time!

4. R- user groups are popping up everywhere. Look for one
in you local town or city. Join it! Here are a few resources
to get you started:

22

http://cran.r-project.org/other-docs.html

CHAPTER 1. INTRODUCTION

• For my fellow Londoners check out: http://www.
londonr.org/.

• A global directory is listed at: http://blog.
revolutionanalytics.com/local-r-groups.
html.

• Another global directory is available at: http://
r-users-group.meetup.com/.

• Keep in touch and up to date with useful infor-
mation in my FREE newsletter. Sign up at www.
AusCov.Com.

23

http://www.londonr.org/
http://www.londonr.org/
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://blog.revolutionanalytics.com/local-r-groups.html
http://r-users-group.meetup.com/
http://r-users-group.meetup.com/
www.AusCov.Com
www.AusCov.Com

Deep Learning Made Easy with R

Notes
1See Spencer, Matt, Jesse Eickholt, and Jianlin Cheng. "A Deep Learn-

ing Network Approach to ab initio Protein Secondary Structure Predic-
tion." Computational Biology and Bioinformatics, IEEE/ACM Transac-
tions on 12.1 (2015): 103-112.

2If you want to learn about these, other data science techniques and
how to use them in R, pick up a copy of 92 Applied Predictive Mod-
eling Techniques in R, available at www.AusCov.com.

3For more information on building neural networks using R, pick up a
copy of the book Build Your Own Neural Network TODAY! from
www.AusCov.com.

4It also appears deep architectures can be more efficient (in terms of
number of fitting parameters) than a shallow network. See for example Y.
Bengio, Y. LeCun, et al. Scaling learning algorithms towards ai. Large-
scale kernel machines, 34(5), 2007.

5See:

• Hinton G. E., Osindero S., Teh Y. (2006). “A fast learning algo-
rithm for deep belief nets”, Neural Computation 18: 1527–1554.

• BengioY (2009) Learning deep architectures for AI, Foundations
and Trends in Machine Learning 2:1–127.

6See for example http://www.ersatzlabs.com/
7The IEEE is the world’s largest professional organization devoted to

engineering and the applied sciences. It has over 400,000 members glob-
ally.

8See the report by Emily Waltz. Is Data Scientist the Sexiest Job
of Our Time? IEEE Spectrum. September 2012. Also available
at http://spectrum.ieee.org/tech-talk/computing/it/is-data-scientist-the-
sexiest-job-of-our-time

9See the special report by James Manyika, Michael Chui, Brad Brown,
Jacques Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung By-
ers. Big data: The next frontier for innovation, competition, and
productivity. McKinsey Global Institute. May 2011. Also avail-
able at http://www.mckinsey.com/insights/business_technology/
big_data_the_next_frontier_for_innovation.

10See Davenport, Thomas H., and D. J. Patil. "Data Scientist: The
Sexiest Job of the 21st Century-A new breed of professional holds the key
to capitalizing on big data opportunities. But these specialists aren’t easy
to find—And the competition for them is fierce." Harvard Business Review
(2012): 70.

11See for example:

24

www.AusCov.com
www.AusCov.com
http://www.ersatzlabs.com/
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation

NOTES

1. Shaw, Andre M., Francis J. Doyle, and James S. Schwaber. "A
dynamic neural network approach to nonlinear process modeling."
Computers & chemical engineering 21.4 (1997): 371-385.

2. Omidvar, Omid, and David L. Elliott. Neural systems for control.
Elsevier, 1997.

3. Rivals, Isabelle, and Léon Personnaz. "Nonlinear internal model
control using neural networks: application to processes with delay
and design issues." Neural Networks, IEEE Transactions on 11.1
(2000): 80-90.

12See for example:

1. Lisboa, Paulo JG. "A review of evidence of health benefit from
artificial neural networks in medical intervention." Neural networks
15.1 (2002): 11-39.

2. Baxt, William G. "Application of artificial neural networks to clin-
ical medicine." The lancet 346.8983 (1995): 1135-1138.

3. Turkoglu, Ibrahim, Ahmet Arslan, and Erdogan Ilkay. "An intelli-
gent system for diagnosis of the heart valve diseases with wavelet
packet neural networks." Computers in Biology and Medicine 33.4
(2003): 319-331.

13See for example:

1. Khoury, Pascal, and Denise Gorse. "Investing in emerging markets
using neural networks and particle swarm optimisation." Neural
Networks (IJCNN), 2015 International Joint Conference on. IEEE,
2015.

2. Freitas, Fabio D., Alberto F. De Souza, and Ailson R. de Almeida.
"Prediction-based portfolio optimization model using neural net-
works." Neurocomputing 72.10 (2009): 2155-2170.

3. Vanstone, Bruce, and Gavin Finnie. "An empirical methodology
for developing stock market trading systems using artificial neural
networks." Expert Systems with Applications 36.3 (2009): 6668-
6680.

14See for example:

1. Rogers, Steven K., et al. "Neural networks for automatic target
recognition." Neural networks 8.7 (1995): 1153-1184.

2. Avci, Engin, Ibrahim Turkoglu, and Mustafa Poyraz. "Intelligent
target recognition based on wavelet packet neural network." Expert
Systems with Applications 29.1 (2005): 175-182.

25

Deep Learning Made Easy with R

3. Shirvaikar, Mukul V., and Mohan M. Trivedi. "A neural network
filter to detect small targets in high clutter backgrounds." Neural
Networks, IEEE Transactions on 6.1 (1995): 252-257.

15See for example:

1. Vannucci, A., K. A. Oliveira, and T. Tajima. "Forecast of TEXT
plasma disruptions using soft X rays as input signal in a neural
network." Nuclear Fusion 39.2 (1999): 255.

2. Kucian, Karin, et al. "Impaired neural networks for approximate
calculation in dyscalculic children: a functional MRI study." Be-
havioral and Brain Functions 2.31 (2006): 1-17.

3. Amartur, S. C., D. Piraino, and Y. Takefuji. "Optimization neural
networks for the segmentation of magnetic resonance images." IEEE
Transactions on Medical Imaging 11.2 (1992): 215-220.

16See for example:

1. Huang, Zan, et al. "Credit rating analysis with support vector ma-
chines and neural networks: a market comparative study." Decision
support systems 37.4 (2004): 543-558.

2. Atiya, Amir F. "Bankruptcy prediction for credit risk using neu-
ral networks: A survey and new results." Neural Networks, IEEE
Transactions on 12.4 (2001): 929-935.

3. Jensen, Herbert L. "Using neural networks for credit scoring." Man-
agerial finance 18.6 (1992): 15-26.

17See for example:

1. Potharst, Rob, Uzay Kaymak, and Wim Pijls. "Neural networks for
target selection in direct marketing." ERIM report series reference
no. ERS-2001-14-LIS (2001).

2. Vellido, A., P. J. G. Lisboa, and K. Meehan. "Segmentation of the
on-line shopping market using neural networks." Expert systems
with applications 17.4 (1999): 303-314.

3. Hill, Shawndra, Foster Provost, and Chris Volinsky. "Network-
based marketing: Identifying likely adopters via consumer net-
works." Statistical Science (2006): 256-276.

18See for example:

1. Waibel, Alexander, et al. "Phoneme recognition using time-delay
neural networks." Acoustics, Speech and Signal Processing, IEEE
Transactions on 37.3 (1989): 328-339.

26

NOTES

2. Lippmann, Richard P. "Review of neural networks for speech recog-
nition." Neural computation 1.1 (1989): 1-38.

3. Nicholson, Joy, Kazuhiko Takahashi, and Ryohei Nakatsu. "Emo-
tion recognition in speech using neural networks." Neural comput-
ing & applications 9.4 (2000): 290-296.

19See for example:

1. Kimoto, Tatsuya, et al. "Stock market prediction system with mod-
ular neural networks." Neural Networks, 1990., 1990 IJCNN Inter-
national Joint Conference on. IEEE, 1990.

2. Fernandez-Rodrıguez, Fernando, Christian Gonzalez-Martel, and
Simon Sosvilla-Rivero. "On the profitability of technical trading
rules based on artificial neural networks: Evidence from the Madrid
stock market." Economics letters 69.1 (2000): 89-94.

3. Guresen, Erkam, Gulgun Kayakutlu, and Tugrul U. Daim. "Using
artificial neural network models in stock market index prediction."
Expert Systems with Applications 38.8 (2011): 10389-10397.

20See for example:

1. Chung, Yi-Ming, William M. Pottenger, and Bruce R. Schatz. "Au-
tomatic subject indexing using an associative neural network." Pro-
ceedings of the third ACM conference on Digital libraries. ACM,
1998.

2. Frinken, Volkmar, et al. "A novel word spotting method based on
recurrent neural networks." Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 34.2 (2012): 211-224.

3. Zhang, Min-Ling, and Zhi-Hua Zhou. "Multilabel neural networks
with applications to functional genomics and text categorization."
Knowledge and Data Engineering, IEEE Transactions on 18.10
(2006): 1338-1351.

21See for example:

1. Maes, Sam, et al. "Credit card fraud detection using Bayesian
and neural networks." Proceedings of the 1st international naiso
congress on neuro fuzzy technologies. 2002.

2. Brause, R., T. Langsdorf, and Michael Hepp. "Neural data mining
for credit card fraud detection." Tools with Artificial Intelligence,
1999. Proceedings. 11th IEEE International Conference on. IEEE,
1999.

27

Deep Learning Made Easy with R

3. Sharma, Anuj, and Prabin Kumar Panigrahi. "A review of financial
accounting fraud detection based on data mining techniques." arXiv
preprint arXiv:1309.3944 (2013).

22See for example:

1. Yu, Qiang, et al. "Application of Precise-Spike-Driven Rule in Spik-
ing Neural Networks for Optical Character Recognition." Proceed-
ings of the 18th Asia Pacific Symposium on Intelligent and Evo-
lutionary Systems-Volume 2. Springer International Publishing,
2015.

2. Barve, Sameeksha. "Optical character recognition using artificial
neural network." International Journal of Advanced Research in
Computer Engineering & Technology 1.4 (2012).

3. Patil, Vijay, and Sanjay Shimpi. "Handwritten English character
recognition using neural network." Elixir Comp. Sci. & Eng 41
(2011): 5587-5591.

23https://www.metamind.io/yours
24A historical overview dating back to the 1940’s can be found in Ya-

dav, Neha, Anupam Yadav, and Manoj Kumar. An Introduction to Neural
Network Methods for Differential Equations. Dordrecht: Springer Nether-
lands, 2015.

25Beale, Russell, and Tom Jackson. Neural Computing-an introduction.
CRC Press, 1990.

26Part of the reason is that a artificial neural network might have any-
where from a few dozen to a couple hundred neurons. In comparison, the
human nervous system is believed to have at least 3x1010neurons.

27When I am talking about a neural network, I should really say "ar-
tificial neural network", because that is what we mean most of the time.
Biological neural networks are much more complicated in their elemen-
tary structures than the mathematical models used in artificial neural
networks.

28Rosenblatt, Frank. "The perceptron: a probabilistic model for infor-
mation storage and organization in the brain." Psychological review 65.6
(1958): 386.

29This is because a multilayer perceptron, say with a step activation
function, and with n inputs collectively define an n-dimensional space. In
such a network any given node creates a separating hyperplane producing
an "on" output on one side and an "off" output on the other. The weights
determine where this hyperplane lies in the input space. Without a bias
term, this separating hyperplane is constrained to pass through the origin
of the space defined by the inputs. This, in many cases, would severely

28

https://www.metamind.io/yours

NOTES

restrict a neural networks ability to learn. Imagine a linear regression
model where the intercept is fixed at zero and you will get the picture.

30See for example,

• Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. Regu-
larization of neural networks using dropconnect. In Proceedings of
the 30th International Conference on Machine Learning (ICML-13)
(2013), pp. 1058–1066.

• Yajie Miao, F. Metze and S. Rawat: Deep maxout networks for low-
resource speech recognition. IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 398-403. 2013.

31For a detailed mathematical explanation see, R. Rojas. Neural Net-
works. Springer-Verlag, Berlin, 1996

32I like Austin Kleon’s “Steal Like An Artist Journal.” It is an
amazing notebook for creative kleptomaniacs. See his website http:
//austinkleon.com.

29

http://austinkleon.com
http://austinkleon.com

Deep Learning Made Easy with R

30

Chapter 2

Deep Neural Networks

Data Science is a series of failures punctuated by
the occasional success.
N.D Lewis

Remarkable achievements have been made in the prac-
tical application of deep learning techniques. After
decades of research, many failed applications and the

abandonment of the discipline by all but a few hardcore re-
searchers33. What was once thought impossible is now feasible
and deep learning networks have gained immense traction be-
cause they have been shown to outperform all other state-of-
the-art machine learning tools for a wide variety of applications
such as object recognition34, scene understanding35 and occlu-
sion detection36.

Deep learning models are being rapidly developed and ap-
plied in a wide range of commercial areas due to their supe-
rior predictive properties including robustness to overfitting37.
They are successfully used in a growing variety of applications
ranging from natural language processing to document recog-
nition and traffic sign classification 38.

In this chapter we discuss several practical applications of
the Deep Neural Network (DNN) ranging from enhancing visi-
bility in foggy weather, malware detection and image compres-

31

Deep Learning Made Easy with R

sion. We build a model to investigate the universal approxima-
tion theorem, develop a regression style DNN to predict median
house prices, create a classification DNN for modeling diabetes
and illustrate how to use multiple outputs whilst predicting
waist and hip circumference. During the process you will learn
to use a wide variety of R packages, master a few data science
tricks and pick up a collection of useful tips to enhance DNN
performance.

The Amazingly Simple Anatomy of
Deep Neural Networks
As illustrated in Figure 2.1, a DNN consists of an input layer,
an output layer, and a number of hidden layers sandwiched in
between the two. It is akin to a multi-layer perceptron (MLP)
but with many hidden layers and multiple connected neurons
per layer. The multiple hidden layers of the DNN are advan-
tageous because they can approximate extremely complex de-
cision functions.

The hidden layers can be considered as increasingly complex
feature transformations. They are connected to the input layers
and they combine and weight the input values to produce a new
real valued number, which is then passed to the output layer.
The output layer makes a classification or prediction decision
using the most abstract features computed in the hidden layers.

During DNN learning the weights of the connections be-
tween the layers are updated during the training phase in or-
der to make the output value as close as possible to the target
output. The final DNN solution finds the optimal combination
of weights so that the network function approximates a given
decision function as closely as possible. The network learns the
decision function through implicit examples.

32

CHAPTER 2. DEEP NEURAL NETWORKS

Figure 2.1: A DNN model

How to Explain a DNN in 60 Seconds
or Less
As data scientists, we often have to explain the techniques we
use to other data scientists who may be new to the method.
Being able to do this is a great skill to acquire. Here is what to
do when you absolutely, positively must explain your DNN in
60 Seconds or less. Take a deep breath and point to Figure 2.1;
the hidden layers are the secret sauce of the DNN. The non-
linear data transformations these neurons perform are at the
heart of the power of these techniques.

We can view a DNN as a combinations of individual regres-
sion models. These models (aka neurons) are chained together
to provide more flexible combinations of outputs given a set of
inputs than would be possible with a single model. It is this
flexibility that allows them to fit any function. The outputs
from individual neurons when combined together form the like-
lihood of the probable and improbable. The end result being
the probability of reasonable suspicion that a certain outcome

33

Deep Learning Made Easy with R

belongs to a particular class.
Under certain conditions we can interpret each hidden layer

as a simple log-linear model39. The log-linear model is one of
the specialized cases of generalized linear models for Poisson-
distributed data. It is an extension of the two-way contingency
analysis. Recall from your statistics 101 class, this involved
measuring the conditional relationship between two or more
discrete, categorical variables by taking the natural logarithm
of cell frequencies within a contingency table. If you took statis-
tics 101 and don’t recall this, don’t worry; I also found it hard
to stay awake in statistics 101, and I taught the class!

The key take away is that since there are many layers in
a typical DNN, the hidden layers can be viewed as a stack of
log-linear models which collectively approximate the posterior
probability of the response class given the input attributes. The
hidden layers model the posterior probabilities of conditionally
independent hidden binary neurons given the input attributes.
The output layer models the class posterior probabilities.

Three Brilliant Ways to Use Deep
Neural Networks
One of the first hierarchical neural systems was the Neocog-
nitron developed in the late 1970’s by the NHK Broadcasting
Science Research Laboratories in Tokyo, Japan40. It was a
neural network for visual pattern recognition. Although it rep-
resented a considerable breakthrough, the technology remained
in the realm of academic research for several decades.

To whet our appetite with more modern applications, let’s
look at three practical uses of DNN technology. What you
will recognize from studying these applications is the immense
potential of DNNs in a wide variety of fields. As you read
through this section, reflect back to your answer to exercise 2
on page 22. Ask yourself this question, how can I use DNNs
to solve the problems I identified? Read through this section

34

CHAPTER 2. DEEP NEURAL NETWORKS

quickly to stimulate your thinking. Re-read it again at regular
intervals. The tools you need to get started will be discussed
shortly.

Enhancing Visibility in Foggy Weather
I think we can all agree that visual activities such as object
detection, recognition, and navigation are much more difficult
in foggy conditions. It turns out that faded scene visibility and
lower contrast while driving in foggy conditions occurs because
of the absorption or scattering of light by atmospheric particles
such as fog, haze, and mist seriously degrades visibility. Since
the reduction of visibility can dramatically degrade an oper-
ator’s judgment in a vehicle and induce erroneous sensing in
remote surveillance systems, visibility prediction and enhance-
ment methods are of considerable practical value.

In general, de-fogging algorithms require a fogless image
of the same scene41, or salient objects in a foggy image such
as lane markings or traffic signs in order to supply distance
cues42. Hanyang University Professor Jechang Jeong and com-
puter engineering student Farhan Hussain developed a deep
neural network approach to de-fogging images in real time43
which works for unseen images. The approach they adopt is
quite interesting. They generate an approximate model of the
fog composition in a scene using a deep neural network. Details
of their algorithm are given in Figure 2.2.

Provided the model is not over trained, it turns out that
it can generalize well for de-fogging unseen images. Take a
look at Figure 2.3, the top image (a) shows the original scene
without fog; the middle image (b) the foggy scene; and the
bottom image (c) the de-fogged image using the DNN. Hussain
and Jeong conclude by stating that “The proposed method is
robust as it achieves good result for a large set of unseen foggy
images.”

35

Deep Learning Made Easy with R

Figure 2.2: Jeong and Hussain’s de-fogging DNN algorithm.
Image source Hussain and Jeong cited in endnote item 43..

36

CHAPTER 2. DEEP NEURAL NETWORKS

Figure 2.3: Sample image from Jeong and Hussain’s de-fogging
DNN algorithm. Image source Hussain and Jeong cited in end-
note item 43.

A Kick in the Goolies for Criminal Hackers
Malware such as Trojans, worms, spyware, and botnets are ma-
licious software which can shut down your computer. Criminal
networks have exploited these software devices for illegitimate
gain for as long as there have been uses of the internet.

37

Deep Learning Made Easy with R

A friend, working in the charitable sector, recently found
his computer shut down completely by such malevolent soft-
ware. Not only was the individual unable to access critical
software files or computer programs, the criminals who perpe-
trated the attack demanded a significant “ransom” to unlock
the computer system. You may have experienced something
similar.

Fortunately, my friend had a backup, and the ransom went
unpaid. However, the malware cost time, generated worry and
several days of anxious file recovery. Such attacks impact not
only individuals going about their lawful business, but corpo-
rations, and even national governments. Although many ap-
proaches have been taken to curb the rise of this malignant
activity it continues to be rampant.

Joshua Saxe and Konstantin Berlin of Invincea Labs, LLC44

use deep neural networks to help identify malicious software45.
The DNN architecture consists of an input layer, two hidden
layers and an output layer. The input layer has 1024 input fea-
tures, the hidden layers each have 1024 neurons. Joshua and
Konstantin test their model using more than 400,000 software
binaries sourced directly from their customers and internal mal-
ware repositories.

Now here is the good news. Their DNN achieved a 95%
detection rate at 0.1% false positive rate. Wow! But here is
the truly amazing thing, they achieved these results by direct
learning on all binaries files, without any filtering, unpacking,
or manually separating binary files into categories. This is as-
tounding!

What explains their superb results? The researchers ob-
serve that “Neural networks also have several properties that
make them good candidates for malware detection. First, they
can allow incremental learning, thus, not only can they be
training in batches, but they can retrained efficiently (even on
an hourly or daily basis), as new training data is collected.
Second, they allow us to combine labeled and unlabeled data,
through pretraining of individual layers. Third, the classifiers

38

CHAPTER 2. DEEP NEURAL NETWORKS

are very compact, so prediction can be done very quickly using
low amounts of memory.”

Here is the part you should memorize, internalize and show
to your boss when she asks what all this deep learning stuff is
about. It is the only thing that matters in business, research,
and for that matter life - results. Joshua and Konstantin con-
clude by saying “Our results demonstrate that it is now feasi-
ble to quickly train and deploy a low resource, highly accurate
machine learning classification model, with false positive rates
that approach traditional labor intensive signature based meth-
ods, while also detecting previously unseen malware.” And this
is why deep learning matters!

The Incredible Shrinking Image
Way back in my childhood, I watched a movie called “The In-
credible Shrinking Man.” It was about a young man, by the
name of Scott, who is exposed to a massive cloud of toxic ra-
dioactive waste. This was rather unfortunate, as Scott was
enjoying a well deserved relaxing day fishing on his boat.

Rather than killing him outright in a matter of days, as
such exposure might do to me or you; the screen writer uses
a little artistic license. The exposure messes with poor Scott’s
biological system in a rather unusual way. You see, within
a matter of days Scott begins to shrink. When I say shrink,
I don’t mean just his arm, leg or head, as grotesque at that
would be; Scott’s whole body shrinks in proportion, and he
becomes known as the incredible shrinking man.

Eventually he becomes so small his wife puts him to live in
a dolls house. I can tell you, Scott was not a happy camper at
this stage of the movie, and neither would you be. I can’t quite
recall how the movie ends, the last scene I remember involves a
tiny, minuscule, crumb sized Scott, wielding a steel sowing pin
as a sword in a desperate attempt to fend off a vicious looking
spider!

Whilst scientists have not quite solved the problem of how

39

Deep Learning Made Easy with R

to miniaturize a live human, Jeong and Hussain have figured
out how to use a deep neural network to compress images46. A
visual representation of their DNN is shown in Figure 2.4.

Figure 2.4: Jeong and Hussain’s DNN for image compression.
Image source Hussain and Jeong cited in endnote item 46.

Notice the model consists of two components - “En-
coder”and “Decoder”, this is because image compression con-
sists of two phases. In the first phase the image is compressed,
and in the second phase it is decompressed to recover the orig-
inal image. The number of neurons in the input layer and out-
put layer corresponds to the size of image to be compressed.
Compression is achieved by specifying a smaller number of neu-
rons in the last hidden layer than contained in the originals
input attribute / output set.

The researches applied their idea to several test images and
for various compression ratios. Rectified linear units were used
for the activation function in the hidden layers because they
“lead to better generalization of the network and reduce the real

40

CHAPTER 2. DEEP NEURAL NETWORKS

compression-decompression time.” Jeong and Hussain also ran
the models using sigmoid activation functions.

Figure 2.5 illustrates the result for three distinct images.
The original images are shown in the top panel, the compressed
and reconstructed image using the rectified linear units and sig-
moid function are shown in the middle and lower panel respec-
tively. The researchers observe “The proposed DNN learns the
compression/decompression function very well.” I would agree.
What ideas does this give you?

Figure 2.5: Image result of Jeong and Hussain’s DNN for image
compression. Image source Hussain and Jeong cited in endnote
item 46

41

Deep Learning Made Easy with R

How to Immediately Approximate
Any Function
A while back researchers Hornik et al.47 showed that one hid-
den layer is sufficient to model any piecewise continuous func-
tion. Their theorem is a good one and worth repeating here:

Hornik et al. theorem: Let F be a continu-
ous function on a bounded subset of n-dimensional
space. Then there exists a two-layer neural network
F̂ with a finite number of hidden units that approx-
imate F arbitrarily well. Namely, for all x in the
domain of F , |F (x)− F̂ (x) < ε|.

This is a remarkable theorem. Practically, it says that for any
continuous function F and some error tolerance measured by
ε, it is possible to build a neural network with one hidden layer
that can calculate F . This suggests, theoretically at least, that
for very many problems, one hidden layer should be sufficient.

Of course in practice things are a little different. For one
thing, real world decision functions may not be continuous;
the theorem does not specify the number of hidden neurons
required. It seems, for very many real world problems many
hidden layers are required for accurate classification and pre-
diction. Nevertheless, the theorem holds some practical value.

Let’s build a DNN to approximate a function right now
using R. First we need to load the required packages. For this
example, we will use the neuralnet package:
> library("neuralnet")

We will build a DNN to approximate y = x2. First we
create the attribute variable x, and the response variable y.
> set.seed (2016)
> attribute <- as.data.frame(sample(seq

(-2,2,length =50),
50, replace=FALSE),

42

CHAPTER 2. DEEP NEURAL NETWORKS

ncol=1)
> response <-attribute ^2

Let’s take a look at the code, line by line. First the
set.seed method is used to ensure reproducibility. The sec-
ond line generates 50 observations without replacement over the
range -2 to +2. The result is stored in the R object attribute.
The third line calculates y = x2 with the result stored in the R
object response.

Next we combine the attribute and response objects into
a dataframe called data; this keeps things simple, which is
always a good idea when you are coding in R:
> data <- cbind(attribute ,response)
> colnames(data) <- c("attribute","response

")

It is a good idea to actually look at your data every now
and then, so let’s take a peek at the first ten observations in
data:
> head(data ,10)

attribute response
1 -1.2653061 1.60099958
2 -1.4285714 2.04081633
3 1.2653061 1.60099958
4 -1.5102041 2.28071637
5 -0.2857143 0.08163265
6 -1.5918367 2.53394419
7 0.2040816 0.04164931
8 1.1020408 1.21449396
9 -2.0000000 4.00000000
10 -1.8367347 3.37359434

The numbers are as expected with response equal to the
square of attribute. A visual plot of the simulated data is
shown in Figure 2.6.

43

Deep Learning Made Easy with R

Figure 2.6: Plot of y = x2 simulated data

We will fit a DNN with two hidden layers each containing
three neurons. Here is how to do that:
> fit<-neuralnet(response~attribute ,
data=data ,
hidden=c(3,3),
threshold =0.01)

The specification of the model formula response~attribute
follows standard R practice. Perhaps the only item of interest
is threshold which sets the error threshold to be used. The
actual level you set will depend in large part on the application

44

CHAPTER 2. DEEP NEURAL NETWORKS

for which the model is developed. I would image a model used
for controlling the movements of a scalpel during brain surgery
would require a much smaller error margin than a model devel-
oped to track the activity of individual pedestrians in a busy
shopping mall. The fitted model is shown in Figure 2.7.

3.79482

2.01092

1.
60

14
4

attribute

1.06787

−1
.9

67
29

−0
.3

98
86

−2.89377

−2.16557

−2
.8

48
45

2.8348
3.62473

3.47504

3.
74

37
2

6.45553

4.01855

response

1.33261
3.20961

−2.206

1
−0.25719

0.26513

0.44383

1

−1.15031

1

Error: 0.012837 Steps: 3191

Figure 2.7: DNN model for y = x2

Notice that the image shows the weights of the connections and
the intercept or bias weights. Overall, it took 3191 steps for
the model to converge with an error of 0.012837.

Let’s see how good the model really is at approximating
a function using a test sample. We generate 10 observations

45

Deep Learning Made Easy with R

from the range -2 to +2 and store the result in the R object
testdata:
> testdata <- as.matrix(sample(seq(-2,2,

length =10)
, 10, replace=FALSE)
, ncol=1)

Prediction in the neuralnet package is achieved using the
compute function:
> pred <- compute(fit , testdata)

NOTE... �

To see what attributes are available in any R ob-
ject simply type attributes(object_name). For
example, to see the attributes of pred you would
type and see the following:
> attributes(pred)
$names
[1] "neurons" "net.result"

The predicted values are accessed from pred using
$net.result. Here is one way to see them:
> result <- cbind(testdata ,pred$net.result

,testdata ^2)
> colnames(result) <- c("Attribute","

Prediction", "Actual")
> round(result ,4)

Attribute Prediction Actual
[1,] 2.0000 3.9317 4.0000
[2,] -2.0000 3.9675 4.0000
[3,] 0.6667 0.4395 0.4444
[4,] -0.6667 0.4554 0.4444
[5,] 1.5556 2.4521 2.4198

46

CHAPTER 2. DEEP NEURAL NETWORKS

[6,] -1.5556 2.4213 2.4198
[7,] -0.2222 0.0364 0.0494
[8,] 0.2222 0.0785 0.0494
[9,] -1.1111 1.2254 1.2346

[10,] 1.1111 1.2013 1.2346

Figure 2.8: DNN predicted and actual number

The first line combines the DNN prediction
(pred$net.result) with the actual observations (testdata^2)
into the R object result. The second line gives each column
a name (to ease readability when we print to the screen).

47

Deep Learning Made Easy with R

The third line prints the R object result rounding it to four
decimal places.

The reported numbers indicate the DNN provides a good,
although not exact, approximation of the actual function. The
predicted and fitted values are shown in Figure 2.8. Judge for
yourself, what do you think of the DNN models accuracy? How
might you improve it?

The Answer to How Many Neurons to
Include
As soon as you begin to see the potential of DNNs the question
of exactly how many neurons to include arises. One way to
think about this issue is to notice that the patterns you would
like to extract from your data contain variation. These varia-
tions often arise from natural sources (i.e. are randomly drawn
from a probability distribution) or they may be inherent in the
process you are trying to model.

In his 1971 work of fiction Wheels, Arthur Hailey explains
why cars assembled on a Monday or Friday suffer from quality
problems. Cars produced on Monday were of lower quality due
to the residual effect of weekend drunkenness; whilst cars man-
ufactured on Friday suffered from the workers thinking about
drunkenness!

In reality, any and every industrial production line will have
some variation. Take for example the production of widgets;
although widgets are all created using the same process and
materials, there will be some variation in weight, size, color and
texture. This variation may not matter for the intended use of
the widget. However, too much variation between individual
widgets will result in quality issues. In fact, the number of top
executives who have been fired due to unacceptable variation
in the production processes of the widgets they oversee are
numerous48.

The key point is that there will nearly always be some varia-

48

CHAPTER 2. DEEP NEURAL NETWORKS

tion in the patterns you wish to capture from your data. Part of
this variation will be systematic and can be used to distinguish
between classes; and part of the variation will be noise which
cannot be used to distinguish between classes. Since different
problems will have a different mix of systematic variation to
noise induced variation, the optimal number of hidden neurons
is problem specific.

One idea is to use more neurons per layer to detect finer
structure in your data. However, the more hidden neurons used
the more likely is the risk of over fitting. Over-fitting occurs
because with more neurons there is an increased likelihood that
the DNN will learn both patterns and noise, rather than the
underlying statistical structure of the data. The result is a
DNN which performs extremely well in sample but poorly out
of sample.

Here is the key point to keep in mind as you build your DNN
models. For the best generalization ability, a DNN should have
as few neurons as possible to solve the problem at hand with
a tolerable error. The larger the number of training patterns,
the larger the number of neurons that can be used whilst still
preserving the generalization ability of a DNN.
.

The ABCs of Choosing the Optimal
Number of Layers
One of the major difficulties you will face in building and using
DNNs is the selection of the appropriate number of layers. The
problem is challenging because it is possible to train a DNN
to a very small error on the training sample only to find that
it performs very badly for patterns not used in the training
process.

When this happens to you, and it will, do not be perturbed.
The professors who teach the data science classes, books which
outline the techniques and articles which discuss the latest

49

Deep Learning Made Easy with R

trends rarely reveal this unspoken truth.
Pick up any text book and what do you see? Successful

model followed by successful model. Man, by the time I had
finished my Master’s degree in Statistics, I thought this model
building stuff was a doddle! The funny thing is, year after year
I continue to meet freshly minted Master’s degree students in
data science and statistics who think as I once did. You see,
the take away for the uninitiated is that the model building
phase is easy, a breeze, a place where the data scientist can
relax, put their feet up and coast.

In actual practice, data science is a series of failures punc-
tuated by the occasional success. If you have spent any time
deploying commercial models, you will inevitably invest a con-
siderable amount of time, worry and intellectual capital at the
model development phase.

Unfortunately, with a DNN it is quite possible to have five,
six, hell yes even twenty models all performing reasonably well
on the training set! Yet, every single one fail miserably on the
test sample; or worse - your model makes it to production but
crashes in a huge ball of bright flames, illuminating you as its
creator, as it tumbles slowly back to earth. The resultant thick
choking smoke surrounding you and your boss can smoother
your prospects for advancement, stifle opportunity and even
end careers. The selection of the appropriate number of layers
is critical.

I think of finding the optimal number of layers as essentially
a model selection problem. It can be partially solved using tra-
ditional model selection techniques, one of the most frequently
used by novices being trial and error, followed by my personal
favorite a systematic global search against selection criteria. If
you consider each hidden layer as a feature detector, the more
layers, the more complex feature detectors can be learned. This
leads to a straightforward rule of thumb, use more layers for
more complex functions.

50

CHAPTER 2. DEEP NEURAL NETWORKS

Three Ideas to Supercharge DNN Per-
formance
Let’s face it, running neural networks over large datasets re-
quires patience. When I coded my very first multi-layer per-
ceptron, back in the early 1990’s, I had to wait around three
and a half days per run! And by today’s standards my dataset
was tiny. One of the major problems associated with neural
networks in general is the time taken to train networks and the
subsequent problem of the model over-fitting.

Imagine, the situation, the results are needed yesterday
by your boss because your most important client’s campaign
is about to launch! Thankfully your large DNN has been
trained over many thousands of connections costing several
hours overnight to a small error. However, when you assess
its predictive power on the test sample it fails miserably! The
model has been over-fit by you! What are you supposed to tell
your boss or worse yet the client? The fact is, as you continue
to develop your applied skills in deep learning, you will need
some tricks in your back pocket. Here are three of the best the
DNN developer keeps up her sleeve.

Dropout to Enhance Success
The image of the derelict who drops out of school, and wastes
her life away in the shady recesses of the big city is firmly
imprinted in our culture. Parents warn their children to con-
centrate on the lessons, pass the exams and get a good job.
Whatever they do, don’t drop out. If you do you will find
yourself living in the dark recesses of the big city. When it
comes to going to school, we are advised against dropping out
because of the fear that it will have a deleterious impact on our
future.

The funny thing is, we also celebrate those celebrities and
business tycoons who dropped out. These individuals went

51

Deep Learning Made Easy with R

onto enormous success. Heights which would have been impos-
sible had they stayed in school! In fact, I cannot think of an
area in industry, education, science, politics or religion where
individuals who dropped out have not risen to amazing heights
of success. I’d hazard a guess the software or hardware you are
using right now is direct consequence of one such drop out.

Whilst dropping out is both celebrated and derided by our
culture, it appears to also have some upside and downside in
relation to DNNs. Borrowing from the idea that dropping out
might boost DNN performance, suppose we ignore a random
number of neurons during each training round49; the process
of randomly omitting a fraction of the hidden neurons is called
dropout, see Figure 2.9.

To state this idea a little more formally: for each training
case, each hidden neuron is randomly omitted from the net-
work with a probability of p. Since the neurons are selected at
random, different combinations of neurons will be selected for
each training instance.

The idea is very simple and results in a weak learning
model at each epoch. Weak models have low predictive power
by themselves, however the predictions of many weak models
can be weighted and combined to produce models with much
’stronger’ predictive power.

In fact, dropout is very similar to the idea behind the ma-
chine learning technique of bagging50. Bagging is a type of
model averaging approach where a majority vote is taken from
classifiers trained on bootstraped samples of the training data.
In fact, you can view dropout as implicit bagging of several neu-
ral network models. Dropout can therefore be regarded as an
efficient way to perform model averaging across a large number
of different neural networks.

Much of the power of DNNs comes from the fact that each
neuron operates as an independent feature detector. However,
in actual practice is common for two or more neurons to be-
gin to detect the same feature repeatedly. This is called co-
adaptation. It implies the DNN is not utilizing its full capacity

52

CHAPTER 2. DEEP NEURAL NETWORKS

efficiently, in effect wasting computational resources calculat-
ing the activation for redundant neurons that are all doing the
same thing.

Figure 2.9: DNN Dropout

In many ways co-adaptation, is similar to the idea of
collinearity in linear regression, where two or more covariates
are highly correlated. It implies the covariates contain simi-
lar information; in particular, that one covariate can be lin-
early predicted from the others with a very small error. In
essence, one or more of the covariates are statistically redun-
dant. Collinearity can be resolved by dropping one of more of
the covariates from the model.

Dropout discourages co-adaptations of hidden neurons by
dropping out a fixed fraction of the activation of the neurons

53

Deep Learning Made Easy with R

during the feed forward phase of training. Dropout can also be
applied to inputs. In this case, the algorithm randomly ignore
certain inputs.

One of life’s lessons is that dropping out is not necessarily
ruinous to future performance, but neither is it a guarantee of
future success, the same is true for dropout in DNNs, there is
no absolute guarantee that it will enhance performance, but it
is often worth a try. Keep the following three points in mind
as you develop your own DNN models:

1. Dropout appears to reduces the likelihood of co-
adaptation in noisy samples by creating multiple paths
to correct classification throughout the DNN.

2. The larger the dropout fraction the more noise is intro-
duced during training; this slows down learning,

3. It appears to provide the most benefit on very large DNN
models51.

How to Benefit from Mini Batching
The traditional backpropagation algorithm, known as batch
learning backpropagation, calculates the change in neuron
weights, known as delta’s or gradients, for every neuron in all
of the layers of a DNN and for every single epoch. An epoch is
one complete forward pass and one backward pass of the error
for all training examples. The deltas are essentially calculus
derivative adjustments designed to minimize the error between
the actual output and the DNN output.

A very large DNN might have millions of weights for which
the delta’s need to be calculated. Think about this for a mo-
ment....Millions of weights require gradient calculations.... As
you might imagine, this entire process can take a considerable
amount of time. It is even possible, that the time taken for a
DNN to converge on a acceptable solution using batch learning

54

CHAPTER 2. DEEP NEURAL NETWORKS

propagation makes its use in-feasible for a particular applica-
tion.

Mini batching is one common approach to speeding up neu-
ral network computation. It involves computing the gradient
on several training examples at once rather than for each indi-
vidual example as happens in the original stochastic gradient
descent algorithm.

A batch consists of a number of training examples in one
forward/backward pass. Note that the larger the batch size,
the more memory you will need to run the model. To get a
sense of the computational efficiency of min-batching, suppose
you had a batch size of 500, with 1000 training examples. It
will take only 2 iterations to complete 1 epoch.

A common question is when should I use mini batching?
The answer really depends on the size of the DNN you are
building. The more neurons in the model, the greater the po-
tential benefit from mini batching.

Another common question is about the optimal mini batch
size. Although in the text books you often see mini batch sizes
of 50, 100, 200 and so on. These are generally for illustrative
purposes. There is a degree of art and science in choosing the
optimal size. In my experience no one number is optimal for all
circumstances. The best advice is to experiment with different
values to get a sense of what works for your sample and specific
DNN architecture.

A Simple Plan for Early Stopping
When I was in elementary school we had regular and frequent
outdoor playtime’s as part of our education. We usually had
playtime mid-morning to whip up our appetite prior to lunch,
after lunch to aid the digestive system, and on warm sunny
days, our teachers would unleash us outside for an afternoon
playtime - to burn up any unused energy before we were packed
off home. I loved school!

The only thing that would shorten our frequent outdoor

55

Deep Learning Made Easy with R

adventures was the rain. If it rained (and it rains a lot in
England) the early stopping bell would ring, the fun would be
terminated and the lessons begin. The funny thing was, even
after a shortened play time my ability to focus and concentrate
on my school work was enhanced. I guess my teachers had an
intuitive understanding of the link between physical activity,
mental focus, mood and performance52. To this day I go outside
for a brisk walk to jolt my mental faculties into action.

Figure 2.10: Network error by iteration

The analogy with school playtime’s is that we should be
willing to stop DNN training early if that makes it easier to

56

CHAPTER 2. DEEP NEURAL NETWORKS

extract acceptable performance on the testing sample. This is
the idea behind early stopping where the sample is divided into
three sets. A training set, a validation set and a testing set.
The test set is used to train the DNN. The training error is
usually a monotonic function, that decreases further in every
iteration. Figure 2.10 illustrates this situation. The error falls
rapidly during the first 100 iterations. It then declines at a
much shallower rate over the next three hundred iterations,
before leveling off to a constant value.

The validation set is used to monitor the performance of
the model. The validation error usually falls sharply during
the early stages as the network rapidly learns the functional
form, but then increases, indicating the model is starting to
over fit. In early stopping, training is stopped at the lowest
error achieved on the validation set. The validation model is
then used on the test sample. This procedure has been proven
to be highly effective in reducing over-fitting for a wide variety
of neural network applications53. It is worth a try by you.

Incredibly Simple Ways to Build
DNNs with R
Now we turn our attention to building a DNN model in R using
real world data. For this example, we will build a regression
DNN to investigate housing values in suburbs of Boston.

A Proven Way to Build Regression DNNs
We begin by loading the packages we will use:
> library("neuralnet")
> require(Metrics)

We use the functionality of the neuralnet package to build
the DNN, and the Metrics package to calculate various model

57

Deep Learning Made Easy with R

fit criteria. The dataset used was collected originally by ur-
ban planners Harrison and Rubinfeld to generate quantitative
estimates of the willingness of residents to pay for air quality
improvements in Boston54. It is contained in the MASS package:
> data("Boston",package="MASS")
> data <-Boston

The R object Boston contains 506 rows and 14 columns.
Each column corresponds to a specific variable. Details of each
of the variable used in our analysis are given in Table 1.

Name Description
crim per capita crime rate by town.
indus proportion of non-retail business acres per town.
nox nitrogen oxides concentration (parts per 10 million).
rm average number of rooms per dwelling.
age proportion of owner-occupied units built prior to 1940.
dis average distances to five Boston employment centres.
tax full-value property-tax rate.
ptratio pupil-teacher ratio by town.
lstat lower status of the population (percent).
medv median value of owner-occupied homes.

Table 1: Variables used from Boston data frame.

Here is how to retain only those variable we want to use:
> keeps <- c("crim", "indus", "nox", "rm" ,

"age", "dis", "tax" ,"ptratio", "lstat"
,"medv")

> data <-data[keeps]

The R object data now only contains the variables we are going
to use. The response variable is mdev. Next, we perform a
quick check to see if the retained data contains any missing
values using the apply method:

58

CHAPTER 2. DEEP NEURAL NETWORKS

Great! There are no missing values.
The relationship between medv and the explanatory vari-

ables is shown in Figure 2.11.

Figure 2.11: Relationship between medv and other attributes

The next step is to specify the model. I typically use a
formula, as I find it an efficient way to write and maintain R
code. In this case the formula is stored in an R object called

59

Deep Learning Made Easy with R

f. The response variable medv is to be “regressed” against the
remaining nine attributes. Here is how to specify it:
> f<-medv~ crim + indus + nox + rm + age +

dis + tax + ptratio + lstat

To set up our test sample we use the sample 400 of the 506
rows of data without replacement using the sample method:

> set.seed (2016)
> n=nrow(data)
> train <- sample (1:n, 400, FALSE)

Note the R object train contains the row location of the
data to be used in the test sample. It does not contain the
actual observations.

The DNN can be fitted using the neuralnet function. This
can be achieved as follows:
> fit<- neuralnet(f,
data = data[train ,],
hidden=c(10 ,12 ,20),
algorithm = "rprop+",
err.fct = "sse",
act.fct = "logistic",
threshold =0.1,
linear.output=TRUE)

Let’s walk through this statement argument by argument. The
first argument (f) contains the model formula. The second
argument specifies the dataset to use (in this case data). The
third argument is used to indicate how many hidden layers
and nodes to include in the model; in this case we specify three
hidden layers. The first hidden layer has 10 neurons, the second
hidden layer twelve neurons and the third hidden layer contains
20 neurons.
The next argument specifies the learning algorithm to be use.
Rather than use a traditional backpropagation algorithm I
choose a more robust version called resilient backpropagation

60

CHAPTER 2. DEEP NEURAL NETWORKS

with backtracking55. This is selected by specifying algorithm
= "rprop+". By the way you can use traditional backpropa-
gation if you wish by setting algorithm =”backprop”. If you
use this option, you will also need to specify a learning rate
(i.e. learningrate =0.01).

The parameter err.fct is the error function; for regres-
sion models the sum of squared errors is chosen automatically
(err.fct = "sse") . A threshold is set of 0.1 with a logis-
tic activation function. Finally, for the output neuron a linear
activation function is selected using linear.output=TRUE.

Prediction using our DNN is straightforward as the
neuralnet package has a handy function called compute. The
only thing we need to do is pass it the DNN model contained
in fit along with the test data. Here is how to do that:
pred <- compute(fit , data[-train ,1:9])

Notice I pass the row numbers of the test sample by using
-train (recall train identified the rows to use in the train-
ing sample). Figure 2.12 shows the fitted and predicted values
alongside the linear regression (solid line). The model appears
to perform reasonably well, although there are a number of
outlying observations which are not well predicted. This is
confirmed by the performance metrics. I calculate the squared
correlation coefficient, mean squared error (mse) and root mean
square error (rmse) for illustration:

round(cor(pred$net.result ,data[-train ,10])
^2,6)

[,1]
[1,] 0.809458

> mse(data [-train ,10], pred$net.result)
[1] 0.2607601849

> rmse (data [-train ,10], pred$net.result)
[1] 0.5106468299

61

Deep Learning Made Easy with R

Figure 2.12: Predicted and fitted values

The Smart Person’s Tip for DNN Regression
The great thing about R is that there are multiple packages for
estimating neural network models. I always like to build mod-
els using a wide variety of packages and learning algorithms.
Let’s build a DNN, using traditional backpropagation with the
deepnet package. First let’s load the required package:
> require(deepnet)

Next, use the set.seed method for reproducibility, and
store the attributes in the R object X with the response variable

62

CHAPTER 2. DEEP NEURAL NETWORKS

in the R object Y:
set.seed (2016)
X= data[train ,1:9]
Y= data[train ,10]

Here is how to create a DNN:
fitB<-nn.train(x=X, y=Y,
initW = NULL ,
initB = NULL ,
hidden = c(10 ,12 ,20),

learningrate = 0.58,
momentum =0.74 ,
learningrate_scale =1 ,
activationfun = "sigm",
output = "linear",
numepochs = 970,
batchsize = 60,
hidden_dropout = 0,
visible_dropout = 0)

The statement is fairly similar to what we have seen before;
however, let’s walk through it line by line. The neural network
is stored in the R object fitB. Notice we pass the attributes
and the response variable using the statement x=X, y=Y. The
deepnet package gives you the ability to specify the starting
values of the neuron weights (initW) and biases (initB); I set
both values to NULL so that the algorithm will select their values
at random. The DNN has the same topology as that estimated
on page 60 i.e. three hidden layers, with 10,12 and 20 neurons
in the first, second and third hidden layers respectively.

To use the backpropagation algorithm, you have to spec-
ify a learning rate, momentum and learning rate scale56. The
learning rate controls how quickly or slowly the neural network
converges. Briefly, momentum involves adding a weighted aver-
age of past gradients in the gradient descent updates. It tends
to dampen noise, especially in areas of high curvature of the er-
ror function. Momentum can therefore help the network avoid

63

Deep Learning Made Easy with R

becoming trapped in local minima. All three parameters are
generally set by trial and error, I choose values of 0.58, 0.74
and 1 for the learning rate, momentum and learning rate scale
respectively.

The next two lines specify the activation function for the
hidden and output neurons. For the hidden neurons I use a
logistic function ("sigm"); other options include "linear" or
"tanh". For the output neuron I use a linear activation func-
tion, other options include "sigm" and "softmax". The model
is run over 970 epochs each with a batch size of 60. No neurons
are dropped out in the input layer or hidden layer.

Prediction using the test sample is similar to what we have
seen before:
> Xtest <- data[-train ,1:9]
> predB <- nn.predict(fitB , Xtest)

With the performance metrics are calculated as:
> round(cor(predB ,data[-train ,10]) ^2,6)

[,1]
[1,] 0.930665

> mse(data [-train ,10], predB)
[1] 0.08525447959

> rmse (data [-train ,10], predB)
[1] 0.2919836975

Overall, the process of building a model using the deepnet
package is fairly similar to the process used with the neuralnet
package. This is one of the great advantages of using R, pack-
ages generally work in similar ways, (although of course the
parameters to be specified may be different). Such flexibility
allows you to build similar DNN models rapidly using a vast
variety of different learning algorithms and tuning parameters.

You will find, time and again, that DNNs with the same
topology but different learning algorithms or tuning parameters

64

CHAPTER 2. DEEP NEURAL NETWORKS

will perform on the same underlying data very differently. The
important point to remember is that the process of selecting the
optimal DNN model requires selection of a topology, number
of neurons, layers, learning algorithm and tuning parameters.
This leads to quite a complex set of combinations! Despite
this, as we have seen, powerful DNN models can be rapidly
constructed, trained and tested in R. This should lead to a
boom in their use in a wide variety of disciplines outside of
their traditional domain of image, vocal and signal processing.
How will you use DNN regression in your next data science
project?

The Art of Building Great DNNs for Classi-
fication
I would hazard a guess that the vast majority of published ap-
plications of DNNs to date involve solving classification prob-
lems. The bulk of these applications involve image and signal
processing. In this section, we look at the application of a DNN
model to a health related issue. As you work through this case
study keep your mind open to alternative applications in your
own field of specialized knowledge.

We will build a DNN model using the
PimaIndiansDiabetes2 data frame contained in the mlbench
package. This dataset was collected by the National Institute
of Diabetes and Digestive and Kidney Diseases57. It contains
768 observations on 9 variables measured on females at least
21 years old of Pima Indian heritage. Table 2 contains a
description of each variable collected.

The data can be loaded into your R session as follows:
> data("PimaIndiansDiabetes2",package="

mlbench")

Let’s do a quick check to ensure we have the expected number
of columns and rows:
> ncol(PimaIndiansDiabetes2)

65

Deep Learning Made Easy with R

Name Description
pregnant Number of times pregnant
glucose Plasma glucose concentration
pressure Diastolic blood pressure (mm Hg)
triceps Triceps skin fold thickness (mm)
insulin 2-Hour serum insulin (mu U/ml)
mass Body mass index
pedigree Diabetes pedigree function
age Age (years)
diabetes test for diabetes - Class variable (neg / pos)

Table 2: Response and independent variables in
PimaIndiansDiabetes2 data frame

[1] 9
> nrow(PimaIndiansDiabetes2)
[1] 768

The numbers are in line we what we expected.
We can use the str method to check and compactly display

the structure of the PimaIndiansDiabetes2 data frame:

As expected PimaIndiansDiabetes2 is identified as a data
frame with 768 observations on 9 variables. Notice that each
row provides details of the name of the attribute, type of at-
tribute and the first few observations. For example, diabetes

66

CHAPTER 2. DEEP NEURAL NETWORKS

is a factor with two levels “neg” (negative) and “pos” (posi-
tive). We will use it as the classification response variable.

Did you notice the NA values in pressure, triceps,
insulin and mass? These are missing values. We all face
the problem of missing data at some point in our work. Peo-
ple refuse or forget to answer a question, data is lost or not
recorded properly. It is a fact of data science life! However,
there seem to be rather a lot, we better check to see the actual
numbers:

Wow! there are a large number of missing values particu-
larly for the attributes of insulin and triceps. How should
we deal with this? The most common method and the easiest
to apply is to use only those individuals for which we have com-
plete information. An alternative is to impute with a plausible
value the missing observations. For example, you might replace
the NA’s with the attribute mean or median. A more sophisti-
cated approach would be to use a distributional model for the
data (such as maximum likelihood and multiple imputation)58.

Given the large number of missing values in insulin and
triceps we remove these two attributes from the sample and
use the na.omit method to remove any remaining missing val-
ues. The cleaned data is stored in temp:
> temp<-(PimaIndiansDiabetes2)
> temp$insulin <- NULL
> temp$triceps <- NULL
> temp<-na.omit(temp)

We should have sufficient observations left to do meaningful
analysis. It is always best to check:
> nrow(temp)
[1] 724

67

Deep Learning Made Easy with R

> ncol(temp)
[1] 7

So we are left with 724 individuals and (as expected) 7 columns.
Now, watch this next move very closely for as Shakespeare

wrote “Though this be madness, yet there is method in’t.” We
store the response variable in an R object called y and remove
it from temp. Notice now the matrix temp only contains the
covariate attributes. The scale method is used to standardize
the attribute data; and then we combine y (as a factor) back
into temp:
> y<-(temp$diabetes)
> temp$diabetes <-NULL

> temp<-scale(temp)

> temp<-cbind(as.factor(y),temp)

Let’s push on and check to ensure that class is of a matrix
type:
> class(temp) [1] "matrix"

You can also use the summary method. You should see
something like this:

Finally, we select the training sample. Let’s use 600 out of
the 724 observations to train the model. This can be achieved
as follows:

68

CHAPTER 2. DEEP NEURAL NETWORKS

> set.seed (2016)
> n=nrow(temp)

> n_train <- 600
> n_test<-n-n_train

> train <- sample (1:n, n_train , FALSE)

To build our DNN we use the RSNNS package:
> require(RSNNS)

Keeping things as simple as possible we assign the response
variable to the R object Y, and the attributes to X:
> set.seed (2016)
> X<-temp[train ,1:6]
> Y<-temp[train ,7]

Now to the meat of the issue, here is how to specify our
classification DNN in the RSNNS package:
fitMLP <- mlp(x=X, y=Y,
size = c(12 ,8),
maxit = 1000,
initFunc = "Randomize_Weights",
initFuncParams = c(-0.3, 0.3),
learnFunc = "Std_Backpropagation",
learnFuncParams = c(0.2, 0),
updateFunc = "Topological_Order",
updateFuncParams = c(0),
hiddenActFunc = "Act_Logistic",
shufflePatterns = TRUE ,
linOut = TRUE)

Much of this will be familiar to you by now, so I will run
through it only briefly. The network has two hidden layers;
the first hidden layer contains 12 neurons; the second hidden
layer contains 8 neurons. Weights and biases are initialized
randomly, with a logistic activation function in the hidden lay-
ers and linear activation function for the output neuron. You

69

Deep Learning Made Easy with R

will notice, that for this small dataset, the R code executes
relatively quickly.

Prediction is carried out using the predict method. Here
is how I do that for our example:
predMLP <- sign(predict(fitMLP , temp[-train

,1:6]))

Since we have classification data, we should take a look at the
confusion matrix. Here it is:
> table(predMLP ,sign(temp[-train ,7]) ,
dnn =c("Predicted" , " Observed"))

Observed
Predicted -1 1

-1 67 9
1 21 27

Notice the model did not fit the data perfectly. The off
diagonal elements in the confusion matrix indicate the number
of misclassified observations. It is often helpful to calculate the
misclassification as an error rate. Here is how I do that:
> error_rate = (1- sum(predMLP == sign(

temp[-train ,7]))/ 124)
> round(error_rate ,3) [1] 0.242

The classification DNN has an overall error rate of around 24%
(or an accuracy rate of around 76%).

It is worth highlighting how easily and quickly a classifica-
tion DNN can be constructed using R. I can recall spending
many hours writing code in C++ and C in order to complete
what can now be achieved in a few lines of code in R. If you
are interested in the art of data science, that is using the tools
of the discipline to extract meaningful insights, use of R will
certainly boost your productivity.

Asking R users how they build a particular type of model is
a bit like the old Econometrician joke:- How many econometri-
cians does it take to change a light-bulb? Five, plus or minus

70

CHAPTER 2. DEEP NEURAL NETWORKS

eight! Let’s face it, most of us have our own favorite package,
tool and technique. Whilst this is human, a better strategy
is to remain flexible, and uncover as many ways as possible to
solve a problem. For R this involves using alternative tools and
packages.

Let’s look at how to build a classification DNN using the
AMORE package. (By the way, you could also do this with the
packages we have already used to build a regression DNN. Hav-
ing as many arrows in your toolkit is essential to data science
success.) First, detach the RSNNS package and load AMORE as
follows:
> detach("package:RSNNS", unload=TRUE)
> library(AMORE)

Here is how to specify a classification DNN in the AMORE
package:
net <- newff(n.neurons=c(6,12,8,1),
learning.rate.global =0.01,
momentum.global =0.5,
error.criterium="LMLS",
Stao=NA ,
hidden.layer="sigmoid",
output.layer="purelin",
method="ADAPTgdwm")

Much of this is similar to what you have seen before. Note
however, that the AMORE package requires you to specify the
number of input and output nodes as well as hidden nodes.
This is achieved using the statement n.neurons=c(6,12,8,1),
the first number reflects the six input attributes, the second
and third values represent the number of neurons in the first
and second hidden layers, and the final number the number of
output neurons, in this case 1.

Most of the time data scientists train DNNs by minimiz-
ing the mean squared error of the training set. However, in
the presence of outliers, the resulting model can struggle to

71

Deep Learning Made Easy with R

capture the mechanism that generates the data. For this rea-
son, when building DNN models I also like to minimize robust
error metrics. In this case I use the mean log squared error
(LMLS)59. Other robust choices available in the AMORE pack-
age include "TAO" for the Tao error60 as well as the standard
mean squared error (LMS). The argument method specifies the
learning method used. I have chosen to use adaptive gradient
descend with momentum. "ADAPTgdwm".

Next, we assign the attributes to the R object X, and the
response variable to the R object Y.
> X<-temp[train ,]
> Y<-temp[train ,7]

Next we fit the model. Here is how to do that:
fit <- train(net ,
P=X,
T=Y,
error.criterium="LMLS",
report=TRUE ,
show.step=100,
n.shows =5)

As the model is running, you should see output along the lines
of:
index.show: 1 LMLS 0.239138435481238
index.show: 2 LMLS 0.236182280077741
index.show: 3 LMLS 0.230675203275236
index.show: 4 LMLS 0.222697557309232
index.show: 5 LMLS 0.214651839732672

Once the model has converged, use the sim method to fit
the model using the test sample:
> pred <- sign(sim(fit$net , temp[-train ,]))

The confusion can be calculated using
> table(pred ,sign(temp[-train ,7]) ,

72

CHAPTER 2. DEEP NEURAL NETWORKS

dnn =c("Predicted" ,
" Observed"))

Observed
Predicted -1 1

-1 71 10
1 17 26

Finally, the error rate is given by:
> error_rate = (1- sum(pred == sign(temp[-

train ,7]))/ 124)
> round(error_rate ,3)
[1] 0.218

Overall, the use of adaptive gradient descend with momen-
tum learning combined with a robust error resulted in a lower
misclassification error rate of around 22% relative to the clas-
sification DNN developed using the RSNNS package. The key
take away here is that as you build your DNN models, do so
in a variety of packages, use different learning algorithms, net-
work architecture and so on. In other words, at the heart of
the art of building great DNNs is experimentation.

How to Model Multiple Response Variable’s
In image processing modeling multiple response variables (aka
pixels) in a single DNN is standard practice. However, in many
areas of data science, models are often built containing only one
response variable. This is probably a hangover from the resid-
ual dominance of the once ubiquitous linear regression model.

It was probably Sir Francis Galton’s sweet pea experiment
back in 187561 which propelled forward the notion of linear
regression as a tool for modeling relationships in data. It sub-
sequently became the defacto technique of analysis in a wide
variety of disciplines. Partly, due to the ease of calculation, the-
oretical underpinnings and useful insights, it remains a useful
tool to this day.

73

Deep Learning Made Easy with R

A key statistical reason for modeling multiple response vari-
ables jointly on the same set of attributes is that it can lead
to more efficient parameter estimates62 in regression type mod-
els. I first came across the idea of joint estimation of response
variables several years ago whilst working on surrogate mark-
ers in clinical trials. The wonderful thing about this is that the
generation of more efficient estimates can shorten the duration
of clinical trials63. In short, more efficient estimates lead to
faster decisions as the result of greater confidence in terms of
statistical inference. I can think of multiple instances, across a
wide range of commercial, industrial and research applications,
where modeling multiple response variables on the same set of
attributes is useful. Think for moment about an application in
your line of work. Now let’s look at how to do this in R.

We build our DNN using the data frame bodyfat contained
in the TH.data package. The data was originally collected by
Garcia et al64 to develop reliable predictive regression equations
for body fat by measuring skinfold thickness, circumferences,
and bone breadth on men and women. The original study
collected data from 117 healthy German subjects, 46 men and
71 women. The bodyfat data frame contains the data collected
on 10 variables for the 71 women, see Table 3. Here is how to
load the data:
> data("bodyfat",package="TH.data")

Waist and hip circumference will serve as the response vari-
ables, see Figure 2.13. A visualization of the attributes is
shown in Figure 2.14.

74

CHAPTER 2. DEEP NEURAL NETWORKS

Figure 2.13: Kernel density plot for response variables

75

Deep Learning Made Easy with R

Figure 2.14: DNN bodyfat attributes

We will use the neuralnet package to build the DNN. The
Metrics package calculates a variety of useful performance
metrics and is also loaded:
> library(neuralnet)
> require(Metrics)

Since we are dealing with a rather small dataset, with only
71 observations will use 60 observations for the training sample.
The data is sampled without replacement as follows:
> set.seed (2016)
> train <- sample (1:71 ,50 , FALSE)

76

CHAPTER 2. DEEP NEURAL NETWORKS

Name Description
DEXfat measure of body fat.
age age in years.
waistcirc waist circumference.
hipcirc hip circumference.
elbowbreadth breadth of the elbow.
kneebreadth breadth of the knee.
anthro3a SLT.
anthro3b SLT.
anthro3c SLT.
anthro4 SLT.

Table 3: Response and independent variables in bodyfat data
frame. Note SLT = sum of logarithm of three anthropometric
measurements.

Next, the observations are standardized, and the formula to be
used to build the DNN is stored in the R object f:
> scale_bodyfat <-as.data.frame(scale(log(

bodyfat)))
> f<- waistcirc + hipcirc ~ DEXfat+age +

elbowbreadth + kneebreadth + anthro3a +
anthro3b + anthro3c +anthro4

Notice the use of waistcirc + hipcirc ~ to indicate two
response variables. In general, for k response variables
{r1,...,rk} you would use r1+r2+...+rk~.

I fit a model with two hidden layers with 8 neurons in the
first hidden layer and 4 neurons in the second hidden layer.
The remaining parameters are similar to those we have already
discussed:
it<- neuralnet(f,
data = scale_bodyfat[train ,],
hidden=c(8,4),
threshold =0.1,

77

Deep Learning Made Easy with R

err.fct = "sse",
algorithm = "rprop+",
act.fct = "logistic",
linear.output=FALSE
)

A visualization of the fitted model is shown in Figure 2.15. The
model only took 45 steps to converge with a sum of squared
errors equal to 25.18.

Now a little bit of housekeeping, I copy the data in
scale_bodyfat and store it in the R object without_fat. This
is the object we will play with. It also allows us to preserve
the original values contained in scale_bodyfat which we will
use later. Notice that I also remove the response variables from
this new R object using the NULL argument:
> without_fat<-scale_bodyfat
> without_fat$waistcirc <-NULL
> without_fat$hipcirc <-NULL

Now we are ready to use the model on the test sample.
The approach is similar to that which we have seen before.
The second line prints out the predicted values (first few only
shown):
> pred <- compute(fit , without_fat[-train ,]

)
> pred$net.result
pred$net.result

[,1] [,2]
48 0.8324509945946 0.7117765670627
53 0.1464097674972 0.0389520756586
58 0.7197107887754 0.6215091479349
62 0.8886019185711 0.8420724129305

That’s it! The DNN with two response variables has been suc-
cessfully built.

78

CHAPTER 2. DEEP NEURAL NETWORKS

anthro4

anthro3c

anthro3b

anthro3a

kneebreadth

elbowbreadth

age

DEXfat

hipcirc

waistcirc

Error: 25.186069 Steps: 45

Figure 2.15: DNN model with two outputs

Hey, after all of that we may as well compare our 21st cen-
tury model results to Sir Francis Galton’s 19th century linear
regression model. This will involve building two models. One
for each of the response variables. First, create the formulas:
> fw<- waistcirc ~ DEXfat+age +

elbowbreadth + kneebreadth + anthro3a +
anthro3b + anthro3c +anthro4

> fh<- hipcirc ~ DEXfat+age + elbowbreadth
+ kneebreadth + anthro3a + anthro3b +

anthro3c +anthro4

79

Deep Learning Made Easy with R

Now run each of the models using the training data:
> regw<-linReg <-lm(fw ,data = scale_bodyfat[

train ,])
> regh<-linReg <-lm(fh ,data = scale_bodyfat[

train ,])

Next, build predictions using the test sample:
> predw <-predict(regw , without_fat[-train

,])
> predh <-predict(regh , without_fat[-train

,])

Wow, that was pretty fast! So how does our DNN model
compare with the linear regressions? The mean squared error
statistic for the DNN model response variable waistcirc can
be calculated as follows:
> mse(scale_bodyfat [-train ,10], pred$net

.result [,1])
[1] 0.5376666652

And for Galton’s regression model:
> mse(scale_bodyfat [-train ,10], predw)
[1] 0.3670629158

Galton’s 19th century linear regression for waist size beats the
pants off our deep learning model!
What about hip size? Here is the metric for the DNN:
> mse(scale_bodyfat [-train ,10], pred$net.

result [,2])
[1] 0.5530302859

And for Galton’s hip size regression model:
> mse(scale_bodyfat [-train ,10], predh)
0.5229634116

A much closer race here, but the linear regression still wins
with a smaller mean squared error.

80

CHAPTER 2. DEEP NEURAL NETWORKS

Of course, in practice you will build a variety of models us-
ing different learning algorithms, number of neurons and so on;
and the linear regression model results serve as a useful bench-
mark. To illustrate this point, I build a DNN using traditional
backpropagation with the deepnet package.

First, I collect the attributes into the R object X, and the
response variables into the R object Y:
> set.seed (2016)
> X= as.matrix(without_fat[train ,])
> Y= as.matrix(scale_bodyfat[train ,3:4])

The DNN model with 2 hidden layers is estimated as follows:
fitB<-nn.train(x=X, y=Y,
initW = NULL ,
initB = NULL ,
hidden = c(8,4),
activationfun = "sigm",

learningrate = 0.02,
momentum =0.74 ,
learningrate_scale =1 ,
output = "linear",
numepochs = 970,
batchsize = 60,
hidden_dropout = 0,
visible_dropout = 0)

The predicted values, using the test sample, are stored in the
R object predB:
> Xtest <- as.matrix(without_fat[-train ,])
> predB <- nn.predict(fitB , Xtest)

And the mean square error for waistcirc, and hipcirc are
calculated as:
> mse(scale_bodyfat [-train ,10], predB

[,1])
[1] 0.1443659185

81

Deep Learning Made Easy with R

> mse(scale_bodyfat [-train ,10], predB
[,2])

[1] 0.1409938484

In this case, the DNN model outperforms (in terms of mean
square error) the linear regression models.

The key takeaway is not that any particular approach is
absolutely inferior, rather that the data science tool you use
should be selected in order to fit the nature of the problem
you have at hand. As novelist Stephen King wrote65 “It’s best
to have your tools with you. If you don’t, you’re apt to find
something you didn’t expect and get discouraged.”

82

NOTES

Notes
33If you are interested in the history of deep learning see the interest-

ing article at http://recode.net/2015/07/15/ai-conspiracy-the-scientists-
behind-deep-learning/

34Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet
classification with deep convolutional neural networks." Advances in neural
information processing systems. 2012.

35Couprie, Camille, et al. "Indoor semantic segmentation using depth
information." arXiv preprint arXiv:1301.3572 (2013).

36Sarkar, Soumik, et al. "Occlusion Edge Detection in RGB-D Frames
using Deep Convolutional Networks." arXiv preprint arXiv:1412.7007
(2014).

37For a successful application in image recognition see A. Krizhevsky,
I. Sutskever, and G. E. Hinton. Imagenet classication with deep convo-
lutional neural networks. In Advances in neural information processing
systems, pages 1097{1105, 2012.

38See for example:
1. Keshmiri, Soheil, et al. "Application of Deep Neural Network

in Estimation of the Weld Bead Parameters." arXiv preprint
arXiv:1502.04187 (2015).

2. Dahl, George E., et al. "Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition." Audio, Speech,
and Language Processing, IEEE Transactions on 20.1 (2012): 30-
42.

3. R. Collobert and J. Weston, A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,
in Int. Conf. Machine Learning, 2008.

4. D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, Multi-
column deep neural network for traffic sign classification, Neural
Networks, vol. 32, pp. 333-338, 2012.

5. Y.LeCun, L.Bottou, and P.Haffiner, Gradient-based learning ap-
plied document recognition, Proc. of the IEEE, vol.86, pp.2278-
2324, 1998.

39For further details see Seide, Frank, et al. "Feature engineering in
context-dependent deep neural networks for conversational speech tran-
scription." Automatic Speech Recognition and Understanding (ASRU),
2011 IEEE Workshop on. IEEE, 2011.

40Fukushima, Kunihiko. "Neocognitron: A self-organizing neural net-
work model for a mechanism of pattern recognition unaffected by shift in
position." Biological cybernetics 36.4 (1980): 193-202.

83

http://recode.net/2015/07/15/ai-conspiracy-the-scientists-behind-deep-learning/
http://recode.net/2015/07/15/ai-conspiracy-the-scientists-behind-deep-learning/

Deep Learning Made Easy with R

41See for example Narasimhan, Srinivasa G., and Shree K. Nayar. "Con-
trast restoration of weather degraded images." Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 25.6 (2003): 713-724.

42Pomerleau, Dean. "Visibility estimation from a moving vehicle using
the RALPH vision system." IEEE Conference on Intelligent Transporta-
tion Systems. 1997.

43Farhan Hussain and Jechang Jeong, “Visibility Enhancement of Scene
Images Degraded by Foggy Weather Conditions with Deep Neural Net-
works,” Journal of Sensors, vol. 2016, Article ID 3894832, 9 pages, 2016.
doi:10.1155/2016/3894832

44Invincea Labs provides an advanced endpoint security solutions that
prevents targeted attacks, detects breaches & supports threat response by
eradicating malware.

45Saxe, Joshua, and Konstantin Berlin. "Deep Neural Network Based
Malware Detection Using Two Dimensional Binary Program Features."
arXiv preprint arXiv:1508.03096 (2015).

46See Farhan Hussain and Jechang Jeong, “Efficient Deep Neural Net-
work for Digital Image Compression Employing Rectified Linear Neu-
rons,” Journal of Sensors, vol. 2016, Article ID 3184840, 7 pages, 2016.
doi:10.1155/2016/3184840

47See Hornik, M. Stichcombe, and H. White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359–366, 1989.

48In any year you will find many examples. Here are a couple, from
several years ago, to give you a sense of the real world importance of this
issue:

• In November 2013 autoblog reported that Kwon Moon-sik,
research and development president of the car manufac-
turer Hyundai, resigned as a result of a series of qual-
ity issues. See http://www.autoblog.com/2013/11/12/
hyundai-executive-resigns-quality-issues/. See also
the Reuters report at http://www.reuters.com/article/
us-hyundai-rd-idUSBRE9AA0F920131111.

• Towards the end of 2014 Fiat Chrysler’s quality chief, Doug Betts,
left the company, one day after the automaker ranked last in a
closely watched U.S. scorecard on vehicle reliability. See Automo-
tive News article”Betts leaves Chrysler after another poor quality
showing” by Larry P. Vellequette.

49See:

• Srivastava, Nitish, et al. "Dropout: A simple way to prevent neu-
ral networks from overfitting." The Journal of Machine Learning
Research 15.1 (2014): 1929-1958.

84

http://www.autoblog.com/2013/11/12/hyundai-executive-resigns-quality-issues/
http://www.autoblog.com/2013/11/12/hyundai-executive-resigns-quality-issues/
http://www.reuters.com/article/us-hyundai-rd-idUSBRE9AA0F920131111
http://www.reuters.com/article/us-hyundai-rd-idUSBRE9AA0F920131111

NOTES

• Hinton, Geoffrey E., et al. "Improving neural networks by
preventing co-adaptation of feature detectors." arXiv preprint
arXiv:1207.0580 (2012).

50The idea was proposed by Leo Breiman, who called it "bootstrap
aggregating" see Breiman, Leo. "Bagging predictors." Machine learning
24.2 (1996): 123-140.

51See for example Dahl, George E., Tara N. Sainath, and Geoffrey E.
Hinton. "Improving deep neural networks for LVCSR using rectified linear
units and dropout." Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on. IEEE, 2013.

52The link appears to have been validated by a large number of studies.
See for example Sharma A, Madaan V, Petty FD. Exercise for Mental
Health. Primary Care Companion to The Journal of Clinical Psychiatry.
2006;8(2):106.

53Here are three examples in totally different areas of application :

• Payan, Adrien, and Giovanni Montana. "Predicting Alzheimer’s
disease: a neuroimaging study with 3D convolutional neural net-
works." arXiv preprint arXiv:1502.02506 (2015).

• Oko, Eni, Meihong Wang, and Jie Zhang. "Neural network ap-
proach for predicting drum pressure and level in coal-fired subcrit-
ical power plant." Fuel 151 (2015): 139-145.

• Torre, A., et al. "Prediction of compression strength of high perfor-
mance concrete using artificial neural networks." Journal of Physics:
Conference Series. Vol. 582. No. 1. IOP Publishing, 2015.

54Harrison, David, and Daniel L. Rubinfeld. "Hedonic housing prices
and the demand for clean air." Journal of environmental economics and
management 5.1 (1978): 81-102.

55For additional details on resilient backpropagation see:

• Riedmiller M. (1994) Rprop - Description and Implementation De-
tails. Technical Report. University of Karlsruhe.

• Riedmiller M. and Braun H. (1993) A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. Pro-
ceedings of the IEEE International Conference on Neural Networks
(ICNN), pages 586-591. San Francisco.

56See my book Build Your Own Neural Network TODAY! for a
quick and easy explanation of these terms.

57See http://www.niddk.nih.gov/
58For alternative approaches to dealing with missing values see:

85

http://www.niddk.nih.gov/

Deep Learning Made Easy with R

1. Roth, Philip L. "Missing data: A conceptual review for applied
psychologists." Personnel psychology 47.3 (1994): 537-560.

2. Afifi, A. A., and R. M. Elashoff. "Missing observations in multivari-
ate statistics I. Review of the literature." Journal of the American
Statistical Association 61.315 (1966): 595-604.

3. Pigott, Therese D. "A review of methods for missing data." Educa-
tional research and evaluation 7.4 (2001): 353-383.

4. Little, Roderick J., et al. "The prevention and treatment of missing
data in clinical trials." New England Journal of Medicine 367.14
(2012): 1355-1360.

59See Liano, Kadir. "Robust error measure for supervised neural net-
work learning with outliers." Neural Networks, IEEE Transactions on 7.1
(1996): 246-250.

60See for example:

• Pernía-Espinoza, Alpha V., et al. "TAO-robust backpropagation
learning algorithm." Neural Networks 18.2 (2005): 191-204.

• Ordieres-Meré, Joaquín B., Francisco J. Martínez-de-Pisón, and
Ana González-Marcos. "TAO-robust backpropagation learning al-
gorithm." Neural networks 18.2 (2005): 191-204.

• Rusiecki, Andrzej. "Robust LTS backpropagation learning algo-
rithm." Computational and ambient intelligence. Springer Berlin
Heidelberg, 2007. 102-109.

61See Stanton, Jeffrey M. "Galton, Pearson, and the peas: A brief his-
tory of linear regression for statistics instructors." Journal of Statistics
Education 9.3 (2001).

62See for example Zellner, Arnold, and Tong Hun Lee. "Joint estima-
tion of relationships involving discrete random variables." Econometrica:
Journal of the Econometric Society (1965): 382-394.

63See for example N.D. Lewis. Surrogate Markers in Clinical Trials.
PhD Thesis. University of Cambridge

64Garcia, Ada L., et al. "Improved prediction of body fat by measuring
skinfold thickness, circumferences, and bone breadths." Obesity Research
13.3 (2005): 626-634.

65See King, Stephen. "On writing: A memoir of the craft." New York:
Scribner (2000). If you have not already done so, go out and purchase
a copy of this book at your earliest convenience. It is jam packed full of
advice that will serve you well.

86

Chapter 3

Elman Neural Networks

All models are wrong, but some are useful.
George E. P. Box

The Elman neural network is a recurrent neural network.
In a recurrent neural network neurons connect back to
other neurons, information flow is multi-directional so

the activation of neurons can flow around in a loop. This type
of neural network has a sense of time and memory of earlier
networks states which enables it to learn sequences which vary
over time, perform classification tasks and develop predictions
of future states. As a result, recurrent neural networks are used
for classification, stochastic sequence modeling and associative
memory tasks.

A simple form of recurrent neural network is illustrated in
Figure 3.1. A delay neuron is introduced in the context layer.
It has a memory in the sense that it stores the activation values
of an earlier time step. It releases these values back into the
network at the next time step.

87

Deep Learning Made Easy with R

Figure 3.1: Simple recurrent neural network

What is an Elman Neural Network?
Elman neural networks are akin to the multi-layer perceptron
augmented with one or more context layers. The number of
neurons in the context layer is equal to the number of neurons
in the hidden layer. In addition, the context layer neurons are
fully connected to all the neurons in the hidden layer.

To solidify this idea let’s take a look at the Elman network
developed by Khatib et al.66 to predict hourly solar radiation.
The network is illustrated in Figure 3.2. It is a 3-layered net-
work with eight input attributes (Latitude, Longitude, Tem-
perature, Sunshine ratio, Humidity, Month, Day, Hour); five
hidden neurons, five context neurons; and two output neurons
predicting global solar radiation and diffused solar radiation.

What is the Role of Context Layer
Neurons?
The neurons in the context layer are included because they
remember the previous internal state of the network by stor-
ing hidden layer neuron values. The stored values are delayed
by one time step; and are used during the next time step as
additional inputs to the network.

88

CHAPTER 3. ELMAN NEURAL NETWORKS

Figure 3.2: Schematic illustration of the Elman network to
predict hourly solar radiation. Source Khatib et al. cited in
endnote sec. 66

How to Understand the Information
Flow
To help strengthen our intuition about this useful model let’s
look at a simplified illustration. Suppose we have a neural net-
work consisting of only two neurons, as illustrated in Figure 3.3.
The network has one neuron in each layer. Each neuron has a
bias denoted by b1 for the first neuron, and b2 for the second
neuron. The associated weights are w1 and w2 with activation

89

Deep Learning Made Easy with R

function f1 and f2. Since there are only two neurons the output
Y as a function of the input attribute X is given by:

Y = f2 (w2f1 (w1X + b1) + b2)

Figure 3.3: Two neuron network

In an Elman network, as shown in Figure 3.4, there is a
context neuron which feeds the signal from the hidden layer
neuron67 back to that same neuron. The signal from the context
neuron is delayed by one time step and multiplied by w2 before
being fed back into the network. The output at time t is given
by:

Y [t] = f2 (w3f1 (w1X[t] + w2C + b1) + b2)

where,

C = Y1[t− 1]

During the training process the weights and biases are iter-
atively adjusted to minimize the network error, typically mea-
sured using the mean squared error. If the error is insufficiently
small another iteration or epoch is initiated. We see, in this
simple example, that the hidden layer is fully connected to in-
puts and the network exhibits recurrent connections; and the
use of delayed memory creates a more dynamic neural network
system.

90

CHAPTER 3. ELMAN NEURAL NETWORKS

Figure 3.4: Two node Elman network

How to Use Elman Networks to Boost
Your Result’s
Elman Neural Networks are useful in applications where we
are interested in predicting the next output in given sequence.
Their dynamic nature can capture time-dependent patterns,
which are important for many practical applications. This type
of flexibility is important in the analysis of time series data.

A typical example is the Elman network, shown in
Figure 3.2 to predict hourly solar radiation developed by
Khatib et al. The property of memory retention is also use-
ful for pattern recognition and robot control.

91

Deep Learning Made Easy with R

Four Smart Ways to use Elman Neural
Networks
Let’s take a look at some interesting applications of Elman
neural networks. The applications range from fault prediction,
weather forecasting to predicting the stock market. In each
illustration discussed below, the power of this predictive tool
becomes evident. Take a look, then answer the question of
how will you apply this incredible tool in your data modeling
challenges?

The Ultimate Weather Forecasting Model
Accurate weather forecasts are of keen interest to all sections
of society. Farmers look to weather conditions to guide the
planting and harvesting of their crops, transportation authori-
ties seek information on the weather to determine whether to
close or open specific transportation corridors, and individuals
monitor the weather as they go about their daily activities.

Maqsood, Khan and Abraham68 develop a Elman neu-
ral network to forecast the weather of Vancouver, British
Columbia, Canada. They specifically focus on creating mod-
els to forecast the daily maximum temperature, minimum daily
temperature and wind-speed. The dataset consisted of one year
of daily observations. The first eleven months were used to
train the network with the testing set consisting of the final
month’s data (1st to 31st August). The optimal model had 45
hidden neurons with Tan-sigmoid activation functions.

The peak temperature forecast had an average correlation
of 0.96 with the actual observations, the minimum tempera-
ture forecast had an average correlation of 0.99 with the actual
observations, and the wind-speed forecast had an average cor-
relation of 0.99.

92

CHAPTER 3. ELMAN NEURAL NETWORKS

How to Immediately Find a Serious Fault
Auxiliary inverters are an important component in urban rail
vehicles. Their failure can cause economic loss, delays and com-
muter dissatisfaction with the service quality and reliability.
Yao et al.69 apply the Elman neural network to the task of
fault recognition and classification in this vital piece of equip-
ment.

The network they construct consisted of eight input neu-
rons, seven hidden layer neurons and 3 neurons in the output
layer. The eight inputs corresponded to various ranges on the
frequency spectrum of fault signals received from the inverter.
The three outputs corresponded to the response variables of the
voltage fluctuation signal, impulsive transient signal and the
frequency variation signal. The researchers observe that “El-
man neural network analysis technology can identify the failure
characteristics of the urban rail vehicle auxiliary inverter.”

An Innovative Idea for Better Water
The quality of water is often assessed by the total nitrogen
(TN), total phosphorus (TP) and dissolved oxygen (DO) con-
tent present. Heyi and Gao70 use Elman networks to predict the
water quality in Lake Taihu, the third largest freshwater lake
in China. Measurements were taken at three different sites in
Gonghu Bay71. The training sample consisted of 70% of the
observations. The observations were chosen at random. The
remaining 30% of observations made up the test sample.

Ten parameters were selected as important covariates for
water quality72. Separate Elman networks were developed to
predict TN, TP and DO. Each model was site specific, with a
total of nine models developed for testing. Each model com-
posed of one input layer, one hidden layer and one output layer.
Trial and error was used to determine the optimum number of
nodes in the hidden layer of each model.

For TN the researchers report a R-squared statistic of

93

Deep Learning Made Easy with R

0.91,0.72 and 0.92 for site 1, site 2 and site 3 respectively.
They observe “The developed Elman models accurately sim-
ulated the TN concentrations during water diversion at three
sites in Gonghu Bay of Lake Taihu.”

For TP R-squared values of 0.68,0.45 and 0.61 were reported
for site 1, site 2 and site 3 respectively. These values, although
not as high as the TN models, were deemed acceptable.

The r-squared values for DO were considerably lower at
0.3, 0.39 and 0.83 for site 1, site 2 and site 3 respectively.
These lower values were addressed by the researchers with the
suggestion that “The accuracy of the model can be improved not
only by adding more data for the training and testing of three
sites but also by inputting variables related to water diversion.”

How to Make a “Killing” in the Stock Market
The ability to predict financial indices such as the stock market
is one of the appealing and practical uses of neural networks.
Elman networks are particularly well suited to this task. Wang
et al.73 successfully use Elman networks for this task.

They use Elman networks to predict daily changes in
four important stock indices - the Shanghai Stock Exchange
(SSE) Composite Index, Taiwan Stock Exchange Capitaliza-
tion Weighted Stock Index (TWSE), Korean Stock Price Index
(KOSPI), and Nikkei 225 Index (Nikkei225). Data on the clos-
ing prices covering 2000 trading days were used to construct
the models.

The researchers developed four models, one for each index.
The SSE model had 9 hidden nodes, the TWSE 12 hidden
nodes, and the KOSPI and NIKKEI225 each had 10 hidden
nodes. The researchers report all four models have a correlation
coefficient of 0.99 with the actual observed observations.

94

CHAPTER 3. ELMAN NEURAL NETWORKS

The Easy Way to Build Elman Net-
works
Elman networks are particularly useful for modeling timeseries
data. In the remainder of this chapter we build a model to
predict the total number of deaths from bronchitis, emphysema
and asthma in the United Kingdom74.

 PRACTITIONER TIP �

To see which packages are installed on your ma-
chine use the following:
pack <- as.data.frame
(installed.packages()[,c(1 ,3:4)])

rownames(pack) <- NULL

pack <- pack[is.na(pack$Priority),
1:2,drop=FALSE]

print(pack , row.names=FALSE)

Here is How to Load the Best Pack-
ages
We will use a couple of packages as we build our Elman net-
work. The first is RSNNS which uses the Stuttgart Neural Net-
work Simulator library75 (SNNS). This is a library containing
many standard implementations of neural networks. What’s
great for us is that the RNSS package wraps SNNS function-
ality to make it available from within R. We will also use the
quantmod package, which has a very easy to use lag operator
function. This will be useful because we will be building our

95

Deep Learning Made Easy with R

model using timeseries data. Let’s load the packages now:
> require(RSNNS)
> require(quantmod)

Why Viewing Data is the New Science
The data we use is contained in the datasets package. The
data frame we want is called UKLungDeaths. The datasets
package comes preloaded in R, so we don’t technically need
to load it. However, it is good practice; here is how to do it
efficiently:
> data("UKLungDeaths",package="datasets")

The data frame UKLungDeaths contains three timeseries
giving the monthly number of deaths from bronchitis, emphy-
sema and asthma in the United Kingdom from 1974 to 197976.
The first timeseries is the total number of deaths (ldeaths),
the second timeseries males only (mdeaths) and the third time-
series females only (fdeaths). We can visualize these timeseries
using the plot method as follows:
> par(mfrow=c(3,1))

> plot(ldeaths , xlab="Year",
ylab="Both sexes",
main="Total")

> plot(mdeaths , xlab="Year",
ylab="Males",
main="Males")

>plot(fdeaths , xlab="Year",
ylab="Females",
main="Females")

96

CHAPTER 3. ELMAN NEURAL NETWORKS

The first line uses the par method to combine multiple plots
into one overall graph as shown in Figure 3.5. The first plot
method creates a chart for total monthly deaths contained in
the R object ldeaths. The second plot method creates a chart
for monthly male deaths contained in the R object mdeaths;
and the third plot method creates a chart for monthly female
deaths contained in the R object fdeaths.

Figure 3.5: Monthly number of deaths from bronchitis, emphy-
sema and asthma in the United Kingdom

Overall, we see that there has been considerable variation
in the number of deaths over time, with the number of deaths

97

Deep Learning Made Easy with R

undulating by the month in a clearly visible pattern. The high-
est and lowest total monthly deaths were observed in 1976. It
is interesting to note that for males the lows for each cycle ex-
hibit a strong downward trend. The overall trend as we enter
1979 is quite clearly downward.

Since we are interested in modeling the total number of
deaths,we will focus our analysis on the ldeaths data frame.
It’s always a good idea to do a quick check for missing values.
These are coded as NA in R. We sum the number of missing
values using the is.na method:
> sum(is.na(ldeaths))
[1] 0

So we have zero NA’s in the dataset. There do not appear
to be are any missing values, but it is always a good idea to
check. We can also check visually:

Next we check the class of the ldeaths object:
> class(ldeaths)
[1] "ts"

It is a timeseries object. This is good to know as we shall see
shortly.

Let’s summarize ldeaths visually. To do this we plot the
timeseries, kernel density plot and boxplot as follows:
> par(mfrow = c(3, 1))

> plot(ldeaths)

> x<-density(ldeaths)

98

CHAPTER 3. ELMAN NEURAL NETWORKS

> plot(x, main="UK total deaths from lung
diseases")

> polygon(x, col="green", border="black")

> boxplot(ldeaths ,col="cyan",ylab="Number
of deaths per month")

The resultant plot is show in Figure 3.6.

Figure 3.6: Visual summary of total number of deaths

99

Deep Learning Made Easy with R

The Secret to Transforming Data
Since the data appears to be in order, we are ready to transform
it into a suitable format for use with the Elman neural network.
The first thing we do is make a copy of the data, storing the
result in the R object Y.
y<-as.ts(ldeaths)

When working with timeseries that always takes a positive
value, I usually like to log transform the data. I guess this
comes from my days building econometric models where ap-
plying a log transformation helps normalize the data. Anyway,
here is how to do that:
y<-log(y)

Now, we can standardize the observations using the scale
method:
y<- as.ts(scale(y))

Note the as.ts method ensures we retain a ts object.
Since we have no other explanatory attributes for this data,

we will use a pure timeseries approach. The main question in
this modeling methodology is how many lags of the dependent
variable to use? Well, since we have monthly observations over
a number of years, let’s use 12 lags at the monthly frequency.
One way to do this is to use the Lag operation in the quantmod
package. This requires that we convert y into a zoo class object:
> y<-as.zoo(y)

Now we are ready to use the quantmod Lag operator:
> x1<-Lag(y, k = 1)
> x2<-Lag(y, k = 2)
> x3<-Lag(y, k = 3)
> x4<-Lag(y, k = 4)
> x5<-Lag(y, k = 5)
> x6<-Lag(y, k = 6)
> x7<-Lag(y, k = 7)

100

CHAPTER 3. ELMAN NEURAL NETWORKS

> x8<-Lag(y, k = 8)
> x9<-Lag(y, k = 9)
> x10<-Lag(y, k = 10)
> x11 <-Lag(y, k = 11)
> x12<-Lag(y, k = 12)

This gives us 12 attributes to feed as inputs into our neural
network.

The next step is to combine the observations into a single
data frame:
> deaths <-cbind(x1 ,x2,x3,x4,x5 ,x6 ,x7 ,x8,x9 ,

x10 ,x11 ,x12)
> deaths <-cbind(y,deaths)

Let’s take a quick peak at what deaths contains:

Notice the NA’s as the number of lags increases from 1 to 12.
This is as expected, since we are using lagged values. However,
we do need to remove the NA observations from our dataset:

101

Deep Learning Made Easy with R

> deaths <- deaths [-(1:12) ,]

We are ready to begin creating our training and testing sam-
ples. First, we count the number of rows and use the set.seed
method for reproducibility:
> n=nrow(deaths)
> n
[1] 60
> set.seed (465)

As a quick check we see there are 60 observations left for use
in analysis. This is as expected because we deleted 12 rows of
observations due to lagging the data.

Let’s use 45 rows of data to build the model, and the re-
maining 15 rows of data we use for the test sample. We select
the training data randomly without replacement as follows:
> n_train <- 45
> train <- sample (1:n,n_train , FALSE)

How to Estimate an Interesting Model
To make things as easy as possible we store the covariate at-
tributes containing the lagged values in the R object inputs,
and the response variable in the object ouputs:
> inputs <- deaths [,2:13]
> outputs <- deaths [,1]

We fit a neural network with two hidden layers each contain-
ing one node. We set the learning rate to 0.1 and the maximum
number of iterations to 1000:
> fit <- elman(inputs[train],
outputs[train],
size=c(1,1),
learnFuncParams=c(0.1),
maxit =1000)

102

CHAPTER 3. ELMAN NEURAL NETWORKS

Given the relatively small size of the dataset the model
converges pretty quickly. Let’s plot the error function:
plotIterativeError(fit)

It is illustrated in Figure 3.7.

Figure 3.7: Elman neural network error plot

The error drops really quickly, leveling off by around 500 it-
erations. We can also use the summary method to get further
details on the network:
> summary(fit)

103

Deep Learning Made Easy with R

You will see a large block of R output. Look for the section
that looks like this:

The first column provides a count of the number of nodes or
neurons; we see the entire network has a total of 17. The third
column describes the type of neuron. We see there are 12 input
neurons, 2 hidden neurons, 2 neurons in the context layer, and
1 output neuron. The forth and fifth columns give the value
of the activation function and the bias for each neuron. For
example, the first neuron has a activation function value of
-0.98260, and a bias of 0.15181.

Creating the Ideal Prediction
Now we are ready to use the model with the test sample. The
predict method can be used to help out here:
> pred<-predict(fit , inputs[-train])

104

CHAPTER 3. ELMAN NEURAL NETWORKS

A scatter plot of the predictions and actual values is shown in
Figure 3.8.

Figure 3.8: Elman network actual and predicted values

The squared correlation coefficient is relatively high at 0.78.
To improve on this number so you can achieve your ideal pre-
diction, you simply need to experiment with different model
parameters. Give it a go, rebuild the model to improve the
overall performance.
> cor(outputs[-train], pred)^2

[,1]
[1,] 0.7845

105

Deep Learning Made Easy with R

Notes
66Khatib, Tamer, Azah Mohamed, Kamarulzaman Sopian, and M. Mah-

moud. "Assessment of artificial neural networks for hourly solar radiation
prediction." International journal of Photoenergy 2012 (2012).

67In the Elman network the neurons typically use sigmoidal activation
functions.

68Maqsood, Imran, Muhammad Riaz Khan, and Ajith Abraham.
"Canadian weather analysis using connectionist learning paradigms." Ad-
vances in Soft Computing. Springer London, 2003. 21-32.

69Yao, Dechen, et al. "Fault Diagnosis and Classification in Urban
Rail Vehicle Auxiliary Inverter Based on Wavelet Packet and Elman Neu-
ral Network." Journal of Engineering Science and Technology Review 6.2
(2013): 150-154.

70Wang, Heyi, and Yi Gao. "Elman’s Recurrent neural network Applied
to Forecasting the quality of water Diversion in the Water Source Of Lake
Taihu." Energy Procedia 11 (2011): 2139-2147.

71The data set was collected from continuous monitoring of water qual-
ity from May 30 to Sep 19 in 2007, Apr 16 to Jun 19 in 2008, and May 5
to Jun 30 in 2009.

72Water temperature, water pH, secchi depth, dissolved oxygen, per-
manganate index, total nitrogen, total phosphorus, ammonical nitrogen,
Chl-a, and the average input rate of water into the lake.

73Wang, Jie, et al. "Financial Time Series Prediction Using Elman Re-
current Random Neural Networks." Computational Intelligence and Neu-
roscience 501 (2015): 613073.

74For additional context see:

• Doll, Richard, and Richard Peto. "Mortality in relation to smoking:
20 years’ observations on male British doctors." BMJ 2.6051 (1976):
1525-1536.

• Doll, Richard, et al. "Mortality in relation to smoking: 50 years’
observations on male British doctors." BMJ 328.7455 (2004): 1519.

• Burney, P., D. Jarvis, and R. Perez-Padilla. "The global burden of
chronic respiratory disease in adults." The International Journal of
Tuberculosis and Lung Disease 19.1 (2015): 10-20.

75See http://www.ra.cs.uni-tuebingen.de/SNNS/
76For further details see P. J. Diggle (1990) Time Series: A Biostatistical

Introduction. Oxford,

106

http://www.ra.cs.uni-tuebingen.de/SNNS/

Chapter 4

Jordan Neural Networks

It is complete nonsense to state that all models are
wrong, so let’s stop using that quote.
Mark van der Laan

Jordan neural networks are similar to the Elman neural
network. The only difference is that the context neurons
are fed from the output layer instead of the hidden layer

as illustrated in Figure 4.1.

Figure 4.1: A simple Jordan neural network

The activity of the output node[s] is recurrently copied back
into the context nodes. This provides the network with a mem-

107

Deep Learning Made Easy with R

ory of its previous state.

Three Problems Jordan Neural Net-
works Can Solve
Jordan neural networks have found an amazing array of uses.
They appear capably of modeling timeseries data and are useful
for classification problems. Below we outline a few illustrative
examples of real world use of this predictive analytic tool.

The Ultimate Guide for Wind Speed Fore-
casting
Accurate forecasts of wind speed in coastal regions are impor-
tant for a wide range of industrial, transportation and social
marine activity. For example, the prediction of wind speed is
useful in determining the expected power output from wind
turbines, operation of aircraft and navigation by ships, yachts
and other watercraft. Civil Engineers Anurag and Deo77 build
Jordan neural networks in order to forecast daily, weekly as
well as monthly wind speeds at two coastal locations in India.

Data was obtained from the India Meteorological Depart-
ment covering a period of 12 years for the coastal location of
Colaba within the Greater Mumbai (Bombay) region along the
west coast of India. Three Jordan networks for daily, weekly
and monthly wind speed forecasting were developed.

All three models had a mean square error less than 10%.
However, the daily forecasts were more accurate than the
weekly forecasts; and the weekly forecasts were more accurate
than the monthly forecasts. The engineers also compare the
network predictions to auto regressive integrated moving av-
erage (ARIMA) timeseries models; They observe “The neural
network forecasting is also found to be more accurate than tra-
ditional statistical timeseries analysis.”

108

CHAPTER 4. JORDAN NEURAL NETWORKS

How to Classify Protein-Protein interaction
Protein-protein interaction refers to the biological functions
carried out by the proteins within the cell by interacting with
other proteins in other cells as a result of biochemical events
and/or electrostatic forces. Such interactions are believed to
be important in understanding disease pathogenesis and de-
veloping new therapeutic approaches. A number of different
perspectives have been used to study these interactions rang-
ing from biochemistry, quantum chemistry, molecular dynam-
ics, signal transduction, among others78 All this information
enables the creation of large protein interaction databases.

Computer scientists Dilpreet and Singh 79 apply Jordan
neural networks to classify protein-protein interactions. The
sample used in their analysis was derived from three existing
databases80. It contained 753 positive patterns and 656 neg-
ative patterns81. Using amino acid composition of proteins as
input to the Jordan network to classify the percentage of in-
teracting and non-interacting proteins the researchers report a
classification accuracy of 97.25%.

Deep Learning to Woo Spanish Speakers
Neural networks have been successfully applied to the difficult
problem of speech recognition in English82. Accurate classi-
fication of the numerical digits 0 through 9 in Spanish using
Jordan neural networks was investigated by researcher Tellez
Paola83.

In a rather small study, the speech of the ten numerical
digits was recorded with voices from three women and three
men. Each person was requested to repeat each digit four times.
The network was then trained to classify the digits. Using nine
random initializations’ Tellez reports an average classification
accuracy of 96.1%.

109

Deep Learning Made Easy with R

Essential Elements for Effective Jor-
dan Models in R

I grew up in the heart of England where the weather is always
on the move. If you want to experience all four seasons in
one day, central England is the place to visit! Anyway, in

England, the weather is always a great conversation starter. So
let’s start our exploration of Jordan networks modeling British
weather. To be specific, we will model the temperature of the
city of Nottingham located in Nottinghamshire, England. You
may recall this area was the hunting ground of the people’s
bandit Robin Hood84. Let’s get our hands dirty and build a
Jordan neural network right now! As with Elman networks,
Jordan networks are great for modeling timeseries data.

Which are the Appropriate Packages?
We will use the RSNNS package along with the quantmod pack-
age. The data frame nottem, in the datasets package, con-
tains monthly measurements on the average air temperature
at Nottingham Castle85, a location Robin Hood would have
known well:
> require(RSNNS)
> data("nottem",package="datasets")
> require(quantmod)

Let’s take a quick peek at the data held in nottem:

110

CHAPTER 4. JORDAN NEURAL NETWORKS

There do not appear to be any missing values or rouge obser-
vations. So, we can continue.

We check the class of nottem using the class method:
> class(nottem)
[1] "ts"

It is a timeseries object of class ts. Knowing the class of your
observations is critically important, especially if you are using
dates or your analysis mixes different types of R classes. This
can be a source of many hours of frustration. Fortunately,
we now know nottem is of class ts; this will assist us in our
analysis.

Figure 4.2 shows a timeseries plot of the observations in
nottem. The data cover the years 1920 to 1939. There does
not appear to be any trend evident in the data, however it
does exhibit strong seasonality. You can replicate the chart by
typing:
> plot(nottem)

111

Deep Learning Made Easy with R

Figure 4.2: Average Monthly Temperatures at Nottingham
1920–1939

A Damn Good Way to Transform
Data
For the most part I like to standardize my attribute data prior
to using a neural network model. Whilst there are no fixed rules
about how to normalize inputs here are four popular choices for
an attribute xi:

zi = xi − xmin

xmax − xmin

(4.1)

zi = xi − x
σx

(4.2)

zi = xi√
SSi

(4.3)

zi = xi

xmax + 1 (4.4)

112

CHAPTER 4. JORDAN NEURAL NETWORKS

SSi is the sum of squares of xi, and x̄ and σx are the mean and
standard deviation of xi.
In this case, given that we do not have any explanatory vari-
ables, we will take the log transformation and then use the
scale method to standardize the data:
> y<-as.ts(nottem)
> y<-log(y)
> y<- as.ts(scale(y))

Since we are modeling data with strong seasonality charac-
teristics which appear to depend on the month, we use monthly
lags going back a full 12 months. This will give us 12 attributes
to feed as inputs into the Jordan network. To use the Lag func-
tion in quantmod we need y to be a zoo class:
> y<-as.zoo(y)
> x1<-Lag(y, k = 1)
> x2<-Lag(y, k = 2)
> x3<-Lag(y, k = 3)
> x4<-Lag(y, k = 4)
> x5<-Lag(y, k = 5)
> x6<-Lag(y, k = 6)
> x7<-Lag(y, k = 7)
> x8<-Lag(y, k = 8)
> x9<-Lag(y, k = 9)
> x10<-Lag(y, k = 10)
> x11 <-Lag(y, k = 11)
> x12<-Lag(y, k = 12)

As with the Elman network, we need to remove the lagged
values that contain NA’s (see page 101 for further details). The
final cleaned values are stored in the R object temp:
> temp<-cbind(x1 ,x2,x3,x4,x5 ,x6 ,x7 ,x8,x9 ,

x10 ,x11 ,x12)
> temp<-cbind(y,temp)
> temp <- temp [-(1:12) ,]

113

Deep Learning Made Easy with R

As a final check, let’s visually inspect all of the attributes and
response variable. The result is shown in Figure 4.3, and was
created using the plot method:
>plot(temp)

Figure 4.3: Response and attribute variables for Jordan net-
work

Notice that Series 1 is the response variable y, and Lag 1,
Lag 2,...,Lag 12 are the input attributes x1, x2,...,x12.

Here is How to Select the Training
Sample
First we check the number of observations (should be equal to
228), then we use the set.seed method to ensure reproducibil-
ity:
> n=nrow(temp)
> n
[1] 228
> set.seed (465)

For the training sample 190 observations are randomly se-
lected without replacement as follows:

114

CHAPTER 4. JORDAN NEURAL NETWORKS

> n_train <- 190
> train <- sample (1:n,n_train , FALSE)

Use This Tip to Estimate Your Model

The model is estimated along similar lines as the Elman
neural network on page 102. The attributes are stored in the R
object inputs. The response variable is stored in the R object
outputs. The model is then fitted using 2 hidden nodes, with
a maximum of 1000 iterations and a learning rate parameter
set to 0.01:
> inputs <- temp [,2:13]
> outputs <- temp[,1]

> fit <- jordan(inputs[train],
outputs[train],
size=2,
learnFuncParams=c(0.01) ,
maxit =1000)

The plot of the training error by iteration is shown in
Figure 4.4. It was created using:
> plotIterativeError(fit)

The error falls sharply within the first 100 or so iterations and
by around 300 iterations is stable.

115

Deep Learning Made Easy with R

Figure 4.4: Training error by iteration

Finally, we can use the predict method to forecast the
values from the test sample. We also calculate the squared
correlation between the test sample response and the predicted
values:
> pred<-predict(fit , inputs[-train])

> cor(outputs[-train], pred)^2
[,1]

[1,] 0.9050079

The squared correlation coefficient is relatively high at 0.90. We
can at least say our model has had some success in predicting
the weather in Nottingham - Robin Hood would be amazed!

116

NOTES

Notes
77More, Anurag, and M. C. Deo. "Forecasting wind with neural net-

works." Marine structures 16.1 (2003): 35-49.
78See for example:

• Herce, Henry D., et al. "Visualization and targeted disruption
of protein interactions in living cells." Nature Communications 4
(2013).

• Hoppe, Philipp S., Daniel L. Coutu, and Timm Schroeder. "Single-
cell technologies sharpen up mammalian stem cell research." Nature
cell biology 16.10 (2014): 919-927.

• Li, Yao-Cheng, et al. "A Versatile Platform to Analyze Low-Affinity
and Transient Protein-Protein Interactions in Living Cells in Real
Time." Cell reports 9.5 (2014): 1946-1958.

• Qin, Weihua, et al. "DNA methylation requires a DNMT1 ubiquitin
interacting motif (UIM) and histone ubiquitination." Cell Research
(2015).

79Kaur, Dilpreet, and Shailendra Singh. "Protein-Protein Interaction
Classification Using Jordan Recurrent Neural Network."

80Pfam, 3did and Negatome. For further details see:

• Robert D. Finn, John Tate et. al., “The Pfam protein families
database”, Nucleic Acids Research, vol. 36, pp. 281–288, 2008.

• Amelie Stein, Robert B. Russell and Patrick Aloy, “3did: interact-
ing protein domains of known three-dimensional structure”, Nucleic
Acids Research, vol. 33, pp. 413–417, 2005.

• Pawel Smialowski, Philipp Page et. al., “The Negatome database:
a reference set of non-interacting protein pairs”, Nucleic Acids Re-
search, pp. 1–5, 2009.

81Positive patterns contain interacting residues in its center. Negative
patterns contain non-interacting residues in its center.

82See:

• Lippmann, Richard P. "Review of neural networks for speech recog-
nition." Neural computation 1.1 (1989): 1-38.

• Arisoy, Ebru, et al. "Bidirectional recurrent neural network lan-
guage models for automatic speech recognition." Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Confer-
ence on. IEEE, 2015.

117

Deep Learning Made Easy with R

• Sak, Haşim, et al. "Fast and Accurate Recurrent Neural Net-
work Acoustic Models for Speech Recognition." arXiv preprint
arXiv:1507.06947 (2015).

• Hinton, Geoffrey, et al. "Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research
groups." Signal Processing Magazine, IEEE 29.6 (2012): 82-97.

83Paola, Tellez. "Recurrent Neural Prediction Model for Digits Recog-
nition."International Journal of Scientific & Engineering Research Volume
2, Issue 11, November-2011.

84See Knight, Stephen. Robin Hood: a complete study of the English
outlaw. Blackwell Publishers, 1994.

85If you are planning to visit, before you go take a look at:

• Hutchinson, Lucy, and Julius Hutchinson. Memoirs of the Life of
Colonel Hutchinson, Govenor of Nottingham Castle and Town. G.
Bell and sons, 1906.

• Drage, Christopher. Nottingham Castle: a place full royal. Not-
tingham Civic Society [in association with] The Thoroton Society
of Nottinghamshire, 1989.

• Hooper-Greenhill, Eilean, and Theano Moussouri. Visitors’ Inter-
pretive Strategies at Nottingham Castle Museum and Art Gallery.
No. 2. Research Centre for Museums and Galleries and University
of Leicester, 2001.

118

Chapter 5

The Secret to the
Autoencoder

Though this be madness, yet there is method in’t.
William Shakespeare

The autoencoder (sometimes called an autoassociator)
is an unsupervised three-layer feature learning feed-
forward neural network network. Architecturally, as

shown in Figure 5.1, it is very similar to the multilayer percep-
tron; it includes an input layer, a hidden layer and an output
layer. The number of neurons in the input layer is equal to the
number of neurons in the output layer. The number of hidden
neurons is less (or more) than the number of input neurons. It
is different from an MLP because the output layer has as many
nodes as the input layer, and instead of training it to predict
some target value y given inputs x, an autoencoder is trained
to reconstruct its own inputs x.

The autoencoder consists of an encoder and a decoder. The
mapping of the input layer to the hidden layer is called encod-
ing and the mapping of the hidden layer to the output layer
is called decoding. The encoder takes the vector of input at-
tributes and transforms them typically through sigmoid acti-
vation functions in the hidden layers into new features. The

119

Deep Learning Made Easy with R

decoder then converts these features back to the original input
attributes. So for example, in Figure 5.1, the autoencoder takes
the attributes x1, x2, x3, x4 encodes them using three hidden
units each containing sigmoid activation functions h1, h2, h3,
and then decodes them to obtain estimates x̂1, x̂2, x̂3, x̂4 of the
original attributes.

Figure 5.1: Basic Autoencoder

A Jedi Mind Trick
At this point you may be wondering is this some complicated
Jedi mind trick? What is the point of taking our original at-
tributes, transforming them into who knows what, and then
obtaining estimates of their original values? What is going on
here?

Well, yes there is a little bit of the Jedi Master in this.
You see, one of the great challenges faced by data scientists,
statisticians, psychologists and others involved in data analysis
is the problem of dimensionality reduction.

Here is what this issue involves: Suppose you have 300 po-
tential attributes that might explain your response variable.

120

CHAPTER 5. THE SECRET TO THE AUTOENCODER

In traditional statistical modeling, it would not be possible to
include all 300 attributes in your model. What to do? En-
ter dimensionality reduction techniques, the most famous being
principal component analysis (PCA) developed in 1901 by Uni-
versity College, London, professor of mathematics Karl Pear-
son.

I first came across PCA though the classic 1972 and 1973
papers of the then University of Kent at Canterbury scholar I.
T. Jolliffe86; the technique has been a permanent addition to
my data science toolkit ever since. Briefly, PCA is a statistical
procedure that uses an orthogonal transformation to convert
a number of (possibly) correlated attributes into a (smaller)
number of uncorrelated variables called principal components.
The principal components are linear combinations of the orig-
inal attributes. Here are the key points to be aware of:

1. The number of principal components is less than or equal
to the number of original variables.

2. The first principal component accounts for the largest
proportion of the variability in the data; and each suc-
ceeding component accounts for as much of the remain-
ing variability as possible conditional on being orthogonal
(aka uncorrelated) to the preceding components.

3. The principal components are orthogonal because they
are the eigenvectors of the covariance matrix, which is of
course symmetric.

The Secret Revealed
I’ll always remember what Jabba the Hutt said rather pointedly
to Bib Fortuna in Return of the Jedi “You weak-minded fool!
He’s using an old Jedi mind trick!” The thing about a Jedi
mind trick was once it was revealed to you, it lost much of
its power or became totally ineffective. Perhaps you recall the

121

Deep Learning Made Easy with R

rather humorous scene in the Phantom Menace, when Qui-Gon
Jinn, stranded on Tatooine, attempts to use a mind trick on
Watto in order to encourage him to accept Republic credits
for the purchase of a T-14 hyperdrive. Watto interjects “...you
think you’re some kind of Jedi, waving your hand around like
that? I’m a Toydarian! Mind tricks don’t work on me, only
money! No money, no parts, no deal!”

Let’s take another look at the autoencoder “trick”,this time
without the hand waving! An autoencoder is a feed forward
neural network used to learn representations of data. The idea
is to train a network with at least one hidden layer to recon-
struct its inputs. The output values are set equal to input val-
ues, i.e. x̂ = x in order to learn the identity function h(x) ≈ x.
The autoencoder achieves this by mapping input attributes to
hidden layer nodes using an encoder function:

h(x) = f(Wx+ bh)

where x is the input vector of attributes, f denotes the sigmoid
function, bh is the vector of hidden neuron biases, andW is the
matrix of hidden weights. The data is reconstructed using a
linear decoder:

g(x̂) = λf(Wx+ bh) + bg

After learning the weights W , each hidden neuron represents
a certain feature of the input data. Thus, the hidden layer
h(x) can be considered as a new feature representation of the
input data. The hidden representation h(x) is then used to
reconstruct an approximation x̂ of the input using the decoder
function g(x̂).

The most commonly used function for the encoder and
decoder is a nonlinear sigmoid function. Training is typi-
cally achieved by minimizing the squared reconstruction error
(g(x̂) − x)2 using the backpropagation by gradient descent al-
gorithm. In practice, the restriction λ = W T is often imposed
to reduce the number of parameters.

122

CHAPTER 5. THE SECRET TO THE AUTOENCODER

The key thing to keep in mind is that by learning the hid-
den representation h(x) that can reconstruct the original input
attributes, the autoencoder captures important features of the
input attributes. For example, if the number of hidden layer
neurons is larger than the number of input layer neurons the
hidden layers map the input to a higher dimension. Similarly, if
the number of hidden neurons is less than the number of input
neurons the autoencoder’s hidden layer essentially compresses
the input attributes in such a way that they can be efficiently
reconstructed87.

The compressed representation has lower dimensionality
than the original input attributes. For example, when an au-
toencoder has 400 input neurons and 60 hidden nodes, the
original 400-dimensional input is ‘reconstructed’ approximately
from the 60-dimensional output of the hidden layer. If we use
the output of the hidden layer as a representation of an in-
put of the network, the autoencoder plays the role of a feature
extractor.

It turns out that autoencoders can implement a variety of
dimensionality reduction techniques. A linear autoencoder can
learn the Eigenvectors of the data equivalent to applying PCA
to the inputs88. A nonlinear autoencoder is capable of dis-
covering more complex, multi-modal structure in the data. In
certain situations, a nonlinear autoencoder can even outper-
form PCA for certain dimensionality reduction tasks involved
with handwriting and face recognition89.

Autoencoders can therefore be used to learn a compressed
(or expanded) representation of data with minimum recon-
struction loss. As pointed out by deep learning scholar Ge-
offrey Hinton90 “It has been obvious since the 1980s that back-
propagation through deep autoencoders would be very effective
for nonlinear dimensionality reduction, provided that comput-
ers were fast enough, data sets were big enough, and the initial
weights were close enough to a good solution. All three con-
ditions are now satisfied. Unlike nonparametric methods, au-
toencoders give mappings in both directions between the data

123

Deep Learning Made Easy with R

and code spaces, and they can be applied to very large data sets
because both the pretraining and the fine-tuning scale linearly
in time and space with the number of training cases.”

A Practical Definition You Can Run
With
We can summarize by stating that an autoencoder is an artifi-
cial neural network that attempts to reproduce its input, i.e.,
the target output is the input. Another way of saying this, and
a little more formal is that an autoencoder is a feedforward
neural network that tries to implement an identity function by
setting the outputs equal to the inputs during training. The
parameters are learned by minimizing a loss functions. The
loss function measures the difference between input attributes
and output. Stochastic Gradient Descent is typically used to
minimize the loss function:

L(x̂, x) = −
k∑

i=1
[xi log x̂i + (1− xi) log (1− xi)]

How to Save the Brazilian Cerrado
Let’s look at a very practical application of an autoencoder as
a feature extractor. Since the environment impacts us all, we
take our example from environmental and space science.

The Brazilian Cerrado, at almost three times the size of
Texas, is the world’s most biologically rich savanna. It contains
over 10,000 species of plants, of which 45% are exclusive to
the Cerrado, feeds three of the major water basins in South
America: the Amazon, Paraguay and São Francisco Rivers.

Brazilian National Institute for Space Research researchers
Costa Wanderson, Leila Fonseca, and Thales Körting report
over 500,000km2 of this pristine and marvelous landscape has
been industrialized into cultivated pastures over the past few

124

CHAPTER 5. THE SECRET TO THE AUTOENCODER

years91. The rate of change is so rapid the researchers observe
with concern that it outpaces even the stunning intensity of
commercialization and industrialization in the Amazon region.

The consequence, for the Brazilian Cerrado, as Wander-
son, Fonseca, and Körting state is that “...nearly 50% of the
cultivated pasture areas are severely degraded, causing loss of
soil fertility, increased erosion and predominance of invasive
species.”

Moderate Resolution Imaging Spectroradiometer data from
the Terra and Aqua satellites was collected by the researchers
to perform image classification for a small region focused on
the Serra da Canastra National Park.

The researchers ended up with a total of 30 input attributes,
23 of which were obtained from spectral bands. Given the
number of attributes, the researchers required a technique to
reduce the dimensionality. An Autoencoder was developed and
successfully used to reduce the dimensionality of the data.

Analysis was performed using a reduced set of 15 attributes
and a reduced set of 25 attributes. The researchers conclude
“...using a smaller number of attributes from the autoencoder
had accuracies similar to those obtained in the tests that used
all original attributes, emphasizing the ability of this network
[the autoencoder] to reduce the dimensionality of the data.”

The Essential Ingredient You Need to
Know
The key ingredient in an autoencoder are the input attributes.
It is important to realize that if the input attributes contain
no structure then compression will prove futile. For example,
if the input attributes are completely random, compression is
unfeasible. Effective compression requires the attributes to be
correlated or related in some way. In other words, there needs
to be some structure that can be used to decompress the data.

125

Deep Learning Made Easy with R

If that structure is not present, using an autoencoder for di-
mensionality reduction will likely fail.

The Powerful Benefit of the Sparse
Autoencoder
A sparse autoencoder uses a large number of hidden neurons,
where only a small fraction are active. A nonlinear mapping
of the input vector x is made by setting the number of hidden
neurons92 much larger than the number of input neurons93 and
then enforcing a sparsity constraint on them. Training there-
fore involves using a sparsity constraint to learn sparse repre-
sentations of the data. The most popular sparsity constraint
uses the Kullback-Leibler (KL) divergence.

Understanding Kullback-Leibler Di-
vergence
Kullback- Leibler divergence is a distance measure from a "true"
probability distribution to a "target" probability distribution
of a Bernoulli random variable with mean p and a Bernoulli
random variable with mean p̂j:

KL(p||p̂j) = p log
(
p

p̂j

)
+ (1− p) log

(
1− p
1− p̂j

)

Note that KL(p||p̂j) = 0 for p = p̂j , otherwise it is positive.
The parameter p is the sparsity parameter, which is usually

set to a small value. It is the frequency of the activation of
hidden nodes; for example, if p =0.07, the average activation
of neuron j is 7%.

126

CHAPTER 5. THE SECRET TO THE AUTOENCODER

Let’s denote the activation of the hidden neuron j for input
attribute xi by let a(2)

j (xi) and define:

p̂j = 1
n

n∑
i=1

[
a

(2)
j (xi)

]

The parameter p̂j is the average threshold activation of the
hidden neuron j over all training samples. In order to compute
p̂j, the entire training set needs to be propagated forward to
compute all units’ activation’s; followed by stochastic gradient
descent using backpropagation. This makes it computationally
expensive relative to the standard autoencoder.

The sparsity optimization objective for unit j is p = p̂j which
is obtained by adding the following sparsity constraint when
minimizing the squared reconstruction error or loss function:

α
∑

j

KL(p||p̂j)

where α is a hyperparmeter that determines the relative im-
portance of the sparseness term in the overall autoencoder loss
function. To see this note that in general, an autoencoder finds
the weights to minimize:

arg min
W,b

J(W, b) = L(x̂, x)

Here L is a loss function such as the squared error or cross-
entropy, W the weights and b the biases. For the sparse au-
toencoder we have:

JSparse(W, b) = J(W, b) + α
∑

j

KL(p||p̂j)

So we see that the sparsity term adds a positive value to the
overall autoencoder loss function for p 6= p̂j.

127

Deep Learning Made Easy with R

Three Timeless Lessons from the
Sparse Autoencoder
Lesson 1: In practice many more applications are developed

using the sparse autoencoder than the standard autoen-
coder; mainly because a greater variety of models can be
learned, depending on the activation function, number of
hidden units and nature of the regularization used during
training.

Lesson 2: Another rationale for using a sparse encoding for
classification is that features that allow for a sparse repre-
sentation are more likely to encode discriminatory prop-
erties of the original input data.

Lesson 3: Finally, if the hidden layer has more neurons units
than the input layer, the standard autoencoder can po-
tentially learn the identity function and thereby not ex-
tract useful features from the input attributes.

Mixing Hollywood, Biometrics and
Sparse Autoencoders
Biometrics techniques occur frequently in Hollywood Movies.
You may have noticed this. I am amazed at how frequently
this fantastic identification technology rears its head on the
big screen. In almost every portrayal of the future, especially
in dystopian futures, it plays an important role. Actors can
be seen peering into eye scanners that monitor the capillary
vessels located at the back of the eye or assess the colored ring
that surrounds the eye’s pupil. They can be seen waving their
hands at sensors to open doors, start up space-craft and fire
weapons. From the computer that analyses voice and facial
expressions, to the sensitive door that opens when a hand is

128

CHAPTER 5. THE SECRET TO THE AUTOENCODER

placed on the identification pad, biometric techniques are all
over the movies.

Scanning live eyeballs with blue lights, passing laser like
beams over hands or even digital bulbs flashing manically as
a disobedient computer assesses vocal patterns and rotates its
beady camera like eye to assess facial expressions, make for
added excitement in a movie.

Alas, it seems, finger vein authentication which is real and
works, lacks the excitement factor demanded by Hollywood. I
suspect this is due to the very limited amount of drama and
visual excitement screen playwrights can generate from an in-
dividual placing their finger on a small glass plate. This is
rather a shame because finger vein authentication is a highly
practical, fast, non-invasive means of making sure people really
are who they claim to be.

It is part of our present, and will likely persist as a biomet-
ric technique well into the future. This may be why Iranian
scholar Mohsen Fayyaz and colleagues94 created an interesting
approach to finger vein verification using a sparse autoencoder.

The SDUMLA-HMT Finger Vein database95 was used as
the source of the vein images. This dataset contains 3,816 finger
vein images. It was collected as follows - each subject included
in the database provided images of his/her index finger, middle
finger and ring finger of both hands, and the collection for each
of the 6 fingers was repeated 6 times to obtain 6 finger vein
images. Vein images were captured using infrared scanner, see
Figure 5.2.

Fayyaz et al. apply PCA to reduce the size of input data
attributes and a sparse autoencoder with 4000 neurons in the
hidden layer and the Kullback- Leibler sparsity constraint. The
autoencoder was trained on 3,000 images which excluded im-
ages of individual’s right hand index finger. These were used
for the test sample, a total of 600 images.

129

Deep Learning Made Easy with R

Figure 5.2: Finger Vein images captured by the SDUMLA-
HMT database

The performance of the autoencoders was assessed based
on the ability of the learned features to separate represented
individuals’ finger vein images from each other. The equal error
rate (EER) and area under the curve (AUC) were the primary
performance metrics. The researchers report an EER of 0.70
and an AUC of 99.67. These results handsomely outperformed
alternative algorithms proposed by other researchers.

This is all very promising, because as Fayyaz et al. also
points out “Finger veins are situated inside the body and be-
cause of this natural property, it is hard to forge and spoof
them.” Well, I bet you can imagine the Hollywood movie: In
the last but one screen the good guy disposes of his evil neme-
sis, hacks of the fallen antagonist’s right hand and places the
blooded finger on the sensor plate; after a slight click, a long
pause, the door slowly opens96 to freedom...Come on Hollywood
this finger vein analysis technique has legs!

130

CHAPTER 5. THE SECRET TO THE AUTOENCODER

How to Immediately use the Autoen-
coder in R
Enough talking now let’s get to work with R! The R logo should
be pretty familiar to you. Let’s put some of the ideas we have
discussed into action and build a sparse autoencoder to com-
press the R logo image and extract hidden features. First, load
the required packages:
> require(autoencoder)
> require(ripa)

The package autoencoder contains the functions we need to
build a sparse autoencoder. The ripa package contains an
image of the R logo. The image is loaded into R as follows:
> data(logo)

Go ahead, take a look at logo, you will see the image shown
in Figure 5.3:
> image(logo)

Let’s take a look at the characteristics of logo:
> logo
size: 77 x 101
type: grey

It is a grey scale image of size 77 by 101 pixels.
Next, make of copy of the image and store in x_train. The

image is transposed with t() to make it suitable for use with
the package autoencoder.
> x_train <-t(logo)

> x_train
size: 101 x 77
type: grey

So, we see x_train is a grey scale image with 101 rows (cases)
and 77 columns (attributes).

131

Deep Learning Made Easy with R

Figure 5.3: The R logo using image

Now we are ready to specify a sparse autoencoder using the
autoencode function. Here is how to do that:
> set.seed (2016)

> fit<-autoencode(X.train=x_train ,
+ X.test = NULL ,
+ nl = 3,
+ N.hidden = 60,
+ unit.type = "logistic",
+ lambda = 1e-5,
+ beta = 1e-5,

132

CHAPTER 5. THE SECRET TO THE AUTOENCODER

+ rho = 0.3,
+ epsilon =0.1,
+ max.iterations = 100,
+ optim.method = c("BFGS"),
+ rel.tol =0.01 ,
+ rescale.flag = TRUE ,
+ rescaling.offset = 0.001)

The first line of autoencode indicates the model will be stored
in the R object fit; it also passes the image data in x_train
to the function. The parameter nl refers to the number of
layers and is set to 3. The number of hidden nodes equals 60
with logistic activation functions. The parameter lambda is a
weight decay parameter, typically set to a small value; the same
holds true of beta, which is the weight of the sparsity penalty
term. The sparsity is set to 0.3 (rho) and sampled from a
normal distribution N(0,epsilon2). The maximum number of
iterations is set to 100. Notice that rescale.flag = TRUE to
uniformly rescale the training matrix x_train so its values lie
in the range 0-1 (for the logistic activation function).

The attributes associated with fit can be viewed as follows:
> attributes(fit)
$names
[1] "W" "b"
[3] "unit.type" "rescaling"
[5] "nl" "sl"
[7] "N.input" "N.hidden"
[9] "mean.error.training.set" "mean.error.

test.set"

$class
[1] "autoencoder"

Let’s take a look at the "mean.error.test.set":
> fit$mean.error.training.set
[1] 0.3489713

133

Deep Learning Made Easy with R

As we have seen previously, it is often useful to extract the
features of the hidden nodes. This is easily achieved using the
predict function with hidden.output=TRUE:
> features <- predict(fit , X.input=x_train ,

hidden.output=TRUE)

Since the number of hidden nodes is set to 60 and the number
of attributes (columns) is 77, the features are a compact repre-
sentation of the original image. A visual representation of the
features is shown in Figure 5.4 and can be obtained using:
> image(t(features$X.output))

The transpose function t() is used to re-orientate the features
to match Figure 5.3.

NOTE... �

The autoencode function uses the Nelder–Mead,
quasi-Newton and conjugate-gradient algorithms
by calling the optim function contained in the
stats package97. Available optimisation methods
include:

• "BFGS" is a quasi-Newton method, it uses
function values and gradients to build up a
picture of the surface to be optimized.

• "CG" is a conjugate gradients method which
is generally more fragile than the BFGS
method. Its primary advantage is with
large optimization problems because it works
without having to store large matrices.

• "L-BFGS-B" allows each variable to be given
a lower and/or upper bound.

134

CHAPTER 5. THE SECRET TO THE AUTOENCODER

Figure 5.4: Hidden node features extracted from fit

How well do these compressed features capture the original
image? To reconstruct values use the predict function with
hidden.output =FALSE:

> pred<- predict(fit , X.input=x_train ,
hidden.output=FALSE)

The mean square error appears reasonably small:
> pred$mean.error
[1] 0.3503714

Let’s take a look at the reconstructed image:

135

Deep Learning Made Easy with R

> recon <-pred$X.output
> image(t(recon))

Figure 5.5 presents the actual and reconstructed image. It
appears our sparse autoencoder represents the original image
pretty well!

Figure 5.5: Original logo (left) and Sparse Autoencoder recon-
struction (right)

136

CHAPTER 5. THE SECRET TO THE AUTOENCODER

An Idea for Your Own Data Science
Projects with R
In this section we perform an analysis of an edible mollusk using
the autoencoder and R. As you work through this section, think
about how you might adapt the approach for you own research.

Abalone are, mostly sedentary, marine snails and belong to
a group of sea critters (phylum Mollusca) which include clams,
scallops, sea slugs, octopuses and squid. They cling to rocks
while waiting for their favorite food of kelp to drift by. Once
the seaweed is spotted they hold it down, with what can only
be described as a “foot”, and chew on it vigorously (for a snail)
with radula - a rough tongue with many small teeth.

Given the healthy diet of fresh kelp it is little wonder these
mollusks are considered delicious raw or cooked. They are
deemed to be so flavorful that the demand for consumption out-
stripped supply over many years. Today, the white abalone is
officially listed as an endangered species. Other species remain
plentiful, are harvested regularly to the delight of foodies98,
restaurant goers and seafood chefs99.

The abalone dataset from UCI Machine Learning Archives
was collected to predict abalone age (through the number of
rings on the shell) given various attributes such as shell sizes
(height, length, width), and weights (shell weight, shucked
weight, viscera weight, whole weight). Here is how to capture
the web link to the dataset100 using R:
> aburl = ’http://archive.ics.uci.edu/ml/

machine -learning -databases/abalone/
abalone.data’

The observations are loaded into R using read.table and
stored in the R object data:
> names = c(’sex’,’length ’,
’diameter ’,
’height ’,

137

Deep Learning Made Easy with R

’whole.weight ’,
’shucked.weight ’,
’viscera.weight ’,
’shell.weight ’,’rings’)

> data = read.table(aburl ,
header = F ,
sep = ’,’,
col.names = names)

To investigate the data for unusual observations I often use
the summary function. The annotated result is shown below:
>summary(data)

We can tell instantly there exists a problem with the abalone
height; some of the snails are recorded as having 0 height. This
is not possible! We will need to investigate further. To take a
look at those values enter:
> data[data$height ==0,]

138

CHAPTER 5. THE SECRET TO THE AUTOENCODER

It appears two observations have been erroneously recorded
with zero height (observation 1258 and observation 3997). We
need to re-code these observations as missing and remove them
from sample.
> data$height[data$height ==0] = NA
> data <-na.omit(data)

Next, we drop the sex variable from the sample.
> data$sex<-NULL

We take another look at the data using summary:
>summary(data)

All seems reasonable.
Next, we transpose the data, convert it to a matrix and

store the result in the R object data1:
> data1 <-t(data)
> data1 <-as.matrix(data1)

Now we load the autoencoder package, sample 10 observa-
tions without replacement and create the basic model which is
stored in the R object fit:
require(autoencoder)

> set.seed (2016)

139

Deep Learning Made Easy with R

> n=nrow(data)
> train <- sample (1:n, 10, FALSE)

> fit<-autoencode(X.train=data1[,train],
+ X.test = NULL ,
+ nl = 3,
+ N.hidden = 5,
+ unit.type = "logistic",
+ lambda = 1e-5,
+ beta = 1e-5,
+ rho = 0.07,
+ epsilon =0.1,
+ max.iterations = 100,
+ optim.method = c("BFGS"),
+ rel.tol=0.01 ,
+ rescale.flag = TRUE ,
+ rescaling.offset = 0.001)

Much of this we have seen before; the key thing to note is that
we fit a model with 5 hidden nodes and a sparsity parameter
of 7%.

Once the model is optimized, you should observe a mean
square error less than 2%:
> fit$mean.error.training.set
[1] 0.01654644

The features can be observed, as we saw earlier, by setting
hidden.output=TRUE. Since the number of hidden nodes is less
than the number of features the output of features$X.output
captures a compressed representation of the data:
> features <- predict(fit , X.input=data1[,

train], hidden.output=TRUE)
> features$X.output

140

CHAPTER 5. THE SECRET TO THE AUTOENCODER

Let’s use the predict function to reconstruct the values
and store the result in the R object pred:
> pred<- predict(fit , X.input=data1[,train

], hidden.output=FALSE)

Figure 5.6, Figure 5.7 and Figure 5.8 use a radar plot to
visualize the reconstructed values.

Overall the reconstructed values offer a reasonable repre-
sentation of the original values. However, notice the apparent
poor fit of observation 5 and to a lesser extent observation 6;
let’s investigate a little further.

The barplot of Figure 5.9 shows the difference between the
reconstructed values and observed values. It appears the re-
constructed observations under-fit on all eight dimensions (at-
tributes). This is most apparent in observation 5 with rings
where the reconstructed rings attribute has a value of 1.4 ver-
sus the observed value of 3.5. A similar pattern is observed
with observation 6.

141

Deep Learning Made Easy with R

Figure 5.6: Observed and reconstructed values for observations
1 to 4

142

CHAPTER 5. THE SECRET TO THE AUTOENCODER

Figure 5.7: Observed and reconstructed values for observations
5 to 8

143

Deep Learning Made Easy with R

Figure 5.8: Observed and reconstructed values for observations
9 and 10

Figure 5.9: Barplot of differences

144

NOTES

Notes
86I strongly recommend you get a copy and read thoroughly both of the

following papers. They are pure solid gold:

• Jolliffe, Ian T. "Discarding variables in a principal component anal-
ysis. I: Artificial data." Applied statistics (1972): 160-173.

• Jolliffe, Ian T. "Discarding variables in a principal component anal-
ysis. II: Real data." Applied statistics (1973): 21-31.

87See:

• Bengio, Yoshua. "Learning deep architectures for AI." Foundations
and trends® in Machine Learning 2.1 (2009): 1-127.

• Deng, Li, et al. "Binary coding of speech spectrograms using a deep
auto-encoder." Interspeech. 2010.

88See Rostislav Goroshin and Yann LeCun. Saturating Auto-Encoders.
International Conference on Learning Representations, 2013.

89See Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing
the dimensionality of data with neural networks." Science 313.5786 (2006):
504-507.

90Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." Science 313.5786 (2006):
504-507.

91Costa, Wanderson, Leila Fonseca, and Thales Körting. "Classifying
Grasslands and Cultivated Pastures in the Brazilian Cerrado Using Sup-
port Vector Machines, Multilayer Perceptrons and Autoencoders." Ma-
chine Learning and Data Mining in Pattern Recognition. Springer Inter-
national Publishing, 2015. 187-198.

92The layer of the hidden units is often referred to as the bottleneck.
93The situation where the number of hidden neurons is larger than the

number of input neurons is often referred to as “overcomplete”.
94Fayyaz, Mohsen, et al. "A Novel Approach For Finger Vein Verifi-

cation Based on Self-Taught Learning." arXiv preprint arXiv:1508.03710
(2015).

95Developed by Shandong University and available at http://mla.sdu.
edu.cn/sdumla-hmt.html

96Yes, I am aware that technically this won’t actually work. As Fayyaz
makes clear “Another key property of finger vein pattern authentication
is the assurance of aliveness of the person, whose biometrics are be-
ing proved.” Hey, but we are talking Hollywood where creative license
abounds!

145

http://mla.sdu.edu.cn/sdumla-hmt.html
http://mla.sdu.edu.cn/sdumla-hmt.html

Deep Learning Made Easy with R

97R Core Team (2015). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

98For the foodies among you here are a few East Coast (USA) restau-
rants which serve abalone steaks:

• Allegretto Vineyard Resort Paso Robles 805-369-2500
http://www.ayreshotels.com/allegretto-resort-and-vineyard-
paso-robles

• Artisan Paso Robles 805-237-8084 http://artisanpasorobles.com

• Windows on the Water Morro Bay 805-772-0677
http://www.windowsmb.com

• Madeline’s Cambria 805-927-4175
http://www.madelinescambria.com

• The Black Cat Cambria 805-927-1600
http://www.blackcatbistro.com

• Linn’s Restaurant Cambria 805-927-0371
http://www.linnsfruitbin.com/Linns_Restaurant.html

• Madonna Inn San Luis Obispo 805-543-30
99See for example Chef Rick Moonen who states "We believe in the im-

portance of buying and serving seafood that comes from abundant popula-
tions which are under sound management. All fish on our menu are caught
or farmed in a way that is not harmful to the ocean environment or to
other ocean creatures. We are strong supporters of local fishing communi-
ties and take responsibility for our role in preserving a lasting and diverse
supply of seafood." For more information on great sustainable seafood visit
http://rickmoonen.com/

100For additional details please see http://archive.ics.uci.edu/ml/
machine-learning-databases/abalone/abalone.names

146

http://rickmoonen.com/
http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.names
http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.names

Chapter 6

The Stacked Autoencoder
in a Nutshell

The stacked autoencoder (SA) is a deep network with
multiple layers. Each layer is an autoencoder in which
the outputs of each layer are wired to the inputs of

the successive layers. The number of units in the intermediate
layers tends to get progressively smaller in order to produce a
compact representation.

Figure 6.1 illustrates a stacked autoencoder with two hid-
den layers for binary classification from the research paper of
Jirayucharoensak, Pan-Ngum, and Israsena101. In this exam-
ple, four attributes {x1,x2,x3,x4} are fed into the stacked au-
toencoder. The nodes with +1 at their center represent the
bias. The attribute data is passed through two hidden lay-
ers, each containing three nodes. The output layer consists of
a softmax activation function which calculates the probability
that the output belongs to a specific class (in this case class 0
or class 1). Notice that for classification the softmax layer will
usually have one output node per class.

147

Deep Learning Made Easy with R

Figure 6.1: Stacked autoencoder with two hidden layers for bi-
nary classification. Image source Jirayucharoensak et al. cited
in endnote sec. 101.

The Deep Learning Guru’s Secret
Sauce for Training
A few years ago a rather surprising observation emerged from
the machine learning research community. It appeared, to
many people’s surprise, that neural networks with multiple
layers were easily trainable, provided one followed a specific
technique102. These ’deep’ neural networks, the subject of
this book, actually outperformed single layer models in spe-
cific tasks. What was the training process that led to the out-
performance and shocked the machine learning community?

In essence the training of a SA or other deep networks for
classification tasks proceeds one layer at a time through an
unsupervised pre-training phase.

Here is how it works. The first hidden layer is trained on the

148

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

input attributes. During this process the weights and bias pa-
rameters are optimized using a loss function such as the squared
error or cross-entropy.

Next, the algorithm propagates the input attributes
through the trained first hidden layer to obtain the primary
features. These features are then used to train the next hid-
den layer. Once trained, the primary features are propagated
forward through the trained second layer resulting in a set of
secondary features. These features are used as input to train
the third layer. Each subsequent layer performs a similar pro-
cedure. The last hidden layer passes its trained features to
the output layer which, typically using a softmax activation
function, calculates the probability of each class.

Finally, the model is fine-tuned by using backpropagation
across the entire network to learn weights and biases given la-
beled training examples. The objective being to minimize the
network error, often in terms of the confusion matrix or cross-
entropy.

Whilst the above procedure represents the traditional ap-
proach to training a SA some researchers have raised doubts
on the necessity of the pre-training step103. Since data science
is a series of failures punctuated by the occasional success, the
best advice nearly always, is to experiment.

How Much Sleep Do You Need?
How much sleep do you enjoy each night? How much would
you like? Are you getting the recommended amount?
Sleep scholars Webb and Agnew suggest 9 to 10 hours per night
for optimal benefit104. Are you getting that much?
Don’t worry if you are not consistently hitting 10 hours. You
see, sleep researcher Jim Horne105, in his comprehensive trea-
tise, argues between 4.5 to 6 hours per night maximum. Appar-
ently, according to Jim, you can easily adapt to a 5 or 6 hour
sleep schedule; anything more than this is “optional”, mere

149

Deep Learning Made Easy with R

restful “gravy”, unnecessary to fulfill your physical need for
sleep or prevent the accumulation of that hazy feeling which
is the result of sleep deficit. It seems experts in the field, who
have studied the phenomenon for years have wildly different
suggestions.

The lack of a clear scientific answer has not stopped the pop-
ular media from joining the sleep bandwagon. In typical media
hype, the issue is no longer about feeling a little tired (or not)
when stumbling out of bed in the morning, afternoon or evening
(depending on your lifestyle); instead is has somehow mutated
into a desperate battle between life and death. The heavy-
weight Time Magazine reported106 “Studies show that people
who sleep between 6.5 hr. and 7.5 hr. a night...live the longest.
And people who sleep 8 hr. or more, or less than 6.5 hr., they
don’t live quite as long.” Shawn Youngstedt, a professor in
the College of Nursing and Health Innovation at Arizona State
University Phoenix is reported in the Wall Street Journal107
as noting “The lowest mortality and morbidity is with seven
hours.” In the same article Dr. Youngstedt, a scholar in the
effects of oversleeping, warns “Eight hours or more has consis-
tently been shown to be hazardous.” All this adds new meaning
to the phrase “Snooze you lose”. It seems that extra lie in on
Sunday mornings might be killing you.

Not to worry, another, perhaps more sober headed, panel
of respected sleep scholars has suggested108 “7 to 9 hours for
young adults and adults, and 7 to 8 hours of sleep for older
adults.” Whatever is the precise number of hours you get each
night or actually need, I think we can all agree that a restful
night of calm relaxing sleep can work wonders after a hectic,
jam packed day.

According to the American Academy of Sleep Medicine109
restful sleep is a process which passes through five primary
stages. These are rapid eye movement, stages N1, N2, slow
wave sleep (N3) and waking up (W). Each specific stage can be
scientifically measured by electrical brain activity recorded us-
ing a polysomnogram with accompanying hypnograms (expert

150

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

annotations of sleep stages) used to identify the sleep stage.
This process, as you might expect is manually intensive and
subject to human error.

Imperial College, London scholars Orestis Tsinalis, Paul
Matthews and Yike Guo develop a SA to automatically score
which stage of sleep an individual is in110. The present ap-
proach to scoring sleep phases is inefficient and prone to error.
As Tsinalis, Matthews and Guo explain “...one or more experts
classify each epoch into one of the five stages (N1, N2, N3, R or
W) by quantitatively and qualitatively examining the signals of
the PSG [polysomnogram] in the time and frequency domains.”

The researchers use an open sleep dataset111. The sleep
stages were scored by individual experts for 20 healthy sub-
jects, 10 male and 10 female, aged 25–34 years. With a total
of around 20 hours of recordings per subject. Because of an
imbalance between the response classes (sleep stages) the re-
searchers use a class-balanced random sampling scheme with
an ensemble of autoencoder classifiers, each one being trained
on a different sample of the data.

The final model consisted of an ensemble of 20 independent
SA all with the same hyperparameters. A type of majority
voting was used to determine the classification of epochs; the
researchers took the mean of the class probabilities from the
individual SA’s outputs, selecting the class with the highest
probability.

The confusion matrix is shown in Figure 6.2. For all sleep
stages the classification was correct at least 60% of the time.
The most accurate classification of sleep stage occurred for N3
(89%), followed by W (81%). Notice the upper and lower tri-
angle of the confusion matrix are similar to what you might
observe in a correlation matrix being almost mirror images of
each other. This is an indication that the misclassification er-
rors due to class imbalances have been successfully mitigated.

The researchers also compare their approach to other meth-
ods developed in the literature. On every performance metric
considered their approach outperforms by a wide margin.

151

Deep Learning Made Easy with R

The clear superiority of their results encourages Tsinalis,
Matthews and Guo to confidently proclaim “To the best of our
knowledge our method has the best performance in the literature
when classification is done across all five sleep stages simulta-
neously using a single channel of EEG [Electroencephalogra-
phy].”

Figure 6.2: Confusion matrix of Tsinalis, Matthews and Guo.
The numbers in bold are numbers of epochs. The numbers in
parentheses are the percentage of epochs that belong to the class
classified by the expert (rows) that were classified by their algo-
rithm as belonging to the class indicated by the columns. Source
of table: Tsinalis, Matthews and Guo cited in endnote number
sec. 110.

Tsinalis, Matthews and Guo have unleashed the power of
SA to make major improvements in their field of interest. Who
would disagree with the development of automatic classifica-
tion machines for sleep stage? The deployment and widespread
adoption of such machines could be an important step forward
for researchers in the entire field of sleep studies. Who knows,
maybe it will help to settle the question of “How much sleep
do you need?”

152

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

Build a Stacked Autoencoder in Less
Than 5 Minutes
Let’s continue with the abalone data used on page 137. We
should be able to build a stacked autoencoder pretty quickly.
The model can be estimated using the SAENET.train function
from the package SAENET. First we load the data following ex-
actly the same steps as we did on page 137. First, load the
packages and download the data from the internet:
> require(SAENET)
> aburl = ’http://archive.ics.uci.edu/ml/

machine -learning -databases/abalone/
abalone.data’

> names = c(’sex’,’length ’,’diameter ’,’
height ’,’whole.weight ’,’shucked.weight ’,
’viscera.weight ’,’shell.weight ’,’rings’)

> data = read.table(aburl , header = F , sep
= ’,’, col.names = names)

Next, drop the gender attribute, delete the observations with
miscoded height, and store the resultant sample as a matrix in
the R object data1:
> data$sex<-NULL
> data$height[data$height ==0] = NA
> data <-na.omit(data)
> data1 <-as.matrix(data)

Now onto the sample. Again, for illustration we will only sam-
ple 10 observations:
> set.seed (2016)
> n=nrow(data)
> train <- sample (1:n, 10, FALSE)

Now we are ready to estimate the model. In this case we fit
a model with 3 hidden layers with 5, 4 and 2 nodes respectively
{n.nodes = c(5,4,2)}. The remainder of the following code

153

Deep Learning Made Easy with R

is familiar to you by now. The model is stored in the R object
fit:

> fit<-SAENET.train(X.train=data1[train ,],
+ n.nodes = c(5,4,2),
+ unit.type = "logistic",
+ lambda = 1e-5,
+ beta = 1e-5,
+ rho = 0.07,
+ epsilon =0.1,
+ max.iterations = 100,
+ optim.method = c("BFGS"),
+ rel.tol=0.01 ,
+ rescale.flag = TRUE ,
+ rescaling.offset = 0.001)

The output from each layer can be viewed by typing
fit[[n]]$X.output where n is the layer of interest. For ex-
ample, to see the output from the two nodes in the third layer:
> fit [[3]]$X.output

[,1] [,2]
753 0.4837342 0.4885643
597 0.4837314 0.4885684
3514 0.4837309 0.4885684
558 0.4837333 0.4885653
1993 0.4837282 0.4885726
506 0.4837351 0.4885621
2572 0.4837315 0.4885684
3713 0.4837321 0.4885674
11 0.4837346 0.4885632
223 0.4837310 0.4885684

Figure 6.3 plots the outputs by observation, where for clar-
ity item 753 is labeled as observation 1, item 597 is labeled as
observation 2, ..., and item 223 is labeled as item 10.

154

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

Figure 6.3: Visual representation of the features from the 3rd
layer

What is a Denoising Autoencoder?
A denoising autoencoder (DA), as with the regular autoen-
coder, contains three layers; an input layer, hidden layer, and
output layer; where the hidden layer is the encoder and the
output layer the decoder. What distinguishes a denoising au-
toencoder from it’s traditional cousin is the DA adds noise ran-

155

Deep Learning Made Easy with R

domly to the input during training. It is a stochastic variant of
autoencoder. The addition of noise prevents the hidden layer
from simply learning the identity function and forces it to un-
cover more robust features.

The Salt and Pepper of Random
Masking
Given the input attribute vector x, the DA produces a new
“noisy” attribute vector x̃. Whilst there are many ways to in-
troduce noise, one of the most frequently used is random mask-
ing. In random masking inputs are randomly set equal to zero.
Notice this idea is akin to dropout where a random number of
neurons are ignored during each training round. As we saw on
page 51 dropout can significantly improve performance.

A variant, often referred to as the addition of salt and pep-
per noise, randomly forces a fraction of x to be 0 or 1. Another
popular method involves the addition of Gaussian noise to the
attribute vector x. Whichever method of noise is used the DA
is then trained to reconstruct the input attributes from the
noisy version.

The Two Essential Tasks of a Denois-
ing Autoencoder
Intuitively the DA attempts two things:

1. First, encode the input attribute vector x;

2. second, remove the effect of the error contained in the
noisy attribute vector x̃.

These tasks can only be successfully achieved if the DA cap-
tures the statistical dependencies between the input attributes.
In practice, a DA often achieves a much better representation
of the input attributes than the standard autoencoder112.

156

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

How to Understand Stacked Denois-
ing Autoencoders
Denoising autoencoders can be stacked to form a deep learning
network. Figure 6.4 shows a stacked denoising autoencoder
(SDA) with four hidden layers.

Figure 6.4: Stacked Denoising Autoencoder with four hidden
layers

In a stacked denoising autoencoder (SDA) pre-training is
done one layer at a time in the same way as discussed for a
stacked autoencoder (see page 148). Over time it has become
clear that pre-training often encourages the network to discover
a better parameter space during the back-propagation phase.

In the pre-training phase each layer is trained as a denois-
ing autoencoder by minimizing the reconstruction error. For
each layer, feature extraction is carried out with the extracted
hidden representation treated as the input to the next hidden
layer. After the final pre-training process, the last hidden layer
is classified typically with a softmax activation function and
the resulting vector passed to the output layer.

157

Deep Learning Made Easy with R

Once all layers are pre-trained, the network goes through
a second stage of training, often referred to as fine tuning, via
supervised learning. At this stage the prediction error is mini-
mized by backpropagation using the entire network as we would
train a multilayer perceptron.

Stacking denoising autoencoders appears to improve a net-
works representation ability. The more layers that are added,
the more abstract are the features extracted113.

A Stunningly Practical Application
Imaging spectroscopy has been used in the laboratory by physi-
cists and chemists for well over 100 years to identify materials
and their composition. It’s popularity in the laboratory comes
from its ability to detect individual absorption features due to
specific chemical bonds in a solid, liquid, or gas. Hyperspec-
tral remote sensing takes what was once only possible in the
darkened recesses of a few scientist’s laboratory and applies it
to the entire Earth.

Hyperspectral images are spectrally over-determined pro-
viding sufficient spectral information to identify and distinguish
between spectrally similar but distinct materials. Hyperspec-
tral sensors typically measure reflected radiation as a series of
narrow and contiguous wavelength bands.

It is a technology with amazing potentially to provide
greatly improved discriminant capability for the detection and
identification of minerals, terrestrial vegetation, land cover clas-
sification, and in fact identification of any of a stunning array of
man-made or nature produced materials. With advancing tech-
nology, imaging spectroscopy has increasingly been focused on
analyzing the Earth’s surface.

As you might hazard a guess, geologists were quick to latch
onto this technology for the identification and mapping of po-
tential mineral deposits. They soon discovered that the actual
detection of economically exploitable minerals is dependent on

158

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

a complex combination of factors including:

• The range of the spectral coverage;

• available spectral resolution,

• signal-to-noise ratio of the spectrometer,

• the actual abundance of the mineral sought;

• and the strength of absorption features for that material
in the wavelength region measured.

It is difficult to think of an area in industry, commerce or gov-
ernment where this technology could not be of tremendous ben-
efit.

Deep learning techniques have a role to play in this booming
and amazingly lucrative area. Think for a moment, how could
you use deep learning to help out here?

Take a look at Figure 6.5, the answer should become im-
mediately obvious to you. It shows a hyperspectral data cube
from the innovative research of Möckel et al.114. These inno-
vative scholars use hyperspectral data to discriminate between
grazed vegetation belonging to different grassland successional
stages. Now here is the thing, Möckel et al are essentially inter-
ested in a classification task. Guess what? SDA was designed
for this very purpose.

159

Deep Learning Made Easy with R

Figure 6.5: Hyperspectral data cube showing examples of data
associated with (A) young; (B) intermediate-aged; and (C) old
grassland sites within a subarea of 0.71 km2 within the Jordtorp
study area. The color-composite on the top was obtained using
three hyperspectral wavebands (RGB = 861 nm, 651 nm, and
549 nm). Image source: Möckel, Thomas, et al. as cited in
endnote sec. 114.

An Innovative Idea
The potential for useful deployment of SDA for the classifi-
cation of hyperspectral data is truly outstanding; a fact not
missed by the trio Chen, Li, and Xiaoquan, scholars at China
University of Geosciences and Huazhong University of Science
and Technology115. This trio of researchers unleash the power
of SDA for feature extraction and classification of hyperspectral
data. Their study, small and experimental, uses three images
created from hyperspectral data. The first image was taken

160

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

over Indian Pine (INP); the second over the Okavango Delta,
Botswana (BOT); and the third over the University of Pavia
(PU), Italy.

Figure 6.6 shows the RGB images and the ground refer-
enced information with class legends for each of the images.
Table 4 shows the class information of the three image datasets,
the number of classes in each image and the number of labeled
samples in each class.

Figure 6.6: Three band false color composite and ground clas-
sification references. Source of image Chen Xing, Li Ma, and
Xiaoquan Yang as cited in endnote sec. 115.

161

Deep Learning Made Easy with R

Table 4: Class information for each image taken from the re-
search paper of Chen, Li , and Xiaoquan.Source of table Chen
Xing, Li Ma, and Xiaoquan Yang as cited in endnote sec. 115.

Let’s take a deep dive into some of the details of the model.
The first thing to observe is that the model consists of an SDA
for feature extraction and logistic regression with sigmoid acti-
vation functions (LR) for fine-tuning and classification. There-
fore the model, as shown in Figure 6.7, consists of a an unsu-
pervised element (the SDA) and a supervised element (LR).

The second thing to observe is the parameters used in the
model are image specific. Three images equal three sets of
model parameters; this is akin to the parameters in a simple
linear regression being determined by the data. The slope and
intercept terms can be expected to be different for distinctly
different datasets. In a similar way, different images may re-
quire different parameter settings and therefore Chen, Li, and
Xiaoquan calibrated their SDA to each specific image.

The number of hidden layers was 4, 3, and 3 for BOT, PU,
and INP, respectively. The number of nodes was selected as
100, 300, and 200, for BOT, PU, and INP respectively. The
standard deviation of Gaussian noise was also image specific;
the researchers selected values of 0.6 for BOT/ PU, and 0.2
for INP. In addition, the number of epochs used during pre-
training was set to 200 for all images; with the number of fine
tuning epochs equal to 1500 for all images. The learning rates

162

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

of pretraining and fine tuning were selected as 0.01 and 0.1
respectively.

Figure 6.7: Architecture of Chen, Li , and Xiaoquan’s deep
learning model. Source of image Chen Xing, Li Ma, and Xiao-
quan Yang as cited in endnote sec. 115.

How Chen, Li, and Xiaoquan Train their
Model
Three steps are followed by the researchers in order to train
their model.

• Step 1: Initial network weights are obtained by the SDA
encoding component of the model.

• Step 2: The initial weights of the LR layer are set ran-
domly.

163

Deep Learning Made Easy with R

• Step 3: Training data are used as input data, and their
predicted classification results are produced with the ini-
tial weights of the whole network.

• Step 4: Network weights are iteratively tuned using
backpropagation.

How to Avoid the Sirens Song
Figure 6.8 presents the images reconstructed from the optimal
models. I think you will agree on causal observation they ap-
pear to be a pretty good representation of the actual classifi-
cations. This is a great start. However, as statistician George
Box warned “Statisticians, like artists, have the bad habit of
falling in love with their models.” Falling in love with a model
is very dangerous. The data scientist must exhibit the quali-
ties of Odysseus in Homer’s Odyssey, no matter how beautiful
a model is to you. do not be seduced by the Sirens song. Al-
ways remember that in data science there are numerous ways
to achieve the same end result.

It is always a good idea to benchmark a model against com-
peting alternatives, even experimental or toy models. This is an
important step towards objective professionalism. It will keep
you safe from deep potholes, especially those strewn along the
rocky road of model deployment for real life use.

Chen, Li, and Xiaoquan compare the classification ability
of their model (CLX) to support vector machines with linear
(LSVM) and Radial basis function (RSVM) kernels. Table 5
presents the results in terms of classification accuracy for all
three models. The key thing to notice is that CLX outper-
formed both support vector machine for images PU and IMP.
However, it under-performed RSVM for BOT.

164

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

Figure 6.8: Classification results of model developed by Chen,
Li , and Xiaoquan. Source Chen, Li , and Xiaoquan. Source
of image Chen Xing, Li Ma, and Xiaoquan Yang as cited in
endnote sec. 115.

Table 5: Performance results of LSVM, RSVM and CLX.
Adapted from Chen, Li, and Xiaoquan. Source of table Chen
Xing, Li Ma, and Xiaoquan Yang as cited in endnote sec. 115.

A Challenge to You from the Author
What are we to make of this? Well, have I ever told you that
Data Science is a series of failures punctuated by the occasional

165

Deep Learning Made Easy with R

success? Chen, Li, and Xiaoquan have two successes and it
all looks rather promising. Like Alexander Graham Bell, the
pioneer of the telephone, speaking into his electronic apparatus
"Watson, come here! I want to see you!"; and then hearing
his voice miraculously transmitted through wires over a short-
range receiver.

NOTE... �

Alexander Graham Bell was first and foremost
an astute businessman, it was not long before a
patent for an "apparatus for transmitting vocal or
other sounds telegraphically" was filed with the
U.S. patent office116. It begins “Be it known that I,
ALEXANDER GRAHAM BELL,of Salem, Mas-
sachusetts, have invented certain new and useful
Improvements in Telegraphy.”

Chen, Li, and Xiaoquan’s project was experimental but so
stunningly successful that further refinement and commercial
applications are sure to follow. Other astute individuals will
harness the power of the SDA to develop useful systems and
follow Mr. Bell into the history books. Will one of them be
you?

The Fast Path to a Denoising Autoen-
coder in R
Researchers Huq and Cleland117, as part of a regular survey on
the fertility of women in Bangladesh, collected data on mobil-
ity of social freedom. The sub-sample measured the response
of 8445 rural women to questions about whether they could
engage in certain activities alone (see Table 6).

166

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

Name Description
Item 1 Go to any part of the village.
Item 2 Go outside the village.
Item 3 Talk to a man you do not know.
Item 4 Go to a cinema or cultural show.
Item 5 Go shopping.
Item 6 Go to a cooperative or mothers’ club.
Item 7 Attend a political meeting.
Item 8 Go to a health centre or hospital.

Table 6: Variables used by Huq and Cleland to measure
women’s mobility of social freedom

Let’s use this sample to build our autoencoder. The data
is contained in the R object Mobility, from the package ltm.
We use it and the package RcppDL:
> require(RcppDL)
> require("ltm")
> data(Mobility)
> data <-Mobility

Next, we set up the data; in this example we sample 1,000
observations without replacement from the original 8445 re-
sponses. A total of 800 responses are used for the training set,
with the remaining 200 observations used for the test set:
> set.seed (17)
> n=nrow(data)
> sample <- sample (1:n, 1000, FALSE)
> data <-as.matrix(Mobility[sample ,])
> n=nrow(data)
> train <- sample (1:n, 800, FALSE)

Now to create the attributes for the training sample and
test sample:

167

Deep Learning Made Easy with R

> x_train <-matrix(as.numeric(unlist(data[
train ,])),nrow=nrow(data[train ,]))

> x_test<-matrix(as.numeric(unlist(data[-
train ,])),nrow=nrow(data[-train ,]))

Need to check to ensure we have the correct sample sizes. The
train set should equal 800 observations, and 200 for the test
set:
> nrow(x_train)
[1] 800

> nrow(x_test)
[1] 200

All looks good. Now we can remove the response variable from
the attributes R objects. In this example we will use item 3
(Talk to a man you do not know) as the response variable. Here
is how to remove it from the attribute objects:
> x_train <-x_train[,-3]
> x_test<-x_test[,-3]

The training and attribute R objects should now look some-
thing like this:
> head(x_train)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 1 1 0 0 0 0
[2,] 1 1 0 0 0 0 0
[3,] 1 1 1 0 0 0 0
[4,] 0 0 0 0 0 0 0
[5,] 1 0 0 0 0 0 0
[6,] 1 0 0 0 0 0 0
> head(x_test)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0
[4,] 1 0 0 0 0 0 0

168

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

[5,] 0 0 0 0 0 0 0
[6,] 1 0 1 0 0 0 0

Next, we prepare the response variable for use with the
RcppDL package. The denoising autoencoder is built using the
Rsda function from this package. We will pass the response
variable to it using two columns. First, create the response
variable for the training sample:
> y_train <-data[train ,3]
> temp<-ifelse(y_train==0, 1, 0)
> y_train <-cbind(y_train ,temp)

Take a look at the result:
> head(y_train)

y_train temp
1405 1 0
3960 0 1
3175 1 0
7073 1 0
7747 1 0
8113 1 0

And check we have the correct number of observations:
> nrow(y_train)
[1] 800

We follow the same procedure for the test sample:
> y_test<-data[-train ,3]
> temp1 <-ifelse(y_test==0, 1, 0)
> y_test<-cbind(y_test ,temp1)

> head(y_test)
y_test temp1

3954 1 0
1579 0 1
7000 0 1
4435 1 0

169

Deep Learning Made Easy with R

7424 1 0
6764 1 0

> nrow(y_test)
[1] 200

Now we are ready to specify our model. Let’s first build a
stacked autoencoder without any noise. We will use two hidden
layers each containing ten nodes:
> hidden = c(10 ,10)
> fit <- Rsda(x_train , y_train , hidden)

The default noise level for Rsda is 30%. Since, we want to begin
with a regular stacked autoencoder we set the noise to 0. Here
is how to do that:
> setCorruptionLevel (fit , x = 0.0)

> summary(fit)
$PretrainLearningRate
[1] 0.1

$CorruptionLevel
[1] 0

$PretrainingEpochs
[1] 1000

$FinetuneLearningRate
[1] 0.1

$FinetuneEpochs
[1] 500

170

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

NOTE... �

You can set a number of the parameters in Rsda.
We used something along the lines of:
setCorruptionLevel (model ,x)

You can also choose the number of epochs and
learning rates for both fine tuning and pretrain-
ing:

• setFinetuneEpochs

• setFinetuneLearningRate

• setPretrainLearningRate

• setPretrainEpochs

The next step is to pretrain and fine tune the model. This
is fairly straight forward:
> pretrain(fit)
> finetune(fit)

Since the sample is small the model converges pretty quickly.
Let’s take a look at the predicted probabilities for the response
variable using the test sample:
> predProb <-predict(fit , x_test)

> head(predProb ,6)
[,1] [,2]

[1,] 0.4481689 0.5518311
[2,] 0.4481689 0.5518311
[3,] 0.4481689 0.5518311
[4,] 0.6124651 0.3875349
[5,] 0.4481689 0.5518311

171

Deep Learning Made Easy with R

[6,] 0.8310412 0.1689588

So, we see for the first three observations the model predicts
approximately a 45% probability that they belong to class 1
and 55% that they belong to class 2. Let’s take a peek to see
how it did:
> head(y_test ,3)

y_test temp1
3954 1 0
1579 0 1
7000 0 1

It was missed the first observation! However, it classified the
second and third observations correctly. Finally, we construct
the confusion matrix:
> pred1 <-ifelse(predProb [,1]>=0.5, 1, 0)

> table(pred1 ,y_test[,1] ,
dnn =c("Predicted"
, " Observed"))

Observed
Predicted 0 1

0 15 15
1 36 134

Next, we rebuild the model, this time adding 25% noise:
> setCorruptionLevel (fit , x = 0.25)
> pretrain(fit)
> finetune(fit)
> predProb <-predict(fit , x_test)
> pred1 <-ifelse(predProb [,1]>=0.5, 1, 0)

> table(pred1 ,y_test[,1] ,
dnn =c("Predicted" ,
" Observed"))

Observed

172

CHAPTER 6. THE STACKED AUTOENCODER IN . . .

Predicted 0 1
0 15 15
1 36 134

It appears to give us the same confusion matrix as a stacked
autoencoder without any noise. So in this case, adding noise
was not of much benefit.

173

Deep Learning Made Easy with R

Notes
101See Suwicha Jirayucharoensak, Setha Pan-Ngum, and Pasin Israsena,

“EEG-Based Emotion Recognition Using Deep Learning Network with
Principal Component Based Covariate Shift Adaptation,” The Scien-
tific World Journal, vol. 2014, Article ID 627892, 10 pages, 2014.
doi:10.1155/2014/627892

102See G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning al-
gorithm for deep belief nets,” Neural Computation, vol. 18, no. 7, pp.
1527–1554, 2006.

103See for example:
Pugh, Justin K., Andrea Soltoggio, and Kenneth O. Stanley. "Real-

time hebbian learning from autoencoder features for control tasks." (2014).
Cireşan, Dan, et al. "Multi-column deep neural network for traffic

sign classification." Neural Networks 32 (2012): 333-338.
104Webb, W. B., and H. W. Agnew Jr. "Are we chronically sleep de-

prived?." Bulletin of the Psychonomic Society 6.1 (1975): 47-48.
105Horne, James. Why we sleep: the functions of sleep in humans and

other mammals. Oxford University Press, 1988.
106How Much Sleep Do You Really Need? By Laura Blue Friday, June

06, 2008.
107Why Seven Hours of Sleep Might Be Better Than Eight by Sumathi

Reddy July 21, 2014.
108Hirshkowitz, Max, et al. "National Sleep Foundation’s sleep time

duration recommendations: methodology and results summary." Sleep
Health 1.1 (2015): 40-43.

109See http://www.aasmnet.org/
110Tsinalis, Orestis, Paul M. Matthews, and Yike Guo. "Automatic Sleep

Stage Scoring Using Time-Frequency Analysis and Stacked Sparse Autoen-
coders." Annals of biomedical engineering (2015): 1-11.

111See:

• Goldberger, Ary L., et al. "Physiobank, physiotoolkit, and phys-
ionet components of a new research resource for complex physiologic
signals." Circulation 101.23 (2000): e215-e220.

• Also visit https://physionet.org/pn4/sleep-edfx/
112See:

• Bengio, Yoshua, et al. "Greedy layer-wise training of deep net-
works." Advances in neural information processing systems 19
(2007): 153.

174

http://www.aasmnet.org/
https://physionet.org/pn4/sleep-edfx/

NOTES

• Vincent, Pascal, et al. "Extracting and composing robust features
with denoising autoencoders." Proceedings of the 25th international
conference on Machine learning. ACM, 2008.

113See Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion."
The Journal of Machine Learning Research 11 (2010): 3371-3408.

114Möckel, Thomas, et al. "Classification of grassland successional stages
using airborne hyperspectral imagery." Remote Sensing 6.8 (2014): 7732-
7761.

115See Chen Xing, Li Ma, and Xiaoquan Yang, “Stacked Denoise Au-
toencoder Based Feature Extraction and Classification for Hyperspectral
Images,” Journal of Sensors, vol. 2016, Article ID 3632943, 10 pages, 2016.
doi:10.1155/2016/3632943

116Graham, Bell Alexander. "Improvement in telegraphy." U.S. Patent
No. 174,465. 7 Mar. 1876.

117Huq, N. and Cleland, J. (1990) Bangladesh Fertility Survey, 1989.
Dhaka: National Institute of Population Research and Training (NI-
PORT).

175

Deep Learning Made Easy with R

176

Chapter 7

Restricted Boltzmann
Machines

We are drowning in information and starving for
knowledge.
Rutherford D. Roger

The Restricted Boltzmann Machine (RBM) is an unsu-
pervised learning model that approximates the proba-
bility density function of sample data. The “restricted”

part of the name points to the fact that there are no connec-
tions between units in the same layer. The parameters of the
model are learned by maximizing the likelihood function of the
samples. Since it is used to approximate a probability density
function it is often referred to in the literature as a generative
model118. Generative learning involves making guesses about
the probability distribution of the original input in order to
reconstruct it.

The Four Steps to Knowledge
Figure 7.1 shows a graphical representation of an RBM. It is
composed of two layers in which there are a number of units

177

Deep Learning Made Easy with R

with inner layer connections. Connections between layers are
symmetric and bidirectional, allowing information transfer in
both directions. It has one visible layer containing four nodes
and one hidden layer containing three nodes. The visible nodes
are related to the input attributes so that for each unit in the
visible layer, the corresponding attribute value is observable.

Figure 7.1: Graphical representation of an RBM model.

Here is an intuitive explanation, in four steps, of how they

178

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

work. Let’s consider the commonly used situation where all
nodes (neurons/units) are binary. In this case:

1. Visible layer nodes take values vi = 0 or vi = 1.

2. Each node is a locus of computation that processes input,
and begins by making stochastic decisions about whether
to transmit that input or not.

3. The hidden units serve to increase the expressiveness of
the model and contain binary units where hj = 0 or hj =
1.

4. For each unit or node in the hidden layer, the correspond-
ing value is unobservable and it needs to be inferred.

The Role of Energy and Probability
The RBM is a probabilistic energy-based model, meaning the
probability of a specific configuration of the visible and hidden
units is proportional to the negative exponentiation of an en-
ergy function, Ẽ(v, h). For each pair of a visible vector and
a hidden vector the probability of the pair (v, h) is defined as
follows:

P (v, h) = 1
Z

exp−Ẽ(v, h),

where the denominator Z is a normalizing constant known as
the partition function.

The partition function sums over all possible pairs of visible
and hidden variables is computed as:

Z =
∑

v

∑
h

exp−Ẽ(v, h),

It is therefore a normalizing constant such that P (v, h) defines
a probability distribution over all possible pairs of v and h.

179

Deep Learning Made Easy with R

NOTE... �

A bipartite structure or graph is math speak for a
group of nodes which can only be one of two colors,
with lines (edges) connecting the nodes (vertices)
so that no two nodes of the same color are con-
nected by a line. Figure 7.2 illustrates this idea.

Figure 7.2: Bipartite structure

In the RBM the bipartite graph is constructed
of hidden and visible nodes as illustrated in
Figure 7.1.

As there are no intra-layer connections within an RBM the
energy of a joint configuration (v, h), which defines a bipartite

180

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

structure, is given by:

Ẽ(v, h) = −
m∑

i=1

n∑
j=1

wijvihi −
m∑

i=1
vibi −

n∑
j=1

hjdj,

where wij is the weight associated with the link between vi and
hj. Intuitively, weights identify the correlation of the nodes.
Larger weights imply a larger possibility that connected nodes
concur. The parameters bi and dj are the biases of the jth
hidden and ith visible nodes respectively; and m and n are the
number of nodes in the visible and hidden layer. Also note
that configurations with a lower energy function have a higher
probability of being realized.

A Magnificent Way to Think
Another way to think about a RBM is as a parametric model
of the joint probability distribution of visible and hidden vari-
ables. It is therefore a type of autoencoder used to learn a
representation (encoding) in terms of the joint probability dis-
tribution for a set of data.

Since the hidden units of the RBM only connect to units
outside of their specific layer, they are mutually independent
given the visible units. The conditional independence of the
units in the same layer is a nice property because it allows us
to factorize the conditional distributions of the hidden units
given the visible units as:

P (h|v) =
∏
j

P (hj|v),

with

P (hj = 1|v) =
∏
j

sigmoid

(∑
i

wijvi + dj

)

181

Deep Learning Made Easy with R

The conditional distribution of the visible units can be factor-
ized in a similar way:

P (v|h) =
∏

i

P (vi|h),

with

P (vi = 1|h) =
∏

i

sigmoid

∑
j

wijhj + bi


These conditional probabilities are important for the iterative
updates between hidden and visible layers when training an
RBM model. In practice, Z is difficult to calculate so compu-
tation of the joint distribution P (v, h) is typically intractable.

NOTE... �

Notice that RBMs have two biases. This is one
aspect that distinguishes them from other autoen-
coders. The hidden bias dj helps the RBM pro-
duce the activations on the forward pass through
the network, while the visible layer’s biases bi help
the RBM learn the reconstructions during back-
propagation or the backward pass.

The Goal of Model Learning
The goal in training an RBM is to adjust the parameters of the
model, denoted by Θ, so that the log-likelihood function using
the training data is maximized.

The gradient of the log-likelihood is:

∂

∂ΘL(Θ) = −
〈
∂Ẽ(v; Θ)
∂Θ

〉
data

+
〈
∂Ẽ(v; Θ)
∂Θ

〉
model

182

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

where 〈•〉data represents the expectation of all visible nodes
v in regard to the data distribution and 〈•〉model denotes the
model joint distribution defined by P (v, h).
Rather unfortunately the log-likelihood gradient is difficult to
compute because it involves the intractable partition function
Z. To solve this issue, we need a trick. Fortunately, data
science has one at hand.

Training Tricks that Work Like Magic
The first training trick involves use of the expressions for P (h|v)
and P (v|h). Since both of these expressions are tractable why
not use them to sample from the joint distribution P (v, h) using
a Gibbs sampler?

Trick 1: O Jogo Bonito!
Gibbs sampling is a Monte Carlo Markov chain algorithm for
producing samples from the joint probability distribution of
multiple random variables. The basic idea is to construct a
Markov chain by updating each variable based on its condi-
tional distribution given the state of the others. This turns
out to be a great idea, it involves fancy footwork even Pelé, the
most successful league goal scorer in the history of the beautiful
game, would be proud - O Jogo Bonito!

In Gibbs sampling the visible nodes are sampled simultane-
ously given fixed values of the hidden nodes. Similarly, hidden
nodes are sampled simultaneously given the visible nodes. For
each step in the Markov chain the hidden layer units are ran-
domly chosen to be either 1 or 0 with probability determined
by their sigmoid function; and similarly the visible layer unit
are randomly chosen to be either 1 or 0 with probability deter-
mined by their sigmoid function.

As the number of steps becomes infinitely large the sam-
ples of the hidden and visible nodes converge to the joint dis-

183

Deep Learning Made Easy with R

tribution P (v, h). Through this rather neat trick stochastic
estimates of the gradient are easily obtained.

When I say” easily”, take it with a “pinch of salt.” If you
are in a hurry, the results were due yesterday, the boss or the
client or (heaven forbid) reporters are foaming at the mouth
baying for results, then this type of “easy” won’t work for you.
This is because one iteration of alternating Gibbs sampling
requires updating all of the hidden units in parallel for P (h|v),
followed by updating all of the visible units in parallel P (v|h).
Gibbs sampling therefore can take a very long time to converge.
Depending on your need for speed, it may be totally unfeasible
for your data science challenge.

So you may wonder, what type of trick is this? Maybe it is
like the magician who saws the beautiful women in half, and
then later in the show she reappears smiling and waving and
totally “together”. I’m amazed every time I see that particular
trick. But of what real practical use is it?

Well hang on just a moment! There is another trick that
goes along with the first trick. In fact, the second trick su-
percharges the first trick. If you only had the first trick you
might be satisfied, and many Statisticians were. Maybe, if you
find yourself with code to write, you would keep it in your
back pocket for smallish datasets. In fact, you might use it
so infrequently as to forget about it entirely! However, with
this second trick in hand you have the keys to the Restricted
Boltzmann Machine Kingdom (metaphorically speaking).

Trick 2: The Keys to the Kingdom
Here is the second trick - contrastive divergence which mini-
mizes the Kullback–Leibler distance (see page 126). We won’t
go into all of the technical details, but at the core is this idea
- Start the Markov chain by setting the states of the visible
units to a training vector. Then the binary states of the hid-
den units are all computed in parallel to calculate P (h|v). Once
the binary states have been chosen for the hidden units, a “re-

184

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

construction" is produced by setting each vi to 1 with a prob-
ability given by P (v|h). Now run Gibbs sampling for a very
small number of iterations, but don’t wait for convergence.

If we use k to denote the number of Gibbs sampling itera-
tions, then k=1 will do the job for many applications! Yes, in
many applications you only need run the Gibbs sampler for 1
step. Since 1 is a lot less than infinity this saves a lot of time! In
summary, sampling k (usually k = 1) steps from a Gibbs chain
initialized with a data sample yields the contrastive divergence.

In practice more efficiencies are available because updates
are typically performed using multiple training examples at a
time by averaging over the updates produced by each example.
This smooths the learning signal and also helps take advantage
of the efficiency of larger matrix operations.

Using the Gibbs sample, the observed data and the free en-
ergy function119; we are able to approximate the log likelihood
gradient. This used in conjunction with the gradient descent
back propagation algorithm allows the log likelihood estimates
Θ̂ to be efficiently obtained.

Trick 3: Back Pocket Activation’s
The standard RBM model uses binary units (BU) in both the
visible and hidden layers with the sigmoid activation function.
However, many other types of activation can also be used. In
particular, real valued data in the range of [0-1] can be modeled
using a logistic activation function and contrastive divergence
training without any modification.

Another popular activity function are the rectified linear
units (see page 18). Vinod and Hinton report120 rectified linear
units (RLU) demonstrate strong results for image analysis. On
one task using 32 × 32 color images, the researchers report
the RLU had a prediction accuracy of 0.8073 compared to a
prediction accuracy of 0.7777 for BU. However, the standard
deviations were too large for the difference to be statistically
significant.

185

Deep Learning Made Easy with R

Another advantage of the RLU is that they do not have
more parameters than the BU, but they are much more ex-
pressive. As Vinod and Hinton state “Compared with binary
units, these units [RLUs] learn features that are better for object
recognition on the NORB dataset121 and face verification on
the Labeled Faces in the Wild dataset122. Unlike binary units,
rectified linear units preserve information about relative inten-
sities as information travels through multiple layers of feature
detectors.”

Trick 4: Alternatives to Contrastive Diver-
gence
Since an RBM defines a distribution over all of its variables,
there is more than one strategy that can be used to train it.
This is good for you because the art of data science lies in
finding useful alternatives.

Persistent contrastive divergence is one such alternative. It
uses another approximation for sampling from p(v, h) that re-
lies on a single Markov chain which has a persistent state123,
where the Markov chain is not reinitialized with a data sample
after parameter updates. It uses the last chain state in the
last update step. This technique has been reported to lead to
better gradient approximations if the learning rate is chosen
sufficiently small.

Fast Persistent Contrastive Divergence124 is another variant
which attempts to speed up learning by introducing an addi-
tional set of parameters used only for Gibbs sampling procedure
during learning.

Parallel Tempering125, also known as Replica Exchange
Monte Carlo Markov Chain sampling, is another technique you
might stumble across. The general idea of parallel tempering
is to simulate replicas of the original system of interest by in-
troducing supplementary Gibbs chains.

Each replica is typically at a different temperature. The
higher the temperature, the ‘smoother’ the corresponding dis-

186

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

tribution of the chain. Parallel tempering leads to better mix-
ing of the original chain (i.e. achieves good sampling) by al-
lowing the systems at different temperatures to exchange com-
plete configurations with a probability given by the Metropolis
Hastings ratio. It turns out that the simulation of K replicas
is more than 1/K times more efficient than a standard, single-
temperature Monte Carlo simulation. One additional advan-
tage of this technique is that it can make efficient use of large
CPU clusters, where different replicas can be run in parallel.

The Key Criticism of Deep Learning
Why does the contrastive divergence approach work? I don’t
know. The best I can tell you is that the theoreticians don’t
know either! Scholars Sutskever and Tieleman126 pointed out
decisively that the learning rule is not following the gradient
of any function whatsoever. They state “Despite CD’s [con-
trastive divergence’s] empirical success, little is known about its
theoretical convergence properties.” As Boston University Pro-
fessor of Physics Pankaj Mehta and Northwestern University
Professor of biological physics David Schwab point out about
deep learning127 “Despite the enormous success of deep learn-
ing, relatively little is understood theoretically about why these
techniques are so successful at feature learning and compres-
sion.”

A key criticism of deep learning is that the theoretical prop-
erties of the methods introduced, for example contrastive di-
vergence, are not well understood; And this is absolutely cor-
rect. But is this a problem? Hell, no! The most successful
data scientists are pragmatic. They run well ahead of the the-
oreticians and innovate solutions to practical problems. They
leave the theoreticians several steps behind gasping for breath
wrestling with the “why” question. If a technique works out-
standingly well data scientists use it until something better
is discovered. The contrastive divergence approach works well

187

Deep Learning Made Easy with R

enough to achieve success in many significant applications. The
“why”, although interesting, can wait!

Did Alexander Graham Bell understand completely the
physics of his "apparatus for transmitting vocal or other sounds
telegraphically"? No! But he made a financial fortune, changed
the world and went down in history as one of the great in-
ventors of his era. What about University College, London,
professor of mathematics Karl Pearson? Back in 1901 did he
understand totally and completely the theoretical properties of
his very practical principal component analysis statistical tool?
Does the machine learning Guru, Professor Hinton128 who dis-
covered contrastive divergence, understand all of its theoretical
nuances?

Once the theoreticians catch up, they provide additional
support for why a great idea is a great idea. And this is a
very important activity. But we can’t wait for them, let’s keep
running!

Two Ideas that can Change the World
In the past decade, the restricted Boltzmann machine (RBM)
had been widely used in many applications including dimen-
sionality reduction, classification, collaborative filtering, fea-
ture learning, and topic modeling. In this section we explore
two very promising ideas, which each in their own way, can
change the world.

How to Punch Cancer in the Face
Several years ago voice-over artist, writer and actress Erica
McMaster, an Ottawa native, began to train as a fighter. Her
mind was so focused and her determination so complete that
her training activities captured the imagination of the local
press. At the end of a beautiful spring day in the historic
Old Mill Inn in Etobicoke, adjacent to Toronto’s gentle flowing

188

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

Humber river and luscious parkland, Erica climbed into the
boxing ring and let her fists do the talking.

Her opponent was cancer, and her goal: “To punch cancer
in the face.” Erica lost her mother, two of her grandparents
and a childhood friend to the disease. The Princess Margaret
Cancer Foundation’s Annual Fight To End Cancer Fundraiser
was a huge success129.

Whilst very few data scientists are trained fighters, the tools
we wield can, and do save lives. Let’s look at one example of
how deep learning can help Erica McMaster “Punch cancer in
the face.”

Clinical researchers have demonstrated conclusively that
cancer sera contain antibodies which react with a unique group
of autologous cellular antigens called tumor-associated anti-
gens130. This is exciting news because mini-arrays of antigens
have the potential to detect and diagnose various types of can-
cer. The trick is to associate the correct combination of anti-
gens with a specific type of cancer. Once the mini-arrays have
been created, this becomes a classification problem for which
RBM’s are well suited RBM.

Koziol et al.131 examine the use of RBMs for the classifica-
tion of Hepatocellular Carcinoma132. The standard approach
to such classification is logistic regression. It is the grandson
of linear regression, a member of the generalized linear family
of models and has reigned supreme in the medical statistics
community for several decades.

It appears the logistic model was first introduced sometime
during the first half of the 19th century by statistician Alphonse
Quetlet’s student Pierre-François Verhulst. It was discovered,
in part, as an exercise to moderate Thomas Malthus’s expo-
nential population growth model. Close to 200 years after Ver-
hulst’s discovery, the scientific community, commercial sectors
and government researchers have fully embraced it as a viable
tool for binary data.

Since it is based on modeling the odds of an outcome it
is perfectly suited to the classification task, and has rightly

189

Deep Learning Made Easy with R

earned its place as the gold standard in many disciplines. Take
for example, the United Kingdom, where the performance of
trauma departments is widely audited by applying predictive
models that assess the probability of survival, and examining
the rate of unexpected survivals and deaths.

The standard approach is the TRISS133 methodology, in-
troduced in 1981. It is a standardized approach for tracking
and evaluating outcome of trauma care and is calculated as a
combination index based on the revised trauma score (RTS),
injury severity score (ISS) and patient’s age. TRISS determines
the probability of survival of a patient from two logistic regres-
sions, one applied if the patient has a penetrating injury and
the other applied for blunt injuries134.

Today logistic regression is one of the most widely taught
and used binary models in the analysis of categorical data. It
is a staple in statistics 101 classes, dominates quantitative mar-
keting, and is used with numerous mutations in classical econo-
metrics135. You may have studied it and explored its power in
your own research. If not, add it to your tool kit today!136 In
numerous areas it has become the benchmark which challenger
models must meet and defeat.

For their comparative study of logistic regression and RBM
Koziol et al. collected sera samples from 175 Hepatocellular
Carcinoma patients and 90 normal patients. Twelve antigens
were expressed as recombinant proteins. The researchers used a
10-fold cross-validation for both the RBM and logistic regres-
sion models. The entire data set was randomly divided into
10 equally sized sub-samples. With each sub-sample stratified
to preserve the ratio of cancer cases to controls. The logistic
regression and RBM were trained on 9 sub-samples; the 10th
sample was used for validation.

190

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

NOTE... �

Sensitivity is the ability of a classifier to identify
positive results, while specificity is the ability to
distinguish negative results.

Sensitivity = NTP

NTP +NTN
× 100 (7.1)

Specificity = NTN

NTP +NTN
× 100 (7.2)

NTP is the number of true positives and NTN is
the number of true negatives.

The results for dichotomized data using 12 antigens are
shown in Table 7. These results, although promising, are cer-
tainly not a home run for RBM; and this is to be expected
because data science is all about obtaining a slight edge. It
is all you need to win. If data scientists like you can develop
models which give us a slight edge over cancer, we will be well
on the way to “punching it in the face.”

Koziol et al.conclude tentatively “Their relatively good per-
formance in our classification problem is promising, and RBMs
merit further consideration in similar investigations. We en-
courage others to explore further the utility of the RBM ap-
proach in similar settings.” Other researcher will perform follow
up studies, maybe even you?

A Magnificent Way to Assist the Anaesthetist
Just prior to writing this book I found myself hospitalized. I
was barely able to walk and rushed into the emergency ward.
Within a matter of minutes, the medical professionals diag-
nosed my issue and began to stabilize my biological metrics.

191

Deep Learning Made Easy with R

Model Sensitivity Specificity
Logistic Regression 0.697 0.811
RBM 0.720 0.800

Table 7: Results for dichotomized data using 12 antigens.
Source Koziol et al.

The very next day I went into surgery, the last thing I recall
was the Anaesthetist administrating general anaesthesia.

Surgery lasted twenty minutes, I awoke groggy, pain free
and quickly recovered. The incident got me thinking, wouldn’t
it be an amazing if data science techniques could assist moni-
toring and administrating of general anaesthesia?

Professor of bio medical engineering, bio-signal processing,
medical ultrasound and meditronics, Pei-Jarn Chen and asso-
ciates137 had a similar idea.

The researchers develop a RBM to predict the depth of
sedation using biological signals as input attributes/ features.
Two distinct types of features are extracted.

The first group of attributes were related to a patient’s auto-
nomic nervous system which regulates the functions of internal
organs such as the heart, stomach and intestines. They include
the heart rate, blood pressure and peripheral capillary oxygen
saturation (SpO2).

The second group of attributes measured metrics related
to the patient’s state induced by an anesthesia. This included
the fractional anesthetic concentration, end-tidal carbon diox-
ide138, fraction inspiration carbon dioxide139, and minimum
alveolar concentration140.

192

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

NOTE... �

Cross-validation refers to a technique used to allow
for the training and testing of inductive models.
Leave-one-out cross-validation involves taking out
one observation from your sample and training the
model with the rest. The predictor just trained
is applied to the excluded observation. One of
two possibilities will occur: the predictor is cor-
rect on the previously unseen control, or not. The
removed observation is then returned, and the next
observation is removed, and again training and
testing are done. This process is repeated for all
observations. When this is completed, the results
are used to calculate the accuracy of the model.

Continuous data, including the response variable depth of
sedation, was collected on 27 patients subject to anaesthesia.
The training set consisted of 5000 randomly selected epochs
and 1000 epochs for the sample. Leave one- out cross-validation
with the mean square error (MSE) was used to evaluate per-
formance.

As a benchmark for performance the researchers compared
the MSE of the RBM model to a feed-forward neural network
(ANN) and modular neural networks using different features
(MN–1, MN–2,MN–3).

Figure 7.3 illustrates the results. It shows the average MSE
for ANN,MN–1, MN–2,MN–3, and RBM model. The MSE
were 0.0665, 0.0590, 0.0551, 0.0515, and 0.0504, respectively.
The RBM model has the smallest error. This is a positive sign
for the use of RBM, although not conclusive because the MSE
appears to be statistically indistinguishable from that of MN–3.

Chen et al. are slightly bolder than I am (wearing my statis-
tician hat), and assert “The experimental results demonstrated

193

Deep Learning Made Easy with R

that the proposed approach outperforms feed-forward neural net-
work and modular neural network. Therefore, the proposed
approach is able to ease patient monitoring services by using
biological systems and promote healthcare quality.” Professor
Chen’s research is a clear step forward. This is an exciting
time to be involved in data science!

Figure 7.3: MSE results of different modeling approaches.
Source adapted from Chen et al. cited in endnote sec. 137

Secrets to the Restricted Boltzmann
Machine in R
Let’s build an RBM using the Mobility dataframe discussed
previously on page 166. First we load the required packages
and data:
>require(RcppDL)
> require("ltm")
> data(Mobility)
> data <-Mobility

194

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

The package RcppDL contains functions to estimate a RBM.
The package ltm contains the Mobility dataset.

We sample 1000 observations for our analysis, using 800 for
the training set:
> set.seed (2395)
> n=nrow(data)
> sample <- sample (1:n, 1000, FALSE)
> data <-as.matrix(Mobility[sample ,])
> n=nrow(data)
> train <- sample (1:n, 800, FALSE)

Now create the train and test attribute objects in R
(x_train,x_test). For this example we will remove item 4
and item 6 from the sample (see Table 6):
> x_train <-matrix(as.numeric(unlist(data[

train ,])),nrow=nrow(data[train ,]))
> x_test<-matrix(as.numeric(unlist(data[-

train ,])),nrow=nrow(data[-train ,]))

> x_train <-x_train[,-c(4,6)]
> x_test<-x_test[,-c(4,6)]

> head(x_train)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 1 1 0 1
[2,] 1 0 1 0 0 0
[3,] 1 1 1 0 0 0
[4,] 1 0 0 0 0 0
[5,] 1 0 0 0 0 0
[6,] 1 1 1 0 0 0
> head(x_test)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0
[2,] 1 0 0 0 0 0
[3,] 1 0 0 0 0 0
[4,] 1 0 1 0 0 0

195

Deep Learning Made Easy with R

[5,] 1 1 1 1 0 0
[6,] 0 0 1 0 0 0

Specification of the model is similar to what we have previ-
ously seen:
> fit <- Rrbm(x_train)

The r object fit contains the model specification. We set 3
hidden nodes with a learning rate of 0.01:
> setHiddenRepresentation (fit , x = 3)
> setLearningRate(fit , x = 0.01)

Here is the summary of the model:
> summary(fit)
$LearningRate
[1] 0.01

$ContrastiveDivergenceStep
[1] 1

$TrainingEpochs
[1] 1000

$HiddenRepresentation
[1] 3

Now the parameters have been selected, training is achieved
using:
> train(fit)

That’s it! We have built a RBM.

196

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

NOTE... �

You can set a number of the parameters in Rrbm
including:

• setStep signature

• setHiddenRepresentation

• setLearningRate

• setTrainingEpochs

Now, let’s see if we can reconstruct the original values in a
similar way to what we did in chapter 5. To achieve this use the
reconstruct function to obtain the estimated probabilities:
reconProb <-reconstruct(fit ,x_train)

Then convert the probabilities into binary values:
> recon <-ifelse(reconProb >=0.5 , 1, 0)

You should now see the reconstructed values something like
this:
> head(recon)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 1 0 0 0
[2,] 1 0 1 0 0 0

197

Deep Learning Made Easy with R

[3,] 1 0 1 0 0 0
[4,] 1 0 1 0 0 0
[5,] 1 0 1 0 0 0
[6,] 1 0 1 0 0 0

Finally, we can create a global confusion matrix for all six
attributes combined:
> table(recon ,x_train , dnn =c("Predicted"

, " Observed"))
Observed

Predicted 0 1
0 2786 414
1 371 1229

It can also be useful to view an image of the reconstructed
values as shown in Figure 7.4. This is achieved by:
> par(mfrow =c(1, 2))
> image(x_train ,main="Train")
> image(recon ,main="Reconstruction")

The reconstructed image appears to contain the main block like
features, although not the finer details in terms of streaking
across the major blocks. It is left as an exercise for the reader
to further refine and improve the model.

198

CHAPTER 7. RESTRICTED BOLTZMANNMACHINES

Figure 7.4: RBM train set and reconstructed values using
Mobility

199

Deep Learning Made Easy with R

NOTE... �

You can also estimate a RBM with the deepnet
package. Here is how to do that:
> fit2<-rbm.train(x_train ,
+ hidden=3,
+ numepochs = 3,
+ batchsize = 100,
+ learningrate = 0.8,
+ learningrate_scale = 1,
+ momentum = 0.5,
+ visible_type = "bin",
+ hidden_type = "bin",
+ cd = 1)

Much of this should be familiar to you. Notice
that rbm.train allows you to specify the batch size
which is useful in very large samples. the parame-
ter cd refers to the number of steps for contrastive
divergence (see sec. 7).

RBMs are powerful learning machines in their own right,
however arguably their most important use is as learning mod-
ules used in the construction of deep belief networks; and that
is the subject of the next chapter.

200

NOTES

Notes
118A RBM is a bipartite Markov random field.
119Unless you are writing computer code to calculate the estimates, the

specific details of the algorithm are less important than an intuitive un-
derstanding. However,

• A detailed description which is very easy to follow can be found in
Bengio, Yoshua. "Learning deep architectures for AI." Foundations
and trends® in Machine Learning 2.1 (2009): 1-127.

• Another easy to follow guide is Hinton, Geoffrey. "A practical guide
to training restricted Boltzmann machines." Momentum 9.1 (2010):
926.

• If you would like additional details on how contrastive divergence
works you can email me at info@NigelDLewis. I’d be delighted to
share updated resources with you.

120Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve
restricted boltzmann machines." Proceedings of the 27th International
Conference on Machine Learning (ICML-10). 2010.

121A dataset which contains images of 50 toys belonging to 5 generic
categories: four-legged animals, human figures, airplanes, trucks, and cars.
The objects were imaged by two cameras under 6 lighting conditions, 9
elevations, and 18 azimuths. For further details please see: LeCun, Yann,
Fu Jie Huang, and Leon Bottou. "Learning methods for generic object
recognition with invariance to pose and lighting." Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE
Computer Society Conference on. Vol. 2. IEEE, 2004.

122A database of face photographs designed for studying the problem of
unconstrained face recognition. The data set contains more than 13,000
images of faces collected from the web. For further details please see
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled Faces in the Wild: A Database for Studying Face Recognition
in Unconstrained Environments. University of Massachusetts, Amherst,
Technical Report 07-49, October, 2007.

123For details see Tieleman, Tijmen. "Training restricted Boltzmann
machines using approximations to the likelihood gradient." Proceedings of
the 25th international conference on Machine learning. ACM, 2008.

124Tieleman, Tijmen, and Geoffrey Hinton. "Using fast weights to im-
prove persistent contrastive divergence." Proceedings of the 26th Annual
International Conference on Machine Learning. ACM, 2009.

125See:

201

Deep Learning Made Easy with R

• C. J. Geyer, in Computing Science and Statistics Proceedings of the
23rd Symposium on the Interface, American Statistical Association,
New York, 1991, p. 156.

• Cho, KyungHyun, Tapani Raiko, and Alexander Ilin. "Parallel
tempering is efficient for learning restricted Boltzmann machines."
IJCNN. 2010.

• Fischer, Asja, and Christian Igel. "A bound for the convergence rate
of parallel tempering for sampling restricted Boltzmann machines."
Theoretical Computer Science (2015).

126

• See Sutskever, Ilya, and Tijmen Tieleman. "On the convergence
properties of contrastive divergence." International Conference on
Artificial Intelligence and Statistics. 2010.

• Also note that the observation that the contrastive divergence up-
date is not the gradient of any objective function was first proved
by university of Toronto student Tijmen. See: Some investigations
into energy based models. Master’s thesis, University of Toronto.

127Mehta, Pankaj, and David J. Schwab. "An exact mapping between
the variational renormalization group and deep learning." arXiv preprint
arXiv:1410.3831 (2014).

128Hinton, Geoffrey E. "Training products of experts by minimizing con-
trastive divergence." Neural computation 14.8 (2002): 1771-1800.

129See Toronto Sun article ’Punch cancer in the face’ by Steve Buffery.
Sunday, March 08, 2015.

130See for example:

• Liu, W., et al. "Evaluation of Tumour Associated Antigen (TAA)
Miniarray in Immunodiagnosis of Colon Cancer." Scandinavian
journal of immunology 69.1 (2009): 57-63.

• Tan, Hwee Tong, et al. "Serum autoantibodies as biomarkers for
early cancer detection." FEBS journal 276.23 (2009): 6880-6904.

• Ye, Hua, et al. "Mini-array of multiple tumor-associated antigens
(TAAs) in the immunodiagnosis of breast cancer." Oncology letters
5.2 (2013): 663-668.

• Coronell, Johana A. Luna, et al. "The current status of cancer
biomarker research using tumour-associated antigens for minimal
invasive and early cancer diagnostics." Journal of proteomics 76
(2012): 102-115.

202

NOTES

131James A. Koziol, Eng M. Tan, Liping Dai, Pengfei Ren, and Jian-Ying
Zhang, “Restricted Boltzmann Machines for Classification of Hepatocel-
lular Carcinoma,” Computational Biology Journal, vol. 2014, Article ID
418069, 5 pages, 2014. doi:10.1155/2014/418069

132 Liver cancer
133see:

• Champion, Howard R., et al. "Trauma score." Critical care
medicine 9.9 (1981): 672-676.

• Champion, Howard R., et al. "A revision of the Trauma Score."
Journal of Trauma and Acute Care Surgery 29.5 (1989): 623-629.

• H.R. Champion et.al, Improved Predictions from a Severity Char-
acterization of Trauma (ASCOT) over Trauma and Injury Severity
Score (TRISS): Results of an Independent Evaluation. Journal of
Trauma: Injury, Infection and Critical Care, 40 (1), 1996.

134To try out TRISS for yourself visit http://www.trauma.org/index.
php/main/article/387/

135See for example Maddala’s book. Add it to your personal library. It
is a classic and worth every penny:

• Maddala, Gangadharrao S. Limited-dependent and qualitative vari-
ables in econometrics. No. 3. Cambridge university press, 1986.

136To get you started, here are five books that will tell you all you need
to know as a data scientist:

• Allison, Paul D. Logistic regression using SAS: Theory and appli-
cation. SAS Institute, 2012.

• Harrell, Frank E. Regression modeling strategies: with applications
to linear models, logistic regression, and survival analysis. Springer
Science & Business Media, 2013.

• Hosmer Jr, David W., Stanley Lemeshow, and Rodney X. Sturdi-
vant. Applied logistic regression. Vol. 398. John Wiley & Sons,
2013.

• Menard, Scott. Applied logistic regression analysis. Vol. 106. Sage,
2002.

• Kleinbaum, David G., and Mitchel Klein. Analysis of Matched
Data Using Logistic Regression. Springer New York, 2010.

137Yeou-Jiunn Chen, Shih-Chung Chen, and Pei-Jarn Chen, “Prediction
of Depth of Sedation from Biological Signals Using Continuous Restricted
Boltzmann Machine,” Mathematical Problems in Engineering, vol. 2014,
Article ID 189040, 6 pages, 2014. doi:10.1155/2014/189040

203

http://www.trauma.org/index.php/main/article/387/
http://www.trauma.org/index.php/main/article/387/

Deep Learning Made Easy with R

138Measurement of exhaled carbon dioxide.
139The fraction or percentage of oxygen in the space being measured. It is

used to represent the percentage of oxygen participating in gas-exchange.
140The concentration of vapor in the lungs that is required to prevent

movement in half of subjects in response to surgical stimulus.

204

Chapter 8

Deep Belief Networks

Statisticians, like artists, have the bad habit of
falling in love with their models.
George Box

A deep belief network (DBN) is a probabilistic generative
multilayer neural network composed of several stacked
Restricted Boltzmann Machines. In a DBN, every two

sequential hidden neural layers form an RBM. The input of
the current RBM is actually the output features of a previous
one. Each model performs a nonlinear transformation on its
input vectors and produces as output, the vectors that will be
used as input for the next model in the sequence. Thus each
RBM in the stack that makes up a DBN receives a different
representation of the data.

DBNs usually consists of two types of layer. They are visible
layer and hidden layer. Visible layers contain input nodes and
output nodes, and hidden layers contain hidden nodes. The
training of DBN can be divided into two steps: pretraining
and fine-tuning using discriminative backpropagation.

205

Deep Learning Made Easy with R

How to Train a Deep Belief Network
Pre-training followed by fine tuning is a powerful mechanism
for training a deep belief networks141. Let’s take a look at each
of these elements.

The Key Elements of Pre-training
Pre-training helps generalization; it uses a layer-wise greedy
learning strategy in which each RBM is trained individually
layer by layer using contrastive divergence and then stacked on
top of each other.

When the first RBM has been trained, its parameters are
fixed, and the hidden unit values are used as the visible unit
values for the second RBM. This is done by training it using the
training sample as the visible layer. Then weights of the learned
RBM are then used to predict the probability of activating the
hidden nodes for each example in the training dataset.

These activation probabilities are then used as the visible
layer in the second RBM. This procedure is repeated several
times to initialize the weights for several hidden layers until
the final RBM is trained. Overall, the DBN, as with other
multilayer neural networks, can be efficiently trained by using
the feature activation’s of one layer as the training data for the
next.

Since pretraining is unsupervised, no class labels are re-
quired at this stage. In practice a batch-learning method is
often applied to accelerate the pre-training process with the
weights of the RBMs updated every mini-batch.

The many layers of hidden units create many layers of fea-
ture detectors that become progressively more complex. Pre-
training is believed to help capture high level features of the
data which assist supervised learning when labels are provided
in the fine tuning stage.

206

CHAPTER 8. DEEP BELIEF NETWORKS

The Heart of Fine-tuning
The fine-tuning stage uses the standard back-propagation al-
gorithm through the whole pre-trained network to adjust the
features in every layer to make them more useful for classifi-
cation. This, as we have seen earlier, involves adjusting the
weights for enhanced discriminative ability by minimizing the
error between the network predicted class and the actual class.

A softmax output layer is typical used as a multiclass classi-
fier. The softmax classifier therefore learns a joint model of the
features extracted by the RBMs and the corresponding label
of the test samples where the number of nodes in the output
layer is equal to the number of classes.

Since fine-tuning involves supervised learning, the corre-
sponding labels for the training data are needed. After training,
the predicted class label of a test sample are obtained in the
usual manner - by propagation of the test data forward from
the first layer visible through to the softmax output layer.

How to Deliver a Better Call Waiting
Experience
Call routing is the task of getting callers to the right place in
the call center, which could be the appropriate live agent or
automated service. Several years ago this was thought best
achieved with a list of menu options for callers to select us-
ing a telephone touch-tone keypad. These menu drive systems
have provided comedians with a goldmine of funny material. I
myself have been frustrated, baffled and annoyed on many oc-
casions trying to navigate through menu driven systems. Glyn
Richard’s YouTube video captures the real world experience of
many142.

Imagine my joy when telecommunications giant Verizon
Corporate Services Group Inc. filed patent number US7092888
B1 - Unsupervised training in natural language call routing143.

207

Deep Learning Made Easy with R

Natural language call routing allows callers to describe the rea-
son for their call in their own words, instead of presenting them
with a frustrating and limiting menu!

Well over a decade has passed since the original filing date.
Over that time, we have seen a steady rise in natural language
call routing. Alas, purely menu driven systems are still with
us!

Deep learning has an important role to play in this space.
IBM researcher Ruhi Sarikaya144 investigated the role of DBNs
in natural language call routing. This is a very interesting ap-
plication because it involves real time data collected from a
customer call center for a Fortune 500 company. Such compa-
nies typically have a wide variety of call types to deal with and
the call–routing system for this particular company is coded to
respond to 35 different call types.

The training sample consisted of 27,000 automatically tran-
scribed utterances amounting to 178,000 words in total. In or-
der to assess the impact of data size on learning method, Ruhi
divided the sample into a range of sets from 1,000 to 10,000
and also included the original sample size of 27,000.

Pre-training was achieved with contrastive divergence. The
model was fine-tuned with backpropagation (stochastic gradi-
ent descent) using an early stopping rule (see page 57) which
limited the number of iterations to 100.

Ruhi reports that the performance improved as the sample
data was increased from 1,000 to 10,000. For example, the
reported prediction accuracy was 78.1% for the smallest sample
size of 1,000, 87% for the sample size of 6,000, and 90.3% for
the full sample of 27,000.

In line with data science best practice Ruhi used a range of
alternative data analytic models as benchmarks, including the
support vector machine (SVM). Ruhi and collaborators con-
clude by stating “DBNs performed as well as or slightly better
than SVMs for all sizes of training set.”

208

CHAPTER 8. DEEP BELIEF NETWORKS

A World First Idea that You Can Eas-
ily Emulate
Many longstanding residents of the Great State of Texas can
still recall the drought of 1949 to 1956. Ask them, and they
will tell you how Lake Dallas shrunk down to 1/10 of its size,
and how west of the Pecos River only eight inches of rain was
recorded for the entire year of 1953. Of course the drought
ended, as all droughts do with a deluge of rain that soaked the
entire state in the spring of 1956.

I often recount my own memories of the Great Drought of
75 and 76 in England, where hot weather dried up lakes and re-
sulted in water restrictions. It was reported as the hottest sum-
mer average temperature in the United Kingdom since records
began. And since the British have kept records since at least
1066, that is a dam long time! It too ended in a deluge of rain
in the autumn of 76.

Now here is the interesting thing, data scientists have been
attempting to predict drought conditions, since before statis-
tics was considered a formal scientific discipline. Governments,
local authorities and regional water boards would all like to
know when drought conditions are likely to occur.

Researchers Junfei Chen, Qiongji Jin of Hohai university
and Jing Chao of Nanjing university investigate this issue using
DBNs. Collectively, they have developed what appears to be
the worlds first short-term drought prediction model based on
deep belief networks145. The goal of the researchers was to
investigate whether DBNs can be used to predict drought in
the Huaihe River Basin.

Data on monthly rainfall from four hydrologic stations
(Bengbu, Fuyang, Xuchang, and Zhumadian) was collected
from January 1958 to 2006 and then transformed into differ-
ent time scales using the Standardized Precipitation Index146
(SPI). SPI is an index used to characterize meteorological
drought on a range of timescales. On short timescales, the SPI

209

Deep Learning Made Easy with R

is closely related to soil moisture, while at longer timescales,
the SPI can be related to groundwater and reservoir storage.

Four timescales were used by the researchers SPI3, SPI6,
SPI9, and SPI12. The training sample consisted of data from
the period 1958–1999, and the testing sample used observations
from 2000–2006.

A total of 16 DBN models were developed, one for each site
and SPI index. The optimal number of nodes in each model
is given in Table 8. We see, for example, the DBN developed
using the SP13 series at the Bengbu measuring station has 9
input nodes, 5 hidden nodes in the first layer, and 10 hidden
nodes in the second layer. Whilst the DBN for SPI12 for the
same weather station has 8 input nodes, with 5 nodes in each
of the hidden layers.

Table 8: The optimal network structures of DBN. Source of
table Chen et al. cited in endnote sec. 145.

Figure 8.1 illustrates the fit of the DBN models for the
Bengbu measuring station. Visually, the fit of each model looks
reasonable. The root mean square error (RMSE) and mean ab-
solute error (MAE) are also given.

210

CHAPTER 8. DEEP BELIEF NETWORKS

The researchers benchmark their models against a back-
propagation (BP) neural network and find the DBN clearly out-
performs. This leads them to conclude “The errors results show
that the DBN model outperforms the BP neural network. This
study shows that the DBN model is a useful tool for drought
prediction.” And with this study Junfei Chen, Qiongji Jin and
Jing Chao, have created a world first; and so can you!

Figure 8.1: Observed and predicted values for different time-
scale SPI series at the Bengbu station. Source of figure: Chen
et al. cited in endnote sec. 145.

211

Deep Learning Made Easy with R

Steps to Building a Deep Belief Net-
work in R
We will continue with the analysis of page 194 and use the
Rdbn function in the package RcppDL. For this illustration we
create a combined response variable of item 4 and item 6, from
Table 6, by taking the row-wise maximum:
> y<-apply(cbind(data[,4],data[,6]), 1, max

, na.rm = TRUE)

The test and training response variable has to be formatted
so we can pass it to the Rdbn function. Essentially, this involves
creating a response variable R object with two columns. First
for the test sample:
> y_train <-as.numeric(y[train])
> temp<-ifelse(y_train==0, 1, 0)
> y_train <-cbind(y_train ,temp)
> head(y_train)

y_train temp
[1,] 1 0
[2,] 0 1
[3,] 1 0
[4,] 0 1
[5,] 0 1
[6,] 1 0

And now for the training sample:
> y_test<-as.numeric(y[-train])
> temp1 <-ifelse(y_test==0, 1, 0)
> y_test<-cbind(y_test ,temp1)
> head(y_test)

y_test temp1
[1,] 0 1
[2,] 0 1
[3,] 1 0
[4,] 0 1

212

CHAPTER 8. DEEP BELIEF NETWORKS

[5,] 1 0
[6,] 0 1

A quick check to ensure we have the correct number of obser-
vations in the training (800) and test (200) sets:
> nrow(y_train)
[1] 800

> nrow(y_test)
[1] 200

We choose a model with two hidden layers. Let’s specify
the model and then look at the default settings:
> hidden = c(12 ,10)
> fit <- Rdbn(x_train , y_train , hidden)

> summary(fit)
$PretrainLearningRate
[1] 0.1

$PretrainingEpochs
[1] 1000

$FinetuneLearningRate
[1] 0.1

$FinetuneEpochs
[1] 500

$ContrastiveDivergenceStep
[1] 1

So we have a model with two hidden layers with 12 nodes in
the first hidden layer and 10 nodes in the second hidden layer.
This time we will run with the default settings. As we have
already seen pre-training followed by fine tuning is a powerful
mechanism for training a deep belief networks. Here is how to

213

Deep Learning Made Easy with R

do this with our sample:
> pretrain(fit)
> finetune(fit)

The next step is to use the fitted model to predict the classes
of the test sample:
> predProb <-predict(fit , x_test)

We have seen this basic format before. The output is in terms
of probabilities. Let’s take a look at the first few predictions:
> head(predProb ,6)

[,1] [,2]
[1,] 0.3942584 0.6057416
[2,] 0.4137407 0.5862593
[3,] 0.4137407 0.5862593
[4,] 0.4332217 0.5667783
[5,] 0.4970219 0.5029781
[6,] 0.4142550 0.5857450

Next we convert these probabilities into binary values and cal-
culate the confusion matrix:
> pred1 <-ifelse(predProb [,1]>=0.5, 1, 0)

> table(pred1 ,y_test[,1] , dnn =c("
Predicted" , " Observed"))

Observed
Predicted 0 1

0 115 75
1 0 10

That’s it, we are done!

214

NOTES

Notes
141See Hinton, Geoffrey E. "To recognize shapes, first learn to generate

images." Progress in brain research 165 (2007): 535-547.
142Watch it only if you don’t know what I am talking about.

Seehttps://youtu.be/grSMuM8MXRs
143McCarthy, Daniel J., and Premkumar Natarajan. "Unsupervised

training in natural language call routing." U.S. Patent No. 7,092,888.
15 Aug. 2006.

144Sarikaya, Ruhi, Geoffrey E. Hinton, and Bhuvana Ramabhadran.
"Deep belief nets for natural language call-routing." Acoustics, Speech
and Signal Processing (ICASSP), 2011 IEEE International Conference on.
IEEE, 2011.

145Junfei Chen, Qiongji Jin, and Jing Chao, “Design of Deep Belief Net-
works for Short-Term Prediction of Drought Index Using Data in the
Huaihe River Basin,” Mathematical Problems in Engineering, vol. 2012,
Article ID 235929, 16 pages, 2012. doi:10.1155/2012/235929

146For further details see McKee, Thomas B., Nolan J. Doesken, and
John Kleist. "The relationship of drought frequency and duration to time
scales." Proceedings of the 8th Conference on Applied Climatology. Vol.
17. No. 22. Boston, MA, USA: American Meteorological Society, 1993.

215

https://youtu.be/grSMuM8MXRs

Deep Learning Made Easy with R

Congratulations!
You made it to the end. Here are three things you can do

next.

1. Pick up your FREE copy of 12 Resources to Su-
percharge Your Productivity in R at http: // www.
auscov. com

2. Gift a copy of this book to your friends, co-workers, team-
mates or your entire organization.

3. If you found this book useful and have a moment to spare,
I would really appreciate a short review. Your help in
spreading the word is gratefully received.

I’ve spoken to thousands of people over the past few years.
I’d love to hear your experiences using the ideas in this book.
Contact me with your stories, questions and suggestions at
Info@NigelDLewis.com.

Good luck!

P.S. Thanks for allowing me to partner with you on your
data science journey.

216

http://www.auscov.com
http://www.auscov.com

Index

1066 (and all that
), 209

1990’s, 51

Abalone, 137
activation function, 17

hyperbolic, 17
linear, 17
ReLU, 18
sigmoid, 17
softmax, 18

Adjustment (of weights), 20
advertising, 9
Alexander Graham Bell,

166
applied researchers, 11
area under the curve

(AUC), 130
associative memory, 87
autoassociator, 119

backpropagation, 19
Baidu, 9
Batching, 54
Bib Fortuna, 121
bipartite structure, 180
Boss

client, 51
your, 51

botnets, 37

Cerrado (Brazilian), 124
clams, 137
classification, 22
co-adaptation, 52
collinearity, 53
computable function, 12
computational cost, 17
correlated attributes, 121
covariance matrix, 121
CPU clusters, 187
Credit Rating, 10
Cross-validation, 193

Leave one out, 193

Datasets
bodyfat, 74
Boston, 58
Mobility, 194
nottem, 110
PimaIndiansDiabetes2,

66
PimaIndiansDiabetes2,

65
UKLungDeaths, 96

de-fogging, 35
decision trees, 8
decoder, 119

217

Deep Learning Made Easy with R

diabetes, 67
dimensionality reduction,

120
distributional model, 67
Dropout, 51
drought of 1949, 209
drunkenness, 48

eigenvectors, 121
Elman Network

context layer, 88
mean squared error, 90
solar radiation, 88

encoder, 119
energy function, 179
energy-based model, 179
England, 110
entrepreneurs, 11
epoch, 52
equal error rate, 130

Facebook, 9
failures, 50
Fast Persistent Contrastive

Divergence, 186
Feed Forward, 20
feed forward, 14
finger vein, 129
fog, 35
Fraud Detection, 11
Friday, 48

generalization ability, 49
Generative learning, 177
George Box, 164
Gibbs sampler, 183
Goal

learning from data, 8
Google, 9
Great Drought of 75, 209

haze, 35
Health Diagnostics, 10
hidden layer, 12
history(Inf), 3
Hornik theorem, 42
HTTPS connections, 2
Human brain, 12
hyperparmeter, 127

IBM, 9
image compression, 40
image processing, 9
impute, 67
industry, 9
infrared, 129
Initialization of the net-

work, 19
input layer, 12
install.packages, 1

Jabba (the Hutt), 121
Jedi

Master, 120
mind trick, 120
Return of the, 121

Joint estimation, 74
joint probability distribu-

tion, 183
Jolliffe, 121
Jordan Networks

context nodes, 107
English weather, 110
learning rate, 115

218

INDEX

memory, 108
predict method, 116
timeseries data, 110
versus ARIMA models,

108

learning
weak model, 52

log-likelihood, 182
log-linear model, 34
logistic activation function,

61
loss function, 127

malicious software, 37
Malware, 37
Marketing campaigns, 10
maximum likelihood, 67
memory.limit, 3
MetaMind, 11
Metropolis Hastings ratio,

187
Microsoft, 9
Military Target Recogni-

tion, 10
missing values, 67
mist, 35
MLP

as visualized in R, 14
epoch, 20
globally optimal solu-

tion, 21
gradient descent, 19
learning algorithm, 19
learning rate, 21, 61,

102
network error, 14

steps, 14
threshold, 16

Mobility, 167
model selection problem, 50
mollusk (edible), 137
momentum parameter, 22
Monday, 48
Monte Carlo Markov chain,

183
MRI, 10
multiple imputation, 67

NA’s, 113
na.omit method, 67
National Park

Serra da Canastra, 125
Neural Computing, 11
Neural Networks

initializing, 21
neuralnet, 42
neurons, 12

bias, 17
workings of, 16

NHK Broadcasting, 34
nonlinear data, 8
normalizing constant, 179
Nottingham, 110

OCR, 11
octopuses, 137
Odyssey (Homer’s), 164
orthogonal transformation,

121
output layer, 12

Packages
AMORE, 71

219

Deep Learning Made Easy with R

deepnet, 62
MASS, 58
Metrics, 57
mlbench, 65
neuralnet, 57
quantmod, 95, 110
RNSS, 95
RSNNS, 69, 110
TH.data, 74

packages
autoencoder, 139
ltm, 167
RcppDL, 167

Parallel Tempering, 186
parametric model, 181
partial derivative, 20
partition function, 179
patience, 51
Paypal, 9
PCA, 121
Pelé, 183
perceptron, 32
Perceptron (original), 15
Persistent contrastive diver-

gence, 186
Phantom Menace, 122
phylum Mollusca, 137
Pima Indian, 65
Portfolio Management, 10
prediction, 22
probability distribution,

179
Process Modeling, 10
professors, 49
Propagation, 20

Qui-Gon Jinn, 122

R logo (image), 131
random forests, 8
random masking, 156
reconstruction error, 127
Replica Exchange Monte

Carlo Markov
Chain, 186

Robin Hood, 110
Rsda, 169

SAENET, 153
salt and pepper noise, 156
satellites (Terra and Aqua),

125
savanna, 124
scallops, 137
scientists, 11
SDUMLA-HMT, 129
sensitivity, 191
set.seed, 2
sparsity

constraint, 126
parameter, 126

Specificity, 191
spectral bands, 125
Spectroradiometer, 125
spyware, 37
squid, 137
Standardization

choices, 112
standardize, 112
Standardized Precipitation

Index, 209
Statistics 101, 34

220

INDEX

stochastic sequence model-
ing, 87

Stock Market
KOSPI, 94
Nikkei225, 94
SSE, 94
TWSE, 94

stock market, 11
str method, 66
sum of squared errors, 61
Supervised learning, 7
supplementary Gibbs

chains, 186
support vector machines, 8

T-14 hyperdrive, 122
Tatooine, 122
Texas (size of), 124
Text Searching, 11
the beautiful game, 183
timeseries object, 111
training patterns, 49
transpose, 139
Trojans, 37
Twitter, 9
Types of learning, 7

uncorrelated variables, 121
Unsupervised learning, 7

variation, 48
random, 48
systematic, 49

Voice Recognition, 10

Watto, 122
Wheels, 48

widgets, 48
worms, 37

X-rays, 10

Yahoo, 9
YouTube, 207

zoo class, 113

221

Deep Learning Made Easy with R

222

OTHER BOOKS YOU
WILL ALSO ENJOY

Over 100 Statistical Tests at Your Fingertips!

100 Statistical Tests in R is
designed to give you rapid ac-
cess to one hundred of the
most popular statistical tests.

It shows you, step by step,
how to carry out these tests in
the free and popular R statis-
tical package.

The book was created for
the applied researcher whose
primary focus is on their sub-
ject matter rather than math-
ematical lemmas or statistical
theory.

Step by step examples of each test are clearly described,
and can be typed directly into R as printed on the page.

To accelerate your research ideas, over three hundred appli-
cations of statistical tests across engineering, science, and the
social sciences are discussed.

100 Statistical Tests in R

ORDER YOUR COPY TODAY!

223

http://www.auscov.com

Deep Learning Made Easy with R

AT LAST! Predictive analytic methods within easy
reach with R...

This jam-packed book takes
you under the hood with step
by step instructions using the
popular and free R predictive
analytic package.

It provides numerous ex-
amples, illustrations and ex-
clusive use of real data to help
you leverage the power of pre-
dictive analytics.

A book for every data an-
alyst, student and applied re-
searcher.

ORDER
YOUR COPY TODAY!

224

http://www.auscov.com
http://www.auscov.com

INDEX

"They Laughed As They
Gave Me The Data To Analyze...But Then They Saw
My Charts!"

Wish you had fresh ways to
present data, explore rela-
tionships, visualize your data
and break free from mundane
charts and diagrams?

Visualizing complex rela-
tionships with ease using R
begins here.

In this book you will find
innovative ideas to unlock
the relationships in your own
data and create killer visuals
to help you transform your
next presentation from good
to great.

Visualizing Complex Data Using R

ORDER YOUR COPY TODAY!

225

http://www.auscov.com

Deep Learning Made Easy with R

ANNOUNCING...The Fast & Easy Way to Master
Neural Networks

This rich, fascinating, acces-
sible hands on guide, puts
neural networks firmly into
the hands of the practitioner.
It reveals how they work, and
takes you under the hood
with an easy to follow pro-
cess showing you how to build
them faster than you imag-
ined possible using the pow-
erful, free R predictive ana-
lytics package.

Here are some of the neu-
ral network models you will
build:

• Multi layer Perceptrons

• Probabilistic Neural
Networks

• Generalized Regression
Neural Networks

• Recurrent Neural Net-
works

Buy the book today and master neural networks the fast &
easy way!

ORDER YOUR COPY TODAY!

226

http://www.auscov.com

INDEX

Write your notes here:

227

Deep Learning Made Easy with R

Write your notes here:

228

INDEX

Write your notes here:

229

Deep Learning Made Easy with R

Write your notes here:

230

INDEX

Write your notes here:

231

Deep Learning Made Easy with R

Write your notes here:

232

INDEX

Write your notes here:

233

Deep Learning Made Easy with R

Write your notes here:

234

INDEX

Write your notes here:

235

	Contents
	Other Books by N.D Lewis
	Preface
	How to get the most from this book
	Introduction
	Deep Neural Networks
	Elman Neural Networks
	Jordan Neural Networks
	The Secret to the Autoencoder
	The Stacked Autoencoder in a Nutshell
	Restricted Boltzmann Machines
	Deep Belief Networks
	A Special Message for YOU
	Index
	Enjoy these books

