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Preface

Learning never exhausts the mind.
—Leonardo da Vinci

Machine learning and deep learning have completely changed the finance
industry in recent years. The different learning models are well suited to a
world where data is abundant and continuous. Data is the new gold, and its
value keeps rising as proper analyses lead to key business decisions, which
are the driver of economic shifts.

The rise of quantitative funds is living proof that the world of data science
has much to offer to the trading world. After fundamental and technical
traders, a new breed of leaders of the universe is emerging. These are the
quantitative traders who rely on machine-based algorithms with extremely
complex operations that seek to forecast and outperform the markets.

This book covers in detail the subject of deep learning for finance.

Why This Book?
I have spent my career researching trading strategies, techniques, and all
things related to the financial world. Through the years, I have become
familiar with a few algorithmic models that have the potential of adding
value to the trading framework. In this book, I discuss different learning
models and their applications in the trading world, with a focus on deep
learning and neural networks. My main aim is to cover them in such a way
that everyone understands how they function.

Machines can perform operations and detection better than humans for many
reasons, one of which is their objectivity. This means that one of the key
skills you will learn is how to use Python to create the algorithms required to
do such operations.



As mentioned, my objective is to provide a comprehensive introduction to
the use of deep learning in finance. I do this by discussing a wide range of
topics, including data science, trading, machine and deep learning models,
and reinforcement learning applications for trading.

The book begins with an overview of the field of data science and its role in
the finance world. It then delves into the knowledge requirements, such as
statistics, math, and Python, before focusing on how to use machine and deep
learning in trading strategies.

Who Should Read It?
This book is intended for a wide audience, including professionals and
academics in finance, data scientists, quantitative traders, and students of
finance of any level. It provides a thorough introduction to the use of machine
and deep learning in time series prediction, and it is an essential resource for
anyone who wants to understand and apply these powerful techniques.

The book assumes you have basic background knowledge in both Python
programming (professional Python users will find the code very
straightforward) and financial trading. I take a clear and simple approach that
focuses on the key concepts so that you understand the purpose of every idea.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function



names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/sofienkaabar/deep-learning-for-finance.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and

https://github.com/sofienkaabar/deep-learning-for-finance
mailto:bookquestions@oreilly.com


documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution, which usually
includes the title, author, publisher, and ISBN. For example: “Deep Learning
for Finance by Sofien Kaabar (O’Reilly). Copyright 2024 Sofien Kaabar,
978-1-098-14839-3.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/


Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/deep-
learning-for-finance.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.
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Chapter 1. Introducing Data
Science and Trading

The best way to begin learning about a complex topic is to break it down into
smaller parts and understand those pieces first. Understanding deep learning
for finance requires knowledge of data science and financial markets.

This chapter lays the building blocks needed to thoroughly understand data
science and its uses, as well as to understand financial markets and how
trading and forecasting can benefit from data science.

By the end of the chapter, you should know what data science is, what its
applications are, and how you can use it in finance to extract value.

Understanding Data
It is impossible to understand the field of data science without first
understanding the types and structures of data. After all, the first word for the
name of this immense field is data. So, what is data? And more importantly,
what can you do with it?

Data in its simplest and purest form is a collection of raw information that
can be of any type (numerical, text, boolean, etc.).

The final aim of collecting data is decision-making. This is done through a
complex process that ranges from the act of gathering and processing data to
interpreting it and using the results to make a decision.

Let’s take an example of using data to make a decision. Suppose you have a
portfolio composed of five different equally weighted dividend-paying
stocks, as detailed in Table 1-1.



Table 1-1. Stocks and their dividend
yields

Stock Dividend yield

A 5.20%

B 3.99%

C 4.12%

D 6.94%

E 5.55%

NOTE
A dividend is the payment made to shareholders from a company’s profits. The dividend
yield is the amount distributed in monetary units over the current share price of the
company.

Analyzing this data can help you understand the average dividend yield you
are receiving from your portfolio. The average is basically the sum divided
by the quantity, and it gives a quick snapshot of the overall dividend yield of
the portfolio:

Average dividend yield = 5.20%+3.99%+4.12%+6.94%+5.55%
5 = 5.16%

Therefore, the average dividend yield of your portfolio is 5.16%. This
information can help you compare your average dividend yield to other
portfolios so that you know whether you have to make any adjustments.

Another metric you can calculate is the number of stocks held in the
portfolio. This may provide the first informational brick in constructing a
wall of diversification. Even though these two pieces of information
(average dividend yield and the number of stocks in the portfolio) are very



simple, complex data analysis begins with simple metrics and may
sometimes not require sophisticated models to properly interpret the
situation.

The two metrics you calculated in the previous example are called the
average (or mean) and the count (or number of elements). They are part of a
field called descriptive statistics discussed in Chapter 3, which is also itself
part of data science.

Let’s take another example of data analysis for inferential purposes. Suppose
you have calculated a yearly correlation measure between two commodities,
and you want to predict whether the next yearly correlation will be positive
or negative. Table 1-2 has the details of the calculations.

Table 1-2. Yearly correlation
measures

Year Correlation

2015 Positive

2016 Positive

2017 Positive

2018 Negative

2019 Positive

2020 Positive

2021 Positive

2022 Positive

2023 Positive



NOTE
Correlation is a measure of the linear reliance between two time series. A positive
correlation generally means that the two time series move on average in the same
direction, while a negative correlation generally means that the two time series move on
average in opposite directions. Correlation is discussed in Chapter 3.

From Table 1-2, the historical correlation between the two commodities was
mostly (i.e., 88%) positive. Taking into account historical observations, you
can say that there is an 88% probability that the next correlation measure will
be positive. This also means that there is a 12% probability that the next
correlation measure will be negative:

E (Positive correlation) = 8
9 = 88.88%

This is another basic example of how to use data draw inferences from
observations and make decisions. Of course, the assumption here is that
historical results will exactly reflect future results, which is unlikely in real
life, but occasionally, to predict the future all you have is the past.

Now, before discussing data science, let’s review what types of data can be
used and segment them into different groups:

Numerical data

This type of data is composed of numbers that reflect a
certain type of information that is collected at regular or
irregular intervals. Examples can include market data
(OHLC,1 volume, spreads, etc.) and financial statements data
(assets, revenue, costs, etc.).

Categorical data

Categorical data is data that can be organized into groups or
categories using names or labels. It is qualitative rather than
quantitative. For example, the blood type of patients is a type



of categorical data. Another example is the eye color of
different samples from a population.

Text data

Text data has been on the rise in recent years with the
development of natural language processing (NLP). Machine
learning models use text data to translate, interpret, and
analyze the sentiment of the text.

Visual data

Images and videos are also considered data, and you can
process and transform them into valuable information. For
example, a convolutional neural network (CNN) is a type of
algorithm (discussed in Chapter 8) that can recognize and
categorize photos by labels (e.g., labeling cat photos as cats).

Audio data

Audio data is very valuable and can help save time on
transcriptions. For example, you can use algorithms on
audio to create captions and automatically create subtitles.
You can also create models that interpret the sentiment of
the speaker using the tone and volume of the audio.

Data science is a transdisciplinary field that tries to extract intelligence and
conclusions from data using different techniques and models, be they simple
or complex. The data science process is composed of many steps besides
just analyzing data. The following summarizes these steps:

1. Data gathering: This process involves the acquisition of data from
reliable and accurate sources. A widely known phrase in computer
science generally credited to George Fuechsel goes “Garbage in,



garbage out,” and it refers to the need to have quality data that you can
rely on for proper analysis. Basically, if you have inaccurate or faulty
data, then all your processes will be invalid.

2. Data preprocessing: Occasionally, the data you acquire can be in a raw
form, and it needs to be preprocessed and cleaned for the data science
models to be able to use it. For example, dropping unnecessary data,
adding missing values, or eliminating invalid and duplicate data can be
part of the preprocessing step. Other, more complex examples can
include normalization and denoising of data. The aim of this step is to
get the data ready for analysis.

3. Data exploration: During this step, basic statistical research is
conducted to find trends and other characteristics in data. An example of
data exploration is to calculate the mean of the data.

4. Data visualization: This is an important step that is an add-on to the
previous step. It includes creating visualizations such as histograms and
heatmaps to help identify patterns and trends and facilitate
interpretation.

5. Data analysis: This is the main focus of the data science process. This
is when you fit (train) the data using different learning models so that
they interpret and predict the future outcome based on the given
parameters.

6. Data interpretation: This step deals with understanding the feedback
and conclusions presented by the data science models. Optimization
may also be a part of this step; in those cases, we loop back to step 5
and run the models again with the updated parameters before
reinterpreting them and evaluating the performance.

Let’s take a simple example in Python that applies the steps of the data
science process. Suppose you want to analyze and predict the VIX (volatility
index), a volatility time series indicator that represents the implied volatility
of the S&P 500 stock market index. The VIX has been available since 1993
and is issued by the Chicago Board Options Exchange (CBOE).



NOTE
There is also a hidden step in the data science process that I refer to as step zero, and it
occurs when you form an idea based on which process should be initiated. After all, you
wouldn’t be applying the process if you didn’t have a motive first. For example, believing
that inflation numbers may drive the returns of certain commodities is an idea and a motive
to start exploring the data in search of real numbers that prove this hypothesis.

Because it is meant to measure the level of fear or uncertainty in the stock
market, the VIX is frequently referred to as the fear index. It is a percentage
that is computed using the pricing of options on the S&P 500. A higher VIX
value correlates with greater market turbulence and uncertainty, whereas a
lower value correlates with greater stability on average.

The first step is data gathering, which in this case can be automated using
Python. The following code block connects to the website of the Federal
Reserve of Saint Louis and downloads the historical data of the VIX between
January 1, 1990, and January 23, 2023 (Chapter 6 is dedicated to introducing
Python and writing code; for the moment, you do not have to understand the
code, as that is not yet the goal):

# Importing the required library

import pandas_datareader as pdr

# Setting the beginning and end of the historical data

start_date = '1990-01-01'

end_date   = '2023-01-23'

# Creating a dataframe and downloading the VIX data

vix = pdr.DataReader('VIXCLS', 'fred', start_date, end_date)

# Printing the latest five observations of the dataframe

print(vix.tail())

The code uses the pandas library to import the DataReader function, which
fetches the historical data online from a variety of sources. The DataReader
function takes the name of the data as the first argument, followed by the
source and the dates. The output of print(vix.tail()) is shown in
Table 1-3.



Table 1-3. Output of print(vix.t
ail())

DATE VIXCLS

2023-01-17 19.36

2023-01-01 20.34

2023-01-19 20.52

2023-01-20 19.85

2023-01-23 19.81

Let’s move on to the second step: data preprocessing. I divide this part into
checking for invalid data and transforming the data so that it is ready for use.
When dealing with time series, especially downloaded time series, you may
sometimes encounter nan values. NaN stands for Not a Number, and nan
values occur due to missing, invalid, or corrupt data.

You can deal with nan values in many ways. For the sake of this example,
let’s use the simplest way of dealing with these invalid values, which is to
eliminate them. But first, let’s write some simple code that outputs the
number of nan values in the dataframe so that you have an idea of how many
values you will delete:

# Calculating the number of nan values

count_nan = vix['VIXCLS'].isnull().sum()

# Printing the result

print('Number of nan values in the VIX dataframe: ' + str(count_nan))

The code uses the isnull() function and sums the number it gets, which
gives the number of nan values. The output of the previous code snippet is as
follows:



Number of nan values in the VIX dataframe: 292

Now that you have an idea of how many rows you will delete, you can use
the following code to drop the invalid rows:

# Dropping the nan values from the rows

vix = vix.dropna()

The second part of the second step is to transform the data. Data science
models typically require stationary data, which is data with stable statistical
properties such as the mean.

NOTE
The concept of stationarity and the required statistics metrics are discussed in detail in
Chapter 3. For now, all you need to know is that it is likely that you will have to transform
your raw data into stationary data when using data science models.

To transform the VIX data into stationary data, you can simply take the
differences from one value relative to the previous value. The following
code snippet takes the VIX dataframe and transforms it into theoretically
implied stationary data:2

# Taking the differences in an attempt to make the data stationary

vix = vix.diff(periods = 1, axis = 0)

# Dropping the first value of the dataframe

vix = vix.iloc[1: , :]

The third step is data exploration, which is all about understanding the data
you have in front of you, statistically speaking. As you will see statistical
metrics in detail in Chapter 3, I’ll limit the discussion to just calculating the
mean of the dataset.

The mean is simply the value that can represent the other values in the
dataset if they were to elect a leader. It is the sum of the values divided by
their quantity. The mean is the simplest stat in the descriptive statistics



world, and it is definitely the most used one. The following formula shows
the mathematical representation of the mean of a set of values:

x = 1
n
∑i

i=1 xi

You can easily calculate the mean of the dataset as follows:

# Calculating the mean of the dataset

mean = vix["VIXCLS"].mean()

# Printing the result

print('The mean of the dataset = ' + str(mean))

The output of the previous code snippet is as follows:

The mean of the dataset = 0.0003

The next step is data visualization, which is mostly considered to be the fun
step. Let’s chart the VIX’s differenced values through time. The following
code snippet plots the VIX data shown in Figure 1-1:

# Importing the required library

import matplotlib.pyplot as plt

# Plotting the latest 250 observations in black with a label

plt.plot(vix[–250:], color = 'black', linewidth = 1.5,  

         label = 'Change in VIX')

# Plotting a red dashed horizontal line that is equal to mean

plt.axhline(y = mean, color = 'red', linestyle = 'dashed')

# Calling a grid to facilitate the visual component

plt.grid()

# Calling the legend function so it appears with the chart

plt.legend()

# Calling the plot

plt.show()



Figure 1-1. Change in the VIX since early 2022

Steps 5 and 6, data analysis and data interpretation, are what you are going to
study thoroughly in this book, so let’s skip them for now and concentrate on
the introductory part of data science.

Let’s go back to the invalid or missing data problem before moving on.
Sometimes data is incomplete and has missing cells. Even though this has the
potential to hinder the predictive ability of the algorithm, it should not stop
you from continuing the analysis as there are quick fixes that help lessen the
negative impact of the empty cells. For instance, consider Table 1-4.



Table 1-4. Quarterly GDP 

Quarter GDP

Q1 2020 0.9%

Q2 2020 1.2%

Q3 2020 0.5%

Q4 2020 0.4%

Q1 2021 #N/A

Q2 2021 1.0%

Q3 2021 1.1%

Q4 2021 0.6%

The table contains the quarterly gross domestic product (GDP)3 of a
hypothetical country. Notice how the table is missing the value for Q1 2021.
There are three basic ways to solve this issue:

Delete the cell that contains the missing value.

This is the technique used in the VIX example. It simply
considers that the timestamp does not exist. It is the easiest
fix.

Assume that the missing cell is equal to the previous cell.

This is also a simple fix that has the aim of smoothing the
data instead of completely ignoring the issue.

Calculate a mean or a median of the cells around the empty value.



This technique takes smoothing one step further and
assumes that the missing value is equal to the mean between
the previous and next values. Additionally, it can be the
mean of a few past observations.

Data science comprises a range of mathematical and statistical concepts and
requires a deep understanding of machine learning algorithms. In this book,
these concepts are discussed in detail but also in an easy-to-grasp manner to
benefit both technical and nontechnical readers. Many models are assumed to
be mystery boxes, and there is a hint of truth in this, but the job of a data
scientist is to understand the models before interpreting their results. This
helps in understanding the limitations of the models.

This book uses Python as the go-to programming language to create the
algorithms. As mentioned, Chapter 6 introduces Python and the knowledge
required to manipulate and analyze the data, but it also provides the
foundations for creating the different models, which, as you will see, are
simpler than you might expect.

Before moving on to the next section, let’s have a look at the concept of data
storage. After all, data is valuable, but you need to store it in a place where it
can be easily fetched and analyzed.

Data storage refers to the techniques and areas used to store and organize
data for future analysis. Data is stored in many formats, such as CSV and
XLSX. Other types of formats may include XML, JSON, and even JPEG for
images. The format is chosen according to the structure and organization of
the data.

Data can also be stored in the cloud or on premises, depending on your
storage capacity and costs. For example, you may want to keep your
historical, one minute’s worth of Apple stock data in the cloud, instead of in
a CSV file, so that you save space on your local computer.

When dealing with time series in Python, you are mostly going to deal with
two types of data storage: arrays and dataframes. Let’s take a look at what
they are:



Array

An array is used to store elements of the same kind.
Typically, a homogeneous dataset (such as numbers) is best
kept in an array.

Dataframe

A dataframe is a two-dimensional structure that can hold
data of various types. It can be compared to a table with
columns and rows.

In general, arrays should be used whenever a homogeneous data collection
needs to be efficiently stored. When dealing with heterogeneous data or when
you need to edit and analyze data in a tabular manner, you should use
dataframes.

NOTE
Data science is continually evolving. New storage methods are being developed all the
time in an attempt to make them more efficient and increase their capacity and speed.

Understanding Data Science
Data science plays an essential role in technology and progress. Algorithms
rely on information provided from data science tools to perform their tasks.
But what are algorithms?

An algorithm is a set of ordered procedures that are designed to complete a
certain activity or address a particular issue. An algorithm can be as simple
as a coin flip or as sophisticated as the Risch algorithm.4

Let’s take a very simple algorithm that updates a charting platform with the
necessary financial data. This algorithm would follow these steps:



1. Connect the server and the online data provider.

2. Copy the financial data with the most recent timestamp.

3. Paste the data into the charting platform.

4. Loop back to step 1 and redo the whole process.

That is the nature of algorithms: performing a certain set of instructions with
a finite or an infinite goal.

NOTE
The six data science steps discussed in the previous section can also be considered an
algorithm.

Trading strategies are also algorithms, as they have clear rules for the
initiation and liquidation of positions. An example of a trading strategy is
market arbitrage.

Arbitrage is a type of trading strategy that aims to profit from price
differences of the same asset quoted on different exchanges. These price
differences are anomalies that are erased by arbitrageurs through their buying
and selling activities. Consider a stock that is traded on exchange A and
exchange B in different countries (for simplicity reasons, the two countries
use the same currency). Naturally, the stock must trade at the same price on
both exchanges. When this condition does not hold, arbitrageurs come out of
their lairs to hunt.

They buy the stock on the cheaper exchange and immediately sell it on the
more expensive exchange, thus ensuring a virtually risk-free profit. These
operations are performed at lightning speed, as the price differences do not
last long due to the sheer power and speed of arbitrageurs. To clarify, here’s
an example:

The stock’s price at exchange A = $10.00.



The stock’s price at exchange B = $10.50.

The arbitrageur’s algorithm in this case will do the following:

1. Buy the stock on exchange A for $10.00.

2. Sell the stock immediately on exchange B for $10.50.

3. Pocket the difference ($0.50) and repeat until the gap is closed.

NOTE
Trading and execution algorithms can be highly complex and require specialized knowledge
and a certain market edge.

At this point, you should be aware of the two main uses of data science, data
interpretation and data prediction:

Data interpretation

Also commonly referred to as business intelligence or simply
data intelligence. The aim of deploying the algorithms is to
understand the what and how of the data.

Data prediction

Also commonly referred to as predictive analytics or simply
forecasting. The aim of deploying the algorithms is to
understand the what’s next of the data.

The main aim of using learning algorithms in financial markets is to predict
future asset prices so that you can make an informed trading decision that
results in capital appreciation at a success rate higher than random. I discuss
many simple and complex learning algorithms in this book. These learning
algorithms or models can be categorized as follows:

Supervised learning



Supervised learning algorithms are models that require
labeled data to function. This means that you must provide
data so that the model trains itself on these past values and
understands the hidden patterns so that it can deliver future
outputs when encountering new data. Examples of
supervised learning include linear regression algorithms and
random forest models.

Unsupervised learning

Unsupervised learning algorithms are models that do not
require labeled data to function. This means that they can do
the job with unlabeled data since they are built to find
hidden patterns on their own. Examples include clustering
algorithms and principal component analysis (PCA).

Reinforcement learning

Reinforcement learning algorithms are models that do not
require data at all, as they discover their environment and
learn from it on their own. In contrast to supervised and
unsupervised learning models, reinforcement learning
models gain knowledge through feedback obtained from the
environment via a reward system. Since this is generally
applied to situations in which an agent interacts with the
environment and learns to adopt behaviors that maximize
the reward over time, it may not be the go-to algorithm for
time series regression. On the other hand, it can be used to
develop a policy that can apply to time series data to create
predictions.

As you may have noticed, the book’s title is Deep Learning for Finance.
This means that in addition to covering other learning models, I will be
spending a sizable portion of the book discussing deep learning models for



time series prediction. Deep learning mostly revolves around the use of
neural networks, an algorithm discussed in depth in Chapter 8.

Deep supervised learning models (such as deep neural networks) can learn
hierarchical representations of the data because they include many layers,
with each layer extracting features at a different level of abstraction. As a
result, hidden and complex patterns are learned by deep models that may be
difficult for shallow (not deep) models to learn.

On the other hand, shallow supervised learning models (like linear
regression) have a limited ability to learn complex, nonlinear relationships.
But they require less computational effort and are therefore faster.

Data science algorithms are deployed pretty much everywhere nowadays, not
just in finance. Some applications include the following:

Business analytics: Optimizing pricing, predicting customer turnover, or
improving marketing initiatives using data analysis

Healthcare: Improving patient outcomes, finding innovative therapies,
or lowering healthcare costs through in-depth analysis of patient data

Sports: Analyzing sports data to enhance team performance, player
scouting, or bets

Research: Analyzing data to support scientific investigation, prove
theories, or gain new knowledge

When someone talks about data science applications, it helps to know what a
data scientist does. A data scientist must evaluate and understand complex
data in order to get insights and provide guidance for decision-making.
Common tasks involved in this include developing statistical models,
applying machine learning techniques, and visualizing data. They support the
implementation of data-driven solutions and inform stakeholders of their
results.



NOTE
Data scientists are different from data engineers. Whereas a data scientist is concerned
with the interpretation and analysis of data, a data engineer is concerned with the tools and
infrastructure needed to gather, store, and analyze data.

By now you should understand everything you need to get started with data
science. Let’s introduce the second main topic of the book: financial markets.

Introduction to Financial Markets and
Trading
The aim of this book is to present a hands-on approach to applying different
learning models to forecast financial time series data. It is therefore
imperative to gain solid knowledge of how trading and financial markets
work.

Financial markets are places where people can trade financial instruments,
such as stocks, bonds, and currencies. The act of buying and selling is
referred to as trading. The main, but not only, aim of buying a financial
instrument is capital appreciation. The buyer believes that the value of the
instrument is greater than its price; therefore, the buyer buys the stock (goes
long) and sells whenever they believe that the current price equals the
current value. In contrast, traders can also make money if the price of the
instrument goes down. This process is referred to as short selling and is
common in certain markets such as futures and foreign exchange (FX).

The process of short selling entails borrowing the financial instrument from a
third party, selling it on the market, and buying it back, before returning it to
the third party. Ideally, as you expect the price of the instrument to drop, you
would buy it back at a lower cost (after the price decrease) and give it back
to the third party at the market price, thus pocketing the difference. The
following examples explain these concepts further:

Long (buy) position example



A trader expects the price of Microsoft shares to increase
over the next couple of years due to improved technology
regulations, which would increase earnings. They buy a
number of shares at $250 and aim to sell them at $500. The
trader therefore has a long position on Microsoft stock (also
referred to as being bullish).

Short (sell) position example

A trader expects the price of Lockheed Martin shares to
decrease over the next couple of days due to signals from a
technical strategy. They sell short a number of shares at $450
and aim to buy them back at $410. The trader therefore has a
short position on Lockheed Martin stock (also referred to as
being bearish).

NOTE
Markets that are trending upward are referred to as bullish markets. Derived from the
word bull and the bull’s aggressive nature, being bullish is related to optimism, euphoria,
and greed.

Markets that are trending downward are referred to as bearish markets. Derived from the
word bear and its defensive nature, being bearish is related to pessimism, panic, and fear.

Financial instruments may come in their raw form (spot) or in a derivative
form. Derivatives are products that traders use to trade markets in certain
ways. For example, a forward or a futures contract is a derivative contract
where a buyer locks in a price for an asset to buy it at a later time.

Another type of derivative is an option. An option is the right, but not the
obligation, to buy a certain asset at a specific price in the future by paying a
premium now (the option’s price). When a buyer wants to buy the underlying
stock, they exercise their option to do so; otherwise, they may let the option
expire.



Trading activity may also occur for hedging purposes, as it is not limited to
just speculation. An example of this is Air France (the main French airline
company) hedging its business operations by buying oil futures. Buying oil
futures protects Air France from rising oil prices that may hurt its main
operations (aviation). The rising costs from using fuel to power the planes
are offset by the gains from the futures. This allows the airline to focus on its
main business. This whole process is called hedging.

As another example, let’s say an airline company expects to consume a
certain amount of fuel in the next six months, but it is worried about the
potential increase in oil prices over that period. To protect against this price
risk, the airline can enter into a futures contract to purchase oil at a fixed
price on a future date.

If the price of oil increases during that time, the airline would still be able to
purchase the oil at the lower, fixed price agreed upon in the futures contract.
If the price of oil decreases, the airline would be obligated to pay the higher,
fixed price, but the lower market price for the oil would offset that cost.

In this way, the airline can mitigate the risk of price fluctuations in the oil
market and stabilize its fuel costs. This can help the airline better manage its
budget and forecast its future earnings. As you can see, the aim is not to make
financial gains from the trading operations; it is simply to stabilize its costs
by locking in a known price for oil.

Typically, financial instruments are grouped into asset classes based on their
type:

Stock markets

A stock market is an exchange place (electronic or physical)
where companies issue shares of stock to raise money for
business. When people buy shares of a company’s stock, they
become part owners of that company and may become
entitled to dividends according to the company’s policy.
Depending on the stock, they can also gain the right to vote
in board meetings. 



Fixed income

Governments and businesses can borrow money in the fixed
income market. When a person purchases a bond, they are
effectively lending money to the borrower, who has agreed
to repay the loan along with interest. Depending on the
borrower’s creditworthiness and the prevailing interest
rates, the bond’s value may increase or decrease.

Currencies

The FX market, also referred to as the currencies market, is a
place where people may purchase and sell various
currencies. The value of a nation’s currency can increase or
decrease based on a variety of variables, including the
economy, interest rates, and the nation’s political stability.

Commodities

Agricultural products, gold, oil, and other physical assets
with industrial or other uses are referred to as commodities.
They typically offer a means to profit from global economic
trends as well as being a form of hedge against inflation.

Alternative investments

In the world of finance, nontraditional investments such as
real estate, private equity funds, and hedge funds are
referred to as alternative asset classes. These asset classes
have the potential to offer better returns than traditional
assets and offer the benefit of diversity, but they also tend to
be less liquid and may be more difficult to evaluate.



It’s crucial to remember that each of these asset classes has unique qualities
and various levels of risk, so investors should do their homework before
investing in any of these assets.

Financial markets allow businesses and governments to raise the money they
need to operate. They also allow investors to make money by speculating and
investing in interesting opportunities. Trading activities provide liquidity to
the markets. And the more liquid a market is, the easier and less costly it is to
trade in it. But how do markets really work? What causes the prices to go up
and down?

Market microstructure is the research that deals with the trading of
securities in financial markets. It looks at how trading works as well as how
traders, investors, and market makers behave. Understanding price formation
and the variables that affect trading costs is the aim of market microstructure
research.

Order flow, liquidity, market effectiveness, and price discovery are just a
few of the many subjects covered by market microstructure research.
Additionally, this research looks at how various trading techniques, including
limit orders, market orders, and algorithmic trading, affect market dynamics.
Liquidity is possibly the most important market microstructure concept. It
describes how easily an asset may be bought or sold without materially
changing its price. Liquidity can vary among financial instruments and over
time. It can be impacted by a number of variables, including trading volume
and volatility.

Finally, I want to discuss another important area of market
microstructure: price discovery. This refers to the method used to set prices
in a market. Prices can be affected by elements like order flow, market maker
activity, and the presence of various trading methods.

Imagine you want to buy a sizable number of shares in two stocks: stock A
and stock B. Stock A is very liquid, while stock B is very illiquid. If you
want to execute the buy order on stock A, you are likely to get filled at the
desired market price with minimal to no impact. However, with stock B, you
are likely to get a worse price, as there are not enough sellers willing to sell



at your desired buy price. Therefore, as you create more demand from your
orders, the price rises to match the sellers’ prices, and thus, you will buy at a
higher (worse) price. This is the impact liquidity can have on your trading.

Applications of Data Science in Finance
Let’s begin peeking into the main areas of data science for finance. Every
field has its challenges and problems that need simple and complex
solutions. Finance is no different. Recent years have seen a gigantic increase
in the use of data science to improve the world of finance, from the corporate
world to the markets world. Let’s discuss some of these areas:

Forecasting the market’s direction

The aim of using data science on financial time series is to
uncover patterns, trends, and relationships in historical
market data that can be used to make predictions about
future market movements.

Financial fraud detection

Financial transactions can be examined for patterns and
anomalies using data science models, which attempt to spot
possible fraud. One way to use data science to stop financial
fraud is to examine credit card transaction data for unusual
or suspicious patterns of expenditures, such as numerous
minor purchases made in quick succession or significant or
frequent purchases made from the same store.

Risk management

Data science can be used to examine financial data and spot
potential risks to portfolios. This can involve analyzing vast
amounts of historical data using methods like statistical
modeling, machine learning, and artificial intelligence to



spot patterns and trends that can be used to forecast risk
factors.

Credit scoring

Data science can be used to examine financial data and
credit history, forecast a person’s or a company’s
creditworthiness, and make loan decisions. Utilizing
financial data, such as income and credit history, to forecast
a person’s creditworthiness is one example of applying data
science for credit score research. This can involve using
techniques such as statistical modeling and machine
learning to develop a prediction model that can use a
number of indicators, such as prior credit performance,
income, and job history, to evaluate a person’s likelihood of
repaying a loan.

Natural language processing

To make better judgments, NLP analyzes and extracts
insights from unstructured financial data, such as news
articles, reports, and social media posts. NLP uses the
sentiment of the text to extract possible trading
opportunities stemming from the intentions and feelings of
market participants and experts. NLP falls into the field of
sentiment analysis (with help from machine learning).

Summary
The data science field keeps growing every day with the ongoing
introduction of new techniques and models for improving data interpretation.
This chapter provided a simple introduction to what you need to know about
data science and how you can use it in finance.



The next three chapters present the knowledge in statistics, probability, and
math that you may need when trying to understand data science models. Even
though the aim of the book is to present a hands-on approach to creating and
applying the different models using Python, it helps for you to understand
what you’re dealing with instead of blindly applying them to data.

If you need a Python refresher, see Chapter 6, which is a basic introduction.
It sets the foundation for what’s to come next in the book. You do not need to
become a Python master, but you must understand the code and what it refers
to, and especially how to debug and detect errors in the code.

1  OHLC refers to the four essential pieces of market data: open price, high price, low price, and
close price.

2  The reason I am saying “implied” is that stationarity must be verified through statistical checks
that you will see in Chapter 3. At the moment, the assumption is that differencing the data gives
stationary time series.

3  The GDP measure is discussed in more detail in Chapter 12.

4  The Risch algorithm is an indefinite integration technique used to find antiderivatives, a concept
you will see in Chapter 4.



Chapter 2. Essential Probabilistic
Methods for Deep Learning

The rise and accessibility of technology have made it possible for everyone to deploy
machine learning and deep learning algorithms for data analysis and optimization. But
unfortunately, a large number of users do not understand the basics of the different
learning models. This makes machine learning nothing short of a mystery box to them,
which is a recipe for disaster.

Understanding fundamental concepts in probability, statistics, and math is essential for
understanding and mastering data as well as for creating models that seek to interpret and
forecast data. This chapter presents the basics of probability that are either directly or
indirectly related to the algorithms. Note that you are unlikely to use these probability
concepts in your everyday life, but it’s important to know where some algorithms draw
their assumptions from.

A Primer on Probability
Probability is all about describing random variables and random events. The world is
filled with randomness, and the best way to find your way through chaos is to try to
explain it using probabilistic methods. Granted, the phrase explain chaos may be an
oxymoron, as chaos cannot really be explained, but we humans cannot relinquish control
over uncertain events. This is why we have developed tools to make sense out of our
scary world.

You may wonder what is the use of understanding the basics of probability when trying
to develop machine learning algorithms for financial trading. This is a reasonable
question, and you must know that the foundations of a discipline do not necessarily
resemble it.

For example, to become a pilot you have to study aerodynamics, which is filled with
technical concepts that do not resemble the final skill. This is similar to what is being
done in this chapter; by studying probabilistic essentials, you give your brain a proper
warm-up for what’s to come.

Knowing the utility of what you are learning should give you a motivation boost. Here
are some key probability topics that are important for machine learning:

Probability distribution functions



The possibility of seeing various outcomes of a random variable is
described by a probability distribution. For many machine learning
techniques, it is essential to comprehend the features and attributes of
typical probability distributions. Probability distribution functions also
describe different types of time series data, which in turn helps in
choosing the right algorithm. For simplicity and coherence, this topic
is discussed in Chapter 3.

Hypothesis testing

Hypothesis testing is used to establish whether a population-based
assertion is more likely to be correct or incorrect based on a sample of
data. Stationarity tests use hypothesis testing and are discussed in
Chapter 3.

Decision trees

Decision trees are a type of machine learning algorithm that borrows
from probabilistic concepts such as conditional probability, a concept
covered in this chapter. For more detail on decision trees, see
Chapter 7.

Information theory

Information theory is the complex study of how information is
quantified, stored, and transmitted. It is incorporated into numerous
machine learning techniques, including decision trees. It is also used
in a type of nonlinear correlation measure called the maximal
information coefficient, which is discussed in Chapter 3.

Introduction to Probabilistic Concepts
The most basic piece of probabilistic information is a random variable, which is an
uncertain number or outcome. Random variables are used to model events that are
considered uncertain, such as the future return of a currency pair.

A random variable is either discrete or continuous. A discrete random variable has a
finite set of values, while a continuous random variable has values within a certain
interval. Consider the following examples to clarify things:



An example of a discrete random variable would be the result of rolling a die. The
outcomes are limited by the following set: {1, 2, 3, 4, 5, 6}.

An example of a continuous random variable would be the daily price returns of
EURUSD (the exchange rate of one euro expressed in US dollars).

Random variables are described by probability distributions, which are functions that
give the probability of every possible value of these random variables. Generally, a
histogram is used to show the probability. Histogram plotting is discussed in Chapter 3.

At any moment, the probability that a certain event will unfold is between 0 and 1. This
means that probability is assigned to random variables on a scale between 0 and 1 such
that a probability of 0 represents zero chance of occurrence and a probability of 1
represents a certainty of occurrence.

You can also think of this in percentage terms, which range from 0% to 100%. Values
within the two numbers are valid, which means that you can have a 0.5133 (51.33%)
probability of a certain event occurring. Consider rolling a die that has six sides. What is
the probability of getting a 3 knowing that the die is not manipulated in any way?

As the die has six sides, there are six equal probabilities for every outcome, which
means that for any outcome, the probability is found as follows:

P (x) = 1
6 = 0.167

with P(x) designating the probability of event x. This gives the answer to the question:

P (3) = 1
6

= 0.167

When a die is rolled, there can only be one result. It cannot give a 3 and a 4
simultaneously, since one side has to dominate the other. This is the concept of mutual
exclusivity. Mutually exclusive events (such as getting a 3 or getting a 4 in a die roll)
eventually sum to 1.

Take a look at the following example:

P (1) = 1
6 = 0.167

P (2) = 1
6 = 0.167

P (3) = 1
6

= 0.167

P (4) = 1
6 = 0.167

P (5) = 1
6 = 0.167

P (6) = 1
6

= 0.167



Summing all these mutually exclusive events gives 1, which means that the sum of the
possible probabilities in a six-sided die is as follows:
P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1

NOTE
Stating that a random variable has a 0.8 probability of occurring is the same as stating that the same
variable has a 0.2 probability of not occurring.

Probability measures can be conditional or unconditional. A conditional probability is
when the occurrence of an event impacts the probability that another event occurs. For
example, the probability of a sovereign interest rate hike given positive employment data
is an example of a conditional probability. The probability of event A given the
occurrence of event B is denoted by the mathematical notation P(A|B).

In contrast, unconditional probability is not dependent on other events. Taking the
example of conditional probability, you can formulate an unconditional probability
calculation that measures the probability of an interest rate hike regardless of other
economic events.

Probabilities have specific addition and multiplication rules with their own
interpretations. Let’s take a look at the formulas before seeing an example. The joint
probability of the realization of two events is the probability that they will both occur. It
is calculated using the following formula:

P(AB) = P(A|B) × P(B)

That formula says the probability of occurrence for both A and B is the probability that
A occurs given B occurs multiplied by the probability that B occurs. Therefore, the right
side of the equation multiplies a conditional probability by an unconditional probability.

The addition rule is used to determine the probability that at least one of the two
outcomes will occur. This works in two ways: one deals with mutually exclusive events,
and the other deals with events that are not mutually exclusive.

If the events are not mutually exclusive, then to avoid double counting, the formula is:
P(A or B) = P(A) + P(B) − P(AB)

If the events are mutually exclusive, then the formula is simplified to the following:
P(AB) = 0

P(A or B) = P(A) + P(B) − 0



P(A or B) = P(A) + P(B)

Notice how in mutually exclusive events, it’s either A or B that can be realized, and
therefore, the probability that both of them will occur is zero. To understand why you
need to subtract the joint probability of A and B, take a look at Figure 2-1.

Figure 2-1. The addition rule of probability

Notice how the probability of either A or B occurring while they are mutually exclusive
must not include their joint probability. Let’s now look at the concept of independent
events.

Independent events are not tied to one another (e.g., rolling the die twice). In this case,
the joint probability is calculated as follows:
P(AB) = P(A) × P(B)

Independent events therefore refer to instances where the occurrence of one event has
absolutely zero impact on the occurrence of the other event(s). Let’s see an example to
validate this concept. Consider a simple coin toss. The probability of getting heads does
not depend on what you got in the previous coin toss. Therefore, the probability of
getting heads is always 0.50 (50%). To take things further, what is the probability of
getting only heads after five coin tosses?

As the probability of each event is independent from the previous or the next one, the
formula is as follows:

P(x) = 0.50 × 0.50 × 0.50 × 0.50 × 0.50 = 0.03125 = 3.125%

The expected value of a random variable is the weighted average of the different
outcomes. Therefore, the expected value is really another way of referring to the mean.
Mathematically, the expected value is as follows:



E (X) = ∑n
i=1 (P (xi)xi)

Take a look at Table 2-1 and try to calculate the expected value of the next employment
numbers in a certain month of the year.

Table 2-1. Employment numbers

Nonfarm payrolls Probability

300,000 0.1

400,000 0.3

500,000 0.5

600,000 0.1

Nonfarm payrolls refer to a monthly report issued by the US Department of Labor that
gives information on the total number of paid employees in the nation, excluding those
employed in the agriculture sector, as well as those employed by the government and
nonprofit organizations.

From Table 2-1, economists assume there is a 50% probability that there will be a
500,000 increase in the total number of paid employees and a 30% probability that there
will be a 400,000 increase in the total number of paid employees. The expected value is
therefore:

Therefore, the number that represents the economists’ consensus is 460,000, as it is the
closest weighted value to most forecasts. It is the value that represents the dataset.

NOTE
The main takeaways from this section are as follows:

Probability describes random variables and random events. It is a value between 0 and 1.

Probabilities of events may be grouped together to form more complex scenarios.

The expected outcome is the weighted average of every probability in the designated universe.

E(X) = (300, 000 × 0.1) + (400, 000 × 0.3) + (500, 000 × 0.5) + (600, 000 × 0.1)

= 460, 000



Sampling and Hypothesis Testing
When populations are large, representative samples are taken so that they become the
main describers of data. Take the United States. Its democratic system means that the
people hold the right to decide their own fate, but it’s not possible to go to every person
and ask them for their detailed opinions on every topic out there. This is why elections
are held and representatives are elected to act in the people’s name.

Sampling refers to the act of selecting samples of data within a larger population and
making conclusions about the statistical properties of the population. There are a few
different methods of sampling. The best-known ones are the following:

Simple random sampling

With simple random sampling, each element in the population has an
equal chance of being selected for the sample. This can be a random
number generated on a labeled population where each individual has
the same probability of being selected.

Stratified sampling

With stratified sampling, the population is divided into groups based
on some characteristic, and then a simple random sample is taken
from each group in proportion to its size.

Cluster sampling

With cluster sampling, the population is divided into clusters, and a
random sample of clusters is selected. Then, all elements within the
selected clusters are included in the sample.

Systematic sampling

With systematic sampling, an element is selected by choosing every
nth individual from the population, where n is a fixed number. This
means that it is not random but specified in advance.

A rule of thumb is that the more data you acquire, the better the metrics reflect the
population. Sampling is extremely important in the world of machine learning, as quite
often you are taking samples of data to represent the true population. For example, when
performing a backtest on a trading strategy, you will be required to split the whole



dataset into a training sample and a testing sample where the first is the sample of data
on which the algorithm understands its structure (also known as the in-sample set), and
the second is the sample of data on which the algorithm tests its predictive power (also
known as the out-of-sample set).

Another example of using sampling is cross validation. With this technique, a dataset is
divided into two or more subsets. The model is trained using one subset, and its results
are tested using the other subset(s). For various subsets of the data, this procedure is
repeated numerous times, and then the model’s average performance is determined.

These terms are discussed in more depth in the coming chapters. For now, you should
understand that the concept of sampling is very important in machine learning.

Sampling is not perfect, and errors may be possible, just as in any other estimation
method. Sampling error refers to the difference between the statistic of the sample and
the statistic of the population (if it’s known). A statistic is a metric that describes the
analyzed dataset (an example of this would be the mean, a statistic you will see in
greater detail in Chapter 3). Now, what is the minimum sample size you should have to
be able to make inferences about the population? The rule of thumb is to have a minimum
of 30 observations, and the more the merrier. This brings the discussion to the central
limit theorem, which states that random samples drawn from a population will approach
a normal distribution (a probability distribution that is symmetric and bell shaped) as the
sample gets larger.

The central limit theorem makes it simple to apply inferences and conclusions as
hypothesis testing goes well with a normal distribution. Before proceeding to hypothesis
testing, let’s look at confidence intervals, which are ranges of values where the
population parameter is expected to be. Confidence intervals are generally constructed
by adding or subtracting a factor from the point estimate. For example, given a sample
mean x̄, a confidence interval can be constructed as follows:
x ± (reliability factor × standard error)

Let’s try to understand the calculation step by step. The sample mean is an estimate of the
population and is calculated because it is not possible to calculate the population mean.
Therefore, by performing a random sample, the assumption is that the sample mean
should be equal to the population mean. However, in real life, things may differ, and this
is why you should construct a confidence interval using probabilistic methods.



NOTE
The significance level is the threshold of the confidence interval. For example, a confidence interval of
95% means that with 95% confidence, the estimate should lie within a certain range. The remaining 5%
probability that it does not is the significance level (generally marked with the letter alpha, α).

A reliability factor is a statistical measure that depends on the distribution of the
estimate and the probability that it falls within the confidence interval. For the sake of
simplicity, let’s assume that the variance of the population is normal and the population
is normally distributed. For a significance level of 5% (thus, a confidence interval of
95%), the reliability factor is 1.96 in this case (the way you get this number is less
relevant to the discussion).

The standard error is the standard deviation of the sample. Standard deviation is
discussed in greater depth in Chapter 3; for now, just know that it represents the degree
of fluctuation of the different values around the mean. Standard error is found using the
following formula:
s = σ

√n

σ is the population standard deviation

√n is the square root of the population number

It is also worth knowing that for a 1% significance level, the reliability factor is 2.575,
and for a 10% significance level, the reliability factor is 1.645. Let’s take a look at a
practical example to make sense of all this math.

Consider a population of 100 financial instruments (bonds, currency pairs, stocks,
structured products, etc.). The mean annual return of these instruments is 1.4%. Assuming
a population standard deviation of 4.34%, what is the confidence interval at a 1%
significance level (99% confidence interval) of the mean?

The answer is determined by just plugging the values into the formula as follows:

1.4%±2.575 × 4.34%
√100

= 1.4%±1.11%

This means that the confidence interval is between (0.29%, 2.51%).



NOTE
If the sample size is small and/or the population standard deviation is unknown, a t-distribution may be a
better choice than a normal distribution.

The t-distribution is a type of probability distribution used to model the distribution of a sample mean
when the sample size is small and/or when the population standard deviation is unknown. It resembles the
normal distribution in shape but with heavier tails, which represents the uncertainty associated with smaller
sample sizes.

The next stop is hypothesis testing, a key probabilistic technique of getting conclusions
on samples of data. This part is extremely important, as it’s used in a lot of statistical
analyses and models.

In statistics, hypothesis testing is a technique for drawing conclusions about a
population from a small sample of data. It entails developing two competing hypotheses,
the null hypothesis and the alternative hypothesis, about a population parameter and
then figuring out which is more likely to be accurate using sample data.

For example, say that a financial analyst is evaluating two portfolios from a risk
perspective. They formulate two hypotheses:

The null hypothesis states that there is no significant difference in the volatility of
the two portfolios.

The alternative hypothesis states that there is a significant difference in the
volatility of the two portfolios.

The hypothesis is then tested using statistical analysis to determine whether the
difference in volatility is statistically significant or due to pure chance.

Following the definition of null and alternative hypotheses, a test statistic is computed
using the sample data. To assess the result’s significance, the test statistic is then
compared to a critical value drawn from a standard distribution. The null hypothesis is
rejected and the alternative hypothesis is accepted if the test statistic is inside the crucial
zone. The null hypothesis is not rejected and the conclusion that there is insufficient
evidence to support the alternative hypothesis is reached if the test statistic does not fall
inside the crucial zone.

This is all a fancy way of saying that hypothesis testing basically involves creating two
opposing scenarios, running a probability check, and then deciding which scenario is
more likely true. Hypothesis testing can take two forms:

One-tailed test



An example of this would be to test if the return on certain financial
instruments is greater than zero.

Two-tailed test

An example of this would be to test if the return on certain financial
instruments is different from zero (meaning that it can be either
greater than or less than zero). Hypothesis tests are generally two-
tailed tests.

The null hypothesis is the one that you want to reject and therefore is tested in the hopes
of getting rejected and accepting the alternative scenario. A two-tailed test takes the
following general form:
H0 : x = x0

Ha : x ≠ x0

As the alternative scenario allows for values above and below zero (which is the stated
level in the null hypothesis), there should be two critical values. Therefore, the rule of a
two-tailed test is to reject the null hypothesis if the test statistic is greater than the upper
critical value or less than the lower critical value. For instance, for a normally
distributed dataset, the test statistic is compared with the critical values (at 5%
significance level) at +1.96 and –1.96. The null hypothesis is rejected if the test statistic
falls outside the range of +1.96 and –1.96.

The process of hypothesis testing entails the calculation of the test statistic. This is done
by comparing the point estimate of the population parameter with the hypothesized value
of the null hypothesis. Both are then scaled by the standard error of the sample. The
mathematical representation is as follows:

Test statistic = Sample statistic − Hypothesized value
Standard error

An important consideration in hypothesis testing is that the sample may not be
representative, which leads to errors in describing the population. This gives rise to two
types of errors:

Type I error

This error occurs when rejecting the null hypothesis even though it is
true.

Type II error



This error occurs when failing to reject the null hypothesis even
though it is false.

Intuitively, the significance level is the probability of making a type I error. Remember
that if α = 5%, then there is a 5% chance of rejecting a true null hypothesis by mistake.
An example would make things clearer.

Consider an analyst doing research on the annual returns of a long–short portfolio over a
period of 20 years. The mean annual return was 1% with a standard deviation of 2%.
The analyst’s opinion is that the mean annual return is not equal to zero, and they want to
construct a 95% confidence interval for this and then construct a hypothesis test. You
would proceed as follows:

1. State the variables. The size of the sample is 20, the standard deviation is 2%, and
the mean is 1%.

2. Calculate the standard error, which in this case is 0.44% as per the formula.

3. Define the critical values for the 95% confidence interval. The critical values are
+1.96 and –1.96. To find the confidence interval, add and subtract the margin of
error from the sample mean. The confidence interval is therefore (0.13%, 1.86%).

4. Specify the null hypothesis, which is, according to the analyst’s opinion, a two-
tailed test. The null hypothesis is that the annual return equals zero. You should
reject it if the test statistic is less than –1.96 or greater than +1.96.

5. Using the formula to find the test statistic gives 2.27. Therefore, the null hypothesis
is rejected.

One more important metric to discuss is the p-value. The p-value is the probability of
seeing a test statistic more extreme than the one seen in the statistical test given that the
null hypothesis is true. Comparing a p-value to a significance level—typically 0.05—
allows you to understand it. The result is deemed statistically significant, and the null
hypothesis is rejected in favor of the alternative hypothesis if the p-value is less than or
equal to the significance level.

If the p-value is less than the significance level of 5%, it means that there is a 5% chance
you will see a test statistic as extreme as the current one if the null hypothesis is true.
Another way of defining the p-value is to consider it as being the smallest significance
level for which the null hypothesis can be rejected.



NOTE
The main takeaways from this section are as follows:

Sampling refers to the collection of data within a population, with the aim of making conclusions
about the statistical properties of the aforementioned population.

Hypothesis testing is a technique for drawing conclusions about a population from a small sample of
data.

A Primer on Information Theory
Information theory is a complex field in abstract mathematics that is closely related to
probability. It is the study of how information is quantified, stored, and transmitted.
There are three conditions of occurrence when it comes to an event:

Uncertainty

If the event has not occurred yet

Surprise

If the event has just occurred

Information

If the event has occurred in the past

One of the key concepts in information theory is entropy, which is the level of
uncertainty or randomness in a message or information source and describes the degree
to which an event or message is unexpected. In contrast, information gain measures the
reduction in entropy (surprise) when receiving new information.

Basically, information theory describes the surprise of events. When an event has a low
probability of occurrence, it has more surprise and hence more information to provide.
Similarly, when an event has a high probability of occurrence, it has less surprise and
therefore less information. What you should retain from this is that the amount of
information learned from an unlikely event is greater than the amount of information
learned from a likely event.

Before starting to dig a little deeper into the field of information theory, it is important to
understand what a logarithm is and, for that matter, what an exponent is. A general
exponential function takes a certain constant or a variable to a certain power:



f (x) = ax

In other words, the exponent of a number is the number of times you will multiply it by
itself:

43 = 4 × 4 × 4 = 64

A logarithm is the opposite of an exponent, and its aim is to find the exponent—knowing
4 and 64 from the previous example and finding 3:
log4 (64) = 3

A logarithm therefore is the answer to how many of one number to multiply to get another
number. Since they are literally inverse functions, you can use them together to simplify
or even solve for x. Take the following example:

log4 (x) = 3

The objective here is to find x given the logarithmic function. The first step is simply to
use the exponential function on one side as you want it to cancel out the logarithm on the
right (inverse functions cancel each other out). This gives us the following result:

4log4(x) = 43

x = 43

x = 64

Logarithms can have different bases. However, the most used logarithm has a base of 10.
In computer science, base 2 logarithms represent bits (binary digits). Therefore,
information is represented as bits. The formula of information gain is as follows:
H (xi) = −log2 (P (xi))

Let’s assume two variables x and y, where x has a probability of 1 (100% and therefore
certain) and y has a probability of 0.5 (50% and therefore mostly random). What would
be the information value in these two cases? The answer is as follows:
H (x) = −log2 (P (1)) = 0

H (y) = −log2 (P (0.5)) = 1

So the certain event has an information value of zero, and the one that has a 50-50 chance
of realizing has an information value of 1. What about the very unlikely event z that has a
probability of 0.05 (5%)?
H (z) = −log2 (P (0.05)) = 4.32

A negative relationship between probability and information is one of the principles of
information theory. Entropy and information are related concepts, but they have different



meanings and applications.

Entropy is a metric used to assess how chaotic or random a system is. Entropy describes
how uncertain or unpredictable a signal is. The degree of disorder or unpredictability in
the system or communication increases as entropy increases.

Information is the decrease in entropy or uncertainty that happens as a result of
receiving a signal. A signal’s ability to lessen the receiver’s uncertainty or entropy
increases with its informational content.

NOTE
Entropy is maximized whenever all the events are equally likely.

Entropy is calculated using the following formula:

S (xn) = ∑n
i=1 (−log2 (P (xi)).(P (xi)))

Therefore, entropy is the average of the sum of logarithms times their respective
probabilities.

Now let’s discuss the final concept of the section, information gain. The reduction in
entropy caused by changing a dataset is calculated via information gain.

TIP
Information gain is one of the key concepts you will see in Chapter 7 with decision trees, and therefore,
you may want to refer back to this section after reading that chapter.

The typical way to calculate information gain is by comparing the entropy of a dataset
before and after a transformation. Recall that entropy is maximized when all the
outcomes of a random event have the same probability. This can also be presented as a
distribution, where a symmetrical distribution (such as the normal distribution) has high
entropy and a skewed distribution has low entropy.

NOTE
Minimizing entropy is related to maximizing information gain.



Before closing this introductory section on information theory, let’s look at the concept of
mutual information. This measure is calculated between two variables, hence the name
mutual, and it measures the reduction in uncertainty of a variable given another variable.
The formula for mutual information is as follows:
MI(x, y) = S(x) − S(x|y)

MI(x, y) is the mutual information of x and y

S(x) is the entropy of x

S(x|y) is the conditional entropy of x and y

Mutual information therefore measures the dependence between variables. The greater
the mutual information, the bigger the relationship between the variables (a value of zero
represents independent variables). Keep this concept in mind, as you will see it in
“Correlation”. This is because mutual information can also be a measure of nonlinear
correlation between variables.

NOTE
To summarize, here is what you need to retain in information theory to have a basic knowledge of what’s
to come:

Information theory uses concepts from probability to calculate information and entropy, which are
used in machine learning models and other calculations (such as correlation).

Information is the decrease in entropy or uncertainty that happens as a result of receiving a signal.
Entropy is a metric used to assess how chaotic or random a system is.

Mutual information is a measure of dependence between two random variables. It can also be used
to calculate the correlation between the two.

Tools from information theory are used in some machine learning models such as decision trees.

Summary
An understanding of probability presents a basic framework before moving to more
advanced topics. This chapter skimmed over the concepts that you may encounter when
dealing with machine and deep learning models. It is important to understand how
probability is calculated and how hypothesis testing is performed (even though, in
reality, algorithms will do this for you).



The next chapter is extremely important and presents the statistical knowledge you need,
not just for machine learning but also for financial trading and even complex data
analysis.



Chapter 3. Descriptive Statistics
and Data Analysis

Descriptive statistics is a field that describes data and extracts as much
information as possible from it. Basically, descriptive statistics can act like
the representative of the data since it summarizes its tendencies, behavior,
and trends.

Trading and analysis borrows a lot from the metrics used in descriptive
statistics. This chapter covers the main concepts of descriptive statistics and
data analysis. I always found that the best educational tools are practical
examples, so I will explain these concepts using an example of an economic
time series, the consumer price index (CPI).

The CPI measures the prices paid monthly by urban consumers for a
selection of products and services; every month a new observation is
released to the public, thus forming a continuous time series. The inflation
rate between any two time periods is measured by percentage changes in the
price index. For example, if the price of bread last year was $1.00 and the
price today is $1.01, then the inflation is 1.00%. The CPI is typically
released on a year-on-year basis, which means that it is reported as the
difference between the current monthly observation and the observation 12
months ago.

Import the CPI data as follows:

# Importing the required library

import pandas_datareader as pdr

# Setting the beginning and end of the historical data

start_date = '1950-01-01'

end_date   = '2023-01-23'

# Creating a dataframe and downloading the CPI data

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

# Printing the latest five observations of the dataframe

print(cpi.tail())



# Checking if there are nan values in the CPI dataframe

count_nan = cpi['CPIAUCSL'].isnull().sum()

# Printing the result

print('Number of nan values in the CPI dataframe: ' + str(count_nan))

# Transforming the CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

# Dropping the nan values from the rows

cpi = cpi.dropna()

NOTE
You can download all the code samples throughout the book from the book’s dedicated
GitHub page.

The year-on-year change is the most observed transformation on the CPI, as
it gives a clear and simple measurement of the change in the overall price
level over a sufficient period of time to account for short-term swings and
seasonal impacts.

Hence, the yearly change of the CPI serves as a gauge of the general trend in
inflation. It is also simple to comprehend and compare across other nations
and historical times, making it a popular measure among policymakers and
economists (despite the flaw of element weightings in the baskets between
countries). The following sections show how to make statistical sense of
time series data using the CPI example.

Measures of Central Tendency
Central tendency refers to the metrics that summarize the dataset into a value
that can represent them. The best-known central tendency measure is the
mean (average). The mean is simply the sum of the values divided by their
quantity. It is the value that represents the data the best. The mathematical
formula of the mean is as follows:

x = 1
n
∑i=1

n xi = 1
n

(x1 +...+xn)

https://oreil.ly/5YGHI


Let’s take a simple example of two datasets. Suppose you want to calculate
the mean on dataset A and dataset B. How would you do it?

Dataset A = [1, 2, 3, 4, 5]

Dataset B = [1, 1, 1, 1]

Dataset A contains five values (quantity) with a total sum of 15. Using the
preceding formula, the mean is equal to 3. Dataset B contains four values
with a total sum of 4. This means that the mean is equal to 1.

Figure 3-1 shows the US CPI year-on-year values since 2003. The higher
dashed line is the monthly mean calculated since 2003. The lower dashed
line symbolizes zero, and below it are deflationary periods.

NOTE
When all the values in a dataset are the same, the mean is the same as the values.



Figure 3-1. US CPI year-on-year values since 2003, with the higher dashed line representing the
mean

You can create Figure 3-1 by using the following code:

# Calculating the mean of the CPI over the last 20 years

cpi_latest = cpi.iloc[–240:]

mean = cpi_latest["CPIAUCSL"].mean()

# Printing the result

print('The mean of the dataset: ' + str(mean), '%')

# Importing the required library

import matplotlib.pyplot as plt

# Plotting the latest observations in black with a label

plt.plot(cpi_latest[:], color = 'black', linewidth = 1.5,  

         label = 'Change in CPI Year-on-Year')

# Plotting horizontal lines that represent the mean and the zero 

threshold

plt.axhline(y = mean, color = 'red', linestyle = 'dashed',  

         label = 'Mean')

plt.axhline(y = 0, color = 'blue', linestyle = 'dashed', linewidth = 1)

plt.grid()

plt.legend()

The output of the mean should be as follows.



The mean of the dataset: 2.49 %

This means that the average yearly inflation is around 2.50%. Even though
the Federal Reserve does not have a clearly defined inflation target, it is
generally believed that there is a consensus to maintain the annual change in
inflation at around 2.00%, which is not far from the historical observations.
With the high inflation numbers recorded since 2021 as a result of political
and economic turmoil, it becomes necessary to revert back to the mean to
stabilize the current situation. This example gives a numerical value to what
is referred to as normality (~2.50%) since 2003.

Clearly, with the high inflation numbers (~6.00%) around the beginning of
2023, the situation is a bit far from normality, but how far? This question is
answered in the next section, which discusses measures of variability. For
now, let’s continue the discussion on central tendency.

The next measure is the median, which in simple terms is the value that splits
the dataset into two equal sides. In other words, if you arrange the dataset in
an ascending order, the middle value is the median. The median is used
whenever there are many outliers or there is skew in the distribution (which
may bias the mean and make it less representative).

There are generally two topics associated with calculating the median. The
first one relates to a dataset that contains an even number of values (e.g., 24
observations), and the second one relates to a dataset that contains an uneven
number of values (e.g., 47 observations):

Calculating the median of an even dataset

If the arranged dataset has an even number of values, the
median is the average of the two middle values. 

Calculating the median of an uneven dataset

If the arranged dataset has an uneven (odd) number of
values, the median is simply the middle value. 



Let’s take a simple example of two datasets. Suppose you want to calculate
the median on dataset A and dataset B. How would you do it?

Dataset A = [1, 2, 3, 4, 5]

Dataset B = [1, 2, 3, 4]

Dataset A contains five values, which is an uneven number. This means that
the middle value is the median. In this case, it is 3 (notice how it is also the
mean of the dataset). Dataset B contains four values, which is an even
number. This means that the average between the two middle values is the
median. In this case, it is 2.5, which is the average between 2 and 3.

Figure 3-2 shows the US CPI year-on-year values since 2003. The higher
dashed line is the monthly median calculated since 2003. The lower dashed
line symbolizes zero. Basically, this is like Figure 3-1, but instead of the
mean, the median is plotted.

Figure 3-2. US CPI year-on-year values since 2003, with the higher dashed line representing the
median

You can create Figure 3-2 by using the following code:



# Calculating the median

median = cpi_latest["CPIAUCSL"].median()  

# Printing the result

print('The median of the dataset: ' + str(median), '%')

# Plotting the latest observations in black with a label

plt.plot(cpi_latest[:], color = 'black', linewidth = 1.5,  

         label = 'Change in CPI Year-on-Year')

# Plotting horizontal lines that represent the median and the zero 

threshold

plt.axhline(y = median, color = 'red', linestyle = 'dashed',  

            label = 'Median')

plt.axhline(y = 0, color = 'blue', linestyle = 'dashed', linewidth = 1)

plt.grid()

plt.legend()

The output of the median should be as follows:

The median of the dataset: 2.12 %

Clearly, the median is less impacted by the recent outliers that are coming
from unusual environments. The median is around 2.12%, which is more in
line with the implied target of 2.00%.

NOTE
Remember that Chapter 6 will give you all you need to know about the Python snippets
you are seeing in this chapter, so you don’t need to worry if you are missing out on the
coding concepts.

The last central tendency measure in this section is the mode, which is the
value that is the most frequently observed (but also the least used in data
analysis).

Let’s take a simple example of two datasets. Suppose you want to calculate
the mode on the following datasets. How would you do it?

Dataset A = [1, 2, 2, 4, 5]

Dataset B = [1, 2, 3, 4]



Dataset C = [1, 1, 2, 2, 3]

Dataset A contains two times the value 2, which makes it the mode. Dataset
B doesn’t have a mode, as every value is observed once. Dataset C is
multimodal since it contains multiple modes (which are 1 and 2).

NOTE
The mode is useful with categorical variables (like credit rankings) as opposed to
continuous variables (like price and returns time series).

You are unlikely to use the mode to analyze time series, as the mean and the
median are more useful. Here are a few examples that use the mean and the
median in financial analysis:

Calculating a moving mean (average) on price data to detect an
underlying trend. You will see more about moving averages in
Chapter 5.

Calculating a rolling median on a price-derived indicator to detect its
neutrality zone.

Calculating the expected return of a security using the historical mean.

Central tendency metrics are important to understand, especially since the
mean and the median are heavily used not only as standalone indicators but
also as components in more complex measures.



NOTE
The key takeaways from this section are as follows:

There are mainly three central tendency measures: the mean, the median, and the
mode.

The mean is the sum divided by the quantity, while the median is the value that splits
the data in half. The mode is the value that occurs most frequently in the dataset.

Measures of Variability
Measures of variability describe how spread out the values in a dataset are
relative to the central tendency measures (mostly the mean). The best-known
measure of variability is the variance.

The variance describes the variability of a set of numbers from their mean.
The idea behind the variance’s formula is to determine how far away from
the mean each data point is, then to square those deviations to make sure all
the numbers are positive (this is because distance cannot be negative), and
finally to divide the deviations by the number of observations.

The formula to find the variance is as follows:

σ2 = 1
n
∑i=1

n (xi − x)2

This formula calculates the sum of the squared deviations of each data point
from the mean, thus giving different distance observations, and then
calculates the mean of these distance observations.

Let’s take a simple example of two datasets. Suppose you want to calculate
the variance of dataset A and dataset B. How would you do it?

Dataset A = [1, 2, 3, 4, 5]

Dataset B = [5, 5, 5, 5]

The first step is to calculate the mean of the dataset as that is the benchmark
from where you will calculate the variability of the data. Dataset A has a



mean of 3. The next step calculates the variance:

(x1 − x)2 = (1 − 3)2 = 4

(x2 − x)2 = (2 − 3)2 = 1

(x3 − x)2 = (3 − 3)2 = 0

(x4 − x)2 = (4 − 3)2 = 1

(x5 − x)2 = (5 − 3)2 = 4

The previous results are summed as follows:
4 + 1 + 0 + 1 + 4 = 10

And finally, the result is divided by the quantity of the observations to find
the variance:

σ2 = 10
5 = 2

As for dataset B, you should think about it intuitively. If the observations are
all equal, they all represent the dataset, which also means that they are their
own mean. What would you say about the variance of the data in this case,
considering that all the values are equal to the mean?

If your response is that the variance is zero, then you are correct.
Mathematically, you can calculate it as follows:

(x1 − x)2 = (5 − 5)2 = 0

(x2 − x)2 = (5 − 5)2 = 0

(x3 − x)2 = (5 − 5)2 = 0

(x4 − x)2 = (5 − 5)2 = 0

The previous results sum to zero, and if you divide zero by 4 (the quantity of
the dataset), you will get zero. Intuitively, there is no variance because all the
values are constant and they do not deviate from their mean:

σ2 = 0
4 = 0



Remaining in the inflation example, you can calculate the variance using the
following code:

# Calculating the variance

variance = cpi_latest["CPIAUCSL"].var()  

# Printing the result

print('The variance of the dataset: ' + str(variance), '%')

The output of the variance should be as follows:

The variance of the dataset: 3.62 %

There is a flaw nonetheless, and it is that the variance represents squared
values that are not comparable to the mean since they use different units. This
is easily fixed by taking the square root of the variance. Doing so brings the
next measure of variability, the standard deviation. It is the square root of
the variance and is the average deviation of the values from the mean.

A low standard deviation indicates that the values tend to be close to the
mean (low volatility), while a high standard deviation indicates that the
values are spread out over a wider range relative to their mean (high
volatility).

NOTE
The terms standard deviation and volatility are used interchangeably. They refer to the
same thing.

The formula to find the standard deviation is as follows:

σ = √ 1
n
∑i=1

n (xi − x)2

If you consider the previous examples with the variance, then the standard
deviation can be found as follows:

σDatasetA = √2 = 1.41



σDatasetB = √0 = 0

Standard deviation is commonly used with the mean since they both use the
same units. You will soon understand the importance of this stat when I
discuss the normal distribution function in the next section.

You can calculate the standard deviation in Python using the following code:

# Calculating the standard deviation

standard_deviation = cpi_latest["CPIAUCSL"].std()  

# Printing the result

print('The standard deviation of the dataset: ' +  

      str(standard_deviation), '%')

The output of the standard deviation should be as follows:

The standard deviation of the dataset: 1.90 %

How are you supposed to interpret the standard deviation? On average, the
CPI year-on-year values tend to be ±1.90% from the mean of the same
period, which is at 2.49%. In “Measures of Shape”, you will see how to
make better use of standard deviation figures.

The last measure of variability discussed in this section is the range. The
range is a very simple stat that shows the distance between the highest value
and the lowest value in the dataset. This gives you a quick glance at the two
historical extreme values. The formula to find the range is as follows:
Range = max(x) − min(x)

In Python, you can easily do this, as there are built-in functions that show the
maximum and the minimum values given a set of data:

# Calculating the range

range_metric = max(cpi["CPIAUCSL"]) – min(cpi["CPIAUCSL"])

# Printing the result

print('The range of the dataset: ' + str(range_metric), '%')

The output of the preceding code should be as follows:



The range of the dataset: 16.5510 %

Figure 3-3 shows the CPI values since 1951. The diagonal dashed line
represents the range, and the horizontal dashed line represents the zero
threshold.

The range of the CPI shows the size of the variations in inflation measures
from one period to another. Yearly changes in inflation numbers vary from
one country to another. Generally, developed countries such as France and
the United States have stable variations (in times of stability), while
emerging and frontier world countries such as Turkey and Argentina have
more volatile and more extreme inflation numbers.

Figure 3-3. US CPI year-on-year change since 1951, with a diagonal dashed line that represents
the range



NOTE
The key takeaways from this section are as follows:

The three key variability metrics that you should know are the variance, the standard
deviation, and the range.

The standard deviation is the square root of the variance. This is done so that it
becomes comparable to the mean.

The range is the difference between the highest and the lowest values in a dataset.
It is a quick snapshot of the overall stretch of the observations.

Measures of Shape
Measures of shape describe the distribution of the values around the central
tendency measures in a dataset. The mean and the standard deviation are the
two factors that describe the normal distribution. The standard deviation
depicts the spread or dispersion of the data, and the mean reflects the
distribution’s center.

A probability distribution is a mathematical function that describes the
likelihood of different outcomes or events in a random experiment. In other
words, it gives the probabilities of all possible values of a random variable.

There are many types of probability distributions, including discrete and
continuous distributions. Discrete distributions take on a finite number of
values. The best-known discrete distributions are the Bernoulli distribution,
binomial distribution, and Poisson distribution.

Continuous distributions are used for random variables that can take on any
value within a given range (such as stock prices and returns). The best-
known distribution is the normal distribution.

The normal distribution (also known as the Gaussian distribution) is a type
of continuous probability distribution that is symmetrical around the mean
and has a bell shape. It is one of the most widely used distributions in
statistical analysis and is often used to describe natural phenomena such as



age, weight, and test scores. Figure 3-4 shows the shape of a normal
distribution.

Figure 3-4. A normal distribution plot with mean = 0 and standard deviation = 1

You can generate Figure 3-4 using the following code block:

# Importing libraries

import matplotlib.pyplot as plt

import numpy as np

import scipy.stats as stats

# Generate data for the plot

data = np.linspace(–3, 3, num = 1000)

# Define the mean and standard deviation of the normal distribution

mean = 0

std = 1

# Generate the function of the normal distribution

pdf = stats.norm.pdf(data, mean, std)

# Plot the normal distribution plot

plt.plot(data, pdf, '-', color = 'black', lw = 2)

plt.axvline(mean, color = 'black', linestyle = '--')

plt.grid()

plt.show()



NOTE
Since normally distributed variables are common, most statistical tests and models assume
that the analyzed data is normal. With financial returns, they are assumed normal even
though they experience a form of skew and kurtosis, two measures of shape discussed in
this section.

In a normal distribution, the data is distributed symmetrically around the
mean, which also means that the mean is equal to the median and to the mode.
Furthermore, around 68% of the data falls within one standard deviation
from the mean, around 95% falls within two standard deviations, and around
99.7% falls within three standard deviations. This property makes the normal
distribution a useful tool for making inferences.

To sum up, what you should retain from the normal distribution is the
following:

The mean and the standard deviation describe the distribution.

The mean splits the distribution halfway, making it equal to the median.
Due to the symmetrical property, the mode is also equal to the mean and
the median.

Now let’s discuss the measures of shape. The first measure of shape is
skewness. Skewness describes a distribution’s asymmetry. It analyzes how
far from being symmetrical the distribution deviates.

The skewness of a normal distribution is equal to zero. This means that the
distribution is perfectly symmetrical around its mean, with an equal number
of data points on either side of the mean.

A positive skew indicates that the distribution has a long tail to the right,
which means that the mean is greater than the median because the mean is
sensible to outliers, which will push it upward (therefore, to the right of the
x-axis). Similarly, the mode will be the lowest value between the three
central tendency measures. Figure 3-5 shows a positive skew.



Figure 3-5. An example of a positively skewed distribution

A negative skew indicates that the distribution has a long tail to the left,
which means that the mean is lower than the median. Similarly, the mode will
be the greatest value between the three central tendency measures. Figure 3-6
shows a negative skew.



Figure 3-6. An example of a negatively skewed distribution

NOTE
How can skewness be interpreted in the world of financial markets? If the distribution is
positively skewed, it means that there are more returns above the mean than below it (the
tail of the distribution is longer on the positive side).

If the distribution is negatively skewed, it means that there are more returns below the
mean than above it (the tail of the distribution is longer on the negative side).

The skew of a returns series can provide information about the risk and return of an
investment. For example, a positively skewed returns series may indicate that the
investment has a potential for a few large gains with a risk of frequent small losses.

The formula to find skewness is as follows:

μ̃3 =
∑i

n=1 (xi−x)3

Nσ3

Let’s check the skewness of the US CPI year-on-year data since 2003:



# Calculating the skew

skew = cpi_latest["CPIAUCSL"].skew()  

# Printing the result

print('The skew of the dataset: ' + str(skew))

The output of the preceding code should be as follows:

The skew of the dataset: 1.17

The skew of the data is 1.17, but what does that mean? Let’s chart the
distribution of the data to facilitate interpretation. You can do this using the
following code snippet:

# Plotting the histogram of the data

fig, ax = plt.subplots()

ax.hist(cpi['CPIAUCSL'], bins = 30, edgecolor = 'black', color = 'white')

# Add vertical lines for better interpretation

ax.axvline(mean, color='black', linestyle='--', label = 'Mean',  

           linewidth = 2)

ax.axvline(median, color='grey', linestyle='-.', label = 'Median',  

           linewidth = 2)

plt.grid()

plt.legend()

plt.show()

Figure 3-7 shows the result of the previous code snippet. The data is clearly
positively skewed since the mean is greater than the median and the
skewness is positive (above zero).



Figure 3-7. Data distribution of the US CPI year-on-year values, indicating positive skew

Remember, skewness is a measure of the asymmetry of a probability
distribution. It therefore measures the degree to which the distribution
deviates from normality. The rules of thumb to interpret skewness are as
follows:

If skewness is between –0.5 and 0.5, the data is considered
symmetrical.

If skewness is between –1.0 and –0.5 or between 0.5 and 1.0, the data
is considered mildly skewed.

If skewness is less than –1.0 or greater than 1.0, the data is considered
highly skewed.

What does a positive skew mean? In this case, 1.17 represents highly skewed
data (in the positive side), which is in line with a monetary policy that favors
inflation as the economy grows (with a few inflationary spikes that cause the
skew).



NOTE
It may be interesting to know that with a skewed distribution, the median may be the
preferred metric since the mean tends to be pulled by outliers, thus distorting its value.

The next measure of shape is kurtosis, which is a description of the
peakedness or flatness of a distribution relative to a normal distribution.
Kurtosis describes the tails of a distribution, in particular, whether the tails
are thicker or thinner than those of a normal distribution.

A normal distribution has a kurtosis of 3, which means it is a mesokurtic
distribution. If a distribution has a kurtosis greater than 3, it is referred to as
leptokurtic, meaning it has a higher peak and fatter tails than a normal
distribution. If a distribution has a kurtosis less than 3, it is referred to as
platykurtic, meaning it has a flatter peak and thinner tails than a normal
distribution.

The formula to find kurtosis is as follows:

k =
∑i

n=1 (xi−x)4

Nσ4

Sometimes kurtosis is measured as excess kurtosis to give it a starting value
of zero (for a normal distribution). This means that the kurtosis measure is
subtracted from 3 so as to calculate the excess kurtosis. Let’s calculate
excess kurtosis for the US CPI year-on-year data:

# Calculating the excess kurtosis

excess_kurtosis = cpi_latest["CPIAUCSL"].kurtosis()  

# Printing the result

print('The excess kurtosis of the dataset: ' + str(excess_kurtosis))

The output of the preceding code should be as follows:

The excess kurtosis of the dataset: 2.15

In the case of the US CPI year-on-year values of the past 20 years, excess
kurtosis is 2.15, which is more in line with a leptokurtic (peakier with fatter



tails) distribution. A positive value indicates a distribution more peaked than
normal, and a negative kurtosis indicates a shape flatter than normal.



UNDERSTANDING INFLATION
Independent from statistics, it is interesting to know the terminology of
what you are analyzing. Inflation is a decrease in purchasing power of
the economic agents (such as households). A decrease in purchasing
power means that agents can buy less over time with the same amount of
money. This is also referred to as a general price increase. Inflation in
the economic sense has the following forms:

Inflation

Controlled inflation is associated with steady economic
growth and expansion. It is a desired attribute for a
growing economy. Regulators monitor inflation and try to
stabilize it to prevent social and economic distress.

Deflation

Whenever inflation is in the negative territory, it is
referred to as deflation. Deflation is very dangerous for
the economy, and as tempting as it may be for consumers
who see a price decrease, deflation is a growth killer and
may cause extended economic gluts that lead to
unemployment and bearish stock markets.

Stagflation

This occurs when inflation is either high or rising while
economic growth is slowing down. Simultaneously,
unemployment remains high. It is one of the worst
possible case scenarios.

Disinflation

This is a decrease in inflation but in the positive territory.
For example, if this year’s inflation is 2% while last year’s
inflation was 3%, you can say that there was disinflation
on a yearly basis.



Hyperinflation

This is the nightmarish scenario that occurs when
inflation goes out of control and experiences
astronomical percent changes, such as a percentage
change in the millions from year to year (as has famously
occurred in Zimbabwe, Yugoslavia, and Greece).

The final metric we will discuss in the descriptive statistics category is
quantiles. Quantiles are measures of both shape and variability since they
provide information about the distribution of values (shape) and about the
dispersion of those values (variability). The most used type of quantiles is
the quartile.

Quartiles divide the dataset into four equal parts. This is done by arranging
the data in order and then performing the split. Consider Table 3-1 as an
example.



Table 3-1.
Numbers in
ascending order

Value

1

2

4

5

7

8

9

The quartiles are as follows:

The lower quartile (Q1) is the first quarter, which in this case is 2.

The middle quartile (Q2) is also the median, which in this case is 5.

The upper quartile (Q3) in this case is 8.

Mathematically, you can calculate Q1 and Q3 using the following formulas:

Q1 = ( n+1
4 )

Q3 = 3 ( n+1
4 )

Keep in mind that the results of the formulas give you the ranking of the
values but not the values themselves:

Q1 = ( 7+1
4 ) = 2nd term = 2



Q3 = 3 ( 7+1
4 ) = 6th term = 8

The interquartile range (IQR) is the difference between Q3 and Q1 and
provides a measure of the spread of the middle 50% of the values in a
dataset. The IQR is robust to outliers (since it relies on middle values) and
provides a brief summary of the spread of the bulk of the values. The IQR of
the data in Table 3-1 is 6 as per the following formula:
IQR = Q3 − Q1

IQR = 8 − 2 = 6

The IQR is a valuable indicator and can be used as an input or a risk metric
in many different models. It can also be used to detect outliers in the data
since it is immune to them. Also, the IQR can help evaluate the current
volatility of the analyzed asset, which in turn can be used with other methods
to create more powerful models. As understood, the IQR outperforms the
range metric in terms of usefulness and interpretation as the former is prone
to outliers.

Be careful when calculating quartiles, as there are many methods that use
different calculations for the same dataset. Most importantly, make sure you
use the same method throughout your analyses. The method used to calculate
the quartiles in Table 3-1 is called the Tukey’s hinges method.



NOTE
The key takeaways from this section are the following:

The normal distribution is a continuous probability distribution that has a bell-shaped
curve. The majority of the data clusters around the mean. The mean, median, and
mode of a normal distribution curve are all equal.

Skewness measures the asymmetry of a probability distribution.

Kurtosis measures the peakedness of a probability distribution. Excess kurtosis is
commonly used to describe the current probability distribution.

Quantiles divide the arranged dataset into equal parts. The most commonly used
quantiles are quartiles that divide the data into four equal parts.

The IQR is the difference between the third quartile and the first quartile. It is
immune to outliers and thus is very helpful in data analysis.

Visualizing Data
In Chapter 1, I presented the six steps in the data science process. Step 4 was
data visualization. This section will show you a few ways to present data in
a clear visual manner that allows you to interpret it.

Many types of statistical plots are commonly used to visualize data. Let’s
discuss some of them.

Scatterplots are used to graph the relationship between two variables
through points that correspond to the intersection between the variables. To
create a scatterplot, use the following code on the CPI data:

# Importing the required library

import matplotlib.pyplot as plt

# Resetting the index

cpi = cpi.reset_index()

# Creating the chart

fig, ax = plt.subplots()

ax.scatter(cpi['DATE'], cpi['CPIAUCSL'], color = 'black',  

           s = 8,  label = 'Change in CPI Year-on-Year')

plt.grid()



plt.legend()

plt.show()

Figure 3-8 shows the result of a scatterplot in time. This means that you have
the CPI data as the first variable (y-axis) and time as the second variable (x-
axis). However, scatterplots are more commonly used to compare variables;
thus, removing the time variable can give more insights.

Figure 3-8. Scatterplot of US CPI data versus the time axis

Compare the UK CPI year-on-year change with the US CPI year-on-year
change. Notice the positive association between the two in Figure 3-9, as
higher values of one are correlated with higher values of the other.
Correlation is a key measure that you will see in detail in the next section.
The code to plot Figure 3-9 is as follows:

# Setting the beginning and end of the historical data

start_date = '1995-01-01'

end_date   = '2022-12-01'

# Creating a dataframe and downloading the CPI data

cpi_us = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

cpi_uk = pdr.DataReader('GBRCPIALLMINMEI', 'fred', start_date, end_date)



p _ p ( , , _ , _ )

# Dropping the NaN values from the rows

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.dropna()

# Transforming the CPI into a year-on-year measure

cpi_us = cpi_us.pct_change(periods = 12, axis = 0) * 100

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.pct_change(periods = 12, axis = 0) * 100

cpi_uk = cpi_uk.dropna()

# Creating the chart

fig, ax = plt.subplots()

ax.scatter(cpi_us['CPIAUCSL'], cpi_uk['GBRCPIALLMINMEI'],  

           color = 'black', s = 8, label = 'Change in CPI Year-on-Year')

# Adding a few aesthetic elements to the chart

ax.set_xlabel('US CPI')

ax.set_ylabel('UK CPI')

ax.axvline(x = 0, color='black', linestyle = 'dashed', linewidth = 1)

ax.axhline(y = 0, color='black', linestyle = 'dashed', linewidth = 1)

ax.set_ylim(-2,)

plt.grid()

plt.legend()

plt.show()

Figure 3-9. Scatterplot of UK CPI data versus US CPI data



Scatterplots are good when visualizing the correlation between data. They
are also easy to draw and interpret. Generally, when the points are scattered
in such a way that a diagonal upward-sloping line can be drawn to represent
them, the correlation is assumed to be positive, since whenever variables on
the x-axis increase, variables on the y-axis also increase.

On the other hand, when a diagonal downward-sloping line can be drawn to
represent the different variables, a negative correlation may exist. A negative
correlation implies that whenever variables on the x-axis move, it is likely
that variables on the y-axis move in the opposite way.

Figure 3-10 shows a best-fit line between the two inflation datasets from
Figure 3-9. Notice how it is upward sloping.

Figure 3-10. Scatterplot of UK CPI data versus US CPI data with a best-fit line

Let’s now move to another charting method. Line plots, the most basic type
of plot, are essentially scatterplots that are joined and are mostly charted
against the time axis (x-axis). You saw line plots in Figures 3-1 and 3-2.



The advantage of line plots is their simplicity and ease of implementation.
They also show the evolution of the series through time, which helps in
detecting trends and patterns. In Chapter 5, you will learn about candlestick
plots, a more elaborate way to plot financial time series. Figure 3-11 shows
a basic line plot of US CPI data since 1951.

Figure 3-11. Line plot of US CPI data versus the time axis

To create Figure 3-11, you can use the following code snippet:

# Creating the chart

plt.plot(cpi['DATE'], cpi['CPIAUCSL'], color = 'black',  

         label = 'Change in CPI Year-on-Year')

plt.grid()

plt.legend()

plt.show()

Next up are bar plots, which display the distribution of variables (generally,
categorical). Figure 3-12 shows a bar plot of the US CPI data since the
beginning of 2022.



Figure 3-12. Bar plot of US CPI data versus the time axis

To create Figure 3-12, you can use the following code snippet:

# Taking the values of the previous twelve months

cpi_one_year = cpi.iloc[-12:]

# Creating the chart

plt.bar(cpi_one_year['DATE'], cpi_one_year['CPIAUCSL'],  

        color = 'black', label = 'Change in CPI Year-on-Year', width = 7)

plt.grid()

plt.legend()

plt.show()

Bar plots can be limited for plotting continuous data such as the US CPI or
stock prices. They can also be misleading when the scale is off. Bar plots are
also not recommended for large datasets since they clutter up the space. For
the latter reason, histograms are a better fit.

A histogram is a specific sort of bar chart that is used to display the
frequency distribution of continuous data by using bars to represent statistical
information. It indicates the number of observations that fall into the class or



bin of values. An example of a histogram is shown in Figure 3-13 (also see
Figure 3-7).

Figure 3-13. Histogram plot of US CPI data

To create Figure 3-13, you can use the following code snippet:

# Creating the chart

fig, ax = plt.subplots()

ax.hist(cpi['CPIAUCSL'], bins = 30, edgecolor = 'black',  

        color = 'white', label = 'Change in CPI Year-on-Year',)

# Add vertical lines for better interpretation

ax.axvline(0, color = 'black')

plt.grid()

plt.legend()

plt.show()

Notice how the bar plot is charted against the time axis, but the histogram
plot does not have a time horizon because it is a group of values with the aim
of showing the overall distribution points. Visually, you can see the positive
skewness of the distribution.



Another classic plotting technique in statistics is the box and whisker plot. It
is used to visualize the distribution of continuous variables while including
the median and the quartiles, as well as the outliers. The way to understand
the box and whisker plot is as follows:

The box represents the IQR. The box is drawn between the first quartile
and the third quartile. The height of the box indicates the spread of the
data in this range.

The line inside the box represents the median.

The whiskers extend from the top and bottom of the box to the highest
and lowest data points that are still within 1.5 times the IQR. These data
points are called outliers and are represented as individual points on
the plot.

Figure 3-14 shows a box and whisker plot on the US CPI data since 1950.

Figure 3-14. Box and whisker plot of US CPI data



You can also plot the data without the outliers (any value that lies more than
1.5 times the length of the box from either end of the box). To create
Figure 3-14, you can use the following code snippet:

# Creating the chart

cpi_latest = cpi.iloc[–240:]

fig, ax = plt.subplots()

ax.boxplot(cpi_latest['CPIAUCSL'])

plt.grid()

plt.legend()

plt.show()

To remove the outliers from the plot, you simply use the following tweak:

# Replace the corresponding code line with the following

fig, ax = plt.subplots()

ax.boxplot(cpi_latest['CPIAUCSL'], showfliers = False)

This will give you Figure 3-15.

Figure 3-15. Box and whisker plot of US CPI data with no outliers



Many more data visualization techniques exist, such as heatmaps (commonly
used with correlation data and temperature mapping) and pie charts
(commonly used for budgeting and segmentation). Which technique to use
depends on what you need to understand and what fits better with your needs.
For example, a line plot is better suited for time series that only have one
feature (e.g., only the close price of a certain security is available). A
histogram plot is better suited for use with probability distribution data.

NOTE
The key takeaways from this section are the following:

Which data visualization technique to use depends on the type of analysis and
interpretation you want to perform. Some plots are better suited for use with certain
types of data. 

Data visualization helps with the initial interpretation before confirming it
numerically.

You are more likely to use line plots and candlestick plots when dealing with
financial time series.

Correlation
Correlation is a measure used to calculate the degree of the linear
relationship between two variables. It is a number between –1.0 and 1.0,
with –1.0 designating a strong negative relationship between the variables
and 1.0 designating a strong positive relationship.

A value of zero indicates that there is no linear association between the
variables. However, correlation does not imply causation. Two variables are
said to be correlated if they move in the same direction, but this does not
imply that one causes the other to move or that they move as a result of the
same events.

Most people agree that some assets have natural correlations. For instance,
because they are both part of the same industry and are affected by the same



trends and events, the stocks of Apple and Microsoft are positively
connected (which means their general trend is in the same direction).
Figure 3-16 shows the chart between the two stocks. Notice how they move
together.

Figure 3-16. Apple and Microsoft stock prices since 2021

The tops and bottoms of both stocks occur at almost the exact same time.
Similarly, as the United States and the UK have similar economic drivers and
impacts, they are also likely to have positively correlated inflation numbers,
as you saw earlier in the chapter.

Checking for correlation is done through visual interpretation and
mathematical formulas. Before seeing an example, let’s discuss the roots of
calculating correlation so that you know where it comes from and what its
limitations are.



NOTE
Simply put, to calculate correlation, you need to measure how close the points in a
scatterplot of the two variables are to a straight line. The more they look like a straight line,
the more they are positively correlated, hence the term linear correlation.

There are two main methods for calculating correlation: the Spearman
method and the Pearson method.1

The Pearson correlation coefficient is a measure of the linear association
between two variables calculated from the standard deviation and the
covariance between them.

Covariance calculates the average of the difference between the means of the
two variables. If the two variables have a tendency to move together, the
covariance is positive, and if the two variables typically move in opposite
directions, the covariance is negative. It ranges between positive infinity and
negative infinity.

The formula for calculating the covariance between variables x and y is as
follows:

covxy =
∑n

i=1(xi−x)(yi−y)

n

Therefore, covariance is the sum of the products of the average deviations
between the variables and their respective means (i.e., covariance measures
the degree of their association). An average is taken to normalize this
calculation. The Pearson correlation coefficient is calculated as follows:

rxy =
∑n

i=1(xi−x)(yi−y)

√∑n
i=1 (xi−x)2√∑n

i=1 (yi−y)2

Simplifying the previous correlation formula gives you the following:

rxy =
covxy

σxσy

Therefore, the Pearson correlation coefficient is simply the covariance
between two variables divided by the product of their standard deviation.



Let’s calculate the correlation between the US CPI year-on-year values and
the UK CPI year-on-year values. The intuition is that the correlation is above
zero, as the UK and the US are economically related. The following code
block calculates the Pearson correlation coefficient for the two time series:

# Importing the required libraries

import pandas_datareader as pdr

import pandas as pd

# Setting the beginning and end of the historical data

start_date = '1995-01-01'

end_date   = '2022-12-01'

# Creating a dataframe and downloading the CPI data

cpi_us = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

cpi_uk = pdr.DataReader('GBRCPIALLMINMEI', 'fred', start_date, end_date)

# Dropping the nan values from the rows

cpi_us = cpi_us.dropna()

cpi_uk = cpi_uk.dropna()

# Transforming the US CPI into a year-on-year measure

cpi_us = cpi_us.pct_change(periods = 12, axis = 0) * 100

cpi_us = cpi_us.dropna()

# Transforming the UK CPI into a year-on-year measure

cpi_uk = cpi_uk.pct_change(periods = 12, axis = 0) * 100

cpi_uk = cpi_uk.dropna()

# Joining both CPI data into one dataframe

combined_cpi_data = pd.concat([cpi_us['CPIAUCSL'],  

                               cpi_uk['GBRCPIALLMINMEI']], axis = 1)

# Calculating Pearson correlation

combined_cpi_data.corr(method = 'pearson')

The output is as follows:

                 CPIAUCSL  GBRCPIALLMINMEI

CPIAUCSL         1.000000         0.732164

GBRCPIALLMINMEI  0.732164         1.000000

The correlation between the two is a whopping 0.73. This is in line with the
expectations. Pearson correlation is usually used with variables that have
proportional changes and are normally distributed.

Spearman’s rank correlation is a nonparametric rank correlation that
measures the strength of the relationship between the variables. It is suitable
for variables that do not follow a normal distribution.



NOTE
Remember, financial returns are not normally distributed but are sometimes treated that
way for simplicity.

Unlike Pearson correlation, Spearman’s rank correlation takes into account
the order of the values, rather than the actual values. To calculate Spearman’s
rank correlation, follow these steps:

1. Rank the values of each variable. This is done by inputting 1 instead of
the smallest variable and inputting the length of the dataset instead of the
largest number.

2. Calculate the difference in ranks. Mathematically, the difference in
ranks is represented by the letter d in the mathematical formula to come.
Then, calculate their squared differences.

3. Sum the squared differences you have calculated from step 2.

4. Use the following formula to calculate Spearman’s rank correlation:

ρ = 1 −
6∑n

i=1 d
2
i

n3−n

As with Pearson correlation, Spearman’s rank correlation also ranges from –
1.00 to 1.00 with the same interpretation.

NOTE
Strong positive correlations are generally upward of 0.70, while strong negative
correlations are generally downward of –0.70.

The following code block calculates Spearman’s rank correlation coefficient
for the two time series:

# Calculating Spearman's rank correlation

combined_cpi_data.corr(method = 'spearman')



The output is as follows:

                 CPIAUCSL  GBRCPIALLMINMEI

CPIAUCSL         1.000000         0.472526

GBRCPIALLMINMEI  0.472526         1.000000

Let’s answer a very important question after getting this difference in results.
Why are the two measures so different?

The first thing to keep in mind is what they measure. Pearson correlation
measures the linear relationship (trend) between the variables while
Spearman’s rank correlation measures the monotonic trend. The word
monotonic refers to moving in the same direction but not exactly at the same
rate or magnitude. Also, Spearman’s rank correlation transforms the data to
an ordinal type (through the ranks) as opposed to Pearson correlation, which
uses the actual values.

Autocorrelation (also referred to as serial correlation) is a statistical
method used to look at the relationship between a given time series and a
lagged version of it. It is generally used to predict future values through
patterns in data, such as seasonality or trends. Autocorrelation is therefore
the values’ relationship with the previous values—for example, comparing
each day’s Microsoft stock price to the preceding day and seeing if there is a
discernible correlation there. Algorithmically speaking, this can be
represented as shown in Table 3-2.



Table 3-2. Lagged values

     t      t–1

 $       1.25  $       1.65

 $       1.77  $       1.25

 $       1.78  $       1.77

 $       1.25  $       1.78

 $       1.90  $       1.25

Each row represents a time period. Column t is the current price and column
t-1 is the previous price put on the row that represents the present. This is
done when creating machine learning models to understand the relationship
between the current values and the previous ones at every time step (row).

Positive autocorrelation frequently occurs in trending assets and is
associated with the idea of persistence (trend following). Negative
autocorrelation is exhibited in ranging markets and is associated with the
idea of antipersistence (mean reversion).

NOTE
Measures of short-term correlation between different time series (e.g., NVIDIA and
Oracle stocks) are typically computed using returns (such as differences) on prices rather
than real prices. However, it is possible to utilize the prices directly to identify long-term
trends.

The following code block calculates the autocorrelation of the US CPI year-
on-year values:



# Creating a dataframe and downloading the CPI data

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

# Transforming the US CPI into a year-on-year measure

cpi = cpi.pct_change(periods = 12, axis = 0) * 100

cpi = cpi.dropna()

# Transforming the data frame to a series structure

cpi = cpi.iloc[:,0]

# Calculating autocorrelation with a lag of 1

print('Correlation with a lag of 1 = ', round(cpi.autocorr(lag = 1), 2))

# Calculating autocorrelation with a lag of 6

print('Correlation with a lag of 6 = ', round(cpi.autocorr(lag = 6), 2))

# Calculating autocorrelation with a lag of 12

print('Correlation with a lag of 12 = ', round(cpi.autocorr(lag = 12), 

2))

A lag of 12 means that every data value is compared to the data from 12
periods ago and then a correlation measure is calculated. The output of the
code is as follows:

Correlation with a lag of 1 =  0.97

Correlation with a lag of 6 =  0.65

Correlation with a lag of 12 =  0.17

Now, before proceeding to the next section, let’s revert back to information
theory and discuss one interesting correlation coefficient that is able to pick
up on nonlinear relationships.

The maximal information coefficient (MIC) is a nonparametric measure of
association between two variables designed to handle large and complex
data. It is generally seen as a more robust alternative to traditional measures
of correlation, such as Pearson correlation and Spearman’s rank correlation.
Introduced by David N. Reshef et al.,2 the MIC uses concepts from
information theory that you saw in Chapter 2.

The MIC measures the strength of the association between two variables by
counting the number of cells in a contingency table that are maximally
informative about the relationship between the variables. The MIC value
ranges from 0 to 1, with higher values indicating stronger associations. It can
handle high-dimensional data and can identify nonlinear relationships
between variables.



It is, however, nondirectional, which means that values close to 1 only
suggest a strong correlation between the two variables; they do not say
whether the correlation is positive or negative. In other words, the mutual
information between the two variables within each bin is calculated after the
range of each variable has been divided into a set of bins. The strength of the
association between the two variables is then estimated using the maximum
mutual information value across all bins.

Let’s check out a practical example that showcases the strength of the MIC in
detecting nonlinear relationships. The following example simulates two
wave series (sine and cosine). Intuitively, looking at Figure 3-17, it seems
that there is a lag–lead relationship between the two. 

Figure 3-17. The two wave series showing a form of nonlinear relationship

The following Python code snippet creates the two time series and plots
Figure 3-17:

# Importing the required libraries

import numpy as np

import matplotlib.pyplot as plt



# Setting the range of the data

data_range = np.arange(0, 30, 0.1)

# Creating the sine and the cosine waves

sine = np.sin(data_range)

cosine = np.cos(data_range)

# Plotting

plt.plot(sine, color = 'black', label = 'Sine Function')

plt.plot(cosine, color = 'grey', linestyle = 'dashed',  

         label = 'Cosine Function')

plt.grid()

plt.legend()

Now the job is to calculate the three correlation measures and analyze their
results. For simplicity, the code will be omitted from this section and will be
shared in Chapter 6, as there are a few things to understand in Python
first. The results are as follows:

Correlation | Pearson:  0.035

Correlation | Spearman:  0.027

Correlation | MIC: 0.602

Let’s interpret the results:

Pearson correlation: Notice the absence of any type of correlation here
due to it missing out on the nonlinear association.

Spearman’s rank correlation: The same situation applies here with an
extremely weak correlation.

MIC: The measure returned a strong relationship of 0.60 between the
two, which is closer to reality. It seems that the MIC states that both
waves have a strong, albeit nonlinear, relationship.

The MIC is useful in economic analysis, financial analysis, and even finding
trading signals if used properly. Nonlinear relationships are abundant in such
complex fields, and being able to detect them may provide a sizable edge.



NOTE
The key takeaways from this section are the following:

Correlation is a measure that is used to calculate the degree of the linear relationship
between variables. It is a number between –1.0 and 1.0, with –1.0 designating a
strong negative relationship between the variables and 1.0 designating a strong
positive relationship.

There are two main types of correlation: Spearman’s rank correlation and Pearson
correlation. Both have their advantages and limitations.

Autocorrelation is the correlation of the variable with its own lagged values. For
example, if the autocorrelation of Walmart’s stock returns is positive, it denotes a
trending configuration.

Correlation measures can also refer to nonlinear relationships when you use the right
tool, for example, the MIC.

The Concept of Stationarity
Stationarity is a key concept in statistical analysis and machine learning.
Stationarity occurs when the statistical characteristics of the time series
(mean, variance, etc.) are constant over time. In other words, no discernable
trend is detectable when plotting the data across time.

The different learning models rely on data stationarity, as it is one of the
basics of statistical modeling, and this is mainly for simplicity. In finance,
price time series are not stationary, as they show trends with varying
variance (volatility). Take a look at Figure 3-18 and see if you can detect a
trend. Would you say that this time series is stationary?



Figure 3-18. Simulated data with a varying mean across time

Naturally, the answer is no, as a rising trend is clearly in progress. States
like this are undesirable for statistical analyses and machine learning.
Luckily, there are transformations that you can apply to the time series to
make them stationary. But first, let’s see how to check for stationarity the
mathematical way, as the visual way does not prove anything. The right way
to deal with data stationarity problems is to follow these steps:

1. Check for stationarity using the different statistical tests that you will
see in this section.

2. If the tests show data stationarity, you are ready to use the data for the
algorithms. If the tests show that the data is not stationary, you have to
proceed to step 3.

3. Subtract every value from the value before it (difference the values).

4. Recheck for stationarity using the same tests on the new transformed
data.



5. If the test shows data stationarity, then you have successfully
transformed your data. Otherwise, redo the transformation and check
again until you have stationary data.

NOTE
Ascending or descending time series have varying mean and variances through time and
are therefore most likely nonstationary. There are exceptions to this, and you will see why
later.

Remember, the aim of stationarity is stable and constant mean and variance
over time. Therefore, when you look at Figure 3-19, what can you infer?

Figure 3-19. Simulated data with a mean around zero across time

Visually, it looks like the data does not have a trend, and it also looks like it
fluctuates around a stable mean with stable variance around it. The first



impression is that the data is stationary. Of course, this must be proved
through statistical tests.

The first and most basic test is the augmented Dickey—Fuller (ADF) test.
This tests for stationarity using hypothesis testing.

The ADF test searches for a unit root in the data. A unit root is a property of
nonstationary data, and in the context of time series analysis, it refers to a
characteristic of a stochastic process where the series has a root equal to 1.
In simpler terms, it means that its statistical properties, such as the mean and
variance, change over time. Here’s what you need to know:

The null hypothesis assumes the presence of a unit root. This means that
if you are trying to prove that the data is stationary, you are looking to
reject the null hypothesis (as seen in “Sampling and Hypothesis
Testing”).

The alternative hypothesis is therefore the absence of a unit root and the
stationarity of the data.

The p-value obtained from the test must be less than the significance
level chosen (in most cases, it is 5%).

Let’s test the US CPI year-on-year data for stationarity. The following code
snippet checks for stationarity using the ADF test:

# Importing the required library

from statsmodels.tsa.stattools import adfuller

# Applying the ADF test on the CPI data

print('p-value: %f' % adfuller(cpi)[1])

The output of the code is as follows:

p-value: 0.0152

Assuming a 5% significance level, it seems that it is possible to accept that
the year-on-year data is stationary (however, if you want to be stricter and
use a 1% significance level, then the p-value suggests that the data is



nonstationary). Either way, even looking at the chart can make you scratch
your head. Remember that in Figure 3-11, the yearly changes in the US CPI
seem to be stable but do not resemble stationary data. This is why numerical
and statistical tests are used.

Now, let’s apply the code on the raw US CPI data and not take the year-on-
year changes. Here’s the code:

# Creating a dataframe and downloading the CPI data

cpi = pdr.DataReader('CPIAUCSL', 'fred', start_date, end_date)

# Applying the ADF test on the CPI data

print('p-value: %f' % adfuller(cpi)[1])

The output of the code is as follows:

p-value: 0.999

Clearly, the p-value is greater than all the significance levels, which means
that the time series is nonstationary. Let’s sum up these results:

It seems that you can reject the null hypothesis using a 5% significance
level when it comes to the year-on-year changes in the US CPI data. The
dataset is assumed to be stationary.

It seems that you cannot reject the null hypothesis using a 5%
significance level when it comes to the raw values of the US CPI data.
The dataset is assumed to be nonstationary.

This becomes obvious when you plot the raw values of the US CPI data, as
shown in Figure 3-20.



Figure 3-20. Absolute values of the US CPI data showing a clearly trending nature

The other test that you must be aware of is the Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) test, which is also a statistical test with the aim of
determining whether the time series is stationary or nonstationary. However,
the KPSS test can detect stationarity in trending time series, which makes it a
powerful tool.

Trending time series can actually be stationary on the condition they have a
stable mean.

WARNING
The ADF test has a null hypothesis that argues for nonstationarity and an alternative
hypothesis that argues for stationarity. The KPSS test has a null hypothesis that argues for
stationarity and an alternative hypothesis that argues for nonstationarity.

Before analyzing the inflation data, let’s see how a trending time series can
be stationary. Remember that stationarity refers to a stable mean and standard



deviation, so if somehow you have a gradually ascending or descending time
series with stable statistical properties, it may be stationary. The next code
snippet simulates a sine wave and then adds a touch of trending to it:

# Importing the required libraries

import numpy as np

import matplotlib.pyplot as plt

# Creating the first time series using sine waves

length = np.pi * 2 * 5

sinewave = np.sin(np.arange(0, length, length / 1000))

# Creating the second time series using trending sine waves

sinewave_ascending = np.sin(np.arange(0, length, length / 1000))

# Defining the trend variable

a = 0.01

# Looping to add a trend factor

for i in range(len(sinewave_ascending)):  

    sinewave_ascending[i] = a + sinewave_ascending[i] 

    a = 0.01 + a

Plotting the two series, as shown in Figure 3-21, shows that the trending sine
wave seems to be stable. But let’s prove this through statistical tests.

Figure 3-21. A normal sine wave simulated series with a trending sine wave



Figure 3-21 is generated using the following code (make sure you have
defined the series using the previous code block):

# Plotting the series

plt.plot(sinewave, label = 'Sine Wave', color = 'black')

plt.plot(sinewave_ascending, label = 'Ascending Sine Wave',  

         color = 'grey')

plt.grid()

plt.legend()

plt.show()

Let’s try the ADF test on both series and see what the results are:

# ADF testing | Normal sine wave

print('p-value: %f' % adfuller(sinewave)[1])

# ADF testing | Ascending sine wave

print('p-value: %f' % adfuller(sinewave_ascending)[1])

The output is as follows:

p-value: 0.000000 # For the sine wave

p-value: 0.989341 # For the ascending sine wave

Clearly, the ADF test is consistent with the idea that trending markets cannot
be stationary. But what about the KPSS test? The following code uses the
KPSS test on the same data to check for stationarity:

# Importing the KPSS library

from statsmodels.tsa.stattools import kpss

# KPSS testing | Normal sine wave

print('p-value: %f' % kpss(sinewave)[1])

# KPSS testing | Ascending sine wave

print('p-value: %f' % kpss(sinewave_ascending)[1])

# KPSS testing while taking into account the trend | Ascending sine wave

print('p-value: %f' % kpss(sinewave_ascending, regression = 'ct')[1])

''' 

The 'ct' argument is used to check if the dataset is stationary  

around a trend. By default, the argument is 'c' which is used 

to check if the data is stationary around a constant. 

'''



The output is as follows:

p-value: 0.10 # For the sine wave

p-value: 0.01 # For the ascending sine wave without trend consideration

p-value: 0.10 # For the ascending sine wave with trend consideration

Remember that the null hypothesis of the KPSS test is that the data is
stationary; therefore, if the p-value is greater than the significance level, the
data is considered stationary since it is not possible to reject the null
hypothesis.

The KPSS statistic, when taking into account the trend, states that the
ascending sine wave is a stationary time series. This is a basic example of
how you can find stationary data in trending time series.

Let’s test the US CPI year-on-year data for stationarity. The following code
snippet checks for stationarity using the KPSS test:

# Applying the KPSS (no trend consideration) test on the CPI data

print('p-value: %f' % kpss(cpi)[1])

# Applying the KPSS (with trend consideration) test on the CPI data

print('p-value: %f' % kpss(cpi, regression = 'ct')[1])

The output of the code is as follows:

p-value: 0.010000 # without trend consideration

p-value: 0.010000 # with trend consideration

It seems that the results from the KPSS test contradict the results from the
ADF test. This may happen from time to time, and differencing may solve the
issue (bear in mind that the year-on-year data is already a differenced time
series from the absolute CPI values, but some time series may need more
than one differencing to become stationary, and it also depends on the period
of differencing). The safest solution in this case is to transform the data
again.

Before finishing this section on stationarity, let’s discuss a complex topic that
you will see in action in Chapter 9. Transforming the data may cause the



unusual problem of memory loss. In his book Advances in Financial
Machine Learning (Wiley), Marcos López de Prado proposed a technique
called fractional differentiation with the aim of making data stationary while
preserving some memory.

When a nonstationary time series is differenced to make it stationary, memory
loss occurs, which is another way of saying that the autocorrelation between
the values is greatly reduced, thus removing the trend component and the
DNA of the underlying asset. The degree of differencing and the persistence
of the autocorrelation structure in the original series determines how much
memory loss occurs.

NOTE
The key takeaways from this section are the following:

Stationarity refers to the concept of stable mean and variance through time. It is a
desired characteristic, as most machine learning models rely on it.

Financial price time series are most likely nonstationary and require first-order
differencing to become stationary and ready for statistical modeling. Some may even
require a second order transformation to become stationary.

The ADF and KPSS tests check for stationarity in the data, with the latter being
able to check for stationarity in trending data.

Trending data may be stationary. Although this characteristic is rare, the KPSS test
can detect the stationarity, while the ADF test cannot.

Regression Analysis and Statistical Inference
Whereas descriptive statistics describe data and extract as much information
as possible from it, inferential statistics uses the data or a sample of the data
to make inferences (forecasts). The main tool in statistical inference is linear
regression.

Linear regression is a basic machine learning algorithm you will see in this
book in Chapter 7, when we cover the other machine learning algorithms.



Hence, we will only briefly discuss regression analysis in this section. The
most basic form of a linear regression equation is as follows:
y = α + βx + ϵ

y is the dependent variable; it is what you want to forecast

x is the independent variable; it is what you use as an input to forecast y

α is the expected value of the dependent variable when the independent
variables are equal to zero

β represents the change in the dependent variable per unit change in the
independent variable

ϵ is the residual or the unexplained variation

The basic linear regression equation states that a dependent variable (what
you want to forecast) is explained by a constant, a sensitivity-adjusted
variable, and a residual (error term to account for unexplained variations).
Consider Table 3-3.



Table 3-3. Predicting y given x

y x

100 49

200 99

300 149

400 199

? 249

The linear equation to predict y given x is as follows:
yi = 2 + 2xi

Therefore, the latest y given x = 249 should be 500:
yi = 2 + 2xi = 2 + (2 × 249) = 500

Notice how linear regression perfectly captures the linear relationship
between the two variables since there is no residual (unexplained
variations). When a linear regression perfectly captures the relationship
between two variables, it means that their coordinate points are perfectly
aligned on a linear line across the x-axis.

A multiple linear regression can take the following form:
yi = α + β1x1 +...+βnxn + ϵi

This basically means that the dependent variable y may be impacted by more
than one variable. For instance, if you want to estimate housing prices, you
may want to take into account the number of rooms, the surface area, the
neighborhood, and any other variable that is likely to impact the price. 
Similarly, if you want to predict commodity prices, you may want to take into



account the different macroeconomic factors, exchange rates, and any other
alternative data.

It is important to understand what every variable refers to. Linear regression
makes a few assumptions:

Linear relationship

The relationship between the dependent variable and the
independent variable(s) should be linear, meaning that a
straight line across the plane can describe the relationship.
This is rare in real life when dealing with complex variables.

Independence of variables

The observations should be independent of each other,
meaning that the value of one observation does not
influence the value of another observation.

Homoscedasticity

The variance of the residuals (the difference between the
predicted and actual values of the dependent variable)
should be constant across all levels of the independent
variable(s).

Normality of the residuals

The residuals should be normally distributed, meaning that
the majority of the residuals are close to zero and the
distribution is symmetrical.

In the case of a multiple linear regression, you can add a new assumption: the
absence of multicollinearity. The independent variables should not be highly
correlated with each other; otherwise, it can make it difficult to determine the



unique effect of each independent variable on the dependent variable. In
other words, this prevents redundancy.

NOTE
The key takeaways from this section are the following:

Linear regression is part of the inferential statistics field, and it is a linear equation
that describes the relationship between variables.

Linear regression interprets and predicts data following an equation that you obtain
when you train past data and expect the relationship to hold in the future. 

Summary
Being able to perform data analysis is key to deploying the right algorithms
so that you can predict the future values of a time series. Understanding data
is done through a wide selection of tools coming from the statistics world.
Make sure that you understand what stationarity and correlation are, as they
offer extremely valuable insights in modeling.

1  Among others, but these two ways are the most popular representations.

2  David N. Reshef et al., “Detecting Novel Associations in Large Data Sets,” Science 334, no.
6062 (December 2011): 1518-24.



Chapter 4. Linear Algebra and
Calculus for Deep Learning

Algebra and calculus are integral parts of data science. Machine learning and deep
learning algorithms are mostly based on algebra and calculus techniques. This chapter
introduces some key topics in a way that everyone can understand.

Algebra is the study of operations and relational rules, as well as the constructions
and ideas that result from them. Algebra covers topics such as linear equations and
matrices. You can consider algebra as the first step toward calculus.

Calculus is the study of curve slopes and rates of change. Calculus covers topics such
as derivatives and integrals. It is heavily used in many fields such as economics and
engineering. Many learning algorithms rely on the concepts of calculus to perform
their complex operations.

The distinction between the two is that while calculus works with ideas of change,
motion, and accumulation, algebra deals with mathematical symbols and the rules for
manipulating those symbols. Calculus focuses on the characteristics and behavior of
changing functions, while algebra offers the foundation for solving equations and
comprehending functions.

Linear Algebra
Algebra encompasses various mathematical structures, including numbers, variables,
and operations like addition, subtraction, multiplication, and division. Linear algebra
is a fundamental branch of algebra that deals with vector spaces and linear
transformations. It is heavily used in machine learning and deep learning for tasks such
as data preprocessing, dimensionality reduction, and solving systems of linear
equations. Matrices and vectors are central data structures in linear algebra, and
operations like matrix multiplication are common in various algorithms.

Vectors and Matrices
A vector is an object that has a magnitude (length) and a direction (arrowhead). The
basic representation of a vector is an arrow with coordinates on the axis. But first,
let’s see what an axis is.



The x-axis and y-axis are perpendicular lines that specify a plane’s boundaries and the
locations of different points within them in a two-dimensional Cartesian coordinate
system. The x-axis is horizontal and the y-axis is vertical.

These axes may represent vectors, with the x-axis representing the vector’s horizontal
component and the y-axis representing its vertical component.

NOTE
In time series analysis, the x-axis is typically the time step (hours, days, etc.), and the y-axis is the
value at the respective time step (price, return, etc.).

Figure 4-1 shows a simple two-dimensional Cartesian coordinate system with both
axes.

The two-dimensional Cartesian coordinate system uses simple parentheses to show
the location of different points following this order:

Point coordinates = (x, y)

The variable x represents the horizontal location

The variable y represents the horizontal location



Figure 4-1. A two-dimensional Cartesian coordinate system

Therefore, if you want to draw point A, which has (2, 3) as coordinates, you are likely
to look at a graph from point zero, move two points to the right, and from there, move
three points upward. The result of the point should look like Figure 4-2.



Figure 4-2. The location of A on the coordinate system

Let’s now add another point and draw a vector between them. Suppose you have point
B with (4, 5) as coordinates. Naturally, as the coordinates of B are higher than the
coordinates of A, you would expect vector AB to be upward sloping. Figure 4-3
shows the new point B and vector AB.



Figure 4-3. Vector AB joining points A and B together in magnitude and direction

However, having drawn the vector using the coordinates of both points, how would
you refer to the vector? Simply put, vector AB has its own coordinates that represent
it. Remember that the vector is a representation of the movement from point A to point
B. This means the two-point movement along the x-axis and the y-axis is the vector.
Mathematically, to find the vector, you should subtract the two coordinate points from
each other while respecting the direction. Here’s how to do that:

Vector AB means that you are going from A to B; therefore, you need to subtract
the coordinates of point B from the coordinates of point A:

AB = ⟨4 − 2, 5 − 3⟩

AB = ⟨2, 2⟩

−→

−→



Vector BA means that you are going from B to A; therefore, you need to subtract
the coordinates of point A from the coordinates of point B:

To interpret the AB and BA vectors, you need to think in terms of movement. Vector
AB represents going from point A to point B, two positive points horizontally and
vertically (to the right and upward, respectively). Vector BA represents going from
point B to point A, two negative points horizontally and vertically (to the left and
downward, respectively).

NOTE
Vectors AB and BA are not the same thing even though they share the same slope. But what is a
slope anyway?

The slope is the ratio of the vertical change between two points on the line to the horizontal change
between the same two points. You calculate the slope using this mathematical formula:

If the two vectors were simply lines (with no direction), then they would be the same object. However,
adding the directional component makes them two distinguishable mathematical objects.

Figure 4-4 sheds more light on the concept of the slope, as x has shifted two points to
the right and y has shifted two points to the left.

BA = ⟨2 − 4, 3 − 5⟩

BA = ⟨−2, −2⟩

−→

−→

Slope =
(ΔY )

(ΔX)

Slope of AB = 2
2 = 1

Slope of BA = −2
−2 = 1

−→

−→



Figure 4-4. The change in x and the change in y for vector AB

NOTE
A vector that has a magnitude of 1 is referred to as a unit vector.

Figure 4-5 shows the change in x and the change in y in the case of vector BA.



Figure 4-5. The change in x and the change in y for vector BA

Researchers typically use vectors as representations of speed, especially in
engineering. Navigation is one field that heavily relies on vectors. It allows navigators
to determine their positions and plan their destinations. Naturally, magnitude
represents speed and the direction represents the destination.

You can add and subtract vectors from each other and from scalars. This allows for a
shift in direction and magnitude. What you should retain from the previous discussion
is that vectors indicate directions between different points on the axis.

NOTE
A scalar is a value with magnitude but no direction. Scalars, as opposed to vectors, are used to
represent elements, like temperature and prices. Basically, scalars are numbers.



A matrix is a rectangular array containing numbers and organized in rows and
columns.1 Matrices are useful in computer graphics and other domains as well as to
define and manipulate linear systems of equations. What differentiates a matrix from a
vector? The simplest answer is that a vector is a matrix with a single column or a
single row. Here’s a basic example of a 3 × 3 matrix:

The size of a matrix is the number of rows and columns it contains. A row is a
horizontal line, and a column is a vertical line. The following representation is a 2 × 4
matrix (i.e., two rows by four columns):

[ ]

The following representation is a 4 × 2 matrix (i.e., four rows by two columns):

NOTE
Matrices are heavily used in machine learning. Rows generally represent time and columns represent
features.

The summation of different matrices is straightforward but must be used only when the
matrices match in size (which means they have the same number of columns and
rows). For instance, let’s add the following two matrices:

[ ] + [ ] = [ ]

You can see that to add two matrices, you simply have to add the numbers in the same
positions. Now, if you try to add the next pair of matrices, you won’t be able to do it
as there is a mismatch in what to add:

⎡⎢⎣ 5 2 9

−8 10 13

1 5 12

⎤⎥⎦5 2 1 3

−8 10 9 4

⎡⎢⎣ 5 2

−8 10

8 22

7 3

⎤⎥⎦1 2

5 8

3 9

1 5

4 11

6 13



[ ] +

The subtraction of matrices is also straightforward and follows the same rules as the
summation of matrices. Let’s take the following example:

[ ] − [ ] = [ ]

Evidently, subtraction of matrices is also a summation of matrices with a change of
signs in one of them.

Matrix multiplication by a scalar is quite simple. Let’s take the following example:

3 × [ ] = [ ]

So basically, you are multiplying every cell in the matrix by the scalar. Multiplying
one matrix by another matrix is a bit more complicated as it uses the dot product
method. First of all, to multiply two matrices together, they must satisfy this condition:
Matrixxy × Matrixyz = Matrixxz

This means that the first matrix must have a number of columns equal to the number of
rows in the second matrix, and the resulting matrix from the dot product is a matrix
that has the number of rows of the first matrix and the number of columns of the second
matrix. The dot product is explained in the following example representation of a 1 ×
3 and 3 × 1 matrix multiplication (notice the equal number of columns and rows):

[ ] × = [ ] = [ ]

Now let’s take an example of a 2 × 2 matrix multiplication:

[ ] × [ ] = [ ]

There is a special type of matrix called the identity matrix, which is basically the
number 1 for matrices. It is defined as follows for a 2 × 2 dimension:

I = [ ]

8 3

3 2

⎡⎢⎣ 3 9

1 5

5 4

⎤⎥⎦5 2

−8 10

3 9

−1 −5

2 −7

−9 15

5 2

8 22

15 6

24 66

1 2 3
⎡⎢⎣ 3

2

1

⎤⎥⎦ (1 × 3) + (2 × 2) + (3 × 1) 10

1 2

0 1

3 0

2 1

7 2

2 1

1 0

0 1



and as follows for a 3 × 3 dimension:

I =

Multiplying any matrix by the identity matrix yields the same original matrix. This is
why it can be referred to as the 1 of matrices (multiplying any number by 1 yields the
same number). It is worth noting that matrix multiplication is not commutative, which
means that the order of multiplication changes the result:
AB ≠ BA

Matrix transposing is a process that involves changing the rows into columns and
vice versa. The transpose of a matrix is obtained by reflecting the matrix along its
main diagonal:

[ ]
T

=

Transposing is used in some machine learning algorithms and is not an uncommon
operation when dealing with such models. If you are wondering about the role of
matrices in data science and machine learning, you can refer to this nonexhaustive list:

Representation of data

Matrices often represent data with rows representing samples and
columns representing features. For example, a row in a matrix can
present OHLC data in one time step.

Linear algebra

Matrices and linear algebra are intertwined, and many learning
algorithms use the concepts of matrices in their operations. Having
a basic understanding of these mathematical concepts helps smooth
the learning curve when dealing with machine learning algorithms.

Data relationship matrices

Covariance and correlation measures are often represented as
matrices. These relationship calculations are important concepts in

⎡⎢⎣ 1 0 0

0 1 0

0 0 1

⎤⎥⎦4 6 1

1 4 2

⎡⎢⎣ 4 1

6 4

1 2

⎤⎥⎦



time series analysis.

NOTE
The key takeaways from this section are as follows:

A vector is an object that has a magnitude (length) and a direction (arrowhead). Multiple vectors
grouped together form a matrix.

A matrix can be used to store data. It has its special ways of performing operations.

Matrix multiplication uses the dot product method. 

Transposing a matrix means to swap its rows and its columns.

Introduction to Linear Equations
You saw an example of a linear equation in “Regression Analysis and Statistical
Inference”. Linear equations are basically formulas that present an equality
relationship between different variables and constants. In the case of machine
learning, it is often a relationship between a dependent variable (the output) and an
independent variable (the input). The best way to understand linear equations is
through examples.

NOTE
The aim of linear equations is to find an unknown variable, usually denoted by the letter x.

We’ll start with a very basic example that you can consider as a first building block
toward the more advanced concepts you will see later on. The following example
requires finding the value of x that satisfies the equation:
10x = 20

You should understand the equation as “10 times which number equals 20?” When a
constant is directly attached to a variable such as x, it refers to a multiplication
operation. Now, to solve for x (i.e., finding the value of x that equalizes the equation),
you have an obvious solution, which is to get rid of 10 so that you have x on one side
of the equation and the rest on the other side.

Naturally, to get rid of 10, you divide by 10 so that what remains is 1, which if
multiplied by the variable x does nothing. However, keep in mind two important



things:

If you do a mathematical operation on one side of an equation, you must do it on
the other side as well. This is why they are called equations.

For simplicity, instead of dividing by the constant to get rid of it, you should
multiply it by its reciprocal.

The reciprocal of a number is 1 divided by that number. Here’s the mathematical
representation of it:

Reciprocal (x) = 1
x

Now, back to the example, to find x you can do the following:

( 1
10

)10x = 20 ( 1
10

)

Performing the multiplication and simplifying gives the following result:
x = 2

This means that the solution of the equation is 2. To verify this, you just need to plug 2
into the original equation as follows:
10 × 2 = 20

Therefore, it takes two 10s to get 20.

NOTE
Dividing the number by itself is the same thing as multiplying it by its reciprocal.

Let’s take another example of how to solve x through linear techniques. Consider the
following problem:
8
6 x = 24

Performing the multiplication and simplifying gives the following result:

( 6
8 ) 8

6 x = 24 ( 6
8 )

x = 18

This means that the solution of the equation is 18. To verify this, you just need to plug
18 into the original equation as follows:



8
6 × 18 = 24

Typically, linear equations are not this simple. Sometimes they contain more variables
and more constants, which need more detailed solutions, but let’s keep taking it step
by step. Consider the following example:
3x − 6 = 12

Solving for x requires rearranging the equation a little bit. Remember, the aim is to
leave x on one side and the rest on the other. Here, you have to get rid of the constant 6
before taking care of 3. The first part of the solution is as follows:
3x − 6(+6) = 12(+6)

Notice how you have to add 6 to both parts of the equation. The part on the left will
cancel itself out, while the part on the right will add up to 18:
3x = 18

Finally, you’re all set to multiply by the reciprocal of the constant attached to the
variable x:

( 1
3 )3x = 18 ( 1

3 )

Simplifying and solving for x leaves the following solution:
x = 6

This means that the solution of the equation is 6. To verify this, just plug 6 into the
original equation as follows:

(3 × 6) − 6 = 12

By now, you should have noticed that linear algebra is all about using shortcuts and
quick techniques to simplify equations and find unknown variables. The next example
shows how sometimes the variable x can occur in multiple places:
6x + x = 27 − 2x

Remember, the main focus is to have x on one side of the equation and the rest on the
other side:
6x + x + 2x = 27

Adding the constants of x gives you the following:
9x = 27

The final step is dividing by 9 so that you only have x remaining:



x = 3

You may now verify this by plugging 3 in the place of x in the original equation. You
will notice that both sides of the equation will be equal.

NOTE
Even though this section is quite simple, it contains the basic foundations you need to start advancing in
algebra and calculus. The key takeaways from this section are as follows:

A linear equation is a representation in which the highest exponent on any variable is one. This
means that there are no variables that are raised to the power of two and above. 

A linear equation line is straight when plotted on a chart.

The application of linear equations in modeling a wide range of real-world occurrences makes
them crucial in many branches of mathematics and research. They are also widely utilized in
machine learning.

Solving for x is the process of finding for it a value that equalizes both sides of the equation.

When performing an operation (such as adding a constant or multiplying by a constant) on one
side of the equation, you have to do it on the other side as well.

Systems of Equations
A system of equations is when there are two or more equations working together to
solve one or more variables. Therefore, instead of the usual single equation:
x + 10 = 20

systems of equations resemble the following:
x + 10 = 20

y + 2x = 10

Systems of equations are useful in machine learning and are used in many of its
aspects.

Let’s look at the previous system of equations from the beginning of this section and
solve it graphically. Plotting the two functions can actually give the solution directly.
The point of intersection is the solution. Therefore, the coordinates of the intersection
(x, y) refer to the solutions of x and y, respectively.

From Figure 4-6, it seems that x = 10 and y = –10. Plugging these values into their
respective variables gives the correct answer:

10 + 10 = 20



(–10) + (2 × 10) = 10

Figure 4-6. A graph showing the two functions and their intersection (solution)

As the functions are linear, solving them can result in one of three outcomes:

1. There is only one solution for each variable.

2. There is no solution. This occurs when the functions are parallel (this means that
they never intersect).

3. There are an infinite number of solutions. This occurs when, through
simplification, both functions are the same (since all points fall on the straight
line).

Before moving on to solving systems of equations using algebra, let’s visually see
how there can be no solution and how there can be an infinite number of solutions.



Consider the following system:
2x = 10

4x = 20

Figure 4-7 charts the two together. Since they are exactly the same equation, they fall
on the same line. In reality, there are two lines in Figure 4-7, but since they are the
same, they are indistinguishable. For every x on the line, there is a corresponding y.

Figure 4-7. A graph showing the two functions and their infinite intersections

Now consider the following system:
3x = 10

6x = 10



Figure 4-8 shows how they never intersect, which is intuitive as you cannot multiply
the same number (represented by the variable x) with different numbers and expect to
get the same result.

Figure 4-8. A graph showing the two functions and their impossible intersection

Algebraic methods are used when there are more than two variables since they cannot
be solved through graphs. This mainly entails two methods: substitution and
elimination.

Substitution is used when you can replace the value of a variable in one equation and
plug it into the second equation. Consider the following example:
x + y = 2

10x + y = 10

The easiest method is to rearrange the first equation so that you have y in terms of x:



y = 2 − x

10x + (2 − x) = 10

Solving for x in the second equation becomes simple:

Now that you have found the value of x, you can easily find y by plugging the value of
x into the first equation:

To check if your solution is correct, you can plug in the values of x and y in both
formulas:

Graphically, this means that the two equations intersect at (0.8889, 1.111). This
technique can be used with more than two variables. Follow the same process until
the equations are simplified enough to give you the answers. The issue with
substitution is that it may take some time when you’re dealing with more than two
variables.

Elimination is a faster alternative. It is about eliminating variables until there is only
one left. Consider the following example:

Noticing that there is 4y and 2y, it is possible to multiply the second equation by 2 so
that you can subtract the equations from each other (which will remove the y
variable):

10x + (2 − x) = 10

10x + 2 − x = 10

10x − x = 10 − 2

9x = 8

x = 8
9

x = 0.8889

0.8889 + y = 2

y = 2 − 0.8889

y = 1.111

0.8889 + 1.111 = 2

(10 × 0.8889) + 1.111 = 10

2x + 4y = 20

3x + 2y = 10

2x + 4y = 20

6x + 4y = 20



Subtracting the two equations from each other gives the following result:

Therefore, x = 0. Graphically, this means that they intersect whenever x = 0 (exactly at
the vertical y line). Plugging the value of x into the first formula gives y  = 5:

Similarly, elimination can also solve equations with three variables. The choice
between substitution and elimination depends on the type of equation being solved.

NOTE
The key takeaways from this section are as follows:

Systems of equations solve variables together. They are very useful in machine learning and are
used in some algorithms.

Graphical solutions are preferred for simple systems of equations.

Solving systems of equations through algebra entails the use of substitution and elimination
methods.

Substitution is preferred when the system is simple, but elimination is the way to go when the
system is a bit more complex.

Trigonometry
Trigonometry explores the behavior of what is known as trigonometric functions that
relate the angles of a triangle to the lengths of its sides. The most-used triangle is the
right-angled triangle, which has one angle at 90°. Figure 4-9 shows an example of a
right-angled triangle.

−4x = 0

x = 0

(2 × 0) + 4y = 20

4y = 20

y = 5



Figure 4-9. A right-angled triangle

Let’s define the main characteristics of a right-angled triangle:

The longest side of the triangle is called the hypotenuse.

The angle in front of the hypotenuse is the right angle (the one at 90°).

Depending on the other angle (θ) you choose (from the two that remain), the line
between this angle and the hypotenuse is called the adjacent and the other line is
called the opposite.

NOTE
Trigonometric functions are mathematical functions used to relate the angles of a right triangle to the
ratios of its sides. They have various applications in fields like geometry, physics, engineering, and
more. They help analyze and solve problems related to angles, distances, oscillations, and waveforms,
among other things.

Trigonometric functions are simply the division of one line by another line. Remember
that you have three lines in a triangle (hypotenuse, opposite, and adjacent). The
trigonometric functions are found as follow:

sin (θ) = Opposite
Hypotenuse

cos (θ) = Adjacent
Hypotenuse



tan (θ) = Opposite
Adjacent

From the previous three trigonometric functions, it is possible to extract a
trigonometric identity that reaches tan from sin and cos using basic linear algebra:

tan (θ) = sin(θ)
cos(θ)

Hyperbolic functions are similar to trigonometric functions but are defined using
exponential functions. Before understanding hyperbolic functions, one must understand
Euler’s number.

NOTE
This part on hyperbolic functions is interesting as it forms the basis of what is known as activation
functions, a key concept in neural networks, the protagonists of deep learning models. You will see
them in detail in Chapter 8.

Euler’s number (denoted as e) is one of the most important numbers in mathematics. It
is an irrational number, which is a real number that cannot be expressed as a fraction.
The word irrational comes from the fact that there is no ratio to express it; it has
nothing to do with its personality. Euler’s number is also the base of the natural
logarithm ln, and the first digits of it are 2.71828. One of the best approximations to
get e is the following formula:

e = (1 + 1
n
)n

By increasing n in the previous formula, you will approach the value of e. Euler’s
number has many interesting properties, most notably the fact that its slope is its own
value. Consider the following function (also called the natural exponent function):
f (x) = ex

At any point, the slope of the function is the same value. Take a look at Figure 4-10.



Figure 4-10. A graph of the natural exponent function

NOTE
You may be wondering why I am explaining exponents and logarithms in this book. There are mainly
two reasons for this:

Exponents and, more importantly, Euler’s number are used in hyperbolic functions where tanh(x)
is one of the main activation functions for neural networks, a type of machine and deep learning
model.

Logarithms are useful in loss functions, a concept that you will see in later chapters.

Hyperbolic functions use the natural exponent function and are defined as follows:

sinh (x) = ex−e−x

2



cosh (x) = ex+e−x

2

tanh (x) = ex−e−x

ex+e−x

Among the key characteristics of tanh(x) are nonlinearity, the limitation between [–1,
1], and the fact that it is centered at zero. Figure 4-11 shows the graph of tanh(x).

Figure 4-11. A graph of tanh(x) showing how it’s limited between –1 and 1



NOTE
The key takeaways from this section are as follows:

Trigonometry is a field that explores the behavior of trigonometric functions that relate the angles
of a triangle to the lengths of its sides.

A trigonometric identity is a shortcut that relates the trigonometric functions with each other.

Euler’s number e is irrational and is the base of the natural logarithm. It has many applications in
exponential growth and in hyperbolic functions. 

The hyperbolic tangent function is used in neural networks, a deep learning algorithm. 

Calculus
As previously mentioned, calculus is a branch of mathematics that focuses on the study
of rates of change and accumulation of quantities. It consists of two primary branches:
differential calculus (which deals with derivatives) and integral calculus (which
deals with integration). This section briefly introduces both types of calculus while
also discussing topics such as limits and optimization.

Limits and Continuity
Calculus works by making visible the infinitesimally small.

—Keith Devlin

Limits don’t have to be nightmarish. I have always found them to be misunderstood.
They are actually quite easy to get. But first, you need motivation, and this comes from
knowing the added value of learning limits.

Understanding limits is important in machine learning models for many reasons:

Optimization

In optimization methods like gradient descent, limits can be used to
regulate the step size and guarantee convergence to a local
minimum.

Feature selection

Limits can be used to rank the significance of various model
features and perform feature selection, which can make the model



simpler and perform better.

Sensitivity analysis

A machine learning model’s sensitivity to changes in input data and
its capacity to generalize to new data can be used to examine a
model’s behavior.

Also, limits are used in more advanced calculus concepts that you will learn about
shortly.

The main aim of limits is to know the value of a function when it’s undefined. But
what is an undefined function? When you have a function that gives a solution that is
not possible (such as dividing by zero), limits help you bypass this issue in order to
know the value of the function at that point. So the aim of limits is to solve functions
even when they are undefined.

Remember that the solution to a function that takes x as an input is a value in the y-
axis. Figure 4-12 shows a linear graph of the following function:
f(x) = x + 2



Figure 4-12. A graph of the function f(x) = x + 2

The solution of the function in the graph is the one that lies on the linear line taking
into account the value of x every time.

What would be the solution of the function (the value of y) when x = 4? Clearly, the
answer is 6, as substituting the value of x with 4 gives 6:
f(4) = 4 + 2 = 6

Thinking of this solution in terms of limits would be like asking for the solution of the
function as x approaches 4 from both sides (the negative/decreasing side and the
positive/increasing side). Table 4-1 simplifies this dilemma.



Table 4-1. Finding x as it
approaches 4

f(x) x

5.998 3.998

5.999 3.999

6.000 4.000

6.001 4.001

6.002 4.002

Approaching from the negative side is the equivalent of adding a fraction of a number
while below 4 and analyzing the result every time. Similarly, approaching from the
positive side is the equivalent of removing a fraction of a number while above 4 and
analyzing the result every time. The solution seems to converge to 6 as x approaches
4. This is the solution to the limit.

Limits in the general form are written following this convention:
limx→a f (x) = L

The general form of the limit is read as follows: as you approach a along the x-axis
(whether from the positive or the negative side), the function f(x) gets closer to the
value of L.

NOTE
The idea of the limit states that as you lock in and approach a number from either side (negative or
positive), the solution of the equation approaches a certain number, and the solution to the limit is that
number.

As mentioned previously, limits are useful when the exact point of the solution is
undefined using the conventional way of substitution.

A one-sided limit is different from the general limit. With a lefthand limit, you search
for the limit going from the negative side to the positive side, and with a righthand



limit, you search for the limit going from the positive side to the negative side. The
general limit exists when the two one-sided limits exist and are equal. Therefore, the
previous statements are summarized as follows:

The lefthand limit exists.

The righthand limit exists.

The lefthand limit is equal to the righthand limit.

The lefthand limit is defined as follows:
limx→a− f (x) = L

The righthand limit is defined as follows:

limx→a+ f (x) = L

Consider the following equation:

f (x) = x3−27
x−3

What is the solution of the function when x = 3? Substitution leads to the following
issue:

f (3) = 33−27
3−3 = 27−27

3−3 = 0
0 = Undefined

However, thinking about this in terms of limits as shown in Table 4-2, it seems that as
you approach x = 3, either from the left or right side, the solution tends to approach
27.



Table 4-2. Finding x as it
approaches 3

f(x) x

2.9998 26.9982

2.9999 26.9991

3.0000 Undefined

3.0001 27.0009

3.0002 27.0018

Graphically, this can be seen as a discontinuity in the chart along both axes. The
discontinuity exists on the line around the coordinate (3, 27). Some functions do not
have limits. For example, what is the limit of the following function as x approaches
5?

limx→5
1

x−5

Looking at Table 4-3, it seems that as x approaches 5, the results highly diverge when
approaching from both sides. For instance, approaching from the negative side, the
limit of 4.9999 is –10,000, and from the positive side, the limit of 5.0001 is 10,000.

Table 4-3. Finding x as it
approaches 5

f(x) x

4.9998 –5000

4.9999 –10000

5.0000 Undefined

5.0001 10000

5.0002 5000



Remember that for the general limit to exist, both one-sided limits must exist and must
be equal, which is not the case here. Graphing this gives Figure 4-13, which may help
you understand why the limit does not exist.

Figure 4-13. A graph of the function proving that the limit does not exist

But what if the function that you want to analyze looks like this:

limx→5
1

|x−5|

Looking at Table 4-3, it seems that as x approaches 5, the results rapidly accelerate as
they diverge to a very big number referred to as infinity (∞):

f (x) = 1
|x−5|

Take a look at Table 4-4:



Table 4-4. Another attempt at
finding x as it approaches 5

f(x) x

4.99997 334333.33

4.99998 50000

4.99999 100000

4.9999999 10000000

5.00000 Undefined

5.0000001 10000000

5.00001 100000

5.00002 50000

5.00003 334333.33

At every tiny step, x approaches 5, and y approaches positive infinity. The answer to
the limit question is therefore positive infinity (+∞). Figure 4-14 shows the graph of
the function. Notice how both sides rise in value as x approaches 5.



Figure 4-14. A graph of the function proving that the limit exists as x approaches 5



TO INFINITY AND BEYOND
You can understand what infinity represents in terms of mathematics. Infinity is an
idea or a concept rather than a number. The symbol (∞) is often referred to as a
lemniscate.

Positive infinity (∞) and negative infinity (–∞) are both concepts that exist across
the axis where the former tends toward the right and the latter tends toward the
left.

Interestingly, infinity is often thought of as an ever-growing measure, but it is not
expanding or getting bigger. It is already what it is.

Mathematical operations, including the concept of infinity, may be hard to grasp
and have many considerations. One of the most interesting examples is the answer
to why the result of 1 divided by zero is undefined.

Imagine dividing an apple among 10 people; normally every person will get an
equal fraction (1/10) of that apple until the apple is consumed. But what if you
want to divide the apple by zero people? The number of people required to
consume the apple will tend toward infinity (the logic is hard to grasp, but
mathematically you can think of infinitesimally small parts of the apple requiring a
huge number of people to consume them).

Therefore, following this logic, you can say that 1 divided by 0 is infinity and is
actually defined. So, why is it generally considered undefined? The issue is that
the apple example describes positive infinity, and if you want to follow the
example of dividing 1 by infinitesimally small negative numbers that tend toward
zero, then you will also say that 1 divided by 0 is negative infinity.

So which is it? Positive or negative infinity? Because of this conflict, the result is
undefined.

Continuous functions are ones that are drawn without gaps or holes in the graph,
while discontinuous functions contain such gaps and holes. This usually means that
the latter contain points where the solution of the functions is undefined and may need
to be approximated by limits. Therefore, continuity and limits are two related
concepts.

Let’s proceed to solving limits; after all, you are not going to create a table every time
and analyze the results subjectively to find the limits. There are three ways to solve
limits:



Substitution: This is the simplest rule and is generally used first.

Factoring: This comes after substitution does not work.

Conjugate methods: This solution comes after the first two do not work.

Substitution involves simply plugging in the value that x approaches. Basically, these
are functions that have solutions where the limits are used. Take the following
example:
limx→5 x + 10 − 2x

Using substitution, the limit of the function is found as follows:

Therefore, the answer to the limit is 5.

Factoring is the next option when substitution does not work (e.g., the limit is
undefined after plugging the value of x into the function). Factoring is all about
changing the form of the equation using factors in such a way that the equation is not
undefined anymore when using substitution. Take the following example:

limx→−6
(x+6)(x2−x+1)

x+6

If you try substitution, you will get an undefined value as follows:

Factoring may help in this case. For example, the nominator is multiplied by (x + 6)
and then divided by (x + 6). Simplifying this by canceling the two terms could give a
solution:

limx→−6
(x+6)(x2−x+1)

x+6 =limx→−6 x
2 − x + 1

Now that factoring is done, you can try substitution once again:

limx→−6 x
2 − x + 1 = (−6)2 − (−6) + 1 = 43

The limit of the function as x tends toward –6 is therefore 43.

Forming a conjugate is the next option when substitution and factoring do not work. A
conjugate is formed by simply changing signs between two variables. For example,
the conjugate of x + y is  x – y. The way to do this in the case of a fraction is to

lim
x→5

x + 10 − 2x = 5 + 10 − (2 × 5) = 5

lim
x→−6

(x + 6) (x2 − x + 1)

x + 6
=

(−6 + 6)((−6)2 − (−6) + 1)

−6 + 6
=

0

0
= Undefined



multiply the nominator and the denominator by the conjugate of one of them (with a
preference to use the conjugate of the term that has a square root since it will get
canceled out). Consider the following example:

limx→9
x−9

√x−3

By multiplying both terms by the conjugate of the denominator, you will have started to
use the conjugate method to solve the problem:

limx→9
x−9

√x−3
( √x+3

√x+3
)

Taking into account the multiplication and then simplifying gives the following:

limx→9
(x−9)(√x+3)

(√x−3)(√x+3)

You will be left with the following familiar situation:

limx→9
(x−9)(√x+3)

x−9

limx→9 √x + 3

Now the function is ready for substitution:

limx→9 √9 + 3 = 3 + 3 = 6

The solution to the function is therefore 6. As you can see, sometimes work needs to
be done on the equations before they are ready for substitution.

NOTE
The key takeaways from this section are as follows:

Limits help find solutions for functions that may be undefined in certain points.

For the general limit to exist, the two one-sided limits must exist and must be equal.

There are ways to find the limit of a function, notably substitution, factoring, and forming the
conjugate.

Derivatives
A derivative measures the change in a function given a change of one or more of its
inputs. In other words, it is the rate of change of a function at a given point.



Having a solid understanding of derivatives is important in building machine learning
models, for multiple reasons:

Optimization

To minimize the loss function, optimization methods employ
derivatives to ascertain the direction of the steepest descent and
modify the model’s parameters.

Backpropagation

To execute gradient descent in deep learning, the backpropagation
technique uses derivatives to calculate the gradients of the loss
function with respect to the model’s parameters.

Hyperparameter tuning

To improve the performance of the model, derivatives are used for
sensitivity analysis and tuning of hyperparameters.

Do not forget what you learned from the previous section on limits, as you will need
this knowledge for this section as well. Calculus mainly deals with derivatives and
integrals. This section discusses derivatives and their uses.

You can consider derivatives to be functions that represent (or model) the slope of
another function at some point. A slope is a measure of a line’s position relative to a
horizontal line. A positive slope indicates a line moving up, while a negative slope
indicates a line moving down.

Derivatives and slopes are related concepts, but they are not the same thing. Here’s
the main difference between the two:

Slope

The slope measures the steepness of a line. It is the ratio of the
change in the y-axis to the change in the x-axis.

Derivative

The derivative describes the rate of change of a given function. As
the distance between two points on a function approaches zero, the



derivative of that function at that point is the limit of the slope of the
tangent line.

Before explaining derivatives in layperson’s terms and showing some examples, let’s
see their formal definitions:

f ′ (x) =limh→0
f(x+h)−f(x)

h

The equation forms the basis of solving derivatives, although there are many shortcuts
that you will learn about. Let’s try finding the derivative of a function using the formal
definition. Consider the following equation:

f (x) = x2 + 4x − 2

To find the derivative, plug f(x) into the formal definition and then solve the limit:

f ′ (x) =limh→0
f(x+h)−f(x)

h

To simplify things, let’s find f(x + h) so that plugging it into the formal definition
becomes easier:

f (x + h) = (x + h)2 + 4 (x + h) − 2

f (x + h) = x2 + 2xh + h2 + 4x + 4h − 2

Now let’s plug f(x + h) into the definition:

f ′ (x) =limh→0
x2+2xh+h2+4x+4h−2−x2−4x+2

h

Notice how there are many terms that can be simplified so that the formula becomes
clearer. Remember, you are trying to find the limit for the moment, and the derivative
is found after solving the limit:

f ′ (x) =limh→0
2xh+h2+4h

h

The division by h gives further potential for simplification since you can divide all the
terms in the numerator by the denominator h:
f ′ (x) =limh→0 2x + h + 4

It’s now time to solve the limit. Because the equation is simple, the first attempt is by
substitution, which, as you have guessed, is possible. By substituting the variable h
and making it zero (according to the limit), you are left with the following:
f ′ (x) = 2x + 4



That is the derivative of the original function f(x). If you want to find the derivative of
the function when x = 2, you simply have to plug 2 into the derivative function:
f ′ (2) = 2 (2) + 4 = 8

Figure 4-15 shows the original function’s graph with the derivative (the straight line).
Notice how f'(2) lies exactly at 8. The slope of f(x) when x = 2 is 8.

Figure 4-15. The original f(x) with its derivative f'(x)

NOTE
Notice that when f(x) hits the bottom and starts rising, f'(x) crosses the zero line.



You are unlikely to use the formal definition every time you want to find a derivative.
There are derivative rules that allow you to save a lot of time through shortcuts. The
first rule is referred to as the power rule, which is a way to find the derivative of
functions with exponents.

It is common to also refer to derivatives using this notation (which is the same thing as
f'(x)):
dy

dx

The power rule for finding derivatives is as follows:
dy

dx
(axn) = (a.n)xn−1

Basically, this means that the derivative is found by multiplying the constant by the
exponent and then subtracting 1 from the exponent. Here’s an example:

f (x) = x4

f ′ (x) = (1 × 4)x(4−1) = 4x3

Remember that if there is no constant attached to the variable, it means that the
constant is equal to 1. Here’s a more complex example with the same principle:

f (x) = 2x2 + 3x7 − 2x3

f ′ (x) = 4x + 21x6 − 6x2

It is worth noting that the rule also applies to constants even though they do not satisfy
the general form of the power rule. The derivative of a constant is zero. While it helps
to know why, first you must be aware of the following mathematical concept:

x0 = 1

That being said, you can imagine constants as always being multiplied by x to the
power of zero (since doing so does not change their value). Now, if you want to find
the derivative of 17, here’s how it would go:

17 = 17x0 = (0 × 17)x0−1 = 0x−1 = 0

As you know, anything multiplied by zero returns zero as a result. This gives the
constants rule for derivatives as follows:
dy

dx
(a) = 0

You follow the same logic when encountering fractions or negative numbers in the
exponents.



The product rule of derivatives is useful when there are two functions multiplied by
each other. The product rule is as follows:
dy

dx
[f (x)g (x)] = f ′ (x)g (x) + f (x)g′ (x)

Let’s take an example and find the derivative using the product rule:

h (x) = (x2 + 2) (x3 + 1)

The equation can clearly be segmented into two terms, f(x) and g(x), like this:

f (x) = (x2 + 2)

g (x) = (x3 + 1)

Let’s find the derivatives of the two terms before applying the product rule. Notice
that finding the derivative of f(x) and g(x) is easy once you understand the power rule:

f ′ (x) = 2x

g′ (x) = 3x2

When applying the product rule, you should get the following:

h′ (x) = (x2 + 2) (3x2) + (2x) (x3 + 1)

h′ (x) = 3x4 + 6x2 + 2x4 + 2x

h′ (x) = 5x4 + 6x2 + 2x

Figure 4-16 shows the graph of h(x) and h'(x).



Figure 4-16. The original h(x) with its derivative h'(x)

Now let’s turn our attention to the quotient rule, which deals with the division of two
functions. The formal definition is as follows:
dy

dx
[ f(x)

g(x)
] =

f ′(x)g(x)−f(x)g′(x)

[g(x)]2

Let’s apply it to the following function:

f (x) = x2−x+1
x2+1

As usual, it’s better to start by finding the derivatives of f(x) and g(x), which in this
case are clearly separated, with f(x) being the nominator and g(x) being the
denominator. When applying the quotient rule, you should get the following:

f ′ (x) =
(2x−1)(x2+1)−(x2−x+1)(2x)

(x2+1)2



f ′ (x) = 2x3+2x−x2−1−2x3+2x2−2x

(x2+1)2

f ′ (x) = x2−1

(x2+1)2

Exponential derivatives deal with the power rule applied to constants. Take a look at
the following equation. How would you find its derivative?

f (x) = ax

Instead of the usual variable-base-constant-exponent, it is constant-base-variable-
exponent. This is treated differently when trying to calculate the derivative. The
formal definition is as follows:
dy

dx
ax = ax (ln a)

The following example shows how this is done:
dy

dx
4x = 4x (ln 4)

Euler’s number, mentioned earlier, has a special derivative. When it comes to finding
the derivative of e, the answer is interesting:
dy

dx
ex = ex (ln e) = ex

This is because the natural log function and the exponential function are inverses of
each other, so the term ln e equals 1. Therefore, the derivative of the exponential
function e is itself.

In parallel, let’s discuss logarithmic derivatives. By now, you should know what
exponents and logarithms are. The general definition for both types of logarithms is as
follows:
dy

dx
loga x = 1

xlna

dy

dx
ln x =loge x = 1

xlne
= 1

x

Notice how in the second derivative function of the natural logarithm, the term ln e is
once again encountered, thus making simplification quite easy since it is equal to 1.

Take the following example:

f (x) = 7log2 (x)

Using the formal definition, the derivative of this logarithmic function is as follows:

f ′ (x) = 7 ( 1
xln2 ) = 7

xln2



NOTE
The logarithm log has a base of 10, but the natural logarithm ln has a base of e (~2.7182).

The natural logarithm and the log function are actually linearly related through simple multiplication. If
you know the log of the constant a, you can find its natural logarithm ln by multiplying the log of a by
2.4303.

One major concept in derivatives is the chain rule. Let’s back up to the power rule,
which deals with exponents on variables. Remember the following formula to find the
derivative:
dy

dx
(axn) = (a.n)xn−1

This is a simplified version because there is only x, but the reality is that you must
multiply by the derivative of the term under the exponent. Until now, you have seen
only x as the variable under the exponent. The derivative of x is 1, which is why it is
simplified and rendered invisible. However, with more complex functions such as this
one:

f (x) = (4x + 1)2

The derivative of the function is found by following these two steps:

1. Find the derivative of the outside function without touching the inside function.

2. Find the derivative of the inside function and multiply it by the rest of the
function.

The solution is therefore as follows (knowing that the derivative of 4x + 1 is just 4):

f ′ (x) = 2 (4x + 1).4

f ′ (x) = 8 (4x + 1)

f ′ (x) = 32x + 8

The same applies with the exponential functions. Take the following example:
f (x) = ex

f ′ (x) = ex (1) = ex

The chain rule can actually be considered a master rule as it applies anywhere, even
in the product rule and the quotient rule.



There are more concepts to master in derivatives, but as this book is not meant to be a
full calculus master class, you should at least know the meaning of a derivative, how it
is found, what it represents, and how it can be used in machine and deep learning.

NOTE
The key takeaways from this section are as follows:

A derivative measures the change in a function given a change of one or more of its inputs.

The power rule is used to find the derivative of a function raised to a power.

The product rule is used to find the derivative of two functions that are multiplied together.

The quotient rule is used to find the derivative of two functions that are divided by each other.

The chain rule is the main rule used in differentiating (which means the process of finding the
derivative). Due to simplicity, it is often overlooked.

Derivatives play a crucial role in machine learning, such as enabling optimization techniques,
aiding model training, and enhancing the interpretability of the models.

Integrals and the Fundamental Theorem of Calculus
An integral is an operation that represents the area under a curve of a function given
an interval. It is the inverse of a derivative, which is why it is also called an
antiderivative.

The process of finding integrals is called integration. Integrals can be used to find
areas below a curve, and they are heavily used in the world of finance in such areas as
risk management, portfolio management, probabilistic methods, and even option
pricing.

The easiest way to understand an integral is to think of calculating an area below the
curve of a function. This can be done by manually calculating the different changes in
the x-axis, but adding these slices to find the area is a tedious process. This is where
integrals come to the rescue.

Keep in mind that an integral is the inverse of a derivative. This is important because
it implies a direct relationship between the two. The basic definition of an integral is
as follows:

∫ f(x) dx = F(X) + C

The ∫ symbol represents the integration process



f(x) is the derivative of the general function F(x)

C represents the lost constant in the differentiation process

dx represents slicing along x as it approaches zero

The preceding equation means that the integral of f(x) is the general function F(x) plus
a constant C, which was lost in the initial differentiation process. Here’s an example
to better explain the need to put in the constant.

Consider the following function:

f (x) = x2 + 5

Calculating its derivative, you get the following result:

f ′ (x) = 2x

Now, what if you wanted to integrate it so that you go back to the original function
(which in this case is represented by the capital letter F(x) instead of f(x))?

∫ 2x dx

Normally, having seen the differentiation process (which means taking the derivative),
you would return 2 as the exponent, which gives you the following answer:

∫ 2x dx = x2

This does not look like the original function. It’s missing the constant 5. But you have
no way of knowing that, and even if you knew there was a constant, you would have
no way of knowing what it is: 1? 2? 677? This is why a constant C is added in the
integration process to represent the lost constant. Therefore, the answer to the
integration problem is as follows:

∫ 2x dx = x2 + C

NOTE
Up until now, the discussion has been limited to indefinite integrals where the integration symbol is
naked (which means there are no boundaries to it). You will see what this means right after we define
the necessary rules to complete the integration.

For the power function (just like the previous function), the general rule for integration
is as follows:

∫ xa dx = xa+1

a+1 + C



This is much simpler than it looks. You are just reversing the power rule you saw
earlier. Consider the following example:

∫ 2x6 dx

∫ 2x6 dx = 2x7

7 + C

∫ 2x6 dx = 2
7 x

7 + C

To verify your answer, you can find the derivative of the result (using the power rule):

F (x) = 2
7 x

7 + C

f ′ (x) = (7) 2
7 x

7−1 + 0

f ′ (x) = 2x6

Let’s take another example. Consider the following integration problem:

∫ 2 dx

Naturally, using the rule, you should find the following result:

∫ 2 dx = 2x + C

Let’s move on to definite integrals, which are integrals with numbers on the top and
bottom that represent intervals below a curve of a function. Hence, indefinite integrals
find the area under the curve everywhere, and definite integrals are bounded within an
interval given by point a and point b. The general definition of indefinite integrals is
as follows:

∫ b

a
f (x) dx = F (B) − F (A)

This is as simple as it gets. You will solve the integral, then plug in the two numbers
and subtract the two functions from each other. Consider the following evaluation of
an integral (integral solving is commonly referred to as evaluating the integral):

∫ 6
0 3x2 − 10x + 4 dx

The first step is to understand what is being asked. From the definition of integrals, it
seems that the area between [0, 2] on the x-axis is to be calculated using the given
function:

F (x) = ([x3 − 5x2 + 4x + C]) 6

0

To evaluate the integral at the given points, simply plug in the values as follows:∣



F (x) = ([63 − 5(6)2 + 4 (6) + C]) − ([03 − 5(0)2 + 4 (0) + C])

F(x) = ([216 − 180 + 24 + C]) − ([0 − 0 + 0 + C])

F(x) = ([60 + C]) − ([0 + C])

F(x) = (60 − 0)

F(x) = 60

NOTE
The constant C will always cancel out indefinite integrals, so you can leave it out in this kind of
problem.

Therefore, the area below the graph of f(x) and above the x-axis, as well as between
[0, 6] on the x-axis, is equal to 60 square units. The following shows a few rules of
thumb on integrals (after all, this chapter is supposed to refresh your knowledge or
give you a basic understanding of a few key mathematical concepts):

To find the integral of a constant:

∫ a dx = ax + C

To find the integral of a variable:

∫ x dx = 1
2 x

2 + C

To find the integral of a reciprocal:

∫ 1
x
dx =ln |x| + C

To find the integral of an exponential:

∫ ax dx = ax

ln(a)
+ C

∫ ex dx = ex + C

The fundamental theorem of calculus links derivatives with integrals. This means that
it defines derivatives in terms of integrals and vice versa. The fundamental theorem of
calculus is actually made up of two parts:

Part I

The first part of the fundamental theorem of calculus states that if
you have a continuous function f(x), then the original function F(x)



defined as the antiderivative of f(x) from a fixed starting point a up
to x is a function that is differentiable everywhere from a to x, and
its derivative is simply f(x) evaluated at x.

Part II

The second part of the fundamental theorem of calculus states that
if you have a function f(x) that is continuous over a certain interval
[a, b], and you define a new function F(x) as the integral of f(x) from
a to x, then the definite integral of f(x) over that same interval [a, b]
can be calculated as F(b) – F(a).

The theorem is useful in many fields, including physics and engineering, but
optimization and other mathematical models also benefit from it. Some examples of
using integrals in the different learning algorithms can be summed up as follows:

Density estimation

Integrals are used in density estimation, a part of many machine
learning algorithms, to calculate the probability density function.

Reinforcement learning

Integrals are used in reinforcement learning to calculate expected
values of reward functions. Reinforcement learning is covered in
Chapter 10.

NOTE
The key takeaways from this section are as follows:

Integrals are also known as antiderivatives and they are the opposite of derivatives.

Indefinite integrals find the area under the curve everywhere, while definite integrals are
bounded within an interval given by point a and point b.

The fundamental theorem of calculus is the bridge between derivatives and integrals.

In machine learning integrals are used for modeling uncertainty, making predictions, and
estimating expected values.



Optimization
Several machine and deep learning algorithms depend on optimization techniques to
decrease error functions.

Optimization is the process of finding the best solution among all possible solutions.
Optimization is all about finding the highest and lowest points of a function. Figure 4-
17 shows the graph for the following formula:

f (x) = x4 − 2x2 + x

Figure 4-17. A graph of the function f (x) = x4 − 2x2 + x

A local minimum exists when values on the right of the x-axis are decreasing until
reaching a point where they start increasing. The point does not have to necessarily be
the lowest point in the function, hence the name local. In Figure 4-17, the function has
a local minimum at point A.



A local maximum exists when values on the right of the x-axis are increasing until
reaching a point where they start decreasing. The point does not have to necessarily be
the highest point in the function. In Figure 4-17, the function has a local maximum at
point B.

A global minimum exists when values on the right of the x-axis are decreasing until
reaching a point where they start increasing. The point must be the lowest point in the
function, hence the name global. In Figure 4-17, the function has a global minimum at
point C.

A global maximum exists when values on the right of the x-axis are increasing until
reaching a point where they start decreasing. The point must be the highest point in the
function. In Figure 4-17, there is no global maximum, as the function will continue
infinitely without creating a top. You can clearly see how the function accelerates
upward.

When dealing with machine and deep learning models, the aim is to find model
parameters (or inputs) that minimize what is known as a loss function (a function that
gives the error of forecasts). If the loss function is convex, optimization techniques
should find the parameters that tend toward the global minimum where the loss
function is minimized.

If the loss function is nonconvex, the convergence is not guaranteed, and the
optimization may only lead toward approaching a local minimum, which is a part of
the aim, but this leaves the global minimum, which is the final aim.

But how are these minima and maxima found? Let’s look at it step by step:

1. The first step is to perform the first derivative test (which is calculating the
derivative of the function). Then, setting the function equal to zero and solving for
x will give what are known as critical points. Critical points are the points
where the function changes direction (the values stop going in one direction and
start going in another direction). Therefore, these points are maxima and minima.

2. The second step is to perform the second derivative test (which is simply
calculating the derivative of the derivative). Then, setting the function equal to
zero and solving for x will give what are known as inflection points. Inflection
points show where the function is concave up and where it is concave down.

In other words, critical points are where the function changes direction, and inflection
points are where the function changes concavity. Figure 4-18 shows the difference
between a concave up function and a concave down function.



Concave up function = x2

Concave down function = −x2

Figure 4-18. A concave up function and a concave down function

The steps to find the extrema are as follows:

1. Find the first derivative and set it to zero.

2. Solve the first derivative to find x. The values are called critical points, and they
represent the points where the function changes direction.

3. Plug values into the formula that are either below or above the critical points. If
the result of the first derivative is positive, it means that it’s increasing around
that point, and if it’s negative, it means that it’s decreasing around that point.

4. Find the second derivative and set it to zero.



5. Solve the second derivative to find x. The values, called inflection points,
represent the points where concavity changes from up to down and vice versa.

6. Plug values into the formula that are either below or above the inflection points.
If the result of the second derivative is positive, it means there is a minimum at
that point, and if it’s negative, it means there is a maximum at that point.

It is important to understand that the first derivative test relates to critical points and
the second derivative test relates to inflection points. The following example finds the
extrema of the function:

f (x) = x2 + x + 4

The first step is to take the first derivative, set it to zero, and solve for x:
f ′ (x) = 2x + 1

2x + 1 = 0

x = − 1
2

The result shows there is a critical point at that value. Now find the second
derivative:

f ′′ (x) = 2

Next, the critical point must be plugged into the second derivative formula:

f ′′ (− 1
2 ) = 2

The second derivative is positive at the critical point. This means that there is a local
minimum at that point.

In the coming chapters, you will see more complex optimization techniques such as the
gradient descent and the stochastic gradient descent, which are fairly common in
machine learning algorithms. Note that you do not have to fully understand the details
of optimization and solving for the unknown variables as the algorithms will do that
on their own.



NOTE
The key takeaways from this section are as follows:

Optimization is the process of finding the function’s extrema.

Critical points are the points where the function changes direction. 

Inflection points give where the function is concave up and where it is concave down.

A loss function is a function that measures the error of forecasts in predictive machine learning.

Summary
Chapters 2, 3, and 4 presented the main numerical concepts to help you start
understanding basic machine and deep learning models. I made all reasonable efforts
to simplify the technical details as much as possible. However, I encourage you to
read these three chapters at least twice so that everything you have learned becomes
second nature. I also encourage you to research these concepts in more depth in other
material.

Naturally, deep learning requires more in-depth knowledge in mathematics, but I
believe that with the concepts in this chapter, you may start dipping your toes into
creating algorithms. After all, they come prebuilt from packages and libraries, and the
aim of this chapter was to help you understand what you are working with. It is
unlikely that you will build the models from scratch using archaic tools.

By now, you should have gained a certain understanding of data science and the
mathematical requirements that will get you started comfortably. We have two more
topics to cover before you can start building your first machine learning model:
technical analysis and Python for data science.

1  Matrices can also contain symbols and expressions, but for the sake of simplicity, let’s stick to numbers.



Chapter 5. Introducing Technical
Analysis

Technical analysis presents many types of inputs (explanatory variables) that
you can use in your deep learning models. This chapter introduces this vast
field so that you are equipped with the necessary knowledge to create
technical-based learning models in the chapters to follow.

Technical analysis in finance relies on the visual interpretation of a price
action’s history to determine the likely aggregate direction of the market. It
relies on the idea that the past is the best predictor of the future. There are
several types of techniques within the vast field that is technical analysis,
notably the following:

Charting analysis

This is where you apply subjective visual interpretation
techniques onto charts. You generally use methods like
drawing support and resistance lines as well as retracements
to find inflection levels that aim to determine the next move.

Indicator analysis

This is where you use mathematical formulas to create
objective indicators that can be either trend following or
contrarian. Among known indicators are moving averages
and the relative strength index (RSI), both of which are
discussed in greater detail in this chapter.

Pattern recognition

This is where you monitor certain recurring configurations
and act on them. A pattern is generally an event that
emerges from time to time and presents a certain theoretical



or empirical outcome. In finance, it is more complicated, but
certain patterns have been shown to add value across time,
and this may partly be due to a phenomenon called self-
fulfilling prophecy (a process by which an initial expectation
leads to its confirmation).

Let’s take a quick tour of the history of technical analysis so that you have a
better idea of what to expect. Technical analysis relies on three principles:

History repeats itself

You are likely to see clusters during trends and ranges. Also,
certain configurations are likely to have a similar outcome
most of the time.

The market discounts everything

It is assumed that everything (all fundamental, technical,
and quantitative information) is included in the current
price.

The market moves in waves

Due to different time frames and needs, traders buy and sell
at different frequencies, therefore creating trends and waves
as opposed to a straight line.

Unfortunately, technical analysis is overhyped and misused by the retail
trading community, which gives it a somewhat less-than-savory reputation in
the professional industry. Every type of analysis has its strengths and
weaknesses, and there are successful fundamental, technical, and quantitative
investors, but there are also failed investors from the three fields.

Fundamental analysis relies on economic and financial data to deliver a
judgment on a specific security or currency with a long-term investment
horizon, whereas quantitative analysis is more versatile and is more often



applied to short-term data. It uses mathematical and statistical concepts to
deliver a forecast or to manage risk.

Among other assumptions, technical analysis suggests that markets are not
efficient, but what does that mean? Market efficiency states that information
is already embedded in the current price and that price and value are the
same thing. When you buy an asset, you are hoping that it is undervalued (in
fundamental analysis jargon) or oversold (in technical analysis jargon),
which is why you believe the price should go up to meet the value.
Therefore, you are assuming that the value is greater than the price.

Market efficiency rebuffs any claims that the price does not equal the value
and therefore suggests that any alpha trading must not result in above-average
returns (alpha trading is the act of engaging in speculative operations to
perform better than a benchmark, which is typically an index).

The market efficiency hypothesis is the technical analyst’s greatest enemy, as
one of its principles is that in the weak form of efficiency, you cannot earn
excess returns from technical analysis. Hence, technical analysis gets shot
down right at the beginning, and then fundamental analysis gets its share of
the beating.

It is fair to assume that at some point in the future, markets will have no
choice but to be efficient due to the number of participants and the ease of
access to information. However, as political and abnormal events show us,
markets tend to be anything but efficient.

NOTE
An example of a political event that triggered panic and irrationality in the markets is the
Russia-Ukraine war that started in 2022. An example of an abnormal economic event is an
unexpected interest rate hike from a central bank.

Charting Analysis



Before you can understand what charting analysis is, you need to know what
you see when opening a chart—or more specifically, a candlestick chart.

Let’s assume that the market for a particular stock opens at $100. Some
trading activity occurs. Let’s also record the high price ($102) and the low
price ($98) printed during the hourly period. Also, record the hourly close
price ($101). Recall that these four pieces of data are referred to as open,
high, low, and close (OHLC). They represent the four basic prices that are
necessary to create candlestick charts.

Candlesticks are extremely simple and intuitive. They are box-shaped
chronological elements across the timeline that contain the OHLC data.
Figure 5-1 shows everything you need to know about how a candlestick
works.

Figure 5-1. On the left, a bullish candlestick; on the right, a bearish candlestick

A bullish candlestick has a close price higher than its open price, whereas a
bearish candlestick has a close price lower than its open price.



Candlestick charts are among the most common ways to analyze financial
time series. They contain more information than simple line charts and offer
more visual interpretability than bar charts.

NOTE
A line chart is created by joining the close prices chronologically. It is the simplest way to
chart an asset. It contains the least information among the three chart types since it shows
only the close price.

Charting analysis is the task of finding support and resistance lines through
subjective drawing. Lines, whether horizontal or diagonal, are the essence of
finding the following levels to predict the market’s reaction:

Support level

A level from where the market should bounce, as it is
implied that demand should be higher than the supply
around it

Resistance level

A level from where the market should retreat, as it is implied
that supply should be higher than the demand around it

The asset’s direction on a timeline axis can be threefold: uptrend, where
prices are making higher highs; downtrend, where prices are making lower
lows; and sideways (or ranging), where prices fluctuate around the same
level for extended periods of time.

Figure 5-2 shows a horizontal support level on the EURUSD (the value of
one euro priced in US dollars) close to 1.0840. Generally, traders start
thinking about buying when a price is close to support. This is in anticipation
of a reaction to the upside since the balance of power should shift more to the
demand (positive) side, where traders accept paying a higher price as they
expect an even higher price in the future (remember the price-to-value



argument discussed earlier). The implication here is that most traders see a
price that is lower than the value.

Figure 5-2. Candlestick chart on the EURUSD showing support at 1.0840

Figure 5-3 shows a resistance level on the USDCHF (the value of one US
dollar priced in Swiss francs) close to 0.9030. Generally, traders start
thinking about shorting the market when it is close to resistance. This is in
anticipation that a reaction to the downside should occur since the balance of
power should shift more to the supply side. The implication here is that most
traders see a price that is higher than the value.

Figure 5-3. Candlestick chart on the USDCHF showing resistance at 0.9030



Ranging (sideways) markets give more confidence that horizontal support
and resistance lines will work. This is because of the already implied
general balance between supply and demand. Therefore, if there is excess
supply, the market would adjust quickly, as demand should rise enough to
stabilize the price.

Figure 5-4 shows a ranging market trapped between two horizontal levels;
this is the case of the USDCAD (the value of one US dollar priced in
Canadian dollars). Whenever the market approaches the resistance line in a
ranging market, you should have more confidence that a drop will occur than
you would in a rising market, and whenever it approaches support, you
should have more confidence that a bounce will occur than you would in a
falling market.

Charting analysis is also applied on trending markets. This comes in the form
of ascending and descending channels. They share the same inclination as
horizontal levels but with a bias (discussed later).

Figure 5-4. Candlestick chart on the USDCAD showing support at 1.4540 and resistance at
1.4620

Figure 5-5 shows an ascending channel where support and resistance points
rise over time to reflect the bullish pressure stemming from a steadily rising
demand force.



Traders seeing this would anticipate a bullish reaction whenever the market
approaches the lower part of the ascending channel and would expect a
bearish reaction whenever the market approaches the upper part of the
channel.

This has no sound scientific backing, because nothing says that the market
must move in parallel, but the self-fulfilling prophecy may be why such
channels are considered predictive in nature.

Figure 5-5. Candlestick chart on the EURUSD showing an ascending channel

Figure 5-6 shows a descending channel where support and resistance points
fall with time to reflect the bearish pressure coming from a steadily rising
supply force. Generally, bearish channels tend to be more aggressive as fear
dominates greed, and sellers are more panicky than buyers are greedy.



Figure 5-6. Candlestick chart on the EURUSD showing a descending channel

I mentioned a bias when dealing with ascending and descending channels. I
refer to this bias as the invisible hand. Here’s why:

“The trend is your friend.” This saying, coined by stock investor, investment
adviser, and financial analyst Martin Zweig, means that with ascending
channels, you need to be focusing more on buying whenever the market
reverts to the support zone. That’s because you want the invisible hand of the
bullish pressure to increase your probability of a winning trade. Similarly, in
the case of a descending channel, you should focus more on short selling
whenever the market reaches the upper limit. The full version of Zweig’s
axiom goes as follows: “The trend is your friend, until the end when it
bends.” This means that at any point in time, the market may change its
regime, and any friendship with the trend gets terminated. In the end, charting
analysis is subjective in nature and relies more on the experience of the
trader or analyst.

It is worth mentioning that there are many ways to find support and resistance
levels other than drawing them through visual estimation:

Fibonacci retracements

This is where you use Fibonacci ratios to give out
reactionary levels. Fibonacci retracements are usually
calculated on up or down legs so that you know where the



market will reverse if it touches one of these levels. The
problem with this method is that it is very subjective and, as
with any other technique, not perfect. The advantage is that
it gives many interesting levels.

Pivot points

With pivot points, you use simple mathematical formulas to
find levels. Based on yesterday’s trading activity, you use
formulas to project today’s future support and resistance
levels. Then, whenever the market approaches the levels,
you try to fade the move by trading in the opposite direction.

Moving averages

These are discussed in the next section. They are dynamic in
nature and follow the price. You can also use them to detect
the current market regime.

TIP
The best way to find support and resistance levels is to combine as many techniques as
possible so that you have a certain confluence of methods, which in turn will increase your
conviction for the initial idea. Trading is a numbers game, and stacking the odds on your
side as much as possible should eventually increase your chances for a better-performing
system.

Indicator Analysis
Indicator analysis is the second-most used technical analysis tool. It
generally accompanies charting to confirm your initial idea. You can think of
indicators as assistants. They can be divided into two types:

Trend-following indicators

Used to detect and trade a trending market where the
current move is expected to continue. Therefore, they are



related to the persistence of the move.

Contrarian indicators

Used to fade the move1 and are best used in sideways
markets2 as they generally signal the end of the initial move.
Therefore, they are related to the expected reversal of the
move (and therefore to the antipersistence of the move).

The next sections present two pillars of technical analysis: moving averages
(trend following) and the relative strength index (contrarian).

NOTE
Indicators are important, as you will use them as inputs in the different learning algorithms
in subsequent chapters.

Moving Averages
The most famous trend-following overlay indicator is the moving average.
Its simplicity makes it without a doubt one of the most sought-after tools.
Moving averages help confirm and ride the trend. You can also use them to
find support and resistance levels, stops, and targets, as well as to
understand the underlying trend.

There are many types of moving averages, but the most common is the simple
moving average where you take a rolling mean of the close price, as shown
in the following formula:

Moving averagei =
Pricei+Pricei−1+...+Pricei−n

n

Figure 5-7 shows the 30-hour simple moving average applied on the
USDCAD. The term 30-hour means that I calculate the moving average of the
latest 30 periods in case of hourly bars.



Figure 5-7. Candlestick chart on the USDCAD with a 30-hour simple moving average

Rules of thumb with moving averages include the following:

Whenever the market is above its moving average, a bullish momentum
is in progress, and you are better off looking for long opportunities.

Whenever the market is below its moving average, a bearish momentum
is in progress, and you are better off looking for short opportunities.

Whenever the market crosses over or under its moving average, you can
say that the momentum has changed and that the market may be entering
a new regime (trend).

You can also combine moving averages so that they give out signals. For
example, whenever a short-term moving average crosses over a long-term
moving average, a bullish crossover has occurred, and the market may
continue to rise. This is also referred to as a golden cross.

In contrast, whenever a short-term moving average crosses under a long-term
moving average, a bearish crossover has occurred, and the market may
continue to drop. This is also referred to as a death cross.

Figure 5-8 shows the USDCAD with a 10-hour (closer to the market price)
and a 30-hour moving average (farther from the market price).



Figure 5-8. Candlestick chart on the USDCAD with a 30-hour and a 10-hour simple moving
average

The Relative Strength Index
Let’s now look at the contrarian indicator. First introduced by J. Welles
Wilder Jr.,3 the relative strength index (RSI) is one of the most popular and
versatile bounded indicators. It is mainly used as a contrarian indicator
where extreme values signal a reaction that can be exploited. Use the
following steps to calculate the default 14-period RSI:

1. Calculate the change in the closing prices from the previous ones.

2. Separate the positive net changes from the negative net changes.

3. Calculate a smoothed moving average on the positive net changes and
on the absolute values of the negative net changes.

4. Divide the smoothed positive changes by the smoothed absolute
negative changes. Refer to this calculation as the relative strength (RS).

5. Apply this normalization formula for every time step to get the RSI:

RSIi = 100 − 100
1+RSi



NOTE
The smoothed moving average is a special type of moving average developed by the
creator of the RSI. It is smoother and more stable than the simple moving average.

Generally, the RSI uses a lookback period of 14 by default, although each
trader may have their own preferences on this. Here’s how to use this
indicator:

Whenever the RSI is showing a reading of 30 or less, the market is
considered to be oversold, and a correction to the upside might occur.

Whenever the RSI is showing a reading of 70 or more, the market is
considered to be overbought, and a correction to the downside might
occur.

Whenever the RSI surpasses or breaks the 50 level, a new trend might
be emerging, but this is generally a weak assumption and more
theoretical than practical in nature.

Figure 5-9 shows the EURUSD versus its 14-period RSI in the second panel.
Indicators should be used to confirm long or short bias and are very helpful
in timing and analyzing the current market state.



Figure 5-9. Hourly EURUSD values in the top panel with the 14-period RSI in the bottom panel

To summarize, indicators can be calculated in many ways. The two most
commonly used ones are moving averages and the RSI.

Pattern Recognition
Patterns are recurring configurations that show a specific prediction of the
ensuing move. Patterns can be divided into the following types:

Classic price patterns

These are known as technical reversal price patterns, which
are extremely subjective and can be considered unreliable
due to the difficulty of backtesting them without taking
subjective conditions. However, they are still used by many
traders and analysts.

Timing patterns

Based on a combination of timing and price, these patterns
are less well known but can be powerful and predictive
when used correctly.

Candlestick patterns4



This is where OHLC data is used to predict the future
reaction of the market. Candlesticks are one of the best ways
to visualize a chart as they harbor many patterns that could
signal reversals or confirm the move.

Classic price patterns refer to theoretical configurations such as double tops
and rectangles. They are usually either reversal or continuation patterns:

Continuation price patterns

These are configurations that confirm the aggregate ongoing
move. Examples include rectangles and triangles.

Reversal price patterns

These are configurations that fade the aggregate ongoing
move. Examples include head and shoulders and double
bottoms.

Old-school chartists are familiar with double tops and bottoms, which signal
reversals and give the potential of said reversals. Despite their simplicity,
they are subjective, and some are not visible like others.

This hinders the ability to know whether they add value or not. Figure 5-10
shows an illustration of a double top where a bearish bias is given right after
the validation of the pattern, which is usually breaking the line linking the
lows of the bottom between the two tops. This line is called the neckline.



Figure 5-10. Double top illustration

Notice these three important elements in a double top:

The neckline

This is the line linking the lowest low between the two peaks
and the beginning/end of the pattern. It serves to determine
the pullback level.

The pullback

Having broken the neckline, the market should shape a
desperate attempt toward the neckline but fails to continue
higher as the sellers use this level as a reentry to continue
shorting. Therefore, the pullback level is the theoretical
optimal selling point after validating a double top.

The potential

This is the target of the double top. It is measured as the
midpoint between the top of the pattern and the neckline



projected lower and starting from the same neckline point.

The double top or bottom can have any size, but preferably it should be
visible to most market participants so that its impact is bigger. Theoretically,
the pattern’s psychological explanation is that with the second top or bottom,
the market has failed to push the prices beyond the first peak and therefore is
showing weakness, which might be exploited by the seller.

There are other patterns that are more objective in nature; that is, they have
clear rules of detection and initiation. These are all based on clear objective
conditions and are not subject to the analyst’s discretion. This facilitates their
backtesting and evaluation.

Summary
Technical analysis offers a big selection of tools to analyze the markets either
mathematically, graphically, or even psychologically (through patterns). The
learning outcome of this chapter is to understand what technical analysis is
and what the technical indicators are so that you are familiar with them when
used as explanatory variables (as is the case in Chapter 11).

1  Fading the move is a trading technique where you trade in the opposite direction of the ongoing
trend in the hope that you are able to time its end.

2  Sideways markets are generally in equilibrium and no specific trend describes them. They tend
to swing from tops to bottoms that are close to each other.

3  See New Concepts in Technical Trading Systems by J. Welles Wilder Jr. (Trend Research).

4  See my book Mastering Financial Pattern Recognition (O’Reilly) for a more in-depth
discussion on candlestick patterns.

https://www.oreilly.com/library/view/mastering-financial-pattern/9781098120467/


Chapter 6. Introductory Python
for Data Science

This is the final chapter before we dive into the realm of machine and deep
learning. This chapter is optional for experienced Python developers but is
important for anyone without a solid programming background.
Understanding the intuition behind the algorithms is a great advantage, but
that knowledge will not get you far if you fail to properly implement the
algorithms. After all, these algorithms need to be coded to work and do not
function manually, so you need to understand the basic syntax and how to
manipulate and transform data.

As the book is not meant to be an A–Z guide to programming in Python, this
chapter only focuses on some of the essentials and a few additional
techniques that should help you smoothly navigate the subsequent chapters.

Downloading Python
Code is defined as a set of instructions designed to be executed by a
computer. Generally, specific syntax is required so that the computer applies
the set of instructions without errors. There are many coding languages, and
they are divided into two broad categories:

Low-level coding languages

These are machine languages usually used to write
operating systems and firmware. They are very difficult to
read. These languages have a sizable level of control over
hardware. Assembly language is an example of a low-level
language.

High-level coding languages



These are user-friendly languages (with a high level of
abstraction). They are generally used to code programs and
software. Examples of high-level languages include Python
and Julia.

The coding language used in this book is Python, a popular and versatile
language with many advantages and wide adoption in the research and
professional trading communities. As you have probably gathered from the
chapter’s title, you will get an introduction to Python and to the tools you
need to start building your own scripts. But before that, you need to
download Python.

A Python interpreter is software used to write and execute code written
using Python syntax. I use Spyder. Some people may be more familiar with
other interpreters such as Jupyter and PyCharm, but the process is the same.
You can download Spyder from the official website or, even better,
download it as part of a bigger package called Anaconda, which facilitates
installation and offers more tools. Note that Spyder is open source and free
to use.

Figure 6-1 shows Python’s console, where the output of the code appears.

https://oreil.ly/Vlh4c
https://oreil.ly/nI8Ed


Figure 6-1. Spyder’s console

Python files have the extension .py, and they allow you to save the code and
refer to it at a later stage. You can also open multiple files of code and
navigate between them.

The outline of this chapter is as follows:

Understand the language of Python and how to write error-free code

Understand how to use control flow and its importance with time series
analysis

Understand libraries and functions and their role in facilitating coding

Understand different types of errors and how to handle them

Understand how to use data manipulation libraries such as numpy and
pandas

Finally, see how to import historical financial time series data into
Python so that it gets analyzed with the proper tools (those we already
discussed as well as those we will discuss in coming chapters)



Basic Operations and Syntax
Syntax is the set of rules that define the structure of statements needed to
write code that functions. When you are communicating with a computer, you
have to make sure it understands you, so having a solid understanding of
syntax is important.

Comments are nonexecutable code used to explain the executable code that
follows. Comments are used so that other programmers understand the code.
Comments in Python are preceded by a hash sign (#):

# This is a comment. Comments are ignored by the interpreter

# Comments explain the code or give more details about its use

# Comments are written on one line; otherwise, you have to rewrite '#'

NOTE
Make sure you understand that comments are nonexecutable. This means that when you
run (execute) the code, they will be ignored by the interpreter and will not return an error.

Sometimes you need to write documentation for your code, which may
require multiple lines of code (even paragraphs, in some instances). Writing
the hash sign at every line can be tedious and cluttersome. This is why there
is a way to write long comments. To do this, write your comment between
three single quotation marks as follows:

'''

Python was created in the late 1980s by Guido van Rossum

The name "Python" was inspired by the comedy group Monty Python

'''

It is worth noting that triple quotes are called docstrings and are not really
comments (according to the official Python documentation).

Let’s discuss variables and constants. A constant is a fixed value that does
not change, whereas a variable takes on different values given an event. A
constant can be the number 6, while a variable can be the letter x, which



takes on any number given a set of conditions or a state. A variable is
defined using the = operator:

# Defining a variable

x = 10

# Writing a constant

6

Running (executing) the previous code will store the variable x with its
respective value in the variable explorer. Simultaneously, the output of the
code will be 6. Variables are case sensitive. Therefore:

# Declaring my_variable

my_variable = 1

# Declaring My_variable

My_variable = 2

# The variable my_variable is different from My_variable

A variable declaration cannot start with a number, but a number can be
included in the middle or the end of a variable declaration:

# Returns a SyntaxError

1x = 5

# Valid declaration

x1 = 5

# Valid declaration

x1x = 5

Variables can also contain underscores but nothing else:

# Returns a SyntaxError

x–y = 5

# Valid declaration

x_y = 5

It is highly recommended that variables have short and straightforward
names. For example, consider creating a variable that holds the lookback
period of a certain moving average (a technical indicator introduced in
Chapter 5):



# Recommended name

ma_lookback = 10

# Not recommended name

the_lookback_on_that_moving_average = 10

There are several different data types with different characteristics:

Numerical data types

This is the simplest data type, formed exclusively from
numbers. Numerical data types are divided into integers,
float numbers, and complex numbers. Integers are simple
whole numbers (positive or negative), such as 6 and –19.
Float numbers are more precise than integers as they
incorporate the values after the comma, for example, 2.7 and
–8.09. Complex numbers include imaginary numbers.1

Strings

As you saw previously with comments and docstrings, it is
possible to write text next to the code without it interfering
with the execution process. Strings are text structures that
represent sequences of characters. Strings can be inputs and
arguments of functions and not necessarily just comments.

Booleans

A Boolean is a binary (true or false) data type used to
evaluate the truth value of the given expression or
condition. For example, you can use Booleans to evaluate
whether the market price is above or below the 100-period
moving average.

Data collection



These are sequences that contain multiple datasets, each
having a different and unique usage. An array is a sequence
of elements of the same type (mostly numerical). Arrays will
be used frequently in this book (with a Python library called
numpy that is discussed in this chapter). A dataframe is a
two-dimensional table of structured data that is also
frequently used in this book (with a Python library called
pandas also discussed in this chapter). A set is a sequence of
unordered elements. A list is an ordered collection of
elements that can be of different data types. A tuple is an
ordered, immutable collection of elements that may be of
different data types. It is used for storing a fixed sequence of
values. A dictionary represents a collection of key-value
pairs grouped together.

The following code snippet shows a few examples of the numerical data
type:

# Creating a variable that holds an integer

my_integer = 1

# Creating a variable that holds a float number

my_float_number = 1.2

# Using the built-in Python function type() to verify the variables

type(my_integer)

type(my_float_number)

The output should be as follows (note that the two created variables will
appear in the variable explorer):

int # The output of type(my_integer)

float # The output of type(my_float_number)

Strings are simply text. The most commonly used example to explain a string
is the phrase “Hello World”:

# Outputting the phrase Hello World

print('Hello World')



The output should be as follows:

Hello World

Strings can also be used as arguments in functions, as you will see later in
this chapter.

Booleans are either true or false values. The following code snippet shows
an example of using them:

# Make a statement that the type of my_integer is integer

type(my_integer) is int

# Make a statement that the type of my_float_number is float

type(my_float_number) is float

# Make a statement that the type of my_integer is float

type(my_integer) is float

'''

Intuitively, the two first statements will return True as they are 

indeed true. The third statement is False as the variable my_integer

is an integer and not a float number

'''

The output of the previous code is as follows:

True

True

False

Let’s discuss how operators work. You already saw an example of an
operator: the assignment operator = used to define variables. Operators
perform special mathematical and other tasks between variables, constants,
and even data structures. There are different types of operators. Let’s start
with arithmetic operators, as shown in the following snippet:

# Arithmetic operator - Addition

1 + 1 # The line outputs 2

# Arithmetic operator - Subtraction

1 – 1 # The line outputs 0

# Arithmetic operator - Multiplication

2 * 2 # The line outputs 4



# Arithmetic operator - Division

4 / 2 # The line outputs 2.0 as a float number

# Arithmetic operator - Exponents

2 ** 4 # The line outputs 16

The next type of operator is the comparison operators. These are used to
compare different elements. They are mostly used in control flow events, as
explained in the next section of this chapter. The following snippet shows a
few comparison operators:

# Comparison operator - Equality

2 == 2 # The line outputs True

# Comparison operator - Non equality

2 != 3 # The line outputs True

# Comparison operator - Greater than

2 > 3 # The line outputs False

# Comparison operator - Greater than or equal to

2 >= 2 # The line outputs True

# Comparison operator - Less than

2 < 3 # The line outputs True

# Comparison operator - Less than or equal to

2 <= 2 # The line outputs True

Logical operators combine two or more conditions that are later evaluated.
There are three logical operators: and, or, and not. The following code
block shows an example of logical operators:

# Logical operator - and

2 and 1 < 4 # The line outputs True

2 and 5 < 4 # The line outputs False

# Logical operator - or

2 or 5 < 4 # The line outputs 2, which is the integer less than 4

Data collection structures (arrays and dataframes) are discussed in a later
section, as they require an in-depth presentation due to their complexity and
unique tools. Let’s end this section with code that combines what has been
discussed so far:

# Declaring two variables x and y and assigning them values

x = 10



y = 2.5

# Checking the types of the variables

type(x) # Returns int

type(y) # Returns float

# Taking x to the power of y and storing it in a variable z

z = x ** y # Returns 316.22

# Checking if the result is greater than or equal to 100

z >= 100 # Returns True as 316.22 >= 100

Control Flow
Conditional statements form the first part of what is known as control flow
(the second part is loops, discussed shortly). Conditional statements are the
ancestors of today’s artificial intelligence as they only execute code if certain
conditions are met.

Conditional statements are managed using if, elif, and else. Take the
following code snippet as an example:

# Declaring the variables

a = 9

b = 2

# First condition (specific)

if a > b:   

    print('a is greater than b')

# Second condition (specific)    

elif a < b:   

    print('a is less than b')

# Third condition (general)    

else:   

    print('a is equal to b')

Therefore, conditional statements start with if. Then, for every new unique
and specific condition, elif is used (which is a fusion of else if), until it
makes sense to use the rest of the probability universe as a condition on its
own, which is used by the else statement. Note that the else statement does
not need a condition, as it exists to cover the rest of the uncovered universe.

Loops are used to execute blocks of code repeatedly until a predefined
condition is met. Loops are heavily used with time series to calculate



indicators, verify states, and backtest trading strategies.

Loops are managed using for (for iterating over a finite and defined
sequence or a range of elements) and while (used to continue the iteration
until a condition is met) statements. For example, the following code prints
the values {1, 2, 3, 4} using a loop:

# Using a for loop

for i in range(1, 5): 

    print(i)  

# Using a while loop  

i = 1     

while i < 5: 

    print(i) 

    i = i + 1

The for loop when translated is simply saying that for every element called
i (or any other letter depending on the coder) in the range that starts at 1 and
ends at 5 (excluded), print the value of i at every loop (hence, in the first
loop the value of i is equal to 1, and in the second loop it is equal to 2).

The while loop says that, starting from a value of i = 1, while looping,
print its value and then add 1 to it before finishing the first loop. End the loop
when i becomes greater than 4.

NOTE
Theoretically, a while loop is infinite until told otherwise.

It is worth noting that i = i + 1 can also be expressed as i += 1. The goal
of an algorithm is the ability to apply many operations recursively in an
objective way, which makes loops extremely useful, especially when
combined with conditional statements. Let’s look at an example of a financial
time series:

1. Create a range of values to simulate hypothetical prices.



2. Loop through the range of the data while creating the condition that if the
price rose since the preceding period, print 1. Similarly, if the price fell
since the preceding period, print –1. Last, print 0 if the price didn’t
change from the preceding period.

This can be done with the following code block:

# Creating the time series

time_series = [1, 3, 5, 2, 4, 1, 6, 4, 2, 4, 4, 4]

for i in range(len(time_series)): 

    # The condition where the current price rose 

    if time_series[i] > time_series[i – 1]:   

        print(1) 

    # The condition where the current price fell 

    elif time_series[i] < time_series[i – 1]: 

        print(–1)  

    # The condition where the current price hasn't changed 

    else:  

        print(0)

The code defines a list of values (in this case, a time series called
time_series), then loops around its length using the len() function to apply
the conditions. Notice how at every loop, the current time step is referred to
as i, thus making the previous time step i – 1.

Libraries and Functions
A library in Python is a group of prewritten code that offers functionality to
facilitate the creation of applications. Modules, which are individual Python
files with reusable code and data that can be imported and used in other
Python code, are commonly found in libraries. A module is therefore a single
Python file that contains functions and other types of code that may be used
and imported by other Python programs. Large codebases are often easier to
manage and maintain by using modules to divide similar code into different
files.

Coding is all about simplifying tasks and making them clearer. Functions are
essential in this regard. A function is a block of reusable code that performs



a specific task when called. It only needs to be defined once. When you have
a recurring task such as calculating a moving average of a time series, you
can use a function so that you do not have to write the moving-average code
all over again every time you want to use it. Instead, you define the function
with the original code and then call it whenever you need to calculate the
moving average.

Multiple functions form a module, and multiple modules form a library. A
library is generally theme oriented. For example, in this book the sklearn
library will be used with machine learning models. Similarly, data
manipulation and importing are done using numpy and pandas, two libraries
discussed in a later section of this chapter. Plotting and charting are done
using the matplotlib library.

Libraries must be imported to the Python interpreter before you can use them
(this is the equivalent of acknowledging their existence). The syntax for
doing this is as follows:

# The import statement must be followed by the name of the library

import numpy

# Optionally, you can give the library a shortcut for easier reference

import numpy as np

Sometimes you need to import just one function or module from a library. For
this, you don’t need to import the entire library:

# Importing one function from a library

from math import sqrt

The preceding code says that math is a Python library that harbors many
mathematical functions, namely the sqrt function, which is used to find the
square root of a given number.

Let’s see how to define a function. A function is defined using def followed
by the name of the function and any optional arguments. The following
example creates a function that sums any two given variables:



# Defining the function sum_operation and giving it two arguments

def sum_operation(first_variable, second_variable): 

    # Outputting the sum of the two variables 

    print(first_variable + second_variable)

# Calling the function with 1 and 3 as arguments

sum_operation(1, 3) # The output of this line is 4

NOTE
Calling a function means executing what it’s supposed to do. In other words, calling a
function is simply using it. The timeline of a function is getting defined and then getting
called.

Let’s see how to import a function from a library and use its functions:

# Importing the library    

import math

# Using the natural logarithm function

math.log(10)

# Using the exponential function (e)

math.exp(3)

# Using the factorial function

math.factorial(50)

As a side note, the factorial operation is a mathematical operation that is
used to calculate the product of all positive integers from 1 up to a certain
number (which is the argument requested in math.factorial()).

Libraries may not be as easy as one plus one. Sometimes external libraries
require installation first before they can be imported to the Python interpreter.
Installation can be done through the prompt using the following syntax:

pip install library_name

Recall Chapter 3, where the maximal information coefficient (MIC) was
discussed. To calculate the MIC, you can use the following code (after
having defined the sine and cosine waves):



# Importing the library

from minepy import MINE

# Calculating the MIC

mine = MINE(alpha = 0.6, c = 15)

mine.compute_score(sine, cosine)

MIC = mine.mic()

print('Correlation | MIC: ', round(MIC, 3))

Importing the library directly will likely lead to an error as it has not been
pip installed. Therefore, you must install the library first using the following
syntax at the prompt (not in the Python interpreter):

pip install minepy

NOTE
You may need to update Microsoft Visual C++ (to version 14.0 or greater) to avoid any
errors in trying to run the minepy library.

It is also important to read the documentation that comes with libraries in
order to use them correctly. A library’s documentation will explain the aim
of the functions as well as what types of arguments each function can accept
(e.g., strings or numerics).

Let’s return now to the topic of functions. A function can have a return
statement that allows the result to be stored in a variable so that it can be
used in other parts of the code.

Let’s take two simple examples and then discuss them step by step:

# Defining a function to sum two variables and return the result

def sum_operation(first_variable, second_variable): 

    # The summing operation is stored in a variable called final_sum 

    final_sum = first_variable + second_variable 

    # The result is returned 

    return final_sum

# Create a new variable that holds the result of the function    

summed_value = sum_operation(1, 2)



# Use the new variable in a new mathematical operation

double_summed_value = summed_value * 2

The previous code defines the sum_operation function with two arguments,
then stores the operation in a variable called final_sum before returning it
so that it can be stored externally. Next, a new variable called
summed_value is defined as the output of the function. Finally, another
variable is created, double_summed_value, that is the result of
summed_value multiplied by 2. This is an example of how to use results
from functions as variables in external operations. Now let’s consider an
example of a nested function (while keeping in mind the previously defined
sum_operation function):

# Defining a function to square the result gotten from sum_operation()

def square_summed_value(first_variable, second_variable): 

    # Calling the nested sum_operation function and storing its result 

    final_sum = sum_operation(first_variable, second_variable)  

    # Creating a variable that stores the square of final_sum 

    squared_sum = final_sum ** 2 

    # The result is returned     

    return squared_sum

# Create a new variable that holds the result of the function   

squared_summed_value = square_summed_value(1, 2)

The preceding code snippet defines a function called
square_summed_value, which takes on two arguments. Furthermore, it uses
a nested function, which in this case is sum_operation. The result of the
nested function is once again stored in a variable called final_sum, which
is used as an input in finding the squared_sum variable. The variable is
found as final_sum to the power of two.

Let’s end the section with common libraries in Python and machine learning
(other than numpy and pandas):

matplotlib: For plotting and visualizing data

sklearn: For machine learning models



scipy: For scientific computing and optimization

keras: For neural networks

math: For using mathematical tools such as square roots

random: For generating random variables

requests: For making HTTP requests used in web scraping

Exception Handling and Errors
Quite often, errors occur when the code is executed and the interpreter finds
an obstacle that prevents it from continuing further. The most basic error is
the SyntaxError, which occurs when there are misspelled words or missing
elements that make the code unintelligible:

# Will not output a SyntaxError if executed

my_range = range(1, 10)

# Will output a SyntaxError if executed

my_range = range(1, 10

As you can see from the previous code, there is a missing parenthesis at the
end of the second code line, which is not understood by the interpreter. This
type of error is likely to be your most common one. Another common error is
the NameError, which occurs when failing to define a variable before
executing a code that contains it. Consider the following example:

x + y

The previous code will give you a NameError because the interpreter does
not know the value of x and y since they were not defined.

The ModuleNotFoundError occurs when the interpreter cannot find the
library or module you are trying to import. This generally occurs when the
module or library is installed in a bad directory or when it is not properly
installed. Common fixes for this issue include:



Verifying that the module’s name was written correctly

Verifying that the module was correctly pip installed

Verifying that the module was installed in the correct location

Another type of common error is the TypeError, and it occurs when you
apply a certain operation on an incompatible element, such as summing an
integer with a string. The following operation raises a TypeError:

# Defining variable x

x = 1

# Defining variable y

y = 'Hello

# Summing the two variables, which will raise a TypeError

x + y

In time series analysis, you will likely to encounter these four errors:

IndexError

This is raised when referring to an index that is out of range
regarding the current array or dataframe. Imagine having an
array of 300 values (rows). If you want to loop through them
and, at each loop, input the number 1 in the next cell (time
step + 1), the interpreter will raise an IndexError because in
the last loop there is no next cell.

ValueError

This is raised when you try to call a function with an invalid
argument. An example of this would be trying to pass an
integer element as a string when calling a function.

KeyError

This occurs when trying to access an element in a dataframe
that does not exist. For example, if you have three columns
in the dataframe and you refer to one that does not exist



(maybe due to a syntax issue), you are likely to run into a
KeyError.

ZeroDivisionError

This error is intuitive and occurs when trying to divide a
number by zero.

There are other types of errors that you may encounter. It is important to
understand what they refer to so that you are able to fix them and get the code
running again.

Exceptions are errors that may not be fatal to the code in the sense that they
only show a warning but don’t necessarily terminate the code. Therefore,
exceptions occur during code execution (as opposed to errors, which occur
because the interpreter is unable to execute the code). To ignore certain
exceptions (and errors), the try  and except keywords are used. This is
useful when you are certain that handling the exception will not alter the
output of the code.

Let’s take an example of creating a function that divides the first column of a
time series by the next value of the second column. The first step is to define
the time series as a dataframe or as an array (or any other data collection
structure):

# Importing the required library to create an array

import numpy as np

# Creating a two-column list with 8 rows

my_time_series = [(1, 3),  

                  (1, 4),  

                  (1, 4),  

                  (1, 6),  

                  (1, 4),  

                  (0, 2),  

                  (1, 1),  

                  (0, 6)]

# Transforming the list into an array

my_time_series = np.array(my_time_series)



Now let’s write the division function that will take any value in the first
column and divide it by the next value in the second column:

# Defining the function

def division(first_column, second_column): 

    # Looping through the length of the created array 

    for i in range(len(my_time_series)): 

        # Division operation and storing it in the variable x 

        x = my_time_series[i, first_column] /  

            my_time_series[i + 1, second_column] 

        # Outputting the result 

        print(x)

# Calling the function

division(0, 1)

Running the two previous code blocks will give an IndexError because in
the last loop, the function cannot find the next value of the second column
since it does not exist:

IndexError: index 8 is out of bounds for axis 0 with size 8

Fixing this through try and except will ignore the last calculation that is
causing the problem and will return the expected results:

# Defining the function

def division(first_column, second_column):  

    # Looping through the length of the created array     

    for i in range(len(my_time_series)):  

        # First part of the exception handling 

        try: 

            # Division operation and storing it in the variable x 

            x = my_time_series[i, first_column] /  

                my_time_series[i + 1, second_column]  

            # Outputting the result             

            print(x)        

        # Exception handling of a specific error      

        except IndexError: 

            # Ignoring (passing) the error 

            pass

# Calling the function

division(0, 1)



The output is as follows:

0.25

0.25

0.16

0.25

0.50

0.00

0.16

Data Structures in numpy and pandas
You now understand what a library is and know that numpy and pandas are
the go-to libraries to manipulate, handle, and import data in Python. This
section discusses the differences between the two, along with key functions
that are definitely a great addition to your data analysis toolbox. But first,
let’s define these two libraries:

numpy

Short for numerical Python, numpy is a Python library that
allows working with multidimensional arrays and matrices.
It provides a powerful  interface for performing various
operations on arrays and matrices.

pandas

Short for panel data, pandas is a Python library that allows
working with dataframes (a type of tabular data). It provides
two main data structures: series and dataframes. A series is a
one-dimensional array-like object that can hold any data
type. A dataframe is a two-dimensional table-like structure
that consists of rows and columns (similar to a spreadsheet).

Both libraries are very useful in analyzing time series data. Arrays hold only
numerical type data and therefore do not really hold date type data. This may
be one of the advantages of using pandas over numpy, but both have
strengths and relative weaknesses. In the end, it is a matter of choice. This



book will prioritize using numpy due to its simplicity and the fact that the
machine learning models in the next chapter use the sklearn library, which is
applied on arrays.

NOTE
Switching between numpy and pandas requires converting the time series type. This is a
relatively easy task, but it can sometimes cause the loss of certain types of data (e.g., date
data).

Let’s import both libraries before discussing some of their potential:

import numpy as np

import pandas as pd

The following code creates two time series with two columns and three
rows. The first time series is called my_data_frame and is created using the
pandas library function pd.DataFrame. The second time series is called
my_array and is created using the numpy library function np.array:

# Creating a dataframe

my_data_frame = pd.DataFrame({'first_column' : [1, 2, 3],  

                              'second_column' : [4, 5, 6]})

# Creating an array

my_array = np.array([[1, 4], [2, 5], [3, 6]])

As shown in Figure 6-2, dataframes have real indices and can have column
names. Arrays can only hold one type of data.



Figure 6-2. A pandas dataframe (left) and a numpy array (right)

To switch between the two types of data, you will be using the same two
functions used in the previous code block:

# To transform my_data_frame into my_new_array

my_new_array = np.array(my_data_frame)

# To transform my_array into my_new_data_frame

my_new_data_frame = pd.DataFrame(my_array)

Let’s now take a look at useful functions that will come in handy when
dealing with models. Slicing and concatenation are among the processes you
must master to smoothly navigate through data analysis. Consider the
following arrays:

first_array  = np.array([ 1,  2,  3,  5,   8,  13])

second_array = np.array([21, 34, 55, 89, 144, 233])

Concatenation is the act of fusing two datasets together either through rows
(axis = 0) or through columns (axis = 1). Let’s do both of them:

# Reshaping the arrays so they become dimensionally compatible

first_array  = np.reshape(first_array, (–1, 1))

second_array = np.reshape(second_array, (–1, 1))

# Concatenating both arrays by columns

combined_array = np.concatenate((first_array, second_array), axis = 1)

# Concatenating both arrays by rows

combined_array = np.concatenate((first_array, second_array), axis = 0)



Now let’s do the same thing for dataframes. Consider the following
dataframes:

first_data_frame  = pd.DataFrame({'first_column'  : [ 1,  2,  3],  

                                  'second_column' : [ 4,  5,  6]})

second_data_frame = pd.DataFrame({'first_column'  : [ 7,  8,  9],  

                                  'second_column' : [10, 11, 12]})

Concatenation is useful when you want to combine data into one structure.
This is how it can be done with dataframes (notice that it’s simply a change
of syntax and function source):

# Concatenating both dataframes by columns

combined_data_frame = pd.concat([first_data_frame, second_data_frame],  

                                axis = 1)

# Concatenating both dataframes by rows

combined_data_frame = pd.concat([first_data_frame, second_data_frame],  

                                axis = 0)

Remember that with time series, rows (horizontal cells) represent one time
step (e.g., hourly) with all the data inside, while columns represent the
different types of data (e.g., open price and close price of a financial
instrument). Now let’s see slicing techniques for arrays:

# Defining a one-dimensional array

my_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

# Referring to the first value of the array

my_array[0] # Outputs 1

# Referring to the last value of the array

my_array[–1] # Outputs 10

# Referring to the sixth value of the array

my_array[6] # Outputs 7

# Referring to the first three values of the array

my_array[0:3] # Outputs array([1, 2, 3])

my_array[:3]  # Outputs array([1, 2, 3])

# Referring to the last three values of the array

my_array[–3:] # Outputs array([8, 9, 10])

# Referring to all the values as of the second value

my_array[1:] # Outputs array([2, 3, 4, 5, 6, 7, 8, 9, 10])

# Defining a multidimensional array

my_array = np.array([[ 1,  2,  3,  4,  5],  



                     [ 6,  7,  8,  9, 10],  

                     [11, 12, 13, 14, 15]])

# Referring to the first value and second column of the array

my_array[0, 1] # Outputs 2

# Referring to the last value and last column of the array

my_array[–1, –1] # Outputs 15

# Referring to the third value and second-to-last column of the array

my_array[2, –2] # Outputs 14

# Referring to the first three values and fourth column of the array

my_array[:, 2:4] # Outputs array([[3, 4], [8, 9], [13, 14]])

# Referring to the last two values and fifth column of the array

my_array[–2:, 4] # Outputs array([10, 15])

# Referring to all the values and all the columns up until the second row

my_array[:2, ] # Outputs array([[ 1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

# Referring to the last row with all the columns

my_array[–1:, :] # Outputs array([[11, 12, 13, 14, 15]])

NOTE
It is important to know that Python indexing starts at zero. This means that to refer to the
first element in a data structure, you refer to its index as index = 0. It is also worth noting
that in ranges, the last element is excluded, which means that the first three elements in a
data structure are referred to as [0, 3], which will give the elements indexed at 0, 1, and
2.

Let’s see the same thing for dataframes so that this section becomes a sort of
mini reference whenever you want to manipulate data structures:

# Defining a one-dimensional dataframe

my_df= pd.DataFrame({'first_column': [1, 2, 3, 4, 5,  

                                      6, 7, 8, 9, 10]})

# Referring to the first value of the dataframe

my_df.iloc[0]['first_column'] # Outputs 1

# Referring to the last value of the dataframe

my_df.iloc[–1]['first_column'] # Outputs 10

# Referring to the sixth value of the dataframe

my_df.iloc[6]['first_column'] # Outputs 7

# Referring to the first three values of the dataframe

my_df.iloc[0:3]['first_column'] # Outputs ([1, 2, 3])

# Referring to the last three values of the dataframe

my_df.iloc[–3:]['first_column'] # Outputs ([8, 9, 10])

# Referring to all the values as of the second value



my_df.iloc[1:]['first_column'] # Outputs ([2, 3, 4, 5, 6, 7, 8, 9, 10])

# Defining a multidimensional dataframe

my_df  = pd.DataFrame({'first_column'  : [ 1,  6,  11],  

                       'second_column' : [ 2,  7,  12], 

                       'third_column'  : [ 3,  8,  13], 

                       'fourth_column' : [ 4,  9,  14], 

                       'fifth_column'  : [ 5,  10, 15]})

# Referring to the first value and second column of the dataframe

my_df.iloc[0]['second_column'] # Outputs 2

# Referring to the last value and last column of the dataframe

my_df.iloc[–1]['fifth_column'] # Outputs 15

# Referring to the third value and second-to-last column of the dataframe

my_df.iloc[2]['fourth_column'] # Outputs 14

# Referring to the first three values and fourth column of the dataframe

my_df.iloc[:][['third_column', 'fourth_column']]

# Referring to the last two values and fifth column of the dataframe

my_df.iloc[–2:]['fifth_column'] # Outputs ([10, 15])

# Referring to all the values and all the columns up until the second row

my_df.iloc[:2,] # Outputs ([[ 1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])

# Referring to the last row with all the columns

my_df.iloc[–1:,]  # Outputs ([[11, 12, 13, 14, 15]])

NOTE
Try going back to the earlier chapters to execute the code given there. You should have a
more solid understanding by now.

Importing Financial Time Series in Python
This section discusses a key aspect of deploying machine and deep learning
algorithms. It deals with the historical OHLC data that is needed to run the
models and evaluate their performance.

The first step is to prepare the environment and everything else necessary for
the success of the algorithms. For this, you need two programs:

A Python interpreter that you use to write and execute code. You already
completed this step.



Charting and financial software that you use as a database. This part is
covered in this section.

For charting benchmarks, I use MetaTrader 5, a program used by many
traders around the globe. MetaTrader 5 works with Spyder, so you should
start by downloading Spyder and familiarizing yourself with how it works.

From the official website, download and install MetaTrader 5. You need to
create a demo account, which is simply a virtual account with imaginary
money. The word demo does not refer to a limited duration of use but to the
fact that it is not using real money.

To open an account, select File > Open an Account, choose MetaQuotes
Software Corp, and then click Next. Then choose the first option to open a
demo account; this will let you trade virtual money. Finally, enter some basic
information such as your name, email, and account type. You will not receive
a verification request or any type of confirmation as the demo should launch
directly, allowing you to see the charts.

Figure 6-3 shows the platform’s interface. By default, MetaTrader 5 does not
show all the markets it covers, so you need to make them accessible for
import and visualization if necessary. Click View, click Market Watch, and
then right-click any of the symbols shown in the new tab and choose Show
All. This way, you can see the extended list with more markets.

Before you can start coding, you need to install the MetaTrader 5 Python
integration library so that you can use it later in Spyder. This is easy and
requires one step. Open the Anaconda prompt and type:

pip install MetaTrader5

Installation is the bridge that allows you to use Python modules and functions
designed for MetaTrader 5 in the interpreter.

https://oreil.ly/YlNWu


Figure 6-3. MetaTrader 5 interface

The following code block uses the import built-in statement, which calls for
internal (self-created) or external (created by third parties) libraries. You’ll
recall that a library is a store of functions, and thus, you need to import the
libraries that are pertinent to what you want to do. For demonstration
purposes, import the following modules, packages, and libraries:

import datetime # Gives tools for manipulating dates and time

import pytz # Offers cross-platform time zone calculations

import MetaTrader5 as mt5 # Importing the software's library

import pandas as pd

import numpy as np  

The next step is to create the universe of the time frames that you will be able
to import. Even though I will be showing you how to analyze and backtest
hourly data, you can define a wider universe, as shown in the following code
snippet:



frame_M15 = mt5.TIMEFRAME_M15      # 15-minute time frame

frameframe_M30 = mt5.TIMEFRAME_M30 # 30-minute time frame

frame_H1 = mt5.TIMEFRAME_H1        # Hourly time frame

frame_H4 = mt5.TIMEFRAME_H4        # 4-hour time frame

frame_D1 = mt5.TIMEFRAME_D1        # Daily time frame

frame_W1 = mt5.TIMEFRAME_W1        # Weekly time frame

frame_M1 = mt5.TIMEFRAME_MN1       # Monthly time frame

NOTE
The full code is found in this book’s GitHub repository under the name
master_function.py.

A time frame is the frequency with which you record the prices. With hourly
data, you will record the last price printed every hour. This means that in a
day, you can have up to 24 hourly prices. This allows you to see the intraday
evolution of the price. The aim is to record the totality of the OHLC data
within a specific period.

The following code defines the current time, which is used so that the
algorithm has a reference point when importing the data. Basically, you are
creating a variable that stores the current time and date:

now = datetime.datetime.now()

Let’s now proceed to defining the universe of the financial instruments you
want to backtest. In this book, the backtests will be done exclusively on the
foreign exchange (FX) market. So let’s create a variable that stores some key
currency pairs:

assets = ['EURUSD', 'USDCHF', 'GBPUSD', 'USDCAD']

Now that you have your time and asset variables ready, all you need to do is
create the structure of the importing algorithm. The get_quotes() function
does this:

https://oreil.ly/5YGHI


def get_quotes(time_frame, year = 2005, month = 1, day = 1,  

               asset = "EURUSD"): 

    if not mt5.initialize():    

        print("initialize() failed, error code =", mt5.last_error()) 

        quit() 

    timezone = pytz.timezone("Europe/Paris") 

    time_from = datetime.datetime(year, month, day, tzinfo = timezone)    

    time_to = datetime.datetime.now(timezone) + 

datetime.timedelta(days=1) 

    rates = mt5.copy_rates_range(asset, time_frame, time_from, time_to) 

    rates_frame = pd.DataFrame(rates) 

    return rates_frame

Notice that in the get_quotes() function, you use the pytz and pandas
libraries. The function starts by defining the Olson time zone,2 which you can
set yourself. Here is a brief, nonexhaustive list of what you can enter
depending on your time zone:

America/New_York

Europe/London

Europe/Paris

Asia/Tokyo

Australia/Sydney

Next define two variables called time_from and time_to:

The time_from variable contains the datetime referring to the
beginning of the import date (e.g., 01-01-2020).

The time_to variable contains the datetime referring to the end of the
import date, which uses the now variable to represent the current time
and date.

The next step is to create a variable that imports the financial data using the
time periods you have specified. This is done through the rates variable
using the mt5.copy_rates_range() function. Finally, using
pandas, transform the data into a dataframe. The final function required for
the importing process is the mass_import() function. It lets you choose the
time frame using the variable and then uses the get_quotes() function to



import the data and format it to an array. The following code snippet defines
the mass_import() function:

def mass_import(asset, time_frame):                

    if time_frame == 'H1': 

        data = get_quotes(frame_H1, 2013, 1, 1, asset = assets[asset]) 

        data = data.iloc[:, 1:5].values 

        data = data.round(decimals = 5)            

    return data  

The mass_import() function automatically converts the dataframe into an
array, so you do not have to worry about conversion when using the
automatic import.

NOTE
You may need to adjust the year argument higher to get the data in case you have an
empty array. For instance, if you get an empty array using the mass_import() function,
try putting a more recent year in the get_quotes() function (“2014” instead of “2013”).

To import the historical hourly EURUSD data from the beginning of 2014 to
date, you may type the following (assuming get_quotes(), now, the frames,
and the libraries are already defined):

# Defining the universe of currency pairs

assets = ['EURUSD', 'USDCHF', 'GBPUSD', 'USDCAD']

# Redefining the mass_import function to switch to a default 2014

def mass_import(asset, time_frame):                 

    if time_frame == 'H1': 

        data = get_quotes(frame_H1, 2014, 1, 1, asset = assets[asset]) 

        data = data.iloc[:, 1:5].values 

        data = data.round(decimals = 5)   

# Calling the mass_import function and storing it in a variable

eurusd_data = mass_import(0, 'H1')



NOTE
Notice how the return statement is used in the mass_import function to store the
historical data in chosen variables.

Even though there is a macOS version of MetaTrader 5, the Python library
only works on Windows. It requires a Windows emulator on macOS. For
macOS or Linux users, you may want to try the manual import method (or the
alternative way proposed in Chapter 7 that uses a library called pandas-
datareader).

Automatic import is a huge time-saver, but even Windows users may run into
frustrating errors. Therefore, I will show you the manual import method,
which you can use as a fix. On the Github page for this book, you will find a
folder called Historical Data. Inside the folder there is a selection of
historical financial time series in Excel format that you can download.

Manual import requires an Excel file with OHLC data that you have
downloaded from a third party (such as the Excel files provided in this
book’s GitHub repository). In this case, you can use the pandas library to
import it and transform it into an array.

Let’s take an example of Daily_GBPUSD_Historical_Data.xlsx. Download
the file from the repository (found in Historical Data) and store it on your
desktop. The Spyder directory must be in the same place as the file. In
layperson’s terms, this means Spyder must search your desktop for the Excel
file. To choose the right directory, click the folder button next to the arrow.
The Directory tab should look like Figure 6-4.

Figure 6-4. The Directory tab after choosing the correct folder

You should get a separate window where you can choose the desktop
location and then validate the choice. Having done this, the tab should look
like Figure 6-5.

https://oreil.ly/5YGHI


Figure 6-5. The Directory tab after choosing the correct desktop location

You use the read_excel() function (built into pandas and accessible after
importing it) to get the values inside the Excel file. Follow this syntax:

# Importing the excel file into the Python interpreter

my_data = pd.read_excel('Daily_GBPUSD_Historical_Data.xlsx.xlsx')

You should have a dataframe called Daily_GBPUSD_Historical_Data.xlsx
with five different columns representing open, high, low, and close prices.
You generally have to enter the library’s name before using a function that
belongs to it; this is why read_excel() is preceded by pd.

NOTE
I recommend using automatic import for Windows users and manual import for macOS
users due to compatibility issues.

Summary
Python, a major star among coding languages, enjoys widespread adoption by
the developer community. Mastering it is key to unlocking huge potential in
the data science world.

The next chapter discusses machine learning and different prediction
algorithms. The main aim is to be able to code the algorithms and run a
backtest over financial data. You will see that once you start understanding
the process, it becomes a matter of removing one algorithm and plugging
another one in (in case they have the same assumptions). The warm-up
chapters are over, and it’s time to start coding.

1  Imaginary numbers are a type of complex number that represents the square root of a negative
number.



2  Named after its creator, Arthur David Olson, the Olson time zone addresses issues related to
time zone data and daylight saving time rules. It has been an essential resource for developers
and computer systems to accurately handle time-related functions and conversions.



Chapter 7. Machine Learning
Models for Time Series
Prediction

Machine learning is a subfield of AI that focuses on the development of
algorithms and models that enable computers to learn and make predictions
or decisions without being explicitly programmed, hence the term learning.
Machine learning deals with the design and construction of systems that can
automatically learn and improve from experience, typically by analyzing and
extracting patterns from large amounts of data.

This chapter presents the framework of using machine learning models for
time series prediction and discusses a selection of known algorithms.

The Framework
The framework is very important, as it organizes the way the whole research
process is done (from data collection to performance evaluation). Having a
proper framework ensures harmony across the backtests, which allows for
proper comparison among different machine learning models. The framework
may follow these chronological steps:

1. Import and preprocess the historical data, which must contain a
sufficient number of values to ensure a decent backtest and evaluation.

2. Perform a train-test split, which splits the data into two parts where the
first part of the data (e.g., from 2000 to 2020) is reserved for training
the algorithm so that it understands the mathematical formula to predict
the future values, and the second part of the data (e.g., from 2020 to
2023) is reserved for testing the algorithm’s performance on data that it
has never seen before.



3. Fit (train) and predict (test) the data using the algorithm.

4. Run a performance evaluation algorithm to understand the model’s
performance in the past.

NOTE
The training set is also called the in-sample data, and the test set is also called the out-
of-sample data.

The first step of the framework was discussed in Chapter 6. You should now
be able to easily import historical data using Python. The train-test split
divides the historical data into a training (in-sample) set where the model is
fitted (trained) so that an implied forecasting function is found, and a test
(out-of-sample) set where the forecasting function that has been calculated on
the training set is applied and evaluated. Theoretically, if the model does
well on the test set, it is likely that you have a potential candidate for a
trading strategy, but this is just a first step and the reality is much more
complicated than that.

So that everything goes smoothly, download master_function.py from the
GitHub repository, and then set the directory of the Python interpreter (e.g.,
Spyder) in the same location as the downloaded file so that you can import it
as a library and use its functions. For example, if you download the file to
your desktop, you may want to set the directory as shown in Figure 6-5 in
Chapter 6. The choice of the directory is typically found on the top-right
corner in Spyder (above the variable explorer).

NOTE
If you prefer not to import master_function.py, you can just open it in the interpreter as a
normal file and execute it so that Python defines the functions inside. However, you have
to do this every time you restart the kernel.

https://oreil.ly/5YGHI


Now, preprocess (transform) and split the time series into four different
arrays (or dataframes if you wish), with each array having a utility:

Array x_train

The in-sample set of features (i.e., independent variables)
that explain the variations of the variable that you want to
forecast. They are the predictors.

Array y_train

The in-sample set of dependent variables (i.e., the right
answers) that you want the model to calibrate its forecasting
function on.

Array x_test

The out-of-sample set of features that will be used as a test of
the model to see how it performs on this never-before-seen
data.

Array y_test

Contains the real values that the model must approach. In
other words, these are the right answers that will be
compared with the model’s forecasts.

Before the split, it is important to know what is being forecasted and what is
being used to forecast it. In this chapter, lagged price differences (returns)
will be used for the forecast. Normally, a few tests must be made before
doing this, but for simplicity, let’s leave them out and suppose that the last
500 daily EURUSD returns have predictive power over the current return,
which means that you can find a predictive formula that uses the last 500
observations to observe the next one:

Dependent variable (forecast)



The t+1 return of the EURUSD in the daily time frame. This is
also referred to as the y variable.

Independent variables (inputs)

The last 500 daily returns of the EURUSD. These are also
referred to as the x variables.

Figure 7-1 shows the EURUSD daily returns over a certain time period.
Notice its stationary appearance. According to the ADF test (seen in
Chapter 3), the returns dataset seems stationary and is valid for a regression
analysis.

Figure 7-1. The EURUSD daily returns.



NOTE
In this chapter, the features (x values) will be the lagged daily price differences of the
EURUSD.1 In subsequent chapters, the features used will be either lagged returns or
values of technical indicators. Note that you can use whichever features you think are
worthy of being considered as predictive.

The choice of the time frame (daily) is ideal for traders who want an intraday view that
will help them trade the market and close the position before the end of the day.

Let’s use the dummy regression model as a first basic example. Dummy
regression is a comparison machine learning algorithm that is only used as a
benchmark, as it uses very simple rules for predictions that are unlikely to
add any real forecasting value. The real utility of the dummy regression is to
see whether your real model outperforms it or not. As a reminder, the
process followed by the machine learning algorithms is composed of the
following steps:

1. Import the data.

2. Preprocess and split the data.

3. Train the algorithm.

4. Predict on test data using the training parameters. Also, predict on
training data for comparison.

5. Plot and evaluate the results.

Start by importing the libraries required for this chapter:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from master_function import data_preprocessing, mass_import

from master_function import plot_train_test_values,  

from master_function import calculate_accuracy, model_bias

from sklearn.metrics import mean_squared_error

Now import the specific library for the algorithm you will use:



from sklearn.dummy import DummyRegressor

The next step is to import and transform the close price data. Remember, you
are trying to forecast daily returns, which means that you must select only the
close column and then apply a differencing function on it so that prices
become differenced:

# Importing the differenced close price of EURUSD daily time frame

data = np.diff(mass_import(0, 'H1')[:, 3])

NOTE
In finance, the term returns typically refers to the gain or loss generated by an investment
or a certain asset, and it can be calculated by taking the difference between the current
value of an asset and its value at a previous point in time. This is essentially a form of
differencing, as you are calculating the change or difference in the asset’s value.

In time series analysis, differencing is a common technique used to make time series data
stationary, which can be helpful for various analyses. Differencing involves subtracting
consecutive observations from each other to remove trends or seasonality, thereby
focusing on the changes in the data.

Next, set the hyperparameters of the algorithm. In the case of these basic
algorithms, it would be the number of lags (number of predictors) and the
percentage split of data:

# Setting the hyperparameters

num_lags = 500

train_test_split = 0.80

A train_test_split of 0.80 means that 80% of the data will be used for
training while the remaining 20% will be used for testing.

The function to split and define the four necessary arrays for the backtest can
be defined as follows:

def data_preprocessing(data, num_lags, train_test_split): 

    # Prepare the data for training 

    x = [] 



    y = [] 

    for i in range(len(data) – num_lags): 

        x.append(data[i:i + num_lags]) 

        y.append(data[i+ num_lags]) 

    # Convert the data to numpy arrays 

    x = np.array(x) 

    y = np.array(y) 

    # Split the data into training and testing sets 

    split_index = int(train_test_split * len(x)) 

    x_train = x[:split_index] 

    y_train = y[:split_index] 

    x_test = x[split_index:] 

    y_test = y[split_index:] 

    return x_train, y_train, x_test, y_test

Call the function to create the four arrays:

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data,  

                                                      num_lags,  

                                                      train_test_split)

You should now see four new arrays appearing in the variable explorer. The
next step is to train the data using the chosen algorithm:

# Fitting the model

model = DummyRegressor(strategy = 'mean')

model.fit(x_train, y_train)

Note that the dummy regression can take any of the following strategies as
arguments:

mean

Always predicts the mean of the training set

median

Always predicts the median of the training set

quantile



Always predicts a specified quantile of the training set,
provided with the quantile parameter

constant

Always predicts a constant value that is provided by the user

As you can see from the previous code, the selected parameter is mean.
Naturally, this signifies that all the predictions made will simply be the mean
of the training set (y_train). This is why dummy regression is only used as a
benchmark and not as a serious machine learning model.

The next step is to predict on the test data, as well as on the training data as a
means of comparison. Note that the predictions on the training data have no
value since the algorithm has already seen the data during training, but it is
interesting to know how worse or better the algorithm performs on data that
has never been seen before:

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

To make sure your reasoning is correct with regard to using the dummy
regression algorithm, manually calculate the mean of y_train and compare
it to the value you get in every y_predicted. You will see that it’s the same:

# Comparing the mean of y_train to an arbitrary value in y_predicted

y_train.mean() == y_predicted[123]

The output should be as follows:

True

Finally, use the following function to plot the last training data followed by
the first test data and the equivalent predicted data:



# Plotting

plot_train_test_values(100, 50, y_train, y_test, y_predicted)

NOTE
You can find the definition of the plot_train_test_values() function in this book’s
GitHub repository.

Figure 7-2 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted. Naturally, the
dummy regression algorithm predicts a constant value, which is why the
prediction line alongside the test values is a straight line.

Figure 7-2. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the dummy

regression algorithm.

https://oreil.ly/5YGHI


NOTE
If you want the figures to be plotted in a separate window, type %matplotlib qt in the
console. If you want the figures to be inside the plots explorer, type %matplotlib
inline in the console.

How can you tell whether a model is performing well or not? Performance
evaluation is a key concept in trading and algorithmic development as it
ensures that you pick the right model and take it live. However, the task is not
simple, due to an ironically simple question: If the past performance was
good, what guarantees it continues to be good?

This question is painful, but it points toward the right direction. The answer
to this question is subjective. For now, let’s talk about the different ways to
measure the performance of a model. To simplify the task, I will split the
performance and evaluation metrics into two: model evaluation and trading
evaluation. Model evaluation deals with the algorithm’s performance in its
forecasts, while trading evaluation deals with the financial performance of a
system that trades using the algorithm (an example of a trading evaluation
metric is the net profit).

Let’s start with model evaluation. Accuracy is the first metric that comes to
mind when comparing forecasts to real values, especially in the financial
markets. Theoretically, if you predict the direction (up or down) and you get
it right, you should make money (excluding transaction costs). Accuracy is
also referred to as the hit ratio in financial jargon and is calculated as
follows:

Accuracy =
Correct predictions

Total predictions
× 100

For example, if you made 100 predictions last year and 73 of them were
correct, you would have a 73% accuracy.

Forecasting can also be evaluated by how close the predicted values
(y_predicted) are to the real values (y_test). This is done by loss
functions. A loss function is a mathematical calculation that measures the



difference between the predictions and the real (test) values. The most basic
loss function is the mean absolute error (MAE). It measures the average of
the absolute differences between the predicted and actual values. The
mathematical representation of MAE is as follows:

MAE =
∑n

i=1 ŷ−yi

n

Therefore, MAE calculates the average distance (or positive difference)
between the predicted and real values. The lower the MAE, the more
accurate the model.

The mean squared error (MSE) is one of the commonly used loss functions
for regression. It measures the average of the squared differences between
the predicted and actual values. You can think of MSE as the equivalent of
the variance metric seen in Chapter 3. The mathematical representation of
MSE is as follows:

MSE =
∑n

i=1 (ŷ−yi)
2

n

Hence, MSE calculates the average squared distance between the predicted
and the real values. Similar to the MAE, the lower the MSE, the more
accurate the model. With this in mind, it helps to compare apples to apples
(such as with variance and standard deviation, as seen in Chapter 3).
Therefore, the root mean squared error (RMSE) has been developed to
tackle this problem (hence, scaling the error metric back to the same units as
the target variable). The mathematical representation of RMSE is as follows:

RMSE = √ ∑n
i=1 (ŷ−yi)

2

n

The RMSE is the equivalent of the standard deviation in descriptive
statistics.

∣ ∣ŷ is the predicted value

y is the real value



NOTE
MAE is relatively less sensitive to outliers than MSE, and it is often used when the data
contains extreme values or when the absolute magnitude of the error is more important
than its squared value. On the other hand, as MSE gives more weight to larger errors, it is
the go-to loss function when trying to improve the performance of the model.

When evaluating models using MAE, MSE, or RMSE, it is important to have
a baseline for comparison:

If you have built multiple regression models, you can compare their
metrics to determine which model performs better. The model with the
lower metric is generally considered to be more accurate in its
predictions.

Depending on the specific problem, you may have a threshold value for
what is considered an acceptable level of prediction error. For
example, in some cases, an RMSE below a certain threshold may be
considered satisfactory, while values above that threshold may be
considered unacceptable.

You can compare the loss functions of the training data with the loss
functions of the test data.

Algorithms may sometimes be directionally biased for many reasons (either
structurally or externally). A biased model takes on significantly more trades
in one direction than the other (an example would be an algorithm having 200
long positions and 30 short positions). Model bias measures this as a ratio
by dividing the number of long positions by the number of short positions.
The ideal model bias is around 1.00, which implies a balanced trading
system. The mathematical representation of model bias is as follows:

Model bias =
Number of bullish signals

Number of bearish signals

If a model has had 934 long positions and 899 short positions this year, then
the model bias metric is 1.038, which is acceptable. This means that the
model is not really biased. It is worth noting that a model bias of 0.0



represents the absence of any bullish signals, and a model bias that has an
undefined value represents the absence of any bearish signals (due to the
division by zero).

Now we’ll turn our attention to trading evaluation. Finance pioneers have
been developing metrics that measure the performance of strategies and
portfolios. Let’s discuss the most common and most useful ones. The most
basic metric is the net return, which is essentially the return over the
invested capital after a trading period that has at least one closed trade. The
mathematical representation of the net return is as follows:

Net return = ( Final value
Initial value

− 1) × 100

The word net implies a result after deducting fees; otherwise, it is referred to
as a gross return. For example, if you start the year with $52,000 and finish
at $67,150, you would have made 29.13% (a net profit of $15,150).

Another profitability metric is the profit factor, which is the ratio of the total
gross profits to the total gross losses. Intuitively, a profit factor above 1.00
implies a profitable strategy, and a profit factor below 1.00 implies a losing
strategy. The mathematical representation of the profit factor is as follows:

Profit factor =
Gross profits

Gross losses

The profit factor is a useful metric for evaluating the profitability of a trading
strategy because it takes into account both the profits and losses generated by
the strategy, rather than just looking at one side of the equation. The profit
factor of a trading strategy that has generated $54,012 in profits and $29,988
in losses is 1.80.

The next interesting metric relates to individual trades. The average gain per
trade calculates the average profits (or positive returns) per trade based on
historical data, and the average loss per trade calculates losses (or negative
returns) per trade based on historical data. These two metrics give an
expected return depending on the outcome. Both metrics are calculated
following these formulas:



The next metric relates to risk and is one of the most important measures of
evaluation. Maximum drawdown is a metric that measures the largest
percentage decline in the value of an investment or portfolio from its highest
historical peak to its lowest point. It is commonly used to assess the
downside risk of an investment or portfolio. For example, if an investment
has a peak value of $100,000 and its value subsequently drops to $50,000
before recovering, the maximum drawdown would be 50%, which is the
percentage decline from the peak value to the trough. Maximum drawdown is
calculated as follows:

Maximum drawdown = ( Trough value − Peak value

Peak value
) × 100

Finally, let’s discuss a well-known profitability ratio called the Sharpe
ratio. It measures how much return is generated by units of excess risk. The
formula of the ratio is as follows:

Sharpe =
μ−r

σ

μ is the net return

r is the risk-free rate

σ is the volatility of returns

So, if the net return is 5% and the risk-free rate is 2% while the volatility of
returns is 2.5%, the Sharpe ratio is 1.20. Anything above 1.00 is desirable as
it implies that the strategy is generating positive excess risk-adjusted return.

Average gain =
Total profit

Number of winning trades

Average loss = Total losses
Number of losing trades



RISK-FREE RATE EXPLAINED
The risk-free rate refers to the theoretical rate of return on an investment
that carries no risk. It serves as a benchmark for evaluating the potential
returns of other investments that do involve risk. In practice, the risk-free
rate is typically based on the yield of a government-issued bond, usually
one with a short-term maturity.

The specific risk-free rate can vary depending on the country and
currency involved. In the United States, for example, the risk-free rate is
often associated with the yield on US Treasury securities. The most
commonly used benchmark is the yield on the 10-year Treasury note, as it
is considered a relatively low-risk investment.

The focus of this book is on developing machine and deep learning
algorithms, so the performance evaluation step will solely focus on accuracy,
RMSE, and model bias (with the correlation between the predicted variables
as an extra metric). The performance functions can be found in the GitHub
repository, along with the complete scripts.

The model’s results on the EURUSD after applying the performance metrics
are as follows:

Accuracy Train =  49.28 %

Accuracy Test =  49.33 %

RMSE Train =  0.0076467838

RMSE Test =  0.0053250347

Model Bias =  0.0

With a bias of 0.0, it’s easy to see that this is a dummy regression model. The
bias means that according to the formula, all the forecasts are bearish. Taking
a look at the details of the predictions, you will see that they are all constant
values.



MORE WAYS TO IMPORT DATA
Some readers may not have the right operating system to run the
importing algorithm through MetaTrader5. Fortunately, there are
alternative ways to import the data. The first method is to use the
pandas_datareader library, which does not require third-party software
installation. It does, however, require a pip installation. To import the
EURUSD daily, use the following code (also found in the GitHub
repository):

# Importing the required libraries

import pandas_datareader as pdr

import numpy as np

# Set the start and end dates for the data

start_date = '2000-01-01'

end_date   = '2023-06-01'

# Fetch EURUSD price data

data = np.array((pdr.get_data_fred('DEXUSEU',  

                                   start = start_date,  

                                   end = end_date)).dropna())

# Difference the data and make it stationary

data = np.diff(data[:, 0])

The second method is to simply refer to the Historical Data folder in the
GitHub repository, which contains multiple Excel files with the
historical data. After downloading them, you can import them into
Spyder using the following code:

# Importing the required libraries

import pandas as pd

import numpy as np

# Import the data (write the code in one line)

data = np.array(pd.read_excel('Daily_EURUSD_Historical_Data.xlsx') 

       ['<CLOSE>'])

# Difference the data and make it stationary

data = np.diff(data)

Make sure to check that the directory of the interpreter is the same as the
downloaded files; otherwise, you will get an error.



NOTE
The key takeaways from this section are as follows:

Automatic data import and creation saves you time and allows you to concentrate on
the main issues of the algorithm.

For a proper backtest, the data must be split into a training set and a test set.

The training set contains x_train and y_train, with the former containing the
values that are supposed to have a predictive power over the latter.

The test set contains x_test and y_test, with the former containing the values
that are supposed to have a predictive power (even though the model hasn’t
encountered them in its training) over the latter.

Fitting the data is when the algorithm runs on the training set; predicting the data is
when the algorithm runs on the test set.

The predictions are stored in a variable called y_predicted that is compared to
y_test for performance evaluation purposes.

The main aim of the algorithms is to have good accuracy and stable, low-volatility
returns.

Machine Learning Models
This section presents a selection of machine learning models using the
framework developed so far. It is important to understand every model’s
strengths and weaknesses so that you know which model to choose depending
on the forecasting task.

Linear Regression
The linear regression algorithm works by finding the best-fitting line that
minimizes the sum of squared differences between the predicted and actual
target values. The most used optimization technique in this algorithm is the
ordinary least squares (OLS) method.2



The model is trained on the training set using the OLS method, which
estimates the coefficients that minimize the sum of squared differences
between the predicted and actual target values to find the optimal coefficients
for the independent variables (the coefficients represent the y-intercept and
the slope of the best-fitting line, respectively). The output is a linear function
that gives the expected return given the explanatory variables weighted by the
coefficient with an adjustment for noise and the intercept.

To import the linear regression library from sklearn, use the following code:

from sklearn.linear_model import LinearRegression

Now let’s look at the algorithm’s implementation:

# Fitting the model

model = LinearRegression()

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

The model assumes that the linear relationship that has held in the past will
still hold in the future. This is unrealistic, and it ignores the fact that market
dynamics and drivers are constantly shifting whether in the short term or the
long term. They are also nonlinear.

Figure 7-3 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.



Figure 7-3. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the linear

regression algorithm.

The model’s results on the EURUSD after applying the performance metrics
are as follows:

Accuracy Train =  58.52 %

Accuracy Test =  49.54 %

RMSE Train =  0.007096094

RMSE Test =  0.0055932632

Correlation In-Sample Predicted/Train =  0.373

Correlation Out-of-Sample Predicted/Test =  0.014

Model Bias =  0.93

The results indicate poor performance coming from the linear regression
algorithm, with an accuracy below 50.00%. As you can see, the accuracy
generally drops after switching to the test set. The correlation between the in-
sample predictions and the real in-sample values also drops from 0.373 to
0.014. The model bias is close to equilibrium, which means that the number
of long signals is close to the number of short signals.



There are a few things to note regarding the model’s results:

The transaction costs have not been incorporated, and therefore, these
are gross results (not net results).

There is no risk management system, as this is a pure time series
machine learning model and not a full trading algorithm that
incorporates stops and targets. Therefore, as this is a purely directional
model, the job is to try to maximize the number of correct forecasts.
With a daily horizon, you are searching for accuracy.

Different FX data providers may have small differences in the historical
data that may cause some differences between backtests.

Models are made to be optimized and tweaked. The process of optimization
may include any of the following techniques:

Choosing the right predictors is paramount to a model’s success

In this chapter, the predictors used are the lagged returns.
This has been chosen arbitrarily and is not necessarily the
right choice. Predictors must be chosen based on economic
and statistical intuition. For example, it may be reasonable to
choose the returns of gold to explain (predict) the variations
on the S&P 500 index as they are economically linked. Safe
haven assets like gold rise during periods of economic
uncertainty, while the stock market tends to fall. This
negative correlation may harbor hidden patterns between
the returns of both instruments. Another way of choosing
predictors is to use technical indicators such as the relative
strength index (RSI) and moving averages.

Proper splitting is crucial to evaluate the model properly

Train-test splits are important as they determine the window
of evaluation. Typically, 20/80 and 30/70 are used, which
means that 20% (30%) of the data is used for the testing
sample and 80% (70%) is used for the training sample.



Regularization techniques can help prevent biases

Ridge regression and Lasso regression are two common
regularization methods used in linear regression. Ridge
regression adds a penalty term to the OLS function to reduce
the impact of large coefficients, while Lasso regression can
drive some coefficients to zero, effectively performing
feature selection.

The model seen in this section is called an autoregressive model since the
dependent variable depends on its past values and not on exogenous data.
Also, since at every time step, 500 different variables (with their
coefficients) have been used to predict the next variable, the model is
referred to as a multiple linear regression model. In contrast, when the
model only uses one dependent variable to predict the dependent variable, it
is referred to as a simple linear regression model.

The advantages of linear regression are:

It is easy to implement and train. It also does not consume a lot of
memory.

It outperforms when the data has a linear dependency.

The disadvantages of linear regression are:

It is sensitive to outliers.

It is easily biased (more on this type of bias in “Overfitting and
Underfitting”).

It has unrealistic assumptions, such as the independence of data.

Before moving on to the next section, it is important to note that some linear
regression models do not transform the data. You may see extremely high
accuracy and a prediction that is very close to the real data, but the reality is
that the prediction lags by one time step. This means that at every time step,
the prediction is simply the last real value. Let’s prove this using the



previous example. Use the same code as before, but omit the price
differencing code. You should see Figure 7-4.

Figure 7-4. Nonstationary training data followed by test data (dashed line) and the predicted
data (thin line); the vertical dashed line represents the start of the test period. The model used is

the linear regression algorithm.

Notice how it’s simply lagging the real values and not adding any predictive
information. Always transform nonstationary data when dealing with such
models. Nonstationary data cannot be forecasted using this type of algorithm
(there are exceptions, though, which you will see later on).

Using linear regression on nonstationary data, such as market prices, and
observing that the forecasts are the same as the last value might indicate an
issue known as naive forecasting. This occurs when the most recent
observation (in this case, the last value) is simply used as the forecast for the
next time period. While this approach can sometimes work for certain types
of data, it is generally not a sophisticated forecasting method and may not
capture the underlying patterns or trends in the data. There are a few reasons
why this might happen:



Lack of predictive power

Linear regression assumes that there is a linear relationship
between the independent variable(s) and the dependent
variable. If the data is highly nonstationary and lacks a clear
linear relationship, then the linear regression model may not
be able to capture meaningful patterns and will default to a
simplistic forecast like naive forecasting.

Lagging indicators

Market prices often exhibit strong autocorrelation, meaning
that the current price is highly correlated with the previous
price. In such cases, if the model only takes into account
lagged values as predictors, it might simply replicate the last
value as the forecast.

Lack of feature engineering

Linear regression models rely on the features (predictors)
you provide to make forecasts. If you’re using only lagged
values as predictors and not incorporating other relevant
features, the model might struggle to generate meaningful
forecasts.

Model complexity

Linear regression is a relatively simple modeling technique.
If the underlying relationship in the data is more complex
than can be captured by a linear equation, the model might
not be able to make accurate forecasts.

Support Vector Regression
Support vector regression (SVR) is a machine learning algorithm that
belongs to the family of support vector machines (SVMs). SVR is



specifically designed for regression problems, where the goal is to predict
continuous numerical values (such as return values).

SVR performs regression by finding a hyperplane in a high-dimensional
feature space that best approximates the relationship between the input
features and the target variable. Unlike traditional regression techniques that
aim to minimize the errors between the predicted and actual values, SVR
focuses on finding a hyperplane that captures the majority of the data within a
specified margin, known as the epsilon tube (loss function).

The key idea behind SVR is to transform the original input space into a
higher-dimensional space using a kernel function. This transformation allows
SVR to implicitly map the data into a higher-dimensional feature space,
where it becomes easier to find a linear relationship between the features
and the target variable. The kernel function calculates the similarity between
two data points, enabling the SVR algorithm to work effectively in nonlinear
regression problems. The steps performed in the SVR process are as
follows:

1. The algorithm employs a kernel function to transform the input features
into a higher-dimensional space. Common kernel functions include the
linear kernel, polynomial kernel, radial basis function (RBF) kernel,
and sigmoid kernel. The choice of kernel depends on the data and the
underlying problem.

2. The algorithm then aims to find the hyperplane that best fits the data
points within the epsilon tube. The training process involves solving an
optimization problem to minimize the error (using a loss function such
as MSE) while controlling the margin.



NOTE
The RBF kernel is a popular choice for SVR because it can capture nonlinear relationships
effectively. It is suitable when there is no prior knowledge about the specific form of the
relationship. The RBF kernel calculates the similarity between feature vectors based on
their distance in the input space. It uses a parameter called gamma, which determines the
influence of each training example on the model. Higher gamma values make the model
focus more on individual data points, potentially leading to errors.

By finding an optimal hyperplane within the epsilon tube, SVR can
effectively capture the underlying patterns and relationships in the data, even
in the presence of noise or outliers. It is a powerful technique for regression
tasks, especially when dealing with nonlinear relationships between features
and target variables.

As SVR is sensitive to the scale of the features, it’s important to bring all the
features to a similar scale. Common scaling methods include standardization
(mean subtraction and division by standard deviation) and normalization
(scaling features to a range, e.g., [0, 1]).

Let’s take a look at SVR in action. Once again, the aim is to predict the next
EURUSD return given the previous returns. To import the SVR library and
the scaling library, use the following code:

from sklearn.svm import SVR

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

For the SVR algorithm, a little tweaking was done to get acceptable
forecasts. The tweak was to reduce the number of lagged values from 500 to
50:

num_lags = 50

This allows the SVR algorithm to improve its forecasts. You will see
throughout the book that part of performing these types of backtests is
tweaking and calibrating the models.



Next, to implement the algorithm, use the following code:

# Fitting the model

model = make_pipeline(StandardScaler(),  

                      SVR(kernel = 'rbf', C = 1, gamma = 0.04,  

                      epsilon = 0.01))

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Figure 7-5 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.

Figure 7-5. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the SVR

algorithm.

The model’s results are as follows:

Accuracy Train =  57.94 %

Accuracy Test =  50.14 %



RMSE Train =  0.0060447699

RMSE Test =  0.0054036167

Correlation In-Sample Predicted/Train =  0.686

Correlation Out-of-Sample Predicted/Test =  0.024

Model Bias =  0.98

The advantages of SVR are:

It performs well even in high-dimensional feature spaces, where the
number of features is large compared to the number of samples. It is
particularly useful when dealing with complex datasets.

It can capture nonlinear relationships between input features and the
target variable by using kernel functions.

It is robust to outliers in the training data due to the epsilon-tube
formulation. The model focuses on fitting the majority of the data within
the specified margin, reducing the influence of outliers.

The disadvantages of SVR are:

It has several hyperparameters that need to be tuned for optimal
performance. Selecting appropriate hyperparameters can be a
challenging task and may require extensive experimentation.

It can be computationally expensive, especially for large datasets or
when using complex kernel functions.

It can be sensitive to the choice of hyperparameters. Poorly chosen
hyperparameters can lead to fitting issues.

Stochastic Gradient Descent Regression
Gradient descent (GD) is a general optimization algorithm used to minimize
the cost or loss function of a model, and it serves as the foundation for
various optimization algorithms.



NOTE
Gradient simply refers to a surface’s slope or tilt. To get to the lowest point on the
surface, one must literally descend a slope.

Stochastic gradient descent (SGD) is an iterative optimization algorithm
commonly used for training machine learning models, including regression
models. It is particularly useful for large datasets and online learning
scenarios. When applied to time series prediction, SGD can be used to train
regression models that capture temporal patterns and make predictions based
on historical data. SGD is therefore a type of linear regression that uses
stochastic gradient descent optimization to find the best-fitting line.

Unlike ordinary least squares, SGD updates the model’s parameters
iteratively, making it more suitable for large datasets (which are treated in
small batches). Instead of using the entire dataset for each update step, SGD
randomly selects a small batch of samples or individual samples from the
training dataset. This random selection helps to introduce randomness and
avoid getting stuck in local optima (you can refer to Chapter 4 for more
information on optimization). The main difference between GD and SGD lies
in how they update the model’s parameters during optimization.

NOTE
SGD does not belong to any particular family of machine learning models; it is essentially
an optimization technique.

GD computes the gradients over the entire training dataset, updating the
model’s parameters once per epoch, while SGD computes the gradients
based on a single training example or mini batch, updating the parameters
more frequently. SGD is faster but exhibits more erratic behavior, while GD
is slower but has a smoother convergence trajectory. SGD is also more
robust to local minima. The choice between GD and SGD depends on the



specific requirements of the problem, the dataset size, and the trade-off
between computational efficiency and convergence behavior.

As usual, the first step is to import the necessary libraries:

from sklearn.linear_model import SGDRegressor

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import make_pipeline

Next, to implement the algorithm, use the following code:

# Fitting the model

model = make_pipeline(StandardScaler(), SGDRegressor(max_iter = 50,  

                                                     tol = 1e–3))

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Figure 7-6 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.



Figure 7-6. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the SGD

algorithm.

The model’s results are as follows:

Accuracy Train =  55.59 %

Accuracy Test =  46.45 %

RMSE Train =  0.007834505

RMSE Test =  0.0059334014

Correlation In-Sample Predicted/Train =  0.235

Correlation Out-of-Sample Predicted/Test =  –0.001

Model Bias =  0.95

The advantages of SGD are:

It performs well with large datasets since it updates the model
parameters incrementally based on individual or small subsets of
training examples.

It can escape local minima and find better global optima (due to its
stochastic nature).



It can improve generalization by exposing the model to different training
examples in each iteration, thereby reducing overfitting.

The disadvantages of SGD are:

The convergence path can be noisy and exhibit more fluctuations
compared to deterministic optimization algorithms. This can result in
slower convergence or oscillations around the optimal solution.

It is impacted by feature scaling, which means it is sensitive to such
techniques.

Nearest Neighbors Regression
The nearest neighbors regression algorithm, also known as k-nearest
neighbors (KNN) regression, is a nonparametric3 algorithm used for
regression tasks. It predicts the value of a target variable based on the values
of its nearest neighbors in the feature space. The algorithm starts by
determining k, which is the number of nearest neighbors to consider when
making predictions. This is a hyperparameter that you need to choose based
on the problem at hand.

NOTE
A larger k  value provides a smoother prediction, while a smaller k  value captures more
local variations but may be more prone to noise.

Then the model calculates the distance between the new, unseen data point
and all the data points in the training set. The choice of distance metric
depends on the nature of the input features. Common distance metrics include
Euclidean distance, Manhattan distance, and Minkowski distance. Next, the
algorithm selects the k data points with the shortest distances to the query
point. These data points are the nearest neighbors and will be used to make
predictions.

To import the KNN regressor, use the following code:



from sklearn.neighbors import KNeighborsRegressor

Now let’s look at the algorithm’s implementation. Fit the model with k = 10:

# Fitting the model

model = KNeighborsRegressor(n_neighbors = 10)

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Figure 7-7 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.

Figure 7-7. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the KNN

regression algorithm.

The choice of the number of neighbors in a time series prediction using the
KNN regressor depends on several factors, including the characteristics of
your dataset and the desired level of accuracy. There is no definitive answer



as to how many neighbors to choose, as it is often determined through
experimentation and validation. Typically, selecting an appropriate value for
the number of neighbors involves a trade-off between bias and variance:

Small k values are associated with a model that can capture local
patterns in the data, but it may also be sensitive to noise or outliers.

Larger k values are associated with a model that can become more
robust to noise or outliers but may overlook local patterns in the data.

NOTE
If you take the limit as k  approaches the size of the dataset, you will get a model that just
predicts the class that appears more frequently in the dataset. This is known as the Bayes
error.

The model’s results are as follows:

Accuracy Train =  67.69 %

Accuracy Test =  50.77 %

RMSE Train =  0.0069584171

RMSE Test =  0.0054027335

Correlation In-Sample Predicted/Train =  0.599

Correlation Out-of-Sample Predicted/Test =  0.002

Model Bias =  0.76

NOTE
It’s essential to consider the temporal aspect of your time series data. If there are clear
trends or patterns that span multiple data points, a larger k  value might be appropriate to
capture those dependencies. However, if the time series exhibits rapid changes or short-
term fluctuations, a smaller k value could be more suitable.

The size of your dataset can also influence the choice of k. If you have a
small dataset, choosing a smaller value for k might be preferable to avoid
overfitting. Conversely, a larger dataset can tolerate a higher value for k.



The advantages of KNN are:

Its nonlinearity allows it to capture complex patterns in financial data,
which can be advantageous for predicting returns series that may exhibit
nonlinear behavior.

It can adapt to changing market conditions or patterns. As the algorithm
is instance based, it does not require retraining the model when new
data becomes available. This adaptability can be beneficial in the
context of financial returns, where market dynamics can change over
time.

It provides intuitive interpretations for predictions. Since the algorithm
selects the k nearest neighbors to make predictions, it can be easier to
understand and explain compared to more complex algorithms.

The disadvantages of KNN are:

Its performance can degrade when dealing with high-dimensional data.
Financial returns series often involve multiple predictors (such as
technical indicators and other correlated returns), and KNN may
struggle to find meaningful neighbors in high-dimensional spaces.

As the dataset grows in size, the computational requirements of KNN
can become significant.

It is sensitive to noisy or outlier data points since the algorithm
considers all neighbors equally.

Decision Tree Regression
Decision trees are versatile and intuitive machine learning models. They are
graphical representations of a series of decisions or choices based on feature
values that lead to different outcomes. Decision trees are structured as a
hierarchical flowchart, where each internal node represents a decision based
on a feature, each branch represents an outcome of that decision, and each
leaf node represents the final prediction or class label.



At the root of the decision tree, consider all the input features and choose the
one that best separates the data based on a specific criterion (e.g., the
information gain metric discussed in Chapter 2). Create a decision node
associated with the selected feature. Split the data based on the possible
values of the chosen feature. Repeat the preceding steps recursively for each
subset of data created by the splits, considering the remaining features at
each node. Stop the recursion when a stopping criterion is met, such as
reaching a maximum depth, reaching a minimum number of samples in a
node, or no further improvement in impurity or gain.

To import the decision tree regressor, use the following code:

from sklearn.tree import DecisionTreeRegressor

Now let’s look at the algorithm’s implementation:

# Fitting the model

model = DecisionTreeRegressor(random_state = 123)

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

NOTE
The argument random_state is often used to initialize the randomization within
algorithms that involve randomness such as initializing weights. This ensures that if you
train a model multiple times with the same random_state, you’ll get the same results,
which is important for comparing different algorithms or hyperparameters.

Figure 7-8 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.



Figure 7-8. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the decision tree

regression algorithm.

The model’s results are as follows:

Accuracy Train =  100.0 %

Accuracy Test =  47.37 %

RMSE Train =  0.0

RMSE Test =  0.007640736

Correlation In-Sample Predicted/Train =  1.0

Correlation Out-of-Sample Predicted/Test =  –0.079

Model Bias =  0.94

Notice how the accuracy of the training set is extremely high. This is clearly
evidence of overfitting (supported by the RMSE of the training data).

The advantages of decision trees are:

They require minimal data preprocessing and can handle missing
values.



They can capture nonlinear relationships, interactions, and variable
importance.

The disadvantages of decision trees are:

They can be sensitive to small changes in the data and can easily overfit
if not properly regularized.

They may struggle to capture complex relationships that require deeper
trees.

The next section presents another breed of machine learning algorithms.
These are called ensemble algorithms. Decision trees can be combined
using ensemble methods to create more robust and accurate models. Random
forest, an algorithm seen in the next section, combines multiple decision trees
to enhance predictive ability and, especially, to reduce the risk of overfitting.

Random Forest Regression
Random forest is a machine learning algorithm that harnesses the power of
multiple decision trees to form a single output (prediction). It is flexible and
does not require much tuning. It is also less prone to overfitting due to its
ensemble learning technique. Ensemble learning refers to the combination of
multiple learners (models) to improve the final prediction.

With random forest, the multiple learners are different decision trees that
converge toward a single prediction.

Therefore, one of the hyperparameters that can be tuned in random forest
algorithms is the number of decision trees. The algorithm uses the bagging
method. In the context of random forests, bagging refers to the technique of
bootstrap aggregating that aims to improve the performance and robustness
of machine learning models, such as decision trees, by reducing biases.
Here’s how bagging works within the random forest algorithm:

1. Bootstrap sampling: Random forest employs bootstrapping, which
means creating multiple subsets of the original training data by sampling
with replacement. Each subset has the same size as the original dataset



but may contain duplicate instances and exclude some of them. This
process is performed independently for each tree in the random forest.

2. Tree construction and feature selection: For each bootstrap sample, a
decision tree is constructed using a process called recursive
partitioning where data is split based on features in order to create
branches that optimize the separation of the target variables. At each
node of the decision tree, a random subset of features is considered for
splitting. This helps introduce diversity among the trees in the forest and
prevents them from relying too heavily on a single dominant feature.

3. Ensemble prediction: Once all the trees are constructed, predictions are
made by aggregating the outputs of individual trees. For regression
tasks, the predictions are averaged.

To import the random forest regressor, use the following code:

from sklearn.ensemble import RandomForestRegressor

Now let’s look at the algorithm’s implementation:

# Fitting the model

model = RandomForestRegressor(max_depth = 20, random_state = 123)

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

NOTE
The max_depth hyperparameter controls the depth of each decision tree in the random
forest. A decision tree with a larger depth can capture more intricate patterns in the data,
but it also becomes more prone to overfitting, which means it might perform very well on
the training data but poorly on unseen data. On the other hand, a shallower tree might not
capture all the details of the data but could generalize better to new, unseen data.



Figure 7-9 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.

Figure 7-9. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the random

forest regression algorithm.

The model’s results are as follows:

Accuracy Train =  82.72 %

Accuracy Test =  50.15 %

RMSE Train =  0.0058106512

RMSE Test =  0.0053452064

Correlation In-Sample Predicted/Train =  0.809

Correlation Out-of-Sample Predicted/Test =  –0.049

Model Bias =  0.63

The advantages of random forest regression are as follows:

It generally has accurate forecasts on data due to its ensemble nature.
With financial time series being highly noisy and borderline random, its
results need to be optimized nevertheless.



It exhibits robustness to noise and outliers due to its averaging nature.

The disadvantages of random forest regression are as follows:

It may be difficult to interpret from time to time. Since it uses an
aggregating method, the true and final decision may be lost when a large
number of trees is used.

As the number of trees increases, the computational time of the
algorithm takes more time to train, resulting in a slow process.

AdaBoost Regression
Before understanding what AdaBoost is about, let’s discuss gradient boosting
so that it becomes easier to comprehend the algorithm behind it. Gradient
boosting is a technique to build models based on the idea of improving weak
learners (which means models that perform only slightly better than random).

The way to improve these weak learners is to target their weak spots by
creating other weak learners that can handle the weak spots. This gave birth
to what is known as Adaptive Boosting, or AdaBoost for short. Hence, in
layperson’s terms, boosting is all about combining weak learners to form
better models.

The learners in AdaBoost (which, as discussed, are weak) are single-split
decision trees (referred to as stumps). They are weighted, with more weight
put on instances that are more difficult to classify and less weight put on the
rest. At the same time, new learners are incorporated to be trained on the
difficult parts, thus creating a more powerful model. Therefore, the difficult
instances receive greater weights until they are solved by new weak learners.

Predictions are based on votes from the weak learners. The majority rule is
applied in order to maximize accuracy. Gradient boosting therefore can be
summarized in three steps:

1. It builds an ensemble of weak predictive models, typically decision
trees, in a sequential manner.



2. Each subsequent model is built to correct the errors or residuals of the
previous models using gradient descent, which adjusts the predictions to
minimize overall error.

3. The predictions from all the models are combined by taking a weighted
average or sum, determined by the learning rate, to produce the final
prediction.

To import the AdaBoost regressor, use the following code:

from sklearn.ensemble import AdaBoostRegressor

Now let’s look at the algorithm’s implementation:

# Fitting the model

model = AdaBoostRegressor(random_state = 123)

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Figure 7-10 shows the evolution of the forecasting task from the last values
of y_train to the first values of y_test and y_predicted.



Figure 7-10. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the AdaBoost

regression algorithm.

The model’s results are as follows:

Accuracy Train =  53.27 %

Accuracy Test =  51.7 %

RMSE Train =  0.0070124217

RMSE Test =  0.0053582343

Correlation In-Sample Predicted/Train =  0.461

Correlation Out-of-Sample Predicted/Test =  0.017

Model Bias =  0.72

The advantages of AdaBoost are:

It generally has good accuracy.

It is easy to comprehend.

The disadvantages of AdaBoost are:

It is impacted by outliers and sensitive to noise.



It is slow and not optimized.

XGBoost Regression
XGBoost is a fast and performant gradient-boosted decision tree algorithm.
The name may be complicated, but the concept is not hard to understand if
you understood gradient boosting from the previous section on AdaBoost.
XGBoost stands for extreme gradient boosting and was created by Tianqi
Chen. Here’s how it works:

1. XGBoost starts with a simple base model, usually a decision tree.

2. It defines an objective function that measures the performance of the
model.

3. Using gradient descent optimization, it iteratively improves the model’s
predictions by adjusting the model based on the gradient of the
objective function.

4. New decision trees are added to the ensemble to correct errors made by
previous models.

5. Regularization techniques, such as learning rate and column
subsampling, are employed to enhance performance and prevent fitting
issues.

6. The final prediction is obtained by combining the predictions from all
the models in the ensemble.

The implementation of XGBoost in Python takes more steps than the previous
algorithms. The first step is to pip install the required module. Type the
following command in the prompt:4

pip install xgboost

To import the XGBoost library, use the following code:

from xgboost import XGBRegressor



The implementation of the algorithm is as follows:

# Fitting the model

model = XGBRegressor(random_state = 123, n_estimators = 16,  

                     max_depth = 12)

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

NOTE
The argument n_estimators is a hyperparameter that determines the number of
boosting rounds or trees to be built in the ensemble. As the algorithm combines the
predictions of multiple weak learners (individual decision trees) to create a strong
predictive model, each boosting round (iteration) adds a new decision tree to the ensemble,
and the algorithm learns from the mistakes made by previous trees. The n_estimators
hyperparameter controls the maximum number of trees that will be added to the ensemble
during the training process.

AdaBoost and XGBoost are both boosting algorithms used to enhance the
predictive power of weak learners, usually decision trees. AdaBoost focuses
on iteratively emphasizing misclassified samples using exponential loss,
lacks built-in regularization, and has limited parallelization. In contrast,
XGBoost leverages gradient boosting, supports various loss functions, offers
regularization, handles missing values, scales better through parallelization,
provides comprehensive feature importance, and allows for more extensive
hyperparameter tuning.

XGBoost therefore offers more advanced features. It is often preferred for its
overall better performance and ability to handle complex tasks. However, the
choice between the two depends on the specific problem, dataset, and
computational resources available.

Figure 7-11 shows the evolution of the forecasting task from the last values
of y_train to the first values of y_test and y_predicted.



Figure 7-11. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the XGBoost

regression algorithm.

The model’s results are as follows:

Accuracy Train =  75.77 %

Accuracy Test =  53.04 %

RMSE Train =  0.0042354698

RMSE Test =  0.0056622704

Correlation In-Sample Predicted/Train =  0.923

Correlation Out-of-Sample Predicted/Test =  0.05

Model Bias =  6.8

Overfitting and Underfitting
Issues will arise in machine-based predictive analytics, and this is
completely normal, since perfection is an impossible word in the world of
data science (and finance). This section covers the most important issue
when it comes to predicting data, and that is the fitting problem. Overfitting



and underfitting are two terms that you must thoroughly understand so that you
avoid their consequences when running your models.

Overfitting occurs when a model performs extremely well on the training
data but has bad results on the test data. It is a sign that the model has learned
not only the details of the in-sample data but also the noise that occurred.
Overfitting is generally associated with a high variance and low bias model,
but what do those two terms mean?

Bias refers to the difference between the expected value of the model’s
predictions and the real value of the target variable. A low bias model is one
that is complex enough to capture the underlying patterns in the data.

Variance refers to the variability of the model’s predictions for different
training sets. A high variance model is one that is overly complex and can
capture random noise and fluctuations in the training data. This can lead to
overfitting, as the model may be fitting the noise in the data.

To prevent overfitting, it’s important to strike a balance between bias and
variance by selecting a model that is complex enough to capture the
underlying patterns in the data but not so complex that it captures random
noise and fluctuations in the data. Regularization techniques can also be used
to reduce variance and prevent overfitting.

Overfitting occurs for a number of reasons, notably:

Insufficient data

If the training data is not diverse enough, or if there is not
enough of it, the model may overfit to the training data.

Overly complex model

If the model is too complex, it may learn the noise in the data
rather than the underlying patterns.

Feature overload

If the model is trained on too many features, it may learn
irrelevant or noisy features that do not generalize to new



data.

Lack of regularization

If the model is not regularized properly, it may overfit to the
training data.

Leakage

Leakage occurs when information from the test set is
inadvertently included in the training set. This can lead to
overfitting as the model is learning from data that it will later
see during testing.

A high bias model is one that is overly simplified and cannot capture the true
underlying patterns in the data. This can lead to underfitting. Similarly, a low
variance model is one that is not affected much by small changes in the
training data and can generalize well to new, unseen data.

Underfitting occurs for a number of reasons, notably:

Insufficient model complexity

If the model used is too simple to capture the underlying
patterns in the data, it may result in underfitting. For
example, a linear regression model might not be able to
capture the nonlinear relationship between the features and
the target variable.

Insufficient training

If the model is not trained for long enough, or with enough
data, it may not be able to capture the underlying patterns in
the data.

Over-regularization

Regularization is a technique used to prevent overfitting, but
if it’s used excessively, it can lead to underfitting.



Poor feature selection

If the features selected for the model are not informative or
relevant, the model may underfit.

Figure 7-12 shows a comparison between the different fits of a model to the
data. An underfit model fails to capture the real relationship from the start,
thus it is bad at predicting the past values and the future ones as well. A
well-fit model captures the general tendency of the data. It is not an exact or
a perfect model but one that generally has satisfactory predictions across the
time period. An overfit model captures every detail of the past, even if it’s
noise or random dislocations. The danger of an overfit model is that it
inhibits a false promise of the future.

Figure 7-12. Different fitting situations.

Therefore, when building machine learning models for time series
prediction, you have to make sure you do not tune the parameters to perfectly
fit the past values. To reduce fitting biases, make sure you incorporate the
following best practices in your backtests:

Increase training data

Collecting more training data helps to capture a broader
range of patterns and variations in the data, reducing the
chances of overfitting.

Feature selection



Carefully select relevant and informative features for your
model. Removing irrelevant or redundant features reduces
noise and complexity in the data, making it easier for the
model to generalize well to unseen examples.

Regularization techniques

Regularization methods explicitly control the complexity of
the model to prevent overfitting.

Hyperparameter tuning

Optimize the hyperparameters of your model to find the best
configuration. Hyperparameters control the behavior and
complexity of the model.

Ensemble methods

Employ ensemble methods, such as random forests, to
combine predictions from multiple models. Ensemble
methods can reduce overfitting by aggregating the
predictions of multiple models, smoothing out individual
model biases, and improving generalization.

Regular model evaluation

Regularly evaluate your model’s performance on unseen
data or a dedicated validation set. This helps monitor the
model’s generalization ability and detect any signs of
overfitting or degradation in performance.

Summary
By properly understanding where machine learning algorithms come from, it
becomes simpler to interpret them and understand their limitations. This
chapter gave you the required knowledge (theory and practice) to build time



series models using a few known machine learning algorithms in the hopes of
forecasting values using past values.

What you must imperatively know is that past values are not necessarily
indicative of future outcomes. Backtests are always biased somehow since a
lot of tweaking is needed to tune the results, which may cause overfitting.
Patterns do occur, but their results are not necessarily the same. Machine
learning for financial time series prediction is constantly evolving, and most
of the algorithms (in the raw form and with their basic inputs) are not very
predictive, but with proper combination and the addition of risk management
tools and filters, you may have a sustainable algorithm that adds value to
your whole framework.

1  Price differences will be referred to as returns for simplicity. In general, returns can also
represent a percentage return of a time series.

2  The ordinary least squares method uses a mathematical formula to estimate the coefficients. It
involves matrix algebra and calculus to solve for the coefficients that minimize the sum of squared
residuals.

3  A class of statistical methods that do not rely on specific assumptions about the underlying
probability distribution.

4  The prompt is a command-line interface that can generally be accessed in the Start menu. It is
not the same as the area where you type the Python code that will later be executed.



Chapter 8. Deep Learning for
Time Series Prediction I

Deep learning is a slightly more complex and more detailed field than
machine learning. Machine learning and deep learning both fall under the
umbrella of data science. As you will see, deep learning is mostly about
neural networks, a highly sophisticated and powerful algorithm that has
enjoyed a lot of coverage and hype, and for good reason: it is very powerful
and able to catch highly complex nonlinear relationships between different
variables.

The aim of this chapter is to explain the functioning of neural networks
before using them to predict financial time series in Python, just like you saw
in Chapter 7.

A Walk Through Neural Networks
Artificial neural networks (ANNs) have their roots in the study of neurology,
where researchers sought to comprehend how the human brain and its
intricate network of interconnected neurons functioned. ANNs are designed
to produce computational representations of biological neural network
behavior.

ANNs have been around since the 1940s, when academics first started
looking into ways to build computational models based on the human brain.
Logician Walter Pitts and neurophysiologist Warren McCulloch were among
the early pioneers in this subject. They published the idea of a computational
model based on simplified artificial neurons in a paper.1

The development of artificial neural networks gained further momentum in
the 1950s and 1960s when researchers like Frank Rosenblatt worked on the
perceptron, a type of artificial neuron that could learn from its inputs.



Rosenblatt’s work paved the way for the development of single-layer neural
networks capable of pattern recognition tasks.

With the creation of multilayer neural networks, also known as deep neural
networks, and the introduction of more potent algorithms, artificial neural
networks made significant strides in the 1980s and 1990s. This innovation
made it possible for neural networks to learn hierarchical data
representations, which enhanced their performance on challenging tasks.
Although multiple researchers contributed to the development and
advancement of artificial neural networks, one influential figure is Geoffrey
Hinton. Hinton, along with his collaborators, made significant contributions
to the field by developing new learning algorithms and architectures for
neural networks. His work on deep learning has been instrumental in the
recent resurgence and success of artificial neural networks.

An ANN consists of interconnected nodes, called artificial neurons,
organized into layers. The layers are typically divided into three types:

Input layer

The input layer receives input data, which could be
numerical, categorical, or even raw sensory data. Input
layers are explanatory variables that are supposed to be
predictive in nature.

Hidden layers

The hidden layers (one or more) process the input data
through their interconnected neurons. Each neuron in a
layer receives inputs, performs a computation (discussed
later), and passes the output to the next layer.

Output layer

The output layer produces the final result or prediction
based on the processed information from the hidden layers.
The number of neurons in the output layer depends on the
type of problem the network is designed to solve.



Figure 8-1 shows an illustration of an artificial neural network where the
information flows from left to right. It begins with the two inputs being
connected to the four hidden layers where calculation is done before
outputting a weighted prediction in the output layer.

Figure 8-1. A simple illustration of an artificial neural network.

Each neuron in the ANN performs two main operations:

1. The neuron receives inputs from the previous layer or directly from the
input data. Each input is multiplied by a weight value, which represents
the strength or importance of that connection. The weighted inputs are
then summed together.

2. After the weighted sum, an activation function (discussed in the next
section) is applied to introduce nonlinearity into the output of the
neuron. The activation function determines the neuron’s output value
based on the summed inputs.

During the training process, the ANN adjusts the weights of its connections to
improve its performance. This is typically done through an iterative
optimization algorithm, such as gradient descent, where the network’s
performance is evaluated using a defined loss function. The algorithm
computes the gradient of the loss function with respect to the network’s
weights, allowing the weights to be updated in a way that minimizes the
error.

ANNs have the ability to learn and generalize from data, making them
suitable for tasks like pattern recognition and regression. With the



advancements in deep learning, ANNs with multiple hidden layers have
shown exceptional performance on complex tasks, leveraging their ability to
learn hierarchical representations and capture intricate patterns in the data.

NOTE
It is worth noting that the process from inputs to outputs is referred to as forward
propagation.

Activation Functions
Activation functions in neural networks introduce nonlinearity to the output
of a neuron, allowing neural networks to model complex relationships and
learn from nonlinear data. They determine the output of a neuron based on the
weighted sum of its inputs. Let’s discuss these activation functions in detail.

The sigmoid activation function maps the input to a range between 0 and 1,
making it suitable for binary classification problems or as a smooth
approximation of a step function. The mathematical representation of the
function is as follows:

S (x) = 1
1+e−x

Figure 8-2 shows the sigmoid function.



Figure 8-2. Graph of the sigmoid function.

Among the advantages of the sigmoid activation function are the following:

It is a smooth as well as differentiable function that facilitates gradient-
based optimization algorithms.

It squashes the input to a bounded range, which can be interpreted as a
probability or confidence level.

However, it has its limitations as well:



It suffers from the vanishing gradient problem, where gradients become
very small for extreme input values. This can hinder the learning
process.

Outputs are not zero centered, making it less suitable for certain
situations, such as optimizing weights using symmetric update rules like
the gradient descent.

The next activation function is the hyperbolic tangent function (tanh), which
you saw in Chapter 4. The mathematical representation of the function is as
follows:

tanh (x) = ex−e−x

ex+e−x

Among the advantages of the hyperbolic tangent function are the following:

It is similar to the sigmoid function but is zero centered, which helps
alleviate the issue of asymmetric updates in weight optimization.

Its nonlinearity can capture a wider range of data variations compared
to the sigmoid function.

The following are among its limitations:

It suffers from the vanishing gradient problem, particularly in deep
networks.

Outputs are still susceptible to saturation at the extremes, resulting in
gradients close to zero.

Figure 8-3 shows the hyperbolic tangent function.



Figure 8-3. Graph of the hyperbolic tangent function.

The next function is called the ReLU activation function. ReLU stands for
rectified linear unit. This function sets negative values to zero and keeps the
positive values unchanged. It is efficient and helps avoid the vanishing
gradient problem. The mathematical representation of the function is as
follows:
f(x) = max(0, x)

Among the advantages of the ReLU function are the following:



It is simple to implement, as it only involves taking the maximum of 0
and the input value. The simplicity of ReLU leads to faster computation
and training compared to more complex activation functions.

It helps mitigate the vanishing gradient problem that can occur during
deep neural network training. The derivative of ReLU is either 0 or 1,
which means that the gradients can flow more freely and avoid
becoming exponentially small as the network gets deeper.

Among the limitations of the function are the following:

It outputs 0 for negative input values, which can lead to information
loss. In some cases, it may be beneficial to have activation functions
that can produce negative outputs as well.

It is not a smooth function, because its derivative is discontinuous at 0.
This can cause optimization difficulties in certain scenarios.

Figure 8-4 shows the ReLU function.



Figure 8-4. Graph of the ReLU function.

The final activation function to discuss is the leaky ReLU activation
function. This activation function is an extension of the ReLU function that
introduces a small slope for negative inputs. The mathematical representation
of the function is as follows:
f(x) = max(0.01x, x)

Leaky ReLU addresses the dead neuron problem in ReLU and allows some
activation for negative inputs, which can help with the flow of gradients
during training.



Among the advantages of the leaky ReLU function are the following:

It overcomes the issue of dead neurons that can occur with ReLU. By
introducing a small slope for negative inputs, leaky ReLU ensures that
even if a neuron is not activated, it can still contribute to the gradient
flow during training.

It is a continuous function, even at negative input values. The nonzero
slope for negative inputs allows the activation function to have a
defined derivative throughout its input range.

The following are among the limitations of the function:

The slope of the leaky part is a hyperparameter that needs to be set
manually. It requires careful tuning to strike a balance between avoiding
dead neurons and preventing too much leakage that may hinder the
nonlinearity of the activation function.

Although leaky ReLU provides a nonzero response for negative inputs,
it does not provide the same level of negative activation as some other
activation functions, such as the hyperbolic tangent (tanh) and sigmoid.
In scenarios where a strong negative activation response is desired,
other activation functions might be more suitable.

Figure 8-5 shows the leaky ReLU function.

Your choice of activation function depends on the nature of the problem, the
architecture of the network, and the desired behavior of the neurons in the
network.

Activation functions typically take the weighted sum of inputs to a neuron and
apply a nonlinear transformation to it. The transformed value is then passed
on as the output of the neuron to the next layer of the network. The specific
form and behavior of activation functions can vary, but their overall purpose
is to introduce nonlinearities that allow the network to learn complex
patterns and relationships in the data.



Figure 8-5. Graph of the leaky ReLU function.

To sum up, activation functions play a crucial role in ANNs by introducing
nonlinearity into the network’s computations. They are applied to the outputs
of individual neurons or intermediate layers and help determine whether a
neuron should be activated or not based on the input it receives. Without
activation functions, the network would only be able to learn linear
relationships between the input and output. However, most real-world
problems (especially financial time series) involve complex, nonlinear
relationships, so activation functions are essential for enabling neural
networks to learn and represent such relationships effectively.



Backpropagation
Backpropagation is a fundamental algorithm used to train neural networks. It
allows the network to update its weights in a way that minimizes the
difference between the predicted output and the desired output.

NOTE
Backpropagation is a shortened term for backward propagation of errors.

Training neural networks involves the following steps:

1. Randomly initialize the weights and biases of the neural network. This
allows you to have a first step when you do not have initial information.

2. Perform forward propagation, a technique to calculate the predicted
outputs of the network for a given input. As a reminder, this step
involves calculating the weighted sum of inputs for each neuron,
applying the activation function to the weighted sum, passing the value
to the next layer (if it’s not the last), and continuing the process until
reaching the output layer (prediction).

3. Compare the predicted output with the actual output (test data) and
calculate the loss, which represents the difference between them. The
choice of the loss function (e.g., MAE or MSE) depends on the specific
problem being solved.

4. Perform backpropagation to calculate the gradients of the loss with
respect to the weights and biases. In this step, the algorithm will start
from the output layer (the last layer) and go backward. It will compute
the gradient of the loss with respect to the output of each neuron in the
current layer. Then it will calculate the gradient of the loss with respect
to the weighted sum of inputs for each neuron in the current layer by
applying the chain rule. After that, it will compute the gradient of the
loss with respect to the weights and biases of each neuron in the current



layer using the gradients from the previous steps. These steps are
repeated until the gradients are calculated for all layers.

5. Update the weights and biases of the network by using the calculated
gradients and a chosen optimization algorithm run on a specific number
of batches of data, which are controlled by the hyperparameter (referred
to as the batch size). Updating the weights is done by subtracting the
product of the learning rate and the gradient of the weights. Adjusting
the biases is done by subtracting the product of the learning rate and the
gradient of the biases. Repeat the preceding steps until the weights and
biases are updated for all layers.

6. The algorithm then repeats steps 2–5 for a specified number of epochs
or until a convergence criterion is met. An epoch represents one
complete pass through the entire training dataset (the whole process
entails passing through the training dataset multiple times ideally).

7. Once the training is completed, evaluate the performance of the trained
neural network on a separate validation or test dataset.

NOTE
The learning rate is a hyperparameter that determines the step size at which a neural
network’s weights are updated during the training process. It controls how quickly or
slowly the model learns from the data it’s being trained on.

The batch size is a hyperparameter that determines the number of samples processed
before updating the model’s weights during each iteration of the training process. In other
words, it specifies how many training examples are used at a time to calculate the
gradients and update the weights.

Choosing an appropriate batch size is essential for efficient training and can
impact the convergence speed and memory requirements. There is no one-
size-fits-all answer to the ideal batch size, as it depends on various factors,
such as the dataset size, available computational resources, and the
complexity of the model.



Commonly used batch sizes for training MLPs range from small values (such
as 16, 32, or 64) to larger ones (such as 128, 256, or even larger). Smaller
batch sizes can offer more frequent weight updates and may help the model
converge more quickly, especially when the dataset is large or has a lot of
variations. However, smaller batch sizes may also introduce more noise and
slower convergence due to frequent updates with less accurate gradients. On
the other hand, larger batch sizes can provide more stable gradients and
better utilization of parallel processing capabilities, leading to faster training
on modern hardware. However, they might require more memory, and the
updates are less frequent, which could slow down convergence or make the
training process less robust.

As a general rule of thumb, you can start with a moderate batch size like 32
and experiment with different values to find the best trade-off between
convergence speed and computational efficiency for your specific MLP
model and dataset.

The backpropagation algorithm leverages the chain rule (refer to Chapter 4
for more information on calculus) to calculate the gradients by propagating
the errors backward through the network.

By iteratively adjusting the weights based on the error propagated backward
through the network, backpropagation enables the network to learn and
improve its predictions over time. Backpropagation is a key algorithm in
training neural networks and has contributed to significant advancements in
various fields.

Optimization Algorithms
In neural networks, optimization algorithms, also known as optimizers, are
used to update the parameters (weights and biases) of the network during the
training process. These algorithms aim to minimize the loss function and find
the optimal values for the parameters that result in the best performance of
the network. There are several types of optimizers:

Gradient descent (GD)



Gradient descent is the most fundamental optimization
algorithm. It updates the network’s weights and biases in the
direction opposite to the gradient of the loss function with
respect to the parameters. It adjusts the parameters by
taking steps proportional to the negative of the gradient,
multiplied by a learning rate.

Stochastic gradient descent (SGD)

SGD is a variant of gradient descent that randomly selects a
single training example or a mini batch of examples to
compute the gradient and update the parameters. It provides
a computationally efficient approach and introduces noise in
the training process, which can help escape local optima.

Adaptive moment estimation (Adam)

Adam is an adaptive optimization algorithm that computes
adaptive learning rates for each parameter based on
estimates of the first and second moments of the gradients.
Adam is widely used due to its effectiveness and efficiency in
various applications.

Root mean square propagation (RMSprop)

The purpose of RMSprop is to address some of the
limitations of the standard gradient descent algorithm, such
as slow convergence and oscillations in different directions.
RMSprop adjusts the learning rate for each parameter based
on the average of the recent squared gradients. It calculates
an exponentially weighted moving average of the squared
gradients over time.

Each optimizer has its own characteristics, advantages, and limitations, and
their performance can vary depending on the dataset and the network



architecture. Experimentation and tuning are often necessary to determine the
best optimizer for a specific task.

Regularization Techniques
Regularization techniques in neural networks are methods used to prevent
overfitting, which can lead to poor performance and reduced ability of the
model to make accurate predictions on new examples. Regularization
techniques help to control the complexity of a neural network and improve its
ability to generalize to unseen data.

Dropout is a regularization technique commonly used in neural networks to
prevent overfitting (refer to Chapter 7 for detailed information on
overfitting). It involves randomly omitting (dropping) a fraction of the
neurons during training by setting their outputs to zero. This temporarily
removes the neurons and their corresponding connections from the network,
forcing the remaining neurons to learn more robust and independent
representations.

The key idea behind dropout is that it acts as a form of model averaging or
ensemble learning. By randomly dropping out neurons, the network becomes
less reliant on specific neurons or connections and learns more robust
features. Dropout also helps prevent co-adaptation, where certain neurons
rely heavily on others, reducing their individual learning capability. As a
result, dropout can improve the network’s generalization ability and reduce
overfitting.

Early stopping is a technique that also prevents overfitting by monitoring the
model’s performance on a validation set during training. It works by stopping
the training process when the model’s performance on the validation set
starts to deteriorate. The idea behind early stopping is that as the model
continues to train, it may start to overfit the training data, causing a decrease
in performance on unseen data.

The training process is typically divided into epochs, where each epoch
represents a complete pass over the training data. During training, the
model’s performance on the validation set is evaluated after each epoch. If



the validation loss or a chosen metric starts to worsen consistently for a
certain number of epochs, training is stopped, and the model’s parameters
from the epoch with the best performance are used as the final model.

Early stopping helps prevent overfitting by finding the optimal point at which
the model has learned the most useful patterns without memorizing noise or
irrelevant details from the training data. Both dropout and early stopping are
key regularization techniques that help prevent overfitting and help stabilize
the model.

Multilayer Perceptrons
A multilayer perceptron (MLP) is a type of ANN that consists of multiple
layers of artificial neurons, or nodes, arranged in a sequential manner. It is a
feedforward neural network, meaning that information flows through the
network in one direction, from the input layer to the output layer, without any
loops or feedback connections (you will learn more about this later in
“Recurrent Neural Networks”).

The basic building block of an MLP is a perceptron, an artificial neuron that
takes multiple inputs, applies weights to those inputs, performs a weighted
sum, and passes the result through an activation function to produce an output
(basically, the neuron that you have seen already). An MLP contains multiple
perceptrons organized in layers. It typically consists of an input layer, one or
more hidden layers (the more layers, the deeper the learning process up to a
certain point), and an output layer.

NOTE
The term perceptron is sometimes used more broadly to refer to a single-layer neural
network based on a perceptron-like architecture. In this context, the term perceptron can
be used interchangeably with neural network  or single-layer perceptron.

As a reminder, the input layer receives the raw input data, such as features
from a dataset (e.g., the stationary values of a moving average). The hidden



layers, which are intermediate layers between the input and output layers,
perform complex transformations on the input data. Each neuron in a hidden
layer takes inputs from all neurons in the previous layer, applies weights,
performs the weighted sum, and passes the result through an activation
function. The output layer produces the final output of the network.

MLPs are trained using backpropagation, which adjusts the weights of the
neurons in the network to minimize the difference between the predicted
output and the desired output. They are known for their ability to learn
complex, nonlinear relationships in data, making them suitable for a wide
range of tasks, including pattern recognition. Figure 8-6 shows an example of
a deep MLP architecture.

Figure 8-6. A simple illustration of an MLP with two hidden layers.

At this stage, you should understand that deep learning is basically neural
networks with many hidden layers that add to the complexity of the learning
process.

NOTE
It is important to download master_function.py from this book’s GitHub repository to
access the functions seen in this book. After downloading it, you must set your Python’s
interpreter directory as the path where master_function.py is stored.

The aim of this section is to create an MLP to forecast daily S&P 500
returns. Import the required libraries:

https://oreil.ly/5YGHI


from keras.models import Sequential

from keras.layers import Dense

import keras

import numpy as np

import matplotlib.pyplot as plt

import pandas_datareader as pdr

from master_function import data_preprocessing, plot_train_test_values

from master_function import calculate_accuracy, model_bias

from sklearn.metrics import mean_squared_error

Now import the historical data and transform it:

# Set the start and end dates for the data

start_date = '1990-01-01'

end_date   = '2023-06-01'

# Fetch S&P 500 price data

data = np.array((pdr.get_data_fred('SP500', start = start_date,  

                                   end = end_date)).dropna())

# Difference the data and make it stationary

data = np.diff(data[:, 0])

Set the hyperparameters for the model:

num_lags = 100

train_test_split = 0.80

num_neurons_in_hidden_layers = 20

num_epochs = 500

batch_size = 16

Use the data preprocessing function to create the four required arrays:

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data, num_lags,  

                                                      train_test_split)

The following code block shows how to build the MLP architecture in keras.
Make sure you understand the notes in the code:

# Designing the architecture of the model

model = Sequential()

# First hidden layer with ReLU as activation function

model.add(Dense(num_neurons_in_hidden_layers, input_dim = num_lags,  



                activation = 'relu'))   

# Second hidden layer with ReLU as activation function

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))   

# Output layer

model.add(Dense(1))

# Compiling

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting the model

model.fit(x_train, np.reshape(y_train, (–1, 1)), epochs = num_epochs,  

          batch_size = batch_size)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

NOTE
When creating a Dense layer, you need to specify the input_dim parameter in the first
layer of your neural network. For subsequent Dense layers, the input_dim is
automatically inferred from the previous layer’s output.

Let’s plot the results and analyze the performance:

Accuracy Train =  92.4 %

Accuracy Test =  54.85 %

RMSE Train =  4.3602984254

RMSE Test =  75.7542774467

Correlation In-Sample Predicted/Train =  0.989

Correlation Out-of-Sample Predicted/Test =  0.044

Model Bias =  1.03

Figure 8-7 shows the evolution of the forecasting task from the last values of
y_train to the first values of y_test and y_predicted.



Figure 8-7. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the MLP

regression algorithm.

The results are extremely volatile when changing the hyperparameters. This
is why using sophisticated models on complex data requires a lot of tweaks
and optimizations. Consider the following improvements to enhance the
results of the model:

Select relevant features (inputs) that capture the underlying patterns and
characteristics of the financial time series. This can involve calculating
technical indicators (e.g., moving averages and the RSI) or deriving
other meaningful variables from the data.

Review the architecture of the model. Consider increasing the number
of layers or neurons to provide the model with more capacity to learn
complex patterns. Experiment with different activation functions and
regularization techniques such as dropout and early stopping (see
Chapter 9 for an application of regularization techniques).



Fine-tune the hyperparameters of your MLP model. Parameters like the
batch size and the number of epochs can significantly impact the
model’s ability to converge and generalize.

Combine multiple MLP models into an ensemble. This can involve
training several models with different initializations or using different
subsets of the data. Aggregating their predictions can lead to better
results than using a single model.

As the model trains, the loss function should decrease due to the learning
process. This can be seen using the following code (to be run after compiling
the model):

import tensorflow as tf

losses = []

epochs = []

class LossCallback(tf.keras.callbacks.Callback): 

    def on_epoch_end(self, epoch, logs = None): 

        losses.append(logs['loss']) 

        epochs.append(epoch + 1) 

        plt.clf() 

        plt.plot(epochs, losses, marker = 'o') 

        plt.title('Loss Curve') 

        plt.xlabel('Epoch') 

        plt.ylabel('Loss Value') 

        plt.grid(True) 

        plt.pause(0.01)

model.fit(x_train, np.reshape(y_train, (–1, 1)), epochs = 100,  

          verbose = 0, callbacks = [LossCallback()])

plt.show()

The previous code block plots the loss at the end of every epoch, thus
creating a dynamic loss curve visualized in real time. Notice how it falls
until reaching a plateau where it struggles to decrease. Figure 8-8 shows the
decreasing loss function across epochs.



Figure 8-8. Loss value across epochs.

Recurrent Neural Networks
A recurrent neural network (RNN) is a type of artificial neural network that
is designed to process sequential data or data with temporal dependencies.
Unlike feedforward neural networks, which process data in a single pass
from input to output, RNNs maintain internal memory or hidden states to
capture information from previous inputs and utilize it in the processing of
subsequent inputs.

The key feature of an RNN is the presence of recurrent connections, which
create a loop in the network. This loop allows the network to persist
information across time steps, making it well suited for tasks that involve
sequential or time-dependent data.

At each time step, an RNN takes an input vector and combines it with the
previous hidden state. It then applies activation functions to compute the new



hidden state and produces an output. This process is repeated for each time
step, with the hidden state being updated and passed along as information
flows through the network.

The recurrent connections enable RNNs to capture dependencies and patterns
in sequential data. They can model the context and temporal dynamics of the
data, making them useful in time series prediction.

However, traditional RNNs suffer from the vanishing gradient problem,
where the gradients that are backpropagated through the recurrent
connections can become very small or very large, leading to difficulties in
training the network. The vanishing gradient problem is resolved in the next
section with an enhanced type of neural network. For now, let’s focus on
RNNs and their specificities.

Figure 8-9 shows an example of an RNN architecture.

Figure 8-9. A simple illustration of an RNN with two hidden layers.

Let’s deploy an RNN algorithm to forecast S&P 500 daily returns. As usual,
import the required libraries:

from keras.models import Sequential

from keras.layers import Dense, SimpleRNN

import keras

import numpy as np

import matplotlib.pyplot as plt

import pandas_datareader as pdr

from master_function import data_preprocessing, plot_train_test_values

from master_function import calculate_accuracy, model_bias

from sklearn.metrics import mean_squared_error

Now set the hyperparameters of the model:



num_lags = 100

train_test_split = 0.80

num_neurons_in_hidden_layers = 20

num_epochs = 500

batch_size = 16

The following code block shows how to build the RNN architecture in
keras:

# Designing the architecture of the model

model = Sequential()

# First hidden layer

model.add(Dense(num_neurons_in_hidden_layers, input_dim = num_lags,  

                activation = 'relu'))   

# Second hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))   

# Output layer

model.add(Dense(1))

# Compiling

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting the model

model.fit(x_train, np.reshape(y_train, (–1, 1)), epochs = num_epochs,  

          batch_size = batch_size)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Let’s plot the results and analyze the performance:

Accuracy Train =  67.16 %

Accuracy Test =  52.11 %

RMSE Train =  22.7704952044

RMSE Test =  60.3443059267

Correlation In-Sample Predicted/Train =  0.642

Correlation Out-of-Sample Predicted/Test =  –0.022

Model Bias =  2.18

Figure 8-10 shows the evolution of the forecasting task from the last values
of y_train to the first values of y_test and y_predicted.



Figure 8-10. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the RNN

regression algorithm.

TIP
A good task for you to do is to create an optimization function that loops around different
hyperparameters and selects the best ones or averages the best ones. This way, you may
be able to obtain a robust model based on the ensembling technique. You can also backtest
different markets and different time horizons. Note that these techniques are valid not only
for financial time series, but for all types of time series.

In summary, RNNs are neural networks that can process sequential data by
maintaining internal memory and capturing temporal dependencies. They are
powerful models for tasks involving time series or sequential data. As a
reminder, stationarity is an essential property for successful time series
forecasting. A stationary time series exhibits constant mean, variance, and
autocovariance over time. RNNs (among other deep learning models) assume
that the underlying time series is stationary, which means the statistical



properties of the data do not change over time. If the time series is
nonstationary, it may contain trends, seasonality, or other patterns that can
affect the performance of RNNs. The optimization and enhancement
recommendations on MLPs are also valid on RNNs.

Long Short-Term Memory
Long short-term memory (LSTM) is a type of RNN that addresses the
vanishing gradient problem and allows the network to capture long-term
dependencies in sequential data. LSTMs were introduced by Hochreiter and
Schmidhuber in 1997.

LSTMs are designed to overcome the limitations of traditional RNNs when
dealing with long sequences of data. They achieve this by incorporating
specialized memory cells that can retain information over extended time
periods. The key idea behind LSTMs is the use of a gating mechanism that
controls the flow of information through the memory cells.

The LSTM architecture consists of memory cells, input gates, forget gates,
and output gates. The memory cells store and update information at each time
step, while the gates regulate the flow of information. Here’s how LSTMs
work:

Input gate

The input gate determines which information from the
current time step should be stored in the memory cell. It
takes the current input and the previous hidden state as
inputs, and then it applies a sigmoid activation function to
generate a value between 0 and 1 for each component of the
memory cell.

Forget gate

The forget gate determines which information from the
previous memory cell should be forgotten. It takes the
current input and the previous hidden state as inputs, and



then it applies a sigmoid activation function to produce a
forget vector. This vector is then multiplied element-wise
with the previous memory cell values, allowing the LSTM to
forget irrelevant information.

Update

The update step combines the information from the input
gate and the forget gate. It takes the current input and the
previous hidden state as inputs, and then it applies a tanh
activation function. The resulting vector is then multiplied
element-wise with the input gate output, and the product is
added to the product of the forget gate and the previous
memory cell values. This update operation determines
which new information to store in the memory cell.

Output gate

The output gate determines the output of the LSTM at the
current time step. It takes the current input and the previous
hidden state as inputs, and then it applies a sigmoid
activation function. The updated memory cell values are
passed through a hyperbolic tangent (tanh) activation
function and then multiplied element-wise with the output
gate. The resulting vector becomes the current hidden state
and is also the output of the LSTM at that time step.

The gating mechanisms in LSTMs allow them to selectively remember or
forget information over long sequences, making them well suited for tasks
involving long-term dependencies. By addressing the vanishing gradient
problem and capturing long-term dependencies, LSTMs have become a
popular choice for sequential data processing and have been instrumental in
advancing the field of deep learning.



NOTE
Theoretically, RNNs are capable of learning long-term dependencies, but in practice, they
do not, hence the need for LSTMs.

As usual, let’s apply LSTMs to the same time series problem. Note,
however, that the results do not mean anything since the explanatory
variables are arbitrary and the hyperparameters are not tuned. The aim of
doing such exercises is to understand the code and the logic behind the
algorithm. Afterward, it will be up to you to select the inputs and the
variables that you deem worthy to be tested out.

Import the required libraries as follows:

from keras.models import Sequential

from keras.layers import Dense, LSTM

import keras

import numpy as np

import matplotlib.pyplot as plt

import pandas_datareader as pdr

from master_function import data_preprocessing, plot_train_test_values

from master_function import calculate_accuracy, model_bias

from sklearn.metrics import mean_squared_error

Now set the hyperparameters of the model:

num_lags = 100

train_test_split = 0.80

num_neurons_in_hidden_layers = 20

num_epochs = 100

batch_size = 32

The LSTM model requires three-dimensional arrays of features. This can be
done using the following code:

x_train = x_train.reshape((–1, num_lags, 1)) 

x_test = x_test.reshape((–1, num_lags, 1))



The following code block shows how to build the LSTM architecture in
keras:

# Create the LSTM model

model = Sequential()

# First LSTM layer

model.add(LSTM(units = num_neurons_in_hidden_layers,  

               input_shape = (num_lags, 1)))

# Second hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))   

# Output layer

model.add(Dense(units = 1))

# Compile the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Train the model

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Let’s plot the results and analyze the performance:

Accuracy Train =  65.63 %

Accuracy Test =  50.42 %

RMSE Train =  25.5619843783

RMSE Test =  55.1133475721

Correlation In-Sample Predicted/Train =  0.515

Correlation Out-of-Sample Predicted/Test =  0.057

Model Bias =  2.56

Figure 8-11 shows the evolution of the forecasting task from the last values
of y_train to the first values of y_test and y_predicted. Note that the
hyperparameters are the same as the ones used in the RNN model.



Figure 8-11. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the LSTM

regression algorithm.

It is worth seeing how well the algorithm is fitted to the training data.
Figure 8-12 shows the values from y_predicted_train and y_train.



Figure 8-12. In-sample predictions using the LSTM regression algorithm.

In the context of LSTMs, a three-dimensional array represents the shape of
the input data that is fed into the models. It is typically used to accommodate
sequential or time series data in the form of input sequences. The dimensions
of a three-dimensional array have specific meanings:

Dimension 1 (samples)

This dimension represents the number of samples or
examples in the dataset. Each sample corresponds to a
specific sequence or time series instance. For example, if you
have 1,000 time series sequences in your dataset, dimension
1 would be 1,000.

Dimension 2 (time steps)

This dimension represents the number of time steps or data
points in each sequence. It defines the length of the input
sequence that the LSTM or RNN model processes at each



time step. For instance, if your input sequences have a
length of 10 time steps, dimension 2 would be 10.

Dimension 3 (features)

This dimension represents the number of features or
variables associated with each time step in the sequence. It
defines the dimensionality of each time step’s data. In the
case of univariate time series data, where only a single value
is considered at each time step, dimension 3 would typically
be 1. For multivariate time series, where multiple variables
are observed at each time step, dimension 3 would be
greater than 1.

Let’s take a quick break and discuss an interesting topic. Using simple linear
algorithms to model complex, nonlinear relationships is most likely to give
bad results. At the same time, using extremely complex methods such as
LSTMs on simple and predictable data may not be necessary even though it
may provide positive results. Figure 8-13 shows an ascending time series
that looks like it’s oscillating in regular intervals.



Figure 8-13. A generated ascending time series with oscillating properties.

Believe it or not, linear regression can actually model this raw time series
quite well. By assuming an autoregressive model with 100 features (which
means that to predict the next value, the model looks at the last 100 values),
the linear regression algorithm can be trained on in-sample data and output
the out-of-sample results shown in Figure 8-14.



Figure 8-14. Prediction over the ascending time series using linear regression.

But let’s take its first order difference and make it stationary. Take a look at
Figure 8-15, which shows a stationary time series created from differencing
the time series shown in Figure 8-13.



Figure 8-15. A generated ascending time series with oscillating properties (differenced).

The linear regression algorithm can be trained on in-sample data and output
the out-of-sample results shown in Figure 8-16 with extreme accuracy.



Figure 8-16. Prediction over the differenced time series using linear regression.

Another way of assessing the goodness of fit of a linear regression model is
to use R². Also known as the coefficient of determination, R² is a statistical
measure that indicates the proportion of the variance in the dependent
variable that can be explained by the independent variable(s) in a regression
model.

R² ranges from 0 to 1 and is often expressed as a percentage. A value of 0
indicates that the independent variable(s) cannot explain any of the
variability in the dependent variable, while a value of 1 indicates that the
independent variable(s) can completely explain the variability in the
dependent variable.

In simple terms, R² represents the proportion of the dependent variable’s
variability that can be attributed to the independent variable(s) included in
the model. It provides a measure of how well the regression model fits the
observed data. However, it does not indicate the causal relationship between
variables or the overall quality of the model. It is also worth noting that R² is



the squared correlation between the two variables. The R² metric for the
differenced time series is 0.935, indicating extremely good fit.

In parallel, using an MLP with some optimization also yields good results.
Figure 8-17 shows the results of the differenced values when using a simple
MLP model (with two hidden layers, each containing 24 neurons and a batch
size of 128 run through 50 epochs).

Figure 8-17. Prediction over the differenced time series using MLP.

However, the added complexity of using a deep learning method to predict
such a simple time series may not be worth it.

Temporal Convolutional Neural Networks
Convolutional neural networks (CNNs) are a class of deep learning models
designed to process structured grid-like data, with a particular emphasis on
images and other grid-like data such as time series (less commonly used) and
audio spectrograms. CNNs are good at learning and extracting hierarchical



patterns and features from input data, making them powerful tools for tasks
like image recognition, object detection, image segmentation, and more.

The core building blocks of CNNs are the convolutional layers. These
layers perform convolution operations by applying a set of learnable filters
to input data, resulting in feature maps that capture relevant spatial patterns
and local dependencies. Another important concept with CNNs is pooling
layers, which downsample the feature maps produced by convolutional
layers. Common pooling operations include max pooling (selecting the
maximum value in a neighborhood) and average pooling (computing the
average value). Pooling helps reduce spatial dimensions, extract dominant
features, and improve computational efficiency.

NOTE
A CNN that is specifically used for time series forecasting is often referred to as a 1D-
CNN or a temporal convolutional network .

The term 1D-CNN indicates that the convolutional operations are applied along the
temporal dimension of the input data, which is characteristic of time series data. This
distinguishes it from traditional CNNs that operate on spatial dimensions in tasks such as
image recognition.

A typical CNN architecture consists of three main components: an input
layer, several alternating convolutional and pooling layers, and fully
connected layers at the end. Convolutional layers are responsible for feature
extraction, while pooling layers downsample the data. The fully connected
layers provide the final predictions.

CNN architectures can vary greatly depending on the specific task. These
architectures often employ additional techniques such as dropout
regularization to improve performance and address challenges like
overfitting.

CNNs can be used for time series prediction by leveraging their ability to
capture local patterns and extract relevant features from the input data. The
framework of the process is as follows:



1. CNNs use convolutional layers to perform localized feature extraction.
The convolutional layers consist of a set of learnable filters that are
convolved with the input data. Each filter extracts different features
from the input data by applying element-wise multiplications and
summations in a sliding window manner. The result is a feature map that
highlights important patterns or features at different locations in the
input data.

2. Pooling layers are often employed after convolutional layers to reduce
the spatial dimensionality of the feature maps. Max pooling is a common
technique, where the maximum value within a local neighborhood is
selected, effectively downsampling the feature map. Pooling helps in
capturing the most salient features while reducing the computational
complexity and enhancing the network’s ability to generalize.

3. After the convolutional and pooling layers, the resulting feature maps
are typically flattened into a one-dimensional vector. This flattening
operation transforms the spatially distributed features into a linear
sequence, which can then be passed to fully connected layers.

4. Fully connected layers receive the flattened feature vector as input and
learn to map it to the desired output. These layers enable the network to
learn complex combinations of features and model the nonlinear
relationships between input features and target predictions. The last
fully connected layer typically represents the output layer, which
predicts the target values for the time series.

Before moving to the algorithm creation steps, let’s review some key
concepts seen with CNNs. In time series forecasting with CNNs, filters are
applied along the temporal dimension of the input data. Instead of
considering spatial features as in image data, the filters are designed to
capture temporal patterns or dependencies within the time series. Each filter
slides across the time series, processing a subset of consecutive time steps at
a time. The filter learns to detect specific temporal patterns or features in the
input data. For example, it might capture short-term trends, seasonality, or
recurring patterns that are relevant for the forecasting task. Multiple filters



can be used in each convolutional layer, allowing the network to learn a
diverse set of temporal features. Each filter captures different aspects of the
time series, enabling the model to capture complex temporal relationships.

Another concept is the kernel size, which refers to the length or the number
of consecutive time steps that the filter considers during the convolution
operation. It defines the receptive field of the filter and influences the size of
the extracted temporal patterns. The choice of kernel size depends on the
characteristics of the time series data and the patterns to be captured. Smaller
kernel sizes, such as 3 or 5, focus on capturing short-term patterns, while
larger kernel sizes, such as 7 or 10, are suitable for capturing longer-term
dependencies. Experimentation with different kernel sizes can help identify
the optimal receptive field that captures the relevant temporal patterns for
accurate forecasting. It’s common to have multiple convolutional layers with
different kernel sizes to capture patterns at various temporal scales.

Now let’s see how to create a temporal CNN to forecast S&P 500 returns
using its lagged values. Import the required libraries as follows:

from keras.models import Sequential

from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense

import keras

import numpy as np

import matplotlib.pyplot as plt

import pandas_datareader as pdr

from master_function import data_preprocessing, plot_train_test_values

from master_function import calculate_accuracy, model_bias

from sklearn.metrics import mean_squared_error

Next, set the hyperparameters of the model:

num_lags = 100  

train_test_split = 0.80  

filters = 64  

kernel_size = 4

pool_size = 2

num_epochs = 100  

batch_size = 8

Reshape the features arrays into three-dimensional data structures:



x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Now create the architecture of the temporal convolutional network (TCN)
and run the algorithm:

# Create the temporal convolutional network model

model = Sequential()

model.add(Conv1D(filters = filters, kernel_size = kernel_size,  

                 activation = 'relu', input_shape = (num_lags, 1)))

model.add(MaxPooling1D(pool_size = pool_size))

model.add(Flatten())

model.add(Dense(units = 1))

# Compile the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Train the model

model.fit(x_train, y_train, epochs = num_epochs , batch_size = 

batch_size)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample

y_predicted = np.reshape(model.predict(x_test), (–1, 1))

Let’s plot the results and analyze the performance:

Accuracy Train =  68.9 %

Accuracy Test =  49.16 %

RMSE Train =  18.3047790152

RMSE Test =  63.4069105299

Correlation In-Sample Predicted/Train =  0.786

Correlation Out-of-Sample Predicted/Test =  0.041

Model Bias =  0.98

Figure 8-18 shows the evolution of the forecasting task from the last values
of y_train to the first values of y_test and y_predicted.



Figure 8-18. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the CNN

regression algorithm.

It is important to use performance metrics that reflect your choice and to
search for a better algorithm. Accuracy may be one of the base metrics to
give you a quick glance at the predictive abilities of your model, but on its
own, it is not enough. The results seen in this chapter reflect only the training
using the selected hyperparameters. Optimization will allow you to achieve
very good results on certain models.

NOTE
There is no strict rule defining the number of hidden layers required to consider a neural
network as deep. However, a common convention is that a neural network with two or
more hidden layers is typically considered a deep neural network.

Summary



Applying deep learning algorithms to time series data can offer several
benefits and challenges. Deep learning algorithms have shown great utility in
time series analysis by effectively capturing complex patterns, extracting
meaningful features, and making accurate predictions. However, their
success relies heavily on the quality of the data and the chosen features.

The utility of applying deep learning algorithms on time series data stems
from their ability to automatically learn hierarchical representations and
model intricate temporal dependencies. They can handle nonlinear
relationships and capture both local and global patterns, making them
suitable for a wide range of time series tasks like forecasting, anomaly
detection, classification, and signal processing.

However, applying deep learning algorithms to time series can present
challenges:

Data quality

Deep learning models heavily rely on large amounts of high-
quality, labeled data for training. Insufficient or noisy data
can hinder the performance of the models, leading to
inaccurate predictions or unreliable insights. Data
preprocessing, cleaning, and addressing missing values
become crucial steps to ensure the quality of the data.

Feature engineering

Deep learning models can automatically learn relevant
features from the data. However, the choice and extraction
of informative features can significantly impact the model’s
performance. Domain knowledge, data exploration, and
feature engineering techniques are important in selecting or
transforming features that enhance the model’s ability to
capture relevant patterns.

Model complexity



Deep learning models are typically complex with a large
number of parameters. Training such models requires
substantial computational resources, longer training times,
and careful hyperparameter tuning. Overfitting, where the
model memorizes the training data without generalizing
well to unseen data, is also a common challenge.

Interpretability

Deep learning models are often considered mystery boxes,
making it challenging to interpret the learned
representations and understand the reasoning behind
predictions. This can be a concern in domains where
interpretability and explainability are crucial, such as
finance.

To overcome these challenges and harness the power of deep learning
algorithms for time series analysis, careful consideration of data quality,
appropriate feature engineering, model architecture selection, regularization
techniques, and interpretability approaches are essential. It is crucial to
understand the specific characteristics and requirements of the time series
data and the task at hand to choose and tailor the deep learning approach
accordingly.

1  W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,”
Bulletin of Mathematical Biophysics 5 (1943): 115–33.



Chapter 9. Deep Learning for
Time Series Prediction II

This chapter presents a few techniques and methods to complement the
forecasting task of machine and deep learning algorithms. It is composed of
different topics that each discuss a way to improve and optimize the process.
At this point, you should have a sound understanding of the basics of machine
and deep learning models, and you know how to code a basic algorithm that
predicts the returns of a financial time series (or any stationary time series).
This chapter bridges the gap between the basic knowledge and the advanced
knowledge required to elevate the algorithms to a functional level.

Fractional Differentiation
In his book Advances in Financial Machine Learning, Marcos López de
Prado describes a technique to transform nonstationary data into stationary
data. This is referred to as fractional differentiation.

Fractional differentiation is a mathematical technique used to transform a
time series into a stationary series while preserving some of its memory. It
extends the concept of differencing (or taking the returns), which is
commonly used to remove trends and make time series stationary.

In traditional differencing, the data sequence is differenced by a whole
number, typically 1, which involves subtracting the previous value from the
current value. This helps eliminate trends and makes the series stationary.
However, in some cases, the series may exhibit long-term dependencies or
memory effects that are not effectively captured by traditional differencing.
These dependencies may help in forecasting the time series, and if they are
completely eliminated, that may hinder the ability of the algorithm to perform
well. These dependencies are referred to as memory.



Fractional differentiation addresses this limitation by allowing the
differencing parameter to be a fractional value. The fractional differencing
operator effectively applies a weighted sum of lagged values to each
observation in the series, with the weights determined by the fractional
differencing parameter. This allows for capturing long-term dependencies or
memory effects in the series. Fractional differentiation is particularly useful
in financial time series analysis, where data often exhibits long memory or
persistent behavior. This can be implemented in Python. First, pip install
the required library from the prompt:

pip install fracdiff

Next, import the required libraries:

from fracdiff.sklearn import Fracdiff

import pandas_datareader as pdr

import numpy as np

import matplotlib.pyplot as plt

Let’s use the classic example that de Prado uses in his book, the S&P 500, to
prove that fractional differentiation transforms a nonstationary time series
into a stationary one with visible preserved memory.

The following code applies fractional differentiation and compares it to
traditional differencing:

# Set the start and end dates for the data

start_date = '1990-01-01'

end_date   = '2023-06-01'

# Fetch S&P 500 price data

data = np.array((pdr.get_data_fred('SP500', start = start_date,  

                                   end = end_date)).dropna())

# Calculate the fractional differentiation

window = 100

f = Fracdiff(0.48, mode = 'valid', window = window)

frac_data = f.fit_transform(data)

# Calculate a simple differencing function for comparison

diff_data = np.reshape(np.diff(data[:, 0]), (–1, 1))

# Harmonizing time indices



data = data[window – 1:, ]

diff_data = diff_data[window – 2:, ]

Figure 9-1 shows the three types of transformations. You can notice the
trending nature in the top panel with the nontransformed S&P 500 data. You
can also notice that in the middle panel, this trend is less visible but still
there. This is what fractional differentiation aims to do. By keeping a hint of
the market’s memory while rendering it stationary, this technique can help
improve some forecasting algorithms. The bottom panel shows normal
differencing of the price data.

Figure 9-1. Fractional differentiation on S&P 500 (order = 0.48)

Figure 9-1 was generated using this code:

fig, axes = plt.subplots(nrows = 3, ncols = 1)

axes[0].plot(data[5:,], label = 'S&P 500', color = 'blue', linewidth = 1)

axes[1].plot(frac_data[5:,], label =  

             'Fractionally Differentiated S&P 500 (0.48)',  

             color = 'orange', linewidth = 1)

axes[2].plot(diff_data[5:,], label =  

             'Differenced S&P 500', color = 'green', linewidth = 1)



axes[0].legend()

axes[1].legend()

axes[2].legend()

axes[0].grid()

axes[1].grid()

axes[2].grid()    

axes[1].axhline(y = 0, color = 'black', linestyle = 'dashed')  

axes[2].axhline(y = 0, color = 'black', linestyle = 'dashed')   

Let’s make sure that the fractionally differentiated data is indeed stationary
by applying the augmented Dickey—Fuller (ADF) test (you used this test in
Chapter 3):

from statsmodels.tsa.stattools import adfuller

print('p-value: %f' % adfuller(data)[1])

print('p-value: %f' % adfuller(frac_data)[1])

print('p-value: %f' % adfuller(diff_data)[1])

The output of the previous code block is as follows (assuming a 5%
significance level):

# The original S&P 500 dataset is nonstationary

p-value: 0.842099  

# The fractionally differentiated S&P 500 dataset is stationary

p-value: 0.038829

# The normally differenced S&P 500 dataset is stationary

p-value: 0.000000

As the results show, the data is indeed stationary. Let’s look at another
example. The following code imports the daily values of the EURUSD:

data = np.array((pdr.get_data_fred('DEXUSEU', start = start_date,  

                                   end = end_date)).dropna())

Figure 9-2 compares the EURUSD with fractional differentiation (0.20)
applied onto it, with the regular differencing shown in the bottom panel.



Figure 9-2. Fractional differentiation on the EURUSD (order = 0.20)

The results of the ADF test are as follows:

# The original EURUSD dataset is nonstationary

p-value: 0.397494

# The fractionally differentiated EURUSD  dataset is stationary

p-value: 0.043214

# The normally differenced EURUSD  dataset is stationary

p-value: 0.000000 

As a comparison, Figure 9-3 compares the same dataset with fractional
differentiation (0.30) applied onto it, with the regular differencing shown in
the bottom panel.



Figure 9-3. Fractional differentiation on EURUSD (order = 0.30)

NOTE
Approaching an order of 1.00 intuitively makes the fractional differentiation approach a
normal integer differencing. Similarly, approaching an order of 0.00 makes the fractional
differentiation approach the untransformed data series.

Figure 9-3 shows a more stationary EURUSD series in the middle panel than
Figure 9-2 does, and this is because the order of fractional differentiation is
increased. This is why the ADF test result for the fractional differentiation of
order = 0.30 is 0.002, which is much lower than the ADF test result when
order = 0.20 (which is at 0.043).

In summary, fractional differentiation is a valuable tool for time series
prediction as it captures long-term dependencies, handles nonstationarity,
adapts to various dynamics, and preserves integral properties. Its ability to
capture complex patterns and improve forecasting accuracy makes it a good
fit for modeling and predicting a wide range of real-world time series data.



Forecasting Threshold
The forecasting threshold is the minimum required percentage prediction to
validate a signal. This means that the forecasting threshold technique is a
filter that removes low conviction predictions.

Objectively, low conviction predictions are below a certain percentage. A
hypothetical example is shown in Table 9-1. The threshold is ±1%.

Table 9-1. Table of forecasts

Time Forecast Status

1 0.09% Dismissed

2 –0.60% Dismissed

3 –1.50% Taken

4 1.00% Taken

5 2.33% Taken

At time 1, the trading signal is bullish, with an expectation of a 0.09% rise in
the hypothetical financial instrument. As this prediction is below the
threshold of 1.00%, the trade is not taken. At time 2, the same intuition is
applied, as the bearish signal is below the threshold.

The rest of the signals are taken since they are equal to or greater than the
threshold (in terms of magnitude). The aim of this section is to develop a
multilayer perceptron (MLP) model and keep only the predictions that
respect a certain threshold.

As usual, start by importing the required libraries:

import numpy as np

import matplotlib.pyplot as plt

from keras.models import Sequential



from keras.layers import Dense

from master_function import data_preprocessing, mass_import

from master_function import plot_train_test_values, forecasting_threshold

Next, set the hyperparameters and import the data using mass_import():

num_lags = 500

train_test_split = 0.80  

num_neurons_in_hidden_layers = 256  

num_epochs = 100  

batch_size = 10

threshold = 0.0015

Import and preprocess the data, then design the MLP architecture:

# Fetching the historical price data

data = np.diff(mass_import(0, 'D1')[:, 3])

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data, num_lags,  

                                                      train_test_split)

# Designing the architecture of the model

model = Sequential()

# First hidden layer

model.add(Dense(num_neurons_in_hidden_layers, input_dim = num_lags,  

                activation = 'relu'))   

# Second hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))

# Output layer

model.add(Dense(1))

# Compiling

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

The next step is to fit and predict the data and retain the predictions that
satisfy the threshold you have defined in the hyperparameters. This is done
using the function forecasting_threshold():

# Fitting

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Predicting

y_predicted = model.predict(x_test)

# Threshold function

y_predicted = forecasting_threshold(y_predicted, threshold)



# Plotting

plot_train_test_values(100, 50, y_train, y_test, y_predicted)

Figure 9-4 shows the comparison chart between the real values and the
predicted values. Flat observations on the predictions indicate the absence of
signals that are lower than the required threshold—in this case, 0.0015.

Figure 9-4. Predicting with the forecasting threshold

The threshold can be found in many ways, notably:

The fixed numerical technique

As you saw in the previous example, this technique assumes
a fixed arbitrary number to be used as a threshold.

The volatility-based technique

With this technique, you use a volatility indicator such as a
rolling standard deviation of prices to set a variable
threshold at each time step. This technique has the benefit of
using up-to-date volatility information.



The statistical technique

With this technique, you look at the real values from the
training set (not the test set) and select a certain quantile
(e.g., the 75% quantile) as a minimum threshold to validate
the signals.

To summarize, using the forecasting threshold may help select the trades with
the highest conviction and can also help minimize transaction costs since the
algorithms assume trading all the time, which is not recommended. This
assumes adding a new state to the algorithm, which gives a total of three:

Bullish signal

The algorithm predicts a higher value.

Bearish signal

The algorithm predicts a lower value.

Neutral signal

The algorithm does not have any directional conviction.

Continuous Retraining
Retraining refers to the act of training the algorithm every time new data
comes in. This means that when dealing with a daily time series, the
retraining is done every day while incorporating the latest daily inputs.

The continuous retraining technique deserves to be tested, and that is the aim
of this section. The architecture of the algorithm will follow this framework:

1. Train the data on the training test.

2. For each prediction made, rerun the algorithm and include the new real
inputs in the training set.



NOTE
One big limitation of the continuous retraining technique is the speed of the algorithm, as it
has to retrain at every time step. If you have 1,000 instances of test data where every
training requires a few minutes, then the backtesting process becomes drastically slow.
This is especially an issue with deep learning algorithms such as LSTM, which may take a
long time to train.

The main reason for applying continuous retraining is because of concept
drift, which is the change in the data’s inner dynamics and structures that may
invalidate the function found in the training phase. Basically, financial time
series do not exhibit static relationships; rather, they change over time.
Therefore, continuous retraining aims to update the models by always using
the latest data to train.

NOTE
Continuous retraining does not need to be done at every time step. You can set n periods
for the retraining. For example, if you select 10, then the model retrains after each group
of 10 new values.

To simplify things, this section shows the code for the continuous retraining
(every day) using a linear regression model on the weekly EURUSD values
at every time step. You can do the same thing with other models; you just
have to change the lines of code where the model is imported and designed.
First, import the required libraries:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.linear_model import LinearRegression

from master_function import data_preprocessing, mass_import

from master_function import plot_train_test_values,  

from master_function import calculate_accuracy, model_bias

from sklearn.metrics import mean_squared_error

Import the data and set the hyperparameters of the algorithm:



# Importing the time series

data = np.diff(mass_import(0, 'D1')[:, 3])

# Setting the hyperparameters

num_lags = 15

train_test_split = 0.80  

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data, num_lags,  

                                                      train_test_split)

# Fitting the model

model = LinearRegression()

model.fit(x_train, y_train)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

Create the continuous retraining loop as follows:

# Store the new forecasts

y_predicted = []

# Reshape x_test to forecast one period

latest_values = np.transpose(np.reshape(x_test[0], (–1, 1)))

# Isolate the real values for comparison

y_test_store = y_test

y_train_store = y_train

for i in range(len(y_test)): 

    try:  

        # Predict over the first x_test data 

        predicted_value = model.predict(latest_values) 

        # Store the prediction in an array 

        y_predicted = np.append(y_predicted, predicted_value) 

        # Add the first test values to the last training values 

        x_train = np.concatenate((x_train, latest_values), axis = 0) 

        y_train = np.append(y_train, y_test[0]) 

        # Remove the first test values from the test arrays 

        y_test = y_test[1:] 

        x_test = x_test[1:, ] 

        # Retrain 

        model.fit(x_train, y_train) 

        # Select the first values of the test set 

        latest_values = np.transpose(np.reshape(x_test[0], (–1, 1))) 

    except IndexError: 

        pass

Plot the predicted values:



plot_train_test_values(100, 50, y_train, y_test_store, y_predicted)

Figure 9-5 shows the result.

As a simple comparison, the same backtest was done on the model with no
retraining. The latter got a 48.55% test set accuracy compared to the 48.92%
test set accuracy for the same model with retraining.

Continuous retraining is not a guarantee for better results, but it makes sense
to update the model every once in a while due to changing market dynamics.
The frequency at which you should update the model may be subjective.

Figure 9-5. Predicting using the continuous retraining technique

Time Series Cross Validation
Cross validation is a technique used in machine learning to assess the
performance of a model. It involves splitting the available data into subsets
for training and evaluation. In the case of time series data, where the order of
observations is important (due to the sequential nature of the data), a



traditional k-fold cross validation approach may not be suitable. Instead,
time series cross validation techniques are used, such as the rolling window
and expanding window methods.

NOTE
In traditional k-fold cross validation, the data is randomly split into k equally sized folds.
Each fold is used as a validation set, while the remaining k – 1 folds are combined for
training the model. The process is repeated k times, with each fold serving as the
validation set once. Finally, the performance metrics are averaged across the k iterations
to assess the model’s performance.

Unlike traditional k-fold cross validation, time series cross validation
methods respect the temporal order of data points. Two commonly used
techniques for time series cross validation are the rolling window and
expanding window methods.

In rolling window cross validation, a fixed-size training window is moved
iteratively over the time series data. At each step, the model is trained on the
observations within the window and evaluated on the subsequent window.
This process is repeated until the end of the data is reached. The window
size can be defined based on a specific time duration or a fixed number of
observations. Figure 9-6 shows an illustration of rolling window cross
validation.



Figure 9-6. Rolling window cross validation

In expanding window cross validation, the training set starts with a small
initial window and expands over time, incorporating additional data points at
each step. The model is trained on the available data up to a specific point
and evaluated on the subsequent time period. Similar to the rolling window
approach, this process is repeated until the end of the data is reached.
Figure 9-7 shows an illustration of expanding window cross validation.

Figure 9-7. Expanding window cross validation

During each iteration of time series cross validation, the model’s
performance is measured using appropriate evaluation metrics. The



performance results obtained from each iteration can be aggregated and
summarized to assess the model’s overall performance on the time series
data.

Multiperiod Forecasting
Multiperiod forecasting (MPF) is a technique that aims to forecast more than
just the next period. It aims to generate a path with n periods as defined by
the user. There are two ways to approach MPF:

Recursive model

The recursive model uses the prediction as an input for the
next prediction. As you may have already guessed, the
recursive model may quickly get off track due to the
exponentially rising error term from predicting while using
predictions as inputs.

Direct model

The direct model trains the model from the beginning into
outputting multiple forecasts in their respective time
periods. This model is likely to be more robust than the
recursive model.

Let’s start with the recursive model. Mathematically speaking, its most basic
form can be represented as follows:
Predictioni = fx (Predictioni−1,...,Predictioni−n)

This section will use weather data and an economic indicator to apply the
deep learning algorithm.

The first step in predictive analysis is to get to know the data, so let’s see
what the algorithm will aim to forecast. The first time series is the average
daily temperature in Basel, Switzerland, since 2005. Figure 9-8 shows the
time series.



The second time series is the Institute for Supply Management’s Purchasing
Managers’ Index (ISM PMI), a widely recognized economic indicator in the
United States that provides insight into the health of the manufacturing sector
and the overall economy. The index is based on a monthly survey of
purchasing managers from various industries, including manufacturing, and
assesses key factors such as new orders, production, employment, supplier
deliveries, and inventories.

Figure 9-8. A sample from the dataset showing the seasonal nature of temperature

The index is reported as a percentage, with a value above 50 indicating
expansion in the manufacturing sector and a value below 50 suggesting
contraction. A higher PMI typically indicates positive economic growth,
while a lower PMI may signal economic slowdown or recessionary
conditions. The ISM PMI is closely monitored by policymakers, investors,
and businesses as it can offer valuable insights into economic trends and
potential shifts in the business cycle. Figure 9-9 shows the ISM PMI
historical observations.



The aim of the forecast is to test the algorithm’s ability to push through the
noise and model the original mean-reverting nature of the ISM PMI. Let’s
start with the recursive model.

The framework for the recursive model is as follows:

1. Train the data on the training set using the usual 80/20 split.

2. Forecast the first observation using the inputs needed from the test set.

3. Forecast the second observation using the last prediction in step 2 and
the required data from the test set while dropping the first observation.

4. Repeat step 3 until reaching the desired number of predictions. At some
point, a prediction is made by solely looking at previous predictions.

Figure 9-9. A sample from the imported dataset showing the mean-reverting nature of the ISM
PMI



NOTE
Up until now, you have been evaluating accuracy using ca lc ul ate_ ac cur acy(), which
works when you are predicting positive or negative values (such as EURUSD price
changes). When dealing with multiperiod forecasting of values that do not hover around
zero, it is better to calculate the directional accuracy, which is basically the same
calculation but does not hover around zero. For this, the function
calculate_directional_accuracy() is used. Remember that the functions can be
found in master_function.py in the book’s GitHub repository.

Let’s start with the average temperature in Basel. Import the dataset using the
following code (make sure you download the historical observations data
from the GitHub repository):

from keras.models import Sequential

from keras.layers import Dense

import keras

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from master_function import data_preprocessing, plot_train_test_values,  

from master_function import recursive_mpf

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

Next, preprocess the data:

# Importing the data

data = 

np.reshape(np.array(pd.read_excel('Temperature_Basel.xlsx').dropna() 

                  ), (–1))

# Setting the hyperparameters

num_lags = 500

train_test_split = 0.8

num_neurons_in_hidden_layers = 100

num_epochs = 200

batch_size = 12

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data, num_lags,  

                                                      train_test_split)

https://oreil.ly/5YGHI
https://oreil.ly/5YGHI


Design the architecture of the MLP with multiple hidden layers. Then, fit and
predict on a recursive basis:

# Designing the architecture of the model

model = Sequential()

# First hidden layer

model.add(Dense(num_neurons_in_hidden_layers, input_dim = num_lags,  

          activation = 'relu'))   

# Second hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))   

# Third hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))   

# Fourth hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))  

# Output layer

model.add(Dense(1))

# Compiling

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting the model

model.fit(x_train, np.reshape(y_train, (–1, 1)), epochs = num_epochs,  

          batch_size = batch_size)

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting in the test set on a recursive basis

x_test, y_predicted = recursive_mpf(x_test, y_test, num_lags,  

                                    model, architecture = 'MLP')

The recursive_mpf() function takes the following arguments:

The test set features that will continuously be updated. They are
represented by the variable x_test.

The test set dependent variables. They are represented by the variable
y_test.

The number of lags. This variable is represented by num_lags.

The fitted model as defined by the variable model.

The type of architecture as represented by the argument architecture.
It can either be MLP for two-dimensional arrays or LSTM for three-
dimensional arrays.



Figure 9-10 shows the predictions versus the real values (the dashed time
series after the cutoff line). Notice how the deep neural network re-creates
the seasonal characteristics of the time series (albeit with some
imperfections) and projects it well into the future with no required
knowledge along the way.

Figure 9-10. Multiperiod forecasts versus real values

NOTE
Many machine and deep learning algorithms are able to model this relationship well. This
example used MLPs, but this does not undermine other models, even simple ones such as
linear regression. A good task for you would be to try applying the same example using a
model of your choice (such as LSTM) and comparing the results. If you are using an
LSTM model, make sure you set architecture = 'LSTM'.

Now apply the same process on the second time series. You only need to
change the name of the imported file and the hyperparameters (as you see fit):



data = np.reshape(np.array(pd.read_excel('ISM_PMI.xlsx').dropna()), (–1))

Figure 9-11 shows the predictions (dashed line) versus the real values.

Figure 9-11. Forecasting multiple periods ahead; predicted data in thin solid line and test data in
dashed line

The trained model is not too complex so as to avoid overfitting. However, it
does manage to time turning points quite well during the first projections.
Naturally, over time, this ability slowly fades away. Tweaking the
hyperparameters is the key to achieving good directional accuracy. Start with
the following hyperparameters:

num_lags = 200

train_test_split = 0.8

num_neurons_in_hidden_layers = 500

num_epochs = 400

batch_size = 100

The second MPF technique trains the model from the beginning into
outputting multiple forecasts in their respective time periods.



Mathematically, it can be represented as follows:

The framework for the recursive model is as follows:

1. Create a function that relates the desired number of inputs to the desired
number of outputs. This means that the last layer of the neural network
will contain a number of outputs equal to the number of forecasting
periods you want to project into the future.

2. Train the model to predict multiple outputs at every time step based on
the inputs from the same time step.

Let’s continue with the ISM PMI. As usual, import the required libraries:

from keras.models import Sequential

from keras.layers import Dense

import keras

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from master_function import direct_mpf

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

Import and preprocess the data while setting the hyperparameters:

# Importing the data

data = np.reshape(np.array(pd.read_excel('ISM_PMI.xlsx').dropna()), (–1))

# Setting the hyperparameters

num_lags = 10

train_test_split = 0.80

num_neurons_in_hidden_layers = 200

num_epochs = 200

batch_size = 10

forecast_horizon = 18 # This means eighteen months

x_train, y_train, x_test, y_test = direct_mpf(data, num_lags,  

                                              train_test_split,  

                                              forecast_horizon)

Predictioni = fx (real inputi−1,..., inputi−n)

Predictioni+1 = fx (real inputi−1,..., inputi−n)

Predictioni+2 = fx (real inputi−1,..., inputi−n)



The direct_mpf() function takes the following arguments:

The dataset represented by the variable data

The number of lags represented by the variable num_lags

The split represented by the variable train_test_split

The number of observations to project represented by the variable
forecast_horizon

Prepare the arrays, design the architecture, and predict the data for a horizon
of 18 months (since the ISM PMI is a monthly indicator):

# Designing the architecture of the model

model = Sequential()

# First hidden layer

model.add(Dense(num_neurons_in_hidden_layers, input_dim = num_lags,  

                activation = 'relu'))   

# Second hidden layer

model.add(Dense(num_neurons_in_hidden_layers, activation = 'relu'))   

# Output layer

model.add(Dense(forecast_horizon))

# Compiling

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting (training) the model

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Make predictions

y_predicted = model.predict(x_test)

# Plotting

plt.plot(y_predicted[–1], label = 'Predicted data', color = 'red',  

         linewidth = 1)

plt.plot(y_test[–1], label = 'Test data', color = 'black',  

         linestyle = 'dashed', linewidth = 2)

plt.grid()

plt.legend()

Figure 9-12 shows the predicted data and the test data at this point.



Figure 9-12. Multiperiod forecasts of model versus real values, with some optimization

The interpretation of the model at the time of the forecast was for a
consecutive drop in the ISM PMI for 18 months. The model seems to have
done a good job at predicting this direction. Note that you may get different
results due to the random initialization of the algorithm, which may impact its
convergence to a minimum loss function. You can use random_state to get
the same results every time (you saw this in Chapter 7).

NOTE
The ISM PMI has a positive correlation with the US gross domestic product (GDP) and a
slight positive correlation with the S&P 500. To be more precise, bottoms in the ISM PMI
have coincided with bottoms in the equity markets.

Out of curiosity, let’s try running the model on very simple and basic
hyperparameters:



num_lags = 1

train_test_split = 0.80

num_neurons_in_hidden_layers = 2

num_epochs = 10

batch_size = 1

forecast_horizon = 18

Obviously, with one lag, the model will only take into account the previous
value to learn how to predict the future. The hidden layers will only contain
two neurons each and will run for only 10 epochs using a batch size of 1.
Naturally, you would not expect satisfying results by using these
hyperparameters. Figure 9-13 compares the predicted values to the real
values. Notice the huge discrepancy as the model does not pick on the
magnitude or the direction.

Figure 9-13. Multiperiod forecasts of the model versus real values, using basic hyperparameters

This is why hyperparameter optimization is important and a certain degree of
complexity is needed. After all, these time series are not simple and carry a
significant amount of noise in them.



Finally, let’s have a look at the results of running the following
hyperparameters on Basel’s temperature data, as you saw at the beginning of
this section:

num_lags = 500

train_test_split = 0.80

num_neurons_in_hidden_layers = 128

num_epochs = 50

batch_size = 12

forecast_horizon = 500

Figure 9-14 compares the predicted values to the real values using the
temperature time series. The number of predicted observations is 500.

Figure 9-14. Multiperiod forecasts of the model versus real values, using the temperature time
series

Which prediction technique to use depends on your preferences and needs. It
is worth mentioning an additional MPF technique referred to as the
multioutput model, which is a one-shot forecast of a number of values. This
means that the model is trained over the training set with the aim of



producing an instant predefined number of outputs (predictions). Obviously,
this model may be computationally expensive and would require a sizable
amount of data.

Applying Regularization to MLPs
Chapter 8 discussed two regularization concepts regarding deep learning:

Dropout as a regularization technique that randomly deactivates neurons
during training to prevent overfitting

Early stopping as a method to prevent overfitting by monitoring the
model’s performance and stopping training when performance starts to
degrade

Another regularization technique worth discussing is batch normalization, a
technique used in deep learning to improve the training and generalization of
neural networks. It normalizes the inputs of each layer within a mini batch
during training, which helps in stabilizing and accelerating the learning
process.

The main idea behind batch normalization is to ensure that the inputs to a
layer have zero mean and unit variance. This normalization is applied
independently to each feature (or neuron) within the layer. The process can
be summarized in the following steps:

1. For each feature in a mini batch, calculate the mean and variance across
all the samples in the batch.

2. Subtract the mean and divide by the standard deviation (the square root
of the variance) for each feature.

3. After normalization, the features are scaled and shifted by learnable
parameters. These parameters allow the model to learn the optimal
scale and shift for each normalized feature.



This section presents a simple forecasting task using LSTMs with the
addition of the three regularization techniques. The time series is the S&P
500’s 20-day rolling autocorrelation data. Import the required libraries:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from keras.models import Sequential

from keras.layers import LSTM, Dense, Dropout, BatchNormalization

from tensorflow.keras.callbacks import EarlyStopping

import pandas_datareader as pdr

from master_function import data_preprocessing, plot_train_test_values

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

Import and preprocess the data:

# Set the start and end dates for the data

start_date = '1990-01-01'

end_date   = '2023-06-01'

# Fetch S&P 500 price data

data = np.array((pdr.get_data_fred('SP500', start = start_date,  

                                   end = end_date)).dropna())

Calculate the 20-day autocorrelation of the close prices:

rolling_autocorr = pd.DataFrame(data).rolling(window =  

                                              20).apply(lambda x:  

                                              x.autocorr(lag=1)).dropna()

rolling_autocorr = np.reshape(np.array(rolling_autocorr), (–1))



NOTE
In Python, a lambda function, also known as an anonymous function, is a small, unnamed
function that can have any number of arguments but can only have one expression. These
functions are often used for creating simple, inline functions without needing to define a full
function using the def keyword. Here’s a simple example to illustrate how lambda works:

# Create an anonymous function to divide two variables

divide = lambda x, y: x / y

# Call the function

result = divide(10, 2)

The output will be the float 5.0 stored in result.

The apply() function is a method that is available in pandas. It is primarily used to apply
a given function along an axis of a dataframe.

Before continuing, try plotting the S&P 500 price data versus its 20-day
autocorrelation that you just calculated. Use this code to generate Figure 9-
15:

fig, axes = plt.subplots(nrows = 2, ncols = 1)

axes[0].plot(data[-350:,], label = 'S&P 500', linewidth = 1.5)

axes[1].plot(rolling_autocorr[-350:,], label = '20-Day Autocorrelation',  

             color = 'orange', linewidth = 1.5)

axes[0].legend()

axes[1].legend()

axes[0].grid()

axes[1].grid()

axes[1].axhline(y = 0.95, color = 'black', linestyle = 'dashed')



Figure 9-15. The S&P 500 versus its 20-day price autocorrelation (lag = 1)

What you should retain from the chart and from the intuition of
autocorrelation is that whenever autocorrelation approaches 1.00, the current
trend may break, thus leading to a market correction. This is not a perfect
assumption, but you can follow these basic rules to interpret the rolling
autocorrelation observations:

A trending market (bullish or bearish) will have its autocorrelation
approach 1.00 sooner or later. When this happens, it may signal a pause
in the underlying trend, or in rarer occasions, a full reversal.

A sideways (ranging) market will have a low autocorrelation. If the
autocorrelation approaches historical lows, then it may mean that the
market is ready to trend.

Let’s now continue building the algorithm. The next step is to set the
hyperparameters and prepare the arrays:

num_lags = 500  

train_test_split = 0.80  



num_neurons_in_hidden_layers = 128  

num_epochs = 100  

batch_size = 20

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(rolling_autocorr,  

                                                      num_lags,  

                                                      train_test_split)

Transform the input arrays into three-dimensional structures so that they are
processed into the LSTM architecture with no issues:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Design the LSTM architecture and add the dropout layer and batch
normalization. Add the early stopping implementation while setting
restore_best_weights to True so as to keep the best parameters for the
prediction over the test data:

# Create the LSTM model

model = Sequential()

model.add(LSTM(units = num_neurons_in_hidden_layers, input_shape =  

               (num_lags, 1)))

# Adding batch normalization and a dropout of 10%

model.add(BatchNormalization())

model.add(Dropout(0.1))  

# Adding the output layer

model.add(Dense(units = 1))

# Compile the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Early stopping implementation

early_stopping = EarlyStopping(monitor = 'loss', patience = 15,  

 restore_best_weights = True)

# Train the model

model.fit(x_train, y_train, epochs = num_epochs,  

          batch_size = batch_size, callbacks = [early_stopping])

Predict and plot the results:

# Predicting in-sample

y_predicted_train = np.reshape(model.predict(x_train), (–1, 1))

# Predicting out-of-sample



y_predicted = np.reshape(model.predict(x_test), (–1, 1))

# Plotting

plot_train_test_values(300, 50, y_train, y_test, y_predicted)

Figure 9-16 shows the predictions versus the real values. The model has
stopped the training before reaching 100 epochs due to the callback from the
early stopping mechanism.

Figure 9-16. Predicting correlation

The results are as follows:

Accuracy Train =  70.37 %

Accuracy Test =  68.12 %

RMSE Train =  0.0658945761

RMSE Test =  0.0585669847

Correlation In-Sample Predicted/Train =  0.945

Correlation Out-of-Sample Predicted/Test =  0.936

It’s important to note that using indicators such as rolling autocorrelation
should be done with caution. They provide insights into historical patterns,
but they don’t guarantee future performance. Additionally, the effectiveness



of rolling autocorrelation as a technical indicator depends on the nature of
the data and the context in which it’s being used. You can try applying the
MPF method on the autocorrelation data.

Other regularization techniques that exist include the following:

L1 and L2 regularization

Also known as weight decay, L1 and L2 regularization add a
penalty term to the loss function based on the magnitude of
the weights. L1 regularization adds the absolute values of the
weights to the loss, which encourages sparsity in the model.
L2 regularization adds the squared values of the weights,
which discourages large weight values and tends to
distribute the influence of features more evenly.

DropConnect

This technique is similar to dropout but is applied to
connections rather than neurons. This technique randomly
drops connections between layers during training.

Weight constraints

Limiting the magnitude of weight values can prevent the
model from learning complex patterns from noise and helps
regularize the model.

Adversarial training

Training the model using adversarial examples can improve
its robustness by making it more resistant to small
perturbations in the input data.

Using these regularization techniques doesn’t guarantee a better result than
using the model without them. However, deep learning best practices
encourage such techniques to avoid more serious problems like overfitting.



NOTE
When manually uploading an Excel file (using pandas, for example) that contains historical
data, make sure that it has a shape of (n, ) and not a shape of (n, 1). This ensures
that when you use the data_preprocessing() function, the four training/test arrays
will be created with the proper dimensions.

To transform an (n, 1) array to (n, ), use the following syntax:

data = np.reshape(data, (–1))

To transform an (n, ) array to (n, 1), use the following syntax:

data = np.reshape(data, (–1, 1))

Summary
This chapter presented a few techniques that may improve the different
machine and deep learning algorithms. I like to refer to such techniques as
satellites since they hover around the main component, that is, neural
networks. Optimizations and enhancements are crucial to the success of the
analysis. For example, some markets may benefit from the forecasting
threshold technique and fractional differentiation. Trial and error is key to
understanding your data, and as you begin Chapter 10 and learn about
reinforcement learning, you will see that trial and error is not just a human
task. It can also be a computer task.



Chapter 10. Deep Reinforcement
Learning for Time Series
Prediction

Reinforcement learning is a branch of machine learning that deals with
sequential decision-making problems. Algorithms in this branch learn to
make optimal decisions by interacting with an environment and receiving
feedback in the form of rewards. In the context of time series forecasting, it
can be used to develop models that make sequential predictions based on
historical data. Traditional forecasting approaches often rely on statistical
methods or supervised learning techniques, which assume independence
between data points. However, time series data exhibits temporal
dependencies and patterns, which may be effectively captured using
reinforcement learning.

Reinforcement learning models for time series forecasting typically involve
an agent that takes actions based on observed states and receives rewards
based on the accuracy of its predictions. The agent learns through trial and
error to maximize cumulative rewards over time. The key challenge is
finding an optimal balance between exploration (trying out new actions) and
exploitation (using learned knowledge).

This chapter gives a basic overview of reinforcement learning and deep
reinforcement learning with regard to predicting time series data.

Intuition of Reinforcement Learning
Simplification is always the right path toward understanding more advanced
details. So let’s look at reinforcement learning from a simple point of view
before digging deeper.



Reinforcement learning deals primarily with rewards and penalties. Imagine
a child who gets a reward for doing good things and a punishment for doing
bad things. Over time, that child will grow and will develop their experience
so that they do good things and try to avoid doing bad things as much as
possible (no one is perfect). Therefore, the learning is done through
experience.

From a time series perspective, the main idea is the same. Imagine training a
model on past data and letting it then learn by experience, rewarding it for
good predictions and calibrating its parameters when it makes a mistake so
that it can achieve better accuracy next time. The algorithm is greedy in
nature and wants to maximize its rewards; therefore, over time it becomes
better at predicting the next likely value, which is of course dependent on the
quality and the signal-to-noise ratio of the analyzed time series.

The term reinforcement learning comes from the fact that positive
reinforcement is given to the algorithm when it makes right decisions and
negative reinforcement is given when it makes bad decisions. The first three
concepts you must know are states, actions, and rewards:

States

The features at every time step. For example, at a certain
time step, the current state of the market is its OHLC data
and its volume data. In more familiar words, states are the
explanatory variables.

Actions

The decisions a trader may make at every time step. They
generally involve buying, selling, or holding. In more
familiar words, actions are the algorithms’ decisions when
faced with certain states (a simple discretionary example of
this would be a trader noticing an overvalued market and
deciding to initiate a buy order).

Rewards



The results of correct actions. The simplest reward is the
positive return. Note that a poorly designed reward function
can lead to model issues such as a buy-and-hold strategy.1

Table 10-1 shows the three main elements of reinforcement learning.

States are the rows that go from the Time column to the Close column.
Actions can be categorical, as you can see from the Action column, and
Rewards can either be numerical (e.g., a positive or negative profit) or
categorical (e.g., profit or loss label).

From the preceding list, it seems complicated to just design a system that
looks for rewards. A reward function quantifies the desirability or utility of
being in a particular state or taking a specific action. The reward function
therefore provides feedback to the agent, indicating the immediate quality of
its actions and guiding its learning process. Before we discuss reward
functions in more detail, let’s look at what a state-action table is (also known
as a Q-table).

A Q-table, short for quality table, is a data structure to store and update the
expected value (called the Q-value) of taking a particular action in a given
state. The Q-value of a state-action pair (s, a) at time t represents the
expected cumulative reward that an agent can achieve by taking action a in

Table 10-1. A hypothetical decision table

 Time Open High Low

States   1 10 14 8

States   2 10 15 6

States   3 13 16 8

States   4 10 16 8



state s following a specific policy. The Q-table is therefore a table-like
structure that maps each state-action pair to its corresponding Q-value.

Initially, the Q-table is usually initialized with arbitrary values or set to zero.
As the algorithm explores the environment (market) and receives rewards, it
updates the Q-values in the table based on the observed rewards and the
estimated future rewards. This process is typically done using an algorithm
such as Q-learning.

NOTE
Over time, through repeated exploration and exploitation, the Q-table gradually converges
to more accurate estimates of the optimal Q-values, representing the best actions to take in
each state. By using the Q-table, the agent can make informed decisions and learn to
maximize its cumulative rewards in the given environment. Remember, a reward can be a
profit, Sharpe ratio, or any other performance metric.

Q-learning is a popular reinforcement learning algorithm that enables an
agent to learn optimal actions by iteratively updating its action-value
function, known as the Bellman equation, defined as follows:
Q (st, at) = R (st, at) + γmax [Q (st+1, at+1)]

The larger the learning rate (γ), the more the algorithm takes into account the
previous experiences. Notice that if γ is equal to zero, it would be
synonymous to learning nothing as the second term will cancel itself out. As a
simple example, consider Table 10-2.

Q(st, at) is the expected reward

R(st, at) is the reward table

γ is the learning rate (known as gamma)



Table 10-2. R-table

Time (State) Act (Action) Wait (Action)

       1 2 reward units 0 reward units

       2 2 reward units 0 reward units

       3 2 reward units 0 reward units

       4 2 reward units 0 reward units

       5 2 reward units 4 reward units

The table describes the results of actions through time. At every time step,
acting (doing something) will give a reward of 2, while waiting to act on the
fifth time step will give a reward of 4. This means that the agent can make
one of the following choices:

Act now and get 2 reward units.

Wait before acting and get 4 reward units.

Let’s assume γ = 0.80. Using the Bellman equation and working backward
will get you the following results:

Table 10-2 may be updated to become Table 10-3 as follows.

Q (s1, a1) = 0 + 0.8 (2.04) = 1.63

Q (s2, a2) = 0 + 0.8 (2.56) = 2.04

Q (s3, a3) = 0 + 0.8 (3.20) = 2.56

Q (s4, a4) = 0 + 0.8 (4.00) = 3.20



Table 10-3. Q-table

Time (State) Act (Action) Wait (Action)

      1 2 reward units 1.63 reward units

      2 2 reward units 2.04 reward units

      3 2 reward units 2.56 reward units

      4 2 reward units 3.20 reward units

      5 2 reward units 4.00 reward units

Therefore, the Q-table is continuously updated with the implied rewards to
help maximize the final reward. To understand why the term max is in the
Bellman equation, consider the example in Table 10-4.

Table 10-4. R-table

Time (State) Buy Sell Hold

      1  5  8  8

      2  3  2  1

      3  2  5  6

Calculate the would-be value of x in a Q-table (Table 10-5) assuming a
learning rate of 0.4.



Table 10-5. Q-table

Time (State) Buy Sell Hold

     1  ?   ?  ?

     2  ?  x  ?

     3  2  5  6

Following the formula, you should get this result:
x = 2 + 0.4(max(2, 5, 6)) = 4.4

States (features) must be predictive in nature so that the reinforcement
learning algorithm predicts the next value with an accuracy better than
random. Examples of features can be the values of the relative strength index
(RSI), moving averages, and lagged close prices.

It is crucial to keep in mind that the inputs’ statistical preference remains the
same, that is, stationary. This begs the question: how are moving averages
used as inputs if they are not stationary? The simple answer is through the
usual transformation, which is to take the percentage difference.

NOTE
It is possible to use fractional differencing to transform a nonstationary time series into a
stationary one while retaining its memory.

A policy defines the behavior of an agent in an environment. It is a mapping
from states to actions, indicating what action the agent should take in a given
state. The policy essentially guides the agent’s decision-making process by
specifying the action to be executed based on the observed state.

The goal of reinforcement learning is to find an optimal policy that
maximizes the agent’s long-term cumulative reward. This is typically



achieved through a trial-and-error process, where the agent interacts with the
environment, takes actions, receives rewards, and adjusts its policy based on
the observed outcomes.

The exploitation policy is generally faster than the exploration policy but
may be more limited as it seeks a greater and immediate reward, while there
may be a path afterward that leads to an even greater reward. Ideally, the
best policy to take is a combination of both. But how do you determine this
optimal mix? That question is answered by epsilon (ε).

Epsilon is a parameter used in exploration–exploitation trade-offs. It
determines the probability with which an agent selects a random action
(exploration) versus selecting the action with the highest estimated value
(exploitation).

Commonly used exploration strategies include epsilon-greedy and softmax.
In epsilon-greedy, the agent selects the action with the highest estimated
value with a probability of (1 – ε), and then it selects a random action with a
probability of ε. This allows the agent to explore different actions and
potentially discover better policies. As the agent learns over time, the
epsilon value is often decayed gradually to reduce exploration and focus
more on exploitation.2 Softmax action selection considers the estimated
action values but introduces stochasticity in the decision-making process.
The temperature parameter associated with softmax determines the
randomness in action selection, where a higher temperature leads to more
exploration.



WARNING
Do not mix up epsilon and gamma:

Gamma is a parameter that determines the importance of future rewards. It controls
the extent to which the agent values immediate rewards compared to delayed
rewards (hence, it is related to a delayed gratification issue). The value of gamma is
typically a number between 0 and 1, where a value closer to 1 means the agent
considers future rewards more heavily, while a value closer to 0 gives less
importance to future rewards. To understand this more, consider having another look
at the Bellman equation.

Epsilon is a parameter used in exploration–exploitation trade-offs. It determines the
probability with which an agent selects a random action (exploration) versus
selecting the action with the highest estimated value (exploitation).

At this point, you may feel overwhelmed by the amount of new information
presented, especially because it differs from what you have seen so far in the
book. Before moving to the more complex deep reinforcement learning
discussion, a quick summary of what you have seen in this chapter until now
may be beneficial. Reinforcement learning is essentially giving the machine a
task that it will then learn how to do on its own.

With time series analysis, states represent the current situation or condition
of the environment at a particular time. An example of state is a technical
indicator’s value. States are represented by Q-tables. Actions are self-
explanatory and can be buy, sell, or hold (or even a more complex
combination such as decrease weight and increase weight). Rewards are
what the algorithm is trying to maximize and can be profit per trade, Sharpe
ratio, or any sort of performance evaluation metric. A reward can also be a
penalty such as the number of trades or maximum drawdown (in such a case,
you are aiming to minimize it). The reinforcement learning algorithm will go
through many iterations and variables through different policies to try to
detect hidden patterns and optimize trading decision so that profitability is
maximized. This is easier said than done (or coded).

One question is begging an answer: is using a Q-table to represent the
different states of financial time series efficient? This question is answered



in the next section.

Deep Reinforcement Learning
Deep reinforcement learning combines reinforcement learning techniques
with deep learning architectures, particularly deep neural networks. It
involves training agents to learn optimal behavior and make decisions by
interacting with an environment, using deep neural networks to approximate
value functions or policies.

The main difference between a reinforcement learning algorithm and a deep
reinforcement learning algorithm is that the former estimates Q-values using
the Q-table, while the latter estimates Q-values using ANNs (see Chapter 8
for details on artificial neural networks).

NOTE
As a reminder, artificial neural networks (ANNs) are a type of computational model
inspired by the structure and functioning of the human brain. A neural network consists of
interconnected nodes organized into layers. The three main types of layers are the input
layer, hidden layers, and the output layer. The input layer receives the initial data, which is
then processed through the hidden layers, and finally, the output layer produces the
network’s prediction.

The main objective of this section is to understand and design a deep
reinforcement learning algorithm with the aim of data prediction. Keep in
mind that reinforcement learning is still not heavily applied since it suffers
from a few issues (discussed at the end of this section) that need to be
resolved before making it one of the main trading algorithms in quantitative
finance.

Therefore, deep reinforcement learning will have two main elements with
important tasks:

A deep neural network architecture to recognize patterns and
approximate the best function that relates dependent and independent



variables

A reinforcement learning architecture that allows the algorithm to learn
by trial and error how to maximize a certain profit function

Let’s continue defining a few key concepts before putting things together.
Replay memory, also known as experience replay, involves storing and
reusing past experiences to enhance the learning process and improve the
stability and efficiency of the training.

In deep reinforcement learning, an agent interacts with an environment,
observes states, takes actions, and receives rewards. Each observation,
action, reward, and resulting next state is considered an experience. The
replay memory serves as a buffer that stores a collection of these
experiences.

The replay memory has the following key features:

Storage

The replay memory is a data structure that can store a fixed
number of experiences. Each experience typically consists of
the current state, the action taken, the resulting reward, the
next state, and a flag indicating whether the episode
terminated.

Sampling

During the training process, instead of using experiences
immediately as they occur, the agent samples a batch of
experiences from the replay memory. Randomly sampling
experiences from a large pool of stored transitions helps in
decorrelating the data and breaking the temporal
dependencies that exist in consecutive experiences.

Batch learning

The sampled batch of experiences is then used to update the
agent’s neural network. By learning from a batch of



experiences rather than individual experiences, the agent
can make more efficient use of computation and improve
the learning stability. Batch learning also allows for the
application of optimization techniques, such as stochastic
gradient descent, to update the network weights.

The replay memory provides several benefits to deep reinforcement learning
algorithms. Among those benefits is experience reuse, as the agent can learn
from a more diverse set of data, reducing the bias that can arise from
sequential updates. Breaking correlations is another benefit since the
sequential nature of experience collection in reinforcement learning can
introduce correlations between consecutive experiences. Randomly sampling
experiences from the replay memory helps break these correlations, making
the learning process more stable.

So far, we have discussed the following steps:

1. Defining and initializing the environment

2. Designing the neural network architecture

3. Designing the reinforcement learning architecture with experience
replay to stabilize the learning process

4. Interacting with the environment and storing experiences until the
learning process is done and predictions on new data are done

One thing we have not discussed is how to reduce overestimations, which
can be achieved by doubling down on the neural network architecture.

The Double Deep Q-Network (DDQN) model is an extension of the original
DQN architecture introduced by DeepMind in 2015. The primary motivation
behind DDQN is to address a known issue in the DQN algorithm called
overestimation bias, which can lead to suboptimal action selection.

In the original DQN, the action values (Q-values) for each state-action pair
are estimated using a single neural network. However, during the learning
process, the Q-values are estimated using the maximum Q-value among all



possible actions in the next state (take a look at Table 10-5). This maximum
Q-value can sometimes result in an overestimation of the true action values,
leading to a suboptimal policy.

The DDQN addresses this overestimation bias by utilizing two separate
neural networks: the Q-network and the target-network. The Q-network is a
deep neural network that approximates the action-value function (Q-
function). In other words, it estimates the value of each possible action in a
given state. The Q-network’s parameters (weights and biases) are learned
through training to minimize the difference between predicted Q-values and
target Q-values. The target network is a separate copy of the Q-network that
is used to estimate the target Q-values during training. It helps stabilize the
learning process and improve the convergence of the Q-network. The
weights of the target network are not updated during training; instead, they
are periodically updated to match the weights of the Q-network.

The key idea behind the DDQN is to decouple the selection of actions from
the estimation of their values.

NOTE
The algorithm updates the Q-network regularly and the target network occasionally. This is
done to avoid the issue of the same model being used to estimate the Q-value from the
next state and then giving it to the Bellman equation to estimate the Q-value for the current
state.

So, to put these elements into an ordered sequence, here’s how the deep
reinforcement learning architecture may look:

1. The environment is initialized.

2. The epsilon value is selected. Remember, epsilon is the exploration–
exploitation trade-off parameter used to control the agent’s behavior
during training.

3. The current state is fetched. Remember, an example of the current state
may be the OHLC data, the RSI, the standard deviation of the returns, or



even the day of the week.

4. In the first round, the algorithm selects the action through exploration as
the model is not trained yet; therefore, the action is randomly selected
(e.g., from a choice panel of buy, sell, and hold). If it’s not the first step,
then exploitation may be used to select the action. Exploitation is where
the action is determined by the neural network model.

5. The action is applied.

6. The previous elements are stored in replay memory.

7. The inputs and the target array are fetched and the Q-network is trained.

8. If the round is not over, repeat the process starting at step 3. Otherwise,
train the target network and repeat from step 1.

To illustrate the algorithm, let’s use it on the synthetic sine wave time series.
Create the time series and then apply the deep reinforcement learning
algorithm with the aim of predicting the future values.

The full code can be found in the GitHub repository (for replication
purposes).

Figure 10-1 shows the test data (solid line) versus the predicted data (dashed
line) using 1 epoch, 5 inputs (lagged values), a batch size of 64, and 1 hidden
layer with 6 neurons.

https://oreil.ly/5YGHI


Figure 10-1. Test data versus predicted data using 1 epoch, 5 inputs, a batch size of 64, and 1
hidden layer with 6 neurons

Figure 10-2 shows the test data (solid line) versus the predicted data (dashed
line) using 1 epoch, 5 inputs (lagged values), a batch size of 64, and 2 hidden
layers with each having 6 neurons.



Figure 10-2. Predicted values versus actual values using 1 epoch, 5 inputs, a batch size of 64,
and 2 hidden layers with each having 6 neurons

Figure 10-3 shows the predictions using 10 epochs, 5 inputs (lagged values),
a batch size of 32, and 2 hidden layers with each having 6 neurons.



Figure 10-3. Predicted values versus actual values using 10 epochs, 5 inputs, a batch size of 32,
and 2 hidden layers with each having 6 neurons

Figure 10-4 shows the predictions using 10 epochs, 5 inputs (lagged values),
a batch size of 32, and 2 hidden layers with each having 24 neurons.



Figure 10-4. Predicted values versus actual values using 10 epochs, 5 inputs, a batch size of 32,
and 2 hidden layers with each having 24 neurons

Figure 10-5 shows the predictions using 10 epochs, 8 inputs (lagged values),
a batch size of 32, and 2 hidden layers with each having 64 neurons.



Figure 10-5. Predicted values versus actual values using 10 epochs, 8 inputs, a batch size of 32,
and 2 hidden layers with each having 64 neurons

As you know, the more epochs, the better the fit—up to a certain point, where
overfitting may start to become an issue. Fortunately, by now you know how
to reduce that risk.

NOTE
Note that the sine wave example is a very basic one, and more complex data can be used
with the algorithm. The choice of the sine wave time series is for illustrative purposes only,
and you must use more sophisticated methods on more complex time series to be able to
judge the algorithm.

Reinforcement learning is easily overfit and is more likely to learn simple
patterns and not hidden and complicated ones. Also, you should now be
aware of the difficulty of reward function design and choice of
features. Furthermore, such models are often considered mystery boxes,
making it difficult to explain the reasoning behind their predictions. All of



these issues are now a barrier to implementing a stable and profitable deep
reinforcement learning algorithm for trading.

Summary
Reinforcement learning can be applied to time series prediction tasks, where
the goal is to make predictions about future values based on historical data.
In this approach, an agent interacts with an environment representing the time
series data. The agent receives observations of past values and takes actions
to predict future values. The agent’s actions involve adjusting its internal
model or parameters to make predictions. It uses reinforcement learning
algorithms to learn from past experiences and improve its prediction
accuracy over time.

The agent receives rewards or penalties based on the accuracy of its
predictions. Rewards can be designed to reflect the prediction error or the
utility of the predictions for the specific application. Through a process of
trial and error, the agent learns to associate certain patterns or features in the
time series data with future outcomes. It learns to make predictions that
maximize rewards and minimize errors.

The reinforcement learning process involves a balance between exploration
and exploitation. The agent explores different prediction strategies, trying to
discover patterns and make accurate predictions. It also exploits its existing
knowledge to make predictions based on what it has learned so far. The goal
of reinforcement learning for time series prediction is to train the agent to
make accurate and reliable predictions. By continually receiving feedback
and updating its prediction strategies, the agent adapts to changing patterns in
the time series and improves its forecasting abilities.

Chapter 11 will show how to employ more deep learning techniques and
applications.

1  A buy-and-hold strategy is a passive action whereby the trader or the algorithm initiates one buy
order and holds it for a long time in an attempt to replicate the market’s return and minimize



transaction costs incurred from excessive trading.

2  Keep epsilon decay in mind as it will be used as a variable in the code later.



Chapter 11. Advanced
Techniques and Strategies

By now, you should have a solid understanding of deep learning algorithms
and how to develop a model to predict time series data. Even though this is
just a first step toward deploying a profitable algorithm, you should know that
you have come a long way since the beginning of the book. This chapter is
divided into independent sections that discuss interesting ways of applying a
few advanced deep learning techniques and methods for time series prediction
and to enhance the process.

Using COT Data to Predict Long-Term Trends
The Commitments of Traders (COT) report is a weekly publication released
by the US Commodity Futures Trading Commission (CFTC). It provides
information on the positions held by various market participants in futures
markets. The report is based on data collected from futures exchanges,
including the Chicago Mercantile Exchange (CME) and the Intercontinental
Exchange (ICE). The COT report categorizes traders into three main groups:

Commercial traders (also referred to as dealers or hedgers)

These are typically companies that use the futures market to
hedge their main business activities. For example, a grain
producer may use futures contracts to protect against price
fluctuations in the agricultural market. Their positions are
generally negatively correlated to the underlying market.

Noncommercial traders (also referred to as funds or leveraged money)

This group consists of large speculators, such as hedge funds
and commodity trading advisors. Noncommercial traders
often take positions based on their market outlook and profit-

https://oreil.ly/PLtaP


seeking strategies. Their positions are generally positively
correlated to the underlying market as they have a trend-
following nature.

Nonreportable traders

This category includes small speculators and traders whose
positions do not meet the reporting requirements set by the
CFTC. They do not have a clear correlation with the
underlying market.

The report provides a breakdown of the positions held by each group,
indicating whether they are net long (holding more long positions than short
positions) or net short (holding more short positions than long positions) in a
particular futures market.

Traders and investors analyze the COT report to gain insights into the
sentiment and behavior of different market participants. By monitoring changes
in positions, they attempt to identify potential trends or reversals in the market.
The report is especially popular in the commodity and currency markets,
where it is used as a tool for fundamental analysis and to gauge market
sentiment. This section covers how to do the following:

Create an algorithm to download the COT data automatically and analyze
it.

Chart and understand the correlations between the COT values and their
respective underlying markets. Additionally, check for stationarity in the
COT values to see if they can be used directly in the algorithms.

Create an LSTM algorithm to forecast the next COT value using lagged
values and evaluate it. This will be referred to as the indirect one-step
COT model.

Create an LSTM algorithm to forecast a few weeks’ worth of COT
observations using the direct method. This will be referred to as the MPF
COT direct model.



Create an LSTM algorithm to forecast a few weeks’ worth of COT
observations using the recursive method. This will be referred to as the
MPF COT recursive model.

There are mainly four columns of interest in the COT report: the long hedgers,
the short hedgers, the long funds, and the short funds. They are the four basic
pillars from which you calculate the net hedgers and the net funds. Some
traders like to analyze every column before netting and seeing the bigger
picture. It helps to understand the logic behind every column before
proceeding to the netting process:

Long hedgers (the percentage long positions of commercial traders)

You can consider these hedgers consumers of the asset. A long
hedger is an entity that buys futures on a certain asset (such
as wheat) to hedge its main business. The primary goal is to
protect itself from the risk of rising prices by securing a fixed
price they need in the future. By doing so, they can plan their
production costs more accurately and avoid potential losses if
wheat prices increase. Therefore, long hedgers buy the asset
in fear that it will go up. They usually buy it on its way down,
which results in a negative correlation with the price of the
asset.

Short hedgers (the percentage short positions of commercial traders)

You can consider these hedgers producers of the asset. A short
hedger is an entity that sells short futures on a certain asset to
hedge its main business. The primary goal is to protect itself
from the risk of falling prices. Therefore, short hedgers sell in
fear that it will go down. They usually sell it on its way up,
which results in a positive correlation with the price of the
asset (this means that the number of short hedgers rises as
the price of the asset rises).

Long funds (the percentage long positions of noncommercial traders)



Speculative long fund positions are buyers of futures
contracts in anticipation that the price will rise. They have a
positive correlation with the price of the asset on account of
their trend-following nature.

Short funds (the percentage short positions of noncommercial traders)

Speculative short fund positions are sellers of futures
contracts in anticipation that the price will go down. They
have a negative correlation with the price of the asset on
account of their trend-following nature. An example of this
would be the decreased number of short funds as the asset
goes up.

NOTE
Netting the COT report can be done in different ways depending on your needs. If you
prefer to focus on commercial traders, then you can simply take the difference between
commercial longs and commercial shorts (or as you may call them, consumers and
producers). If you prefer to focus on noncommercial traders, then you can take the
difference between noncommercial longs and noncommercial shorts. And if you prefer a
global image, then you can take the difference between the netted commercial and
noncommercial traders so that you’re left with only one time series that summarizes the
global picture of the market positioning on a certain asset.

Table 11-1 sheds some light on the calculation of net COT values.

The net COT value has the following formula:

Table 11-1. COT netting representation

Hedger long
Hedger
short Fund long Fund short Net he

A B C D E = A 



Net COT = Net funds – Net hedgers

It shares a positive correlation with the underlying price of the asset.
Figure 11-1 shows the net COT positioning on the Canadian dollar (CAD).

Figure 11-1. Net COT CAD since 2015; notice the mean-reverting nature of the values.

Let’s see how to download COT values using Python. First, pip install the
library that allows you to automatically download COT values from the CFTC
website:

pip install cot_reports

Just in case the library has issues, you can use the predownloaded COT
reports in Excel format found in the GitHub repository (a code block at the end
of this section is provided for this manual import).

Import the required libraries to download the historical observations of the
COT report. For simplicity, let’s choose CAD positioning:

import pandas as pd

import matplotlib.pyplot as plt

https://oreil.ly/5YGHI


import numpy as np

from master_function import import_cot_data

The import_cot_data() function that allows you to fetch the COT values of
a selected market is defined as follows (found in master_function.py):

def import_cot_data(start_year, end_year, market): 

    df = pd.DataFrame() 

    for i in range(start_year, end_year + 1): 

        single_year = pd.DataFrame(cot.cot_year(i,  

                      cot_report_type='traders_in_financial_futures_fut')) 

        df = pd.concat([single_year, df], ignore_index=True) 

    new_df = df.loc[:, ['Market_and_Exchange_Names', 

                        'Report_Date_as_YYYY-MM-DD', 

                        'Pct_of_OI_Dealer_Long_All', 

                        'Pct_of_OI_Dealer_Short_All', 

                        'Pct_of_OI_Lev_Money_Long_All',                     

                        'Pct_of_OI_Lev_Money_Short_All']] 

    new_df['Report_Date_as_YYYY-MM-DD'] =  

                       pd.to_datetime(new_df['Report_Date_as_YYYY-MM-DD']) 

    new_df = new_df.sort_values(by='Report_Date_as_YYYY-MM-DD') 

    data = new_df[new_df['Market_and_Exchange_Names'] == market] 

    data['Net_COT'] = (data['Pct_of_OI_Lev_Money_Long_All'] – \ 

                       data['Pct_of_OI_Lev_Money_Short_All']) – \ 

                      (data['Pct_of_OI_Dealer_Long_All'] –\ 

                       data['Pct_of_OI_Dealer_Short_All'])                 

    return data

To import CAD COT values, use the following syntax:

CAD = 'CANADIAN DOLLAR - CHICAGO MERCANTILE EXCHANGE'

data = import_cot_data(2015, 2023, CAD)

data = np.array(data.iloc[:, –1], dtype = np.float64)

It is worth mentioning that other markets have the following code names that
you can use to import them:

EUR = 'EURO FX - CHICAGO MERCANTILE EXCHANGE'

GBP = 'BRITISH POUND STERLING - CHICAGO MERCANTILE EXCHANGE'

JPY = 'JAPANESE YEN - CHICAGO MERCANTILE EXCHANGE'

CHF = 'SWISS FRANC - CHICAGO MERCANTILE EXCHANGE'

AUD = 'AUSTRALIAN DOLLAR - CHICAGO MERCANTILE EXCHANGE'

MXN = 'MEXICAN PESO - CHICAGO MERCANTILE EXCHANGE'

BRL = 'BRAZILIAN REAL - CHICAGO MERCANTILE EXCHANGE'



BTC = 'BITCOIN - CHICAGO MERCANTILE EXCHANGE'

SPX = 'E-MINI S&P 500 - CHICAGO MERCANTILE EXCHANGE'

NOTE
In case you have a request error, try applying the following code before running the import
section (remember to pip install the proxy_requests library):

from proxy_requests.proxy_requests import ProxyRequests

req = ProxyRequests("https://api.ipify.org")

req.get()

Figure 11-2 shows the net COT positioning on the CAD versus the CADUSD.
Notice the strong positive correlation between the two. Calculating the
Pearson correlation of the last 200 observations gives a whopping 0.66. In
other words, tops on the net COT data coincide with tops on the CADUSD.
Similarly, troughs on the net COT data coincide with troughs on the CADUSD.



Figure 11-2. The CADUSD (left scale) versus the CAD net COT positioning (right scale).

WARNING
Note that the chart shows the CADUSD and not the USDCAD, the commonly used pair.
This is because you are trying to understand the CAD; therefore, it helps to use it as the
base currency so that you can see the positive correlation with the CAD speculators and the
negative correlation with the CAD hedgers. To obtain the CADUSD from the USDCAD
observations, take its reciprocal:

CADUSD =
1

USDCAD

The next step is to check for stationarity on the COT values so as to know
whether it requires transformation or not. Remember, transformation can be
either differencing, taking the percentage returns, or even using fractional
differentiation (as discussed in Chapter 9):

from statsmodels.tsa.stattools import adfuller

print('p-value: %f' % adfuller(raw_data)[1])



The output is as follows:

p-value: 0.000717

The COT values seem to be stationary and ready to be used as inputs in the
algorithms.

Algorithm 1: Indirect One-Step COT Model
The goodness of fit model will use long short-term memory (LSTM) to predict
the next COT value at every time step. The assumption is that predicting a
value that is directionally correlated to the underlying market may give a bias
for the expected move during the coming week. For example, if the forecast is
for a higher COT value in the coming week, then you may have a bullish CAD
bias in preparation of your weekly trading.

First, import the required libraries:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, LSTM

from master_function import import_cot_data, data_preprocessing

from master_function import plot_train_test_values,  

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

Import the required data:

CAD = 'CANADIAN DOLLAR - CHICAGO MERCANTILE EXCHANGE' 

data = import_cot_data(2015, 2023, CAD) 

data = np.array(data.iloc[:, –1], dtype = np.float64)

Set the hyperparameters and create the arrays:

num_lags = 100

train_test_split = 0.80

num_neurons_in_hidden_layers = 200

num_epochs = 200

batch_size = 4



# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data,  

                                                      num_lags,  

                                                      train_test_split)

To comply with the LSTM architecture, the independent variables must be
transformed into three-dimensional arrays. This is done using the following
code:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Next, create the architecture of the model and predict the values on the training
set (only to understand the goodness of fit) and the test set:

# Create the LSTM model

model = Sequential()

# Adding a first layer

model.add(LSTM(units = neurons, input_shape = (num_lags, 1)))

# Adding a second layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding the output layer

model.add(Dense(units = 1))

# Compiling the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting the model

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Predicting in the training set for illustrative purposes

y_predicted_train = model.predict(x_train)

# Predicting in the test set

y_predicted = model.predict(x_test)

To plot the predictions along the real values, use the following syntax:

plot_train_test_values(100, 50, y_train, y_test, y_predicted)

Figure 11-3 compares the predicted values with the real test values. At first
glance, the model seems to capture the variations of the COT values well.
Let’s have a look at the performance results.



Figure 11-3. COT training data followed by COT test data (dashed line) and the predicted COT
data (thin line); the vertical dashed line represents the start of the test period. The model used is

the LSTM regression algorithm.

The following are the results of the model used on the CADUSD from 2015 to
2023:

Directional Accuracy Train =  86.18 %

Directional Accuracy Test =  60.87 %

RMSE Train =  5.3655332132

RMSE Test =  14.7772701349

Correlation In-Sample Predicted/Train =  0.995

Correlation Out-of-Sample Predicted/Test =  0.88

NOTE
An interesting task for you would be to apply the model to forecast the returns of the
underlying market using COT values as inputs. You can use either the net COT value or any
of the six other series you have available, such as long hedgers and net funds. However,
make sure to always check for stationarity.

Algorithm 2: MPF COT Direct Model



The MPF COT model will use LSTM to project a trajectory for the COT
values to lead the way for the main market moves to come. The assumption is
that by predicting the next COT values, which are less noisy than the market
itself, you may have a guide for the expected trajectory of the market. As COT
values are stationary and are highly correlated with the market (which is not
stationary), you have a better chance of having a decent forecast than by using
the MPF directly on the market. This algorithm uses the direct method (for
more information, have another look at Chapter 9). First, import the required
libraries:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, LSTM

from master_function import import_cot_data, direct_mpf

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

Set the hyperparameters and create the arrays:

# Setting the hyperparameters

num_lags = 100

train_test_split = 0.80

neurons = 400

num_epochs = 200

batch_size = 10

forecast_horizon = 50

# Creating the training and test sets

x_train, y_train, x_test, y_test = direct_mpf(data,  

                                              num_lags,  

                                              train_test_split,  

                                              forecast_horizon)

To comply with the LSTM architecture, the independent variables must be
transformed into three-dimensional arrays. This is done using the following
code:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))



Next, create the architecture of the model and predict the values using the
recursive function:

# Create the LSTM model

model = Sequential()

# Adding a first layer

model.add(LSTM(units = neurons, input_shape = (num_lags, 1)))

# Adding a second layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding the output layer 

model.add(Dense(units = forecast_horizon))

# Compiling the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting the model

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Predicting in the test set

y_predicted = model.predict(x_test)

To plot the predictions along the real values, use the following syntax:

plt.plot(y_predicted[–1], label = 'Predicted data', color = 'red',  

         linewidth = 1)

plt.plot(y_test[–1], label = 'Test data', color = 'black',  

         linestyle = 'dashed', linewidth = 2)

plt.grid()

plt.legend()

Figure 11-4 compares the predicted values with the real test values.



Figure 11-4. Predicted data versus test data.

The following are the results of the model used on the CADUSD:

Directional Accuracy Test =  57.14 %

RMSE Test =  26.4021245739

Correlation Out-of-Sample Predicted/Test =  0.426

Algorithm 3: MPF COT Recursive Model
This algorithm uses the recursive method (for more information, have another
look at Chapter 9). First, import the required libraries:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, LSTM

from master_function import data_preprocessing, import_cot_data

from master_function import plot_train_test_values, recursive_mpf

from master_function import calculate_directional_accuracy

Set the hyperparameters and create the arrays:



num_lags = 100

train_test_split = 0.80

neurons = 100

num_epochs = 200

batch_size = 2

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data, 

                                                      num_lags, 

                                                      train_test_split)

To comply with the LSTM architecture, the independent variables must be
transformed into three-dimensional arrays. This is done using the following
code:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Next, create the architecture of the model and predict the values using the
recursive function:

# Create the LSTM model

model = Sequential()

# Adding a first layer

model.add(LSTM(units = neurons, input_shape = (num_lags, 1)))

# Adding a second layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding the output layer 

model.add(Dense(units = 1))

# Compiling the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

# Fitting the model

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Predicting in the test set on a recursive basis

x_test, y_predicted = recursive_mpf(x_test, y_test, num_lags, model)

To plot the predictions along the real values, use the following syntax:

plot_train_test_values(100, 50, y_train, y_test, y_predicted)

Figure 11-5 compares the predicted values with the test values.



Figure 11-5. Multiperiod forecasting of the COT data.

The following are the results of the model used on the CADUSD from 2015 to
2023:

Directional Accuracy Test =  52.17 %

RMSE Test =  40.3120541504

Correlation Out-of-Sample Predicted/Test =  0.737

NOTE
Remember that while setting the random_state and ensuring reproducibility is useful for
experimentation, it might also limit the model’s ability to generalize well if the data distribution
is genuinely random. In many cases, it’s recommended to perform multiple runs with
different random seeds to get a better sense of the model’s performance and robustness.
This is why many of the models seen in this book do not have the random_state
implementation in their code (except a few models in Chapter 7).

It does not hurt to remember the symptoms of overfitting. Unfortunately,
overfitting is sometimes not that easily detectable, so consider these general
rules:



High training accuracy and low test accuracy

The model shows excellent performance on the training data
but performs poorly on the test data. This is a clear indication
that the model has memorized the training data rather than
learning general patterns.

Large gap between training and test performance

There is a significant difference between the training and test
error rates. Ideally, the two measures should be close to each
other, and a large gap suggests overfitting.

Unusually high model complexity

If the model is overly complex with a large number of
parameters or features, it becomes more prone to overfitting.
A simpler model may generalize better to new data.

Noisy predictions

Overfit models tend to make erratic and inconsistent
predictions on new data. This is because they are highly
sensitive to small variations in the input data, including noise.

Putting It All Together
The COT report, released every Friday by the CFTC, outlines the positioning
of key market participants. It can be transformed into a time series forecasting
task with the aim of improving market forecasts. The market participants of
particular interest are the commercial participants (dealers or hedgers) and the
noncommercial participants (leveraged money or funds).



NOTE
Make sure to put master_function.py in the directory of the interpreter. Alternatively, you
can simply open master_function.py in Python and execute the whole file. However, the
latter method requires you to do it every time you restart the kernel.

Deep learning techniques can be applied on COT values to forecast market
positioning through hidden patterns and seasonal configurations. This section
discussed three algorithms to squeeze out value from the COT report. You can
experiment with machine learning models, deep reinforcement learning, and
even simple statistical techniques to better understand the COT data.

To manually import COT values, refer to the historical data found in the
GitHub repository and use the following code (change the path of the
interpreter to be the same as the location of the downloaded file):

import pandas as pd

import numpy as np

# Import the data using pandas

data = pd.read_excel('name_of_file.xlsx')

It’s important to remember that the COT report provides a snapshot of market
participant positioning and should be used in conjunction with other tools and
analysis methods. While it can offer valuable information, it’s not a standalone
trading strategy, and careful consideration of other factors is essential for
making well-informed trading decisions.

Using Technical Indicators as Inputs
You learned about technical indicators in Chapter 5. It’s time to use them as
inputs to predict the underlying market’s returns. Using lagged values implies
that there must be value in the past observations, which may translate into
decent forecasts. This section will explore past that assumption and will
search for value in other price transformations. You can have the following
price-derived calculations:

Mathematical transformation
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This type of transformation is likely to be a direct
manipulation of the raw data. An example of this is a basic
differencing or a simple moving average. Normalization is
also part of mathematical transformation.

Technical transformation

This type of transformation is less obvious, and the result may
not look at all like the raw data. An example of this is the RSI,
a technical indicator created out of recursive rules based on
moving averages and normalization.

Categorical transformation

This type of transformation shifts the type of numerical data
to categorical and vice versa. For example, an algorithm that
is known as OneHotEncoder takes categorical data and
transforms it into binary data so that machine learning
algorithms are able to classify it.

Before proceeding, there is a data issue that is worth discussing.
Multicollinearity is a statistical phenomenon that occurs in regression
analysis when two or more independent variables (inputs) in a multiple
regression model are highly correlated with each other. In other words, it is a
situation where there is a strong linear relationship between two or more of
the predictors. This correlation can make it difficult for the regression model
to separate the individual effects of each predictor on the dependent variable
(the outcome variable). Obviously, if you are using multiple RSIs with
different time periods, then you are likely to run into multicollinearity. Make
sure you look for weakly correlated indicators.

Two technical indicators (or transformations) are used in this example:

The five-week RSI, a stationary indicator that does not require any
transformation.

The difference between the weekly close price and the 20-week moving
average. This is also a stationary calculation that does not require any



transformation.

Therefore, the EURUSD’s weekly returns will be forecasted using the
previous week’s RSI value and the distance between the previous week’s
close price and the 20-week moving average.

First, import the required libraries:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, LSTM

from master_function import mass_import, rsi, ma, calculate_accuracy

from master_function import plot_train_test_values,  

from master_function import multiple_data_preprocessing

from sklearn.metrics import mean_squared_error

from master_function import add_column, delete_column

Next, import the data using the mass_import() function:

data = mass_import(0, 'W1')[:, –1]

data = rsi(np.reshape(data, (–1, 1)), 5, 0, 1)

data = ma(data, 5, 0, 2)

data[:, 2] = data[:, 0] – data[:, 2]

data = add_column(data, 1)

for i in range(len(data)): 

    data[i, 3] = data[i, 0] – data[i – 1, 0]

data[:, 0] = data[:, –1]

data = delete_column(data, 3, 1)

Define the multiple data preprocessing function, which takes the values of the
two technical indicators and lags them so that they can be used as inputs to
predict the EURUSD’s returns. Table 11-2 shows the training table x_train
with six lagged values as independent variables to explain and predict the next
EURUSD return.



The next function is already defined, but it doesn’t hurt to discuss what it does.
The multiple_data_preprocessing() function simply creates the four
needed arrays for the backtest, but it uses the two technical indicators as
inputs. You can define the function for six lagged values (three for the RSI and
three for the difference between the close and the moving average) as follows:

def multiple_data_preprocessing(data, train_test_split): 

    data = add_column(data, 4) 

    data[:, 1] = np.roll(data[:, 1], 1, axis = 0) 

    data[:, 2] = np.roll(data[:, 2], 1, axis = 0) 

    data[:, 3] = np.roll(data[:, 1], 1, axis = 0) 

    data[:, 4] = np.roll(data[:, 2], 1, axis = 0) 

    data[:, 5] = np.roll(data[:, 3], 1, axis = 0) 

    data[:, 6] = np.roll(data[:, 4], 1, axis = 0) 

    data = data[1:, ] 

    x = data[:, 1:] 

    y = data[:, 0] 

    split_index = int(train_test_split * len(x)) 

    x_train = x[:split_index] 

    y_train = y[:split_index] 

    x_test = x[split_index:] 

Table 11-2. A sample of the training array

RSI t–1
(Close –
MA)t–1 RSI t–2

(Close –
MA)t–2 RSI t–

36.6190 –0.003804 48.5188 0.001044 42.439

46.7928 0.001674 36.6190 –0.003804 48.518

40.5430 –0.002518 46.7928 0.001674 36.619

65.9614 0.011340 40.5430 –0.002518 46.792

47.2585 –0.000390 65.9614 0.011340 40.543

63.9755 0.011302 47.2585 –0.000390 65.961



    y_test = y[split_index:] 

    return x_train, y_train, x_test, y_test

Set the hyperparameters and create the arrays:

num_lags = 6 # Must equal the number of the lagged values you create

train_test_split = 0.80

neurons = 500

num_epochs = 500

batch_size = 200

# Creating the training and test sets

x_train, y_train, x_test, y_test = multiple_data_preprocessing(data,  

                                                   train_test_split)

To comply with the LSTM architecture, the independent variables must be
transformed into three-dimensional arrays. This is done using the following
code:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Next, create the architecture of the model and predict the values on the training
set (only to understand the goodness of fit) and the test set:

# Create the LSTM model

model = Sequential()

# Adding a first layer

model.add(LSTM(units = neurons, input_shape = (num_lags, 1)))

# Adding a second layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a third layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a fourth layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a fifth layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding the output layer 

model.add(Dense(units = 1))

# Compiling the model

model.compile(loss = 'mean_squared_error', optimizer = 'ada

# Fitting the model

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

# Predicting in the training set for illustrative purposes



y_predicted_train = model.predict(x_train)

# Predicting in the test set

y_predicted = model.predict(x_test)

To plot the predictions along the real values, use the following syntax:

plot_train_test_values(100, 50, y_train, y_test, y_predicted)

Figure 11-6 compares the predicted values with the real test values.

Figure 11-6. Training data followed by test data (dashed line) and the predicted data (thin line);
the vertical dashed line represents the start of the test period. The model used is the LSTM

regression algorithm.

The following are the results of the model:

Accuracy Train =  59.39 %

Accuracy Test =  51.82 %

RMSE Train =  0.0163232045

RMSE Test =  0.0122093494

Correlation In-Sample Predicted/Train =  0.255

Correlation Out-of-Sample Predicted/Test =  0.015



It is very interesting to tweak the model and see how to improve it. As these
are weekly predictions, good accuracy could be the first step in shaping your
swing trading on the condition of optimizing the model and making sure it is
not overfit.1 It is worth noting that since this algorithm is trying to predict the
financial returns of an instrument, the calculate_accuracy() function is
used as opposed to ca lc ul ate_ di re cti on al_accuracy().

NOTE
Try running the algorithm seen in this section on MPF mode and see what you can extract
from it. Remember the algorithm’s limitations while doing so.

Predicting Bitcoin’s Volatility Using Deep
Learning
Bitcoin is a decentralized digital currency that was created in 2009 by an
unknown person or entity using the pseudonym Satoshi Nakamoto. It was the
first cryptocurrency to be introduced and remains the most well known and
widely traded cryptocurrency to date. You probably do not need an
introduction to Bitcoin considering the immense hype over it during these past
years, but more knowledge never hurts.

Bitcoin operates on a technology called blockchain, which is a distributed
ledger system. Unlike traditional currencies that are issued and regulated by
governments or central banks, Bitcoin is not controlled by any central
authority.

Instead, it relies on a peer-to-peer network of computers, known as nodes, to
validate and record transactions. Nowadays, Bitcoin is heavily traded on
cryptocurrency exchanges and is used for speculative but also hedging
operations. The most commonly traded pair is BTCUSD, which is the value of
1 bitcoin relative to USD.

Figure 11-7 shows the evolution of the BTCUSD (Bitcoin’s value priced in US
dollars).



Figure 11-7. Historical evolution of BTCUSD since 2014 in a linear scale.

You can generate Figure 11-7 using the following code:

import pandas as pd

# Manually importing BTCUSD values

my_data = pd.read_excel('Bitcoin_Daily_Historical_Data.xlsx')

# Renaming the columns

my_data.columns = ['Date', 'Open', 'High', 'Low', 'Close']

# Setting the date column

my_data['Date'] = pd.to_datetime(my_data['Date'])

# Charting

plt.plot(my_data['Date'], my_data['Close'], label = 'BTCUSD',  

         color = 'black')

plt.legend()

plt.grid()

Make sure you download the historical BTCUSD values from the GitHub
repository and that you set the directory of the interpreter in the same folder as
the downloaded file.

Figure 11-7 is charted using a linear scale, which means that data is
represented on a straight and evenly spaced axis (the space between 10 and 20
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is the same as the space between 1230 and 1240). It is also possible to use
what is known as a logarithmic scale to chart time series that experience big
jumps.

TO LOG OR TO LIN
The logarithmic scale is a scale used in charting that represents the data
using logarithmic transformations. In a logarithmic scale, the spacing
between values is based on the logarithm of the actual values rather than
their linear scale. This means that the distance between, for example, 1
and 10 on a logarithmic scale is the same as the distance between 10 and
100, rather than being 10 times larger as in a linear scale.

The importance of using a logarithmic scale in charting financial time
series stems from the nature of financial data and its tendency to exhibit
exponential growth or decay (as is the case on BTCUSD).

Financial markets often experience large variations in prices or returns,
and using a logarithmic scale can help to better visualize and understand
these changes. In trading jargon, linear scale charts are typically referred
to as lin charts, and logarithmic scale charts are referred to as log charts.

Using a logarithmic scale in charting financial time series helps provide a
more accurate representation of the data, facilitates the analysis of growth
rates, and enhances the ability to identify trends and patterns in financial
markets.

Figure 11-8 shows the evolution of BTCUSD (Bitcoin’s value priced in US
dollars) in logarithmic scale.



Figure 11-8. Historical evolution of BTCUSD since 2014 in a semilog scale.

Use the following code to generate Figure 11-8 using the plt.semilogy()
function:

plt.semilogy(my_data['Date'], my_data['Close'], label = 'BTCUSD',  

             color = 'black')

plt.legend()

plt.grid()

NOTE
The word semilog refers to transforming one of the two axes into a logarithmic scale, while
the word log refers to transforming both axes into a logarithmic scale.

Since time is linear, you only need to transform the y-axis (which means the values), and
therefore, you are technically using semilog charts. This is why the matplotlib() function
is called pl t. se mi log y().

If you prefer to import BTCUSD values using a Python script, use the
following:



import requests

import json

import pandas as pd

import numpy as np   

import datetime as dt 

 

# Selecting the time frame

frequency = '1h'

# Defining the import function

def import_crypto(symbol, interval = frequency): 

    # Getting the original link from Binance 

    url = 'https://api.binance.com/api/v1/klines' 

    # Linking the link with the cryptocurrency and the time frame 

    link = url + '?symbol=' + symbol + '&interval=' + interval 

    # Requesting the data in the form of text 

    data = json.loads(requests.get(link).text) 

    # Converting the text data to a dataframe 

    data = np.array(data) 

    data = data.astype(np.float) 

    data = data[:, 1:5] 

    return data

# Importing hourly BTCUSD data

data = import_crypto('BTCUSDT')

Let’s see if deep learning helps forecast BTCUSD’s volatility using its lagged
values. But first, two questions are begging an answer:

What is the use of predicting Bitcoin’s volatility?

How do you calculate Bitcoin’s volatility?

To answer the first question, by predicting Bitcoin’s volatility, traders can
potentially identify periods of increased price swings and capitalize on them.
Similarly, volatility predictions can also provide insights into market
sentiment. When investors expect uncertain or turbulent market conditions, it
may indicate a lack of confidence, leading to potential changes in market
dynamics.

To answer the second question, you can use a rolling standard deviation
measure on the close prices. This allows you to create a new time series that
reflects the historical volatility of Bitcoin.



NOTE
Typically, an increase in volatility is a sign of market stress and fear, which translates to a
bearish tone. In contrast, a decrease in volatility is a sign of a healthy and stable market,
which translates to a bullish market. This relationship is not perfect, and other variables may
impact it. For example, if you calculate the correlation coefficient of Bitcoin’s daily close
prices and the 10-day rolling volatility, you will find that it’s positive (at some periods, it’s
extremely positive). Bitcoin is known for being a euphoric asset where rises are
accompanied by a phenomenon called FOMO, an abbreviation of fear of missing out. This
psychological bias is one of the building blocks of a market bubble where everyone keeps
buying in the hopes of profiting from the move.

The first step of predictive analytics is to understand the data you’re dealing
with. As a reminder, volatility refers to the degree of variation or fluctuation
in the price of a financial instrument, such as a stock, bond, commodity, or
currency, over a specific period of time. It is a statistical measure of the
dispersion for that particular asset.

Figure 11-9 shows the latest values of Bitcoin’s 10-day volatility as measured
by the rolling standard deviation calculation. The latest values say that
recently, the price variations hovered around $500 from the 10-day mean most
of the time (refer to Chapter 3 for more in-depth comprehension on standard
deviation).



Figure 11-9. Bitcoin’s rolling 10-day standard deviation as a proxy for volatility.

Let’s get started. For this task, let’s manually import BTCUSD into the
interpreter. First, start by importing the required libraries:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, LSTM

from master_function import add_column, delete_row, volatility

from master_function import data_preprocessing, plot_train_test_values

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

from statsmodels.tsa.stattools import adfuller

Next, import the data using pandas:

data = pd.read_excel('Bitcoin_Daily_Historical_Data.xlsx').values

The next step is to calculate volatility. Its function is defined in
master_function, and as you have imported it already, it should work
directly:



data = volatility(data, 10, 0, 1)

data = data[:, –1]

You have to check for stationarity. If the data is stationary, then it’s ready to be
deployed for training. Otherwise, you may have to transform it. The following
code applies the ADF test on the 10-day volatility of Bitcoin:

print('p-value: %f' % adfuller(data)[1])

Here is the output:

p-value: 0.120516

It seems that the volatility values are nonstationary. Let’s try differencing:

data = np.diff(data)

NOTE
You can also apply fractional differentiation to preserve a hint of memory.

Figure 11-10 shows the latest values of Bitcoin’s 10-day differenced
volatility.



Figure 11-10. Bitcoin’s rolling 10-day standard deviation (differenced).

The next step is to set the hyperparameters and prepare the arrays as usual:

num_lags = 300

train_test_split = 0.80

neurons = 80

num_epochs = 100

batch_size = 500

# Prepare the arrays

x_train, y_train, x_test, y_test = direct_mpf(data,  

                                              num_lags,  

                                              train_test_split,  

                                              forecast_horizon)

To comply with the LSTM architecture, the independent variables must be
transformed into three-dimensional arrays. This is done using the following
code:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Create the deep neural network architecture with a few extra layers:



# Create the LSTM model

model = Sequential()

# Adding a first layer

model.add(LSTM(units = neurons, input_shape = (num_lags, 1)))

# Adding a second layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a third layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a fourth layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding the output layer 

model.add(Dense(units = forecast_horizon))

# Compiling the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

Now, fit and predict the data:

model.fit(x_train, y_train, epochs = num_epochs, batch_size = batch_size)

y_predicted = model.predict(x_test)

Figure 11-11 compares the predicted values with the test values.

Figure 11-11. Forecasting Bitcoin’s volatility; the model used is the LSTM regression algorithm.



The following are the results of the model:

Accuracy Train =  66.56 %

Accuracy Test =  63.59 %

RMSE Train =  95.6086778521

RMSE Test =  186.1401365824

Correlation In-Sample Predicted/Train =  0.807

Correlation Out-of-Sample Predicted/Test =  0.56

Keep in mind that the backtesting results may differ significantly due to the
backtested period, time granularity, transaction costs, different quotations from
different brokers, different hyperparameters, and different randomization.
Optimization is a key component, and validation of the results must be done
before forming an opinion on the algorithm. Your task is therefore to improve
the results and get a better prediction on volatility.

You may also wonder if you can predict Bitcoin’s returns directly with an
accuracy better than random. The answer is yes, and if you need a few ideas of
inputs that may help predict Bitcoin’s returns, check out the following
nonexhaustive list:

Historical price data and its derivatives: Using historical price data is a
fundamental aspect of predicting returns. You can include features such as
daily, weekly, or monthly price changes, moving averages, and price
volatility.

Trading volume: The trading volume of Bitcoin provides valuable
information about the level of market activity and liquidity. Higher
trading volumes often accompany significant price movements.

Market sentiment indicators: Sentiment analysis from social media
platforms, news articles, or forums can help gauge the overall market
sentiment toward Bitcoin. Bitcoin’s Fear & Greed index is a good
candidate as it’s published on a daily basis and uses many fundamental
variables to calculate its values.2

Network metrics: Bitcoin’s blockchain data provides useful metrics, such
as the number of transactions, hash rate, and difficulty level. These



metrics reflect the activity and health of the Bitcoin network, which can
influence prices.

Market indicators: Consider using general market indicators like the
S&P 500 or the VIX as external variables. Cryptocurrencies, including
Bitcoin, can sometimes exhibit correlations with traditional financial
markets.

Cryptocurrency-specific indicators: Other indicators specific to the
cryptocurrency space, such as the total market capitalization of all
cryptocurrencies and dominance ratio of Bitcoin, may provide insights
into broader market conditions.

Technical indicators: Various technical analysis indicators, such as the
RSI and volatility, can offer insights into potential price trends and
reversals.

Google trends: Monitoring the popularity of search terms related to
Bitcoin on Google Trends can provide insights into public interest and
potential price movements.

Cryptocurrency exchange data: Data from cryptocurrency exchanges,
such as open interest, funding rates, and liquidation data, can offer
insights into market dynamics and potential price shifts.

Real-Time Visualization of Training
What happens during training? Sure, you can see that the training process is
on-going when you look at the progress bar of every epoch:

Epoch 1/100
9/9 [=============================] – 3s 77ms/step - loss: 0.0052
Epoch 2/100
9/9 [=============================] – 1s 78ms/step - loss: 0.0026
Epoch 3/100
9/9 [=============================] – 1s 68ms/step - loss: 0.0015



However, you can also code a dynamic plot that shows you the in-sample
predictions getting updated through epochs as they approach the in-sample real
values. This will be the first aim of this section. Before proceeding, refresh
your knowledge of the terminologies:

In-sample real values

These are the values contained in y_train. They are the real
values the model uses to calibrate its training. They belong to
the training set.

In-sample predictions

These are the values contained in y_predicted_train. They are
the predictions the model outputs during its training. They
belong to the training set and suffer from look-ahead bias,
which happens when future information is used to make
decisions or predictions that should have been made in the
past based only on historical data available at that time.

Out-of-sample real values

These are the test values used to test the model’s ability to
predict values on data that has never been seen before. They
belong to the test set.

Out-of-sample predictions

These are the predictions that follow the training phase. They
belong to the test set.

Let’s take an example that you are familiar with from Chapter 9, the ISM PMI
data. The aim is to create a one-step forecast LSTM model of the differenced
ISM PMI values while creating a dynamic plot during training that shows
predictions being calibrated to the training set. First, import the required
libraries:

import pandas as pd

import matplotlib.pyplot as plt



import numpy as np

from keras.models import Sequential

from keras.layers import Dense, LSTM

from master_function import data_preprocessing

from master_function import calculate_directional_accuracy

from sklearn.metrics import mean_squared_error

import tensorflow as tf

import random

From the GitHub repository, import and difference the ISM PMI data:

 data = np.diff(np.reshape(pd.read_excel('ISM_PMI.xlsx').values, (–1)))

The next step is to set the hyperparameters and prepare the arrays as usual:

num_lags = 100

train_test_split = 0.80

neurons = 200

num_epochs = 200

batch_size = 4

# Creating the training and test sets

x_train, y_train, x_test, y_test = data_preprocessing(data,  

                                                      num_lags,  

                                                      train_test_split)

To comply with the LSTM architecture, the independent variables must be
transformed into three-dimensional arrays. This is done using the following
code:

x_train = x_train.reshape((–1, num_lags, 1))

x_test = x_test.reshape((–1, num_lags, 1))

Create the deep neural network architecture:

# Create the LSTM model

model = Sequential()

# Adding a first layer

model.add(LSTM(units = neurons, input_shape = (num_lags, 1)))

# Adding a second layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a third layer

model.add(Dense(neurons, activation = 'relu'))  

# Adding a fourth layer

https://oreil.ly/5YGHI


model.add(Dense(neurons, activation = 'relu'))  

# Adding the output layer 

model.add(Dense(units = 1))

# Compiling the model

model.compile(loss = 'mean_squared_error', optimizer = 'adam')

The following code fits the x_train data to the y_train data while plotting
the predictions at every epoch:

def update_plot(epoch, logs): 

    if epoch % 1 == 0: 

        plt.cla() 

        y_predicted_train = model.predict(x_train) 

        plt.plot(y_train, label = 'Training data',  

                 color = 'black', linewidth = 2.5) 

        plt.plot(y_predicted_train, label = 'Predicted data',  

                 color = 'red', linewidth = 1) 

        plt.title(f'Training Epoch: {epoch}') 

        plt.xlabel('Time') 

        plt.ylabel('Value') 

        plt.legend() 

        plt.savefig(str(random.randint(1, 1000)))

# Create the dynamic plot

fig = plt.figure()

# Train the model using the on_epoch_end callback

class PlotCallback(tf.keras.callbacks.Callback): 

    def on_epoch_end(self, epoch, logs = None): 

        update_plot(epoch, logs) 

        plt.pause(0.001)

plot_callback = PlotCallback()

history = model.fit(x_train, y_train, epochs = num_epochs,  

                    batch_size = batch_size, callbacks = [plot_callback])

Figure 11-12 shows the training at epoch 1. Notice how the algorithm is just
starting out and is not quite capturing the relationship between the independent
and dependent variables yet.



Figure 11-12. ISM PMI data training in progress at epoch 1.

Figure 11-13 shows the training at epoch 21. It looks like the algorithm is still
calibrating itself to the features.



Figure 11-13. ISM PMI data training in progress at epoch 21.

Figure 11-14 shows the training at epoch 29. The model is starting to properly
fit the data.



Figure 11-14. ISM PMI data training in progress at epoch 29.

Figure 11-15 shows the training at epoch 62. The model seems to fit the data
well, although with some errors, but this is not the main aim of this section.

Dynamic training plots can be an interesting tool to see how the model is
learning—and whether it’s actually learning something. This helps with the
problem of constant predictions, which occur when the model fails to capture
any relationship between the dependent and independent variables.



Figure 11-15. ISM PMI data training in progress at epoch 62.

Several factors can lead to the problem of constant predictions in deep
learning:

Poor model architecture

If the model is not expressive enough, it may struggle to learn
meaningful patterns, resorting to a simple, constant
prediction instead.

Limited or noisy data

Insufficient or noisy data can hinder the model’s ability to
learn meaningful patterns. If the data lacks diversity or
contains significant errors, the model may converge to a
constant forecast as the simplest way to minimize the loss.

Improper loss function



The choice of the loss function plays a vital role in guiding the
model during training. If the loss function is not appropriate
for the task or the model architecture, it may not encourage
the model to make varied predictions, leading to constant
forecasts.

Poor hyperparameter tuning

Hyperparameters, such as the batch size and the number of
neurons, can significantly impact the training process. If these
hyperparameters are not appropriately tuned, the model
might not converge effectively, leading to constant
predictions.

At this point, you must have wondered what the architecture you built using the
Sequential() and Dense() functions looks like. Naturally, it should look
like the neural network graphs you have seen previously. To see this, you must
pip install the required libraries from the prompt:

pip install pydot

pip install pydotplus

pip install graphviz

Then download the graphviz binaries folder from the official website, extract
the contents of the file, then set the bin folder as one of the paths of the Python
interpreter (e.g., Spyder). Restart the kernel, and proceed to compile your
model as usual. Finally, use the following code to print the architecture:

from tensorflow.keras.utils import plot_model

from IPython.display import Image

plot_model(model, to_file = 'Architecture.png',  

           show_shapes = True,  

           show_layer_names = True)

Image('Architecture.png')

Figure 11-16 shows the output of the code.

https://oreil.ly/SV5FO


Figure 11-16. Model architecture example.

The code outputs the current architecture of the compiled LSTM model.

Summary
This information-heavy chapter showed you a few ideas for using a selection
of trading algorithms to forecast returns. It is mostly a way to stimulate critical
and innovative thinking and to find new and innovative ideas from where
trading signals may be derived. For example, you can try applying filters with
the signals you get from the algorithms. Filters are like on/off switches that
allow the signal based on whether a final condition is met or not. An example
of a hypothetical trading strategy with a filter is to take the bullish signals only
if the market is above its 200-day moving average and to take the bearish
signals only if the market is below its 200-day moving average.



Your main takeaway should be how things must be structured so that you can
understand the backtesting process. Compared to this chapter, Chapter 12 will
be a gentle breeze as it explores risk management and fundamental tools aimed
at enhancing the research process.

1  Swing trading involves holding positions for a short- to medium-term period, typically a few days to
a few weeks, to profit from price swings or price movements within a larger trend.

2  The index is used to gauge the emotions and sentiments of investors in the cryptocurrency market.
It provides a numerical value on a scale from 0 to 100, where lower values indicate extreme fear
and higher values indicate extreme greed. The index is designed to help traders and investors
identify potential market turning points based on prevailing emotions.



Chapter 12. Market Drivers and
Risk Management

In today’s rapidly evolving markets, understanding market drivers and risk
management is essential for achieving success in trading and investing
endeavors.

Market drivers are the factors that influence financial markets, such as
economic indicators, corporate performance, geopolitical events, central
bank policies, and technological advancements. By understanding these
drivers, investors can make informed decisions and anticipate market trends.
Algorithmic traders must be aware of these events that may cause turbulence
in their models. Risk management is the backbone of a solid investment
strategy. It encompasses diversification, stop-loss orders, position sizing,
risk-reward assessment, and emotional discipline.

By combining a deep understanding of market drivers with effective risk
management techniques, traders can navigate the complexities of financial
markets and increase the likelihood of a successful trading algorithm.

This chapter is divided into two main sections. The first section talks about
market drivers in a fundamental sense, and the second section discusses risk
management from a general point of view.

Market Drivers
Knowledge of market drivers is essential to develop a healthy and sound
trading system. Failing to understand what pushes the markets will inevitably
cause the demise of the whole process. Up to this point you have seen
quantitative trading algorithms that use either lagged values of the same time
series or technical indicators, but that’s only a one-dimensional way of
seeing things.



During trading, many events occur that can impact the positions and the risk
taken. Knowledge of these events may help mitigate some of the risk, but it
may also offer a few directional opportunities along the way. This section
can be considered a primer on fundamental analysis and market expectations.
If you are familiar with this field, then it should be a breeze.

Market Drivers and Economic Intuition
Market drivers influence and lead the movement and behavior of assets.
These drivers can be financial, economic, geopolitical, or even
psychological. Consider the following four asset classes: stocks, fixed
income, commodities, and currencies.

NOTE
As a reminder, fixed income refers to a type of investment that provides investors with
regular and predictable payments in the form of interest or dividends over a set period. It is
called fixed income because the income generated from these investments is typically
fixed and known in advance, as opposed to variable income generated by other
investments like stocks.

The most common form of fixed income investments is bonds, which are essentially debt
securities issued by governments, municipalities, corporations, or other entities to raise
capital.

When the economy is strong, it generally has different effects on asset classes
due to the varying preferences and behaviors of investors and market
participants. Let’s look at them in detail:

Stock market

Strong economic conditions often lead to higher corporate
profits as businesses experience higher revenues and sales.
This boost in earnings can drive stock prices higher, as
investors expect better returns from companies. It also
results in higher consumer spending. This can benefit
companies that rely heavily on consumer purchases, such as



retail and consumer goods companies, which may
experience increased sales and profitability. Additionally, a
strong economy instills confidence in investors, leading
them to be more willing to take on risk and invest in the
stock market (as opposed to the fixed income market).
Positive sentiment can attract more buyers, leading to a rise
in stock prices (which may also attract speculative traders
who will push prices even higher). It is also possible that
central banks may implement policies to effectively control
inflation, which can be positive for stocks. Moderate
inflation rates and low interest rates can encourage
borrowing, investment, and business expansion.

Fixed income market

As the economy strengthens, central banks may increase
interest rates to prevent overheating and control inflation.
Rising interest rates lead to higher yields on new bonds,
making existing bonds with lower yields less attractive. As a
result, bond prices may decline, especially for long-term
bonds. Additionally, when the economy is strong and
businesses are performing well, investors may prefer to
allocate more of their funds to the potentially higher returns
offered by the stock market rather than fixed income
investments. The same reasoning applies to the fact that
there will be lower demand for safe haven assets such as
government bonds as investors are more confident about
the overall economic outlook. Consequently, demand for
such bonds may decrease, putting downward pressure on
prices.

Commodities



A strong economy typically translates to higher industrial
production and increased consumer spending. As a result,
the demand for commodities, especially industrial metals
like copper and steel, tends to rise due to their use in
manufacturing and construction. Economic growth also
leads to higher energy consumption. Therefore, oil and
natural gas demand often increases, pushing their prices
upward. Rising inflation expectations is a result of a growing
economy, and this may lead investors to turn to precious
metals (such as gold and silver) as a hedge against currency
devaluation and market uncertainties. Finally, agricultural
commodities (such as wheat and corn) may also witness a
rise due to increased consumer spending on food products.

Currencies

A robust economy typically attracts foreign investment and
boosts demand for the domestic currency. International
investors seek higher returns in a strong economy, leading
to increased demand for assets denominated in that
currency. As demand for the domestic currency rises, its
value appreciates relative to other currencies in the foreign
exchange market. Central banks may raise interest rates to
manage the rising inflation and ensure economic stability.
Higher interest rates attract foreign investors seeking better
returns, driving up demand for the domestic currency and
pushing its value higher. Similarly, a strong economy often
leads to increased exports, as domestic goods and services
become more competitive globally. This can improve the
country’s trade balance and contribute to a stronger
currency.



NOTE
These relationships are more complex in real life, as other factors such as political stability
and weather events enter into the equation. It is not uncommon to see violations and
structural breaks of these correlations and market logic. They may be used as rules of
thumb but never as foolproof conditions.

The concept of economic intuition refers to the rationality of selecting
features to predict a dependent variable. A basic example of applying
economic intuition to predict stock market returns is to select companies’
earnings and treasury yields as independent variables. Economic intuition is
recommended when creating sophisticated trading algorithms based on
exogenous and fundamental factors.

Some experts argue that technical indicators may not be enough to deliver a
full picture of what to expect next, but others point to the fact that
fundamental measures cannot be used in the short term, and sometimes long-
term data is not accessible or sufficient.

News Interpretation
News interpretation is the process of analyzing and understanding how news
events, economic indicators, geopolitical developments, and other relevant
information impacts financial markets. Before exploring how to analyze
news, it is important to refresh your knowledge of economic indicators:

Gross domestic product (GDP)

This measure represents the total monetary value of all
goods and services produced within a country’s borders
during a specific period, typically measured on a quarterly or
annual basis. GDP is used as a measure of the overall
economic health and performance of a nation.

Unemployment rate



This measure calculates the percentage of the labor force
that is unemployed and actively seeking employment. It is a
key metric used to assess the health of the job market and
overall economic conditions. The unemployment rate is
typically reported on a monthly basis by government
agencies. A lower unemployment rate is generally
considered positive as it indicates a healthier job market,
higher economic activity, and more opportunities for job
seekers. Conversely, a higher unemployment rate can be a
sign of economic challenges and underutilization of the
labor force. Policymakers closely monitor the
unemployment rate to gauge the effectiveness of their
economic policies and make informed decisions to address
employment-related issues.

Inflation rate

Simply put, inflation is the overall increase in the general
price level of goods and services in an economy over a
period of time. When inflation occurs, each unit of currency
buys fewer goods and services than it did previously. In
other words, inflation erodes the purchasing power of
money. Inflation is commonly measured using various price
indices, such as the consumer price index (CPI). It is typically
calculated on a year-on-year basis. You saw the CPI in
Chapter 3.

Central bank policy rates

Also known as benchmark rates, they represent the interest
rates set by a country’s central bank to influence and control
the overall economic activity and inflation within the
country. These rates serve as a primary tool of the monetary
policy. The most common central bank policy rate is the
overnight or policy rate, which is the interest rate at which
commercial banks can borrow or lend money to the central



bank on an overnight basis. This rate is crucial because it
influences various other interest rates in the economy,
including those charged on loans and earned on savings
accounts. Central banks use changes in policy rates to
achieve specific economic objectives, such as controlling
inflation, stimulating growth, and maintaining price stability.

Consumer confidence indices

These indices measure the level of optimism or pessimism
among consumers regarding their current and future
economic prospects. These indices are designed to gauge
consumer sentiment, which can provide insights into
consumer spending behavior and overall economic health.
Consumer confidence indices are usually based on surveys
conducted among a representative sample of households.

NOTE
Another important economic indicator is the ISM PMI, an indicator discussed in Chapter 9.

As a trader, news interpretation involves assessing the significance of news
items and determining their potential effects on asset prices. Consider the
following points when consuming news:

Different news items can affect various asset classes differently. For
instance, positive economic data might boost stocks but lead to a
decline in safe-haven assets like gold. Understanding the correlations
and inverse relationships between news events and assets is crucial.

News can shape market sentiment, leading to either bullish or bearish
trends. Traders must gauge how news is perceived by market
participants and how it may influence their behavior.



Some news has an immediate impact on markets, causing sudden price
movements, while other news may have a more gradual and prolonged
effect. Traders should be aware of the time sensitivity of news to
optimize their trading strategies.

In some cases, the market has already priced in expectations of certain
news events. Traders need to compare the actual news release with
market expectations to determine whether the news is a surprise or not.

NOTE
Staying informed through reputable financial news outlets (such as the Financial Times
and Bloomberg) and conducting thorough research can help traders make better-informed
decisions in a dynamic and ever-changing market environment.

Risk Management
Finding a predictive and profitable trading strategy is what will make you
money, but a sound risk management system is what will allow you to keep it.
In traditional finance, the most basic form of risk management is
diversification, which means to allocate your funds into different
uncorrelated asset classes so that you spread out the risk of capital
depreciation.

Another example of basic risk management is simply the avoidance of scams
that may plague the retail trading community every now and then.

Nowadays, there is a huge number of asset managers, signal providers, and
copytrading algorithms that promise high and consistent returns. The
abundance of these online services begs the question as to whether the
quality of the investment is worth it or not. There are three simple rules to
follow when you assess a trading service:

Guaranteed returns and scam are two interchangeable concepts. Avoid
falling into this trap.



Even the slightest vagueness in a track record is a major red flag. Ask
for transparent and interpretable results backed by third-party auditors.

The overwhelming majority of track records are fake, and the results are
mostly based on faulty backtests or selection bias. You have to always
be skeptical.

Another example of risk management is position sizing. Position sizing
refers to the process of determining the appropriate amount of capital to
allocate to a particular trade or investment. It involves calculating the
number of shares, contracts, or lots to trade based on various factors such as
risk tolerance, account size, and market conditions. Proper position sizing is
crucial for risk management and helps traders avoid excessive losses. Smart
trading algorithms have this functionality embedded in them when they trade
so that the positions are optimized based on a number of factors such as
volatility and expected return.

There are several techniques and methods for position sizing, such as the
following:

Fixed monetary amount

This method involves allocating a fixed monetary amount of
your trading capital to each trade. For example, you may
decide to risk $250 of your account on each trade. This
approach therefore assumes equal weights for every trade.

Fixed fractional

With this technique, you allocate a fixed fraction of your
trading capital to each trade. For instance, you may decide to
risk 1% of your account on each trade. As your account size
changes, the position size adjusts accordingly.

Kelly criterion



The Kelly criterion is a mathematical formula that calculates
the optimal position size based on the probability of winning
and losing trades. It takes into account the trader’s edge
(probability of success) and the payoff ratio. The formula
helps determine the percentage of capital to allocate to
maximize long-term growth while minimizing the risk of
ruin.

Hit ratio method

The hit ratio method is a technique I use that takes a
momentum approach with regard to winning and losing
streaks. It assumes that winning must be rewarded with
bigger positions while losing must be penalized with smaller
positions. The better the hit ratio, the bigger the positions get
and vice versa.

Basics of Risk Management
Risk management does not have to be complex. You can create a solid risk
management system by using the few simple techniques given in this section.

Stops and targets
A stop-loss order (stop) is an automatic order set during trade initiation to
ensure a minimal predetermined loss. For example, if you buy a few
contracts on gold at $1,500 in anticipation that it will go to $2,000, you may
place your stop-loss order at $1,250 so that if the price drops to $1,250, you
limit your losses to no more than $250. At the same time, your anticipation of
selling when the market price reaches $2,000 is known as a take-profit order
(target).



NOTE
The most basic risk management system for any trade is setting proper stops and targets
so that you are framing your expectations and limiting your risks.

There is one rule that you must never violate: always place stops and targets. Algorithms
easily allow you to automate this process.

Trailing stops
A trailing stop is a dynamic stop-loss order that follows the market price
whenever it goes in the expected direction, thus ensuring less loss and at
some point in time ensuring a no-loss trade. The best way to understand the
trailing stop order is through an example.

Suppose you go long on EURUSD at $1.0000 to target $1.0500. You set your
stop-loss order at $0.9900 to limit your losses. Now suppose two days have
passed and the current market price is at $1.0230, and you want to ensure that
your trade never loses money. The solution to this is a trailing stop order
where you move your stop from $0.9900 to $1.0000 so that, in the worst-
case scenario, when the market drops back to $1.0000 you close out and
break even.

Another way of ensuring at least some profit is to move the stop to $1.0100,
thus ensuring a profitable trade no matter what. Of course, the closer you
move your stop to the current market price, the more likely you are to be
stopped out at a profit.

NOTE
It is always a good idea to use trailing stops with trend-following strategies as they allow
you to ride the trend.

Economic calendar
The economic calendar is a form of risk avoidance as it shows the important
news releases that are expected to have an impact on the markets. Table 12-1



shows a hypothetical example of an economic calendar on a certain day.

Some traders trade based on the news, and therefore they like to trade ahead
of news releases or seconds after them to profit from volatility. Risk
management-wise, this is not recommended, as fluctuations are random
around news events, which can surprise the markets from time to time.

The best thing to do is to avoid trading around the times of an important
release that has historically caused some extreme variations. Examples may
include political announcements, GDP numbers, and FOMC meetings.

NOTE
FOMC stands for federal open market committee. This committee oversees the open
market treasury operations in the United States and makes decisions about the interest
rate.

Behavioral Finance: The Power of Biases

Table 12-1. Economic calendar

Time Country Event Impact
Prev
value

9:00 AM United
Kingdom

CPI High 1.00%

11:30 AM Germany Core CPI High 0.50%

4:30 PM USA Initial jobless
claims

Low 232,0

7:30 PM USA Interest rate
decision

High 1.50%



Behavioral finance, a field stemming from behavioral economics, attempts
to explain market anomalies and traders’ actions. By having a deep
understanding of behavioral finance, you will better understand why the
market reacts the way it does, especially around certain events and levels.

Financial markets are composed of the actions and reactions of different
human and robotic participants, which makes for a psychological and
quantitative stew. This explains the low signal-to-noise ratio—in other
words, why it is difficult to accurately forecast the market on a regular basis.
These actions and reactions are also referred to as biases, and they are
human shortcomings in response to certain events. Biases are the main
protagonists of this section, and they are divided into two categories:

Cognitive biases

These biases come from a lack of knowledge. Cognitive
biases generally involve incorrect conclusions based on
wrong market assumptions or bad research.

Emotional biases

These biases are mostly feelings driven and are impulsive in
nature. They are not caused by a lack of education but by a
lack of self-control and self-management.

Cognitive biases
This subsection lists some of the most common cognitive biases and their
market impact and offers recommendations on how to avoid them:

Conservatism bias

This occurs when a market participant is slow to react to
new information and places too much weight on base rates.
It is a type of failure to adapt. The way to deal with this bias is
to force yourself to be skeptical of the basic analysis and to
always be dynamic and ready for change. The market does



not always behave as it did in the past since it is forward
looking.

Confirmation bias

This occurs when the trader focuses on the type of
information that benefits their ongoing position and
dismisses the type of information that is not favorable to
their position. This is by far one of the most common biases
and is actually a normal state of mind that leads to
overconfidence over time. The best way to remedy this is to
remain impartial and neutral, which is easier said than done.
Another way is to automate the decision-making process
through scorecards highlighting the attractiveness (or not)
of the analyzed underlying assets. Humans in general suffer
from this bias—it is not just finance specific.

Illusion of control bias

This occurs when the trader overestimates their ability to
control the trade outcome. Mainly caused by a streak of
winning trades, this bias can lead to concentrated positions
due to a sense of power over the invested asset. Markets are
composed of a huge number of participants with trillions of
invested dollars and as such are unlikely to be impacted by
any single person (there are a few, very rare exceptions
involving small and illiquid assets). The way to remove the
illusion of control is to stay focused and humble and
understand that you are facing a semirandom environment
that changes its dynamics and drivers every day.

Hindsight bias

This occurs when a trader overestimates their past accuracy
and can lead to excessive risk taking. It is easy to look at past
charts and conclude that the subsequent direction was



obvious. Most backtests include a form of hindsight bias
since conditions were created at the end of the analyzed
period. Market technicians overestimate their abilities when
they see that some techniques worked well in the past but
fail to take into account the environment of the tested
period. Also, some configurations do not look the same
when they’re happening as when they are complete.
Hindsight bias can be hard to cure, but the best way is to
take into consideration the variables that were present
during the analyzed period to simulate the past environment
in a more realistic way.

Anchoring bias

This occurs when the trader’s opinion is anchored to a
certain base point and fails to change to incorporate new
information. As I have mentioned, the analyst or trader must
maintain a dynamic and open mindset. The best way to cure
this bias is to stay up to date with regard to new information
and pieces of data.

Availability bias

This occurs when the trader selects positions based on how
easily they can retrieve memories of them. This means that
familiar assets are more attractive than nonfamiliar assets,
which is a wrong assumption as opportunities may come
from any type of market. It is a type of mental shortcut
where the trader does not expend much effort in research.
To cure this bias, you must practice full due diligence before
selecting a universe of investable assets. Do not just trade
the EURUSD because you are familiar with it: expand your
horizons.

Loss aversion bias1



This occurs when the pain of losing is greater than the joy of
winning. It is by far the most common bias. Humans are
known to prefer not to lose money than to gain money, as
was demonstrated in “Prospect Theory: An Analysis of
Decision Making Under Risk” by Daniel Kahneman and
Amos Tversky (1977). Loss aversion could lead to decreased
risk taking and therefore decreased expected return.
However, the most significant effect is on the stop levels.
Loss-averse humans do not want to accept that they are
losing money and will see a losing position as an ongoing
position and, therefore, prefer to wait until it turns positive.
This is highly dangerous, as leaving positions without stop-
loss levels could lead to disastrous results. In addition, some
people close out of winning positions too quickly in fear that
they will turn negative (a form of fear of regret). The best
way to handle loss aversion is to automate the risk
management process and to respect the stop-loss and target
orders established at the initiation of the trade.

Emotional biases
This subsection lists some of the most common emotional biases and their
impact. As a reminder, while cognitive biases are related to a lack of
knowledge, emotional biases are related to psychological traits:

Overconfidence bias

This occurs when a trader enjoys a winning streak and
believes it is due to their superior ability to trade the
markets, which leads to holding concentrated positions and
excessive trading. A good streak will come to an end, and
thus the trader must always follow procedures and ensure
that they do not stray from the strategy.

Regret-aversion bias



This refers to staying in low-risk investments out of fear. This
really is all about the risk profile of the trader. There is no
right or wrong answer, but the fear of regret can make the
trader lose out on interesting opportunities. You should take
risks to make money, but only calculated risks.

Endowment bias

This occurs when the trader believes that the owned assets
are more valuable than the ones that are not owned. This
may hamper the trader’s opportunities and cause them to be
limited to the assets they already own, even if they decay
over time. The market has opportunities everywhere, and
participants must always be on the lookout for the next big
thing.

Summary
This chapter discussed miscellaneous trading topics that are helpful to guide
you in your trading journey. Trading must also encompass subjective
opinions so that objective ones are created. Risk management is a crucial
aspect of trading and investing that involves identifying, assessing, and
mitigating potential risks to protect capital and minimize losses. Its primary
goal is to preserve capital while aiming for consistent, long-term
profitability.

By finishing this chapter, you have gone through the book and have
understood how to develop machine and deep learning algorithms that aim to
forecast price returns and other time series. The journey does not stop here;
you must continue to experiment with the different techniques until you find a
strategy that suits your risk-reward profile the most.

You should also acknowledge how far you have come by completing this
book. Writing is a solitary endeavor, but it’s your engagement with the words
on these pages that brings the words to life. Your dedication to the material



and your willingness to embark on this adventure with me mean the world to
me.

I hope this book has inspired or enlightened you in some way. It was written
with love, passion, and a deep desire to simplify complex concepts. Your
presence in this narrative has made it all the more meaningful.

1  This is also considered an emotional bias.
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