DR. ALVIN'S PUBLICATIONS

DESCRIPTIVE Statistical measures

DR. ALVIN ANG

Purt	۱	4
Draw	ing Simple Visuals	4
Α.	How to Draw Simple Bar Chart	4
В.	How to Draw Simple Pie Chart	5
C.	How to Draw Simple Histogram	6
Part	١١	11
Meas	sures of Location	11
D. i. ii		11
Ε.	Median	-
	low to obtain the Median low to use Excel to obtain Median: Use the "Median" Function	
F.	Mode	14
G.	Comparison of Mean Vs Median Vs Mode	15
Danat		
Part	W	16
Meas A.	Range	
Meas A.	Bange	
Meas A. H B.	Range	16 16 17 17
Meas A. H B.	Range	16
Meas A. F B.	Range	16 16 16 17
Meas A. F B. F F F F	Range	16 16 16 17 17 17 18 19 19 19 20
Meas A. F B. F F F F	Range Now to obtain Range using Excel: Use "Max" & "Min" functions. Variance and Standard Deviation Population Variance and Population Standard Deviation Now to obtain Population Variance using Excel: Use "VAR.P" function Now to obtain Population Std. Dev. using Excel: Use "STDEV.P" function Nample Variance and Sample Deviation	16 16 16 17 17 17 18 19 19 19 20
Meas A. F B. F F F F	Range	16 16 16 17 17 17 18 19 19
Meas A. F B. F F F F F C. D.	Range	16
Meas A. F B. F F F F C. D.	Range Now to obtain Range using Excel: Use "Max" & "Min" functions. Variance and Standard Deviation Population Variance and Population Standard Deviation Now to obtain Population Variance using Excel: Use "VAR.P" function Now to obtain Population Std. Dev. using Excel: Use "STDEV.P" function Now to obtain Sample Deviation Now to obtain Sample Variance using Excel: Use "VAR.S" function Now to obtain Sample Variance using Excel: Use "STDEV.P" function Now to obtain Sample Variance using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel:	
Meas A. F B. F F F F F C. D.	Range Jow to obtain Range using Excel: Use "Max" & "Min" functions. Variance and Standard Deviation Jow to obtain Population Variance and Population Standard Deviation Jow to obtain Population Variance using Excel: Use "VAR.P" function. Jow to obtain Population Std. Dev. using Excel: Use "STDEV.P" function Jow to obtain Sample Deviation Jow to obtain Sample Variance using Excel: Use "VAR.P" function Jow to obtain Sample Variance using Excel: Use "STDEV.P" function Jow to obtain Sample Variance using Excel: Use "STDEV.S" function Jow to obtain Sample Variance using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. Using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev. Using Excel: Use "STDEV.S" function Jow to obtain Sample Std. Dev.	16
Meas A. H B. F H H C. D. E Part	Range Now to obtain Range using Excel: Use "Max" & "Min" functions. Variance and Standard Deviation Population Variance and Population Standard Deviation Now to obtain Population Variance using Excel: Use "VAR.P" function Now to obtain Population Std. Dev. using Excel: Use "STDEV.P" function Now to obtain Sample Deviation Now to obtain Sample Variance using Excel: Use "VAR.S" function Now to obtain Sample Variance using Excel: Use "STDEV.P" function Now to obtain Sample Variance using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel: Use "STDEV.S" function Now to obtain Sample Std. Dev. using Excel:	16

CONTENTS

2 | P A G E

A. Skewness and Coefficient of Skewness (CS)26
B. Kurtosis and Coefficient of Kurtosis (CK)27
Part V
Excel Descriptive Statistics Tool
Step 1
Install Excel Analysis Toolpak29
Step 2
Running the Descriptive Statistics
Step 3
Finding the Quartiles
Part VI
Measures of Association32
A. Covariance
B. Correlation
C. Excel Correlation Tool
How to obtain Correlations between Multiple Variables using Excel 39 Part VII 41
Others
Outliers
References
About the Authors
About Professor James Evans44
About Dr. Alvin Ang44

3 | P A G E

PART I

DRAWING SIMPLE VISUALS

A. HOW TO DRAW SIMPLE BAR CHART

T-Shirt Size	Frequency
XS	68
S	136
М	170
L	272
XL	34

Figure 1: T-Shirt Sizes

Step 1: Highlight the DataStep 2: Click on the Insert TabStep 3: Click on the Down Arrow showing 2-D ColumnStep 4: Edit and Adjust Accordingly

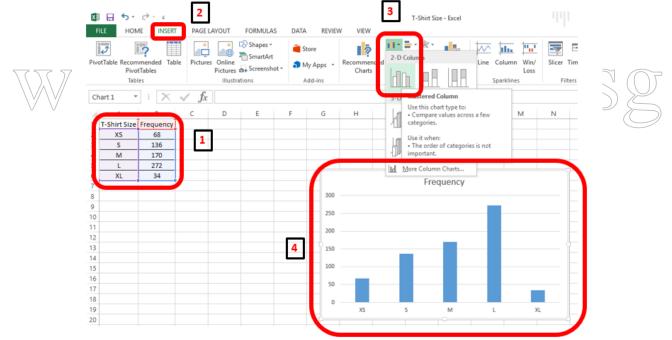


Figure 2: How to Draw Bar Chart

4 | PAGE

B. HOW TO DRAW SIMPLE PIE CHART

Step 1: Highlight the Data

Step 2: Click on the Insert Tab

Step 3: Click on the Down Arrow showing 2-D Column

Step 4: Edit and Adjust Accordingly

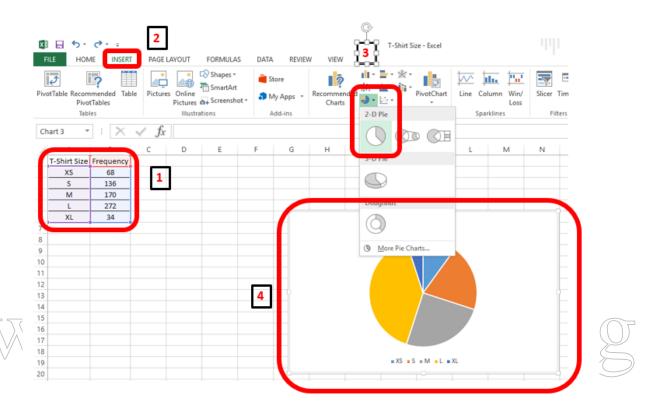


Figure 3: How to Draw Pie Chart

5 | P A G E

C. HOW TO DRAW SIMPLE HISTOGRAM

Step 1: This requires installing an additional add-on within Excel, the "Data Analysis Tool pak". Refer to Figure 24: Installing the Excel Analysis Tool Pak.

Step 2a: Given a set of data

Step 2b: Click on the Data Tab

Step 2c: Click on Data Analysis

Step 2d: Select the Histogram Option and click OK

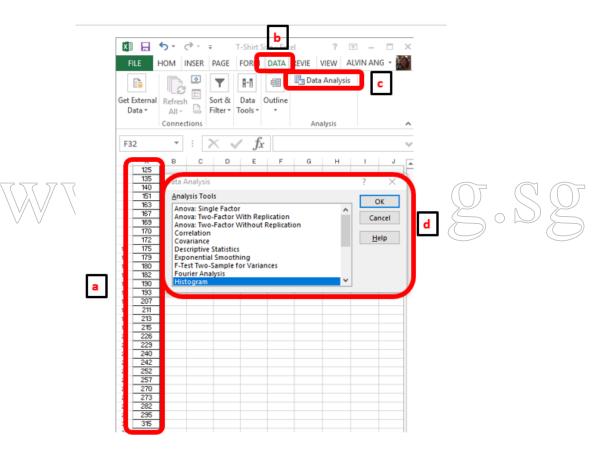


Figure 4: Navigating to the Histogram Option

6 | P A G E

Step 3a: For the Input Range, select all the data.

Step 3b: For the Output Range, select any empty cell on the sheet. We select C1 for now since its empty. It will appear as the top left hand corner for the output.

Step 3c: Select "Chart Output" and then click OK

		A	в	С	D E F G H I J K L	
	1	125				
	2	135			Histogram ? ×	
	3	140			Input	
	4	151			Input Range: SA\$1:\$A\$30	
	5	163				
	6	167			Bin Range:	
	7	169				
	8	170			Labels Help	
	9	172				
	10	175			Output options	
	11	179				
	12	180			🖲 Qutput Range: SCS1 🐹 b	
	13	182			O New Worksheet Ply:	
	14	190				
	15	193			🔿 New <u>W</u> orkbook	
	16	207			Derate (control histogram)	
	17	211			P <u>a</u> reto (sorted histogram)	
	18	213			Cumulative Percentage	
$\overline{575}$	19	215		_	Chart Output c	1
// \'-	20	226				u (())
V _	21	229				$) \geq$
/	22	240				
	23	242				
	24 25	252 257				
	26 27	270 273				
	27	273				
	28	282				
	30	315				
	30	SIS				

Figure 5: Setting the Histogram Parameters

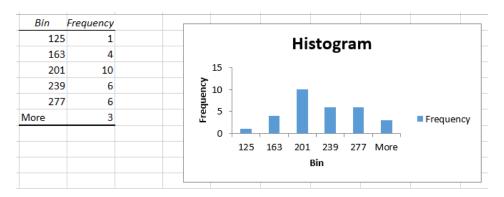


Figure 6: Histogram

Step 5: We are not satisfied with the Histogram drawn in Figure 6, thus we will do more editing. Step 6a: We repeat the steps in Step 2, only this time, we create the Bins as shown in Figure 7. Step 6b: We input the Bin Range.

Step 6c: We change the Output Range to cell E1. Anywhere on the spreadsheet, as long as it is an empty cell, is ok to select. Then click OK.

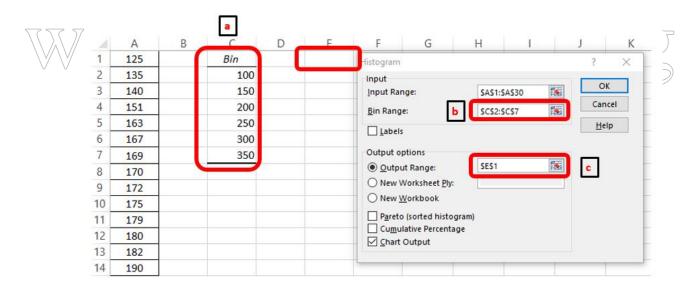


Figure 7: Setting up the Bins for Advanced Histogram

8 | P A G E

Step 7: New Output as shown.

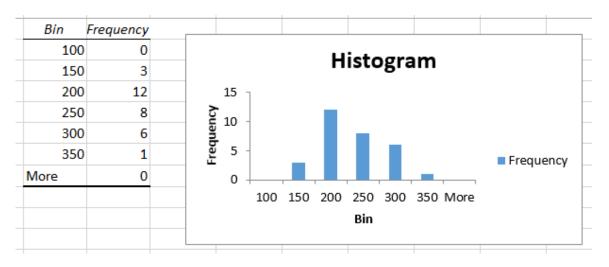


Figure 8: New Histogram with New Bins

Step 8a: Right click on any blue area within the rectangle.

Step 8b: Click on Format Data Series. A new side bar will appear.

Step 8c: Change the Gap Width to Zero.

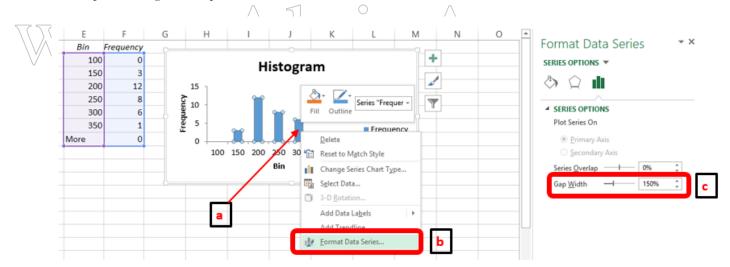


Figure 9: Adjusting the Bin Width

9 | P A G E

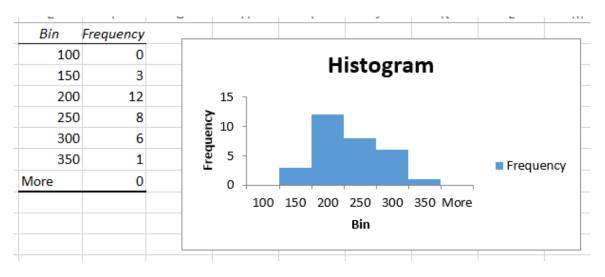


Figure 10: Final Histogram

Figure 10 shows how the final histogram looks like. Further editing to the main title, side title and legend can be done accordingly.

10 | P A G E

PART II

MEASURES OF LOCATION

D. MEAN

I. ARITHMETIC MEAN

For Population:
$$\mu = \frac{\sum X}{N}$$

Where:

- µ: Population Mean
- X: Any Value
- N: Number of Items in Population

For Sample:
$$\overline{X} = \frac{\sum X}{n}$$

Where:

II. WEIGHTED MEAN

$$\overline{X_w} = \frac{\sum_{i=1}^n w_i X_i}{\sum_{i=1}^n w_i}$$

Where:

- \overline{X}_{w} : Weighted Mean
- wi: Weight for that particular 'I'
- X_i: Value Associated for that particular 'i'

11 | P A G E

Weighted Mean Example:

Given:

- A hospital has 10 nurses
- 2 nurses earn \$14 per hour
- 3 nurses earn \$18 per hour
- 5 nurses earn \$28 per hour

- Weighted Mean =
$$\frac{(2 \times \$14) + (2 \times \$18) + (5 \times \$28)}{2 + 3 + 5} = \$22.20$$
 (ANS.)

How to use Excel to obtain Mean: Use the "Average" Function

A	В	С	D	
Supplier	Cost per order			
Hulkey Fasteners	\$ 82,875.00			
Steelpin Inc.	\$ 19,250.00			
Fast-Tie Aerospace	\$ 3,185.00			
Hulkey Fasteners	\$ 375.00			
MEAN	=AVERAGE(B2:B5			5.08
	AVERAGE(numbe	r1, [number	2],)	

Figure 11: Using the "Average" Function to obtain Mean

E. MEDIAN

HOW TO OBTAIN THE MEDIAN

- 1) Arrange all Data Values from Smallest to Largest
- 2) Select the Middle Value (this is the Median)
- 3) Half the observations are above the median and half are below it
- 4) If we have an even number of values, the Median is the average of the two middle numbers.

Median is a useful measure when we encounter data with an extreme value. Example:

\$115,000	\$118,000	\$126,000	\$135,000	\$350,000
		↑		
		median		

HOW TO USE EXCEL TO OBTAIN MEDIAN: USE THE "MEDIAN" FUNCTION

А	В	С	D	
Supplier	Cost per order			-
Hulkey Fasteners	\$ 82,875.00			T ()
Steelpin Inc.	\$ 19,250.00			SODE
Fast-Tie Aerospace	\$ 3,185.00			20
Hulkey Fasteners	\$ 375.00			
MEDIAN	=MEDIAN(B2:B5)		
	MEDIAN(numb	e r1 , [numbe	er2],)	

Figure 12: Using the "Median" Function to obtain Median

13 | P A G E

F. MODE

The mode is the observation that occurs most frequently. You can easily identify the mode from a frequency distribution by identifying the value having the largest frequency or from a histogram by identifying the highest bar. You may also use the Excel function MODE.SNGL(data range).

A		В	С	D
Supplier	Cost per order			
Hulkey Fasteners	\$	82,875.00		
Steelpin Inc.	\$	19,250.00		
Fast-Tie Aerospace	\$	3,185.00		
Hulkey Fasteners	\$	375.00		
Hulkey Fasteners	\$	375.00		
MODE	=M	ODE.SNGL(B	2:B6)	
	N	10DE.SNGL(nu	mber1, [nu	mber2],)

Figure 13: Using the "MODE.SNGL" to obtain the Mode

14 | P A G E

G. COMPARISON OF MEAN VS MEDIAN VS MODE

Advantages: Advantages: • Most widely used • Useful if we encourt	Advantages: Inter • Not affected by extremely large or small values.
	extremely large or
<i>measure of location</i> data with extreme value/s.	
 <i>Easiest to understand</i> and apply Not affected by extremely large or <i>All data values are</i> small values. 	Very easy to use.Quite popular.
 <i>included in the calculation</i> <i>The mean is unique –</i> <i>The mean is unique –</i> 	que – • All data values are used in the calculation.
The mean is unique – median for a set of data. for a set of data.	Most useful for data sets that contain small number of unique
• The sum of deviations of each value from the mean will always be zero	values
<i>i.e.</i> $\sum (X - \overline{X}) = 0$	
Disadvantages: Disadvantages:	Disadvantages:
 Mean gets affected by extreme value/s in dataset. Not all data values included in the calculation. The sum of deviati 	few repeating values, the mode does not provide much practical
of each value from median is not zero. • Not popular.	

15 | P A G E

PART III

MEASURES OF DISPERSION

Dispersion is a measure of the spread of data. A small value for a measure of dispersion indicates that the data are clustered closely, say, around the arithmetic mean. Thus the mean is considered representative of the data, that is, it is reliable. Conversely, a large measure of dispersion indicates that the mean is not reliable and is not representative of the data.

A. RANGE

Range = Largest Value – Smallest Value

	Advantages of using Range		Disadvantages of using Range
✓	It is easy to compute and understand.	√	It is influenced by extreme values.
~	Only two values are used in the calculation		

HOW TO OBTAIN RANGE USING EXCEL: USE "MAX" & "MIN" FUNCTIONS.

A	В	С	
Supplier	Cost per order		\mathbb{R}°
Hulkey Fasteners	\$ 82,875.00		
Steelpin Inc.	\$ 19,250.00		
Fast-Tie Aerospace	\$ 3,185.00		_
Hulkey Fasteners	\$ 375.00		-
RANGE	= MAX(B2:B5) -	MIN(B2:B5)	

Figure 14: Using "MAX" & "MIN" to obtain Range

16 | P A G E

B. VARIANCE AND STANDARD DEVIATION

POPULATION VARIANCE AND POPULATION STANDARD DEVIATION

Population Variance

here:
$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Where:

- σ^2 : Population Variance
- X : Observed Value in the Population
- μ : Mean of the Population
- N : Total number of Observations in the Population

The larger the variance, the more the data are spread out from the mean and the more variability one can expect in the observations.

	Advantages of using Variance		Disadvantages of using Variance
√	Not distorted by extreme observations.	√	Units are difficult to work with because they are "Units Squared" – for e.g. Dollars ² –
√	All observations are used in the calculations.		which does not make any sense.
√	<i>The squaring of the difference between X and µ helps by:</i>		
	i. Removing any negative differences		
	ii. Any difference that is <1 becomes much smaller, and ignored. Any difference >1 is amplified and taken into account largely.		

	Α		В	С			
1	Supplier	Cost	per order				
2	Hulkey Fasteners	\$	82,875.00				
3	Steelpin Inc.	\$	19,250.00				
4	Fast-Tie Aerospace	\$	3,185.00				
5	Hulkey Fasteners	\$	375.00				
6							
7	POPULATION VARIANCE	=VAR	.P(B2:B5)				
8		VAR.P(number1, [number2],					

HOW TO OBTAIN POPULATION VARIANCE USING EXCEL: USE "VAR.P" FUNCTION

Figure 15: Using "VAR.P" to obtain Population Variance

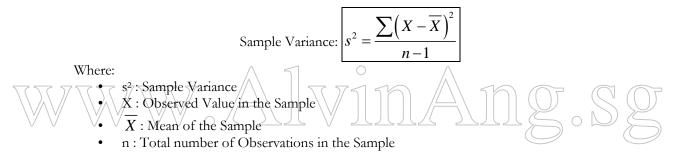
Population Standard Deviation: $\sigma = \sqrt{\frac{\sum (\lambda)}{2}}$

- σ : Population Variance
- X : Observed Value in the Population
- μ : Mean of the Population \leq
- N: Total number of Observations in the Population

A small standard deviation indicates that the data are clustered close to the mean, thus the mean is representative of the data. A large standard deviation indicates that the data are spread out from the mean and the mean is not as representative of the data.

Advantages of using Standard Deviation

- ✓ Easier to interpret than the variance because it uses the original units of measurement (e.g. Dollars, not Dollars²)
- ✓ It is the positive square root of the Variance.
- ✓ Easier to relate to the Mean. More widely used than Variance.


18 | P A G E

HOW TO OBTAIN POPULATION STD. DEV. USING EXCEL: USE "STDEV.P" FUNCTION

	Α	В				
1	Supplier	Cost per order				
2	Hulkey Fasteners	\$	82,875.00			
3	Steelpin Inc.	\$	19,250.00			
4	Fast-Tie Aerospace	\$	3,185.00			
5	Hulkey Fasteners	\$	375.00			
6			Ī			
7	POPULATION STD. DEV.	=STDE	V.P(B2:B5)			

SAMPLE VARIANCE AND SAMPLE DEVIATION

Why is the denominator changed to (n - 1)? This is because statisticians have shown that this provides a more accurate representation of the true population variance. The use of (n - 1) in the denominator provides an appropriate correction factor since "n" tends to underestimate the population variance.

19 | P A G E

HOW TO OBTAIN SAMPLE VARIANCE USING EXCEL: USE "VAR.S" FUNCTION

	A		В			
1	Supplier	Cost per order				
2	Hulkey Fasteners	\$	82,875.00			
3	Steelpin Inc.	\$	19,250.00			
4	Fast-Tie Aerospace	\$	3,185.00			
5	Hulkey Fasteners	\$	375.00			
6						
7	Sample Variance	=VAR	.S(B2:B5)			

Figure 17: Using "VAR.S" to obtain Sample Variance

Where:

- s: Sample Std. Dev.
- X : Observed Value in the Sample

HOW TO OBTAIN SAMPLE STD. DEV. USING EXCEL: USE "STDEV.S" FUNCTION

2	A		B			
1	Supplier	Cost per order				
2	Hulkey Fasteners	\$	82,875.00			
3	Steelpin Inc.	\$	19,250.00			
4	Fast-Tie Aerospace	\$	3,185.00			
5	Hulkey Fasteners	\$	375.00			
6						
F	Sample Variance	=STDE	V.S(B2:B5)			

Figure 18: Using "STDEV.S" to obtain Sample Standard Deviation

20 | P A G E

C. BOX PLOT, INTERQUARTILE RANGE (IQR), PERCENTILE

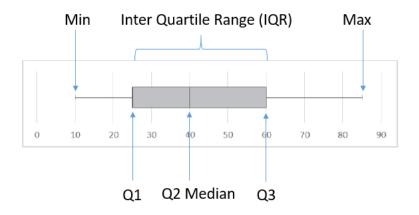
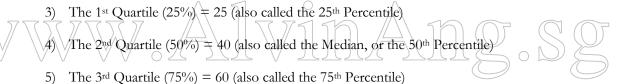



Figure 19: A Box Plot

Figure 19 shows a Box Plot. It shows:

- 1) The Minimum Value = 10
- 2) The Maximum Value = 85

6) The IQR = Q3 - Q1 = 60 - 25 = 35

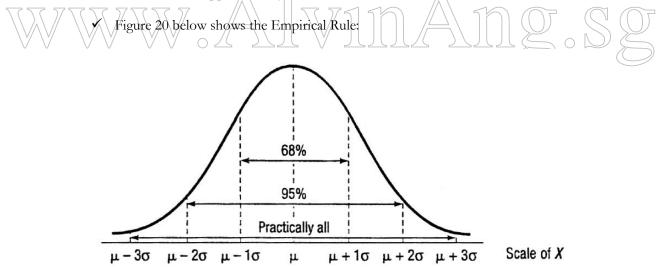
We can calculate the "Outlier Zones" by:

- a. ZONE 1 = (Q1 1.5*IQR) = (25 1.5*35) = -27.5
 - ✓ If Value < Zone 1 → Outlier
- b. ZONE 2 = (Q3 + 1.5*IQR) = (60 + 1.5*35) = 112.5
 - ✓ If Value > Zone 2 → Outlier

*Excel 2013 does not support Box Plot Charts.

*Go here to see how to build Box Plots: https://www.contextures.com/excelboxplotchart.html

21 | P A G E


D. CHEBYSHEV'S THEOREM AND EMPIRICAL RULE

Chebyshev's Theorem:

- ✓ Let k be the number of Std. Deviations (k>1)
- ✓ CHEBYSHEV THEOREM: The Proportion of Values (or Percentage of Observations) that lie within k is $\leq 1 \frac{1}{k^2}$
- \checkmark This theorem holds for all types of observations, regardless of the shape of its distribution.
- ✓ E.g. for k = 2 Std. Dev. \rightarrow ≥75% of the data lie within the 2 Std. Dev.
- ✓ E.g. for k = 3 Std. Dev. \rightarrow ≥89% of the data lie within the 3 Std. Dev.

Empirical Rule:

- ✓ Empirical Rule is derived from Chebyshev Theorem.
- ✓ Chebyshev Theorem holds for *ALL* distribution types, but Empirical Rule holds only for Normal or Approximately Normal Distribution.

✓ Figure 20: Empirical Rule holds for Normal Distribution Curve

22 | PAGE

- ✓ EMPIRICAL RULE:
 - 1) Within One Std. Dev. of the mean $(\mu \pm 1\sigma) \rightarrow \approx 68\%$ of all observations will lie within the area under the normal curve.
 - 2) Within Two Std. Dev. of the mean $(\mu \pm 2\sigma) \rightarrow \approx 95\%$ of all observations will lie within the area under the normal curve.
 - 3) Within Three Std. Dev. of the mean $(\mu \pm 3\sigma) \rightarrow \approx 99.7\%$ of all observations will lie within the area under the normal curve.
 - 4) Actual % may be higher or lower, depending on the shape of the distribution.
- ✓ To describe variability of practical data → $2\sim3$ Std. Dev. around the mean are commonly used.
- ✓ E.g. suppose an order is delivered at an average of 8 days with a Std. Dev. of 1 day. Using the 2nd Empirical Rule, you can tell a customer with 95% Confidence that their package should arrive within 6 to 10 days.

EXAMPLE 1 FOR CHEBYSHEV'S THEOREM AND EMPIRICAL RULE

Given:

- Sample Mean Income,
$$\mu = $72,000$$

Find:
- % who earn \$64,000 < X < \$80,000

Answer:

Step 1: Chebyshev Theorem:

$$k = \frac{X - X}{s} = \frac{\$64,000 - \$72,000}{\$4,000} = -2$$

$$k = \frac{X - X}{s} = \frac{\$80,000 - \$72,000}{\$4,000} = 2$$

- Formula:
$$1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = 0.75$$

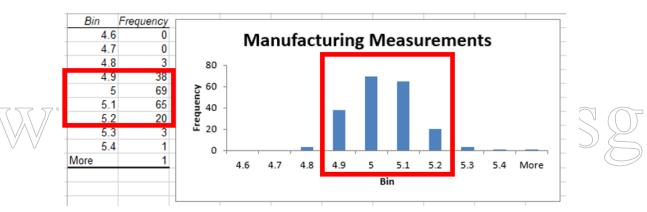
- 75% earns 64,000 < X < 80,000
- Step 2: Empirical Rule:
- If the distribution is normal, Rule 2 states: $(\mu \pm 2\sigma) \rightarrow \approx 95\%$ percent of all observations will lie within the area under the normal curve.
- Therefore 95% earns $X \pm 2s = \$72,000 \pm 2(\$4,000) \rightarrow \$64,000 < X < \$80,000$

23 | P A G E

EXAMPLE 2 FOR EMPIRICAL RULE: THE PROCESS CAPABILITY INDEX (CP)

The Process Capability Index (C_p) is a practical application of the Empirical Rule. C_p is used by manufacturers to evaluate the quality of their products. A C_p value less than 1.0 is not good; it means that the variation in the process is wider than the specification limits, signifying that some of the parts will not meet the specifications. In practice, many manufacturers want to have C_p values of at least 1.5. Figure 21 demonstrates how C_p can be implemented in Excel.

$C_p = \frac{\text{Upper Specification - Lower Specification}}{\text{Total Variaion}}$



24 | PAGE

Step 1: Data Set is given

Step 2: Mean and Std. Dev. Calculated using Excel (together with 3rd Empirical Rule, which is $\mu\pm3\sigma)$ \searrow

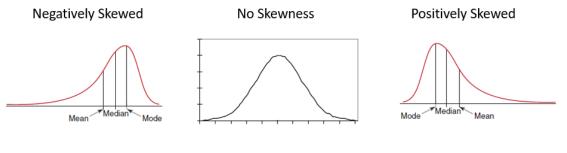
Manufacturing	Measureme	ents						
								Step 3: Calculate Total
5.21	5.87	4.85	4.95	5.07	4.96	4.96	5.11	Mean 4.99
5.02	5.33	4.82	4.86	4.82	4.96	5.06	5.11	Standard deviation 0.117 Variation (which is 5.34
4.90	5.11	5.02	5.13	5.03	4.94	4.86	5.08	- 4.640)
5.00	5.07	4.90	4.95	4.85	5.19	4.96	5.03	Mean - 3*Stdev 4.640
5.16	4.93	4.73	5.22	4.89	4.91	4.99	4.94	Mean + 3*Stdev 5.340
5.03	4.99	5.04	4.81	4.82	5.01	4.94	4.88	Total variaton 0.700
4.96	5.04	5.07	4.91	5.18	4.93	5.06	4.91	Chara A. Thana
5.04	5.14	4.81	4.95	5.02	5.05	4.95	4.86	Lower Specification 4.8 Step 4: These
4.98	5.09	5.04	4.94	5.05	4.96	5.02	4.89	Upper Specification 5.2 - Specifications are given
5.07	5.06	5.03	4.81	4.88	4.92	5.01	4.91	Specification range 0.4 by the Management
5.02	4.85	5.01	5.11	5.08	4.95	5.04	4.87	. J by the Management
5.08	4.93	5.14	4.81	4.98	5.08	5.01	4.93	Cp 0.57
4.85	5.04	5.12	4.97	5.02	4.97	5.02	5.14	A
4.90	5.09	4.89	5.07	4.99	5.04	5.03	4.87	
4.97	5.07	4.91	5.03	5.02	4.94	5.18	4.98	
5.09	4.99	4.97	4.81	5.03	4.98	5.08	4.88	
4.89	5.01	4.98	4.95	5.02	5.03	5.14	4.88	 Step 5: Use the Total Variation and the
4.87	4.88	5.01	4.89	5.07	5.05	4.92	5.01	Specification Range to calculate the Cp.
5.01	4.93	5.01	5.08	4.95	4.91	4.97	4.93	
4.97	5.10	5.09	4.93	4.95	5.09	4.92	4.93	
4.76	4.94	4.93	4.99	4.94	5.21	5.14	4.99	
4.94	4.88	5.04	4.94	5.12	4.87	4.92	4.91	
4.92	4.89	5.11	5.13	5.08	5.02	5.03	4.96	
4.91	4.89	5.07	5.02	4.91	4.81	4.98	4.78	
4.96	5.02	5.13	5.13	4.92	4.98	4.89	4.88	

Step 6: Draw histogram with different Bins.

Step 7: Anything outside the Specification Range is rejected (total 8/200 measurements are rejected = 4% defective and 96% were acceptable).

Conclusion:

- This shows that the 3^{rd} Empirical Rule ($\mu \pm 3\sigma$) holds ($\approx 99.7\%$ coverage).
- Although this doesn't meet the empirical rule exactly (since its 96%), we are dealing with sample data.
- Other samples from the same process would have different characteristics.
- The Empirical Rule provides a good estimate of the total variation in the data that we can expect from any sample.

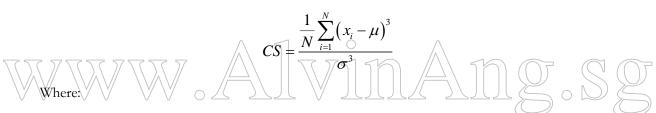

Figure 21: Steps to Implement C_p

25 | P A G E

PART IV

MEASURES OF SHAPE

A. SKEWNESS AND COEFFICIENT OF SKEWNESS (CS)



Mean < Median < Mode

Mean = Median = Mode

Mode < Median < Mean

Figure 22: Skewness

- ✓ CS: Coefficient of Skewness
- ✓ Skewness = Lack of Symmetry of Data
- ✓ N: Population Size
- \checkmark x_i : Individual Value of each of the Population
- ✓ μ : Population Mean
- ✓ σ : Population Std. Dev.
- ✓ If $CS > 1 \rightarrow$ Highly Positively Skewed
- ✓ If CS < -1 → Highly Negatively Skewed
- ✓ If $CS = 0 \rightarrow No$ Skewness

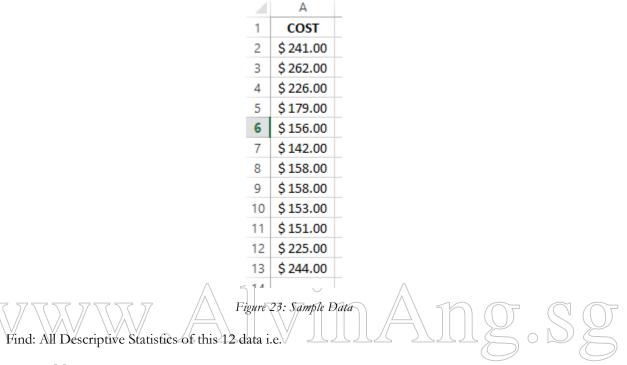
26 | P A G E

- ✓ If -0.5 < CS < 0.5 → Almost no Skewness
- ✓ If -0.5 < CS < -1 → Moderate Negative Skewness
- ✓ If $0.5 < CS < 1 \rightarrow$ Moderate Positive Skewness
- ✓ If using Sample Data (rather than Population) → Replace the μ and σ (in the equation) with \overline{x} (Sample Mean) and s (Sample Std. Dev.) respectively.
- ✓ To find Skewness using EXCEL Function \rightarrow SKEW (data range)

B. KURTOSIS AND COEFFICIENT OF KURTOSIS (CK)

$$CK = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^4}{\sigma^4}$$

Where:


- ✓ CK: Coefficient of Kurtosis
- ✓ Kurtosis = Peakedness (High / Narrow) or Flatness (Short / Flat Topped) of the Histogram
- ✓ If CK > 1 → Highly Peaked
- ✓ If CK < 1 → Very Flat
 ✓ If -0.5 < CS < 0.5 → Relatively Normal Distribution
 - ✓ If -0.5 < CS < -1 → Moderate Flat
 - ✓ If $0.5 < CS < 1 \rightarrow$ Moderate Peaked
 - ✓ If using Sample Data (rather than Population) → Replace the μ and σ (in the equation) with \overline{x} (Sample Mean) and s (Sample Std. Dev.) respectively.
 - ✓ To find Kurtosis using EXCEL Function \rightarrow KURT (data range)

27 | PAGE

PART V

EXCEL DESCRIPTIVE STATISTICS TOOL

Example: Given these 12 data:

- Mean
- Median
- Mode
- Variance
- Std. Dev.
- Range
- Skewness
- Kurtosis
- All Quartiles: Q_1 , Q_2 , Q_3

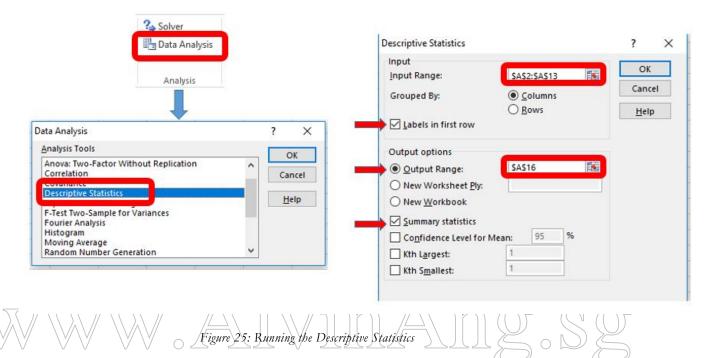
28 | P A G E

STEP 1

🗱 🔒 🗲 👌 (ϵ) HOME Excel Option × 2 Colors 🕶 Aa View and manage Microsoft Office Add-ins. A Fonts -Formula Themes Þ Add-ins Effects 🕶 Proofing New Save Name ^ Active Applic Solver Add-in Location Туре Themes alication Add.inc Language Open C:\...ffice15\Library\SOLVER\SOLVER.XLAM Excel Add-in Advanced C6 -Analysis ToolPak Analysis ToolPak - VBA Date (XML) EndNote (Cwyw Citation Recogn Euro Currency Tools Financial Symbol (XML) Inquire Microsoft Actions Pane 3 Microsoft Actions Pane 3 CL_SERVISENT Construction CL_SID_BindYANDFREMALVISIZALL Excel Add-in CL_SID_BindYANDFREMALVIAND Excel Add-in CL_SID_SIDYANDFRANCH Excel Add-in CL_SID_SIDYANDFRANCH Excel Add-in CL_SID_SIDYANDFRANCH Excel Add-in CL_SIDYANDFRANCH Excel Add-in А В Add-los COST 1 \$241.00 2 3 \$262.00 Microsoft Power Map for Excel Microsoft Power Pivot for Exce Microsoft Power View for Excel 4 \$226.00 Share \$179.00 5 lated Add-in ent Re Export 6 \$156.00 Analysis ToolPak Microsoft Corporation No compatibility information available C\Program Files\Microsoft Office\Office15\Librar\Analysis\ANALYS32.XLL Add-in: Publisher \$142.00 7 íty: Compatib Location: 8 \$158.00 \$158.00 9 Description: Provides data analysis tools for statistical and engineering analysis 10 \$153.00 Account Manage: Excel Add-ins 🗸 Go... 11 \$151.00 12 \$225.00 OK Cancel 13 \$244.00 14 Add-Ins ? × OK Euro Currency Tools Cancel Browse Automation... Analysis ToolPak Provides data analysis tools for statistical and engineering analysis DATA REVIEW VIEW Show Detail Solver K Clear ections Y **₽** 21 ZA Reapply rties Sort Filter Advanced Columns Fill Duplicates Validation * Analysis * Group Ungroup Subtotal inks Sort & Filter Data Tools Outline Analysis

INSTALL EXCEL ANALYSIS TOOLPAK

Figure 24: Installing the Excel Analysis Tool Pak

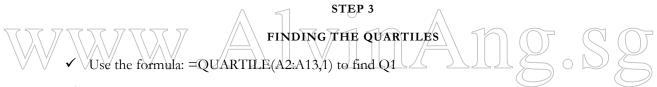

✓ Click File \rightarrow Options \rightarrow Add – Ins \rightarrow Select "Excel Add-Ins" \rightarrow Go...

29 | PAGE

✓ Select "Analysis Tool Pak" \rightarrow OK \rightarrow Data \rightarrow Data Analysis should appear

STEP 2

RUNNING THE DESCRIPTIVE STATISTICS



- ✓ Click Data Analysis → Select Descriptive Statistics → OK
- ✓ Select "Input Range" of Data → Select "Labels in first row"
- ✓ Select "Output Range" for Display of Descriptive Statistics → Select "Summary Statistics
 → OK
- ✓ All Descriptive Statistics will appear.

30 | P A G E

COST						
Mean	191.25					
Standard Error	12.82819					
Median	168.5					
Mode	158					
Standard Deviation	44.43816					
Sample Variance	1974.75					
Kurtosis	-1.75678					
Skewness	0.428482					
Range	120					
Minimum	142					
Maximum	262					
Sum	2295					
Count	12					

Figure 26: All Descriptive Statistics

- ✓ Use the formula: =MEDIAN(A2:A13) to find Q2
- ✓ Use the formula: =QUARTILE(A2:A13,3) to find Q3

، =Q	UARTILE(A	1:A13,3)
С	D	Е
Q1	155.25	
Q2	\$168.50	
Q3	229.75	
1		

Figure 27: All Quartiles

31 | P A G E

PART VI

MEASURES OF ASSOCIATION

A. COVARIANCE

$$\operatorname{cov}_{P}(X,Y) = \frac{\sum_{i=1}^{N} (x_{i} - \mu_{x}) (y_{i} - \mu_{y})}{N}$$

Where:

- X: 1st Variable
- Y: 2nd Variable
- cov_p (X,Y): Population Covariance
- N: Population Size
- x_i : Random Variable x, where i = 1, 2, 3, ..., N
- y_i : Random Variable y, where i = 1, 2, 3, ..., N
- μ_x : Population Mean of X/
- u_y: Population Mean of Y
 - 1. $cov_P(X,Y)$ is a measure of the linear association between two variables, X and Y.
 - 2. The larger the $cov_P(X,Y) \rightarrow$ the higher the degree of *linear* association between X and Y.
 - 3. Positive $cov_P(X,Y) \rightarrow direct$ relationship (i.e., one variable increases as the other increases)
 - 4. Negative cov_P (X,Y) → inverse relationship (i.e., one variable increases while the other decreases, or vice versa).
 - 5. Scatter Diagram shows the strength of linear association between two variables and the sign of the covariance. (Figure 28)
 - 6. Population Covariance Excel function = COVARIANCE.P (array1, array2).

32 | P A G E

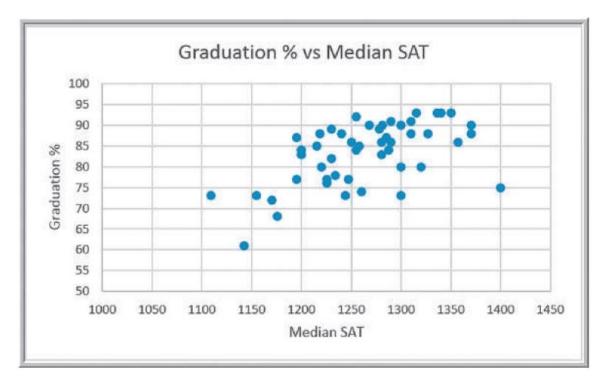
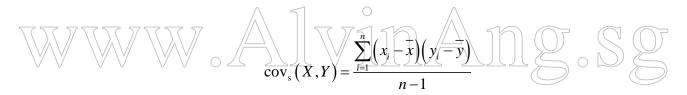



Figure 28: Scatter Diagram showing Positive Covariance (Evans, 2014)

Where:

- cov_s (X,Y): Sample Covariance
- n: Sample Size
- \overline{x} : Sample Mean of X
- y : Sample Mean of Y

HOW TO OBTAIN SAMPLE COVARIANCE USING EXCEL

- 1. Sample Covariance Excel function = COVARIANCE.S(array1, array2)
- 2. Figure 29 shows how to obtain the Sample Covariance; which is reflected in Figure 28.

B	52 👻 :	$\times \checkmark f_x$	=COVA	RIANCE.S(A	A2:A50,B2:	B50)
	А	B	С	D	E	F
1	Graduation % (X)	Median SAT (Y)				
2	93	1315				
3	80	1220				
4	88	1240				
5	68	1176				
6	90	1300				
7	90	1281				
8	84	1255				
9	75	1400				
10	80	1300				
46	78	1234				
47	86	1250				
48	91	1290				
49	93	1336				
50	93	1350				
51						
52	COVARIANCE.S	263.3703231				

Figure 29: Obtaining the Sample Covariance using Excel

34 | P A G E

B. CORRELATION

- 1. Correlation is a "better" version of Covariance.
- 2. Correlation is more widely used over Covariance.
- 3. Why? Because
 - Reason 1: Covariance has no definite measure of "strength" of relationship. Correlation has a definite measure.
 - The scale of Correlation is between -1 and +1
 - +1 = very strong positive *linear* correlation
 - -1 = very strong negative *linear* correlation
 - 0 = no *linear* relationship
 - The scale of Covariance is between $-\infty$ and $+\infty$
 - $+\infty =$ very strong positive *linear* correlation
 - $-\infty$ = very strong negative *linear* correlation
 - 0 = no linear relationship
 - Since Covariance is between ∞ and $+\infty$, there is no actual/relative way to represent "strong" and "weak". (i.e. how strong is strong? How weak is
 - weak? We can't tell by the numbers!)
 - Since Correlation is between -1 and +1, there is a definite way to represent ("strong" and "weak".
 - o Reason 2: Covariance has "units" but Correlation has no "units".
 - If you look at the Covariance equation i.e. cov (X,Y), you will realize that there are units tied to it. E.g. if X is in "cm" and Y is in "cm", then cov (X,Y) will end up in "cm²" (which does not make any sense).
 - But Correlation has no units. Its value [-1, +1] solely represents "strength" of relationship.
 - Reason 3: Covariance is affected by scale. Correlation is not.
 - For example cov (X,Y) → initially we let X: cm and Y: cm, for standardization.
 - But later, we change X: m and Y: cm.

35 | P A G E

- This means that for all X, we have to divide by 100 to change it to m.
- cov (X: cm, Y: cm) will then change and be different from cov (X: m, Y: cm).
- This makes it difficult to assess the strength.
- But since Correlation is unit-less, its strength is still measured between [-1, +1]. There is no change.

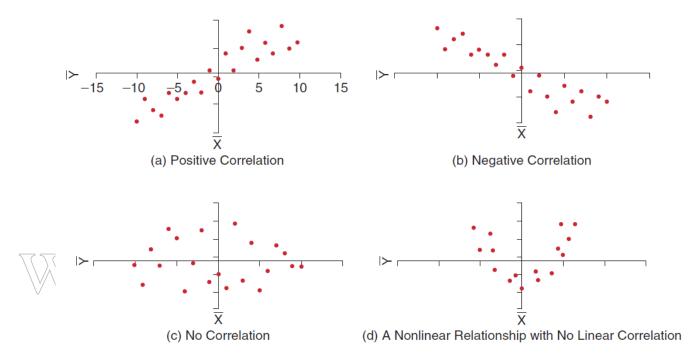
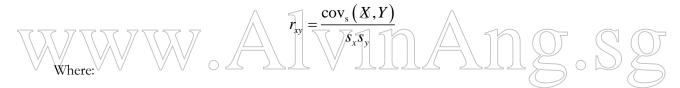


Figure 30: Scatter Diagrams showing Correlation (Evans, 2014)


- 4. For Figure 30(d), the relationship is not linear and the correlation is zero.
- 5. In real life, do a scatter plot to observe the relationship between two variables first. Do this before obtaining the Correlation Coefficient.

36 | P A G E

$$\rho_{xy} = \frac{\operatorname{cov}_{p}(X,Y)}{\sigma_{x}\sigma_{y}}$$

Where:

- ρ_{xy} : Population Correlation
 - o aka Pearson Product Moment Correlation Coefficient
 - o aka Correlation Coefficient
- cov_p (X,Y): Population Covariance
- σ_x : Population Std. Dev. Of X
- σ_{v} : Population Std. Dev. Of Y
- By dividing the covariance by the product of the standard deviations, we are essentially scaling the numerical value of the covariance to a number between -1 and 1.

- r_{xy} : Sample Correlation
- cov_s (X,Y): Sample Covariance
- S_x : Sample Std. Dev. Of X
- s_y : Sample Std. Dev. Of Y

HOW TO OBTAIN SAMPLE CORRELATION USING EXCEL

- 1. Sample Correlation Excel function = CORREL(array1, array2).
- 2. Figure 29 shows how to obtain the Correlation.
- 3. Note: in Excel, the CORREL function outputs only one Correlation (Population Correlation = Sample Correlation)

B	52 👻 :	$\times \checkmark f_x$	=CORREL	(A2:A50,B	2:B50)
4	А	В	С	D	E
1	Graduation % (X)	Median SAT (Y)			
2	93	1315			
3	80	1220			
4	88	1240			
5	68	1176			
40	86	1280			
41	88	1218			
42	61	1142			
43	73	1109			
44	84	1287			
45	76	1225			
46	78	1234			
47	86	1250			
48	91	1290			
49	93	1336			
50	93	1350			
51					
52	CORREL Function	0.564146827			

Figure 31: Obtaining the Sample Correlation using Excel

38 | P A G E

C. EXCEL CORRELATION TOOL

HOW TO OBTAIN CORRELATIONS BETWEEN MULTIPLE VARIABLES USING EXCEL

- 1. Follow Step 1: Install Excel Analysis Toolpak (Page 29) to install the Analysis Toolpak
- 2. Click on Data Analysis \rightarrow Correlation \rightarrow OK

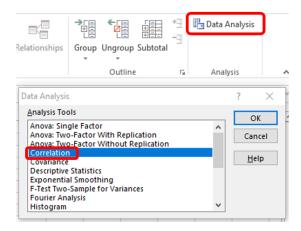


Figure 32: Go to "Data Analysis" to find "Correlation"

- 5. Select the Output Range anywhere on the **<u>SAME</u>** sheet
 - *Note 1: All the Data Columns must be *contiguous* to each other (next to each other).
 - *Note 2: The output range must be on the <u>SAME</u> sheet, or else an error will pop up.

39 | P A G E

		B	<u> </u>	D	E	F	G	н	· ·	,	K		+
4	Median SAT	Acceptance Rate	Expenditures/Student	Top 10% HS	Graduation %		_	L					4
	1315	22%	\$ 26,636	85	93								
	1220	53%	\$ 17,653	69	80								
	1240	36%	\$ 17,554	58	88	Correlat	ion					?	
	1176	37%	\$ 23,665	95	68	Input							_
	1300	24%	\$ 25,703	78	90	Input	Range		SAS1:	SES50	1	OK	
	1281	24%	\$ 24,201	80	90							Cance	el
	1255	56%	\$ 18,847	70	84	Group	ed By:		● <u>C</u> ol				
	1400	31%	\$ 102,262	98	75		0 <u>R</u> ow			WS		Help	•
	1300	40%	\$ 15,904	75	80	✓ Labels in first row							
	1280	41%	\$ 30,882	87	86	Outpu	t ontic						
	1218	37%	\$ 19,365	77	88				and a		17 12		
1	1142	43%	\$ 26,859	96	61	● Qu	Itput F	lange:	SHS1		156		
1	1109	32%	\$ 19,684	82	73	O Ne	w Wo	ksheet <u>P</u> ly:					
•	1287	43%	\$ 20,179	53	84	ON	w Wo	kbook					
5	1225	54%	\$ 39,883	71	76	0		No o o n					
5	1234	29%	\$ 17,998	61	78		_						
	1250	49%	\$ 27,879	76	86								
1	1290	35%	\$ 19,948	73	91								
	1336	28%	\$ 23,772	86	93								
	1350	19%	\$ 52,468	90	93								

Figure 33: Select the relevant cells for Input and Output

- 6. Figure 34 shows the final output of the Excel Correlation Tool
 - 0 The diagonal "1"s represent that variables are perfectly correlated with themselves.

\Box		7	1 77711	h A ih		() 1) 1)
\bigvee	Н	I.	J	К	L	м
		Median SAT	Acceptance Rate	Expenditures/Student	Top 10% HS	Graduation %
	Median SAT	1				
	Acceptance Rate	-0.601901959	1			
	Expenditures/Student	0.572741729	-0.284254415	1		
	Top 10% HS	0.503467995	-0.609720972	0.505782049	1	
	Graduation %	0.564146827	-0.55037751	0.042503514	0.138612667	1

Figure 34: Output of Excel Correlation Tool

PART VII

OTHERS

OUTLIERS

- \checkmark There is no standard definition of what constitutes an outlier.
- \checkmark It is just an unusual observation as compared with the rest.
- ✓ Sometimes, individual variables might not exhibit outliers, but combinations of them might.

HOW TO DETERMINE OUTLIERS?

- 1. Method 1: Visual Inspection
 - Check the data for errors:
 - Misplaced decimal point?
 - Typo error?
 - Use histograms to identify outliers visually.

2. Method 2; Empirical Bule 1111 All S o S

• Anything > 3σ or $<3\sigma$ = Outliers

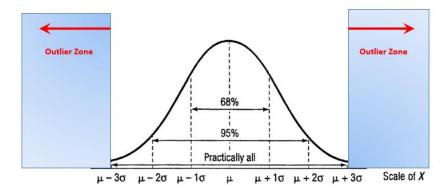
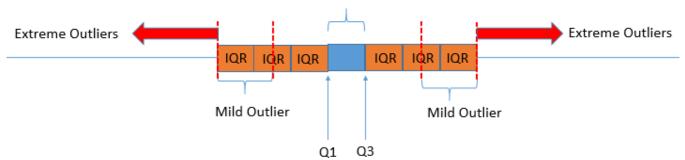
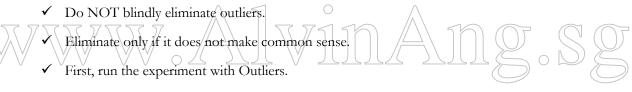



Figure 35: Using Empirical Rule to Determine Outliers

41 | P A G E


- 3. Method 3: Inter Quartile Range (IQR)
 - On Page 21 (Box Plot, Interquartile Range (IQR), Percentile), we determined one way of finding outlier by zones.
 - Here, we refine the zones (Figure 36: IQR outliers)

Inter Quartile Range (IQR)

Figure 36: IQR outliers

WHAT SHOULD WE DO WITH THE OUTLIERS?

✓ Then, run the experiment without Outliers.

✓ Lastly, compared both results critically.

REFERENCES

EVANS, J. R. 2014. *Business analytics*, Harlow Pearson, [2014] Pearson new international edition.

43 | P A G E

ABOUT THE AUTHORS

ABOUT PROFESSOR JAMES EVANS

James R. Evans is a professor in the Department of Operations, Business Analytics, and Information Systems in the College of Business at the University of Cincinnati. He holds BSIE and MSIE degrees from Purdue and a PhD in Industrial and Systems Engineering from Georgia Tech. He has also served on numerous journal editorial boards and is a past-president and Fellow of the Decision Sciences Institute. A recognized international expert on quality management, he served on the Board of Examiners and the Panel of Judges for the Malcolm Baldrige National Quality Award. Much of his current research focuses on organizational performance excellence and measurement practices.

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at www.AlvinAng.sg.

44 | P A G E