

Rui Costa and Drew Hodun

Google Cloud Cookbook
Practical Solutions for Building

and Deploying Cloud Services

978-1-492-09289-6

[LSI]

Google Cloud Cookbook
by Rui Costa and Drew Hodun

Copyright © 2022 Rui Santos Costa and Andrew Hodun. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Jeff Bleiel
Production Editor: Caitlin Ghegan
Copyeditor: nSight, Inc.
Proofreader: Kim Wimpsett

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2021: First Edition

Revision History for the First Edition
2021-10-07: First Release

See https://oreil.ly/ko0Ge for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Google Cloud Cookbook, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
https://oreil.ly/ko0Ge

Table of Contents

Preface. vii

1. Introduction. 1

2. Cloud Functions. 25
2.1 Creating a Public HTTP Google Cloud Function 26
2.2 Authenticating an HTTP Google Cloud Function 27
2.3 Accessing Environment Variables at Runtime 29
2.4 Sending Emails from Cloud Functions with SendGrid 30
2.5 Deploying Cloud Functions with a GitLab CI/CD Pipeline 33
2.6 Responding to SMS Messages with Twilio and Cloud Functions 37
2.7 Unit Testing with GitLab and Cloud Functions 39
2.8 Building an API Gateway to Gather Telemetry Data 42

3. Google Cloud Run. 47
3.1 Deploying a Prebuilt Hello World Container 48
3.2 Building Your Own Hello World Container 51
3.3 Using Cloud Run with a Custom Domain 54
3.4 Triggering a Cloud Run from Cloud Pub/Sub 56
3.5 Deploying a Web Application to Cloud Run 61
3.6 Rolling Back a Cloud Run Service Deployment 63
3.7 Deploying Cloud Run Services in a Gradual Rollout 64
3.8 Cloud Run Configuration Parameters 65

4. Google App Engine. 69
4.1 Deploying a Hello World to App Engine (Standard) 70
4.2 Deploying a Hello World to App Engine (Flexible) 71
4.3 Securing Your Application with Identity-Aware Proxy 73

iii

4.4 Mapping Custom Domains with App Engine 76
4.5 Using the Google Cloud Translation Machine Learning APIs with App

Engine 78
4.6 Building User Interfaces for Viewing Charts and Graphs 80
4.7 Debugging an Instance 88
4.8 Using CI/CD 89

5. Google Cloud Compute Engine. 91
5.1 Creating a Windows Virtual Machine 91
5.2 Creating a Linux Virtual Machine and Installing NGINX 93
5.3 Connecting to Your Windows Virtual Machines with Identity-Aware

Proxy TCP Forwarding 96
5.4 Securing Your Virtual Machine Logins with Two-Step Verification 100
5.5 Running Startup Scripts 102
5.6 Creating a Group of NGINX Web Servers with a Managed Instance

Group 105
5.7 Deploying Containers to Managed Instance Groups 107
5.8 Transferring Files to Your Virtual Machine 109
5.9 Using VM Manager for Patch Management 111
5.10 Backing Up Your Virtual Machine 113

6. Google Cloud Kubernetes Engine. 115
6.1 Creating a Zonal Cluster 115
6.2 Creating a Regional Cluster 117
6.3 Resizing a Cluster 118
6.4 Automatically Routing Traffic to the Nearest Cluster with Multi-Cluster

Ingress 121
6.5 Deploying a Spring Boot Java Application 126
6.6 Deploying a Java Application to Kubernetes, Using Skaffold 129
6.7 Using GKE Autopilot for Running an Application You Don’t Have to

Manage 130

7. Working with Data. 133
7.1 Speeding Up Cloud Storage Bulk Transfers by Multiprocessing 133
7.2 Speeding Up GCS Transfers for Large Files with Parallel Composite

Uploads 135
7.3 Mounting GCS as a Filesystem 136
7.4 Automatically Archiving and Deleting GCS Objects 138
7.5 Creating and Restoring from Persistent Disk Snapshots in GCE 140
7.6 Using Interleaved Tables in Your Cloud Spanner Database 142
7.7 Locking Down Firestore Database So a User Can Edit Only Their Data 147

iv | Table of Contents

8. BigQuery and Data Warehousing. 149
8.1 Using Cloud Console to Run a BigQuery Query 149
8.2 Loading Data to BigQuery from CSV 152
8.3 Building a Pivot Table in BigQuery 156
8.4 Adding Partitioned and Clustered Columns to an Existing Table 158
8.5 Adding Clustering to a Table That Can’t or Shouldn’t Be Partitioned 162
8.6 Selecting the Top-1 Result 163
8.7 Merging Tables in BigQuery Without Duplicates 165
8.8 Deduplicating Rows in BigQuery with Timestamps 167
8.9 Undeleting a Table in BigQuery 169
8.10 Streaming JSON or Avro Data into BigQuery with a Dataflow Template 170

9. Data Processing Tools. 175
9.1 Cleaning Data Using the Data Fusion GUI 175
9.2 Running a Simple Python Dataflow Pipeline 180
9.3 Building a Streaming Pipeline in Dataflow SQL 184
9.4 Querying BigQuery from a Dataproc Job 188
9.5 Adding Event Timestamps to Pub/Sub 191
9.6 Inferring and Using Schemas in Dataflow 192
9.7 Mini-batching and Streaming Dataflow Data to BigQuery Using Filters 195
9.8 Triggering a Dataflow Job Automatically from a GCS Upload 197

10. AI/ML. 201
10.1 Creating a Vertex AI Notebook 201
10.2 Training a Python ML Model Serverlessly 204
10.3 Making Serverless Predictions with a Python Model 206
10.4 Creating a Custom Notebook Environment 208
10.5 Extracting Data from BigQuery to Pandas for Model Training 210
10.6 Training a Model in SQL with BQML 213

11. Google Cloud Security and Access. 217
11.1 Creating a Service Account 217
11.2 Creating Custom Roles to Access a Cloud Storage Bucket 219
11.3 Authenticating an Application Running on Kubernetes Engine 221
11.4 Retrieving the Authenticated User’s Identity 227
11.5 Authenticating a Java Application Using a Service Account 228
11.6 Building Reports Using the Cloud Asset API 230
11.7 Allowing a List of IP Addresses to Access Your Application 234

12. Google Cloud Networking. 237
12.1 Creating a Custom Mode VPC Network 237
12.2 Creating a Static External IP Address 239

Table of Contents | v

12.3 Create a Firewall Rule 239
12.4 Serving Content for Users in a Specific Region 241
12.5 Configuring VPC Network Peering 244
12.6 Creating VPN Gateways with Cloud Routers 247
12.7 Deployments of Networks Using Terraform 252
12.8 Limiting Access to Only Authorized Networks with VPC Service

Controls 253

Index. 257

vi | Table of Contents

Preface

Building applications has never been easier or more exciting than in the era of the
public cloud. Engineers can build faster, better, and bigger with the myriad of cloud
tools and providers available to them. As organizations continue adopting the cloud
to run their workloads, engineers need to learn new skills continually to run these
workloads successfully in the cloud. This book provides you with recipes that we feel
will help you get started running your workloads on Google Cloud.

Who Should Read This Book
If you are a software engineer, cloud architect, data scientist, site reliability engineer,
or sysadmin, and you’re working with Google Cloud, this book is for you. As an engi‐
neer working with Google Cloud services, you need to understand all the services
available to you, including how to leverage them in your code, scripts, and solutions.
If you are new to the cloud or moving from another cloud provider, the recipes and
code samples within will quickly familiarize you with building on Google Cloud.
More experienced Google Cloud engineers will still benefit from some of the more
advanced techniques at the end of every chapter or from chapters covering an area
less familiar to them. These recipes were created and selected from years of experi‐
ence getting Google Cloud customers up and running quickly.

Why I Wrote This Book
Rui Costa
Before joining Google, I worked as a consultant where I helped organizations adopt
cloud services. As a consultant, I worked with organizations to understand their busi‐
ness and technical requirements. I helped them build architectures and deployment
strategies to migrate or build their applications successfully in the cloud.

vii

In my first three years at Google, I worked in a similar role, with a strong emphasis
on Google Cloud. About two years ago, I took a new role at Google as a learning con‐
sultant. In my current role, I build custom learning content for Google Cloud. Build‐
ing new learning programs requires me to stay updated as much as the engineers who
will be taking the course and using it to deploy their applications on Google Cloud.
For this, I always have to stay up-to-date with the services Google Cloud provides.

When building these courses, I’m always referring to the Google Cloud documenta‐
tion website, collaborating with subject matter experts, and learning from my stu‐
dents. This process takes time, and I yearned for a book that I could reference for
quick, repeatable recipes. I decided to write this book as a reference for all to use and
gain quick access to recipes that you can use in your journey with Google Cloud.

I also have a strong background in software engineering and tried to apply this expe‐
rience to the recipes in this book. You will find recipes that are not just applicable to
using Google Cloud services but also to how to build your application with Google
Cloud if it’s based on Java, Go, Python, or Node.js. There is something for everyone.

Drew Hodun
Working for years as a customer-facing engineer at Google, I helped customer after
customer and engineer after engineer get started on Google Cloud. I still love those
aha moments I witness when an engineer opens Cloud Shell in-browser for the first
time or runs their first BigQuery query that processes 100 billion regex expressions in
20 seconds. They are excited because they see the possibility to build better, bigger,
faster.

With this book, I hope to share many of the tips, tricks, and getting-started knowl‐
edge that we’ve built up over the years onboarding customers to Google Cloud and
wish I’d known at the beginning of my cloud journey. Although this book covers the
products and services of Google Cloud as well as some common architectural pat‐
terns, it also contains slick shortcuts and advice throughout to make you a more
experienced Google Cloud engineer.

Navigating This Book
This book is organized roughly as follows:

Chapter 1, “Introduction”
In this chapter, we cover all the fundamental concepts of Google Cloud, from projects
and billing accounts to storage buckets. We’ll also introduce you to many of the tools
you’ll use day to day.

viii | Preface

Chapter 2, “Cloud Functions”
In this chapter, we present a range of recipes, from introductory recipes you can use
to send emails or respond to SMS messages to advanced recipes that show you how to
integrate CI/CD into your development workflow and integrate with Cloud End‐
points for API management.

Chapter 3, “Google Cloud Run”
In this chapter, you will learn how to trigger a Cloud Run service from a Pub/Sub
topic creating automated pipelines, use your custom domain to increase your brand‐
ing efforts by using a custom domain, and run blue/green deployments to release
your application by directing traffic between two Cloud Run services running differ‐
ent versions of an application.

Chapter 4, “Google App Engine”
In this chapter, you will learn how to deploy your application with a CI/CD pipeline,
secure it, map a custom domain, use ML APIs, and debug your application.

Chapter 5, “Google Cloud Compute Engine”
This chapter contains recipes for creating and managing your virtual machines. You’ll
find recipes for unique methods to automate deployments, deploy containers to vir‐
tual machines, and use Identity-Aware Proxy (IAP) to tunnel RDP traffic to connect
to your Windows virtual machines securely.

Chapter 6, “Google Cloud Kubernetes Engine”
This chapter contains recipes for creating and managing your containers, including
methods to automate deployments and deploy real-world applications by using Mon‐
goDB and Java applications.

Chapter 7, “Working with Data”
This chapter contains recipes for working with common data storage systems, includ‐
ing Cloud Storage, persistent disks on VMs, and databases like Cloud Spanner and
Firestore.

Chapter 8, “BigQuery and Data Warehousing”
In this chapter, you will perform basic tasks in BigQuery as well as learn more about
clustering, partitioning, undeleting data, and improving query performance.

Preface | ix

Chapter 9, “Data Processing Tools”
This chapter covers some of the scalable data processing platforms, including Data‐
proc, Dataflow, and Data Fusion. You’ll run your first pipelines on each of these plat‐
forms and learn some more advanced techniques on Dataflow.

Chapter 10, “AI/ML”
This chapter will get you up and running with Google’s AI technologies. You’ll create
a hosted Jupyter Notebook and get started training TensorFlow ML models on the
cloud and serving them on the cloud.

Chapter 11, “Google Cloud Security and Access”
In this chapter, you will learn how to create a service account to allow applications to
access Google Cloud resources securely, implement authentication for applications
running on Google Kubernetes Engine (GKE), run asset reports, and build a deny
and allow list for your applications.

Chapter 12, “Google Cloud Networking”
This chapter covers concepts that users require to get started with Google Cloud net‐
working, including securing your virtual machines, automating deployments of net‐
working resources, and protecting your projects from data exfiltration.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

x | Preface

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ruiscosta/oreilly-google-cloud-cookbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Google Cloud Cookbook
by Rui Santos Costa and Andrew Hodun (O’Reilly). Copyright 2022 Drew Hodun
and Rui Costa, 978-1-492-09289-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

Preface | xi

https://github.com/ruiscosta/oreilly-google-cloud-cookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/GCCookbook.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
We would like to thank Hussein Sharif and James Duncan for contributing several
recipes to this book.

Thanks to Iain Foulds, Michael Hopkins and Aurélie Vache for their insightful and
thorough technical reviews.

And of course, many thanks to our team at O’Reilly—to Jennifer Pollock for bringing
us on board and proposing the book, to Jeff Bleiel for accompanying us along the
many months of writing, to Caitlin Ghegan for the last mile burst of enthusiasm, and
to Kerin Forsyth for improving so greatly upon the content.

Rui Costa
With all my love, I want to thank my family for their support and for always pushing
me to grow: my wife Isabel, son Filipe, parents Germano and Maria, sister Sonia,
brother-in-law Michael, nephew Thomas, father-in-law Joao, and mother-in-law
Maria.

I also want to thank Anthony Okwechime, Lauren Kapnick, Russell Goldenbroit, and
Casey Palowitch for always being there for me and believing in me.

xii | Preface

https://oreil.ly/GCCookbook
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

Drew Hodun
A huge thanks to all who have helped me in my personal and professional journey,
who have taught me to learn and grow joyously and to remember to be humble.

Thanks to Bob Scarborough, Italo Brito, and Lukman Ramsey for believing in me and
pushing me to the next level.

To Dad for his curiosity. To Mom for her wisdom. To Rose for her spirit.

Preface | xiii

CHAPTER 1

Introduction

Welcome to Google Cloud! Whether you’re a seasoned cloud developer or a sysadmin
moving to the cloud for the first time, you’ll find Google Cloud a great platform for
building everything from the smallest serverless apps to the largest enterprise applica‐
tions and data pipelines.

This chapter is a high-level overview of the platform, with some tips on how to get
started. If you are already using Google Cloud, you can likely skip this chapter. If you
are new to the platform, whether coming from on-premises (on-prem) or another
cloud provider, you’ll find here a brief overview of the services, tools, and features
you need to know to get started. Toward the end of the chapter, we’ll describe how to
translate your existing cloud provider knowledge quickly. Future chapters are all tra‐
ditional collections of recipes you’ll find in a cookbook.

Overview
Like most cloud platforms, Google Cloud is a collection of physical resources such as
servers and storage as well as higher-level services like BigQuery or AppEngine built
on top of them, all running in Google data centers. The platform is organized into
zones, regions, multiregions (continents), and then the entire globe. Table 1-1 shows
a rough mental model of what each of these means.

Table 1-1. Service regionality description
Service regionality Description
Zonal A large cluster of compute in one or several data center buildings. Should be considered a single failure

domain.a

Regional A cluster of data center buildings (campus). Made of multiple zones. Each zone is generally on a
different power and network infrastructure and on a different upgrade schedule. Regional services will
be served out of multiple zones or automatically fail over in the case of a zonal outage.

1

Service regionality Description
Multiregional A group of regions generally on the same continent. Multiregional services will be served out of

multiple regions and handle a regional failure.
Global A service deployed across Google Cloud regions around the globe.
a Technically, a zone is a logical abstraction of a region with the failure domain properties described, though this physical
analogy can be helpful to understand the difference and is often how they are deployed.

Different services have different scopes; for example, a virtual machine (VM) lives in
a zone, whereas an L7 network load balancer exists globally. Figure 1-1 shows an
example of some basic compute resources.

Figure 1-1. Compute and network resources in a region

In general, you should design production services to be deployed at least across a
region, if not across multiple regions. This is often easier in Google Cloud than in
other platforms, due to the large number of multiregional and global services, and the
fact that these data centers are all connected with Google-owned fiber.

Projects
One of the key differences between Google Cloud and some other cloud platforms is
the construct of a project. Every resource you create or interact with will exist in a
project, and security roles and rules tend to be applied at a project level, though they
can certainly be more granular. Resources within a project generally work together to
form an application. A project naturally organizes resources securely, based on real-
life use cases.

2 | Chapter 1: Introduction

Often an application will have its own project for each life cycle, for example,
“myapp-dev,” “myapp-staging,” and “myapp-prod.” Each successive project can have
different security rules and a different copy of your application, with little work
needed on your end to segment them. Sometimes projects are used at the team level.
For example, a data science team primarily authoring data pipelines or performing
data exploration will share a project for all this work, whereas the pipelines that get
promoted to production will run in a separate, more locked-down project.

The majority of the time, most resources and services will interact with resources
only in that project, and default security rules allow this. However, you can share
resources between projects, and this becomes more common the larger your applica‐
tion or organization grows. For example, you may peer networks between projects or
create security rules to allow objects stored on Google Cloud Storage (GCS) to be
accessed across projects. Crossing a project boundary usually requires a conscious
setup step, which helps with security.

How to create your first google cloud project
Here, we’ll set up an empty Google Cloud project and get $300 in credits.

1. Go to the Getting Started page (https://oreil.ly/YL8L0) and log in with a valid
Gmail account.

2. Accept the terms of service, as shown in Figure 1-2.

Figure 1-2. Google Cloud Terms of Service dialog box

Overview | 3

https://oreil.ly/YL8L0

3. Activate your free trial with the button in the upper right to receive $300 in
credits.

4. Add a credit card to get started, as shown in Figure 1-3. Don’t worry; there is no
autocharge or any extra charges after you go through your $300, so long as you
turn off VMs and delete your data. It is generally hard to run up a huge bill, given
your default quota for resources.

Figure 1-3. Google Cloud credit card dialog box

You’ll notice a new project has been created for you, as in Figure 1-4. You can decide
to change the display name (but not the project ID or project number), or you can
create a new project with the name you want.

4 | Chapter 1: Introduction

Figure 1-4. New project view

Congrats! You now have a project up and running on Google Cloud.

Enterprise projects
Google Cloud makes it easy to create one (or several) small projects for personal use,
using a Gmail account. However, if you’re working in an enterprise context, projects
will belong to an organization (your company, for example) and be organized into
folders (think departments). Almost all resources still belong to individual projects,
with the exception of some security rules and network resources.

Your experience as a solo personal developer and as an enterprise developer will also
feel very similar, although some more security rules and restrictions may be in place.
For example, you may not be able to create projects at will the way you did with your
Gmail account, and you won’t have full power over those projects and resources. You
will also likely see more errors related to organizational policies and restraints—for
example, you shouldn’t be exposing port 22 for SSH on all your VMs, and you’ll see
an error if you try. We recommend this guide to developing in a constrained Google
Cloud environment (https://oreil.ly/uODUL).

Figure 1-5 is an example of a Google Cloud organization hierarchy, which organizes
projects and resources.

Overview | 5

https://oreil.ly/uODUL
https://oreil.ly/uODUL

Figure 1-5. Google Cloud organization hierarchy (https://oreil.ly/eXevQ)

Cloud Console
Much of your day-to-day interaction with Google Cloud will be through the console
via your browser. You’ve already seen the console, but you can again access it at the
Google Cloud Platform landing page (https://oreil.ly/YL8L0). Figure 1-6 shows the
console with many of the more important items noted.

6 | Chapter 1: Introduction

https://oreil.ly/YL8L0
https://oreil.ly/YL8L0

Figure 1-6. The Google Cloud Console

Table 1-2 shows some of the most commonly used parts of the Google Cloud
Console.

Table 1-2. Parts of the Google Cloud Console
Name Description
Navigation Menu Click here to access the many GCP services.
Current Project If you’re working in a few different projects, it’s helpful to see which one you’re in.
Quick Search Bar As much as I used to pride myself on knowing where all the services were listed in the service menu and

pinning them for quicker access, I find myself using the search bar more and more to get to different
pages quickly. Google is a search company after all.

Cloud Shell Quickly open up a shell in your browser with gcloud and other tools installed. More on that in a bit.
Current Account This is where you can easily see which account you’re logged in as—particularly helpful if you are

switching between your corporate account and Gmail account.
Current Project Bill This is where your current month-to-date charges on the project appear.

Click the navigation menu to see the available services. You can click Compute
Engine directly if you want to go straight to the default page (a list of your VMs in
that project), or you can hover over Compute Engine and see the additional subpages
you can directly access, as shown in Figure 1-7.

Overview | 7

Figure 1-7. The navigation menu, where you access a service’s main page and subpages

Note that you can pin individual services if you use them frequently so they show up
at the top of the navigation menu, as shown in Figure 1-8.

Figure 1-8. Pinning services in the navigation menu

Or you can use the search bar, which is often faster if you use many services.

Now, let’s show you a few things you can do in the Cloud Console. First, we’ll upload
a file, and then we’ll run a query.

8 | Chapter 1: Introduction

This example shows how to use the console to perform simple, day-to-day actions
that we have previously performed using command-line interface (CLI) tools. In this
case, we’ll create a GCS bucket and upload a file to it:

1. From the Cloud Console, open the Cloud Storage section, as in Figure 1-9.

Figure 1-9. Cloud Storage browser from the navigation menu

2. Create a new bucket, as shown in Figure 1-10. Call it whatever you like.

Figure 1-10. Create a new bucket

3. You should see your new bucket, as in Figure 1-11.

Overview | 9

Figure 1-11. An empty bucket in the console

4. There are many ways to upload files to Cloud Storage. For now, create an empty
text file or document on your desktop and then upload it through your browser.
The result will look like Figure 1-12.

Figure 1-12. A new file in the new bucket

5. Congrats! You’ve uploaded a file. You can click it to see more data about the file,
the size, and even an authenticated download link.

6. Don’t forget to delete the object and the bucket to avoid long-term charges.

10 | Chapter 1: Introduction

gCloud Command-Line Tool
Much of your work interacting with Google Cloud, whether creating VMs, deploying
apps, or running BigQuery queries, can easily be done from your workstation, using
the gcloud suite of utilities. While every Google Cloud service has an API and often a
client library in your preferred language, gcloud is a hugely useful, common, and
first-class way to interact with Google Cloud.

Installing gcloud
The client software development kit (SDK) (gcloud) is an easy way to get started
quickly with these services from the CLI and through scripting. Your system will need
Python installed. If you have any issues with installation, skip ahead to the “Cloud
Shell” section for an easy, browser-based gcloud experience.

1. Head to the SDK installer documentation (https://oreil.ly/IFzz0) to download the
gcloud client for your OS. Your install sequence will look something like this (for
macOS):

curl https://sdk.cloud.google.com | bash

2. Choose a directory (usually home directory). Just press Enter for default.
3. Allow the installer to modify your $PATH environment variable so you can

immediately use gcloud just by typing it. Press y to continue.
4. Update your .bashrc or .bash_profile file so that the gcloud directory is always

added to the $PATH environment variable. Leave it blank and press Enter to keep
the default.

5. Restart your shell:
exec -l $SHELL

6. Initiate your gcloud installation:
gcloud init

7. You will need to choose an account (which may involve exiting to the browser to
authenticate and copy and paste a code).

8. Pick a default project:
You are logged in as: [dhodun@google.com].
Pick cloud project to use:
 [1] dhodun1
 [2] dhodun2
Please enter numeric choice or text value (must exactly match list
item):

You will also have the choice of a default region or zone. These are common and
helpful, particularly for VMs (in Google Compute Engine), especially if you are

Overview | 11

https://oreil.ly/IFzz0

mainly working in a single region or zone and don’t want to specify those as flags on
every gcloud command.

gCloud commands
Now that you have gcloud installed, here are a series of useful commands you’ll use. I
recommend trying all of them now to get a feel for the tool.

Most gcloud commands follow the same format:

`gcloud` + `service` + `resource in that service` + `command`

Common commands are list, create, delete, and so on.

gcloud config list

This lists your current gcloud config, including the currently set project, account,
region, and zone:

dhodun@cloudshell:~ (dhodun2)$ gcloud config list
[compute]
region = us-central1
zone = us-central1-c
[core]
account = dhodun@google.com
disable_usage_reporting = True
project = dhodun2

gcloud auth login

This adds another credentialed account to gcloud, which kicks off the browser-based
auth workflow.

gcloud auth list

This lists all the accounts currently logged in to gcloud. This is common if you
have a corporate account and a personal account (and can somehow be logged in
on both on the same system) or if you have a couple of personal accounts for var‐
ious projects.

dhodun@cloudshell:~ (dhodun2)$ gcloud auth list
 Credentialed Accounts
ACTIVE ACCOUNT
* dhodun@google.com
 dhodun@mycorp.com

gcloud config set project <project_ID>

This command sets your currently configured default project for gcloud. Many other
gcloud commands and even client libraries will infer the project to point at based on
how gcloud is configured. Often, it is more convenient to set your default project
with this command than to append “-p <project_ID>” to every other gcloud com‐
mand you’re running.

12 | Chapter 1: Introduction

gcloud auth set account <your_name@gmail.com>

This enables you to change accounts when a few of them are authenticated in gcloud.

gcloud components update

This updates gcloud. Remember to do this somewhat frequently; new commands,
services, and capabilities are always being launched on Google Cloud.

gcloud compute instances create my-new-vm --image-family ubuntu-1604-lts --

image-project ubuntu-os-cloud

This creates a new Ubuntu VM with all the other default settings in your project.
Output:

Created [https://www.googleapis.com/compute/v1/projects/dhodun2/zones/us-
central1-c/instances/my-new-vm].
NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTER-
NAL_IP STATUS
my-new-vm us-central1-c n1-standard-1 10.128.0.29
35.223.11.69 RUNNING

gcloud compute instances list

This lists all the VMs in your currently set project.

gcloud container clusters list

This lists all the current Google Kubernetes Engine (GKE) clusters running in your
project. You won’t see anything if you haven’t created a cluster yet.

gcloud compute instances delete my-new-vm

This command deletes the same VM you created in the previous example. Press y to
confirm.

gcloud projects list --format="json"

You can add formatting and filtering patterns to any gcloud to make it more
readable. This command shows what happens if you want to see your details for
all your projects in pretty JSON format.

[
 {
 "createTime": "2021-08-06T11:02:22.009Z",
 "lifecycleState": "ACTIVE",
 "name": "dhodun2",
 "projectId": "dhodun2",
 "projectNumber": "181626564526"
 }
]

If you want a deeper dive into gcloud, check out the official cheat sheet (https://
oreil.ly/nO1mi).

Overview | 13

https://oreil.ly/nO1mi

Other gcloud Tools
Now that you have gcloud installed, you actually have a few other tools as well:

• gsutil for GCS (Google Cloud Storage) operations
• bq for CLI access to BigQuery, Google Cloud’s serverless data warehouse
• kubectl, the open source tool to access and interact with Kubernetes clusters

These tools will be covered in future chapters, but here are a few sample commands
to give you the flavor:

gsutil ls

This lists all the GCS buckets you have access to.

gsutil ls gs://gcp-public-data-landsat/

This is the normal list command on a folder in a bucket.

dhodun@cloudshell:~ (dhodun2)$ gsutil ls gs://gcp-public-data-landsat/
gs://gcp-public-data-landsat/index.csv.gz
gs://gcp-public-data-landsat/LC08/
gs://gcp-public-data-landsat/LE07/
gs://gcp-public-data-landsat/LM01/
gs://gcp-public-data-landsat/LM02/
gs://gcp-public-data-landsat/LM03/
gs://gcp-public-data-landsat/LM04/
gs://gcp-public-data-landsat/LM05/
gs://gcp-public-data-landsat/LO08/
gs://gcp-public-data-landsat/LT04/
gs://gcp-public-data-landsat/LT05/
gs://gcp-public-data-landsat/LT08/

bq ls -project_id bigquery-public-data

This lists all the data sets you have list access to in the given project. Or leave the
project flag blank to see everything you have access to in the current project. (If
you have a new project, you won’t see anything.)

dhodun@cloudshell:~ (dhodun2)$ bq ls -project_id bigquery-public-data
 datasetId

 austin_311
 austin_bikeshare
 austin_crime
 austin_incidents
 Austin_waste
...

14 | Chapter 1: Introduction

bq query --nouse_legacy_sql \
'SELECT
 COUNT(*)
 FROM
 `bigquery-public-data`.samples.shakespeare'

This runs a query on a BigQuery data set, in this case simply counting the num‐
ber of rows on a publicly available table. You’ll see this output:

dhodun@cloudshell:~ (dhodun2)$ bq query --nouse_legacy_sql \
> 'SELECT
> COUNT(*)
> FROM
> `bigquery-public-data`.samples.shakespeare'

Waiting on bqjob_r5dc0d7cca7a2a56_0000017b2be329b3_1 ... (0s) Current sta-
tus: DONE
+--------+
| f0_ |
+--------+
| 164656 |
+--------+

gcloud container clusters get-credentials CLUSTER_NAME --zone ZONE

Authenticate and store credentials to a Google Kubernetes Engine cluster so you
can then use the kubectl Kubernetes CLI. You can see in the output that the cre‐
dentials are cached and a kubeconfig entry generated so that you can then use
kubectl naturally.

dhodun@cloudshell:~ (dhodun2)$ gcloud container clusters get-credentials my-
first-cluster-1 --zone us-central1-c
Fetching cluster endpoint and auth data.
kubeconfig entry generated for my-first-cluster-1.

kubectl get pods

Now you can use kubectl to interact with your cluster like you would any Kuber‐
netes clusters. You’ll use this in Chapter 6.

dhodun@cloudshell:~ (dhodun2)$ kubectl get pods
NAME READY STATUS
RESTARTS AGE
Redis 3/3 Running
0 2m1s
web-server 3/3 Running
0 79s

Overview | 15

Cloud Shell
One of the great features for getting started with Google Cloud is Cloud Shell, a
browser-based development and operations environment. It is essentially a just-in-
time small VM that boots with gcloud, kubectl, client libraries, and other tools
installed and is preauthenticated to Google Cloud with your account. It even has a
web-based integrated development environment (IDE). This allows you to operate
against your cloud environment without having to install any software on your
desktop. It also can be used to log on to VMs in your browser, which prevents the
need for downloading and managing SSH keys.

Here’s how to connect to a VM, using Cloud Shell:

1. From the Cloud Console, click the Cloud Shell icon in the upper right, as in
Figure 1-13.

Figure 1-13. Cloud Shell icon

2. Once it is provisioned, run gcloud config list as in Figure 1-14 to see that
you’re authenticated, pointing to your current project, and ready to run other
commands.

Figure 1-14. Basic Cloud Shell output

16 | Chapter 1: Introduction

3. You can also use Cloud Shell from the GCE page to use SSH directly on a VM. If
you haven’t already deleted that test VM, you can go to the Google Compute
Engine page and click the SSH button to the right of the VM to test this, as in
Figure 1-15.

Figure 1-15. The Cloud Shell button in the GCE VM list

4. A new window opens, and fresh SSH keys will be transferred to the VM so you
can securely connect. Note: you don’t have to worry about transferring these keys
yourself!

5. Now that you’re on the VM, as in Figure 1-16, you can verify that you have
gcloud access. However, you will be authenticated as the default service account
and not as your user account. Putting your user credentials on VMs is not rec‐
ommended, because anyone who gains access to that machine could impersonate
you when calling other Google Cloud APIs.

Figure 1-16. Cloud shell SSH session into a GCE VM

Overview | 17

Client Libraries
As you write increasingly cloud-native applications, you will interact with more and
more cloud services in your code. For example, you may store files on Google Cloud
Storage or write messages to the Pub/Sub message bus. Rather than write directly to
the API, Google Cloud has client libraries in many languages to make this much eas‐
ier, including Go, Java, Node.js, Python, Ruby, PHP, C#, and C++. Often they are
shipped for individual services or groups of services. You can see all of them in the
Cloud Client Libraries (https://oreil.ly/IyxJn).

Here is a very simple example of using a client library versus using the gcloud and
similar CLI commands we’ve used before. We will create a bucket with the Storage
Client Library and Cloud Shell. We’ll use a Python script and the client library to cre‐
ate a Google Cloud Storage bucket and upload a file.

This code sample, as well as all other code samples for this chapter, is in this book’s
GitHub repository (https://github.com/ruiscosta/oreilly-google-cloud-cookbook). You
can follow along and copy the code for this example.

1. Open a Cloud Shell environment as we just did.
2. Click Open Editor in the upper right of Cloud Shell to open the Cloud Shell IDE,

as in Figure 1-17.

Figure 1-17. Open Editor button

3. In the File explorer, click File and then New File; and name it storage_script.py.
Enter the following code to this file. Change the bucket name to something
unique and random. Your project name is a good option. Save the file. You can
also find the script in the GitHub repo, which you can clone into your Cloud
Shell environment.

from google.cloud import storage

BUCKET_NAME = "INSERT-NEW-BUCKET-NAME"
FILE = "file.txt"

client = storage.Client()

create a new bucket
bucket = client.bucket(BUCKET_NAME)
bucket.storage_class = "STANDARD"
new_bucket = client.create_bucket(bucket, location="us")

18 | Chapter 1: Introduction

https://oreil.ly/IyxJn
https://github.com/ruiscosta/oreilly-google-cloud-cookbook
https://github.com/ruiscosta/oreilly-google-cloud-cookbook

get the bucket (useful if it already exists)
bucket = client.get_bucket(BUCKET_NAME)

create and upload a new blob from text
blob = bucket.blob('remote/path/new_file.txt')
blob.upload_from_string('New file!')
print(blob.download_as_string())

create and upload a new blob from file
blob2 = bucket.blob('remote/path/file.txt')
blob2.upload_from_filename(filename='file.txt')
print(blob2.download_as_string())

4. Create another file and name it file.txt. Add some text like “Hello World!” and
save the file.

5. When you finish editing, click Open Terminal on the right side of Cloud Shell, as
in Figure 1-18, to go back to terminal mode.

Figure 1-18. Open Terminal button in Cloud Shell

6. Before you run your script, you’ll need to use the pip tool to install the Cloud
Storage client library for Python from PyPi, Python’s package repository.

pip3 install google-cloud-storage

7. Now you can run your script.
python3 storage_script.py

You should see the following output from the script reading the contents of both
files:

b'New file!'
b'Hello World!'

8. Delete your files and the bucket, using the browser to avoid extra charges.

You just used one of the client libraries to connect programmatically to a Google
Cloud service. There are many client libraries, depending on the services you’re
working with.

If you are working more on the infrastructure side, you will largely use the CLI tools
or infrastructure workflow tools like Terraform, but if you are on the application side,
you will frequently be using these client libraries.

Overview | 19

Also note that when we created the client, client = storage.Client(), we didn’t
provide any credentials or a project ID. This is because the client libraries can infer
credentials based on a number of settings on the local machine, starting with
Application Default Credentials. In Cloud Shell, this has already been set for you to
your user account.

This is beyond the scope of the intro, but just know that when you use your own cre‐
dentials as Application Default Credentials, any code running on your machine that
hits a Google Cloud API will try to use your potentially powerful user credentials.
Refer to this guide for more (https://oreil.ly/QxETl).

Billing
While advanced setup of enterprise billing accounts is outside the scope of this book,
you should understand the basics of billing. As you consume Google Cloud resources
in a project, charges are accumulated and usually updated in the console nightly. If
you open the Billing section of the console, you will see a summary of your current
charges, as in Figure 1-19.

Figure 1-19. Billing breakdown for a single project

20 | Chapter 1: Introduction

https://oreil.ly/QxETl

A project is always assigned to a billing account, which pays for the project. If you
created a project on your credit card, you also created a billing account. In an enter‐
prise setting, you will likely be given a project with a billing account already assigned.
The finance or procurement team may run this account, allowing them control of the
payment process, and you control of your project resources. You can still see the cur‐
rent cost of your project, however.

Pricing
Google Cloud services are charged as you use them. That is, there are no up-front
costs, and services are often billed by the second or even less. If you have a VM pow‐
ered on for 95 seconds, you pay for only 95 seconds of compute usage.

Each service has a different pricing model. For example, in BigQuery you pay for the
underlying storage based on how much data you have and how long it is stored, and
then you also pay for each query based on how much data is scanned. In Google
Compute Engine, however, you pay per second for resources consumed for powered-
on VMs, such as cores, RAM, and disk storage.

If you just created an account, you have $300 in free credits to use for a few months.
Many services also have a free tier for small usage to help you get started (https://
oreil.ly/af4X8). Check out documentation for each service for more details. A great
tool to understand and predict your charges is the Google Cloud Pricing Calculator
(https://oreil.ly/6Z3wZ). You can add services to estimate your bill, as in Figure 1-20.

Figure 1-20. Google Cloud Pricing Calculator

Overview | 21

https://oreil.ly/af4X8
https://oreil.ly/6Z3wZ

Cloud Code (IDE Extensions)
Another tool absolutely worth installing is Cloud Code, a plug-in for popular IDEs,
VSCode, and IntelliJ as well as Cloud Shell. Cloud Code provides auto-completion
and in-IDE tooling for Kubernetes and Cloud Run–based applications. It bridges the
gap between local development and deployment in cloud environments, provides live
debugging for your container workloads, and allows you to manage these environ‐
ments with a single click. Figure 1-21 shows easily running an application from the
IDE, targeting a local Kubernetes minikube cluster. You can just as easily target a
cluster in the cloud.

Figure 1-21. Cloud Code run options

Moving from Another Cloud
If you are moving to Google from another cloud, you will find a number of very help‐
ful guides to translate your existing knowledge of tools, products, services, and archi‐
tectures to the Google Cloud world. We highly recommend exploring these early in
your learning:

• Google Cloud for AWS Professionals (https://oreil.ly/WPyGp)
• Google Cloud for Azure Professionals (https://oreil.ly/Nktpo)
• Azure and AWS to Google Cloud Service Map (https://oreil.ly/DOSDs)

22 | Chapter 1: Introduction

https://oreil.ly/WPyGp
https://oreil.ly/Nktpo
https://oreil.ly/DOSDs

This Cookbook
The rest of this book is divided based on technology or product areas. Specific chap‐
ters, for example, cover topics like Kubernetes and BigQuery. The rest of these chap‐
ters are also divided into the typical cookbook format, with a problem to be solved
and a solution, using cloud tools, accompanied by example code or scripts. Now, on
to Chapter 2, which covers Google Cloud Functions.

Overview | 23

CHAPTER 2

Cloud Functions

Google Cloud Functions is a serverless compute platform that allows you to run your
code based on triggers such as uploading files to Cloud Storage or adding/deleting/
updating Firestore documents, or trigger your functions directly from the web.
Google Cloud provides two types of Cloud Functions: HTTP functions and back‐
ground functions. You invoke HTTP functions from standard HTTP requests. You
use background functions to trigger your function based on an event such as files
being uploaded to Cloud Storage, receiving a message in Pub/Sub, updating a Fire‐
store collection, or basing it on a schedule.

Google Cloud Functions abstract the compute infrastructure and allow you to focus
on your code. You don’t have to worry about patching operating systems or provi‐
sioning resources. Cloud functions scale automatically; they can scale from a single
invocation to millions without intervention from the developer. In this chapter, we
will present a range of recipes, from introductory recipes you can use to send emails
or respond to SMS messages to advanced recipes that show you how to integrate
CI/CD into your development workflow and integrate with Cloud Endpoints for API
management.

Google Cloud Functions can be written in Node.js, Python, Go, Java, .NET, Ruby, and
PHP programming languages. In this chapter, you will be using Node.js. All code
samples for this chapter are in this book’s GitHub repository (https://github.com/ruis
costa/oreilly-google-cloud-cookbook). You can follow along and copy the code for each
recipe by going to the folder with that recipe’s number.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.

25

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

3. Installed and configured gcloud, as described in Chapter 1.
4. Enabled the Cloud Functions and Cloud Build API:

gcloud services enable cloudfunctions.googleapis.com
gcloud services enable cloudbuild.googleapis.com

You will be creating many cloud functions in this chapter. If you do
not want to run up the costs, don’t forget to delete the cloud func‐
tion if you’re not using it any longer:

gcloud functions delete NAME --region=REGION

2.1 Creating a Public HTTP Google Cloud Function
Problem
You have a simple Hello World Node.js application that you need to host in the cloud.

Solution
Leverage Node.js to create an HTTP cloud function to use the response object to send
a short Hello World response.

1. On your local workstation, create a temporary folder to hold the files you will
need to create the Hello World HTTP function.

2. In your terminal, run the following command in the temporary folder you
created:

npm init

3. Accept the defaults when prompted to set up a new npm package.
4. In your favorite IDE, create an index.js file in the root of the directory you cre‐

ated in step 1 and copy the following code to the file:
exports.helloHttp = (req, res) => {
 res.send(`Hello World!`);
};

5. To deploy the cloud function, run the following command:
gcloud functions deploy hello-http-function --entry-point helloHttp --
runtime nodejs12 --trigger-http

6. When presented with the choice to allow the function to be unauthenticated,
which allows anonymous access ([helloHttp]? (y/N)), select Y. Selecting Y
allows users to access your function without authentication, or you can -allow-
unauthenticated when running the gcloud functions deploy command.

26 | Chapter 2: Cloud Functions

7. In the Google Cloud Console, from the navigation menu, choose Compute and
then Cloud Functions.

8. Locate your newly deployed cloud function and select it.
9. Select the Trigger tab.

10. Click the Trigger URL to test your newly deployed function in a new browser tab.

Discussion
You have successfully deployed your first HTTP Google cloud function that allows all
users to access it. It is a simple “Hello World” but provides you some basic concepts
on deploying functions. Let’s break down the deployment process further and under‐
stand the arguments passed to the gcloud functions deploy command:

gcloud functions deploy NAME --entry-point NAME --runtime RUNTIME TRIGGER

NAME

The registered name of the cloud function you are deploying. NAME can only con‐
tain letters, numbers, underscores, and hyphens.

--entry-point ENTRY-POINT

If you want to make your registered name different from the name of the function.

--runtime RUNTIME

The name of the runtime you are using. Examples include:

• nodejs10
• python37
• go111
• java11

2.2 Authenticating an HTTP Google Cloud Function
Problem
You have a simple Hello World Node.js application; you want to authorize access to it.

Solution
Configure the cloud function to deny unauthenticated requests.

If you’re following along after creating the first function in Recipe 2.1, you need to
delete the first function and then redeploy without allowing unauthenticated access
by selecting N when prompted.

2.2 Authenticating an HTTP Google Cloud Function | 27

The steps for creating a secure HTTP cloud function are the same for creating a pub‐
lic HTTP Google Cloud Functions recipe, with one difference: when you are promp‐
ted to allow unauthenticated [helloHttp]? (y/N), you would select N. Selecting N
restricts users to only those you have allowed to access your function.

You can disable the Yes/No prompt by including a -q flag when
running the gcloud functions as follows:

gcloud functions deploy hello-http-function --entry-
point helloHttp --runtime nodejs10 --trigger-http -q

If prompts are disabled, the default values are used.

Discussion
At this point you have successfully created a Hello World cloud function that is
restricted to the users you add and provided the cloud functions invoker role. To test,
navigate to the Cloud Function HTTP URL. To find your URL in your Cloud Con‐
sole, navigate to Cloud Functions and click the function you deployed. Click the
TRIGGER tab. If you click the link, you will be denied access to the Cloud Function.

Since you did not provide credentials, the function denied you access. To securely
access the function, you can test with your email address that you use for Google
Cloud. Run the following command:

curl -X GET "[YOUR_CLOUD_FUNCTION_URL]" -H \
 "Authorization: Bearer \
 $(gcloud auth print-identity-token)" --header \
 "Content-Type: application/json"

The gcloud auth print-identity-token command is not recommended for pro‐
duction applications. Use service accounts for production applications. This account
will print your identity token, which will be used to authorize access to the cloud
function.

“Hello World” should print on the command line. By default, your user account to
access Google Cloud has the Cloud Functions Invoker role. The cloudfunc‐
tions.invoker role can invoke an HTTP function, using its public URL, but can’t per‐
form any administrative actions on it. To allow additional users to invoke the func‐
tion, perform the following steps:

1. In the Google Cloud Console, click the checkbox next to the function created in
this recipe.

2. Click Permissions at the top of the screen. Click Add Member.
3. In the New Members field, enter the email address of the service account you

want to grant access to.

28 | Chapter 2: Cloud Functions

4. From the ‘Select a Role’ drop-down menu, select Cloud Functions > Cloud Func‐
tions Invoker.

5. Click Save.

2.3 Accessing Environment Variables at Runtime
Problem
You need a way for your code at runtime to access key or value pairs as third-party
API keys without having to hard-code the values in your code.

Solution
Create a cloud function with environment variables to specify arbitrary key or value
pairs at the time of deployment. These key or value pairs will be surfaced and accessi‐
ble by your code at runtime.

1. On your local workstation, create a temporary folder to hold the files you will
need to create the HTTP function.

2. In your terminal, run the following command in the temporary folder you
created:

npm init

3. Accept the defaults when prompted to set up a new npm package.
4. In your favorite IDE, create an index.js file in the root of the directory you cre‐

ated in step 1 and copy the following code to the file:
exports.helloHttp = (req, res) => {
 res.send(process.env.MY_MESSAGE);
};

5. To deploy the cloud function, run the following command:
gcloud functions deploy hello-http-function --entry-point helloHttp --
runtime nodejs12 --trigger-http --set-env-vars MY_MESSAGE="”Hello
Earth"”

6. In the Google Cloud Console, from the Navigation Menu, choose COMPUTE
and Cloud Functions.

7. Locate your newly deployed cloud function and select it.
8. Select the TRIGGER tab.
9. Click the Trigger URL to test your newly deployed function in a new browser tab.

10. You will see the message “Hello World,” which from your code retrieves the envi‐
ronment variable MY_MESSAGE and returns the string value of the key.

2.3 Accessing Environment Variables at Runtime | 29

Discussion
You have successfully created an environment variable that holds a value to your
assigned key. Environment variables are key/value pairs associated with the respective
function you deployed and are not visible to other functions in your project.

2.4 Sending Emails from Cloud Functions with SendGrid
Problem
You need the ability to send emails programmatically from your applications by call‐
ing a secure REST API.

Solution
Leverage the SendGrid SDK for Node.js to send emails from Google Cloud
Functions.

1. On your local workstation, create a temporary folder to hold the files you will
need to create the SendGrid HTTP function.

2. In your terminal, run the following command in the temporary folder you
created:

npm init

3. Accept the defaults when prompted to set up a new npm package.
4. Run the following command to install the SendGrid package:

npm install @sendgrid/mail -save

5. Get your code ready for the SendGrid function by creating the index.js file, and
copy the following code:

const sendgrid = require('@sendgrid/mail');
exports.sendGrid = async (req, res) => {
 console.log('running sendGrid Function')
 try {
 if (req.method !== 'POST') {
 const error = new Error('Only POST requests are accepted');
 error.code = 405;
 throw error;
 }
 const msg = {
 to: req.body.to,
 from: req.body.from,
 subject: req.body.subject,
 text: req.body.text
 };
 sendgrid.setApiKey(process.env.SENDGRID_API_KEY);

30 | Chapter 2: Cloud Functions

 sendgrid.send(msg)
 .then((response) => {
 console.log(response)
 if (response.statusCode < 200 || response.statusCode >=
400) {
 const error = Error(response.body);
 error.code = response.statusCode;
 throw error;
 }
 res.status(200).send(`\n\n Email Sent to ${req.body.to}
\n\n`);
 })
 return Promise.resolve();
 } catch (err) {
 console.error(err);
 const code =
 err.code || (err.response ? err.response.statusCode : 500)
|| 500;
 res.status(code).send(err);
 return Promise.reject(err);
 }
};

The following line in the code block that follows is where you
will extract the SendGrid API key environment variable; you
can reference Recipe 2.3 for more information on environ‐
ment variables:

sendgrid.setApiKey(process.env.SENDGRID_API_KEY);

6. Deploy your cloud function and set unauthenticated to No.
gcloud functions deploy \
 sendGrid --entry-point sendGrid \
 --runtime nodejs12 --trigger-http \
 --allow-unauthenticated

7. To configure SendGrid, you will need to enable the SendGrid API in the Google
Cloud Marketplace as well as retrieve your SendGrid API key.
a. Go to Google Cloud Marketplace Solutions (https://oreil.ly/bi4eu) to sign up

for the SendGrid email service (https://oreil.ly/E9eyU).
b. Once the SendGrid service has been enabled, you can retrieve the API key on

the SendGrid website. The API key will authorize your application to send
SMS messages through the SendGrid service. Click Manage API Keys on the
SendGrid website.

c. Within the SendGrid website, navigate to Settings > API Keys.

2.4 Sending Emails from Cloud Functions with SendGrid | 31

https://oreil.ly/bi4eu
https://oreil.ly/E9eyU

d. Click Create API Key.
e. Copy the API key created.

8. Set a cloud function environment variable (see Recipe 2.3 that will hold your
SendGrid API key, name the key SENDGRID_API_KEY, and set the value to
your SendGrid API key).

9. Set Google Cloud Application Default Credentials (ADC) locally. The following
command obtains the user access credentials and puts them on your local work‐
station. This command is useful when you are developing code that would nor‐
mally use a service account but need to run the code in a local development envi‐
ronment. Using ADC is not suggested for production environments. Review the
best practices to authenticate applications securely in Google Cloud (https://
oreil.ly/hn6Yn). Use the command:

gcloud auth application-default login

10. To test your newly created function, run the following curl command and
replace the values in brackets with your settings. Example: replace [TO_EMAIL]
with someone@example.org. To find your cloud function URL, go to Google
Cloud Console > Compute > Cloud Functions, select the newly deployed func‐
tion, and select the TRIGGER tab:

curl -X POST "[YOUR_CLOUD_FUNCTION_URL]" -H "Authorization: Bearer $
(gcloud auth print-identity-token)"
--data '{"to":"[TO_EMAIL]", "from":"[FROM_EMAIL]", "subject":"[YOUR_SUB-
JECT]","text":"[YOUR_TEXT]"}'
--header "Content-Type: application/json"

11. You will see the following message on terminal on a successful execution:
Email Sent to [TO_EMAIL]

Discussion
At this point, you have successfully created a cloud function to send email with Send‐
Grid. You’ve also set the parameters in the curl request to whom you want to send
the email, plus the email contents. To allow users, you will need to give the respective
user who needs to use your cloud function the Cloud Functions Invoker role. You can
follow the Authenticating End-Users recipe to add users.

32 | Chapter 2: Cloud Functions

https://oreil.ly/hn6Yn
https://oreil.ly/hn6Yn

2.5 Deploying Cloud Functions with a GitLab
CI/CD Pipeline
Problem
You want an automated way of deploying cloud functions when committing your
code to a Git repository.

Solution
Leverage GitLab’s CI/CD pipeline to automate your deployment. You will need the
following prior to following the instructions:

• A GitLab account (https://oreil.ly/JIlHL) to get started.
• The GitLab documentation on creating a repository (https://oreil.ly/DiZRT).
• An empty GitLab repository created and cloned locally to your workstation.

To authorize GitLab access to our Google Cloud project, we will need to create a Goo‐
gle Cloud service account and assign the required roles to the service account. This
service account will authorize GitLab to deploy the cloud function to the defined
project.

1. Open the IAM & Admin in the Google Cloud Console.
2. On the menu, click Service Accounts.
3. Click CREATE SERVICE ACCOUNT.
4. Enter your service account details:

• Service account name
• Service account ID
• Service account description

When completed, it should look like Figure 2-1.

2.5 Deploying Cloud Functions with a GitLab CI/CD Pipeline | 33

https://oreil.ly/JIlHL
https://oreil.ly/DiZRT

Figure 2-1. Service Account Details page

5. Click Create and Continue.
6. Assign the following roles to the service account. Figure 2-2 shows the roles

selected:
• Cloud Functions Developer
• Service Account User

Figure 2-2. Selected roles

7. Click Continue.
8. Click Done.
9. Locate the newly created service account, click the Actions icon, and select Man‐

age Keys.
10. Click ADD KEY and select Create New Key.
11. Choose JSON and click CREATE. This will download the JSON file to your local

workstation. Review the best practices to authenticate applications securely in
Google Cloud (https://oreil.ly/rsyhk).

12. Head over to your GitLab project. In Settings, open CI/CD.
13. Click Expand Variables.

34 | Chapter 2: Cloud Functions

https://oreil.ly/rsyhk
https://oreil.ly/rsyhk

14. Create two new variables, labeled as:
• PROJECT_ID
• SERVICE_ACCOUNT

15. Enter your Google Cloud project ID.
16. Open the JSON file for the service account you downloaded before, and copy and

paste its contents to the SERVICE_ACCOUNT key. It should look something like
Figure 2-3.

Figure 2-3. GitLab variables

At this point, you have the authorization configured for GitLab to deploy cloud
functions to your Google Cloud project. The next step is to prepare your applica‐
tion code to be pushed to the main branch in your GitLab repository.

17. In your empty local GitLab repository run, accept all the defaults:
npm init

18. Get your code ready by creating an index.js file in the root of your cloned reposi‐
tory and copy the following code:

exports.helloHttp = (req, res) => {
 res.send(`Hello World!`);
};

19. Create a new .gitlab-ci.yml file in the root of your cloned repository.
20. Copy the following code to .gitlab-ci.yaml:

image: google/cloud-sdk:latest
stages:
 - deploy_production
deploy_production:
 stage: deploy_production
 only:
 - main
 script:
 - echo $SERVICE_ACCOUNT > ${HOME}/gcloud-service-key.json
 - gcloud auth activate-service-account --key-file ${HOME}/gcloud-
service-key.json

2.5 Deploying Cloud Functions with a GitLab CI/CD Pipeline | 35

 - gcloud --quiet --project $PROJECT_ID functions deploy helloHttp --
runtime=nodejs10 --trigger-http

21. Commit your changes and push the code to your repository, for example:
git commit -a -m "My First Commit"
git push origin main

22. If you head back to GitLab CI/CD, you should see your job running as shown in
Figure 2-4.

Figure 2-4. Running GitLab job

23. You should see a similar output as Figure 2-5 once the pipeline has successfully
executed.

Figure 2-5. Completed GitLab job

24. Open the cloud function in the Google Cloud Console.
25. You should see the cloud function successfully deployed.

Discussion
Congratulations! You have successfully configured GitLab to deploy continuously to
Google Cloud Functions when commits are performed on the main branch. Continu‐
ous delivery (CD) ensures the delivery of continuous integration (CI) validated code
to your application by a deployment pipeline. In Recipe 2.7, you will learn how to
perform CI to validate your code prior to deployment of your code to a production
environment.

36 | Chapter 2: Cloud Functions

2.6 Responding to SMS Messages with Twilio
and Cloud Functions
Problem
Your company is looking for a way to respond to client inquiries via SMS.

Solution
Create a cloud function to reply to an SMS message, using Twilio, which software to
send and receive text messages.

1. On your local workstation, create a temporary folder to hold the files you will
need to create the SMS HTTP function.

2. In your terminal, run the following command in the temporary folder you
created:

npm init

3. Accept the defaults when prompted to set up a new npm package.
4. Run the following command to install the SendGrid package:

npm install twilio -save

5. Get your code ready for the SMS function by creating the index.js file and copy
the following code:

const twilio = require('twilio');
const MessagingResponse = twilio.twiml.MessagingResponse;
const projectId = process.env.GCLOUD_PROJECT;
const region = 'us-central1';
const TWILIO_AUTH_TOKEN = process.env.TWILIO_AUTH_TOKEN
exports.reply = (req, res) => {
 let isValid = true;

 if (process.env.NODE_ENV === 'production') {
 isValid = twilio.validateExpressRequest(req, TWILIO_AUTH_TOKEN, {
 url: `https://${region}-${projectId}.cloudfunctions.net/reply`
 });
 }
 if (!isValid) {
 res
 .type('text/plain')
 .status(403)
 .send('Twilio Request Validation Failed.')
 .end();
 return;
 }
 const response = new MessagingResponse();
 response.message('Hello from the Google Cloud Cookbook.');

2.6 Responding to SMS Messages with Twilio and Cloud Functions | 37

 res
 .status(200)
 .type('text/xml')
 .end(response.toString());
;

6. Deploy your HTTP cloud function:
gcloud functions deploy \
 sendGrid --entry-point sendGrid \
 --runtime nodejs12 --trigger-http \
 --allow-unauthenticated

7. Create a Twilio account at https://www.twilio.com/try-twilio.
8. In your Twilio console, create a phone number.
9. Once you have a phone number assigned, click Manage Numbers.

10. Under Messaging:
a. Set Configure With to Webhooks/TwiML.
b. Set A Message Comes In to Webhook and enter the following URL:

https://us-central1-[YOUR_PROJECT_ID].cloudfunctions.net/reply

c. Click Save.
11. Return to the Twilio Account Settings.
12. Copy the Auth token for your live credentials. You will need it later in this recipe
13. Set a cloud function environment variable that will hold your Twilio Auth token,

name the key TWILIO_AUTH_TOKEN, and set the key to your Twilio Auth token.
Reference Recipe 2.3 on how to create environment variables.

14. Send an SMS message to your Twilio number.

You should receive a response with a message that has been defined in the cloud
function.

Discussion
In this recipe, you configured a Twilio to trigger your cloud function via an HTTP
request. Your cloud function, when triggered, sends a reply message defined in the
code as response.message('Hello from the Google Cloud Cookbook.'). Twilio
receives the response message and uses this response as the SMS payload. Twilio also
provides you with robust documentation to get you started using its service quickly.

38 | Chapter 2: Cloud Functions

https://www.twilio.com/try-twilio

2.7 Unit Testing with GitLab and Cloud Functions
Problem
You need a method to perform testing on your code before it’s deployed to
production.

Solution
Use Mocha and the GitLab CI/CD to perform unit testing on your code prior to
deployment to a production environment. Prior to following the instructions, you
will need:

1. A GitLab account.
2. An empty GitLab repository created and cloned locally to your workstation.

To authorize GitLab access to our Google Cloud project, you will need to create a
Google Cloud service account and assign the required roles to it. You can reference
Recipe 2.5 on the steps to do this.

At this point, you have the authorization configured for GitLab to deploy cloud func‐
tions to your Google Cloud project. The next step is to prepare your application code
to be pushed to the main branch in your GitLab repository.

1. In your empty GitLab repository local folder:
a. Create a folder called test in the root folder of your GitLab repository local

folder.
b. Create index.test.js in the newly created test folder.
c. Create a file index.js and .gitlab-ci.yml in the root folder of your GitLab repos‐

itory local folder.
2. Copy the following code to the respective labeled files in the root of your locally

cloned repository:
test/index.test.js
const assert = require('assert');
const sinon = require('sinon');
const uuid = require('uuid');
const {helloHttp} = require('..');
it('helloHttp: should print a name', () => {
 // Mock ExpressJS 'req' and 'res' parameters
 const name = uuid.v4();
 const req = {
 query: {},
 body: {
 name: name,

2.7 Unit Testing with GitLab and Cloud Functions | 39

 },
 };
 const res = {send: sinon.stub()};
 // Call tested function
 helloHttp(req, res);
 // Verify behavior of tested function
 assert.ok(res.send.calledOnce);
 assert.deepStrictEqual(res.send.firstCall.args, [`Hello ${name}!`]);
});

.gitlab-ci.yml

image: google/cloud-sdk:latest
stages:
 - test
 - deploy_production
test:
 stage: test
 script:
 - npm install
 - npm run test
deploy_production:
 stage: deploy
 only:
 - main
 script:
 - echo $SERVICE_ACCOUNT > ${HOME}/gcloud-service-key.json
 - gcloud auth activate-service-account --key-file ${HOME}/gcloud-
service-key.json
 - gcloud --quiet --project $PROJECT_ID functions deploy helloHttp --
runtime=nodejs10 --trigger-http

index.js
exports.helloHttp = (req, res) => {
 res.send(`Hello ${escapeHtml(req.query.name || req.body.name ||
'World')}!`);
};

3. You will also need to install the mocha, sinon, and uuid npm packages in your
package.json file. Your package file should be similar to the following:

{
 "name": "1-6-testing",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "directories": {
 "test": "test"
 },
 "scripts": {
 "test": "mocha test/index.test.js --exit"

40 | Chapter 2: Cloud Functions

 },
 "author": "Rui Santos Costa",
 "license": "ISC",
 "dependencies": {
 "escape-html": "^1.0.3"
 },
 "devDependencies": {
 "mocha": "^8.0.0",
 "sinon": "^9.0.0",
 "uuid": "^8.0.0"
 }
}

For reference, you can read more in the documentation for Mocha (https://
oreil.ly/zXPbc) and SINON.js (https://oreil.ly/Fafnw).

4. Commit your changes and push the code to your repository. If you head back to
GitLab CI/CD, you should see your job running.

5. You should a message once the pipeline has successfully executed (Figure 2-6).

Figure 2-6. Completed GitLab job

2.7 Unit Testing with GitLab and Cloud Functions | 41

https://oreil.ly/zXPbc
https://oreil.ly/Fafnw

6. Open the cloud function in the Google Cloud Console.
7. You should see the cloud function successfully deployed.

You have now successfully implemented unit testing by incorporating it into the
GitLab pipeline and automating the deployment.

Discussion
In your repository, you created a file called .gitlab-ci.yml. The Stages section defines
the stages for your GitLab pipeline. Here you have two stages: a test and deploy_pro
duction. On the test stage, the following actions will be performed at runtime. They
must succeed before the next stage runs.

If one of these actions fails, the pipeline will fail, and your code will not be deployed:

• apt update

• apt install -y nodejs npm

• npm install

• npm run test

The npm run test is where you are telling GitLab at runtime to run the test script
defined in package.json. In the sample code, the test script executes index.test.js:

"test": "mocha test/index.test.js --exit"

If the test fails, the GitLab pipeline will fail; however, if all tests pass, GitLab will
deploy the cloud function.

2.8 Building an API Gateway to Gather Telemetry Data
Problem
You need a method to gather telemetry data for your API service running on cloud
functions.

Solution
Build an Extensible Service Proxy v2 Beta (ESPv2 Beta) as an API gateway to collect
telemetry data. The ESPv2 is an Envoy proxy that enables Cloud Endpoints to pro‐
vide API management features.

1. Make a note of your project ID; the steps following ESP_PROJECT_ID are your
project ID. To access your project ID, navigate to the Google Cloud Console and
locate the Project Info card. It will list your project ID and project number.

42 | Chapter 2: Cloud Functions

2. Make a note of the project number; the steps following ESP_PROJECT_NUM‐
BER are your project number.

3. The code is fairly long; please use the GitHub repository for this book: https://
github.com/ruiscosta/oreilly-google-cloud-cookbook. Either clone or copy the code
from the GitHub repository to your local workstation.

4. In the root directory of the code repository, deploy your cloud function:
gcloud functions deploy hello-http-function --entry-point hello --
runtime nodejs12 --trigger-http

5. Run the following command to deploy ESPv2 Beta to Cloud Run, change the
CLOUD_RUN_SERVICE_NAME to the name you to want, and use the ESP_PROJECT_ID
for the one you noted earlier:

gcloud run deploy CLOUD_RUN_SERVICE_NAME \
--image="gcr.io/endpoints-release/endpoints-runtime-serverless:2" \
--allow-unauthenticated \
--platform managed \
--project=ESP_PROJECT_ID

6. When prompted for the region, choose us-central1.
7. On successful completion, the command displays a message similar to the

following:
Service [esphello] revision [esphello-00001-zuf] has been deployed and
is serving 100 percent of traffic at https://esphello-6bc24kwh7a-
uc.a.run.app

8. In this example, https://esphello-6bc24kwh7a-uc.a.run.app is the
CLOUD_RUN_SERVICE_URL, and esphello-6bc24kwh7a-uc.a.run.app is the
CLOUD_RUN_HOSTNAME.

9. Make a note of CLOUD_RUN_HOSTNAME. You will specify
CLOUD_RUN_HOSTNAME in the host field of your OpenAPI yaml file.

10. You can verify that the initial version of ESPv2 Beta is deployed on Cloud Run by
visiting the CLOUD_RUN_SERVICE_URL in your web browser. You should see
a warning message about a missing environment variable. This warning message
is expected.

11. Open the openapi-functions.yaml file located in the root directory of the code
repository, using your favorite IDE.

12. In the Address field in the x-google-backend section, replace REGION with the
Google Cloud region where your function is, FUNCTIONS_PROJECT_ID with
your Google Cloud project ID, and FUNCTIONS_NAME with your function
name. Here’s an example:

x-google-backend:
 address: https://us-central1-project.cloudfunctions.net/hello
 protocol: h2

2.8 Building an API Gateway to Gather Telemetry Data | 43

https://github.com/ruiscosta/oreilly-google-cloud-cookbook
https://github.com/ruiscosta/oreilly-google-cloud-cookbook

13. In the host field, specify CLOUD_RUN_HOSTNAME, the hostname portion of
the URL that Cloud Run created when you deployed ESPv2 Beta. Here’s an
example:

info:
 title: Cloud Endpoints + GCF
 description: Cloud Endpoints with a Google Cloud Functions
 version: 1.0.0
host: esphello-6bc24kwh7a-uc.a.run.app

14. To deploy the Endpoints configuration, run the following command and replace
the ESP_PROJECT_ID with yours:

gcloud endpoints services deploy openapi-functions.yaml \
 --project ESP_PROJECT_ID

15. Note the CONFIG_ID; we will need this later. For example, the CONFIG_ID for
the following example is 2020-09-05-r3:

Service Configuration [2020-09-05r3] uploaded for service
[esphello-6bc24kwh7a-uc.a.run.app]

16. To enable your Endpoints service, run the following command:
gcloud services enable ENDPOINTS_SERVICE_NAME

17. To determine the ENDPOINTS_SERVICE_NAME, go to the Endpoints page in
the Cloud Console.

18. To build the service config into a new ESPv2 Beta docker image, run the follow‐
ing command:

chmod +x gcloud_build_image \
./gcloud_build_image -s CLOUD_RUN_HOSTNAME \
 -c CONFIG_ID -p ESP_PROJECT_ID
 chmod +x gcloud_build_image
 ./gcloud_build_image -s esphello-6bc24kwh7a-uc.a.run.app \
 -c 2020-09-05r3 -p ruicosta-blog

19. The output should look like this:
blog/endpoints-runtime-serverless:2.17.0-esphello-6bc24kwh7a-
uc.a.run.app-2020-09-05r3

20. Keep a note of the full URI after “serverless:”; you will use that as your
ESP_VERSION-CLOUD_RUN_HOSTNAME-CONFIG_ID in the next
command.

21. Redeploy the ESPv2 Beta Cloud Run service with the new image. Replace
CLOUD_RUN_SERVICE_NAME with the same Cloud Run service name you
used when you originally deployed it in Step 5:

gcloud run deploy esphello-6bc24kwh7a-uc.a.run.app \
--image="gcr.io/ESP_PROJECT_ID/endpoints-runtime-serverless:ESP_VERSION-
CLOUD_RUN_HOSTNAME-CONFIG_ID" \
--allow-unauthenticated \

44 | Chapter 2: Cloud Functions

--platform managed \
--project=ESP_PROJECT_ID

22. Here’s an example:
gcloud run deploy esphello \
--image="gcr.io/ruicosta-blog/endpoints-runtime-serverless:2.17.0-
esphello-6bc24kwh7a-uc.a.run.app-2020-09-05r3" \
--allow-unauthenticated \
--platform managed \
--project=ruicosta-blog

23. To test your deployed cloud function with Cloud Endpoints, run the following
command:

curl --request GET \
 --header "content-type:application/json" \
 "https://YOUR_ENDPOINT_HOST/hello"

24. You can view telemetry data for your function. In Endpoints, choose the Services
page in the Google Cloud Console. Figures 2-7, 2-8, 2-9, and 2-10 provide an
overview of some telemetry data you will collect for your API.

Figure 2-7. Endpoint requests

Figure 2-8. Endpoint errors

2.8 Building an API Gateway to Gather Telemetry Data | 45

Figure 2-9. Endpoint latency

Figure 2-10. Endpoint summary

For additional information, review the following documentation:

• Google Cloud: Migration to the Extensible Service Proxy (https://oreil.ly/6bfih)
• Envoy: Latest Updates (https://oreil.ly/Tzklz)
• Google Cloud: Cloud Endpoints (https://oreil.ly/aHzVn)

Discussion
In this recipe, you deployed Cloud Endpoints to intercept all requests to your func‐
tion before invoking the function. When the function responds, Cloud Endpoints
gathers and logs the telemetry data. This data is then available to you for reporting on
the metrics collected.

46 | Chapter 2: Cloud Functions

https://oreil.ly/6bfih
https://oreil.ly/Tzklz
https://oreil.ly/aHzVn

CHAPTER 3

Google Cloud Run

Google Cloud Run is a serverless compute solution that allows you to run your con‐
tainerized applications without having to manage the underlying infrastructure.
Cloud Run is built on the same foundation as the open source community project
Knative. Knative allows developers to focus on their application code without having
to worry about the management of computing resources. Google Cloud Run also
provides features such as autoscaling, redundancy, logging, and custom domains that
enterprises require to run production workloads.

Google Cloud provides you with two ways to run Cloud Run: Cloud Run (fully man‐
aged) and Cloud Run for Anthos, which provides a consistent platform for your
applications for either cloud or on-premises environments. Cloud Run for Anthos,
which is powered by Knative, enables you to deploy your applications running on
Cloud Run to platforms managed by Anthos.

Cloud Run (fully managed) allows you to deploy containers without having to worry
about the underlying infrastructure. Cloud Run for Anthos allows you to run your
containers on-premises or on a Google Cloud Kubernetes Engine (GKE) cluster. Run‐
ning on a GKE cluster does require the management of the cluster but provides addi‐
tional benefits such as custom machine types and additional networking support.
This chapter, however, will focus on Cloud Run fully managed.

In this chapter, you will learn how to trigger a Cloud Run service from a Pub/Sub
topic creating automated pipelines, use your custom domain to increase your brand‐
ing efforts by using a custom domain, and learn how to run blue/green deployments
to release your application by directing traffic between two Cloud Run services run‐
ning different versions of an application.

Google Cloud Run can be written in any programming language of your choice, but
in this chapter you will be using Go. All code samples for this chapter are in this

47

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

book’s GitHub repository (https://github.com/ruiscosta/oreilly-google-cloud-cookbook).
You can follow along and copy the code for each individual recipe by going to the
folder with that recipe’s number.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.
3. Installed and configured gcloud, as described in Chapter 1.
4. Enabled the Cloud Functions and Cloud Build APIs:

gcloud services enable run.googleapis.com
gcloud services enable cloudbuild.googleapis.com
gcloud services enable \
 containerregistry.googleapis.com

3.1 Deploying a Prebuilt Hello World Container
Problem
You want to deploy your first Cloud Run prebuilt container application to perform a
simple Hello World.

Solution
Leverage an existing container image running on Google Cloud Source Repository
located at gcr.io/cloudrun/hello to deploy a new Cloud Run container that responds to
incoming web requests.

1. Open Cloud Run in the Google Cloud Console.
2. Click Create Service.
3. Select a region and enter a name. Figure 3-1 shows the service name is hello‐

world.

48 | Chapter 3: Google Cloud Run

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

Figure 3-1. Cloud Run Service Settings

4. Click Next.
5. For the container image URL, enter gcr.io/cloudrun/hello, as shown in

Figure 3-2.

Figure 3-2. Cloud Run service version

3.1 Deploying a Prebuilt Hello World Container | 49

6. Click Next.
7. For authentication, select Allow Unauthenticated Invocations, as shown in

Figure 3-3.

Figure 3-3. Cloud Run Authentication

8. Click Create.
9. Click the URL displayed to launch your newly deploy Cloud Run container.

You should see the following page in your browser page, shown in Figure 3-4.

Figure 3-4. Cloud Run service successful

Discussion
This is a simple Hello World application, but it demonstrates some of the basic con‐
cepts in deploying Cloud Run services, such as:

• Using an existing public container referenced as gcr.io, as shown in Figure 3-5.

50 | Chapter 3: Google Cloud Run

Figure 3-5. Cloud Run Service Settings

• Allowing unauthenticated invocations, which give public anonymous users
access to your application.

• Using a fully managed environment to abstract all the infrastructure so you can
run your application quickly.

3.2 Building Your Own Hello World Container
Problem
You want to create a container for your application and deploy it to Google Cloud
Run.

Solution
Build a container with your application code, deploy it to Google Cloud Container
Registry, and finally deploy your newly deployed container to Cloud Run.

3.2 Building Your Own Hello World Container | 51

1. Create a new directory on your local machine called helloworld.
2. Create a go.mod file and enter the following code to it:

module github.com/GoogleCloudPlatform/golang-samples/run/helloworld
go 1.15

A go.mod file defines the module’s path and its dependency
requirements.

3. Create a new file named main.go and type the following code into it:
package main

import (
 "fmt"
 "log"
 "net/http"
 "os"
)

func main() {
 log.Print("starting server...")
 http.HandleFunc("/", handler)

 // Determine port for HTTP service.
 port := os.Getenv("PORT")
 if port == "" {
 port = "8080"
 log.Printf("defaulting to port %s", port)
 }

 // Start HTTP server.
 log.Printf("listening on port %s", port)
 if err := http.ListenAndServe(":"+port, nil); err != nil {
 log.Fatal(err)
 }
}

func handler(w http.ResponseWriter, r *http.Request) {
 name := os.Getenv("NAME")
 if name == "" {
 name = "World"
 }
 fmt.Fprintf(w, "Hello %s!\n", name)
}

52 | Chapter 3: Google Cloud Run

4. To containerize the application, create a new file named Dockerfile in the hello‐
world directory, and type the following code:

FROM golang:1.15-buster as builder
WORKDIR /app
COPY go.* ./
RUN go mod download
COPY . ./
RUN go build -mod=readonly -v -o server
FROM debian:buster-slim
RUN set -x && apt-get update && DEBIAN_FRONTEND=noninteractive apt-get
install -y \
 ca-certificates && \
 rm -rf /var/lib/apt/lists/*
COPY --from=builder /app/server /app/server
CMD ["/app/server"]

5. Create a .dockerignore file to exclude files from your container:
Exclude locally vendored dependencies.
vendor/
Exclude "build-time" ignore files.
.dockerignore
.gcloudignore

Exclude git history and configuration.
.gitignore

6. Build your container with the sample application image, using Cloud Build. Run
the following command from the directory containing the Dockerfile and replace
PROJECT-ID with your Google Cloud Project ID:

gcloud builds submit --tag gcr.io/PROJECT-ID/helloworld

7. Deploy the Cloud Run service, using the newly deployed container image by run‐
ning the following command:

gcloud run deploy --image gcr.io/PROJECT-ID/helloworld --platform
managed

8. Press Enter to accept the default name, helloworld.
9. Select a Google Cloud region, for example, us-central1.

10. You will be prompted to allow unauthenticated invocations. Enter y.

Once the command is completed successfully, it will display the Cloud Run service
URL. You can click or copy the URL and open it in a browser.

Discussion
You have successfully created a container image, deployed it to Google Cloud Con‐
tainer Registry, and created a Cloud Run service from the deployed container image.
In this recipe, you also learned how to deploy a Cloud Run service with the gcloud

3.2 Building Your Own Hello World Container | 53

command versus using the Google Cloud Console interface. You also learned how to
build your own container, deploy it to Container Registry, and run the application on
Cloud Run.

3.3 Using Cloud Run with a Custom Domain
Problem
You don’t want to use the generated URL that Google Cloud provides for your Google
Cloud service and prefer to use your own domain.

Solution
Use your own domain to map a domain or subdomain to the cloud Hello World cre‐
ated in Recipe 3.1.

1. Verify ownership of your domain. To list the currently verified domains, run the
following command:

gcloud domains list-user-verified

2. If the command does not list any output, you do not have any verified domains.
3. Run the following command to verify your domain:

gcloud domains verify BASE-DOMAIN
Example: gcloud domains verify ruicosta.blog

For example, if you want to map, say, run.ruicosta.blog, you
will need to verify the root domain, which is ruicosta.blog.

4. The command will open a new browser window that will take you to Google
Webmaster Central. Follow the instructions to verify your domain.

5. Open the MANAGE CUSTOM DOMAINS page on the Cloud Run services page
within Google Cloud Console.

6. Click ADD MAPPING.
7. Choose your service to map to.
8. Select your verified domain.
9. Optionally: Choose a subdomain. You can choose to map to the root of the veri‐

fied domain or to a subdomain, as shown in Figure 3-6.

54 | Chapter 3: Google Cloud Run

Figure 3-6. Cloud Run domain mapping

10. Click Continue.
11. Update your DNS records at your domain registrar, such as GoDaddy, Namec‐

heap, or Google Domains, using the DNS records displayed in the previous step.
Figure 3-7 shows the information required to register the associated CNAME
record in your registrar.

Figure 3-7. Cloud Run domain mapping

12. Test your new custom domain mapping by going to your mapped domain in
your web browser, as shown in Figure 3-8.
Please note for your custom domain mapping that it might take a few minutes for
it to be updated with the newly verified domain.

3.3 Using Cloud Run with a Custom Domain | 55

Figure 3-8. Successful Cloud Run domain mapping

Discussion
With custom domain mapping, you can direct users to your Cloud Run service run‐
ning with your domain name versus using the Google Cloud domain name. An easy-
to-read (and easy-to-spell) domain name enhances your branding efforts. Please visit
the Google Cloud Run documentation (https://cloud.google.com/run/docs/mapping-
custom-domains), because custom domain names are not supported in all regions;
check whether your region supports custom domains.

3.4 Triggering a Cloud Run from Cloud Pub/Sub
Problem
You want to trigger an operation when a message is published to a cloud Pub/Sub
(https://oreil.ly/UUNXZ) topic. For example, a new message is received from your
application by Cloud Pub/Sub and you want to execute an operation on the arrived
message.

Solution
Set up Cloud Run to listen to arriving messages in Cloud Pub/Sub. When a new mes‐
sage arrives, Cloud Run can run an operation on the newly arrived message.

1. Create a new Pub/Sub topic by running the following command:
gcloud pubsub topics create chapter-3-4-topic

56 | Chapter 3: Google Cloud Run

https://cloud.google.com/run/docs/mapping-custom-domains
https://oreil.ly/UUNXZ

2. Create a new directory called chapter-3-4 on your local machine.
3. Create a go.mod file and enter the following code to it:

module github.com/GoogleCloudPlatform/golang-samples/run/pubsub
go 1.15

A go.mod file defines the module’s path and its dependency
requirements.

4. Create a new file named main.go and type the following code into it:
package main
import (
 "encoding/json"
 "io/ioutil"
 "log"
 "net/http"
 "os"
)

func main() {
 http.HandleFunc("/", HelloPubSub)
 // Determine port for HTTP service.
 port := os.Getenv("PORT")
 if port == "" {
 port = "8080"
 log.Printf("Defaulting to port %s", port)
 }
 // Start HTTP server.
 log.Printf("Listening on port %s", port)
 if err := http.ListenAndServe(":"+port, nil); err != nil {
 log.Fatal(err)
 }
}

type PubSubMessage struct {
 Message struct {
 Data []byte `json:"data,omitempty"`
 ID string `json:"id"`
 } `json:"message"`
 Subscription string `json:"subscription"`
}

func HelloPubSub(w http.ResponseWriter, r *http.Request) {
 var m PubSubMessage
 body, err := ioutil.ReadAll(r.Body)
 if err != nil {

3.4 Triggering a Cloud Run from Cloud Pub/Sub | 57

 log.Printf("ioutil.ReadAll: %v", err)
 http.Error(w, "Bad Request", http.StatusBadRequest)
 return
 }
 if err := json.Unmarshal(body, &m); err != nil {
 log.Printf("json.Unmarshal: %v", err)
 http.Error(w, "Bad Request", http.StatusBadRequest)
 return
 }

 name := string(m.Message.Data)
 if name == "" {
 name = "World"
 }
 log.Printf("Hello %s!", name)
}

You return a code from the service such as HTTP 200 or 204,
which acknowledges complete processing of the Pub/Sub mes‐
sage. Error codes, such as HTTP 400 or 500, indicate the mes‐
sage will be retried.

5. To containerize the application, create a new file named Dockerfile in chapter-3-4,
and enter the following code:

FROM golang:1.15-buster as builder

Create and change to the app directory.
WORKDIR /app

Retrieve application dependencies.
COPY go.* ./
RUN go mod download

Copy local code to the container image.
COPY . ./

Build the binary.
RUN go build -mod=readonly -v -o server

FROM debian:buster-slim
RUN set -x && apt-get update && DEBIAN_FRONTEND=noninteractive apt-get
install -y \
 ca-certificates && \
 rm -rf /var/lib/apt/lists/*

Copy the binary to the production image from the builder stage.
COPY --from=builder /app/server /server

58 | Chapter 3: Google Cloud Run

Run the web service on container startup.
CMD ["/server"]

6. Build the container image and push it to Google Cloud Container Registry:
gcloud builds submit --tag gcr.io/PROJECT_ID/pubsub

7. Deploy the Cloud Run service from the newly deployed container image and
replace PROJECT_ID with your cloud project ID:

gcloud run deploy pubsub --image gcr.io/PROJECT_ID/pubsub --platform
managed

a. Press Enter to accept the default name, pubsub.
b. Select the region of your choice, for example, us-central1.
c. You will be prompted to allow unauthenticated invocations. Enter N. You will

provide Pub/Sub the invoker service account permission so it can invoke the
Cloud Run service.

8. Enable the Pub/Sub service to generate authentication tokens in your project:
gcloud projects add-iam-policy-binding PROJECT_ID \ --
member=serviceAccount:service
-PROJECT-NUMBER@gcp-sa-pubsub.iam.gserviceaccount.com \
--role=roles/iam.serviceAccountTokenCreator

a. Replace PROJECT_ID with your Google Cloud project ID.
b. Replace PROJECT_NUMBER with your Google Cloud project number.

9. Create a service account for the Pub/Sub subscription to use:
gcloud iam service-accounts create cloud-run-pubsub-invoker \
 --display-name "Cloud Run Pub/Sub Invoker"

10. Give the newly created service account permission to invoke your Pub/Sub
Cloud Run service:

gcloud run services add-iam-policy-binding pubsub \
--member=serviceAccount:cloud-run-pubsub-
invoker@PROJECT_ID.iam.gserviceaccount.com \
 --role=roles/run.invoker

Replace PROJECT_ID with your Google Cloud project ID.
11. Create a Pub/Sub subscription with the service account created in step 9:

gcloud pubsub subscriptions create myRunSubscription --topic
chapter-3-4-topic \
--push-endpoint=SERVICE-URL/ \
--push-auth-service-account=cloud-run-pubsub-
invoker@PROJECT_ID.iam.gserviceaccount.com

a. Replace the SERVICE-URL with the Cloud Run service URL.
b. Replace the PROJECT_ID with your Google Cloud project ID.

3.4 Triggering a Cloud Run from Cloud Pub/Sub | 59

12. To test the newly deployed Cloud Run service, we will trigger it with the newly
deployed Cloud Pub/Sub subscription:

gcloud pubsub topics publish chapter-3-4-topic --message "Test Runner"

13. Navigate to the Cloud Run service logs:
a. Click the pubsub service.
b. Select the Logs tab.
c. Look for the “Hello Test Runner!” message.

Discussion
By leveraging Cloud Pub/Sub, you can invoke a Cloud Run service to perform the
specified operation. Google Cloud Pub/Sub is a messaging service for exchanging
message data among applications and services. By abstracting the senders and receiv‐
ers, it allows for multiple applications written in different languages to communicate
with each other. This process allows you to trigger an operation only when Cloud
Pub/Sub receives a message. This becomes a powerful feature to perform background
operations when certain events occur.

In the following example, as shown in Figure 3-9, you send an SMS when the user
subscribes to your service. This works by using Cloud Pub/Sub as your middleware,
which accepts a message payload from the user and then, using a Cloud Pub/Sub sub‐
scriber, you collect the message payload and perform an operation on this payload. In
this example, your operation is to send an SMS to the user, confirming that they have
subscribed to your service.

Figure 3-9. Cloud Run and Pub/Sub flow

60 | Chapter 3: Google Cloud Run

3.5 Deploying a Web Application to Cloud Run
Problem
You need a method to deploy a static web application to Cloud Run.

Solution
Create a Cloud Run service that uses an NGINX container to serve your web files.

1. Create a new directory called cloudrun on your local machine.
2. Create the following directories in the root directory of cloudrun: html and

nginx.
3. Go to the HTML directory:

cd html

4. Create a new file named index.html in the HTML directory and type the follow‐
ing code into it:

<html>
<body>Hello from Google Cloud Run and NGINX</body>
</html>

5. Go to the nginx directory.
cd nginx

6. Create a new file named default.conf in the nginx directory and type the following
code into it:

server {
 listen 8080;
 server_name localhost;
 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 }
 # redirect server error pages to the static page /50x.html
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }
}

7. Go to the root cloudrun directory.

3.5 Deploying a Web Application to Cloud Run | 61

8. To containerize the application, create a new file named Dockerfile in the clou‐
drun directory created in step 1, and enter the following code:

FROM nginx
COPY html /usr/share/nginx/html
COPY nginx/default.conf /etc/nginx/conf.d/default.conf

In this Dockerfile, we are creating a new container based on
the NGINX container, adding the static HTML file as well as
setting the NGINX configuration file.

9. Build your container by running the following command from the root of the
cloudrun directory:

gcloud builds submit --tag gcr.io/PROJECT-ID/nginx-web

Replace PROJECT-ID with your Google Cloud Project ID.

10. Deploy the Cloud Run service, using the newly deployed container image, by
running the following command:

gcloud run deploy --image gcr.io/PROJECT-ID/nginx-web --platform managed

a. Press Enter to accept the default name, nginx-web.
b. Select the region of your choice, for example, us-central1.
c. You will be prompted to allow unauthenticated invocations. Enter Y.

11. Once the command is completed successfully, it will display the Cloud Run ser‐
vice URL. You can click or copy the URL and open it in a browser. You should
now see the newly deployed container serving your HTML content with NGINX,
as shown in Figure 3-10.

Figure 3-10. Cloud Run running NGINX

62 | Chapter 3: Google Cloud Run

Discussion
Google Cloud provides other services to serve static and dynamic websites. You can
use Google Cloud Storage to run static content or even a content delivery network
(CDN), but if you need to deploy dynamic content, you will need to host your appli‐
cation on a computing platform. For small static websites, plus dynamic content, you
can use Cloud Run, since it provides customization if needed to the underlying run‐
time, and it allows you to serve static content as well.

3.6 Rolling Back a Cloud Run Service Deployment
Problem
You need to roll back your Cloud Run service deployment due to a bug you found in
your code.

Solution
Cloud Run allows you to deploy multiple revisions of your application. With this fea‐
ture, you can roll back to a previous revision.

1. To roll back to a previous revision, go to the Google Cloud Console and navigate
to Cloud Run.

2. Locate the service you need to roll back.
3. The revisions tab will list all the available versions of your service, as shown as

Figure 3-11.

Figure 3-11. Cloud Run revisions

4. In the list of revisions, select the revision you are rolling back.
5. Click Manage Traffic, as shown in Figure 3-12.

a. Select the revision you want to roll back to from the drop-down list.
b. Set that previous revision’s traffic percentage to 100.
c. Set the currently serving revision’s percentage to 0.
d. Click Save.

3.6 Rolling Back a Cloud Run Service Deployment | 63

Figure 3-12. Cloud Run Manage Traffic

6. Once you click Save, the traffic will be transitioned to the version you selected,
allowing you to roll back to older versions.

Discussion
The ability to roll back to previous Cloud Run versions enables you to fix errors
quickly in the current version being served.

3.7 Deploying Cloud Run Services in a Gradual Rollout
Problem
You need to deploy a Cloud Run service, using the blue/green deployment methodol‐
ogy. This allows you to release your application by directing traffic between two
Cloud Run services running different versions of an application.

Solution
Cloud Run allows you to split traffic between multiple versions of your Cloud Run
service so you can roll out blue/green deployments.

1. To roll out a new Cloud Run service version gradually, navigate to the Cloud Run
services in the Google Cloud Console.

2. Locate the service you want to deploy a new revision gradually to.
3. Click Deploy New Revision.
4. Fill out the parameters as needed; make sure the checkbox labeled Serve This

Revision Immediately is cleared.

64 | Chapter 3: Google Cloud Run

5. Click Deploy.
6. Click Manage Traffic. The new revision is currently not serving any traffic,

because you cleared the Service This Revision Immediately checkbox.
7. On the Manage Traffic page:

a. Set it to the desired percentage for the new revision, for example, 10.
b. Click Save.
c. Repeat step 7 but change the percentage value to say 20, increasing the per‐

centage as needed for the new revision.

Discussion
With the ability to roll out a blue/green deployment gradually, you can validate that
your updated revision is working as expected. If something occurs with the new revi‐
sion, only the percentage of the served traffic would be affected. If you need to, you
can roll back 100% of the traffic, which was shown in Recipe 3.6.

3.8 Cloud Run Configuration Parameters
Problem
You need to fine-tune Cloud Run parameters, such as setting how many maximum
instances are running, setting CPU allocation, and adjusting the request timeout.

Solution
Cloud Run provides many options for tuning your service, including setting request
timeouts and how many instances to run, and even updating CPU allocation, all
through the Google Cloud Console.

CPU allocation
Cloud Run by default allocates one CPU for each container instance. You can adjust
the CPU allocation by using the Cloud Console.

1. Navigate to the Cloud Run services in the Google Cloud Console.
2. Click the service you want to adjust the CPU allocation for and click Edit And

Deploy New Revision.

3.8 Cloud Run Configuration Parameters | 65

3. In Advanced Settings, click Container.
4. Select the desired CPU allocation from the drop-down list.
5. Click Deploy.

Request timeout
The request timeout specifies the time by which Cloud Run must return a response. If
a response isn’t returned within the time specified, the request returns an Error 504.
The default timeout response for Cloud Run is five minutes.

1. Navigate to the Cloud Run services in the Google Cloud Console.
2. Click the service you want to adjust the request timeout for and click Edit And

Deploy New Revision.
3. In Advanced Settings, click Container.
4. In the Request Timeout field, enter the timeout value that you want to use in sec‐

onds.
5. Click Deploy.

Maximum number of instances
The maximum number of instances in Cloud Run allows you to limit the number of
instances that will be enabled to service incoming requests. You can use this setting to
control your costs or control connections to, say, backend services due to limitations
on scaling on your backend services.

1. Navigate to the Cloud Run services in the Google Cloud Console.
2. Click the service you want to adjust the maximum number of instances for and

click Edit And Deploy New Revision.
3. In Advanced Settings, click Container.
4. Enter the maximum number of instances. You can use any value from 1 to 1,000.
5. Click Deploy.

Minimum number of instances
Cloud Run scales to X number of instances based on the number of incoming
requests to the service. If your service requires reduced latency due to cold starts, you
can set the minimum number of container instances to be ready to serve requests and
avoid the issue of having to start new instances referred to as cold starts.

66 | Chapter 3: Google Cloud Run

1. Navigate to the Cloud Run services in the Google Cloud Console.
2. Click the service you want to adjust the minimum number of instances for and

click Edit And Deploy New Revision.
3. In Advanced Settings, click Container.
4. Enter a value for the minimum number of instances. This will allow the value of

instances listed to be kept warm and ready to receive requests.
5. Click Deploy.

3.8 Cloud Run Configuration Parameters | 67

CHAPTER 4

Google App Engine

Google App Engine is a serverless compute solution that allows you to run your
applications without having to manage the underlying infrastructure. App Engine
supports a variety of programming languages including Node.js, Java, Ruby, C#, Go,
Python, and PHP; you can even use a unsupported language by using containers. App
Engine has two editions: Standard and Flexible. Flexible allows you to bring any
library and framework to App Engine.

App Engine provides you with enterprise-ready deployment features such as applica‐
tion versioning, traffic splitting, security, monitoring, and debugging. With App
Engine, all you need to focus on is your code; Google Cloud manages the underlying
infrastructure. In this chapter, you will learn how to deploy your application with a
CI/CD pipeline, secure it, map a custom domain, use ML APIs, and debug your
application.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.
3. Installed and configured gcloud, as described in Chapter 1.
4. Enabled the Cloud Functions and Cloud Build APIs.

gcloud services enable cloudbuild.googleapis.com
gcloud services enable \
 containerregistry.googleapis.com

69

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

4.1 Deploying a Hello World to App Engine (Standard)
Problem
You want to deploy your first App Engine application to perform a simple Hello
World.

Solution
Use the Google Cloud command line and your favorite editor to build a simple
Express.js application to run on App Engine.

1. On your local workstation, create a temporary folder to hold the files you will
need to create the Hello World application.

2. In your favorite IDE, create an app.js file in the root of the directory you created
in step 1 and copy the following code to the file:

'use strict';
const express = require('express');
const app = express();
app.get('/', (req, res) => {
 res.status(200).send('Hello, world!').end();
});
const PORT = process.env.PORT || 8080;
app.listen(PORT, () => {
 console.log(`App listening on port ${PORT}`);
 console.log('Press Ctrl+C to quit.');
});
module.exports = app;

3. Now create an app.yaml file in the root of the same directory and copy the fol‐
lowing code to the file. The app.yaml file defines the settings for your application,
including the runtime of your code.

runtime: nodejs14

4. Now create a package.json file in the root of the same directory and copy the fol‐
lowing code to the file:

{
 "name": "appengine-hello-world",
 "engines": {
 "node": ">=14.0.0"
 },
 "scripts": {
 "start": "node app.js"
 },
 "dependencies": {
 "express": "^4.17.1"

70 | Chapter 4: Google App Engine

 }
}

5. In your terminal, run the following command in the root directory you created
in step 1:

npm install

6. To deploy the application to App Engine Standard, run the following command:
gcloud app deploy

7. To view your deployed application, run the following command:
gcloud app browse

This will open the application in your default browser.

Discussion
You have successfully deployed your first App Engine application using Node.js. It is a
simple Hello World application but demonstrates some of the basic concepts in
deploying App Engine services. To review the differences between App Engine Stan‐
dard and Flexible, jump to Table 4-1 that lists the differences.

4.2 Deploying a Hello World to App Engine (Flexible)
Problem
You want to deploy an App Engine application running as a container to perform a
simple Hello World.

Solution
App Engine Flexible supports running a Docker container that can include custom
runtimes or other source code written in a different programming language. Since
App Engine Flexible supports running Docker containers, you will use the Flexible
version of App Engine to deploy a simple Hello World.

1. On your local workstation, create a temporary folder to hold the files you will
need to create the Hello World application.

2. In your favorite IDE, create a Dockerfile in the root of the directory you created
in step 1 and copy the following code to the file:

FROM nginx
COPY nginx.conf /etc/nginx/nginx.conf
RUN mkdir -p /var/log/app_engine
RUN mkdir -p /usr/share/nginx/www/_ah && \
 echo "healthy" > /usr/share/nginx/www/_ah/health

4.2 Deploying a Hello World to App Engine (Flexible) | 71

ADD www/ /usr/share/nginx/www/
RUN chmod -R a+r /usr/share/nginx/www

The FROM command builds a base image, using the official
NGINX Docker image.

3. Create a new file named app.yaml in the root of your temporary directory and
type the following code into it:

runtime: custom
env: flex

4. Now create a new file named nginx.conf, also in the root of your temporary direc‐
tory you create, and type the following code into it:

events {
 worker_connections 768;
}

http {
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 keepalive_timeout 65;
 types_hash_max_size 2048;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;
 access_log /var/log/app_engine/app.log;
 error_log /var/log/app_engine/app.log;
 gzip on;
 gzip_disable "msie6";
 server {
 listen 8080;
 root /usr/share/nginx/www;
 index index.html index.htm;
 }
}

5. Create a new folder called www in the root of your temporary directory.
6. Within the www folder, create a new file called index.html and copy the following

code to it:
<!doctype html>
<html>
 <head>
 <title>Hello World!</title>
 </head>
 <body>
 <h1>Welcome to nginx!</h1>

72 | Chapter 4: Google App Engine

 <p>Brought to you by Google App Engine.</p>
 </body>
</html>

7. Run the following command to deploy your application to App Engine:
gcloud app deploy

8. To view your deployed application, run the following command:
gcloud app browse

This will open the application in your default browser.

Discussion
You have successfully deployed a static web application running on an NGINX web
server as a custom runtime on App Engine Flexible. App Engine Flexible is a perfect
choice for applications that:

• Need a custom runtime.
• Depend on frameworks that are not supported by App Engine Standard.

Table 4-1 summarizes the differences between App Engine Standard and Flexible at a
high level.

Table 4-1. Differences Between App Engine Standard and Flexible (https://oreil.ly/MAl5E)
Feature Standard environment Flexible environment
Instance startup time Seconds Minutes
SSH debugging No Yes
Scaling Manual, basic, automatic Manual, automatic
Scale to zero Yes No, minimum 1 instance
Modifying the runtime No Yes (through Dockerfile)
Deployment time Seconds Minutes
WebSockets No Yes
Supports installing third-party binaries Yes Yes

4.3 Securing Your Application with Identity-Aware Proxy
Problem
You’ve deployed your Hello World application running on App Engine Flexible and
want only certain users to be able to access it.

4.3 Securing Your Application with Identity-Aware Proxy | 73

https://oreil.ly/MAl5E

Solution
Use the Google Cloud Identity-Aware proxy (IAP) to restrict access to only a set of
predefined users. IAP provides a single point of control for managing user access to
your applications (https://oreil.ly/AcFmc). We will use the Cloud Hello World applica‐
tion created in Recipe 4.1 to secure it with IAP.

1. Go to the IAP page in the Google Cloud Console, as shown in Figure 4-1.

If you haven’t configured your OAuth consent screen, you’ll
need to configure it before continuing.

2. Select the resource you want to secure by checking the box to its left.
3. On the right-side panel, click Add Member.

Figure 4-1. Identity-Aware Proxy configuration

4. Add the email addresses of groups or individuals to whom you want to grant
access to your App Engine application. IAP Identity and Access Management
(IAM) supports the following accounts:
• Google Account
• Google Group

74 | Chapter 4: Google App Engine

https://oreil.ly/AcFmc
https://oreil.ly/AcFmc

• Service account
• G Suite domain

5. When you have added all the accounts that you want to provide access to your
application, click Add.

6. On the IAP page, under HTTPS Resources, find the App Engine app you want to
restrict access to and toggle the on/off switch in the IAP column; see Figure 4-2.

Figure 4-2. Enable Identity-Aware Proxy

7. Access the URL for your App Engine application. You should be prompted to
sign in. If you’re not prompted, try to sign in with an Incognito window.

8. If you have authorized a user account and they sign in with the associated
account, they will have full access to your application running on App Engine.

9. If you have not granted access to an account and they try to access your applica‐
tion, they will receive a You Don’t Have Access message.

Discussion
With the Google Cloud Identity-Aware Proxy, you can restrict access to your applica‐
tion running on App Engine, preventing unauthorized access to your resources. The
Identity-Aware Proxy also supports external identities such as Google, Microsoft,
Email/Password, and others that provide a robust set of sign-in options for your users
to access your application (Figure 4-3).

4.3 Securing Your Application with Identity-Aware Proxy | 75

Figure 4-3. Identity-Aware Proxy providers

4.4 Mapping Custom Domains with App Engine
Problem
You want to use your own custom domain rather than the default address that App
Engine provides for you.

Solution
Google Cloud provides the ability to map custom domains. It also can issue a man‐
aged certificate for SSL for HTTPS connections. You will use the cloud Hello World
application created in Recipe 4.1 to enable your custom domain.

You will require a custom domain for this recipe.

1. In the Google Cloud Console, go to App Engine > Settings > Custom Domains.
2. Click Add A Custom Domain.

76 | Chapter 4: Google App Engine

3. If your domain name has been verified, the domain name will appear in the
drop-down menu. Select the domain from the drop-down menu and click
Continue.
If you haven’t verified your domain name, follow these steps to verify:
a. Select Verify A New Domain from the drop-down menu.
b. Enter your domain name and click Verify.
c. Enter the required information on the Webmaster page.
d. After you complete these steps on the Webmaster page, you will then return to

the Add A New Custom Domain page in the Google Cloud Console.
4. In the “Point your domain to” section, add the domain or subdomain that you

want to map. Click Save Mappings, as shown in Figure 4-4.

Figure 4-4. Domain mapping

5. Click Continue to see your domain’s DNS records.
6. Sign in to your domain registrar website and update your DNS records with the

records displayed.
7. Test by opening your web browser to your newly mapped domain.

4.4 Mapping Custom Domains with App Engine | 77

It can take several minutes for the SSL certificate to be issued.

Discussion
By mapping a custom domain, you can enable your App Engine application to align
with your branding as well as keep a secure site, since Google Cloud will provide an
SSL certificate for your mapped domain. Google Cloud managed certificates do not
support wildcard domains; if you require wildcard domains, you will need to use self-
managed certificates.

4.5 Using the Google Cloud Translation Machine Learning
APIs with App Engine
Problem
You need to build a real-time translation application for voice.

Solution
Google Cloud offers a Media Translation API that adds real-time audio translation to
your applications. You will build two applications, a broadcast application and a client
application in this recipe, using App Engine to host your application.

Figure 4-5 demonstrates a high-level architecture of the application you will be
deploying.

Figure 4-5. Translation application architecture

Figure 4-6 is the broadcast application the presenter uses.

78 | Chapter 4: Google App Engine

Figure 4-6. Broadcast application

Figure 4-7 is the client application where users can see the translation captions.

Figure 4-7. Client application

This recipe requires you to use the git clone command for this book’s code example
repository (https://github.com/ruiscosta/oreilly-google-cloud-cookbook).

4.5 Using the Google Cloud Translation Machine Learning APIs with App Engine | 79

https://github.com/ruiscosta/oreilly-google-cloud-cookbook
https://github.com/ruiscosta/oreilly-google-cloud-cookbook

1. In the cloned application, go to 04-appengine/4-5-media.
2. In your IDE, edit the client/client.js file and replace [PROJECT_ID] with your

Google Cloud project:
const socket = io.connect('https://[YOUR_PROJECT_ID].uc.r.appspot.com');

3. Repeat the process in step 2 but edit the broadcast/client.js file.
4. Enable the Media Translation API in the Google Cloud Console.
5. Deploy your App Engine application by running the gcloud app deploy com‐

mand. In the app.js file in the root directory, you will notice the following
Expres.js routes declared. The client path is for the users reading the translations
from the person broadcasting. The person broadcasting would visit the root for
the App Engine application:

app.use('/', express.static('broadcast'))
app.use('/client', express.static('client'))

6. Once your application is deployed, visit the root path and open a new tab with
the /client path.

7. In the broadcast application, click Start Translating and start speaking in English;
watch the translation on the second tab. The translation is from English to
Portuguese.

8. You can change the languages in the app.js file, lines 29 and 30:
 const sourceLanguage = 'en-US';
 const targetLanguage = 'pt-BR';

Discussion
In this recipe, you used an existing repository to deploy a translation application to
App Engine. This application uses Express.js, WebSockets, and the Media Translation
API to allow real-time audio to be translated to the language you define in the code.
Since we are using WebSockets, we used App Engine Flexible, because Standard does
not support WebSockets. WebSockets allowed the real-time communication of the
broadcaster and users.

4.6 Building User Interfaces for Viewing Charts
and Graphs
Problem
You use BigQuery as your enterprise data warehouse and need a secure method to
display charts/graphs to users.

80 | Chapter 4: Google App Engine

Solution
Use App Engine, along with Cube.js, BigQuery, and App Engine to build a user inter‐
face (Figure 4-8) for viewing charts and graphs from data stored in your BigQuery
data set. BigQuery is a fully managed, serverless data warehouse (https://oreil.ly/
HcQlL).

You will be using Cube.js (https://cube.dev), which is an open
source analytical API platform.
You will also learn how to deploy React.js to App Engine, since the
user dashboards will be running with the React.js framework.

Figure 4-8. Cube.js running on App Engine

1. On your local workstation, create a temporary folder to hold the files you will
need to create App Engine user dashboards.

2. In your temporary folder, using the Cube.js CLI, run the npx cubejs-cli cre
ate real-time-dashboard -d bigquery command to create a new Cube.js
application for BigQuery.

4.6 Building User Interfaces for Viewing Charts and Graphs | 81

https://oreil.ly/HcQlL
https://cube.dev

3. You will need credentials to access BigQuery. In the Google Cloud Console, cre‐
ate a new service account. Add the BigQuery Data Viewer and BigQuery Job User
roles to this service account and then generate a new JSON key file. Copy the
JSON key to the root of the real-time-dashboard folder.

4. In your IDE, edit the real-time-dashboard/.env file to include your Google Cloud
project as well as the location of your key file:

CUBEJS_DB_BQ_PROJECT_ID=example-google-project
CUBEJS_DB_BQ_KEY_FILE=./examples.json
CUBEJS_DB_TYPE=bigquery
CUBEJS_API_SECRET=SECRET

5. Cube.js uses a data schema to generate SQL code. You will be working with the
BigQuery Hacker News public data set. Create a file called Stories.js in the real-
time-dashboard/schema folder with the following code:

cube(`Stories`, {
 sql: `
 SELECT *
 FROM bigquery-public-data.hacker_news.full
 WHERE type = "story" AND STARTS_WITH(UPPER(url), "HTTP")
 `,

 measures: {
 count: {
 type: `count`,
 },
 },

 dimensions: {
 protocol: {
 sql: `UPPER(REGEXP_EXTRACT(${CUBE}.url, r"^([a-zA-Z]+):"))`,
 type: `string`,
 },

 time: {
 sql: `timestamp`,
 type: `time`,
 },
 },
 });

6. Now run a real-time dashboard locally to test and validate that it’s working as
expected. Run the npm run dev command in the real-time-dashboard folder.

7. In your browser, go to http://localhost:4000, which should launch Cube.js Play‐
ground, as shown in Figure 4-9.

82 | Chapter 4: Google App Engine

Figure 4-9. Cube.js running locally

8. To test that it’s connecting to BigQuery, click Measure and choose Stories Count,
as shown in Figure 4-10.

Figure 4-10. Cube.js connection to BigQuery

4.6 Building User Interfaces for Viewing Charts and Graphs | 83

9. This service will become an API running on App Engine. The user dashboard
will connect to the Cube.js API to fetch the required data and visualize it for the
user.

10. To build the dashboard, click the Dashboard App in the Cube.js Playground.
11. Once it’s installed, locate the folder in your IDE; it will be under real-time-

dashboard/dashboard-app.
12. In your IDE, edit the src/pages/DashboardPage.js to replace the following line:

 const DashboardItems = []

with:
const DashboardItems = [
 {
 id: 0,
 name: "Orders Status by Customers City",
 vizState: {
 query: {
 "measures": [
 "Stories.count"
],
 "timeDimensions": [],
 "order": {
 "Stories.count": "desc"
 },
 "dimensions": [
 "Stories.protocol"
]
 },
 chartType: "pie",
 }
 },
 {
 id: 1,
 name: "Orders Status by Customers City",
 vizState: {
 query: {
 "measures": [
 "Stories.count"
],
 "timeDimensions": [
 {
 "dimension": "Stories.time",
 "granularity": "year"
 }
],
 "order": {},
 "dimensions": []
 },
 chartType: "line",

84 | Chapter 4: Google App Engine

 }
 },
];

13. In your IDE, edit src/components/ChartRenderer.js to include the following:
 const ChartRenderer = ({
- vizState
+ vizState, cubejsApi
- const renderProps = useCubeQuery(query);
+ const renderProps = useCubeQuery(query, { subscribe: true, cubej-
sApi });

Remove the lines in CharRenderer.js that are noted with a sub‐
traction symbol (-) and add the lines noted with the addition
symbol (+).
To learn more about Cube.js and React, please visit the online
reference (https://oreil.ly/wmY09).

14. Create an app.yaml file in real-time-dashboard/dashboard-app with the following
code:

runtime: nodejs14
handlers:
- url: /(.*\..+)$
 static_files: build/\1
 upload: build/(.*\..+)$
- url: /.*
 static_files: build/index.html
 upload: build/index.html

15. This configuration lets App Engine serve the optimized React.js build. When
making changes, you will always need to run an npm run build before deploying
your new version to App Engine.

16. Run the following commands to deploy the Dashboard to App Engine:
npm run build
 gcloud app deploy

17. After this has been successfully deployed, run the gcloud app browse command
to view the application in your browser.

18. Copy the URL of your deployed dashboard app and edit the real-time-dashboard/
dashboard-app/App.js file to replace the const API_URL variable with yours. It
should look like this:

const API_URL = "https://ruicosta-blog.uc.r.appspot.com";

19. Go ahead and redeploy:
npm run build
 gcloud app deploy

4.6 Building User Interfaces for Viewing Charts and Graphs | 85

https://oreil.ly/wmY09
https://oreil.ly/wmY09

20. At this point, the Dashboard is ready to connect to the Cube.js API that you just
updated in the App.js file. Now it’s time to deploy the API to App Engine.

21. Create a Dockerfile in the real-time-dashboard folder with the following code:
FROM cubejs/cube:latest

COPY . .

22. Create an app.yaml file in the real-time-dashboard folder with the following code:
runtime: custom
env: flex
service: api

23. Since Cube.js uses WebSockets and App Engine Standard does not support Web‐
Sockets, we need to use a custom runtime, so you will use Flexible for the API.

24. Update the content of the cube.js file with the following, located in the root of the
real-time-dashboard folder:

module.exports = {
 processSubscriptionsInterval: 1,
 orchestratorOptions: {
 queryCacheOptions: {
 refreshKeyRenewalThreshold: 1,
 }
 },
 };

25. Update the content of the .env file with the following, located in the root of the
real-time-dashboard folder, to include CUBEJS_WEB_SOCKETS=true.

26. Create a new file, called dispatch.yaml, in the root of the real-time-dashboard
folder:

 - url: "*/cubejs-api*"
 service: api

The dispatch.yaml file allows you to override routing rules and allows your Dash‐
board application to access the API via the main URL of the Dashboard so as not
to cause issues with CORS.

27. You are now ready to deploy the API and have users access data via the Dash‐
board. In the root of the real-time-dashboard, run the gcloud app deploy com‐
mand to deploy the API.

28. Once this has completed, deploy the dispatch rules by running gcloud app
deploy dispatch.yaml.

29. If you now access the URL of the Dashboard, you should be able to see what’s
shown in Figure 4-11.

86 | Chapter 4: Google App Engine

Figure 4-11. Cube.js running on App Engine

30. Don’t forget to secure your application by enabling IAP.

Discussion
In this recipe, you deployed the Cube.js API, a user Dashboard running on the
React.js Framework, to App Engine and created routes with dispatch rules to build an
interactive real-time dashboard for users.

4.6 Building User Interfaces for Viewing Charts and Graphs | 87

There are many moving parts in this recipe, but the key takeaways are:

• App Engine Standard does not support WebSockets, so you used App Engine
Flexible because the Cube.js API relies on WebSockets.

• App Engine is very flexible; with custom runtimes, the possibilities of running
your application on App Engine are endless.

4.7 Debugging an Instance
Problem
You notice an issue with your application, and you need a way to access the logs to
debug.

Solution
With App Engine Flexible, enable the debug mode. While debugging is enabled, you
can access the VM to view the log files of your custom runtime.

1. To enable debug mode, run the gcloud app --project PROJECT_ID command.
2. It will prompt you with the instances available to enable debugging. Choose one.
3. In the Google Cloud Console, choose App Engine > Instances.
4. You should notice in the instance you chose that Debug mode (Figure 4-12) is

now enabled.

Figure 4-12. App Engine Debug mode enabled

5. Click the SSH button to connect to the instance.
6. At this point, you are connected to the instance host, which has several contain‐

ers running in it.

88 | Chapter 4: Google App Engine

In addition to your container running on App Engine Flexible,
you will also have three additional containers:

• Fluentd Logging agent

• Memcache proxy agent

• NGINX proxy

7. Run sudo docker ps to list the containers running.
8. The output of the sudo docker ps command lists each container; locate the row

that contains your project ID and note the NAME of this container.
9. To view the logs, run the sudo docker logs [CONTAINER-NAME] command.

10. This allows you to view the logs from your application for debugging purposes.
11. You can also connect to the instance by running sudo docker exec -it CON

TAINER_NAME /bin/bash.
12. When completed, don’t forget to disable debugging by running the gcloud app

--project PROJECT_ID instances disable-debug command.

Discussion
The ability to connect to an instance and its containers allows you to debug your
application running on App Engine Flexible.

4.8 Using CI/CD
Problem
You need a method to automate the deployment of your application to App Engine
every time a change is made to the source code.

Solution
Use GitLab CI/CD, a tool that allows you to apply continuous integration (CI), con‐
tinuous delivery (CD), and continuous deployment (also CD) to your application.

1. Create a new GitLab project and clone the new repository to your local machine.
2. Create the Hello World application from Recipe 4.1, but do not deploy it to App

Engine.
3. In the root of the directory, create a GitLab CI/CD file named .gitlab-ci.yml with

the following contents:

4.8 Using CI/CD | 89

 image: google/cloud-sdk:slim
deploy:
 stage: deploy
 environment: Production
 only:
 - master
 script:
 - gcloud auth activate-service-account --key-file $GOOGLE_SER-
VICE_ACCOUNT_FILE
 - gcloud app deploy app.yaml --quiet --project $GOO-
GLE_PROJECT_ID --version 1

4. In the Google Cloud Console, go to Identity > Service Accounts.
5. Click Create Service Account.
6. Enter name and description and then click Create.
7. Select the Editor role and click Continue.
8. Select the service account you just created and, in Options, click Create A Key In

JSON Format. Download the key to your local workstation.
9. In the GitLab console within your project, go to Settings > CI/CD.

10. Expand the Variables section.
11. Create a new variable.
12. Change the type of variable to File. The key will be named GOOGLE_SER‐

VICE_ACCOUNT_FILE, and the value will be the content of the file that has
been previously downloaded.

13. Create another variable, named GOOGLE_PROJECT_ID, and the value will be
the ID of the Google Cloud project.

14. Commit your code and deploy your application to App Engine. In addition,
commit your changes to your GitLab repository.

15. In the GitLab console, open the GitLab CI/CD page. You will notice your pipe‐
line running.

16. If you click the pipeline, you will see the deployment steps; note Job Succeeded.

Discussion
The continuous methodologies of software development are based on automating the
tests and deployments of your source code to minimize the chance of errors. GitLab
CI/CD provides a set of tools, including the continuous deployment methodology
used in this recipe. Now, instead of deploying your application manually, it can be
deployed automatically to Google Cloud App Engine.

90 | Chapter 4: Google App Engine

CHAPTER 5

Google Cloud Compute Engine

Google Cloud Compute Engine provides you the ability to run virtual machines on
Google’s infrastructure. You can run Windows and Linux virtual machines. You can
customize the virtual machine to meet your needs. You can change the virtual
machine’s memory allocation, you can change how many virtual CPUs are assigned,
and you can even automate patching of the operating system.

This chapter contains recipes for creating and managing your virtual machines. You’ll
find recipes on unique methods to automate deployments, deploy containers to vir‐
tual machines, and use Identity-Aware Proxy (IAP) to tunnel Remote Desktop Proto‐
col (RDP) traffic to connect to your Windows virtual machines securely.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.
3. Installed and configured gcloud, as described in Chapter 1.

5.1 Creating a Windows Virtual Machine
Problem
You have an application that needs to be installed on a Windows server. You also need
access to the operating system to change configuration options required by the
application.

91

Solution
Using the Google Cloud Console, create a Windows server on Google Cloud Com‐
pute Engine. This will provide you with full access to the operating system to allow
you to make any configuration changes required by the application.

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Compute Engine.
3. Select VM Instances from the menu and click Create.
4. Choose a name for your instance.
5. Choose a region and zone for where this VM will be hosted.
6. Select a machine configuration or customize based on your requirements.
7. Click the Change button in the Boot Disk section, as shown in Figure 5-1.

Figure 5-1. Boot disk

8. Choose Windows Server for the operating system.
9. Choose the Windows version required and select a disk size, as shown in

Figure 5-2.

Figure 5-2. Windows version selection

92 | Chapter 5: Google Cloud Compute Engine

10. Click Select.
11. Leave other settings to default and click Create.
12. It will take a few seconds for your Windows virtual machine to start up.

Figure 5-3 shows the instance successfully started.

Figure 5-3. Windows instance successfully started

Discussion
In this recipe, you used the Google Cloud Console to create a Windows server. Creat‐
ing a Windows server on Compute Engine is a quick and painless way to run your
Windows workloads on a managed infrastructure. Explore the many options avail‐
able to customize the memory and virtual CPU allocation for your virtual machine.
You are never locked into a preconfigured template.

5.2 Creating a Linux Virtual Machine and Installing NGINX
Problem
You want to install an NGINX web server in the cloud and need full access to the
operating system hosting NGINX.

Solution
Using the Google Cloud Console, create a Linux virtual machine on Google Cloud
Compute Engine. This will provide you with full access to the operating system to
allow you to make any configuration changes the application requires. You will also
connect to the instance and install an NGINX web server.

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Compute Engine.
3. Select VM Instances from the menu and click Create.
4. Choose a name for your instance.
5. Choose a region and zone for where this VM will be hosted.
6. Select a machine configuration or customize based on your requirements.

5.2 Creating a Linux Virtual Machine and Installing NGINX | 93

7. Leave Boot Disk set to Debian GNU/Linux 10 (buster), as shown in Figure 5-4.

Figure 5-4. Boot disk

8. Select Allow HTTP Traffic to the instance, as shown in Figure 5-5.

Figure 5-5. Allow HTTPS traffic

9. Click Create.
10. Once the instance has been created and the public IP address has been set, click

SSH and select Open In The Browser Window, as shown in Figure 5-6.

Figure 5-6. SSH menu

94 | Chapter 5: Google Cloud Compute Engine

11. In the instance terminal, enter the following commands to install NGINX:
sudo su -
apt-get update
apt-get install -y nginx
service nginx start

12. In the Cloud Console, click the public IP address of your server to open the URL
in a new browser tab.

In your browser, you will see a screen that looks like Figure 5-7.

Figure 5-7. NGINX running on Google Compute Engine

Discussion
In this recipe, you used the Google Cloud Console to create a Linux virtual machine.
You also installed NGINX via the Google Cloud SSH browser. The SSH browser is a
quick and easy way to get access to your Linux terminal without having to manage
local SSH keys, which you can do if you choose. You also allowed HTTP traffic to the
instance by selecting Allow HTTP Traffic in the firewall section of the creation
screen. For this to work, you need to make sure you do not delete the default firewall
rule that allows HTTP traffic. If you happen to delete the firewall rule, you can re-
create it or create a new one and associate the firewall tags with the instances you
need HTTP traffic to be allowed for.

5.2 Creating a Linux Virtual Machine and Installing NGINX | 95

5.3 Connecting to Your Windows Virtual Machines with
Identity-Aware Proxy TCP Forwarding
Problem
You want to securely connect to your Windows Virtual Instance running in Google
Cloud.

Solution
Using Google Cloud Identity-Aware Proxy (IAP) with RDP, you will be able to
securely connect to your Virtual Instance running Microsoft Windows. Using IAP
allows you to also connect to the instance even if it did not have a Public IP address;
this is accomplished through the use of TCP forwarding. IAP also lets you control
who can access the instance.

1. You will need an existing Windows virtual machine ready and running on Com‐
pute Engine. You can reference Receipe 5.1 to install a Microsoft Windows Server
in Google Cloud.

2. In the main menu of the Google Cloud Console, navigate to Networking and
click VPC Network.

3. Click Firewall in the menu.
4. Click Create A Firewall Rule.
5. Enter a name for the firewall rule as allow-remote-iap.
6. For the Targets, select All Instances In The Network.
7. For Source IP Ranges, enter the following CIDR range, as shown in Figure 5-8:

35.235.240.0/20.

The 35.235.240.0/20 CIDR range contains all IP addresses that
Google Cloud IAP uses for TCP forwarding.

96 | Chapter 5: Google Cloud Compute Engine

Figure 5-8. Source IP ranges

8. Select TCP and enter 3389 to allow RDP in the Protocols And Ports section, as
shown in Figure 5-9.

Figure 5-9. Protocols and ports

9. Click Create.
10. Navigate to IAM & Admin > IAM in the Google Cloud Console menu.
11. Click Add to allow the groups and users to access IAP TCP forwarding, which

will grant them access to connect to the instances in this project.
12. For the members, select the groups and or users to whom you want to grant

access.
13. Select a role and choose IAP-Secured Tunnel User, as shown in Figure 5-10.

5.3 Connecting to Your Windows Virtual Machines with Identity-Aware Proxy TCP Forwarding | 97

Figure 5-10. IAP secured tunnel user

14. Click Save.
15. Install the IAP Desktop application; you can find the download at https://

github.com/GoogleCloudPlatform/iap-desktop. The IAP Desktop application
allows you to manage multiple RDP and SSH connections to Google Compute
instances securely with IAP.

16. Launch the IAP Desktop application and sign-in with the account you granted
access to in step 13.

17. Select your Google Cloud project, as shown in Figure 5-11.

Figure 5-11. IAP Desktop, Add project

98 | Chapter 5: Google Cloud Compute Engine

https://github.com/GoogleCloudPlatform/iap-desktop
https://github.com/GoogleCloudPlatform/iap-desktop

18. Once successfully authenticated, you should see your Windows virtual machines
listed, as shown in Figure 5-12.

Figure 5-12. IAP Desktop, Add project

19. Right-click the instance and select Connect; after successfully authenticating, you
should see the Windows Server desktop, as shown in Figure 5-13.

Figure 5-13. IAP Desktop, full view

5.3 Connecting to Your Windows Virtual Machines with Identity-Aware Proxy TCP Forwarding | 99

Discussion
IAP allows you to create a centralized authorization layer for applications. In this
recipe, you used IAP to tunnel RDP traffic to your Windows virtual machines. Using
the IAP Desktop client, you established a secure connection to Google Cloud, and
then your account was authenticated and authorized. Once successfully authenticated
and authorized, you then had access to the instances you had been granted in your
Google Cloud project. You can further secure this process by implementing two-step
verification; see Recipe 5.4 for more information. Using the IAP Desktop application
also provides the following benefits:

• You do not need to expose SSH or RDP to the public internet.
• You can connect to virtual machines that do not have a public IP address.

5.4 Securing Your Virtual Machine Logins with Two-Step
Verification
Problem
You want to secure your virtual machine OS logins with a two-step verification
process.

Solution
Compute Engine provides the ability to secure your virtual machine logins with a
two-step verification process. In this recipe, you will enable two-step verification on
your Google Account as well as on a virtual machine to force users to provide a sec‐
ond method of authentication besides their password as a text message, phone
prompt, or Google Authenticator.

OS Login has some limitations; please review the latest documenta‐
tion for updates to these limitations (https://oreil.ly/T4QcR).

1. You will need to have a Linux virtual machine running on Compute Engine to
continue with this recipe.

2. You will also need to enable two-step verification on your Google Account from
your web browser (https://oreil.ly/F5Crw).

3. Sign in to Google Cloud Console.

100 | Chapter 5: Google Cloud Compute Engine

https://oreil.ly/T4QcR
https://oreil.ly/T4QcR
https://oreil.ly/F5Crw
https://oreil.ly/F5Crw

4. In the main menu, navigate to Compute and click Compute Engine.
5. Select VM Instances from the menu and select the instance you want to enable

the two-step verification for.
6. Click Edit.
7. In the Custom Metadata section, add the following key/value pairs, as shown in

Figure 5-14:
• enable-oslogin: TRUE
• enable-oslogin-2fa: TRUE

Figure 5-14. Custom metadata

8. Click Save.
9. Add the Compute OS Admin Login or Compute OS Login role to the user

account you wish to grant access to for the virtual machine.
10. Using the Cloud SSH browser, connect to the instance.
11. You will now be prompted for a two-step verification, as shown in Figure 5-15.

Figure 5-15. Two-step verification

5.4 Securing Your Virtual Machine Logins with Two-Step Verification | 101

12. After making your selection, you should receive a code that you will enter in the
two-step verification, as shown in Figure 5-16.

Figure 5-16. Security code

13. Once verification is complete, you will have access to Linux virtual machines.

Discussion
By implementing a two-step verification, you further secured access to your virtual
machines running in Google Cloud. Users who need access to instances running in
Google Cloud with two-step verification enabled will be required to enter a code or
other methods as physical keys to access the instances. The two-step verification pro‐
cess is set on your Google account.

5.5 Running Startup Scripts
Problem
You want to install an NGINX web server in the cloud, and you need the ability to
replicate this process multiple times to deploy additional instances.

Solution
Using the Google Cloud Console, create a Linux virtual machine on Google Cloud
Compute Engine. You will also create a startup script to automate the installation of
NGINX so you can quickly deploy additional instances.

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Compute Engine.

102 | Chapter 5: Google Cloud Compute Engine

3. Select VM Instances from the menu and click Create.
4. Choose a name for your instance.
5. Choose a region and zone for where this VM will be hosted.
6. Select a machine configuration or customize based on your requirements.
7. Leave the Boot Disk set to Debian GNU/Linux 10 (buster), as shown in

Figure 5-17.

Figure 5-17. Boot disk

8. Select Allow HTTP Traffic to the instance, as shown in Figure 5-18.

Figure 5-18. Allow HTTP Traffic

9. In the Startup script text input, enter the following commands; Figure 5-19
shows an example:

#! /bin/bash
apt-get update
apt-get install -y nginx
service nginx start
sed -i -- 's/nginx/Google Cloud Cookbook - '"$HOSTNAME"'/' /var/www/
html/index.nginx-debian.html

Figure 5-19. Automation script

10. Click Create.

5.5 Running Startup Scripts | 103

11. Once the instance has been created and the public IP address has been set, open
your internet browser to the instance’s public IP address, as shown in
Figure 5-20.

Figure 5-20. External public IP address

In your browser, you will see a screen that looks like Figure 5-21.

Figure 5-21. NGINX running on Google Compute Engine

Discussion
Compute Engine allows you to create startup and shutdown scripts for your virtual
machines. With this recipe, you had the opportunity to use startup scripts to auto‐
mate the installation of software. Using startup scripts automated the deployment of a
large fleet of web servers. In Recipe 5.6, you will learn how to use the startup scripts
to deploy a cluster of web servers, which makes the process of installing software
more efficient than connecting to each instance to install the software. For additional
information on the options for startup scripts, please review the documentation
(https://oreil.ly/6bKSR).

104 | Chapter 5: Google Cloud Compute Engine

https://oreil.ly/6bKSR

5.6 Creating a Group of NGINX Web Servers with a
Managed Instance Group
Problem
You need to host a highly available web server, using NGINX. If one server fails, you
need your web application to tolerate a host failure.

Solution
Using managed instance groups (MIGs), you will create a grouping of Linux virtual
machines on Google Cloud Compute Engine. You will also create network load bal‐
ancers to distribute traffic across the virtual machines.

1. Sign in to Google Cloud Console and launch Cloud Shell.
2. In Cloud Shell, create a startup script named nginx-startup.sh with the follow‐

ing commands:
#! /bin/bash
apt-get update
apt-get install -y nginx
service nginx start
sed -i -- 's/nginx/Google Cloud Cookbook - '"$HOSTNAME"'/' /var/www/
html/index.nginx-debian.html

3. Create a new instance template with the gCloud command and define the startup
script parameter to the file created in step 2:

gcloud compute instance-templates create nginx-template \
--metadata-from-file startup-script=nginx-startup.txt

An instance template defines the machine type as the Boot
Disk image, labels, and other instance properties. You can use
this template to create a MIG or even a virtual machine
instance.

4. Create a target pool so you can have a single access point for load balancing. Run
the following command:

gcloud compute target-pools create nginx-pool

5. Run the following command to create an instance group:
gcloud compute instance-groups managed create nginx-group \
 --base-instance-name nginx \
 --size 2 \
 --template nginx-template \
 --target-pool nginx-pool

5.6 Creating a Group of NGINX Web Servers with a Managed Instance Group | 105

6. Open the Cloud Console and navigate to VM Instances; you should see two new
instances created from the command in step 5.

7. Create a network load balancer for the new instance group created, and run the
following command:

gcloud compute forwarding-rules create nginx-lb \
 --ports 80 \
 --target-pool nginx-pool

8. When prompted for a region, choose the region your instance group is in; for
this example, you would choose us-east1.

9. Run the following command to allow HTTP access to your instance group:
gcloud compute firewall-rules create allow-80 --allow tcp:80

10. To get the IP address of the regional load balancer, run the following command:
gcloud compute forwarding-rules list

11. Visit the associated IP address in your browser.

In your browser, you will see a screen that looks like Figure 5-22.

Figure 5-22. NGINX running on Google Compute Engine

Discussion
In this recipe, you were introduced to managed instance groups and instance tem‐
plates. Instance templates are a great method to deploy instances that require identi‐
cal settings. An example is creating web servers for a cluster: you want all the instan‐
ces to have the same configuration as memory, virtual CPUs, and the associated
required software. You then used the instance template to create an instance group.
An instance group is a grouping of virtual instances managed by a single entity. As a

106 | Chapter 5: Google Cloud Compute Engine

plus, you deployed a load balancer to distribute traffic to the virtual instances in the
instance group. If one instance failed, your application would still be running,
because you had additional instances in the instance group.

5.7 Deploying Containers to Managed Instance Groups
Problem
You have a requirement to start running your applications as containers. You want to
get started with Compute Engine, and you want to run your NGINX as a container.
You also want the benefits that Kubernetes provides, such as autoscaling, autohealing,
and rolling updates.

Solution
Create a new Docker container. You will then deploy the Docker container to an
instance group that will provide the autoscaling, autohealing, and rolling update
requirements for your application. Instance groups provide you with benefits similar
to Kubernetes, because it allows you to create MIGs to provide autoscaling, autoheal‐
ing, and automatic updating.

1. Sign in to Google Cloud Console and launch Cloud Shell.
2. Create a new instance template and associate it with a publicly accessible con‐

tainer image. Run the following command in your Cloud Shell:
gcloud compute instance-templates create-with-container nginx-template \
 --container-image gcr.io/cloud-marketplace/google/
nginx1:1.15 \
 --tags http-server

3. Create a target pool so you have a single access point for load balancing. Run the
following command:

gcloud compute target-pools create nginx-pool

4. Run the following command to create an instance group based on the newly cre‐
ated template:

gcloud compute instance-groups managed create nginx-group \
 --base-instance-name nginx-vm \
 --size 2 \
 --template nginx-template \
 --target-pool nginx-pool

5. In the Cloud Console, navigate to your instance groups. You should see your
instance group listed as shown in Figure 5-23.

5.7 Deploying Containers to Managed Instance Groups | 107

Figure 5-23. Instance group virtual machines

6. Run the following command to create a regional load balancer for the newly cre‐
ated instance group:

gcloud compute forwarding-rules create nginx-lb \
 --ports 80 \
 --target-pool nginx-pool

7. When prompted for a region, choose the region your instance group is in; for
this example, you would choose us-east1.

8. To get the IP address of the regional load balancer, run the following command:
gcloud compute forwarding-rules list

9. The output will print the IP address that you can copy and paste in a web
browser.

10. Visit the associated IP address in your browser.
In your browser, you will see a screen that looks like Figure 5-24.

Figure 5-24. NGINX running on Google Compute Engine

108 | Chapter 5: Google Cloud Compute Engine

Discussion
In this recipe, you learned how to deploy a container to Compute Engine. This is a
great way to get started with containers. It is recommended to run containers on
Google Kubernetes Engine as the orchestration engine for your microservices. After
deploying the containers, you exposed them with the --tags http-server flag, and
you created a load balancer to distribute the traffic across the containers running on
multiple virtual machines.

5.8 Transferring Files to Your Virtual Machine
Problem
You have a Linux virtual machine running on Compute Engine, and you need to
transfer files to the instance.

Solution
In this recipe, you will use two methods of transferring files to your Linux virtual
machine, one using the gcloud command-line tool and a second using SSH in your
web browser.

1. You will need a Linux virtual machine running on Compute Engine to continue
with this recipe.

2. Sign in to Google Cloud Console and launch Cloud Shell.
3. In your cloud shell, run the following command:

touch myfile-one.txt

4. To copy the newly created file, run the following command and replace -instance-
name with your instance name:

gcloud compute scp myfile-one.txt instance-name:~

5. Connect to the Linux virtual machine with the Cloud Console SSH browser.
6. In the Linux terminal, validate the file copied by listing the files, using the ls

command.
7. To upload a file with the SSH browser, click the Settings icon and select Upload

File, as shown in Figure 5-25.

5.8 Transferring Files to Your Virtual Machine | 109

Figure 5-25. Menu for Settings, including the ability to upload and download files

8. Upload a sample file from your local workstation; Figure 5-26 shows the file
transfer competition process.

Figure 5-26. File transfer completed

Discussion
Google Cloud provides multiple ways to transfer files to your virtual machines. In
this recipe, you learned two methods to transfer files, one via the gcloud command
that can be run on your local machine and the other via a web browser.

110 | Chapter 5: Google Cloud Compute Engine

5.9 Using VM Manager for Patch Management
Problem
You host your virtual machines on Compute Engine, and you need a method for
patching all the operating systems at once.

Solution
Using OS patch management with VM Manager, create a patch job to patch your fleet
of Linux virtual machines.

1. You will need at least one Linux virtual machine running on Compute Engine to
continue with this recipe.

2. Sign in to Google Cloud Console and launch Cloud Shell.
3. To have Compute Engine manage your operating systems, you will need to install

and configure VM Manager and run the following commands to enable operat‐
ing system management for all your virtual machines, replacing the
PROJECT_ID with your Google Cloud project ID:

gcloud compute project-info add-metadata \
 --project PROJECT_ID \
 --metadata=enable-osconfig=TRUE

gcloud compute project-info add-metadata \
 --project PROJECT_ID \
--metadata=enable-guest-attributes=TRUE,enable-osconfig=TRUE

4. Using the Cloud Shell SSH browser, connect to one of your instances to validate
that the OS Config Agent is installed, and run the following command:

sudo systemctl status google-osconfig-agent

5. If the agent is running, you should see an output with the following statement:
active (running)

6. In the Google Cloud Console, navigate to Compute Engine > VM Manager > OS
Patch Management.

7. Click Enable VM Manager.
8. Click New Patch Deployment.
9. Select the target zones for your virtual machines.

10. Click Next.
11. Enter a deployment name.
12. Click Next.

5.9 Using VM Manager for Patch Management | 111

13. Choose default options for Scheduling, Rollout Options, and Advanced Options.
14. Click Deploy.
15. Your patch job will start automatically and display a status similar to Figure 5-27.

Figure 5-27. Patching job status

Once the patch job is completed, you should see a status window, as shown in
Figure 5-28.

OS patch management also supports Windows virtual machines.

Figure 5-28. Patching job successfully completed

112 | Chapter 5: Google Cloud Compute Engine

Discussion
When managing one virtual machine, it’s fairly easy to perform patch updates. How‐
ever, when running large fleets of virtual machines, it becomes difficult to patch all
your instances without some complicated scripting or third-party tool. With VM
Manager and OS patch management, Google Cloud provides the tools to distribute
patch updates with multiple options, including the ability to do rolling updates and
restrict updates to certain zones.

5.10 Backing Up Your Virtual Machine
Problem
You have a Linux virtual machine running on Compute Engine. This is a critical
application to your business, and you want to perform backups of the persistent disks
assigned to the virtual machine as a method to recover the instance if something goes
wrong.

Solution
Using Compute Engine persistent disk snapshots, you will create a snapshot of the
virtual machine’s persistent disk to have a recovery point of the disk in the event of
mishap.

1. You will need a Linux virtual machine running on Compute Engine to continue
with this recipe.

2. Sign in to Google Cloud Console.
3. Navigate to Compute > Compute Engine > Snapshots.
4. Click Create Snapshot.
5. Enter a name for the snapshot and select the source disk of your virtual machine.
6. Click Create.

Once completed, you should see your snapshot listed. You can now create a new vir‐
tual machine based on this snapshot. Figure 5-29 shows a virtual machine creation
window with Boot Disk selected as the snapshot created.

5.10 Backing Up Your Virtual Machine | 113

Figure 5-29. Virtual machine creation with snapshot

Discussion
Using snapshots is a great method to protect your data in case something goes wrong.
It creates a point-in-time copy of your persistent disk. Besides being a recovery point,
it also allows you to create a virtual machine based on the snapshot, allowing you to
perform file-level recovery and testing changes in your application or operating sys‐
tem. You can create a virtual machine with the disk that was snapshot, maybe to test
how an operating system change would affect the state of the virtual machine.

114 | Chapter 5: Google Cloud Compute Engine

CHAPTER 6

Google Cloud Kubernetes Engine

Google Cloud Kubernetes Engine (GKE) is a fully managed and secured platform that
provides you the ability to run your containerized workloads. This chapter contains
recipes for creating and managing your containers, including unique methods to
automate deployments and ways to deploy real-world applications.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.
3. Installed and configured gcloud, as described in Chapter 1.

6.1 Creating a Zonal Cluster
Problem
You want to run an application on Kubernetes but want to run it only within a single
zone, within a region. You also want to be able to create and upgrade your Kubernetes
cluster quickly.

115

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

Solution
Run your application on a zonal Kubernetes cluster. With a single control plane man‐
aging your Kubernetes cluster, it’s very easy to get started quickly.

Prerequisites
Ensure that the Kubernetes Engine API is enabled.

1. Sign in to the Google Cloud Console.
2. In the main menu, navigate to Compute and click Kubernetes Engine.
3. Click the Create button at the top of the screen.
4. Click Configure next to the Standard option.
5. In the Cluster Basics section:

a. Choose a name for your cluster.
b. In Location Type, select Zonal.
c. In Zone, select any zone of your choice.
d. Leave the remaining settings at the defaults.

6. In the left navigation pane, several other options could be set; however, we will
leave them at the defaults for the purposes of this recipe.

7. Click Create at the bottom of the screen.
8. You will be navigated back to the Clusters screen, where you will see your cluster

spinning up. This process can take more than a minute to complete.
9. Once complete, you will see a green checkmark icon next to the name of your

cluster. Your cluster is now ready for the deployment of applications.

Discussion
Creating a zonal GKE cluster is a quick and easy way to get going with Kubernetes
versus trying to launch a self-managed Kubernetes cluster. GCP manages the Kuber‐
netes control plane, so you don’t need to worry about the operational overhead that
comes with managing it. Beyond this recipe, you should look through the configura‐
tion options you have with GKE, which affords you tons of flexibility and additional
configuration around nodepools, automation, networking, security, metadata, and
more. For additional information, refer to the Google Kubernetes Engine guide
(https://oreil.ly/EVeWx).

116 | Chapter 6: Google Cloud Kubernetes Engine

https://oreil.ly/EVeWx

6.2 Creating a Regional Cluster
Problem
You want to run an application on Kubernetes, but across two or more zones within a
region. You value the availability of your application over the flexibility that may
come with a zonal Kubernetes cluster.

Solution
Run your application on a regional Kubernetes cluster. Regional clusters allow for
higher availability, fault tolerance, and no-downtime upgrades. This makes your
application more resilient and spread across multiple zones within a single region.

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Kubernetes Engine.
3. Click the Create button at the top of the screen.
4. Click Configure next to the Standard option.
5. In the Cluster Basics section:

a. Choose a name for your cluster.
b. In Location Type, select Regional.
c. In Region, select any region of your choice.
d. Leave the remaining settings at their defaults.

6. In the left navigation pane, several other options could be set; however, we will
leave them at their defaults for the purposes of this recipe.

7. Click Create at the bottom of the screen.
8. You will be navigated back to the Clusters screen, where you will see your cluster

spinning up. This process can take more than a minute to complete.

Once complete, you will see a green checkmark icon next to the name of your cluster.

Discussion
Creating a regional GKE cluster is a quick and easy way to get going with Kubernetes
versus trying to self-manage a Kubernetes cluster of your own. With a regional clus‐
ter, you have nodes deployed across the zones within that region, so expect that the
number of nodes, total vCPUs, and total memory are larger than your zonal GKE
deployment with the same configuration. The Kubernetes control plane (managed by
GCP) is also spread out across the zones within the region, so you don’t need to
worry about configuring it beyond deploying the cluster itself. Beyond this recipe,

6.2 Creating a Regional Cluster | 117

you should look through the configuration options you have with GKE, which afford
tons of flexibility and configurability around nodepools, automation, networking,
security, metadata, and more.

Summary of the benefits of running a regional GKE cluster:

• Resilience from single zone failure
• Continuous control plane upgrades

6.3 Resizing a Cluster
Problem
You are running a Kubernetes cluster that has either too few nodes (and therefore is
unable to meet spiking demand for your application) or a Kubernetes cluster that has
too many nodes (and is over-provisioned for the level of traffic it is receiving), and
you want to resize your cluster.

Solution
You should resize the number of nodes your Kubernetes cluster is running to ensure
that you have set up an optimal cluster based on your application’s traffic patterns.

Prerequisites
Ensure that the Kubernetes Engine API is enabled as well as that you have a zonal or
regional cluster running that you can resize. (See Recipes 6.1 and 6.2.)

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Kubernetes Engine.
3. If you completed the preceding recipes, you should have at least one Kubernetes

cluster running. In Figure 6-1, you will see we have two regional clusters run‐
ning, one in us-east1 and another in us-west1. For this recipe, we will increase
the number of nodes in cluster-1.

The process is the same for resizing a cluster’s nodes, whether
it’s regional or zonal.

118 | Chapter 6: Google Cloud Kubernetes Engine

4. Click the name of your cluster.
5. Click Nodes underneath the name of your cluster, as shown in Figure 6-1.

Figure 6-1. Nodes tab within selected cluster

6. You should now see one node pool, called default-pool. Click default-pool (or
whatever the name of your particular node pool is), as shown in Figure 6-2.

Figure 6-2. Node pools

7. Click Edit at the top of the Node Pools screen.
8. Now we can increase and decrease the default size of our node pool to any num‐

ber of nodes that we prefer, as shown in Figure 6-3. In Figure 6-3, we will
increase the node pool size from 3 to 5.

If you want your Kubernetes cluster to autoscale up based on
node utilization, select the Enable Autoscaling box. Selecting
the box will give you the option to set minimum and maxi‐
mum node thresholds.

6.3 Resizing a Cluster | 119

Figure 6-3. Increase nodes in the default-pool

9. Click the Save button at the bottom of the screen. You should see the screen
shown in Figure 6-4.

Figure 6-4. Resize node pool

This may take a minute or two, but once completed, you have effectively resized your
default node pool from running three nodes to running five nodes in the default-pool
node pool.

Discussion
Resizing the number of nodes in a node pool is a relatively simple process. The num‐
ber of nodes you run, as well as the number of node pools you run, should be thought
out carefully to meet the needs of your particular application. Enabling autoscaling in
your node pools is a major value add that Kubernetes brings allowing your node
pools to increase and decrease based on the utilization of that node within a range
you specify.

120 | Chapter 6: Google Cloud Kubernetes Engine

6.4 Automatically Routing Traffic to the Nearest Cluster
with Multi-Cluster Ingress
Problem
You have an application that runs on multiple Kubernetes clusters that are located in
different regions, and you want to be able to route user traffic automatically to the
cluster that is nearest to the user’s location, using a single HTTP(S) load balancer.

Solution
Use Multi-Cluster Ingress for Anthos to run your application across as many Kuber‐
netes clusters as you’d like, and route traffic to the nearest cluster, based on the origin
of the request.

Prerequisites
Ensure that the following APIs are enabled:

• Kubernetes Engine API
• GKE Hub
• Anthos
• Multi-Cluster Ingress API

First, we will create two regional clusters in two regions (us-east1 and us-west1).

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Kubernetes Engine.
3. Click the Create button at the top of the screen.
4. Click Configure next to the Standard option.
5. In the Cluster Basics section:

a. In Name, set your cluster name to cluster-1.
b. In Location Type, select Regional.
c. In Region, select us-east1.
d. Leave the remaining settings at their defaults.

6. Click Create at the bottom of the screen.
You will be navigated back to the Clusters screen, where you will see your cluster
spinning up. This process can take more than a minute to complete.

6.4 Automatically Routing Traffic to the Nearest Cluster with Multi-Cluster Ingress | 121

7. We will repeat this process and create another regional cluster in a different
region than the one we just created.

8. Click the Create button at the top of the screen.
9. Click Configure next to the Standard option.

10. In the Cluster Basics section:
a. In Name, set your cluster name to cluster-2.
b. In Location Type, select Regional.
c. In Region, select us-west1.
d. Leave the remaining settings at their defaults.

11. Click Create at the bottom of the screen. You will be navigated back to the Clus‐
ters screen, where you will see your cluster spinning up. This process can take
more than a minute to complete.
Now we will register the clusters to the same environment.

12. In the main menu, navigate to Anthos and click Clusters in the submenu.
13. Click Register Existing Cluster.

You will now see that both the clusters you created are ready to be registered as
shown in Figure 6-5.

Figure 6-5. Two clusters running in the Google Cloud Console

14. Next to cluster-1, click REGISTER.
15. You’ll be asked for a service account to register to the environment; choose

Workload Identity as shown in Figure 6-6.

Figure 6-6. Register service account

16. Click Submit.
17. Repeat steps 13-15 for the second cluster, cluster-2.

122 | Chapter 6: Google Cloud Kubernetes Engine

Now, we will set up Ingress for Anthos.
18. Next, click Features in the Anthos screen.
19. Click Enable next to Ingress and then click Enable Ingress.
20. In the Config Membership drop-down menu, select the first cluster you spun up

(cluster-1) and click Install. After a minute or so, refresh the screen, and you
should see the Ingress Enabled screen.

21. Open the cloud shell by clicking this button in the top-right corner of your
screen.

22. Type the following into your cloud shell to make a directory that will hold
the .yaml files we will need for the remainder of this tutorial:

mkdir multicluster-ingress-demo \
 && cd multicluster-ingress-demo

23. Before we can work with our clusters via kubectl in the cloud shell, we need to
configure our cluster access by generating a kubeconfig entry. You can do this by
running the following command for both of your clusters in the cloud shell:

gcloud container clusters \
 get-credentials cluster-1 --region us-east1
gcloud container clusters \
 get-credentials cluster-2 --region us-west1

24. Ensure that you received a confirmation for each cluster:
Fetching cluster endpoint and auth data.
kubeconfig entry generated for cluster-1.
Fetching cluster endpoint and auth data.
kubeconfig entry generated for cluster-2

25. Now we can work with the clusters from the cloud shell command line. Let’s cre‐
ate the namespace for our application to run. You can do this by typing nano
namespace.yaml in the cloud shell.
Paste this into the .yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: zoneprinter

26. Save the file. Before we proceed, let’s set the shell variable for our project ID.
Enter the following in the cloud shell:

PROJECT=$(gcloud info --format='value(config.project)')

27. Now let’s apply namespace.yaml to both of our clusters, cluster-1 and cluster-2.
You can do this by running the following:

kubectl config use-context \
 gke_$(echo $PROJECT)_us-east1_cluster-1
kubectl apply -f namespace.yaml
kubectl config use-context \

6.4 Automatically Routing Traffic to the Nearest Cluster with Multi-Cluster Ingress | 123

 gke_$(echo $PROJECT)_us-west1_cluster-2
kubectl apply -f namespace.yaml

We will now deploy a sample app, which shows the location of the data center
you are reaching to both clusters, from an image called zone-printer.

28. Create a new .yaml file by typing nano app.yaml in the gcloud terminal, and
paste the following into the yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: zone-ingress
 namespace: zoneprinter
 labels:
 app: zoneprinter
spec:
 selector:
 matchLabels:
 app: zoneprinter
 template:
 metadata:
 labels:
 app: zoneprinter
 spec:
 containers:
 - name: frontend
 image: gcr.io/google-samples/zone-printer:0.2
 ports:
 - containerPort: 8080

29. Save the file. Apply app.yaml to both of your clusters, cluster-1 and cluster-2. You
can do this by running the following in the cloud shell:

kubectl config use-context \
gke_$(echo $PROJECT)_us-east1_cluster-1
kubectl apply -f app.yaml
kubectl config use-context \
gke_$(echo $PROJECT)_us-west1_cluster-2
kubectl apply -f app.yaml

Now that the app is running in both clusters in the same namespace, let’s wrap up
by creating the MultiClusterService and MultiClusterObject.

30. First, create the MultiClusterService. Create a new .yaml file by typing nano
mcs.yaml in the cloud shell, and paste the following into the YAML:

apiVersion: networking.gke.io/v1
kind: MultiClusterService
metadata:
 name: zone-mcs
 namespace: zoneprinter
spec:

124 | Chapter 6: Google Cloud Kubernetes Engine

 template:
 spec:
 selector:
 app: zoneprinter
 ports:
 - name: web
 protocol: TCP
 port: 8080
 targetPort: 8080

31. Save the file and apply this file to cluster-1:
kubectl config use-context \
 gke_$(echo $PROJECT)_us-east1_cluster-1
kubectl apply -f mcs.yaml

32. Create the MultiClusterIngress. Create a new .yaml file by typing nano mci.yaml
in the cloud shell, and paste the following into the YAML:

apiVersion: networking.gke.io/v1
kind: MultiClusterIngress
metadata:
 name: zone-ingress
 namespace: zoneprinter
spec:
 template:
 spec:
 backend:
 serviceName: zone-mcs
 servicePort: 8080

33. Save the file and apply this file to cluster-1:
kubectl apply -f mci.yaml

34. Finally, pull the virtual IP (VIP) to access our application from the MultiCluster
Ingress. Run this command in your cloud shell:

kubectl describe mci zone-ingress -n zoneprinter

35. In the output, under the Status heading, you will find an entry that says VIP: <ip
address>. If you don’t see VIP: <ip address> immediately, that’s OK; the ingress
may take a few minutes to spin up. Keep running the describe command until
you see the IP appear.

36. Once you get the VIP, open a new tab, paste the VIP to the URL bar, and press
Enter.
You should see a web page, as shown in Figure 6-7.

6.4 Automatically Routing Traffic to the Nearest Cluster with Multi-Cluster Ingress | 125

Figure 6-7. Running application on multi-cluster ingress

Discussion
In summary and in order: we created two GKE clusters in us-east1 and us-west1 and
then registered the clusters to an environment and enabled the Ingress for Anthos
feature. We then created the proper namespace and deployed the zone-printer appli‐
cation to both clusters, used cluster-1 as our config cluster, and deployed a multi-
cluster service and Multi-Cluster Ingress to that cluster. The request now routes
through an L7 HTTP load balancer to the nearest cluster running the application
from the location of the request. Multi-Cluster Ingress, using Ingress for Anthos, will
allow you to route requests to your Kubernetes clusters running anywhere in the
world.

6.5 Deploying a Spring Boot Java Application
Problem
You need to deploy a Java Spring Boot REST service to Kubernetes.

Solution
Use Google Cloud Source Repositories, Google Cloud Container Builder, and Jib to
containerize and deploy the Spring Boot REST service to a Kubernetes cluster.

126 | Chapter 6: Google Cloud Kubernetes Engine

For this recipe, you will need to git clone this book’s code example repository
(https://github.com/ruiscosta/oreilly-google-cloud-cookbook).

1. On your local workstation, open the working directory for this recipe from the
cloned repository:

cd google-cloud-cookbook/06-kubernetes/6-8-java

2. Test the sample Java application locally by running the following command:
./mvnw -DskipTests spring-boot:run

3. In your browser, go to http://localhost:8080. You should see a screen similar to
Figure 6-8.

Figure 6-8. Java Spring Boot application

4. Run the following command to enable the Google Cloud Container Registry API
to store the container image:

gcloud services enable containerregistry.googleapis.com

5. Use Jib to create the container image and push it to the Container Registry;
replace $GOOGLE_CLOUD_PROJECT with your Google Cloud Project ID:

mvn compile \
 com.google.cloud.tools:jib-maven-plugin:2.0.0:build \
 -Dimage=gcr.io/$GOOGLE_CLOUD_PROJECT/hello-java:v1

6. Build and push the image to a container registry:
mvn compile jib:build \
 -Dimage=gcr.io/ruicosta-blog/hello-java:v1

7. To test the Docker installation, run the following command:
mvn compile jib:dockerBuild \
 -Dimage=gcr.io/ruicosta-blog/hello-java:v1

8. To list the Docker images, run the following command:
docker images

9. Run the following command to run the Docker container locally on your
machine, and replace the image ID with yours from step 8:

docker run -p 8080:8080 -t IMAGE_ID

6.5 Deploying a Spring Boot Java Application | 127

https://github.com/ruiscosta/oreilly-google-cloud-cookbook
http://localhost:8080

10. In your browser, go to http://localhost:8080, and you should see a similar screen
to the one in step 3. You have now tested the Spring Boot application, container‐
ized locally.

11. Create a Kubernetes two-node cluster:
gcloud container clusters create hello-java-cluster \
 --num-nodes 2 \
 --machine-type n1-standard-1 \
 --zone us-central1-c

12. To deploy your application to the GKE cluster, run the following command and
replace GOOGLE_CLOUD_PROJECT with your Google Cloud project ID:

kubectl create deployment hello-java \
 --image=gcr.io/$GOOGLE_CLOUD_PROJECT/hello-java:v1

13. To make the hello-java container accessible from outside the GKE cluster, you
will have to expose the pod as a Kubernetes service. Run the following command:

kubectl create service loadbalancer hello-java --tcp=8080:8080

14. To find the publicly accessible IP address of the service, run the following
command:

kubectl get services

15. Visit http://EXTERNAL-IP:8080 in your web browser; you should see a page sim‐
ilar to the one shown in Figure 6-9.

Figure 6-9. Java Spring Boot application running on Kubernetes

Discussion
In this recipe, you deployed a Java Spring Boot application to Google Cloud Kuber‐
netes Engine. You leveraged Jib, which builds containers without having to declare a
Dockerfile. Jib was developed by Google to simplify the process of building Java con‐
tainers—no need to create a Docker file or wait for the build to complete. Jib handles
all the steps required to build your Java container.

128 | Chapter 6: Google Cloud Kubernetes Engine

http://EXTERNAL-IP:8080

6.6 Deploying a Java Application to Kubernetes,
Using Skaffold
Problem
You need a method to develop, build, push, and deploy your Java application quickly
to Kubernetes.

Solution
Use Skaffold and the Cloud Code plug-in for IntelliJ to develop, build, push, and
deploy your application to Kubernetes, all from the IntelliJ IDE.

1. Install Cloud Code for IntelliJ (https://oreil.ly/0W69p).
2. Create a new IntelliJ project.
3. Choose Cloud Code: Kubernetes > Java: Hello World and click Next.
4. Enter the location of your container repository, as in the example shown here:

gcr.io/ruicosta-blog

5. Choose a project name and location for your project files.
6. Navigate to the Kubernetes Explorer from the right-side panel or by going to

Tools > Cloud Code > Kubernetes > View Cluster Explorer.
7. Select Add A New GKE Cluster and click Create A New GKE Cluster. This will

open the Google Cloud Console in a web browser to the cluster wizard page.
8. In the Google Cloud Console, create a new cluster.

Once your cluster is created, your screen should update with the cluster name.
9. Click OK.

10. Click Run On Kubernetes.
11. Once the process is complete, you should see the workload created in the Google

Cloud Console, as shown in Figure 6-10.

Figure 6-10. Kubernetes workload

Besides making it easy to deploy your application from IntelliJ to Google Cloud,
it also tunnels the traffic from your local workstation to Kubernetes.

6.6 Deploying a Java Application to Kubernetes, Using Skaffold | 129

https://oreil.ly/0W69p

12. In your web browser, go to http://localhost to see a screen similar to Figure 6-11.

The application is now running on a Google Cloud Kubernetes cluster in your Google
Cloud project.

Figure 6-11. Java application running on Kubernetes

Discussion
Google Cloud Code is an amazing add-on for your IntelliJ or Visual Studio code edi‐
tors to deploy and debug your code faster. With Google Cloud Code, you can easily
enable Google Cloud APIs, create clusters, and deploy your applications to either
Cloud Run or Kubernetes. Google Cloud Code leverages Skaffold, which is a tool that
handles the pipeline for building, pushing, and deploying your application to Kuber‐
netes. For additional information, please refer to documentation for Skaffold (https://
skaffold.dev) and Google Cloud Code (https://cloud.google.com/code).

6.7 Using GKE Autopilot for Running an Application You
Don’t Have to Manage
Problem
You want to run your application on Kubernetes, but don’t want to have to manage
nodes, node pools, images, networking, and the other operational components of
running a Kubernetes cluster. Effectively, you want to run your application(s) on
Kubernetes while not having to worry about the management or operation of the
cluster itself.

130 | Chapter 6: Google Cloud Kubernetes Engine

https://skaffold.dev
https://cloud.google.com/code

Solution
Run your application on GKE Autopilot. With GKE Autopilot, many operational
aspects of Kubernetes are abstracted away, and you are left with a Kubernetes infra‐
structure that is largely configured to Google GKE best practices.

1. Sign in to Google Cloud Console.
2. In the main menu, navigate to Compute and click Kubernetes Engine.
3. Click the Create button at the top of the screen.
4. Click Configure next to the Autopilot option.
5. In the Cluster Basics section:

a. In Name, give your GKE Autopilot cluster any name of your choice.
b. In Region, pick any region of your choice.
c. The remaining options can be left at their defaults. Click the Create button at

the bottom of the screen.
d. The cluster should take a minute or so to spin up and be ready for use.

Discussion
At the time of writing, GKE Autopilot is a new GCP offering that allows users to run
Kubernetes clusters in a more managed format versus running GKE in Standard
mode. The managed aspect of GKE Autopilot reduces the users’ full control over the
cluster in exchange for an ease of operational overhead. GKE Autopilot is an exciting
mode of operation that enables users to get started much more quickly deploying
their production workloads in GCP.

6.7 Using GKE Autopilot for Running an Application You Don’t Have to Manage | 131

CHAPTER 7

Working with Data

One of the greatest paradigm shifts when working with cloud computing is the nearly
unlimited storage now available to users. Cheap, scalable blob storage in the form of
Google Cloud Storage (GCS) allows administrators to start from a standpoint of
“never delete data.” Services like BigQuery and Spark on Dataproc allow you to pay
for long-lived storage separately from the compute resources, which you pay for by
the second. Generally, compute is more expensive than storage, so this paradigm
saves on a great deal of engineering effort trying to move, archive, and retrieve data
between disparate storage systems.

The recipes in this chapter show tips and tricks when working with the various data
layers of Google Cloud, from moving data round GCS buckets faster, to automatically
archiving long-term data, to some more advanced database techniques.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

7.1 Speeding Up Cloud Storage Bulk Transfers by
Multiprocessing
Problem
Although the gsutil tool performs well and is a great CLI solution for interacting with
GCS, sometimes you want to max out your CPU and network bandwidth for a faster
transfer. You’ll often do this when transferring a large number of files, either to or
from GCS or within the GCS service.

133

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

Solution
You can leverage the -m flag when using the gsutil command-line tool to multiproc‐
ess your transfer.

1. From a CLI with gcloud and gsutil installed or from Cloud Shell, create a bucket
and upload data to observe normal single-process transfer speed:

BUCKET_NAME=my-bucket-4312
gsutil mb -l us gs://$BUCKET_NAME

2. Upload some data from a public bucket to your new bucket. This will move ~250
GB, so once you have reached a steady-state transfer speed, you can cancel the
job. If you would like to save time, use the Ctrl+C key command:

gsutil cp -r gs://gcp-public-data-landsat/LC08/01/044/034/* gs://
$BUCKET_NAME

3. Add -m to multiprocess your transfer and observe greatly increased speed. When
you see a steady-state speed, you can cancel the command:

gsutil -m cp -r gs://gcp-public-data-landsat/LC08/01/044/034/* gs://
$BUCKET_NAME

4. Delete test files to avoid long-term charges.
gsutil -m rm -r gs://$BUCKET_NAME/034/*

Discussion
Adding -m to the gsutil causes most commands to run in parallel, using a combina‐
tion of multithreading and multiprocessing. The number of threads and processes are
set by parallel_thread_count and parallel_process_count. These can be set in
your .boto configuration file or set on the command line with the -o option flag.

In general, if you are moving a couple of files, you won’t need this flag. However, if
you are doing batch uploads and are OK saturating your CPU and even your network
link, you can consider setting it. Just note that this can starve other processes or devi‐
ces on the network of resources.

If you are trying to do this in code, it is usually more performant to use the appropri‐
ate client library rather than call the gsutil command-line tool, which is in turn just
calling a Python library.

134 | Chapter 7: Working with Data

7.2 Speeding Up GCS Transfers for Large Files with Parallel
Composite Uploads
Problem
You want to increase the speed for a file transfer, particularly to and from GCS for
large files in the gigabyte range or above. The previous recipe covered transfers with a
large number of operations; this one is targeted at individual large files.

Solution
Leverage parallel composite uploads, set at the command line or in your .boto config‐
uration file for gsutil.

1. Create a bucket and download a single file to then perform test uploads:
BUCKET_NAME=my-bucket-4312

gsutil mb -l us gs://$BUCKET_NAME
copy a largish file locally (~250MB)
gsutil cp gs://gcp-public-data-
landsat/LC08/01/044/017/LC08_L1GT_044017_20200809_20200809_01_RT/
LC08_L1GT_044017_20200809_20200809_01_RT
_B8.TIF.

2. Upload the file as a single chunk and observe transfer speed:
gsutil cp LC08_L1GT_044017_20200809_20200809_01_RT_B8.TIF gs://
$BUCKET_NAME

3. Upload the file as several simultaneous chunks and observe transfer speed. If
your previous upload saturated your link, you may not see a performance
increase.
You’ll notice we set the file size threshold that triggers parallel composite uploads
(250 MB) and how large these composite files should be (50 MB), and we tell
gsutil to use eight processes to enable uploading these files at the same time. All
of these can be tuned to increase performance.

gsutil -o
"GSUtil:parallel_composite_upload_threshold=200M,GSUtil
:parallel_composite_upload_component_size=50M,GSUtil:parallel_pro-
cess_count=8" cp LC08_L1GT_044017_20200809_20200809_01_RT_B8.TIF gs://
$BUCKET_NAME

4. Delete the file to save on charges:
gsutil rm gs://$BUCKET_NAME/
LC08_L1GT_044017_20200809_20200809_01_RT_B8.TIF

7.2 Speeding Up GCS Transfers for Large Files with Parallel Composite Uploads | 135

Discussion
Leveraging parallel composite uploads is particularly helpful when uploading large
files. However, this requires both the source and destination environments to have a
CRC32C library installed for integrity checking. There are additional caveats, such as
a maximum of 32 objects per composite. Take a look at Integrity Checking documen‐
tation (https://oreil.ly/aX8UT) for more information.

7.3 Mounting GCS as a Filesystem
Problem
You want to use traditional, filesystem-based tools to interact with GCS blobs and
directories. Although you can easily use the client libraries or gsutil to access GCS,
sometimes you’ll encounter legacy applications that expect files to be accessible as a
POSIX-compliant mount.

Solution
Use gcsfuse, a community-supported, open source convenience option, to mount a
GCS bucket to your VM. These are the Linux instructions, although gcsfuse is also
available for macOS:

1. Create a test VM, using your project ID and the latest Ubuntu image:
PROJECT_ID=<INSERT PROJECT>
gcloud compute --project=$PROJECT_ID instances create gcs-fuse-vm \
 --zone=us-central1-a --machine-type=e2-medium \
 --scopes=https://www.googleapis.com/auth/cloud-platform \
 --image=ubuntu-2004-focal-v20210315 --image-project=ubuntu-os
 -cloud \
 --boot-disk-size=100GB

2. Create your bucket and populate some test data:
BUCKET_NAME=<INSERT BUCKET>

gsutil mb -l us gs://$BUCKET_NAME
gsutil -m cp -r gs://gcp-public-data-landsat/LC08/01/044/034/
LC08_L1GT_044034_20130330_20170310_01_T2 gs://$BUCKET_NAME

3. SSH onto the VM.
4. Install FUSE Installer info (Ubuntu/Debian latest releases):

export GCSFUSE_REPO=gcsfuse-`lsb_release -c -s`
echo "deb http://packages.cloud.google.com/apt $GCSFUSE_REPO main" |
sudo tee /etc/apt/sources.list.d/gcsfuse.list
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-
key add -

136 | Chapter 7: Working with Data

https://oreil.ly/aX8UT
https://oreil.ly/aX8UT

5. Install gcsfuse:
sudo apt-get update
sudo apt-get install gcsfuse

6. Check the current gcloud credentials to see what gcsfuse will use:
gcloud auth list

7. Create a mount point and mount:
BUCKET_NAME=my-bucket-4312

mkdir $BUCKET_NAME
gcsfuse --implicit-dirs $BUCKET_NAME $BUCKET_NAME

8. View the files you previously uploaded to the bucket as if they were on the file‐
system:

ls $BUCKET_NAME

9. Add a file and test that it’s indeed on GCS:
cd $BUCKET_NAME
echo "gcs fuse is cool!" > file.txt

cd
gsutil cat gs://$BUCKET_NAME/file.txt

10. Double-check your user’s ID and GID so you can mount on non-root (and note
these for the following step):

id

11. Add an entry to /etc/fstab to mount every time automatically when the VM boots
using your UID and GID as well as bucket name:

sudo vim /etc/fstab

insert:
my-bucket-4312 /home/dhodun/my-bucket-4312 gcsfuse
rw,implicit_dirs,_netdev,allow_other,uid=1002,gid=1003

12. Restart the VM and test to ensure that the bucket is always mounted at bootup:
sudo shutdown -r now

on restart
ls my-bucket-4312

13. Delete the VM:
gcloud compute instances delete gcs-fuse-vm

Discussion
Gcsfuse is a great convenience tool for mounting and accessing GCS blobs. It is not a
production replacement for a traditional file store—for that, consider Filestore—and
lacks many features of a true POSIX filesystem as well as some GCS features such as

7.3 Mounting GCS as a Filesystem | 137

metadata. You might use it to save on cost (Filestore is about 10x the price per giga‐
byte) or because you are trying to access data that is largely used and generated by
systems compatible with GCS and you need a one-off workaround. Take a look at the
mounting docs for more info on permissions and security (https://oreil.ly/ifMZF).

Also note that you will still incur GCS storage charges, particularly for nearline and
coldline (archival) storage (see FUSE notes (https://oreil.ly/QinCs)).

7.4 Automatically Archiving and Deleting GCS Objects
Problem
You want to handle lifecycle management of GCS objects automatically, namely,
changing the storage class to more archival-friendly classes as files get older and
deleting the oldest files according to a policy.

Solution
You can leverage lifecycle management on a GCS bucket level with policies based on
an object’s age (or other attributes) to change storage class, delete, and other actions.

1. Create a bucket to be managed:
BUCKET_NAME=my-bucket-4312
gsutil mb -l us gs://$BUCKET_NAME

2. Create a lifecycle_management.json file with rules based on your business needs.
This policy will then be applied to your bucket. The example policy will archive
standard and Durable Reduced Availability (DRA) storage to nearline after one
year, change nearline to coldline after three years, and delete items after seven
years. These are good defaults, but you can create whatever rules you wish. It will
not archive multiregional objects; in this case, they are assumed to be serving
objects.

{
 "lifecycle": {
 "rule": [
 {
 "condition": {
 "age:": 365,
 "matchesStorageClass": ["STANDARD", "DURABLE_RECU-
DED_AVAILBILITY"]
 },
 "action": {
 "type:": "SetStorageClass",
 "storageClass": "NEARLINE"
 }
 },

138 | Chapter 7: Working with Data

https://oreil.ly/ifMZF
https://oreil.ly/QinCs

 {
 "condition": {
 "age:": 1096,
 "matchesStorageClass": ["NEARLINE"]
 },
 "action": {
 "type:": "SetStorageClass",
 "storageClass": "COLDLINE"
 }
 },
 {
 "condition": {
 "age:": 2555,
 "matchesStorageClass": ["COLDLINE"]
 },
 "action": {
 "type:": "Delete"
 }
 }
]
 }
}

3. Apply the policy to the bucket:
gsutil lifecycle set lifecycle_config.json gs://$BUCKET_NAME

4. Check the lifecycle:
gsutil lifecycle get gs://$BUCKET_NAME

5. To remove lifecycle management, you apply a lifecycle config with no rules:
{
 "lifecycle": {
 "rule": []
 }
}

6. Apply:
gsutil lifecycle set no_lifecycle.json gs://$BUCKET_NAME

Discussion
Lifecycle management is a powerful, simple way to save storage costs and manage a
large fleet of objects. Understanding different archival classes, in particular minimum
costs for archival classes like NEARLINE and COLDLINE, is important. For example, you
pay for a minimum storage duration of 90 days for COLDLINE. If you delete an object
one minute after creating it, you will still pay as if the object had existed for 90 days.
For this reason, and the fact that some storage policies can permanently delete data,
tight control and review of these policies are prudent.

7.4 Automatically Archiving and Deleting GCS Objects | 139

7.5 Creating and Restoring from Persistent Disk
Snapshots in GCE
Problem
You want a reliable and easy way to back up data sitting on Google Compute Engine
(GCE) VMs. You also need to be able to restore from these backups.

Solution
GCE Persistent Disk (PD) snapshots provide seamless snapshotting of your VM’s
data and an easy way to create new VMs from old PD snapshots in the event of a
recovery scenario.

1. First, we’ll create a new VM. Run the following on CLI or Cloud Shell:
PROJECT_ID=<INSERT PROJECT>
gcloud compute --project=$PROJECT_ID instances create pd-snapshot-test \
 --zone=us-central1-a --machine-type=e2-medium \
 --scopes=https://www.googleapis.com/auth/cloud-platform \
 --image=ubuntu-2004-focal-v20210315 --image-project=ubuntu-os-
 cloud \
 --boot-disk-size=100GB

2. SSH onto the VM. Create a file in your $HOME directory by running the follow‐
ing:

gcloud compute ssh pd-snapshot-test --zone us-central1-a

and then:
echo "Hello World!" >> my_file.txt
cat my_file.txt

3. Now from the Navigation menu, open the SNAPSHOTS section of the Compute
Engine menu, shown in Figure 7-1.

140 | Chapter 7: Working with Data

Figure 7-1. Snapshots menu under Compute Engine

4. Create a new snapshot using the source disk, which should be the same name as
your VM. Leave everything else as default. Call it snapshot-1.

5. It will take a few minutes for the initial snapshot to take place. While you wait,
take a look at the CREATE SNAPSHOT SCHEDULE tab.

6. To demonstrate an incremental snapshot, return to your VM and create a new
file:

echo "Hello Universe!" >> my_second_file.txt
cat my_second_file.txt

7. As before, create a new snapshot and call it snapshot-2. You’ll notice the second
snapshot is much smaller than the first, in Figure 7-2, because it is incremental.

Figure 7-2. The two snapshots; note the second one is smaller

8. Delete snapshot-1, and you’ll see that snapshot-2 now is larger, as in Figure 7-3.
Compute Engine automatically retains the data needed for “snapshot-2” without
any intervention from you.

7.5 Creating and Restoring from Persistent Disk Snapshots in GCE | 141

Figure 7-3. The collapsed snapshot-2

9. Delete the source VM to simulate a full outage or loss of data from the CLI. Note
that we are deleting the source Persistent Disk as well.

gcloud compute instances delete pd-snapshot-test
 --zone=us-central1-a --delete-disks=all

10. From the SNAPSHOT page, select snapshot-2 and click CREATE INSTANCE.
Name your instance pd-snapshot-restore. If you stored your snapshot in a multi‐
regional bucket, you can choose any zone in that multiregion. Otherwise, make
sure to choose a zone in the same region as your original VM.

11. SSH back onto this new VM and test for the existence of the files.
gcloud compute ssh pd-snapshot-restore --zone us-central1-a

cat my_file.txt
cat my_second_file.txt

12. Delete your instance to avoid charges.
gcloud compute instances delete pd-snapshot-restore --zone us-central1-a

Discussion
Persistent disks are a great backup tool. They are easy to create and schedule. Also,
intermediate backups save the delta rather than require the entire disk size for each
backup. As you delete intermediate backups, perhaps due to a lifecycle policy, more
recent backups will still be valid, as shown in this recipe. You can also configure back‐
ups to connect to the OS, in the case of Linux, and flush pending writes to disk for an
application-consistent snapshot.

7.6 Using Interleaved Tables in Your Cloud Spanner
Database
Problem
You want to speed up queries in Cloud Spanner, and you have queries that consis‐
tently reference data from multiple tables that share the same primary key.

Solution
Cloud Spanner, Google’s global, distributed, serverless relational database manage‐
ment system (RDBMS), allows you to leverage interleaved tables to co-located data

142 | Chapter 7: Working with Data

on disk from multiple tables that share the same primary key. As your data grows, it
will be processed on more and more workers, so having data that is frequently quer‐
ied together has speed advantages. This is an alternative to using foreign keys.

1. First, we’ll create a Cloud Spanner instance and database. Navigate to the Span‐
ner page in the Google Cloud Console and then choose CREATE INSTANCE.

2. Create an instance with the properties shown in Figure 7-4. It is important to
keep processing units low to avoid unnecessary charges.

Figure 7-4. Spanner instance creation dialog box

3. Create a new database and add the following Data Definition Language (DDL)
statements, as shown in Figure 7-5, to create non-interleaved tables. This uses
foreign keys and a standard star schema.

7.6 Using Interleaved Tables in Your Cloud Spanner Database | 143

Figure 7-5. Creating new foreign key tables

4. On the right, click the Query tool to open an interactive query editor. Run the
following SQL to populate some data. We are creating two users and three total
orders, with user 1 (Rui) having two orders.

INSERT INTO
 Customers (CustomerId,
 FirstName,
 LastName,
 Address)
VALUES
 (1, "Rui", "Costa", "123 Main Street"),
 (2, "Drew", "Hodun", "456 Park Ave"):

INSERT INTO
 Orders (OrderId,
 CustomerId,
 OrderTotal,

144 | Chapter 7: Working with Data

 QuantityItems,
 OrderItems)
 VALUES
 (1, 1, 52.34, 2, [398473, 47402]),
 (2, 1, 983.12, 3, [934773, 304983, 3872]),
 (3, 2, 10.15, 1, [3872])

5. Now run an aggregation query to see how much each user has spent across all
their orders. My query returned 1035.46 and 10.15, respectively.

SELECT
 Customers.CustomerId,
 Customers.FirstName,
 Customers.LastName,
 SUM(Orders.orderTotal) AS total_spent
FROM
 Orders
JOIN
 Customers
ON
 Orders.CustomerId = Customers.CustomerId
GROUP BY
 Customers.CustomerId,
 Customers.FirstName,
 Customers.LastName

6. Now, this query is likely happening on a single worker node, in memory. If I had
had a very large data set, such that it was being split across nodes, and large ana‐
lytics queries, a lot of data would have to be passed between nodes. If we switch
from foreign keys to interleaved tables, we guarantee this data is stored together
and usually worked on by the same worker’s process, improving query speed.

7. Click the Overview tab and then Write DDL to delete these tables. Re-create the
database as before, but with this new SQL. Note the INTERLEAVE statement.

DROP TABLE Orders;
DROP TABLE Customers;

CREATE TABLE Customers (
 CustomerId INT64 NOT NULL,
 FirstName STRING(1024),
 LastName STRING(1024),
 Address STRING(1024),
) PRIMARY KEY (CustomerId);

CREATE TABLE Orders (
 CustomerId INT64 NOT NULL,
 OrderId INT64 NOT NULL,
 OrderTotal FLOAT64 NOT NULL,
 QuantityItems INT64 NOT NULL,
 OrderItems ARRAY<INT64>,

7.6 Using Interleaved Tables in Your Cloud Spanner Database | 145

) PRIMARY KEY (CustomerId, OrderId),
 INTERLEAVE IN PARENT Customers ON DELETE CASCADE;

8. Re-insert the data and rerun the query as before.
9. Delete your database and instance to prevent long-term charges.

Discussion
Interleaved tables store rows physically under their associated parent row, greatly
speeding up some queries in Cloud Spanner. In this case, if you wanted to perform
general analytics on a given customer (for example, if you want to know what their
total spend for last year is, or how many items they’ve ever bought), these analytic
queries would complete much faster with interleaved tables because all the necessary
data is physically co-located. The alternative is that the database engine would have to
perform a standard key join on CustomerId to find all the orders from the order
table, which might be a more expensive (slower) operation if the table is organized by
timestamp, for example.

In a foreign key model, your data would be stored like the image in Figure 7-6, and
potentially on different nodes:

Figure 7-6. Data as stored in foreign key tables

With interleaved tables, your data is stored as shown in Figure 7-7, improving speed
through data locality.

Figure 7-7. Data as stored in interleaved tables

146 | Chapter 7: Working with Data

7.7 Locking Down Firestore Database So a User Can Edit
Only Their Data
Problem
You want to secure Firestore so that an authenticated user can only create a document
or edit their previous documents.

Solution
When you start working with Firestore, Google Cloud’s serverless document data‐
base, security rules are open if you select Test Mode, so you’ll want to lock it down
early on. Firestore is often, but not always, used with Firebase, Google Cloud’s plat‐
form for building and running mobile and web applications.

Firestore security rules not only can filter on whether a user is authenticated, but
match their user ID to documents in the database, allowing for a simple per-user data
authentication model. Also note Firestore is not FILEstore, a managed, mountable file
storage service.

1. Create a Firebase project from the console to host your Firestore database. You
can have one Firebase project per Google Cloud project. Go to https://console.fire
base.google.com. Click New Project and select your Google Cloud project.

2. Choose Pay As You Go and select the defaults.
3. When the project is ready, select the Firestore tab.
4. Click Create Database and use Test Mode.
5. Open the Rules section to see the default rules that have been granted to the data‐

base, as in Figure 7-8. In this case, it is wide open for one month as you start
development.

Figure 7-8. Default Firestore ACL rules in test mode

7.7 Locking Down Firestore Database So a User Can Edit Only Their Data | 147

https://console.firebase.google.com/
https://console.firebase.google.com/

6. Replace this config with the following new config. This config allows users to edit
their User document (and only theirs) by matching the authenticated user ID
with the user ID in the document database.

rules_version = '2';

service cloud.firestore {

 // Matches to the default database in the project - currently this
is the only database
 match /databases/{database}/documents {

 // Matches the userId on the authenticated request with the
userId document
 // in the users collection
 // Otherwise, allows authenticated users to create their docu-
ment
 match /users/{userId} {
 allow read, update, delete: if request.auth != null &&
request.auth.uid == userId;
 allow create: if request.auth != null;
 }
 }
}

7. Click PUBLISH to apply the rules. Now authenticated users are allowed to create,
read, update, and delete their profile if it is stored in the /users/ collection, but
nothing else.

Discussion
Firestore rules and validation provide robust but concise functionality for controlling
who can edit or read what in the Firestore database. This includes setting public
access for certain fields and validating that newly written input data is formatted cor‐
rectly, as in the preceding example. Note that Firestore rules are not filters—that is, in
the preceding case, you could not run a query as this user to return all user docu‐
ments and expect the security rule to return only this user’s document. This query
would fail since some (basically all other) documents would not be accessible to the
user. You would need to query for this user’s document.

148 | Chapter 7: Working with Data

CHAPTER 8

BigQuery and Data Warehousing

With more enterprises leaning on real-time data and analytics to drive business deci‐
sions, data warehousing techniques are becoming more critical. As Google Cloud’s
serverless, petabyte-scale data warehouse, BigQuery is often your first and last stop
for data storage, large-scale analytics, and even SQL-based machine learning models.
As a serverless service, there are no clusters to create. You simply upload your data to
BigQuery and start querying.

BigQuery is also very cost effective, since compute and storage are separated and can
scale separately. If you never query your data, you are only charged the storage costs.
But when you do run queries, you have access to a huge amount of serverless com‐
pute to process your data quickly. And you pay only for the compute used when you
query, instead of paying for idle workers in a cluster.

The following recipes show examples of implementing data loading, scalable data
querying, and streaming in BigQuery. Included are tips and tricks beyond standard
SQL skills, some of which are specific to the BigQuery service and implementation.
Several recipes will also use the bq command-line tool covered in Chapter 1.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

8.1 Using Cloud Console to Run a BigQuery Query
Problem
You want to get started with BigQuery quickly.

149

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

Solution
The Google Cloud Console has a full-feature SQL UI just for BigQuery, where you
can browse and create data sets, run SQL queries, and schedule data transfers.

1. From the Google Cloud Console, open BigQuery, as shown in Figure 8-1.

Figure 8-1. Opening the BigQuery console from the navigation menu

2. A query window is already open. Write this query as shown in Figure 8-2. When
you’re done, press Ctrl+Shift+F to auto-format the query and then click Run.

150 | Chapter 8: BigQuery and Data Warehousing

Figure 8-2. A simple BigQuery query in the console

3. You should see the results in a couple of seconds, as shown in Figure 8-3.

Figure 8-3. BigQuery query results

8.1 Using Cloud Console to Run a BigQuery Query | 151

4. Try running the query again. You will see that it happens much faster, because
BigQuery caches query results for up to 24 hours. You can turn this off in Query
Settings—particularly useful if you want to benchmark query performance.

Discussion
The BigQuery console offers a great place to start using the service. You can explore
data, create data sets, browse the project’s query history, and even save queries to
share with your teammates. A few helpful hotkeys are listed in Table 8-1.

Table 8-1. BigQuery hotkeys
Key Press Combo Action
Ctrl+Shift+F Auto-formats the query
Ctrl+Enter Executes the entire query window
Ctrl+E (on a selection) Execute only the select SQL

BigQuery caching can be a great help at speeding up data exploration and avoiding
costs for queries you keep repeating. You should not rely on caching in a production
setting, however, because these results are not guaranteed to persist for 24 hours. If
you really have a need for fast, cached results, materialize your data in a table that you
periodically refresh. In addition, the caching mechanism is rather simplistic: it hashes
the text of the full query, so even adding a space will cause a cache miss. Subqueries,
views, or any portion of the query are also not cached; just the query as a whole is
cached.

8.2 Loading Data to BigQuery from CSV
Problem
You have some local comma-separated values (CSV) data you’d like to load to Big‐
Query for analysis.

Solution
BigQuery has many ways to load data easily. This example will use the UI.

1. Download a sample file. Run the following gsutil command to download a sam‐
ple CSV from Google Cloud Storage to your workstation. You will need to have
gcloud installed.

gsutil cp gs://cloud-samples-data/bigquery/us-states/us-states-by-
date.csv.

2. As before, open the BigQuery console.

152 | Chapter 8: BigQuery and Data Warehousing

3. Create a new data set. Click the three dots near your project name on the left of
the browser and select Create Dataset, as shown in Figure 8-4.

Figure 8-4. Creating a data set in the data set browser

4. Name your data set mydataset and choose US as the processing location, as in
Figure 8-5. This cannot be changed afterward.

Figure 8-5. Creating a new data set

8.2 Loading Data to BigQuery from CSV | 153

5. You will now see the data set under your project in the browser. Click the three
dots on the data set and open it. Click Create Table, as shown in Figure 8-6.

Figure 8-6. Creating a new table

6. Enter the following data in the dialog box.

Option Value
Create table from: Upload
Select file: The file you previously downloaded
File format: CSV
Dataset name: mydataset
Table name: us-states-by-date
Schema Auto-detect: Check Yes

The results should look something like Figure 8-7. Click Create Table.

154 | Chapter 8: BigQuery and Data Warehousing

Figure 8-7. Create Table dialog box with options filled in

7. It should take only a few moments for the table to be created. When it is, you can
open the table, inspect the schema that was generated, and even view some of the
data with the Preview tab. Last, click the Query button to query your data. Run
the following SQL to find the five newest states in the United States, using your
project name instead:

SELECT *
FROM
 `dhodun1.mydataset.us-states-by-date`
ORDER BY
 date DESC
LIMIT
 5

Your results should look like Figure 8-8.

8.2 Loading Data to BigQuery from CSV | 155

Figure 8-8. The five newest states in the United States

Discussion
This demonstrated one of the simplest upload use cases. You can upload using many
data types, including CSV, AVRO, JSON, and Parquet. Often, you will be uploading
from GCS or S3 (the comparable service on AWS) rather than from your desktop.
You can also set up BigQuery data transfer jobs to pull in data regularly from external
sources on a scheduled basis. You can programmatically write to BigQuery as a sink
from many data processing frameworks, such as Spark, Dataflow, Data Fusion, and
other BigQuery queries.

8.3 Building a Pivot Table in BigQuery
Problem
You want to build a pivot table in BigQuery using SQL.

Solution
BigQuery now supports PIVOT as an operator natively in SQL. Rather than aggregate
results in one long table output, sometimes it is helpful to pivot the data, that is, cal‐
culate aggregates across distinct categories and give each category its own column.

1. Open the BigQuery UI and run the following query. This query calculates the
average ride length for each start_station for each day of the week; “1” represents
Sunday, “2” for Monday, and so on. For this and many of the following recipes,

156 | Chapter 8: BigQuery and Data Warehousing

we will be using a public table containing ride data from the London bicycle
share program.

You may need to change the processing location to “EU” by
clicking Query Settings and updating Processing Location.

SELECT
 start_station_name,
 EXTRACT(DAYOFWEEK
 FROM
 end_date) AS day_of_week,
 AVG(duration) AS average_ride_duration
FROM
 `bigquery-public-data.london_bicycles.cycle_hire`
GROUP BY
 start_station_name,
 day_of_week

You’ll notice we have some 6,000 rows and the output isn’t particularly readable,
as shown in Figure 8-9. What we really want to see is the data displayed for each
start_station and day_of_week pair, where the days of the week are columns.

Figure 8-9. Unpivoted output

2. You can accomplish this with a PIVOT clause. The PIVOT clause first needs a raw
data set without any aggregates applied. Then it requires the aggregate function
and target column, followed by the categories to pivot on. Run the following
query to pivot the data and arrange the averages so that each day_of_week has its
own column:

SELECT *
FROM (
 SELECT

8.3 Building a Pivot Table in BigQuery | 157

 start_station_name,
 EXTRACT(DAYOFWEEK FROM end_date) AS day_of_week,
 duration
 FROM
 `bigquery-public-data.london_bicycles.cycle_hire`
)
PIVOT
(
 AVG(duration) AS average_ride_duration
 FOR day_of_week IN (1,2,3,4,5,6,7)
)

You should see that for most stations, the weekend rides (Days 1 and 7) have a
longer duration.

Discussion
Often, pivoting is a display function supported in business intelligence (BI) tools, but
sometimes you may want to format your data this way, particularly if you are doing
rapid data exploration natively in BigQuery. This previously was trickier to accom‐
plish, requiring CASE statements or stored procedures. An UNPIVOT operator now
also exists, which does the opposite: it turns columns back into rows.

8.4 Adding Partitioned and Clustered Columns to an
Existing Table
Problem
You have a BigQuery table in which you need to add a partitioned column and clus‐
tered column to increase query performance and decrease query costs.

Solution
BigQuery SQL allows you to create a new table with the partitioned and clustered col‐
umns and populate it in the same statement with an AS clause. Note that it will be
stored in an entirely new table.

1. Validate that the source table doesn’t have partitioned or clustered columns. Run
the following in your local terminal with gcloud installed or in Cloud Shell:

bq show bigquery-public-data:london_bicycles.cycle_hire

Notice the lack of columns on the right in Figure 8-10.

158 | Chapter 8: BigQuery and Data Warehousing

Figure 8-10. Public cycle_hire table without partitioned or clustered columns. Notice
the right side of the output

2. Dry-run a time-based query to see how much data is scanned. Execute this code
on the command line or Cloud Shell. You can also copy and paste it from the
repo code. Notice the --dry-run flag, which is used to report on whether the
query is parsed properly, whether you have access to the underlying data sets,
and how much data will be scanned.

QUERY='
SELECT
 duration,
 bike_id,
 start_date,
 start_station_name,
 end_date,
 end_station_name
FROM
 `bigquery-public-data.london_bicycles.cycle_hire`
WHERE
 EXTRACT(DATE FROM start_date) = "2016-04-03"
 AND EXTRACT(DATE FROM end_date) = "2016-04-03"
ORDER BY
 duration DESC
LIMIT
 5
'

bq query \
--use_legacy_sql=false \
--location=EU \
--dry_run \
$QUERY

The output should look something like this and validate that the query will pro‐
cess the entire 2.2 GB in the table:

Query successfully validated. Assuming the tables are not modified, run-
ning this query will process 2197696867 bytes of data.

3. If you haven’t already created a data set in the EU region, create it now from the
command line.

bq mk --location=eu mydataset_eu

8.4 Adding Partitioned and Clustered Columns to an Existing Table | 159

4. Now, in the BigQuery UI, create a new table in your data set, indicating the parti‐
tioned and clustered columns. Run this SQL:

CREATE OR REPLACE TABLE
 mydataset_eu.cycle_hire_partitioned_clustered
PARTITION BY
 DATE(start_date)
CLUSTER BY
 bike_id
OPTIONS(expiration_timestamp=TIMESTAMP "2025-01-01 00:00:00 UTC",
 description="My partitioned and clustered cycle_hire table",
 labels=[("cookbook_query", "development")])
AS
SELECT
 *
FROM
 `bigquery-public-data.london_bicycles.cycle_hire`

You may need to change the processing location to EU by
clicking Query Settings and updating Processing Location.

5. Validate that the destination table does have partitioned or clustered columns.
Run the following from the CLI, and you’ll see the schema output, as in
Figure 8-11:

bq show mydataset_eu.cycle_hire_partitioned_clustered

Figure 8-11. Your new cycle_hire, now with partitioned or clustered columns. See
the right side of the output

6. Dry-run the query on the new table to see how much will be scanned:
QUERY='
SELECT
 duration,
 bike_id,
 start_date,
 start_station_name,
 end_date,
 end_station_name
FROM
 `mydataset_eu.cycle_hire_partitioned_clustered`
WHERE
 EXTRACT(DATE FROM start_date) = "2016-04-03"

160 | Chapter 8: BigQuery and Data Warehousing

 AND EXTRACT(DATE FROM end_date) = "2016-04-03"
ORDER BY
 duration DESC
LIMIT
 5
'

bq query \
--use_legacy_sql=false \
--location=EU \
--dry_run \
$QUERY

The output should look something like this and validate that the query will pro‐
cess only 2 MB (you can remove --dry-run to run the query, if you like):

Query successfully validated. Assuming the tables are not modified, run-
ning this query will process upper bound of 2285452 bytes of data.

7. Don’t forget to delete your table and data set to avoid charges.

Discussion
Although BigQuery is a serverless data warehouse with few knobs for tuning outside
of how you author your SQL, partitioning and clustering are two options available for
increasing performance and decreasing costs.

Partitioning splits your table into smaller segments from an internal BigQuery stand‐
point, most commonly based on date or time. When you run a query with a filter
clause, such as WHERE EXTRACT(DATE FROM start_date) = "2016-04-03", Big‐
Query knows not to read in the data from partitions that don’t match the filter,
greatly improving performance and decreasing query cost, since this cost is based on
the data actually scanned. You can partition on only one column, and it needs to be a
date, time, or integer.

Specifying clustered columns allows BigQuery to organize and order table data auto‐
matically, based on these columns. Related data is co-located, resulting in faster data.
The order that you specify for clustered columns is important, because this order is
used to decide which column to sort first. Similar to partitioning, clustering can
improve query performance when you are filtering or aggregating on these columns.
(https://oreil.ly/07TLu)

This example also showed use of the dry-run capability of the bq command-line tool
to determine the query cost before running it. This is also available in the BigQuery
UI.

8.4 Adding Partitioned and Clustered Columns to an Existing Table | 161

https://oreil.ly/07TLu
https://oreil.ly/07TLu

8.5 Adding Clustering to a Table That Can’t or Shouldn’t
Be Partitioned
Problem
You have a BigQuery table to which you’d like to add clustered columns. Clustering
requires the table to be partitioned, however, and your table doesn’t have a DATE‐
TIME or INTEGER column that is an obvious partitioning candidate. In addition, if
your table is smaller and you are adding less than 10 GB per day, adding partitioned
columns may not be desirable.

Solution
You can partition on the hidden ingestion time column, which is preferred if you are
ingesting more than 10 GB a day. If you have smaller amounts of data, create an
optional fake date column to partition on and just leave it as NULL. Both of these
then allow you to cluster fields as normal. Here we show the hidden column method.

We will be using the same data set as in the previous recipe, the London cycle_hire
data set. Although it does have a couple of obvious timestamp columns to partition
on, the data set is small enough at 2 GB to benefit from the fake column partitioning
method.

1. Run the following SQL and note the new fake column:
CREATE OR REPLACE TABLE
 mydataset_eu.cycle_hire_fake_partitioned_clustered (
 rental_id INTEGER,
 duration INTEGER,
 bike_id INTEGER,
 end_date TIMESTAMP,
 end_station_id INTEGER,
 end_station_name STRING,
 start_date TIMESTAMP,
 start_station_id INTEGER,
 start_station_name STRING,
 end_station_logical_terminal INTEGER,
 start_station_logical_terminal INTEGER,
 end_station_priority_id INTEGER,
 fake_date DATE)
PARTITION BY
 fake_date
CLUSTER BY
 bike_id
OPTIONS(expiration_timestamp=TIMESTAMP "2025-01-01 00:00:00 UTC",
 description="My partitioned and clustered cycle_hire table",
 labels=[("cookbook_query",

162 | Chapter 8: BigQuery and Data Warehousing

 "development")]) AS
SELECT
 *, NULL
FROM
 `bigquery-public-data.london_bicycles.cycle_hire`

2. Run the following query to see the maximum duration for bike number 153:
SELECT MAX(duration) as max_duration FROM
`mydataset_eu.cycle_hire_fake_partitioned_clustered`
WHERE bike_id = 153

The query should process in the low number of megabytes, in my case, 5.3 MB.
3. Now run the same query on the original data set:

SELECT MAX(duration) as max_duration FROM
`bigquery-public-data.london_bicycles.cycle_hire`
WHERE bike_id = 153

The query will process much more data, in my case, 372 MB.
4. If you still have the table from the previous recipe around, query that one as well:

SELECT MAX(duration) as max_duration FROM
`mydataset_eu.cycle_hire_partitioned_clustered`
WHERE bike_id = 153

The query will also process much more data, in my case, 360 MB.

Discussion
For a while, partitioning was the only way to speed up your BigQuery queries, aside
from rewriting SQL, if that were even an option. Under the hood, partitioning
actually creates mini-tables that BigQuery simply extracts for you. Since our table is
only 2.2 GB, this really doesn’t improve performance; in fact, it may decrease it, since
BigQuery has to scan hundreds of files, one for each day. Using the fake partition col‐
umn followed by clustering gives us much better performance on this smaller table. It
also is an option to enable clustering on tables that, unlike this one, don’t have an
obvious partition column.

For larger tables that don’t have an obvious partition column or tables where you are
adding more than 10 GB a day, partitioning based on the insert-time pseudocolumns,
_PARTITIONDATE or _PARTITIONTIME, is recommended (https://oreil.ly/UNtXC).

8.6 Selecting the Top-1 Result
Problem
You want to return the top item from a sorted list in a BigQuery query, but your data
set is particularly large and the query is slow.

8.6 Selecting the Top-1 Result | 163

https://oreil.ly/UNtXC

Solution
You can start by using the standard ROW_NUMBER() OVER() windowing function and
then filtering based on the first item. However, if your data set is particularly large
and performing slowly because you’re forcing a full sort of the data set, you can apply
a BigQuery-specific trick. Using ARRAY_AGG(x LIMIT 1)[OFFSET(0)] will allow Big‐
Query to drop all data that isn’t the number 1 row, increasing query performance.

1. In the BigQuery UI, run a query using the ROW_NUMBER OVER() windowing func‐
tion. This query should succeed but will take a while.

SELECT
 rental_id,
 duration,
 bike_id,
 end_date
FROM (
 SELECT
 rental_id,
 duration,
 bike_id,
 end_date,
 ROW_NUMBER() OVER (ORDER BY end_date ASC) rental_num

 FROM
 `bigquery-public-data`.london_bicycles.cycle_hire)
WHERE
 rental_num = 1

2. Run a query using ARRAY_AGG(x LIMIT 1)[OFFSET(0)] instead. This query
should succeed more quickly.

SELECT
 rental.*
FROM (
 SELECT
 ARRAY_AGG(rentals
 ORDER BY rentals.end_date ASC LIMIT 1)[OFFSET(0)] rental
 FROM (
 SELECT
 rental_id,
 duration,
 bike_id,
 end_date
 FROM
 `bigquery-public-data`.london_bicycles.cycle_hire) rentals)

164 | Chapter 8: BigQuery and Data Warehousing

Discussion
Although ROW_NUMBER() has a scalable implementation that can perform distributed
sorts across multiple BigQuery workers, the entire sort needs to be calculated. In par‐
ticularly large queries, using ARRAY_AGG allows BigQuery to drop unneeded data. This
is a BigQuery-specific trick to speed up sorts when you know you need only the top-n
results.

8.7 Merging Tables in BigQuery Without Duplicates
Problem
You are loading data into an existing BigQuery table that might introduce duplicate
rows, and you want to deduplicate your data. This is common with repeated batch
uploads or when consolidating from a streaming ingest table that might contain
newer versions of a given record or aggregation.

Solution
Using the MERGE ON...WHEN MATCHED clause in your CREATE TABLE statement, you
can easily indicate to BigQuery a row key on which to deduplicate and insert only the
new rows into your final table.

1. Create a production table. For our sample, we will copy the public London cycle-
hire data set and use the rental_id row to deduplicate.

bq cp -f bigquery-public-data:london_bicycles.cycle_hire mydata-
set_eu.cycle_hire

2. Create a loading table with new and duplicate data. This represents data gener‐
ated by some production process that we want in our data warehouse but that
will sometimes generate duplicates.

CREATE OR REPLACE TABLE
 mydataset_eu.temp_loading_table AS (

 --Grab 5 duplicate rows
 SELECT
 *
 FROM
 mydataset_eu.cycle_hire
 LIMIT
 5)
UNION ALL (

 --Add a new unique row
 SELECT
 111147469109,

8.7 Merging Tables in BigQuery Without Duplicates | 165

 3180,
 7054,
 '2015-09-03 12:45:00 UTC',
 111,
 'Park Lane, Hyde Park',
 '2015-09-03 11:52:00 UTC',
 300,
 'Serpentine Car Park, Hyde Park',
 NULL,
 NULL,
 NULL)

3. Verify and note the counts in both tables. I got 24369201 and then 6 when I ran
it.

--Number of Rows in base table
SELECT COUNT(*) FROM mydataset_eu.cycle_hire;

--Number of Rows in loading table
SELECT COUNT(*) FROM mydataset_eu.temp_loading_table;

4. Merge the data into your production table with an ON clause.
MERGE
 mydataset_eu.cycle_hire rentals
USING
 mydataset_eu.temp_loading_table temp
ON
 temp.rental_id = rentals.rental_id
 WHEN NOT MATCHED
 THEN
 INSERT ROW

The query results should say that only one row was affected.
5. Verify that only one row has been inserted. This number should be one greater

than before.
--Number of rows now in base table
SELECT COUNT(*) FROM mydataset_eu.cycle_hire;

Discussion
This recipe shows how to insert data in a way that doesn’t cause duplicates based on
the specified row key. For an example of how to filter out duplicates inline in a query
(but without any need for sorting in the ARRAY_AGG function), see the following
recipe.

It’s also worth noting that you can deduplicate with SELECT DISTINCT * FROM myda
taset.mytable, which will ensure that every record is entirely unique (not just the
key), but this is often a slower query.

166 | Chapter 8: BigQuery and Data Warehousing

8.8 Deduplicating Rows in BigQuery with Timestamps
Problem
Your application is inserting updated rows or aggregations into a BigQuery table
rather than updating existing ones for performance reasons, and you need to select
just the newest data for each key. This commonly happens in streaming applications
and frameworks, such as Cloud Dataflow.

Solution
You could do this with the ROW_NUMBER() OVER() windowing function, sorting only
the first row for each key based on TIMESTAMP. Or, for a more scalable approach, you
could implement our ARRAY_AGG(x LIMIT 1)[OFFSET(0)] trick from the previous
recipe so that older data is simply dropped by BigQuery workers in-flight. You will
try both examples here.

1. Create a table to query. You may still have this table from the previous recipe:
bq --location=eu cp -f bigquery-public-data:london_bicycles.cycle_hire
mydataset_eu.cycle_hire

2. Examine the initial record for a particular rental ID. In this case, the record was
an estimated journey, which will be updated with newer, more complete data at a
later time:

SELECT
 *
FROM
 mydataset_eu.cycle_hire
WHERE
 rental_id = 47469109
ORDER BY
 end_date DESC

3. Insert a couple of new rows with the same ride_id but with updated duration.
The ride_id for these records is the same as an existing entry, but the end_date
timestamps are newer, representing newer versions of the data:

INSERT INTO
 mydataset_eu.cycle_hire
VALUES
 (47469109, 3300, 7054, '2015-09-03 12:47:00 UTC', 111, 'Park Lane,
Hyde Park', '2015-09-03 11:52:00
UTC', 300, 'Serpentine Car Park, Hyde Park', NULL, NULL, NULL),
 (47469109, 3660, 7054, '2015-09-03 12:53:00 UTC', 111, 'Park Lane,
Hyde Park', '2015-09-03 11:52:00
UTC', 300, 'Serpentine Car Park, Hyde Park', NULL, NULL, NULL)

8.8 Deduplicating Rows in BigQuery with Timestamps | 167

4. View all three records. You can see that we have three versions of this ride:
SELECT
 *
FROM
 mydataset_eu.cycle_hire
WHERE
 rental_id = 47469109
ORDER BY
 end_date DESC

5. Use ROW_NUMBER() OVER() to get the latest record of this rental_id. Notice that
the duration is longer than the original entry:

SELECT
 * EXCEPT(row_num)
FROM (
 SELECT
 *, ROW_NUMBER() OVER (PARTITION BY rental_id ORDER BY end_date
DESC) AS row_num
 FROM
 mydataset_eu.cycle_hire)
WHERE
 row_num = 1
 AND rental_id = 47469109

6. Use ARRAY_AGG to get the latest one:
SELECT
 latest_record.*
FROM (
 SELECT
 rental_id,
 ARRAY_AGG(rentals ORDER BY end_date DESC LIMIT 1)[OFFSET(0)] lat-
est_record
 FROM
 mydataset_eu.cycle_hire rentals
 WHERE
 rental_id = 47469109
 GROUP BY
 rental_id)

7. Last, remove the WHERE clause and run this on the entire data set. At the moment,
we have introduced duplicates only for this rental_id, but if you had a stream‐
ing system constantly sending updated records, this would show only the latest.

SELECT
 latest_record.*
FROM (
 SELECT
 rental_id,
 ARRAY_AGG(rentals ORDER BY end_date DESC LIMIT 1)[OFFSET(0)] lat-
est_record
 FROM

168 | Chapter 8: BigQuery and Data Warehousing

 mydataset_eu.cycle_hire rentals
 GROUP BY
 rental_id)

Discussion
This trick adds an outer SELECT clause, mostly to clean up the nested output from
ARRAY_AGG, but it is a scalable implementation of cleaning up data when there are
newer records. This extra SELECT clause can be hidden from the user by placing the
query in View or Materialized View for end-user analysts or downstream programs
to consume from.

This use case is particularly common with streaming systems or any high-throughput
systems that have newer versions of data or aggregations. Although BigQuery does
support ACID-compliant UPDATE and DELETE DML statements so that individual
records can be mutated and updated transactionally, this is generally a costly opera‐
tion, since the files backing BigQuery are immutable (an update triggers entire file
rewrites), and the system overall is tuned for online analytical processing (OLAP)
queries. For this reason, some scalable streaming systems opt to generate new records
in BigQuery and let BigQuery perform the deduplication as noted previously.

8.9 Undeleting a Table in BigQuery
Problem
You have accidentally deleted a table in BigQuery and need to recover it.

Solution
You can use snapshot decorators with the bq tool to recover the data.

1. Create a dummy table:
CREATE OR REPLACE TABLE
 mydataset_eu.cycle_hire AS
SELECT
 *
FROM
 `bigquery-public-data`.london_bicycles.cycle_hire

2. Note the UTC time on your CLI. This command shows the number of seconds
since the UNIX epoch, or 00:00:00 UTC on January 1, 1970. If this command
doesn’t work, you can also check out https://www.epochconverter.com to grab the
current time.

date -u +%s

8.9 Undeleting a Table in BigQuery | 169

https://www.epochconverter.com

You should see something like this; take note of this time:
1627238475

3. Accidentally delete the table. Note that this is happening after the timestamp we
grabbed.

DROP TABLE mydataset_eu.cycle_hire

4. Restore the data into a temporary staging table. Note that we multiply the UNIX
seconds by 1,000 since we need milliseconds. Update the time to the one you just
output, adding three zeros to the end, and then run this on the CLI.

bq --location=eu cp mydataset_eu.cycle_hire@1609277559000 mydata-
set_eu.cycle_hire_restored

5. Verify that the data is back:
bq head -n 5 mydataset_eu.cycle_hire_restored

Discussion
This fix should also work if you have already replaced the table, which occasionally
happens if you have automated pipelines configured to create the table if it doesn’t
exist. In this situation, you can also use BigQuery time travel with FOR SYSTEM TIME
AS OF in SQL to recover the data:

SELECT
 *
FROM
 mydataset.cycle_hire_restored
FOR SYSTEM TIME AS OF '2020-12-29 21:44:09.413928 UTC'

8.10 Streaming JSON or Avro Data into BigQuery with a
Dataflow Template
Problem
You want to ingest real-time streaming data into a BigQuery table from Pub/Sub for
analysis and reporting. For example, this could be data generated by real-time web
application user data or Internet of Things (IOT) devices.

Solution
Configuring and executing a Cloud Dataflow template can quickly spin up a persis‐
tent, streaming dataflow job with little to no code that will read the Pub/Sub messages
and write them in real time to BigQuery. Your Pub/Sub messages will need to be
JSON or Avro.

170 | Chapter 8: BigQuery and Data Warehousing

1. Sample a message from the sample public taxi data topic:
gcloud pubsub subscriptions create taxi-test-sub --topic projects/
pubsub-public-data/topics/taxirides-realtime

gcloud pubsub subscriptions pull projects/<your-project-id>/subscrip-
tions/taxi-test-sub

which will result in JSON message data:
{"ride_id":"7128ff90-62f7-42de-a93f-67d1f9e7c713","point_idx":2401 "lat-
itude":40.74163,"longitude":-73.95092000000001,"timestamp":
"2021-01-06T20:56:11.93239-05:00","meter_reading":
55.330975,"meter_increment":0.02304497,"
ride_status":"enroute","passenger_count":2}

2. Create a destination in BigQuery tables, both for well-formed data and for a
dead-letter table. A schema is needed on the BigQuery table, matching the JSON
data on the Pub/Sub topic.

cat <<EOF > schema.json
[
 {
 "name": "ride_id",
 "type": "STRING"
 },
 {
 "name": "point_idx",
 "type": "INTEGER"
 },
 {
 "name": "latitude",
 "type": "FLOAT"
 },
 {
 "name": "longitude",
 "type": "FLOAT"
 },
 {
 "name": "timestamp",
 "type": "TIMESTAMP"
 },
 {
 "name": "meter_reading",
 "type": "FLOAT"
 },
 {
 "name": "meter_increment",
 "type": "FLOAT"
 },
 {
 "name": "ride_status",

8.10 Streaming JSON or Avro Data into BigQuery with a Dataflow Template | 171

 "type": "STRING"
 },
 {
 "name": "passenger_count",
 "type": "INTEGER"
 }
]
EOF
bq mk mydataset.taxi_data schema.json
bq mk mydataset.taxi_deadletter

3. Create a temporary GCS bucket for the dataflow job:
BUCKET=gs://my-bucket
gsutil mb $BUCKET

4. In the Google Cloud Console, open the Dataflow page and click Create Job From
Template, as in Figure 8-12.

Figure 8-12. Creating a new template job in Dataflow

5. Add a job name and choose Pub/Sub Topic to BigQuery. Note the other tem‐
plates that are available, as shown in Figure 8-13.

Figure 8-13. The Dataflow template job form

6. For Input Pub/Sub Topic, point to the topic:
projects/pubsub-public-data/topics/taxirides-realtime

172 | Chapter 8: BigQuery and Data Warehousing

7. Add the BigQuery table and the temporary GCS bucket for the dataflow job,
shown in Figure 8-14.

Figure 8-14. Job parameters

8. Optionally, click SHOW OPTIONAL PARAMETERS and fill in the dead-letter
BigQuery table. Take note, in Figure 8-15, of other parameters that are available.

Figure 8-15. Optional job parameters

8.10 Streaming JSON or Avro Data into BigQuery with a Dataflow Template | 173

9. Click RUN JOB.
10. Give the job a couple of minutes to spin up and then click the ReadPubSubTopic

and WriteSuccessfulRecords graph nodes to see that elements are flowing
through the dataflow job, as shown in Figure 8-16.

Figure 8-16. Dataflow job graph and metrics

11. Validate that data is being written to BigQuery from the CLI:
bq head mydataset.taxi_data

12. Make sure to stop the dataflow job.

Discussion
This recipe shows how to get up and running with your first streaming pipeline
quickly. You can extend the functionality to Avro data, using the Avro template. You
can also provide a JavaScript transform in the additional parameters for lightweight
transformations that doesn’t require you to write the entire pipeline code. Any
records that fail to be transformed or processed will be written to the dead-letter table
for later analysis. (You can test this if you have your own topic and, if you publish a
malformed message, it should show up quickly in this table.) Last, if you inspect the
details of the BigQuery table in the UI, you’ll note that some of your data has been
committed to the streaming buffer but is still immediately available for queries.

174 | Chapter 8: BigQuery and Data Warehousing

CHAPTER 9

Data Processing Tools

Google Cloud offers a variety of scalable data processing tools. Dataflow and Data‐
proc are the most commonly used (outside of BigQuery, covered in another chapter).
These tools allow you to run open source Apache Spark or Apache Beam pipelines in
a serverless or near-serverless environment. Cloud Dataflow, in particular, is an excel‐
lent environment for running large-scale, mission-critical, streaming pipelines for
real-time analytics, data ingestion, and business logic. There are also low and no-code
data processing toolsets, such as Cloud Data Fusion. These recipes are examples of
some of the most common tasks you’ll perform as you implement solutions on these
tools and include a few more advanced Dataflow pipeline patterns.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

9.1 Cleaning Data Using the Data Fusion GUI
Problem
You want to clean and join data sets in a repeatable pipeline in a low or no-code,
GUI-driven tool.

Solution
Cloud Data Fusion allows users to interact with data from sources such as GCS and
BigQuery and author-repeatable pipelines in a GUI, and execute them scalably and
on a schedule, using Dataproc under the hood.

In this example, we will ingest some data from CSV to BigQuery, applying transfor‐
mations and filters along the way.

175

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

1. From the Cloud Console, navigate to the Data Fusion page. You may need to
enable the API, as shown in Figure 9-1.

Figure 9-1. Enabling the Data Fusion API

2. Once it is enabled, click Create Instance. Name it my-data-fusion-instance,
choose Developer Edition, and grant the requested Dataproc access. It may take
10–20 minutes to create.

3. In the meantime, we’ll create a cloud storage bucket and upload a file to process
from this recipe’s folder in the repo. From the command line, run the following:

BUCKET_NAME=gs://<your_project_id>
gsutil mb -l us $BUCKET_NAME
gsutil cp events.csv $BUCKET_NAME

4. Once your Data Fusion is created, click View Instance to open Data Fusion.
5. Click the Wrangler section.
6. Open your sample bucket and choose the events.csv file, as shown in Figure 9-2.

Figure 9-2. The provided events.csv file to wrangle in your pipeline

7. From the Body field drop-down menu, choose Parse and CSV, as shown in
Figure 9-3. Choose Comma-Delimited.

176 | Chapter 9: Data Processing Tools

Figure 9-3. Parsing the CSV

8. Since the body column is no longer needed, click the column drop-down menu
for Body and then choose Delete Column.

9. You’ll notice the fields on the right have now been renamed body, body1, body2,
and so on. Click Column Names and then choose Set All to reset the fields
quickly to something more meaningful. Type in the following column names,
comma-separated, as shown:

ip,user_id,lat,lng,time-
stamp,http_request,http_response,num_bytes,user_agent

10. Next, we want to filter out page hits on home.html, because we are interested in
analyzing which of the biology pages are most popular. In the http_request col‐
umn, click the drop-down menu and choose Filter. Choose Remove Rows, and
select If Value Contains. Copy and paste home.html, as shown in Figure 9-4. Click
Apply.

Figure 9-4. Adding a regex filter to our http_request column

9.1 Cleaning Data Using the Data Fusion GUI | 177

11. You will notice that not only is the data displayed being filtered in real time, it is
also a series of steps that defines how our pipeline is growing on the right side of
the screen, as in Figure 9-5.

Figure 9-5. Our growing pipeline

12. We also don’t need the num_bytes column, so drop that as well.
13. Now we are ready to run our simple pipeline. Click Create A Pipeline and choose

Batch Pipeline.
14. Name your pipeline Weblog-Ingest. You can drag and drop the two nodes in

our pipeline that you see in Figure 9-6. You can also add more transformations
from the left side of the screen or double-click the existing nodes to see their
configurations.

Figure 9-6. The two nodes of our current pipeline

15. We want to store the output in BigQuery, so on the left side, click Sink and then
BigQuery. This will create a new node on the graph. Drag a link from the Play
button on the Wrangler node to connect it to the new BigQuery node, as shown
in Figure 9-7.

178 | Chapter 9: Data Processing Tools

Figure 9-7. Adding a BigQuery sink

16. You’ll notice the yellow error number on the BigQuery card. Double-click it to
configure this step. Add the following info to the configuration as in the follow‐
ing table:

Field Value
Reference Name WebLog-BigQuery-Sink
Project ID auto-detect
Dataset Project ID <blank>
Dataset weblog
Table filtered_log

17. Click Validate. If no errors are found, click the X to save the step and return to
the graph.

18. In the upper right, click Deploy. Once this completes, click Run. You’ll see a run
status bar change to Provisioning, as in Figure 9-8. Wait for the run to complete.

Figure 9-8. The Data Fusion pipeline is provisioning

19. [Optional] If you are curious, you can head to the Dataproc page in the Cloud
Console to see the temporary cluster that Data Fusion is creating, using, and then
deleting on your behalf.

20. When the status says Succeeded, open the BigQuery page of the Cloud Console.
Run the following query to see that your data has been ingested:

SELECT * FROM `.weblog.filtered_log`
LIMIT 100

21. Don’t forget to delete your Data Fusion instance to avoid any long-term charges.

9.1 Cleaning Data Using the Data Fusion GUI | 179

Discussion
Data Fusion is a scalable, GUI-driven data wrangler and ELT/ETL pipeline authoring
tool. It provides 150+ preconfigured connectors, includes data lineage, and can even
author streaming pipelines. Even though these are no-code pipelines, they run scala‐
bly on Dataproc Spark clusters. This recipe showed how easy it is to navigate across
disparate data sources and services (i.e., Cloud Storage and BigQuery) and perform
transformations on your data.

9.2 Running a Simple Python Dataflow Pipeline
Problem
You want to get started writing Apache Beam pipelines in Python to execute scalable
data analytics, image processing, or machine learning preprocessing.

Solution
This recipe will show you how to set up your first Python-based Dataflow pipeline.

1. Open Cloud Shell or your CLI and use Python pip to install the necessary
Apache Beam and Dataflow packages. Note the [gcp], which indicates to the pip
installer utility to install the additional components needed for Google Cloud.
First, we upgrade pip in case you have an older version that can’t detect prebuilt
binary packages and will therefore try to build them from scratch.

pip3 install --upgrade pip
pip3 install apache-beam[gcp]

2. Copy the following code into a Python file, either in the Cloud Shell editor or in
a text editor, and save it locally as wordcount.py. Alternatively, grab a copy from
the book’s repo. This is a small sample Dataflow pipeline that ships with the
framework. It will read from a publicly accessible copy of Shakespeare’s King Lear
and count the frequency of each word. The main pipeline is defined at the lines
lines = p | 'Read' >> ReadFromText(known_args.input) and in the lines
that follow:

import argparse
import logging
import re

import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions

class WordExtractingDoFn(beam.DoFn):

180 | Chapter 9: Data Processing Tools

 """Parse each line of input text into words."""
 def process(self, element):
 return re.findall(r'[\w\']+', element, re.UNICODE)

def run(argv=None, save_main_session=True):
 """Main entry point; defines and runs the wordcount pipeline."""
 parser = argparse.ArgumentParser()
 parser.add_argument(
 '--input',
 dest='input',
 default='gs://dataflow-samples/shakespeare/kinglear.txt',
 help='Input file to process.')
 parser.add_argument(
 '--output',
 dest='output',
 required=True,
 help='Output file to write results to.')
 known_args, pipeline_args = parser.parse_known_args(argv)

 # We use the save_main_session option because one or more DoFn's in
 # this workflow relies on global context (e.g., a module imported at
 module level).

 pipeline_options = PipelineOptions(pipeline_args)
 pipeline_options.view_as(SetupOptions).save_main_session =
save_main_session

 # The pipeline will be run on exiting the with block.
 with beam.Pipeline(options=pipeline_options) as p:

 # Read the text file[pattern] into a PCollection.
 lines = p | 'Read' >> ReadFromText(known_args.input)

 counts = (
 lines
 | 'Split' >> (beam.ParDo(WordExtractingDoFn()).with_out-
put_types(str))
 | 'PairWIthOne' >> beam.Map(lambda x: (x, 1))
 | 'GroupAndSum' >> beam.CombinePerKey(sum))

 # Format the counts into a PCollection of strings.
 def format_result(word, count):
 return '%s: %d' % (word, count)

 output = counts | 'Format' >> beam.MapTuple(format_result)

 # Write the output using a "Write" transform that has side effects.
 output | 'Write' >> WriteToText(known_args.output)

if __name__ == '__main__':

9.2 Running a Simple Python Dataflow Pipeline | 181

 logging.getLogger().setLevel(logging.INFO)
 run()

3. Run this Apache Beam pipeline locally on your command line, giving it an out‐
put file parameter:

python3 wordcount.py --output outputs

4. Inspect some of the outputs to ensure that the pipeline ran correctly:
cat outputs-00000-of-00001

5. Run this pipeline, using the Dataflow service instead of locally. First, enable the
Dataflow API if you haven’t already. Run this on CLI.

gcloud services enable dataflow

6. Make a bucket that our pipeline can use as output and to stage temporary files.
Run this and replace this bucket name with a new valid bucket name:

gsutil mb -l us-central1 gs://my_new_dataflow_bucket23

7. We’ll also need to give the compute service account access to this bucket. This is
the account that each Dataflow worker will be running as and will be using to
authenticate to other Google Cloud resources. Run the following, replacing
[PROJECT_NUMBER] with yours. You can also look up the name of this pre-
created account by opening the IAM & Admin menu and clicking Service
Accounts.

PROJECT_ID=<YOUR_PROJECT>
gcloud projects add-iam-policy-binding $PROJECT_ID \
 --member=serviceAccount:[PROJECT_NUMBER]-
compute@developer.gserviceaccount.com \
 --role=roles/storage.objectAdmin

8. Run the following block of code to start your pipeline in Dataflow mode. Make
sure to insert your project and bucket in the variables.

DATAFLOW_REGION=us-central1
STORAGE_BUCKET=<YOUR_BUCKET>
PROJECT_ID=<YOUR_PROJECT>

python3 wordcount.py \
 --region $DATAFLOW_REGION \
 --input gs://dataflow-samples/shakespeare/kinglear.txt \
 --output gs://$STORAGE_BUCKET/results/outputs \
 --runner DataflowRunner \
 --project $PROJECT_ID \
 --temp_location gs://$STORAGE_BUCKET/tmp/

9. You should see output confirming that the pipeline has started and there are no
permission errors on the bucket. You can also navigate to the Dataflow page in
the console and click your new job to see the current status of the pipeline and
the steps executing, as in Figure 9-9.

182 | Chapter 9: Data Processing Tools

Figure 9-9. Our first Dataflow pipeline

10. When the pipeline has finished executing, you can inspect the files that have been
generated by our workers in GCS, just like we had computed locally:

gsutil ls gs://$STORAGE_BUCKET/results/
gsutil cat gs://$STORAGE_BUCKET/results/outputs-00000-of-00003

Discussion
Dataflow is a serverless, scalable data processing service that executes both batch and
streaming Apache Beam pipelines. Beam pipelines can be written in a variety of lan‐
guages, including Java and Python, and then executed on a variety of runners, includ‐
ing Dataflow, Spark, and Flink. This example shows how to run your first pipeline,
both locally and then serverlessly on the Cloud Dataflow services. You enabled the
service and configured some additional permissions so that Dataflow workers could
access data sources, just like you could from the command line with your user
account.

9.2 Running a Simple Python Dataflow Pipeline | 183

9.3 Building a Streaming Pipeline in Dataflow SQL
Problem
You want to build a streaming pipeline using various Pub/Sub or BigQuery sources,
but you want to prototype rapidly and avoid writing a Python or Java Apache Beam
pipeline to execute on Dataflow.

Solution
Dataflow SQL allows you to author pipelines purely in SQL and execute them from
the Dataflow UI.

To demonstrate this, we will use a sample data set of weblog entries, including an
enrichment table with user profile information. The source data is provided in this
book’s GitHub repository. The user profile contains additional data, with which we
want to annotate our weblog to power future analytics and dashboards.

1. First, create the Pub/Sub topic from the CLI or Cloud Shell. We will populate it
with data later.

PROJECT_ID=<my_project>

gcloud pubsub topics create events

2. Create a BigQuery data set and upload data, using the file provided in the repo:
bq mk --location=us weblog
bq load --autodetect $PROJECT_ID:weblog.userprofile ./bq_data.csv

3. Examine the data to ensure that it’s uploaded. Run this bq command to return
just 10 results from your table:

bq head -n 10 $PROJECT_ID:weblog.userprofile

4. Next, you’ll need to add a schema to your Pub/Sub topic so it can be parsed and
processed. Create a file called schema.yaml and enter the following, or grab it
from the repo:

- column: event_timestamp
 description: Pub/Sub event timestamp
 mode: REQUIRED
 type: TIMESTAMP
- column: ip
 description: IP Address
 mode: NULLABLE
 type: STRING
- column: user_id
 description: User ID
 mode: NULLABLE
 type: STRING
- column: lat

184 | Chapter 9: Data Processing Tools

 description: Latitude
 mode: NULLABLE
 type: FLOAT64
- column: lng
 description: Longitude
 mode: NULLABLE
 type: FLOAT64
- column: timestamp
 description: Event timestamp
 mode: NULLABLE
 type: STRING
- column: http_request
 description: HTTP Request
 mode: NULLABLE
 type: STRING
- column: http_response
 description: HTTP Response Code
 mode: NULLABLE
 type: INT64
- column: num_bytes
 description: Number response bytes
 mode: NULLABLE
 type: INT64
- column: user_agent
 description: User Browser
 mode: NULLABLE
 type: STRING

5. Now add this schema to data catalog so that Dataflow SQL will know how to
parse the incoming messages:

gcloud data-catalog entries update --lookup-entry='pubsub.topic.
$PROJECT_ID.events' \
 --schema-from-file=schema.yaml

6. Generate Pub/Sub data and publish to your topic for processing, using your CLI
or Cloud Shell. This script is provided in the repo and simulates the data stream
from another team that you want to consume.

export PROJECT_ID=$PROJECT_ID
python publish_pubsub.py

7. In the Dataflow UI, click Create Job From SQL. In the data set search bar, look
for your events topic, as in Figure 9-10. You can click the Paste button to paste
your topic into the SQL editor properly.

9.3 Building a Streaming Pipeline in Dataflow SQL | 185

Figure 9-10. Dataflow SQL data set search

8. Now you can author a fully streaming pipeline in the Dataflow SQL UI. Copy
and paste the following from the repo and update your project name. This query
demonstrates joining a BigQuery enrichment table with a real-time Pub/Sub
stream.

SELECT
 events.event_timestamp,
 events.ip,
 events.user_id,
 events.http_request,
 table.age_bracket,
 table.opted_into_marketing,
 table.last_visit
FROM
 pubsub.topic.dhodun2.events AS events
INNER JOIN
 bigquery.table.dhodun2.weblog.userprofile table
ON
 events.user_id = table.id

9. Now click Create Cloud Dataflow Job. Be sure to add an output BigQuery source,
as shown in Figure 9-11, and then click Create. You can click the Job_Id link to
look at the job status and the graph that has been created from your SQL.

186 | Chapter 9: Data Processing Tools

Figure 9-11. Adding a BigQuery output table

10. Once the table has run for 3–5 minutes, take a look at weblog.enriched_weblog in
the BigQuery UI. You’ll notice that not only are we taking data from a Pub/Sub
topic and writing it to BigQuery with SQL, which is quite helpful, we are also
joining this data to a BigQuery data set.

11. Since this is a streaming job, it will execute forever, so don’t forget to cancel your
job, as in Figure 9-12, and close the process that was generating events.

9.3 Building a Streaming Pipeline in Dataflow SQL | 187

Figure 9-12. Canceling your streaming Dataflow job

Discussion
Dataflow SQL (https://oreil.ly/PNV9Z) is an extension of Apache Beam SQL, which
allows users to write simple (or complex) streaming pipelines in SQL from the Cloud
Console. This example shows how to join an unbounded Pub/Sub data set with a
bounded BigQuery enrichment data set. We stored this data in BigQuery, but we
could have just as easily written it to a new Pub/Sub topic. Dataflow also allows you
to perform aggregate functions on time slices of your data, using SQL Windowing
functions TUMBLE, HOP, and SESSION for fixed, sliding, and session-based windows,
respectively.

9.4 Querying BigQuery from a Dataproc Job
Problem
You need to configure your Spark data processing job to access source data in Big‐
Query, your data warehouse.

Solution
Using initialization actions when you create your Dataproc clusters, you can easily
enable access to BigQuery, Google Cloud Storage, and other storage systems external
to your Dataproc cluster.

188 | Chapter 9: Data Processing Tools

https://oreil.ly/PNV9Z

1. First, create a Dataproc cluster with the necessary connectors and initialization
actions. This leverages a Google-provided initialization script to your cluster
nodes that installs GCS and BigQuery connectors so you can query data from
these services. You can configure these as needed.

2. Run this from the CLI or Cloud Shell:
REGION=us-central1
CLUSTER_NAME=sample-cluster
gcloud dataproc clusters create ${CLUSTER_NAME} \
 --region ${REGION} \
 --initialization-actions gs://goog-dataproc-initialization-actions-$
{REGION}/connectors/connectors.sh \
 --metadata gcs-connector-version=2.2.0 \
 --metadata bigquery-connector-version=1.2.0 \
 --metadata spark-bigquery-connector-version=0.19.1

3. While waiting for the cluster to create, upload a table into BigQuery that we will
query, using the file from the repo:

bq load -location us --autodetect $PROJECT_ID:weblog.raw_events
events_with_header.csv

4. Prepare a PySpark script to submit that will load an entire table into Spark for
additional querying. Copy this code into the Cloud Shell editor, a text editor, or
your favorite IDE. You can also find it in this book’s GitHub repo. This script will
read data from your BigQuery raw_events table, perform some aggregations
based on user_id, and write it out to a new events_aggregate table.

#!/usr/bin/python
from pyspark.sql import SparkSession

PROJECT = "PROJECT_ID"

spark = SparkSession \
 .builder \
 .master('yarn') \
 .appName('cookbook-query') \
 .getOrCreate()

Use the Cloud Storage bucket for temporary BigQuery export data used
by the connector.
bucket = PROJECT
spark.conf.set('temporaryGcsBucket', bucket)

Load data from BigQuery.
events = spark.read.format('bigquery') \
 .option('table', f'{PROJECT}:weblog.raw_events') \
 .load()
events.createOrReplaceTempView('raw_events')

Count how many events per user

9.4 Querying BigQuery from a Dataproc Job | 189

regions_count = spark.sql(
 'SELECT COUNT(*) AS num_visits, user_id FROM raw_events GROUP BY
user_id')
regions_count.show()
regions_count.printSchema()

Saving the data to BigQuery
regions_count.write.format('bigquery') \
 .option('table', 'weblog.events_aggregate') \
 .save()

5. Last, from the CLI, submit the query using the Dataproc Jobs API. Notice that
you are using a prebuilt jar and providing the script it will execute.

#!/bin/bash

REGION=us-central1
CLUSTER_NAME=sample-cluster

gcloud dataproc jobs submit pyspark query_script.py \
 --cluster=$CLUSTER_NAME \
 --region=$REGION \
 --jars=gs://spark-lib/bigquery/spark-bigquery-latest.jar

6. You should see job output and completion on your CLI. You can also check the
BigQuery UI to see a new table called sales_region_aggregate in your data set.

7. Delete your cluster to avoid charges:
CLUSTER_NAME=sample-cluster
gcloud dataproc clusters delete ${CLUSTER_NAME}

Discussion
Dataproc is Google Cloud’s managed Spark service and allows for efficient, scalable
execution of your Spark pipelines, using just-in-time clusters provisioned in 90 sec‐
onds. Dataproc has a number of easy-to-use connectors for accessing your Google
Cloud data, primarily the BigQuery and Google Cloud Storage connectors. This
allows you to write pipelines in OSS Spark code but easily offload the storage (and
sometimes, in the case of BigQuery, significant compute) from the cluster into cloud-
native, cheaper, and more efficient solutions. This allows for the paradigm of per-job
clusters or short-lived clusters versus a long-lived, monolithic cluster which adds
operational burden.

190 | Chapter 9: Data Processing Tools

9.5 Adding Event Timestamps to Pub/Sub
Problem
The timestamp attribute on a Pub/Sub message indicates the publish time, that is,
when the message reached the Pub/Sub service and not necessarily when the event
actually was created, particularly in offline scenarios (such as when your mobile
phone is in a tunnel or in airplane mode). You want to process based on when the
event actually happened, not the publish time from the view of the Pub/Sub service,
which is the default.

Solution
You can add metadata to Pub/Sub messages, which can then be consumed by down‐
stream applications. This example shows how to do it in Python:

1. Generate a timestamp as part of your payload dictionary. You can follow along
with the entire script in the GitHub repo.

def generate_event():
 return {
 'user_id': random.randint(1, 100),
 'action': random.choices(['start', 'stop', 'rewind',
 'download'], k=1),
 'timestamp': datetime.datetime.utcnow().strftime(
 '%m/%d/%Y %H:%M:%S %Z')
 }

2. When you publish to Pub/Sub, add a timestamp field in addition to the encoded
data:

publisher = pubsub_v1.PublisherClient()
topic_path = publisher.topic_path(project_id, topic_name)

buffer = []

def publish_burst(publisher, topic_path, buffer):
 for message in buffer:
 json_str = json.dumps(message)
 data = json_str.encode('utf-8')
 publisher.publish(topic_path, data,
 timestamp=message['timestamp'])
 print('Message for event {} published at {}'.format(
 message['timestamp'], datetime.datetime.utcnow().
 strftime('%m/%d/%Y %H:%M:%S %Z')))

3. Now your Pub/Sub messages will have an event timestamp attribute you can
access in addition to the automatically set publishTime metadata. You can now
use the timestamp value to order your data based on when it occurs. Cloud

9.5 Adding Event Timestamps to Pub/Sub | 191

Dataflow, for example, allows you to use event_timestamp in lieu of the publish
time with the following (in Java). By default, Dataflow would just use publish
time.

pipeline.apply("ReadMessage", PubsubIO.readStrings()
 .withTimestampAttribute("timestamp")
 .fromTopic(options.getInputTopic()))

4. Run the sample script by running the following and examine the difference
between event time and publish time. These are close in value, but the difference
could be significant:

python3 publish.py

You should see something like this:
08/30/2021 19:22:22
Message for event 08/30/2021 19:22:18 published at 08/30/2021 19:22:22
Message for event 08/30/2021 19:22:19 published at 08/30/2021 19:22:22
Message for event 08/30/2021 19:22:20 published at 08/30/2021 19:22:22
Message for event 08/30/2021 19:22:21 published at 08/30/2021 19:22:22
Message for event 08/30/2021 19:22:22 published at 08/30/2021 19:22:22
Message for event 08/30/2021 19:22:28 published at 08/30/2021 19:22:37
Message for event 08/30/2021 19:22:29 published at 08/30/2021 19:22:37
Message for event 08/30/2021 19:22:30 published at 08/30/2021 19:22:37
Message for event 08/30/2021 19:22:31 published at 08/30/2021 19:22:37
Message for event 08/30/2021 19:22:32 published at 08/30/2021 19:22:37

Discussion
You can set attributes in Pub/Sub messages that can be intelligently consumed in
downstream data, in this case, a timestamp attribute. Dataflow is smart enough not
only to use this timestamp in place of publishing timestamp for time-based process‐
ing such as windowing, but it can also use this metadata efficiently to update its
watermark—the internal mechanism by which it tracks how up to date in-flight data
is. A lagging watermark signals Dataflow to add more workers to process data more
quickly.

9.6 Inferring and Using Schemas in Dataflow
Problem
Your current Dataflow pipeline leverages custom coders, even though your data is
well-structured and defined in plain old Java objects (POJOs). In addition, you have
to write out the schema of the objects for BigQueryIO.Write(). You want to write
more concise, readable Dataflow pipelines and avoid custom coders to speed up
development.

192 | Chapter 9: Data Processing Tools

Solution
Apache Beam gives you the ability to define or infer schemas from well-structured
data, which automatically gives you high-performance encoding and automatically
creates the BigQuery schema.

This recipe and the next few are more advanced examples showing newer Dataflow
features. They assume knowledge of Java and of building basic Dataflow pipelines. If
you’re new to Dataflow, you can still follow along to learn some new concepts. You
will need Java and Maven installed. Cloud Shell is a good environment with these
already set up.

1. Navigate to the example folder in the repo. Open the example pipeline file to
understand the code (src/main/java/com/mypackage/pipeline/MyPipeline.java).

2. First, create a schema for any objects that Beam will need to pass between stages
of the pipeline. Note that you can mark fields as nullable. In this case, we have
created the schema for the same log object used in the previous examples. You
can see this already implemented in MyPipeline.java:

public static Schema CommonLog = Schema.builder()
 .addStringField("user_id")
 .addStringField("ip")
 .addNullableField("lat", Schema.FieldType.DOUBLE)
 .addNullableField("lng", Schema.FieldType.DOUBLE)
 .addStringField("timestamp")
 .addStringField("http_request")
 .addStringField("user_agent")
 .addInt64Field("http_response")
 .addInt64Field("num_bytes")
 .build();

3. Now, you can use this schema in your pipeline to avoid using custom coders. You
can also convert to and from <Row> objects, which are the generic schematized
object in Beam:

pipeline.apply("ReadFromPubSub",
 PubsubIO.readStrings().fromTopic(topic))
 .apply("JsonToRow", JsonToRow.withSchema(CommonLog))

4. You can now add the useBeamSchema() object on your BigQueryIO.write()
calls, whereas previously you had to create a TableSchema object and write out
the structure of the data again to pass to BigQueryIO.write():

.apply("WriteToBQ",
 BigQueryIO.<Row>write().to(output).useBeamSchema()
 .withWriteDisposition(
 BigQueryIO.Write.WriteDisposition.WRITE_APPEND)
 .withCreateDisposition(
 BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED));

9.6 Inferring and Using Schemas in Dataflow | 193

5. To run the example pipeline, do the following in the example directory in Cloud
Shell or on the CLI. First, start the Python generator that publishes data to Pub/
Sub:

python publish_pubsub.py

6. Open a new tab so you can leave the data generator running. Replace your
project variables here in the //static inputs and outputs section and execute the
following in the recipe folder to compile and run your pipeline. You can also find
this in the run.sh file:

Set up environment variables
export PROJECT_ID=$(gcloud config get-value project)
export REGION='us-central1'
export PIPELINE_FOLDER=gs://${PROJECT_ID}
export MAIN_CLASS_NAME=com.mypackage.pipeline.MyPipeline
export RUNNER=DataflowRunner

mvn compile exec:java \
-Dexec.mainClass=${MAIN_CLASS_NAME} \
-Dexec.cleanupDaemonThreads=false \
-Dexec.args=" \
--project=${PROJECT_ID} \
--region=${REGION} \
--stagingLocation=${PIPELINE_FOLDER}/staging \
--tempLocation=${PIPELINE_FOLDER}/temp \
--runner=${RUNNER}"

7. That command will run to completion, but the job is still running. You can
examine it in the Dataflow UI.

8. Once the job has been running 3–5 minutes, you should see outputs to the
weblog.dataflow_streaming table.

9. Cancel your streaming pipeline to avoid charges.

Discussion
More traditional Apache Beam pipelines, run on Dataflow, leveraged the <K,V> (or
Key, Value) style of Beam execution. You would pass objects from step to step in the
pipeline, extracting a Key when it was needed for other aggregations, such as Sum‐
ming on a GroupByKey. Pipeline authors often had to reason about how to encode
these objects, since they needed to be serialized between each pipeline step. Newer
Beam schemas allow for a more natural way to encode and address well-structured
data. The preceding recipe shows how to define a schema to be used by your pipeline
steps. You can also infer a schema from a POJO definition versus writing a custom
coder. It also shows how to write this data easily into BigQuery without having to
supply another pretty much redundant TableSchema object.

194 | Chapter 9: Data Processing Tools

9.7 Mini-batching and Streaming Dataflow Data to
BigQuery Using Filters
Problem
Your current Dataflow pipeline leverages BigQuery streaming. Since BigQuery
charges for streaming inserts, you may want to control your costs if you are process‐
ing a large amount of data and only stream a subset of the data.

Solution
Implement BigQuery batch loading in your Dataflow pipeline, potentially on a subset
of less time-sensitive data to the same table. Batch loading is great for data that can be
loaded every 90 seconds or longer. You can split the data with a branching pipeline
and filter functions.

1. Navigate to the example folder in the repo. Open the example pipeline file to
understand the code (src/main/java/com/mypackage/pipeline/MyPipeline.java).

2. First, branch your pipeline the standard way and implement a schema-aware fil‐
ter function to determine which elements you want persisted in which method:

// Streaming Entries
commonLogs.apply("FilterLargeAccounts"),
 Filter.<Row>create().whereFieldName("num_bytes",
 (Long num_bytes) -> num_bytes > amountCutoff))

// commonLogs Entries
commonLogs.apply("FilterSmallAccounts"),
 Filter.<Row>create().whereFieldName("num_bytes",
 (Long num_bytes) -> num_bytes > amountCutoff))

3. Next, implement your BigQuery write as before on the streaming branch:
.apply("WriteToBQStreaming",
 BigQueryIO.<Row>write().to(output).useBeamSchema()
 .withWriteDisposition(
 BigQueryIO.Write.WriteDisposition.WRITE_APPEND)
 .withCreateDisposition(
 BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED));

4. Implement a Batch_Loads BigQuery writer by setting .withMethod(), .withTrig
geringFrequency(), and .withNumFileShards():

.apply("WriteToBQFileLoads",
 BigQueryIO.<Row>write().to(output).useBeamSchema()
 .withMethod(BigQueryIO.Write.Method.FILE_LOADS)
 .withTriggeringFrequency(
 Duration.standardSeconds(minibatchFrequency))
 .withNumFileShards(1)

9.7 Mini-batching and Streaming Dataflow Data to BigQuery Using Filters | 195

 .withWriteDisposition(
 BigQueryIO.Write.WriteDisposition.WRITE_APPEND)
 .withCreateDisposition(BigQueryIO.Write.CreateDisposition.CRE-
ATE_IF_NEEDED));

5. Like before, start the Python generator that publishes data to Pub/Sub from CLI:
python publish_pubsub.py

6. Run your pipeline, after you’ve replaced your project IDs in the code:
bash run.sh

Then open the pipeline details and you’ll see something similar to Figure 9-13.

Figure 9-13. Our branched pipeline with both streaming and batch BigQuery loads

196 | Chapter 9: Data Processing Tools

7. Once the job has been running 3–5 minutes, you should see outputs to the
weblog.dataflow_streaming table.

8. Cancel your streaming pipeline to avoid charges.

Discussion
By default, Dataflow writes to BigQuery, using streaming inserts in a streaming pipe‐
line and a batch load job in a batch pipeline. Streaming inserts (https://oreil.ly/Hf6ba)
allow you to query the data immediately, allowing for real-time reporting and dash‐
boards. However, there is an ingestion cost associated with streaming inserts, whereas
batch load jobs are free. Generally, best practice is to start with streaming inserts, but
if this ingestion cost becomes an issue, you can usually identify some data to offload
to “batch” loads with the preceding method. Currently, this is possible only in the Java
SDK, not in the Python SDK.

9.8 Triggering a Dataflow Job Automatically from
a GCS Upload
Problem
You want to perform an ETL job automatically on flat-file raw data staged into GCS.
Another customer or team with which you work will periodically upload these files.
You don’t want to rely just on time-based scheduling to ingest the data automatically.
Rather, you want to perform the ingest job right away.

Solution
You can leverage Dataflow templates and Google Cloud function triggers to start a
Dataflow job automatically to process the file(s) immediately when they are landed.

1. As before, navigate to the example folder in the repo. Open the example pipeline
file to understand the code, found at src/main/java/com/mypackage/pipeline/
MyPipeline.java.

2. This time, we parameterize it properly with an Options class instead of hard-
coding the inputs and outputs:

public interface Options extends DataflowPipelineOptions {
 @Description("Path to events.json")
 String getInputPath();

 void setInputPath(String inputPath);

 @Description("Output BigQuery table.")
 String getOutputTable();

9.8 Triggering a Dataflow Job Automatically from a GCS Upload | 197

https://oreil.ly/Hf6ba

 void setInputPath(String value);
}

public static void main(String[] args) {
 Options options = PipelineOptionsFactory.fro-
mArgs(args).as(Options.class);

 run(options);
}

3. Package the entire pipeline into an Uber .jar file. An Uber jar contains all the
dependencies required for the pipeline, so it can be shipped and executed as a
single unit. Run this from the recipe example directory:

mvn package
ls -lh target/*.jar

Now that you have an Uber jar, we will build and stage a flex template, which will
capture additional parameters as well as the full executable and package them
further in a Docker image. This can then be called at any time, by anyone author‐
ized, to start the pipeline with new parameters—in this case, the file to ingest.

4. First, make sure you have a metadata.json file set for your parameters:
BUCKET=[BUCKET_NAME]
PROJECT=[PROJECT_NAME]

export TEMPLATE_PATH=gs://$BUCKET/tmp/templates
export TEMPLATE_IMAGE="gcr.io/$PROJECT/cookbook/gcs-trigger-
pipeline:latest"

gcloud dataflow flex-template build $TEMPLATE_PATH \
 --image-gcr-path "$TEMPLATE_IMAGE" \
 --sdk-language "JAVA" \
 --flex-template-base-image JAVA11 \
 --metadata-file "metadata.json" \
 --jar "target/cookbook-gcs-trigger-pipeline-1.0.jar" \
 --env FLEX_TEMPLATE_JAVA_MAIN_CLASS="com.mypackage.
 pipeline.MyPipeline"

5. Copy the data to your bucket for a test run:
gsutil cp data.csv gs://$BUCKET/tmp/events.json

6. Test calling the template from the command line:
export TEMPLATE_PATH=gs://$BUCKET/tmp/templates/gcs-trigger-
template.json
export TEMPLATE_IMAGE="gcr.io/$PROJECT/cookbook/gcs-trigger-
pipeline:latest"

export INPUT_PATH="gs://$BUCKET/tmp/events.json"

198 | Chapter 9: Data Processing Tools

export OUTPUT_TABLE=${PROJECT_ID}:weblog.events_upload

export REGION="us-central1"

gcloud dataflow flex-template run "cookbook-trigger-pipeline-`date +%Y%m
%d-%H%M%S`" \
 --template-file-gcs-location "$TEMPLATE_PATH" \
 --parameters inputPath="$INPUT_PATH" \
 --parameters outputTable="$OUTPUT_TABLE" \
 --region "$REGION"

7. After a couple of minutes, you’ll see your pipeline queued and then started in the
Dataflow UI. Once it starts properly, cancel the job.

8. Next, we’ll deploy a GCS trigger, using Cloud Functions to trigger the pipeline.
Move into the gcs_trigger folder and take a look at the code in main.py. Update it
with your project details. Run the following in this folder to enable Cloud Func‐
tions and deploy this trigger:

cd gcs_trigger/

gcloud services enable cloudfunctions

gcloud functions deploy gcs_trigger \
--runtime python38 \
--trigger-resource $BUCKET \
--trigger-event google.storage.object.finalize

9. Verify in the Cloud Functions UI that your trigger is deployed, as in Figure 9-14.
10. Trigger your new pipeline by re-creating the JSON file. The pipeline is created

automatically by the cloud function, the Flex Template kicks off, and eventually
the pipeline completes and data is reinserted in BigQuery:

gsutil cp events.json gs://$BUCKET/tmp/events.json

Figure 9-14. Deployed GCS trigger

11. Delete your cloud function when finished.

9.8 Triggering a Dataflow Job Automatically from a GCS Upload | 199

Discussion
There are several moving parts here. First is the notion of a fully parameterized, reus‐
able pipeline. You can build more generic pipelines directly in Java with ValuePro
vider classes, but they get a little trickier to author, add extra code to your pipeline,
and make it less readable. Flex templates come in handy here and allow you to take
more natural parameters on your pipeline. Flex templates also create a consistent
deployment environment that any system can trigger. This is less of an issue with Java
(since you can point Dataflow to use an Uber jar on GCS), but more important for
Python, where you need your triggering environment to have consistent PyPi depen‐
dencies. Last, we used a GCF trigger on GCS to interact with the Dataflow API and
pass each new file in the bucket to the pipeline.

200 | Chapter 9: Data Processing Tools

CHAPTER 10

AI/ML

Machine learning (ML) and AI hold an increasingly important place in enterprise
applications. Google Cloud offers a number of AI and ML services, from pre-trained
APIs that can be added to existing applications with a few lines of code to the full-
featured Vertex AI platform that can be used to train and operationalize ML models
in many frameworks.

With model training and tuning becoming more automated, in particular with tools
like AutoML, organizations are focusing more on advanced concepts, including con‐
tinuous retraining and deployment with MLOps, as well as deploying explainable AI
in the enterprise. In this chapter, we will present a number of recipes, using Vertex AI,
from setting up your customized environment to training and deploying your first
model, to more specific techniques aimed at integrating other services. These recipes
assume a basic understanding of typical Python data science tools—for example,
Jupyter notebooks and the Pandas library.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

10.1 Creating a Vertex AI Notebook
Problem
You need a hosted Jupyter Notebook environment running in Google Cloud that can
easily connect to other Google services to perform data and ML tasks.

Solution
You can create, customize, and connect to a Vertex AI notebook.

201

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

1. From the Google menu bar, select Vertex AI > Notebooks.
2. Choose New Instance, and you’ll see a list of available instances, as shown in

Figure 10-1.

Figure 10-1. New Notebook instance dialog box

3. You’ll now see instance options, as shown in Figure 10-2. Choose the latest
TensorFlow Enterprise option and a GPU to attach if needed. Certain model-
training activities perform much faster.

4. Change to my-notebook-instance and make sure you have selected a four-vCPU
machine.

5. Select Install NVIDIA GPU Driver Automatically if you have chosen to use a
GPU.

202 | Chapter 10: AI/ML

Figure 10-2. Customize in the New Notebook Instance dialog box

6. Click Create.
7. You will now see your instance listed; when the status indicators stop spinning

and OPEN JUPYTERLAB appears, as in Figure 10-3, click the latter to open your
notebook environment.

Figure 10-3. Initialized notebook in the UI

10.1 Creating a Vertex AI Notebook | 203

8. Alternatively, you can create a notebook instance via the CLI with the following
from Cloud Shell or the CLI:

export INSTANCE_NAME="example-instance"
export VM_IMAGE_PROJECT="deeplearning-platform-release"
export VM_IMAGE_FAMILY="tf2-2-3-cpu"
export MACHINE_TYPE="n1-standard-4"
export LOCATION="us-central1-b"

gcloud notebooks instances create $INSTANCE_NAME \
 --vm-image-project=$VM_IMAGE_PROJECT \
 --vm-image-family=$VM_IMAGE_FAMILY \
 --machine-type=$MACHINE_TYPE --location=$LOCATION

9. Click OPEN JUPYTERLAB to connect to your notebook environment.
10. Delete the notebook to avoid charges, or leave it to complete other recipes.

Discussion
Vertex AI notebooks are where you will perform much of your data and ML work.
The notebooks are a hosted, customizable environment that handles things like
installing data science dependencies, installing and configuring NVIDIA drivers (a
big win for anyone who has done this more than a couple of times!), handling
authentication to Google Cloud APIs—either as a service account or user account—
and creating a reverse proxy to connect securely via a browser into the notebook and
cloud environment. They can be further configured or locked down for more secure
environments; for example, they can be protected by Virtual Private Cloud Service
Controls (VPC-SC).

10.2 Training a Python ML Model Serverlessly
Problem
You have a Python model authored and want to train it, leveraging serverless com‐
pute in the cloud. You may be using one of several popular ML models, including
TensorFlow, PyTorch, XGBoost, Scikit-learn, and so on.

Solution
Prepare your Python model for submission to the Cloud AI Platform training service.
In this case, we will prepare a TensorFlow model, which is an open source framework
to help you develop and train ML models.

1. Create a model and, if in a Jupyter Notebook, export it to a Python file. It looks
something like this. For this recipe, use the GitHub repo code provided:

204 | Chapter 10: AI/ML

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential

Data Loading and engineering steps omitted
output_directory = os.environ['AIP_MODEL_DIR']

model = Sequential([
 keras.layers.Dense(
 15, activation="relu",
input_shape=(train_features.shape[-1],)
),
 keras.layers.Dense(10, activation="relu"),
 keras.layers.Dense(1, activation=None)
])

model.compile(loss='mae')
model.fit(train_features, train_labels, epochs=500, valida-
tion_data=(test_features, test_labels))

model.save(output_directory)

The model save location will be provided by the training ser‐
vice via an environment variable. This model uses a common
example data set, the Boston house prices data set, where we
use features about Boston neighborhoods to predict the
median house value.

2. Prepare your code as a Python model. Create a Trainer folder, move your model
to this folder, rename it task.py, and create an empty __init.py__ file to make it a
package.

3. Enable the Vertex AI API if you haven’t already. Run this from the command line
or Cloud Shell:

gcloud services enable aiplatform.googleapis.com

4. You’ll need to package your model as a gzipped tarball and stage it on GCS for
the training service to access. Run the following to create the tarball, using the
setup.py file included with the example code:

python3 setup.py sdist --formats=gztar

5. Next, copy the tarball to your training bucket:
gsutil cp dist/boston-housing-training-1.0.tar.gz \
 gs://BUCKET_NAME/training/

10.2 Training a Python ML Model Serverlessly | 205

6. Now, from the Vertex AI UI, open the Training section. Click Create to start a
new job.

7. Select Custom Training (Advanced), as we are using our own code. Click
Continue.

8. Name the model boston-housing.
9. Choose a prebuilt container, such as TensorFlow Version 2.3.

10. Under Package Location, click Browse and navigate through your bucket to the
tarball file, boston-housing-training-1.0.tar.gz.

11. Enter trainer.task for Python module.
12. Under Model Output Directory, enter gs://BUCKET_NAME/output and then click

Continue.
13. Skip hyperparameter tuning for now; choose n1-standard-4 for the machine

type.
14. Last, configure a prebuilt serving container, choosing TensorFlow 2.3 as before.

Ensure that the Model directory field is set to our output folder, and then click
Start Training.

15. You can view the logs by clicking the job ID that appears. When the training job
has completed, you will see your model in the Models section of the UI. The
SavedModel output will also be staged in your GCS bucket, which you can view
by running the following:

gsutil ls gs://[BUCKET_NAME]/output

Discussion
The Vertex AI Platform training service can run any generic Python batch job but is
designed for short- or long-lived ML training jobs. It also supports passing in custom
command-line parameters, installing your own Python dependencies, and configur‐
ing machine types to support a wide variety of ML training requirements. Hyperpara‐
meter tuning for these jobs is easy to configure. Your model can also be automatically
staged for serving, as you will see in the next recipe.

10.3 Making Serverless Predictions with a Python Model
Problem
You have a Python model authored and want to make predictions in a serverless
manner in the cloud.

206 | Chapter 10: AI/ML

Solution
Use Vertex AI Serving to upload and serve a model. There are two elements of serv‐
ing a model: autoscaling and batch predictions. Once serving, you can call the API to
get predictions from your model, using new input data. You will first need a model
trained on Vertex AI training. If you completed the previous recipe, you should have
the boston-housing model listed in the Models section of the UI since we configured
a prebuilt serving container.

1. Click the model name. In the Deploy & Test tab, click Deploy To Endpoint.
2. Name it boston-housing-endpoint. Choose n1-standard-2 as the machine type

and leave all the other defaults. Click Deploy and wait a few minutes for the
green checkmark to appear, indicating that your model is serving.

3. To test the endpoint, an instances.json file with some sample requests has been
provided in the repo. Examine those inputs and then run the following on the
command line to get some sample predictions. Replace ENDPOINT_ID and
PROJECT_ID with yours.

ENDPOINT_ID=[ENDPOINT_ID]
PROJECT_ID=[PROJECT_ID]
INPUT_DATA_FILE="instances.json"

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/
locations/us-central1/endpoints/${ENDPOINT_ID}:predict \
-d "@${INPUT_DATA_FILE}"

You should see model output like the following:
{
 "predictions": [
 [
 17.3454876
],
 [
 11.6165209
]
],
 "deployedModelId": "3454691922751258624"
}

4. Remember to delete the endpoint to prevent charges.

10.3 Making Serverless Predictions with a Python Model | 207

Discussion
The Vertex AI model service allows you to host your models easily, without having to
worry about managing, maintaining, or scaling underlying infrastructure. Your ML
endpoint will automatically scale up and down as traffic increases or decreases. You
can still configure machine type, add GPUs, and so on. Creating a model in Vertex AI
like this will allow you to perform batch predictions if you want to run an inference
on thousands of examples at once. You can also further configure your model to pro‐
vide explanations for each feature at prediction time. That is, how much did each
input contribute to the final prediction? Note that IAM permissions are not granular,
so if you want to lock down different models further for different users within a
project, you will want to front them with their own frontends, perhaps using Cloud
Run (https://oreil.ly/avZtn).

10.4 Creating a Custom Notebook Environment
Problem
You need specific libraries preinstalled in your Vertex AI Notebook environment and
consistency between your development environment and the production pipeline
environment.

Solution
Leverage Cloud Build to add your custom libraries to a Vertex AI container, push it to
a container registry, and use it to create a Vertex AI Platform Notebook.

1. On your local workstation, create a new folder or, if you’d prefer to follow along,
go to the cloned repository and then to the folder for this recipe.

2. In this folder, create a file called requirements.txt and add the following. This will
contain the Python modules you want to add to your Vertex AI Notebook, in this
case Kubeflow Pipelines (kfp), to build ML training pipelines.

kfp==0.2.5

3. Create a file called Dockerfile in the same directory and add this code:
FROM gcr.io/deeplearning-platform-release/base-cpu

COPY requirements.txt .
RUN python3 -m pip install -U -r requirements.txt

4. Run the following on the command line in this folder to submit this build to
Google Cloud Build. This will create a tarball of the local directory, upload it to
the Cloud Build service, build the container image, and push it to Google Con‐
tainer Registry. You can examine the logs that immediately start streaming from
the command line or under the Cloud Build section of the Google Cloud console.

208 | Chapter 10: AI/ML

https://oreil.ly/avZtn
https://oreil.ly/avZtn

IMAGE_NAME=custom_notebook
TAG=latest
PROJECT_ID=$(gcloud config get-value project)

IMAGE_URI="gcr.io/${PROJECT_ID}/${IMAGE_NAME}:${TAG}"

gcloud builds submit --timeout 10m --tag ${IMAGE_URI} .

5. Now we can create our notebook. In the Google Cloud console, navigate to Ver‐
tex AI > Notebooks. Click + New Instance > Customize Instance.

6. Provide an instance name.
7. Under Environment, choose Custom Container.
8. Input the container location (gcr.io/MY_PROJECT/custom_notebook:latest).
9. Click Create. Figure 10-4 shows the completed dialog box.

Figure 10-4. Creating a custom notebook

10.4 Creating a Custom Notebook Environment | 209

10. Once the notebook is created, the OPEN JUPYTERLAB link should be enabled.
Click this.

11. Open a terminal in your notebook and run the following to see your Python
dependencies installed, as shown in Figure 10-5:

pip freeze | grep kfp

Figure 10-5. The correct Python modules installed on the new notebook

12. Alternatively, you can create the notebook using the gcloud command-line tool:
gcloud notebooks instances create my-notebook-2 --container-repository/
gcr.io/dhodun1/custom_notebook --machine-type n1-standard-4 --location/
us-west1-b

Discussion
Baking in custom dependencies to a Vertex AI Notebook image programmatically is
often helpful when deploying a standard data science image across a team or teams,
as well as when aligning dependencies in the development phase with a production
environment. The base Vertex AI containers already have a large variety of data sci‐
ence and ML tools, which is the reason for the large container size (>1 GB), but often
it will be necessary to augment or change package versions. By using the Vertex AI
container as the parent image, you can retain most of the benefits of the out-of-the-
box Vertex AI notebooks, such as authenticated reverse proxy, service or user account
alignment, and a unified API for all notebooks, while customizing and potentially
further securing the environment.

10.5 Extracting Data from BigQuery to Pandas for Model
Training
Problem
You need to build a more advanced, hand-tuned ML model in Python, using data
stored in BigQuery.

210 | Chapter 10: AI/ML

Solution
Extract data from BigQuery, using both tf.data for large data sets and the BigQuery
client to extract an in-memory data set into a pandas DataFrame.

1. In a Vertex AI notebook, clone the repository, select the recipe folder, and open
the sample notebook.

2. The first option to extract data from BigQuery into memory is by using the built-
in BigQuery magic and passing the name of the DataFrame to output the query,
in this case df_from_magic. We will read from a public data set of ride data from
the London Bicycle share program. Running the DataFrame.head() command
will show you the data properly imported, as in Figure 10-6.

%%bigquery df_from_magic --use_bqstorage_api
SELECT * FROM
bigquery-public-data.london_bicycles.cycle_hire
WHERE EXTRACT(YEAR from start_date) = 2017
AND EXTRACT(MONTH from start_date) = 1

Figure 10-6. BigQuery magic DataFrame output

Alternatively, you can load the BigQuery client directly and query that way with
the following steps.

3. Run the following code in your notebook. You’ll see a DataFrame similar to
Figure 10-7.

10.5 Extracting Data from BigQuery to Pandas for Model Training | 211

from google.cloud import bigquery
client = bigquery.Client()

query_string = """
SELECT duration, start_station_id,
 EXTRACT(DAYOFWEEK from start_date) as day_of_week,
 EXTRACT(HOUR from start_date) as hour

FROM
bigquery-public-data.london_bicycles.cycle_hire
WHERE EXTRACT(YEAR from start_date) = 2017
AND EXTRACT(MONTH from start_date) = 1
"""
df = client.query(query_string).to_dataframe()

Figure 10-7. BigQuery client DataFrame output

Next, build a tf.data object from the DataFrame to then feed into your model.
4. Run the following code:

import tensorflow as tf

target = df.pop('duration')
dataset = tf.data.Dataset.from_tensor_slices((df.values, target.values))

for feat, targ in dataset.take(5):
 print ('Features: {}, Target: {}'.format(feat, targ))

train_dataset = dataset.shuffle(len(df)).batch(64).prefetch(1)
1=AUTOTUNE

5. Build and train your model with the tf.data set:
from tensorflow import keras

Simple model shown for simplicity and using the tf.data API

model = keras.Sequential([
 tf.keras.layers.Dense(10, activation='relu'),
 tf.keras.layers.Dense(10, activation='relu'),
 tf.keras.layers.Dense(1)

212 | Chapter 10: AI/ML

])
model.compile(optimizer='adam', loss='mean_absolute_error')
model.fit(train_dataset, epochs=2)

Discussion
If you are building a Python-based model outside of BigQuery or AutoML and the
data set can fit in memory, extracting a BigQuery training set to a pandas DataFrame
is an excellent way to feed your model. You can easily add large quantities of memory
to your Vertex AI Notebook VM for a few minutes if needed for a one-time training
run. In the case of TensorFlow, tf.data.Dataset.from_tensor_slices() will accept
dataframes. There are other methods for other frameworks. If your data set is larger
than what can be stored in memory, it is recommended to export the training data to
multiple files on GCS, either in CSV format or in the highly optimized TFRecord
format.

10.6 Training a Model in SQL with BQML
Problem
You want to train an ML model easily, without Python code and using data already in
BigQuery.

Solution
BQML allows you to train simple and sophisticated models with SQL all in the Big‐
Query service. You can easily create features and preprocess data as well.

In this example, we will use a public data set containing New York City taxi ride
records. We want to predict the eventual fare of a taxi, given some input features we
will know at the start of the ride.

1. Examine the data set by running the following in the BigQuery UI:
SELECT *
FROM
 `bigquery-public-data.new_york_taxi_trips.tlc_yellow_trips_2018`
WHERE
 EXTRACT(DATE FROM pickup_datetime) = "2018-01-28"

2. Run the following SQL to define and train your model:
CREATE OR REPLACE MODEL
 mydataset.taxi_model OPTIONS(model_type='linear_reg',
 input_label_cols=['fare_amount']) AS
SELECT
 fare_amount,

10.6 Training a Model in SQL with BQML | 213

 CAST(pickup_location_id AS string) AS pickup_location,
 CAST(dropoff_location_id AS string) AS dropoff_location,
 CAST(EXTRACT(HOUR FROM pickup_datetime) AS string) AS hour,
 CAST(EXTRACT(DAYOFWEEK FROM pickup_datetime) AS string) AS
day_of_week,
FROM
 `bigquery-public-data`.new_york_taxi_trips.tlc_yellow_trips_2018
WHERE
 EXTRACT(DATE FROM pickup_datetime) < "2018-07-01"

We are choosing a linear regression model and giving features that are known at
the beginning of the ride.

We cast features like pickup_location_id to STRING so they
are treated as categorical features rather than numeric features.
We’ll use data from the first half of 2018.

Once the model is finished training, you can examine the model training metrics,
either by opening the model from the browser on the left or by running the fol‐
lowing SQL. In my case, the mean absolute error was 5.9, not too bad for a first-
pass model.

SELECT * FROM ML.EVALUATE(MODEL mydataset.taxi_model)

3. Last, let’s make some predictions, using our new model and the second half of the
year by running this SQL:

SELECT *
 FROM
 ML.PREDICT(MODEL `mydataset.taxi_model`,
 (
 SELECT
 fare_amount,
 CAST(pickup_location_id AS string) AS pickup_location,
 CAST(dropoff_location_id AS string) AS dropoff_location,
 CAST(EXTRACT(HOUR FROM pickup_datetime) AS string) AS hour,
 CAST(EXTRACT(DAYOFWEEK FROM pickup_datetime) AS string) AS
day_of_week,
 FROM
 `bigquery-public-
data`.new_york_taxi_trips.tlc_yellow_trips_2018
 WHERE
 EXTRACT(DATE FROM pickup_datetime) = "2018-07-01"
 LIMIT 20))

Using this method, it is very easy to make a large batch of predictions and store
them in BigQuery for future use or lookup.

214 | Chapter 10: AI/ML

Discussion
BQML is a powerful and surprisingly easy-to-use tool for performing large-scale
machine learning. Many model architectures are supported, such as neural networks,
gradient-boosted trees, time-series approaches, and matrix factorization recommen‐
der algorithms. You can also perform more advanced feature engineering in SQL,
such as feature crossing. You may also want to examine the TRANSFORM() clause,
which captures transformations you made to create your features and applies them
automatically to incoming data on prediction. (You’ll notice we had to copy the trans‐
formation logic from our training SQL to our inference SQL, since we didn’t use
TRANSFORM().) Even if you’re a seasoned Python ML engineer, BQML is certainly
worth a look—you’ll be surprised at how quickly you can get large-scale, high-
performing models up and running.

10.6 Training a Model in SQL with BQML | 215

CHAPTER 11

Google Cloud Security and Access

Google Cloud provides a robust set of services to secure your Google Cloud organiza‐
tion and projects. These services are continually being updated, so we recommend
that you visit the Google Cloud documentation as well as review Google Cloud’s best
practices website (https://oreil.ly/adYh1).

In this chapter, you will learn how to create a service account to allow applications to
access Google Cloud resources securely, how to implement authentication for appli‐
cations running on Google Kubernetes Engine (GKE), how to run asset reports, and
how to build a deny-and-allow list for your applications.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.
3. Installed and configured gcloud, as described in Chapter 1.

11.1 Creating a Service Account
Problem
You need to authorize your application to access resources securely on Google Cloud.

217

https://oreil.ly/adYh1
https://oreil.ly/adYh1
https://github.com/ruiscosta/oreilly-google-cloud-cookbook

Solution
Using service accounts, you can make authorized API calls to Google Cloud and
restrict the service account permissions to only what is required by the application. In
this recipe, you will learn how to create a service account through the Google Cloud
Console.

1. In the Cloud Console, open IAM & Admin and choose Service Accounts.
2. Click Create Service Account.
3. Enter a service account name.
4. Click Create And Continue to the next step.
5. Choose one or more Identity and Access Management (IAM) roles to grant to the

service account on the project, as shown in Figure 11-1.

Figure 11-1. Grant a role to a service account

6. When you finish adding roles, click Continue.
7. Click Done to finish creating the service account.

218 | Chapter 11: Google Cloud Security and Access

Discussion
Applications use a service account to access resources securely in Google Cloud. Ser‐
vice accounts do not have a password; they are associated with private and public
RSA key pairs for authentication. You restrict access to a service account, only pro‐
viding it access to the resources required. Minimizing the access of the service
account will limit the exposure or risk if the service account is compromised. It is
always best practice to use service accounts when you need applications running on
servers to communicate with Google Cloud resources. It is not advisable to use ser‐
vice accounts on user applications, because this would authenticate users and use a
RESTful API running within your project.

11.2 Creating Custom Roles to Access a Cloud
Storage Bucket
Problem
You want a newly created service account to list storage buckets for your application.

Solution
Create custom roles to allow you to assign storage.buckets.list to a service
account to be able to list buckets in your application.

1. In the Cloud Console, from IAM & Roles, open the Roles page.
2. Click Create Role.
3. Enter a Title, Description, ID, and Role launch stage for the custom role.

The role name cannot be changed after the role is created.

4. Click Add Permissions.
5. In the Enter property name or value input field, enter storage.buckets.list

permissions, and select the role as shown in Figure 11-2.

11.2 Creating Custom Roles to Access a Cloud Storage Bucket | 219

Figure 11-2. Creating a custom IAM role

6. Click Create.

220 | Chapter 11: Google Cloud Security and Access

Discussion
You cannot list storage buckets with the Storage Object Viewer role. It only provides
you with the following permissions:

• resourcemanager.projects.get
• resourcemanager.projects.list
• storage.objects.get
• storage.objects.list

Due to working with least privilege, we can create a custom role to avoid giving ser‐
vice accounts elevated privileges. Create a custom role with the storage.buck
ets.list permission and then assign it to your service account. You have thus pre‐
vented limited permissions but still provided your application with the ability to list
storage buckets.

11.3 Authenticating an Application Running on
Kubernetes Engine
Problem
You need to enable authentication for an application that is running on Google Cloud
Kubernetes Engine (GKE).

Solution
Using Identity-Aware Proxy, secure your application so that it requires users to
authenticate before they can access the application running on GKE.

Prerequisites
You will need to have a registered domain name for this recipe.

1. Create a GKE cluster by running the following command:
gcloud container clusters create hello-cluster

When creating a GKE cluster, using the gcloud command, the
configuration context of the cluster is added to kubeconfig,
allowing you to use the kubectl command. The kubeconfig file
organizes information about clusters, users, and namespaces.

11.3 Authenticating an Application Running on Kubernetes Engine | 221

2. Install a sample application to GKE by creating the following two declarative
YAML files:

deploy.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: web
 namespace: default
spec:
 selector:
 matchLabels:
 run: web
 template:
 metadata:
 labels:
 run: web
 spec:
 containers:
 - image: gcr.io/google-samples/hello-app:2.0
 imagePullPolicy: IfNotPresent
 name: web
 ports:
 - containerPort: 8080
 protocol: TCP

service.yaml
apiVersion: v1
kind: Service
metadata:
 name: web
 namespace: default
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 selector:
 run: web
 type: NodePort

3. Apply the configuration to your cluster by running the following command:
kubectl apply -f deploy.yaml
kubectl apply -f service.yaml

4. Reserve a global IP address to be used for the Google Cloud Load Balancer
(GCLB):

gcloud compute addresses create hello-static-ip --global

5. Create an ingress.yaml declarative file. This declarative file declares a GCLB to be
created, and it will route the traffic to the Global IP address reserved in step 4:

222 | Chapter 11: Google Cloud Security and Access

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: basic-ingress
 annotations:
 kubernetes.io/ingress.global-static-ip-name: "hello-static-ip"
spec:
 backend:
 serviceName: web
 servicePort: 8080

6. Apply the configuration to your cluster by running the following command:
kubectl apply -f ingress.yaml

7. To find the reserved static IP addresses, run the following command:
gcloud compute addresses describe hello-static-ip --global

8. Update or create a DNS A record to point to the static IP address you reserved in
step 4 and listed in step 7.

9. Create a certificate.yaml declarative file, which will create a new managed certifi‐
cate, and replace example.com with your DNS A record:

apiVersion: networking.gke.io/v1beta1
kind: ManagedCertificate
metadata:
 name: iap
spec:
 domains:
 - example.com

10. Update the ingress.yaml declarative file to include:
networking.gke.io/managed-certificates: "iap"

The update ingress.yaml file should look like this:
 apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: basic-ingress
 annotations:
 kubernetes.io/ingress.global-static-ip-name: "hello-static-ip"
 networking.gke.io/managed-certificates: "iap"
spec:
 backend:
 serviceName: web
 servicePort: 8080

11. Apply the configuration to your cluster by running the following command:
kubectl apply -f certificate.yaml
kubectl apply -f ingress.yaml

11.3 Authenticating an Application Running on Kubernetes Engine | 223

It will take a few minutes for the certificate to be provisioned.

12. To enable Identity-Aware Proxy, configure the OAuth consent screen and create
OAuth credentials:
a. In the Google Cloud Console, open APIs & Services and select the OAuth

consent screen.
b. Under Support email, select the email address you want to display as a public

contact.
c. When someone tries to access your application and has some type of error

with authentication, this email address will be presented for support.
d. Enter the application name you want to display.
e. Click Save.
f. In the Google Cloud Console, open APIs & Services and choose Credentials.
g. From the Create Credentials drop-down list, select OAuth client ID.
h. Under Application Type, select Web Application.
i. Add a name for your OAuth client ID.
j. Click Create. Your OAuth client ID and client secret are generated and dis‐

played in the OAuth client window.
k. Copy the client ID to the clipboard. Click OK.
l. Select the newly created OAuth Client ID.

m. Add https://iap.googleapis.com/v1/oauth/clientIds/CLIENT_ID:handleRedirect
to the Authorized Redirect URIs, as shown in Figure 11-3 and replace the
CLIENT_ID with the client ID copied previously

224 | Chapter 11: Google Cloud Security and Access

Figure 11-3. Adding a URI to the OAuth ID

13. Near the top of the page, click Download JSON. You’ll need the values within the
JSON file in step 15. You can open the JSON file with your favorite editor.

14. Set up Identity-Aware Proxy access:
a. In the Google Cloud Console, open Security and choose Identity-Aware

Proxy.
b. Select the checkbox next to the resource you want to add members to.
c. On the right-side panel, click Add Member.
d. In the Add Members dialog box that appears, enter the email addresses of who

should have the IAP-secured Web App User role for the project.

11.3 Authenticating an Application Running on Kubernetes Engine | 225

e. Select Cloud IAP > IAP-Secured Web App User from the Roles drop-down
list.

f. Click Save.
g. Enable IAP on for your service by toggling the on/off switch.

15. Apply a secret to GKE by running the following command:
kubectl create secret generic iap-oauth \
--from-literal=client_id=YOUR_CLIENT_ID \
--from-literal=client_secret=YOUR_CLIENT_SECRET

Replace YOUR_CLIENT_ID and YOUR_CLIENT_SECRET
with the respective values. Use the JSON credentials you
downloaded in step 13 to get your values.

16. Create the following declarative backend-config.yaml file:
apiVersion: cloud.google.com/v1beta1
kind: BackendConfig
metadata:
 name: config-default
 namespace: default
spec:
 iap:
 enabled: true
 oauthclientCredentials:
 secretName: iap-oauth

17. Apply the configuration to your cluster by running the following command:
kubectl apply -f backend-config.yaml

18. Now visit the URL of the DNS A record you created; you should be prompted to
authenticate.

19. Sign in with the user you granted the IAP-Secured Web App User role.
20. You should now be authenticated to the Hello application running on GKE.

Discussion
Identity-Aware Proxy (IAP) allows you to secure access to your applications running
on GKE, Compute Engine, and App Engine. IAP provides a mechanism to secure
your applications within minimal code requirements on your application. It is still
recommended to check the user’s bearer token within your application; however, all
authentication is done by IAP. IAP also supports external identities such as Facebook,
GitHub, Microsoft, Phone Number, and so on (https://cloud.google.com/iap/docs/
external-identities).

226 | Chapter 11: Google Cloud Security and Access

https://cloud.google.com/iap/docs/external-identities
https://cloud.google.com/iap/docs/external-identities

11.4 Retrieving the Authenticated User’s Identity
Problem
You have enabled Identity-Aware Proxy (IAP) and want to retrieve the authenticated
user’s email address.

Solution
Using the HTTP headers passed by Identity-Aware Proxy (IAP), you can access the
user’s email address and their user ID.

1. Follow the steps in Recipe 11.3 to deploy the sample application and enable
Identity-Aware Proxy. In step 2, replace the container image path with:

- image: us.gcr.io/ruicosta-blog/hello-java-iap:v5

2. The sample container image is a Java Spring Boot application. It reads the HTTP
headers, which include the following attributes from IAP:

Header name Description
X-Goog-Authenticated-User-Email The user’s email address
X-Goog-Authenticated-User-Id A persistent, unique identifier for the user

3. Visit the hostname of your deployed application from step 1 and sign in with the
user you granted access to.

4. Once signed in, click the Generate Headers button.

You will now be presented with the request headers, as shown in Figure 11-4. You will
notice you can now see who the user is who signed in.

Figure 11-4. Request headers

Discussion
Identity-Aware Proxy (IAP) adds headers to the user request, allowing you to know
easily who the authenticated user is. By having this information, you can provide a
customized experience for the user as well as provide role-based access, depending on
who the authenticated user is.

11.4 Retrieving the Authenticated User’s Identity | 227

To read the headers in Java, the following code snippet just does a forEach through
all the headers seen by Spring Boot:

headers.forEach((key,value) ->{
System.out.printf("Header Name: "+key+"
 Header Value: "+value);
});

11.5 Authenticating a Java Application Using a
Service Account
Problem
You need your Java application to access Google Cloud Storage buckets securely and
with least privilege access roles.

Solution
Use IntelliJ and a Google Cloud service account to run a sample application that will
securely list the buckets that you have in your Google Cloud project.

1. On your local workstation, go to the working directory for this demo from the
cloned repository.

cd 11-security-access/11-04-service-account

2. Create a service account, as described in Recipe 11.1, and assign the Storage
Object Viewer role.

3. Select the newly created service account in the Cloud Console and click the Keys
tab.

4. Select Create New Key.
5. Choose JSON and click Create. This will download the credentials file to your

local workstation. Rename the file to service-account.json and copy the file to
the following folder: 11-security-access/11-04-service-account/src.

6. To test the application, in your IntelliJ IDE, run SimpleApp.main().
7. The application should fail, and you should receive a message similar to the

following:
storage-view@ruicosta-blog.iam.gserviceaccount.com does not have stor-
age.buckets.list access to the Google Cloud project.

8. This is failing because the Storage Object Viewer does not have the storage.buck
ets.list permission.

9. In the Google Cloud Console, go to the navigation menu and choose IAM &
Admin > IAM.

228 | Chapter 11: Google Cloud Security and Access

10. Edit the service account you created in step 2.
11. Click Add Another Role.
12. Select Manage Roles from the Select a Role dropdown menu.
13. Select Create Role. Enter a Title, Description, ID and Role launch Stage.
14. Select Add Permissions.
15. Add the storage.buckets.list permission and click ADD, as shown in

Figure 11-5.

Figure 11-5. Add permissions dialog box

16. Click Create.
17. In the Google Cloud Console, from the navigation menu, click IAM & Admin

and choose IAM.
18. Edit the service account you created in step 2.
19. Click ADD ANOTHER ROLE.
20. Choose the custom role you created as shown in Figure 11-6.

11.5 Authenticating a Java Application Using a Service Account | 229

Figure 11-6. Adding a custom role

21. Click Save.
22. To test the application, in your IntelliJ IDE, run SimpleApp.main().
23. You should now see the buckets in your project listed in IntelliJ.

Discussion
Authenticating with service accounts should be used only for server-to-server
requirements. You should avoid including service account credential files in user
applications. If you need to allow a user to access Google Cloud resources, the recom‐
mended approach would be to have the user access a RESTFul API that has the
required privileges, have the RESTFul API authenticate or authorize the user with an
identity management system such as Firebase, and, once authenticated/authorized,
allow the RESTFul API to make the request on behalf of the user.

11.6 Building Reports Using the Cloud Asset API
Problem
You need to build a report that lists all the resources that are being used in your Goo‐
gle Cloud project.

230 | Chapter 11: Google Cloud Security and Access

Solution
Using the Cloud Asset API, you will export inventory data from your Google Cloud
project to a BigQuery table, allowing you to build reports that include a list of
resources being used in your project.

1. Enable the Cloud Asset API by running the following command:
gcloud services enable cloudasset.googleapis.com

2. Run the following command to list all the resources in your project:
gcloud asset search-all-resources

3. To search or list only Cloud Run resources, run the following command:
gcloud asset search-all-resources \
 --asset-types=”run.googleapis.com/Service”

4. To display only the fields you need, and to format them in a more readable for‐
mat, run the following command:

 gcloud asset search-all-resources \
 --asset-types="run.googleapis.com/Service" \
 --page-size=50 \
 --format="table(displayName, assetType, location)"

5. To produce reports, you can export your asset snapshot to BigQuery and run the
following command to export your assets to the defined BigQuery table:

gcloud asset export \
 --content-type CONTENT_TYPE \
 --project 'PROJECT_ID' \
 --snapshot-time 'SNAPSHOT_TIME' \
 --bigquery-table 'BIGQUERY_TABLE' \
 --output-bigquery-force

Here is a sample command:
gcloud asset export --content-type resource --project ruicosta-blog --
bigquery-table
"projects/ruicosta-blog/datasets/asset/tables/data" --output-bigquery-
force

A summary of the arguments used in the gcloud commands follows:
• CONTENT_TYPE is the asset content type (https://oreil.ly/uAWLg).
• PROJECT_ID is the ID of the project whose metadata is being exported.
• SNAPSHOT_TIME (Optional) is the time at which you want to take a snap‐

shot of your assets.
• BIGQUERY_TABLE is the table to which you’re exporting your metadata, for‐

matted projects/PROJECT_ID/datasets/DATASET_ID/tables/TABLE_NAME.

11.6 Building Reports Using the Cloud Asset API | 231

https://oreil.ly/uAWLg

6. To query the output of the asset inventory to BigQuery, in the Google Cloud
Console, from the navigation menu and choose Big Data > BigQuery > SQL
workspace.

7. Select your data set and table and click Compose New Query, as shown in
Figure 11-7.

Figure 11-7. Compose a new query

8. Enter the following SQL statement in your query editor and change
PROJECT_ID.DATASET_ID.TABLE_NAME to your respective project, data set,
and table:

SELECT asset_type, COUNT(*) AS asset_count
FROM `PROJECT_ID.DATASET_ID.TABLE_NAME`
GROUP BY asset_type
ORDER BY asset_count DESC

9. Click RUN.
You should now be able to see your results in the Query Results panel, as shown
in Figure 11-8.

232 | Chapter 11: Google Cloud Security and Access

Figure 11-8. BigQuery results

Discussion
A key to managing a secure Google Cloud project is knowing what is being used in
the project. By using the Cloud Asset Inventory API, you can build reports that pro‐
vide historical data on the resources being used in your project. This allows you to
control the costs as well as understand what is being used. Say you want to list com‐
pute instances that are not active so you can delete these resources. To list the com‐
pute instances that are not active, run the following gcloud command:

 gcloud asset search-all-resources \
 --query='NOT state:active' \
 --scope=organizations/123456 \
 --asset-types='compute.googleapis.com/Instance' \
 --page-size=50 \
 --format='table(name, assetType, state)'

11.6 Building Reports Using the Cloud Asset API | 233

11.7 Allowing a List of IP Addresses to Access
Your Application
Problem
You need a method to create an allow list of IP addresses that can access your applica‐
tion running on Google Kubernetes Engine.

Solution
Use security policies to create a deny and allow list to your application.

1. Follow the steps in Recipe 11.3 to deploy a sample application with IAP enabled.
2. Create the Google Cloud Armor security policy to deny IP addresses:

gcloud compute security-policies create \
 deny-clients-policy \
 --description "policy for external users"

3. Update the default rules to the security policies to deny traffic:
gcloud compute security-policies rules update 2147483647 \
 --security-policy deny-clients-policy \
 --action "deny-404"

4. Run the following command to list your backend services. You will need the
backend service name in step 5:

gcloud compute backend-services list

5. Attach the security policies to the backend services:
gcloud compute backend-services \
 update config-default \
 --security-policy deny-clients-policy

6. Choose Global when presented with Google Cloud Regions.
7. Visit your sample application with the hostname you set; you should now see the

message shown in Figure 11-9.

Figure 11-9. Denied access

234 | Chapter 11: Google Cloud Security and Access

8. To allow a workstation or network to access the site, replace MY_IP_ADDRESS
with your public IP address on your local workstation:

gcloud compute security-policies rules create 1000 \
 --security-policy internal-users-policy \
 --description "allow traffic personal workstation" \
 --src-ip-ranges "MY_IP_ADDRESS" \
 --action "allow"

9. Attach the security policies to the backend services:
gcloud compute backend-services \
 update config-default \
 --security-policy deny-clients-policy

10. Choose Global when presented with Google Cloud Regions. It will take a few
minutes for the policy to be enforced. After it has been applied, you should now
see your application, as shown in Figure 11-10.

Figure 11-10. Allowed access

11. You can also view your policies in the Google Cloud Console. From the naviga‐
tion menu, select NETWORKING > Network Security. You should see the policy
and the associated details you created in prior steps, as shown in Figure 11-11.

Figure 11-11. Security policy

11.7 Allowing a List of IP Addresses to Access Your Application | 235

Discussion
Google Cloud Armor security policies (https://oreil.ly/HCPC1) protect your applica‐
tion by providing Layer 7 filtering. Each security policy is made up of a set of rules
that filter traffic based on conditions such as an incoming request’s IP address, IP
range, region code, or request headers. In this recipe, you used the incoming request’s
IP address to restrict access to your application, based on your IP address, and
blocked all other traffic. You secured your application with IAP and then enforced an
allow and deny list to further secure your application running on GKE.

236 | Chapter 11: Google Cloud Security and Access

https://oreil.ly/HCPC1

CHAPTER 12

Google Cloud Networking

Google Cloud networking provides a robust set of services to manage networking
functionality in the cloud, from securing resources to providing global load balancing
to your applications. This chapter covers concepts that users require to get started
with Google Cloud networking, including securing your virtual machines, automat‐
ing deployments of networking resources, and protecting your projects from data
exfiltration. Google Cloud networking can be a book in itself; here we provide you
with concepts that are often asked by new Google Cloud users.

All code samples for this chapter are in this book’s GitHub repository (https://
github.com/ruiscosta/oreilly-google-cloud-cookbook). You can follow along and copy
the code for each recipe by going to the folder with that recipe’s number.

You will need to make sure you have met the prerequisites before running through
the recipes:

1. Signed up for a Google Cloud account, as described in Chapter 1.
2. Created a Google Cloud project, as described in Chapter 1.
3. Installed and configured gcloud, as described in Chapter 1.

12.1 Creating a Custom Mode VPC Network
Problem
You want to create a virtual version of a physical network in Google Cloud, with
custom-defined subnet ranges.

237

https://github.com/ruiscosta/oreilly-google-cloud-cookbook

Solution
Create a virtual private cloud (VPC) network in Google Cloud that will allow you to
create a virtual network as a global resource and then define the required subnets.

1. In the Google Cloud Console, go to NETWORKS > VPC networking > VPC
networks.

2. Click Create VPC Network.
3. Enter a name for the VPC network.
4. Choose Custom for the Subnet Creation mode.
5. In the New Subnet section, specify the following configuration parameters for a

subnet:
a. Provide a name for the subnet.
b. Select a region.
c. Enter an IP address range.
d. Choose whether to enable Private Google Access for the subnet when you cre‐

ate it.
e. Choose whether to enable VPC flow logs.

Private Google Access allows virtual machines instances that
do not have a public IP address to access most of Google APIs,
please review https://cloud.google.com/vpc/docs/private-
google-access for what Google APIs are not supported.

6. Click Done.
7. Leave all other settings set to default.
8. Click Create.

Discussion
You have successfully created a custom VPC network with your defined subnets. VPC
networks with their associated routes and firewall rules are global resources. They are
not attached or associated with a region or zone.

238 | Chapter 12: Google Cloud Networking

12.2 Creating a Static External IP Address
Problem
You have a web server running on a Google Cloud Compute Engine instance. You
need to create a DNS A record so users can access the web server via its fully qualified
domain name. For this you want your IP address to be static.

Solution
Reserve an external static IP address, using the gcloud command tool. Run the fol‐
lowing command in your terminal or in the Google Cloud Shell, replacing the
ADDRESS_NAME with a name you want for the reserved IP address:

gcloud compute addresses create ADDRESS_NAME \
 --global \
 --ip-version [IPV4 | IPV6]

You have now reserved an external IP address with Google Cloud and can use this IP
address for your web server running on Google Compute Engine.

Discussion
In step 1, you ran the gcloud compute addresses create command, which reserved
a publicly addressable IP address that allows all users to access your web server.

12.3 Create a Firewall Rule
Problem
You have an application running on a virtual machine, and you need to allow every‐
one to access it publicly running on TCP port 8080.

Solution
Using the Google Cloud Console, create an ingress firewall rule allowing all IP
addresses to access your application running on a virtual machine using TCP port
8080. You will use 0.0.0.0/0 as the source IP ranges, which means any IP address can
access your application.

1. In the Google Cloud Console, navigate to Networking > VPC Network >
Firewall.

2. Click Create Firewall Rule.
3. Enter a name for the firewall rule.

12.2 Creating a Static External IP Address | 239

4. Optionally, you can enable firewall rules logging.
5. Specify the network for the firewall rule.
6. Specify the priority of the rule. The lower the number, the higher the priority.
7. For the direction of traffic, choose Ingress.
8. For Action On Match, choose Allow.
9. To specify the targets of the rule, select Specified Target Tags To Apply This Rule

To Only Specific Instances and then type the tags to which the rule should apply
in the Specified Target Tags field, as shown in Figure 12-1.

Figure 12-1. Firewall rule: target tags

10. For an ingress rule, specify the source filter and use 0.0.0.0/0 for a source that
allows traffic from any network, as shown in Figure 12-2.

Figure 12-2. Firewall rule: allow all traffic

11. In Protocols And Ports, define those to which the rule applies, as shown in
Figure 12-3.

240 | Chapter 12: Google Cloud Networking

Figure 12-3. Firewall rule: specified ports

12. Click Create.

Discussion
Firewall rules protect your virtual machine instances and are abstracted from the
configuration of the instance. This means your instance can be a Windows or Linux,
and the firewall rules will accept or deny connections to or from your virtual machine
no matter the configuration.

12.4 Serving Content for Users in a Specific Region
Problem
You want to serve web content to users that is relevant to where they are. For exam‐
ple, a user is browsing from New Jersey, and you want to serve products that are cur‐
rently in stock in your physical New Jersey store locations. You also want to do the
same for all stores globally.

Solution
Use the custom headers available on the Google Cloud external HTTP(s) load bal‐
ancer to add the required client connection information, which includes the cli‐
ent_city. This allows your web application to serve the content for the users in their
respective region. In this recipe, you create a GKE cluster, deploy a sample applica‐
tion, expose the application, and, finally, add custom headers to the request to serve
content for the user’s region.

12.4 Serving Content for Users in a Specific Region | 241

1. Set your project ID as environment variable for the gcloud command:
gcloud config set project $PROJECT_ID

2. Set the Google Cloud zone for the cluster:
gcloud config set compute/zone us-west1-a

3. Create a cluster named hello-cluster:
gcloud container clusters create hello-cluster

4. Ensure that you are connected to your GKE cluster and replace COM‐
PUTE_ZONE with the zone you entered in step 2:

gcloud container clusters get-credentials hello-cluster --zone COM-
PUTE_ZONE

5. For the manifest files, you can either create the file with the provided code or
access deployment.yaml in the GitHub repository for this book.

6. Create a deployment.yaml manifest:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: web
 namespace: default
spec:
 selector:
 matchLabels:
 run: web
 template:
 metadata:
 labels:
 run: web
 spec:
 containers:
 - image: us.gcr.io/ruicosta-blog/header-app:1.3.0
 imagePullPolicy: IfNotPresent
 name: web
 ports:
 - containerPort: 8080
 protocol: TCP

7. Create a service.yaml manifest:
apiVersion: v1
kind: Service
metadata:
 name: web
 namespace: default
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080

242 | Chapter 12: Google Cloud Networking

 selector:
 run: web
 type: NodePort

8. Create an ingress.yaml manifest:
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: basic-ingress
spec:
 backend:
 serviceName: web
 servicePort: 8080

9. Apply the resources to the cluster:
kubectl apply -f deployment.yaml
kubectl apply -f service.yaml
kubectl apply -f ingress.yaml

10. Find the external IP address of the load balancer:
kubectl get ingress basic-ingress

11. Note the external IP address and open a browser window to view your deployed
application. It will take a few minutes for the load balancer to be ready; you will
get errors such as 404 or 500 until the load balancer is available globally.

12. To request the external HTTP(s) load balancer to add custom headers to the
request and responses, run the following command:

gcloud compute backend-services update \
BACKEND_SERVICE_NAME \
--global \
--custom-request-header='X-PLACE:{client_city}'

This command will create a custom header with the originating location of the
user, which you can access to perform some business logic for your application.

13. Reload the browser window to view the value of the originating city.

Discussion
In this recipe, you added a custom header to your requests and responses so you can
access the values from your web application to perform some business logic. Before
creating the custom headers, you first deployed a sample application to Kubernetes
with the declarative YAML files you created in steps 7 through 9. To learn more about
creating GKE clusters, please review Chapter 6. The headers can include additional
information such as client latency, transport layer security (TLS) parameters, and cli‐
ent connection information. Try adding new custom headers to collect the following
variables as a challenge task (referenced from the backend services overview (https://
oreil.ly/w5aWP)).

12.4 Serving Content for Users in a Specific Region | 243

https://oreil.ly/w5aWP

client_rtt_msec
Estimated round-trip transmission time between the load balancer and the HTTP(S)
client, in milliseconds.

client_region
The country (or region) associated with the client’s IP address.

client_city
Name of the city from which the request originated, for example, Mountain View for
Mountain View, California.

12.5 Configuring VPC Network Peering
Problem
You want to deploy an ingress gateway to your GKE cluster, using native Kubernetes
resources, and not manage an ingress controller.

Solution
You can use the Gateway API and the GKE Gateway controller (GCP’s implementa‐
tion of the Gateway API) as an ingress gateway to your GKE cluster.

1. Enable APIs:
gcloud services enable --project ${PROJECT_ID} \
 cloudresourcemanager.googleapis.com \
 compute.googleapis.com \
 container.googleapis.com

2. Create a GKE cluster:
gcloud beta container --project $PROJECT_ID \
 clusters create "sample-cluster" \
 --zone "us-central1-c" --enable-ip-alias \
 --cluster-version "1.20.6-gke.1000" \
 --release-channel "rapid"

3. Create a v1-service.yaml manifest with the following code:
apiVersion: v1
kind: Service
metadata:
 name: hello-world-v1-service
spec:
 ports:
 - port: 8080
 targetPort: 8080
 selector:
 app: hello-world-v1

4. Deploy the v1-service.yaml manifest:

244 | Chapter 12: Google Cloud Networking

 kubectl apply -f v1-service.yaml

5. Create a v2-service.yaml manifest with the following code:
apiVersion: v1
kind: Service
metadata:
 name: hello-world-v2-service
spec:
 ports:
 - port: 8080
 targetPort: 8080
 selector:
 app: hello-world-v2

6. Deploy the v2-service.yaml manifest:
 kubectl apply -f v2-service.yaml

7. Create a v1-deployment.yaml manifest with the following code:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-world-v1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-world-v1
 version: v1
 template:
 metadata:
 labels:
 app: hello-world-v1
 version: v1
 spec:
 containers:
 - name: whereami
 image: gcr.io/google-samples/whereami:v1.1.3
 ports:
 - containerPort: 8080
 env:
 - name: METADATA
 value: "hello-world-v1"

8. Deploy the v1-deployment.yaml manifest:
 kubectl apply -f v1-deployment.yaml

9. Create a v2-deployment.yaml manifest with the following code:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-world-v2

12.5 Configuring VPC Network Peering | 245

spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-world-v2
 version: v2
 template:
 metadata:
 labels:
 app: hello-world-v2
 version: v2
 spec:
 containers:
 - name: whereami
 image: gcr.io/google-samples/whereami:v1.1.3
 ports:
 - containerPort: 8080
 env:
 - name: METADATA
 value: "hello-world-v2"

10. Create a gateway.yaml manifest with the following code:
kind: Gateway
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
 name: external-http
spec:
 gatewayClassName: gke-l7-gxlb
 listeners:
 - protocol: HTTP
 port: 80
 routes:
 kind: HTTPRoute
 selector:
 matchLabels:
 gateway: external-http

11. Deploy the gateway.yaml manifest:
 kubectl apply -f v1-deployment.yaml

12. Create a v1-http-route.yaml manifest with the following code:
kind: HTTPRoute
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
 name: hello-world-route-v1
 labels:
 gateway: external-http
spec:
 rules:
 - matches:
 - path:

246 | Chapter 12: Google Cloud Networking

 value: /hellov1
 forwardTo:
 - serviceName: hello-world-v1-service
 port: 8080

13. Deploy the v1-http-route.yaml manifest:
 kubectl apply -f v1-http-route.yaml

14. Create a v2-http-route.yaml manifest with the following code:
kind: HTTPRoute
apiVersion: networking.x-k8s.io/v1alpha1
metadata:
 name: hello-world-route-v2
 labels:
 gateway: external-http
spec:
 rules:
 - matches:
 - path:
 value: /hellov2
 forwardTo:
 - serviceName: hello-world-v2-service
 port: 8080

15. Deploy the v2-http-route.yaml manifest:
 kubectl apply -f v2-http-route.yaml

16. Run kubectl describe gateway to retrieve the public IP of your gateway.

In your web browser, you can now access the application as GATEWAYIP/hellov1 and
GATEWAYIP/hellov2.

Discussion
The Gateway API is an API in the Kubernetes system and aims to standardize ingress
into clusters. In this recipe, we walked through how to provide a multitenant gateway
that routes users to two deployments, depending on the HTTP route. The Gateway
API provides many more features for advanced routing and traffic management, such
as canarying, header-based routing, and more.

12.6 Creating VPN Gateways with Cloud Routers
Problem
You want to establish a secure connection from your on-premises network to Google
Cloud.

12.6 Creating VPN Gateways with Cloud Routers | 247

Solution
Create a VPN gateway from a simulated on-premises network to a Google Cloud
VPC network to secure incoming and outgoing traffic between your two networks.

1. Create two VPC networks with the following parameters. (Refer to Recipe 12.1 as
a guide to creating a VPC.)
First VPC:

Property Value
Name cloud-vpc
Description Enter an optional description

Property Value
Name cloud-vpc-subnet
Region us-east1
IP address range 10.10.10.0/24

After creating the first VPC labeled as cloud-vpc, create the second VPC, labeled
onprem-vpc, which will simulate the on-premises network.
Second VPC:

Property Value
Name onprem-vpc
Description Enter an optional description

Property Value
Name onprem-vpc-subnet
Region us-central1
IP address range 10.10.20.0/24

2. Create the defined firewalls in both VPC networks. You can use Recipe 12.3 as a
guide to create firewall rules.

248 | Chapter 12: Google Cloud Networking

First Firewall Rule:

Property Value
Name allow-ssh-cloud-vpc
Network cloud-vpc
Targets All instances in the network
Source filter IP ranges
Source IP ranges 0.0.0.0/0
Protocols and ports Specified protocols and ports, and then check tcp, type: 22

Second Firewall Rule:

Property Value
Name allow-ssh-onprem-vpc
Network onprem-vpc
Targets All instances in the network
Source filter IP ranges
Source IP ranges 0.0.0.0/0
Protocols and ports Specified protocols and ports, and then check tcp, type: 22

3. In the Google Cloud Console, open Hybrid Connectivity and choose Cloud
Routers.

4. Click Create Router.
5. Use the following parameters for the options on the Create Router page:

Property Value
Name cloud-vpc-cloud-router
Network cloud-vpc
Region us-east1
Google ASN 65470

6. Create the simulated on-premises router. In the Google Cloud Console, open
Hybrid Connectivity and choose Cloud Routers.

7. Click Create Router.

12.6 Creating VPN Gateways with Cloud Routers | 249

8. Use the following parameters for the options on the Create Router page:

Property Value
Name onprem-vpc-cloud-router
Network onprem-vpc
Region us-central1
Google ASN 65503

9. Each gateway needs a static External IP address. In the Google Cloud Console,
choose VPC Network and click External IP Addresses.

10. Click Reserve Static Address.
11. Use the following parameters for the options in the Reserve Static Address page:

Property Value
Name cloud-vpc-ip
Type Regional
Region us-east1
Attached to None

12. Reserve a second IP address for the simulated on-premises network with the fol‐
lowing values:

Property Value
Name onprem-vpc-ip
Type Regional
Region us-central1
Attached to None

13. Create the VPN tunnel from the cloud VPC network to the simulated on-
premises network. In the Google Cloud Console, click Hybrid Connectivity and
choose VPN.

14. Click the Create VPN connection.
15. Use the following values for the VPN connection:

Property Value
Name vpn-1
Network cloud-vpc
Region us-east1
IP address cloud-vpc-ip

250 | Chapter 12: Google Cloud Networking

For the tunnels:

Property Value
Remote peer IP address Enter the reserved on-prem IP address
IKE version IKEv2
Shared secret googlecloud
Routing options Dynamic (Border Gateway Protocol [BGP])
Cloud router cloud-vpc-cloud-router

BGP:

Property Value
Name bgp1to2
Peer ASN 65503
Cloud Router BGP IP 169.254.0.1
BGP peer IP 169.254.0.2

16. Create the VPN tunnel from the simulated on-premises network to the cloud
VPC network. In the Google Cloud Console, click Hybrid Connectivity and
choose VPN.

17. Click the Create VPN connection.
18. Use the following values for the VPN connection:

Property Value
Name vpn-2
Network onprem-vpc
Region us-central1
IP address onprem-vpc-ip

For the tunnels:

Property Value
Remote peer IP address Enter the reserved cloud IP address
IKE version IKEv2
Shared secret googlecloud
Routing options Dynamic (BGP)
Cloud router onprem-vpc-cloud-router

12.6 Creating VPN Gateways with Cloud Routers | 251

BGP:

Property Value
Name bgp1to2
Peer ASN 65503
Cloud Router BGP IP 169.254.0.2
BGP peer IP 169.254.0.1

After a few minutes, you will see the VPN tunnels with green checkmarks, informing
you that the connections have been established successfully.

Discussion
The Google Cloud VPN connects your on-premises network to your Google Cloud
VPC network through an IPsec connection to encrypt the traffic. Keep in mind that
the connection is not limited to on-premises networks; any peer network can work as
long as it meets the requirements of the cloud VPN. All traffic passing through the
VPN connection will be encrypted.

12.7 Deployments of Networks Using Terraform
Problem
You want to set up a method of automating the creation of VPC networks with asso‐
ciated resources as firewall rules.

Solution
You will use Terraform and the associated manifest files to automate the deployment
of resources in Google Cloud.

1. Git clone this book’s GitHub repository.
2. In your Google Cloud Shell or your local workstation, download and install Ter‐

raform (https://oreil.ly/zcFED).
3. In the cloned repository, go to the 12-networking/12-07 folder and run the fol‐

lowing command to initialize Terraform:
terraform init

4. Create an execution plan by running the following command:
terraform plan

5. Apply the desired changes by running the following command:
terraform apply

252 | Chapter 12: Google Cloud Networking

https://oreil.ly/zcFED
https://oreil.ly/zcFED

6. Enter yes to continue.
7. In the Google Cloud Console, from the navigation menu, choose VPC Network

and then click VPC Networks.

You should see your newly created VPC network, which is defined in the Terraform
manifest files.

Discussion
By using Terraform with Google Cloud, you can automate the deployment of cloud
resources and validate that the respective rules are followed based on the declarations
in the manifest files. To learn more about Terraform, please visit https://www.terra
form.io.

12.8 Limiting Access to Only Authorized Networks with
VPC Service Controls
Problem
You need a method to prevent data exfiltration from your Google Cloud resources.

Solution
Using VPC Service Controls, you can limit access to only authorized networks,
restricting users from copying data outside of the perimeter you defined.

1. In your Google Cloud Console, open Security and choose VPC Service Controls.
2. Make sure you have chosen an organization rather than a project. VPC Service

Controls are set at the organizational level.
3. Click New Perimeter.
4. On the New VPC Service Perimeter page, enter a name for the perimeter.
5. Select the projects that you want to secure within the perimeter, as shown in

Figure 12-4:
a. Click the Add Projects button.
b. Select that project’s checkbox.

12.8 Limiting Access to Only Authorized Networks with VPC Service Controls | 253

https://www.terraform.io
https://www.terraform.io

Figure 12-4. Google Cloud projects

6. Select the services you want to secure, as shown in Figure 12-5.

Figure 12-5. Services to restrict

7. Click Save.

The service perimeter may take up to 30 minutes to propagate and take effect.

254 | Chapter 12: Google Cloud Networking

Discussion
VPC Service Controls protect your projects from data exfiltration by creating a
perimeter that only allows access to authorized networks. For example, VPC Service
Controls can prevent applications and users from reading data from or copying data
to a resource outside the perimeter.

12.8 Limiting Access to Only Authorized Networks with VPC Service Controls | 255

Index

A
access control

with IAP, 73-76
with VPC Service Controls, 253-255

accessing
console, 6
environment variables at runtime, 29-30

accounts (GitLab), creating, 33
ADC (Application Default Credentials), setting

locally, 32
AI (artificial intelligence), 201

BQML models, extracting BigQuery data
for training, 213-215

Python models
extracting BigQuery data for training,

210-213
serverless predictions, 206-208
training serverlessly, 204-206

Vertex AI
creating notebooks, 201-204
custom notebook environment, 208-210

allow/deny lists, creating, 234-236
Apache Beam pipelines, creating, 180-183
API gateways, building for telemetry data,

42-46
App Engine, 69

automating deployment with GitLab
CI/CD, 89-90

debugging applications, 88-89
deploying applications

to App Engine Flexible, 71-73
to App Engine Standard, 70-71

displaying charts/graphs, 80-88
mapping custom domains, 76-78

real-time audio translation, 78-80
securing applications with IAP, 73-76

App Engine Flexible
App Engine Standard versus, 73
debugging applications, 88-89
deploying applications, 71-73

App Engine Standard
App Engine Flexible versus, 73
deploying applications, 70-71

Application Default Credentials (ADC), setting
locally, 32

applications
allow/deny lists, 234-236
authenticating

on GKE, 221-226
Java applications, 228-230

custom headers for, 241-243
debugging with App Engine, 88-89
deploying

to App Engine Flexible, 71-73
to App Engine Standard, 70-71
automating with GitLab CI/CD, 89-90
to Cloud Run, 61-63
with Skaffold, 129-130
as Spring Boot Java applications, 126-128

displaying charts/graphs, 80-88
real-time audio translation, 78-80
running on GKE autopilot, 130-131
securing with IAP, 73-76

archiving GCS objects, 138-139
ARRAY_AGG() BQ function, 164-165, 168
artificial intelligence (see AI)
assigning service account roles, 34
audio translation, 78-80

257

authenticated user identities, retrieving,
227-228

authenticating
with ADC, 32
applications on GKE, 221-226
in Firestore, 147-148
HTTP functions, 27-29
Java applications, 228-230

automatic traffic routing, 121-126
automatically triggering Dataflow, 197-200
automating deployment

with GitLab CI/CD, 89-90
with Terraform, 252-253

autopilot (GKE), running applications on,
130-131

B
background functions, 25

building API gateway for telemetry data,
42-46

deploying with GitLab CI/CD pipeline,
33-36

unit testing with GitLab, 39-42
backing up

with PD (Persistent Disk) snapshots,
140-142

virtual machines, 113-114
Beam pipelines, creating, 180-183
BigQuery

advantages of, 149
caching, 152
charts/graphs, displaying, 80-88
clustered columns

with partitioned columns, 158-161
without partitioned columns, 162-163

deduplicating
while merging, 165-166
with timestamps, 167-169

extracting data
for BQML model training, 213-215
for Python model training, 210-213

loading data from CSV files, 152-156
pivot tables in, 156-158
querying from Dataproc clusters, 188-190
resource reports, building, 230-233
running from Cloud Console, 149-152
selecting Top-1 result, 163-165
streaming data, 170-174

with Dataflow SQL, 184-188

with filters, 195-197
transactions, 169
undeleting tables, 169-170

billing, 20-21
blue-green deployment, 64-65
bq, 14
bq ls command, 14
bq query command, 15
BQML models, extracting BigQuery data for

training, 213-215

C
caching in BigQuery, 152
charts/graphs, displaying, 80-88
CI/CD pipeline (GitLab)

automating application deployment, 89-90
deploying cloud functions, 33-36

cleaning data, 175-180
client libraries, 18-20
Cloud Asset API, 230-233
Cloud Code, 22-22
Cloud Code for IntelliJ, 129-130
Cloud Data Fusion (see Data Fusion)
Cloud Dataflow (see Dataflow)
Cloud Endpoints, 42-46
Cloud Functions

background functions
building API gateway for telemetry data,

42-46
deploying with GitLab CI/CD pipeline,

33-36
unit testing with GitLab, 39-42

deleting, 26
HTTP functions

accessing environment variables at run‐
time, 29-30

authenticating, 27-29
creating, 26-27
replying to SMS messages, 37-38
sending emails, 30-32

purpose of, 25
types of, 25

Cloud Pub/Sub (see Pub/Sub)
cloud routers, creating VPN gateways with,

247-252
Cloud Run

configuration parameters, 65-67
created containers, deploying, 51-54
custom domains, 54-56

258 | Index

gradual rollouts, 64-65
prebuilt containers, deploying, 48-51
purpose of, 47
requirements for, 48
rolling back deployments, 63-64
running, 47
triggering from Cloud Pub/Sub, 56-60
web applications, deploying, 61-63

Cloud Run for Anthos, 47
cloud services (see Google Cloud)
Cloud Shell, 16-17
Cloud Spanner (see Spanner)
cloud storage (see storage)
clustered columns (BigQuery)

advantages of, 161
with partitioned columns, 158-161
without partitioned columns, 162-163

clusters
automatic traffic routing, 121-126
regional, creating, 117-118
resizing, 118-120
zonal, creating, 115-116

commands
for additional tools, 14-15
gcloud app --project, 88
gcloud app --project instances disable-

debug, 89
gcloud app browse, 71, 73, 85
gcloud app deploy, 71, 73, 80, 86
gcloud asset export, 231
gcloud asset search-all-resources, 231, 233
gcloud auth application-default login, 32
gcloud auth list, 12
gcloud auth login, 12
gcloud auth print-identity-token, 28
gcloud auth set account, 13
gcloud beta container, 244
gcloud builds submit, 53, 59
gcloud components update, 13
gcloud compute addresses create, 222, 239
gcloud compute addresses describe, 223
gcloud compute backend-services list, 234
gcloud compute backend-services update,

243
gcloud compute backend-services update

config-default, 234, 235
gcloud compute firewall-rules create

allow-80, 106

gcloud compute forwarding-rules create
nginx-lb, 106, 108

gcloud compute forwarding-rules list, 106,
108

gcloud compute instance-groups managed
create nginx-group, 105, 107

gcloud compute instance-templates create
nginx-template, 105

gcloud compute instance-templates create-
with-container nginx-template, 107

gcloud compute instances create, 13
gcloud compute instances delete, 13
gcloud compute instances delete pd-

snapshot-restore, 142
gcloud compute instances list, 13
gcloud compute project-info add-metadata,

111
gcloud compute scp, 109
gcloud compute security-policies create, 234
gcloud compute security-policies rules cre‐

ate, 235
gcloud compute security-policies rules

update, 234
gcloud compute ssh pd-snapshot-restore,

142
gcloud compute ssh pd-snapshot-test, 140
gcloud compute target-pools create nginx-

pool, 105, 107
gcloud config list, 12
gcloud config set compute/zone, 242
gcloud config set project, 12, 242
gcloud container clusters create, 128, 221,

242
gcloud container clusters get-credentials, 15,

242
gcloud container clusters list, 13
gcloud domains list-user-verified, 54
gcloud domains verify, 54
gcloud endpoints services deploy, 44
gcloud functions deploy, 26, 27
gcloud iam service-accounts create cloud-

run-pubsub-invoker, 59
in gcloud, 12-13
gcloud notebooks instances create, 210
gcloud projects add-iam-policy-binding, 59
gcloud projects list, 13
gcloud pubsub subscriptions create, 59
gcloud pubsub topics create, 56
gcloud pubsub topics publish, 60

Index | 259

gcloud run deploy, 44, 53, 62
gcloud run deploy pubsub, 59
gcloud run services add-iam-policy-binding

pubsub, 59
gcloud services enable, 44, 48, 127, 205, 231,

244
Compute Engine

backing up
with PD (Persistent Disk) snapshots,

140-142
virtual machines, 113-114

connecting virtual machines with IAP TCP
forwarding, 96-100

creating virtual machines
Linux, 93-95
Windows, 91-93

deploying containers to managed instance
groups, 107-109

installing NGINX web servers, 93-95
managed instance groups, 105-107
patch management, 111-113
purpose of, 91
requirements for, 91
running startup scripts, 102-104
transferring files to virtual machines,

109-110
two-step verification, 100-102

configuration parameters (Cloud Run), 65-67
configuring peering, 244-247
connecting to virtual machines, 16-17, 96-100
console, 6-10

accessing, 6
creating service accounts, 217-219
parts of, 7
pinning services, 8
running BigQuery from, 149-152
uploading files, 9-10

containers
created, deploying, 51-54
deploying

to App Engine Flexible, 71-73
to managed instance groups, 107-109

prebuilt, deploying, 48-51
CPU allocation parameter (Cloud Run), 65
created containers, deploying, 51-54
CSV files, loading data to BigQuery, 152-156
Cube.js, 80-88
custom domains

with Cloud Run, 54-56

mapping, 76-78
custom headers for applications, 241-243
custom notebook environment, creating,

208-210
custom roles, creating, 219-221
custom VPC (virtual private cloud), creating,

237-238

D
data extraction from BigQuery

for BQML model training, 213-215
for Python model training, 210-213

Data Fusion, 175-180
Data Fusion GUI, 175-180
data processing tools, 175

(see also storage)
BigQuery (see BigQuery)
Data Fusion GUI, cleaning data, 175-180
Dataflow

inferring schemas, 192-194
purpose of, 183
Python-based pipelines, 180-183
streaming data with filters, 195-197
streaming data with SQL, 184-188
templates for streaming data into Big‐

Query, 170-174
triggering automatically, 197-200

Dataproc clusters, querying from, 188-190
Pub/Sub messages, adding metadata,

191-192
data warehousing (see BigQuery)
Dataflow

inferring schemas, 192-194
purpose of, 183
Python-based pipelines, 180-183
streaming data

with filters, 195-197
with SQL, 184-188

templates, streaming data into BigQuery,
170-174

triggering automatically, 197-200
Dataproc clusters, querying from, 188-190
debugging applications with App Engine, 88-89
deduplicating

while merging, 165-166
with timestamps, 167-169

deleting
Cloud Functions, 26
GCS objects, 138-139

260 | Index

deny/allow lists, creating, 234-236
deploying

applications
to App Engine Flexible, 71-73
to App Engine Standard, 70-71
automating with GitLab CI/CD, 89-90
to Cloud Run, 61-63

background functions with GitLab CI/CD
pipeline, 33-36

containers
to App Engine Flexible, 71-73
to managed instance groups, 107-109

created containers, 51-54
gradual rollouts, 64-65
Java applications with Skaffold, 129-130
prebuilt containers, 48-51
rolling back deployments, 63-64
Spring Boot Java applications, 126-128
VPC (virtual private cloud), automated

deployment with Terraform, 252-253
dispatch.yaml files, 86
displaying charts/graphs, 80-88
docker images command, 127
docker run command, 127
domains

custom
with Cloud Run, 54-56
mapping, 76-78

verifying, 77

E
email addresses, retreiving, 227-228
email messages, sending, 30-32
enabling Kubernetes Engine API, 116
environment variables, accessing at runtime,

29-30
ESPv2 Beta (Extensible Service Proxy v2 Beta),

42-46
event timestamps, adding to Pub/Sub messages,

191-192
external IP addresses, creating, 239-239
extracting BigQuery data

for BQML model training, 213-215
for Python model training, 210-213

F
file systems, mounting GCS as, 136-138
files

transferring

via multiprocessing, 133-134
via parallel composite uploads, 135-136
to virtual machines, 109-110

uploading, 9-10, 18-19
filters, streaming data with, 195-197
Firestore, 147-148
firewalls

allowing HTTP traffic, 95
creating rules, 239-241

functions (see Cloud Functions)

G
Gateway API, 244-247
gcloud, 11-15

additional tools, 14-15
commands, 12-13
installing, 11-12

GCS (Google Cloud Storage)
automatically triggering Dataflow, 197-200
lifecycle management, 138-139
mounting as file system, 136-138
transferring files

via multiprocessing, 133-134
via parallel composite uploads, 135-136

gcsfuse, 136-138
git clone command, 79
GitLab

accounts, creating, 33
CI/CD pipeline

automating application deployment,
89-90

deploying cloud functions, 33-36
unit testing with, 39-42

GKE (Google Cloud Kubernetes Engine)
applications

allow/deny lists, 234-236
authenticating, 221-226
running on autopilot, 130-131

clusters
automatic traffic routing, 121-126
regional, creating, 117-118
resizing, 118-120
zonal, creating, 115-116

Gateway API, 244-247
Java applications, deploying, 129-130
purpose of, 115
requirements for, 115
Spring Boot Java applications, deploying,

126-128

Index | 261

globe, defined, 2
go.mod files, 52, 57
Google App Engine (see App Engine)
Google Cloud

billing, 20-21
client libraries, 18-20
Cloud Code, 22-22
Cloud Shell, 16-17
console, 6-10

accessing, 6
parts of, 7
pinning services, 8
uploading files, 9-10

gcloud, 11-15
additional tools, 14-15
commands, 12-13
installing, 11-12

moving from another cloud, 22
networking (see networking)
pricing, 21-21
projects, 2

creating, 3-5
resource reports, building, 230-233
security (see security)
service accounts

assigning roles, 34
creating, 33

service regionalities, 1-2
VPN gateways to, 247-252

Google Cloud Compute Engine (see Compute
Engine)

Google Cloud Functions (see Cloud Functions)
Google Cloud Kubernetes Engine (see GKE)
Google Cloud Run (see Cloud Run)
Google Cloud Storage (see GCS)
gradual deployment rollouts, 64-65
graphs/charts, displaying, 80-88
grouping NGINX web servers in managed

instance groups, 105-107
gsutil, 14
gsutil -m cp -r command, 134
gsutil -m rm -r command, 134
gsutil -o command, 135
gsutil cp -r command, 134
gsutil cp command, 135, 205
gsutil lifecycle get command, 139
gsutil lifecycle set command, 139
gsutil ls command, 14, 206
gsutil rm command, 135

H
headers, customizing, 241-243
hotkeys in BigQuery, 152
HTTP functions, 25

accessing environment variables at runtime,
29-30

authenticating, 27-29
creating, 26-27
replying to SMS messages, 37-38
sending emails, 30-32

HTTP traffic, allowing through firewalls, 95

I
IAP (Identity-Aware Proxy)

authenticating applications on GKE,
221-226

connecting virtual machines, 96-100
purpose of, 226
restricting application access, 73-76
retrieving identity data, 227-228

IDE extensions, Cloud Code, 22-22
identities, retrieving, 227-228
Identity-Aware Proxy (see IAP)
index.html files, 72
inferring schemas in Dataflow, 192-194
ingress.yaml files, 222
installing

gcloud, 11-12
NGINX web servers, 93-95

with startup scripts, 102-104
instance templates, 105, 106
instances, debugging with App Engine, 88-89
interleaved tables, 142-146
IP addresses, creating static external, 239-239

J
Java applications

authenticating, 228-230
deploying with Skaffold, 129-130

Jupyter notebooks
creating, 201-204
custom environment, 208-210

K
Knative, 47
kubeconfig files, 221
kubectl, 14
kubectl apply command, 223, 223, 226

262 | Index

kubectl apply -f command, 243
kubectl create deployment hello-java com‐

mand, 128
kubectl create secret generic iap-oauth com‐

mand, 226
kubectl create service loadbalancer hello-java

command, 128
kubectl get ingress basic-ingress command, 243
kubectl get pods command, 15
kubectl get services command, 128
Kubernetes (see GKE)
Kubernetes Engine API, enabling, 116

L
lifecycle management in GCS, 138-139
limiting network access with VPC Service Con‐

trols, 253-255
Linux virtual machines

backing up, 113-114
creating, 93-95
managed instance groups on, 105-107
startup scripts, 102-104
transferring files to, 109-110

listing storage buckets, 219-221
loading data from CSV files, 152-156
ls command, 109

M
machine learning (see ML)
managed instance groups (MIGs)

deploying containers to, 107-109
NGINX web servers in, 105-107

mapping custom domains, 76-78
maximum number of instances parameter

(Cloud Run), 66
Media Translation API, 78-80
merging tables, deduplicating while, 165-166
metadata, adding to Pub/Sub messages,

191-192
minimum number of instances parameter

(Cloud Run), 66
ML (machine learning), 201

BQML models, extracting BigQuery data
for training, 213-215

Python models
extracting BigQuery data for training,

210-213
serverless predictions, 206-208
training serverlessly, 204-206

Vertex AI
creating notebooks, 201-204
custom notebook environment, 208-210

Mocha, 39-42
mounting GCS (Google Cloud Storage),

136-138
moving from another cloud, 22
Multi-Cluster Ingress for Anthos, 121-126
multiprocessing, transferring files via, 133-134
multiregions, defined, 2
mvn compile command, 127

N
networking

applications, custom headers for, 241-243
firewall rules, creating, 239-241
limiting access with VPC Service Controls,

253-255
requirements for, 237
static external IP addresses, creating,

239-239
VPC (virtual private cloud)

automated deployment with Terraform,
252-253

configuring peering, 244-247
creating custom, 237-238

VPN gateways, creating with cloud routers,
247-252

NGINX web servers
grouping in managed instance groups,

105-107
installing, 93-95

with startup scripts, 102-104
nginx.conf files, 72
notebooks for Vertex AI

creating, 201-204
custom environment, 208-210

npm init command, 26
npm run dev command, 82
npx cubejs-cli create real-time-dashboard -d

bigquery command, 81

O
OS Login, limitations, 100

P
parallel composite uploads, transferring files

via, 135-136

Index | 263

parameters (Cloud Run), 65-67
partitioned columns (BigQuery)

advantages of, 161
clustered columns with, 158-161
clustered columns without, 162-163

patch management with VM Manager, 111-113
PD (Persistent Disk) snapshots, 140-142
peering, configuring, 244-247
pinning services to console, 8
pivot tables in BigQuery, 156-158
prebuilt containers, deploying, 48-51
predictions with Python ML models, serverless,

206-208
pricing, 21-21
projects, 2

creating, 3-5
Pub/Sub

purpose of, 60
triggering Cloud Run, 56-60

Pub/Sub messages, adding metadata, 191-192
public HTTP functions, creating, 26-27
Python ML models

extracting BigQuery data for training,
210-213

serverless predictions, 206-208
training serverlessly, 204-206

Python-based pipelines, creating, 180-183
python3 setup.py sdist command, 205

R
real-time audio translation, 78-80
recovering deleted BigQuery tables, 169-170
regional clusters, creating, 117-118
regions

content based on, 241-243
defined, 1

replying to SMS messages, 37-38
request timeout parameter (Cloud Run), 66
resizing clusters, 118-120
resource reports, building, 230-233
resources for information

moving from another cloud, 22
security, 217

retrieving authenticated user identities, 227-228
roles, creating custom, 219-221
rolling back Cloud Run deployments, 63-64
ROW_NUMBER() function, 164-165, 168
running

applications on GKE autopilot, 130-131

BigQuery from Cloud Console, 149-152
Cloud Run, 47
startup scripts, 102-104

runtime, accessing environment variables,
29-30

S
schemas, inferring in Dataflow, 192-194
scope for services, 2
securing

applications with IAP, 73-76
virtual machines

with IAP TCP forwarding, 96-100
with two-step verification, 100-102

security, 221
(see also authenticating)
allow/deny lists, creating, 234-236
authenticated user identities, retrieving,

227-228
for Firestore, 147-148
requirements for, 217
resource reports, building, 230-233
resources for information, 217
service accounts

authenticating Java applications, 228-230
creating, 217-219
listing storage buckets, 219-221

selecting Top-1 result in BigQuery, 163-165
SendGrid, 30-32
sending email messages, 30-32
serverless predictions with Python ML models,

206-208
serverless training of Python ML models,

204-206
service accounts

assigning roles, 34
authenticating Java applications, 228-230
creating, 33, 217-219
listing storage buckets, 219-221

service regionalities, 1-2
services, pinning to console, 8
Skaffold, 129-130
SMS messages, replying to, 37-38
snapshots, 113-114
Spanner, 142-146
Spark data processing, querying from, 188-190
Spring Boot Java applications, deploying,

126-128
SQL, streaming data with, 184-188

264 | Index

SSH browser, 95
startup scripts, running, 102-104
static external IP addresses, creating, 239-239
storage, 133

(see also data processing tools)
advantages of cloud storage, 133
backups with PD (Persistent Disk) snap‐

shots, 140-142
BigQuery (see BigQuery)
Firestore, security for, 147-148
GCS (Google Cloud Storage)

lifecycle management, 138-139
mounting as file system, 136-138
transferring files via multiprocessing,

133-134
transferring files via parallel composite

uploads, 135-136
listing storage buckets, 219-221
Spanner, interleaved tables in, 142-146

streaming data
with Dataflow SQL, 184-188
with filters, 195-197
into BigQuery, 170-174

streaming inserts (BigQuery), 195-197
sudo docker exec command, 89
sudo docker logs command, 89
sudo docker ps command, 89
sudo systemctl status google-osconfig-agent

command, 111

T
telemetry data, building API gateway for, 42-46
TensorFlow ML model, 204-206
Terraform, 252-253
terraform apply command, 252
terraform init command, 252
terraform plan command, 252
testing (see unit testing)
text messages, replying to, 37-38
timestamps

adding to Pub/Sub messages, 191-192
deduplicating with, 167-169

Top-1 result, selecting in BigQuery, 163-165
touch command, 109
traffic routing with Multi-Cluster Ingress for

Anthos, 121-126
training

BQML models, extracting BigQuery data
for, 213-215

Python models
extracting BigQuery data for, 210-213
serverlessly, 204-206

transactions in BigQuery, 169
transferring files

via multiprocessing, 133-134
via parallel composite uploads, 135-136
to virtual machines, 109-110

translation with Media Translation API, 78-80
triggering

Cloud Run from Cloud Pub/Sub, 56-60
Dataflow automatically, 197-200

Twilio, 37-38
two-step verification for virtual machines,

100-102

U
undeleting BigQuery tables, 169-170
unit testing with GitLab, 39-42
uploading files, 9-10, 18-19
user interface (see console)

V
verifying domains, 77
Vertex AI

notebooks
creating, 201-204
custom environment, 208-210

serving Python models, 206-208
training Python models, 204-206

virtual machines
backing up, 113-114, 140-142
connecting to, 16-17, 96-100
Linux, creating, 93-95
managed instance groups on, 105-107
patch management, 111-113
startup scripts, 102-104
transferring files to, 109-110
two-step verification, 100-102
Windows, creating, 91-93

virtual private cloud (see VPC)
VM Manager, patch management with, 111-113
VMs (see virtual machines)
VPC (virtual private cloud)

automated deployment with Terraform,
252-253

configuring peering, 244-247
creating custom, 237-238

VPC Service Controls, 253-255

Index | 265

VPN gateways, creating with cloud routers,
247-252

W
web applications (see applications)
WebSockets, 80
Windows virtual machines

connecting with IAP TCP forwarding,
96-100

creating, 91-93

Z
zonal clusters, creating, 115-116
zones, defined, 1

266 | Index

About the Authors
Rui Costa has worked at Google in various roles, most recently as a learning consul‐
tant working with strategic customers and partners to create and execute on their
custom Google Cloud learning plans. Rui has served as an AI coach for the Google AI
Impact Challenge, where he had the opportunity to help organizations using AI to
address societal challenges. Rui is also the founder of the Speech Analysis Frame‐
work, which has successfully graduated to become a product within Google and holds
a defensive publication, “Secure Sharing of Pre-trained Machine Learning Models For
Hands-on Training At Scale.”

You can find Rui on Twitter (https://twitter.com/ruicostablog) and LinkedIn (https://
www.linkedin.com/in/rui-costa-nyc/).

Drew Hodun has had a number of roles at Google, mostly customer-facing and
focused on machine learning applications running on Google Cloud. He’s worked in
the autonomous vehicle, financial services, and media and entertainment industries.
Most recently, Drew has been a tech lead on a public-sector machine learning prod‐
uct team. He has spoken at a variety of conferences, including Predictive Analytics
World, Google Cloud Next, O’Reilly AI Conference, and others.

You can find Drew on Twitter (https://twitter.com/DrewHodun) and LinkedIn (https://
www.linkedin.com/in/drewhodun).

Colophon
The animal on the cover of Google Cloud Cookbook is the asian golden eagle (aquila
chrysaetos daphanea), also known as the berkut. This subspecies can be found in
Kazakhstan, Iran, Manchuria and China, and along the Himalayas from Pakistan to
Bhutan. This bird of prey is recognized by its dark feathers, a dark forehead and
crown, and a brown-red neck plume.

Golden eagles use their powerful feet and massive, sharp talons, to snatch up a variety
of prey (mainly hares, rabbits, marmots, and squirrels). Notably, they can carry up to
8 lbs in flight and fly up to 80 mph, with maximum speeds of 200 mph during a dive.

Direct and indirect human-caused mortality, disturbance, and elimination of prey
limit golden eagle populations. Recreational activities may disturb breeding, as
golden eagles are likely to abandon nests during incubation if they are disturbed.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Gardens and Menagerie of the Zoological Society. The cover fonts are Gilroy

https://twitter.com/ruicostablog
https://www.linkedin.com/in/rui-costa-nyc/
https://twitter.com/DrewHodun
https://www.linkedin.com/in/drewhodun

Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Rui Costa
	Drew Hodun

	Navigating This Book
	Chapter 1, “Introduction”
	Chapter 2, “Cloud Functions”
	Chapter 3, “Google Cloud Run”
	Chapter 4, “Google App Engine”
	Chapter 5, “Google Cloud Compute Engine”
	Chapter 6, “Google Cloud Kubernetes Engine”
	Chapter 7, “Working with Data”
	Chapter 8, “BigQuery and Data Warehousing”
	Chapter 9, “Data Processing Tools”
	Chapter 10, “AI/ML”
	Chapter 11, “Google Cloud Security and Access”
	Chapter 12, “Google Cloud Networking”

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Rui Costa
	Drew Hodun

	Chapter 1. Introduction
	Overview
	Projects
	Cloud Console
	gCloud Command-Line Tool
	Other gcloud Tools
	Cloud Shell
	Client Libraries
	Billing
	Pricing
	Cloud Code (IDE Extensions)
	Moving from Another Cloud
	This Cookbook

	Chapter 2. Cloud Functions
	2.1 Creating a Public HTTP Google Cloud Function
	Problem
	Solution
	Discussion

	2.2 Authenticating an HTTP Google Cloud Function
	Problem
	Solution
	Discussion

	2.3 Accessing Environment Variables at Runtime
	Problem
	Solution
	Discussion

	2.4 Sending Emails from Cloud Functions with SendGrid
	Problem
	Solution
	Discussion

	2.5 Deploying Cloud Functions with a GitLab CI/CD Pipeline
	Problem
	Solution
	Discussion

	2.6 Responding to SMS Messages with Twilio and Cloud Functions
	Problem
	Solution
	Discussion

	2.7 Unit Testing with GitLab and Cloud Functions
	Problem
	Solution
	Discussion

	2.8 Building an API Gateway to Gather Telemetry Data
	Problem
	Solution
	Discussion

	Chapter 3. Google Cloud Run
	3.1 Deploying a Prebuilt Hello World Container
	Problem
	Solution
	Discussion

	3.2 Building Your Own Hello World Container
	Problem
	Solution
	Discussion

	3.3 Using Cloud Run with a Custom Domain
	Problem
	Solution
	Discussion

	3.4 Triggering a Cloud Run from Cloud Pub/Sub
	Problem
	Solution
	Discussion

	3.5 Deploying a Web Application to Cloud Run
	Problem
	Solution
	Discussion

	3.6 Rolling Back a Cloud Run Service Deployment
	Problem
	Solution
	Discussion

	3.7 Deploying Cloud Run Services in a Gradual Rollout
	Problem
	Solution
	Discussion

	3.8 Cloud Run Configuration Parameters
	Problem
	Solution

	Chapter 4. Google App Engine
	4.1 Deploying a Hello World to App Engine (Standard)
	Problem
	Solution
	Discussion

	4.2 Deploying a Hello World to App Engine (Flexible)
	Problem
	Solution
	Discussion

	4.3 Securing Your Application with Identity-Aware Proxy
	Problem
	Solution
	Discussion

	4.4 Mapping Custom Domains with App Engine
	Problem
	Solution
	Discussion

	4.5 Using the Google Cloud Translation Machine Learning APIs with App Engine
	Problem
	Solution
	Discussion

	4.6 Building User Interfaces for Viewing Charts and Graphs
	Problem
	Solution
	Discussion

	4.7 Debugging an Instance
	Problem
	Solution
	Discussion

	4.8 Using CI/CD
	Problem
	Solution
	Discussion

	Chapter 5. Google Cloud Compute Engine
	5.1 Creating a Windows Virtual Machine
	Problem
	Solution
	Discussion

	5.2 Creating a Linux Virtual Machine and Installing NGINX
	Problem
	Solution
	Discussion

	5.3 Connecting to Your Windows Virtual Machines with Identity-Aware Proxy TCP Forwarding
	Problem
	Solution
	Discussion

	5.4 Securing Your Virtual Machine Logins with Two-Step Verification
	Problem
	Solution
	Discussion

	5.5 Running Startup Scripts
	Problem
	Solution
	Discussion

	5.6 Creating a Group of NGINX Web Servers with a Managed Instance Group
	Problem
	Solution
	Discussion

	5.7 Deploying Containers to Managed Instance Groups
	Problem
	Solution
	Discussion

	5.8 Transferring Files to Your Virtual Machine
	Problem
	Solution
	Discussion

	5.9 Using VM Manager for Patch Management
	Problem
	Solution
	Discussion

	5.10 Backing Up Your Virtual Machine
	Problem
	Solution
	Discussion

	Chapter 6. Google Cloud Kubernetes Engine
	6.1 Creating a Zonal Cluster
	Problem
	Solution
	Prerequisites
	Discussion

	6.2 Creating a Regional Cluster
	Problem
	Solution
	Discussion

	6.3 Resizing a Cluster
	Problem
	Solution
	Prerequisites
	Discussion

	6.4 Automatically Routing Traffic to the Nearest Cluster with Multi-Cluster Ingress
	Problem
	Solution
	Prerequisites
	Discussion

	6.5 Deploying a Spring Boot Java Application
	Problem
	Solution
	Discussion

	6.6 Deploying a Java Application to Kubernetes, Using Skaffold
	Problem
	Solution
	Discussion

	6.7 Using GKE Autopilot for Running an Application You Don’t Have to Manage
	Problem
	Solution
	Discussion

	Chapter 7. Working with Data
	7.1 Speeding Up Cloud Storage Bulk Transfers by Multiprocessing
	Problem
	Solution
	Discussion

	7.2 Speeding Up GCS Transfers for Large Files with Parallel Composite Uploads
	Problem
	Solution
	Discussion

	7.3 Mounting GCS as a Filesystem
	Problem
	Solution
	Discussion

	7.4 Automatically Archiving and Deleting GCS Objects
	Problem
	Solution
	Discussion

	7.5 Creating and Restoring from Persistent Disk Snapshots in GCE
	Problem
	Solution
	Discussion

	7.6 Using Interleaved Tables in Your Cloud Spanner Database
	Problem
	Solution
	Discussion

	7.7 Locking Down Firestore Database So a User Can Edit Only Their Data
	Problem
	Solution
	Discussion

	Chapter 8. BigQuery and Data Warehousing
	8.1 Using Cloud Console to Run a BigQuery Query
	Problem
	Solution
	Discussion

	8.2 Loading Data to BigQuery from CSV
	Problem
	Solution
	Discussion

	8.3 Building a Pivot Table in BigQuery
	Problem
	Solution
	Discussion

	8.4 Adding Partitioned and Clustered Columns to an Existing Table
	Problem
	Solution
	Discussion

	8.5 Adding Clustering to a Table That Can’t or Shouldn’t Be Partitioned
	Problem
	Solution
	Discussion

	8.6 Selecting the Top-1 Result
	Problem
	Solution
	Discussion

	8.7 Merging Tables in BigQuery Without Duplicates
	Problem
	Solution
	Discussion

	8.8 Deduplicating Rows in BigQuery with Timestamps
	Problem
	Solution
	Discussion

	8.9 Undeleting a Table in BigQuery
	Problem
	Solution
	Discussion

	8.10 Streaming JSON or Avro Data into BigQuery with a Dataflow Template
	Problem
	Solution
	Discussion

	Chapter 9. Data Processing Tools
	9.1 Cleaning Data Using the Data Fusion GUI
	Problem
	Solution
	Discussion

	9.2 Running a Simple Python Dataflow Pipeline
	Problem
	Solution
	Discussion

	9.3 Building a Streaming Pipeline in Dataflow SQL
	Problem
	Solution
	Discussion

	9.4 Querying BigQuery from a Dataproc Job
	Problem
	Solution
	Discussion

	9.5 Adding Event Timestamps to Pub/Sub
	Problem
	Solution
	Discussion

	9.6 Inferring and Using Schemas in Dataflow
	Problem
	Solution
	Discussion

	9.7 Mini-batching and Streaming Dataflow Data to BigQuery Using Filters
	Problem
	Solution
	Discussion

	9.8 Triggering a Dataflow Job Automatically from a GCS Upload
	Problem
	Solution
	Discussion

	Chapter 10. AI/ML
	10.1 Creating a Vertex AI Notebook
	Problem
	Solution
	Discussion

	10.2 Training a Python ML Model Serverlessly
	Problem
	Solution
	Discussion

	10.3 Making Serverless Predictions with a Python Model
	Problem
	Solution
	Discussion

	10.4 Creating a Custom Notebook Environment
	Problem
	Solution
	Discussion

	10.5 Extracting Data from BigQuery to Pandas for Model Training
	Problem
	Solution
	Discussion

	10.6 Training a Model in SQL with BQML
	Problem
	Solution
	Discussion

	Chapter 11. Google Cloud Security and Access
	11.1 Creating a Service Account
	Problem
	Solution
	Discussion

	11.2 Creating Custom Roles to Access a Cloud Storage Bucket
	Problem
	Solution
	Discussion

	11.3 Authenticating an Application Running on Kubernetes Engine
	Problem
	Solution
	Prerequisites
	Discussion

	11.4 Retrieving the Authenticated User’s Identity
	Problem
	Solution
	Discussion

	11.5 Authenticating a Java Application Using a Service Account
	Problem
	Solution
	Discussion

	11.6 Building Reports Using the Cloud Asset API
	Problem
	Solution
	Discussion

	11.7 Allowing a List of IP Addresses to Access Your Application
	Problem
	Solution
	Discussion

	Chapter 12. Google Cloud Networking
	12.1 Creating a Custom Mode VPC Network
	Problem
	Solution
	Discussion

	12.2 Creating a Static External IP Address
	Problem
	Solution
	Discussion

	12.3 Create a Firewall Rule
	Problem
	Solution
	Discussion

	12.4 Serving Content for Users in a Specific Region
	Problem
	Solution
	Discussion

	12.5 Configuring VPC Network Peering
	Problem
	Solution
	Discussion

	12.6 Creating VPN Gateways with Cloud Routers
	Problem
	Solution
	Discussion

	12.7 Deployments of Networks Using Terraform
	Problem
	Solution
	Discussion

	12.8 Limiting Access to Only Authorized Networks with VPC Service Controls
	Problem
	Solution
	Discussion

	Index
	About the Authors

