DR. ALVIN'S PUBLICATIONS

# HOW TO DESIGN A PROCESS ORIENTED FACTORY LAYOUT

# DR. ALVIN ANG



| Introduction                                                     |
|------------------------------------------------------------------|
| Example 14                                                       |
| Question6                                                        |
| Step 1: Create the Room Distance Matrix6                         |
| Step 2: Create the Work Flow Matrix6                             |
| Step 3: Calculate the current Total Distance travelled7          |
| Step 4: Use Dr. Alvin's Method to Find One Improved Assignment7  |
| Step 5: Draw the New Improved Layout8                            |
| Step 6: Calculate the New Total Distance travelled8              |
| Example 210                                                      |
| Question11                                                       |
| Step 1: Create the Room Distance Matrix11                        |
| Step 2: Create the Work Flow Matrix12                            |
| Step 3: Calculate the current Total Distance travelled12         |
| Step 4: Use Dr. Alvin's Method to Find One Improved Assignment13 |
| Step 5: Draw the New Improved Layout13                           |
| Step 6: Calculate the New Total Distance travelled14             |
| Example 315                                                      |
| Question17                                                       |
| Step 1: Create the Room Distance Matrix17                        |
| Step 2: Create the Work Flow Matrix17                            |
| Step 3: Calculate the current Total Distance travelled18         |
| Step 4: Use Dr. Alvin's Method to Find One Improved Assignment18 |
| Step 5: Draw the New Improved Layout19                           |
| Step 6: Calculate the New Total Distance travelled20             |
| References                                                       |
| About the Author                                                 |

# **CONTENTS**

# **2** | P A G E

This manuscript is an excerpt of concepts taken from Operations Management Textbook by Heizer, Render et al. (2017).

# 3 | PAGE

|                                | EXAMPLE 1                     |                                   |     |
|--------------------------------|-------------------------------|-----------------------------------|-----|
| Area 1                         | Area 2                        | Area 3                            |     |
| Assembly<br>Department<br>(1)  | Painting<br>Department<br>(2) | Machine Shop<br>Department<br>(3) |     |
| Receiving<br>Department<br>(4) | Shipping<br>Department<br>(5) | Testing<br>Department<br>(6)      | 40  |
| Area 4                         | Area 5                        | Area 6                            | 1 1 |

- A company has six departments, which can be placed into any of six available rooms.
- The departments are named A, B, C, D, E, and F and the rooms are numbered 1, 2, 3, 4, 5, and 6.
- Assumption  $\rightarrow$  No Diagonal Movement.
- The current set of assignments is
  - o A-1
  - о B-2
  - o C-3
  - o D-4

## 4 | P A G E

• E-5

o F-6

• Assume that each room is 20 X 20 meters, and the movement from one room to the adjacent room is 20 meters.

| Dept A-Room 1 | Dept B-Room 2 | Dept C-Room 3 |
|---------------|---------------|---------------|
| Dept D-Room 4 | Dept E-Room 5 | Dept F-Room 6 |



• The following table shows the matrix of work flow (estimated trips per day) among departments:

|   | Α | B  | С | D  | E   | F  |
|---|---|----|---|----|-----|----|
| Α |   | 50 | 0 | 0  | 100 | 0  |
| B |   |    | 0 | 20 | 30  | 0  |
| C |   |    |   | 0  | 10  | 20 |
| D |   |    |   |    | 30  | 0  |
| Ε |   |    |   |    |     | 40 |
| F |   |    |   |    |     |    |

# 5 | PAGE

#### QUESTION

How can we re-assign the departments within the rooms? (to minimize walking)?

| Room | 1 | 2  | 3  | 4  | 5  | 6  |
|------|---|----|----|----|----|----|
| 1    | - | 20 | 40 | 20 | 40 | 60 |
| 2    |   | -  | 20 | 40 | 20 | 40 |
| 3    |   |    | _  | 60 | 40 | 20 |
| 4    |   |    |    | _  | 20 | 40 |
| 5    |   |    |    |    | _  | 20 |
| 6    |   |    |    |    |    | _  |

STEP 1: CREATE THE ROOM DISTANCE MATRIX

#### STEP 2: CREATE THE WORK FLOW MATRIX

| Room | Α | B  | С | D  | E   | F  |
|------|---|----|---|----|-----|----|
| А    | - | 50 | 0 | 0  | 100 | 0  |
| В    |   | -  | 0 | 20 | 30  | 0  |
| С    |   |    | - | 0  | 10  | 20 |
| D    |   |    |   | _  | 30  | 0  |
| Е    |   |    |   |    | -   | 40 |
| F    |   |    |   |    |     | -  |

# **6** | P A G E

#### STEP 3: CALCULATE THE CURRENT TOTAL DISTANCE TRAVELLED

Total Distance =  $\sum$  (Work Flow × Room Distance)

 $= (50 \times 20)$  $+ (20 \times 40)$  $+ (100 \times 40)$  $+ (30 \times 20)$  $+ (10 \times 40)$  $+ (30 \times 20)$  $+ (20 \times 20)$  $+ (40 \times 20)$ 

= 8,600m

#### STEP 4: USE DR. ALVIN'S METHOD TO FIND ONE IMPROVED ASSIGNMENT

- Highest Workflow  $\rightarrow$  A E = 100
- $\circ$  2<sup>nd</sup> Highest  $\rightarrow$  A B = 50
- $3^{rd}$  Highest  $\rightarrow$  E F = 40
- 4<sup>th</sup> Highest  $\rightarrow$  B E or D E = 30
- 5<sup>th</sup> Highest  $\rightarrow$  B D = 20
- 6<sup>th</sup> Highest  $\rightarrow$  C E = 10
- o Therefore:
  - "A" must be next to "B" and "E"

### 7 | P A G E

- "E" must be next to "B" and "D" (or "F")
- The rest are of lesser priority, so you can put them randomly.

| Room 1 | Room 2 | Room 3 |
|--------|--------|--------|
| Α      | Е      | F      |
| Room 4 | Room 5 | Room 6 |
| В      | D      | С      |

#### STEP 5: DRAW THE NEW IMPROVED LAYOUT

#### STEP 6: CALCULATE THE NEW TOTAL DISTANCE TRAVELLED

| Room | Α | Ε   | F  | В  | D  | С  |
|------|---|-----|----|----|----|----|
| А    | - | 100 | 0  | 50 | 0  | 0  |
| Е    |   | -   | 40 | 30 | 30 | 10 |
| F    |   |     | -  | 0  | 0  | 20 |
| В    |   |     |    | -  | 20 | 0  |
| D    |   |     |    |    | -  | 0  |
| С    |   |     |    |    |    | -  |

| Room | 1 | 2  | 3  | 4  | 5  | 6  |
|------|---|----|----|----|----|----|
| 1    | - | 20 | 40 | 20 | 40 | 60 |
| 2    |   | _  | 20 | 40 | 20 | 40 |
| 3    |   |    | -  | 60 | 40 | 20 |
| 4    |   |    |    | -  | 20 | 40 |
| 5    |   |    |    |    | -  | 20 |
| 6    |   |    |    |    |    | _  |

Total Distance =  $\sum ($ Work Flow × Room Distance)

 $= (100 \times 20) + (40 \times 20) + (50 \times 20) + (50 \times 20) + (30 \times 40) + (30 \times 20) + (20 \times 20) + (10 \times 40) + (20 \times 20) + ($ 

= 6,800m

# **9** | P A G E

# Department - Room



- A company has five departments, which can be placed into any of five available rooms.
- The departments are named A, B, C, D, and E.
- The rooms are numbered 1, 2, 3, 4 and 5.
- The current set of assignments is
  - o A-1
  - o B-2
  - o C-3
  - o D-4
  - o E-5
- Assumption  $\rightarrow$  No Diagonal Movement.
- The rooms are fixed, while the departments may shift to any of the rooms.
- Assume that each room is 10 X 10 meters, and the movement from one room to the adjacent room is 10 meters.

### **10** | P A G E

• The following table shows the matrix of work flow (estimated trips per day) among departments:

|   | Α | B  | С  | D  | Ε  |
|---|---|----|----|----|----|
| Α |   | 20 | 10 | 50 | 0  |
| В |   |    | 10 | 0  | 0  |
| С |   |    |    | 0  | 10 |
| D |   |    |    |    | 20 |
| E |   |    |    |    |    |

#### QUESTION

How can we re-assign the departments within the rooms? (to minimize walking)?

| STEP 1: | CREATE THE ROOM DISTANCE MATRIX |
|---------|---------------------------------|
|         |                                 |

| Room | 1 | 2  | 3  | 4  | 5  |
|------|---|----|----|----|----|
| 1    | - | 10 | 20 | 30 | 40 |
| 2    |   | _  | 10 | 20 | 30 |
| 3    |   |    | _  | 10 | 20 |
| 4    |   |    |    | _  | 10 |
| 5    |   |    |    |    | -  |

|   | Α | B  | С  | D  | Ε  |
|---|---|----|----|----|----|
| Α |   | 20 | 10 | 50 | 0  |
| В |   |    | 10 | 0  | 0  |
| С |   |    |    | 0  | 10 |
| D |   |    |    |    | 20 |
| Е |   |    |    |    |    |

#### **STEP 2: CREATE THE WORK FLOW MATRIX**

#### STEP 3: CALCULATE THE CURRENT TOTAL DISTANCE TRAVELLED

Total Distance =  $\sum$  (Work Flow × Room Distance)

 $= (20 \times 10) + (10 \times 20) + (10 \times 10) + (50 \times 30) + (10 \times 20) + (20 \times 10) + (20 \times 10)$ 

= 2,400m

**12** | P A G E

#### STEP 4: USE DR. ALVIN'S METHOD TO FIND ONE IMPROVED ASSIGNMENT

- Highest Workflow  $\rightarrow$  A D = 50
- $2^{nd}$  Highest  $\rightarrow$  A B or D E = 20
- $3^{rd}$  Highest  $\rightarrow$  A C or B C or C E = 10
- Therefore:
  - "A" must be next to "D" and "B"
  - The rest are of lesser priority, so you can put them randomly.

#### STEP 5: DRAW THE NEW IMPROVED LAYOUT

| Room 1 | Room 2 | Room 3 | Room 4 | Room 5 |
|--------|--------|--------|--------|--------|
| С      | В      | А      | D      | Е      |

# **13** | P A G E

STEP 6: CALCULATE THE NEW TOTAL DISTANCE TRAVELLED

| Department | С | В  | Α  | D  | Ε  |
|------------|---|----|----|----|----|
|            |   |    |    |    |    |
| С          | - | 10 | 10 | 0  | 10 |
|            |   |    |    |    |    |
| В          |   | -  | 20 | 0  | 0  |
|            |   |    |    |    |    |
| А          |   |    | -  | 50 | 0  |
|            |   |    |    |    |    |
| D          |   |    |    | -  | 20 |
|            |   |    |    |    |    |
| Е          |   |    |    |    | -  |
|            |   |    |    |    |    |

Total Distance =  $\sum ($ Work Flow × Room Distance)

$$= (10 \times 10) + (10 \times 20) + (20 \times 10) + (50 \times 10) + (10 \times 40) + (20 \times 10) + (2$$

= 1,600m



- A company has six departments, which can be placed into any of six available rooms.
- The departments are named A, B, C, D, E and F and the rooms are numbered 1, 2, 3, 4, 5 and 6.
- The current set of assignments is
  - o A-1
  - o B-2
  - o C-3
  - o D-4
  - o E-5
  - o F-6
- The rooms are fixed, while the departments may shift to any of the rooms.
- Assume that each room is 10 X 10 meters, and the movement from one room to the adjacent room is 10 meters.

### **15** | P A G E

- Only horizontal or vertical movements are allowed, as indicated by the arrows in the diagram.
- The following table shows the matrix of work flow (estimated trips per day) among departments:

| Department | Α | B  | С  | D  | E  | F  |
|------------|---|----|----|----|----|----|
| Α          |   | 50 | 0  | 0  | 50 | 90 |
| В          |   |    | 30 | 20 | 0  | 20 |
| С          |   |    |    | 40 | 0  | 20 |
| D          |   |    |    |    | 20 | 0  |
| E          |   |    |    |    |    | 40 |
| F          |   |    |    |    |    |    |

#### QUESTION

How can we re-assign the departments within the rooms? (to minimize walking)?

| Room | 1 | 2  | 3  | 4  | 5  | 6  |
|------|---|----|----|----|----|----|
| 1    | - | 10 | 30 | 30 | 30 | 30 |
| 2    |   | -  | 20 | 10 | 20 | 20 |
| 3    |   |    | -  | 10 | 20 | 20 |
| 4    |   |    |    | -  | 10 | 10 |
| 5    |   |    |    |    | _  | 20 |
| 6    |   |    |    |    |    | _  |

STEP 1: CREATE THE ROOM DISTANCE MATRIX

#### STEP 2: CREATE THE WORK FLOW MATRIX

| Department | Α | B  | С  | D  | E  | F  |
|------------|---|----|----|----|----|----|
| Α          |   | 50 | 0  | 0  | 50 | 90 |
| В          |   |    | 30 | 20 | 0  | 20 |
| С          |   |    |    | 40 | 0  | 20 |
| D          |   |    |    |    | 20 | 0  |
| Е          |   |    |    |    |    | 40 |
| F          |   |    |    |    |    |    |

Total Distance =  $\sum ($ Work Flow × Room Distance)

$$= (50 \times 10) + (30 \times 20) + (20 \times 10) + (40 \times 10) + (50 \times 30) + (20 \times 10) + (90 \times 30) + (20 \times 20) + (20 \times 20) + (40 \times 20) + (40 \times 20)$$

= 7,700m

#### STEP 4: USE DR. ALVIN'S METHOD TO FIND ONE IMPROVED ASSIGNMENT

- Highest Workflow  $\rightarrow$  A F = 90
- $2^{nd}$  Highest  $\rightarrow$  A B or A E = 50
- $3^{rd}$  Highest  $\rightarrow$  C D or E F = 40
- 4<sup>th</sup> Highest  $\rightarrow$  B C = 30
- 5<sup>th</sup> Highest  $\rightarrow$  B D or D E or B F or C F = 20
- Therefore:
  - o "A" must be next to "F" and "E" (or "B")

### **18** | P A G E

- "E" must be next to "F" OR "C" must be next to "D"
- The rest are of lesser priority, so you can put them randomly.

|        |        | Room 3 |        |
|--------|--------|--------|--------|
|        |        | С      |        |
| Room 1 | Room 2 | Room 4 | Room 6 |
| F      | Α      | В      | Ε      |
|        |        | Room 5 |        |
|        |        | D      |        |

STEP 5: DRAW THE NEW IMPROVED LAYOUT

# **19** | P A G E

|   | F | Α  | С  | B  | D  | E  |
|---|---|----|----|----|----|----|
| F |   | 90 | 20 | 20 | 0  | 40 |
| Α |   |    | 0  | 50 | 0  | 50 |
| С |   |    |    | 30 | 40 | 0  |
| В |   |    |    |    | 20 | 0  |
| D |   |    |    |    |    | 20 |
| Е |   |    |    |    |    |    |

# **NEW Workflow Table**

# **Distance Table**

|   | 1 | 2  | 3  | 4  | 5  | 6  |
|---|---|----|----|----|----|----|
| 1 |   | 10 | 30 | 30 | 30 | 30 |
| 2 |   |    | 20 | 10 | 20 | 20 |
| 3 |   |    |    | 10 | 20 | 20 |
| 4 |   |    |    |    | 10 | 10 |
| 5 |   |    |    |    |    | 20 |
| 6 |   |    |    |    |    |    |

# **20** | P A G E

New Total Distance Travelled =

(90 x 10)

- + (20 x 30)
- + (20 x 30)
- + (50 x 10)
- + (30 x 10)
- + (40 x 20)
- + (20 x 10)
- + (40 x 30)
- + (50 x 20)
- + (20 x 20)

= 6,500 m

# **21** | P A G E

#### REFERENCES

Heizer, J. H., et al. (2017). Operations management : sustainability and supply chain management.

# **22** | P A G E

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at <u>www.AlvinAng.sg</u>.

### **23** | P A G E