HOW TO DESIGN A PROCESS ORIENTED FACTORY LAYOUT

DR. ALVIN ANG

CONTENTS

Introduction 3
Example 1 4
Question 6
Step 1: Create the Room Distance Matrix 6
Step 2: Create the Work Flow Matrix 6
Step 3: Calculate the current Total Distance travelled 7
Step 4: Use Dr. Alvin's Method to Find One Improved Assignment 7
Step 5: Draw the New Improved Layout 8
Step 6: Calculate the New Total Distance travelled 8
Example 2 10
Question 11
Step 1: Create the Room Distance Matrix 11
Step 2: Create the Work Flow Matrix 12
Step 3: Calculate the current Total Distance travelled 12
Step 4: Use Dr. Alvin's Method to Find One Improved Assignment 13
Step 5: Draw the New Improved Layout 13
Step 6: Calculate the New Total Distance travelled 14
Example 3 15
Question 17
Step 1: Create the Room Distance Matrix 17
Step 2: Create the Work Flow Matrix 17
Step 3: Calculate the current Total Distance travelled 18
Step 4: Use Dr. Alvin's Method to Find One Improved Assignment 18
Step 5: Draw the New Improved Layout 19
Step 6: Calculate the New Total Distance travelled 20
References 22
About the Author 23

INTRODUCTION

This manuscript is an excerpt of concepts taken from Operations Management Textbook by Heizer, Render et al. (2017).

3 | P A G E

EXAMPLE 1

- A company has six departments, which can be placed into any of six available rooms.
- The departments are named A, B, C, D, E, and F and the rooms are numbered $1,2,3,4,5$, and 6.
- Assumption \rightarrow No Diagonal Movement.
- The current set of assignments is
- A-1
- B-2
- C-3
- D-4

$$
4 \text { | P A G E }
$$

- E-5
- F-6
- Assume that each room is 20×20 meters, and the movement from one room to the adjacent room is 20 meters.

Dept A-Room 1	Dept B-Room 2	Dept C-Room 3
Dept D-Room 4	Dept E-Room 5	Dept F-Room 6

- The following table shows the matrix of work flow (estimated trips per day) among departments:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
\mathbf{A}	--	50	0	0	100	0
\mathbf{B}		--	0	20	30	0
C			--	0	10	20
D				--	30	0
\mathbf{E}					--	40
F						--

$$
5 \text { | P A G E }
$$

QUESTION

How can we re-assign the departments within the rooms? (to minimize walking)?

STEP 1: CREATE THE ROOM DISTANCE MATRIX

Room	1	2	3	4	5	6
1	-	20	40	20	40	60
2		-	20	40	20	40
3			-	60	40	20
4				-	20	40
5					-	20
6						-

STEP 2: CREATE THE WORK FLOW MATRIX

Room	A		B	C		D
A	-	50	0	0	100	0
B		-	0	20	30	0
C			-	0	10	20
D				-	30	0
E					-	40
F						-

6 | P A G E

STEP 3: CALCULATE THE CURRENT TOTAL DISTANCE TRAVELLED

$$
\begin{aligned}
\text { Total Distance } & =\sum(\text { Work Flow } \times \text { Room Distance }) \\
& =(50 \times 20) \\
& +(20 \times 40) \\
& +(100 \times 40) \\
& +(30 \times 20) \\
& +(10 \times 40) \\
& +(30 \times 20) \\
& +(20 \times 20) \\
& +(40 \times 20) \\
& =8,600 \mathrm{~m}
\end{aligned}
$$

STEP 4: USE DR. ALVIN'S METHOD TO FIND ONE IMPROVED ASSIGNMENT

- Highest Workflow $\rightarrow \mathrm{A}-\mathrm{E}=100$
- $2^{\text {nd }}$ Highest $\rightarrow \mathrm{A}-\mathrm{B}=50$
- $3^{\text {rd }}$ Highest $\rightarrow \mathrm{E}-\mathrm{F}=40$
- $4^{\text {th }}$ Highest $\rightarrow \mathrm{B}-\mathrm{E}$ or $\mathrm{D}-\mathrm{E}=30$
- $5^{\text {th }}$ Highest $\rightarrow \mathrm{B}-\mathrm{D}=20$
- $6^{\text {th }}$ Highest $\rightarrow \mathrm{C}-\mathrm{E}=10$
- Therefore:
- "A" must be next to "B" and "E"
- "E" must be next to "B" and "D" (or "F")
- The rest are of lesser priority, so you can put them randomly.

STEP 5: DRAW THE NEW IMPROVED LAYOUT

Room 1	Room 2	Room 3
A	E	F
Room 4	Room 5	Room 6
B	D	C

STEP 6: CALCULATE THE NEW TOTAL DISTANCE TRAVELLED

Room	A	E	F	B		D		C
A	-	100	0	50	0	0		
E		-	40	30	30	10		
F			-	0	0	20		
B				-	20	0		
D					-	0		
C						-		

Room	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
1	-	20	40	20	40	60
2		-	20	40	20	40
3			-	60	40	20
4				-	20	40
5					-	20
6						-

Total Distance $=\sum($ Work Flow \times Room Distance $)$

$$
\begin{aligned}
& =(100 \times 20) \\
& +(40 \times 20) \\
& +(50 \times 20) \\
& +(30 \times 40) \\
& +(30 \times 20) \\
& +(20 \times 20) \\
& +(10 \times 40) \\
& +(20 \times 20) \\
& =6,800 \mathrm{~m}
\end{aligned}
$$

Department - Room

- A company has five departments, which can be placed into any of five available rooms.
- The departments are named A, B, C, D, and E.
- The rooms are numbered $1,2,3,4$ and 5 .
- The current set of assignments is
- A-1
- B-2
- C-3
- D-4
- E-5
- Assumption \rightarrow No Diagonal Movement.
- The rooms are fixed, while the departments may shift to any of the rooms.
- Assume that each room is 10×10 meters, and the movement from one room to the adjacent room is 10 meters.
- The following table shows the matrix of work flow (estimated trips per day) among departments:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}	--	20	10	50	0
\mathbf{B}		--	10	0	0
\mathbf{C}			--	0	10
\mathbf{D}				--	20
\mathbf{E}					--

QUESTION

How can we re-assign the departments within the rooms? (to minimize walking)?

STEP 1: CREATE THE ROOM DISTANCE MATRIX

Room	1	2	3	4	5
1	-	10	20	30	40
2		-	10	20	30
3			-	10	20
4				-	10
5					-

11 | PAGE

STEP 2: CREATE THE WORK FLOW MATRIX

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}	--	20	10	50	0
\mathbf{B}		--	10	0	0
C			--	0	10
D				--	20
\mathbf{E}					--

STEP 3: CALCULATE THE CURRENT TOTAL DISTANCE TRAVELLED

$$
\begin{aligned}
\text { Total Distance } & =\sum(\text { Work Flow } \times \text { Room Distance }) \\
& =(20 \times 10) \\
& +(10 \times 20) \\
& +(10 \times 10) \\
& +(50 \times 30) \\
& +(10 \times 20) \\
& +(20 \times 10) \\
& =2,400 m
\end{aligned}
$$

- Highest Workflow $\rightarrow \mathrm{A}-\mathrm{D}=50$
- $2^{\text {nd }}$ Highest $\rightarrow \mathrm{A}-\mathrm{B}$ or $\mathrm{D}-\mathrm{E}=20$
- $3^{\text {rd }}$ Highest $\rightarrow \mathrm{A}-\mathrm{C}$ or $\mathrm{B}-\mathrm{C}$ or $\mathrm{C}-\mathrm{E}=10$
- Therefore:
- "A" must be next to "D" and "B"
- The rest are of lesser priority, so you can put them randomly.

STEP 5: DRAW THE NEW IMPROVED LAYOUT

Room 1	Room 2	Room 3	Room 4	
Room 5				
C	B	A	D	E

13 | P A G E

STEP 6: CALCULATE THE NEW TOTAL DISTANCE TRAVELLED

Department	C	B		A	
C	-	10	10	0	D
B		-	20	0	10
A			-	50	0
D				-	20
E					-

Total Distance $=\sum($ Work Flow \times Room Distance $)$

$$
\begin{aligned}
& =(10 \times 10) \\
& +(10 \times 20) \\
& +(20 \times 10) \\
& +(50 \times 10) \\
& +(10 \times 40) \\
& +(20 \times 10) \\
& =1,600 \mathrm{~m}
\end{aligned}
$$

- A company has six departments, which can be placed into any of six available rooms.
- The departments are named A, B, C, D, E and F and the rooms are numbered 1, 2, 3, 4, 5 and 6.
- The current set of assignments is
- A-1
- B-2
- C-3
- D-4
- E-5
- F-6
- The rooms are fixed, while the departments may shift to any of the rooms.
- Assume that each room is 10×10 meters, and the movement from one room to the adjacent room is 10 meters.
- Only horizontal or vertical movements are allowed, as indicated by the arrows in the diagram.
- The following table shows the matrix of work flow (estimated trips per day) among departments:

Department	A	B	C	D	E	F
A	--	50	0	0	50	90
B		--	30	20	0	20
C			--	40	0	20
D				--	20	0
E					--	40
F						--

16 | P A G E

QUESTION

How can we re-assign the departments within the rooms? (to minimize walking)?

STEP 1: CREATE THE ROOM DISTANCE MATRIX

Room	$\mathbf{1}$		$\mathbf{2}$	$\mathbf{3}$		$\mathbf{4}$	$\mathbf{5}$
1	-	10	30	30	30	30	
2		-	20	10	20	20	
3			-	10	20	20	
4				-	10	10	
5					-	20	
6						-	

STEP 2: CREATE THE WORK FLOW MATRIX

Department	A	B	C	D	E	F
A	--	50	0	0	50	90
B		--	30	20	0	20
C			--	40	0	20
D				--	20	0
E					--	40
F						--

17 | PAGE

STEP 3: CALCULATE THE CURRENT TOTAL DISTANCE TRAVELLED

$$
\begin{aligned}
\text { Total Distance } & =\sum(\text { Work Flow } \times \text { Room Distance }) \\
& =(50 \times 10) \\
& +(30 \times 20) \\
& +(20 \times 10) \\
& +(40 \times 10) \\
& +(50 \times 30) \\
& +(20 \times 10) \\
& +(90 \times 30) \\
& +(20 \times 20) \\
& +(20 \times 20) \\
& +(40 \times 20) \\
& =7,700 \mathrm{~m}
\end{aligned}
$$

STEP 4: USE DR. ALVIN'S METHOD TO FIND ONE IMPROVED ASSIGNMENT

- Highest Workflow $\rightarrow \mathrm{A}-\mathrm{F}=90$
- $\quad 2^{\text {nd }}$ Highest $\rightarrow \mathrm{A}-\mathrm{B}$ or $\mathrm{A}-\mathrm{E}=50$
- 3rd Highest $\rightarrow \mathrm{C}-\mathrm{D}$ or $\mathrm{E}-\mathrm{F}=40$
- $4^{\text {th }}$ Highest $\rightarrow \mathrm{B}-\mathrm{C}=30$
- $5^{\text {th }}$ Highest $\rightarrow \mathrm{B}-\mathrm{D}$ or $\mathrm{D}-\mathrm{E}$ or $\mathrm{B}-\mathrm{F}$ or $\mathrm{C}-\mathrm{F}=20$
- Therefore:
- "A" must be next to "F" and "E" (or "B")

○ "E" must be next to "F" OR "C" must be next to "D"

- The rest are of lesser priority, so you can put them randomly.

STEP 5: DRAW THE NEW IMPROVED LAYOUT

Room 3			
Room 1	Room 2	C	
F	A	Room 4	Room 6

19 | PAGE

NEW Workflow Table

	F	A	C	B	D	E
F	--	90	20	20	0	40
A		--	0	50	0	50
C			--	30	40	0
B				--	20	0
D					--	20
E						--

Distance Table

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	--	10	30	30	30	30
$\mathbf{2}$		--	20	10	20	20
$\mathbf{3}$			--	10	20	20
$\mathbf{4}$				--	10	10
$\mathbf{5}$					--	20
$\mathbf{6}$						--

New Total Distance Travelled $=$
(90 x 10)
$+(20 \times 30)$
$+(20 \times 30)$
$+(50 \times 10)$
$+(30 \times 10)$
$+(40 \times 20)$
$+(20 \times 10)$
$+(40 \times 30)$
$+(50 \times 20)$
$+(20 \times 20)$
$=6,500 \mathrm{~m}$

21 | PAGE

REFERENCES

Heizer, J. H., et al. (2017). Operations management : sustainability and supply chain management.

22 | P A G E

ABOUT THE AUTHOR

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at www.AlvinAng.sg.

