HYPOTHESIS TESTING

DR. ALVIN ANG

CONTENTS

F	Part I		4
9	Steps	for Hypothesis Testing	4
	Wha	at is Hypothesis Testing?	4
	Step	p 1: Stating the Null and Alternate Hypothesis	5
	Step	٥ 2: Selecting the Level of Significance	5
	Step	p 3: Selecting the Test Statistic	6
	Step	p 4: Formulating the Decision Rule	6
	Step	o 5	7
	Com	npute the Value of the Test Statistic, make a decision, and Interpret the Results	7
	Step	o 6: p test	7
ŀ	Part II	Ι	8
Z	Z Test	·	8
	Α.	1 Sample Z Test	8
	An E	Example	8
$\overline{)}$	B .	1 Sample Z Test Concerning Proportion	
\wedge	An E	Example	\mathbb{Z}_{1}
	С.	2 Sample Z Test	13
	An E	Example	13
	D.	2 Sample Z Test of Proportions	
	An F		
	Dart I		18
	tost	"	10
Ľ	-lesi.	1	10
	A. By	y Hand	21
	By	y Excel	22
	в.	2 Samples t-test	24
	С.	Using F-Test to Determine Equal or Unequal Variances	26
	D.	2 sample Pooled t-test	28
	1. 2.	Assuming Equal Variances Example Assuming Unequal Variances Example	28 31
	Ε.	2 Samples Paired t-test Example	32

2 | P A G E

References	36
About Dr. Alvin Ang	37

3 | P A G E

PART I

STEPS FOR HYPOTHESIS TESTING

WHAT IS HYPOTHESIS TESTING?

- A hypothesis is a claim.
- Hypothesis testing = verifying the claim \rightarrow is it true or false?
- In statistics, the claim is the population parameter (usually the population mean).
- In other words, hypothesis testing in statistics is
 - o Making a claim/assumption/guess about the population mean
 - o Taking a sample to test
 - Verifying is the claim true or false.
- There are generally 6 steps to Statistical Hypothesis Testing:
 - 0 Step 1. Stating the Null and Alternate Hypothesis
 - Step 2: Selecting the Level of Significance
 - Step 3: Selecting the Test Statistics
 - Step 4: Formulating the Decision Rule
 - o Step 5: Computing the Value of the Test Statistic and Interpreting the Results

o S

o Step 6: P-test for double confirmation

4 | P A G E

STEP 1: STATING THE NULL AND ALTERNATE HYPOTHESIS

	ONE Tail	ed Test	TWO Tailed Test
<i>H</i> ₀: μ	≤ 3.3	<i>H</i> ₀ : $\mu \ge 3.3$	<i>H</i> ₀ : μ = 3.3
H1: μ	2>3.3	$H_1: \mu < 3.3$	<i>H</i> ₁: <i>µ</i> ≠3.3

Step 1. State the null hypothesis (H₀) and the alternate hypothesis (H₁)

Type I and Type II errors

	Researcher					
Null Hypothesis	Accepts Ho	Rejects <i>H</i> 0				
<i>H</i> ₀ is true	Correct decision	Type I error				
<i>H</i> ₀ is false	Type II error	Correct decision				

Figure 2: Step 2 of Hypothesis Testing

5 | P A G E

STEP 3: SELECTING THE TEST STATISTIC

- t-test is used when the Population Standard Deviation σ is unknown.
- Z-test is used when the Population Standard Deviation σ is known.

Step 3. Select the Test Statistic

Figure 4: Step 4 of Hypothesis Testing

6 | P A G E

STEP 5

COMPUTE THE VALUE OF THE TEST STATISTIC, MAKE A DECISION, AND INTERPRET THE RESULTS

STEP 6: P TEST

Figure 5: Step 6 of Hypothesis Testing

7 | P A G E

PART II

Z TEST

A. 1 SAMPLE Z TEST

AN EXAMPLE

Given:

- Population Mean, $\mu = 40$ miles per gallon
- Sample Mean, $\overline{X} = 38.9$ miles per gallon
- Population Std. Dev., $\sigma = 4$ miles
- Sample Size, n = 64
- α = 0.01

Find:

Answer:

Step 1. State the null hypothesis (H₀) and the alternate hypothesis (H₁)

ONE Tailed Test Ho: $\mu \ge 40$ $H_1: \mu < 40$

8 | P A G E

Step 2. Select the Level of Significance

• Question asks for 0.01 Sig. Level (alpha = 0.01)

Step 5. Compute the value of the test statistic, make a decision, and interpret the results

- Since -2.20 falls in the ACCEPTED region,
- ACCEPT H0
- We are 99% Confident Manufacturer's Claim is true

Step 6: P-test

9 | PAGE

10 | P A G E

B. 1 SAMPLE Z TEST CONCERNING PROPORTION

AN EXAMPLE

Given:

- π : Population Proportion = 0.30 (30% of students are employed believed population proportion)
- p: Sample Proportion = 0.25 (25% of students are employed sampled proportion)

• α: Significance Level = 0.01

Question:

• Is this claim true? That more than 30% of the students are employed?

Answer:

- Actually, this case is a Binomial Distribution, not Normal Distribution.
- Because this case satisfies the assumptions of Binomial:
 - Only Success/Fail (π =0.3)
 - Number of trials is fixed (n=100)
 - Each trail is independent (selecting one student doesn't affect the other)
- But due to the fitting criteria of:
 - \circ n π >5 and

11 | P A G E

- $\circ n(1-\pi) > 5$
- o The Normal Distribution can be used to approximate the Binomial Distribution!
- Kindly refer to Ang (2019) for more information.
- Step 1: State the Null and Alternate Hypothesis

*H*₀:
$$\pi \ge 0.30$$

*H*₁: $\pi < 0.30$

- Step 2: State the Significance Level: $\alpha = 0.01$
- Step 3: Select the Test Statistic
 - $\circ~$ Since this is Normal Distributed, and σ_p (: the Std. Dev. Of the Population Proportion) can be found
 - o Thus Z is the test statistic

- Thus Zcritical (1 tail \rightarrow left tail; alpha = 0.01) = -2.33)
- o Zstat = -1.09
- Step 5: Make the Decision
 - Since Zciritcal < Zstat \rightarrow Accept H0

C. 2 SAMPLE Z TEST

	$\overline{X}_1 - \overline{X}_2$
Test Statistic for No Difference	$z = \frac{1}{\sqrt{\sigma^2 - \sigma^2}}$
Between Two Sample Means	$\frac{\sigma_1}{\sigma_1} + \frac{\sigma_2}{\sigma_2}$
-	$n_1 n_2$

where

 \overline{X}_1 and \overline{X}_2 refer to the two sample means. σ_1^2 and σ_2^2 refer to the two sample variances. n_1 and n_2 refer to the two sample sizes.

AN EXAMPLE

Given:

- 1st Product: Sinus
 - Sample Mean $\overline{X1} = 85.0$

Population Std. Dev. $\sigma l = 6.0$ 0 Sample Size n1 = 100

- 2nd Product: Antidrip
 - Sample Mean $\overline{X2} = 86.2$
 - Population Std. Dev. $\sigma 2 = 6.8$
 - o Sample Size n2 = 81
- Alpha = 0.05

Find:

• Is there a significant difference (5% alpha) between the Mean of the 2 products?

Answer:

Step 1: State the Null and Alternate Hypothesis
 13 | P A G E

*H*₀:
$$\mu_1 = \mu_2$$

*H*₁: $\mu_1 \neq \mu_2$

- Step 2: Level of Significance, $\alpha = 0.05$
- Step 3: Select the Test Statistic Z (because the population std. dev. Of both products are known)
- Step 4: Formulate the Decision Rule

- Since 0.2150 > 0.05
- ACCEPT H0
- No difference between SINUS and ANTIDRIP

14 | P A G E

D. 2 SAMPLE Z TEST OF PROPORTIONS

Two-Sample Test of Proportions	z =
	$\frac{p_c(1-p_c)}{p_c(1-p_c)} + \frac{p_c(1-p_c)}{p_c(1-p_c)}$
	n_1 n_2

where

- p1 is the proportion in the first sample possessing the trait.
- p2 is the proportion in the second sample possessing the trait.
- n1 is the number of observations in the first sample.
- *n*² is the number of observations in the second sample.
- *p_c* is the pooled proportion possessing the trait in the combined samples. It is called the *pooled estimate of the population proportion* and is found by formula

Pooled Proportion
$$p_c = \frac{X_1 + X_2}{n_1 + n_2}$$

where

- *X*¹ is the number possessing the trait in the first sample.
- X₂ is the number possessing the trait in the second sample.

AN EXAMPLE

Given:

	South	East Side
	Side	
Number of working mothers with children under 5	$X_1 = 88$	X2 = 57
Number in sample	$n_1 = 200$	$n_2 = 150$
Proportion with children under 5 and mothers work	$p_1 = 0.44$	$p_2 = 0.38$

• α = 0.05

15 | P A G E

Find:

• Is the proportion on the south side larger than the east side?

Answer:

• Step 1: State the Null and Alternate Hypothesis

The hypotheses are: $\begin{array}{l} H_0: \pi_1 \leq \pi_2 \\ H_1: \pi_1 > \pi_2 \end{array}$

where

- π_1 refers to the proportion of working mothers on the south side.
- π_2 refers to the proportion of working mothers on the east side.
- Step 2: $\alpha = 0.05$
- Step 3: The Test Statistic is Z because we have all the necessary variables for the formula:

$$\sum \left\{ z = \frac{p_1 - p_2}{\sqrt{\frac{p_c(1 - p_c)}{n_1} + \frac{p_c(1 - p_c)}{n_2}}} \right\}$$

• Step 4: Formulate the Decision Rule

• Step 5: Make a Decision

16 | P A G E

$$p_c = \frac{X_1 + X_2}{n_1 + n_2} = \frac{88 + 57}{200 + 150} = 0.4143$$

$$z = \frac{p_1 - p_2}{\sqrt{\frac{p_c \left(1 - p_c\right)}{n_1} + \frac{p_c \left(1 - p_c\right)}{n_2}}} = \frac{0.44 - 0.38}{\sqrt{\frac{\left(0.4143\right)\left(1 - 0.4143\right)}{200} + \frac{\left(0.4143\right)\left(1 - 0.4143\right)}{150}}} = 1.13$$

- Since Zstatistic (=1.13) < Zcritical (= 1.65) \rightarrow Accept H0.
- Conclusion: We do not have enough evidence that the south side proportion is greater than the east side.

PART	111
T-TE	ST

- t-test is used when the Population Standard Deviation σ is unknown.
- It is used to test if there is a difference between means: either 1 sample or 2 samples.

A. 1 SAMPLE T-TEST

18 | P A G E

Example:

- There are 8 discs:
 - o 6.115
 - o 6.127
 - o 6.129
 - o 6.113
 - o 6.124
 - o 6.121
 - o 6.131
 - o 6.124
- The mean diamter is supposed to be 6.125.
- They follow Normal Distribution.
- Their Population Std. Dev o, is unknown.

• Question: Conduct Hypothesis Test to check is mean diamter = 6.125?

Answer:

• Step 1: State the Null and Alternate Hypothesis

$H_0: \mu = 6.125$ $H_1: \mu \neq 6.125$

$$H_1: \mu \neq 6.12$$

- o Null Hypothesis: Mean diameter is 6.125
- o Alternate Hypothesis: Mean diameter is not 6.125.
- Step 2: Select Level of Significance

 $\circ \alpha = 5\%$

0

• Step 3: Select the Test Statistic

19 | P A G E

- We choose the t test
- o Because it follows the Normal Distribution and the Population Std. Dev. Is unknown.
- Also because the sample size is small.
- Step 4: Formulate Decision Rule
 - o 2 Tailed Test:
 - We obtain the t-critical values from the t-table.
 - With df = 8-1 = 7 and $\alpha = 5\%$

			Confidence	e intervals,	c	
	80%	90%	95%	98%	99%	99.9%
		Level of	Significanc	e for One-Ta	ailed Test, o	t.
đť	0.10	0.05	0.025	0.01	0.005	0.0005
- 13		Level of	Significanc	e fo Two-T	ailed Test, o	e
	0.20	0.10	0.05	0.02	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.599
3	1.638	2.353	3.182	4.541	5.841	12.924
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.869
6	1.440	1.943	2 447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.408
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.78
10	1.372	1.812	2.228	2.764	3.169	4.58

20 | P A G E

• Step 5: Make the Decision:

BY HAND

We use:

$$t = \frac{X - \mu}{s / \sqrt{n}}$$

where t is the value of the test statistic.

- \overline{X} is the sample mean.
- μ is the population mean. (6.125 inches)
- *s* is the standard deviation of the sample.
- n is the sample size. (8)

$X - \overline{X}$	$(X-\overline{X})^2$	X^2	$\overline{X} = \frac{\Sigma X}{n} = \frac{48.984}{8} = 6.123$
-0.008	0.000064	37.393225	$\overline{\Sigma(X-\overline{X})^2}$ 0.000286
0.004	0.000016	37.540129	$s = \sqrt{\frac{n-1}{n-1}} = \sqrt{\frac{n-1}{n-1}}$
0.006	0.000036	37.564641	$=\sqrt{0.000040857} = 0.0063919 = 0.0064$
-0.010	0.000100	37.368769	The value of t is computed using:
0.001	0.000001	37.503376	$\bar{x} - \mu$ 6.123 - 6.125 - 0.002 0.8220
-0.002	0.000004	37.466641	$T = \frac{1}{s/\sqrt{n}} = \frac{1}{0.0064/\sqrt{8}} = \frac{1}{0.0022627} = -0.8839$
0.008	0.000064	37.589161	
0.001	0.000001	37.503376	
0.000	0.000286	299.929318	
	$\begin{array}{c c} X - \overline{X} \\ \hline -0.008 \\ \hline 0.004 \\ \hline 0.006 \\ \hline -0.010 \\ \hline 0.001 \\ \hline -0.002 \\ \hline 0.008 \\ \hline 0.001 \\ \hline 0.000 \\ \hline \end{array}$	$X - \overline{X}$ $(X - \overline{X})^2$ -0.008 0.000064 0.004 0.000016 0.006 0.000036 -0.010 0.000100 0.001 0.000001 -0.002 0.000004 0.008 0.000064 0.001 0.000001 0.002 0.00001 0.001 0.000286	$X-\overline{X}$ $(X-\overline{X})^2$ X^2 -0.008 0.000064 37.393225 0.004 0.000016 37.540129 0.006 0.000036 37.564641 -0.010 0.000100 37.368769 0.001 0.000001 37.503376 -0.002 0.000004 37.466641 0.008 0.000064 37.589161 0.001 0.000001 37.503376 0.001 0.000004 37.503376

- Since t-stat = -0.8839 which falls in between t-critical
- I.e. -2.365 < -.08839 < 2.365 → Accept H0.

BY EXCEL

- In Excel \rightarrow Data \rightarrow Data Analysis, we do not have t-test 1 Sample test.
- Thus, we need to create a Dummy (pretending as the 2nd Sample).

	F	ILE H	OME I	NSER	Г Р/	AGE LAYOU	FORM	ULAS D	ATA RE	/IEW	VIEW	
	Get I D	External R Data T	efresh All -	2↓ ∡↓	Z A Z Sort	Filter	Data C Tools •	وتي Dutline	Solver Data Analysi Analysis	s		
	B1	.0	• : [×	\checkmark	<i>fx</i>						
		А	В		С	D	E	F	G	Н		I
	1	Diameter	Dummy		ata Ana	alvsis				?	x	
	2	6.115	j	0	Analysi	s Tools						
	3	6.124	L I	0	Histon	ram				OK		
	4	6.129)	0	Movin	g Average				Cance	9	
	5	6.131	L	0	Rando Rank a	om Number G and Percentil	eneration					
57	6	6.127	7	0	Regres	ssion	C			<u>H</u> elp		77
\mathbb{N}	7	6.121	L	0	t-Test:	Paired Two	Sample for M	eans				Ľ
\vee	8	6.113	3	0	t-rest:	Two-Sample	Assuming Ed	quai varianc	es			\supset
	9	6.124	L	0	t-Test:	Two-Sample Two Sample	e Assuming U e for Means	nequal Varia	ances 🗸			
	10											
	4.4			T								

- Choose Variable 1 to be the Diameter Column.
- Choose Variable 2 to be the Dummy Column.
- Ensure that the Hypothesized Mean is 6.125
- Ensure that Alpha is 0.05.

22 | P A G E

Α	В	t-Test: Paired Two Sample for Means ? ×	
Diameter	Dummy	Input	
6.115	0	Variable <u>1</u> Range: SA\$2:\$A\$9	
6.124	U	Variable <u>2</u> Range: SB\$2:\$B\$9 Cancel	
6.129	0	Help	
6.131	0	Hypothesized Mean Difference: 6.125	
6.127	0	Labels	
6.121	0	Alpha: 0.05	
6.113	0	Output options	
6.124	0	Output Range: SA\$12	
		O New Worksheet Ply:	
		O New Workbook	

t-Test: Paired Two Sample for Means		
	Variable 1	Variable 2
Mean	6.123	0
Variance	4.08571E-05	0
Observations	8	8
Pearson Correlation	#DIV/0!	
Hypothesized Mean Difference	6.125	
df	7	
t Stat	-0.884995358	
P(T<=t) one-tail	0.202765452	
t Critical one-tail	1.894578605	
P(T<=t) two-tail	0.405530903	
t Critical two-tail	2.364624252	

Since the p-value (P(T<=t) two-tail) is = 0.4, which is bigger than Alpha (0.05), it means that the p-value has spread into H0 region → Accept H0.

23 | P A G E

B. 2 SAMPLES T-TEST

• Under Excel → Data → Data Analysis, we have 3 options for t-test 2 samples (see below picture):

- This means that the 2 samples are related/dependent on each other.
- "Before and after" studies e.g. Weight Loss Program.
- The samples are dependent because they are from the same individuals.
- o t-test: 2 Sample Assuming Equal Variances
 - This means that the 2 samples are unrelated to each other.
 - But they each have the same variance.
- o t-test: 2 Samples Assuming Unequal Variances
 - This means that the 2 samples are unrelated to each other.

24 | P A G E

- But they have different variances.
- O Under Excel → Data → Data Analysis, we do a F-Test: 2 sample for Variances to check whether are they Equal / Unequal variances.

25 | PAGE

C. USING F-TEST TO DETERMINE EQUAL OR UNEQUAL VARIANCES

- After determining that the 2 samples are independent, we need to check if they have Equal / • Unequal variances.
- After selecting all the 2 samples data, under Excel \rightarrow Data \rightarrow Data Analysis, click on F-Test: • 2 Sample for Variances.

Rating0

0.558717536

14.1372549

51

50

28.16078431

F-Test Two-Sample for Variances		
	Rating1	
Mean	16.86206897	
Variance	16.83743842	
Observations	29	
df	28	
F	0.597903746	
P(F<=f) one-tail	0.07268509	

- In this example, we have 2 samples: Rating 1 (Variance = 16.8) and Rating 0 (Variance = • 28.2).
- Can we conclude that their Variance is different because they are far apart?

F Critical one-tai

- The hypothesis is: •
 - H0: Both Variances are Equal 0
 - H1: Variance of Rating 0 is larger than Variance of Rating 1 0
- We see that the p-value ($P(F \le f)$ one-tail) = 0.07.
- If our $\alpha = 10\%$, then the p-value (0.07) < α (0.1)
- This means that we accept H1: they have Unequal Variances. •

26 | P A G E

Where:

- \overline{X}_1 is the mean of the first sample.
- \overline{X}_2 is the mean of the second sample.
- is the number of observations in the first sample. n_1
- is the number of observations in the second sample. n_2
- S_p^2 is the polled estimate of the population variance.

The formula is:
$$s_d = \sqrt{\frac{\Sigma(d-\overline{d})^2}{n-1}}$$

D. 2 SAMPLE POOLED T-TEST

1. ASSUMING EQUAL VARIANCES EXAMPLE

Given:

Accounting major

\$33,000	\$29,000	\$31,000	\$30,000	\$32,000
\$28,000	\$32,000	\$27,000	\$28,000	\$30,000

General Business major

\$30,000	\$31,500	\$29,000	\$29,500
\$28,000	\$29,500	\$28,000	\$26,500

- Accounting Major
 - Sample Mean $\overline{X1} = \$30k$
 - Sample Std. Dev. S1 = \$2k

Sample Size n1 = 100 Business Major

- Sample Mean $\overline{X2} = \$29k$
- Samples Std. Dev. S2 = \$1,512
- Sample Size n2 = 8

Find:

- Alpha = 0.05
- Does Accounting earn more?

Answer:

• Step 1: State the Null and Alternate Hypothesis

$H_0: \mu_1 \leq \mu_2$

*H*₁: $\mu_1 > \mu_2$

where

- μ1 refers to accounting majors (graduates).
- μ₂ refers to general business majors (graduates).
- Step 2: Alpha = 0.05
- Step 3: Select the Test Statistic
 - o Test Statistic chosen: t for 2 samples
 - o Assume Equal Variances
 - In this question, we just assume that both their Population Variations are Equal without needing to do the F test because we are going to pool both their Sample Variances together later on.
- Step 4: Formulate the Decision Rule

- Step 5: Calculate t statistic and t critical and make a decision
 - o By Hand:

29 | P A G E

$$s_p^2 = \frac{(n_1 - 1)(s_1^2) + (n_2 - 1)(s_2^2)}{n_1 + n_2 - 2} = \frac{(10 - 1)(2000)^2 + (8 - 1)(1512)^2}{10 + 8 - 2} = 3,250,188$$
$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{s_p^2}(\frac{1}{n_1} + \frac{1}{n_2})} = \frac{30,000 - 29,000}{\sqrt{(3,250,188)(\frac{1}{10} + \frac{1}{8})}} = \frac{1,000}{\sqrt{3,250,188(0.225)}} = 1.169$$

- Since 1.169 < 1.746
- ACCEPT H0
- Accounting Majors does not earn more!
- By Excel:

t-Test: Two-Sample Assuming Equal Variances

	Accounting	General Biz
Mean	30000	29000
Variance	4000000	2285714.286
Observations	10	8
Pooled Variance	3250000	
Hypothesized Mean Difference	0	
df	16	
t Stat	1.169410692	
P(T<=t) one-tail	0.129682486	
t Critical one-tail	1.745883676	
P(T<=t) two-tail	0.259364971	
t Critical two-tail	2.119905299	

Since p-value (=0.1297) > alpha (=0.05) → Accept H0.
 30 | P A G E

- 2. ASSUMING UNEQUAL VARIANCES EXAMPLE
- We do not have such an example.
- Rather, should we face this situation, we simply follow the steps above for "1. Assuming Equal Variances".
- But the only exception is:
 - o When we use Excel, select "t-test: 2 Samples Assuming Unequal Variances"
- Other than that, all other steps remain the same.
- Reason: Because whether or not Equal/Unequal Variances, we end up with "Pooling both Variances together" → Which ends up with the same results.

31 | P A G E

E. 2 SAMPLES PAIRED T-TEST EXAMPLE

Given:

	Fall	Spring
Student	Semester	Semester
А	2.7	3.1
В	3.4	3.3
С	3.5	3.3
D	3.0	2.9
E	2.1	1.8
F	2.7	2.4

Find:

- Alpha = 0.05
- Did the grades decline? I.e. Drop from Fall to Spring?

• Step 1: State the Null and Alternate Hypothesis

*H*₀: $\mu d \le 0$ *H*₁: $\mu d > 0$

- o H0: There is No Difference
- H1: There is a difference \rightarrow Fall Spring > 0
- Step 2: Level of Significance Alpha = 0.05
- Step 3: Select the Test Statistic
 - o t test 2 sample : PAIRED is chosen

32 | P A G E

- They are Paired = Dependent because we are testing back the same group of students
- o I.e. Exams Before and Exams After
- Step 4: Formulate the Decision Rule

- Appendix B2, t distribution
- n-1 = 6-1 = 5 degree of freedom

n: number of PAIRED observations

- where \overline{d} is the mean of the difference between the paired or related observations.
 - sd is the standard deviation of the differences between the paired or related observations.
 - *n* is the number of paired observations.

For a paired difference test, there are (n - 1) degrees of freedom.

The standard deviation of the differences s_d is computed using the familiar formula for the standard deviation except that d is substituted for X.

The formula is: $s_d = \sqrt{\frac{\Sigma (d - \overline{d})^2}{n - 1}}$

33 | P A G E

Student	Fall	Spring	d	(d - d)	$(d-\bar{d})^2$	$\bar{d} = \frac{\Sigma d}{\Sigma d} = \frac{0.6}{0.6} = 0.10$
Α	2.7	3.1	-0.4	-0.5	0.25	N 6
В	3.4	3.3	0.1	0	0	$s_d = \sqrt{\frac{\Sigma(d-\bar{d})^2}{1-\bar{d}^2}} = \sqrt{\frac{0.34}{1-\bar{d}^2}} = 0.2608$
С	3.5	3.3	0.2	0.1	0.01	" $\sqrt{n-1}$ $\sqrt{6-1}$
D	3.0	2.9	0.1	0	0	
Е	2.1	1.8	0.3	0.2	0.04	
F	2.7	2.4	<u>0.3</u>	0.2	0.04	
			0.6		0.34	
The <i>t</i> stati	stic is o	computed	by: <i>t</i> =	$=\frac{\overline{d}}{s_d / \sqrt{n}} =$	0.10 0.2608 / √	$\overline{6} = \frac{0.10}{0.1065} = 0.94$

- Since t statistic (=0.94) < t critical (=2.015) \rightarrow Accept H0.
- There is no difference, no drop in grades.

34 | P A G E

t-Test: Paired Two Sample for Means

	Fall Semester	Spring Semester
Mean	2.9	2.8
Variance	0.268	0.352
Observations	6	6
Pearson Correlation	0.89860815	
Hypothesized Mean Difference	0	
df	5	
t Stat	0.939336437	
P(T<=t) one-tail	0.195342008	
t Critical one-tail	2.015048373	
P(T<=t) two-tail	0.390684017	
t Critical two-tail	2.570581836	

• Since p-value (=0.195) > alpha (=0.05) \rightarrow Accept H0.

35 | P A G E

REFERENCES

Ang, A. (2019). Probability Models. Singapore.

36 | P A G E

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at <u>www.AlvinAng.sg</u>.

37 | P A G E