MULTIPLE REGRESSION USING PYTHON

DR. ALVIN ANG

1 | PAGE

Ι.	Introduction	3					
<i>II</i> .	I. Python – using Scikit Learn4						
(Adı	(Advertising.csv)4						
Α.	Load and Glance	4					
В.	Create the Linear Model	4					
C.	Produce the Model	5					
D.	Predict the Model	5					
E.	Predicting the Model Using X values	6					
<i>III.</i>	Python – Using Scikit Learn	7					
(Aut	tomobileEDA.csv)	7					
Α.	Part I: Load and Glance the Dataset	7					
В.	 PArt II: Generate a Multiple Linear Regression Equation	8 8 9 9					
C.	Part III: Distribution Plot	10					
	 Make a Prediction Visualize the Distribution Plot 	10 11					
П	Part IV: Use R2 and MSE as indicators to determine the accuracy of the MR fit	12					
υ.	1. Calculate the R2 for MR						
	a) Step 1: Fit the MR Model	12					
	b) Step 2: Find the R2	13					
	a) Step 1: Do a Prediction						
	b) Step 2: Find the MSE	13					
E.	Part V: Simple Linear Regression model (SLR) vs Multiple Linear Regression mode	el					
(N	ЛLR)	14					
	1. Recall back in Simple Linear Regression (SLR)	14					
	2. Now, for Multiple Linear Regression (MLR)	14					
	3. Comparison	14					
Abo	ut Dr. Alvin Ang	15					

CONTENTS

2 | P A G E

3 | P A G E

II. PYTHON – USING SCIKIT LEARN

(ADVERTISING.CSV)

A. LOAD AND GLANCE

- Dataset can be found here: <u>https://www.alvinang.sg/s/Advertising.csv</u>
- <u>https://www.alvinang.sg/s/Multiple Regression using Scikit Learn with Python by</u> <u>Dr Alvin Ang.ipynb</u>

B. CREATE THE LINEAR MODEL

4 | P A G E

- $Y \sim Sales$
- X ~ TV and Radio(advertising)

C. PRODUCE THE MODEL

D. PREDICT THE MODEL

```
new_X = [[300, 200]]
print(model.predict(new_X))
#If we spend $300 on TV advertising and $200 on Radio advertising,
```

#We should predict TV = 54 units sold.

[54.24638977]

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have valid "X does not have valid feature names, but"

5 | P A G E

E. PREDICTING THE MODEL USING X VALUES

<pre>model.predict(X)</pre>						
array([20.55546463,	12.34536229,	12.33701773,	17.61711596,	13.22390813,		
12.51208449,	11.71821241,	12.10551553,	3.7093792,	12.55169696,		
7.0358597,	17.25652015,	10.60866187,	8.81095051,	18.44466773,		
20.82891539,	12.90386507,	23.24107626,	9.94121476,	14.15384619,		
18.12139161, 15.6080206 , 21 64292187	14.74206357, 14.96769383,	6.51417168, 17.0463346,	16.54402663, 19.39954145,	8.14035215, 9.15929748, 7.56302763		
16.37872122,	23.36720719, 17.29870935,	15.6258994 , 21.5621537 ,	9.91257829, 13.96692266,	20.4405801 , 8.9009974 ,		
12.64569407, 21.30864743,	8.88644967, 9.31962792, 8.53774783,	20.66180115, 12.76239488,	16.28690268, 19.96126242, 21.89072858,	8.18162949, 20.35512357, 18.10746914,		
5.74497097,	22.90418658,	16.78413768,	13.18474853,	16.96570907,		
7.82652846,	8.98703456,	12.02066194,	18.95313425,	21.09369037,		
17.78350693,	10.63329605,	10.35113844,	9.91334008,	17.30983543,		
11.90970399,	4.48014809,	13.79239059,	8.78920329,	9.67621401,		
11.43621364,	14.6638809,	10.18272029,	14.41647235,	20.77350468,		
15.22002396.	11.58203354.	15.61872354.	11.75510286.	16.93110264.		
9.98714329,	4.51167896,	19.17972975,	21.26277229,	10.46708623,		
16.33347878,	12.62023117,	15.32904398,	24.12842563,	16.94651016,		

- There are 200 predicted values as shown above.
- It's a prediction of Y given the current X (TV / Radio) values.
- Note / remember that there are 200 rows of data
- In other words, we used these 200 rows of data for TV and Radio to predict the Sales.

+	C1	C2	C3	C4	C5	
		τv	Radio	Newspaper	Sales	
184	184	287.6	43.0	71.8	26.2	
185	185	253.8	21.3	30.0	17.6	
186	186	205.0	45.1	19.6	22.6	
187	187	139.5	2.1	26.6	10.3	
188	188	191.1	28.7	18.2	17.3	
189	189	286.0	13.9	3.7	15.9	
190	190	18.7	12.1	23.4	6.7	
191	191	39.5	41.1	5.8	10.8	
192	192	75.5	10.8	6.0	9.9	
193	193	17.2	4.1	31.6	5.9	
194	194	166.8	42.0	3.6	19.6	
195	195	149.7	35.6	6.0	17.3	
196	196	38.2	3.7	13.8	7.6	
197	197	94.2	4.9	8.1	9.7	
198	198	177.0	9.3	6.4	12.8	
199	199	283.6	42.0	66.2	25.5	
200	200	232.1	8.6	8.7	13.4	

6 | P A G E

III. PYTHON – USING SCIKIT LEARN

(AUTOMOBILEEDA.CSV)

- The dataset is here: <u>https://www.alvinang.sg/s/automobileEDA.csv</u>
- <u>https://www.alvinang.sg/s/Multiple Regression using Scikit Learn with Python Part II</u>
 <u>by Dr Alvin Ang.ipynb</u>

A. PART I: LOAD AND GLANCE THE DATASET

• Output:

/mbol	ing	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	 compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg	price
	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111.0	5000.0	21	27	13495.0
	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111.0	5000.0	21	27	16500.0
	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681	 9.0	154.0	5000.0	19	26	16500.0
	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630	 10.0	102.0	5500.0	24	30	13950.0
	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630	 8.0	115.0	5500.0	18	22	17450.0

vs × 29 columns

7 | PAGE

1. DEFINE OUR Z AND X

2. FIT THE LINEAR MODEL

8 | P A G E

- 3. STEP 4: FIND THE Z-INTERCEPT
- Z-Intercept refers to the A of the $Z = A + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4$

- 4. STEP 5: FIND THE GRADIENT
- Gradient refers to the b's of the $Z = A + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4$

- This means that the Multiple Linear Equation is
 - \circ Price = -15806
 - + 53 * horsepower
 - + 4.7 * curb-weight
 - + 81.5 * engine-size
 - + 36 * highway-mpg

9 | P A G E

C. PART III: DISTRIBUTION PLOT

- How do we visualize a model for Multiple Linear Regression?
- This gets a bit more complicated because you can't visualize it with regression or residual plot.
- One way to look at the fit of the model is by looking at the distribution plot:
- We can look at the distribution of the fitted values that result from the model and compare it to the distribution of the actual values.

1. MAKE A PREDICTION

10 | PAGE

2. VISUALIZE THE DISTRIBUTION PLOT

```
import seaborn as sns
%matplotlib inline
width = 12
height = 10

plt.figure(figsize=(width, height))
ax1 = sns.distplot(df['price'], hist=False, color="r", label="Actual Value")
sns.distplot(Y hat, hist=False, color="b", label="Fitted Values", ax=ax1)
plt.title('Actual vs Fitted Values for Price')
plt.xlabel('Price (in dollars)')
plt.ylabel('Proportion of Cars')
plt.show()
plt.close()
```

• Output:

- 0
- Comments:
 - We can see that the fitted values are reasonably close to the actual values, since the two distributions overlap a bit.
 - However, there is definitely some room for improvement.
 - MR is quite a good fit.

11 | P A G E

D. PART IV: USE R2 AND MSE AS INDICATORS TO DETERMINE THE ACCURACY OF THE MR FIT

- R2 has been explained here:
 - <u>https://www.alvinang.sg/s/How-to-Perform-Simple-Linear-Regression-using-Excel-Dr-Alvin-Ang-watermarked.pdf</u>
 - R squared, also known as the coefficient of determination, is a measure to indicate how close the data is to the fitted regression line.
- Mean Squared Error (MSE) has been explained here:
 - o https://www.alvinang.sg/s/Forecasting-by-Dr-Alvin-Ang-watermarked-hjr9.pdf
 - The Mean Squared Error measures the average of the squares of errors, that is, the difference between actual value (y) and the estimated value (ŷ).
 - 1. CALCULATE THE R2 FOR MR

a) Step 1: Fit the MR Model

12 | P A G E

- Comment:
 - $\circ~$ We can say that \sim 80.896 % of the variation of price is explained by this multiple linear regression "multi_fit".
 - 80% means that actually a MR model is a good fit...which means that the actual data is quite near the fitted line...
 - 2. CALCULATE THE MSE FOR MR
 - a) Step 1: Do a Prediction

b) Step 2: Find the MSE

The mean square error of price and predicted value using multifit is: 11980366.87072649

13 | P A G E

E. PART V: SIMPLE LINEAR REGRESSION MODEL (SLR) VS MULTIPLE LINEAR REGRESSION MODEL (MLR)

- 1. RECALL BACK IN SIMPLE LINEAR REGRESSION (SLR)¹...
- We used "highway-mpg" vs "price".
- The R2 for the SLR was: 0.49659118843391759
- The MSE for the SLR was: 3.16 x10^7
 - 2. NOW, FOR MULTIPLE LINEAR REGRESSION (MLR) ...
- In this article, we used Multiple Linear Regression (MLR):
 - o Horsepower,
 - o Curb-weight,
 - o Engine-size, and
 - o Highway-mpg vs Price
- The R2 for MLR was: 0.80896354913783497
- The MSE for SLR was: 1.2 x10^7
 - 3. COMPARISON...

	SLR	MLR
R2	0.497	0.809 (higher R2)
MSE	3.16 x10^7	<mark>1.2 x10^7</mark> (lower MSE)

• R2 in combination with MSE show that MLR seems like the better model fit in this case, compared to SLR.

¹ <u>https://www.alvinang.sg/s/Simple-Linear-Regression-using-Python-Dr-Alvin-Ang.pdf</u>

14 | P A G E

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at <u>www.AlvinAng.sg</u>.

15 | P A G E