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Finally, A Blueprint for Machine
Learning with R!
Machine Learning Made Easy with R offers a practical
tutorial that uses hands-on examples to step through real-world
applications using clear and practical case studies. Through
this process it takes you on a gentle, fun and unhurried journey
to creating machine learning models with R. Whether you are
new to data science or a veteran, this book offers a powerful set
of tools for quickly and easily gaining insight from your data
using R.

NO EXPERIENCE REQUIRED: Machine Learning Made
Easy with R uses plain language rather than a ton of equa-
tions; I’m assuming you never did like linear algebra, don’t
want to see things derived, dislike complicated computer code,
and you’re here because you want to try successful machine
learning algorithms for yourself.

YOUR PERSONAL BLUE PRINT: Through a simple to follow
intuitive step by step process, you will learn how to use the most
popular machine learning algorithms using R. Once you have
mastered the process, it will be easy for you to translate your
knowledge to assess your own data.

THIS BOOK IS FOR YOU IF YOU WANT:

• Focus on explanations rather than mathematical deriva-
tion.

• Practical illustrations that use real data.

• Worked examples in R you can easily follow and
immediately implement.

• Ideas you can actually use and try out with your own
data.



TAKE THE SHORTCUT: Machine Learning Made Easy
with R was written for people who want to get up to speed as
quickly as possible. In this book, you will learn how to:

• Unleash the power of Decision Trees.

• Develop hands on skills using k-Nearest Neighbors.

• Design successful applications with Naive Bayes.

• Deploy Linear Discriminant Analysis.

• Explore Support Vector Machines.

• Master Linear and logistic regression.

• Create solutions with Random Forests.

• Solve complex problems with Boosting.

• Gain deep insights via K-Means clustering.

• Acquire tips to enhance model performance.

QUICK AND EASY: For each machine learning algorithm, ev-
ery step in the process is detailed, from preparing the data for
analysis, to evaluating the results. These steps will build the
knowledge you need to apply them to your own data science
tasks. Using plain language, this book offers a simple, intuitive,
practical, non-mathematical, easy to follow guide to the most
successful ideas, outstanding techniques and usable solutions
available using R.

GET STARTED TODAY! Everything you need to get started
is contained within this book. Machine Learning Made
Easy with R is your very own hands on practical, tactical,
easy to follow guide to mastery.

Buy this book today and accelerate your progress!



Preface

This book is about understanding and then hands use of
machine learning algorithms for prediction and classi-
fication; more precisely, it is an attempt to give you

the tools you need to build machine learning models easily and
quickly using R. The objective is to provide you the reader with
the necessary knowledge to do the job, and provide sufficient
illustrations to make you think about genuine applications in
your own field of interest. I hope the process is not only bene-
ficial but enjoyable.

Caution!
On its own, this text won’t turn you into a machine learning
guru any more than a few dance lessons will turn you into
the principal dancer with the Royal Ballet in London. But if
you’re a working professional, economist, business analyst or
just interested in trying out new machine learning ideas, you
will learn the basics, and get to play with some cool tools. Once
you have mastered the fundamentals, you will be able to use
these ideas using your own data.

If you are looking for detailed mathematical derivations,
lemmas, proofs or implementation tips, please do not purchase
this book. It contains none of those things.

You don’t need to know complex mathematics, algorithms
or object-oriented programming to use this text. It skips all
that stuff and concentrates on sharing code, examples and il-
lustrations that gets practical stuff done.

Before you buy this book, ask yourself the following tough
questions. Are you willing to invest the time, and then work
through the examples and illustrations required to take your
knowledge to the next level? If the answer is yes, then by



all means click that buy button so I can purchase my next
cappuccino.

A Promise
No matter who you are, no matter where you are from, no mat-
ter your background or schooling, you have the ability to master
the ideas outlined in this book. With the appropriate software
tool, a little persistence and the right guide, I personally be-
lieve the techniques outlined in this book can be successfully
used in the hands of anyone who has a real interest.

When you are done with this book, you will be able to im-
plement one or more of the ideas I’ve talked about in your own
particular area of interest. You will be amazed at how quick
and easy the techniques are to develop and test. With only a
few different uses you will soon become a skilled practitioner.

I invite you therefore to put what you read in these pages
into action. To help you do that, I’ve created “12 Resources
to Supercharge Your Productivity in R”, it is yours for
FREE. Simply go to http: // www. AusCov. com and down-
load it now. It is my gift to you. It shares with you 12 of the
very best resources you can use to boost your productivity in
R.

Now, it’s your turn!

http://www.AusCov.com


Chapter 1

Introduction to Machine
Learning

We are living in the “quantum data generation age”.
Your computer tracks websites visited, social me-
dia collects data on your interests and friendships;

even your smartphone knows your location and favorite route
to work. Retailers, corporations, pharmaceutical companies,
local government and national governments are collecting, stor-
ing and analyzing more data than ever.

This introductory chapter:

• Outlines who this book is for.

• Answers the question “What is Machine Learning?”

• Provides an overview of the machine learning process.

• Explains how you can get the most out of this book.

• Provides information on getting and using R.

Buried deep in the ever-growing mountain of electronic dig-
its are complex relationships, new insights and groundbreaking
discoveries. Machine learning algorithms are designed to help
people like you extract this knowledge.

1



Machine Learning Made Easy with R

Who is this Book for?

It’s no accident that the words simple, easy and gentle appear
so often in this text. I have shelves filled with books about ma-
chine learning, statistics, computer science, and econometrics.
Some are excellent, others are good, or at least useful enough
to keep. But they range from very long to the very mathe-
matical. I believe many working professionals want something
short, simple with practical examples that are easy to follow
and straightforward to implement. In short, a very gentle in-
tuitive introduction to applied machine learning.

Also, almost all advice on machine learning comes from aca-
demics; this comes from a practitioner. I have been a practi-
tioner for most of my working life. I enjoy boiling down complex
ideas and techniques into applied, simple and easy to under-
stand language that works. Why spend five hours ploughing
through technical equations, proofs and lemmas when the core
idea can be explained in ten minutes and deployed in fifteen?

I wrote this book because I don’t want you to spend your
time struggling with the mechanics of implementation or the-
oretical details. That’s why we have Ivy league (in the US)
or Russell Group (in the UK) professors. Even if you’ve never
attempted to forecast anything, you can easily make your com-
puter do the grunt work. This book will teach you how to
apply the very best R machine learning tools for prediction
and classification.

What is Machine Learning?
Machine learning is a collection of algorithms that generate in-
sight from data. That insight might be used by humans or
other machines to make a decision. For example, a team of pri-
mary care researchers and computer scientists at Nottingham
University used machine learning algorithms for cardiovascu-
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CHAPTER 1. INTRODUCTION TO MACHINE . . .

lar disease risk assessment. The machine learning algorithms
were better than experienced medical doctors at gauging heart
attack risk:

“Machine-learning significantly improves accuracy
of cardiovascular risk prediction, increasing the
number of patients identified who could benefit from
preventive treatment, while avoiding unnecessary
treatment of others.”

Machine learning tasks

Machine learning is used for two primary tasks. The first task,
is forecasting future outcomes. For example, we might want to
optimize the traffic light sequences at a busy intersection. A
machine learning algorithm might be developed to predict the
five minute ahead traffic flow.

The second task, is classification of objects into specific
classes. For example, coffee beans are usually classified into
one of four grades (Specialty, Premium, Exchange, Standard).
An industrial scale purchaser of beans, might develop a ma-
chine learning algorithm to automatically grade bean quality.

Figure 1.1 illustrates the typical workflow used to develop
machine learning models. The sample data is collected, fea-
tures determined, and a machine learning algorithm selected.

The selected model is then trained on a specially selected
subset of the data, referred to as the training set or train sam-
ple. If the classification or predictive performance is acceptable,
the model is further validated on an independent test set. This
is a sub-sample of the original sample data not previously seen
by the model.

The entire process is iterative. Typically, many iterations
are required before a final model is selected. This model (or
models) is then deployed on new, previously unseen, real world
data.
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Sample 
Data
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Choose 
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Figure 1.1: Overview of the machine learning process
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Prediction accuracy versus interpretability

Whilst the primary interest of machine learning is accurate pre-
diction or classification, other empirical sciences such as econo-
metrics focus primarily on interpreting model parameters, often
in the light of prior economic theory.

Machine learning models often produce results which can-
not be matched by traditional empirical techniques. Unfortu-
nately, meaningful interpretation of model parameters is often
infeasible. For the most part, you will find a clear trade-off
between predictive accuracy and interpretability.

How to Get the Absolute Most Possible Ben-
efit from this Book
I want you to get the absolute most possible benefit from this
book in the minimum amount of time. You can achieve this
by typing in the examples, reading the reference material and
most importantly experimenting. This book will deliver the
most value to you if you do this.

It is always a good idea to study how other users and re-
searchers have applied a technique in actual practice. This is
primarily because practice often differs substantially from the
classroom or theoretical text books. To this end and to accel-
erate your progress, numerous applications of machine learning
use are given throughout this text. In addition, at the end of
each chapter is a list of selected readings. The reading provides
additional details on the applications discussed in the chapter.
Each article was included because they are very applied, writ-
ten in a style that is understandable, and throw additional light
onto how algorithms are used to solve real life challenges.

Successfully applying machine learning algorithms requires
work, patience, diligence and most importantly experimenta-
tion and testing. By working through the numerous applica-
tion, examples and suggested readings, you will broaden your
knowledge, deepen you intuitive understanding and strengthen
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your practical skill set.

Getting R
R is a free software environment for statistical computing and
graphics. It is available for all the major operating systems.
Due to the popularity of Windows, examples in this book use
the Windows version of R. You can download a copy of R from
the R Project for Statistical Computing.

Learning R
This text is not a tutorial on using R. However, as you work
through the examples you will no doubt pick up many tips and
tricks. If you are new to R, or have not used it in a while,
refresh your memory by reading the amazing free tutorials at
http://cran.r-project.org/other-docs.html. You will be
“up to speed” in record time!

Using Packages
If a package mentioned in the text is not installed
on your machine you can download it by typing
install.packages(“package_name”). For example, to
download the fpc package you would type in the R console:
install.packages("fpc")

Once the package is installed, you must call it. You do this by
typing in the R console:
require(fpc)

The fpc package is now ready for use. You only need type this
once, at the start of your R session.
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NOTE... �

If you are using Windows you can easily upgrade to
the latest version of R using the installr package.
Enter the following:
install.packages("installr")
installr :: updateR ()

Effective Use of Functions
Functions in R often have multiple parameters. The exam-
ples in this text focus primarily on the key parameters re-
quired for rapid model development. For information on addi-
tional parameters available in a function, type in the R console
?function_name. For example, to find out about additional
parameters in the prcomp function, you would type:
?prcomp

Details of the function and additional parameters will appear
in your default web browser. After fitting your model of inter-
est, you are strongly encouraged to experiment with additional
parameters.

I have also included the set.seed method in the R code
samples throughout this text to assist you in reproducing the
results exactly as they appear on the page.
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NOTE... �

Can’t remember what you typed two hours ago!
Don’t worry, neither can I! Provided you are logged
into the same R session you simply need to type:
history(Inf)

It will return your entire history of entered com-
mands for your current session.

Summary
I have found, over and over, that an individual who has expo-
sure to a broad range of modeling tools and applications will
run circles around the narrowly focused genius who has only
been exposed to the tools of their particular discipline. Knowl-
edge of how to build and apply machine learning models using
R will add considerably to your own personal toolkit.

The master painter Vincent van Gough once said

“Great things are not done by impulse, but by a se-
ries of small things brought together.”

Now let’s get started!

NOTE... �

As you use the ideas in this book successfully in
your own area of expertise, write and let me know.
I’d love to hear from you. Email or visit www.
AusCov.com.
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Suggested Reading
• Machine Learning for Heart Attack Risk: Weng

SF, Reps J, Kai J, Garibaldi JM, Qureshi N (2017) Can
machine-learning improve cardiovascular risk prediction
using routine clinical data? PLoS ONE 12(4): e0174944.
https://doi.org/10.1371/journal.pone.0174944

• Machine Learning Overview:

– Hooker, Giles, and Cliff Hooker. "Machine Learn-
ing and the Future of Realism." arXiv preprint
arXiv:1704.04688 (2017).

– Kavakiotis, Ioannis, et al. "Machine Learning and
Data Mining Methods in Diabetes Research." Com-
putational and Structural Biotechnology Journal
(2017).

– Libbrecht, Maxwell W., and William Stafford Noble.
"Machine learning applications in genetics and ge-
nomics." Nature Reviews Genetics 16.6 (2015): 321-
332.

– Stanisavljevic, Darko, and Michael Spitzer. "A
Review of Related Work on Machine Learning in
Semiconductor Manufacturing and Assembly Lines."
(2016).

Other
R user groups are popping up everywhere. Look for one in you
local town or city. Join it! Here are a few resources to get you
started:

• For my fellow Londoners check out: http://www.
londonr.org/.

• A global directory is listed at: http://blog.
revolutionanalytics.com/local-r-groups.html.
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• Another global directory is available at: http://
r-users-group.meetup.com/.

• Keep in touch and up to date with useful information in
my FREE newsletter. Sign up at www.AusCov.Com.
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Chapter 2

Decision Trees

Decision trees are one of the simplest forms of decision
model. They use sample data features to create deci-
sion rules that form a treelike structure. Decision trees

have their origin in the way humans make decisions. They are
popular because they present information visually in an easy
to understand tree format.

Decision trees can be used for both regression and classifi-
cation problems. They reduce a data sample to a manageable
set of rules which can be used to make a classification decision
or generate a prediction. In this chapter, you will:

• Gain an intuitive overview of how a decision tree works.

• Discover the divide and conquer approach to decision tree
construction.

• Explore the role of information, and walk through an ap-
plied example of it’s calculation.

• Examine how decision trees have been applied in real
world applications ranging from the design of intelligent
shoes, to predicting traffic accidents.

• Delve into their use for identifying counterfeit currency
using R.

11



Machine Learning Made Easy with R

Before jumping into the details, let’s begin by discussing what
decision tree analysis involves.

Understanding Decision Trees
In the 1990 movie Cadillac Man, fast-talking used car salesman
Joey O’Brien finds himself in a tight spot. The Mafia want their
money back, his teenage daughter goes missing, mistress one
is madly in love with him, as is mistress two but not her crazy
husband, and his ex-wife is on his tail demanding alimony. To
make matters worse, his boss tells him he has two days to sell
12 cars or he loses his job!

Suppose you are asked to build an automatic car buying
system to replace Joey after he has been fired, pummeled by
the Mob or crazy husband, and sentenced to a stint in the
“clink” for non-payment of alimony. The goal is to make a
“Yes” or “No” decision as vehicles are presented to you.

Fortunately, from Joey’s note book you discover that pur-
chase decisions were made using three features - road tested
miles driven, odometer miles, and age of the vehicle in years.

How can you use this information to create a decision rule?
One solution, shown in Figure 2.1, is to create a hierarchy of
rules, and use these to guide the Yes/No purchase decision. For
example, if the vehicle has less than 100 road tested miles the
decision is “No”. However, if the vehicle has more than 100 road
tested miles, and the odometer is less than 50,000 miles, the
decision is “Yes”.

As illustrated in Figure 2.1, a decision tree performs multi-
stage hierarchical decision making. It classifies data by creating
a hierarchy of rules about the features. The tree is made up of
leaves which contain both a feature and a decision rule. The
goal is to generate a hierarchy of decision rules that correctly
classify the data.

12
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Road tested miles

Odometer miles

Age in years

No

Yes

Yes No

Figure 2.1: Basic decision tree

NOTE... �

Decision tree rules are generated by recursively
partitioning the data.

Classifying a new example

Once the decision tree has been constructed, classifying a test
item is straightforward. True to its name, it selects a class
outcome by descending the tree of possible decisions. A new
data item is assigned to a class by following the path of rules
from the topmost node (root node), to a node without children
(leaf). When a leaf node is reached, the class label associated
with the leaf node is then assigned to the item.

As an illustration, suppose we are asked to make a decision
about a vehicle. The first question, asked at the root node
of the tree, is “How many road tested miles?” Suppose the
vehicle has been tested for 125 miles. We descend down the
>100 branch to the next node. That node asks about odometer
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miles. Suppose the value is 43,000. Then we descend, down the
left branch to the “Age in years node”. The car is nine years
old, so we end up in the Yes leaf, and purchase the vehicle.

The Divide and Conquer Algorithm
Decision trees are built by adding features and an associated
rule to nodes incrementally. They are typically built from
the root downwards using a recursive divide-and-conquer algo-
rithm. As illustrated in Figure 2.2, the basic approach starts
at the top node of the tree, where the data is split using a rule
derived by one of the features.

Root Node

Branch BBranch A

Rule 1

First Split

Figure 2.2: Root node and first split of a decision tree

The goal is to choose a feature and rule that splits the data
into correctly classified examples. This involves identifying the
feature that is the most “useful” for classification, and then
deriving a decision rule using the feature.

All features are tested to see which one is the best for split-
ting the data. Ideally, a single, simple rule would perfectly
split the training examples into their classes. However, in most
cases, this is not the case, and a rule is selected that sepa-
rates the examples as cleanly as possible. In Figure 2.2 this is
identified as Rule 1.
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After this stage, the tree consists of two new branches with
associated nodes, and one root node. As shown in Figure 2.3,
the branch nodes are then assessed. If the partition is “pure” in
the sense that all examples in a node belong to the same class
then stop. Label each leaf node with the name of the class.

For each branch the process is repeated to build the tree,
partitioning the samples to further improve the classification
purity of the data. The process continues until a stopping cri-
teria is reached, or the nodes classify all cases in their partition
correctly. A typical stopping criteria is to stop splitting the
data when new feature-rule combinations increase the purity
of the subsets by less than more a small amount.

Root Node

Branch BBranch A

Rule 1

First Split

Rule 2

Branch C Branch D Second  Split

Rule 3

Third SplitBranch E Branch F

Figure 2.3: Decision tree construction

NOTE... �

The Divide and Conquer Algorithm grows a tree
by recursively splitting the data into meaningful
subsets. Each new rule progressively refines the
classification in a hierarchical manner.
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Understanding Entropy
Decision tree algorithms require criteria by which to split the
data. In practice, different algorithms vary in the metric they
choose for this task. A popular metric is based on the entropy
of a sample.

Entropy is a measure of randomness in a system. For a
probability distribution with k classes, it is defined as:

Entropy =
∑
k

−pk log2 pk (2.1)

where pk is the probability an item belongs to the kth class.

NOTE... �

The maximum value of entropy depends on the
number of classes. In the binary case the maxi-
mum occurs at 1. For four classes it occurs at 2,
and for 16 classes the maximum is attained at 4.

Entropy for a binary random variable

To better understand entropy, let’s take a look at binary clas-
sification. The entropy function for a binary random variable
x is illustrated in Figure 2.4. Notice that:

• It reaches its maximum value of 1 when the probability
is 0.5. In other words the state of randomness or uncer-
tainty reaches a maximum when p(x = 1) = 0.5, and
there a 50-50 chance of either x = 1 or x = 0.

• The function reaches a minimum at 0 when p(x = 1) = 1
or p(x = 1) = 0. In other words, when we have complete
certainty.
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Figure 2.4: Binary entropy function

Importance of Entropy

Entropy is important for decision tree splits because it can
be used to calculate the homogeneity (sameness) of a sample.
In the case of binary classification, the sample is completely
homogeneous when entropy is zero. If there is equal uncertainty
about which class an observation belongs to, it has an entropy
of one. Therefore, decision trees choose a split for a given
partition that minimizes entropy in the partition’s distribution
of labels
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Calculating Entropy - A Step by Step Exam-
ple
Let us work through a simple example. Suppose you have been
asked by Joey O’Brien’s ex-boss to build a decision tree to help
consumers decide whether to test drive a car. You are given
29 observations as shown in Table 2. It contains three features
and the target variable Test Drive.

The first vehicle had positive reviews from consumers on
the internet, was fuel efficient, and the interior cab exhibited
low noise at high speed. It was taken for a test drive. The
second vehicle, had the same features as the first vehicle, but
was not taken for a test drive.

As illustrated in Table 1, of the 29 cars in the sample, 24
received positive reviews from consumers on the internet, 19 are
fuel efficient, and 20 have low interior noise on the motorway.

Feature Yes No Total
Positive Web Review 24 5 29

Feature Yes No Total
Fuel Economy 19 10 29

Feature Yes No Total
Low Noise 20 9 29

Table 1: Summary of counts on the features

18



CHAPTER 2. DECISION TREES

Positive Web Fuel Low Test
Obs Review Economy Noise Drive
1 Yes Yes Yes Yes
2 Yes Yes Yes No
3 Yes Yes Yes No
4 Yes Yes Yes Yes
5 Yes Yes Yes No
6 Yes Yes Yes Yes
7 Yes Yes Yes No
8 Yes Yes Yes Yes
9 Yes Yes Yes Yes
10 Yes Yes Yes Yes
11 Yes Yes Yes Yes
12 Yes Yes Yes Yes
13 Yes Yes Yes Yes
14 Yes Yes Yes No
15 Yes Yes Yes Yes
16 Yes Yes Yes Yes
17 Yes Yes Yes Yes
18 Yes Yes Yes Yes
19 Yes Yes Yes No
20 Yes No Yes No
21 Yes No No No
22 Yes No No Yes
23 Yes No No Yes
24 Yes No No No
25 No No No No
26 No No No No
27 No No No No
28 No No No Yes
29 No No No No

Table 2: Test drive data
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Step 1: Calculate the Entropy of the sample

The first step is to calculate the entropy for the sample given
that our target variable is Test Drive. It is calculated using
equation 2.1 as:

Esample = [−pdrive(x = yes) log2 pdrive(x = yes)]

− [pdrive(x = no) log2 pdrive(x = no)]

The probabilities can be calculated empirically from the sample
using the relative frequencies:

pdrive(x = yes) = 16
29 = 0.552

and

pdrive(x = no) = 13
29 = 0.448

Therefore:

Esample = [−0.552× log2 {0.552}]− [0.448× log2 (0.448)]

= 0.473 + 0.519 = 0.992

The value equals 0.992, and makes sense because the test drive
examples are almost a 50-50 split; so, the entropy should be
close to 1.

Step 2: Calculate Entropy of features

The next step is to calculate the weighted entropy given the
class for each of the features. After splitting using feature i, a
fraction pLi of the data goes to the left with entropy Ei(DL

i ); a
fraction pRi goes to the right node with entropy Ei(DR

i ).
The average entropy after splitting can be calculated as:

Ei(DL
i D

R
i ) = pLi × Ei(DL

i ) + pRi × Ei(DR
i )
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Notice that Ei(DL
i D

R
i ) is the entropy of feature i, Di is the

sample which has been partitioned into DL
i and DR

i due to some
split decision.

To illustrate this idea, consider the feature Fuel Economy.
Given the class (Test Drive). It is distributed as follows:

Fuel Economy
No Yes

Test Drive No 7 6
Yes 3 13

The weights pLi and pRi can be estimated as relative frequen-
cies from the data:

pLfuel(x = no|Test Drive) = 7 + 3
29 = 0.345

and:

pRfuel(x = yes|Test Drive) = 6 + 13
29 = 0.655

Next, we calculate the entropy on each branch of the split:

Efuel(DL
fuel) =

[
− 7

10 × log2

{ 7
10

}]
−
[ 3
10 × log2

( 3
10

)]
= 0.881

and

Efuel(DL
fuel) =

[13
19 × log2

{13
19

}]
−
[ 6
19 × log2

( 6
19

)]
= 0.90

Therefore:

Efuel(DL
fuelD

R
fuel) = (0.345× 0.881) + (0.655× 0.90)

= 0.893
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Figure 2.5 visualizes the situation.

Fuel
Economy

DL

No

DR

Yes

Entropy given Class (Test Drive)= 0.893

Entropy = 0.881
10 examples 

Entropy = 0.90
19 examples 

Figure 2.5: Characteristics of selected root node

Using a similar method we find Eweb(DL
webD

R
web) = 0.914, and

Enoise(DL
noiseD

R
noise) = 0.929. It appears Low Noise has the

most uncertainty (it is the closest to 1). On the other hand,
Fuel Economy has the most certainty.

Step 3: Determine the root node using information
gain

Information gain is the expected reduction in entropy caused
by partitioning the sample according to a given feature. It
measures the difference between the entropy of the parent node
and the expected entropy of the children. The feature with the
highest information gain is chosen as the root node.

For the root node, we can calculate it as the difference be-
tween the sample entropy and the entropy of a feature given
the class. For the feature Fuel Economy, the information gain
is:

Esample − Efuel = 0.992− 0.893 = 0.099
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This tells us the expected reduction in ‘uncertainty’ if we choose
Fuel Economy as our root node is 0.099.

For the feature Positive Web Review, it is:

Esample − Eweb = 0.992− 0.914 = 0.078

And for the feature Low Noise, we have:

Esample − Enoise = 0.992− 0.929 = 0.063

The information gain (reduction in uncertainty) is greatest
for Fuel Economy, and so it is selected as the root node.

The process is repeated for subsequent nodes, and the tree
stops growing when the information gain is less than a specific
threshold, i.e. 0.05.

NOTE... �

Decision tree algorithms use a number of impurity
measures. Other popular metrics include the gini-
index and distance-based metrics.

Advantages of Decision Trees
Decision tress capture every step in the decision-making pro-
cess. This is because each path through a tree consists of a
combination of rules about features which together help dis-
tinguish between classes. In other words, the rules provide an
explanation for an items classification.

Because a decision tree is built as a series of test questions
and conditions, it can be designed to be easy-to-understand,
with intuitively clear rules. Large trees can be presented as
sets of “if then” rules to improve human readability.

Decision trees are a non-parametric method. This means
they don’t make assumptions about the probability distribution
of the attributes or classes. They can handle categorical and
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numerical data, and are robust to outliers in the sample. In
addition, they require very little data preparation. There is
no need to normalize the data or create dummy variables; and
they can work with missing values.

Decision trees are computationally inexpensive, and work
well with large data-sets. Finally, once constructed, they clas-
sify new items quickly.

Practical Application of Decision
Trees
Decision tree algorithms have been successfully deployed in a
wide variety of areas. We look at three interesting applications
- intelligent shoes, the analysis of Micro Ribonucleic Acid, and
comparison of different decision tree algorithms for analyzing
traffic accidents.

Intelligent Shoes
Researchers Zhang et al develop a wearable shoe (SmartShoe)
to monitor physical activity in stroke patients. The data set
consisted of 12 patients who had experienced a stroke.

Supervised by a physical therapist, SmartShoe collected
data from the patients using eight posture and activity classes.
These included sitting, standing, walking, ascending stairs, de-
scending stairs, cycling on a stationary bike, being pushed in a
wheelchair, and propelling a wheelchair.

Patients performed each activity from between 1- 3 min-
utes. Data was collected from the SmartShoe every 2 seconds.
Features were computed using the collected sample data. Half
the feature sample was selected at random for the training set.
The remainder used for validation. The C5.0 algorithm was
used to build the decision tree.

The researchers constructed decision trees for each individ-
ual; and they also built decision trees for the entire group.
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The classification performance for five patients are shown in
Table 3. For patient 1, the individual tree had a classification
accuracy of 96.5%. The accuracy of the group decision tree for
the same patient was 87.5%.

As might be expected, the decision trees designed for a spe-
cific patient performed better than the tree fitted to the group.
For example, the accuracy of patient 5’s individual tree was
98.4%, however the group tree accuracy was 75.5%. The group
models were trained using data from multiple subjects, and
therefore might be expected to have lower overall predictive
accuracy than a patient specific decision tree.

Patient 1 2 3 4 5
Individual 96.5%. 97.4% 99.8% 97.2% 98.4
Group 87.5% 91.1% 64.7% 82.2% 75.5

Table 3: Zhang et al’s decision tree performance metrics

Micro Ribonucleic Acid
MicroRNAs (miRNAs) are non-protein coding Ribonucleic
acids (RNAs) that attenuate protein production in P bodies.
Scholars Williams et al develop a MicroRNA decision tree. For
the training set the researchers used known miRNAs associated
from various plant species for positive controls and non-miRNA
sequences as negative controls.

The typical size of their training set consisted of 5294 cases
using 29 attributes. The model was validated by calculat-
ing sensitivity and specificity based on leave-one-out cross-
validation.

After training, the researchers focus on attribute usage in-
formation. Table 4 shows the top ten attribute usage for a
typical training run. The researchers report that other training
runs show similar usage. The values represent the percentage
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of sequences that required that attribute for classification. Sev-
eral attributes, such as DuplexEnergy, minMatchPercent, and
C content, are required for all sequences to be classified. Note
that G% and C% are directly related to the stability of the
duplex.

Usage Attribute
100% G%
100% C%
100% T%
100% DuplexEnergy
100% minMatchPercent
100% DeltaGnorm
100% G + T
100% G + C
98% duplexEnergyNorm
86% NormEnergyRatio

Table 4: Top ten attribute usage for one training run of the
classifier reported by Williams et al.

An interesting question is if all miRNAs in each taxonomic
category studied by the researchers are systematically excluded
from training while including all others, how well does the pre-
dictor do when tested on the excluded category? Table 5 pro-
vides the answer. The ability to correctly identify known miR-
NAs ranged from 78% for the Salicaceae to 100% for seven of
the groups shown in Table 5.

Traffic Accidents

Researchers de Oña et al investigate the use of decision tress
for analyzing road accidents on rural highways in the province
of Granada, Spain. Regression-type generalized linear models,
Logit models and Probit models have been the techniques most
commonly used to conduct such analyses.
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Taxonomic Correctly % of full set
Group classified excluded
Embryophyta 94% 9.16%
Lycopodiophyta 100% 2.65%
Brassicaceae 100% 20.22%
Caricaceae 100% 0.05%
Euphorbiaceae 100% 0.34%
Fabaceae 100% 27.00%
Salicaceae 78% 3.52%
Solanaceae 93% 0.68%
Vitaceae 94% 4.29%
Rutaceae 100% 0.43%
Panicoideae 95% 8.00%
Poaceae 100% 19.48%
Pooideae 80% 3.18%

Table 5: Results from exclusion of each of the 13 taxonomic
groups by Williams et al.
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Three decision tree models are developed using three differ-
ent algorithms (CART, ID3 and C4.5). Nineteen independent
variables, reported in Table 6, are used to build the decision
trees.

Accident type Age
Safety barriers Cause
Lane width Lighting

Number of injuries Number of Occupants
Pavement width Pavement markings
Shoulder type Sight distance

Atmospheric factors Day of week
Paved shoulder Gender

Time Vehicle type
Month

Table 6: Variables used from police accident reports by de
Oña et al

The accuracy results of their analysis are shown in Table 7.
Overall, the decision trees showed modest improvement over
chance.

CART C4.5 ID3
55.87 54.16 52.72

Table 7: Accuracy results (percentage) reported by de Oña et
al

Even though de Oña et al tested three different decision
tree algorithms (CART, ID3 and C4.5), their results led to a
very modest improvement over chance. This will also happen
to you on very many occasions. Rather than clinging on to
a technique (because it is the latest technique or the one you
happen to be most familiar with), the professional seeks out
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and tests alternative methods. In this text, you have many
of the best machine learning techniques at your fingertips. If
decision trees don’t “cut it” try something else!

Example - Identifying Counterfeit
Currency
In Horatio Alger’s classic Timothy Crump’s Ward: A Story of
American Life, Abel Harding, a kind-hearted Baker, receives
a dollar in payment for goods in his store. He gives it to his
own daughter. Delighted with the cash, the child persuades
her mother, Mrs. Harding, to take her shopping for a new doll.
In the store, Mrs. Harding encounters a slight problem as she
attempts to pay with her daughter’s dollar:

The shopman took it in his hand, glanced at it care-
lessly at first, then scrutinized it with increased at-
tention.
"What is the matter?" inquired Mrs. Harding. "It
is good, isn’t it?"
"That is what I am doubtful of," was the reply.
"It is new."
"And that is against it. If it were old, it would be
more likely to be genuine."
"But you wouldn’t condemn a bill because it is
new?"
"Certainly not; but the fact is, there have been
lately many cases where counterfeit bills have been
passed, and I suspect this is one of them. However,
I can soon ascertain."
"I wish you would," said the baker’s wife. "My hus-
band took it at his shop, and will be likely to take
more unless he is put on his guard."
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The shopman sent it to the bank where it was pro-
nounced counterfeit.

In the 1860’s when Horatio Alger was writing, counterfeit cur-
rency was a serious issue. It remains with us today. In this
section, we build a decision tree to help identify counterfeit
currency.

Step 1 – Collecting and Exploring the Data
The banknote data-frame in the mclust package contains mea-
surements made on genuine and counterfeit Swiss 1000 franc
bank notes. Table 8 provides details of the features, and class
variable.

Variable Description Type
Status Genuine or counterfeit Class
Length Length of bill (mm) Feature
Left Width of left edge (mm) Feature
Right Width of right edge (mm) Feature
Bottom Bottom margin width (mm) Feature
Top Top margin width (mm) Feature
Diagonal Length of diagonal (mm) Feature

Table 8: Features and Class in banknote

Load the data, and take a look at the first few observations
using the head function:
data("banknote",package="mclust")
head(banknote)

Status Length Le f t Right Bottom Top Diagonal
1 genuine 214 .8 131 .0 131 .1 9 .0 9 .7 141 .0
2 genuine 214 .6 129 .7 129 .7 8 .1 9 .5 141 .7
3 genuine 214 .8 129 .7 129 .7 8 .7 9 .6 142 .2
4 genuine 214 .8 129 .7 129 .6 7 .5 10 .4 142 .0
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5 genuine 215 .0 129 .6 129 .7 10 .4 7 .7 141 .8
6 genuine 215 .7 130 .8 130 .5 9 .0 10 .1 141 .4

The first six banknotes are all genuine. The first example has
a length of 214.8, and diagonal of 141.0.

Let’s take a look at the last few observations via the tail
function:
tail(banknote)

Status Length Le f t Right Bottom Top Diagonal
195 c o un t e r f e i t 214 .9 130 .3 130 .5 11 .6 10 .6 139 .8
196 c o un t e r f e i t 215 .0 130 .4 130 .3 9 .9 12 .1 139 .6
197 c o un t e r f e i t 215 .1 130 .3 129 .9 10 .3 11 .5 139 .7
198 c o un t e r f e i t 214 .8 130 .3 130 .4 10 .6 11 .1 140 .0
199 c o un t e r f e i t 214 .7 130 .7 130 .8 11 .2 11 .2 139 .4
200 c o un t e r f e i t 214 .3 129 .9 129 .9 10 .2 11 .5 139 .6

The final few observations are all counterfeit. The last example,
has a length of 214.3, and a diagonal of 139.6.

Let’s use the table function to check on the distribution of
the class variable:

table(banknote$Status)

counterfeit genuine
100 100

As expected the sample consists of 200 examples composed of
100 counterfeit and 100 genuine banknotes.

Figure 2.6 shows a correlation plot of the features; Left
and Right have a relatively high correlation of 0.74; and
Diagonal is negatively correlated with all the features except
Length.
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Figure 2.6: Correlation plot of the features

Step 2 – Preparing the Data
The sample consists of measurements made on 100 genuine
and 100 counterfeit notes. We select 150 at random without
replacement for the training set via the sample function. The
remaining observations are used for the test set:
set.seed (2018)
N=nrow(banknote)
train <- sample (1:N, 150, FALSE)

Note that the R object train contains the row numbers of the
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train set data, and not the actual observations. To see this, use
the head function:
head(train)
[1] 68 93 12 39 199 59

This informs us that the first randomly selected example is from
row 68 of banknote. The second randomly selected example is
from row 93 of banknote, and so on.

Step 3 - Train Model using Train Set
We will use the C5 algorithm to build our decision tree. It uses
entropy for splits. The package C50 contains the decision tree
fitting function C5.0. Here is how to use it with our data:
library(C50)
fitc <- C5.0( Status ~.,
data = banknote[train ,] )

Here are a few observations on this set up:

• The C5.0 function takes a standard R formula, followed
by the training data.

• The formula tells R to build a model with Status as the
class variable. The argument “~.” instructs R to use all
of the features in banknote.

• Details of the fitted decision tree are stored in the R ob-
ject fitc.

Viewing the decision tree

We can use the plot function to visualize the decision tree:
plot(fitc)

You should see Figure 2.7. The root node contains the feature
Diagonal, with the first split occurring at 140.6. The second
node is the feature Bottom, and the final node is Length. Notice
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the decision tree did not use all of the attributes, only those
deemed to be most informative.

The leaf nodes indicate the number of observations, and the
proportion correctly classified. For example, Diagonal>140.6
results in 75 observations in Node 7, all of which appear to be
correctly classified.
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Figure 2.7: Decision tree using banknote

View rules

Since a decision tree is built as a series of test questions and
conditions, we can view the actual rules as a series of “if then”
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statements. With a large tree, this can improve readability. To
do this, simply refit the model via the C5.0 function with the
added argument rules=TRUE:
fitc_rules <- C5.0( Status ~.,
data = banknote[train ,],
rules=TRUE)

Now, to see the rules use the summary function:
summary(fitc_rules)

Rules:

Rule 1: (70, lift 2.0)
Bottom > 8.6
Diagonal <= 140.6
-> class counterfeit

Rule 2: (44, lift 2.0)
Length <= 214.8
Diagonal <= 140.6
-> class counterfeit

Rule 3: (75, lift 1.9)
Diagonal > 140.6
-> class genuine

Rule 4: (30, lift 1.9)
Length > 214.8
Bottom <= 8.6
-> class genuine

The rules are now visible, and pretty easy to understand. The
first rule states if Bottom > 8.6 and Diagonal ≤ 140.6
then the classification is counterfeit. The fourth rule in-
forms us that if Bottom ≤ 8.6 and Length > 214.8 then
the classification is genuine.
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Step 4 - Evaluate Model Performance
To explore how well the decision tree classified the training
sample we can use a combination of the predict and table
functions. The predict function takes the fitted tree as the
first argument, followed by the sample data. We set the third
argument type=“class” to return the class labels:
predc_train <-predict(fitc ,
newdata=banknote[train ,],
type = "class")
The prediction results are stored in the R object predc. Use
the head function to take a look at the first few values:
head(predc_train)
[1] genuine genuine genuine
[4] genuine counterfeit genuine
Levels: counterfeit genuine
We see that the first four train set banknotes are classified
by the decision tree as genuine. However, the fifth note is
classified as counterfeit.

How well did the decision tree classify the training sample?
We can use the table function to create a simple confusion
matrix:
table(banknote$Status[train],
predc_train ,dnn=c( "Observed Class",
"Predicted Class" ))

Predicted Class
Observed Class counterfeit genuine

counterfeit 73 0
genuine 0 77

Wow! The decision tree classifies all the examples correctly.
This is great! But before we get too excited, we have to remem-
ber that this is on the training set. Models often fit training
set data well, only to crash and burn when applied to the test
sample.

36



CHAPTER 2. DECISION TREES

Test set performance

Let’s see how well the model performed on the training sam-
ple. We follow the steps outlined previously. Pass fitc (our
fitted decision tree model) along with the test set sample to the
predict function.
predc <-predict(fitc ,
newdata=banknote[-train ,],
type = "class")

Notice we specify the test sample using the argument -train.
Now use the table function to display the confusion matrix:

table(banknote$Status[-train],
predc ,dnn=c( "Observed Class",
"Predicted Class" ))

Predicted Class
Observed Class counterfeit genuine

counterfeit 24 3
genuine 0 23

The test sample contains 50 observations. The decision tree
classifies all but 3 of these correctly. It is interesting to observe
it classified all of the genuine notes correctly. But, was fooled by
3 counterfeit notes, classifying them as genuine. Nevertheless, a
94% classification accuracy rate, without having to transform
the data to extract “relevant” features, is a nice place from
which to begin.

Step 5 - Improving Model Performance
The decision tree fitc correctly classified 94% of the test set
observations. This is rather high. How can we push the number
even higher?

One approach that often works well is to select an alterna-
tive splitting criterion. Three impurity measures or splitting
criteria that are commonly used in binary decision trees are
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Gini impurity, Entropy and Deviance. The tree package lets
you to use the Deviance or Gini metric. Let’s give it a go:
library(tree)
fit <- tree(Status ~.,
data = banknote[train ,],
split="deviance")

The tree function is similar to C5.0, however it allows you to
set the splitting criterion via the split argument. The options
are "deviance" and "gini".

NOTE... �

Gini is calculated as 1−∑k p
2
k

Viewing the decision tree

The decision tree can be visualized via the plot and text
function. Here is how:
plot(fit); text(fit)

Figure 2.8 shows the tree. For this illustration, by using de-
viance we end up with a simpler tree structure. As with
Figure 2.7, Diagonal is selected as the root node. However,
only Bottom makes the cut as an additional feature in the tree.

However, since both branches of Bottom lead to the
counterfeit classification, the decision tree breaks down into
the simple rule of thumb - If Diagonal <140.65, the ban-
knote is fake.
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|
Diagonal < 140.65

Bottom < 8.65

counterfeit counterfeit

genuine

Figure 2.8: Decision tree with deviance as the split criterion

Train set performance

A nice feature of the tree function is that classification perfor-
mance can be viewed using the summary function:
summary(fit)

C l a s s i f i c a t i o n t r e e :
t r e e ( formula = Status ~ . ,
data = banknote [ t ra in , ] ,
s p l i t = " deviance " )

Var i ab l e s a c t ua l l y used in t r e e con s t ru c t i on :
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[ 1 ] " Diagonal " "Bottom "
Number o f t e rmina l nodes : 3
Res idua l mean deviance : 0 .04578 = 6.73 / 147
M i s c l a s s i f i c a t i o n e r r o r ra t e : 0 .01333 = 2 / 150

The first few lines remind you of the formula used to fit the
tree. This is followed by the details of the variables used in
tree construction, and the number of leaf (terminal) nodes. The
model has a residual deviance of 0.045, with a misclassification
error rate of just over 1.33%. In other word 2 of the 150 training
examples were misclassified.

Test set performance

To see the test set performance, pass the predict function the
fitted model fit, and the test set data as follows:
pred <-predict(fit ,
newdata=banknote[-train ,])

Take a look at the last five predictions:
tail(pred ,5)

counterfeit genuine
178 1.0 0.0
187 0.6 0.4
190 1.0 0.0
195 1.0 0.0

The row numbers refer to the original row number in the
banknote dataframe. So, the first observation was item 178 in
the original banknote dataframe. The columns report proba-
bilities. So, according to the decision tree, the first observation
in the list above has a 100% probability of being counterfeit.
The second observation has a 60% probability. In both cases,
we would classify the observations as counterfeit.

Now let’s calculate the confusion matrix. For each row we
take the column name of the predicted class, and store the
result in the R object pred.class:
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pred.class <- colnames(pred)[max.col(pred ,
ties.method = c("random"))]

Take a look at the first few predictions, to ensure they match
with our previous observations:
tail(pred.class ,5)
[1] "counterfeit" "counterfeit" "

counterfeit" "counterfeit" "counterfeit"

Yep, as expected the last few observations are classified as
counterfeit.

Next, we use the table function to create the confusion
matrix:
table(banknote$Status[-train],
pred.class ,
dnn=c( "Observed Class",
"Predicted Class" ))

Predicted Class
Observed Class counterfeit genuine

counterfeit 27 0
genuine 0 23

The model correctly classifies all of the test set examples. The
decision tree has achieved a classification accuracy of 100%.

In this illustration, the use of an alternative split criteria
improved the test set performance of the decision tree. How-
ever, at the outset of the model building process, there is little
guidance on which split method to use. The best you can do
is to experiment to see what works best for your data.

Limitations of Decision Trees
Although decision trees have proven to be a robust and power-
ful machine learning tool, they have several limitations. One of
the key being instability. If the sample data is changed slightly,
the decision tree can change a lot. This hampers interpretation.
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Overfitting

Another weakness of decision trees is they are prone to over
fitting. This occurs when statistically insignificant patterns
end up influencing classification results. This is most likely to
occur when the data contain a small number of examples, or if
the data is very noisy.

A while back researchers M. Bohanec and I. Bratko studied
the role of pruning a decision tree for better decision making.
They found that pruning can reduce the risk of over fitting
because it results in smaller decision trees that exploit fewer
features. Pruning a fully developed tree using a statistical test
of redundancy may reduce the likelihood of overfitting.

Another way to reduce the likelihood of overfitting, is to
stop growing the tree before it perfectly classifies the training
data.

Simplicity of the Decision Boundary

Traditional decision trees create a decision rule one attribute
at a time. The decision rule partitions the sample via a se-
ries of axis parallel splits into rectangular regions as shown in
Figure 2.9. This limits the complexity of the decision boundary
that can be constructed.

Oblique decision trees replace single feature axis parallel
splits by creating rules based on a weighted combination of
features. They can be used to produce a richer set of decision
boundaries.

Figure 2.10, illustrates an oblique decision tree to classify
a given vehicle silhouette as one of four types of vehicle (van,
bus, opel, saab). The root node rule is a combination of three
features Max.L.Ra, Sc.Var.Maxis and Elong. The decision
rule is:
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6.4 − 1.42 × Max.L.Ra + 0.03 × Sc.V ar.Maxis − 0.12 ×
Elong < 0

It is clearly a more complex decision rule than that produced
by an axis parallel split tree.

Rule 1

Rule 2

R
u

le
 3

Figure 2.9: Axis parallel splits of a traditional decision tree

NOTE... �

Oblique decision trees can be estimated via
the oblique.tree function in the oblique.tree
package.
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|
6.4−1.42Max.L.Ra+0.03Sc.Var.maxis−0.12Elong<0

25.94−1.11Max.L.Ra−0.01Sc.Var.maxis−0.35Elong<0

10.09+0.16Max.L.Ra−0.02Sc.Var.maxis−0.09Elong<0

−18.32+0.18Max.L.Ra+0.01Sc.Var.maxis+0.36Elong<0

van

opel saab

bus

bus

Figure 2.10: Oblique decision tree

Local Optimality

As illustrated in Figure 2.9, decision trees use recursive parti-
tioning in a forward stepwise search. This results in the best
possible choice at each node. However, it does not take into
consideration whether those choices remain optimal in later
stages. In other words, a traditional decision tree makes a
locally optimal decision at each node rather than finding the
globally optimal tree.

Although the approach is known to be an efficient heuristic,
it is possible that a rule developed at an earlier node may be
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sub-optimal in the overall scheme of things.
It turns out that finding the globally “optimal tree”, if one

exists, is computationally intractable (or NP-hard, technically
speaking). One solution is to construct decision trees via an ap-
proximately globally optimal method. Evolutionary algorithms
offer one alternative way to do this.

NOTE... �

A decision tree using an evolutionary algorithm
can be built via the evtree package.

Summary
In this chapter, we discovered one of the most popular tools in
machine learning - the decision tree. It is a particularly useful
tool for discovering rules, and is especially valuable if the rules
are required to be interpretable by humans.

We explored how decision trees have been used in practice
and built our own models in R. We also examined the impact
of different split metrics and assessed their impact on overall
performance.

In the next chapter, we discuss another very simple, yet
powerful classification algorithm, k-Nearest Neighbors.
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k-Nearest Neighbors

The k-Nearest Neighbors algorithm(KNN) is one of those
machine learning algorithms that is very simple to un-
derstand and works incredibly well in practice. It is a

non-parametric algorithm. Non-parametric simple means that
the algorithm makes no assumptions about the probability dis-
tribution generating the sample data. This is different from
many of the other algorithms we discuss in this book. For ex-
ample, linear regression assumes the model error is Gaussian.
Real world data tends to violate theoretical assumptions, and
therefore non-parametric algorithms like KNN come in handy.

In this chapter, you will

• Gain clarity on how KNN works, in theory and practice
works.

• Learn about distance metrics and how to use them.

• Walk through a step by step example of KNN calcula-
tions.

• Delve into their use for classifying animal and human
behavior.

• Build a KNN model to identify wine cultivars.

We begin by outlining the basic idea behind KNN.
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Understanding Nearest Neighbors
The basic idea is illustrated in Figure 3.1. We would like to
predict the class of the empty oval. One simple way to do this
is to look around for objects that are close to the empty oval,
and choose the most frequent as the predicted class. This is
precisely what KNN does.

KNN uses a local neighborhood to obtain a classification
prediction. The assumption is that items in this neighborhood
are likely to be similar to the empty oval. It searches for items
closest to the empty oval. The size of the local neighborhood
to be searched is determined by the parameter k.

Suppose we set k = 3. This tells the algorithm to use the 3
closet items to the empty oval. In Figure 3.1 the three nearest
neighbors are all solid ovals. All three are from the same class,
therefore the prediction is solid oval.

?
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Figure 3.1: Simple illustration of KNN

Measuring Closeness with Distance Metrics
KNN calculates the distance between the points that require
classification and its neighbors. The predicted class is then de-
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termined by a majority vote. How can we measure the “close-
ness” of a neighbor?

The distance between observations i and j can be measured
in many ways. Euclidean distance is often used for continuous
features. It is calculated as:

D(xi, xj) =
√√√√ n∑
m=1

(xim − xjm)2 (3.1)

where n is the number of features. Other popular metrics in-
clude the Manhattan distance:

D(xi, xj) =
n∑

m=1
|xim − xjm|; (3.2)

The Minkowski metric:

D(xi, xj) =
(

n∑
m=1

(|xim − xjm|)q
) 1

q

;

And the Canberra metric:

D(xi, xj) =
n∑

m=1

|xim − xjm|
|xim|+ |xjm|

(3.3)

Both Euclidean distance and the Manhattan distance can
be regarded as special cases of Minkowski distance. The Eu-
clidean distance results from the selection q = 2, the Manhat-
tan distance for the parameter value q = 1. The Canberra
distance is a weighted version of the Manhattan distance.

NOTE... �

If you change the distance function, you change
how data points are classified.
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An Example to Boost Your Understanding
Abalone are, mostly sedentary, marine snails and belong to a
group of sea critters (phylum Mollusca) which include clams,
scallops, sea slugs, octopuses and squid. They cling to rocks
while waiting for their favorite food of kelp to drift by. Once
the seaweed is spotted they hold it down, with what can only
be described as a “foot”, and chew on it vigorously (for a snail)
with radula - a rough tongue with many small teeth.

Given the healthy diet of fresh kelp, it is little wonder these
mollusks are considered delicious raw with a little lemon, or
gently pan-fried tossed in garlic and butter. They are deemed
to be so flavorful that the demand for consumption outstripped
supply over many years.

Today, the white abalone is officially listed as an endangered
species. Other species remain plentiful, are harvested regularly
to the delight of foodies, restaurant goers and seafood chefs.

Tasmania supplies around a quarter of the yearly world sup-
ply of abalone. The majority of which are either blacklip or
greenlip abalone. Let’s walk through KNN for classification of
blacklip and greenlip abalone.

Suppose we are given some standardized data points on age,
weight and type of abalone, as illustrated in Figure 3.2. Our
goal is to find the class label for the new point denoted with a
question mark.

Sample observations

The sample observations are shown in Table 9. A total of eleven
labeled observations are available, and our task is to predict the
class of the 12th observation, which has a standardized age of
0.807 and a standardized weight of -0.963.
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Figure 3.2: Abalone illustration

Observation Age Weight Class

1 -1.015 -0.797 blacklip

2 -0.223 -0.458 blacklip

3 0.569 -0.12 blacklip

4 -1.411 -1.135 blacklip

5 -0.223 0.523 blacklip

6 1.123 -1.169 blacklip

7 -1.174 0.117 blacklip

8 0.173 -0.425 greenlip

9 1.757 0.218 greenlip

10 0.807 2.215 greenlip

11 -0.382 1.031 greenlip

12 0.807 -0.963 ?

Table 9: Attribute and class for each observation
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Calculate distance

To illustrate the calculation, I use Euclidean distance. So for
example, the distance between new observation x12 and the
11th observation x11 is calculated as:

D(x12, x11) =
√

(x12 1 − x11 1)2 + (x12 2 − x11 2)2

=
√

(0.807− (−0.382))2 + (−0.963− 1.031)2

=
√

1.414 + 3.976

=
√

5.390

= 2.322

Classification prediction

Table 10 shows the distances for all eleven observations where
the closest observation has a rank of 1.

Let’s set k= 3, to use the three closest observations. Do-
ing this, we see the nearest neighbor is observation 6 which is
classified as blacklip, followed by observation 8 which is classi-
fied as greenlip, followed by observation 3 which is classified as
blacklip. Using these three neighbors and majority voting, the
new observation is classified as blacklip.
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Observation Age Weight Distance Rank Class

1 -1.015 -0.797 1.830 7 blacklip

2 -0.223 -0.458 1.147 4 blacklip

3 0.569 -0.12 0.876 3 blacklip

4 -1.411 -1.135 2.225 8 blacklip

5 -0.223 0.523 1.808 6 blacklip

6 1.123 -1.169 0.377 1 blacklip

7 -1.174 0.117 2.256 9 blacklip

8 0.173 -0.425 0.832 2 greenlip

9 1.757 0.218 1.516 5 greenlip

10 0.807 2.215 3.178 11 greenlip

11 -0.382 1.031 2.322 10 greenlip

12 0.807 -0.963 - - blacklip

3 nearest neighbors

Class Prediction

Table 10: Euclidean distances and rank by closeness

Advantages of k-Nearest Neighbors
KNN is very simple to understand. It is easy to implement. Be-
cause the process is transparent, it is also very easy to explain
to professionals not versed in machine learning or mathematics.

It is also an instance based learning algorithm. Instance
based learning algorithms memorize the sample data. There is
no explicit training or model. Any generalization beyond the
training sample is delayed until a query is made to the system
by an new instance (data sample).

Practical Application of k-Nearest
Neighbors
Figuring out species type is a common problem in science.
KNN has been used successfully for this task. We outline the
approach a group of researchers used to classify plant species.
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Whether you prefer to watch other humans, or the animals.
Human and animal behavior is fascinating. We also discuss
how KNN has been used to successfully identify behavior.

Leaf Classification
In Lisa D. Lee’s compelling Mystery of the Jaguar Moon, an
investigative team of scientists explore an ancient Mayan tem-
ple located in the Yucatan Peninsula of Mexico. Federico, one
of the team members, takes care to document the plant life:

“Federico diligently photographed and made detailed
drawing of each leaf, flower, root...Most were de-
picted with a dizzying array of color and intricacy.
They were by far more intriguing than the digi-
tal photos because of the human interpretation and
character inherent in them.”

Leaf morphology is useful for species identification, that is why
Federico took such painstaking care. Of course, if the team
of scientists had included a Statistician, it might have been
suggested that KNN help assist in the task.

In the real world, researchers at Xiamen University in
China, collected 350 images from seven plant species. KNN
was one of the machine learning algorithms used for classifi-
cation. The researchers extracted four features based on leaf
tooth morphology.

The training sample consisted of half of the images selected
at random without replacement. The remaining images formed
the test sample.

Classification of the KNN model was performed using the
two nearest neighbors (k=2). The researchers observed a classi-
fication accuracy of 72.3%. This was not statistically different
from the classification performance of a much more complex
neural network.
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Classifying Human Activity
A triaxial accelerometer is an electromechanical device that
measures acceleration forces across three axis. They can be
used to detect activity such as running and walking. Alessio
Martinelli, Simone Morosi, and Enrico Del Re use accelerom-
eter data to classify movements such as walking, walking up
stairs and walking down stairs.

The sample data was collected from 10 individuals wearing
a belt mounted smart phone that generated triaxial accelerom-
eter signals.

The signals were processed via a Fast Fourier Transform
and low-pass filtering to extract 24 features. Three KNN mod-
els were tested (k=1, k=10 and k=100) with the goal of clas-
sifying walking (walk), walking up-stairs (up), walking down-
stairs(down).

Performance was assessed using 10-fold cross validation.
The confusion matrix of the best performing KNN is shown
below:

Predicted Class
walk up down

Actual walk 94.6% 4.6% 0.7%
Class up 7.7% 89.7% 2.6%

down 5.7% 9.9% 84.4%

The class specific accuracy is highest (94.6%) for walking;
and the KNN model has an average classification accuracy of
89.5%. The researchers comment:

“...the KNN model has obtained very good accuracy
results in classifying the testing movements.”

Identifying Animal Behavior
One of the neat things about KNN is that it often works well
with very little, if any data preprocessing. Owen Bidder from
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the College of Science at Swansea University in Wales, collected
raw triaxial accelerometer data. He then used KNN to predict
behavior from this data:

“The purpose of this study was to illustrate that the
KNN method could be used to identify automati-
cally the behavioural modes of animals equipped with
accelerometers recording at high sample rates, and
that this approach is applicable for large, complex
datasets.”

Accelerometer data was collected on various animals and hu-
mans engaged in motion based activities. For example, the
human accelerometer data consisted of four classes - Lying,
Walk, Run, and Crawl.

Each sample consisted of training and testing segments
equivalent to 1000 and 2000 data points respectively. The
raw data for all three axis of acceleration were fed into the
KNN algorithm, and it’s classification performance assessed.
Twenty-one nearest neighbors (k=21) were used in the KNN
algorithm.

The classification accuracy of the model is given in Table 11.

Item Accuracy %
Badger 0.71
Camel 0.82
Comorantl 0.77
Cheetah 0.77
Dingo 0.83
Kangaroo 0.91
Wombat 0.76
Human 0.95

Table 11: KNN classification result

There is some variability in performance, with accuracy
highest in humans and lowest in the badger. Nevertheless, this
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level of performance derived directly using raw data is very
encouraging. Owen Bidder and his co-researchers conclude:

“Our results show that animal behavioural modes
can indeed be successfully identified automatically
using the KNN method and that, with a mean Ac-
curacy of 78%, they are comparable to results gained
using more complex automated methods.”

Example - Identifying Wine Cultivars
The quality of a fine wine is a complex combination of many in-
dividual constituents, some originating in the grapes, and oth-
ers produced during fermentation. Certain individuals possess
an unnatural ability to identify a fine wine and its vineyard.
Take for example, Richard Pratt, the priggish middle aged pot-
bellied epicurean, in Roald Dahl’s Taste.

At an upscale dinner party, Mike Schofield, a working-class
man, who has made some money on the stock market, makes a
high-risk bet. He has purchased a fine wine from a little-known
vineyard, and challenges Richard Pratt, the famous gourmet,
to identify the source.

The stakes are high, if Mike wins he acquires two houses; If
he loses, his daughter becomes Richard Pratt’s wife.

The room goes quiet. Total silence. Everyone watching
Richard. He pauses, picks up the wine glass, examines the
color, sniffs the aroma, tastes the wine, closes his eyes. Then
slowly, very slowly a sly smile creeps across his face...

In this section, we develop a KNN model to classify wine
cultivars. The hope is that such systems can outperform the
Richard Pratt’s of this world.

Step 1 – Collecting and Exploring the Data
The wine dataset from the rebmix package contains 13 features
derived from chemical analyses of three types of wine from the
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same region in Italy, see Table 12.

Item Description Type
Alcohol continuous. Feature
Malic.Acid continuous. Feature
Ash continuous. Feature
Alcalinity.of.Ash continuous. Feature
Magnesium continuous. Feature
Total.Phenols continuous. Feature
Flavanoids continuous. Feature
Nonflavanoid.Phenols continuous. Feature
Proanthocyanins continuous. Feature
Color.Intensity continuous. Feature
Hue continuous. Feature
OD280.OD315.of.Diluted.Wines continuous. Feature
Proline integer. Feature
Cultivar 1, 2 or 3 Class

Table 12: The wine dataset

The class variable represents three different cultivars. The
sample contains 178 examples:
data("wine",package ="rebmix")

Figure 3.3 shows a bar-plot for the class variable
wine$Cultivar. Clearly, the sample is somewhat unbal-
anced. However, the class distributions are not extreme, and
will likely not cause an issue in our analysis.

Figure 3.4 presents the correlation plot for the attributes.
The pairwise correlations range from strongly positive to mildly
negative.
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Figure 3.3: Bar-plot of target variable - wine$Cultivar
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Figure 3.4: Correlation plot of wine features

59



Machine Learning Made Easy with R

Step 2 – Preparing the Data
Earlier we saw that Owen Bidder successfully performed KNN
classification using features obtained from raw triaxial ac-
celerometer data. The performance of KNN depends critically
on the distance metric. For this reason, you should typically
normalize or scale the features so that they are approximately
in the same range. If you don’t do this, features with larger
ranges will be treated as more important.

Figure 3.5, illustrates the situation for the wine features.
Clearly, Proline has a much larger range than the other fea-
tures, and therefore dominates the box-plot.
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Figure 3.5: Box-plot of raw wine features

Let’s transfer the features to the R object data_sample. We
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can scale the features to have a mean of zero and a standard
deviation of 1, using the scale function:
data_sample <-wine [ ,1:13]
data_sample <-scale(data_sample)

Figure 3.6 shows the box-plot of the scaled features. They
appear more balanced, with no single feature dominating the
plot.
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Figure 3.6: Box-plot of scaled wine features
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NOTE... �

Irrelevant and noisy features should be removed
from the sample. They add random variations to
the distance measures, and therefore are likely to
hamper classification performance.

Train and test samples
A random sample, without replacement, can be specified via
the sample function, and setting the replace argument to
FALSE. We will select 89 observations without replacement for
our training sample:
set.seed (2016)
n=nrow(data_sample)
train <- sample (1:n, 89, replace = FALSE)

The first line uses the set.seed function for reproducibility.
The object n contains the total number of observations in the
sample (178); and train contains the row numbers of the ran-
domly selected training sample.

To view the first few values in train use the head function:
head(train)
[1] 33 26 149 24 84 21

The first randomly selected example is row 33 of wine. The
second, from row 26, and so on.

Step 3 - Train Model using Train Set
There are numerous options for estimating a KNN model in
R. We use the knnVCN function from the knnGarden package.
This package allows us to specify various distances metrics.
Here is how to fit a KNN using the nearest two neighbors:
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require(knnGarden)
fit1 <-knnVCN(data_sample[train ,],
wine$Cultivar[train],
data_sample[-train ,],
K = 2,
method = "canberra")

Let’s take a moment to run through this code. The first argu-
ment of knnVCN receives the train set features. This is followed
by the class variable. The parameter K controls the number of
neighbors used in the analysis. We set K=2. The final line
specifies the distance metric, we use Canberra distance given
in equation 3.3. The R object fit1 contains the fitted model.

Step 4 - Evaluate Model Performance
The predicted values for the test set data are stored in
fit1$TstXIBelong. We use these values alongside a confusion
matrix to evaluate performance. The table function helps out
here:
tab1 <-table(fit1$TstXIBelong ,
wine$Cultivar[-train])
tab1

1 2 3
1 27 2 0
2 0 34 3
3 0 1 22

The confusion matrix informs us that the KNN algorithm clas-
sifies the majority of cases correctly. The error rate is:

Error rate = 2 + 3 + 1
89 = 6.74%

And the overall classification accuracy using the test set data
is:

Accuracy = 1− error rate = 93.26%
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Step 5 - Improving Model Performance
Our initial model has a high classification accuracy. How might
we improve it further? One solution is to try an alternative
distance matrix. At the outset of a study using KNN, it is
unclear which distance metric will deliver the optimal perfor-
mance. Unfortunately, there are no reliable rules of thumb to
follow, so the best path is usually experimentation.

For illustration, we the fit the exact same model as fit1,
except with Euclidean distance:
fit2 <-knnVCN(data_sample[train ,],
wine$Cultivar[train],
data_sample[-train ,],
K = 2,
method = "euclidean")

tab2 <-table(fit2$TstXIBelong ,
wine$Cultivar[-train])

tab2

1 2 3
1 27 3 0
2 0 34 1
3 0 0 24

In the case, the model misclassified 4 observations on the test
set sample. The overall test set accuracy is a little higher at
95.5%

Changing k

The number of neighbors is a key parameter in the KNN algo-
rithm. Its optimal value is often determined by experimenta-
tion. Suppose we take fit2 and use the three nearest neigh-
bors. What impact will this have on test set performance?
Let’s find out:
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fit3 <-knnVCN(data_sample[train ,],
wine$Cultivar[train],
data_sample[-train ,],
K = 3,
method = "euclidean")
tab3 <-table(fit3$TstXIBelong ,
wine$Cultivar[-train])

tab3

1 2 3
1 27 2 0
2 0 35 1
3 0 0 24

The misclassification rate has fallen slightly, with only 3 obser-
vations misclassified. The overall accuracy is now 96.6%.

We conclude this section by observing that the value of k,
and the selected distance metric can have a significant impact
on overall performance of the KNN algorithm.

Limitations of k-Nearest Neighbors
For very large datasets real time predictive performance can
be relatively slow. Furthermore, KNN is sensitive to irrelevant
or redundant features because all features contribute to the
distance calculation and therefore the classification prediction.

At the outset of a study it is unclear which distance metric
will deliver the best performance. Nor is it obvious what value
to set for the parameter k. In both cases, as with many machine
learning techniques, experimentation is required.
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Summary
In this chapter, we gained an in depth understanding of KNN.
We discovered it is an intuitive, easy to understand and explain,
machine learning algorithm. It is a particularly useful tool for
classifying unknown observations, and can deliver very good
prediction accuracy.

We explored how KNN models have been used to classify
both animal behavior, and plant species. We also examined,
via R, the impact of different distances metrics on model per-
formance. The number of neighbors also directly impacted per-
formance.

In the next chapter, we discuss a very powerful probabilistic
based machine learning algorithm - the naive Bayes classifier.

Suggested Reading
• Classifying Human Activity: Alessio Martinelli, Si-

mone Morosi, and Enrico Del Re, “Daily Living Move-
ment Recognition for Pedestrian Dead Reckoning Appli-
cations,” Mobile Information Systems, vol. 2016, Article
ID 7128201, 13 pages, 2016. doi:10.1155/2016/7128201

• Identifying Animal Behavior: Bidder OR, Camp-
bell HA, Gómez-Laich A, Urgé P, Walker J, Cai Y, et
al. (2014) Love Thy Neighbour: Automatic Animal
Behavioural Classification of Acceleration Data Using
the K-Nearest Neighbour Algorithm. PLoS ONE 9(2):
e88609. https://doi.org/10.1371/journal.pone.0088609

• Leaf Classification: Jin T, Hou X, Li P, Zhou F
(2015) A Novel Method of Automatic Plant Species
Identification Using Sparse Representation of Leaf
Tooth Features. PLoS ONE 10(10): e0139482.
https://doi.org/10.1371/journal.pone.0139482
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Other
Source of Leaf Variation: Andres, Ryan J., et al. "Modifi-
cations to a LATE MERISTEM IDENTITY1 gene are respon-
sible for the major leaf shapes of Upland cotton (Gossypium
hirsutum L.)." Proceedings of the National Academy of Sciences
114.1 (2017): E57-E66.
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Chapter 4

Naive Bayes Classifier

The Naive Bayes Classifier (NBC) is a simple probabilistic
classifier based on Bayes theorem. It is especially well
suited for situations where there are a large number of

attributes or features.
In this chapter, we delve into the Naive Bayes Classifier.

You will:
• Learn about the two main types of supervised classifica-

tion.

• Refresh your memory of Bayes rule, and explore the no-
tion of a Bayes classifier.

• Discover the difference between a generative and a dis-
criminant classifier.

• Work through a step by step example to build your Intu-
ition.

• Review three real world applications of NBC use.

• Use R to investigate NBC on two very different data sets
NBC has been applied since the 1950’s, with roots stretching
back to the 18th century work of Thomas Bayes. It continues
to be a simple, powerful and often, highly effective tool for
classification.
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Understanding the Naive Bayes Clas-
sifier
The Naive Bayes Classifier is a supervised classifier. This sim-
ply means that the class labels are available for use in building
the model. We walk through a detailed step by step example to
help clarify this further shortly. However, before we get there,
you should know that there are two broad types of supervised
classification algorithms:

1. Classification using generative algorithms via the use of
the Bayes rule;

2. Classification via discriminant analysis where the classi-
fication boundaries are directly learnt from data.

We will cover both types throughout this text. The Naive Bayes
Classifier, the subject of this chapter, is a generative classifier.

The Core Concept of Bayes Rule
The easiest way to get a feel for generative algorithms is to
use a little probability, and Bayes rule. Bayes rule, named af-
ter English statistician, philosopher and Presbyterian minister
Thomas Bayes, states that given two random variables A and
B, the conditional probability of A given B can be calculated
by:

P (A|B) = P (B|A)P (A)
P (B)

It is common to refer to P (A|B) as the posterior probability,
P (A) and P (B) as prior probabilities, and P (B|A) as the like-
lihood.
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An example

Suppose event A is the probability that your route to work has
a traffic major delay. The probability associated with that is,
say, 50%. So, P (A) = 0.5.

Further, suppose that sometimes you drive, and at other
times you take public transport. The benefit of driving is speed
and a shorter journey time. The benefit of public transport is
it gives you time to get a head-start on the workday by using
your tablet computer. Let event B represent the probability
that you drive your car, P (B) = 0.75.

The probability that you drive given that there is a major
traffic delay is P (B|A) = 0.25.

Of course, when you are about to leave home you are more
interested in the probability that there is a major traffic delay
given that you drive i.e. P (A|B).

Using Bayes theorem, we have:

P (A|B) = 0.25× 0.5
0.75 = 0.167

In other words, there is around a 1 in 6 chance that you will
face a major delay.

The generative algorithm

Given a set of class labels y, and a set of explanatory attributes,
x, generative algorithms explicitly specify the joint probability
distribution of y and x. We denote this by P (y, x). In order to
do this, they require an estimate of the conditional distribution
P (x|y). Once this is obtained, a predictive distribution for the
target y conditional on the attribute x can be calculated by
applying Bayes rule:

P (y|x) = P (x|y)P (y)∫
y P (x|y)P (y)dy

The entity P (x|y)P (y) defines the joint distribution of y and
x.
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Discriminative classifiers

In discriminative algorithm’s the conditional distribution
P (y|x) is modeled directly. It turns out that this is all that
is needed for classification. Because discriminative algorithms
only model the conditional distribution they can have a much
simpler structure than generative based models. Some discrim-
inative classifiers make things even simpler by restricting their
focus to specific values. For example, the support vector ma-
chine which we discuss in chapter 8, focuses on whether P (x|y)
is greater or less than 0.5.

The Bayes Classifier
A Bayes classifier is a generative classifier that can be used to
solve classification tasks. To begin let us denote x = [x1, ...xn]
as the input vector of features/ attributes, and the K classes
by C = {c1, c2, ..., cK}.

A Bayes classifier is a decision rule to estimate the most
probably class ci for an observation given the set of input fea-
tures or attributes x. It makes good use of Bayes rule.

Conceptually, Bayes rule provides a mechanism to go from
the conditional probability of the evidence provided by the in-
put features given the classes P (x|ci), to the conditional proba-
bility of the class given the evidence provided by the attributes
P (ci|x). This is important because in practice, you will often
know how frequently some particular evidence occurs, given a
known class or outcome.

For example, in medical research, the relative frequency of
a disease, and the probability of a medical test being positive
given the disease are often known. A patient with a positive
test result is more interested in the probability of the disease,
given that the medical test is positive. Bayes rule allows the
computation of this probability.

72



CHAPTER 4. NAIVE BAYES CLASSIFIER

A simple rule

Since by Bayes rule P (ci|x) ∝ P (ci)P (x|ci), the Bayes classifier
chooses a class by assigning x to ci if:

P (ci)P (x|ci) > P (cj)P (x|cj) ∀j ∈ {1, ..., K}; j 6= k

The intuition behind multiplying P (x|ci) by P (ci) is to give a
higher weight to more frequently occurring classes, and lower
weight to less likely classes.

A good classification procedure is one that minimizes the
costs of misclassification. It turns out the Bayes classifier min-
imizes loss when risk is defined as the probability of misclas-
sification. It gives the smallest possible misclassification error
known as the Bayes error rate. The Bayes rule is the optimal
classification rule if the underlying distribution of the data is
known. The Naive Bayes Classifier is an approximation of the
Bayes classifier.

NOTE... �

• The probability of observing x given class
ci, denoted by P (x|ci), are called the class
conditional probabilities.

• The probabilities of occurrence of differ-
ent classes, denoted by P (ci), are generally
called the class prior probabilities or base
rates.

Core Assumptions
The Naive Bayes Classifier (NBC) relies on two critical assump-
tions; First, there are no hidden or latent attributes. In other
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words, the set of features in x is complete; Second, all attributes
are independent of each other given the class, so that:

P (x1, ..., xn|cj) ≈
n∏
i=1

P (xi|cj)

This assumption reduces the number of parameters to be esti-
mated.

Is this realistic?

The assumption of conditional independence may appear to be
rather a strong claim to make about your data. I often think
of it a bit like the requirement in linear regression that the
explanatory variables be independent. Despite this unrealistic
assumption, linear regression has found many useful real world
applications.

Although independence is generally a poor assumption, in
practice on real world data, NBC often competes well with
much more sophisticated techniques.

NOTE... �

The assumption of mutually conditionally inde-
pendence appears not to significantly compromise
prediction accuracy. Indeed, University of Wash-
ington Professor Pedro Domingos and scholar
Michael Pazzani have shown the optimality of the
naive Bayes classifier even when the conditional
independence assumption is significantly violated.

A Step by Step Example to Build Your Intu-
ition
If you have ever been to London, you will have noticed that the
buses tend to have two levels, and the London cabs are “boxy”,
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black, and surprisingly roomy. Suppose you have been asked
to develop a vehicle identification system using the following
vehicle attributes:

1. Whether the vehicle is short;

2. whether the vehicle has four doors;

3. whether the vehicle is black.

Furthermore, a labeled sample of 1000 vehicles has been col-
lected, containing a total of 300 black cabs, 350 Buses, and 350
regular cars, as shown in Table 13.

Type Short Not Short Four Doors Not Four Doors Black Not Black

Cab 200 100 150 150 225 75

Bus 50 300 25 325 5 345

Car 300 50 250 100 100 250

Table 13: Attributes and vehicle object type

Now, suppose you are presented with an unknown vehi-
cle with the following attributes - “Short”, “Four Door” and
“Black”. Is it a cab, bus or regular car?

Using the empirical sample, we can easily calculate the prior
probabilities. We have:

1. P (Cab) = 300
1000 = 0.3,

2. P (Bus) = 350
1000 = 0.35,

3. P (Car) = 350
1000 = 0.35.
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So, our prior probabilities for vehicle type lean towards “Car”
or “Bus”. Our intuition tells us “Car” or “Cab”.

Let’s calculate the prior probabilities for the evidence given
by the attributes:

1. P (Short) = 200+50+300
1000 = 0.55,

2. P (Four Door) = 150+25+250
1000 = 0.425,

3. P (Black) = 225+5+100
1000 = 0.33.

Next, we need to calculate the likelihoods for each group of
attributes. First, for “Short”:

1. P (Short|Cab) = 200
300 = 0.667,

2. P (Short|Bus) = 50
350 = 0.143,

3. P (Short|Car) = 300
350 = 0.857.

Next, for “Four Door”:
1. P (Four Door|Cab) = 150

300 = 0.5,

2. P (Four Door|Bus) = 25
350 = 0.071,

3. P (Four Door|Car) = 250
350 = 0.714.

Finally, for “Black”:
1. P (Black|Cab) = 225

300 = 0.75,

2. P (Black|Bus) = 5
350 = 0.014,

3. P (Black|Car) = 100
350 = 0.286.

Now, all we need to do is calculate P (cj)
∏N
i=1 P (xi|cj) for each

of the three vehicle classes, and pick the largest values as the
most likely. For example:

P (Cab|Short, Four Door,Black) = P (Cab) ×
P (Short|Cab)× P (Four Door|Cab)× P (Four Door|Cab)

= 0.3× 0.667× 0.5× 0.75
= 0.075.

Using a similar method, we find that:
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• P (Bus|Short, Four Door,Black) = 0.01

• P (Car|Short, Four Door,Black) = 0.061

Finally, since P (Cab|Short, Four Door,Black) is the largest
value, we assign the unknown vehicle to that class.

Advantages of the Naive Bayes Clas-
sifier
NBC is relatively simple to understand and build. Numerically,
it involves a bunch of simple counts and ordinary division. This
makes it extremely fast to train, even with large samples. It is
also super-fast to classify new observations.

Provided the features are independent, it will converge
much faster on a solution than discriminative models like logis-
tic regression. This means you need less training data to build
a highly accurate prediction model.

It can be used where probabilistic predictions are required,
and is not sensitive to irrelevant features. The larger the sample
size, the less relevant the irrelevant features become. It can also
handle real and discrete data, and can be easily deployed in real
time online systems.

Practical Application of the Naive
Bayes Classifier
NBC has been successfully deployed in numerous areas, and
for several decades. It continues to deliver outstanding perfor-
mance on many practical data science based projects. In this
section, we discuss three areas of ongoing success. The first is
human gesture recognition. The second, medical research; and
the third area is in the field of traffic congestion.
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Gesture Recognition
In the 1968 movie, 2001: A Space Odyssey, HAL 9000, the
ship computer, begins to behave irrationally. When HAL states
that it is "foolproof and incapable of error", the pilots convene a
meeting out of earshot of the machine. However, HAL with its
surveillance camera, lip reads the conversation; The humans are
planning to disconnect it. This would disrupt HAL’s mission.
Carefully, the machine begins to kill the humans.

As hinted at in the half century old movie, gesture recog-
nition by computers has the potential to totally transform
human-computer interaction. Scholars Escalante et al. deploy
the NBC algorithm for this task. They used three different
data sets of gesture recognition and human action. The largest
data set had 10,304 train set examples, 21 classes and 2,000
features. The NBC delivered outstanding results for all three
datasets. The researchers observe that NBC:

“...is extremely simple and very fast, yet it com-
pares favorably with more elaborated state of the art
methodologies...”

Medical Research
Al-Aidaroos et al compare NBC performance on 15 medical
classification problems. These include studies dealing with
breast cancer, primary tumors, Dermatology, Echocardiogram,
diabetes, liver disorders, lung cancer, and Hepatitis.

Whilst most of the studies involved binary classification;
the Dermatology study had 6 classes, and the primary tumor
study had 21 classes.

NBC performance was compared against a number of more
sophisticated techniques including decision trees, feed-forward
neural networks, and logistic regression. Performance was as-
sessed using prediction accuracy, and area under the Receiver
Operator Characteristic Curve (ROC). In 8 out of the 15 stud-
ies, NBC delivered the best performance. This included the 6
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class Dermatology study, and the 21 class primary tumor study.

Predicting Traffic Congestion
Traffic congestion on major roadways is a major economic cost.
Commuters, business, and even emergency services, can suf-
fer from major delays due to the volume of traffic. Large
metropolitan areas, such as London, New York and Los An-
geles are notorious for highways where traffic moves at a slow
crawl.

Managers of traffic systems need tools to predict when
and where congestion will occur. Transportation researchers
Guangxing Wang and Jiwon Kim develop NBC models to de-
termine whether congestion will occur in the greater Brisbane
region, Australia.

Congestion was dichotomized into a binary variable. The
goal was to predict whether traffic congestion will occur in a
given area of roadway within the next few minutes. Separate
NBC target variable were created for 15, 30, 45, and 60 minutes.

Traffic incidents considered by the researchers were crash,
hazard, and stationary vehicle. Separate NBC models were
developed to predict each of these target variables. Each model
predicted whether the specific type of traffic incident would
occur in the next hour. Attributes included time, day, day of
week, weather and speed.

The sample consisted of 35,040 data points or examples. In
total, 245 NBC models were created. Precision, was one of a
number of metrics used to evaluate the models. It is the ratio
of true positive predictions to all positive prediction. Another
metric used was the Recall rate. On average, for the congestion
models it was 0.56; For the traffic incident models, it averaged
0.02. Clearly, these are more difficult to predict than conges-
tion. Nevertheless, the researchers conclude:

“The validation results show that the proposed
[NBC] models can successfully predict congestion
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and incident occurrence with a desired level of ac-
curacy.”

Example - Classifying Simulation
Data
Simulation is a vital tool, and the analysis of simulated outputs
is often a necessary part of an empirical study. Let’s use the
naive Bayes model to predict the labels shown in Figure 4.1.
It contains observations on two simulated attributes, x1 and
x2, alongside their respective class labels (red circle, and open
square).
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Figure 4.1: Simulated values
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Step 1 – Collecting and Exploring the Data
The simulation data was generated for 100 cases, using two
attributes x1 and x2, from the Gaussian distribution. Here is
how it was created:
num_attrib <- 2
N <- 100
set.seed (2017)
x <- matrix(rnorm(N*num_attrib),
ncol=num_attrib)
colnames(x) <- c("x1","x2")
y <- as.numeric ((x[ ,1]^2+x[ ,2]^2)> 2.3)

Let’s go through this line by line:

• The first line specifies the number of attributes, in this
case 2.

• The second line uses N to set the sample size equal to 100.

• Next, the set.seed method is used to ensure you can
reproduce the example.

• The matrix x contains the values of the Gaussian at-
tributes. These are generated using the rnorm function;

• and the colnames method is used to name the attributes
x2 and x2.

Inspecting the class labels and features

The R object y contains the class labels in the form of “0” or
“1”; and the object x contains the attributes. To see the first
few observations of each, use the head function:
head(y)
[1] 0 0 0 1 0 1

head(x)
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x1 x2
[1,] 1.43420148 0.01745491
[2,] -0.07729196 1.37688667
[3,] 0.73913723 -0.06869535
[4,] -1.75860473 0.84190898
[5,] -0.06982523 -0.96624056
[6,] 0.45190553 -1.96971566

Figure 4.2 shows the density plot for x1 and x2 (top), and
a bar plot for the class labels in y. As expected, x1 and x2
are approximately normally distributed; and class “0” appears
more frequently than class “1”.
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Figure 4.2: Density plot of x1 and x2 (top) and bar-plot of
class (bottom)
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Step 2 – Preparing the Data
Take a look at the class of y:
class(y)
[1] "numeric"

It is numeric. We will transform it into a factor. Here is how
to do that:
y<-as.factor(y)

Next, a little housekeeping, we combine the attributes and
class labels into the object data. The function as.data.frame
is used to transform data from a matrix to a dataframe. This
just makes it a little easier to use with the naiveBayes function:
data <-cbind(y,x)
data <-as.data.frame(data)

Next, we select 70 observations for our training sample, at
random without replacement, via the sample function:
set.seed (2016)
train <-sample (1:N,70,FALSE)

Step 3 - Train Model using Train Set
The naive Bayes model can be trained on data using the e1071
package. First, load the package. Then call the naiveBayes
function. It is very easy to use, simply pass it the attribute
data and the class data:
library (e1071)
fit <- naiveBayes(x[train ,],
y[train ])

The fitted model is stored in the R object fit.
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Step 4 - Evaluate Model Performance
The predict function is used to make class predictions. It
takes the fitted model (fit) and the sample data as arguments.
It can report both the actual probabilities, and the class labels.
To see the probabilities of the fitted model on the training set
add the argument type ="raw" as follows:
pred_probs <- predict(fit ,
data[train ,-1],
type ="raw")

Here are the first few class probabilities:
head(pred_probs)

0 1
[1,] 0.7922365 0.2077635
[2,] 0.6853967 0.3146033
[3,] 0.7519456 0.2480544
[4,] 0.8872060 0.1127940
[5,] 0.7553854 0.2446146
[6,] 0.4795222 0.5204778

The first observation has a posterior probability of 0.79 for class
0, and 0.21 for class 1. The predicted label would be class 0.
The sixth observation has a probability of 0.48 for class 0 and
0.52 for class 1; Class 1 is the predicted class label.

Viewing the predicted class labels

It is often helpful to view the predicted class labels. To do this
set type="class":
pred <-predict(fit ,
data[train ,-1],
type="class")

head(pred)
[1] 0 0 0 0 0 1
Levels: 0 1
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As expected, the first observation is assigned to class 0; and
the sixth observation is assigned to class 1.

Train set performance

How well did our NBC perform on the training sample?
Figure 4.3 shows the actual and predicted class labels. It ap-
pears the model predicts the class 0 labels (red dot) with a high
degree of accuracy. It is less precise for class 1 (square).
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Figure 4.3: Actual and predicted class labels.
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Confusion matrix

One way to assess performance quantitatively, is via the con-
fusion matrix. It can be built easily via the table function.
To make things a little easier to interpret, we pass the train
set labels to the R object y_train, and then call the table
function:
y_train <-y[train]
table( y_train ,pred)

pred
y_train 0 1

0 52 0
1 4 14

The model correctly classifies all 52 cases for class 0. It also
correctly classifies 14 out of 18 cases for class 1. The overall
accuracy on the training set is around 94%.

Step 5 - Assess Test Set Performance
The train set performance is encouraging, how did the model
do on the test set? We can follow the above procedure. This
time storing the test set labels in the R object y_test:
pred_test <-predict(fit ,
data[-train ,-1],
type="class")

y_test <-y[-train]
table( y_test ,pred_test)

pred_test
y_test 0 1

0 21 0
1 5 4

The model correctly classifies all cases for class 0. However, it
only correctly classifies 4 out of 9 cases for class 1. Overall, the
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accuracy of the model on the test set is 83%, and somewhat
lower than the performance delivered by the training sample.

Example - Identifying Radar Signals
The ionosphere is part of Earth’s upper atmosphere. It is a
very active part of the atmosphere, ionized by solar radiation
as a result of the Sun’s activity. Gases in the ionosphere are ex-
cited by solar radiation to form “ions,” which have an electrical
charge.

In ionospheric research, radar returns from the ionosphere
are classified as either “good” or “bad”. Good returns show
evidence of some type of structure in the ionosphere, and are
suitable for further analysis. This is not the case for bad re-
turns. We build a NBC to identify good and bad radar returns.

Step 1 – Collecting and Exploring the Data
The radar sample was collected by a radar system, located in
Goose Bay, Labrador. It contains 351 instances and 34 nu-
meric attributes. The sample data is contained in the evclass
package:
data("ionosphere",package="evclass")

We can use the str function to give us an overview of the
ionosphere object:
str(ionosphere)
List of 2
$ x: num [1:351 , 1:34] 1 1 1 1 1 1 1 1 1 1
$ y: num [1:351] 1 1 1 1 1 1 1 1 1 1 ...

The object is a composed of 2 list objects. The first list object
contains the attributes. There are 34 in total. The second
list object, contains the target variable. The target variable is
binary. It can be viewed by appending $y to the ionosphere
object.
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The target variable

Figure 4.4 presents a bar-chart of the target variable with the
labeled classes. We observe that good radar returns are far
more frequent, in this sample, than bad radar returns.
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Figure 4.4: Bar-plot of ionosphere target variable classes

Attribute distribution

Ideally, the attributes would be generated from a Normal dis-
tribution. Figure 4.5 presents the density plots for nine of the
attributes.
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Figure 4.5: Density plots of some of the attributes

Many are highly skewed, and deviate quite considerably for
the bell shaped Normal distribution. It seems, any hopes the
data are Gaussian, are dashed!

Lack of Normality is common place with real world data.
NBC often performs well despite this type of violation. So, lets
continue with building our model. We use the R objects x, and
y to store the attributes and target variable.

89



Machine Learning Made Easy with R

NOTE... �

The attributes can be viewed by appending $x to
the ionosphere object. For example:
summary(ionosphere$x)

Step 2 – Preparing the Data
The first thing to notice is that the second attribute
ionosphere$x[,2] (attribute V2) appears to be constant. To
see this use the summary function:
summary( ionosphere$x [ , 2 ] )

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 0 0 0 0 0

Since it has no variation, we remove it from the sample,and
store the remaining attributes in the R object x:
x<−as . data . frame ( ionosphere$x [ , ] )
x$V2<− NULL
The R object x, now contains the attribute set.

Attribute V1

As you explored the attributes, you may have noticed that
V1, is particularly interesting. Take a look using the summary
function:
summary( ionosphere$x [ , 1 ] )

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 .0000 1 .0000 1 .0000 0 .8917 1 .0000 1 .0000

It takes a minimum value of 0, and a maximum value of 1.
Figure 4.6 shows the density plot; it has two peaks! Why?
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In turns out that V1 is a nominal variable that only takes
the values 0 and 1. For our initial analysis, let’s stick with the
continuous variables only. Therefore, we remove it using the
NULL argument:
x$V1<−NULL

Now, x contains the attributes we will use in our analysis.
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Figure 4.6: Density plot for V1

Target variable and random sample

The target variable is stored as a factor in the R object y:
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y<−as . f a c t o r ( ionosphere$y )
The training sample will contain 251 observations, selected

at random without replacement via the sample function:
set . seed (2018)
N=nrow ( ionosphere$x )
t ra in<−sample ( 1 :N,251 ,FALSE)

Step 3 - Train Model using Train Set
To build the NBC, we use the naiveBayes function in the
e1071 package. The function takes the target variable followed
by the attributes as follows:
f i t <− naiveBayes ( y [ t r a i n ] ~ . ,
data = x [ t ra in , ] )
You will notice that the model is fully trained on the data in
a matter of moments. The fitted model’s details are stored in
the R object fit. Let’s take a look at the attributes of fit:
a t t r i b u t e s ( f i t )
$names
[ 1 ] " a p r i o r i " " t a b l e s " " l e v e l s " " c a l l "

$ c l a s s
[ 1 ] " naiveBayes "
The attributes can be accessed by appending the name to fit.
For example, to see the apriori distribution of the target vari-
able:
f i t $ a p r i o r i

Y
1 2

160 91
There are 160 observations in class 1 (“good”), and 91 obser-
vations in class 2 (“bad”).
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NOTE... �

The argument $tables will report the mean and
standard deviation of the attributes for each class.
If the attributes are categorical, it returns the
conditional probabilities given the target variable
class.

Step 4 - Evaluate Model Performance
The fitted model probabilities can be viewed using the predict
function with the type argument set to raw. For example, to
see the probabilities associated with observations in the test
set, you would specify:
pred_probs <-predict(fit , x[-train ,],
type="raw")

head(round(pred_probs ,3) ,4)

1 2
[1,] 1.00 0.00
[2,] 0.35 0.65
[3,] 1.00 0.00
[4,] 1.00 0.00

The first observation has a posterior probability of 1 for class
1 (good), and 0 for class 2 (bad). The predicted label would
be “good”. The second observation has a probability of 0.35
for class 1, and 0.65 for class 2, so class 2 (or “bad”) is the
recommended class label.

It is often helpful to view the predicted class labels. To do
this set type="class":
pred <-predict(fit ,
x[-train ,],type="class")
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head(pred ,4)

[1] 1 2 1 1
Levels: 1 2

These values confirm our previous observations.

Test set performance

We will use the confusionMatrix function in the caret pack-
age to build the confusion matrix:
library(caret)
result <- confusionMatrix(pred ,
y[-train])

result$table

Reference
Prediction 1 2

1 52 7
2 13 28

For class 1, the model correctly classifies 53 observations, and
for class 2 it correctly classifies 27 observations.

The accuracy metric can be viewed as follows:
result$overall [1]

Accuracy
0.8

The NBC delivers an overall accuracy of 80%

Step 5 - Improving Model Performance
One way to improve performance, is to reexamine the optimal
conditions for the NBC. One key assumption is the indepen-
dence of the attributes. We can use the correlation coefficient
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as a crude proxy to assess how well this assumption is met.
The idea is that if the features are independent they will have
zero correlation.

Figure 4.7 shows a correlation plot of the attributes. The
larger the square, the more highly correlated are any two at-
tributes. Take a close look at the figure. It appears a rather
large number of the features are correlated.

Correlation between supposedly “independent” attributes is
a fact of real world modeling. Nevertheless, removing highly
correlated items, might improve performance.
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Figure 4.7: Correlation plot of attributes
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Using the findCorrelation function

To illustrate, we will drop variables that have a correlation in
excess of 0.6. The findCorrelation function from the caret
package offers an easy way to achieve this. First, let’s prepare
the data:
x<-as.data.frame(ionosphere$x [,])
x$V2 <- NULL

The first line reloads the original attribute data into the R
object x. The second line deletes V2 because it only takes
the value 0. For this illustration, we keep V1. As a nominal
binary variable, it may contain useful classification information.

The findCorrelation takes two primary arguments. The
first is a correlation matrix, and the second is a correlation
cutoff. We use 0.6 for the cutoff:
findCorrelation(cor(x),
cutoff = 0.6,
exact = TRUE ,
names = TRUE)

[1] "V15" "V19" "V21" "V17" "V13" "V11" "
V25" "V33"

The function reports the attributes that exceed the cutoff value.
The first reported attribute is V15, the second V19, and so on.
Let’s drop these variables from the sample:
x$V15 <-NULL
x$V19 <-NULL
x$V21 <-NULL
x$V17 <-NULL
x$V13 <-NULL
x$V11 <-NULL
x$V25 <-NULL
x$V33 <-NULL
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Now, re-run the NBC model, make the predictions and re-
turn the confusion matrix and accuracy score:
fit2 <- naiveBayes(y[train] ~ .,
data = x[train ,])

pred2 <-predict(fit2 , x[-train ,],
type="class")

result2 <- confusionMatrix(pred2 ,
y[-train])

result2$table

Reference
Prediction 1 2

1 61 8
2 4 27

result2$overall [1]

Accuracy
0.88

The overall accuracy increases to 0.88. This is a significant
improvement over the first model, fit. Notice, the improve-
ment in performance is driven by the model being better able
to classify the most frequent class “good”. No, improvement in
the classification performance of class “bad” was observed.

NOTE... �

Experiment with other combinations of attributes.
See if you achieve an accuracy score above 0.90.
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Limitations of the Naive Bayes Clas-
sifier
The NBC is often criticized for assuming conditional indepen-
dence of features. This assumption is frequently violated by
real world data. In practice, results can be good even in the
case of clear violation of this assumption.

However, since NBC estimates probabilities from the em-
pirical data, it can sometimes run into difficulties if there are
not enough observations to accurately estimate the probabili-
ties. This can be resolved by collecting more observations, or
imposing prior beliefs in place of the empirical estimates.

Like many machine learning algorithms, if the classes are
severely imbalanced, classification performance may suffer. For
example, in the simulated data analysis we did earlier with R,
class 0 had almost 3 times as many observations as class 1. The
model correctly classified all cases for class 0. However, it only
correctly classified 4 out of 9 cases for class 1.

Summary
In this chapter, we learned about the NBC. It uses conditional
probabilities and a simplified version of Bayes rule to perform
classification. It is fast, and is especially useful where there are
a large number of features and classes.

Despite the core assumption of independent features being
frequently violated in real world data, NBC often performs very
well. It is useful in areas ranging from medical research to
investigating the ionosphere. It is a generative classifier, and a
vital tool to add to your machine learning toolkit.

In the next chapter, we discuss an ancient classifier, a
workhorse of the Statistician, that is so good, it was redis-
covered by machine learning enthusiasts, and deployed with
amazing results. It is linear discriminant analysis.
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Chapter 5

Linear Discriminant
Analysis

Linear Discriminant Analysis (LDA) is a popular tech-
nique used by Statisticians. You may have come across
it as a dimensionality reduction technique in the prepro-

cessing step for machine learning models. It is also very useful
for classification tasks.

In this chapter, we’ll peek inside the mysterious LDA box
where you’ll:

• Gain an intuitive understanding of how LDA operates.

• Study several practical applications of LDA use for clas-
sification.

• Learn how to use LDA as powerful classification tool us-
ing R.

Perhaps because LDA has been around for almost a century,
and is primarily taught by Statisticians, it does not often fea-
ture as a star machine learning tool in textbooks. However, it
is a powerful classification technique in its own right, one you
should add to your toolkit.
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Understanding Linear Discriminant
Analysis
The goal of LDA is to find the linear combinations of the feature
variables that gives the best possible separation between the
groups in a sample. Before we delve into the details, we begin
with an intuitive illustration.

A Clarifying Illustration
Back in 1936 British statistician, Sir Ronald Fisher, noted that
groups could be well separated using a linear function provided
the mean values of each group were sufficiently different from
each other. The idea was tested on data collected by American
Botanist Edgar Anderson.

Anderson’s sample is known as the “Iris flower data”. It was
collected in Canada’s beautiful Gaspésie region. It contains 150
observations, 50 each from three species of Iris (Iris setosa, Iris
virginica and Iris versicolor).

Four features were measured from each sample. The length
and the width of the sepals; and the length and width of the
petals in centimeters. Using a combination of these four at-
tributes, Sir Fisher created a linear discriminant model to bet-
ter distinguish the species from each other.

The group or class means are shown in Table 15. Recall,
the idea was that these should be sufficiently different for each
class (flower species) in order for linear functions of the fea-
tures to separate them well. This appears to be the case, for
example the average petal width of setosa is 0.246, and 2.026
for virginica.

Discriminant functions

LDA uses linear combinations of features to separate two or
more classes. These linear equations are called discriminant
functions, which we denote by g(x). They are computed by
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Sepal Sepal Petal Petal
Length Width Length Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Table 14: Group means for the Iris sample

searching for a linear combination of features that best sep-
arates the classes. In practice, two functions, say g1(x) and
g2(x), are often sufficient to account for the majority of class
differences.

The first discriminant for the Iris data is:

g1(x) = (0.829× Sepal Length) + (1.534× Sepal Width)

+ (−2.201× PetalLength) + (−2.810× PetalWidth)

This discriminant explains more than 99% of the between-
group variance in the iris dataset.

The second discriminant is:

g2(x) = (0.024× Sepal Length) + (2.165× Sepal Width)

+ (−0.932× PetalLength) + (2.839× PetalWidth)

It accounts for 0.009% of the between-group variance in the
sample. Together, g1(x) and g2(x) therefore account for all the
between-group variance.

NOTE... �

Once the discriminants have been computed, they
can be used for classification.
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Linear Discriminant Analysis in a Nutshell
In LDA, we are interested in the axes that maximize the sepa-
ration between multiple classes. Linear discriminant functions
are used to define these axes.

The discriminant functions g1(x), g2(x), ..., gv(x) are linear
combinations of the original features chosen in such a way that
g1(x) captures the largest proportion of class differences; g2(x)
captures as much as possible the class differences not captured
by g1(x); g3(x) captures as much as possible the class differences
not captured by g1(x) and g2(x), and so on.

In general, the first two discriminant functions are usually
sufficient to capture most of the between group variance.

Key Assumptions

LDA assumes the within-group covariance matrix is the same
for all groups. It also requires the data in each group to have
been generated from a multivariate normal distribution. In
other words, each feature is assumed to have been generated by
a univariate normal distribution. Similar to linear regression,
the features are assumed to be uncorrelated.

Advantages of Linear Discriminant Analysis
LDA has widespread application where you want to identify the
group to which an object belongs. It can be used to classify
two or more groups. Potential applications include predicting
credit risk, classifying the quality of an industrial product, and
determining the stage of a medical disease. It assumes normally
distributed feature variables; and should give solid results in the
case when this assumption is fulfilled.

LDA produces linear equations which simplify a multivari-
ate data set. The discriminant functions can be inspected, and
provide some insight into the decision-making process of the
algorithm.

104



CHAPTER 5. LINEAR DISCRIMINANT ANALYSIS

Practical Application of Linear Dis-
criminant Analysis
Linear discriminant analysis assumes independent continuous
attributes from a normal distribution, with all classes shar-
ing the same covariance matrix. This assumption is frequently
violated in real world data. Nevertheless, the technique has
delivered solid performance in a wide range of real world clas-
sification challenges. In this section, we look at three examples,
including food authentication, grading of chicken Fillets, and
the classification of Autism Spectrum.

Food Authentication
Savory crusty meat pies are a British tradition. They can be
eaten hot or cold, are sold by every single grocery store, con-
sumed in cafes, and appear wrapped in elegant paper at up-
market bistros. If you ever travel to the United Kingdom, be
sure to try one.

Back in 1846, the story the String of Pearls, took Victorian
England by storm. In it, a Barber, by the name of Sweeney
Todd, murders his customers by casting them down a hole and
slitting their throat with his barber razor.

As if this was not terrifying enough, in dark and foggy Vic-
torian London, their remains are processed into savory crusty
meat pies, sold in the pie shop of his partner in crime, Mrs.
Lovett! The String of Pearls was an instant hit, and derivative
works remain popular even today.

In Victorian England, and the United States, you ate out
at your own risk. The contents of a meal could be anything, no
matter what the label (or food seller) stated. As Eric Schlosser,
writing in a 2010 op-ed essay in the New York Times reported:

“...In those days, many companies had no qualms
about selling children’s candy colored with lethal
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heavy metals and rancid food laced with toxic chem-
icals to disguise the stench; such abuses were
widespread.”

Today, consumers pay higher prices for free range and organic
products. How can they be sure they are receiving the genuine
article? Products such as olive oil, milk, honey, coffee, orange
juice, saffron, and yes - even meat pies, have been adulterated.
This is because, as Eric Schlosser, noted:

“...a perverse economic incentive guides the market-
place. Adulterated food is cheaper to produce than
safe food.”

Food authentication is a rapidly growing industry. The primary
goal is validation of label information about the food origin,
content and production process.

Italian chemical engineers Angelo D’Archivio and Maria
Magg, use LDA for the geographical identification of Saffron.
The data was derived from Saffron grown and harvested in var-
ious regions in Italy. Features were extracted using UV–visible
spectroscopy. Eight wavelengths (274, 275, 276, 279, 280, 305,
306, and 328 nm) were selected as representative input features
to the LDA model.

Classes represented five distinct geographic locations where
the saffron was grown. The underlying assumption was that the
data was described by multivariate normal distributions having
the same covariance but different location centroids associated
with geographic region.

The LDA model accuracy by class was around 90% or bet-
ter, leading the chemical engineers to conclude:

“Because of simple sample preparation and cheap
and easy-to-use instrumentation, this method can be
preferred to most sophisticated analytical techniques
for the geographical traceability of saffron.”
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Grading Chicken Fillets
Chicken is a popular food item in many countries across the
world. In the United Kingdom, it accounts for almost half
meat consumption; And Americans eat around 60 pounds of
chicken per person every year.

Wooden breast is a muscle syndrome that makes chicken
breast meat hard, chewy, extremely tough, with a wood like
texture. Figure 5.1 illustrates the differences in the morpholog-
ical structure in chicken breast muscle of normal (left image),
and wooden breasted chicken flesh (right image).

Figure 5.1: Morphological structure in chicken breast muscle.
Adapted from Wold et al. See Chicken Fillets in suggested
reading section for full citation.
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Although it poses no threat to human health, the appear-
ance of the meat is unpleasant, and the texture unsatisfactory.
Wooden breast can cause significant economic losses for grow-
ers, who may see the disease in upwards of 50% of their flocks.
The meat is generally processed into lower quality products.

Norwegian food researcher Jens Petter Wold develop a
method for rapid grading of wooden breast in chicken breast
fillets using LDA.

The sample was composed of 197 skinless chicken breast
fillets acquired from a commercial chicken processing facility. A
total of 28 of these fillets suffered from wooden breast. Features
were extracted using near-infrared (NIR) spectroscopy.

The LDA model achieved 99.5% correct classification. All
28 wooden breast fillets were correctly identified, and one nor-
mal fillet was misclassified as wooden breast.

NOTE... �

The feature variables were derived from the ab-
sorption values at different wavelengths. These
were orthogonalized using an partial least squares
regression.

Autism Spectrum Classification

Autism spectrum disorder (ASD) is the name for a group of
neurodevelopmental disorders. In the United States, upwards
of one in sixty-eight children, has a diagnosis of ASD. Early
diagnosis and treatment leads to better outcomes.

Malaysian engineer, Che Hasan, use LDA to identify indi-
viduals with the condition. The approach is somewhat novel,
in that they use gait patterns in young children to determine
which class an individual belongs.

The sample was composed of 24 children with ASD, and 24
healthy children ranging from 4 to 12 years old. The kinematic
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and kinetic gait characteristics were captured by a system com-
posed of a motion capture device and foot force plates. Fea-
tures were extracted from a single left limb gait cycle for each
participant.

For the kinematic features, the LDA had a classification
accuracy of 70%. This is not terribly high, and certainly could
be improved upon. For the kinetic features, the LDA had an
accuracy of 82.5%. Che Hasan concludes:

“Overall the results of this study suggest that LDA
classifier with kinetic gait features as input pre-
dictors is more effective for categorising gait pat-
terns of children with ASD. These potential findings
would be beneficial for future applications in identi-
fying gait abnormalities in individuals with ASD or
other pathological gait patterns.”

Example - Molecular Classification via
Gene Expression
No too long ago, the medical profession had no general ap-
proach for assigning tumors to known classes. The traditional
approach to cancer classification was based on the shape and
size of the tumor. The challenge was that tumors with similar
size and shape can have very different responses to intervention
therapy.

In this section, we illustrate how to use LDA for cancer
classification based on gene expression applied to human acute
leukemia.

Step 1 – Collecting and Exploring the Data
The sample we use is contained in the leukemia object in
the ReorderCluster package. It contains 100 genes expressed
from bone marrow samples obtained from 72 acute leukemia
patients. First, load the data:
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data("leukemia",package="ReorderCluster")

The class labels are stored as a three-level factor in column 102
of the leukemia object. Figure 5.2 shows the distribution of
the class labels. Class B is the most frequent occurring tumor
class, followed by Class M, with T occurring in the minority of
cases.

B M T

Class Labels

0
5

10
15

20
25

30
35

Figure 5.2: Bar-plot of classes for leukemia

The features are stored in columns 2 to 101 of the leukemia
object. Figure 5.3 plots the characteristics for the first nine
features. Two things are immediately evident from this figure:

• First, some of the genes have high correlation with each
other;
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• Second, features do not appear to be symmetric, as one
might expect if they were from the Normal distribution.
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Figure 5.3: Pairs plot of a sample of the genes (features) for
leukemia

Non-normality of the features

To dig a little deeper into the Normality of the data, Figure 5.4
shows the density plots for several of the features. There is con-
siderable skew, and humps in the distribution of the features.
In practice, away from the theoretical textbooks, real-world
data often exhibits these characteristics.
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Figure 5.5, confirms the lack of normality of the features.
This is particularly evident in the left tail of the distributions.
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Figure 5.4: Density plots for several features of leukemia
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Figure 5.5: qnorm plots for several features of leukemia

Step 2 – Preparing the Data
From Figure 5.3, we saw that several of the features are highly
correlated. We would like to identify and remove these as they
violate the independence assumption. To identify candidates
for removal, we calculate the Variance Inflation Factor (VIF)
for each attributed.

VIF can be used to detect collinearity (strong correlation)
between two or more features. If a feature has a strong linear
relationship with at least one other feature, the correlation co-
efficient would be close to ±1, and VIF for that variable will
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be large. One rule of thumb is to drop features whose VIF is
greater than 8.

The vifstep function

The vifstep function in the usdm package calculates the VIF.
It takes the features and VIF threshold as arguments:
x<-data.matrix(leukemia [ ,2:101])
require(usdm)
vif <-vifstep(x,th=8)

The first line transfers the features into the R object x. The
VIF threshold is set to 8 via the th argument. The function
may take several minutes to run.

The R object vif contains features with VIF scores above
the threshold value of 8. It also returns a list of the remaining
features:
vif

59 variables from the 100 input variables
have collinearity problem:

AFFX.HUMRGE.M10098_5_at AFFX.HUMRGE.
M10098_M_at AFFX.HUMRGE.M10098_3_at AFFX
.M27830_5_at D13639_at D83735_at
D83920_at D87433_at D88270_at D88422_at
HG987.HT987_at J03909_at J04102_at
J04164_at J04456_at J04615_at K0191 1_at
L19686_rna1_at L20971_at M11717_rna1_at
M11722_at M12759_at M12886_at M16279_at
M19507_at M21005_at M21624_at M21904_at
M27891_at M57731_s_at HG3576.

HT3779_f_at Z83821_cds2_at Y00787_s_at
U05255_s_at L33930_s_at X05908_at
X64072_s_at U02020_at M74719_at
X03934_at X77737_at M84526_at X59871_at
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M28826_at M15395_at M89957_at
U23852_s_at X62744_at X76223_s_at
U05259_rna1_at U57341_at U89922_s_at
M13560_s_at M28130_rna1_s_at M25079_s_at
U46499_at M87789_s_at M23178_s_at

M26311_s_at

After excluding the collinear variables ,
the linear correlation coefficients
ranges between:

min correlation ( Z84721_cds2_at ~
M96326_rna1_at ): 2.63173e-06

max correlation ( X82240_rna1_at ~
X58529_at ): 0.7593826

---------- VIFs of the remained variables
--------

Variables VIF
1 M33882_at 3.541528
2 M38591_at 5.353593
3 M38690_at 4.831325
4 M57710_at 7.180962
5 M58459_at 2.518161
6 M63573_at 2.820346
7 M91036_rna1_at 3.766281
8 M91438_at 4.107234
9 M92934_at 3.761027
10 M94345_at 3.937819
11 M96326_rna1_at 6.338710
12 U02687_at 6.048121
13 U09770_at 4.143385
14 U10485_at 5.621536
15 U50743_at 6.542252
16 U60644_at 5.468369
17 X04500_at 5.169753
18 X17042_at 5.642437
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19 X58529_at 7.684512
20 X82240_rna1_at 6.540773
21 X95735_at 6.577419
22 Z22548_at 4.098832
23 Z23090_at 2.318219
24 Z69881_at 4.823357
25 Z84721_cds2_at 2.384101
26 L08895_at 6.405885
27 J03077_s_at 6.217640
28 M21119_s_at 4.255803
29 M34996_s_at 4.304890
30 M16336_s_at 4.131298
31 M27783_s_at 5.662565
32 U20734_s_at 3.095324
33 M30703_s_at 4.184299
34 M57466_s_at 5.682944
35 M63438_s_at 4.834773
36 X00437_s_at 4.127446
37 X65965_s_at 4.990349
38 AF000424_s_at 5.108634
39 M21305_at 3.081309
40 U01317_cds4_at 5.906404
41 M34516_at 5.350216

A total of 59 features are identified as having a collinearity
problem. Therefore 41 features remain for use in our LDA
model.

Removing correlated variables

The usdm package has a great function called exclude, which
allows you to easily drop all 59 highly correlated features using
one line of R code:
x<-exclude(x, vif)

To ensure it worked as expected, check the new number of
columns of x:
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ncol(x)
[1] 41

Great, just as we expected.

Train and test sets

The R object x, contains the features. Let’s store the class
labels in the R object y, and then select 45 observations at
random for the train set. The remainder to be used for the test
set:
y<-leukemia [,102]
data <-data.frame(x,y)
set.seed (2016)
N=nrow(data)
ncol(x)
train <-sample (1:N,45,FALSE)
data_train <-data[train ,]
data_test <-data[-train ,]

The combined sample of attributes and classes is stored in the
R object data. The train and test samples are now stored in
data_train and data_test respectively.

Step 3 - Train Model using Train Set
We use the lda function from the MASS package to fit the LDA
model:
require(MASS)
fit1 <-lda(y ~.,data=data_train)

The function lda function fits a linear discriminant model to
the train set data stored in data_train. The model is specified
using a formula where the response variable y is on the left-
hand side separated by a ~ from the features. In this example
~. tells R to use all of the features in data_train. The fitted
model is stored in the object fit1.
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NOTE... �

The “data=” argument tells R where to look for
the features used in the formula. In this case, they
are stored in data_train.

Prior probabilities

Now that the model is saved as the R object fit1, we extract
information about the fitted model and train set data. The
prior probabilities can be viewed by appending $prior to fit1:
round(fit1$prior ,3)

B M T
0.511 0.333 0.156

The prior probabilities are derived from the actual observa-
tions. To see this, notice the training set has 45 observations,
and the count of variables in each class is given by:
table(y[train ])

B M T
23 15 7

Class means

A key assumption of LDA is that the classes can be well sepa-
rated using a linear function provided the mean values of each
class are sufficiently different from each other. The class specific
means for each feature can be accessed by appending $means
to the fitted model. For example, to view the class means for
column 36, 37 and 38 of the features in data_train:
round(fit1$means [ ,36:38] ,3)

X00437_s_at X65965_s_at AF000424_s_at
B 2.171 2.790 2.646
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M 2.159 2.941 3.066
T 4.073 2.657 2.983

The 36th feature is X00437. It has a class mean of 2.17 for B,
2.15 for M, and 4.07 for T. As expected, the class means differ by
feature; and they also vary across class labels within a feature.

NOTE... �

We have only looked at three features. Investigate
other features using $mean. What do you observe?

Between class variance

Between class variance measures the variance that is explained
by successive discriminant functions. We can use the singular
values (svd) reported by lda to calculate it:
prop_var <-round(prop.table(fit1$svd ^2) ,4)
names(prop_var)<-c("LD1","LD2")

prop_var
LD1 LD2

0.9188 0.0812

So, in this case around 92% of the between class variance is ex-
plained by the first discriminant function LD1; and the remain-
ing 8% explained by the second discriminant function LD2.

NOTE... �

If you type:
summary(fit1)

You will see that the between class variance is la-
beled "Proportion of trace"
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Feature importance

The scaling argument of the fitted model shows the linear
combinations of the original features by each discriminant func-
tion. They can be used to yield some insight into the most
influential features for classification. Features with large ab-
solute values on LD1 and LD2 are more likely to influence the
classification decision:
round(fit1$scaling ,2)

LD1 LD2
M33882_at -10.49 1.40
M38591_at -0.69 2.56
M38690_at 0.90 0.74
M57710_at -11.73 -0.28
M58459_at -0.14 -0.02
M63573_at 7.36 -3.26
M91036_rna1_at -0.70 0.88
M91438_at 1.71 -1.34
M92934_at -5.39 -4.86
M94345_at -0.54 2.33
M96326_rna1_at 8.11 0.23
U02687_at -1.25 -4.71
U09770_at -2.17 -2.17
U10485_at -8.58 1.62
U50743_at 5.48 4.51
U60644_at 7.87 -3.20
X04500_at 5.86 -1.33
X17042_at -9.84 -0.23
X58529_at 10.28 0.98
X82240_rna1_at -3.75 -1.15
X95735_at 18.35 2.70
Z22548_at 9.55 0.43
Z23090_at -6.43 1.28
Z69881_at -8.39 5.54
Z84721_cds2_at -5.62 0.75
L08895_at -1.66 -0.87
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J03077_s_at 9.06 2.31
M21119_s_at -1.28 -0.46
M34996_s_at -5.48 -1.49
M16336_s_at -10.84 -4.73
M27783_s_at -0.95 -0.37
U20734_s_at 3.44 0.34
M30703_s_at -3.97 -2.59
M57466_s_at -0.69 3.36
M63438_s_at -7.82 -1.19
X00437_s_at -0.17 2.17
X65965_s_at -3.74 1.90
AF000424_s_at 0.58 -0.95
M21305_at -0.26 -3.38
U01317_cds4_at 3.67 -2.75
M34516_at 1.48 1.62

It is not always convenient to list all of the features, and
eyeball the most influential. We can use R to identify the top
3 features for LD1 and LD2. We begin with LD1:

scale1 <-data.frame(fit1$scaling)
ord1 <- order(abs(scale1 [,1]),
decreasing = TRUE)
names1 <-rownames(scale1) [ord1]

The scale1 object stores the LDA coefficients. These are
sorted in descending order via the order function, with the
argument decreasing = TRUE. The object ord1 contains the
row numbers of the sorted feature coefficients for LDA1. The
row-names of the sorted values are stored in names1.

Now, we can look at the top three influential features, and
their coefficient scores:
names1 [1:3]
[1] "X95735_at" "M57710_at"
"M16336_s_at"

scale1[names1 [1:3] ,1]
[1] 18.34747 -11.72637 -10.83697
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The most influential feature is X95735 with a coefficient of
18.34, followed by M57710 with a coefficient of -11.72. The
third most influential feature for LD1 is M16336 with a score
of -10.83.

We can use a similar procedure for LD2:
ord2 <- order(abs(scale1 [,2]),
decreasing = TRUE)
names2 <-rownames(scale1) [ord2]

names2 [1:3]
[1] "Z69881_at" "M92934_at" "

M16336_s_at"

scale1[names2 [1:3] ,1]
[1] -8.394323 -5.391976 -10.836969

We see that Z69881, M92934 and M16336, are the three most
influential features for LD2.

Step 4 - Evaluate Model Performance
Now that we have fitted the model, identified influential fea-
tures, and calculated the between class variance, let’s look at
classification performance. To begin, we calculate the train set
performance of the model. This can be carried out via the
predict function. It takes two key arguments. The first is the
fitted model, i.e. fit1; and the second argument is the sample,
in this case the train set contained in data_train.

Here is how to use the predict function to predict the class
labels:
pred1_train <-predict(fit1 ,
data_train)$class

The object pred1_train contains the class predictions. You
can view the first 9 predictions via the head function:
head(pred1_train ,9)
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[1] B T M T M T B B B
Levels: B M T

The first prediction is for class B, the second for class T, the
third for class M, and so on.

How well did the model do with the actual class values? We
can use the table function to visualize the performance:
tab1_train <-table(data$y[train],
pred1_train)
tab1_train

pred1_train
B M T

B 23 0 0
M 0 15 0
T 0 0 7

The model perfectly predicts each class! This is great, but
remember this performance is on the training sample. Good
performance is quite common. To get a better idea of perfor-
mance on unseen observations, let’s examine the test sample:
pred1 <-predict(fit1 ,data_test)$class
tab1 <-table(y[-train],
pred1)
tab1

pred1
B M T

B 9 2 4
M 0 8 2
T 1 0 1

The model misclassified 9 observations. In other words, the
model classification accuracy is around 66%. This is a little
disappointing given the perfect performance on the training
sample.
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Step 5 - Improving Model Performance
Ideally, we would like classification performance to be at least
85%. The question is how to achieve that. One solution, that
often works well, is to take another look at the assumptions of
the LDA model and see if we can better manipulate the data
to match these assumptions.

The key thing, that jumps out of the feature data, is the
high pair-wise correlation. This violates the independence of
attributes assumption. Maybe, if we choose a lower cut off for
the VIF, our data will better conform to this assumption. Let’s
try a cut-off VIF of 5:
x<-data.matrix(leukemia [ ,2:101])
vif <-vifstep(x,th=5)
x<-exclude(x, vif)

Now, check the number of features retained in x:
ncol(x)
[1] 34

So, in this illustration, 34 attributes are retained for inclusion
in our LDA model.

The next step is to regenerate the train and test samples:
data <-data.frame(x,y)
set.seed (2016)
N=nrow(data)
ncol(x)
train <-sample (1:N,45,FALSE)
data_train <-data[train ,]
data_test <-data[-train ,]

Next, fit the model via the lda function:
fit <-lda(y ~.,data=data_train)

The plot function can be used to visualize how well the
model separates the classes:
plot(fit)
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Figure 5.6 shows the plot. All three classes are well separated.
The first discriminant function (LD1) does a great job of sepa-
rating all three classes. Class M clusters in the right side of the
image, class B clusters on the left side, and class T clusters
at the top middle. The second discriminant function clearly
separates T from B and M.
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Figure 5.6: plot of lda model fit

Test set performance

How did it do with the test data? First, grab the predictions,
second, create the confusion matrix:
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pred <-predict(fit ,data_test)$class
tab <-table(data$y[-train],
pred)
tab

pred
B M T

B 14 1 0
M 0 9 1
T 1 0 1

Only 3 observations are misclassified, yielding a classification
accuracy of 88.88%. This is significantly higher than for fit1.

Limitations of Linear Discriminant
Analysis
At the core of LDA is the assumption of multivariate normality.
This is often violated in practice. Solutions include engineering
the data to better fit the normality assumption, or simply ig-
noring violations. We can expect the more severe the violation,
the weaker classification performance. The same holds true for
violations of the assumption that the covariance matrices are
equal for groups.

Finally, LDA makes the implicit assumption that all rela-
tionships are linear. Complex nonlinear relationships may be
missed by assuming linearity.

Summary
In this chapter, we studied LDA as a tool for classification.
It involves fitting linear discriminant functions to data. These
functions separate the data into classes.

We saw, that in practice features are often highly correlated,
and non-normally distributed. Despite this, LDA frequently
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delivers outstanding classification performance, and continues
to be useful in a wide range of applications.

We used it to for molecular classification of gene expression
data. Along the way, we learned several methods for examining
model fit, reducing the number of highly correlated features,
and assessing performance.

In the next chapter, we investigate one of the classical tools
of empirical analysis, linear regression.

Suggested Reading
• Chicken Fillets: Wold JP, Veiseth-Kent E, Høst V,

Løvland A (2017) Rapid on-line detection and grading
of wooden breast myopathy in chicken fillets by near-
infrared spectroscopy. PLoS ONE 12(3): e0173384.
doi:10.1371/journal.pone.0173384

• Autism Spectrum: Hasan, Che Zawiyah Che, et al.
"Automated Classification of Autism Spectrum Disor-
ders Gait Patterns Using Discriminant Analysis Based on
Kinematic and Kinetic Gait Features." J. Appl. Environ.
Biol. Sci 7.1 (2017): 150-156.

• Food Authentication and Traceability: D’Archivio,
Angelo Antonio, and Maria Anna Maggi. "Geographical
identification of saffron (Crocus sativus L.) by linear dis-
criminant analysis applied to the UV–visible spectra of
aqueous extracts." Food Chemistry 219 (2017): 408-413.

Other
• Development of Linear Discriminant Analysis:

Fisher, Ronald A. "The use of multiple measurements
in taxonomic problems." Annals of eugenics 7.2 (1936):
179-188.

127



Machine Learning Made Easy with R

• Food Adulteration: Eric Schlosser. Unsafe at Any
Meal. July 24, 2010. OP-ED. New York Times.

128



Chapter 6

Linear Regression

Sir Francis Galton’s sweet pea experiment back in 1875
propelled linear regression as a popular tool for modeling
relationships in data. It subsequently became the “first

choice” technique of analysis in a wide variety of disciplines.
Partly, due to the ease of calculation, theoretical underpinnings
and useful insights, it remains a useful tool to this day.

In this chapter, you will:

• Learn the fundamentals of simple and multiple regression.

• Identify the core underlying assumptions.

• Clarify how parameters are estimated.

• Gain insight on a key performance metric.

• Study some interesting modern applications.

• Build linear regression models to predict the length of
Paleolithic hand-axes.

Linear regression is taught to students in engineering, social
science, medical sciences, physical science, business, and in any
discipline that uses empirical data. Our interest lies in its capa-
bility as a machine learning algorithm; and that is the primary
focus of this chapter.
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Understanding Linear Regression
Linear regression was developed to both describe the relation-
ship between a target variable and a set of explanatory features;
and to use this relationship to predict the value of the target
variable. We begin by postulating a regression function and
then make estimates of model parameters given values of the
target and feature variables.

Simple Linear Regression
Simple linear regression is most frequently used to investigate
whether there is a linear relationship between two quantitative
variables. The variable we want to predict (y) is often called the
response or target variable. The variable we use for this pre-
diction (x) is called the explanatory or feature variable. Given
a sample of n observations on a target and feature variable, the
simple linear regression model assumes:

yi = α + βxi (6.1)

This is a straight line with intercept α, and slope equal to β.
When β > 0 the line has positive slope. It has a negative slope
when for β < 0. The parameter β is interpreted as the change
in y for every unit change in x.

Adding an error term

Since we cannot expect this relationship to hold exactly for all
of our paired observations {(x1, y1), ...(xn, yn)}, we include the
error term εi, and write the simple regression equation as:

yi = α + βxi + εi

The character εi is known as the residual or error term. It
measures the error between the actual value yi and the value
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implied by equation 6.1. For example, if the linear approxima-
tion is:

yi = 1 + 2xi
and we observe y1 = 3 and x1 = 1, then ε1 = y1−(α + βx1) = 0.
However, if for the second pair of observations we have y1 = 2
and x2 = 3 then ε2 = 2− (1 + [2× 3]) = −5.

Clarifying Expected Value
Let’s take a slight detour, and talk a little about expected value.
We will use the notion in a short while to give us an alternative
perspective on linear regression.

The feature x is assumed to be a random variable. A ran-
dom variable is an observation generated by an underlying
probability distribution. There are many probability distribu-
tions, the bell shaped normal distribution being one of many.

Figure 6.1 shows the standard normal distribution. In sta-
tistical analysis, it is important to have a rough idea of the
distribution of the observations. We saw earlier the normality
assumption played a key role in linear discriminant analysis.
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Figure 6.1: Standard Normal Distribution
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Expected Value

The expected value of a random variable is a measure of it’s
average or typical value. It is often denoted by E [X] . Given
the probability of x, denoted by p(x), the expected value of a
discrete random variable X is calculated as:

E [X] =
∑
x

x× p(x) (6.2)

An Illustration

Suppose, after surprisingly beating your “know it all” Boss at
their favorite game - tennis, you feel “Lady Luck” is on your
side. As a one-off event, you decide to buy a lottery ticket.
The outcome is a random variable. In fact, there are only two
possible outcomes, win lottery, or lose lottery.

If you have success the random variable X = 1, and you
will retire from your current job, and tell your Boss where to
stick it. However, for failure X = 0, and you remain “friends”.

This type of random variable, with a binary outcome, is
known as a Bernoulli random variable. Let the probability of
winning the lottery be Probability(X = 1) = p. What is the
expectation of this random variable?

E [X] =
∑
x

x× p(x) = 0× (1− p) + (1× p) = p

Unfortunately, for most lotteries p is very, very small.
For example, in the United Kingdom’s National Lottery p =

1
13,983,816 . Your chance of winning is approximately 1 in 14 mil-
lion! The chances are “Lady Luck” disappears, leaving you and
your annoying Boss “friends”; And remember to lose next (and
every other) time!

An example with R

Let’s try to make this concrete with a hands-on example in R.
Consider the number of security personal available to protect
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a highly prestigious exhibit, on a particular day, at the British
Museum in London. The manager of security has been asked
to report on the expected level of staffing. He knows that on
any day there is always at least one individual available for
duty, and at most nine. Therefore, X is a discrete random
variable that can take on values between 1 to 9. Suppose the
probabilities are as follows:
probs=c ( " 1 " =0.301 , " 2 " =0.176 , " 3 " =0.125 ,
" 4 " =0.097 , " 5 " =0.079 , " 6 " =0.067 ,
" 7 " =0.058 , " 8 " =0.051 , " 9 " =0.046)

probs
1 2 3 4 5 6 7 8 9

0 .301 0 .176 0 .125 0 .097 0 .079 0 .067 0 .058 0 .051 0 .046

We see the probability that one person is on duty (X = 1)
is 0.301, and the probability that nine guards are on duty is
(X = 9) is 0.046.

Since X is discrete, equation 6.2 can be used to calculate
the expected value. First, create the R object Staff, and
then multiply it by probs. The values from this calculation
are stored in the R object result:
S t a f f =1:9
Result = S t a f f ∗ probs
Result

1 2 3 4 5 6 7 8 9
0 .301 0 .352 0 .375 0 .388 0 .395 0 .402 0 .406 0 .408 0 .414

The sum of result gives the expected value:
ExpectedStaff=sum(Result)
ExpectedStaff
[1] 3.441

Therefore, E[X] = 3.44. This informs the manager of secu-
rity that the average or center of mass of the distribution lies
between 3 and 4. However, as the actual number of staff on
duty can only take integer values, in reporting the findings, the
manager of security is likely to say that the number of security
personal available on a particular day are expected to be 3 or

133



Machine Learning Made Easy with R

4. The key thing to remember is that an expected value tells
you what happens on average.

NOTE... �

If X is continuous, the expected value is calculated
by:

E [X] =
∫ +∞

−∞
xf(x)dx

where f(x)is the probability density function for
X.

Linear regression and conditional expectation

The conditional expectation of Y given X is denoted by
E(Y |X). We can interpret linear regression as a conditional
expectation where:

E(Y |X) = α + βX

The intercept tells us the value of Y that is expected when
X = 0. The slope parameter β, measures the relationship
between X and Y . It is interpreted as the expected (or average
change) in Y for a 1-unit change in X.

For example, if we estimate a regression and find:

E(Y |X) = 1 + 2X

Then a 1 unit change inX is expected to lead to a 2 unit change
in Y .

Explaining Ordinary Least Squares
Since we don’t know the value of the parameters, α and β, they
are estimated from the data. A technique known as ordinary
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least squares is used for this task. It selects α and β, to mini-
mize the error between the observed value of the target variable
(y), and the value predicted by the linear regression equation
(ŷ). Recall, that the residual or error is given by:

Residual = Observed value− predicted value

⇒ εi = (yi − ŷ)

In general, the smaller the residual, the better the model fits
the observed values of y. However, as we saw on page 130,
some residuals are positive and some are negative. Therefore,
we square the residuals, and then sum them together. The sum
of these squared residuals is called the residual sum of squares
(RSS):

RSS =
n∑
i=1

ε2
i =

n∑
i=1

(yi − ŷ)2 (6.3)

The “best” regression line chooses α and β to minimize RSS.
It turns out this value, for the intercept, can be obtained using
the formula:

α̂ = Y − βX

where Y and X are the sample mean of the target and feature
respectively. The slope parameter is calculated by:

β̂ =
∑n
i=1

(
xi −X

) (
yi − Y

)
∑n
i=1

(
xi −X

)2

Coefficient of Determination
The coefficient of determination, also known as R-squared (R2),
is often used to measure how well the simple linear regression
model fits the data. It is essentially the square of the correlation
coefficient. If there is no linear relationship between X and Y
the correlation coefficient is equal to zero and so therefore is
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the coefficient of determination. Moreover, since the coefficient
of determination is the square of the correlation coefficient it
lies between zero (no linear relationship) and one (a perfect
linearly relationship).

Interpretation

We can interpret the coefficient of determination as the pro-
portion of the variation in the target variable y explained by
the linear regression. It is a measure of the percentage of the
sample’s variance accounted for by the regression model. To
see this, note the following quantities:

• ∑n
i=1

(
yi − Y

)2
is the Total Sum of Squares (TSS)

• ∑n
i=1

(
ŷi − Y

)2
is the Explained Sum of Squares (ESS).

The difference between TSS and RSS represents the improve-
ment obtained by using the feature x to explain y. This dif-
ference is ESS. In other words, ESS measures the variation
accounted by the feature x. In fact, in linear regression:

TSS = ESS +RSS

So we see that TSS is essentially a measure of the total variation
in y explained by both the regression model and the residual ε.

The coefficient of determination can be calculated by taking
the ratio of the explained variance to the total variance:

R2 = variation accounted for by x

total variation
= ESS

TSS

= 1− variation not accounted for by x

total variation
= 1− RSS

TSS

Therefore, provided an intercept term is included in the
regression, R2 is simply the proportion of total variation in the
target variable explained by the regression model.

136



CHAPTER 6. LINEAR REGRESSION

For a poor fitting model, RSS is large and ESS is small,
consequently R2 will be small (close to 0). For a well-fitting
model ESS is large and RSS small, and therefore R2 will be
large (close to 1). It is therefore, a measure of the overall
quality of the regression.

Multiple Regression
In practice, more than one independent variable or feature will
influence the target variable. Multiple regression allows more
than one x variable:

yi = α + β1x
1
i + β2x

2
i + ...+ βkx

k
i + εi

In this case, we have k features (or independent variables).

Adjusted coefficient of determination

The adequacy of the fit of the multiple regression model is
often assessed using the adjusted R2 statistic. This is because
R2 can be inflated towards its maximum value of 1 simply by
adding more independent variables to the regression equation.
The adjusted R2 statistic takes into account the number of
explanatory variables in the model:

Adjusted R2 =
 RSS

(n−k)
TSS
n−1


If we only have one independent variable in our model (so

that we have a simple linear regression) then k =1, and we see
that:

Adjusted R2 =
 RSS

(n−k)
TSS
n−1

 = 1− RSS

TSS
= R2
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NOTE... �

A simple rule of thumb to avoid over specification
is to set the sample size so that n ≥ 5(k+2), where
n is the sample size, and k the number of features.

Assumptions of the Linear Regression Model
Whilst a high R2 is desirable, it is not the whole story. It
is important that the regression model is valid. The statisti-
cal validity of linear regression analysis rests on the following
assumptions:

1. Linearity: The relationship between the target and fea-
tures is linear. It can be described by a straight line.

2. Normality: The residual ε are independently, identically
distributed from the standard normal distribution. We
write this as ε iid∼ N(µ, σ2), where σ is the standard de-
viation. The standard normal distribution has a mean of
zero (µ = 0) and standard deviation of 1 (σ = 1). In-
dependence implies εiand εk are uncorrelated for i 6= j.
Identical, simply means they are generated from the same
underlying fixed probability distribution.

3. Constant variance: The variance of the residual term
is assumed to be constant. This is known as homoscedas-
ticity in variance. A violation of this assumption is called
heteroscedasticity. This assumption implies the variabil-
ity of y is constant for all values of x.

4. Independent variables uncorrelated: The indepen-
dent variables should be uncorrelated. A violation of this
assumption can result in the least squares estimator giv-
ing the wrong estimates of the parameters. It also causes
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the estimates to be inefficient. Inefficiency implies esti-
mates with highly correlated independent variables will
have a larger standard error than the same estimate if
the variables were uncorrelated. This hampers statistical
hypothesis testing about the size and direction of model
parameters. High correlation between the independent
variables is sometimes termed as multicollinearity.

5. No autocorrelation: The dependent variable and error
terms are independently, identically distributed. This en-
sures errors associated with different observations are in-
dependent of one another. It also implies the residuals are
not correlated with the dependent variable. A violation
of this assumption is called auto or serial correlation.

If the above assumptions are valid, then the ordinary least
squares estimators are known as the Best Linear Unbiased Es-
timators (BLUE). A BLUE estimator has the smallest variance
in the class estimators that are linear in the dependent variable.
Why is this useful? Because apart from wanting an estimator
to be unbiased, we would also like an estimator that is always
close to the population parameter we are trying to estimate.
One way to measure this closeness is through the standard er-
ror of the estimator. If we have two unbiased estimators, one
with a large standard error, and the other with a smaller stan-
dard error, we would always select the latter.

Advantages of Linear Regression
Linear regression is ubiquitous, and remains the most popu-
lar curve fitting technique. It is used in the Sciences, Social
Sciences, business, government, and everywhere in-between. It
has delivered outstanding results across numerous disciplines.

It is popular because it allows you to examine the rela-
tionship between one or more features and a response variable.
The linear relationship helps make insights more intuitive. It
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is therefore useful when you need to describe the relationship
between a target variable and a set of explanatory features. Of
course, it can also be used to predict the value of the target
variable using a set of features, and often does this very well.

Practical Application of Linear Re-
gression
In this section, we look at some interesting and useful appli-
cations for predicting soil density, assessing attitudes in age
friendly cities, and measuring the relationship between foreign
direct investment and economic growth.

Predicting Soil Density
In his wonderfully revealing book Don’t Look Behind You! Sa-
fari guide, Peter Allison, describes his many escapades in the
African bush. In one incident, he is cornered by a very angry
snake:

“I tried mimicking the snake’s movement to spare
my tiring right side, but just flopped from side to
side before losing balance and getting a mouthful of
soil. My taste buds were sadly all functioning, and
there was something in the dirt that I was sure must
have been through an animal’s digestive process be-
fore it made it into my mouth.”

Peter’s taste buds were correct. The composition of soil de-
pends on the mix between organic and mineral components. In
fact, if you look very closely, as Peter did, you will notice soil
is composed of tiny particles. These particles are nothing more
than very small jagged bits of rock. The weight of an individual
soil particle per unit volume is called particle density.
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Accurate measurements of soil particle density are required
to better understand water, air, heat-flow and chemical trans-
portation through soil. This is especially important for agri-
cultural production. Usually, particle density is expressed in
units of grams per cubic centimeter (g/cm3); and for normal
soils is in the range of 2.65g/cm3 to 2.66g/cm3. It is higher if
soil contains a large amount of heavy minerals such as mag-
netite; limonite and hematite. It decreases as the amount of
organic matter increases.

Agroecologist P. Schjønning built a simple liner regression
model to predict solid particle density (Dp) from soil organic
matter (SOM). Using a data set of 282 examples, the esti-
mated regression equation was:

Dp = 2.646− 2.8× SOM

Several things are interesting about this estimated liner regres-
sion equation:

• First, the intercept term, takes a value of 2.646 and there-
fore captures the average Dp of normal soils.

• Second, the slope coefficient, takes a negative sign. This
agrees with the scientific observation that Dp decreases
with soil organic matter.

Hence, both the intercept and sign of the slope coefficient give
us some confidence in the validity of the model. The R2 for the
model was around 0.77.

A multiple regression model was also investigated, this time
on another data set. It included clay content (Clay) and SOM
as independent features. Clay content was expected to have
a positive association with Dp. This was confirmed by the
regression estimates:

Dp = 2.652 + 0.216× Clay − 2.237× SOM

The R2 = 0.919, and as P. Schjønning explains:
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“This means that nearly 92% of the variation in
measured Dp data can be explained by the two in-
dependent variables in the model (i.e., Clay and
SOM contents). ”

Age Friendly Cities
Several years ago, the World Health Organization issued a re-
port on age-friendly cities. These are towns, cities and urban
areas that:

“...encourages active aging by optimizing opportu-
nities for health, participation and security in order
to enhance quality of life as people age.”

Age friendly cities (AFC) are excellent in eight core areas

1. Outdoor spaces and buildings (O)

2. Transportation (T )

3. Housing (H)

4. Social participation (S)

5. Respect and social inclusion (R)

6. Civic participation and employment (CE)

7. Communication and information (CI)

8. Community support and health services (CSH)

Age friendly cities are of growing importance, because as the
National Institute on Aging explains:

“The world’s population is growing—and aging.
Very low birth rates in developed countries, coupled
with birth rate declines in most developing coun-
tries, are projected to increase the population ages
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65 and over to the point in 2050 when it will be 2.5
times that of the population ages 0-4. This is an
exact reversal of the situation in 1950.”

Social Scientists Stephen Chan decided to use linear regression
to assess the attitudes of senior adults to the components of
the Age-friendly City core areas for Hong Kong.

The sample consisted of 682 adults. Two subgroups were
separately assessed using linear regression. The first group were
participants aged 65-75, a total of 351 individuals. This group
were referred to as young − old.

The second group, aged 75+ contained the remaining 331
participants. This group were referred to as old− old.

Each group were asked to complete a survey questionnaire
consisting of metrics on the Age-friendly City Scale.

The estimated multiple regression, ignoring the intercept,
for the first group was:

AFCyoung−old = −0.030×O + 0.141× T + 0.088×H

+0.207× S − 0.136×R− 0.09× CE

+0.05× CI + 0.194× CH

The positive coefficients indicate areas where this group are
more satisfied, and the negative coefficients reflect dissatisfac-
tion.

The estimated multiple regression, ignoring the intercept,
for the second group was:

AFCold−old = −0.021×O + 0.136× T + 0.049×H

+0.147× S + 0.002×R + 0.117× CE

+0.65× CI + 0.06× CH

Take a close look at the estimated coefficients for AFCyoung−old
relative to AFCyoung−old. What do you observe?
Stephan Chan and his co-researchers comment:
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“...young-old adults tended to be more satisfied in an
environment with good transportation, social partic-
ipation, and community and health services, while
old-old adults were more satisfied with an environ-
ment with good transportation, social participation,
and civic participation and employment.”

Foreign Direct Investment in Nepal
Nepal, is a beautiful Himalayan country sandwiched between
India and China. It is famous for it’s Sherpa’s, yaks, yetis,
monasteries and international travelers. It is also an increas-
ingly modern nation eager to establish a market economy.

Economists argue that Foreign Direct Investment (FDI)
from countries such as the United Kingdom, United States,
China and the European Union, will have a positive impact
on economic growth in Nepal. Other Economists disagree and
believe the direct opposite.

Researchers Xinfeng Yan and Majagaiya Kundan Pokhrel
build a simple linear regression to investigate the issue. The
target variable is Gross Domestic Product (GDP ), a measure of
overall economic activity in an economy. The sample, is rather
small, and consists of 25 annual observations on the pair GDP
and FDI.

Their initial simple linear regression is estimated as:

GDP = −4100.89 + 64.16× FDI

The model has an R2= 0.09, indicating that 9% of the variation
in GDP is explained by FDI. Although low, this is not of
great concern as we would not expect all of GDP (or even the
majority) to be explained by FDI.

The coefficient on FDI at 64.16 suggests that an increase
of one unit of FDI is expected to increase GDP , on average,
by 64.16 units. Hence the model appears to confirm a positive
relationship between GDP and FDI. However, this interpre-
tation has to be taken with caution because the researchers
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observe the coefficient on FDI is not statistically significant
at the 10% level. They report a p-value = 0.128, meaning
they have little confidence that the actual coefficient value on
FDI differs much from zero. In addition, the researchers ob-
serve autocorrelation in the residual, a direct violation of the
assumptions of linear regression.

In the end, Xinfeng and Majagaiya reject the model as being
unreliable; and conclude they are unable to confirm a positive
relationship between GDP and FDI:

“There was no direct way of identifying the linkage
between FDI and GDP...[even] without the presence
of auto-correlation FDI does not adequately describe
the GDP.”

Example - Predicting the Length of
Paleolithic Hand-Axes
Labor saving tools have been with man from the very be-
ginning. The very first tools may have been sharp-edged
rocks or bone that could be usefully deployed. During the
lower Paleolithic period, around 2,500,000 to 200,000 years ago,
Acheulean handaxes, made from flint or chert became popular.

Figure 6.2 shows the illustration of a hand axe. It was
drawn by John Frere, and found in the parish of Hoxne, in the
English county of Suffolk in the year 1800. John conjectured:

“They are, I think, evidently weapons of war, fabri-
cated and used by a people who had not the use of
metals. They lay in great numbers at the depth of
about twelve feet, in a stratified soil, which was dug
into for the purpose of raising clay for bricks.”
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In this section, we build a linear regression model to predict
the maximum length of a Lower Paleolithic hand axe.

Figure 6.2: The first published picture of a hand axe, drawn
by John Frere in the year 1800.
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Step 1 – Collecting and Exploring the Data
The Handaxes data-frame contains 600 measurements on Lower
Paleolithic hand-axes from Furze Platt, Berkshire, England, see
Table 15.

Name Description
Catalog Specimen catalog number.
L Maximum Length.
L1 Distance butt.
B Maximum breadth.
B1 Breadth from the tip.
B2 Breadth from the butt.
T Maximum thickness.
T1 Thickness measured at B1.

Table 15: Handaxes data frame.

The data is contained in the archdata package. Load the
data:
data("Handaxes",package="archdata")

We should check the data for unusual values caused by data-
entry errors, outliers and so on. For this illustration, we use the
summary function and investigate the minimum and maximum
of each variable:
summary(Handaxes [ , 3 : 5 ] )

L1 B B1
Min . : 15 .00 Min . : 34 .00 Min . : 18 .00
1 s t Qu . : 32 .00 1 s t Qu . : 61 .00 1 s t Qu . : 32 .75
Median : 39 .00 Median : 70 .00 Median : 40 .00
Mean : 41 .64 Mean : 70 .86 Mean : 42 .21
3 rd Qu . : 49 .00 3 rd Qu . : 80 .00 3 rd Qu . : 50 .00
Max. : 1 36 . 0 0 Max. : 1 23 . 0 0 Max. : 1 03 . 0 0
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summary(Handaxes [ , 5 : 7 ] )
B1 B2 T

Min . : 18 .00 Min . : 21 .00 Min . : 2 0 . 0 0
1 s t Qu . : 32 .75 1 s t Qu . : 52 .00 1 s t Qu. : 3 2 . 0 0
Median : 40 .00 Median : 62 .00 Median : 3 8 . 0 0
Mean : 42 .21 Mean : 61 .97 Mean : 3 8 . 4 4
3 rd Qu . : 50 .00 3 rd Qu . : 70 .00 3 rd Qu. : 4 4 . 0 0
Max. : 1 03 . 0 0 Max. : 1 02 . 0 0 Max. : 6 9 . 0 0

summary(Handaxes [ , 2 ] )
Min . 1 s t Qu. Median Mean 3rd Qu. Max.
69 .0 103 .0 118 .0 121 .9 136 .0 242 .0

Nope, nothing unusual. All looks in order.

NOTE... �

You should check for yourself to ensure that there
are no missing values in this data set.

Visual relationships

Figure 6.3 shows the density-plots, correlation matrix, and
scatter-plots for the target variable L, and the explanatory at-
tributes. It is interesting to note that:

• The relationship between L and each attribute is positive,
as indicated by the upward slope in the scatter plots; and
the positive correlation coefficients. It appears L has a
high positive correlation with the features with B (0.77),
B2(0.70) and T(0.61).

• The attributes are all positively correlated with each
other. For example, as the maximum breadth increases,
so do all the other attributes. This is to be expected -
larger handaxes have larger dimensions all round.

• Several of the attributes are highly correlated, for exam-
ple, B2 has a 0.85 correlation with B; and B1 has a 0.75
correlation with L1.
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• The density plots, appear to indicate the attributes are
approximately bell shaped. Thus, they might be gener-
ated from the normal distribution.
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Figure 6.3: Scatter, density and correlation plot for Handaxes

Step 2 – Preparing the Data
In regression modeling, a standard approach is to apply a nat-
ural log transformation to both the target variable and the
attributes before fitting the model. When a simple linear re-
gression model is fitted to logged variables, the slope coefficient
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represents the predicted percent change in the target variable
per percent change in the attribute variable.

We transform the attributes using the natural logarithm via
the log function. The transformed target variable is stored
in the R object y, and the attributes in the R object called
data_sample:
y<-log(data.matrix(Handaxes [,2]))
data_sample <-log(data.frame(data.matrix(

Handaxes [ ,3:8])))

Take a quick look at the features:
head(round(data_sample ,3))

L1 B B1 B2 T T1
1 4.234 4.369 4.174 4.043 3.714 3.091
2 3.932 4.644 3.951 4.595 4.220 3.332
3 3.932 4.644 4.007 4.625 3.807 2.890
4 3.584 4.357 3.497 4.357 3.611 2.565
5 4.317 4.718 4.522 4.500 4.043 3.219
6 3.555 4.220 3.332 4.159 3.332 2.303

and the target variable:
head(round(y,3))

[,1]
[1,] 4.898
[2,] 5.416
[3,] 5.288
[4,] 5.069
[5,] 5.153
[6,] 4.615

The findCorrelation function

The high correlation between the attributes might mess with
the independence assumption of linear regression. To reduce
this risk, the findCorrelation function can be deployed to
automatically identify highly correlated features.
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The findCorrelation takes two primary arguments. The
first is a correlation matrix, and the second is a correlation
cutoff. We use a cutoff of 0.6:
cor_matrix <-cor(data.matrix(data_sample))
require(caret)
rid_col <-findCorrelation(cor_matrix ,
cutoff = 0.6,exact=FALSE)

The object cor_matrix contains the correlation matrix for the
features; and rid_col contains the attributes. Let’s take a look
to see what it found:
rid_col
[1] 3 2

colnames(data_sample)[rid_col]
[1] "B1" "B"

The findCorrelation function suggests we remove column 3
and 2 from data_sample. These correspond to feature B1 and
B. We can drop both using the NULL argument:
data_sample$B1 <-NULL
data_sample$B <-NULL

We had better check that things went as expected:
head(round(data_sample ,3))

L1 B2 T T1
1 4.234 4.043 3.714 3.091
2 3.932 4.595 4.220 3.332
3 3.932 4.625 3.807 2.890
4 3.584 4.357 3.611 2.565
5 4.317 4.500 4.043 3.219
6 3.555 4.159 3.332 2.303

Yep, B1 and B have been successfully removed.
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Train and test set

We use 550 examples for the test set, selected randomly without
replacement, via the sample function:
set.seed (2016)
N=nrow(data_sample)
train <-sample (1:N,550, FALSE)
y_train <-y[train]
y_test <-y[-train]
data_train <-data_sample[train ,]
data_test <-data_sample[-train ,]

The train sample are reference via the argument “_train”,
and the test sample use “_test”. Now, let’s check we have the
correct number of rows in both the train and test set feature
sample:
nrow(data_train)
[1] 550

nrow(data_test)
[1] 50

The numbers are as expected, with 550 examples in the train
set, and 50 in the test sample. You should check for yourself
that the numbers in the target variable (R object y) also match
these numbers.

Step 3 - Train Model using Train Set
The function lm can be used to perform multiple linear re-
gression in R. The first argument it receives is the standard R
formula, followed by the sample data:
f i t= lm( y_train ~. , data = data_train )
The argument “~.” tells R to build the regression using all of
the variables in data_train. The fitted model is stored in the
R object fit.
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The estimated coefficients

The estimated coefficients can be viewed by appending
$coefficients to fit:
round( f i t $ c o e f f i c i e n t s , 3 )

( I n t e r c ep t ) L1 B2 T T1
1.376 0 .235 0 .510 0 .216 −0.120

The estimated values indicates that the fitted line is given by:

L̂ = 1.376 + 0.235× L1 + 0.510×B2

+0.216× T − 0.12× T1

As expected the coefficients are positive, with the exception
of T1. For example, a 1 unit increase in L1 leads to a 0.235
increase in L.

Exploring the coefficient on T1

The coefficient on T1 looks a little odd. Especially since the
correlation between it and L is positive at 0.612. Let’s run
a simple linear regression between L and T1, to confirm our
suspicion that something is not quite right here:
f i tT1=lm( y_train ~T1 , data = data_train )
round( f i t T 1 $ c o e f f i c i e n t s , 3 )
( I n t e r c ep t ) T1

3 .869 0 .330
Yep, in this simple regression, the coefficient has the expected
positive sign.

What to do? Well there are many solutions to this issue
proposed in the literature. For now, we take the simplest route
and drop T1 from the model:
f i t= lm( y_train ~L1+B2+T , data = data_train )
round( f i t $ c o e f f i c i e n t s , 3 )
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( I n t e r c ep t ) L1 B2 T
1.457 0 .197 0 .476 0 .179

The coefficients are all positive. This agrees with both our
intuition, and the empirical correlations.

NOTE... �

The feature B2 has the largest impact per unit
change L, followed by L1, then T.

Viewing confidence intervals

The 95% confidence intervals can be displayed via the confint
function:
round( c on f i n t ( f i t , l e v e l =0.95) ,3 )

2 . 5 % 97 .5 %
( In t e r c ep t ) 1 .259 1 .655
L1 0 .165 0 .230
B2 0 .430 0 .523
T 0.123 0 .234
The lower bound on the confidence intervals are greater than
zero for all of the estimates. This gives solid support to the idea
that the relationship between the attributes and L is positive.

Step 4 - Evaluate Model Performance
The complete statistical summary of the fit can be viewed
using the summary function:
summary( f i t )

Cal l :
lm( formula = y_train ~ L1 + B2 + T, data = data_train

)

Res idua l s :
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Min 1Q Median 3Q Max
−0.38706 −0.07776 −0.00497 0.08466 0.39887

Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

( I n t e r c ep t ) 1 .45696 0.10076 14 .459 < 2e−16 ∗∗∗
L1 0.19740 0.01647 11 .985 < 2e−16 ∗∗∗
B2 0.47625 0.02376 20 .044 < 2e−16 ∗∗∗
T 0.17884 0.02819 6 .345 4 .68 e−10 ∗∗∗
−−−
S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’

0 . 1
’ 1

Res idua l standard e r r o r : 0 .1183 on 546 degree s o f
freedom

Mult ip l e R−squared : 0 .6717 , Adjusted R−squared :
0 .6699

F−s t a t i s t i c : 372 .4 on 3 and 546 DF, p−value : < 2 .2 e
−16

The top part of the output reminds you of the formula used to
build the model. The output also reports several quality and
performance metrics.

t-test of regression coefficients

In the above regression output, estimates of the model coeffi-
cients are provided along with their standard errors. Standard
errors are useful for statistically assessing the value of the co-
efficients. This is done using a t-statistic. The t-statistic is
calculated as:

tstatistic = estimated coefficient

standard error of estimate

For example, for L1 we see that:

tL1 = 0.19740
0.01647 = 11.985

We will take a close look at this value in a moment. But first,
what precisely is the standard error of the estimate?
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Standard error of the estimate

Recall that the data from which we derive the parameter es-
timates is a random sample. If we took measurements on a
different sample of Lower Paleolithic hand-axes, say from the
central English town of Bedworth, the recorded values would be
different. The implies the actual estimates themselves, which
are a function of the data, are also random variables. Their
value will change from sample to sample. We estimate the
variation in the parameter estimates using the standard devia-
tion of the estimate, more commonly called the standard error
of the estimate.

The t value

R automatically translates the t value into a probability (see
the column Pr(>|t|)), we reject the null hypothesis that the
estimated coefficient is zero if this probability is very small.
The coefficients on all three features and the intercept, have a
p-value less than 0.01. In other words, there is no evidence any
of these estimated values are different from zero (and we can
therefore reject the null hypothesis that they are zero). This
agrees with our earlier finding using the confint function.

NOTE... �

The probability distribution of the above t statistic
is the Student t distribution with n-2 degrees of
freedom. Where n is the number of examples in
the sample.

The Adjusted R-Squared

At the bottom of the output, the R2 and adjusted R2 are re-
ported. Since, we have more than one independent feature,
the adjusted R2 is the relevant measure of overall fit. It indi-
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cates that around 67% of the variation in L is explained by the
features.

The F test of regression coefficients

The output also shows the F statistic. It is a joint test of the
null hypothesis that none of the explanatory variables have any
effect on the dependent variable i.e. the features L1, B2 and T
have no effect on L. Rejection of the null hypothesis implies at
least one of the coefficients on the explanatory variables is not
equal to zero.

For our example, the F statistic is equal to 372.4, and R
reports that the associated probability is less than 2.2e-16 (p
< 2.2e-16). Thus, we can reject the null hypothesis that all
of the coefficients are zero.

NOTE... �

This test statistic has an F distribution with k and
n-k-1 degrees of freedom.

Check for Non-linear patterns in the residuals

Before we use our model for prediction, we need to ensure it
meets the assumptions required by linear regression. Fortu-
nately, R produces several visual plots that help us with this
task via the plot function:
p l o t ( f i t , which=1)
You should see Figure 6.4, it shows the residual versus fitted
values of fit. It is used to detect non-linear patters in the
relationship between the target variable and the features. You
visually check to see if the residuals are approximately equally
spread around the red line (which should be approximately
horizontal) without any distinct patterns.
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There are no distinctive patterns evident in the chart, and
the residuals appear evenly spread around the red line (solid
line). Overall, we can draw some confidence that the data do
not contain any non-linear relationships.
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Figure 6.4: Residual v fitted values

Check the distribution of the residuals

We can visually assess the normality of the residuals using a
density plot of the residuals, and a normal Q-Q plot:
par (mfrow=c (2 , 1 ) )
p l o t ( dens i ty ( f i t $ r e s i d u a l s ) ,
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main=" Res idua l s " ,
x lab=" Value " )
p l o t ( f i t , which=2)
Figure 6.5 shows the resultant plots. The density plot is ap-
proximately bell shaped. This is a good sign.
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Figure 6.5: Density plot (top) and Normal Q-Q plot (Bottom)

In a Normal Q-Q plot the ordered residuals (y-axis) are
plotted against the expected quantiles from a standard normal
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distribution function (x-axis). The plotted points should lie on
an upward sloping (45 degree) straight line.

Figure 6.5 (bottom), shows the residual points fall approx-
imately along a straight upward sloping line. However, several
points are annotated on the chart. Points 182, 9 and 290 look
a little off, although not by a large amount.

Should we accept that the residuals are from the normal
distribution? It appears so, but we can also use a formal sta-
tistical check for an added layer of comfort. The Shapiro-Wilks
normality test is quick and easy to execute:
shap i ro . t e s t ( f i t $ r e s i d u a l s )

Shapiro−Wilk normal i ty t e s t

data : f i t $ r e s i d u a l s
W = 0.99811 , p−value = 0.8106
The null hypothesis is that the residuals are from a normal dis-
tribution. The p-value of the test statistic, at 0.81, is rather
large (maximum value =1), and we cannot reject the null hy-
pothesis.

NOTE... �

Remember, we reject the null hypothesis if the
probability (p-value) is very small.

Check for equal variance

Heteroskedasticity (non-constant variance) causes the esti-
mated standard error of the estimates to be wrong. This means
the confidence intervals and hypotheses tests may not be reli-
able. The scale-location plot is useful for assessing the constant
variance assumption. You can view the plot by setting which=3
in the plot function.
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p lo t ( f i t , which=3)
As shown in Figure 6.6, this plot is similar to the residuals ver-
sus fitted values plot shown in Figure 6.4, but it uses the square
root of the standardized residuals along the y axis. There
should be no discernible pattern to the plot with the points
spread evenly around a horizontal line.
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Figure 6.6: Scale Location plot

Looking closely at the figure, the points seem to form a
homogeneous cloud, equally spread on both sides of the line.
This is good. However, there is a slight upward slope to the
line in Figure 6.4, this is a little worrying.
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We better dig a little further via formal statistical tests.
Two popular tests are the Breuch Pagan test from the lmtest
library, and the NCV test from the package car. In both cases,
the null hypothesis is that of homoscedasticity, and we reject
the null hypothesis if the p-value is small.

Here is how to call the tests:
l i b r a r y ( lmtes t )
l i b r a r y ( car )
bptes t ( f i t )

s tudent i z ed Breusch−Pagan t e s t
data : f i t
BP = 12 .847 , df = 3 , p−value = 0.00498

ncvTest ( f i t )

Non−constant Variance Score Test
Variance formula : ~ f i t t e d . va lue s
Chisquare = 7.828589 Df = 1 p =

0.005142623

For both statistical tests the p-value is less than 0.01, and we
reject the null hypothesis of constant variance.

Heteroskedasticity impacts the standard errors, not the es-
timated values. Our real concern is to ensure the coefficients in
the model are statistically significant (they probably are given
their tiny original p-values, but we should double check). The
question is what to do? Well, whenever any of the core as-
sumptions of linear regression fail, there are four paths you can
follow:

1. Transform the dependent variable;

2. Transform the independent variables;

3. Add or remove independent variables;

4. Look for another regression estimation technique.
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Transformations are often used to correct for non-constant vari-
ance, non-linearity and non-normality. Popular transforma-
tions include the square root and natural logarithm. Since
we have already used a log transformation on the dependent
and independent variables, and deleted T1 from the model,
let’s try the fourth option - “Look for another regression
estimation technique”.

A popular solution for heteroscedasticity, involves adjust-
ing the standard errors to better reflect the actual under-
lying probabilities for hypothesis testing. The car package
has the function hccm that does the job. It calculates the
heteroscedasticity-corrected covariance matrix from which the
standard errors are derived. Here, is how to use it:
c o e f t e s t ( f i t ,
vcov=hccm( f i t ) )

t t e s t o f c o e f f i c i e n t s :

Estimate Std . Error t va lue Pr(>| t | )
( I n t e r c ep t ) 1 .456964 0.109762 13.2738 < 2 .2 e−16 ∗∗∗
L1 0.197396 0.016749 11.7853 < 2 .2 e−16 ∗∗∗
B2 0.476251 0.026172 18.1970 < 2 .2 e−16 ∗∗∗
T 0.178841 0.031264 5 .7204 1 .753 e−08 ∗∗∗
−−−
S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’

0 . 1 ’ ’ 1

The first thing to notice is that the coefficient estimates agree
(to three decimal places) with the values, we already estimated
using the lm function. Second, there is some change in the
standard errors from those observed in fit, although the abso-
lute change is not very large. Third, even with the adjustment
to the standard errors for heteroscedasticity, all the coefficients,
including the intercept, continue to have tiny p-values.

Check for influential observations

We want to check for influential observations. These are obser-
vations that greatly impact the slope of the regression line. One
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natural way to search for these is to identify the largest abso-
lute residuals. We can use the which.max function to identify
these values:
which .max(abs ( f i t $ r e s i d u a l s ) )

9
469
It appears two observations are identified. These are row 9 and
row 469 in the original Handaxes sample. Let’s take a look at
the attribute values associated with these two observations:
rbind (round( data_train [ c ( " 9 " ) , ] , 3 ) ,
round( data_train [ c ( " 469 " ) , ] , 3 ) )

L1 B2 T T1
9 3 .611 4 .564 4 .174 2 .944
469 2 .996 4 .127 3 .784 2 .708

Should we get rid of these observations? Probably not.
Outlying observations are not always influential. A better way
to identify problematic data points is via leverage.

The leverage of an observation measures how far away it
is from the other observations. It takes values between 0 and
1. A point with zero leverage has no effect on the regression
model. They can be calculated as follows:
l ev = hat (model . matrix ( f i t ) )
summary( l ev )

Min . 1 s t Qu. Median Mean 3rd Qu. Max.
0 .001843 0.003988 0.006024 0.007273 0.009219 0.043970

In this case, the largest value is relatively small, at 0.04. To
identify this point type:
data_train [ l e v >0.04 , ]

L1 B2 T T1
333 4.043051 3.044522 3.496508 2.639057
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It appears observation 333 from the original Handaxes sample
has the largest leverage. However, at 0.04, it is not of major
concern.

You can also visualize the information using the
influencePlot function:
i n f l u e n c eP l o t ( f i t )

StudRes Hat CookD
333 1.172131 0.04396762 0.01578540
9 3.433410 0.01736059 0.05105806
It reports the influential observations, along with various met-
rics. Figure 6.7 shows the resultant plot. It identifies observa-
tion 333, and also observation 9 as influential.
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Figure 6.7: Influence plot

165



Machine Learning Made Easy with R

You may have noticed that the influencePlot function also
reports Cook’s distance, this metric identifies points which have
more influence than other points. Influence is the amount that
a data point is affecting the regression line, measured by how
much the regression line would change if the point were ex-
cluded from the regression model. Points with a large Cook’s
distance have a high influence, and might require further inves-
tigation.

A visual representation of Cook’s distance is obtained via:
p l o t ( f i t , which=4)
Figure 6.7 shows the resultant plot. There are no hard and fast
rules for interpreting Cook’s distance. Larger values are labeled
with their observation number. In this illustration points 232,
182 and 9 represent points which might require further inves-
tigation.
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Figure 6.8: Cooks distance plot
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The points identified in Figure 6.7, or Figure 6.8 are not
necessarily definitive. The key is whether excluding these
points will have a significant impact on the regression coeffi-
cients. In our case, we have identified a handful of potential
observations, none of which appear particularly extreme.

One way to assess whether our intuition is correct, is to re-
estimate the model using robust regression, and then check to
see whether the coefficient estimates are similar. If they are,
then we can leave keep the identified examples in our analysis.
If not, you would re-run your regression model, dropping each
potential influential observation one at a time, and then assess
the impact on the coefficients. Observations that significantly
impact the regression coefficients can be excluded from further
analysis.

The rlm function in the MASS package estimates robust re-
gression. We will also use the fit.models function to display
both regular and robust regression results:

r e qu i r e (MASS)
r e qu i r e ( " f i t . models " )
fmc la s s . add . class ( " lmfm" , " rlm " )
fm1 <− f i t . models ( c ( " rlm " , " lm " ) ,
y_train ~L1+B2+T ,
data = data_train )

The fmclass.add.class function tells R to compare the co-
efficient estimates produced by rlm with lm. These values are
stored in fm1:

fm1

Ca l l s :
rlm : rlm ( formula = y_train ~ L1 + B2 + T,

data = data_train )
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lm : lm( formula = y_train ~ L1 + B2 + T, data
= data_train )

C o e f f i c i e n t s :
( I n t e r c ep t ) L1 B2 T

rlm 1.4596 0 .1982 0 .4824 0 .170
lm 1.4570 0 .1974 0 .4763 0 .179

A quick visual inspection of the estimated coefficient does not
real any significant differences between regular regression (lm)
and robust regression (rlm). We could test for a difference
statistically if we saw a large difference, but won’t bother in
this case.

It appears the identified “outlying” observations are not suf-
ficiently different from the underlying sample for us to remove
them from our analysis.

Check for residuals for autocorrelation

A super simple and fast way to check for autocorrelation in the
residuals, is to plot the autocorrelation function:

a c f ( f i t $ r e s i d u a l )

Figure 6.9 shows the result. It plots the correlation of the
residual εtwith εt−j. The first spike occurs because the cor-
relation between εt and itself εt is always 1. Thereafter the
correlation essentially falls to zero. There no evidence of auto-
correlation in the residual.
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Figure 6.9: Autocorrelation function of residual
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Figure 6.10: Example of autocorrelation in residuals
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For illustration, Figure 6.10, shows what you might see if
your residuals contained auto-correlation. In this case you
might observe several lags with a high correlation with ε0.

Of course, we could also use a statistical test. The Durbin-
Watson test is a popular choice. It is contained in the lmtest
packaged:

dwtest ( y_train ~L1+B2+T, data = data_train )

Durbin−Watson t e s t

data : y_train ~ L1 + B2 + T
DW = 2.0282 , p−value = 0.6303
a l t e r n a t i v e hypothes i s : t rue au t o c o r r e l a t i o n

i s g r e a t e r than 0

The p-value, at 0.63, indicates there is no evidence of correlated
residuals. It confirms our earlier observation.

NOTE... �

In general, if the errors appear to be correlated,
you can use generalized least squares estimation,
This is implemented by the function gls()from
the nlme package.

Assessing train set performance

Figure 6.11 displays a scatter plot of the target variable and
fitted values from fit. The points have a relatively narrow
dispersion around a positive trend.
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Figure 6.11: Predicted and actual values for training sample

We can calculate the correlation using:
round( cor ( f i t $ f i t t e d , y_train ) ,4 )
[ 1 ] 0 .8196
This indicates a fairly strong relationship between the actual
and predicted values; The squared correlation coefficient yields
the R2 statistic of 0.67 we saw earlier.

Assessing test set performance

Our primary interest is how the model performs on new unseen
data. Our proxy for this is the test set. The predict function
allows us to assess this:
pred <− p r ed i c t ( f i t , data_test )
round( head ( pred , 3 ) ,3 )

34 45 49
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4.699 5 .014 4 .950
The first prediction takes a value of 4.699, and the second
a value of 5.014 (remember we are predicting log y). From
Figure 6.12 we see the predicted values align closely with the
observed values. The correlation is 0.751, and R2 is 0.563:
r2<−round( cor ( y_test , pred ) ^2 ,3)
r2
[ 1 ] 0 .563

round( s q r t ( r2 ) ,4 )
[ 1 ] 0 .7503
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Figure 6.12: Predicted and actual values for test sample
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Step 5 - Improving Model Performance
You may have noticed that we excluded T1 from our initial
analysis. This allowed us to have coefficient estimates that
concurred with our intuition and the empirical evidence. How-
ever, with such a small set of features, we really want to be
able to use all of the relevant information in our model. One
way to achieve that goal is via feature engineering.

First, load the features into the R object data_sample:
data_sample<−l og ( data . frame ( data . matrix (

Handaxes [ , 3 : 8 ] ) ) )

Feature engineering

Next, we engineer two new relative size features:
BB<−data_sample$B/data_sample$B1
TT<−data_sample$T/data_sample$T1
These are the ratio of size of B (T) relative to B1 (T1); and as
such have a nice archaeological/ geometric interpretation.

Next, we combine the new features with data_sample, and
then remove B,B1, T and T1:
data_sample<−cbind ( data_sample ,TT,BB)
data_sample$B<−NULL
data_sample$B1<−NULL
data_sample$T<−NULL
data_sample$T1<−NULL

Take a look at the first few observations:
round( head ( data_sample ) ,3 )

L1 B2 TT BB
1 4.234 4 .043 1 .201 1 .047
2 3 .932 4 .595 1 .266 1 .175
3 3 .932 4 .625 1 .317 1 .159
4 3 .584 4 .357 1 .408 1 .246
5 4 .317 4 .500 1 .256 1 .044
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6 3.555 4 .159 1 .447 1 .266
We now have four features, two engineered and two original.

Train, test set and fitting the model

Now, we are ready to set the train and test sets:
y_train<−y [ t r a i n ]
y_test<−y[− t r a i n ]
data_train<−data_sample [ t ra in , ]
data_test<−data_sample[− t ra in , ]

The model is fitted, as we saw earlier, using the lm function:
f i t 1= lm( y_train ~ . , data = data_train )
summary( f i t 1 )

Ca l l :
lm( formula = y_train ~ . , data = data_train )

Res idua l s :
Min 1Q Median 3Q Max

−0.28583 −0.07197 −0.00593 0.06754 0.42859

Co e f f i c i e n t s :
Estimate Std . Error t va lue Pr(>| t | )

( I n t e r c ep t ) 0 .14311 0.15351 0 .932 0.351601
L1 0.37139 0.01758 21 .127 < 2e−16 ∗∗∗
B2 0.50833 0.02039 24 .936 < 2e−16 ∗∗∗
TT 0.15748 0.04636 3 .396 0.000732 ∗∗∗
BB 0.85478 0.08783 9 .732 < 2e−16 ∗∗∗
−−−
S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’

0 . 1 ’ ’ 1

Res idua l standard e r r o r : 0 .1089 on 545 degree s o f
freedom

Mult ip l e R−squared : 0 .7223 , Adjusted R−squared :
0 .7202

F−s t a t i s t i c : 354 .3 on 4 and 545 DF, p−value : < 2 .2 e
−16
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The estimated coefficients are all positive, and highly signifi-
cant (tiny p-values), except the intercept. The joint F statistic
is equal to 372.4 (p < 2.2e-16). This indicates that we can
reject the null hypothesis that all of the coefficients are zero.
Finally, we observe an adjusted R2, higher than for our first
model, at 0.72.

Figure 6.13 shows the diagnostic plots for fit1; and
Figure 6.14 plots the estimates and confidence intervals of fit
(Model 1) and fit1 (Model 2) for comparison.
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Figure 6.13: Diagnostic plots for fit1
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Figure 6.14: Estimates and confidence intervals of fit (Model
1) and fit1 (Model 2)

Test set performance

The training set correlation and R2 statistics indicate an im-
proved fit over our first model. How well does the feature en-
gineered model perform on the test set?
pred1 <− p r ed i c t ( f i t 1 , data_test )
round( cor ( y_test , pred1 ) ,3 )
[ 1 ] 0 .817

round( cor ( y_test , pred1 ) ^2 ,3)
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[ 1 ] 0 .667
Quite a nice improvement in predictive performance.
Figure 6.15 shows the predicted and actual values plot.
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Figure 6.15: Test set predicted and actual values for fit1

Although the creation of a couple of engineered features
seems like a small change, it improved the overall fit of the
model. The great thing was that the features are interpretable.
Often you need to be careful to design features with a useful
interpretation. However, in pure performance driven domains
like predicting the stock market or forecasting the number of
visitors to a website, you can often be more creative.
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Limitations of Linear Regression
Linear regression is the workhorse of empirical analysis. For
almost all of it’s limitations, there is an alternative type of re-
gression model or estimation procedure. It forecasts the mean
response (expected value) of the target variable. If you are in-
terested in the median response (or other quantiles), you should
use quantile regression. This available in the quantreg pack-
age.

Linear regression coefficient estimates are sensitive to out-
liers. If they are identified in you sample, they can be removed,
or an alternative regression estimation technique used (i.e. ro-
bust regression).

Similar to discriminant analysis, the features are assumed to
be independent. Highly correlated features should be removed
from the sample, as they contain redundant information.

Summary
In this chapter, we learned about prediction using linear re-
gression. It is a very large topic, and we only scratched the
surface. However, we covered much of the essential theory, dis-
cussed several real-world applications and built step by step
several models to predict the length of Paleolithic hand-axes.
Such models are of great value to archaeologists and inform the
debate on their potential uses.

In the next chapter, we explore a related regression model,
but for a binary target variable - logistic regression.

Suggested Reading
• Age-Friendly Cities: Alma M. L. Au, Stephen C.

Y. Chan, H. M. Yip, et al., “Age-Friendliness and
Life Satisfaction of Young-Old and Old-Old in Hong
Kong,” Current Gerontology and Geriatrics Research,
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vol. 2017, Article ID 6215917, 10 pages, 2017.
doi:10.1155/2017/6215917.

• Foreign Direct Investment: Yan, Xinfeng, and Kun-
dan Pokhrel Majagaiya. "Relationship between Foreign
Direct Investment and Economic Growth Case Study of
Nepal." International Journal of Business and Manage-
ment 6.6 (2011): 242.

• Soil Particle Density: Schjønning et al. "Predicting
soil particle density from clay and soil organic matter
contents." Geoderma 286 (2017): 83-87.

Other
• Flint Axes: John Frere. Account of Flint Weapons dis-

covered at Hoxne in Suffolk. Archaeologia, Volume 13
(1800).

• Safari Guide Peter Allison: Peter Allison. 2009.
Don’t Look Behind You! A Safari Guide’s Encoun-
ters with Ravenous Lions, Stampeding Elephants, and
Lovesick Rhinos. Rowman & Littlefield.

• Sir Francis Galton’s Sweet Pea Experiment: See
Stanton, Jeffrey M. "Galton, Pearson, and the peas: A
brief history of linear regression for statistics instructors."
Journal of Statistics Education 9.3 (2001).

• WHO: World Health Organization. Global age-friendly
cities: A guide. World Health Organization, 2007.
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Logistic Regression

Logistic regression is a special type of regression where
the target variable is binary. The features can be dis-
crete or continuous. As with linear regression, it can be

used for prediction, descriptive studies, and testing theoretical
hypothesis. Machine learning is primarily concerned with ac-
curate prediction, and so the first use is focus of this chapter.
In this chapter, you will:

• Gain an understanding of the mechanics of logistic re-
gression.

• Explore the idea of maximum likelihood.

• Study examples of its use in business (customer churn),
marketing (opinion mining) and health research (disease
classification).

• Build and assess several logistic regression models using
R.

Logistic regression is one of the most widely used types of
regression model. It will be a valuable addition to your machine
learning tool kit.
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Understanding Logistic Regression
Logistic regression is similar to linear regression except that the
target variable is a binary. For example, an Ethologist might
assign a crab to one of two classes (say female or male). A male
might be coded as y = 1, and a female coded by y = 0.

Recall, in linear regression the target variable is related to
the features via the linear relationship:

y = α + β1x1 + β2x2 + β3x3 + ε (7.1)

Suppose p(y) is the probability that a crab is male (we could
write p(y = 1) but stick to the shorter notation).

To relate p(y) to the features you might consider writing:

p(y) = α + β1x1 + β2x2 + β3x3 (7.2)

Unfortunately, this specification, can generate values for p(y)
from -∞ to ∞. We need a model that generates probabilities
in the 0 to 1 range. This is not guaranteed to be the case if we
use equation 7.2. Furthermore, linear regression assumes the
values of y are normally distributed. In logistic regression y
takes the values 0 or 1, so this assumption is clearly violated.

We need a more appropriate transformation. This can be
achieved using the logistic regression model:

ln
(

p(y)
1− p(y)

)
= α + β1x1 + β2x2 + β3x3 (7.3)

It is a non-linear transformation of the linear regression model
where the target variable is binary.

Odds Ratio
When we have a binary classification problem, we are typically
interested in the probability that an observation belongs to a
specific class. Statisticians often think of this in terms of odds.
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For example, in a sample of crabs, the odds of being a male
can be calculated as:

Odds = Number of MaleCrabs

Total Number of Crabs

or, equivalently:

Odds = p(y)
1− p(y)

The ratio
(

p(y)
1−p(y)

)
is called the odds ratio.

Log odds ratio

The natural logarithm of the odds ratio is called the log odds
ratio or logit. Let’s investigate what an odds ratio of 1 implies:

ln
(

p(y)
1− p(y)

)
= 1

⇒ p(y) = [1− p(y)]

⇒ p(y) + p(y) = 1

⇒ p(y) = 0.5

In other words, an odds ratio equal to 1 implies the probability
that y = 1 is 0.5.

A key point, is that logistic regression models the log odds
ratio as a linear function of the features. Why is this so im-
portant? Well, in equation 7.2, we attempted to model p(y) as
a linear regression. However, this resulted in probabilities out-
side the [0, 1] range. The odds function takes values between
0 and ∞. When we take the natural log of the odds function,
we get a range of values from -∞ to ∞. We can see this using
the following R code:
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p=seq(from =0,to=1, by=.1)
odd.ratio= p/(1-p)
odds.ratio=p/(1-p)
log.odds=log(odds.ratio)
tab=cbind(p,odds.ratio ,log.odds)
round(tab ,3)

p odds.ratio log.odds
[1,] 0.0 0.000 -Inf
[2,] 0.1 0.111 -2.197
[3,] 0.2 0.250 -1.386
[4,] 0.3 0.429 -0.847
[5,] 0.4 0.667 -0.405
[6,] 0.5 1.000 0.000
[7,] 0.6 1.500 0.405
[8,] 0.7 2.333 0.847
[9,] 0.8 4.000 1.386

[10,] 0.9 9.000 2.197
[11,] 1.0 Inf Inf

We see from the above output that:
• If p > 0.5 the odds ratio > 1 , and the log odds ratio is

positive.

• If p < 0.5, the odds ratio < 1, and the log odds ratio is
negative.

Since p is a probability, we can see that the logistic regression
model is constructed so that 0 ≤ p ≤ 1. Indeed, from equation
7.3 as:

α + β1x1 + β2x2 + β3x3 + ...βkxk

becomes very large, p approaches 1; and as:
α + β1x1 + β2x2 + β3x3 + ...βkxk

becomes very small, p approaches 0; Furthermore, if:
α + β1x1 + β2x2 + β3x3 + ...βkxk = 0

then p = 0.5.
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Interpreting coefficients

We interpret exp(βi) as the effect of the independent variables
or features on the odds ratio. For example, if we postulate the
logistic regression:

ln
(

p(y)
1− p(y)

)
= α + β1x1

and on estimation find that β̂ = 0.963, so that exp(β̂) = 1.999.
This implies a 1 unit change in x1 would make the event y = 1
about twice as likely.

NOTE... �

In statistics textbooks you will often see ln
(

p(y)
1−p(y)

)
called the logit transform or simply logit.

The Logistic Curve
The logistic curve or sigmoid function, captures the relationship
between a binary target variable and features. It is calculated
as:

p(y) = exp(α + βx)
1 + exp(α + βx) (7.4)

Because the relationship between p(y) and x is nonlinear, the
parameters α and β do not have a straightforward interpreta-
tion as they do in linear regression.

Figure 7.1 shows the logistic curve. It is bounded by 0 and
1, and therefore can be interpreted in terms of probabilities.
The curve is symmetric about the point where x = −α

β
. In

fact, the value of p(y) is 0.5 for this value of x.
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Figure 7.1: Logistic Curve

NOTE... �

The values of α and β, determine the location and
spread of the logistic curve.
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Relationship to logistic regression

If we were to run a logistic regression on the feature x we would
specify:

log
(

p(y)
1− p(y)

)
= α + βx

In terms of the odds we can rewrite the above as:

p(y)
1− p(y) = exp (α + βx)

Of course, our interest is in p(y); it is given by:

p(y) = exp(α + βx)
1 + exp(α + βx) ,

which is equation 7.4 we saw earlier.
The key points to note are that:

1. The log odds are linearly related to the features.

2. The relation between the features and p(y) is nonlinear
taking the S-shaped curve of Figure 7.1.

NOTE... �

Similar to linear regression, logistic regression as-
sumes the features are independent. However, it
does not make any assumptions about the proba-
bility distribution of the features.
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Maximum Likelihood Estimation
In linear regression, the method of ordinary least squares can be
used to estimate the regression coefficients. In logistic regres-
sion, we use a different approach called maximum likelihood
estimation (MLE). MLE is a very general approach to obtain
estimates of the parameters of probability models. Similar to
ordinary least squares, the goal is to find the smallest possible
deviance between the observed (y) and predicted values (ŷ).

The idea behind MLE is to choose the most likely values
of the parameters α and β given, the observed sample, say
{x1, ...xn} . Intuitively, the actual values these parameters take
should depend in some way on the values observed in the sam-
ple data. This link is established via a probability model, which
we denote by f(x). The probability model is used to form the
likelihood equation.

Probability model & likelihood equation

In logistic regression, the probability model is based on the
binomial distribution, where:

f(x, p) =
{

θ if yi = 1
1− θ if yi = 0

In other words, the probability of xi being a male crab (yi = 1)
occurs with probability θ. And therefore:

p(yi = 1) = θ = exp(α + βx)
1 + exp(α + βx)

.
The likelihood equation is given by:

L =
n∏
i=1

θy1
i (1− θi)1−y1

Statisticians figured out a while back that is easier to work
in natural logarithms. Taking the natural log of both sides and
simplifying we get the log likelihood equation:

LL = ln L =
n∑
i=1

[yi ln θi + (1− yi) ln(1− θi)]
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Whilst ordinary least squares, in linear regression, mini-
mizes the residual sum of squares; MLE in logistic regression
minimizes model deviance. The MLE estimate of α and β, that
minimize model deviance, are retrieved as the values α̂ and β̂.
These values maximize the probability of the observed data
given the specified probability model.

NOTE... �

The maximum likelihood estimate of the param-
eters α and β are the values that maximizes the
probability of the sample data {x1, ...xn}.

As a Bayes Classifier
A direct link to the Bayes classifier can be observed if we specify
the logistic regression formula as a probability distribution of
the class posterior probabilities. For a two class classification
problem we have:

P (ci = 1|x) = 1
[1 + exp [−α−∑n

i=1 βixi]]

P (ci = 0|x) = exp [−α−∑n
i=1 βixi]

[1 + exp [α +∑n
i=1 βixi]]

In this case we predict ci = 1 if:

P (ci = 1|x) > P (ci = 0|x),

which is essentially the decision criteria used for the Bayes clas-
sifier.

Advantages of Logistic Regression
Since the log odds takes the values between -∞ to∞, it allows
the properties of linear regression to be exploited via a non-
linear relationship between the target variable and features. In
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addition, probabilities (or odds ratios) can be directly calcu-
lated from the model parameters.

Unlike linear discriminant analysis, the features are not as-
sumed to be normally distributed, or have equal variance in
each class. This makes it more robust.

Practical Application of Logistic Re-
gression
In this section, we discuss three examples of logistic regression
use. The first is in business and involves measuring customer
churn. The second is in marketing, where we discuss its use in
opinion mining; The final illustration is in public health, where
it is used for disease classification.

Customer Churn
If you work for a company that offers a service or product that
requires a subscription, you no doubt have come across the
problem of customer churn. Churn happens when a customer
leaves their current product or service supplier, and moves to
another competing firm that offers a similar product or service.
Churn is a problem because customers are the principle asset
of any company. Customer attrition results in direct loss of
income. The business goal is to retain a greater proportion of
current customers, and minimize the overall churn rate.

Teemu Mutanen built several logistic regression models to
predict the customer churn of a retail banking company. The
initial sample consisted of 151,000 customers and 75 features.
After initial analysis, 12 features were selected for use in the lo-
gistic regression models. These included, customer age, length
of time at the bank, volume of phone payments, number of
ATM transactions, number of debit and credit card transac-
tions, and customer salary.
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A total of eight logistic regression models were assessed.
The best performing model predicted customer churn with a
72% accuracy. Teemu concludes:

“The different models predicted the actual churners
relatively well...The findings of this study indicate
that, in case of logistic regression model, [in order
to maintain predictive performance] the user should
[frequently] update the model to be able to produce
predictions with high accuracy.”

NOTE... �

Customer retention is an important element of a
subscription based business model. When a cus-
tomer leaves, you lose a recurring source of rev-
enue, and the marketing dollars you spent to ac-
quire the customer.

Opinion Mining
Opinion mining evaluates the sentiment of individuals to assess
their attitudes, emotions and opinions about a specific thing or
set of events. It attempts to capture information on subjective
impressions rather than measure hard core facts.

Opinion mining often gives a much clearer picture of public
opinion than surveys or focus groups. For this reason, it is
used by marketers to evaluate the success of an advertising
campaign, politicians to measure voter sentiment on campaign
issues, and educational establishments to understand student
views.

A group of researchers, including Matthew England of
Coventry University, built a logistic regression model to un-
derstand Arabic opinions on health services. The sample was
collected over a six-month period from Twitter. Matthew com-
ments that:
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“Twitter has a huge number of Arabic users who
mostly post and write their tweets using the Arabic
language. While there has been a lot of research
on sentiment analysis in English, the amount of
researches and datasets in Arabic language is lim-
ited.”

A total of 2,026 tweets were collected. They were broken down
into four topics as follows:

• Closing Hospital, 1009 tweets

• Resolving Health, 492 tweets

• Opinions about Health, 285 tweets

• Improving Health, 240 tweets

The tweets were manually assessed by three judges as either
positive or negative. There were approximately 2.5 negative
tweets for every positive tweet. This made the sample classes
somewhat unbalanced.

The train and test sample split was adjusted several times.
At each split the classification accuracy was assessed. For a
training set that consisted of 60% of the data, the logistic re-
gression model achieved 86.92% accuracy. For the training sam-
ple that consisted of 30% of the sample, the model achieved an
accuracy of 88.32%.

NOTE... �

Opinion mining is also referred to as “sentiment
analysis”. In the United States, the Obama ad-
ministration used sentiment analysis to gauge pub-
lic opinion to policy announcements and campaign
messages ahead of 2012 presidential election. Pres-
ident Obama was re-elected.
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Zoonotic Disease Classification
A zoonotic disease is a disease spread between animals and
people. Zoonotic diseases can be caused by viruses, bacteria,
parasites, and fungi. Because some of the sicknesses in humans
can be life threatening, health authorities track and report their
occurrence.

Lyme disease and Rocky Mountain spotted fever, are two
zoonotic diseases you can get from a tick bite. Predictive ana-
lytics expert, and trained biologist Stephen Jones built logistic
regression models to classify both zoonotic diseases.

“Our objective was to determine if nonlinear mod-
eling could improve explanatory power in describ-
ing the occurrence of 2 tick-borne diseases (Lyme
disease (LD) and Rocky Mountain spotted fever
(RMSF)) known to occur in Tennessee.”

Medically diagnosed cases in the state of Tennessee formed the
basis of the sample. The target variable was the post code (zip
code). It took the value 1 if a disease was reported from that
location, and 0 otherwise.

The logistic regression model contained six features. These
were derived from demographic, geographic, landscape habitat
characteristics, and clinical variables.

The Lyme disease logistic regression model achieved a clas-
sification accuracy of 72.8%; and the Rock mountain spotted
fever model obtained 68.8% accuracy. These are great results,
and Stephen wraps up the study by commenting that:

“Little work exists using more advanced nonlinear
modeling techniques like those used in this study,
and it is recommended to explore these options as
they may provide better results than traditional [lin-
ear] regression-based approaches.”
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Example - Classifying Purple Rock
Crabs
In Guy Smith’s Night of The Crabs, Ian Wright and his fiancée
Julie Coles, head to the beautiful Welsh seaside for a few days
of rest and recreation. Close to the small village of Llandedr,
they decide to take night a swim. Their destination, the aptly
named Morchras (shell) island. When Julie disappears to the
sound of frantic screams, Ian enters to water to rescue her. It
is his last swim!

What happened? Ian and his fiancée, are the first of a
ghastly sequence of innocent victims chased, trapped, brutally
dispatched and devoured, by giant flesh eating crabs!

Whilst man eating crabs only inhabit a fictional Welsh
coastline in the imagination of Guy Smith, the purple rock
crab (leptograpsus variegatus) inhabits the actual shoreline of
the North Island, Kermadec Islands, and many other islands
dotted throughout the South Pacific. It is an athlete, being
both fast and strong with a ferocious nip (try picking one up!).
This spiny critter comes in two distinct colors - gorgeous purple-
blue and radiant orange. In this section, we develop a logistic
regression model to classify this spunky critter into male and
female.

Step 1 – Collecting and Exploring the Data
The crabs data frame, in the MASS package contains observa-
tions on 200 purple rock crabs:
data("crabs",package="MASS")

For each crab, several features were measured. These in-
clude color, sex, and several morphological measurements de-
tailed in Table 16.

Take look at the first few observations:
head(crabs)
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Name Description
sp colour "B" or "O"
sex Class (Male/Female)
FL frontal lobe size (mm)
RW rear width (mm)
CL carapace length (mm)
CW carapace width (mm)
BD body depth (mm)

Table 16: Class and independent variables in crabs data frame

sp sex index FL RW CL CW BD
1 B M 1 8.1 6.7 16.1 19.0 7.0
2 B M 2 8.8 7.7 18.1 20.8 7.4
3 B M 3 9.2 7.8 19.0 22.4 7.7
4 B M 4 9.6 7.9 20.1 23.1 8.2
5 B M 5 9.8 8.0 20.3 23.0 8.2
6 B M 6 10.8 9.0 23.0 26.5 9.8

Notice, the column index is simply a count of the number of
examples and therefore won’t feature in our analysis.

Figure 7.2 shows the scatter plots, distribution and corre-
lation between the attributes. Three things immediately pop
out:

• The first is the linear nature of the relationship shown in
the scatter plots between the attributes.

• Second, and related, is the high inter-attribute correla-
tion. This is not surprising because the features are all
essentially body size measurements.

• Third, is the apparent bell shaped symmetry of the mea-
surements.
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Figure 7.2: Pairwise scatter plot of crabs attributes.

The feature sp is a categorical variable. We should check to
make sure there are no cells with zero values. We also would like
this feature to be balanced relative to our target variable. This
simply means we want approximately equal numbers of males
and females in both color categories. The xtabs function can
be used to investigate this. It creates a simple contingency
table:
xtabs(~sex + sp , data = crabs)

sp
sex B O

F 50 50
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M 50 50

Wow! The observations are perfectly balanced. This is not
normally the case with empirical data, but we’ll take it.

Step 2 – Preparing the Data
First, we specify the R object y as our target variable. It con-
tains the class variable sex. Take a look at the first few obser-
vations:
y<-crabs$sex
head(y)
[1] M M M M M M
Levels: F M

Next, we select, at random, 150 observations without re-
placement using the sample function. This will form the train-
ing set:
set.seed (2018)
N=nrow(crabs)
train <-sample (1:N,150, FALSE)

Take a look at the R object train, it contains the row
numbers of the randomly selected observations:
head(train)
[1] 68 93 12 39 199 59

The first randomly selected observation is from row 68 in the
crabs data set. The second, is from row 93, and so on.

Step 3 - Train Model using Train Set
Similar to linear regression, logistic regression assumes the fea-
tures are independent. We saw earlier that there is high corre-
lation between the features. Given this, we will fit our initial
model using FL, RW, and the categorical variable sp.

The logistic regression can be fitted to the sample data using
the glm function, with the family argument set to binomial:
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fit1 <- glm(y[train] ~sp+FL+RW,
family=binomial(link=’logit’),
data=crabs[train ,])

The function takes the standard R formula, followed by the
type of model (logit), and the sample data. The fitted model
is stored in fit1.

Using the summary function

The summary function displays the result:
summary(fit1)

Cal l :
glm ( formula = y [ t r a i n ] ~ sp + FL + RW, fami ly =

binomial ( l i n k = " l o g i t " ) ,
data = crabs [ t ra in , ] )

Deviance Res idua l s :
Min 1Q Median 3Q Max

−2.17068 −0.16571 −0.00255 0.20631 2.14300

Co e f f i c i e n t s :
Estimate Std . Error z va lue Pr(>| z | )

( I n t e r c ep t ) 8 .777 2 .059 4 .263 2 .02 e−05 ∗∗∗
sp −3.919 1 .104 −3.551 0.000384 ∗∗∗
FL 3.725 0 .722 5 .160 2 .47 e−07 ∗∗∗
RW −5.111 0 .967 −5.286 1 .25 e−07 ∗∗∗
−−−
S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’

0 . 1 ’ ’ 1

( D i spe r s i on parameter for binomial fami ly taken to be
1)

Nul l dev iance : 207 .917 on 149 degree s o f
freedom

Res idua l dev iance : 58 .703 on 146 degree s o f
freedom

AIC : 66 .703

Number o f F i sher Scor ing i t e r a t i o n s : 7
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The output contains a lot of information. The first few lines
provide details on the model. They serve to remind us what
we did by providing details on the feature, sample and formula
used to fit the model.

Deviance residuals

Next, the deviance residuals are reported. Like the residual
in a linear regression model, they are a measure of model fit.
Smaller absolute values indicate better fit. This part of the
output shows minimum, quantiles, and the maximum of the
deviance residuals for individual sample examples used to fit
the model. The maximum deviance is 2.143, with a very small
median value of -0.00255.

Estimated coefficients

The estimated coefficients are shown in the next part of the
output. They indicate that FL influences crab sex positively,
while sp and RW have a negative effect. The estimated values
tell us the change in the log odds of the target variable for a one
unit increase in a feature variable. As an example, for a one
unit increase in FL, the log odds of being a male crab (versus
female) increases by 3.725. However, for a one unit increase in
RW, the log odds of being a male crab decreases by 5.11.

Statistical tests of individual features

The coefficient estimates are reported alongside their stan-
dard error (Std. Error), z-statistic (z value), and p-values
(Pr(>|z|)). The statistical significance of estimated coeffi-
cients can be tested using the z-statistic or p-values. Our pri-
mary interest is in classification accuracy rather than descrip-
tive analysis or hypothesis testing. However, it is interesting
to notice the features are highly statistically significant. This
is indicated by the symbol ***. Of course, statistical signif-
icance tells us little about classification accuracy. But we can
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use it to confirm or shape our intuition. Be careful however, as
it can also be very misleading.

Confidence intervals, using the standard errors, can be cal-
culated via the confint.default function:
confint.default(fit1)

2.5 % 97.5 %
(Intercept) 4.741698 12.811630
sp -6.082269 -1.756093
FL 2.310317 5.140640
RW -7.006455 -3.216081

Since none of the confidence intervals straddle 0, we can have
some empirically grounded certainty that the sign of the esti-
mated coefficients captures the direction of the relationship of
the features to the log odds of being a male crab.

Variable importance

The absolute value of the z-score is often used to measure vari-
able importance. In this case, RW with an absolute value of
5.286, followed by FL with an absolute value of 5.160 are the
most influential features. This is useful to know, and makes
sense because both features are related to body size.

NOTE... �

In the text, we used the standard errors to calcu-
late the confidence intervals. However, for logistic
models, R reports the confidence intervals using
the profiled log-likelihood function. To see these
use:
confint(fit1)
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Null and residual deviance

The residual deviance is analogous to the residual sum of
squares of a linear regression model. Lower values indicate
better fit. It takes a value of 58.703.

The null deviance reports how well the target variable is
predicted by a model that includes only the intercept. We
would expect our model to do better than this. In this case it
does, as the null deviance = 207.917. This implies our model
has reduced the deviance by just over 149 points.

AIC and Fisher Scoring

The following two items are also reported via the summary
function:

• The Akaike Information Criterion (AIC) is a measure of
the relative quality of statistical models. It is only useful
for comparing models.

• The “Number of Fisher Scoring” iterations simply
tells you how many iterations were needed to fit the model
by maximum likelihood.

Step 4 - Evaluate Model Performance
Our initial read of the statistics of the model suggests it fits
the data well. In this section, we cover several metrics we can
use to help evaluate model performance.

Using the anova function

How well our model fits, depends on the difference between the
model and the observed data. One approach to evaluate this
is to use the anova function:
anova(fit1 , test="Chisq")
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Analys i s o f Deviance Table

Model : binomial , l i n k : l o g i t

Response : y [ t r a i n ]

Terms added s e qu e n t i a l l y ( f i r s t to l a s t )

Df Deviance Resid . Df Resid . Dev Pr(>Chi )
NULL 149 207.917
sp 1 0 .433 148 207.485 0 .5105
FL 1 0.533 147 206.951 0 .4652
RW 1 148.248 146 58 .703 <2e−16 ∗∗∗
−−−
S i g n i f . codes : 0 ’ ∗∗∗ ’ 0 .001 ’ ∗∗ ’ 0 .01 ’ ∗ ’ 0 .05 ’ . ’

0 . 1 ’ 1

The anova function adds the features in the order given in the
model formula (left to right). Hence, sp appears first followed
by FL and RW.

Analyzing the table, we observer a small drop in deviance
when adding each sp and FL. For example, adding sp, reduces
the deviance from the Null model’s value of 207.917 to 207.485.
This is a tiny drop. We see a similar pattern for adding in FL.
In this case, the model deviance drops by 0.533 to 206.951.

The good news, is that at least the addition of these
two variables moves the model deviation in the right direc-
tions (downward). However, as indicated by the large p-value
(Pr(>Chi)) on both sp and FL, the change in not statistically
significant. This indicates the model without these variables
explains approximately the same amount of variation. Fortu-
nately, adding the feature, RW leads to a significant reduction
in deviance of over 148 points. A highly significant p-value
here, supports the importance of this feature.
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Pseudo R2 statistic for logistic regression

The pseudo-R2 is a useful goodness-of-fit metric for logistic
regression. Similar to the traditional R2 statistic, it takes a
value between 0 and 1. It is calculated as:

pseudo R2 = 1− model deviance

Null deviance
= 1− 58.703

207.917 ≈ 0.717

The closer to 1 is the metric, the more useful are the features
in predicting the target variable. In statistical language, it is
more a measure of effect size than overall fit. In any case, the
value of 0.717 indicates that the model is useful for predicting
crab sex.

Model discrimination

The discrimination of a model – that is, how well the model
separates male from female crabs - can also be assessed us-
ing the area under the receiver operating characteristic curve
(AUC). It uses two metrics, Specificity and Sensitivity.

Specificity is a measure of how often the model predicts
“female” (y = 0) when the actual observation is “female crab”.
It is calculated as:

Specificity = True Negatives

Total Negatives

Sensitivity or true positive rate measures when it’s actually
“male”, how often does the model predict “male”. It is calcu-
lated as:

Sensitivity = True Positives

Total Positives
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Specificity and Sensitivity are often combined via a Re-
ceiver Operating Characteristic Curve (ROC). The ROC vi-
sually measures how well the predictive model separates the
data into positives and negatives.

The graph of Figure 7.3 shows the ROC curve for a perfect
fit. In this case, the sensitivity (Specificity) take the value of 1
for all possible ranges of specificity (Sensitivity).

The opposite extreme is where the model is no better than
random. In this case, as shown in Figure 7.4, the ROC lies
along a diagonal line. The random predictor is commonly used
as a baseline against which to assess a potential model. In prac-
tice, a model will generate a ROC curve somewhere in between
Figure 7.3 and Figure 7.4. Figure 7.5 shows a typical result.
Notice that as Sensitivity increases, Specificity decreases.

Perfect Fit (AUC = 1)

Specificity

Se
ns

itiv
ity

0.0
0.2

0.4
0.6

0.8
1.0

1.0 0.8 0.6 0.4 0.2 0.0

Figure 7.3: ROC for a perfect fit
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Random Fit (AUC = 0.5)
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Figure 7.4: ROC for a random fit

Decent Fit (AUC = 0.73)
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Figure 7.5: ROC for a typical fit
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The overall accuracy of a model can be measured by the
area under the ROC curve (AUC). An area of 1 represents a
perfect fit (Figure 7.3); an area of 0.5 represents a random fit
(Figure 7.4). AUC therefore measures discrimination, that is,
the ability of a model to correctly classify positive and negative
examples.

We can use the pROC package to calculate the AUC for
fit1. First, we use the predict function to store the fitted
probabilities in the R object pred1. The plot function is then
called to visualize the contents of pred1:
pred1 <- predict(fit1 , type="response")
plot(pred1)

You should see Figure 7.6, which confirms the values of pred1
lie between 0 1n 1.
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Figure 7.6: Plot of probabilities in pred1

Take a quick look at the probabilities in pred1 using the
head function:
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round(head(pred1 ,5) ,2)
68 93 12 39 199 59

0.23 0.02 0.16 1.00 0.68 0.11

The first observation has a probability of 0.23, the second ob-
servation an estimated probability of 0.02. It we use a cutoff
probability of greater than 0.5 to indicate a male crab, then
the first three observations would be classified as female, and
the fourth and fifth observation male.

The next step is to use the probabilities in pred1 indicate
whether the prediction is a male or female. We use a cutoff
probability greater than 0.5 to indicate a male crab:
pred1_train <- ifelse(pred1 >0.5, 1, 0)

The labels in y[train] also need to be converted to binary:
y_train <- ifelse(y[train ]=="M", 1, 0)

Now call the roc function from the package pROC to display
the area under the curve statistic:
library(pROC)
(roc <- roc( y_train ,pred1_train))

Call:
roc.default(response = y_train , predictor =

pred1_train)

Data: pred1_train in 76 controls (y_train
0) < 74 cases (y_train 1).

Area under the curve: 0.9067

The train set data gave a value of 0.9067, indicating that the
model discriminates well. The confidence interval can be called
using the ci function:
ci(roc)
95% CI: 0.8598 -0.9535 (DeLong)

It is covers a narrow range. The lower value at 0.86 also
indicates good discriminative performance of the model.
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To plot the ROC curve, call the plot function:
plot(roc)

Figure 7.7 shows the resultant plot.
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Figure 7.7: ROC for training sample of fit1

Classification accuracy

The previous metrics have given us a solid perception on the
quality of the model. But how did it perform in terms of clas-
sification accuracy? Let’s calculate the confusion metric using
the table function. For the training sample we have:
predclass1 <- factor(ifelse(pred1 >0.5,
"M", "F"))
table(y[train],predclass1)

predclass1
F M

F 69 7
M 7 67
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Of the 150 observations in the training sample, the model in-
correctly classifies 7 male, and 7 female crabs. This leads to an
overall accuracy of:
round(1-mean(predclass1 != y[train]) ,3)
[1] 0.907

Not bad, but remember this is the training set! We are inter-
ested in how the model performs on new observations. To see
this we need to calculate the confusion matrix for the test set.
But first, we transfer the data in crabs to the R object x:
x<-crabs
x$sex <-NULL
x$index <-NULL

Notice we remove index, and sex. The R object x only contains
the features. Take a look using the head function:
head(x)

FL RW CL CW BD
1 8.1 6.7 16.1 19.0 7.0
2 8.8 7.7 18.1 20.8 7.4
3 9.2 7.8 19.0 22.4 7.7
4 9.6 7.9 20.1 23.1 8.2
5 9.8 8.0 20.3 23.0 8.2
6 10.8 9.0 23.0 26.5 9.8

Yep, all is as expected.

Calculating test set accuracy

Following similar steps to those discussed earlier, we use the
predict function, followed by a probability cutoff factor of
0.5:
pred1_test <- predict(fit1 ,
newdata=x[-train ,],
type="response")
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predclass1_test <- factor(ifelse(pred1_test
>0.5,"M", "F"))

Now, calculate the confusion matrix, and overall class ac-
curacy:
table(predclass1_test , y[-train ])

predclass1_test F M
F 22 2
M 2 24

1-mean(predclass1_test != y[-train])
[1] 0.92

The model appears to generalize well, with similar classifica-
tion performance as the training set. In this case, 2 male and
2 female crabs are misclassified, with an overall classification
accuracy of 92%.

Step 5 - Improving Model Performance
The negative coefficient value of -6.08 on sp is a little trouble-
some. It is difficult to interpret in a meaningful way. The color
of a crab is likely determined by the environment rather than
gender. Even if the value were positive, we would have diffi-
culty explaining it. For now, let’s drop sp from our analysis:
x$sp <-NULL

Dealing with high correlation

Take another look at Figure 7.2. It shows the scatter plots, dis-
tribution and correlation between the attributes. What stands
out is the very high correlation between the attributes. This
is not surprising as they are all measurements related to body
size. However, it violates the assumption that features are in-
dependent. What to do? One solution is to use the principal
components.
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I first came across PCA though the classic 1972 and 1973
papers of the University of Kent at Canterbury scholar I. T.
Jolliffe; the technique has been a permanent addition to my
data science toolkit ever since. Principal component analysis
(PCA) is a statistical procedure that transforms correlated fea-
tures into several uncorrelated variables called principal com-
ponents. Each principal component is a linear combination of
the original variables.

The goal of principal components analysis is to explain the
maximum amount of variance with the fewest number of prin-
cipal components. The first principal component accounts for
as much of the variability in the data as possible. The second
component accounts for as much of the remaining variability
as possible, and so on.

The principal components are orthogonal, in other words
they have zero correlation with each other. Because they con-
tain the same information as the original features, we can use
them in place of our features in the logistic regression model.

NOTE... �

In PCA, linear projections ordered by variance
are computed from eigenvectors of the data co-
variance matrix.

The prcomp function

The prcomp function calculates the principal components:
pca <- prcomp(data.matrix(x),
center = TRUE ,
scale. = TRUE)

PCA components are linear combinations of the original
features. Let’s look at the PCA coefficient weights:
round(pca$rotation ,3)
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PC1 PC2 PC3 PC4 PC5
FL 0.452 0.138 0.531 0.697 0.096
RW 0.428 -0.898 -0.012 -0.084 -0.054
CL 0.453 0.268 -0.310 -0.001 -0.792
CW 0.451 0.181 -0.653 0.089 0.575
BD 0.451 0.264 0.443 -0.707 0.176

The first component (PC1), a linear combination of the at-
tributes, is composed of an (almost) equally weighted combi-
nation of the features. Interpreting components can often be
difficult. However, PC1 appears to be a proxy for body size.

For crab i, the PC1 score would be calculated as:
PC1i = 0.452×FL+ 0.428×RW+ 0.453×CL+ 0.451×CW+
0.451× BD

We can check to ensure the components are uncorrelated
using the cor function:
round(cor(pca$x) ,2)

PC1 PC2 PC3 PC4 PC5
PC1 1 0 0 0 0
PC2 0 1 0 0 0
PC3 0 0 1 0 0
PC4 0 0 0 1 0
PC5 0 0 0 0 1

As expected the components are uncorrelated. This allows us
to use them as features in our logistic regression model.

Proportion of variation explained

The proportion of variation explained by each principal com-
ponent can be viewed using the summary function:
summary(pca)

Importance o f components :
PC1 PC2 PC3 PC4 PC5

Standard dev i a t i on 2 .1883 0.38947 0.21595 0.10552 0.04137
Proport ion o f Variance 0 .9578 0.03034 0.00933 0.00223 0.00034
Cumulative Proport ion 0 .9578 0.98810 0.99743 0.99966 1.00000
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The first component explains 95.8% of the variation in the fea-
ture data, and the second component 3%. Since, these two
components account for over 98% of the variation in the data,
we will use them as our independent variables in the logistic
regression model. To do this we create a new R object called
pca_data:
pca1 <-pca$x[,1]
pca2 <-pca$x[,2]
pca_data <-cbind.data.frame(pca1 ,pca2)

Use of two components as features

The objects pca1 and pca2, contain the PCA scores for the
first and second component. They are combined into the object
pca_data. Recall, PCA components are linear combinations of
the original features, and therefore have the same number of
rows as the original data:
nrow(x)
[1] 200

nrow(pca_data)
[1] 200

Fitting the model

We fit the model using the training data. For ease of illustra-
tion, we transfer this data into pca_train, and then fit the
model:
pca_train <-pca_data[train ,]

fit2 <- glm(y[train ]~.,data=pca_train ,
family="binomial")

Now, take a look at estimated parameters:
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round(fit2$coefficients ,3)
(Intercept) pca1 pca2

0.572 0.328 21.217

It appears that both pca1 and pca2 influence crab sex posi-
tively. For a one unit increase in pca1, the log odds of being a
male crab (versus female) increases by 0.328. However, notice
for pca2 the effect size at 21.217 is many multiple times larger
than that of pca1. Such a large difference cannot be ignored.
Let’s take a look at the statistics, in terms of the confidence
interval of the estimates:
confint.default(fit2)

2.5 % 97.5 %
(Intercept) -0.6523838 1.7958668
pca1 -0.1403309 0.7970819
pca2 10.9193396 31.5146555

The confidence interval of pca1 straddles 0, indicating that
it is not statistically significant. This means the sign of the
estimated coefficient on pca1 may not accurately capture the
direction (and size) of the relationship to the log odds of being
a male crab. For now, we keep both features.

Model deviance

The deviance of the null model and fit2 are given by:
round(fit2$null.deviance ,2)
[1] 207.92

round(fit2$deviance ,2)
[1] 31.14

Let’s put on our Statistician hat for a moment. A simple way
to evaluate the overall performance of the model is to look at
the null deviance and residual deviance. Null deviance indi-
cates how well the class is predicted by a model with nothing
but the intercept. We would expect such a model to be a poor
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classifier. Despite pca1 not being statistically significant, the
null deviance of fit2 at 31.14 is considerably lower than for
the null model. Adding in our predictors decreased the de-
viance by just over 176 points.

You may also have noticed that fit2 deviance is lower than
for fit1. This indicates fit2 has a smaller prediction error.
Let’s see, if that is reflected in the confusion matrix for the
training sample:
pred2 <- predict(fit2 , type="response")
predclass2 <- factor(ifelse(pred2 >0.5,
"M", "F"))

table(predclass2 , y[train])

predclass2 F M
F 72 4
M 4 70

1-mean(predclass2 != y[train ])
[1] 0.9466667

The confusion matrix indicates the model misclassified a to-
tal of 8 examples, yielding an overall classification accuracy of
94.6%.

Test set accuracy

We pass the test set pca data to the R object pca_test, then
follow the procedure we have already discussed:
pca_test <-pca_data[-train ,]
pred2_test <- predict(fit2 ,
newdata=pca_test ,
type="response")

predclass2_test <- factor(ifelse(pred2_test
>0.5,

"M", "F"))
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table(predclass2_test , y[-train ])

predclass2_test F M
F 22 0
M 2 26

1-mean(predclass2_test != y[-train])
[1] 0.96

Yep, the model improves classification performance for both
the train and test set. Figure 7.8 plots the logistic regression
decision boundary which confirms the overall good fit.
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Figure 7.8: Logistic regression decision boundary for crabs.

216



CHAPTER 7. LOGISTIC REGRESSION

Using statistics to enhance performance

Earlier we saw that pca1 is statistically insignificant. This
implies we may be able to remove it from the model. Let’s drop
it, re-estimate the model, and calculate the train set confusion
matrix and classification accuracy:
f i t 3 <− glm (y [ t r a i n ]~ pca2 ,
data=pca_train ,
fami ly=" binomia l " )
pred3 <− p r ed i c t ( f i t 3 ,
type=" response " )

p r edc l a s s 3 <− f a c t o r ( i f e l s e ( pred3 >0.5 ,
"M" , "F" ) )

t ab l e ( predc la s s3 , y [ t r a i n ] )

p r edc l a s s 3 F M
F 71 4
M 5 70

1−mean( p r edc l a s s 3 != y [ t r a i n ] )
[ 1 ] 0 .94
The train set classification accuracy is similar to that of fit2.
How did it do in terms of test set accuracy?
pred3_test <− p r ed i c t ( f i t 3 ,
newdata=pca_test ,
type=" response " )

p r edc l a s s 3_te s t <− f a c t o r ( i f e l s e ( pred3_test
>0.5 ,

"M" , "F" ) )

t ab l e ( predc la s s3_tes t , y[− t r a i n ] )
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predc l a s s 3_te s t F M
F 23 0
M 1 26

1−mean( p r edc l a s s 3_te s t != y[− t r a i n ] )
[ 1 ] 0 .98
It misclassified 1 observation and therefore delivers a classifi-
cation accuracy of 98%.

Limitations of Logistic Regression
Logistic regression is a discriminative classifier. However, in
practice, generative classifiers such as naive Bayes often out-
perform discriminative classifiers such as logistic regression.

Well over a decade ago scholars Andrew Ng and Michael
Jordan studied the error properties of logistic regression and
naive Bayes models. They found that naive Bayes reaches
its asymptotic error bound much faster than the discrimina-
tive logistic regression classifier. However, as the sample size
grows larger, and larger, logistic regression outperforms the
naive Bayes classifier. The scholars illustrated the result for 15
real-world data-sets.

It turns out the generative naive Bayes model reaches its
asymptotic bound at a rate O(logN), whilst the discriminative
logistic model approaches it bound at a rate ofO(N). The prac-
tical implication of this is that the naive Bayes model reaches
its asymptotic solution for a much smaller data sample than
the logistic model. In other words, if you have a large sample
try logistic regression. If you have a small sample try naive
Bayes.

Summary
Logistic regression is a tool that you will frequently draw upon.
It delivers outstanding performance in a range of tasks. In this
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chapter, you have gained an understanding of how logistic re-
gression works, worked through a number of practical appli-
cation; and have discovered how to estimate it in R, analyze
critical statistics, and use it for classification tasks.

In the next chapter, we outline another popular classifica-
tion and prediction tool - Support Vector Machines.

Suggested Reading
• Customer Churn: Mutanen, Teemu. "Customer churn

analysis–a case study." Journal of Product and Brand
Management 14.1 (2006): 4-13.

• Opinion Mining: Alayba, Abdulaziz M., et al. "Arabic
Language Sentiment Analysis on Health Services." arXiv
preprint arXiv:1702.03197 (2017).

• Zoonotic Disease: Stephen Jones, William Conner, and
Bo Song, “Spatially Explicit Nonlinear Models for Ex-
plaining the Occurrence of Infectious Zoonotic Diseases,”
ISRN Biomathematics, vol. 2012, Article ID 132342, 12
pages, 2012. doi:10.5402/2012/132342

Other
• Logistic Regression and Naive Bayes: See the pa-

per by Andrew Ng and Michael Jordan who developed
the theory and ran 15 experiments to show this to be the
case in practice. The paper is entitled "On discriminative
vs. generative classifiers: A comparison of logistic regres-
sion and naive Bayes." Advances in neural information
processing systems 14 (2002): 841.

• Principal Component Analysis: I strongly recom-
mend you get a copy and read thoroughly both of the
following papers. They are pure solid gold:

219



Machine Learning Made Easy with R

– Jolliffe, Ian T. "Discarding variables in a princi-
pal component analysis. I: Artificial data." Applied
statistics (1972): 160-173.

– Jolliffe, Ian T. "Discarding variables in a principal
component analysis. II: Real data." Applied statis-
tics (1973): 21-31.
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Support Vector Machines

The support vector machine (SVM) is a supervised ma-
chine learning algorithm which can be used for both
regression and classification. It works by constructing

hyperplanes in a multidimensional space. The hyperplanes sep-
arate the sample data into different groups.

In this chapter, you will:

• Intuitively understand the role of the input space and
feature space in Support Vector Machines.

• Understand the role of the decision hyperplane, Support
Vectors, Margin and Slack.

• Review several successful real world applications of Sup-
port Vector Machines.

• Accumulate practical hands on experience as you develop
a SVM to classify diabetes.

Whilst the technical details surrounding Support Vectors Ma-
chines can be challenging, an intuitive understanding of how
they work is not. Furthermore, since they can be easily de-
ployed in R, they should be a part of your machine learning
toolkit.
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Understanding Support Vector Ma-
chines
Classification often requires nonlinear decision boundaries to
separate examples into different groups. For example, in
Figure 8.1, the classification decision boundary that best sep-
arates the observations is nonlinear.

INPUT SPACE

Figure 8.1: Nonlinear boundary required for correct classifica-
tion

The core idea of SVMs is that they construct an optimal
hyperplane for linearly separable data in a multidimensional
space using a kernel function. Figure 8.2 illustrates how SVMs
achieve this. The left side of the figure represents the origi-
nal sample (known as the input space) which is mapped to a
feature space of a higher dimension before performing a linear
classification in that higher dimensional space.

The process of rearranging the objects for optimal separa-
tion is known as transformation and occurs through the use of
a kernel function. A kernel function provides a nonlinear map-
ping from inputs x to feature vectors Φ(x). In mapping from
the input space (left part of Figure 8.2) to the feature space
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(right part of Figure 8.2) the mapped objects can be separated
by a straight line (are linearly separable) in the new space.

INPUT SPACE FEATURE SPACE

Class boundary

Object mapped

Figure 8.2: Mapping from input to feature space in an SVM

NOTE... �

Classification algorithms based on drawing sepa-
rating lines to distinguish between objects of dif-
ferent class memberships are known as hyperplane
classifiers.

Explaining the Optimal Hyperplane
The SVM finds the decision hyperplane leaving the largest pos-
sible fraction of points of the same class on the same side, while
maximizing the distance of either class from the hyperplane.
As illustrated in Figure 8.3, the support vectors are the data
points that lie closest to the optimal hyperplane. These are
the most difficult points to classify and directly influence the
location of the decision boundary.
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X1

X2

Figure 8.3: Support Vector Machine hyperplane

Maximizing the margin hyperplane

To construct an optimal hyperplane, SVM employs an iterative
training algorithm to maximize the margin around the separat-
ing hyperplane using the “difficult” to classify points close to
the decision boundary for support.

Let’s look at how this is achieved. Consider a training sam-
ple consisting of N patterns {(x1, y1, ..., (xN , yN)}, where x is
the feature vector, and target yi ∈ {−1,+1} with correspond-
ing binary labels. The SVM parameters are determined by
maximizing the margin hyperplane:

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi · xj) (8.1)

subject to the constraints:
N∑
i=1

αiyi = 0 and 0 ≤ αi ≤ C (8.2)

where K(xi, xj) is the kernel function used to map the data
from the input space to the feature space; the item C is a cost/
slack parameter.
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NOTE... �

There are numerous kernels. Several you will come
across in your own work include the Polynomial,
Gaussian Radial Basis, Hyperbolic tangent, and
linear.

Slack parameter

The variable C, known as the slack parameter, serves as the cost
parameter that controls the trade-off between the size of the
margin and the classification error. If no slack is allowed (often
called a hard margin) and the data are linearly separable, the
support vectors are the points which lie along the supporting
hyperplanes. In this case, all of the support vectors lie exactly
on the margin.

In practice, for complex classifications a hard margin may
not yield useful results, and a “soft” margin is used. In this
case, some proportion of data points are allowed to remain
inside the margin. The slack parameter is used to control this
proportion. A soft margin results in a larger classification error
on the training data set. However, it reduces the likelihood of
over-fitting.

Number of support vectors

The total number of support vectors depends on the amount of
allowed slack and the distribution of the data. If a large amount
of slack is permitted, there will be a larger number of support
vectors than the case where very little slack is permitted. Fewer
support vectors means faster classification of test points. This
is because the computational complexity of the SVM is linear
in the number of support vectors.
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Advantages of Support Vector Machines
Support vector machines are based on a theoretical model of
learning; and they therefore come with certain theoretical guar-
antees regarding performance. They do not suffer from the
curse of dimensionality, and have been popular in text classi-
fication problems where very high-dimensional spaces are the
norm. Unlike neural networks, which they are often compared
with, they are not susceptible to getting trapped in local min-
ima.

Practical Application of Support Vec-
tor Machines
One of the best ways to see the value of a complex algorithm
such as SVM, is to explore how they have been applied in prac-
tice. This section touches on three applications. The first in-
volves stock price prediction. This is followed by an example
of breast cancer classification. Finally, SVM flexibility is illus-
trated in their successfully deployment for signature authenti-
cation.

Forecasting Stock Market Direction
Researchers Huang et al use a support vector machine to pre-
dict the direction of weekly changes in the NIKKEI 225 stock
market index. The index is composed of 225 stocks of the
largest Japanese publicly traded companies.

Two independent variables are selected as inputs to the
model, weekly changes in the S&P500 index, and weekly
changes in the US dollar - Japanese Yen exchange rate.

A total sample size of 676 weekly observations were col-
lected. The researchers use 640 observations to train their sup-
port vector machine; and perform an out of sample evaluation
on the remaining 36 observations.
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As a benchmark, the researchers compare the performance
of their model to four other models, a random walk, linear
discriminant analysis, quadratic discriminant analysis and a
neural network.

The random walk correctly predicts the direction of the
stock market 50% of the time, linear discriminant analysis 55%,
quadratic discriminant analysis and the neural network 69%,
and the support vector machine 73%.

The researchers conclude:

“As demonstrated in our empirical analysis, SVM is
superior to the other individual classification meth-
ods in forecasting weekly movement direction of
NIKKEI 225 Index. This is a clear message for
financial forecasters and traders, which can lead to
a capital gain.”

Identification of Early Onset Breast Cancer
Breast cancer is often classified according to the number of es-
trogen receptors present on the tumor. Tumors with a large
numbers of receptors are termed estrogen receptor positive
(ER+), and estrogen receptor negative (ER-) for few or no
receptors. ER status is important because ER+ cancers grow
under the influence of estrogen, and may respond well to hor-
mone suppression treatments. This is not the case for ER-
cancers as they do not respond to hormone suppression treat-
ments.

Scholars Upstill-Goddard et al investigate whether patients
who develop ER+ and ER- tumors show distinct constitutional
genetic profiles using genetic single nucleotide polymorphisms
data. At the core of their analysis were support vector ma-
chines with linear, normalized quadratic polynomial, quadratic
polynomial, cubic and radial basis kernels. All five kernel mod-
els had an accuracy rate in excess of 93%, see Table 17.
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Kernal Type %Correctly Classified
Linear 93.28 ±3.07
Normalized quadratic polynomial 93.69 ±2.69
Quadratic polynomial 93.89±3.06
Cubic polynomial 94.64±2.94
Radial basis function 95.95±2.61

Table 17: Upstill-Goddard et al’s kernels and classification
results.

NOTE... �

Upstill-Goddard et al test multiple kernels. This
is always a good strategy because it is not obvious
which kernel is optimal at the onset of a research
project.

Signature Authentication
Applied researchers Radhikaet al consider the problem of au-
tomatic signature authentication using a variety of algorithms
including a support vector machine (SVM). The other algo-
rithms considered included a Bayes classifier (BC), fast Fourier
transform (FT), linear discriminant analysis (LD) and principal
component analysis (PCA).

Their experiment used a signature database containing 75
subjects with 15 genuine samples and 15 forged samples for
each subject. Features were extracted and used as inputs to
train and test the various algorithms.

The researchers report a false rejection rate of 8% for
SVM,13% for FT, 10% for BC, 11% for PCA and 12% for LD.
They observe:

“Results showed that the SVM classifier yielded the
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most promising 8% False Rejection Rate (FRR) and
10% False Acceptance Rate (FAR).”

Example - Classifying Diabetes
The prevalence of diabetes is increasing worldwide. Among
adults over 18 years of age it has risen from 4.7% in 1980 to
8.5% in 2014. Rural areas of developing countries have a low
prevalence; however, populations transitioning from traditional
to modern lifestyles are at elevated risk.

Diabetes prevalence also varies dramatically by geographic
region and ethnic background. For example, type 2 diabetes
reaches epidemic proportions in Nauru, in the Aborigines of
Australia, and many in American-Indian groups in the United
States. Healthcare researcher Eric Ravussin observed:

“The Pima Indians of Arizona have the highest
reported prevalences of obesity and non-insulin-
dependent diabetes mellitus. In parallel with abrupt
changes in lifestyle, these prevalences in Arizona
Pimas have increased to epidemic proportions dur-
ing the past decades.”

In this section, we will build a Support Vector Machine to clas-
sify whether a sample of Pima Indian women will test positive
for diabetes.

Step 1 – Collecting and Exploring the Data
The sample we use is contained in the PimaIndiansDiabetes2
data frame contained in the mlbench package. The data set
was collected by the National Institute of Diabetes and Diges-
tive and Kidney Diseases. It contains 768 observations on 9
variables measured on females at least 21 years old of Pima In-
dian heritage. Table 18 contains a description of each variable
collected.
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Name Description
pregnant Number of times pregnant
glucose Plasma glucose concentration
pressure Diastolic blood pressure (mm Hg)
triceps Triceps skin fold thickness (mm)
insulin 2-Hour serum insulin (mu U/ml)
mass Body mass index
pedigree Diabetes pedigree function
age Age (years)
diabetes test for diabetes - Class variable (neg / pos)

Table 18: Response and independent variables in
PimaIndiansDiabetes2 data frame.

Load the data

The data can be loaded into your R session as follows:
data("PimaIndiansDiabetes2",
package="mlbench")

Let’s do a quick check to ensure we have the expected number
of columns and rows:
ncol(PimaIndiansDiabetes2)
[1] 9
nrow(PimaIndiansDiabetes2)
[1] 768

The numbers are in line we what we expected.

The str function

We can use the str method to check and compactly display
the structure of the PimaIndiansDiabetes2 data frame:
str(PimaIndiansDiabetes2)
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’ data . frame ’ : 768 obs . o f 9 v a r i a b l e s :
$ pregnant : num 6 1 8 1 0 5 3 10 2 8 . . .
$ g lu co s e : num 148 85 183 89 137 116 78 115 197

125 . . .
$ p r e s su r e : num 72 66 64 66 40 74 50 NA 70 96 . . .
$ t r i c e p s : num 35 29 NA 23 35 NA 32 NA 45 NA . . .
$ i n s u l i n : num NA NA NA 94 168 NA 88 NA 543 NA . . .
$ mass : num 33 .6 26 .6 23 .3 28 .1 43 .1 25 .6 31

35 .3 30 .5 NA . . .
$ ped ig r e e : num 0.627 0 .351 0 .672 0 .167 2 .288 . . .
$ age : num 50 31 32 21 33 30 26 29 53 54 . . .
$ d i abe t e s : Factor w/ 2 l e v e l s " neg " , " pos " : 2 1 2 1

2 1 2 1 2 2 . . .

As expected PimaIndiansDiabetes2 is identified as a data
frame with 768 observations on 9 variables. Notice that each
row provides details of the name of the attribute, type of at-
tribute and the first few observations. For example, diabetes
is a factor with two levels “neg” (negative) and “pos” (posi-
tive). We will use it as the classification response variable.

Dealing with missing values

Did you notice the NA values in pressure, triceps, insulin
and mass? These are missing values. We all face the problem of
missing data at some point in our work. People refuse or forget
to answer a question, data is lost or not recorded properly. It
is a fact of data science life! However, there seem to be rather
a lot, we better check to see the actual numbers:
sapply(PimaIndiansDiabetes2 ,
function(x)sum(is.na(x)))

Wow! there are a large number of missing values particu-
larly for the attributes of insulin and triceps. How should
we deal with this?
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The most common method and the easiest to apply is to use
only those individuals for which we have complete information.
An alternative is to impute with a plausible value the missing
observations. For example, you might replace the NA’s with
the attribute mean or median. A more sophisticated approach
would be to use a distributional model for the data (such as
maximum likelihood and multiple imputation).

Given the large number of missing values in insulin and
triceps we remove these two attributes from the sample and
use the na.omit method to remove any remaining missing val-
ues. The cleaned data is stored in the R object data:
data <-( PimaIndiansDiabetes2)
data$insulin <- NULL
data$triceps <- NULL
data <-na.omit(data)

We should have sufficient observations left to do meaningful
analysis. It is always best to check:
nrow(data)
[1] 724

ncol(data)
[1] 7

So we are left with 724 individuals and (as expected) 7 columns.

Visual inspection

Figure 8.4 shows the distribution by age, number of times preg-
nant alongside box-plots of glucose, blood pressure and body-
mass index.
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Figure 8.4: Class labels and attributes

Step 2 – Preparing the Data
The next step is to transfer the target variable into a suitable
format for use in our SVM model. Here is how to do this:
y<-( data$diabetes)
levels(y) <- c("-1","1")
y<-as.numeric(as.character(y))
y <-as.matrix(y)

The first line transfers the target variable to the R object y.
The labels “neg” and “pos” are replaced, in the second line,

233



Machine Learning Made Easy with R

with the values “-1” and “+1”. The as.numeric function is
called, in the third line, to convert the “-1” and “+1” into
double (numeric) values. We need y to be a matrix, and this
is achieved using the as.matrix function in the final line.

Scaling the input attributes

Support vector machine kernels generally depend on the inner
product of attribute vectors. Very large values might cause
numerical problems. For this example, we transform the at-
tributes so that they have a mean of zero, and a variance equal
to one. This can be achieved using the scale function:
x<-data
x$diabetes <- NULL
x<-as.matrix(x)
x<-scale(x)

The R object x, now contains the mean centered feature data.

Selecting the train and test sets

We use nrow to count the sample observations (as a check it
should equal 724). We then set the training sample to select at
random without replacement 600 observations. The remaining
124 observations form the test sample:
set.seed (103)
n=nrow(x)
train <- sample (1:n, 600, FALSE)

Step 3 - Train Model using Train Set
We use the svmpath package to estimate the model. It con-
tains the svmpath function which can use two popular ker-
nels, the polynomial and radial basis function. For our ini-
tial model we use the radial basis kernel. It is selected by
setting kernel.function = radial.kernel. We also set
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trace=FALSE to prevent svmpath from printing results to the
screen at each learning step:

require(svmpath)
fit <-svmpath(x[train ,],
y[train ,],
kernel.function = radial.kernel ,
trace=TRUE)

The cost parameter and number of misclassified obser-
vations

A nice feature of svmpath is that it computes the estimated
value of the SVM cost parameter, and the associated classifi-
cation error at each step or iteration. These are stored in fit.
The cost parameter at each step can be observed by append-
ing $lambda to fit. The number of errors at each step are
accessed by appending $Error to fit. Let’s take a look at their
values for the first three steps in the optimization process:

head(fit$lambda ,3)
[1] 2.660405 2.528366 2.499826

head(fit$Error ,3)
[1] 128 112 112

The cost parameter took the value 2.66 at the first step, 2.52
at the second step, and 2.49 at the third step. The number of
misclassified observations was 128 at the first step, and 112 for
the second and third steps.

Figure 8.5 displays the cost parameter (left panel) and the
actual number of misclassified observations (right panel) by
step. The cost parameter clearly declines at each step. How-
ever, the number of misclassified observations initially falls,
reaching a minimum around at around 500 steps. It then begins
to rise as the number of steps increases beyond 500.
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Figure 8.5: Cost (left) and number of error (right) for radial
basis function kernel

What is the minimum number of classification errors? And
at what step did it occur? It is difficult to tell form the above
chart, but there may be multiple steps that attain the minimum
value. We can use the with method to identify these:
with(fit , Error[Error == min(Error)])
[1] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Yep, there are quite a few! It appears for the training sample
that at best 9 out of the 600 observations are misclassified by
the model. This is approximately 1.5% of the sample.
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Selecting the smallest cost parameter for the minimum
number of errors

Each minimum error is associated with a unique regularization/
cost value. We would like to use the smallest of these values
as a parameter in our test set model. This is achieved via the
following code:
error <-with(fit ,Error[Error == min(Error)])

min_err_row <-which(fit$Error == min(
fit$Error))

temp_lamdba <-fit$lambda[min_err_row]

loc <-which(fit$lambda[min_err_row] == min(
fit$lambda[min_err_row ]))

lambda <-temp_lamdba[loc]
lambda
[1] 0.09738556

Let’s spend a moment to review the above code.

1. The first line stores the minimum misclassification error
in the R object error.

2. The which and min functions are used in the second line
to grab the row numbers of the minimum errors stored in
error. These values are stored in min_err_row.

3. The third line captures the value of the cost parameter
associated with error by using the row numbers stored in
min_err_row. These values are stored in temp_lamdba.

4. The next line identifies which value in temp_lamdba has
the minimum value. The location of this value is stored
in the R object loc.
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5. The final two lines use loc and temp_lamdba to pass the
smallest cost parameter to the R object lambda. This
value [0.097] is then printed to the screen.

The method svmpath reports the inverse of the kernel regu-
larization parameter (often and somewhat confusingly called
gamma in the literature). It corresponds to a gamma of

1
0.09738556 = 10.268.

NOTE... �

The regularization value is the penalty parameter
of the error term (and svmpath reports the inverse
of this parameter).

Making predictions

Predictions can be made using the predict function. It takes
the fitted model, regularization/ cost value, and sample data.
We use the value in lambda as the model cost parameter. Here
is how to use it with the training sample:
pred_train <-predict(fit ,newx=x[train ,],
lambda=lambda ,
type="class")

We already know the error on the training set should be around
1.5%, so let’s check using the table function:
table( y[train ,],
pred_train ,
dnn =c("Observed",
"Predicted"))

Predicted
Observed -1 1

-1 389 5
1 4 202
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The model appears to perform very well on the training sample.
It classifies 389 out of 394 cases correctly for class -1; and 202
out of 206 cases correctly for class +1.

Step 4 - Evaluate Model Performance
Let’s see how the model performs on the test sample. first, pass
the test sample to the prediction function:
pred_test <-predict(fit ,newx=x[-train ,],
lambda=lambda ,
type="class")

Next, use the table function to show classification perfor-
mance:
table( y[-train ,],
pred_test ,
dnn =c("Observed",
"Predicted"))

Predicted
Observed -1 1

-1 65 16
1 27 16

Oh dear! The model appears to perform very poorly here. For
class -1 (neg), 16 out of 81 examples have been misclassified;
And for class +1(pos), 27 out of 43 cases have been misclassi-
fied. The overall error rate is around 35%. The relative per-
formance has declined dramatically from that observed on the
training set. What went wrong? Alas, it is a clear case of the
model overfitting the data.

As we have just seen, degradation in performance due to
over-fitting can be surprisingly large! The key is to remember
the primary goal of the training and test samples is to provide a
reliable indication of the expected error on future as yet unseen
samples. In the case of our model fit, we need to seek an
alternative.
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Step 5 - Improving Model Performance
One of the quickest ways to improve performance is to choose
an alternative kernel. Let’s estimate another SVM, this time
using a radial basis function kernel:
fitP <-svmpath(x[train ,],
y[train ,],
kernel.function = poly.kernel ,
trace=FALSE)

The object fitP contains details of the fitted model. To see if
the solution found was linear use:
fitP$linear
[1] TRUE

Yep, the solution found by this model is linear. This is probably
a good sign in relation to overfitting. Over-fit models tend to be
too complex for the given data. Compare this with the original
model fit:
fit$linear
[1] FALSE

Of course, the fact that the solution is non-linear is not neces-
sarily indicative of overfitting. But for fit1, it is a tantalizing
clue.

Regularization parameter

We can gain clarity on the issues by assessing the performance
of fitP on the train and test sets. To do this, we first obtain
the regularization parameter and store it in lambdaP:
error <-with(fitP , Error[Error == min(Error)

])

min_err_row <-which(fitP$Error == min(
fitP$Error))
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temp_lamdba <-fitP$lambda[min_err_row]

loc <-which(fitP$lambda[min_err_row] == min(
fitP$lambda[min_err_row ]))

lambdaP <-temp_lamdba[loc]

lambdaP
[1] 73.83352

error [1]/600
[1] 0.2333333

Two things are noteworthy about this result.

• First, the regularization parameter is estimated as:
1

73.83352 = 0.0135.

• Second, the error is estimated to be 23.3% on the train
set. This is much higher than we observed on fit1. How-
ever, it also indicates that there is a much lower likelihood
that this model has over-fit the data.

Training set classifications

Now, take a look at the actual predictions using the training
sample. To do this, as we have seen already, we pass the model
fitP and the training sample to the predict function. The
result is stored in predP_train. The table function is then
called to create and display the confusion matrix:
predP_train <-predict(fitP ,newx=x[train ,],
lambda=lambdaP ,
type="class")

table( predP_train ,y[train ,] ,
dnn =c("Observed" ,
"Predicted"))
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Predicted
Observed -1 1

-1 357 103
1 37 103

The model correctly predicts 357 out of 460 examples for class
-1; and 103 out of 140 examples for class +1. Overall, this gives
us the misclassification error rate we saw earlier of 23.3%.

Test set classifications

So how does the model perform on the test sample? Pass the
training sample and fitP to the predict function. Then use
the table function as follows:
predP <-predict(fitP ,newx=x[-train ,],
lambda=lambdaP ,
type="class")

table( predP ,y[-train ,] ,
dnn =c("Observed" ,
"Predicted"))

Predicted
Observed -1 1

-1 76 13
1 5 30

The model predicts 76 out of 89 cases correctly for class -1
(neg), and 30 out of 35 cases correctly for class +1 (pos). The
model, fitP, has an overall error rate of around 14.5%.

Selecting an alternative kernel, may seem like a small
change, but it can have a dramatic impact on performance.
Earlier we saw the researchers Upstill-Goddard et al test mul-
tiple kernels.; you will want to do the same. This is because it
is not obvious which kernel is optimal at the onset of a research
project.
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Limitations of Support Vector Ma-
chines
Unlike regression type models, SVM model parameters can be
difficult to interpret. In this sense, they can seem a little like a
“black box”. They have a high algorithmic complexity and are
difficult to explain. This can hinder their adoption, especially
in areas where the clarity on the drivers of classification or
prediction performance are important.

SVM performance is very sensitive to the choice of the cost
parameter. This is because the decision boundary depends on
the value assigned to the cost parameter. Unfortunately, the
choice of kernel and parameter values is data dependent. SVMs
are also memory intensive, and can take a relatively long time
to train.

Summary
SVMs are a non-linear, non-parametric classification technique,
which have delivered good results in numerous fields. They
offer a robust classification tool developed from a theoretical
basis. In this chapter, you have gained an understanding of
how SVMs work through a number of practical application; and
have discovered how to estimate a classification SVM using R.

In the next chapter, we encounter a very popular, and ex-
tremely successful classification algorithm - Random Forests.
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Chapter 9

Random Forests

Random Forests are a non-parametric ensemble method,
in which a “forest” of decision trees are generated by
re-sampling the training data. They often deliver sig-

nificant performance improvements over a single decision tree.
Indeed, “committee methods” such as random forests, often out-
perform the single prediction and classifier models discussed
earlier in this text.

In this chapter, you will:

• Clarify how random forests work.

• Review ensemble methods.

• Walk through several practical applications using random
forests.

• Build random forests to classify Thyroid Function.

• Understand their advantages and limitations.

Before we delve into an intuitive overview of how they work,
let’s first refresh our memory on ensemble methods.
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Understanding Random Forests
Ensemble methods combine the classification and prediction
results of many different models. The individual models are
known as “weak learners” because individually they have poor
predictive performance. A weak learner has a prediction accu-
racy just above random chance on a classification problem.

The weak learners can be a similar type of model or very
different. However, when combined they can form a “strong
learner” with high predictive performance. In other words, the
performance of an ensemble model is usually better than the
performance of the individual models.

Random Forests are an ensemble classifier which fits a large
number of decision trees to a data set, and then combines the
predictions from all the trees. They can be used for classifi-
cation and regression. For classification, the decision trees are
combined using majority voting with one vote per tree over all
the trees in the forest. For regression, forests are created by
averaging over trees.

The Random Forests Algorithm
The algorithm begins with the random selection of examples
with replacement from the sample data. This is called a “boot-
strapped” sample. A decision tree is constructed from this sub-
sample. In a typical random sample, approximately 63% of the
original observations occur at least once.

Observations in the original data set that are not selected
are called out of-bag observations. They are used to estimate
the error rate (often called the out of bag error rate), and esti-
mate feature importance.

The process of random selection of examples is repeated
many times, with each sub-sample generating a single decision
tree. As illustrated in Figure 9.1, each tree is different. This
is because at each node, the best split is determined from ran-
domly selected features. This results in a forest of decision
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trees.
Each tree is grown to the largest extent possible without

pruning. Individual trees make a classification decision or pre-
diction. The final predicted class of an observation is made by
majority vote for classification, or via a weighted average for
regression.
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Figure 9.1: Random Forests

Although each individual tree in a forest tends to be less
accurate than a classical decision tree (they are weak learners),
combining multiple predictions into one aggregate prediction
often results in a more accurate forecast (strong learner). Part
of the reason is that prediction of a single decision tree tends
to be highly sensitive to slight changes in the training set. This
is not the case for the average of many trees provided they are
uncorrelated. For this reason, Random Forests often decrease
overall variance without increasing bias relative to a single de-
cision tree.
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NOTE... �

Each tree in a random forest is a weak learner.
The random forest is a strong learner.

Advantages of Random Forests
Random Forests retain many of the advantages of decision
trees. They are extremely easy to build and run, and often
give very good results. Various studies have shown that Ran-
dom Forests reduce classification and regression error on a wide
array of data structures and problems. For many prediction
tasks they are competitive with Neural Networks and Support
Vector Machines. However, they are much faster to train be-
cause they have fewer parameters.

They require minimal data preparation. Missing values are
handled, as are continuous and categorical target variables.
They run efficiently on large databases, even with thousands of
features, and are robust to outliers.

Unlike an individual decision tree, Random Forests do not
require pruning to generalize well. Overfitting is less of a prob-
lem because they generate an unbiased estimate of the gen-
eralization error from the training sample as the forest is con-
structed. This error rate (called out of the bag error rate) tends
to be very accurate provided a reasonable number of trees is
used to construct the forest.

Practical Application of Random
Forests
The range of applications for which Random Forests are ap-
propriate spans the entire range of business, social sciences,
and the natural sciences. In this section, we discuss three di-
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verse applications. The first, involves their use to predict the
condition of city sewers. Then we discuss their use in health
care research, specifically classifying the presence or absence
of Glaucoma. Finally, we highlight a study that used R, and
compared the performance of Random Forests with logistic re-
gression.

Waste-water Deterioration Modeling
Researcher Vitorino et al build a Random Forest model to pre-
dict the condition of individual sewers, and to determine the
expected length of sewers in poor condition. The data con-
sisted of two sources, a sewer data table and a inspection data
table.

The sewer table contained information on the sewer identifi-
cation code, zone, construction material, diameter, installation
date and a selection of user defined covariates. The inspection
data table contained information on the sewer identification
code, date of last inspection and condition of sewer at date of
last inspection.

The Random Forest was trained using all available data and
limited to 50 trees. It was then used to predict the condition of
individual sewer pipes. The researchers predict the distribution
of sewer pipe in poor condition by type of material used for
construction. The top three highest ranked materials were CIP
(31.83%) followed by unknown material (27.94%) and RPM
(23.89%).

Glaucoma Prediction
Glaucoma is the second most common cause of blindness. As
glaucomatous visual field (VF) damage is irreversible, the early
diagnosis of glaucoma is essential. Sugimoto et al develop a ran-
dom forest classifier to predict the presence of (VF) deteriora-
tion in glaucoma suspects using optical coherence tomography
(OCT) data.
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The study investigated 293 eyes of 179 live patients referred
to the University of Tokyo Hospital for glaucoma. The Ran-
dom Forest algorithm with 10,000 trees was used to classify
the presence or absence of glaucomatous VF damage using 237
different OCT measurements ; Age, gender, axial length and
eight other right/left eye metrics were also included as training
attributes.

The researchers report a receiver operating characteristic
curve value of 0.9 for the random forest. This compared well
to the value of 0.75 for an individual decision tree.

Identifying Obesity Risk Factors
Health researchers Kanerva et al investigate 4720 Finnish sub-
jects who completed health questionnaires about leisure time
physical activity, smoking status, and educational attainment.
Weight and height were measured by experienced nurses. The
researchers use the randomForest package in R to predict obe-
sity. The results were compared with a logistic regression
model.

The researchers observe that the random forest and logistic
regression had very similar classification power, for example
the estimated error rates for the models were 42% for men
(Random Forests) versus logistic regression 43% for men.

Example - Classifying Thyroid Func-
tion
Your thyroid gland sits just below the Adam’s apple. For sev-
eral thousand years, it was unclear as to it’s precise function.
As Dr. Edward Albert Schafer, speaking before the Sixty-third
Annual Meeting of the British Medical Association held during
August 1895 explained:

“That the thyroid gland is a secreting-gland no one
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who studies its structure and its model of develop-
ment can well doubt...it has all the features of struc-
ture of secreating-glands...It may be fairly supposed,
then that the pituitary body also furnishes to the
blood an internal secretion, and it would appear that
this internal secretion tends to increase the contrac-
tion of the heart and arteries and to influence the
nutrition of some of the tissues.”

Today, it is understood that the thyroid gland secretes hor-
mones which influence metabolic rate and protein synthesis.
The status of the thyroid can be assessed by laboratory tests.
The tests determine whether a patient’s thyroid function is eu-
thyroidism (normal), hypothyroidism (under active thyroid) or
hyperthyroidism (overactive). In this section, we build Ran-
dom Forests to classify thyroid function from laboratory tests.

Step 1 – Collecting and Exploring the Data
The thyroid data-frame in the mclust package was con-
structed from five laboratory tests administered to a sample
of 215 patients. The tests were used to predict whether a pa-
tient’s thyroid function could be correctly classified. Table 19
provides details of the features, and class variable.

Variable Description Type
Diagnosis Hypo, Normal, and Hyper Class
RT3U T3-resin uptake test (percentage) Feature
T4 Total Serum thyroxin Feature
T3 Total serum triiodothyronine Feature
TSH Basal thyroid-stimulating hormone Feature
DTSH Maximal absolute difference of TSH Feature

Table 19: Features and Class in thyroid
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Let’s load the data and take a look at the first few obser-
vations:
data("thyroid",package="mclust")

head(thyroid)
Diagnosis RT3U T4 T3 TSH DTSH

1 Normal 107 10.1 2.2 0.9 2.7
2 Normal 113 9.9 3.1 2.0 5.9
3 Normal 127 12.9 2.4 1.4 0.6
4 Normal 109 5.3 1.6 1.4 1.5
5 Normal 105 7.3 1.5 1.5 -0.1
6 Normal 105 6.1 2.1 1.4 7.0

Figure 9.2 displays some of the characteristics of the fea-
tures.
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Figure 9.2: Characteristics of features in thyroid
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The features are generally modestly correlated. However,
T3 and T4 exhibit a pairwise correlation of 0.72; And the pair
TSH DTSH have a correlation of 0.5. With the exception of
RT3U, the features appear to be right skewed. The scatter-plots
indicate a complex set of inter- feature relationships.

Step 2 – Preparing the Data
We will select 150 examples without replacement for the train-
ing set. The remainder set aside for the test set:
set.seed (2018)
N=nrow(thyroid)
train <- sample (1:N, 150, FALSE)

Step 3 - Train Model using Train Set
The randomForest package can be used to build the model. In
building the random forest model we have two primary options
to choose. The first is the number of trees; the second is the
number of features to randomly select. We build a model with
a forest of 800 trees:
library (randomForest)
num.trees =800
fit <- randomForest(Diagnosis ~.,
data = thyroid[train ,],
ntree=num.trees ,
mtry =4)

For each tree in the forest, a randomly selected subset of fea-
tures is used to split each node. This is controlled by the mytry
parameter. In the above code we set mytry=4 to randomly se-
lect four of the six features.

Step 4 - Evaluate Model Performance
Details on the model can be viewed using the print statement:
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print(fit)

Call:
randomForest(formula = Diagnosis ~ .,
data = thyroid[train , ],
ntree = num.trees , mtry = 4)

Type of random forest: classification
Number of trees: 800
No. of variables tried at each split: 4

OOB estimate of error rate: 4.67%

Confusion matrix:
Hypo Normal Hyper class.error

Hypo 22 1 0 0.04347826
Normal 1 106 1 0.01851852
Hyper 0 4 15 0.21052632

The first part of the output reminds us of the formula, number
of trees (800), and the number of randomly selected features
(variables) used at each split. This is followed by the out of
the bag error rate, and the confusion matrix.

The model has an overall error of around 4.7%. Their is
considerable variability in accuracy by class. For Hypo the error
rate is 4.3%, for Normal 1%, and for Hyper 21%.

Test set performance

To assess how the model performed on the test set, we re-run
it using the test set data:
fit_test <- randomForest(Diagnosis ~.,
data = thyroid[-train ,],
ntree=num.trees ,
mtry =4)

print(fit_test)
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Call:
randomForest(formula = Diagnosis ~ .,
data = thyroid[-train , ],
ntree = num.trees , mtry = 4)

Type of random forest: classification
Number of trees: 800
No. of variables tried at each split: 4

OOB estimate of error rate: 9.23%
Confusion matrix:

Hypo Normal Hyper class.error
Hypo 4 3 0 0.42857143
Normal 1 40 1 0.04761905
Hyper 0 1 15 0.06250000

Of the 65 observations in the test set, 6 were classified incor-
rectly leading to an out of the bag error rate of 9.23%.

Step 5 - Improving Model Performance
Although over 90% of the observations were correctly classified,
we would still like to improve performance further. In many
circumstances, you might try adding new features or examples.
This option is not available here.

One thing to notice is that smaller subsets of randomly
selected features produces less correlation between the trees.
This is important because the greater the inter-tree correlation,
the greater the random forest error rate.

Unfortunately, as the number of features is reduced, the
predictive power of the model may also decrease. Choosing
the number of features is therefore a delicate trade-off which
requires some experimental.

So how do you choose mtry? One rule of thumb suggests
halving your initial guess, and also doubling it. Since we only
have six feature, doubling is out of the question. Let’s go down

257



Machine Learning Made Easy with R

the half as many route and set mtry = 2, in order to select two
random features at each split:
fit2 <- randomForest(Diagnosis ~.,
data = thyroid[train ,],
ntree=num.trees ,
importance=TRUE ,mtry =2)
print(fit2)

Call:
randomForest(formula = Diagnosis ~ .,
data = thyroid[train , ],
ntree = num.trees ,
importance = TRUE ,
mtry = 2)

Type of random forest: classification
Number of trees: 800
No. of variables tried at each split: 2

OOB estimate of error rate: 3.33%

Confusion matrix:
Hypo Normal Hyper class.error

Hypo 22 1 0 0.04347826
Normal 0 108 0 0.00000000
Hyper 0 4 15 0.21052632

The error rate at 3.3% is lower than for fit. The model cor-
rectly classifies all of the Normal cases. However, the error rate
on Hypo and Hyper are similar to the values observed on the
train set for fit.

Variable importance

We can describe our trained model fit2 in terms of the features
by ranking them according to their splitting efficiency. This
can be achieved via the varImpPlot function. It returns two
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plots of variable importance, one using the average decrease
in accuracy of including a feature, and the second using the
average decrease in the Gini coefficient:
varImpPlot(fit2)

Figure 9.3 shows the resultant plots. It indicates T4, followed
by T3 are the most important features. Notice, in this example
both the accuracy metric and Gini metric agree on the order
of feature importance.
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Figure 9.3: Variable importance plot for thyroid model fit2
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Test set performance

The lower training set error rate is encouraging. Let’s take a
look at how fit2 performed with the test set data:
fit2_test <- randomForest(Diagnosis ~.,
data = thyroid[-train ,],
ntree=num.trees ,
mtry =2)
print(fit2_test)

Call:
randomForest(formula = Diagnosis ~ .,
data = thyroid[-train , ],
ntree = num.trees , mtry = 2)

Type of random forest: classification
Number of trees: 800
No. of variables tried at each split: 2

OOB estimate of error rate: 4.62%

Confusion matrix:
Hypo Normal Hyper class.error

Hypo 5 2 0 0.2857143
Normal 0 42 0 0.0000000
Hyper 0 1 15 0.0625000

Overall, the use of two randomly selected features has reduced
the test set error rate to 4.62%.

Limitations of Random Forests
Although Random Forests can be used for regression problems,
they cannot extrapolate outside of the range of the target/ fea-
ture variables. Neither are they competitive when the rela-
tionship between the target variable and features variables is
linear.
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Unlike decision trees, the classification rules generated by
a random forest are generally incomprehensible. Thus, it can
feel like a “black box” technique. For this reason, their use
is more challenging in application areas where clarity on rule
generation, variable importance, and how variables interact is
important. They are also biased towards features with a larger
number of classes.

Summary
Random Forests are a highly successful machine learning algo-
rithm. They have gained considerable attention due to their
strong performance; and are deployed in a diverse range of ar-
eas.

In the next chapter, we discuss a more general ensem-
ble technique that combines many weak classifiers to create
a strong classifier. This algorithm is known as boosting.

Suggested Reading
• Glaucoma Prediction: Sugimoto, Koichiro, et al.

"Cross-sectional study: Does combining optical coher-
ence tomography measurements using the ‘Random For-
est’decision tree classifier improve the prediction of the
presence of perimetric deterioration in glaucoma sus-
pects?." BMJ open 3.10 (2013): e003114.

• Identifying Obesity Risk Factors: Kanerva, N., et al.
"Random forest analysis in identifying the importance of
obesity risk factors." European Journal of Public Health
23.suppl 1 (2013): ckt124-042.

• Waste-water Deterioration Modeling: Vitorino,
D., et al. "A Random Forest Algorithm Applied
to Condition-based Waste-water Deterioration Modeling
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and Forecasting." Procedia Engineering 89 (2014): 401-
410.

Other
• Dr. Schafer’s Thyroid Gland Presentation: Medi-

cal News, Volume 67. British Medical Association. 1895.
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Chapter 10

Boosting

Boosting is a machine learning technique for improving
the performance of a learning algorithm. It is an en-
semble technique that can be used for classification or

regression. The discovery of boosting several decades ago led
to dramatic improvements in predictive performance.

In this chapter, you will:

• Learn how boosting works.

• Find out about the classic Adaboost algorithm.

• Examine the usage of boosting in several real-world case
studies.

• Get to play with Google’s Deep Boosting algorithm to
classify sonar returns.

Boosting can be used with many types of learning algorithm,
and often results in a dramatic improvement in performance.
Let’s jump right in, and see how it works.

Understanding Boosting
Boosting algorithms combine many weak classifiers to create a
strong learner. A weak learner, is slightly better than random
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guessing in prediction accuracy. On the other hand, a strong
learner is able, given enough training data, to produce highly
accurate predictions.

The Basic Approach
To begin, a simple model ĥ1(x) is built from the training data
of features x. The weak learner ĥ1(x) is often called the base
algorithm. It is often a single decision tree or tree stump. A
stump is a single node with two leaves. However, any machine
learning algorithm can be used as the base algorithm.

Greedy learning

The algorithm proceeds in a greedy fashion, which means that
at each step a basis function that leads to the largest reduction
of misclassification error is added.

Therefore, if ĥ1(x) misclassified some data, we train another
copy of it ĥ2(x) to correct the errors made by the first model.
The model ĥ2(x) is trained on re-weighted data where the mis-
classified observations receive higher weights. This forces ĥ2(x)
to focus on observations that were difficult for ĥ1(x) to classify.

At each iteration, the focus on correctly classifying diffi-
cult observations intensifies. The boosting algorithm contin-
ues adding new models until no further improvements can be
made, or the maximum number of iterations, specified by the
user, have been reached.

Sequential learning

Boosting algorithms therefore "boost" classification accuracy by
focusing on misclassified observations. They sequentially apply
a learning algorithm (weak learner) to re-weighted versions of
the training data, and then take a weighted majority vote to
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generate the prediction. The process works as follows:

Step Sample Model

1 original data → ĥ1(x)
2 reweighted data 1 → ĥ2(x)
. . . .
. . . .
. . . .

m reweighted data m → ĥm(x)

Final prediction

In the final step, there are m classifiers. Their results are com-
bined into a weighted prediction:

Ĥ(x) =
m∑
i=1

αiĥi(x),

where ĥi(x) is the output of weak classifier i. We see that the
final classifier Ĥ(x) is the weighted sum of m weak classifiers.
The weights are determined by the coefficient αi. It is designed
to give a larger weight to classifiers that have higher classifica-
tion accuracy.

NOTE... �

Boosting grows decision trees in sequence, with
later trees dependent on the results of previous
trees. This is different from a random forest which
grows trees in parallel.

The Adaboost Algorithm
There are a large number of boosting algorithms. The Ad-
aboost algorithm is very popular, and was the first adaptive
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boosting algorithm. It is used for binary classification where
the target takes the values y ∈ {−1,+1}. Given the training
sample (x1, y1), ...(xn, yn), where x is the feature vector. It ini-
tializes the sample weights to w1 = 1/n.

The first classifier ĥ1(x) is fitted using the weights on the
training data, and the model classification error ε1 is computed.

The sample weights are adjusted using:

w2 =
w1 exp

(
−α1ykĥ

1(xk)
)

Z1

where Z is a normalization factor:

Z1 =
n∑
k=1

w1 exp
(
−α1ykĥ

1(xk)
)

The second classifier ĥ2(x) is fitted to the sample data using
the weights w2. The process is repeated until no further im-
provements can be made, or the maximum number of iterations
is reached.

Weight coefficient

The weight coefficient αi is calculated as:

αi = 0.5 log
(

1− εi
εi

)
,

The numerator is the classification accuracy of ĥi(x). There-
fore, Adaboost sets αi to half the log ratio of accuracy to error.

Figure 10.1 plots the weight coefficient for various error val-
ues. It is zero for a random guess, i.e. when the error rate =
0.5. Models with error rates of less than 50% receive a negative
weight. As the error rate approaches 0, the weight increases ex-
ponentially fast. In other words, the smaller the error the more
weight is given to ĥi(x). The opposite holds for a large error
which receive an exponentially decreasing negative rate.
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Figure 10.1: Adaboost weight coefficient

Final prediction

The final prediction is:

Ĥ(x) = sign

(
m∑
i=1

αiĥi(x)
)

This is simply a weighted linear combination of the weak clas-
sifiers, with the predicted class determined by the sign of this
sum.
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NOTE... �

Adaboost uses exponential loss, which is also an
upper bound on classification error.

Advantages of Boosting
Boosting is a very simple approach that is easy to use. Unlike
neural networks, it does not require sophisticated nonlinear op-
timization, and works well without the need for time consuming
fine tuning. Relative to other machine learning methods such
as linear regression, it tends to be resistant to overfitting. Fur-
thermore, it is insensitive to uninformative features.

An interesting side benefit is that it can also be used for out-
lier detection. The misclassified observations after m iterations
are candidates for possible outliers.

Practical Application of Boosting
Boosting algorithms are used in numerous areas outside of the
original computer science applications. In this section, we high-
light its use in three diverse areas - sonar communications, bas-
ketball, and logo recognition.

Reverberation Suppression
Reverberation suppression is an issue in sonar communications.
As an acoustic signal is radiated through a body of water, it
becomes “weaker” due to reflection and density of the water.

The empirical mode decomposition (EMD) algorithm is a
traditional filtering technique used to manage reverberation
suppression. A noise corrupted signal is applied to EMD, and
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intrinsic mode functions are generated. The key is to sepa-
rate the signal from the noise. Noisy intrinsic mode functions
are high frequency component signals, whilst signal-led intrin-
sic mode functions are low frequency component signals. The
selection of the appropriate intrinsic mode functions, which are
used for signal reconstruction, is often done manually.

Scholars Cheepurupalli et al use Ada Boost to automatically
classify “noise” & “signal” intrinsic mode functions. The results
were very encouraging as they found that combining Ada Boost
with EMD increases the likelihood of correct detection. The
researchers conclude:

“...that the reconstruction of the chirp signal even
at low input SNR [signal to noise] conditions is
achieved with the use of Ada Boost based EMD as
a de-noising technique.”

Basketball Player Detection
Sports fans Markoski et al investigate player detection during
basketball games using a variant of adaboost called the gentle
adaboost algorithm. Tree stumps were used as the base model.
A total of 6000 examples that contain the players entire body,
and 6000 examples of players upper body only, were used to
train the algorithm.

The researchers observe for images that contain the players
whole body, the algorithm was unable to reduce the level of
false positives below 50%. In other words, flipping a coin would
have been as accurate. However, a set of test images using
players upper body obtained an accuracy of 70.5%. This is
considerably better than chance. However, a 30% error rate is
still relatively high. Therefore, the researchers conclude that
the use of the gentle adaboost algorithm for detecting players
upper body results in a relatively large number of false positive
observations.
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Vehicle Logo Recognition
Sam et al consider the problem of automatic vehicle logo recog-
nition. The researchers use a boosting variant called the modest
Adaboost algorithm. A total of 500 vehicle images were used in
the training procedure. A total of 200 images were used in the
test set with 184 images recognized successfully, see Table 20.
This implies a misclassification error rate of around 9%.

Manufacturer Correct Mistaken
Audi 20 0
BMW 16 4
Honda 19 1
KIA 17 3

Mazda 18 2
Mitsubishi 20 0
Nissan 17 3
Suzuki 18 2
Toyota 19 1

Volkswagen 20 0

Total 184 16

Table 20: Logo recognition rate reported by Sam et al

Example - Classifying Sonar Signals
Sonar listening devices have been around since Lewis Nixon’s
1906 contraption was used to detect icebergs. Determining
the difference between metallic and non-metallic returns can
be a challenge. In this section, we use Google’s deep Boosting
algorithm to help out with the task.
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Step 1 – Collecting and Exploring the Data
The Sonar dataset in the mlbench package contains 208 obser-
vations on sonar returns collected from a metal cylinder, and a
cylindrical shaped rock positioned on a sandy ocean floor.

Sonar returns were collected at a range of 10 meters and
obtained from the cylinder at aspect angles spanning 90°, and
from the rock at aspect angles spanning 180°. In total, 60
numerical features were collected.

Summarize the target variable

First, load the data and use the table function to summarize
the sonar returns:

data("Sonar",package="mlbench")
table(Sonar$Class)

M R
111 97

The sonar returns are composed of 111 metallic returns labeled
as “M”; and 97 rock returns labeled with the letter "R".

Figure 10.2 shows a correlation plot of the 60 features. The
inter-feature correlations range from moderately negative to
highly positive.
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Figure 10.2: Correlation plot of Sonar attributes.

Step 2 – Preparing the Data
One of the advantages of boosting algorithms is that they can
be used with little data preparation. For our analysis, we sim-
ply transfer the sample data to the R object dataSample. Then
select at random with replacement 150 examples for the train
set, with the remainder used as the test set:
dataSample <-(Sonar)
set.seed (2016)
n=nrow(dataSample)
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train <- sample (1:n, 150, FALSE)

Step 3 - Train Model using Train Set
We use the deepboost package which is based on Google’s
Deep Boosting algorithm. We use it to fit an adaboost model
via the deepboost function. The function takes the standard
R formula as the first argument. We use all of the features
available in the sample:
require(deepboost)
fit <-deepboost(Class~.,
dataSample[train ,],
tree_depth = 5,
num_iter = 10,
lambda = 0.0,
loss_type = "e")

Here is a brief summary of the above code:

• The depth of the tree is controlled by tree_depth, and
the number of iterations is set to 10.

• The parameter lambda is used for regularization of tree
depth. It is not used in Adaboost, and so we set it to
zero.

• The Adaboost algorithm uses exponential loss, specified
by loss_type = "e".

As the model runs, it will report the error, average tree size,
and number of trees used for each iteration. You can view a
summary of this information via the print function:
deepboost.print(fit)
[1] "Model error: 0"
[1] "Average tree size: 30.5555553436279"
[1] "Number of trees: 9"
$error
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[1] 0

$avg_tree_size
[1] 30.55556

$num_trees
[1] 9

It reports a model error of 0, which informs us it was able to
classify all of the train set observations correctly. The average
tree size is just over 30, and 9 trees voted in the final model.

Step 4 - Evaluate Model Performance
Assessing performance is straightforward. We use the predict
and table functions to view the confusion matrix for the train-
ing data:
pred_train <-predict(fit ,
dataSample[train ,1:60])

table(dataSample$Class[train],
pred_train)

pred_train
M R

M 77 0
R 0 73

As previously indicated, the model correctly classifies all of the
observations so that the misclassification error is zero.

Test set performance

As we saw earlier, great training set performance does not al-
ways translate into great test set performance. Let’s take a
look:
pred_test <-predict(fit ,
dataSample[-train ,1:60])
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table(dataSample$Class[-train],
pred_test)
pred_test

M R
M 26 8
R 11 13

Of the 58 examples in the test set, 19 are incorrectly classified
resulting in an error rate of over 30%! What went wrong?

Step 5 - Improving Model Performance
It appears our first model overfit the data by a wide margin.
One way to deal with this is to reduce the number of iterations.
One rule of thumb is to try half the original number. In this
case that suggests we set num_iter = 10. Experimentation
is the key to success in machine learning, so we try a logistic
loss function by setting loss_type = "l". Let’s see how well
this models performs on the training sample:
fit1 <-deepboost(Class~.,
dataSample[train ,],
tree_depth = 5,
num_iter = 5,
beta = 0,
lambda = 0.0,
loss_type = "l")

pred1_train <-predict(fit1 ,
dataSample[train ,1:60])

table(dataSample$Class[train],
pred1_train)

pred1_train
M R

M 77 0
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R 0 73

Performance is exactly the same as for the first model - all
of the training set observations are correctly classified. The
real question is whether it improved things in terms of the test
set. Let’s take a look:
pred1_test <-predict(fit1 ,
dataSample[-train ,1:60])

table(dataSample$Class[-train],
pred1_test)

pred1_test
M R

M 30 4
R 5 19

The model has not delivered a perfect classification result.
However, the error, at just over 15%, is almost half of that
observed in the first model.

NOTE... �

Experiment with other parameters of the
deepboost function. Can you get the Misclassifi-
cation error rate below 5%?

Limitations of Boosting
Similar to random forests, a major downside is that we lose
the simple interpretability we observe with decision trees or
linear regression. Boosting in general can be susceptible to
noise in the data. Furthermore, when there are a large number
of outliers in the data, the emphasis on the hard examples i.e.
outliers, can erode overall performance.
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Summary
Boosting algorithms are a vital technique in your machine
learning tool box. The can deliver exceptional performance.
However, just like any other technique, they are subject to over-
fitting, and there is no guarantee that they will work well “out
of the box”. Experimentation and benchmarking performance
against alternatives is the best option.

In the next chapter, we discuss a non-supervised technique
useful for identifying groups of observations from unlabeled
data. The techniques is K-means clustering.

Suggested Reading
• Basketball Player Detection: Markoski, Branko, et

al. "Application of Ada Boost Algorithm in Basket-
ball Player Detection." Acta Polytechnica Hungarica 12.1
(2015).

• Reverberation Suppression: Cheepurupalli, Kusma
Kumari, and Raja Rajeswari Konduri. "Noisy reverber-
ation suppression using adaboost based EMD in under-
water scenario." International Journal of Oceanography
2014 (2014).

• Vehicle Logo Recognition: Sam, Kam-Tong, and
Xiao-Lin Tian. "Vehicle logo recognition using mod-
est adaboost and radial tchebichef moments." Interna-
tional Conference on Machine Learning and Computing
(ICMLC 2012). 2012.

Other
• Google’s Deep Boosting Algorithm: Cortes,

Corinna, Mehryar Mohri, and Umar Syed. "Deep boost-
ing." 31st International Conference on Machine Learn-
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ing, ICML 2014. International Machine Learning Society
(IMLS), 2014.

• Overfitting: See for example:

– Buhlmann P, Hothorn T. Boosting Algorithms:
Regularization, Prediction and Model Fitting (with
Discussion). Statistical Science. 2007;22:477{522.

– Zhou ZH. Ensemble Methods: Foundations and Al-
gorithms. CRC Machine Learning & Pattern Recog-
nition. Chapman & Hall; 2012.

– Schapire RE, Freund Y. Boosting: Foundations and
Algorithms. MIT Press; 2012.

278



Chapter 11

K- Means Clustering

Cluster analysis is the Swiss Army knife of machine
learning. Clustering is essentially an exploratory data
analysis tool which groups objects into similar groups

or clusters. Cluster analysis itself is not one specific algorithm
but consists of a wide variety of approaches. One of the most
popular is K-means clustering.

In this chapter, you will:

• Review supervised and unsupervised learning.

• Explore how K-means clustering works.

• Survey several real-world uses of the algorithm.

• Use the algorithm with R to identify clusters of countries
by the well-being of their population.

Cluster analysis can be applied to a wide variety of prob-
lems, and can help you gain deeper insights from your data. In
Biology, it can be used to find structure in DNA; in marketing
it can be used to create customer or product segments. Now.
let’s get started!
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Understanding K- Means Clustering
In order to understand K-means clustering we need a quick
refresh of supervised and unsupervised learning. In supervised
learning, you have both class labels and features. For example,
in a medical setting you might have labels on the health status
of patients (“Excellent”, “Good”, “Poor”), alongside features
such as age, weight, and so on. Most of the machine learning
techniques discussed in this text have been supervised learning
algorithms.

In unsupervised learning, there are no class labels from
which to compare test and training set performance. For exam-
ple, you might have a group of features such as age and weight
for several patients, as shown in Figure 11.1. The goal is to use
these features to organize patients into similar groups. How
might you attempt this?

Age

Weight

Figure 11.1: Unlabeled patient data

A simple solution

One simple solution would be to define two groups. Patients
under 30 years old, and less than 250 pounds are assigned to
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one group; and patients 30 years or older, and over 250 pounds
to another group. In effect, you will have defined two clusters,
as illustrated in Figure 11.2.

Whether these two clusters are useful depends, in part, on
the meaning that can be attached to them. Do they have an in-
teresting interpretation? Can they be used in further analysis?
Do they throw light on a challenging problem?

Age

Weight

Cluster 1

Cluster 2

250

30

?

?

Figure 11.2: Patient clusters using a simple rule

Notice in Figure 11.2, that our simple rule leaves out pa-
tients who are less than 30 years old and heavier than 250
pounds. It also leaves out a group of patients who are older
than 30 and weigh less than 250 pounds. We would like a rule
that uses all of the sample data and creates clusters of patients
who are similar. This is precisely the function of K-means clus-
tering.

How K-means Clustering Works
A clustering algorithm partitions a sample into distinct, exclu-
sive clusters so that the data points in each cluster are similar
to each other. K- means clustering is an unsupervised machine
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learning algorithm which attempts to automatically identify
useful clusters of observations.

Let’s use Figure 11.1 to illustrate the approach. The key pa-
rameter is the number of clusters. You choose this value ahead
of running the algorithm. Suppose we set k=4, for Figure 11.1,
here is how the algorithm works:

Step 1: Randomly choose the k cluster means

Pick at random k cluster means (often called centroids). A
centroid is the center of a cluster. Figure 11.3 illustrate the
randomly chosen centroids. Each centroid represents a random
guess of the central location of each of the 4 clusters. As with
any random guess, they may be good, bad or indifferent.

Age

Weight

Figure 11.3: Randomly chosen centroids

Step 2: Assign observations

Each sample observation is assigned to the closest centroid.
How do we determine “closeness”? It is determined using a
distance metric. Typically, this is the squared Euclidean metric
of Equation 3.1.
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Figure 11.4 illustrates the assignment of our observations
to each cluster. Cluster 1 has six observations, and cluster 4
has four observations. Assignment is based on the proximity of
an observation to the nearest centroid.

At the end of this step every observation has been assigned
to a cluster. In this way, the algorithm uses all of the observa-
tions in a data sample.

Age

Weight

1

2

3

4

Figure 11.4: Assignment of sample data

NOTE... �

Other distance metrics are sometimes specified
such as the Manhattan distance given in equation
3.2.

Step 3: Re-calculate centroids

The algorithm now uses the sample observations in each cluster
to calculate the center (mean) of each cluster. This is done
by taking the average position of all the points in the given
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cluster. These new centroids are illustrated in Figure 11.5. In
this example, there is no change in the values of the centroids
for cluster 2 and 3. However, this is not the case for cluster 1
and 4. The mean of cluster 1 shifts upwards on the illustration;
whilst the mean of cluster 4 shifts rightwards.

Age

Weight

1

2

3

4

Figure 11.5: Centroids calculated from sample data

NOTE... �

If a cluster is left with zero observations, the cen-
troid is randomly moved to a new location.

Step 4: Re-calculate the distance metrics

The next step is to recalculate the distance metrics for each
observation and assign them to the nearest centroid. In
Figure 11.6 we see that cluster 4 gains two new observations,
at the expense of cluster 1. There is no change to cluster 2 or
3.
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Age

Weight

1

2

3

4

Figure 11.6: Cluster re-assignment

The algorithm repeats step 3-4 until no reassignment oc-
curs. At this point the algorithm stops, and reports the final
clusters.

NOTE... �

The K-means algorithm was original developed as
a method for vector quantization in communica-
tion (pulse-code modulation) applications.

Advantages of K- Means Clustering
Much of the popularity of k-means lies in the fact that the
algorithm is extremely fast and can therefore be easily applied
to large data-sets. It is also very intuitive because the algorithm
optimizes intra-cluster similarity which allows you to easily sort
your data into similar groups. Furthermore, it only requires you
to specify the number of clusters.
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Practical Application of K- Means
Clustering
K- means clustering has been used to solve several mysteries.
Two of the most famous being the mystery of the Rasberry
crazy ant, and the secret behavior of European shags. It has
also been used to throw light on the painful disorder Fibromyal-
gia. We discuss each of these cases in this section.

Pinpointing the Rasberry Crazy Ant
Back in 1938, residents of Brownsville, a Gulf Coast town lo-
cated at the southernmost tip of Texas, spotted thousands of
tiny critters described as ants that “acted crazy”. The origin
and identity of the ants remained a mystery.

Several decades later, and deeper into Texas, the mystery
was resolved, and K-means clustering played a role.

Tom Rasberry - catalyst for change

Things began to change after the “crazy ants” descended in
mass on Pasadena, a city just outside of Houston, Texas. En-
tomologist, Tom Rasberry, who the ants in Texas are named
after, discovered millions of the critters crawling all over an
industrial estate. He raised the alarm, saying:

“In my opinion these ants pose a clear and present
danger to our way of life, and the time for real ac-
tion was years ago. If we don’t act now the conse-
quences could be irreversible.”

And academic, Dr. John La Polla, Associate Professor at Tow-
son university observed:

“In the past decade, Houston, Texas has been vir-
tually overrun by an unidentified ant species, the
sudden appearance and enormous population sizes
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and densities of which have received national me-
dia attention. The Rasberry Crazy Ant, as it has
become known due to its uncertain species status,
has since spread to neighboring states and is still a
major concern to pest control officials.”

The Rasberry Crazy Ant (known as the tawny crazy ant in
the other Gulf Coast States), is a very small ant, around 3.2
mm long. Much smaller that the giant-sized Fire Ant Texans
are use to battling. As Dr. John La Polla and his colleagues
warned:

“Particularly worrisome was the preliminary obser-
vation that this crazy ant can successfully compete
with and even displace the Red Imported Fire Ant,
Solenopsis invicta Buren, one of the most costly in-
vasive arthropods in the United States and generally
considered to be one of the worst invasive insects in
the world. ”

Invasive species cause an estimated $120 billion in environmen-
tal damage annually in the United States alone. The Rasberry
Crazy Ant was adding to the bill. But, before it could be ef-
fectively dealt with, it had to be identified. Dr. John La Polla
and several other researchers solved the mystery. They iden-
tified the ant as Nylanderia fulva (Mayr) using morphometric
and molecular sequence data.

A role for K-means clustering

DNA sequence data and morphometic measurements were
taken on a sample of the Rasberry Crazy Ants. The data,
alongside measurements on a variety of ant species were trans-
formed, and a K-means algorithm with four clusters applied.

The researchers merged cluster 3 and 4, as they only con-
tained native North American ant species.
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“K-means clustering identified four strongly differ-
entiated clusters, clearly discriminating all North
American Nylanderia species”

Cluster 2 was more interesting. It offered a big hint as to the po-
tential species of the Rasberry Crazy ant because it contained
the species Nylanderia fulva. Although, the k-means cluster-
ing analysis was not conclusive, it helped guide the researchers
toward their eventual conclusion - the Rasberry Crazy ant is
the pest species Nylanderia fulva originating out of Colombia,
South America.

Automatic Shags
One of the fascinating aspects of being involved in machine
learning and statistical analysis, is that you come into contact
with so many really interesting professionals. Take for example,
Ethologists, they spend their days studying animal behavior.
Jane Goodall, is perhaps, the most famous Ethologist. She
has spent her life studying chimpanzees in the African bush.
Imagine getting paid to do that! Ranks right next to England
winning the World Cup in my books. I don’t know about you,
but I’d study beach life!

Anyway, Japanese Ethologist Kentaro Sakamoto took a
fancy to European shags; and headed to Scotland’s Isle of May
for a piece of the action. The European or common shag (Pha-
lacrocorax aristotelis) is a rock loving, fish eating, species of
cormorant. The Japanese species has been used for centuries
in traditional fishing.

The traditional and modern approach

The traditional approach, epitomized by Jane Goodall, involves
studying animals directly in their natural habitat. However, as
Kentaro quickly discovered on arrival at the 1.1 mile by 546
yards wide lump of windswept, wave splashed rock that makes
up the Isle of May, the traditional approach can be a challenge:
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“...this approach is difficult, often impossible, in
the case of behaviors which occur in remote areas
and/or at great depth or altitude.”

Rather than spending several decades crouched down in a bird-
watching hideout on the craggy, damp, cold and blustery Isle of
May, Kentaro and other researchers devised a method to collect
data remotely. They attached accelerometers (data loggers) to
sixteen individual birds, as shown in Figure 11.7:

“Accelerometers are particularly useful in this re-
spect because they can record the dynamic motion
of a body in e.g. flight, walking, or swimming.”

Data Logger

Figure 11.7: Position of the logger attachment. Adapted from
Sakamoto et al. See Automatic Shags in suggested reading
at the end of this chapter for full citation.

Scottish Shag behavior

A spectrum was generated from the acceleration signals using
the continuous wavelet transformation. The k-means cluster-
ing algorithm was then used as to cluster each second of the
spectrum. The researchers set k = 20, to capture 20 separate
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clusters; and the distance between observations and centroids
was calculated using the squared Euclidean metric.

Each cluster was then interpreted as a specific bird behavior
such as walking, swimming, sleeping, and so on. An ethogram
is a catalog of behaviors or actions exhibited by an animal used
in ethology. In effect, the k-means algorithm was used to create
an automatic ethogram of bird behavior. This is a fascinating
application of k-means clustering.

Kentaro excitedly concludes:

“To date, quantifying the behavior of wild animals
that are hard to track has been extremely challeng-
ing. In the context of conservation biology, lack of
information about the foraging ecology of an endan-
gered species may hinder the development of an ef-
fective conservation strategy. Our approach has the
potential to shed light on hitherto unknown aspects
of the lives of such animals. It is noteworthy that
our procedure employs an unsupervised clustering
algorithm opening up the possibility to extract novel
behavior patterns that researchers have never ob-
served directly. ”

Identifying Fibromyalgia Subgroups
Fibromyalgia (FM) is a painful disorder which causes fatigue,
sleep, memory and mood issues. It impacts men, women and
children. Unfortunately, at present, there is no known cure
for the affliction. Spanish researchers Docampo et al used k-
means clustering to shed new light on the characteristics of the
condition.

The sample consisted of 1,446 FM cases collected on 48 vari-
ables from Fibromyalgia units of five Spanish Hospitals. The
majority of the variables were dichotomous. Non-dichotomous
variables were therefore converted into binary features. These
were then combined to create eleven separate indices of psychi-
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atric and quality of life shown in Table 21. Individual patient
scores were derived from these indices.

Item Index
1 Fibromyalgia Impact
2 Fatigue Impact
3 Pain Level
4 Fatigue Level
5 Life Quality - Physical
6 Life Quality - Mental
7 Anxiety
8 Depression
9 Sleep Quality
10 Years of Disease
11 Number of Tender Points

Table 21: Indices used in Fibromyalgia study of Docampo et
al

The K-means algorithm, with k=3, was then applied to the
scores. The hope was that the resultant clusters would shed
new light on characteristics of the disease.

Figure 11.8, shows the three clusters, plotted against the
first two principal components. All data points, fall neatly into
each of the clusters, and there is no overlapping of clusters. In
other words, the clusters were able to identify specific dimen-
sions of the underlying data.

The interpretation of clusters is somewhat subjective. How-
ever, often it is possible to assign a useful meaning. The re-
searchers suggested that:

“Based on their composition, the dimensions were
labeled as: FM symptoms and their characteristics
(Dimension 1: “symptomatology”), familial and
personal comorbidities (Dimension 2: “comorbidi-
ties”) and FM core clinical scales (Dimension 3:
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“scales”)...the resulting patient clusters could indi-
cate different forms of the disease, relevant to future
research, and might have an impact on clinical as-
sessment.”

First principal component of the data
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Figure 11.8: Cluster analysis results for Fibromyalgia. Adapted
from Docampo et al. See Fibromyalgia in suggested reading
at the end of this chapter for full citation.

Example - Classifying the Well-being
of Citizens
Life expectancy and the child mortality rate are two important
measures of the well-being of a population. For several years
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the United Nations Children’s Fund has reported both metrics
annually for every country in the world. In this section, we
apply the K-means algorithm to data on Life expectancy and
child mortality for countries with Gross National Income less
than $1000 US dollars per annum per capita.

Step 1 – Collecting and Exploring the Data
The sample is contained in the unicef dataframe from the ks
package. It contains data on the under-five mortality rate and
life expectancy for each country. The under-five mortality rate
measures the probability of dying between birth and exactly
five years of age, expressed per 1,000 live births.

Let’s load the data, and take a look at the first few obser-
vations:
data("unicef",package="ks")
head(unicef)

Under -5 Ave life exp
Afghanistan 257 43
Angola 260 45
Armenia 35 73
Azerbaijan 105 72
Bangladesh 77 60
Benin 158 54

We see that Afghanistan has an under-five mortality rate of
257, and a life expectancy of 43 years. Whilst Armenia has a
much lower under-five mortality rate, and a life expectancy of
73 years old.

The summary function provides a nice overview of the entire
sample:
summary(unicef)

Under -5 Ave life exp
Min. : 19.0 Min. :39.00
1st Qu.: 76.0 1st Qu .:47.00
Median :122.0 Median :54.00
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Mean :125.6 Mean :55.71
3rd Qu .:180.0 3rd Qu .:65.00
Max. :316.0 Max. :73.00

The under-five mortality rate has a very large spread. It ranges
from a high of 316 per 1,000 live births, to 19 per 1,000 live
births. We see a similar large range in life expectancy, a mini-
mum value of 39 years and a maximum value of 73 years.

Figure 11.9 shows the scatter plot of the data, alongside
the regression line of Ave life exp on Under-5. It exhibits
a pronounced negative slope, as under five mortality increases,
life expectancy decreases.
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Figure 11.9: Scatter plot and regression line of features in
unicef
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Step 2 – Preparing the Data
K-means uses the squared Euclidean distance to allocate ob-
jects to clusters. This requires the data to have roughly the
same scale. Figure 11.10 (left) shows a box-plot of the two fea-
tures. Quite clearly, the ranges differ. The data should to be
scaled prior to using the K-means algorithm. A simple way to
achieve this is via the scale function:
x<-scale(unicef)

Figure 11.10 (right) shows the box-plots for the scaled features.
Most of the data for each feature now lies in a similar range.

Under−5 Ave life exp

50

100
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300

Raw Features

Under−5 Ave life exp

−1

0

1

2

Scaled Features

Figure 11.10: Box-plot of raw and scaled features for unicef
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Step 3 - Train Model using Sample Data
How many clusters should you choose? Choosing the optimal
value for k is best done by first inspecting the data. We saw
earlier that Japanese Ethologist Kentaro Sakamoto set k = 20,
to capture the behavioral activities of European shags; and Dr.
John La Polla used four clusters in to help identify the Rasberry
Crazy Ant. Our initial guess is six clusters, so that krange=6.
Now let’s get to the meat of the matter. Here is how to specify
a K-means model in the fpc package:
require(fpc)
set.seed (2018)
fit <-kmeansruns(x,krange=6,runs =100)

Much of this will be familiar to you by now. However, notice
that the kmeansrun function calls the kmeans function from
the stats package. The kmeansrun function is preferred be-
cause it runs the K-means algorithm using multiple random
starts. In this example, we use 100 random starts via the runs
argument.

The summary function provides an overview of the fitted
model:
summary(fit)

Length Class Mode
cluster 73 -none - numeric
centers 12 -none - numeric
totss 1 -none - numeric
withinss 6 -none - numeric
tot.withinss 1 -none - numeric
betweenss 1 -none - numeric
size 6 -none - numeric
iter 1 -none - numeric
ifault 1 -none - numeric
crit 6 -none - numeric
bestk 1 -none - numeric
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The output is a list of vectors, where each component has a
different length. For example, the cluster component has a
length 73, the number of countries in the sample. It contains
the cluster assignments of each country. To see the first few,
use the head function:
head(fit$cluster ,3)
Afghanistan Angola Armenia

1 1 6

For example, Afghanistan is assigned to cluster 1, as is Angola.
Armenia is assigned to cluster 6.

Step 4 - Evaluate Model Performance
The tidy function from the broom package, offers a very quick
way to summarize a K-means model:
library(broom)
tidy(fit)

x1 x2 s i z e w i th in s s c l u s t e r
1 2.15608153 −1.2006514 4 0.6914159 1
2 −0.51689922 0.5425438 13 1.3211591 2
3 1.05185474 −0.6107632 12 2.1466456 3
4 0.58877066 −1.3302481 11 2.2580384 4
5 0.03934516 −0.3059877 15 1.9392911 5
6 −1.19964154 1.3500688 18 2.8104510 6

It reports the centroids of each cluster, along with the number
of observations in each cluster, the within cluster error sum of
squares, and the cluster assignment value.
The first thing to notice is that the centroids appear to be
well spread out across the x1 (Under -5), x2 (Ave life exp)
sample space. Most of the clusters have at least 11 observa-
tions (countries). The exception is the first cluster, which only
contains four countries.

Figure 11.11 plots the sample data color coded by cluster,
alongside the cluster centroids. The model appears to separate
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the data well.
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Figure 11.11: Scatter plot of data color coded by cluster data
and cluster centers

Step 5 - Improving Model Performance
Use of K-means requires the determination of the number of
clusters. In practice, there is no simple answer as to how to
choose this value. It is useful to try different approaches.

A scree plot, as illustrated for our sample in Figure 11.12,
can often be useful. It plots the within cluster sum of squares
against the number of clusters. The idea is to look for a sharp
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bend or elbow. A sharp “bend” indicates a radical change in
slope. In other words, although adding clusters beyond the
bend will reduce the within cluster sum of squares, it will do
so at a less rapid rate. The optimal value of k occurs at the
elbow.

In practice, the identification of the bend is often difficult
to discern. However, in Figure 11.12, it appears to occur at k
= 2.
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Figure 11.12: Scree plot for the sample data
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Using silhouette length to choose k

A complementary approach is to specify a potential range for
k, and use a metric such as the average width of a silhouette
plot to select the appropriate number of clusters. A silhouette
plot measures how close each point in one cluster are to points
in the neighboring clusters. It has a range of -1 to +1. A
value close to +1 indicates an observation is far apart from the
neighboring clusters, a value of zero indicates the observation
is on the decision boundary; and negative values suggest the
observation might have been assigned to the wrong cluster.

If we assume, the correct number of clusters lies between 2
and 10, we can call the kmeansruns function setting krange
to range between 2 and 10. The criterion argument is used
to specify the silhouette width as the selection criteria. The
model is run using 100 random starting points:
set.seed (2018)
fitasw <- kmeansruns(x,krange =2:10 ,
critout=TRUE ,
runs =100,
criterion="asw")

The output reports the average silhouette width for each clus-
ter:
2 clusters 0.5705245
3 clusters 0.4656673
4 clusters 0.4391071
5 clusters 0.4344615
6 clusters 0.4311283
7 clusters 0.4543943
8 clusters 0.4260914
9 clusters 0.4406647
10 clusters 0.4312051

The optimal number of clusters is selected as the maximum
value. The maximum value of 0.57 occurs for two clusters.
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Thus, we have the same result as that obtained using the scree
plot.

Silhouette and Cluster plots

Figure 11.13, shows the silhouette plots for two clusters. The
bars, break cleanly into two groups, and they are all positive,
with no negative values. This is further illustrated in a cluster
plot of Figure 11.14. It plots the data using the first and second
principal components.

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width :  0.76

n = 73 2  clusters  Cj

j :  nj | avei∈Cj  si

1 :   34  |  0.79

2 :   39  |  0.74

Figure 11.13: Silhouette plot for two clusters
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Figure 11.14: Cluster plot

NOTE... �

You can create a cluster plot like Figure 11.8 and
Figure 11.14 via the clusplot function in the
cluster package.
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Working with the optimal model

To make progress, we really need to know a little about the em-
pirical characteristics of the two groups. The centroids provide
some insight, they are stored in fitasw:
round(fitasw$centers ,3)

Under -5 Ave life exp
1 -0.859 0.919
2 0.749 -0.801

The values inform us that the first cluster represents those
countries that have a lower than average infant mortality rate,
and a higher than average life expectancy. The second cluster is
the exact opposite. It contains countries with a higher than av-
erage infant mortality, and lower than average life expectancy.
Therefore, we have a very clean and intuitive interpretation of
the two clusters.

Recall, we used scaled data, let’s look at the implications
using the unscaled data. First, let’s combine the countries
by clusters, and the actual raw unicef data into a single
dataframe:
com_view <-cbind(fitasw$cluster ,unicef)
colnames(com_view)<-c("cluster",
"Median_Under_5",
"Median_Life_Exp")
head(com_view)

c l u s t e r Median_Under_5 Median_Life_Exp
Afghanistan 2 257 43
Angola 2 260 45
Armenia 1 35 73
Azerbai jan 1 105 72
Bangladesh 1 77 60
Benin 2 158 54

To make things a little easier, I’ve use the colnames function
to create column names that are a little easier to work with.
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Next, let’s look at the median infant mortality and median
life expectancy for each of the two clusters. The table func-
tion comes in handy here:
tab1 <-aggregate(data = com_view ,
Median_Under_5~ cluster ,
median)

tab2 <-aggregate(data = com_view ,
Median_Life_Exp~ cluster ,
median)

med <-cbind(tab1 ,tab2)
med <-med[,-3]
med

cluster Median_Under_5 Median_Life_Exp
1 1 72 66.5
2 2 175 48.0

Cluster 1, has a median life expectancy of 66.5 years, with an
infant mortality of 72. Contrast this with cluster 2, it has a
life expectancy of only 48 years, with more than 2.4 times the
infant mortality of the countries in cluster 1.

We can use a similar method to view the within cluster
variance of each feature:
var1 <-aggregate(data = com_view ,
Median_Under_5~ cluster ,
var)

var2 <-aggregate(data = com_view ,
Median_Life_Exp~ cluster ,
var)

var <-cbind(var1 ,var2)
var <-var[,-3]
round(var ,3)
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cluster Median_Under_5 Median_Life_Exp
1 1 975.316 31.087
2 2 2299.798 22.726

The number that immediately jumps off the page is the very
high variability of infant mortality rates in cluster 2. This
might suggest policy interventions focused on reducing this
variability may have a significant chance of improving the sit-
uation in these countries.

The variability of life expectancy, for cluster 2 is less than
that for cluster 1. In other words, you are more certain to die
by 48 in cluster 1, than you are to die by 66.5 in cluster 2. This
may suggest policy aimed at increasing overall life expectancy
for countries in cluster two should be a top international public
health priority.

Next, we want to see the countries in each cluster, to ensure
we agree with their categorization. A fast way to do this is to
use the lapply function with fit$cluster. Here is how to do
this:
country <-rownames(x)
final_clusters <- lapply (1:2,
function(cluster)
country[fitasw$cluster == cluster ])

The R object final_clusters contains the countries in each
cluster. Here are the countries in the first cluster:
f i n a l_ c l u s t e r s [ 1 ]
[ [ 1 ] ]
[ 1 ] " Armenia " " Azerba i jan "
[ 3 ] " Bangladesh " "Bhutan "
[ 5 ] " Bo l i v i a " " China "
[ 7 ] " Comoros " " Georgia "
[ 9 ] "Ghana " "Guyana "

[ 1 1 ] " Honduras " " Ind ia "
[ 1 3 ] " Indones ia " " North_Korea "
[ 1 5 ] " Kyrgyzstan " " Laos "
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[ 1 7 ] "Moldova " " Mongolia "
[ 1 9 ] "Myanmar" " Nepal "
[ 2 1 ] " Nicaragua " " Pakistan "
[ 2 3 ] "Papua_New_Guinea " " Solomon_Islands "
[ 2 5 ] " Sri_Lanka " " Sudan "
[ 2 7 ] " Syr ia " " Ta j i k i s t an "
[ 2 9 ] " Turkmenistan " " Ukraine "
[ 3 1 ] " Uzbekistan " " Vietnam "
[ 3 3 ] "Yemen" " Yugos lavia "

And here are the countries in the second cluster:
f i n a l_ c l u s t e r s [ 2 ]
[ [ 1 ] ]
[ 1 ] " Afghanistan " " Angola "
[ 3 ] " Benin " " Burkina_Faso "
[ 5 ] " Burundi " "Cambodia "
[ 7 ] "Cameroon " " Cent ra f r i que "
[ 9 ] "Chad" "Congo "

[ 1 1 ] "Congo_DR" "Cote_d ’ I v o i r e "
[ 1 3 ] " D j ibout i " " Equatorial_Guinea "
[ 1 5 ] " E r i t r e a " " Eth iop ia "
[ 1 7 ] "Gambia " " Guinea "
[ 1 9 ] " Guinea−Bissau " " Ha i t i "
[ 2 1 ] "Kenya " " Lesotho "
[ 2 3 ] " L i b e r i a " "Madagascar "
[ 2 5 ] "Malawi " " Mali "
[ 2 7 ] " Mauritania " "Mozambique "
[ 2 9 ] " Niger " " N ige r i a "
[ 3 1 ] "Rwanda" " Senegal "
[ 3 3 ] " Sierra_Leone " " Somalia "
[ 3 5 ] " Tanzania " "Togo "
[ 3 7 ] "Uganda " " Zambia "
[ 3 9 ] " Zimbabwe "

From the results above we can see that the use of 2 clus-
ters leads to a well defined set of countries that are relatively
distinct when it comes to infant mortality and life expectancy.
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It is only natural to think about the next steps from this
sort of output. You could start to initiate further research to
understand why these countries differ, and use it to generate
ideas as to what to do about it.

Limitations of K- Means Clustering
The K-means clustering algorithm will always converge to a
solution, but it is likely to find a solution that is only locally
optimal for a given set of data. The solution is sensitive to
the initial centroids chosen. It is important to remember that
it may not to find the optimal solution on a single run of the
algorithm. Therefore, multiple runs of the model are very im-
portant.

Outliers and noisy data can unduly influence the cluster
centroids. Such observations should be identified and removed
from the dataset prior to using the K-means algorithm.

Summary
K-means clustering is a very popular tool for cluster analysis
due to its conceptual simplicity and computational efficiency. It
divides a sample into clusters that minimize the within cluster
sum of squares. It remains one of the most popular machine
learning algorithms, and is used in numerous fields.

In the next chapter, we discuss several tips to help enhance
the performance of machine learning algorithms.

Suggested Reading
• Automatic Shags: Sakamoto KQ, Sato K,

Ishizuka M, Watanuki Y, Takahashi A, Daunt
F, et al. (2009) Can Ethograms Be Automat-
ically Generated Using Body Acceleration Data
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from Free-Ranging Birds? PLoS ONE 4(4): e5379.
https://doi.org/10.1371/journal.pone.0005379

• Fibromyalgia: Docampo E, Collado A, Escaramís
G, Carbonell J, Rivera J, Vidal J, et al. (2013)
Cluster Analysis of Clinical Data Identifies Fi-
bromyalgia Subgroups. PLoS ONE 8(9): e74873.
https://doi.org/10.1371/journal.pone.0074873

• Rasberry Crazy Ant: Gotzek D, Brady SG, Kallal
RJ, LaPolla JS (2012) The Importance of Using
Multiple Approaches for Identifying Emerging Inva-
sive Species: The Case of the Rasberry Crazy Ant
in the United States. PLoS ONE 7(9): e45314.
https://doi.org/10.1371/journal.pone.0045314

Other
• Nylanderia fulva (Mayr): A review of the biology, tax-

onomy, ecology of the ant can be found in Wang, Zinan
et al. “A Review of the Tawny Crazy Ant, Nylanderia
Fulva, an Emergent Ant Invader in the Southern United
States: Is Biological Control a Feasible Management Op-
tion?” Ed. Mary L. Cornelius. Insects 7.4 (2016): 77.
PMC. Web. 25 Apr. 2017.

• Original use of K-means: Lloyd SP. Least squares
quantization in PCM. IEEE Transactions on Information
Theory. 1982;28(2):129–137.
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Tips to Enhance
Performance

Choosing the very best model for a particular machine
learning challenge requires the selected model to per-
form well on new, as yet unseen observations; in other

words, it will need to generalize well. Volumes have been writ-
ten on this challenging task.

In this chapter, we distill down some of the very best ideas
and techniques. You will:

• Learn about Occam’s Razor alongside several useful in-
terpretations.

• Identify the cause and dangers of data snooping.

• Discover the practical implications of the No Free Lunch
Theorem.

• Review the bias-variance trade-off.

• Learn about, and perform cross validation using R.

As you read through chapter, you will encounter several ideas,
tips and tricks that can help you choose, construct and deploy
useful machine learning algorithms.
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Clarifying Occam’s Razor
In my very first lecture at graduate school, the brilliant math-
ematics professor who was to share with us the inner working
of measure theory, began with the words:

“Lex parsimoniae. Entia non sunt multiplicanda
praeter necessitatem.”

Which roughly translates to:

“The law of parsimony or economy. Entities should
not be multiplied unnecessarily.”

This principal is the famous Occam’s Razor; named in honor
of the late middle ages scholar William of Ockham.

Useful Interpretations
Here are several interpretations of Occam’s Razor relevant to
empirical modeling:

• If a smaller set of attributes fits the observations suffi-
ciently well use those attributes. Avoid “stacking” addi-
tional attributes to improve the fit of a model.

• Select the modeling approach that makes the fewest as-
sumptions.

• Only retain that subset of assumptions which make a
clear difference to the predictions.

• In selecting between models that explain a phenomenon
equal well, it is usually best to start with the simplest
one.

• If two or more models have the same prediction accuracy,
choose the simplest model.
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Occam’s razor works as a guiding principle. It suggests taking
the most parsimonious option in any given situation with the
hope that it will be the right choice most of the time. Although,
like any rule of thumb, it may not always be optimal.

Model Clarity
The appealing thing about Occam’s Razor, as a rule of thumb,
is that it neatly captures the idea that in building a machine
learning model you should try to find the smallest set of features
which provide an adequate description of the data. This idea
ties nicely into the interpretability of a model. In general, the
more parameters and the greater the complexity of a model,
the more difficult it is to interpret.

Interpretability, in terms of some underlying theory, can be
an intoxicating appeal, especially if like me you were formally
trained in disciplines with a heavy bias towards deductive the-
ories.

However, ease of interpretability may or may not be impor-
tant. It depends essentially on the domain of application. For
example, a model which purports to explain economic patterns
might be designed to be understood through the lens of eco-
nomic theory. On the other hand, a real-time harbor porpoise
identification and recognition model has no such constraints.
Model parsimony may be a worthwhile goal, but it is one that
cannot always be achieved.

Understanding Data Snooping
Data snooping refers to unwittingly assigning meaning to spu-
rious correlations or patterns in a sample. You may have come
across the idea in your statistics 101 class when the lecturer
presented an example involving the local stork population and
number of babies born. Another popular example involves the
late actress Elizabeth Taylor’s marriages. She remarried in

311



Machine Learning Made Easy with R

1951, 1953, 1958, 1960, 1965, 1976, and 1977; all coincided
with stock market gains. But would you have comfort in a
model that told you to invest when the celebratory of the day
gets remarried? Similarly, a model that predicts the number of
babies delivered in a local hospital as a consequence of the ebb
and flow of the local stork population should be viewed with
suspicion.

The Danger of Snooping
Several times over my career, I have been brought in by a large
investment firm to figure out what went wrong with a quan-
titative investment model. Here is what frequently occurred:
The head of the organization, typically a administrative/ MBA
type, forms a small team of freshly minted Economics/Finance
PhD’s to build an automatic investment fund. The goal is to
apply the very latest in quantitative techniques to make money.

After several months of intensive research, the head of the
team announces they have built the model, tested it extensively
on “real data” and are “ready to go”. The model is “seeded”
and turned on. Within a matter of days (in the worst case) it
has lost millions of dollars; Over the course of the next several
months even more money is lost. After around 18 months the
model is terminated, never recouping the original losses, and
the team of “all stars” is disbanded.

What went wrong? In every single case I can recall, the
problem pointed straight back to extensive data snooping and
ignorance surrounding its impact on model selection, and the
ability to accurately predict future observations. The challenge
is that in practice data snooping is not as obvious as the text-
book examples involving Elizabeth Taylor or Storks and babies.

The Benefit of a Validation Set
Whenever a “optimal” model is obtained by an extensive search
over the sample data, there is always the danger that the
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observed good performance may be partially or completely due
to chance. This is because the probability that a “good” result
arises by chance grows with the number of combinations tested
- if you sequentially flip a sufficiently large number of coins, a
sequence that always comes up heads will eventually emerge.

To reduce the likelihood of data snooping, at the very min-
imum divide the sample randomly into a training and test set.
The training sample (sometimes called in-sample) contains the
data that will be used to train the various models. The test
sample (also known as the out-of-sample set) is used to test
the models selected during the training phase. For illustrative
purposes, we followed this approach throughout this text.

However, if possible you should divide the sample into three
sets, with the third set called the validation set. It is used to
assess the final selected model. The use of training, test and
validation samples reduces even further the likelihood that the
optimum model will suffers from severe data snooping bias.

Practical Implications of the No Free
Lunch Theorem
Roughly stated, the No Free Lunch theorem states that:

In the lack of any prior knowledge on average all
predictive algorithms that search for the minimum
classification error have identical performance ac-
cording to any measure.

This simple means that a data sample that can be classified well
by a specific machine learning algorithm, can also be classified
well by other machine learning algorithms. For example, the
Naive Bayes classifier might perform equally well as logistic
regression.

313



Machine Learning Made Easy with R

Don’t Fall in Love
Don’t fall in love with a specific class of models. I once worked
for an individual who would only use econometric (regression)
models. As Professor George Box warns:

“Statisticians, like artists, have the bad habit of
falling in love with their models.”

However, falling in love with a model (or type of model) is
very dangerous. You must exhibit the qualities of Odysseus in
Homer’s Odyssey, no matter how beautiful a model is to you,
or how much time you have invested in it, do not be seduced
by the Sirens song.

All Models Are Limited
I once worked for a very wise professor, who for a time, left the
academic world in order to seek a fortune in the investment
industry. Such moves are rarely totally satisfactory for the
academic type; and within a few years the wise professor was
back in the university classroom with the horrors of corporate
cubical life a receding memory. In building predictive models,
the wise professor clearly understood the no free lunch theorem:

“A single machine learning model just won’t do.”
the wise professor would say. “We must build an
array of models, so that when one fails to work, the
others might.”

Any learning algorithm has a limited scope of application. No
learning algorithm can be guaranteed to succeed on all learn-
able tasks. Build you toolkit to contain a wide variety of learn-
ing algorithms. Then try a variety on your data.
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NOTE... �

If your toolkit is empty or needs a little boost pick
up a copy of my book 92 Applied Predictive Mod-
elling Techniques in R.

Work with Domain Experts
Domain expertise is the crucial ingredient, but often missed,
by eager data scientists. As twenty-five-year business veteran
of analytics Micheal Koukounas explains in his excellent book
Real-World Analytics:

“At the time, I was managing a team of data sci-
entists, really smart mathematicians and statisti-
cians. One Monday morning in the middle of the
fraud attack, I came into the office to find that one
of my team members had spent the weekend building
a fraud model to predict which of these transactions
had a high probability of being fraudulent...He had
constructed a sophisticated neural net model that
performed very well...Unfortunately,...we could not
use the model...[It] worked well in the laboratory en-
vironment but was not, to our regret, practical in the
real world...In order for it to work, the petroleum
company would have had to invest millions of dol-
lars...Moreover, the company would have had to
mandate all their gas stations and franchisees to
invest thousands of bucks in net point-of-sales and
communication equipment...”

You can avoid this type of potentially costly blunder by seeking
the assistance of domain experts as you develop your models.

315

http://www.auscov.com/
http://www.auscov.com/


Machine Learning Made Easy with R

Explaining the Bias Variance Trade-
off
The bias variance decomposition is a useful tool for understand-
ing classifier behavior. It turns out the expected misclassifica-
tion rate can be decomposed into two components, a reducible
error and irreducible error:

Reducible error 

irreducible error 

Irreducible error or inherent uncertainty is associated with
the natural variability in the phenomenon under study, and
is therefore beyond our control. I like to think of it as the
background noise inherent in the system.

For example, if you are going to build an age classification
model for Emperor Penguin’s using weight and height as at-
tributes, you will expect to see some natural variation between
the weight and height of all one year old birds.

Interpreting Reducible Error
Reducible error, as the name suggests, can be minimized. It
can be decomposed into error due to squared bias and error
due to variance. Figure 12.1 illustrates the idea of bias and
variance using Kung Fu throwing Stars.

The object is to throw these lethal weapons accurately, on
target, to hit the bulls-eye every time. A novice might throw
the darts with high variance and high bias (bottom right panel);
whilst the Sifu Master, who has studied the art for many years,
will hit the target every time (bottom left panel), and therefore
has low variance and low bias. The hope is that our model
exhibits the characteristics of the Sifu Master.
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Low Variance High  Variance

High Bias

Low Bias

Figure 12.1: Kung Fu throwing star’s illustration of bias and
variance

Simplifying Bias
Bias relates to the ability of your model to approximate the
actual observations. If on average, you model makes the pre-
diction accurately, it has low bias. If on the other hand, no
matter how many observations you include, it tends to over or
undershoot, it is biased.

Statisticians tend to think of bias as a form of model selec-
tion error, and this is helpful because if your model perfectly
represented the sample data, the bias would be zero. Bias is
large if your model produces predictions that are consistently
wrong.

For example, if we select a classifier such as Linear discrim-
inant analysis for the decision boundary of Figure 8.2, the bias
can be expected to be high because it can only model a lin-
ear hyperplane. Therefore, a large number of points will be
consistently misclassified.

Scholars Christopher Manning, Prabhakar Raghavan and
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Hinrich Schütze in their excellent book, Introduction to infor-
mation retrieval, explain:

“We can think of bias as resulting from our do-
main knowledge (or lack thereof) that we build into
the classifier. If we know that the true boundary
between the two classes is linear, then a learning
method that produces linear classifiers is more likely
to succeed than a nonlinear method. But if the true
class boundary is not linear and we incorrectly bias
the classifier to be linear, then classification accu-
racy will be low on average.”

The temptation might be to always select a non-linear classifier
by default, say for example a support vector machine. Notice
that such a strategy would violate Occam’s Razor (see page
310); and in practice would introduce bias if the true decision
plane was linear by overfitting the data. In other words, such
models would still be subject to model selection error.

Illuminating Variance
Whilst bias is a measure of classification accuracy, variance is
a measure of classification consistency. It measures the sta-
bility of the predictions of your machine learning model. Low
variance implies high consistency of the classifications. High
variance implies low consistency.

In turns out that linear classification models tend to have
low variance because for different training samples from the
same underlying probability distribution (or population), they
produce similar decision hyperplanes. An algorithm such as
KNN has low bias because it does not assume anything about
the distribution of the data points. However, it has high vari-
ance, because it will change its prediction in response to the
composition of the training sample.
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A trade-off

Models that exhibit low variance and high bias under-fit; whilst
models that exhibit high variance and low bias overfit. Model
building is often a trade-off between bias and variance. Fre-
quently, if we select an algorithm to reduce bias we will of-
ten also increase variance. Therefore, the differences in perfor-
mance between different learning algorithms can be interpreted
as trade-off between bias and variance. This trade-off helps ex-
plain why there is no single universal machine learning method.

Practical steps

If the algorithm has high bias, the following actions might help:

• Add more features

• Try an alternative (more sophisticated model).

If the model has high variance try these suggestions:

• Use fewer features

• Increase the number of training examples.

The Secret of the Hold Out Technique
A handful of generations ago it was common practice to train
a learning model and estimate the expected error rate on the
very same sample. A researcher would collect data on multiple
attributes, then run a classifier and happily observe a very low
classification error rate. To the sound of much rejoicing a paper
would be published highlighting the predictive power of the
newly discovered model. However, researchers in several fields
of scholarly activity soon observed that training an algorithm
and evaluating its statistical performance on the same data
tends to yield optimistic results. Today, validation techniques
provide tools to better estimate the expected error rate.
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In the hold out method the dataset is split into two non-
overlapping groups - a training set used to train the classifier,
and a test set used to estimate the error rate of the trained
classifier. Professor Stone captures well the idea of a hold out
sample when he states:

“An example of controlled division [hold out vali-
dation] is provided by the cautious statistician who
sets aside a randomly selected part of his sample
without looking at it and then plays without inhibi-
tion on what is left, confident in the knowledge that
the set-aside data will deliver an unbiased judgment
on the efficacy of his analysis.”

Figure 12.2 illustrates the situation.

Training Set Test Set

Total number of examples

Figure 12.2: The Hold Out Method

Asymptotics

If the test set is a representative sample the error will be un-
biased asymptotically (as the sample gets bigger). How close
the test error is to the generalization error critically depends
on the sample size.
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NOTE... �

S.C Larson, back in 1931, used a hold out method
by dividing a sample from the Mississippi Survey
into a training and test set to provide more accu-
rate error estimates. It would be several decades
before this became standard practice.

Test and training set

How should you divide the data between the training set and
the test set for hold out? There is no clear answer. I typically
use anywhere from 10-50% of the available observations.

Caution is required if you use a low proportion of the overall
sample. This is because hold out involves a single train and test
experiment. The estimate of the error rate may be dependent
on how the data is initially split. A sub-optimal split might
result in a misleading error rate. The observations selected for
inclusion in the test set might be dis-proportionally too easy
or too difficult to classify.

In situations where you have a small sample you may not
have sufficient observations to set aside for a test set. You may
have to use all the available data simply to train the model.

NOTE... �

The limitations of the holdout technique can be
damped by using cross validation.
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The Art of Effective Cross Validation
In the textbook setting you have sufficient data to train and
validate your models using a training set; and have ample data
for assessing the quality of the model via a test set. Implicit in
this scenario is a large and diverse sample from which accurate
estimates of model parameters and error rates can be obtained.

However, in practice you will frequently face data poor sit-
uations, where scarcity of samples rather than abundance is
the rule, and it will not be possible to set aside a portion of
the dataset purely for testing. Cross validation techniques are
useful here because they seek to extract the most information
possible about the expected misclassification error.

k-fold Cross Validation
In k-fold cross-validation the training sample is partitioned into
k equally sized segments. For each of the k segments, k−1 folds
are used for training and the remaining one-fold used for test-
ing. In this way, a total of k experiments can be performed
and all the examples in the dataset are eventually used for
both training and testing. Figure 12.3 demonstrates an exam-
ple with k = 5. The darker sections indicate the test sets, while
the lighter sections represent data used for training.

The estimate of the classification error rate is obtained as
the average of the separate k estimates:

R̃∗test(θ) = 1
k

k∑
i=1

R̃test,i(θ)

where R̃test,i(θ) is the classification error on the ith test set.
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Total number of examples

Test 1

Test 2

Test 3

Test 4

Test 5

Figure 12.3: Five fold cross validation

Choosing the Number of Folds
In practice, the choice of the number of folds depends on the
size of the dataset. For very sparse datasets, we may have to
use leave-one-out cross validation (discussed below) in order to
train the classifier on as many examples as possible.

In general, the larger the number of folds the smaller the
bias of the true error rate estimator will be. Unfortunately, the
variance of the error rate estimator tends to grow as the number
of folds increase. In actual practice 5 or 10-fold cross-validation
are most commonly specified.

Leave One Out Cross Validation
Back in the early 1970’s Professor Mervyn Stone of Univer-
sity College London suggested the use of leave-one-out cross-
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validation for estimating model parameters and for assessing
their predictive error. In this case, k is set equal to the number
of examples in the training set.

At each iteration, nearly all the data except for a single ob-
servation are used for training. The model is then tested on
that single observation - one or zero for success or failure, re-
spectively. The results of the error estimates are then averaged
to estimate the overall classification error.

Although leave one out cross validation typically results in
an accurate estimate (almost unbiased) of the error, it tends
to have high variance. However, it is a particularly useful tool
when the sample data are scarce, for example in Bioinformatics
where only a few dozen data samples might be available. Of
course, given that the learning algorithm must be estimated for
every data point, it comes at a larger computational cost than
5 or 10 fold cross validation.

Example - Classifying Purple Rock
Crabs with Naive Bayes
Let’s pull some of these ideas together with an applied example
in R. We use the crabs data set we saw previously in the
chapter on logistic regression.

Step 1 – Collecting and Exploring the Data
First load the packages and data:
library("MASS")
data(crabs)

Step 2 – Preparing the Data
As we did earlier, first calculate the first and second principal
components for use as the our sample features:
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pca <- prcomp(crabs [,4:8],
center = TRUE ,
scale. = TRUE)
pca1 <-pca$x[,1]
pca2 <-pca$x[,2]
data <-as.data.frame(crabs$sex)
colnames(data)<-c("sex")
data <-cbind(data ,pca1 ,pca2)

The R object data contains the class labels and the first and
second principal components.

We use a standard train - test split, with 150 of the 200
observations set aside for training. The remainder will be used
for the test set.
set.seed (2016)
n=nrow(crabs)
train_size =150
train <- sample (1:n, train_size , FALSE)

train_sample <-data[train ,2:3]
class_train <-data$sex[train]

test_sample <-data[-train ,2:3]
class_test <-data$sex[-train]

Step 3 - Train Model using Train Set
Following on from the idea of testing multiple machine learning
models on your data, let’s use the naive Bayes model from the
klaR package. We can compare the performance to the logistic
regression model we developed earlier.

Since we only have 200 observation in total, we will perform
leave on out cross validation on the training set data data. The
caret package is your go to tool for cross validation:
library("klaR")
library("caret")
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Cross validation is carried out using the train function. Here
is how to use it:
fit <- train(train_sample ,
class_train ,"nb",
trControl=trainControl(method="cv",
number=train_size))

Let’s spend a moment to run though this.

• The train function takes the sample data as the first
argument.

• The second argument is the machine learning algorithm
you want to use. We set it equal to nb for naive Bayes.

• The third parameter is used to set up cross validation.
We set method = “cv” to indicate we want to perform
cross validation.

• The parameter number stores the number of folds to use.
For 10 fold cross validation, you would set number equal
to 10; for five fold cross validation, you would set it equal
to 5. We want to perform leave on out cross validation,
so we set number equal to the number of observations in
the training sample.

Step 4 - Evaluate Model Performance
Once the cross validation has finished, you can view the average
class accuracy:
(round(fit$results$Accuracy ,3))
[1] 0.947 0.933

On average, the model classifies both female and male crabs
with an accuracy in excess of 90%.

You can also look at how the optimal model performed using
the train set data via the table and predict functions:
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pred <-predict(fit$finalModel ,
train_sample)$class
table(pred ,class_train)

class_train
pred F M

F 66 4
M 4 76

Of the 150 examples, the optimal cross validated model incor-
rectly classifies 4 male and 4 female crabs. This leads to an
overall accuracy of 94.6%. Not bad, and similar to the model
we developed using logistic regression.

NOTE... �

If you see the message: “There were
missing values in resampled performance
measures.” It indicates you may have a re-sample
where one of the outcome classes has zero samples.

Step 5 - Assessing Test Set Performance
Now, let’s see how the model performed on the test set:
pred <-predict(fit$finalModel ,
test_sample)$class
table(pred ,class_test)

class_test
pred F M

F 28 0
M 2 20

Again, performance is good, and exactly in line with that
achieved by our logistic regression model. The performance
numbers give us some support for the idea that NBC or lo-
gistic regression can be used to classify the sex of purple rock
crabs.
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Summary
This chapter presented several ideas for assisting you create
great machine learning algorithms. As we wrap up our intro-
duction to machine learning with R, here is a simple rule of
thumb to support your future success with empirical modeling.
Split your sample into three parts:

1. the training set to build the classifier;

2. the validation set to fine tune model parameters and pick
an algorithm;

3. the test set to estimate the future error rate. Remember
to run the model through the test set once only or else
report the results on every run.

Keep experimenting with new learning algorithms. A great
place to keep up-to date with recent events is via my newslet-
ter (visit www.AusCov.com to sign up). And be sure to grab
your free copy of the latest issue of the R Journal (https:
//journal.r-project.org/).

Good Luck!

Suggested Reading
• Bias: Manning, Christopher D., Prabhakar Raghavan,

and Hinrich Schütze. Introduction to information re-
trieval. Vol. 1. No. 1. Cambridge: Cambridge university
press, 2008.

• Domain Expertise: Koukounas, Michael.(2014). Real-
World Analytics. Full Court Press.

• Hold Out Method: Stone, Mervyn. "Cross-validatory
choice and assessment of statistical predictions." Journal
of the royal statistical society. Series B (Methodological)
(1974): 111-147.
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Other Mississippi Survey:
• Mississippi Survey: Larson, Selmer C. "The shrink-

age of the coefficient of multiple correlation." Journal of
Educational Psychology 22.1 (1931): 45.
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Congratulations!
You made it to the end!
Here are three things you can do next.

1. Pick up your FREE copy of 12 Resources to Super-
charge Your Productivity in R at http: // www.
auscov. com

2. Gift a copy of this book to your friends, co-workers, team-
mates or your entire organization.

3. If you found this book useful and have a moment to spare,
I would really appreciate a short review. Your help in
spreading the word is gratefully received.

I’ve spoken to thousands of people over the past few years.
I’d love to hear your experiences using the ideas in this book.
Contact me with your stories, questions and suggestions at
Info@NigelDLewis.com.

Good luck!
P.S. Thanks for allowing me to partner with you on your

machine learning journey.
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OTHER BOOKS YOU WILL ALSO
ENJOY

• Neural Networks for Time Series Forecasting
with R

• Deep Learning Made Easy with R:

– Volume I: A Gentle Introduction for Data
Science

– Volume II: Practical Tools for Data
Science

– Volume III: Breakthrough Techniques to
Transform Performance

• Deep Learning for Business with R

• Build Your Own Neural Network TODAY!

• 92 Applied Predictive Modeling Techniques in R

• 100 Statistical Tests in R

• Visualizing Complex Data Using R

• Learning from Data Made Easy with R

• Deep Time Series Forecasting with Python

• Deep Learning for Business with Python

• Deep Learning Step by Step with Python

For further detail’s visit www.AusCov.com
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