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Matplotlib is widely used in data science due to its flexibility,
extensive functionality, and compatibility with other libraries
like NumPy and Pandas. It offers a vast array of plot types,
customization options, and excellent documentation, making it
an essential tool for data exploration and presentation.

Matplotlib is a popular data visualization library in Python that
provides a wide range of plotting functions and tools. It allows
data scientists to create high-quality charts, graphs, and
visualizations with ease.

1.1 WHAT IS MATPLOTLIB?

1.2 WHY USE MATPLOTLIB IN DATA
SCIENCE?
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Installation and
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CHAPTER N.2
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Before using Matplotlib, import it into your Python script or
notebook using the following statement:

To install Matplotlib, you can use pip, the Python package
manager. Open a terminal and execute the following
command:

2.1 Installing Matplotlib

2.2 Importing Matplotlib
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Line plots are useful for visualizing the relationship between
two variables over a continuous interval. To create a line plot,
use the plot() function in Matplotlib.

3.1 Line Plots

OUTPUT:
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EXAMPLE:



Scatter plots are ideal for displaying the distribution and
relationship between two numerical variables. Matplotlib
provides the scatter() function for creating scatter plots.

3.2 Scatter Plots
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OUTPUT:

EXAMPLE:



Bar plots are effective for comparing categorical data or
showing the distribution of a single variable. Matplotlib offers
the bar() and barh() functions for creating vertical and
horizontal bar plots, respectively.

3.3 Bar Plots
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OUTPUT:

EXAMPLE:



Histograms are useful for visualizing the distribution of a
continuous variable. Matplotlib provides the hist() function to
create histograms.

3.4 Histograms
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OUTPUT:

EXAMPLE:



Customizing
 Plots
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Matplotlib allows you to customize the size and resolution of
your plots using the figure() function.

4.1 Figure Size and Resolution
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OUTPUT:

EXAMPLE:



You can add labels to the x-axis, y-axis, and title of your plot
using the xlabel(), ylabel(), and title() functions.

4.2 Labels and Titles
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EXAMPLE:

OUTPUT:



To add a legend to your plot, use the legend() function. You
can specify the position of the legend and add labels for each
data series.

4.3 Legends
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EXAMPLE:

OUTPUT:



Matplotlib allows you to customize the colors, line styles, and
markers of your plots. You can use a wide range of predefined
colors and markers or define your own.

4.4 Colors, Styles, and Markers
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EXAMPLE:

OUTPUT:



You can set the limits and ticks for the x-axis and y-axis using
the xlim(), ylim(), and xticks(), yticks() functions, respectively.

4.5 Axis Limits and Ticks
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EXAMPLE:

OUTPUT:
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5.1 Creating Subplots
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Matplotlib allows you to create multiple subplots within a
single figure using the subplots() function.
EXAMPLE:

OUTPUT:



5.2 Customizing Subplots
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You can customize each subplot individually by accessing
them through the axes object.
EXAMPLE:

OUTPUT:



5.3 Sharing Axis Labels
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When creating subplots, you can share the x-axis or y-axis
labels across multiple subplots.
EXAMPLE:

OUTPUT:



Advanced
 Plots

CHAPTER N.6

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Pie charts are ideal for displaying proportions and percentages
of different categories. Matplotlib provides the pie() function
for creating pie charts.

6.1 Pie Charts
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EXAMPLE:

OUTPUT:



Box plots are useful for visualizing the distribution of numerical
data through quartiles. Matplotlib offers the boxplot() function
for creating box plots.

6.2 Box Plots

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Heatmaps are excellent for visualizing matrices or correlation
matrices. Matplotlib provides the imshow() function for
creating heatmaps.

6.3 Heatmaps
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EXAMPLE:

OUTPUT:



Matplotlib also supports 3D plotting for visualizing complex
data. You can create 3D plots using the plot_surface()
function.

6.4 3D Plots
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EXAMPLE:

OUTPUT:



Data Visualization
Tips

CHAPTER N.7
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Choose colors that are visually appealing, easy to distinguish,
and accessible to color-blind individuals. Matplotlib provides a
wide range of color palettes to choose from

Consider the nature of your data and the information you want
to convey when selecting the appropriate plot type. Different
plot types are suitable for different data types and objectives.

7.1 Choosing the Right Plot
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7.2 Using Colors Effectively

Consider how missing data should be handled in your plots.
You can choose to exclude missing values or display them in a
specific way, such as using markers or different colors.

7.3 Handling Missing Data

Annotations and text can provide additional context and
insights to your plots. Matplotlib offers various functions for
adding text, labels, and annotations to specific plot elements.

7.4 Adding Annotations and Text



Saving and
Exporting Plots
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You can save your Matplotlib plots to various file formats, such
as PNG, PDF, SVG, or JPEG, using the savefig() function.

8.1 Saving Plots to File

@RAMCHANDRAPADWAL

8.2 Exporting Plots to Different Formats
Matplotlib supports exporting plots to different formats using
the savefig() function. You can specify the desired file format
using the file extension.

EXAMPLE:

EXAMPLE:



Real-World
Examples
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Time series data is a common type of data encountered in
data science. Matplotlib allows you to visualize and analyze
time series data effectively.

9.1 Plotting Time Series Data
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EXAMPLE:

EXAMPLE:



When working with categorical data, Matplotlib provides
various plot types, such as bar plots, stacked bar plots, and
pie charts, to effectively display and compare different
categories.

9.2 Visualizing Categorical Data
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EXAMPLE:

EXAMPLE:



For geospatial data visualization, Matplotlib provides
functionality to plot data on maps. You can display various
geospatial features such as points, lines, polygons, and
choropleth maps.

9.3 Geospatial Data Visualization 
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EXAMPLE:

EXAMPLE:



Conclusion
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Matplotlib is a powerful and versatile data visualization library
for Python. In this guide, we covered the basics of Matplotlib
and explored various plot types, customization options, and
advanced features. By following this practical guide, you
should now be equipped with the knowledge and tools to
create visually appealing and informative plots for your data
science projects. Experiment with different plot types and
customization options to unleash the full potential of
Matplotlib. Happy plotting!


