
Practical Guide
to Matplotlib for
Data Science

A STEP-BY-STEP GUIDE

@RAMCHANDRAPADWAL



Introduction to Matplotlib 
1.1 What is Matplotlib? 
1.2 Why Use Matplotlib in Data Science?

Installation and Setup 
2.1 Installing Matplotlib 
2.2 Importing Matplotlib

Basic Plots 
3.1 Line Plots 
3.2 Scatter Plots 
3.3 Bar Plots 
3.4 Histograms

Customizing Plots 
4.1 Figure Size and Resolution 
4.2 Labels and Titles 
4.3 Legends 
4.4 Colors, Styles, and Markers 
4.5 Axis Limits and Ticks

Multiple Subplots 
5.1 Creating Subplots 
5.2 Customizing Subplots 
5.3 Sharing Axis Labels

Advanced Plots 
6.1 Pie Charts 
6.2 Box Plots 
6.3 Heatmaps 
6.4 3D Plots

Data Visualization Tips 
7.1 Choosing the Right Plot 
7.2 Using Colors Effectively 
7.3 Handling Missing Data 
7.4 Adding Annotations and Text

Saving and Exporting Plots 
8.1 Saving Plots to File 
8.2 Exporting Plots to Different Formats

Real-World Examples 
9.1 Plotting Time Series Data 
9.2 Visualizing Categorical Data 
9.3 Geospatial Data Visualization

Conclusion

Table of Contents

@RAMCHANDRAPADWAL



Introduction to
Matplotlib

CHAPTER N.1

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Matplotlib is widely used in data science due to its flexibility,
extensive functionality, and compatibility with other libraries
like NumPy and Pandas. It offers a vast array of plot types,
customization options, and excellent documentation, making it
an essential tool for data exploration and presentation.

Matplotlib is a popular data visualization library in Python that
provides a wide range of plotting functions and tools. It allows
data scientists to create high-quality charts, graphs, and
visualizations with ease.

1.1 WHAT IS MATPLOTLIB?

1.2 WHY USE MATPLOTLIB IN DATA
SCIENCE?

@RAMCHANDRAPADWAL



Installation and
Setup

CHAPTER N.2

@RAMCHANDRAPADWAL

A Step-by-Step Guide



Before using Matplotlib, import it into your Python script or
notebook using the following statement:

To install Matplotlib, you can use pip, the Python package
manager. Open a terminal and execute the following
command:

2.1 Installing Matplotlib

2.2 Importing Matplotlib

@RAMCHANDRAPADWAL



Basic Plots
CHAPTER N.3

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Line plots are useful for visualizing the relationship between
two variables over a continuous interval. To create a line plot,
use the plot() function in Matplotlib.

3.1 Line Plots

OUTPUT:

@RAMCHANDRAPADWAL

EXAMPLE:



Scatter plots are ideal for displaying the distribution and
relationship between two numerical variables. Matplotlib
provides the scatter() function for creating scatter plots.

3.2 Scatter Plots

@RAMCHANDRAPADWAL

OUTPUT:

EXAMPLE:



Bar plots are effective for comparing categorical data or
showing the distribution of a single variable. Matplotlib offers
the bar() and barh() functions for creating vertical and
horizontal bar plots, respectively.

3.3 Bar Plots

@RAMCHANDRAPADWAL

OUTPUT:

EXAMPLE:



Histograms are useful for visualizing the distribution of a
continuous variable. Matplotlib provides the hist() function to
create histograms.

3.4 Histograms

@RAMCHANDRAPADWAL

OUTPUT:

EXAMPLE:



Customizing
 Plots

CHAPTER N.4

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Matplotlib allows you to customize the size and resolution of
your plots using the figure() function.

4.1 Figure Size and Resolution

@RAMCHANDRAPADWAL

OUTPUT:

EXAMPLE:



You can add labels to the x-axis, y-axis, and title of your plot
using the xlabel(), ylabel(), and title() functions.

4.2 Labels and Titles

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



To add a legend to your plot, use the legend() function. You
can specify the position of the legend and add labels for each
data series.

4.3 Legends

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Matplotlib allows you to customize the colors, line styles, and
markers of your plots. You can use a wide range of predefined
colors and markers or define your own.

4.4 Colors, Styles, and Markers

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



You can set the limits and ticks for the x-axis and y-axis using
the xlim(), ylim(), and xticks(), yticks() functions, respectively.

4.5 Axis Limits and Ticks

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Multiple 
Subplots

CHAPTER N.5

A Step-by-Step Guide

@RAMCHANDRAPADWAL



5.1 Creating Subplots

@RAMCHANDRAPADWAL

Matplotlib allows you to create multiple subplots within a
single figure using the subplots() function.
EXAMPLE:

OUTPUT:



5.2 Customizing Subplots

@RAMCHANDRAPADWAL

You can customize each subplot individually by accessing
them through the axes object.
EXAMPLE:

OUTPUT:



5.3 Sharing Axis Labels

@RAMCHANDRAPADWAL

When creating subplots, you can share the x-axis or y-axis
labels across multiple subplots.
EXAMPLE:

OUTPUT:



Advanced
 Plots

CHAPTER N.6

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Pie charts are ideal for displaying proportions and percentages
of different categories. Matplotlib provides the pie() function
for creating pie charts.

6.1 Pie Charts

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Box plots are useful for visualizing the distribution of numerical
data through quartiles. Matplotlib offers the boxplot() function
for creating box plots.

6.2 Box Plots

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Heatmaps are excellent for visualizing matrices or correlation
matrices. Matplotlib provides the imshow() function for
creating heatmaps.

6.3 Heatmaps

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Matplotlib also supports 3D plotting for visualizing complex
data. You can create 3D plots using the plot_surface()
function.

6.4 3D Plots

@RAMCHANDRAPADWAL

EXAMPLE:

OUTPUT:



Data Visualization
Tips

CHAPTER N.7

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Choose colors that are visually appealing, easy to distinguish,
and accessible to color-blind individuals. Matplotlib provides a
wide range of color palettes to choose from

Consider the nature of your data and the information you want
to convey when selecting the appropriate plot type. Different
plot types are suitable for different data types and objectives.

7.1 Choosing the Right Plot

@RAMCHANDRAPADWAL

7.2 Using Colors Effectively

Consider how missing data should be handled in your plots.
You can choose to exclude missing values or display them in a
specific way, such as using markers or different colors.

7.3 Handling Missing Data

Annotations and text can provide additional context and
insights to your plots. Matplotlib offers various functions for
adding text, labels, and annotations to specific plot elements.

7.4 Adding Annotations and Text



Saving and
Exporting Plots

CHAPTER N.8

A Step-by-Step Guide

@RAMCHANDRAPADWAL



You can save your Matplotlib plots to various file formats, such
as PNG, PDF, SVG, or JPEG, using the savefig() function.

8.1 Saving Plots to File

@RAMCHANDRAPADWAL

8.2 Exporting Plots to Different Formats
Matplotlib supports exporting plots to different formats using
the savefig() function. You can specify the desired file format
using the file extension.

EXAMPLE:

EXAMPLE:



Real-World
Examples

CHAPTER N.9

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Time series data is a common type of data encountered in
data science. Matplotlib allows you to visualize and analyze
time series data effectively.

9.1 Plotting Time Series Data

@RAMCHANDRAPADWAL

EXAMPLE:

EXAMPLE:



When working with categorical data, Matplotlib provides
various plot types, such as bar plots, stacked bar plots, and
pie charts, to effectively display and compare different
categories.

9.2 Visualizing Categorical Data

@RAMCHANDRAPADWAL

EXAMPLE:

EXAMPLE:



For geospatial data visualization, Matplotlib provides
functionality to plot data on maps. You can display various
geospatial features such as points, lines, polygons, and
choropleth maps.

9.3 Geospatial Data Visualization 

@RAMCHANDRAPADWAL

EXAMPLE:

EXAMPLE:



Conclusion

@RAMCHANDRAPADWAL

Matplotlib is a powerful and versatile data visualization library
for Python. In this guide, we covered the basics of Matplotlib
and explored various plot types, customization options, and
advanced features. By following this practical guide, you
should now be equipped with the knowledge and tools to
create visually appealing and informative plots for your data
science projects. Experiment with different plot types and
customization options to unleash the full potential of
Matplotlib. Happy plotting!


