
Practical Java
Machine
Learning

Projects with Google Cloud Platform and
Amazon Web Services
—
Mark Wickham

Practical Java
Machine Learning

Projects with Google Cloud
Platform and Amazon Web Services

Mark Wickham

Practical Java Machine Learning: Projects with Google Cloud Platform and
Amazon Web Services

ISBN-13 (pbk): 978-1-4842-3950-6			 ISBN-13 (electronic): 978-1-4842-3951-3
https://doi.org/10.1007/978-1-4842-3951-3

Library of Congress Control Number: 2018960994

Copyright © 2018 by Mark Wickham

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484239506. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Mark Wickham
Irving, TX, USA

https://doi.org/10.1007/978-1-4842-3951-3

iii

Table of Contents

Chapter 1: �Introduction��� 1

1.1 ��Terminology�� 1

1.2 ��Historical�� 5

1.3 ��Machine Learning Business Case�� 7

Machine Learning Hype�� 7

Challenges and Concerns��� 8

Data Science Platforms�� 9

ML Monetization��� 13

The Case for Classic Machine Learning on Mobile��� 14

1.4 ��Deep Learning�� 18

Identifying DL Applications��� 19

1.5 ��ML-Gates Methodology�� 22

ML-Gate 6: Identify the Well-Defined Problem��� 23

ML-Gate 5: Acquire Sufficient Data�� 24

ML-Gate 4: Process/Clean/Visualize the Data�� 25

ML-Gate 3: Generate a Model��� 25

ML-Gate 2: Test/Refine the Model�� 25

ML-Gate 1: Integrate the Model�� 26

ML-Gate 0: Deployment�� 26

Methodology Summary�� 27

1.6 ��The Case for Java��� 27

Java Market�� 27

Java Versions�� 29

About the Author�� xi

About the Technical Reviewer�� xiii

Preface���xv

iv

Installing Java�� 31

Java Performance�� 33

1.7 ��Development Environments��� 35

Android Studio�� 36

Eclipse�� 39

Net Beans IDE��� 43

1.8 ��Competitive Advantage�� 44

Standing on the Shoulders of Giants�� 44

Bridging Domains��� 45

1.9 ��Chapter Summary�� 46

Key Findings��� 46

Chapter 2: �Data: The Fuel for Machine Learning��� 47

2.1 ��Megatrends�� 48

Explosion of Data�� 48

Highly Scalable Computing Resources��� 51

Advancement in Algorithms�� 52

2.2 ��Think Like a Data Scientist��� 52

Data Nomenclature��� 53

Defining Data�� 54

2.3 ��Data Formats��� 55

CSV Files and Apache OpenOffice�� 57

ARFF Files��� 62

JSON��� 63

2.4 ��JSON Integration�� 69

JSON with Android SDK�� 69

JSON with Java JDK��� 70

2.5 ��Data Preprocessing�� 72

Instances, Attributes, Labels, and Features�� 73

Data Type Identification�� 74

Missing Values and Duplicates��� 74

Erroneous Values and Outliers�� 76

Table of Contents

v

Macro Processing with OpenOffice Calc�� 77

JSON Validation�� 79

2.6 ��Creating Your Own Data��� 80

Wifi Gathering��� 80

2.7 ��Visualization��� 84

JavaScript Visualization Libraries��� 84

D3 Plus��� 86

2.8 ��Project: D3 Visualization��� 86

2.9 ��Project: Android Data Visualization�� 97

2.10 ��Summary��� 102

Key Data Findings��� 103

Chapter 3: �Leveraging Cloud Platforms��� 105

3.1 ��Introduction�� 105

Commercial Cloud Providers�� 106

Competitive Positioning�� 109

Pricing�� 110

3.2 ��Google Cloud Platform (GCP)�� 112

Google Compute Engine (GCE) Virtual Machines (VM)�� 114

Google Cloud SDK��� 116

Google Cloud Client Libraries��� 120

Cloud Tools for Eclipse (CT4E)�� 120

GCP Cloud Machine Learning Engine (ML Engine)�� 121

GCP Free Tier Pricing Details�� 122

3.3 ��Amazon AWS�� 123

AWS Machine Learning�� 124

AWS ML Building and Deploying Models�� 126

AWS EC2 AMI�� 131

Running Weka ML in the AWS Cloud��� 135

AWS SageMaker��� 141

AWS SDK for Java��� 143

AWS Free Tier Pricing Details��� 147

Table of Contents

vi

3.4 ��Machine Learning APIs�� 148

Using ML REST APIs��� 150

Alternative ML API Providers�� 151

3.5 ��Project: GCP Cloud Speech API for Android�� 152

Cloud Speech API App Overview��� 153

GCP Machine Learning APIs�� 155

Cloud Speech API Authentication�� 156

Android Audio��� 161

Cloud Speech API App Summary�� 165

3.6 ��Cloud Data for Machine Learning��� 166

Unstructured Data�� 167

NoSQL Databases��� 168

NoSQL Data Store Methods�� 170

Apache Cassandra Java Interface�� 172

3.7 ��Cloud Platform Summary��� 175

Chapter 4: �Algorithms: The Brains of Machine Learning��������������������������������������� 177

4.1 ��Introduction�� 177

ML-Gate 3��� 178

4.2 ��Algorithm Styles��� 179

Labeled vs. Unlabeled Data�� 179

4.3 ��Supervised Learning�� 180

4.4 ��Unsupervised Learning�� 182

4.5 ��Semi-Supervised Learning�� 184

4.6 ��Alternative Learning Styles�� 185

Linear Regression Algorithm�� 185

Deep Learning Algorithms�� 186

Reinforcement Learning��� 188

4.7 ��CML Algorithm Overview�� 189

4.8 ��Choose the Right Algorithm��� 192

Functional Algorithm Decision Process�� 193

Table of Contents

vii

4.9 ��The Seven Most Useful CML Algorithms�� 195

Naive Bayes Algorithm (NB)�� 195

Random Forest Algorithm (RF)�� 197

K-Nearest Neighbors Algorithm (KNN)�� 199

Support Vector Machine Algorithm (SVM)��� 202

K-Means Algorithm��� 204

DBSCAN Algorithm�� 206

Expectation-Maximization (EM) Algorithm��� 208

4.10 ��Algorithm Performance�� 209

MNIST Algorithm Evaluation��� 209

4.11 ��Algorithm Analysis��� 214

Confusion Matrix�� 215

ROC Curves��� 216

K-Fold Cross-Validation�� 218

4.12 ��Java Source Code�� 220

Classification Algorithms�� 222

Clustering Algorithms��� 223

Java Algorithm Modification��� 224

Chapter 5: �Machine Learning Environments��� 227

5.1 ��Overview�� 228

ML Gates��� 228

5.2 ��Java ML Environments��� 229

Weka��� 232

RapidMiner��� 232

KNIME��� 234

ELKI�� 236

Java-ML�� 236

5.3 ��Weka Installation�� 236

Weka Configuration�� 238

Java Parameters Setup�� 241

Table of Contents

viii

Modifying Weka .prop Files�� 242

Weka Settings�� 244

Weka Package Manager��� 245

5.4 ��Weka Overview�� 247

Weka Documentation��� 249

Weka Explorer�� 249

Weka Filters�� 251

Weka Explorer Key Options�� 252

Weka KnowledgeFlow�� 253

Weka Simple CLI��� 255

5.5 ��Weka Clustering Algorithms��� 257

Clustering with DBSCAN��� 257

Clustering with KnowledgeFlow��� 264

5.6 ��Weka Classification Algorithms�� 268

Preprocessing (Data Cleaning)��� 269

Classification: Random Forest Algorithm�� 274

Classification: K-Nearest Neighbor��� 278

Classification: Naive Bayes��� 281

Classification: Support Vector Machine�� 283

5.7 ��Weka Model Evaluation�� 286

Multiple ROC Curves��� 288

5.8 ��Weka Importing and Exporting��� 292

Chapter 6: �Integrating Models��� 297

6.1 ��Introduction�� 297

6.2 ��Managing Models��� 298

Device Constraints�� 299

Optimal Model Size��� 300

Model Version Control��� 304

Updating Models��� 305

Managing Models: Best Practices�� 307

Table of Contents

ix

6.3 ��Weka Java API�� 307

Loading Data�� 308

Working with Options��� 309

Applying Filters��� 309

Setting the Label Attribute�� 310

Building a Classifier�� 310

Training and Testing�� 311

Building a Clusterer�� 312

Loading Models�� 312

Making Predictions��� 313

6.4 ��Weka for Android�� 314

Creating Android Weka Libraries in Eclipse�� 315

Adding the Weka Library in Android Studio�� 320

6.5 ��Android Integration�� 321

Project: Weka Model Create�� 322

Project: Weka Model Load�� 328

6.6 ��Android Weka Model Performance��� 335

6.7 ��Raspberry Pi Integration�� 337

Raspberry Pi Setup for ML�� 339

Raspberry Pi GUI Considerations�� 341

Weka API Library for Raspberry Pi�� 342

Project: Raspberry Pi Old Faithful Geyser Classifier��� 342

6.8 ��Sensor Data��� 363

Android Sensors��� 363

Raspberry Pi with Sensors��� 365

Sensor Units of Measure�� 369

Project: Android Activity Tracker��� 370

6.9 ��Weka License Notes��� 381

�Index�� 383

Table of Contents

xi

About the Author

Mark Wickham is a frequent speaker at Android developer

conferences and has written two books, Practical Android

and Practical Java Machine Learning. As a freelance Android

developer, Mark currently resides in Dallas, TX after living

and working in China for nearly 20 years. While at Motorola,

Mark led product management, product marketing, and

software development teams in the Asia Pacific region.

Before joining Motorola, Mark worked on software projects

for TRW’s Space Systems Division. Mark has a degree in

Computer Science and Physics from Creighton University, and MBA from the University

of Washington, and jointly studied business at the Hong Kong University of Science

and Technology. In his free time, Mark also enjoys photography and recording live

music. Mark can be contacted via his LinkedIn profile (www.linkedin.com/in/mark-j-

wickham/) or GitHub page (www.github.com/wickapps).

http://www.linkedin.com/in/mark-j-wickham/
http://www.linkedin.com/in/mark-j-wickham/
http://www.github.com/wickapps

xiii

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and

software developer. He has helped many oil and gas

companies automate and enhance their oilfield solutions

through field data capture, SCADA, and machine learning.

Jason obtained his Bachelor of Science in Computer Science

from Arkansas State University, but he traces his passion

for development back many years before then, having first

taught himself to program BASIC on his family’s computer

while still in middle school.

When he’s not mentoring and helping his team at work,

writing, or pursuing one of his many side projects, Jason enjoys spending time with his

wife and four children and living in the Tulsa, Oklahoma region. More information about

Jason can be found on his website at https://jason.whitehorn.us.

https://jason.whitehorn.us/

xv

Preface

It is interesting to watch trends in software development come and go, and to watch

languages become fashionable, and then just as quickly fade away. As machine learning

and AI began to reemerge a few years ago, it was easy to look upon the hype with a great

deal of skepticism.

•	 AlphaGo, a UK-based company, used deep learning to defeat the Go

masters. Go is a Chinese board game that very complicated due to a

huge number of combinations. Living in China at the time, there was

a lot of discussion about the panicked Go masters who refused to

play the machine for fear that their techniques would be exposed or

"learned" by the machines.

•	 An AI Poker Bot named Libratus individually defeated four top

human professional players in 2017. This was surprising because

poker is a difficult game for machines to master. In poker, unlike

Go, there is a lot of unknown information, making it an "imperfect

information" game.

•	 Machine traders are replacing human traders at many of the large

investment banks. The rise of the "quant" on Wall Street is well

documented. Examining the job opportunities at investment banks

reveals a trend favoring math majors, data scientists, and machine

learning experts.

•	 IBM's Watson can do amazing things, such as fix the elevator before

breaks, adjust the sprinkler system in the vineyard to optimize yield,

and help oilfield workers manage a drilling rig.

xvi

Despite the hype, it was not until confronted with problems that were very difficult

to solve with existing software tools that I began to explore and appreciate the power of

machine learning techniques.

Today, after several years of gaining an understanding about what these new

techniques can do, and how to apply them, I find myself thinking differently about each

problem I encounter. Almost every piece of software can benefit in some way from

machine learning techniques.

Developing machine learning software requires us to think differently about

problems, resulting in a new way to partition our development efforts. However, change

is good, and using machine learning with a data-driven development methodology can

allow us to solve previously unsolvable problems.

In this book, I will describe what I have discovered along my journey. I hope that it

can help you in your future software endeavors.

�Objectives
The book will meet the following objectives:

•	 Introduce readers to the exciting developments in the AI subfield

of machine learning (ML). The book will summarize the types of

problems machine learning can solve. Without machine learning,

such solutions would be very difficult to accomplish.

•	 Help readers understand the importance of data as the critical input

for any machine learning solution, and how to identify, organize, and

architect the data required for ML. Strategies and techniques for the

visualization and preprocessing of data will also be covered using

available Java packages. The book will help readers who know Java to

become more proficient in data science.

•	 Explore how to deploy ML solutions in conjunction with cloud

service providers such as Google and Amazon.

•	 Focus exclusively on Java libraries and Java-based solutions for

ML. The book will NOT cover other popular ML languages such as

Python or C++.

Preface

xvii

•	 Focus on classic machine learning solutions. The book will not cover

implementations for deep learning, which use neural networks. Deep

learning is a topic that requires a complete text of its own for proper

exploration.

•	 Provide readers an overview of ML algorithms. Rather than cover

these algorithms from a mathematical viewpoint, the book will

present a practical review of the algorithms and explain to readers

which algorithm to select for a particular problem.

•	 Introduce readers to the most important Java-based ML platforms.

The book will provide a deep dive into the popular Weka Java

environments. The book will show readers how to port the latest

Weka version to Android.

•	 Java developers have the advantage of easily transitioning to the

Android Mobile platform. The book will show readers how to deploy

ML apps for Android devices using the Weka API.

•	 One of the fastest growing sources of data is sensor data. Embedded

devices often produce sensor data, enabling a significant opportunity

to deploy ML solutions for these devices. The book will show readers

how to implement ML solutions for sensor data using Java.

�Audience
This book is intended for the following audiences:

•	 Developers looking to implement ML solutions for Java platforms

•	 Data scientists looking to explore Java implementation options

•	 Business decision makers looking to explore entry into machine

learning for their organizations

The book will be of most value to experienced Java developers who have not

implemented ML techniques before. The book will explain the various ML techniques

that are now feasible due to recent advances in performance, storage, and algorithms.

Preface

xviii

The book will explain how these new techniques allow developers to achieve

interesting new functionality that was not previously possible with traditional

development approaches.

�Conventions
�Figures and Tables
Each chapter in the book uses a mix of figures and tables to explain the chapter’s

concepts. Figures and tables include identifiers with a chapter-derived sequence

number displayed below or above them.

Figure P-1 shows an example figure.

Figure P-1.  Sample Figure

Table P-1 shows an example table.

Table P-1.  Sample Table

Cluster Algorithms Classify Algorithms

DBSCAN Random Forest

EM Naive Bayes

�Technical Italics
The technical italic font represents technical terms. This includes Android-specific

terms, URLs, or general technical terms. Reference URLs are sometimes included within

each chapter.

Preface

xix

�Code Listings
Code examples in the book use a fixed-width font with line numbers. They represent key

code discussed in the text that immediately precedes or follows the block.

Listing P-1.  Sample Code Listing

01  // Define the dataset

02  newInstance.setDataset(dataUnpredicted);

03

04  // Predict the new sample

05  try {

06  double result = mClassifier.classifyInstance(newInstance);

07  String prediction = classes.get(new Double(result).intValue());

08  Toast.makeText(this, prediction, Toast.LENGTH_SHORT).show();

09  } catch (Exception e) {

10  // Oops, need to handle the Weka prediction exception

11  e.printStackTrace();

12  }

In order to help you locate the code within the associated project resources, the

filename associated with the code block is included in the text preceding the code

block.

Longer code blocks include the name of the project and source code file below them.

Code blocks in the book are not always complete. Refer to the actual project source code

to see the full code implementation.

�Key Ideas or Points
Emphasized key points or ideas use the following format:

Three megatrends have paved the way for the Machine Learning revolution
we are now experiencing:

1) Explosion of data
2) Access to highly scalable computing resources
3) Advancement in algorithms

Preface

xx

�Trademark and Software License
Android is a trademark of Google Inc.

Java is a trademark of Oracle Inc.

Eclipse is a trademark of The Eclipse Foundation.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Weka is a trademark of The University of Waikato.

Software in this book written by the author carries the Apache 2.0 license, and you

are free to use and modify the code in its entirety according to the terms of the license.

The Weka software is licensed under the GNU GPL 2.0 license.

The software written by the author includes the following Copyright notice:

01  /*

02  * Copyright (C) 2018 Mark Wickham

03  *

04  * Licensed under the Apache License, Version 2.0 (the "License");

05  * you may not use this file except in compliance with the License.

06  * You may obtain a copy of the License at

07  *

08  * http://www.apache.org/licenses/LICENSE-2.0

09  *

10  * Unless required by applicable law or agreed to in writing, software

11  * distributed under the License is distributed on an "AS IS" BASIS,

12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either implied...

13  * See the License for the specific language governing permissions and

14  * limitations under the License.

15  * �For full details of the license, please refer to the link referenced

above.

16  */

The software projects in the book can be downloaded by clicking the Download

Source Code button located at the book’s apress.com product page at www.apress.com/

9781484239506 or from the author’s GitHub page at

https://github.com/wickapps/Practical-Java-ML

The Google Cloud Speech API Android project presented in Chapter 3 is copyright by

Google Inc. and available on the Google GitHub page.

Preface

http://www.apress.com/9781484239506
http://www.apress.com/9781484239506
https://github.com/wickapps/Practical-Java-ML

xxi

�Summary of Projects
The book uses projects to demonstrate the key topics within each chapter. Table P-2

shows a summary of all projects in the book.

Table P-2.  Summary of Projects in the Book

Chapter Type Source Code Project Description

2 Desktop

Browser

d3_visualization.zip D3 Visualization: This project

demonstrates how to produce data

visualizations on the desktop browser

using the D3 JavaScript library.

2 Android android_data_vis.zip Android Data Visualization: This

Android app loads data and displays

a visualization of the data within a

WebView control. The application

uses the D3 JavaScript library

and demonstrates several useful

visualizations for machine learning.

3 Android Google Cloud Platform GitHub Google Cloud Platform Cloud Speech API:

This Android application demonstrates

access to deep learning functionality

through a publicly available API.

6 Eclipse android_weka_3-8-1.zip Weka Android Port: This Eclipse project

ports the latest Weka version (stable

3.8.1) to Android, creating the

Android-Weka-3-8-1.jar file. Android

apps can then use the Weka API for

loading, classifying, and clustering

applications.

6 Android model_create.zip Weka Model Create: This Android project

demonstrates how to load data files

into Android and create a model for

classification.

(continued)

Preface

xxii

A summary table showing the project details and key project files precedes each

project in the book; see Table P-3. Note that not all of the project files are included in the

summary table.

Chapter Type Source Code Project Description

6 Android model_load.zip Weka Model Load: This Android project

demonstrates how to load a pretrained

model into Android. The model can

classify samples. The app includes

time stamping for model performance

evaluation.

6 Raspberry Pi old_faithful.zip Raspberry Pi Old Faithful: This clustering

project uses the Old Faithful geyser

dataset and a Weka clustering model

created in Chapter 5 to implement a

clustering application for Old Faithful on

the Raspberry Pi device.

6 Android activity_tracker.zip Android Activity Tracker: This large-

scale classification project uses the

PAMAP2_Dataset classification model

from Chapter 5 to implement an Android

Activity Tracking app.

Table P-2.  (continued)

Preface

xxiii

�Abbreviations
The book frequently uses abbreviations for the following terms:

•	 AI: Artificial intelligence

•	 DM: Data mining

•	 ML: Machine learning

•	 CML: Classic machine learning

•	 DL: Deep learning

•	 NLP: Natural language processing

•	 MLG: Machine learning gates, a methodology for developing

ML apps

•	 RF: Random forest algorithm

•	 NB: Naive Bayes algorithm

•	 KNN: K-nearest neighbor algorithm

•	 SVM: Support vector machine algorithm

Table P-3.  Sample Project Summary Table

Project: Creating Models
Source: creating_models.zip

Type: Android

Notes: A simple Android app to demonstrate use of the Android Weka API to create a classification

model

File Description

app->src->main->libs Android-Weka-3-8-1.jar External jar file for the Android Weka library

app->src->main->java MainActivity.java All of the project source code is in this Android

activity.

Preface

1
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_1

CHAPTER 1

Introduction
Chapter 1 establishes the foundation for the book.

It describes what the book will achieve, who the book is intended for, why machine

learning (ML) is important, why Java makes sense, and how you can deploy Java ML

solutions.

The chapter includes the following:

•	 A review all of the terminology of AI and its sub-fields including

machine learning

•	 Why ML is important and why Java is a good choice for

implementation

•	 Setup instructions for the most popular development environments

•	 An introduction to ML-Gates, a development methodology for ML

•	 The business case for ML and monetization strategies

•	 Why this book does not cover deep learning, and why that is a good

thing

•	 When and why you may need deep learning

•	 How to think creatively when exploring ML solutions

•	 An overview of key ML findings

1.1  �Terminology
As artificial intelligence and machine learning have seen a surge in popularity, there has

arisen a lot of confusion with the associated terminology. It seems that everyone uses the

terms differently and inconsistently.

2

Some quick definitions for some of the abbreviations used in the book:

•	 Artificial intelligence (AI): Anything that pretends to be smart.

•	 Machine learning (ML): A generic term that includes the subfields of

deep learning (DL) and classic machine learning (CML).

•	 Deep learning (DL): A class of machine learning algorithms that

utilize neural networks.

•	 Reinforcement learning (RL): A supervised learning style that

receives feedback, but not necessarily for each input.

•	 Neural networks (NN): A computer system modeled on the human

brain and nervous system.

•	 Classic machine learning (CML): A term that more narrowly defines

the set of ML algorithms that excludes the deep learning algorithms.

•	 Data mining (DM): Finding hidden patterns in data, a task typically

performed by people.

•	 Machine learning gate (MLG): The book will present a development

methodology called ML-Gates. The gate numbers start at ML-Gate 5

and conclude at ML-Gate 0. MLG3, for example, is the abbreviation

for ML-Gate 3 of the methodology.

•	 Random Forest (RF) algorithm: A learning method for classification,

regression and other tasks, that operates by constructing decision

trees at training time.

•	 Naive Bayes (NB) algorithm: A family of “probabilistic classifiers”

based on applying Bayes’ theorem with strong (naive) independence

assumptions between the features.

•	 K-nearest neighbor (KNN) algorithm: A non-parametric method

used for classification and regression where the input consists of the

k closest training examples in the feature space.

•	 Support vector machine (SVM) algorithm: A supervised learning

model with associated learning algorithm that analyzes data used for

classification and regression.

Chapter 1 Introduction

3

Much of the confusion stems from the various factions or “domains” that use these

terms. In many cases, they created the terms and have been using them for decades

within their domain.

Table 1-1 shows the domains that have historically claimed ownership to each of the

terms. The terms are not new. Artificial intelligence is a general term. AI first appeared

back in the 1970s.

Table 1-1.  AI Definitions and Domains

Term Definition Domain

Statistics Quantifies the data. DM, ML, DL all use statistics to

make decisions.

Math departments

Artificial

intelligence (AI)

The study of how to create intelligent agents.

Anything that pretends to be smart. We program a

computer to behave as an intelligent agent. It does

not have to involve learning or induction.

Historical,

Marketing, Trending.

Data mining (DM) Explains and recognizes meaningful patterns.

Unsupervised methods. Discovers the hidden
patterns in your data that can

be used by people to make decisions.

A complete commercial process flow,

often on large data sets (Big Data).

Business

world, business

intelligence

Machine learning (ML) A large branch within AI in which we build models

to predict outcomes. Uses algorithms and has

a well-defined objective. We generalize existing

knowledge to new data. It’s about learning a model

to classify objects.

Academic

departments

Deep learning (DL) Applies neural networks for ML. Pattern

recognition is an important task.

Trending

The definitions in Table 1-1 represent my consolidated understanding after reading

a vast amount of research and speaking with industry experts. You can find huge

philosophical debates online supporting or refuting these definitions.

Chapter 1 Introduction

4

Do not get hung up on the terminology. Usage of the terms often comes down to domain

perspective of the entity involved. A mathematics major who is doing research on DL

algorithms will describe things differently than a developer who is trying to solve a problem

by writing application software. The following is a key distinction from the definitions:

Data mining is all about humans discovering the hidden patterns in data,
while machine learning automates the process and allows the computer
to perform the work through the use of algorithms.

It is helpful to think about each of these terms in context of “infrastructure” and

“algorithms.” Figure 1-1 shows a graphical representation of these relationships. Notice

that statistics are the underlying foundation, while “artificial intelligence” on the right-

hand side includes everything within each of the additional subfields of DM, ML, and DL.

Machine learning is all about the practice of selecting and applying
algorithms to our data.

I will discuss algorithms in detail in Chapter 3. The algorithms are the secret sauce

that enables the machine to find the hidden patterns in our data.

Figure 1-1.  Artificial intelligence subfield relationships

Chapter 1 Introduction

5

1.2  �Historical
The term “artificial intelligence” is hardly new. It has actually been in use since the 1970s.

A quick scan of reference books will provide a variety of definitions that have in fact

changed over the decades. Figure 1-2 shows a representation of 1970s AI, a robot named

Shakey, alongside a representation of what it might look like today.

Figure 1-2.  AI, past and present

Most historians agree that there have been a couple of “AI winters.” They represent

periods of time when AI fell out of favor for various reasons, something akin to a

technological “ice age.” They are characterized by a trend that begins with pessimism

in the research community, followed by pessimisms in the media, and finally followed

by severe cutbacks in funding. These periods, along with some historical context, are

summarized in Table 1-2.

Chapter 1 Introduction

6

It is important to understand why these AI winters happened. If we are going to

make an investment to learn and deploy ML solutions, we want to be certain another AI

winter is not imminent.

Is another AI winter on the horizon? Some people believe so, and they raise three

possibilities:

•	 Blame it on statistics: AI is headed in the wrong direction because

of its heavy reliance on statistical techniques. Recall from Figure 1-1

that statistics are the foundation of AI and ML.

•	 Machines run amuck: Top researchers suggest another AI winter

could happen because misuse of the technology will lead to its

demise. In 2015, an open letter to ban development and use of

autonomous weapons was signed by Elon Musk, Steven Hawking,

Steve Wozniak, and 3,000 AI and robotics researchers.

Table 1-2.  History of AI and “Winter” Periods

Period Context

1974 The UK parliament publishes research that AI algorithms would grind to a halt on “real

world” problems. This setback triggers global funding cuts including at DARPA. The crisis

is blamed on “unrealistic predictions” and “increasing exaggeration” of the technology.

1977 AI WINTER 1

1984-1987 Enthusiasm for AI spirals out of control in the 1980s, leading to another collapse of the

billion-dollar AI industry.

1990 AI WINTER 2 as AI again reaches a low-water mark.

2002 AI researcher Rodney Brooks complains that “there is a stupid myth out there that AI

has failed.”

2005 Ray Kurzweil proclaims, “Many observers still think that the AI winter was the end of

the story ... yet today many thousands of applications are deeply embedded in the

infrastructure of every industry.”

2010 AI becomes widely used and well funded again. Machine learning gains prominence.

Chapter 1 Introduction

7

•	 Fake data: Data is the fuel for machine learning (more about this in

Chapter 2). Proponents of this argument suggest that ever increasing

entropy will continue to degrade global data integrity to a point where

ML algorithms will become invalid and worthless. This is a relevant

argument in 2018. I will discuss the many types of data in Chapter 2.

It seems that another AI winter is not likely in the near future because ML is so

promising and because of the availability of high-quality data with which we can fuel it.

Much of our existing data today is not high quality, but we can mitigate this risk by

retaining control of the source data our models will rely upon.

Cutbacks in government funding caused the previous AI winters. Today, private

sector funding is enormous. Just look at some of the VC funding being raised by AI

startups. Similar future cutbacks in government support would no longer have a

significant impact. For ML, it seems the horse is out of the barn for good this time around.

1.3  �Machine Learning Business Case
Whether you are a freelance developer or you work for a large organization with vast

resources available, you must consider the business case before you start to apply

valuable resources to ML deployments.

�Machine Learning Hype
ML is certainly not immune from hype. The book preface listed some of the recent hype

in the media. The goal of this book is to help you overcome the hype and implement real

solutions for problems.

ML and DL are not the only recent technology developments that suffer from

excessive hype. Each of the following technologies has seen some recent degree of hype:

•	 Virtual reality (VR)

•	 Augmented reality (AR)

•	 Bitcoin

Chapter 1 Introduction

8

•	 Block chain

•	 Connected home

•	 Virtual assistants

•	 Internet of Things (IoT)

•	 3D movies

•	 4K television

•	 Machine learning (ML)

•	 Deep learning (DL)

Some technologies become widespread and commonly used, while other simply

fade away. Recall that just a few short years ago 3D movies were expected to totally

overtake traditional films for cinematic release. It did not happen.

It is important for us to continue to monitor the ML and DL technologies closely.

It remains to be seen how things will play out, but ultimately, we can convince ourselves

about the viability of these technologies by experimenting with them, building, and

deploying our own applications.

�Challenges and Concerns
Table 1-3 lists some of the top challenges and concerns highlighted by IT executives

when asked what worries them the most when considering ML and DL initiatives. As

with any IT initiative, there is an opportunity cost associated with implementing it, and

the benefit derived from the initiative must outweigh the opportunity cost, that is, the

cost of forgoing another potential opportunity by proceeding with AI/ML.

Fortunately, there are mitigation strategies available for each of the concerns. These

strategies, summarized below, are even available to small organization and individual

freelance developers.

Chapter 1 Introduction

9

Using the above mitigation strategies, developers can produce some potentially

groundbreaking ML software solutions with a minimal learning curve investment. It is a

great time to be a software developer.

Next, I will take a closer look at ML data science platforms. Such platforms can help

us with the goal of monetizing our machine learning investments. The monetization

strategies can further alleviate some of these challenges and concerns.

�Data Science Platforms
If you ask business leaders about their top ML objectives, you will hear variations of the

following:

•	 Improve organizational efficiency

•	 Make predictive insights into future scenarios or outcomes

•	 Gain a competitive advantage by using AI/ML

•	 Monetize AI/ML

Table 1-3.  Machine Learning Concerns and Mitigation Strategies

ML Concern Mitigation Strategy

Cost of IT

infrastructure

Leverage cloud service providers such as Google GCP, Amazon AWS, Microsoft

Azure

Not enough

experienced staff

Even if we cannot hire data scientists, ML requires developers to start thinking

like data scientists. This does not mean we suddenly require mathematics PhDs.

Organizations can start by adopting a data-first methodology such as ML-Gates

presented later in this chapter.

Cost of data or

analytics platform

There are many very expensive data science platforms; however, we can start

with classic ML using free open source software and achieve impressive results.

Insufficient data

quality

There exists a great deal of low quality data. We can mitigate by relying less on

“social” data and instead focusing on data we can create ourselves. We can also

utilize data derived from sensors that should be free of such bias.

Insufficient data

quantity

Self-generated data or sensor data can be produced at higher scale by

controlling sampling intervals. Integrating data into the project at the early

stages should be part of the ML methodology.

Chapter 1 Introduction

10

Regardless of whether you are an individual or freelance developer, monetization is

one of the most important objectives.

Regardless of organizational size, monetizing ML solutions requires two
building blocks: deploying a data science platform, and following a ML
development methodology.

When it comes to the data science platforms, there are myriad options. It is helpful

to think about them by considering a “build vs. buy” decision process. Table 1-4 shows

some of the typical questions you should ask when making the decision. The decisions

shown are merely guidelines.

So what does it actually mean to “buy” a data science platform? Let’s consider an

example.

Table 1-4.  Data Science Platform: Build vs. Buy Decision

Build vs. Buy Question Decision

Is there a package that exactly solves your problem? Yes: buy

Is there a package that solves many of your requirements? This is the common

case and there is no an easy answer.

Undetermined

Is there an open source package you can consider? Yes: build

Is the package too difficult to implement? Yes: buy

Does your well-defined problem require deep learning? No: maybe

build

Is analytics a critical differentiator for your business? Yes: maybe

build

Is your analytics scenario unique? Yes: build

Is a new kind of data available? Yes: build

Does your domain require you to be agile? Yes: build

Do you have access to the data science talent your problem requires? Do not sell

yourself or your staff short; many developers pick up data science skills quickly.

No: buy

Chapter 1 Introduction

11

You wish to create a recommendation engine for visitors to your website. You

would like to use machine learning to build and train a model using historical product

description data and customer purchase activity on your website. You would then like

to use the model to make real-time recommendations for your site visitors. This is a

common ML use case. You can find offerings from all of the major vendors to help you

implement this solution. Even though you will be “building” your own model using

the chosen vendor’s product, you are actually “buying” the solution from the provider.

Table 1-5 shows how the pricing might break down for this project for several of the

cloud ML providers.

In this example, you accrue costs because of the compute time required to build your

model. With very large data sets and construction of deep learning models, these costs

become significant.

Another common example of “buying” an ML solution is accessing a prebuilt model

using a published API. You can use this method for image detection or natural language

processing where huge models exist which you can leverage simply by calling the API

with your input details, typically using JSON. You will see how to implement this trivial

case later in the book. In this case, most of the service providers charge by the number of

API calls over a given time period.

Table 1-5.  Example ML Cloud Provider Pricing https://cloud.google.com/

ml-engine/docs/pricing, https://aws.amazon.com/aml/pricing/, https://

azure.microsoft.com/en-us/pricing/details/machine-learning-studio/

Provider Function Pricing

Google Cloud ML

Engine

Model building fees

Batch predictions

Real-time predictions

$0.27 per hour (standard machine)

$0.09 per node hour

$0.30 per node hour

Amazon Machine

Learning (AML)

Model building fees

Batch predictions

Real-time predictions

$0.42 per hour

$0.10 per 1000 predictions

$.0001 per prediction

Microsoft Azure

ML Studio

Model building fees

Batch predictions

Real-time predictions

$10 per month, $1 per hour (standard)

$100 per month includes 100,000

transactions (API)

Chapter 1 Introduction

https://cloud.google.com/ml-engine/docs/pricing
https://cloud.google.com/ml-engine/docs/pricing
https://aws.amazon.com/aml/pricing/
https://azure.microsoft.com/en-us/pricing/details/machine-learning-studio/
https://azure.microsoft.com/en-us/pricing/details/machine-learning-studio/

12

So what does it mean to “build” a data science platform? Building in this case

refers to acquiring a software package that will provide the building blocks needed to

implement your own AI or ML solution.

The following list shows some of the popular data science platforms:

•	 MathWorks: Creators of the legendary MATLAB package, MathWorks

is a long-time player in the industry.

•	 SAP: The large database player has a complete big data services and

consulting business.

•	 IBM: IBM offers Watson Studio and the IBM Data Science Platform

products.

•	 Microsoft: Microsoft Azure provides a full spectrum of data and

analytics services and resources.

•	 KNIME: KNIME analytics is a Java-based, open, intuitive, integrative

data science platform.

•	 RapidMiner: A commercial Java-based solution.

•	 H2O.ai: A popular open source data science and ML platform.

•	 Dataku: A collaborative data science platform that allows users to

prototype, deploy, and run at scale.

•	 Weka: The Java-based solution you will explore extensively

in this book.

The list includes many of the popular data science platforms, and most of them are

commercial data science platforms. The keyword is commercial. You will take a closer

look at Rapidminer later in the book because it is Java based. The other commercial

solutions are full-featured and have a range of pricing options from license-based to

subscription-based pricing.

The good news is you do not have to make a capital expenditure in order to build a

data science platform because there are some open source alternatives available. You

will take a close look at the Weka package in Chapter 3. Whether you decide to build

or buy, open source alternatives like Weka are a very useful way to get started because

they allow you to build your solution while you are learning, without locking you into an

expensive technology solution.

Chapter 1 Introduction

13

�ML Monetization
One of the best reasons to add ML into your projects is increased potential to monetize.

You can monetize ML in two ways: directly and indirectly.

•	 Indirect monetization: Making ML a part of your product or service.

•	 Direct monetization: Selling ML capabilities to customers who in

turn apply them to solve particular problems or create their own

products or services.

Table 1-6 highlights some of the ways you can monetize ML.

Many of the direct strategies employ DL approaches. In this book, the focus is mainly

on the indirect ML strategies. You will implement several integrated ML apps later in the

book. This strategy is indirect because the ML functionality is not visible to your end user.

Customers are not going to pay more just because you include ML in your

application. However, if you can solve a new problem or provide them capability that

was not previously available, you greatly improve your chances to monetize.

There is not much debate about the rapid growth of AI and ML. Table 1-7 shows

estimates from Bank of America Merrill Lynch and Transparency Market Research. Both

firms show a double-digit cumulative annual growth rate, or CAGR. This impressive

CAGR is consistent with all the hype previously discussed.

Table 1-6.  ML Monetization Approaches

Strategy Type Description

AIaaS Direct AI as a Service, such as Salesforce Einstein or IBM Watson.

MLaaS Direct ML as a Service, such as the Google, Amazon, or Microsoft examples in

Table 1-5.

Model API Indirect You can create models and then publish an API that will allow others to use

your model to make their own predictions, for example.

NLPaaS Direct NLP as a Service. Chatbots such as Apple Siri, Microsoft Cortana, or Amazon

Echo/Alexa. Companies such as Nuance Communications, Speechamatics,

and Vocapia.

Integrated

ML

Indirect You can create a model that helps solve your problem and integrate that

model into your project or app.

Chapter 1 Introduction

14

These CAGRs represent impressive growth. Some of the growth is attributed to DL;

however, you should not discount the possible opportunities available to you with CML,

especially for mobile devices.

�The Case for Classic Machine Learning on Mobile
Classic machine learning is not a very commonly used term. I will use the term to

indicate that we are excluding deep learning. Figure 1-3 shows the relationship. These

two approaches employ different algorithms, and I will discuss them in Chapter 4.

This book is about implementing CML for widely available computing devices

using Java. In a sense, we are going after the “low-hanging fruit.” CML is much easier to

implement than DL, but many of the functions we can achieve are no less astounding.

Figure 1-3.  Classic machine learning relationship diagram

Table 1-7.  AI and ML Explosive Growth

Firm Domain Growth CAGR

Bank of America Merrill Lynch AI US$58 bn in 2015 toUS$153 bn in 2020 27%

Transparency Market Research ML US$1.07 bn in 2106 toUS$19.86 bn in 2025 38%

Chapter 1 Introduction

15

There is a case for mastering the tools of CML before attempting to create DL

solutions. Table 1-8 highlights some of the key differences between development and

deployment of CML and DL solutions.

Table 1-8.  Comparison of Classic Machine Learning and Deep Learning

Classic machine learning Deep learning

Algorithms
Algorithms are mostly commoditized. You do

not need to spend a lot of time choosing

the best algorithm or tweaking algorithms.

Algorithms are easier to interpret and

understand.

There is a lot of new research behind neural

network algorithms. A lot of theory is involved

and a lot of tweaking is required to find the best

algorithm for your application.

Data requirements
Modest amounts of data are required. You can

generate your own data in certain applications.

Huge amounts of data are required to train DL

models. Most entities lack sufficient data to create

their own DL models.

Performance
Sufficient performance for many mobile, web

app, or embedded device environments.

The recent growth in deep learning neural

network algorithms is largely due to their ability to

outperform CML algorithms.

Language
Many Java tools are available, both open

source and commercial.

Most DL libraries and tools are Python or

C++ based, with the exception of Java-based

DL4J. There are often Java wrappers available for

some of the popular C++ DL engines.

Model creation
Model size can be modest. Possible to create

models on desktop environments. Easy to

embed in mobile devices or embedded devices.

Model size can be huge. Difficult to embed models

into mobile apps. Large CPU/GPU resources

required to create models.

(continued)

Chapter 1 Introduction

16

For mobile devices and embedded devices, CML makes a lot of sense. CML

outperforms DL for smaller data sets, as shown on the left side of the chart in Figure 1-7.

It is possible to create CML models with a single modern CPU in a reasonable

amount of time. CML started on the desktop. It does not require huge compute resources

such as multiple CPU/GPU, which is often the case when building DL solutions.

The interesting opportunity arises when you build your models on the desktop and

then deploy them to the mobile device either directly or through API interface.

Figure 1-4 shows a breakdown of funding by AI category according to Venture Scanning.

Table 1-8.  (continued)

Classic machine learning Deep learning

Typical use cases
Regression

Clustering

Classification

Specific use cases for your data

Image classification

Speech

Computer vision

Playing games

Self-driving cars

Pattern recognition

Sound synthesis

Art creation

Photo classification

Anomaly (fraud) detection

Behavior analysis

Recommendation engine

Translation

Natural language processing

Facial recognition

Monetization
Indirect ML Model APIsMLaaS

Chapter 1 Introduction

17

The data show that ML for mobile apps has approximately triple the funding of the

next closest area, NLP. The categories included show that many of the common DL

fields, such as computer vision, NLP, speech, and video recognition, have been included

as a specific category. This allows us to assume that a significant portion of the ML apps

category is classic machine learning.

Figure 1-4.  Funding by AI category

Chapter 1 Introduction

18

1.4  �Deep Learning
I will not cover deep learning in this book because we can accomplish so much more

easily with CML. However, in this short section I will cover a few key points of DL to help

identify when CML might not be sufficient to solve an ML problem.

Morpheus described the dilemma we face when pursuing ML in the motion picture

“The Matrix” (see also Figure 1-5):

“You take the blue pill, the story ends; you wake up in your bed and believe
whatever you want to believe. You take the red pill, you stay in Wonderland,
and I show you how deep the rabbit hole goes.”

Deep learning is a sort of Wonderland. It is responsible for all of the hype we have in

the field today. However, it has achieved that hype for a very good reason.

You will often hear it stated the DL operates at scale. What does this mean exactly?

It is a performance argument, and performance is obviously very important. Figure 1-6

shows a relationship between performance and data set size for CML and DL.

Figure 1-5.  Machine learning red pill/blue pill metaphor

Chapter 1 Introduction

19

The chart shows that CML slightly outperforms DL for smaller data set sizes. The

question is, how small is small? When we design ML apps, we need to consider which

side of the point of inflection the data set size resides. There is no easy answer. If there

were, we would place the actual numbers on the x-axis scale. It depends on your specific

situation and you will need to make the decision about which approach to use when you

design the solution.

Fortunately, we have tools that enable us to define the performance of our CML

models. In Chapters 4 and 5, you will look at how to employ the Weka workbench to show

you if increasing your data set size actually leads to increased performance of the model.

�Identifying DL Applications
Deep learning has demonstrated superior results versus CML in many specific areas

including speech, natural language processing, computer vision, playing games, self-

driving cars, pattern recognition, sound synthesis, art creation, photo classification,

irregularity (fraud) detection, recommendation engine, behavior analysis, translation,

just to name a few.

As you gain experience with ML, you begin to develop a feel for when a project is a

good candidate for DL.

Figure 1-6.  Deep learning operating at scale

Chapter 1 Introduction

20

Deep networks work well when

•	 Simpler CML models are not achieving the accuracy you desire.

•	 You have complex pattern matching requirements.

•	 You have the dimension of time in your data (sequences).

If you do decide to pursue a DL solution, you can consider the following deep

network architectures:

•	 Unsupervised pre-trained network (UPN) including deep belief

networks (DBN) and generative adversarial networks (GAN)

•	 Convolutional neural network (CNN)

•	 Recurrent neural network (RNN) including long short-term memory

(LSTM)

•	 Recursive neural networks

I will talk more about algorithms in Chapter 4. When designing CML solutions,

you can start by identifying the algorithm class of CML you are pursuing, such as

classification or clustering. Then you can easily experiment with algorithms within the

class to find the best solution. In DL, it is not as simple. You need to match your data to

specific network architectures, a topic that is beyond the scope of this book.

While building deep networks is more complicated and resource intensive, as

described in Table 1-8, tuning deep networks is equally challenging. This is because,

regardless of the DL architecture you choose, you define deep learning networks using

neural networks that are comprised of a large number of parameters, layers, and weights.

There are many methods used to tune these networks including the methods in Table 1-9.

Table 1-9.  Tuning Methods for DL Networks

Tuning methods for DL neural networks

Back propagation Stochastic gradient descent

Learning rate decay Dropout

Max pooling Batch normalization

Long short-term memory Skipgram

Continuous bag of words Transfer learning

Chapter 1 Introduction

21

As the table suggests, DL is complicated. The AI engines available for DL try to

simplify the process. Table 1-10 shows many of the popular AI engines that include DL

libraries. In this book, you will focus on CML solutions for Java developers.

When you create DL solutions there are not as many Java tools and libraries

available. DL4J and Spark ML are the two most common Java-based packages that can

handle DL. DL4J is built from the ground up with DL in mind, whereas the popular

Spark open source project has recently added some basic DL capabilities. Some of the

excellent C++ libraries do provide Java wrappers, such as Apache MXNet and OpenCV.

Table 1-10.  AI Engines with Deep Learning Libraries

Package Description Language

Theano Powerful general-purpose tool for mathematical programming. Developed

to facilitate deep learning. High-level language and compiler for GPU.

Python

Tensor

Flow

Library for all types of numerical computation associated with deep

learning. Heavily inspired by Theano. Data flow graphs represent the

ways multi-dimensional arrays (tensors) communicate. (Google)

C++ and

Python

CNTK Computational Network Toolkit. Release by Microsoft Research under a

permissive license.

C++

Caffe Clean and extensible design. Based on the AlexNet that won the 2012

ImageNet challenge.

(Facebook support)

C++ and

Python

DL4J Java-based open source deep learning library (Apache 2.0 license). Uses a multi-

dimensional array class with linear algebra and matrix manipulation. (Skymind)

Java

Torch Open source, scientific computing framework optimized for use with GPUs. C

Spark

MLlib

A fast and general engine for large-scale distributed data processing. MLlib is

the machine learning library. Huge user base. DL support is growing.

Java

Apache

MXNet

Open source Apache project. Used by AWS. State of the art models: CNN and

LSTM. Scalable. Founded by University of Washington and Carnegie Mellon

University.

C++Java

Wrapper

Keras Powerful, easy-to-use library for developing and evaluating DL models. Best

of Theano and Tensor flow.

Python

OpenCV Open source computer vision library that can be integrated for Android. C++Java

Wrapper

Chapter 1 Introduction

22

While it is entirely possibly that DL can solve your unique problem, this book

wants to encourage you to think about solving your problem, at least initially, by using

CML. The bottom line before we move onto ML methodology and some of the technical

setup topics is the following:

Deep learning is amazing, but in this book, we resist the temptation and
favor classic machine learning, simply because there are so many equally
amazing things it can accomplish with far less trouble.

In the rest of the book, we will choose the blue pill and stay in the comfortable

simulated reality of the matrix with CML.

1.5  �ML-Gates Methodology
Perhaps the biggest challenge of producing ML applications is training yourself to think

differently about the design and architecture of the project. You need a new data-driven

methodology. Figure 1-7 introduces the ML-Gates. The methodology uses these six gates

to help organize CML and DL development projects. Each project begins with ML-Gate 6

and proceeds to completion at ML-Gate 0. The ML-Gates proceed in a decreasing order.

Think of them as leading to the eventual launch or deployment of the ML project.

Chapter 1 Introduction

23

As developers, we write a lot of code. When we take on new projects, we typically just

start coding until we reach the deliverable product. With this approach, we typically end

up with heavily coded apps.

With ML, we want to flip that methodology on its head. We instead are trying to achieve

data-heavy apps with minimal code. Minimally coded apps are much easier to support.

�ML-Gate 6: Identify the Well-Defined Problem
It all starts with a well-defined problem. You need to think a bit more narrowly in this

phase than you do when undertaking traditional non-ML projects. This can result in

creating ML modules that you integrate into the larger system.

To illustrate this, let’s consider an example project with client requirements.

For the project, you map the client requirements to well-defined ML solutions.

Table 1-11 shows the original client requirements mapped to the ML models.

Figure 1-7.  ML-Gates, a machine learning development methodology

Chapter 1 Introduction

24

In this example, the client wants an in-store shopping app. These are perfectly valid

requirements, but these high-level requirements do not represent well-defined ML

problems. Your client has “expressed” a need to provide an “enhanced user experience.”

What does that really mean? To create an ML solution, you need to think about the

unexpressed or latent needs of the client.

The right column shows how to map the expressed requirements to well-defined ML

solutions. In this case, you are going to build two separate ML models. You are going to

need data for these models, and that leads you to ML-Gate 5.

�ML-Gate 5: Acquire Sufficient Data
Data is the key to any successful ML app. In MLG5, you need to acquire the data. Notice this

is happening well before you write any code. There are several approaches for acquiring

data. You have several options and I will discuss the following in detail in Chapter 2:

•	 Purchase the data from a third party.

•	 Use publicly available data sets.

•	 Use your own data set.

•	 Generate new static data yourself.

•	 Stream data from a real-time source.

Table 1-11.  Mapping Requirements to ML Solution

Initial client requirement Well-defined ML solution

R1: Create a shopping app so

customers inside the physical

store will have an enhanced user

experience.

You identify the need for an in-store location-based solution

to make this app useful. You can use a clever CML approach

to achieve this. More about the implementation at the end of

Chapter 6.

R2: Implement a loyalty program for

shoppers who use the app to help

increase sales.

Loyalty programs are all about saving and recalling

customer data. You can build a ML model using product

inventory data and customer purchase history data

to recommend products to customers, resulting in an

enhanced user experience.

Chapter 1 Introduction

25

�ML-Gate 4: Process/Clean/Visualize the Data
Once you have a well-defined problem and sufficient data, it is time to architect your

solution. The next three gates cover this activity. In MLG4, you need to process, clean,

and then visualize your data.

MLG4 is all about preparing your data for the model construction. You need to

consider techniques such as missing values, normalization, relevance, format, data

types, and data quantity.

Visualization is an important aspect because you strive to be accountable for your

data. Data that is not properly preprocessed can lead to errors when you apply CML or

DL algorithms to the data. For this reason, MLG4 is very important. The old saying about

garbage in, garbage out is something you must avoid.

�ML-Gate 3: Generate a Model
With your data prepared, MLG3 is where you actually create the model. At MLG3, you

will make the initial decision on which algorithm to use.

In Chapter 4, I will cover the Java-based CML environments that can generate models.

I will cover how to create models and how to measure the performance of your models.

One of the powerful design patterns you will use to build models offline for later use

in Java projects. Chapter 5 will cover the import and export of “pre-built” models.

At MLG3, you also must consider version control and updating approaches for your

models. This aspect of managing models is just as important as managing code updates

in non-ML software development.

�ML-Gate 2: Test/Refine the Model
With the initial model created, MLG2 allows you to test and refine the model. It is here

that you are checking the performance of the model to confirm that it will meet your

prediction requirements.

Inference is the process of using the model to make predictions. During this process,

you may find that you need to tweak or optimize the chosen algorithm. You may find that

you need to change your initial algorithm of choice. You might even discover that CML is

not providing the desired results and you need to consider a DL approach.

Passing ML-Gate 2 indicates that the model is ready, and it is time to move on to

MLG1 to integrate the model.

Chapter 1 Introduction

26

�ML-Gate 1: Integrate the Model
At MLG1, it is time to write actual production code. Notice how far back in the

methodology you have pushed the actual code writing. The good news is that you will

not have to write as much code as you normally do because the trained model you have

created will accomplish much of the heavy lifting.

Much of the code you need to write at MLG1 handles the “packaging” of the model.

Later in this chapter, I will discuss potential target environments that can also affect how

the model needs to be packaged.

Typically, you create CML models at MLG3/4 with training data and then utilize the

model to make predictions. At MLG1, you might write additional code to acquire new

real-time data to feed into the model to output a prediction. In Chapter 6, you will see

how to gather sensor data from devices to feed into the model.

MLG1 is where you recognize the coding time savings. It usually only take a few lines

of code to open a prebuilt model and make a new prediction.

This phase of the methodology also includes system testing of the solution.

�ML-Gate 0: Deployment
At MLG0, it is time for deployment of the completed ML solution. You have several

options to deploy your solution because of the cross-platform nature of Java, including

•	 Release a mobile app though an app store such as Google Play.

•	 Ship a standalone software package to your clients.

•	 Provide the software online through web browser access.

•	 Provide API access to your solution.

Regardless of how you deploy your ML solutions, the important thing to
remember at MLG0 is that “ship it and forget it” is wrong.

When we create models, we have to recognize that they should not become static

entities that never change. We need a mechanism to update them and keep them

relevant. ML models help us to avoid the downside of code-heavy apps, but instead we

must effectively manage the models we create so they do not become outdated.

Chapter 1 Introduction

27

�Methodology Summary
You now have covered the necessary background on CML, and you have a methodology

you can use for creating CML applications.

You have probably heard that saying “When you are a hammer, everything looks

like a nail.” After becoming proficient in CML and adopting a data-driven methodology,

you soon discover that most problems have an elegant ML solution for at least for some

aspect of the problem.

Next, you will look at the setup required for Java projects in the book, as well as one

final key ingredient for ML success: creative thinking.

1.6  �The Case for Java
There is always a raging debate about which programming language is the best, which

language you should learn, what’s the best language for kids to start coding in, which

languages are dying, which new languages represent the future or programming, etc.

Java is certainly a big part of these debates. There are many who question the ability

of Java to meet the requirements of a modern developer. Each programming language

has its own strengths and weaknesses.

Exercises in Programming Style by Christina Videira Lopes is interesting because

the author solves a common programming problem in a huge variety of languages while

highlighting the strengths and weaknesses of each style. The book illustrates that we can

use any language to solve a given problem. As programmers, we need to find the best

approach given the constraints of the chosen language. Java certainly has its pro and

cons, and next I will review some reasons why Java works well for CML solutions.

�Java Market
Java has been around since 1995 when it was first released by Sun Microsystems,

which was later acquired by Oracle. One of the benefits of this longevity is the market

penetration it has achieved. The Java market share (Figure 1-8) is the single biggest

reason to target the Java language for CML applications.

Chapter 1 Introduction

28

Java applications compile to bytecode and can run on any Java virtual machine

(JVM) regardless of computer architecture. It is one of the most popular languages with

many millions of developers, particularly for client-server web applications.

When you install Java, Oracle is quick to point out that three billion devices run Java.

It is an impressive claim. If we drill down deeper into the numbers, they do seem to be

justified. Table 1-12 shows some more granular detail of the device breakdown.

Figure 1-8.  Java market

Table 1-12.  Devices Running Java

Device Count

Desktops running Java 1.1 billion

JRE downloads each year 930 million

Mobile phones running Java 3 billion

Blue-ray players 100% run Java

Java cards 1.4 billion manufactured each year

Proprietary boxes Unknown number of devices which include set-top boxes,

printers, web cams, game consoles, car navigation systems,

lottery terminals, parking meters, VOIP phone, utility meters,

industrial controls, etc.

Chapter 1 Introduction

29

The explosion of Android development and the release of Java 8 helped Java to gain

some of its market dominance.

Java’s massive scale is the main reason I prefer it as the language of choice
for CML solutions. Developers only need to master one language to produce
working CML solutions and deploy them to a huge target audience.

For your target environments, the focus will be on the following three areas that

make up the majority of installed Java devices:

•	 Desktops running Java: This category includes personal computers

that can run standalone Java programs or browsers on those

computers that can run Java applets.

•	 Mobile phones running Java: Android mobile devices make up a large

part of this category, which also includes low-cost feature phones. One

of the key findings of ML is the importance of data, and the mobile

phone is arguably the greatest data collection device ever created.

•	 Java cards: This category represents the smallest of the Java

platforms. Java cards allow Java applets to run on embedded devices.

Device manufacturers are responsible for integrating embedded Java

and it is not available for download or installation by consumers.

�Java Versions
Oracle supplies the Java programming language for end users and for developers:

•	 JRE (Java Runtime Environment) is for end users who wish to install

Java so they can run Java applications.

•	 JDK (Java SE Developer Kit) Includes the JRE plus additional tools for

developing, debugging, and monitoring Java applications.

There are four platforms of the Java programming language:

•	 Java Platform, Standard Edition (Java SE)

•	 Java Platform, Enterprise Edition (Java EE), is built on top of Java SE

and includes tools for building network applications such as JSON,

Java Servlet, JavaMail, and WebSocket. Java EE is developed and

released under the Java Community Process.

Chapter 1 Introduction

30

•	 Java Platform, Micro Edition (Java ME), is a small footprint virtual

machine for running applications on small devices.

•	 Java FX is for creating rich internet applications using a lightweight API.

All of the Java platforms consist of a Java Virtual Machine (JVM) and an application

programming interface (API).

Table 1-13 summarizes the current Java releases.

The most recent versions of Java have addressed some of the areas where the

language was lagging behind some of the newer, more trendy languages. Notably,

Java 8 includes the far-reaching feature known as the lambda expression along with

a new operator (->) and a new syntax element. Lambda expressions add functional

programming features and can help to simplify and reduce the amount of code required

to create certain constructs.

In the book, you will not be using lambda expression, nor will you use any of the

many new features added to the language in Java 10. Nonetheless, it is best to run with

the latest updates on either the long-term support release of Java 8 or the currently

supported rapid release of Java 10.

Table 1-13.  Latest Supported Java Releases

Release Description

Java 8 SE build

171

Currently supported long-term-support (LTS) version. Introduces lambda

expressions

Java 10 SE

10.0.1

Currently supported rapid release version. Released March 20 2018. Includes 12

new major features. Latest update was 171.

Android SDK Alternative Java software platform used for developing Android apps.

Includes its own GUI extensive system and mobile device libraries.

Android does not provide the full Java SE standard library.

Android SDK supports Java 6 and some Java 7 features.

Chapter 1 Introduction

31

If you are looking for a comprehensive Java book, Java, The Complete Reference

Tenth Edition from Oracle, which weighs in at over 1,300 pages, is an excellent choice. It

covers all things Java. When it comes to Java performance tuning, Java Performance by

Charlie Hunt and John Binu is the 720-page definitive guide for getting the most out of

Java performance.

�Installing Java
Before installing Java, you should first uninstall all older versions of Java from your

system. Keeping old versions of Java on your system is a security risk. Uninstalling older

versions ensures that Java applications will run with the latest security and performance

environment.

The main Java page and links for all the platform downloads are available at the

following URLs:

https://java.com/en/

https://java.com/en/download/manual.jsp

Java is available for any platform you require. Once you decide which load you

need, proceed to download and install. For the projects in this book, it is recommended

to install the latest stable release of Java 8 SE. For the Android projects, allow Android

Studio to manage your Java release. Android Studio will typically use the latest stable

release of Java 7 until the Android team adds support for Java 8.

Figure 1-9 shows the main Java download page.

Figure 1-10 shows the Java installation.

Figure 1-11 shows the completion of the installation.

Chapter 1 Introduction

https://java.com/en/
https://java.com/en/download/manual.jsp

32

Figure 1-9.  Downloading Java

Chapter 1 Introduction

33

�Java Performance
Steve Jobs once famously said about Java, “It’s this big, heavyweight ball and chain.”

Of course, Apple was never a big fan of the language. One of the results or perhaps the

reason for Java’s longevity is the support and improvements added to the language over

the years. The latest versions of Java offer far more features and performance than the

early versions.

Figure 1-11.  Successful Java SE installation

Figure 1-10.  Installing Java

Chapter 1 Introduction

34

One of the reasons developers have been hesitant to choose Java for ML solutions is

the concern over performance.

Asking which language is “faster” or offers better performance is not really a useful

question. It all depends, of course. The performance of a language depends on its

runtime, the OS, and the actual code. When developers ask, “Which language offers the

best performance for machine learning?” we really should be asking, “Which platform

should I use to accomplish the training and building of machine learning models the

most quickly and easily?”

Creating ML models using algorithms is CPU intensive, especially for DL

applications. This book is about Java, but if you research ML, you know that Python

and C++ are also very popular languages for ML. Creating a fair comparison of the

three languages for ML is not easy, but many researchers have tried to do this and you

can learn from their findings. Since ML is algorithm-based, they often try to choose a

standard algorithm and then implement a comparison with other variables being equal,

such as CPU and operating system.

Java performance is the hardest of the languages to measure because of several

factors including unoptimized code, Java’s JIT compilation approach, and the famous

Java garbage collection. Also, keep in mind that Java and Python may rely on wrappers to

C++ libraries for the actual heavy lifting.

Table 1-14 shows a high-level summary of the performance for a mathematical

algorithm implemented in three different languages on the same CPU and operating system.

To learn more about the underlying research used in the summary, refer to these sources:

•	 Program Speed, Wikipedia, https://en.wikipedia.org/wiki/Java_

performance

•	 A Google research paper comparing the performance of C++, Java,

Scala, and the Go programming language:

https://days2011.scala-lang.org/sites/days2011/files/ws3-1-

Hundt.pdf

•	 Comparative Study of Six Programming Languages:

https://arxiv.org/ftp/arxiv/papers/1504/1504.00693.pdf

•	 Ivan Zahariev’s blog:

https://blog.famzah.net/2016/02/09/cpp-vs-python-vs-perl-

vs-php-performance-benchmark-2016/

Chapter 1 Introduction

https://en.wikipedia.org/wiki/Java_performance
https://en.wikipedia.org/wiki/Java_performance
https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://arxiv.org/ftp/arxiv/papers/1504/1504.00693.pdf
https://blog.famzah.net/2016/02/09/cpp-vs-python-vs-perl-vs-php-performance-benchmark-2016/
https://blog.famzah.net/2016/02/09/cpp-vs-python-vs-perl-vs-php-performance-benchmark-2016/

35

Table 1-14 is certainly not an exhaustive performance benchmark, but does provide

some insight to relative performance with possible explanation for the differences.

When you create prebuilt models for your ML solutions, it is more important to focus

on the data quality and algorithm selection than programming language. You should

use the programming language that most easily and accurately allows you to express the

problem you are trying to solve.

Java skeptics frequently ask, “Is Java a suitable programming language for

implementing deep learning?” The short answer: absolutely! It has sufficient

performance, and all the required math and statistical libraries are available. Earlier

in the chapter, I listed DL4J as the main Java package written entirely in Java. DL4J is

a fantastic package and its capabilities rival all of the large players in DL. Bottom line:

With multi-node computing available to us in the cloud, we have the option to easily add

more resources to computationally intensive operations. Scalability is one of the great

advantages provided by cloud-based platforms I will discuss in Chapter 2.

1.7  �Development Environments
There are many IDEs available to Java developers. Table 1-15 shows the most popular

choices for running Java on the desktop or device. There are also some online browser-

based cloud Java IDEs such as Codenvy, Eclipse Che, and Koding, which I will not cover.

Table 1-14.  Language Performance Comparison - Mathematical Algorithms

Language % Slower than C++ Note

C++ - C++ compiles to native, so it is first.

Java 8 15% Java produces bytecode for platform independence. Java’s

“kryptonite” has been its garbage collection (GC) overhead.

There have been many improvements made to the Java GC

algorithms over the years.

Kotlin 15+% Kotlin also produces Java Virtual Machine (JVM) bytecode.

Typically, Kotlin is as fast as Java.

Python 55% Python has high-level data types and dynamic typing, so the

runtime has to work harder than Java.

Chapter 1 Introduction

36

The book uses two development environments for the projects depending on the

target platform:

•	 Google’s Android Studio helps developers create apps for mobile

devices running Android.

•	 The Eclipse IDE for Java projects that do not target Android mobile

devices. This includes Java programs that target the desktop, the

browser, or non-Android devices such as the Raspberry Pi.

�Android Studio
Google makes it easy to get started with Android Studio. The latest stable release build is

version 3.1.2 available April 2018. The download page is https://developer.android.

com/studio/.

Figure 1-12 shows the available platforms. Note that the files and disk requirements

are large. The download for 64-bit Windows is over 700MB.

Table 1-15.  Java IDE Summary

IDE Name Features

Android

Studio

Android-specific development environment from Google. It has become the de facto

IDE for Android. Offers a huge number of useful development and debugging tools.

IntelliJ IDEA Full featured, professional IDE. Annual fee. Many developers love IntelliJ. Android

Studio was based on IntelliJ.

Eclipse Free open source IDE. Eclipse public license. Supports Git. Huge number of plugins

available.

BlueJ Lightweight development environment. Comes packaged with Raspberry Pi.

NetBeans Free open source IDE, alternative to Eclipse. The open source project is moving to

Apache, which should increase its popularity.

Chapter 1 Introduction

https://developer.android.com/studio/
https://developer.android.com/studio/

37

Android Studio has really been improving the last couple of years. The full featured

development environment for Android includes

•	 Kotlin version 1.2.30

•	 Performance tools

•	 Real-time network profiler

•	 Visual GUI layout editor

•	 Instant run

•	 Fast emulator

•	 Flexible Gradle build system

•	 Intelligent code editor

Figure 1-13 shows the show the Android Studio installation setup.

Figure 1-12.  Android Studio downloads

Chapter 1 Introduction

38

Figure 1-14 shows the shows the Android Studio opening banner including the

current version 3.1.2.

Android Studio uses the SDK Manager to manage SDK packages. SDK packages are

available for download. The SDK packages are required to compile and release your app

for a specific Android version. The most recent SDK release is Android 8.1 (API level 27),

also known as Oreo. Figure 1-15 shows the Android SDK Manager.

Figure 1-13.  Android Studio install

Figure 1-14.  Android Studio Version 3.1.2

Chapter 1 Introduction

39

Always keep an eye out for updates to both Android Studio and the SDK
platforms you use. Google frequently releases updates, and you want your
development environment to stay current.

This is especially important for mobile development when end users are constantly

buying the latest devices.

�Eclipse
Android mobile apps are a big part of our CML strategy, but not the only target audience

we have available to us. For non-Android projects, we need a more appropriate

development environment.

Eclipse is the versatile IDE available from the Eclipse foundation. The download

page is https://eclipse.org/downloads. Eclipse is available for all platforms. The

most recent version is Oxygen.3a and the version is 4.7.3a. Similar to Android, Eclipse

uses proceeds through the alphabet and, like Android, is also currently at “O.”

Figure 1-15.  Android Studio SDK Manager

Chapter 1 Introduction

https://eclipse.org/downloads

40

Similar to the options available for the Java distributions, developers can choose either

•	 Eclipse IDE for Java EE Developers (includes extra tools for web

apps), or

•	 Eclipse IDE for Java Developers

The latter is sufficient for the projects in this book. Figure 1-16 shows the Eclipse IDE

for Java Developers installation banner.

Eclipse makes it easy to get started with your Java projects. Once installed, you will

have the option to

•	 Create new projects.

•	 Import projects from existing source code.

•	 Check out or clone projects from the Git source code control system.

The Git checkout feature is very useful, and you can use that option to get started

quickly with the book projects. Figure 1-17 shows the Eclipse IDE for Java Developers

startup page with the various options.

Figure 1-16.  Eclipse install

Chapter 1 Introduction

41

One of the big advantages of Eclipse is the huge number of plugins available. There

are plugins for almost every imaginable integration. Machine learning is no exception.

Once you get a feel for the types of ML projects you are producing, you may find the

Eclipse plugins in Table 1-16 to be useful. For the book projects, you will use a basic

Eclipse installation without plugins.

Figure 1-17.  Eclipse IDE for Java developers

Chapter 1 Introduction

42

It is important to keep your Eclipse environment up to date. Figure 1-18 shows

the Eclipse startup banner with the current version. Just as with your Java installation,

Android Studio, and Android SDK platforms, always keep your Eclipse IDE up to date.

Figure 1-18.  Eclipse IDE for Java developers

Table 1-16.  Eclipse IDE Machine Learning Related Plugins

Eclipse ML plugin Description

AWS Toolkit Helps Java developers integrate to the AWS services to their Java projects.

Google Cloud Tools Google-sponsored open source plugin that supports the Google Cloud

Platform. Cloud Tools for Eclipse enables you to create, import, edit, build,

run, and debug in the Google cloud.

Microsoft Azure Toolkit The Azure Toolkit for Eclipse allows you to create, develop, configure, test,

and deploy lightweight, highly available, and scalable Java web apps.

R for Data Science Eclipse has several plugins to support the R statistical language.

Eclipse IoT 80 plugins available.

Eclipse SmartHome 47 plugins available.

Quant Components Open source framework for financial time series and algorithmic trading.

Chapter 1 Introduction

43

�Net Beans IDE
The Net Beans IDE is an alternative for Java developers who do not want to use Eclipse.

The download page is https://netbeans.org.downloads.

Eclipse has gained more users over the years, but NetBeans still has its supporters.

Recently, Oracle announced that it would turn over NetBeans to the Apache Foundation

for future support. Fans of NetBeans see this as a positive development because now the

long-time supporters of NetBeans will be able to continue its development.

I will not be using NetBeans in the book, but you are free to do so. The projects

should import easily. It is an IDE worth keeping an eye on in the future. Figure 1-19

shows the NetBeans main page.

Figure 1-19.  NetBeans IDE

Chapter 1 Introduction

https://netbeans.org.downloads

44

1.8  �Competitive Advantage
Earlier in this chapter, you developed a strategy to deploy CML apps for Java-

based devices. You also established a methodology, the ML-Gates for data-driven

development. The goal is to create a competitive advantage and monetize your ML

solutions. Achieving this goal takes more than just using the development tools that are

readily available to everyone.

This section will discuss two additional ingredients needed to help create a

competitive advantage when designing ML solutions:

•	 Creative thinking

•	 Bridging domains

One of the key success factors when trying to create ML solutions is creativity. You

need to think out of the box. It is a cliché, but it often takes a slightly different perspective

to discover a unique ML solution.

�Standing on the Shoulders of Giants
If you visit the mathematics, computer science, or physics departments of your local

college or university, you will find academic research papers plastered on the corridor

walls. Upon closer look, you will find that many of these works focus on machine

learning. If you search online, you will also find many of these papers.

PhD students in mathematics or statistics usually author these papers. They typically

spend months or even years on the particular topic they are exploring. These papers are

often difficult for developers to understand. Sometimes we may only grasp a fraction of

the content. However, these papers are a very useful resource in our search for creative

ideas.

Academic research papers can provide valuable ideas for content and
approaches we can utilize in our machine learning apps.

Leveraging the findings of these researchers could potentially help you identify a

solution, or save you a lot of time. If you find a relevant research paper, do not be afraid

to reach out to the author. In most cases, they are not software developers, and you could

form an interesting partnership.

Chapter 1 Introduction

45

�Bridging Domains
Everybody has access to the technologies in this book. How can we differentiate

ourselves? Recall from Table 1-1 in the beginning of this chapter, ML terminology

originates from different domains. Figure 1-20 shows a graphical view of the domains.

As developers, we approach the problem from the technology domain. With our toolkits,

we occupy a unique position, allowing us to produce Java ML solutions that lie at the

intersection of the domains.

Businesses have the data, the capital ($) to deploy, and many problems they need to

solve. The scientists have the algorithms. As Java developers, we can position ourselves

at the intersection and produce ML solutions. Developers who can best understand

the business problem, connect the problem to the available data, and apply the most

appropriate algorithm will be in the best position for monetization.

Figure 1-20.  Domain relationships

Chapter 1 Introduction

46

1.9  �Chapter Summary
I have covered quite a few broad topic areas in this chapter. A quick review of the key

findings follows. Keep them in mind as you proceed through the rest of the book.

�Key Findings

	 1.	 Adopt a data-driven methodology.

	 2.	 “Set it and forget it” is wrong. You need to update models

frequently to reflect changes in the underlying data.

	 3.	 Adopt a data-driven methodology like the ML-Gates.

	 4.	 Always start with a clearly defined problem.

	 5.	 DL is not required to produce amazing solutions. You can use

CML techniques, which are far easier to build and implement for

many real-world scenarios.

	 6.	 DL can operate at scale. The more data you can feed to the model,

the more accurate it becomes.

	 7.	 CML performs better for smaller data sets.

	 8.	 Think creatively to gain a competitive advantage.

	 9.	 Scientific research papers can provide an excellent source of

ideas.

	 10.	 Think across domains. Bridge the gap between the technology,

business, and science domains.

Chapter 1 Introduction

47
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_2

CHAPTER 2

Data: The Fuel
for Machine Learning
Machine learning is all about data. This chapter will explore the many aspects of data

with the goal of meeting the following objectives:

•	 Review the data explosion and three megatrends that are making this

machine learning revolution possible.

•	 Introduce the importance of data and reprogramming yourself to

think like a data scientist.

•	 Review different categories of data.

•	 Review various formats of unstructured data, including CSV, ARFF,

and JSON.

•	 Use the OpenOffice Calc program to prepare CSV data.

•	 Find and use publicly available data.

•	 Introduce techniques for creating your own data.

•	 Introduce preprocessing techniques to enhance the quality of your

data.

•	 Visualize data with JavaScript (Project).

•	 Implement data visualization for Android (Project).

48

2.1  �Megatrends
Why is the ML revolution happening now? It is not the first time. In Chapter 1, I reviewed

the previous AI booms and subsequent winter periods. How do we know if this time it is

for real? Three transformational megatrends are responsible for the movement.

Three megatrends have paved the way for the machine learning revolution
we are now experiencing:

1)	 Explosion of data

2)	 Access to highly scalable computing resources

3)	 Advancement in algorithms

It is worth diving a little deeper into each of these megatrends.

�Explosion of Data
You have probably seen those crazy statistics about the amount of data created on a

daily basis. There is a widely quoted statistic from IBM that states that 90% of all data

on the Internet today was created since 2016. Large amounts of data certainly existed

prior to 2016, so the study confirms what we already knew: people and devices today are

pumping out huge amounts of data at an unprecedented rate. IBM stated that more than

2.5 exabytes (2.5 billion gigabytes) of data is generated every day.

How much data is actually out there, and what are the sources of the data? It is hard

to know with any degree of certainty. The data can be broken down into the following

categories:

•	 Internet social media

•	 Internet non-social media

•	 Mobile device data

•	 Sensor data

•	 Public data

•	 Government data

•	 Private data

•	 Synthetic data

Chapter 2 Data: The Fuel for Machine Learning

49

Table 2-1 attempts to provide some insight into each category.

Table 2-1.  Data Categories

Data Category Observation

Internet data There are 3.8 billion desktop global Internet users.

In 2017, users watched 4 million YouTube videos per minute.

There were 5 billion daily Google searches in 2017.

Social media data There are 655 million tweets per day.

There are 1 million new social media accounts per day.

There are 2 billion active Facebook users.

67 million Instagram posts are added each day

Mobile device data 22 billion text messages were sent each day in 2017.

There are 3.5 billion mobile device Internet users.

40 million wearable devices sold in 2017.

91% of people own a mobile device.

Sensor data 56% of people own a smart device.

There will be 25 billion connected things by 2020.

Individual sensors could top 1 trillion by 2020.

The Internet of Things (IoT) market is all about sensors. IoT market projected

growth from US$ 3 trillion in 2014 to US$ 9 trillion in 2020, a 20% CAGR.

(continued)

Chapter 2 Data: The Fuel for Machine Learning

50

As Table 2-1 suggests, there are many types of data. If you require a specific type of

data for your ML project, a quick Google search will probably identify a dataset that can

at least get you started on a proof of concept.

We can digitize practically anything today. Once digitized, the data becomes
eligible for machine learning.

Table 2-1.  (continued)

Data Category Observation

Public data Research institutions make available large datasets. For example, University of

California Irvine (UCI) has many useful datasets:

http://archive.ics.uci.edu/ml/index.php

Awesome public datasets on GitHub:

https://github.com/awesomedata/awesome-public-datasets

CIA World Factbook offers information on the history, population, economy,

government, infrastructure, and military of 267 countries:

www.cia.gov/library/publications/the-world-factbook/

AWS public datasets is a huge resource of public data, including the 1000

Genome Project and NASA’s database of satellite imagery of Earth:

https://aws.amazon.com/datasets

Government data Census data.

Debt and financing data.

Election commission data.

The US Government pledged to make all government public data freely

available online:

https://data.gov

Private data Individuals increasingly are collecting their own data due to availability of low

cost sensor devices and smartphones with accelerometers and GPS capability.

Synthetic data Computer-generated data that mimics real data.

Chapter 2 Data: The Fuel for Machine Learning

http://archive.ics.uci.edu/ml/index.php
https://github.com/awesomedata/awesome-public-datasets
http://www.cia.gov/library/publications/the-world-factbook/
https://aws.amazon.com/datasets
https://data.gov

51

You have heard the term “big data.” Similar to the terminology used in ML, the usage

of this term is also inconsistent. Table 2-2 shows some guidelines for relative data sizes

and the related architectures.

Typically, big data refers to datasets larger than one terabyte (TB).

You may not be working with data at big data scale on your projects, but it is

important to consider data scalability when designing ML projects. Much of the data

existing today is unstructured. This means that it is not labelled or classified. It is often

text-based and does not really follow a predefined structure. I will discuss unstructured

data in Chapter 3.

Both Chapters 2 and 3 present tools to help tame the data explosion.

�Highly Scalable Computing Resources
The explosion in data would not be possible if not for the ability to store and process

the data. The second megatrend is the highly scalable computing resources we have

available to us today.

Cloud service providers have changed the game for practitioners of ML. They give us

on-demand highly scalable access to storage and computing resources. These resources

are useful for many ML functions, such as the following:

•	 Storage: We can use cloud services as a repository for our ML data.

•	 CPU resources: We can create ML models more quickly by

configuring highly available distributed compute clusters with a large

CPU capacity.

Table 2-2.  Relative Data Sizes

Name Size Database Architecture

Normal data < 1GB Flat/SQL Local

Small data 1GB - 100GB NoSQL Local

Medium data 100GB - 1TB NoSQL Distributed

Big data > 1TB HadoopSpark Distributed multiple clusters

Chapter 2 Data: The Fuel for Machine Learning

52

•	 Hosting: We can provide hosted access to our data or ML models

using API or other interface methods.

•	 Tools: All of the cloud providers have a full suite of tools that we can

use to create ML solutions.

Chapter 3 will take a closer look at the potential ML use cases with cloud providers.

�Advancement in Algorithms
The third megatrend is the advancement in ML algorithms. ML algorithms have been

around for quite some time. However, once the explosion in data and IaaS providers

began to emerge, a renewed effort to optimize their performance began to take place.

Advancements for DL neural network algorithms were the most significant. However,

CML algorithm advancements also took place. Chapter 4 will explain the algorithms in

detail.

2.2  �Think Like a Data Scientist
Data is the single most important ingredient for a successful ML project. You need high

quality data, and you need lots of it.

DM is all about working with your data to identify hidden patterns. ML takes

the additional step of applying algorithms to process the data. Data is the essential

ingredient for each discipline. In both DM and ML, you are often working with large,

loosely structured data sets.

You need a good understanding of your data before you can construct ML models

that effectively process your data. In The Signal and the Noise by Nate Silver, the author

encourages us to take ownership for our data. This is really the essence of thinking like a

data scientist.

As software engineers, we are used to thinking about the code. It has always been all

about the code for us. Recall from Chapter 1, I flipped the development methodology on

its head, placing the data up front in the ML-Gates and holding the coding phase until

the very end.

Chapter 2 Data: The Fuel for Machine Learning

53

Mr. Silver summed it up perfectly:

“The numbers have no way of speaking for themselves. We speak for them.
Data-driven predictions can succeed, and they can fail. It is when we deny
our role in the process that the odds of failure rise. Before we demand more
of our data, we need to demand more of ourselves.”

In today’s ML world, you must start by considering how data can influence your

solution, decide what data you have, how you can organize it, and then let the data drive

your software architecture.

�Data Nomenclature
A first step in taking ownership for your data is classifying the type of data itself. Before

you can understand which algorithm is best suited for your well-defined ML problem,

you need to understand the nature and type of the data you possess. Table 2-3 shows the

two broad types of data.

Qualitative data, classified as

•	 Nominal if there is no natural order between the categories

(such as eye color).

•	 Ordinal if an ordering exists (such as test scores or class rankings).

Quantitative data, classified as

•	 Discrete, if the measurements are integers (such as population of a

city or country).

•	 Continuous, if the measurements can take on any value, usually

within some range (such as a person’s height or weight).

Table 2-3.  Summary of General Data Types

Data Type Description Example

Qualitative data Observations fall into separate distinct categories. Data

is discrete because there is a finite number of possible

categories into which each observation may fall.

Favorite color: blue,

green, brown

Quantitative data Quantitative or numerical data arise when the

observations are counts or measurements.

Height of a person

Chapter 2 Data: The Fuel for Machine Learning

54

�Defining Data
Recall from Chapter 1, MLG5 requires you to identify and define your data. Next, you

will perform this task for a dataset that you will use for a project later in the book, the

Android Activity Tracker application.

The data shown in Table 2-4 is from the PAMAP2_Dataset, available from the

University of California Irvine (UCI) machine learning repository mentioned in Chapter 1.

It is freely available data and there are no constraints when using it for research purposes.

You can download the dataset via the link below. The dataset is not included in the book

resources due to its size. The files are large so the download can take a bit of time.

http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring

To collect this data, the researchers asked subjects to wear sensors while performing

various activities. The table shows each of the fields together with a data type assigned.

Table 2-4.  Defining Your Data

Field (column) Units Example Data type

Timestamp Seconds 3.38 Quantitative Continuous

Activity ID 1 lying

2 sitting

3 standing

4 walking

5 running

6 cycling

7 nordic

2 Qualitative Nominal

Heart rate BPM 104 Quantitative Discrete

Sensor 1: Temperature Degrees C 30 Quantitative Discrete

Sensor 1: 3D acceleration ms-2 2.37223 Quantitative Continuous

Sensor 1: 3D acceleration ms-2 8.60074 Quantitative Continuous

Sensor 1: 3D gyroscope rad/s 3.51058 Quantitative Continuous

Sensor 1: 3D magnetometer uT 2.43954 Quantitative Continuous

Sensor 1: Orientation rad 8.76165 Quantitative Continuous

Chapter 2 Data: The Fuel for Machine Learning

http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring

55

Recognizing what type of data you have is the first step in demanding more of

yourself when it comes to your data. You will take a closer look at the PAMAP2_Dataset

in Chapter 7 when you build a classifier for the data.

2.3  �Data Formats
Data format is a key consideration when building ML models. Table 2-5 shows the

important file formats and their common file extensions.

When you locate data for your ML project, it could potentially be in any format. Plain

text files are common. The data files are often .txt or .dat files, both of which are text

files. Many of the data files in the University of California-Irvine repository referenced in

Table 2-1 are .dat text files.

The first step in using text data files for ML is to open them and understand how they

are structured. You can use any text editor. Figure 2-1 shows the subject101.dat file from

the PAMAP2_Dataset.

Table 2-5.  Common Data File Types

File format Filename extension

Text files .txt

.dat

Comma-separated value (CSV) Supported by all spreadsheet packages

including MS Excel and OpenOffice Calc

.csv

Attribute-relation file format Supported by Weka .arff

JavaScript Object Notation (JSON) Standard interchange format widely used

on the Internet

.json

.txt

Chapter 2 Data: The Fuel for Machine Learning

https://doi.org/10.1007/978-1-4842-3951-3_7

56

You can see that spaces separate the data fields. Each row contains 54 values or

columns separated by a single space character. Note that Figure 2-1 does not show all of

the columns. The easiest way to work with datasets for ML is to convert them to CSV. The

first step is to make a copy of the .dat file and then rename it as .csv. Figure 2-2 shows the

list of all files in the PAMAP2_Dataset, with the newly created .csv copy file.

Figure 2-1.  File subject101.dat from the PAMAP2_Dataset opened in a text editor

Chapter 2 Data: The Fuel for Machine Learning

57

Just because you renamed the file as a .csv does not make it so. You must convert

it. It is possible to perform the conversion with your text editor by performing a global

search and replace of the spaces to commas, but there is a better way. You will use a

spreadsheet program.

�CSV Files and Apache OpenOffice
Spreadsheet programs have the advantage of allowing you to do some basic editing to

our data. They also allow you to import or export CSV files easily.

Microsoft Excel can get the job done, but the Apache open source program OpenOffice

is a better choice. OpenOffice contains a spreadsheet, word processor, presentation

package, database, vector graphic editor, and math equation editor. You are interested in

Calc, the spreadsheet program. You are required to download the entire suite.

Calc has several advantages over Excel, including

•	 Calc is free and open source, licensed under the Apache 2.0 software

license. It is part of the OpenOffice suite.

•	 Calc is better at importing and exporting CSV files. There are more

options available, such as escaping text fields in quotation marks (“ ”).

Figure 2-2.  PAMAP2_Dataset after copying the .dat file to .csv

Chapter 2 Data: The Fuel for Machine Learning

58

•	 Calc supports UTF-8 encoding of data fields. This is important,

especially if you have projects that use international or multi-byte

character sets.

•	 Calc supports BOM handling. BOM stands for Byte Order Marker.

Windows systems use the BOM as the first character in every file to

inform applications of the byte order. Files created in Windows that

contain the BOM can be problematic on other platforms, such as

Unix. When you save files in Calc, Calc lets you specify how you want

the BOM handled (very thoughtful; thank you, Apache).

Figure 2-3 shows the installation screen for Apache OpenOffice. The OpenOffice

download link is www.openoffice.org/download/.

Figure 2-3.  Installing Apache OpenOffice

Chapter 2 Data: The Fuel for Machine Learning

http://www.openoffice.org/download/

59

Once you have installed OpenOffice, launch Calc. If you are familiar with the

Microsoft Office suite, you will notice that Calc looks similar. Open the subject101.csv

file you copied earlier. Figure 2-4 shows that Calc recognizes it as a text file and give you

some import options on the text import window.

Calc allows you to select the character set, the field delimiter, and even the column

type for each of the detected fields. The most important setting for this data is to select

the space as the separator. Once you have the space checked, you will see the data

populated correctly in the fields shown at the bottom of the text import window.

Figure 2-4.  OpenOffice Calc importing a CSV file

Chapter 2 Data: The Fuel for Machine Learning

60

After you click OK, Calc will import the data.

The PAMAP2_Dataset you will be using is large. Just the single file
subject101.dat contains 54 columns and 376,417 rows. It is a large
spreadsheet, so give Calc some time to import or export the file.

Figure 2-5 shows the file after importing into Calc.

Figure 2-5.  subject101.dat file imported into OpenOffice Calc

Chapter 2 Data: The Fuel for Machine Learning

61

The advantage of using Calc over a text editor is that once Calc completes the import,

it is easy to view and manipulate the data. Some common operations for manipulating

ML data in Calc are as follows:

•	 You can search for missing values. The data in this file is relatively

clean. The abbreviation “NaN” stands for “Not a Number” and

represents missing values. Column C contains mostly NaN values.

•	 It’s easy to add or delete columns. If you wish to remove a column(s),

just highlight the column, right-click, and delete. Removing

unneeded columns reduces the size and therefor reduces the time

and storage space required to import, export, and train the ML model.

•	 Macros can remove rows or columns based on a condition, such as

the value of a cell. This is useful if, for example, you want to remove

all of the missing value rows in the data. Calc can use Excel macros. It

also allows you to record keystrokes.

•	 You can export a file in true CSV format using “ , ” as the separator

character.

Figure 2-6 shows the save dialog box for the CSV file export. Click the “Keep Current

Format” box to save a CSV file.

Figure 2-6.  Saving the CSV file

Chapter 2 Data: The Fuel for Machine Learning

62

Most ML environments allow the direct import of CSV files, and Apache OpenOffice

Calc is the best way to prepare such files. CSV is the simplest data format you can use for

ML. Next, you will look at additional approaches that are more sophisticated.

�ARFF Files
ARFF is an abbreviation for Attribute-Relation File Format. It is an extension of the CSV

file format. The Weka machine learning environment uses ARFF files to load data. Weka

comes with many sample datasets. The iris flower dataset is one of the most famous in

machine learning. The following code block shows a partial view of the iris.arff dataset

included with the environment:

001 @relation iris-weka.filters.unsupervised.attribute.Remove-R1-2

002 % Iris.arff file available with the Weka distribution (partial file)

003

004 @attribute petallength numeric

005 @attribute petalwidth numeric

006 @attribute class {Iris-setosa,Iris-versicolor,Iris-virginica}

007

008 @data

009 1.4,0.2,Iris-setosa

010 1.4,0.2,Iris-setosa

011 1.3,0.2,Iris-setosa

012 1.7,0.2,Iris-setosa

013 1.5,0.4,Iris-setosa

014 1,0.2,Iris-setosa

015 1.7,0.5,Iris-setosa

016 1.9,0.2,Iris-setosa

017 1.5,0.2,Iris-setosa

018 1.4,0.2,Iris-setosa

019 4.7,1.4,Iris-versicolor

020 4.5,1.5,Iris-versicolor

021 4.9,1.5,Iris-versicolor

022 4,1.3,Iris-versicolor

023 3.3,1,Iris-versicolor

024 4.2,1.3,Iris-versicolor

Chapter 2 Data: The Fuel for Machine Learning

63

025 6.6,2.1,Iris-virginica

026 5.4,2.3,Iris-virginica

027 5.1,1.8,Iris-virginica

Note that the familiar CSV data follows the @data directive at the bottom of the file.

In ARFF files, an additional header at the top provides metadata about the data and

labels. The following describes the differences between CSV and ARFF file formats:

•	 Comments start by preceding the comment line with the percentage

sign, %.

•	 The @relation directive starts the file and allows you to specify the

name of the dataset.

•	 The @attribute directive defines the name and data type of each

attribute in the dataset.

•	 The header section of ARFF files (above the @data directive) can

contain blanks lines.

•	 Nominal data, such as the @attribute class, are followed by the set of

values they can take on, enclosed in curly braces.

•	 CSV data follows the @data directive.

•	 Unknown or missing values in the dataset are specified with the

question mark, ?.

Weka includes conversion tools to convert CSV data to ARFF format. Once you

generate the initial ARFF file, there is no need to convert it again.

�JSON
CSV and ARFF files are very useful. However, the flat structure of the CSV data does

not provide much flexibility. You need an additional tool in your toolbox to help you

represent more complex data structures.

As Java or Android developers, you are probably familiar with JSON. JSON stands for

JavaScript Object Notation. It is a very lightweight, text-based, flexible exchange format.

JSON is a data exchange format that is widely used between servers and client devices.

Chapter 2 Data: The Fuel for Machine Learning

64

You can learn more about how JSON works and find downloads for all of the

platforms at https://json.org.

JSON has several important properties that have helped to make it hugely popular

across the Internet and especially for mobile app development:

•	 JSON is easy for us to read and write and is easy for machines to parse

and generate.

•	 There is a JSON library available for almost every platform and

language.

•	 JSON is based on a subset of the JavaScript programming language,

hence its name.

•	 JSON is a text format and is language independent.

•	 JSON uses conventions that are familiar to programmers of the

C-family of languages.

JSON uses a simple but powerful collection of arrays and objects to represent data.

Name/value pairs often represent the data within an object. This has made JSON very

popular throughout the Internet. The flexible structure of JSON enables it to represent

very complex data relationships.

In JSON, the placement of parenthesis and brackets to represent arrays and objects is

very important. Figure 2-7 shows valid construction rules for JSON structures.

Chapter 2 Data: The Fuel for Machine Learning

https://json.org

65

Notice the usage of the [(left bracket) and] (right bracket) and { (left brace) and }

(right brace) as identifiers in JSON.

JSON consists of two primitives, objects and arrays, and values that can be strings,

numbers, objects, arrays, or Booleans. JSON is surprisingly simple, as Figure 2-7 shows.

Using only the following two primitives, you can construct complex structures to

represent almost any type of data relationship:

•	 JSONObject: An unordered set or collection of name/value pairs

•	 JSONArray: An ordered list of values

Figure 2-7.  JSON structure definition

Chapter 2 Data: The Fuel for Machine Learning

66

Both JSON objects and JSON arrays contain values. A value can be any of the

following:

•	 A string in double quotes

•	 A number

•	 True

•	 False

•	 Null

•	 Another JSON object

•	 Another JSON array

Notice that values can also be JSON objects or JSON arrays. This feature of JSON

provides the secret that makes it so powerful:

JSON is a powerful way to represent structures because it allows for nesting
of the JSON object and JSON array structures.

Recall the iris.arff file discussed in the last section. You can also represent this data

using JSON, as shown in part in Listing 2-1. Note that just like the ARFF file, the JSON

representation also contains a header and a data section.

Listing 2-1.  iris.json, a JSON Representation of the iris.arff Dataset

001 {

002 "header" : {

003 "relation" : "iris",

004 "attributes" : [

005 {

006 "name" : "sepallength",

007 "type" : "numeric",

008 "class" : false,

009 "weight" : 1.0

010 },

011 {

012 "name" : "sepalwidth",

013 "type" : "numeric",

014 "class" : false,

Chapter 2 Data: The Fuel for Machine Learning

67

015 "weight" : 1.0

016 },

017 {

018 "name" : "petallength",

019 "type" : "numeric",

020 "class" : false,

021 "weight" : 1.0

022 },

023 {

024 "name" : "petalwidth",

025 "type" : "numeric",

026 "class" : false,

027 "weight" : 1.0

028 },

029 {

030 "name" : "class",

031 "type" : "nominal",

032 "class" : true,

033 "weight" : 1.0,

034 "labels" : [

035 "Iris-setosa",

036 "Iris-versicolor",

037 "Iris-virginica"

038]

039 }

040]

041 },

042 "data" : [

043 {

044 "sparse" : false,

045 "weight" : 1.0,

046 "values" : [

047 "5.1",

048 "3.5",

049 "1.4",

050 "0.2",

Chapter 2 Data: The Fuel for Machine Learning

68

051 "Iris-setosa"

052]

053 },

054 {

055 "sparse" : false,

056 "weight" : 1.0,

057 "values" : [

058 "4.9",

059 "3",

060 "1.4",

061 "0.2",

062 "Iris-setosa"

063]

064 },

065 {

066 "sparse" : false,

067 "weight" : 1.0,

068 "values" : [

069 "5.9",

070 "3",

071 "5.1",

072 "1.8",

073 "Iris-virginica"

074]

075 }

076]

077 }

The file iris.json is available in the book resources if you would like to experiment

with the iris dataset in JSON format.

You might be asking why we need JSON for data files when we already have CSV and

ARFF that are perfectly capable of representing data for ML. There are two reasons you

may want to consider using JSON:

•	 JSON is ideal for data interchange over the network. If you need to

send data to a networked device, it is a trivial task with JSON and

HTTP, but it is not as simple to accomplish with CSV and ARFF.

Chapter 2 Data: The Fuel for Machine Learning

69

•	 Many NoSQL databases use JSON files as the object store for their

data. I will discuss these databases further in Chapter 3. This

database architecture solves the scalability problem presented by

large amounts of data.

JSON files are always larger than the CSV or ARFF versions because they contain

structure and spaces for indenting. The increased file size is a fair trade-off for the

additional flexibility JSON provides.

The Weka desktop environment makes it easy to convert between ARFF and

JSON. You will explore Weka in Chapter 4.

2.4  �JSON Integration
JSON is an important part of ML solutions. One of the JSON advantages is that libraries

exist for almost every development platform. It is truly cross-platform. Because your focus

is on Java, you will next examine how to integrate JSON for Android and the Java JDK.

�JSON with Android SDK
JSON has been included in Android since the earliest release of the SDK. Table 2-6 shows

a list of the Android JSON classes including the exception handler.

Table 2-6.  JSON Classes Included in the Android SDK

Classes Description

JSONArray A dense indexed sequence of values

JSONObject A modifiable set of name/value mappings

JSONStringer Implements JSONObject.toString( ) and JSONArray.toString( )

JSONTokener Parses a JSON-encoded string into the corresponding object

JSONException Thrown to indicate a problem with the JSON API

Chapter 2 Data: The Fuel for Machine Learning

70

The JSONArray and JSONObject objects are all you need to manage your JSON

encoding and decoding. The following code shows how to define JSON objects and JSON

arrays in Android:

001 // Define a new JSON Object

002 �// Remember that JSON Objects start with { (left brace) and end with

} (right brace)

003

004 JSONObject jsonObject = new JSONObject(myJsonDataString);

005

006 // Define a new JSON Array

007 �// Remember that JSON Arrays start with [(left bracket) and end with]

(right bracket)

008

009 JSONArray jsonArray = new JSONArray(myJsonDataString);

The trick to using JSON effectively lies in defining a JSON data structure using the

JSON object and JSON array primitives to represent your data. You will explore how to

achieve this later in the chapter.

�JSON with Java JDK
While JSON classes have been included in the Android SDK since the very beginning, this

is not the case for the Java JDK. To use JSON with Java, you must include the JSON library.

There are many JSON libraries available for Java. Table 2-7 shows two common

sources for Java JDK JSON libraries.

Table 2-7.  JSON Libraries for the Java JDK

JSON Source Link

Google JSON Simple https://code.google.com/archive/p/json-simple/

Maven JSON Repository https://mvnrepository.com/artifact/org.json/json

Chapter 2 Data: The Fuel for Machine Learning

https://code.google.com/archive/p/json-simple/
https://mvnrepository.com/artifact/org.json/json

71

The Maven Repository is useful because it allows you to download the jar file

for Eclipse. There are many version of JSON available at the Maven Repository. The

20171018 version works well and is available at the following link:

https://mvnrepository.com/artifact/org.json/json/20171018

Figure 2-8 shows the download page for this version of Java JSON. The page contains

instructions for many different types of build environments, including Maven, Gradle,

SBT, Ivy, and others. The Java build environment you use will determine how you

include the JSON library.

If you wish to download the jar file for Eclipse, select “JSON Libraries” and download

the jar zip file. You can then directly add the jar file library to the Eclipse Java build Path.

Figure 2-9 shows the json-20171018.jar file added to the Eclipse Java build path.

Figure 2-8.  Maven Repository for Java JSON

Chapter 2 Data: The Fuel for Machine Learning

https://mvnrepository.com/artifact/org.json/json/20171018

72

With JSON added to the Java JDK, you can now leverage the power of JSON for all

of your ML data structure needs. Regardless of whether you are using the external Java

JSON library for Eclipse or the built-in Android JSON library in Android Studio, the Java

application code you write to work with JSON objects and arrays will be identical.

2.5  �Data Preprocessing
One of the key activities for ML-Gate 5 is data preprocessing. There are many potential

actions you can take in this area to improve the quality of your data. This section does

not include an exhaustive list. Nor does it provide a deep dive into the mathematical or

statistical principles behind each technique.

There is no substitute for getting to know your data. It is a time-intensive
manual exercise. Investing the time up front to analyze your data to improve
its quality and integrity always pays dividends in the latter phases of the
ML project.

Figure 2-9.  Eclipse IDE Java build path for the JSON jar library

Chapter 2 Data: The Fuel for Machine Learning

73

Think of the following sections as a checklist. You can use the checklist to explore the

various aspects of your data before selecting the ML algorithm, building the ML model,

or writing any code. Data cleaning pays off over time.

�Instances, Attributes, Labels, and Features
At the top of the checklist is the identification of instances, attributes, labels, and

features. ML-Gate 6 requires you to have a well-defined problem. This directly relates to

understanding the structure of your data. Some important definitions:

•	 Instances: A row of data. Instances are the inputs to a machine

learning scheme. CSV files can express instances as independent

lists, while JSON can represent relationships within the data.

•	 Attributes: A column of data. Attributes can have different data types,

such as real, integer, nominal, or string. With supervised learning,

there are type types of attributes, features and labels.

•	 Features: The descriptive attributes.

•	 Labels: What you are attempting to predict or forecast.

For example, if you look back at the data in Table 2-3, the table shows the attributes

(or columns) of the PAMAP2 dataset. Recall in this dataset there are 54 attributes

(or columns). In this dataset, the Activity Id is the label and the remaining attributes are

features.

Checklist questions to ask:

	 1.	 Are all the instances consistent in their structure?

	 2.	 How many instances are there?

	 3.	 How many attributes are there?

	 4.	 What is the format and raw file size of the dataset?

	 5.	 Do attributes contain a label(s) or are all of the attributes features?

	 6.	 Do all label(s) contain a compliant value?

	 7.	 Can you add new attributes later?

	 8.	 If you add a new attribute, how would you update existing

instances for the new attribute?

Chapter 2 Data: The Fuel for Machine Learning

74

The last two questions are particularly important because datasets can grow and

evolve over time. When you add new attributes, you essentially have missing values for

that attribute in each of the instances that predate the change. In the next section on

missing values and duplicates, I will discuss some techniques to handle this situation.

�Data Type Identification
Table 2-2 summarized the data types for ML datasets. Define the data type of each

attribute in your dataset. The data types can be either

•	 Qualitative data (nominal or ordinal)

•	 Quantitative data (discrete or continuous)

Some companies maintain a data dictionary for all of their software projects. The

data dictionary represents a formal record of all of the data assets, including the data

type of each attribute. This is a best practice. Maintaining the data dictionary creates

overhead, but just as data cleaning pays off over time, so too does data organizational

knowledge.

Checklist questions to ask:

	 1.	 Does each attribute in the dataset have a defined data type?

	 2.	 During the project lifecycle, when changes are made that affect

data design, are the data types updated?

�Missing Values and Duplicates
Missing values and duplicates are an important aspect of data preprocessing.

Missing values can take the form of blanks, dashes, or NaN, as you saw in the

PAMAP2_Dataset.

Missing values are not hard to find. The difficulty lies with what action you should

take when you find them. Missing values tend to fall into two categories:

•	 MCAR (Missing Completely At Random)

•	 Systematically missing: The values are missing for a good reason.

Chapter 2 Data: The Fuel for Machine Learning

75

Just because the value is missing does not tell you why the value is missing. When

you find missing values, you have to think carefully about the resolution. Most ML

algorithms do not place significance on missing values. Replacing a missing value with a

generated value can sometimes improve the overall data integrity. It all depends on the

context of the data.

There are multiple approaches you can consider when handling missing values.

When you have familiarity with the data and the collection methodology, you can make

an informed judgement and select one of the following approaches:

•	 Take no action. Preserve the value as missing.

•	 Replace the value with a “Not Tested” or “Not Applicable” indicator.

In such cases, you are adding detail and improving data integrity

because you actively know that a value should not be present.

•	 If a label contains a missing value, you should consider deleting the

entire instance because it does not add value to a model you train.

•	 Assign a lower range or upper range value for a missing value if the

data type is quantitative and range bound. Sometimes you have

normalized values within a range, and assigning a value minimum or

maximum value can make the algorithm more efficient.

•	 Impute a value for the missing value. Impute means to replace the

value with a new value based on study of other attributes.

Duplicates are not always easy to find. Once located, they are relatively easy to

handle. They can be deleted, or if practical, they can be combined with other instances if

not all attributes are duplicated.

Checklist questions to ask:

	 1.	 Does the dataset have duplicate values? How do you find the

duplicate values? When duplicates exist, delete the instance if

dataset integrity is increased.

	 2.	 Does the dataset have missing values? How will missing values be

resolved to maximize dataset integrity?

Chapter 2 Data: The Fuel for Machine Learning

76

�Erroneous Values and Outliers
Finding errors and outliers in the data is more difficult than identifying missing values

and duplicates.

Let’s start with an example. The dataset shown in Figure 2-10 is a time series

containing 24 data points. The graph shows data released by the Belgium Ministry of

Economy. It represents international phone calls made during a 23-year period.

It is obvious that the data contains several outliers during a seven-year period.

Knowing the context of this data, something does not make sense. We could imagine

a scenario where such a dataset could make sense. For example, what if we looked at

manufacturing output of a steel plant, and we knew there was a multi-year period where

a war caused a surge in demand? Such a chart might make sense.

However, in this case, the data does not make sense. Should we disregard the outliers?

It turns out this data was erroneous. During the period from 1963 to 1970, the

ministry used a different recording methodology. During the affected period, the data

represents the total number of minutes instead of the total number of calls. Oops.

Figure 2-10.  Time series dataset of 24 points

Chapter 2 Data: The Fuel for Machine Learning

77

Even if we did not know what caused the mistake, we should still delete the outliers

because they do not make sense in the context of the data. We might not notice the

minor impact at years 1963, 1970, but retaining them would not have a drastic impact.

The chart includes two regression lines. Regression is a simple way to make

predictions. The Least Squares method is not very accurate in this case because it is

highly susceptible to outliers. The Least Median Squares regression method does a much

better job at ignoring the outliers.

The lesson learned in this case is that we need to assess outliers and then select an

ML method to minimize outlier impact if possible.

Ironically, machine learning can detect outliers. One-class learning is the special

class of ML used for this task.

Checklist questions to ask:

	 1.	 Does a visualization of the data show outliers?

	 2.	 Do the outliers make sense in the context of the data? If so,

consider deleting the outliers.

	 3.	 If outliers persist, consider a method that can reasonably tolerate

noisy data.

�Macro Processing with OpenOffice Calc
In Chapter 3, I will introduce the Weka ML environment. Weka has many capabilities

for preprocessing data using its Java-based tools. However, you can also use the macro

processing capabilities of OpenOffice Calc to preprocess your data.

Learning to use Calc spreadsheet macros is a very powerful ML tool. Macros allow

you to make bulk changes to data files based on certain conditions. They allow you to

automate a repetitious task. With large data sets, this can save you a lot of time and effort.

Calc, just like Microsoft Excel, uses Visual Basic to handle macros.

Like Microsoft Excel, Calc uses the Visual Basic programming language for macros.

It is not difficult to master. Calc macros can automate any spreadsheet operation you can

perform manually. Calc allows you to record keystrokes to build macros. Calc also allows

you to manually enter macro code.

Chapter 12 of the OpenOffice documentation contains an excellent introduction to

Calc macros:

www.openoffice.org/documentation/manuals/userguide3/0312CG3-CalcMacros.pdf

Chapter 2 Data: The Fuel for Machine Learning

https://doi.org/10.1007/978-1-4842-3951-3_12
http://www.openoffice.org/documentation/manuals/userguide3/0312CG3-CalcMacros.pdf

78

Additional documentation for Calc macros is available on the OpenOffice wiki page:

https://wiki.openoffice.org/wiki/Documentation/OOoAuthors_User_Manual/

Getting_Started/Creating_a_simple_macro

The following code shows a useful macro for iterating through all rows in a Calc

spreadsheet and displaying non-empty cells. Calc and the Visual Basic language contain

a huge library of functions and the possibilities are endless.

001 Sub TraverseRows

002 Dim oRange 'The primary range

003 Dim oSheet 'Sheet object

004 Dim oRows 'Rows object

005 Dim oRow 'A single row

006 Dim oRowEnum 'Enumerator for the rows

007 Dim s As String 'General String Variable

008

009 oSheet = ThisComponent.Sheets(3)

010 oRange = oSheet.getCellRangeByName("B6:C9")

011

012 oRows = oRange.getRows()

013

014 oRowEnum = oRows.createEnumeration()

015 Do While oRowEnum.hasMoreElements()

016 oRow = oRowEnum.nextElement()

017 s = s & NonEmptyCellsInRange(oRow, " ") & CHR$(10)

018 Loop

019 MsgBox s, 0, "Non-Empty Cells In Rows"

020 End Sub

If you are struggling to find a way to make a necessary cleanup of your data, Calc

macros are a good solution, especially for CSV data.

If you have huge spreadsheets, Calc macros might not offer the best performance for

data cleaning and manipulation. The limitations of Apache OpenOffice Calc are

•	 Maximum number of rows: 1,048,576

•	 Maximum number of columns: 1,024

•	 Maximum number of sheets: 256

Chapter 2 Data: The Fuel for Machine Learning

https://wiki.openoffice.org/wiki/Documentation/OOoAuthors_User_Manual/Getting_Started/Creating_a_simple_macro
https://wiki.openoffice.org/wiki/Documentation/OOoAuthors_User_Manual/Getting_Started/Creating_a_simple_macro

79

�JSON Validation
If you use JSON as a data format, you need to validate your JSON after creation. There are

many online tools that can perform JSON validation. Many of them are open source or

created with scripting languages, so you can run the validation locally if you wish.

Figure 2-11 shows the JSON validation of the file you created earlier in the chapter by

the online tool available at https://jsonlint.com.

Figure 2-11.  JSON validation

Chapter 2 Data: The Fuel for Machine Learning

https://jsonlint.com

80

It is always a good idea to run any JSON you create, especially if you create it

manually, through a JSON validation.

Checklist question to ask:

	 1.	 Do you represent data with JSON? Validate all JSON files prior to

model building.

2.6  �Creating Your Own Data
Earlier in the chapter, I listed private data and synthetic data as potential data sources.

We generate these two classes of data. Synthetic data represents data created by

a computer. We are all carry the greatest data collection device ever created: the

smartphone. You can leverage its data creation capability to solve a problem presented

in Chapter 1, the indoor location tracking requirement (R1) shown in Table 1-11. You will

explore a potential solution for this requirement next.

�Wifi Gathering
Our mobile devices are capable of scanning Wifi and Bluetooth networks. When you use

those Wifi scanning apps, you will notice there are many Wifi signals spread across the

available channels. These signals represent data as you move throughout a space.

Figure 2-12 shows a typical room that has three different Wifi access points (AP)

visible to a device. The signal strength received by the device depends on many factors,

such as proximity to the AP and obstructions within the space. The combined strength of

these signals throughout the space can allow you to locate the device.

Chapter 2 Data: The Fuel for Machine Learning

https://doi.org/10.1007/978-1-4842-3951-3_1#Tab11

81

Two units of measure, dBm and RSSI, represent signal strength. RSSI is a relative

index, while dBm is an absolute number. For dBm, the closer to 0 dBm, the better

the signal is. Android devices return relevant RSSI in the range between -100 (weakest)

to -55 (strongest).

You’ll use the Android WifiManager to gather signal strength information from all

the visible Wifi access points (AP). Mobile phone owners are familiar with the four bar

Wifi signal strength icon shown in the status bar of the device. Android provides a static

method called WifiManager.calculateSignalLevel that computes the signal level in a

range of 0-4. Android uses this value to generate the signal strength icon. This method

also can provide the normalized value shown in Figure 2-12.

As an example, let’s consider the simple code required to gather the Wifi signal

strength data and save it in JSON format as the Android device moves around a room.

Listing 2-2 shows the key Android code. This code is not a complete Android project, but

the code excerpt file, WifiCollect.java is available in the book resources if you wish to

leverage it when building your own project.

Figure 2-12.  Indoor location using Wifi signal strength

Chapter 2 Data: The Fuel for Machine Learning

82

Listing 2-2.  WifiCollect.java - Sample Android Code for Wifi Data Acquisition

001 private WifiManager wifi;

002 private JSONObject wifiResults = new JSONObject();

003

004 @Override

005 public void onCreate() {

006 wifi = (WifiManager) this.getSystemService(Context.WIFI_SERVICE);

007

008 // register wifi intent filter

009 IntentFilter intentFilter = new IntentFilter();

010 intentFilter.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

011 registerReceiver(mWifiScanReceiver, intentFilter);

012

013 wifiResults = new JSONObject();

014 }

015

016 �private final BroadcastReceiver mWifiScanReceiver = new

BroadcastReceiver() {

017 @Override

018 public void onReceive(Context c, Intent intent) {

019 �if (intent.getAction().equals(WifiManager.SCAN_RESULTS_

AVAILABLE_ACTION)) {

020 List<ScanResult> wifiScanList = wifi.getScanResults();

021 for (int i = 0; i < wifiScanList.size(); i++) {

022 �String name = wifiScanList.get(i).BSSID.

toLowerCase();

023 int rssi = wifiScanList.get(i).level;

024 �Log.v(TAG, "wifi-ssid: " + name + " => " + rssi +

"dBm");

025 try {

026 wifiResults.put(name, rssi);

027 } catch (Exception e) {

028 Log.e(TAG, e.toString());

029 }

030 }

Chapter 2 Data: The Fuel for Machine Learning

83

031 saveData();

032 }

033 }

034 };

To summarize the key code in Listing 2-2:

•	 You define a JSONObject in line 002. This object will hold the names

(SSID) and the signal strengths of all the Wifi networks the device

identifies during the scan.

•	 In the onCreate() method, you use the Android WifiManager to

create an intent and register a BroadcastReceiver.

•	 Because you are using Wifi, remember to include permissions

for SCAN_WIFI_NETWORKS and ACCESS_WIFI_STATE in the

manifest file.

•	 You define the BroadcastReceiver in line 016. Android notifies the

BroadcastReceiver when it detects new Wifi networks.

•	 Lines 022 and 023 show the network name and the signal level

retrieved from the Wifi scan. These values are stored in the

JSON object in line 026. The JSON object grows in size as the

BroadcastReceiver receives new networks.

•	 Line 031 shows a call to a saveData() function. This function will

save the JSON object for processing. You may wish to send it over the

network to a server, add it to a NoSQL database, or use it internally to

build a model on the device.

This approach to determining indoor location is very accurate and can operate with

very low latency. To achieve the result requires a two-step process:

	 1.	 Map out your space and collect the Wifi data samples using code

such as shown in Listing 2-2. For each sample you capture, assign

it to a label identifying the device location within the space. For

example, you may wish to divide your target space into a square

grid and assign numbers to the grid locations.

	 2.	 Once you have collected all the data for the space, use it to build

the ML model. You can then use the model to make predictions

about where you are located in the room.

Chapter 2 Data: The Fuel for Machine Learning

84

Indoor location using ML is a powerful example of creating your own data to solve a

problem with ML. To make the solution even more robust, you can implement the same

approach for Bluetooth signals.

While this example illustrates the gathering and usage of RF data in the device

vicinity, there is another type of data the smartphone excels at producing: sensor

data. I will discuss sensor data in detail in the last chapter, including ML sensor data

implementations for Java devices and Android smartphones.

2.7  �Visualization
Being able to visualize your data is important. Visualization allows you to gain insights

into your data easily. Data visualization is one of the best tools you can add to your

toolkit on the journey to demanding more from yourself with respect to your data.

One of the best approaches to implement data visualization is to use third-party

open source graphic libraries in conjunction with the web browser or Android WebView.
Applying this approach, you can generate amazing visualizations with minimal coding.

�JavaScript Visualization Libraries
Table 2-8 shows a partial list of visualization libraries available. JavaScript is the language

of choice for most of these libraries because it provides the following benefits:

•	 All modern browsers support JavaScript, including Android’s

WebView control. This means any visualizations you create will be

widely available across platforms.

•	 JavaScript excels at interactive functionality. This makes your

visualizations more compelling than static images.

Chapter 2 Data: The Fuel for Machine Learning

85

Table 2-8.  JavaScript Visualization Libraries

Library/Link Description

D3 Plus

d3plus.org

D3 Plus version 2.0. Amazing set of examples and

visualizations.

Leaflet

leafletjs.com

An open-source JavaScript library for mobile-friendly

interactive maps.

Timeline JS

timeline.knightlab.com

Open-source tool that enables anyone to build visually

rich, interactive timelines.

Highcharts

highcharts.com

Widely used library. Simple and powerful charting

API. License required.

FusionCharts

fusioncharts.com

JavaScript charts for web and mobile.

Includes 90+ charts and 1000+ maps. Free.

Dygraphs

dygraphs.com

Fast, flexible, open source JavaScript charting library.

Allows users to explore and interpret dense data sets.

Plotly

plot.ly

Compose, edit, and share interactive data visualization

via the Web.

Raw

rawgraphs.io

The missing link between spreadsheets and data

visualization.

Chart.js

chartjs.org

Simple, flexible JavaScript charting. Open source.

Nice transitions and animations.

Datawrapper

datawrapper.de

From data to beautiful charts. Used by many journalists.

Monthly subscription model.

ChartBlocks

chartblocks.com

Online chart building tool. Monthly subscription model.

Google Charts

developers.google.com/chart

Simple to use, rich gallery of interactive charts. Free.

Tableau

tableau.com

Large-scale commercial solution with many large

clients. NYSE listed.

Infogram

infogr.am

Large corporate vendor with complete offering.

Chapter 2 Data: The Fuel for Machine Learning

86

The libraries in Table 2-8 are all highly capable of helping you to visualize your data.

When you explore them, you may find that one of them matches your requirements best.

Highcharts and D3 Plus are two of the most popular libraries.

�D3 Plus
D3 stands for data-driven documents. D3 is a JavaScript visualization package. It is

lightweight. D3 Plus is an extension to D3. The current supported version of D3 Plus is

version 2.0.

You will explore D3 Plus in more detail for the following reasons:

•	 D3 is a based on JavaScript, which provides a smooth interactive user

experience.

•	 All of the modern browsers can render JavaScript, so it’s a good

solution for Java as well as Android apps.

•	 D3 Plus makes it very simple to create and display CSV and JSON

visualizations.

•	 Free and open source.

Download links for the D3 library, D3 Plus, and a comprehensive gallery of charts are

located at

https://d3js.org

https://d3plus.org

github.com/d3/d3/wiki/Gallery

Next, you will use the dendogram class of charts for the D3 visualization project.

A dendogram is a tree diagram useful to display hierarchy. The D3 gallery page links to

dendogram examples at https://bl.ocks.org/mbostock/4063570.

2.8  �Project: D3 Visualization
You saw earlier in this chapter that CSV and JSON are useful data formats for ML. In this

project, you will implement D3 visualization for the desktop browser.

Dendograms are useful for showing hierarchy. The project will explore a variety of

dendograms to visualize both CSV and JSON data.

Chapter 2 Data: The Fuel for Machine Learning

https://d3js.org
https://d3plus.org
http://github.com/d3/d3/wiki/Gallery
https://bl.ocks.org/mbostock/4063570

87

Table 2-9 shows the project file summary. The book resources contain the zip file,

d3_visualization.zip, which includes all the project files.

Visualization is all about choosing the best graphical style to represent your data.

Dendogram charts work well for JSON visualization because they show hierarchy.

In this project, you have two data file sources, flare.csv and flare.json. They

represent different file formats of the same data. D3 is capable of rendering each version

into several interesting dendograms. If you wish to render another chart type, the code

will likely be very similar to the examples; just check the D3 gallery for a code example of

the chart you desire.

To view the visualization in a browser, you must set up a web server to host the files

shown in Table 2-9. If you wish to view them locally on your desktop, you can install a

local web server, depending on your desktop platform.

If you need to install a web server, refer to the following platform-specific

instructions:

•	 Windows: IIS is the most popular web server on Windows but is not

enabled by default. To enable it, follow these instructions:

	 https://msdn.microsoft.com/en-us/library/ms181052

(v=vs.80).aspx

Table 2-9.  D3Visualization Project File Summary

Project Name: D3 Visualization
Source: d3_visualization.zip
Type: Desktop browser
File Description

d3.min.js D3 library

flare.csv CSV data file

flare.json JSON data file

dendo-csv.html Dendogram example using CSV data

tree-dendo-csv.html Tree dendogram example using CSV data

radial-dendo-csv.html Radial tree dendogram example using CSV data

collapse-tree-json.html Collapsible tree dendogram example using JSON data

cluster-dendo-json.html Cluster dendogram example using JSON data

Chapter 2 Data: The Fuel for Machine Learning

https://msdn.microsoft.com/en-us/library/ms181052(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/ms181052(v=vs.80).aspx

88

•	 Windows: You may also install WAMP software on windows. WAMP

stands for Windows, Apache web server, MySQL, PHP. To install

WAMP for Windows, follow these instructions:

	 www.wampserver.com/en/

•	 Mac: Apache web server comes preinstalled on Apple computers.

Once you have your web server set up, just point your browser at one of the five HTML

files. Each file renders a slightly different dendogram for the chosen data format type.

D3 visualizations require a minimal amount of JavaScript code. The JavaScript code

is included within the HTML file. Listing 2-3 shows an example of the dendo-csv.html

file that renders a dendogram from CSV data.

There are two key parts in the structure of any D3 based visualizations:

•	 A reference to the D3 library file needs to be included. You can use

either a local copy of the library or an online repository. Include the

library reference within <script> tags (line 014).

•	 Specify the CSV file to be loaded for the visualization using the d3.csv

assignment statement (line 025).

Note that Listing 2-3 includes the JavaScript code (lines 016-053) and the CSS style

code (lines 004-010) used to format the visualization.

Listing 2-3.  dendo-csv.html

001 <!DOCTYPE html>

002 <meta charset="utf-8">

003

004 <style>

005 .node circle {fill: #999;}

006 .node text {font: 10px sans-serif;}

007 .node--internal circle {fill: #555;}

008 �.node--internal text {text-shadow: 0 1px 0 #fff, 0 -1px 0 #fff, 1px 0

0 #fff, -1px 0 0 #fff;}

009 �.link {fill: none; stroke: #555; stroke-opacity: 0.4; stroke-width:

1.5px;}

010 </style>

011

012 <svg width="1200" height="800"></svg>

Chapter 2 Data: The Fuel for Machine Learning

http://www.wampserver.com/en/

89

013

014 <script src="./d3.js"></script>

015

016 <script>

017 var svg = d3.select("svg"),

018 width = +svg.attr("width"),

019 height = +svg.attr("height"),

020 g = svg.append("g").attr("transform", "translate(40,0)");

021 var cluster = d3.cluster()

022 .size([height, width - 160]);

023 var stratify = d3.stratify()

024 �.parentId(function(d) { return d.id.substring(0, d.id.

lastIndexOf(".")); });

025 d3.csv("flare.csv", function(error, data) {

026 if (error) throw error;

027 var root = stratify(data)

028 �.sort(function(a, b) { return (a.height - b.height) || a.id.

localeCompare(b.id); });

029 cluster(root);

030 var link = g.selectAll(".link")

031 .data(root.descendants().slice(1))

032 .enter().append("path")

033 .attr("class", "link")

034 .attr("d", function(d) {

035 return "M" + d.y + "," + d.x

036 + "C" + (d.parent.y + 100) + "," + d.x

037 + " " + (d.parent.y + 100) + "," + d.parent.x

038 + " " + d.parent.y + "," + d.parent.x;

039 });

040 var node = g.selectAll(".node")

041 .data(root.descendants())

042 .enter().append("g")

043 �.attr("class", function(d) { return "node" + (d.children ? "

node--internal" : " node--leaf"); })

044 �.attr("transform", function(d) { return "translate(" + d.y +

"," + d.x + ")"; })

Chapter 2 Data: The Fuel for Machine Learning

90

045 node.append("circle")

046 .attr("r", 2.5);

047 node.append("text")

048 .attr("dy", 3)

049 .attr("x", function(d) { return d.children ? -8 : 8; })

050 �.style("text-anchor", function(d) { return d.children ? "end" :

"start"; })

051 �.text(function(d) { return d.id.substring(d.id.lastIndexOf(".")

+ 1); });

052 });

053 </script>

A dendogram aligns each of the lower-level leaf nodes, so the visualization appears

right justified. Figure 2-13 shows the dendogram visualization of the CSV file that D3

generates when you open the dendo-csv.html file in your browser.

Figure 2-13.  Dendogram visualization generated by dendo-csv.html

Chapter 2 Data: The Fuel for Machine Learning

91

The dendogram visualization is obviously much easier to read than the raw CSV file.

If you wish to change styling of the dendogram, you can modify the CSS elements

in the HTML file in lines 004-010. CSS stands for cascading style sheet. It is a common

language for webpage layout design and styling. It can control all aspects of a layout such

as font, font size, margins, padding, spacing, alignment, etc.

If you wish to change the layout structure of the rendered dendogram, you can

modify the JavaScript code that constructs the dendogram. For example, lines 045-046

control the radius of the circles drawn to represent each node.

There are many other related visualizations useful for depicting ML data. The tree

visualization is a variation on the dendogram. Think of it as a left-justified dendogram,

where the nodes extend to the right as the tree depth increases.

Figure 2-14 shows the f lare.csv data file visualized as a tree. The tree display differs

from the dendogram because of the way the JavaScript code renders the nodes. The

tree-dendo-csv.html file actually gives you the choice to select whether you want the

CSV data rendered as a dendogram or a tree.

Figure 2-14.  Tree visualization rendered, tree-dendo-csv.html

Chapter 2 Data: The Fuel for Machine Learning

92

The final CSV visualization you will produce with D3 is the radial dendogram. A

picture is worth a thousand words, and the radial dendogram is possibly the most artistic

and useful visualization. For large datasets, the dendogram and tree can become lengthy

and require scrolling to view the entire visualization. The radial dendogram fills a circle,

so it tends to be more compact and easily visible.

Figure 2-15 shows a radial dendogram produced by radial-dendo-csv.html. Even

though the font may be small and there are many labels in the dataset, the radial

dendogram gives you a good feel for the structure of your data. With practice, you can take

a quick glance at a radial dendogram of your data and identify problems or irregularities.

Figure 2-15.  Radial dendogram visualization, radial-dendo-csv.html

Chapter 2 Data: The Fuel for Machine Learning

93

The final two visualizations in the project will use JSON data as their source. The file

f lare.json is a JSON version of the f lare.csv file used in the prior three visualizations.

The cluster-dendo-json.html file structure is similar to the approach used with CSV

data. The following code block assigns the JSON file in D3 at line 008:

001 <!DOCTYPE html>

002 <meta charset="utf-8">

003 <body>

004 <script src="./d3.v3.min.js"></script><script>

005

006 ...

007

008 d3.json("flare.json", function(error, root) {

009 if (error) throw error;

010

011 ...

012

013 });

014 d3.select(self.frameElement).style("height", height + "px");

015...</script>

Note that when loading JSON into D3, there are some requirements for the JSON

structure. The JSON needs to be compatible with D3’s hierarchy rules. If you examine the

f lare.json file, you will see that it is comprised of “name” and “children” nodes.

001 {

002 "name": "flare",

003 "children": [

004 {

005 "name": "analytics",

006 "children": [

007 {

008 "name": "cluster",

009 "children": [

010

011 ...

Chapter 2 Data: The Fuel for Machine Learning

94

If your JSON data does not comply with this structure, you may need to convert it so

D3 can parse and display it properly. There are tools available to handle this conversion.

D3 includes a function called d3.nest() and there is also an external function called

underscore.nest(). Documentation and download links for these functions can be found at

https://github.com/d3/d3-collection

https://github.com/iros/underscore.nest

Once you have your JSON data in the proper format, D3 can render it.

Figure 2-16 shows the cluster dendogram visualization of the JSON file as rendered

by cluster-dendo-json.html.

Figure 2-16.  Cluster dendogram visualization, cluster-dendo-json.html

Chapter 2 Data: The Fuel for Machine Learning

https://github.com/d3/d3-collection
https://github.com/iros/underscore.nest

95

Flare.json is a large file with many nodes. D3 uses this file for many of its visualization

examples. If you look inside the HTML file, you will see the following line of code:

<svg width="1200" height="2200"></svg>

This sets the height of the render window to 2200 pixels. That is probably larger than

your monitor, which means you will have to scroll to see the whole visualization. If you

reduced the height to match your display size, for example 1200 pixels, you will see that

the visualization becomes so compressed that is no longer readable.

A solution to this problem is the collapsible tree. Remember, JavaScript is interactive.

The collapsible tree visualization allows you to click on nodes to expand or contract

them. Figure 2-17 shows the much cleaner collapsible tree visualization as rendered by

collapse-tree-json.html.

Figure 2-17.  Collapsible tree, collapse-tree-json.html

Chapter 2 Data: The Fuel for Machine Learning

96

The collapsible tree is useful because it allows you to click on individual node to

expand them. It does not leave your entire screen cluttered with the whole visualization.

It is a much easier way to explore the data interactively. The collapse-tree-json.html

file is larger than the other versions because it contains JavaScript code, such as the

following function, to manage the interactive node navigation:

001 // Toggle children on click.

002 function click(d) {

003 if (d.children) {

004 d._children = d.children;

005 d.children = null;

006 } else {

007 d.children = d._children;

008 d._children = null;

009 }

010 update(d);

011 }

In this project, you covered five different data visualizations from the dendogram

family: three with CSV source data and two with JSON source data.

JavaScript produces excellent visualizations. If you browse the D3 gallery,
you will find a visualization suitable for your data and example JavaScript
code to help implement your visualization.

Having a JavaScript solution for visualizing data allows you to see what the data looks

like. These visualizations can be beautiful, and the power of visualization is obvious.

Visualizations give you a better feel for the structure of your data than the raw data files

can provide. This is a first step in understanding the data and being able to identify

hidden patterns in the data.

With CSV and JSON visualization in your toolbox, you have begun to demand more
of yourself with respect to your data.

Chapter 2 Data: The Fuel for Machine Learning

97

2.9  �Project: Android Data Visualization
This project will extend the work you with did with D3 visualizations on the desktop to

Android mobile devices. Displaying visualization may not be a core function of your

Android app, but there may be times when it is very helpful for your users.

Table 2-10 shows the project file summary.

You saw D3 visualization working on the desktop browser, so setting it up for Android

is straightforward.

Rather than importing a visualization or charting library into your app, you will take

a shortcut and use Android’s WebView class to display the D3 visualization. WebView is

a system component powered by Chrome that allows Android apps to display content

from the web directly inside an application. The class provides a clean, integrated user

experience for your app. Like any good web browser, WebView supports JavaScript, so it

works well for D3 content.

Figure 2-18 shows the Android Data Visualization project in Android Studio.

Table 2-10.  Project File Summary - Android Data Visualization

Project Name: Android Data Visualization
Source: android_data_vis.zip
Type: Android
File Description

app->src->main
AndroidManifest.xml

Configuration file.

app->src->main->res->layout
activity_main.xml

Layout file for display of the WebView.

app->src->main->assets
d3.min.js
flare.csv
radial-dendo-csv.html

Assets if you decide to build the app with local copy of

the assets. Not required if you load the assets from

web server.

app->src->main->javaMainActivity.
java

Main Java source to load and display the D3

visualization.

Chapter 2 Data: The Fuel for Machine Learning

98

There are two methods to handle the D3 integration with WebView, depending on

how you decide to manage access to the required files:

•	 Internal: Place the required files inside the app assets folder.

•	 External: Load the assets from a remote web server.

The following code from MainActivity.java shows how to set up a full screen

WebView layout. A progressDialog provides an indication to the user that network

content is loading, which is especially useful if the resources are loaded from external

server. Lines 067-068 show the radial-dendo-csv.html file reference, depending on

whether you choose the internal or external approach.

001 package android.wickham.com.datavis;

002

003 import android.annotation.SuppressLint;

004 import android.app.Activity;

005 import android.app.ProgressDialog;

006 import android.content.DialogInterface;

Figure 2-18.  Project Android Data Visualization in Android Studio

Chapter 2 Data: The Fuel for Machine Learning

99

007 import android.graphics.Color;

008 import android.os.Bundle;

009 import android.webkit.WebChromeClient;

010 import android.webkit.WebView;

011

012 public class MainActivity extends Activity {

013

014 private WebView webView;

015

016 @SuppressLint("SetJavaScriptEnabled")

017 @Override

018 protected void onCreate(Bundle savedInstanceState) {

019 super.onCreate(savedInstanceState);

020 setContentView(R.layout.activity_main);

021

022 webView = (WebView) findViewById(R.id.wb_webview);

023

024 //Scroll bars should not be hidden

025 webView.setScrollbarFadingEnabled(false);

026 webView.setHorizontalScrollBarEnabled(true);

027 webView.setVerticalScrollBarEnabled(true);

028 webView.setFitsSystemWindows(true);

029

030 //Enable JavaScript

031 webView.getSettings().setJavaScriptEnabled(true);

032

033 //Set the user agent

034 webView.getSettings().setUserAgentString("AndroidWebView");

035

036 //Clear the cache

037 webView.clearCache(true);

038 webView.setBackgroundColor(Color.parseColor("#FFFFFF"));

039 webView.setFadingEdgeLength(10);

040 webView.getSettings().setBuiltInZoomControls(true);

041 webView.getSettings().setDisplayZoomControls(false);

042

Chapter 2 Data: The Fuel for Machine Learning

100

043 final Activity activity = this;

044 �final ProgressDialog progressDialog = new

ProgressDialog(activity);

045 �progressDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER);

046 �progressDialog.setProgressStyle(ProgressDialog.THEME_HOLO_LIGHT);

047 progressDialog.setCancelable(true);

048

049 webView.setWebChromeClient(new WebChromeClient() {

050 public void onProgressChanged(WebView view, int progress) {

051 progressDialog.setCanceledOnTouchOutside(true);

052 progressDialog.setTitle("Loading visualization ...");

053 �progressDialog.setButton("Cancel", new

DialogInterface.OnClickListener() {

054 �public void onClick(DialogInterface dialog, int

which) {

055 webView.destroy();

056 finish();

057 } });

058 progressDialog.show();

059 progressDialog.setProgress(0);

060 activity.setProgress(progress * 1000);

061 progressDialog.incrementProgressBy(progress);

062 if(progress == 100 && progressDialog.isShowing())

063 progressDialog.dismiss();

064 }

065 });

066 �// Uncomment one of the following two lines based on Internal

or External loading

067 �//webView.loadUrl("file:///android_asset/radial-dendo-csv.html");

068 �webView.loadUrl("https://www.yourwebserver.com/radial-dendo-

csv.html");

069 }

070 }

Chapter 2 Data: The Fuel for Machine Learning

101

The following code shows the layout file, fullscreen.xml. It includes the Android

WebView control that is contained within a FrameLayout.

001 �<FrameLayout xmlns:android="http://schemas.android.com/apk/res/

android"

002 xmlns:tools="http://schemas.android.com/tools"

001 android:layout_width="match_parent"

002 android:layout_height="match_parent"

003 tools:context="android.wickham.com.datavis.MainActivity">

004

005 <WebView

006 android:id="@+id/wb_webview"

007 android:layout_width="fill_parent"

008 android:layout_height="fill_parent" />

009

010 </FrameLayout>

This Android app, when executed, downloads the HTML/JavaScript file and then

displays the visualization on your device, as shown in Figure 2-19.

Chapter 2 Data: The Fuel for Machine Learning

102

WebView contains many configuration parameters that control how the visualization

will appear, such as zooming, scrolling, etc. Keep in mind that this approach can display

any D3 visualization, not just the dendograms you have focused on for their usefulness

with ML data files such as CSV and JSON files.

2.10  �Summary
This chapter was all about data. It certainly is the fuel for machine learning. In

the subsequent chapters, you will be selecting algorithms, building models, and

finally integrating those models. Without careful attention to the data in this early

phase, you will not be able to achieve the desired results. Figure 2-20 shows how the

data topics you learned in this chapter fit into the overall ML-Gates methodology

introduced in Chapter 1.

Figure 2-19.  Android Data Visualization app screenshot

Chapter 2 Data: The Fuel for Machine Learning

103

It should come as no surprise that the initial three gates of your methodology all

center on the data.

Failure to invest adequate time working with your data at ML-Gates 6/5/4 will

usually lead to poor results when you get to ML-Gates 3 and 2. At that time, it becomes

expensive to go back to resolve data issues.

The next section offers a quick review the key chapter findings before moving on to

cloud-based ML implementations.

�Key Data Findings
You are on the path to becoming data scientist when you follow these best practices:

•	 To develop ML applications, you must adopt a data-driven

methodology.

Figure 2-20.  The initial three gates of the ML-Gates methodology are data driven

Chapter 2 Data: The Fuel for Machine Learning

104

•	 To develop successful ML applications, you must demand more of

yourself with respect to your data.

•	 Most of your code is data wrangling. The 80/20 rule applies: for any

given project you undertake, 80% of your time will be spent working

with the data.

•	 High-quality, relevant data for a well-defined problem is the starting

point.

•	 Understand what type of data you have. This will be necessary when

you apply algorithms to the data in Chapter 4.

•	 Define your data types and consider keeping them in a data

dictionary.

•	 There are many sources you can use for your ML application data:

public, private, government, synthetic, etc.

•	 You can generate your own data. In the chapter, you saw an example

of using Android’s Wifi capabilities to implement indoor location

tracking.

•	 You have many tools that you can use to manipulate data, including

the Open Office Calc spreadsheet program. In Chapter 4, you will

explore additional data filtering tools available in ML environments.

•	 The JSON, CSV, and ARFF formats are popular data formats for

ML. Get comfortable with them all.

•	 Most entities do not have enough high-quality data for DL, while

CML applications only require a reasonable amount of data to

succeed.

•	 The smartphone is the best data collection device ever invented.

•	 Visualization is a key aspect of ML and understanding your data.

•	 To help you visualize your data, you can leverage third-party

packages that make it easy to visualize data in the browser and on

Android devices.

Chapter 2 Data: The Fuel for Machine Learning

105
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_3

CHAPTER 3

Leveraging Cloud
Platforms
Cloud platforms can be very helpful for deploying ML. This chapter will explore the

cloud provider offerings with the following objectives:

•	 A review of the cloud providers who offer IaaS solutions

•	 An overview of Google Cloud Platform (GCP) and Amazon Web

Services (AWS) cloud offerings, including data storage, data

preprocessing, model creation, and model deployment capabilities

•	 How to implement Weka in the cloud

•	 An overview of ML cloud provider API offerings

•	 Project: Implement GCP ML using the Cloud Speech API for Android

•	 An overview of cloud data tools for ML

•	 A review of cloud data strategies for ML, including the use of NoSQL

databases

3.1  �Introduction
The availability of highly scalable computing resources is one of the three megatrends

driving the AI explosion. In this chapter, you will analyze the cloud service providers.

You are specifically looking for ways they can assist you in delivering ML solutions.

106

The big four cloud providers that offer Infrastructure as a Service (IaaS) solutions

are the drivers behind this megatrend. Table 3-1 shows a summary of the big four service

providers.

IaaS solutions allow you to scale your compute environment to match your

demands in terms of CPU, memory, and storage requirements. You only need to pay for

resources required. The also give you the ability to easily distribute your resources across

geographic regions.

This approach is much easier and affordable than building your own servers and

upgrading them when they became too slow.

In this chapter, you will investigate the cloud offerings from the major players to see

how they can help you create and deploy ML solutions.

�Commercial Cloud Providers
One of the advantages of creating CML solutions compared to DL is that they require

for less data and CPU resources. This generally enables you to create solutions entirely

on the desktop. However, you should not overlook the cloud. The cloud providers

continuously improve their ML offerings. Today they provide an amazing array of

services and APIs that make it easier than ever for developers who do not have prior ML

experience to create and deploy ML solutions.

Table 3-1.  Big Four US-Based Cloud Service Providers

IaaS Provider Website Note

Google Cloud Platform cloud.google.com Easy integration with all of the useful Google tools,

including Android for mobile.

Amazon Web Services aws.amazon.com The largest cloud provider. Full service offering for ML.

Microsoft Azure azure.microsoft.com Fastest growing IaaS provider.

IBM Cloud ibm.com/cloud Pioneer in cloud ML with Watson.

Chapter 3 Leveraging Cloud Platforms

107

Cloud ML services are not free. Regardless of the type of container or virtu-
alization technology they use, dedicated or shared hardware (CPU, mem-
ory, storage) is required at some point. Each provider typically has a free
trial so you can experiment with the service before buying.

Pricing is proportional to the computing and storage resources you consume.

With your focus on Java, you will next investigate the ML cloud potential of the four

large US-based cloud providers. In the next sections, you will review the following

ML-related services for each of the providers:

•	 Data storage: The IaaS providers have excellent data storage

offerings for ML solutions. They include flat file storage, traditional

relational databases, NoSQL databases, and others.

•	 Data preprocessing: What tools does the platform provide to help

you prepare your data (ML-Gate 4)?

•	 Model creation: What tools and ML frameworks does the cloud

platform provide to help you create your model (ML-Gate 3)?

•	 Model deployment: What methods are available to deploy your ML

model for predictions, such as API creation or direct hosting access?

The key considerations outlined in Table 3-2 can help you decide if cloud services

are a good fit for your ML project.

Chapter 3 Leveraging Cloud Platforms

108

Table 3-2.  Cloud Provider Considerations

Category Consideration

Local resource availability Do you have a local desktop machine or server that can process large

datasets and build ML models? Local processing allows you to retain

control of your data and avoid cloud usage fees.

Deep learning? Deep learning projects tend to favor cloud-based architectures

because of their reliance on larger datasets and high computational

requirements for model creation.

Geographic diversity The cloud providers can allow you to spin up resources in a variety of

countries and regions globally. It is advantageous to place resources as

close as possible to users.

Data size Do you have a dataset size that is manageable on the desktop, as if

often the case for CML projects?

Scalability Do you anticipate your data or storage requirements will grow in the

future? Cloud providers offer much better scalability. Adding cloud

resources is much easier than upgrading or purchasing a more

powerful desktop/server.

Time constraints Is model creation time important? Even for CML projects with modest

to large datasets, creating the model on the desktop or server single

CPU could take minutes to hours. Moving these computation-intensive

operations to the cloud could drastically cut your model creation times.

If you need real-time or near real-time creation times, the cloud is your

only option.

Availability Do you require high availability? Your project can benefit from the

distributed, multi-node architectures provided by all of the cloud

providers.

Security considerations If you operate your own Internet-connected server, you know what a

challenge security is. Cloud providers simplify security because you can

leverage their massive infrastructure.

Privacy considerations Your clients might not want their data on a public cloud network

managed by one of the big four providers. In this case, you can

implement a private cloud solution and charge a premium.

Chapter 3 Leveraging Cloud Platforms

109

Even if you decide against using a cloud provider for your project, it is important to

keep an eye on their product offerings. The services are constantly being updated, and

your decision may change based on those updates.

�Competitive Positioning
Everybody wants to know which cloud provider is the best for machine learning. Of

course, there is no easy answer.

The incumbent advantage plays a large role in any decision. If you already have an

established relationship with a cloud provider for non-ML services, you would more

likely choose the same provider for its ML offerings. The downside is that you may find

yourself locked into a certain provider. The ML landscape changes rapidly and there are

some significant differences in the ML product offerings. Keep a watchful eye on how all

the services are evolving.

Choosing a framework-agnostic cloud provider has advantages. You will see in the

upcoming section that Google Cloud Platform has limited framework selection, mainly

relying on the powerful TensorFlow framework. GCP does have the advantage of aligning

well with your focus on mobile devices and Android.

The various cloud providers all have their strengths and weaknesses. Figure 3-1

shows a cloud provider summary for some of the largest cloud providers. The chart

plots market share along the X-axis with growth rate along the Y-axis. Publicly available

corporate earnings reports provided the data. Growth rates represent quarter-by-quarter

revenue comparisons. Market share represents reported active users for each of the

providers. The cloud providers shown offer pay-as-you-go services that help you deploy

ML solutions. The big four US-based players have a combined market share near 70%.

Most observers would agree that Amazon Web Services is the market share leader.

However, there is fierce competition amongst all the providers. Outside North America,

particularly in Asia, Alibaba cloud, also known as Aliyun, is a very strong player.

Chapter 3 Leveraging Cloud Platforms

110

�Pricing
If you decide to deploy with cloud services, pricing is important. It represents a direct

expense, sitting on the opposite side of the balance sheet as the monetization discussed

in Chapter 1.

Fierce market competition between the big four players in recent years has driven

down the price of cloud services. Today, there is essentially no pricing arbitrage

opportunity available.

Due to fierce competition among the largest cloud providers, the cost of
cloud resources today is largely identical across platforms. The big four are
keenly aware of their competitor’s offerings, and pricing arbitrage opportu-
nities no longer exist.

Figure 3-1.  Cloud provider competitive position

Chapter 3 Leveraging Cloud Platforms

111

The cloud providers make it easy to estimate your potential costs. Each provider gives

you access to pricing calculators that can give you an accurate idea of your potential

costs. Figure 3-2 shows GCP pricing calculator. These interactive tools allow you to

specify many parameters including cloud service type, CPU(s), storage, operating

system, availability, region, etc. Once you complete the required fields, the tool shows

you a calculated monthly and hourly cost.

Figure 3-2 shows a specified minimum configuration for Google Compute Engine

service. The results show a cost of $30 per month or $.04 per hour. If you run a similar

calculation on AWS, Azure, or Watson, you will find that pricing is comparable.

Keep in mind when using the pricing tools that the free trial period often offered by

the services is not included in the pricing estimates. In many cases, you can receive a

one-year free trial to test the provider’s services.

Figure 3-2.  GCP pricing calculator

Chapter 3 Leveraging Cloud Platforms

112

3.2  �Google Cloud Platform (GCP)
GCP gives you access to a large and growing set of hardware and software resources,

known as services. The GCP services offered are vast. Google distributes the GCP

services into the higher-level categories shown in Table 3-3. There are many services in

each category. Only the specific services you need for ML and DL are highlighted.

Table 3-3.  GCP Services (ML-Related Services Highlighted)

GCP Service Categories

Compute

Compute Engine

Storage and Databases

Big Data

Cloud AI
Cloud ML Engine
Cloud ML APIs

API Platforms and Ecosystems

Data Transfer
Identity and Security

Management Tools

Developer Tools

Cloud SDK

Cloud Tools for Eclipse

Internet of Things
Professional Services

Productivity Tools
Android

Networking

Chapter 3 Leveraging Cloud Platforms

113

Next, you will explore the highlighted ML-related services. The first step is to sign

up for GCP or sign into your existing account. Figure 3-3 shows the GCP dashboard.

The GCP dashboard address is https://console.cloud.google.com/.

The GCP dashboard shows Compute Engine midway down the left panel.

Compute Engine lets you use virtual machines that run on Google’s infrastructure.

When you click Compute Engine, you will be able to create your first virtual machine

instance.

Figure 3-3.  GCP dashboard

Chapter 3 Leveraging Cloud Platforms

https://console.cloud.google.com/

114

�Google Compute Engine (GCE) Virtual Machines (VM)
Even though the GCP ML services focus on DL, the GCE VM gives you the flexibility to

deploy any open source package. You can deploy virtual machines to run Java, the open

source Weka ML environment, and a Java-based data repository such as the Cassandra

NoSQL database. Running these packages on GCE virtual machines is typically easier

than configuring them for a local desktop environment because Google provides ready-

to-go images for many of the popular packages, and if your project needs to scale at a

later date, you have all the advantages of cloud platform scalability.

Figure 3-4 shows the options available when you create a GCE VM.

Figure 3-4.  GCE VM instance creation options

Chapter 3 Leveraging Cloud Platforms

115

When creating a VM you can choose an instance name and a region for the VM.

Of particular interest are the machine type and the boot disk. The machine type specifies

the CPU/memory capacity. The pricing information show in the right panel directly

relates to the machine capacity you select. For initial testing, you can choose the micro

instance. Figure 3-5 shows the boot disk options available. Many Unix configurations are

available.

After you create the instance, CGE will process the request. It will take a few seconds

while the instance spins up and becomes available. Figure 3-6 shows the new micro VM

instance. If you click the SSH drop-down dialog box, you will be able to immediately

connect to the instance, as also shown in Figure 3-6.

Figure 3-5.  GCE VM instance operating system options

Chapter 3 Leveraging Cloud Platforms

116

Each VM instance you create has an internal and external IP address. If you wish to

access the VM from the Internet, you should use the external IP address. You can use

FTP clients that support SSH, such as FileZilla, to transfer files to/from your VM. You

can also use third-party SSH shell programs such as Putty on Windows. For more

information about connection to you VM instance, refer to this Google page:

https://cloud.google.com/compute/docs/instances/connecting-advanced

If you prefer to use a command-line interface to manage your CGE VMs, Google

provides the Google Cloud SDK.

�Google Cloud SDK
Google Cloud SDK is a command-line interface for Google Cloud Platform products and

services. Cloud SDK is a set of tools:

•	 gcloud tool: Manages authentication, local configuration, developer

workflow, and interactions with the Cloud Platform APIs.

Figure 3-6.  SSH connection to GCE VM from the GCP dashboard

Chapter 3 Leveraging Cloud Platforms

https://cloud.google.com/compute/docs/instances/connecting-advanced

117

•	 gsutil tool: gsutil provides command line access to manage Cloud

Storage buckets and objects.

•	 bq tool: Allows you to run queries, manipulate datasets, tables, and

entities in BigQuery through the command line.

•	 kubectl tool: Orchestrates the deployment and management of

Kubernetes container clusters on gcloud.

You can run each of these tools interactively or in your automated scripts. Figure 3-7

shows the Cloud SDK download page.

Cloud SDK is available for all platforms. Figure 3-8 shows the Cloud SDK after

successful installation.

Figure 3-7.  Google Cloud SDK download page

Chapter 3 Leveraging Cloud Platforms

118

Once you have installed Cloud SDK, you can manage any of the GCP services from

the command line. This includes the Google Compute Engine (GCE) and Machine

Learning Engine (MLE).

The gcloud compute command-line tool lets you manage your Google Compute

Engine resources in a friendlier format than using the Compute Engine API. The gcloud
init command shown in Figure 3-9 allows you to update the parameters of the VM if you

decide to change them later.

Figure 3-8.  Cloud SDK installation

Chapter 3 Leveraging Cloud Platforms

119

For installing packages such as Java, Weka, or Casssandra, SSH access is the best

method. You launched this earlier from the dashboard (Figure 3-6). If you wish to do this

from the command line, you can use the following:

001 gcloud compute --project "subtle-bus-204821" ssh --zone "us-east1-b"

"instance-1"

The command line possibilities are endless with Cloud SDK. Check the GCP gcloud

reference page shown below for all of the available gcloud commands:

https://cloud.google.com/sdk/gcloud/reference/

Figure 3-9.  Configuring GCE VM with gcloud init

Chapter 3 Leveraging Cloud Platforms

https://cloud.google.com/sdk/gcloud/reference/

120

�Google Cloud Client Libraries
Google makes it easy for you to use Java with all of the GCP services. The GCP Java client

library is available on GitHub:

https://github.com/GoogleCloudPlatform/google-cloud-java

Google recommends the client libraries for calling Google Cloud APIs. According

to Google, they provide an optimized developer experience by using each supported

language’s natural conventions and styles.

The Java client library is also useful for Android developers who wish to integrate

with GCP services.

�Cloud Tools for Eclipse (CT4E)
Chapter 1 covered setting up the Eclipse development environment for Java. Even

though Android developers no longer use Eclipse in favor of Android Studio, Google

has always been supportive of the Eclipse IDE. It is no surprise that they provide a cloud

tools plugin for Eclipse (CT4E).

Figure 3-10 shows the CT4E documentation page. The plugin is available at

https://github.com/GoogleCloudPlatform/google-cloud-eclipse.

The CT4E wiki page also contains a lot of useful information:

https://github.com/GoogleCloudPlatform/google-cloud-eclipse/wiki/Cloud-

Tools-for-Eclipse-Technical-Design

Figure 3-10.  Cloud Tools for Eclipse Quickstart and documentation

Chapter 3 Leveraging Cloud Platforms

https://github.com/GoogleCloudPlatform/google-cloud-java
https://github.com/GoogleCloudPlatform/google-cloud-eclipse
https://github.com/GoogleCloudPlatform/google-cloud-eclipse/wiki/Cloud-Tools-for-Eclipse-Technical-Design
https://github.com/GoogleCloudPlatform/google-cloud-eclipse/wiki/Cloud-Tools-for-Eclipse-Technical-Design

121

CT4E supports development of Java applications on GCP inside the Eclipse IDE

version 4.5 and later. With CT4E, you can build web applications that run on top of GCE.

�GCP Cloud Machine Learning Engine (ML Engine)
You have been exploring the Google cloud platform and Cloud SDK. Now you will look at

the Cloud ML Engine, the Google Machine Learning Engine API.

Figure 3-11 shows the GCP Cloud ML Engine setup page. The first step is to enable

the API. It can take up to 10 minutes to enable.

The Cloud ML Engine API allows you to create and use machine learning models.

In the prior section, you saw how to create a VM instance that could host any software

package, such as the Weka ML Environment. The Cloud ML Engine simplifies the

process by letting you directly interface to specific Google ML tools via API.

The downside is that you are restricted to the ML frameworks that Google MLE

supports. Google Cloud MLE currently supports the following frameworks:

•	 Cloud ML Engine for TensorFlow

•	 Cloud ML Engine for scikit-learn and XGBoost

•	 Cloud ML Engine for Keras

Figure 3-11.  Cloud Machine Learning Engine API

Chapter 3 Leveraging Cloud Platforms

122

Note that none of the Google ML Engine options are Java-based.

The GCP ML services excel for developers who wish to create and deploy DL
models based on the TensorFlow framework. Recently, Google added
support for additional frameworks including scikit-learn and XGBoost and
Keras. Google states that Python-based scikit-learn is for developers who
wish to deploy classic ML models.

If you do wish to experiment with Tensorflow on GCE, Google provides an excellent

tutorial:

https://cloud.google.com/solutions/running-distributed-tensorflow-on-

compute-engine

This tutorial shows how to set up a distributed configuration of TensorFlow on

multiple GCE instances. The tutorial introduces the MNIST dataset. MNIST is widely

used in machine learning as a training set for image recognition. I will discuss it more in

Chapter 4.

If you wish to explore TensorFlow but do not want to create your own models using

Google MLE, there is another option. You can use prebuilt DL models and access them

with GCP ML APIs. Later in this chapter, you will implement the project for Android.

�GCP Free Tier Pricing Details
If you decide to use GCP for you ML project, you can take advantage of the one-year free

trial to get started. With the free trial, you will get access to all Google Cloud Platform

(GCP) products. The trial includes everything you need to build and run your apps,

websites, and services.

The free trial has some limitations:

•	 Service Level Agreements (SLAs) do not apply. This is reasonable

for a free tier offering. You have no recourse if the service(s) become

unavailable for any reason.

•	 Compute engines are limited to eight cores.

•	 Not all services are available.

•	 Crypto currency mining not allowed.

Chapter 3 Leveraging Cloud Platforms

https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine
https://cloud.google.com/solutions/running-distributed-tensorflow-on-compute-engine

123

•	 Duration of the free trial is 12 months or $300 usage.

•	 Does not auto-renew. There is no auto-charge after the free trial

ends.

The GCP free trial is a very good deal and certainly can help you identify if the

services are suitable for your project.

While you use your GCP free trial, keep in mind that if you go over the trial usage

limits shown below, charges will apply:

•	 1 f1-micro VM instance per month (US regions, excluding Northern

Virginia)

•	 30GB of standard persistent disk storage per month

•	 5GB of snapshot storage per month

•	 1GB egress from North America to other destinations per month

(excluding Australia and China)

3.3  �Amazon AWS
AWS has a bewildering number of cloud-based services. It seems like every week they

introduce a new service. In this section, you will explore the machine learning aspects

of AWS.

AWS has a free one-year trial that allows you to explore many of the services,

including ML.

Earlier you saw that Synergy Research Group placed AWS in a league of its own.

Consistent with their research, AWS does seem to have some advantages:

•	 AWS has a more robust offering of services, regions, configurations,

etc. It really is hard to keep track of all the AWS offerings.

•	 AWS has a well-developed marketplace. Third-party vendors package

free and commercial solutions. These marketplace offerings simplify

the setup because you don’t have to worry about all of the setup

steps.

•	 For ML, AWS is framework agnostic. AWS ML supports bring your

own algorithm and bring your own framework, which provides

maximum flexibility.

Chapter 3 Leveraging Cloud Platforms

124

Table 3-4 shows a list of the AWS ML and EC2 compute services.

Many of these services are similar to DL products available with GCP. You will focus

on the two highlighted ML core services: AWS Machine Learning and SageMaker.

�AWS Machine Learning
At the heart of AWS ML is the ML service. Similar to GCP, its main interface is the

dashboard. Figure 3-12 shows the AWs ML dashboard. The AWS ML dashboard shows all

of your AWS ML work items in a single integrated interface.

Table 3-4.  AWS ML Services

Service Description

Amazon Comprehend Amazon’s NLP solution. Amazon Comprehend can extract insights about the

content of documents.

Amazon DeepLens AWS DeepLens is a wireless video camera and API that allow you to

develop computer vision applications.

Amazon Lex A service for building conversational interfaces into any application using

voice and text.

Machine Learning The AWS core ML service for creating and deploying ML models.

Amazon Polly A cloud service that converts text into lifelike speech. You can use Amazon

Polly to develop applications that increase engagement and accessibility.

Amazon SageMaker A fully managed machine learning service. Many algorithms are available

based on the type of data and prediction. SageMaker allows users to deploy

TensorFlow on AWS or Apache MXNet on AWS.

Amazon Rekognition ML API for image and video analysis. The service can identify objects,

people, text, scenes, and activities.

Amazon Transcribe Uses ML to recognize speech in audio files and transcribe them into text.

Amazon Translate Uses ML to translate documents between English and six other languages.

EC2 Compute Engine EC2 is the main AWS compute engine you can use to manage VM instances

for ML, including AWS Deep Learning AMIs.

Chapter 3 Leveraging Cloud Platforms

125

Figure 3-12 shows several types of items the AWS dashboard can manage, including

•	 Datasources

•	 Models

•	 Batch predictions

•	 Evaluations

The dashboard and intuitive AWS ML workflow make it easy to import data, build

models, and evaluate the model results.

Figure 3-12.  AWS ML dashboard

Chapter 3 Leveraging Cloud Platforms

126

�AWS ML Building and Deploying Models
To demonstrate how simple AWS ML is, let’s return to the PAMAP2_Dataset introduced

in Chapter 2. In this short example, you will load the dataset, build an ML model,

evaluate the model, and even make some batch predictions.

S3 is the AWS storage service. With AWS ML, the first step is to upload the data to S3.

Recall that the dataset contained several large files. Each of the files had 54 attributes

(columns) and over 300,000 instances (rows). You will use the subject101.dat file to

build your first model on AWS ML. In Chapter 2, you converted the file to CSV format.

Figure 3-13 shows the CSV file after uploading to AWS S3. You specify the unique name

of the S3 storage bucket when uploading. In this example, the S3 bucket is named

pamap2.

Due to the size of the file, it takes a couple of minutes for the upload to complete.

AWS S3 shows the size of the data file as 135MB. Even for CML applications, data sizes

can be large, and this is where cloud platforms like AWS excel.

With the data uploaded to S3, the next step is to specify the input data for AWS

ML. The easiest way to accomplish this is to use S3 data access. Figure 3-14 shows the

AWS ML Create Datasource - Input data screen. Specify the name of the S3 storage

bucket you wish to use in the S3 location field.

Figure 3-13.  Uploading ML data to AWS S3

Chapter 3 Leveraging Cloud Platforms

127

AWS ML will validate the data and let you know if the validation was successful. If

unsuccessful, you will need to record the specific issue and then return to OpenOffice

where you can correct the data. The three most common issues with data validation are

as follows:

•	 Incorrect field separators are the most common validation issue.

Make sure you use comma separators in your CSV files.

•	 Use quotation marks around text fields. Comma characters (,) inside

the text will cause issues. OpenOffice can enclose all text fields in

quotation marks.

•	 Save the file with no BOM (byte order mark) character.

Figure 3-14.  AWS ML input data using S3 input data

Chapter 3 Leveraging Cloud Platforms

128

Once the data validation is successful, the next step is setting up the schema.

Figure 3-15 shows the AWS ML Create Datasource - Schema screen.

When AWS ML validated your data, it assigned a name and data type to each of the

attributes (columns). In this step, you want to scan through each attribute and confirm

that these assignments were correct. It is also a good time to check that the number of

attributes is correct; in this case, there are 54 attributes. This confirms that your CSV

value parsing is correct.

Step 3 in the AWS ML Create Datasource sequence is to specify the target. In

Chapter 2, you defined this important attribute as the label. In classification, the label is

the value you are trying to predict.

Figure 3-15.  AWS detecting data schema

Chapter 3 Leveraging Cloud Platforms

129

In the PAMAP2_Dataset, the label is located in column 2 and identified by assigned

name of Var02. This label represents the Activity ID, as described earlier in Table 2-4.

After you specify the label, press Continue, and proceed to the AWS ML model settings. It

is now time to create the model.

Figure 3-16 shows the AWS ML model settings screen. This is where the magic

happens.

In the AWS ML model settings, you have two options. You can choose default or

custom model training methods.

Figure 3-16.  AWS ML model settings

Chapter 3 Leveraging Cloud Platforms

https://doi.org/10.1007/978-1-4842-3951-3_2#Tab4

130

Spoiler alert: You are not going to get a good result with this model, regardless of

which method you choose.

The custom option allows you to specify several items such as division of training

data, random or sequential split of evaluation data, and a few other training parameters.

The problem is, even though you have a large dataset, AWS ML is going to choose a

regression algorithm for you, regardless of whether you choose custom or go with the

defaults. AWS ML enforces this model selection because you entered a single numeric

value for your label.

Performing a regression on the PAMAP2_Dataset is not going to produce a great

result. However, don’t worry about the results for now. You will explore matching

algorithms to learning category in detail in Chapter 4.

Press the Continue button and the model is created. Because your dataset is large,

it can take a few minutes. Note that you did not even have to create a compute resource

with VM (virtual machine) to create the model.

After AWS ML creates the model, you can evaluate the model and make batch

predictions. Figure 3-17 show the evaluation summary of the model.

Figure 3-17.  AWS ML model evaluation

Chapter 3 Leveraging Cloud Platforms

131

The evaluation summary provides useful information. As you can see, the model

creation time was four minutes including two minutes of compute time, which is not bad

considering how large the dataset is.

The model performance shows disappointing results: the regression algorithm

yielded a quality score worse than the baseline. For regression tasks, AWS uses the

standard RMSE (Root Mean Square Error) metric for the baseline. For RMSE baselines,

the closer the value is to zero, the better. One of the goals for this book is to avoid math

equations, but if you would like to learn more about the RMSE baseline, AWS has an

excellent page on measuring regression model accuracy:

https://docs.aws.amazon.com/machine-learning/latest/dg/regression-model-

insights.html

The goal of building a model is to utilize it to make predictions. AWS ML allows for

real-time, single, or batch predictions. Batch predictions are particularly useful, allowing

you to load many instances to classify as a batch. AWS ML accomplishes this by letting

you load the batch predictions into an S3 storage bucket, in exactly the same way you

loaded the original dataset. You then just need to specify the S3 location of the batch

predictions and then the model will produce the results. Making batch predictions does

have an incremental cost and I will discuss that at the end of the section.

AWS ML is a really well-designed service. All of the assets created during the process

of loading data through to making predictions are available at the dashboard. It is easy to

make changes at any phase of the process and experiment with the results.

In just a few short minutes, the AWS ML service allows you to load and vali-
date data, define your schema, build a model, evaluate the model, and
make batch prediction, all controlled by the centralized AWS ML dash-
board. It is ridiculously simple.

For those cases where you require more control over the selection of the ML

algorithm, as with the complex PAMAP2_Dataset, let’s next explore using AWS compute

resources to build your own ML environment.

�AWS EC2 AMI
EC2 is the AWS compute engine service. The abbreviation stands for Elastic Compute

Cloud. EC2 uses the AMI (Amazon Machine Interface) to define its virtual instances.

EC2 supports many types of AMIs. The first step in building your own ML

environment on AWS EC2 is selecting an AMI type to support the application software

you intend to deploy.

Chapter 3 Leveraging Cloud Platforms

https://docs.aws.amazon.com/machine-learning/latest/dg/regression-model-insights.html
https://docs.aws.amazon.com/machine-learning/latest/dg/regression-model-insights.html

132

Figure 3-18 shows just a few of the AMI types available. The AMI types span the

entire range of operating systems, including Amazon Linux, Ubuntu, Red Hat, CentOS,

Windows, etc.

If you look closely at Figure 3-18, you will see several AMIs that are deep learning-

based. This is just another example of how easy AWS makes it to deploy ML solutions. In

this example, you will select the Deep Learning AMI (Amazon Linux) version 13.0.

Figure 3-18.  AWS AMI selection

Chapter 3 Leveraging Cloud Platforms

133

The AWS ML is framework agnostic. You saw that Google GCP has a strong focus

on TensorFlow; in contrast, AWS ML provides you many framework options. When you

create a new instance based on the Deep Learning Base AMIs, AWS packages popular

ML frameworks with the instance. These special AMIs contain various combinations of

Apache MXNet, TensorFlow, Caffe, Caffe2, PyTech, Keras, Theano, CNTK, Nvidia, CUDA,

etc. If you look back at Table 1-10 in Chapter 1, you will see that the AWS Deep Learning

Base AMIs include almost all of the ML frameworks shown. This eliminates the need to

download and install all of the ML framework packages, a real time saver.

After you select your AMI, the next step allows you to choose an instance type.

Figure 3-19 shows the AWS instance type selection.

For this example, you will choose the t2.micro instance type. This is the only

instance type that is available for the one-year free tier trial. It is capable of handling

many applications, including your goal to host the Weka ML environment in the cloud.

Sometimes AWS will warn you that your selected instance is not available for the free tier.

Figure 3-19.  AWS instance type configuration

Chapter 3 Leveraging Cloud Platforms

https://doi.org/10.1007/978-1-4842-3951-3_1#Tab10

134

This is often due to the storage settings. If you receive this warning, double check that your

storage does not exceed 30GB before you launch the instance. You can edit the storage in

the Storage section of the Review stage.

The t2.micro instance is fine for getting to know AWS ML, but Amazon recommends

higher-level configurations for ML training and predictions. Amazon recommends the

ml.m4, ml.c4, and ml.c5 instance families for training and the ml.c5.xl instance type for

predictions.

Before you can access the instance, you must configure its security. Proceed through

the steps, including assigning keys for the secure shell access.

Figure 3-20 shows the instance once it is up and running.

Notice in Figure 3-20 that the instance has a public IP and DNS name. This is how

you will access the instance from the outside world. You will use secure shell (SSH) with

the keys you set up during the instance security configuration.

With the instance running, you are ready to install and run Weka in the AWS cloud.

Figure 3-20.  AWS instance summary

Chapter 3 Leveraging Cloud Platforms

135

�Running Weka ML in the AWS Cloud
Connect to the public IP of the instance using a secure SSH client, or Putty if you are on

Windows. When connecting, note that the user name is ec2-user and the credentials are

the key that you created at the completion of the setup process. Figure 3-21 shows the

initial connection.

When you first connect to the instance, you can change into the /usr/local directory

and see the preinstalled deep learning packages included with the AMI:

001 [ec2-user@ip-172-31-3-37 local]$ pwd

002 /usr/local

003 [ec2-user@ip-172-31-3-37 local]$ ls -lsart

004 total 50096

005 4 drwxr-xr-x 2 root root 4096 Jan 6 2012 src

006 4 drwxr-xr-x 2 root root 4096 Jan 6 2012 sbin

007 4 drwxr-xr-x 2 root root 4096 Jan 6 2012 libexec

008 4 drwxr-xr-x 2 root root 4096 Jan 6 2012 games

009 4 drwxr-xr-x 2 root root 4096 Jan 6 2012 etc

010 4 drwxr-xr-x 13 root root 4096 Jan 15 18:42 ..

011 4 drwxr-xr-x 8 root root 4096 May 8 21:12 share

012 4 drwxr-xr-x 18 root root 4096 May 8 21:13 cuda-8.0

013 4 drwxr-xr-x 19 root root 4096 May 8 21:15 cuda-9.0

014 4 drwxr-xr-x 19 root root 4096 May 10 21:17 cuda-9.1

Figure 3-21.  Connection to the AWS EC2 instance

Chapter 3 Leveraging Cloud Platforms

136

015 4 drwxr-xr-x 19 root root 4096 May 10 21:19 cuda-9.2

016 4 drwxr-xr-x 7 root root 4096 May 10 08:18 mpi

017 4 drwxr-xr-x 7 root root 4096 May 10 09:39 lib64

018 4 drwxr-xr-x 9 root root 4096 May 10 09:39 include

019 4 drwxr-xr-x 7 root root 4096 May 10 09:39 lib

020 4 drwxr-xr-x 2 root root 4096 May 10 09:39 test

021 4 drwxr-xr-x 22 root root 4096 May 10 09:39 caffe2

022 4 drwxr-xr-x 3 root root 4096 May 10 09:39 caffe

023 4 drwxr-xr-x 2 root root 4096 May 10 09:39 bin

024 �0 lrwxrwxrwx 1 root root 20 May 10 09:51 �cuda -> /usr/

local/cuda-9.0/

025 4 drwxr-xr-x 18 root root 4096 May 30 02:35 .

Note the above code shows the packages available for Deep Learning AMI (Amazon

Linux) version 13.0. The packages are constantly being updated by AWS, so you may see

slightly different contents after launching your AMI.

Weka is not included so you need to add it yourself.

Note: You will prepend sudo to each of the following Unix commands to avoid

permission issues.

Weka requires Java, so you first need to check if Java was included, and if so, which

version:

001 [ec2-user@ip-172-31-3-37 local]$ java -version

002 openjdk version "1.8.0_121"

003 �OpenJDK Runtime Environment (Zulu 8.20.0.5-linux64) (build 1.8.0_

121-b15)

004 �OpenJDK 64-Bit Server VM (Zulu 8.20.0.5-linux64) (build 25.121-b15,

mixed mode)

As is often the case with VM instances from the cloud providers, they come

preinstalled with the OpenJDK Java distribution. OpenJDK is fine for most applications.

However, for Weka installations, using the Oracle Java JDK is required because Weka

requires some of the Swing GUI libraries not packaged in OpenJDK. If you try to run

Weka with OpenJDK, you will see the following exception, indicating a Sun launcher

class was not able to load:

001 �[ec2-user@ip-172-31-3-37 local]$ sudo java -cp weka.jar weka.

classifiers.trees.J48 -t /usr/local/weka-3-8-2/data/iris.arff

Chapter 3 Leveraging Cloud Platforms

137

002 �Exception in thread "main" java.lang.UnsupportedClassVersionError:

weka/classifiers/trees/J48 : Unsupported major.minor version 52.0

003 at java.lang.ClassLoader.defineClass1(Native Method)

004 at java.lang.ClassLoader.defineClass(ClassLoader.java:803)

005 �at java.security.SecureClassLoader.

defineClass(SecureClassLoader.java:142)

006 �at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.

java:312)

007 at java.lang.ClassLoader.loadClass(ClassLoader.java:358)

008 �at sun.launcher.LauncherHelper.

checkAndLoadMain(LauncherHelper.java:482)

The solution is to download the Oracle JDK with the following wget command. Lines

001-006 set up the environment variables. Line 008 executes the wget. Line 010 installs

the Oracle JDK package you downloaded.

001 [ec2-user@ip-172-31-3-37 local]$ java_base_version="8"

002 [ec2-user@ip-172-31-3-37 local]$ java_sub_version="141"

003 [ec2-user@ip-172-31-3-37 local]$ java_base_build="15"

004 �[ec2-user@ip-172-31-3-37 local]$ java_version=�"${java_base_version}

u${java_sub_version}"

005 [ec2-user@ip-172-31-3-37 local]$ java_build="b${java_base_build}"

006 �[ec2-user@ip-172-31-3-37 local]$ java_version_with_build="${java_

version}-${java_build}"

007

008 �[ec2-user@ip-172-31-3-37 local]$ sudo wget --no-check-certificate

--no-cookies --header "Cookie: oraclelicense=accept-securebackup-

cookie" http://download.oracle.com/otn-pub/java/jdk/${java_version_

with_build}/336fa29ff2bb4ef291e347e091f7f4a7/jdk-${java_version}-

linux-x64.rpm

009

010 �[ec2-user@ip-172-31-3-37 local]$ sudo yum install -y jdk-8u141-

linux-x64.rpm

After the install of Oracle JDK completes, you now have multiple version of Java

installed on the VM instance. The following command shows that you actually have

three versions: two versions of OpenJDK and the new Oracle JDK. It also allows you to

select the Oracle JDK as the current selection.

Chapter 3 Leveraging Cloud Platforms

138

001 [ec2-user@ip-172-31-3-37 local]$ sudo alternatives --config java

002

003 There are 3 programs which provide 'java'.

004

005 Selection Command

006 ---

007 1 /usr/lib/jvm/jre-1.7.0-openjdk.x86_64/bin/java

008 2 /usr/lib/jvm/jre-1.8.0-openjdk.x86_64/bin/java

009 *+ 3 /usr/java/jdk1.8.0_141/jre/bin/java

010

011 Enter to keep the current selection[+], or type selection number: 3

012 [ec2-user@ip-172-31-3-37 local]$

Now that Java is ready to go, it is time to download and install the latest stable version

of Weka:

001 �[ec2-user@ip-172-31-3-37 local]$ sudo wget http://svwh.

dl.sourceforge.net/project/weka/weka-3-8/3.8.2/weka-3-8-2.zip

002 �--2018-05-30 02:35:43-- http://svwh.dl.sourceforge.net/project/weka/

weka-3-8/3.8.2/weka-3-8-2.zip

003 �Resolving svwh.dl.sourceforge.net (svwh.dl.sourceforge.net)...

72.5.72.15, 2606:c680:0:b:3830:34ff:fe66:6663

004 �Connecting to svwh.dl.sourceforge.net (svwh.dl.sourceforge.

net)|72.5.72.15|:80... connected.

005 HTTP request sent, awaiting response... 200 OK

006 Length: 51223056 (49M) [application/octet-stream]

007 Saving to: ‘weka-3-8-2.zip’

008

009 �weka-3-8-2.zip

100%[======================================>] 48.85M 39.8MB/s

in 1.2s

010

011 �2018-05-30 02:35:45 (39.8 MB/s) - ‘weka-3-8-2.zip’ saved

[51223056/51223056]

Chapter 3 Leveraging Cloud Platforms

139

When the download completes, confirm the weka-3-8-2.zip file exists in the /usr/
local directory:

001 [ec2-user@ip-172-31-3-37 local]$ pwd

002 /usr/local

003 [ec2-user@ip-172-31-3-37 local]$ ls -lsart weka*

004 total 50096

005 50024 -rw-r--r-- 1 root root 51223056 Dec 21 21:16 weka-3-8-2.zip

006 [ec2-user@ip-172-31-3-37 local]$

Next, unzip Weka as shown and when complete, change into the new weka-3-8-2

directory, and you will see the following contents in the new directory:

007 [ec2-user@ip-172-31-3-37]$ pwd

008 /usr/local/

009

010 [ec2-user@ip-172-31-3-37]$ sudo unzip weka-3-8-2.zip

011

012 [ec2-user@ip-172.31.3.37]$ cd weka-3-8-2

013

014 [ec2-user@ip-172-31-3-37 weka-3-8-2]$ ls -l

015 total 42908

016 drwxr-xr-x 2 root root 4096 Dec 22 09:30 changelogs

017 -rw-r--r-- 1 root root 35147 Dec 22 09:30 COPYING

018 drwxr-xr-x 2 root root 4096 Dec 22 09:30 data

019 drwxr-xr-x 3 root root 4096 Dec 22 09:30 doc

020 -rw-r--r-- 1 root root 510 Dec 22 09:30 documentation.css

021 -rw-r--r-- 1 root root 1863 Dec 22 09:30 documentation.html

022 -rw-r--r-- 1 root root 16170 Dec 22 09:30 README

023 -rw-r--r-- 1 root root 43377 Dec 22 09:30 remoteExperimentServer.jar

024 -rw-r--r-- 1 root root 14763219 Dec 22 09:30 wekaexamples.zip

025 -rw-r--r-- 1 root root 30414 Dec 22 09:30 weka.gif

026 -rw-r--r-- 1 root root 359270 Dec 22 09:30 weka.ico

027 -rw-r--r-- 1 root root 11111002 Dec 22 09:30 weka.jar

028 -rw-r--r-- 1 root root 6621767 Dec 22 09:30 WekaManual.pdf

029 -rw-r--r-- 1 root root 10923433 Dec 22 09:30 weka-src.jar

Chapter 3 Leveraging Cloud Platforms

140

You are now ready to run Weka in the cloud. To run Weka from the command line,

you instruct Java to run a classifier class on one of the datasets included with Weka. In

this example, you will run the random forest classifier on the iris.arff dataset. To run a

specified class instead of the main class, provide the –cp option. The following shows the

successful Weka classification:

001 �[ec2-user@ip-172-31-3-37 weka-3-8-2]$ sudo java -cp weka.jar weka.

classifiers.trees.J48 -t/usr/local/weka-3-8-2/data/iris.arff

002

003 === Classifier model (full training set) ===

004

005 J48 pruned tree

006 ------------------

007 ...

008 Number of Leaves : 5

009 Size of the tree : 9

010 Time taken to build model: 0.48 seconds

011 Time taken to test model on training data: 0.01 seconds

012

013 === Error on training data ===

014

015 Correctly Classified Instances 147 98 %

016 Incorrectly Classified Instances 3 2 %

017 Kappa statistic 0.97

018 Mean absolute error 0.0233

019 Root mean squared error 0.108

020 Relative absolute error 5.2482 %

021 Root relative squared error 22.9089 %

022 Total Number of Instances 150

023

024 ...

025

026 === Confusion Matrix ===

027

028 a b c <-- classified as

029 50 0 0 | a = Iris-setosa

Chapter 3 Leveraging Cloud Platforms

141

030 0 49 1 | b = Iris-versicolor

031 0 2 48 | c = Iris-virginica

032

033 Time taken to perform cross-validation: 0.08 seconds

034

035 === Stratified cross-validation ===

036

037 ...

038

039 === Detailed Accuracy By Class ===

040

041 ...

042

043 === Confusion Matrix ===

044

045 a b c <-- classified as

046 49 1 0 | a = Iris-setosa

047 0 47 3 | b = Iris-versicolor

048 0 2 48 | c = Iris-virginica

I will cover Weka in detail in Chapter 4. This example shows that it is quite simple to

implement Weka on the AWS cloud.

�AWS SageMaker
You have seen a couple approaches to building ML on AWS, first by using the AWS ML

service via the dashboard, and second by implementing your own Weka environment on

AWS EC2 compute instance.

AWS SageMaker is a fully managed platform to help you build DL models. It is one of

the recently added AWS services. The main idea behind SageMaker is that ML has been

difficult for developers for the following reasons:

•	 The process of gathering data, processing data, building models,

testing models, and deploying models creates excessive manual work

for developers.

Chapter 3 Leveraging Cloud Platforms

142

•	 Due to repetitive manual work, creating ML solutions is too time

consuming.

•	 Creating ML solutions is too complicated because the required data

and analytic skillsets have replaced traditional software development.

SageMaker tries to address these issues. It promises to remove complexity and

overcome the barriers that slow down developers. Figure 3-22 shows the main AWS

SageMaker page.

Like all AWS services, there is extensive online documentation to help you

understand the service. The link for the SageMaker developer guide is

https://docs.aws.amazon.com/sagemaker/latest/dg.

SageMaker has a lot of potential. Two particularly important features make it a

powerful way to implement ML on AWS- notebook instances, and its flexible support for

algorithms.

Figure 3-22.  AWS SageMaker

Chapter 3 Leveraging Cloud Platforms

https://docs.aws.amazon.com/sagemaker/latest/dg

143

The SageMaker notebook instance is a compute instance running the Jupyter

Notebook App. Jupyter is an open source web app that runs on Python (hence its

spelling) and allows you to create and share documents that contain live code and

visualizations. It is very popular in the Python and DL realms.

Hosted Jupyter notebooks make it easy to explore and visualize training data in

Amazon S3 storage, similar to the JavaScript options covered in Chapter 2. There are

several kernels for Jupyter, including support for Python, Apache MXNet, TensorFlow,

and PySpark. Jupyter does not support a Java kernel. Notebook instances are an

important part of implementing ML with SageMaker.

AWS Labs maintains some excellent examples for you to explore SageMaker on

GitHub here:

https://github.com/awslabs/amazon-sagemaker-examples

The other interesting feature of SageMaker is its algorithm flexibility. SageMaker

supports two classes of algorithms: built-in algorithms and bring-your-own algorithms.

The list of built-in algorithms is available at

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html.

The algorithm list is very complete. AWS claims the preinstalled algorithms deliver

10 times the performance of other providers due to optimization. That’s an impressive

claim. However, AWS does not offer details on how they do this, or for which algorithms

it applies.

User can bring their own algorithms or frameworks. The SageMaker examples on

GitHub show how to do this for a variety of models and algorithms including XGBoost,

k-means, R, scikit, MXNet, and TensorFlow.

AWS SageMaker provides impressive ML functionality, but unfortunately is does not

integrate well with Java due to its reliance on Jupyter. Next, you will explore the AWS SDK

for Java.

�AWS SDK for Java
Amazon supports Java developers. To show their love for us, they release the SDK for Java

to help us accelerate our development. Figure 3-23 shows the main Explore Java on the

AWS page available at https://aws.amazon.com/java/. The page includes links for Java,

Eclipse, and Android.

Chapter 3 Leveraging Cloud Platforms

https://github.com/awslabs/amazon-sagemaker-examples
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
https://aws.amazon.com/java/

144

Figure 3-23.  AWS Java Developer Center

Chapter 3 Leveraging Cloud Platforms

145

The Java SDK is available in several formats. Table 3-5 provides a summary of the

formats.

The first three formats shown in the table are available for download by directly

clicking through the links provided in the AWS Java Development Center.

The SDK for Android download includes many library files, samples, and

documentation for all of the AWS services. Figure 3-24 shows the ML library jar file. Note

that it is only 48Kb. You can view the contents of the .jar library using the 7-Zip utility to

open the archive. The link for the Maven repositories is

http://central.maven.org/maven2/com/amazonaws/aws-android-sdk-

machinelearning.

Table 3-5.  Summary of AWS Java SDK Packages

Format Notes

SDK for Java version 1.11 The currently supported SDK. Allows you to access all of the AWS

services from Java.

Java Toolkit for Eclipse The AWS Toolkit for Eclipse conveniently includes the AWS SDK for

Java, so you can get started building Java applications on AWS

infrastructure services in Eclipse, including Amazon S3, Amazon

EC2, Amazon DynamoDB, and Amazon ML.

SDK for Android Complete set of documentation, libraries, and samples to help you

integrate AWS services into Android Apps.

Machine Learning SDK for Java This is a special SDK only for AWS ML. It is only downloadable from

a Maven repository. If you only need AWS ML access, this smaller

library keeps your project size lean by excluding all of the other

AWS services.

SDK for Java version 2.0 AWS SDK for Java 2.0 Developer Preview Build Status. Version 2.0

is currently a preview and not recommended for production use yet.

Chapter 3 Leveraging Cloud Platforms

http://central.maven.org/maven2/com/amazonaws/aws-android-sdk-machinelearning
http://central.maven.org/maven2/com/amazonaws/aws-android-sdk-machinelearning

146

There are two versions of the SDK for Java. Version Java 1 is the currently available

version, and Java 2 is a developer preview rewrite of Java 1 with some new features. Both

versions enable you to easily interface your Java projects with AWS. Java 2 includes two

key new features:

•	 Non-blocking IO

•	 Pluggable HTTP protocol stacks

If you develop for Android, you probably know that Google discontinued use of the

Apache HTTPClient stack in Android recently. The pluggable HTTP feature in Java 2

follows this trend as Java 1 only supported HTTPClient. With Java 2.0 you can use other

stacks such as HTTPurlConnection or OkHTTP.

With the Java SDK, you can get started in minutes using Maven or any build system

that supports Maven Central as an artifact source. The developer guide includes detailed

setup and installation instructions, available at

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/welcome.html.

If you are interested in the code for the Java SDK, it is available at the following sites:

https://github.com/aws/aws-sdk-java

https://github.com/aws/aws-sdk-java-v2

If you do not require all of the AWS services supported by the SDK, you can

download just the SDK for Machine Learning at

Figure 3-24.  AWS SDK for Android Machine Learning Library

Chapter 3 Leveraging Cloud Platforms

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/welcome.html
https://github.com/aws/aws-sdk-java
https://github.com/aws/aws-sdk-java-v2

147

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-

machinelearning.

Figure 3-25 shows the Maven repository for the Java machine learning library. You

can download the .jar file or see the instructions for Maven or Gradle depending on your

build environment.

With the help of the AWS Java SDK for Machine Learning, any ML task available via

the AWS ML dashboard is reproducible programmatically from your Java code.

�AWS Free Tier Pricing Details
Similar to GCP, AWS offers you a 12-month introductory period. The free tier includes

some free services that never expire. Other free services are available for the 12-month

period. Amazon provides full details of the free-tier service coverage at

https://aws.amazon.com/free/.

The AWS free tier is quite generous. The main highlights of the free tier include

•	 750 hours of EC2 t2.micro instance. You can configure the instance as

you wish. You used the t2.micro instance earlier to configure Weka in

the cloud.

Figure 3-25.  Maven repository for AWS ML SDK for Java

Chapter 3 Leveraging Cloud Platforms

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-machinelearning
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-machinelearning
https://aws.amazon.com/free/

148

•	 AWS provides 5GB of S3 storage in the free tier. This is adequate for

exploring AWS ML.

•	 AWS allows 1 million API calls per month. Developers can use these

API calls to explore the AWS ML APIs.

You can use the t2.micro instance for almost anything you wish, including machine

learning. There are some additional considerations for developers considering the AWS

free tier to explore ML:

•	 AWS supports EC2 instances on many regions within North America

and globally. Not all services are available for every region. If you

decide to use AWS ML services, you need to choose a region that

supports the service before you create the instance.

•	 Batch predictions using AWS ML are not included in the free tier

pricing and are not free. The cost for batch predictions is $0.10 per

1,000 predictions. See Table 1-5.

•	 AWS EC2 instances have public IP addresses. If you stop and restart

the instance, the IP address will change. If you wish to assign a

permanent IP address to your EC2 instance, you need to create what

AWS calls an elastic IP. Elastic IPs are not free and are not included

in the AWS free tier. Stopping and restarting your EC2 instance with a

new IP address will not cause any loss of configuration or data related

to the instance.

If you pursue AWS SageMaker for ML, on top of the overall free tier, AWS offers an

additional monthly free tier of 250 hours for building models plus 50 hours for training

on SageMaker.

3.4  �Machine Learning APIs
There may be times when you don’t need to build and deploy your own ML models. In

these cases, you can leverage the cloud APIs provided by the big four cloud providers.

In the preceding section, I covered the AWS ML services. Figure 3-26 summarizes

the high-level APIs provided by the big four cloud providers: Amazon, Google, IBM,

and Microsoft. All of their APIs fall into five distinct categories: language, vision, data

insights, speech, and search.

Chapter 3 Leveraging Cloud Platforms

https://doi.org/10.1007/978-1-4842-3951-3_1#Tab5

149

While Google and AWS do a great job at providing the lower-level tools and building

blocks we need to implement ML solutions, IBM and Microsoft do an equally fine job at

providing higher-level models we can access by API. Figure 3-26 shows that they have

many APIs to solve a wide variety of problems in each of the five categories.

Most of these APIs employ DL methods created from the massive amount of data

the cloud providers own. The APIs are mostly free to try. If you decide to use these APIs

commercially, you will typically just need to pay the cloud provider’s inference fee per

API call. Recall that the inference fee is the fee to make predictions. You can make real

time predictions or batch predictions. See Table 1-5 for pricing approximations.

Figure 3-26.  High-level ML API comparison

Chapter 3 Leveraging Cloud Platforms

https://doi.org/10.1007/978-1-4842-3951-3_1#Tab5

150

�Using ML REST APIs
If you decide to use one of the services in Figure 3-26, they will most likely allow access

to the service via a REST API call. Making predictions (inference) with ML model APIs

using REST calls is easy. The APIs normally use the REST protocol with the JSON data

format covered in Chapter 2.

When making a REST call to the API, both the request and response are in JSON

format. For example, Listing 3-1 shows a GCP Cloud Vision API JSON request. The listing

demonstrates only the most important fields: your API key, a reference to the image

source, and the feature being requested. If you wish to implement this API call, refer to

the following link for full details on the specific JSON requirements:

https://cloud.google.com/vision/docs/request

Listing 3-1.  Example of GCP Cloud Vision API JSON Request

001 POST https://vision.googleapis.com/v1/images:annotate?key=YOUR_API_KEY

002 {

003 "requests": [

004 {

005 "images": {

006 "content": "your_image.jpg"

007 },

008 "features": [

009 {

010 "type": "LABEL_DETECTION"

011 }

012]

013 }

014]

015 }

After you post the request, you will receive a JSON response. Listing 3-2 shows a

successful JSON response; in this case, you are getting back the top two image label

predictions for the image file submitted in the request.

Chapter 3 Leveraging Cloud Platforms

https://cloud.google.com/vision/docs/request

151

Listing 3-2.  Example of GCP Cloud Vision API JSON Response

001 {

002 "responses": [

003 {

004 "labelAnnotations": [

005 {

006 "mid": "/m/01yrx",

007 "description": "cat",

008 "score": 0.92562944

009 },

010 {

011 "mid": "/m/0307l",

012 "description": "cat like mammal",

013 "score": 0.65950978

014 }

015]

016 }

017]

018 }

To help you submit JSON requests and parse JSON responses, the Java SDK provides

example code. Additionally, Java client libraries are available for each of the various

APIs. For this example, refer the Cloud Vision API client library and select the Java tab, at

https://cloud.google.com/vision/docs/libraries.

In the next section, you will use this approach to build a complete Android app using

JSON to access the powerful GCP Cloud Speech API. The Google Cloud Speech API will

allow you to transcribe audio files recorded by the device.

�Alternative ML API Providers
There are times when you might want to consider alternative cloud API model providers.

If you have a niche application not covered by the big cloud players, alternative providers

who specialize in certain applications could provide a solution.

Sometimes you just wish to differentiate your product from competitors who all use

the large cloud provider APIs. Using alternative smaller cloud API providers in these

cases could be a viable strategy.

Chapter 3 Leveraging Cloud Platforms

https://cloud.google.com/vision/docs/libraries

152

Table 3-6 shows some alternative cloud ML API providers.

Whether you use alternative ML APIs or ML APIs from the big four cloud providers,

there are a huge number of product offerings you can choose from. If you think back to

the M-Gates, at MLG6, you must start with a well-defined problem. At that point, it is a

best practice to scan the available APIs to see if any of them exactly match the problem.

There is no need to reinvent the wheel. The large cloud providers have so much data,

it would be hard to create a better solution than the models they make available to

us. While the large four cloud providers have many APIs, it can be fruitful to explore if

external alternatives are available.

3.5  �Project: GCP Cloud Speech API for Android
In this project, you will implement the GCP Cloud Speech API Android app. You will use

the Android Studio IDE. This project is copyrighted and released by Google (Apache

license 2.0), and is available for download at the following link:

https://github.com/GoogleCloudPlatform/android-docs-samples/tree/master/

speech/Speech

Table 3-6.  Alternative Cloud ML API Providers

Provider Description

www.diffbot.com/products/automatic/ Data extraction

www.beyondverbal.com/api/ Emotion and vocal analytics from an Israeli company

www.kairos.com/face-recognition-api Face recognition

https://wit.ai/getting-started Chat bot

www.openalpr.com/cloud-api.html Real-time license plate recognition

Chapter 3 Leveraging Cloud Platforms

https://github.com/GoogleCloudPlatform/android-docs-samples/tree/master/speech/Speech
https://github.com/GoogleCloudPlatform/android-docs-samples/tree/master/speech/Speech
http://www.diffbot.com/products/automatic/
http://www.beyondverbal.com/api/
http://www.kairos.com/face-recognition-api
https://wit.ai/getting-started
http://www.openalpr.com/cloud-api.html

153

�Cloud Speech API App Overview
Download the project from GitHub and import it into Android Studio. Table 3-7 shows

the summary of the key project files.

Table 3-7.  GCP Cloud Speech API Project File Summary

Project Name: GCP Cloud Speech API
Source: GitHub Google Cloud Speech Platform
Type: Android Application
File Description

app->src->main->java

MainActivity.java

The main activity that checks for device permissions, launches

the voice recorder and speech service, and sets up the main

view.

app->src->main->java

SpeechService.java

Service for handling API access. This Android service

implements the interface to the GCP Cloud Speech API,

including authentication and real-time streaming of spoken

words.

app->src->main->java

MessageDialogFragment.java

A simple Android Dialog class that the app uses to display

messages to the user.

app->src->main->java

VoiceRecorder.java

This class implements the Android AudioRecord class for

voice recording.

app->src->main->

res->layout

main.xml

Main XML layout.

app->src->main->res->raw

credential.json

JSON credential file created on the GCP Cloud API Center.

Place the file into the res/raw folder.

app->src->main->res->raw

audio.raw

A sample audio file stored into the /res/raw folder that

can be sent to the API for classification. The audio file is a

recording of the spoken words "How old is the Brooklyn

Bridge?"

app->src->main

AndroidManifest.xml

App manifest file. Defines the activity and the service.

Chapter 3 Leveraging Cloud Platforms

154

Figure 3-27 shows a screenshot of the Android app. The app’s concept is

straightforward. The app accepts audio input from the user and uses the Google Cloud

Speech API to translate the audio and display a text translation. The app supports two

methods for audio input:

•	 The app can record audio from the device microphone. Audio is

recorded in raw PCM format. In Chapter 2, you saw that digitized

voice is a form of data. I will discuss more about audio file formats

later. Recorded audio is sent up the Cloud Speech API in real time for

translation.

•	 The user can also press the LOAD FILE button to load a prerecorded

audio file which will then be sent to the API for translation.

The Cloud Speech API uses DL to translate the recorded audio to text. The app

receives the translated text and displays the translation in real time as the user is

speaking. Because the API uses deep learning, it does a really impressive job at

translating voice input.

Figure 3-27.  The GCP ML Cloud Speech API Android app

Chapter 3 Leveraging Cloud Platforms

155

Running the app on the device allows you to record audio using the microphone.

The app batches spoken words in real time and passes them up to the API. If you are

using the emulator to run the app, you will be restricted to pressing the LOAD FILE

button to provide audio for the API to translate.

�GCP Machine Learning APIs
Before you can get the app running on your Android device, you need to perform the

following two actions on the Google Cloud Platform dashboard:

•	 Enable the Cloud Speech API.

•	 Create the authentication key required by the Android app.

In order to enable the API, visit the following link:

https://console.cloud.google.com/apis/library?filter=category:machine-

learning

Figure 3-28 shows the currently available GCP Cloud ML APIs, including the Cloud

Speech API you wish to implement. Click the Cloud Speech API and enable it.

Chapter 3 Leveraging Cloud Platforms

https://console.cloud.google.com/apis/library?filter=category:machine-learning
https://console.cloud.google.com/apis/library?filter=category:machine-learning

156

Next you need to create the authentication key that is required for the Android app.

�Cloud Speech API Authentication
The Cloud Speech API Android app requires you to provide a JSON file authentication

key. The file will be named credential.json and will be placed in the app’s raw folder.

Follow these steps to create the file.

Figure 3-28.  GCP Cloud ML APIs

Chapter 3 Leveraging Cloud Platforms

157

The first step is to create a service account key. The service account is required for

authentication. Figure 3-29 shows the Credentials tab within the API dashboard. Choose

Create credentials, and then select Service account key from the drop down list.

The Create service account key dialog box will be displayed, as shown in Figure 3-30.

Figure 3-29.  GCP creating a service account key

Chapter 3 Leveraging Cloud Platforms

158

The service account should appear as speech2text, and you should select the JSON

type. Press the Create button and the private key will be saved to your computer, as

shown in Figure 3-31.

Figure 3-30.  Selecting JSON service account key type

Chapter 3 Leveraging Cloud Platforms

159

The private key will be saved to your computer with a filename based on the name of

the project. If you leave the project name as the default value, it will appear similar to the

following:

My First Project-D817dcf314.json
Rename this file to

credential.json
The JSON configuration file contents will look similar to the following and is required

to access the API from Android:

001 {

002 "type": "service_account",

003 "project_id": "subtle-bus-204821",

004 "private_key_id": "xxxxxxxxxxxxxxxxxxxxx",

005 �"private_key": "-----BEGIN PRIVATE KEY-----\nxxxxxxx\n-----END

PRIVATE KEY-----\n",

006 �"client_email": "speech2text@subtle-bus-204821.iam.gservice

account.com",

Figure 3-31.  Saving the JSON private key file

Chapter 3 Leveraging Cloud Platforms

160

007 "client_id": "xxxxxxxxxxxxxxxxxxxxx",

008 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

009 "token_uri": "https://accounts.google.com/o/oauth2/token",

010 �"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/

v1/certs",

011 �"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/

x509/speech2text%40subtle-bus-204821.iam.gserviceaccount.com"

012 }

Finally, copy the credential.json file to the res/raw directory of the Android app.

After copying the file, you can successfully build the Android app in Android Studio.

It is important to note that placing private keys in your app to handle authentication

is a useful and simple way to test out the API, but this method is not acceptable for

production apps. For production apps, you should implement your own app server to

handle authentication of the app users. Since you are just testing out the API, you can copy.

You can always review and manage your service account keys in the dashboard, as

shown in Figure 3-32.

Figure 3-32.  Displaying active credentials

Chapter 3 Leveraging Cloud Platforms

161

�Android Audio
With the backend setup complete, you can focus on the client Android app. In this

section, you will cover the following key events:

•	 Recording raw audio

•	 Sending audio to the API

•	 Processing the API JSON response

Audio is a form of data. ML often uses audio data as input. Android devices are

excellent for working with audio because the hardware supports many codecs for

encoding and decoding.

Android devices are excellent tools for audio data processing. Android sup-
ports many codecs. The AudioRecord and AudioTrack classes support
recording and processing of raw uncompressed audio. While latency is not
great for Android audio, most ML Audio APIs support high throughput and
do not require low latency.

Table 3-8 shows a list of Android’s supported audio formats. Note that Y indicates

encoding or decoding is available in all SDK versions for a particular codec. N indicates

encoding is not available for a codec.

Table 3-8.  Android Supported Audio Formats

Codec Encode Decode Details File Type

AAC 4.1+ Y Mono/stereo/5.0/5.1up to 48khz sample 3GPP,MP4,ADTS AAC

AMR Y Y 5-12 kbps12-24 kbps 3GPP

FLAC Y Y (3.1+) Mono/stereo/up to 44.1/48khz FLAC

MP3 N Y Mono/stereo/8-320kbps MP3

MIDI N Y Support for ringtones MID

Vorbis N Y OGG, Matroska

PCM Y (4.1+) Y 8-bit/16-bit Linear PCM rates to

hardware limit

WAVE

Opus N Y (5.0+) Matroska

Chapter 3 Leveraging Cloud Platforms

162

The GCP Cloud Speech API can accept several types of audio data: FLAC (.flac),

PCM (.wav) files, AMR, and Linear-16. The FLAC and PCM formats represent raw

uncompressed audio data. While compressed audio data, such as MP3 files, would be

smaller and faster to transmit to the cloud, the compression would introduce noise and

possibly compromise accuracy.

The Android AudioRecord class is a very powerful low-level audio API. Any serious

app that processes audio is most likely using AudioRecord. In the Cloud Speech API

app, the AudioRecord class is used to record uncompressed raw audio, which is passed

to the API for translation.

Listing 3-3 shows the key audio recording loop in the app. The ProcessVoice class

shown resides inside the VoiceRecorder.java file. The code runs on a thread and is

responsible for continuously reading uncompressed voice data from the AudioRecord

object into the mBuffer byte array (line 013).

Listing 3-3.  ProcessVoice Class within VoiceRecorder.java

001 private AudioRecord mAudioRecord;

002 private Thread mThread;

003 private byte[] mBuffer;

004

005 private class ProcessVoice implements Runnable {

006 @Override

007 public void run() {

008 while (true) {

009 synchronized (mLock) {

010 if (Thread.currentThread().isInterrupted()) {

011 break;

012 }

013 �final int size = mAudioRecord.read(mBuffer, 0,

mBuffer.length);

014 final long now = System.currentTimeMillis();

015 if (isHearingVoice(mBuffer, size)) {

016 if (mLastVoiceHeardMillis == Long.MAX_VALUE) {

017 mVoiceStartedMillis = now;

018 mCallback.onVoiceStart();

019 }

Chapter 3 Leveraging Cloud Platforms

163

020 mCallback.onVoice(mBuffer, size);

021 mLastVoiceHeardMillis = now;

022 �if (now - mVoiceStartedMillis > MAX_SPEECH_

LENGTH_MILLIS) {

023 end();

024 }

025 } else if (mLastVoiceHeardMillis != Long.MAX_VALUE) {

026 mCallback.onVoice(mBuffer, size);

027 �if (now - mLastVoiceHeardMillis > SPEECH_TIMEOUT_

MILLIS) {

028 end();

029 }

030 }

031 }

032 }

033 }

034 }

The code in Listing 3-3 is a typical audio recording implementation. One of the

features that makes the app so powerful is the use of the following callbacks:

•	 onVoiceStart: Called when the recorder starts hearing a voice.

•	 onVoice: Called when the recorder hears a voice.

•	 onVoiceEnd: Called when the recorder stops hearing a voice.

The use of these methods is how the app is able to provide real-time translations as

the user speaks.

Raw audio from the microphone is sent to the Cloud Speech API by passing the data

to the recognizeInputStream method in SpeechService.java.

SpeechService.java runs as an Android Service within the app. It is responsible for

interfacing with the cloud API. The code in Listing 3-4 shows how the service builds the

JSON request message for the API.

Listing 3-4.  Building the API Request within SpeechService.java

001 public void recognizeInputStream(InputStream stream) {

002 try {

003 mApi.recognize(

Chapter 3 Leveraging Cloud Platforms

164

004 RecognizeRequest.newBuilder()

005 .setConfig(RecognitionConfig.newBuilder()

006 �.setEncoding(RecognitionConfig.

AudioEncoding.LINEAR16)

007 .setLanguageCode("en-US")

008 .setSampleRateHertz(16000)

009 .build())

010 �.setAudio(RecognitionAudio.newBuilder()

011 �.setContent(ByteString.readFrom(stream))

012 .build())

013 .build(),

014 mFileResponseObserver);

015 } catch (IOException e) {

016 Log.e(TAG, "Error loading the input", e);

017 }

018 }

After processing each audio data stream through its DL model, the Cloud Speech

API sends the text results back to the service. The service handles everything for you.

The code in Listing 3-5 shows an excerpt from MainActivity.java. This code sets up a

SpeechService listener and populates the UI with the text results as they are received.

Listing 3-5.  Listening for Text Results in MainActivity.java

001 private final SpeechService.Listener mSpeechServiceListener =

002 new SpeechService.Listener() {

003 @Override

004 �public void onSpeechRecognized(final String text, final

boolean isFinal) {

005 if (isFinal) {

006 mVoiceRecorder.dismiss();

007 }

008 if (mText != null && !TextUtils.isEmpty(text)) {

009 runOnUiThread(new Runnable() {

010 @Override

011 public void run() {

Chapter 3 Leveraging Cloud Platforms

165

012 if (isFinal) {

013 mText.setText(null);

014 mAdapter.addResult(text);

015 �mRecyclerView.smoothScroll

ToPosition(0);

016 } else {

017 mText.setText(text);

018 }

019 }

020 });

021 }

022 }

023 };

�Cloud Speech API App Summary
The Google Cloud Speech API app is a powerful example of leveraging DL models

in the cloud. It is an advanced implementation because it provides a service-based

architecture to handle all of the API interfaces. The use of callbacks in conjunction

with the service architecture provides real-time translation and creates a seamless user

experience.

It is an architecture that can be replicated for the other GCP ML APIs. Keep in mind

that is also can create significant network traffic and API access volume.

Once you successfully deploy a solution such as the Cloud Speech API, you should

revisit the dashboard periodically to check on traffic and errors. Figure 3-33 shows the

Cloud Speech API Dashboard with traffic recorded. Be careful to watch the API traffic

volume, especially if working within the constraints of the free trial.

Chapter 3 Leveraging Cloud Platforms

166

3.6  �Cloud Data for Machine Learning
The cloud service providers excel at storing data. While many of their ML services

are relatively new, the data storage services they offer have been available from the

beginning.

The data storage services they offer can take a variety of formats, including

•	 Container images

•	 Traditional databases

•	 NoSQL databases

•	 APIs and services

•	 Virtual machines

Figure 3-33.  GCP monitoring API access volumes

Chapter 3 Leveraging Cloud Platforms

167

Earlier in the chapter, you saw two of these approaches. You used AWS S3 buckets

object store when you demonstrated the AWS ML consoles with the PAMAP2_Dataset.

You then used a virtual machine for storage when setting up Weka in the cloud. Next,

you will examine how the explosion in unstructured data is leading to increased usage of

NoSQL databases as a storage solution.

�Unstructured Data
Chapter 2 discussed a megatrend: the explosion of data. We define unstructured data as

data with little or no metadata and little or no classification. ML often uses unstructured

data. Unstructured data includes many categories, such as videos, emails, images, IoT

device data, file shares, security data, surveillance data, log files, web data, user and

session data, chat, messaging, twitter streams sensor data, time series data, IoT device

data, and retail customer data.

Unstructured data can be characterized by the three Vs: volume, velocity, and variety.

•	 Volume: Size of the data. See Table 2-2.

•	 Velocity: How fast the data is generated. Jet engine sensors, for

example, can produce thousands of samples per second.

•	 Variety: There are many different kinds of data.

Figure 3-34 shows the exponential growth of unstructured data relative to structured data.

Figure 3-34.  Growth of unstructured data

Chapter 3 Leveraging Cloud Platforms

https://doi.org/10.1007/978-1-4842-3951-3_2#Tab2

168

The problem with traditional databases is that they are hard to scale and not well

suited for unstructured data. One of the best ways to store unstructured data in the cloud

is with NoSQL databases because they do a much better job at handling this type of data.

�NoSQL Databases
NoSQL stands for “not SQL.” The approach is different from traditional relational

database management systems (RDBMS). SQL is the query language used by relational

databases. These databases rely on tables, columns, rows, or schemas to organize and

retrieve the data. NoSQL databases do not rely on these structures and use more flexible

data models. Many mainstream enterprises have adopted NoSQL.

The benefits of NoSQL databases include

•	 Scalability: Horizontal scaling architecture makes it easy to add

commoditized nodes to increase capacity.

•	 Performance: You can easily increase performance by adding

commoditized resources as required.

•	 High availability: NoSQL databases often use a master-less

architecture, making them less prone to outages.

•	 Global availability: Distributed databases can be replicated across

machines and geographic areas.

•	 Flexible modeling: Handling documents or unstructured data

represented by JSON means there is no strict data typing, tables, or

indexes.

To understand how NoSQL databases differ from traditional RDBMS databases, it is

useful to review the CAP theorem, originally described by Eric Brewer. The CAP theorem

states that for distributed database architectures, it is impossible to simultaneously

provide more than two out of the following three guarantees:

•	 Consistency: Every read receives the most recent write or an error.

•	 Availability: Can always read or write to the system, without

guaranteeing that it contains the most recent value.

•	 Partition tolerance: The system continues to operate despite an

arbitrary number of messages being dropped or delayed by the

network between nodes.

Chapter 3 Leveraging Cloud Platforms

169

Figure 3-35 shows a graphical representation of the CAP theorem and includes a

classification of many popular SQL (RDBMS) and NoSQL databases.

The traditional SQL databases are on the left side of the triangle. They support

consistency and availability. However, they do not partition easily in a distributed

fashion. Partitioning is the key ingredient behind the massive scalability of NoSQL

architectures. The triangle shows popular NoSQL databases at the bottom and right side

of the triangle.

Database theorists used two interesting terms to describe these database

philosophies:

•	 ACID: Atomicity, Consistency, Isolation, Durability

•	 BASE: Basically Available, Soft state, Eventual consistency

Figure 3-35.  Database classification per the CAP theorem

Chapter 3 Leveraging Cloud Platforms

170

RDBMS databases choose ACID for consistency and availability. Distributed NoSQL

databases choose BASE for either partitioning/consistency or partitioning/availability.

Many popular NoSQL databases use the BASE philosophy. Table 3-9 shows a summary

of the most popular NoSQL databases.

�NoSQL Data Store Methods
The NoSQL databases shown in Table 3-8 have differences. When choosing a NoSQL

database, the key consideration is how they store the data. There are four types of NoSQL

data stores:

•	 Key-value data stores

•	 Document stores

•	 Wide column stores

•	 Graph stores

Table 3-9.  Popular NoSQL Databases

Database Description

Google

Bigtable

Google’s NoSQL big data database service. Google says it can handle massive

workloads with low latency and high throughput. It powers many of the Google

services such as Maps, Gmail, and Search.

AWS

DynamoDB

Fully managed proprietary NoSQL database from Amazon. DynamoDB supports key-

value and document data structures. High durability and availability.

Apache

HBASE

A distributed, scalable big data store. HBASE is the HADOOP database. The Apache

project’s goal is hosting very large tables of billions of rows and millions of columns.

Written in Java and modelled after Google’s Bigtable.

Riak KV A distributed NoSQL database from Basho. Allows you to store massive amounts of

unstructured key-value data. Popular solution for IoT.

Apache

Cassandra

Highly scalable NoSQL database. Claims to outperform other NoSQL databases due

to architectural choices. Used by Netflix, Apple, EBay, etc.

MongoDB Cross-platform, document-based, NoSQL database based on JSON-like documents.

CouchDB Distributed NoSQL document-oriented database optimized for interactive

applications.

Chapter 3 Leveraging Cloud Platforms

171

Table 3-10 shows how the poplar NoSQL products fall into these categories.

Data size and performance are also important factors to consider when selecting a

NoSQL database. MongoDB and CouchDB are excellent choices for small to medium

dataset sizes, while Cassandra is excellent for large datasets.

Performance is a complex topic and beyond the scope of this chapter. For CML

projects, you do not require top-tier performance. If you are interested in NoSQL

performance benchmarking, Datastax has a great summary available at

www.datastax.com/nosql-databases/benchmarks-cassandra-vs-mongodb-vs-

hbase.

The cloud providers include support for many NoSQL databases. Figure 3-36 show

the AWS Database Quickstart page.

Table 3-10.  NoSQL Data Store Methods

Data store type Characteristics Examples

Key/Value A hash table indexed by key. Entirely in

memory or combination of memory and disk.

Does not support secondary indexes.

Memcache

Document Principle storage object is a document,

usually in JSON format. Supports secondary

indexes. Offers small to medium scalability.

Internally objects are stored in binary as

BSON or BLOBs.

MongoDB

CouchDB

CouchBase

DynamoDB

Redis

Graph Used for storing connected datasets. Neo

Wide Column Provides a wide or big table. Supports

millions of columns. Offers large scalability.

Supports big data.

HBase

BigtableCassandra

Chapter 3 Leveraging Cloud Platforms

http://www.datastax.com/nosql-databases/benchmarks-cassandra-vs-mongodb-vs-hbase
http://www.datastax.com/nosql-databases/benchmarks-cassandra-vs-mongodb-vs-hbase

172

You can see AWS provides NoSQL Quickstart packages for Couchbase, MongoDB,

two flavors of Cassandra, and its own DynamoDB NoSQL offering.

�Apache Cassandra Java Interface
Using Quickstart packages makes it easy to deploy a NoSQL database on cloud providers

such as AWS or GCP. In this final section, you will explore, at a very high level, how you

can interface from your Java programs to the Apache Cassandra NoSQL database.

DataStax is one of the leading distributors of Apache Cassandra. It is available for

AWS and Google Compute Engine at the following links:

https://aws.amazon.com/quickstart/architecture/datastax-enterprise/

�https://console.cloud.google.com/marketplace/details/datastax-public/

datastax-enterprise

Note that DataStax does not charge a fee for Datastax Enterprise, but the cloud

providers will charge a fee for compute resources. The cloud providers and DataStax

have teamed up to make it very easy to spin up a highly scalable Cassandra cluster in the

cloud.

Figure 3-36.  AWS Database Quickstart options

Chapter 3 Leveraging Cloud Platforms

https://aws.amazon.com/quickstart/architecture/datastax-enterprise/
https://console.cloud.google.com/marketplace/details/datastax-public/datastax-enterprise
https://console.cloud.google.com/marketplace/details/datastax-public/datastax-enterprise

173

One of the great features of the DataStax distribution is the available of drivers for

all the popular programming languages, including Java. The Datastax Java driver is

available at

https://github.com/datastax/java-driver.

The DataStax Java driver GitHub site has an excellent Readme.md file with very

helpful information for getting started with Java and Cassandra. Some highlights of the

DataStax Cassandra distribution and Java driver:

•	 Open source drivers (Apache 2.0) available for all main languages,

including Java.

•	 The DataStax Java driver contains the logic for connecting to

Cassandra and executing a query.

•	 The DataStax Java driver supports synchronous and asynchronous

queries.

•	 The driver is a feature-rich and highly tunable Java client library.

•	 The driver supports Apache Cassandra (2.1+).

•	 The driver supports Cassandra’s binary protocol.

•	 The driver supports Cassandra Query Language v3.

The following code shows how to connect to a Cassandra database and execute a

Cassandra query from Java using the DataStax driver:

001 Cluster cluster = null;

002 try {

003 // Connect to the cloud Cassandra cluster

004 cluster = Cluster.builder()

005 .addContactPoint("ip_address")

006 .build();

007 Session session = cluster.connect();

008

009 // Provide a Query String for the execute method

010 �ResultSet rs = session.execute("select release_version from

system.local");

011

Chapter 3 Leveraging Cloud Platforms

https://github.com/datastax/java-driver

174

012 // Get the first row

013 Row row = rs.one();

014 System.out.println(row.getString(0)); // The first column;

015 } finally {

016 if (cluster != null) cluster.close();

017 }

Cassandra uses the Cassandra Query Language (CQL). CQL is very similar to SQL.

There are several ways to access CQL, including

•	 Starting cqlsh, the command-line client, on the command line of a

Cassandra node.

•	 Using DataStax DevCenter, a graphical user interface.

•	 For developing applications, you can use one of the official DataStax

Java drivers.

One of the most useful CQL commands is the Copy command. The CQL Copy

command allows you to import and export CSV files. Recall from Chapter 2, these files

are an integral part of the ML pipeline. With a single command, you are able to populate

an entire Cassandra DB or back up the Cassandra NoSQL DB to a CSV file for offline

processing. Complete details on the CQL Copy command are at

https://docs.datastax.com/en/cql/3.1/cql/cql_reference/copy_r.html.

For more details on other useful CQL commands including additional Java code

examples, refer to the DataStax driver documentation at

https://docs.datastax.com/en/developer/java-driver/3.4/manual/.

One of the advantages of using a cloud-based NoSQL database like Cassandra is

scalability. This can come in handy if you are collecting a lot of ML data and you need to

store it. A few years ago, Google achieved 1 million writes per second using Cassandra on

Google Compute Engine. You can learn about the deployment details in this blogpost:

https://cloudplatform.googleblog.com/2014/03/cassandra-hits-one-million-

writes-per-second-on-google-compute-engine.html

According to the author, the cost to achieve this result in 2014 was only $0.07 per

million writes. This illustrates the powerful value proposition of the cloud platforms.

Chapter 3 Leveraging Cloud Platforms

https://docs.datastax.com/en/cql/3.1/cql/cql_reference/copy_r.html
https://docs.datastax.com/en/developer/java-driver/3.4/manual/
https://cloudplatform.googleblog.com/2014/03/cassandra-hits-one-million-writes-per-second-on-google-compute-engine.html
https://cloudplatform.googleblog.com/2014/03/cassandra-hits-one-million-writes-per-second-on-google-compute-engine.html

175

3.7  �Cloud Platform Summary
This chapter had the lofty goal of covering cloud platforms for ML. Cloud ML is a very

fast moving space characterized by rapid developments. Keep in mind the following

findings as you proceed to the next chapters to cover algorithms and ML environments:

•	 When building ML solutions, always scan the available cloud services

first to see if one exists that can solve the problem with minimal

model building or coding.

•	 Each of the cloud providers has been investing huge resources the

past few years to deploy compute resources, storage solutions, model

building platforms, and DL APIs that you can leverage for your

applications.

•	 Leverage the free tier provided by the cloud platforms to see if a

particular service works for your specific application.

•	 Google makes it easy for Android apps to leverage Google ML Engine

services through published JSON APIs.

•	 NoSQL databases such as Cassandra allow you to achieve massive

scale and are relatively easy to configure.

•	 Many services, especially those provided by open source packages

offered by the cloud providers are free, but ultimately users will pay

for any compute resources consumed. Fortunately, these costs have

been driven down by fierce industry competition.

Chapter 3 Leveraging Cloud Platforms

177
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_4

CHAPTER 4

Algorithms: The Brains
of Machine Learning
Selecting the best algorithm for your ML problem is extremely important. This chapter

will explore algorithms and meet the following objectives:

•	 Explain the terminology used by the scientists who create ML algorithms.

•	 Show you how to select the best algorithm by considering multiple

factors.

•	 Summarize the three high-level styles of algorithms.

•	 Provide a complete index list of CML algorithms so you can easily

identify which style of ML a particular algorithm utilizes.

•	 Present a decision flowchart and a functional flowchart that will help

you to choose the best algorithm for your problem.

•	 Present an overview of the seven most important ML algorithms.

•	 Compare the performance of CML algorithms, including summary of

CML and DL algorithms on the MNIST dataset.

•	 Review the Java source code of popular algorithms.

4.1  �Introduction
When asked why they fail to deploy ML solutions, developers often express two main

reasons:

•	 It takes too much manual work.

•	 Algorithms and model creation are too complicated.

178

The manual work typically refers to data wrangling. In Chapter 2, I covered some

tools that can help to make this simpler. Chapter 5 will present additional tools

integrated as part of Java ML environments. With ML, it is hard to avoid manual work

with data. I refer back to Mr. Silver’s interesting quote about expecting more from

ourselves before we expect more from our data.

In Figure 1-20, you saw that algorithms are rooted in the scientific domain. One of

the main reasons developers shy away from deploying ML is that algorithm selection

and model creation are too complicated. Fortunately, you can overcome the algorithm

complexity issue by learning some basic principles and gaining an understanding of the

scientific language associated with ML algorithms.

This book and chapter will mainly cover CML algorithms. In Chapter 3, you accessed

a DL algorithm via the Google Cloud Speech API because the cloud providers tend to

focus their ML APIs on DL solutions.

�ML-Gate 3
MLG3 is the phase during which you generate the ML model. The most important action

during this phase is the selection and validation of the ML algorithm. This chapter will

help you to choose the best algorithm and determine how it is performing.

When you first embark on ML solutions, choosing the best algorithm seems

somewhat arbitrary. In Chapter 5, you will see that it is actually quite easy to randomly

select and apply any algorithm to a dataset. This is not a particularly good use of time. In

Chapter 3, you saw disappointing results when the AWS Machine Learning wizard chose

the wrong algorithm after misunderstanding the label data type. There is a conventional

wisdom for algorithm selection. Answers to the following questions help to determine

which algorithm is best suited for your model:

•	 How much data do you have?

•	 What are you trying to predict?

•	 Is the data labeled or unlabeled?

•	 Do you require incremental or batched training?

As you gain experience, you can quickly determine which algorithm is the best

match for your problem and data.

Chapter 4 Algorithms: The Brains of Machine Learning

179

4.2  �Algorithm Styles
The world of ML algorithms is bifurcated into two equally important and useful

categories. Before introducing the fancy terminology scientists use to describe each

category, let’s first look at the types of data that define each category.

�Labeled vs. Unlabeled Data
You will recall in Chapter 2, I defined the term label as what you are attempting to

predict or forecast. In Chapter 2, the PAMAP2_Dataset was labeled. Column 1 contained

the label values. At the time of the data collection, the participants wearing sensors were

asked to record their activity. This label value was then stored along with all of the other

data from the sensors.

Many datasets used in ML consist of labeled data. The majority of the datasets in

the UC Irvine repository have labels. Most of the ML competitions hosted by the ML site

Kaggle.com use labelled data. In the real world, this is not always the case.

Some organizations consider labeled data as more valuable than unlabeled data.

Organizations sometimes even consider unlabeled data as worthless. This is probably

shortsighted. You shall see that ML can use both labeled and unlabeled data.

Whether or not the data contains labels is the key factor in determining the ML

algorithm style. ML algorithms fall into three general ML styles:

•	 Supervised learning

•	 Unsupervised learning

•	 Semi-supervised learning

Figure 4-1 summarizes these three ML algorithm styles.

Chapter 4 Algorithms: The Brains of Machine Learning

180

All of the algorithms I will discuss fall into one of these categories. Supervised

algorithms use data with labels. Unsupervised algorithms use data without labels. Semi-

supervised algorithms use data with and without labels.

4.3  �Supervised Learning
Supervised learning is the easiest ML learning style to understand. Supervised learning

algorithms operate on data with labels. Because each sample includes a label, a function

(which we will call a critic) is able to calculate an error value for each sample. Figure 4-2

shows a graphical representation of the supervised learning process.

Figure 4-1.  ML algorithm styles

Chapter 4 Algorithms: The Brains of Machine Learning

181

The term “supervision” refers to the critic-error operation. This operation enables

the algorithm to compare actual vs. desired and learn from this. There are many

algorithms under the supervised learning umbrella. Later in this chapter, you will

explore some of the most useful supervised algorithms:

•	 Support vector machines (SVM)

•	 Naive Bayesian (NB) networks

•	 Random forest (RF) decision trees

When you combine supervised learning with labeled data, you are able to classify

samples. The terms “supervised learning” and “classification” are thus highly correlated.

Supervised learning classification usually happens in two phases. You divide the

data into two parts: training data and testing data. Both sets of data contain fully labeled

samples. In the first phase, you train the mapping function with the training data until it

meets some level of performance (actual vs. desired output). In phase two, you use the

testing data as input to the mapping function. Phase two provides a good measure of

how well the model performs with unseen data.

Figure 4-2.  Supervised learning logic

Chapter 4 Algorithms: The Brains of Machine Learning

182

4.4  �Unsupervised Learning
Unsupervised learning algorithms operate on data without labels. The key difference

is that unsupervised learning lacks a critic and has no way to measure its performance.

Figure 4-3 shows the representation of an unsupervised learning system.

In this system, you do not have the necessary label to perform classification of

individual samples. Instead, you accept data without labels as input and perform the

task of outputting classes. Unsupervised learning is all about finding the structure of the

data, a task commonly described as clustering, or knowledge discovery.

A common example often cited to help explain clustering is the unknown Excel

spreadsheet. Consider a spreadsheet that contains columns of data but no headers to

identify the data. What can you determine? You need to analyze the data contained

in each column and attempt to discover what it means. You are essentially trying to

uncover the structure of the data in the spreadsheet. If a new sample arrives, you would

like to make some decisions about how it might connect to the rest of the data in the

spreadsheet. This is clustering.

Figure 4-3.  Unsupervised learning logic

Chapter 4 Algorithms: The Brains of Machine Learning

183

Clustering algorithms involve determining a mapping function that categorizes

the data into classes based on the features hidden within the data. With unsupervised

learning, because no labels are present, you lack the knowledge to know what you wish

to get out of the model. Instead, you look for relationships or correlations in the data.

Unsupervised learning algorithms work their magic by dividing the data into

clusters. In Figure 2-10, you saw an interesting dataset that contained erroneous value.

If you pass this dataset into a clustering algorithm, you might possibly obtain a result like

that shown in Figure 4-4.

Visualization is very helpful in understanding clusters. Obviously, Cluster 2

represents the erroneous data in the dataset. Algorithms have many different techniques

to determine what constitutes a cluster. Later in this chapter, you will explore the pros

and cons of the following clustering algorithms:

•	 DBSCAN

•	 Expectation-maximization (EM)

•	 K-means clustering

In Chapter 5, you will implement clustering with Java and Weka.

Figure 4-4.  Clustering of a dataset

Chapter 4 Algorithms: The Brains of Machine Learning

184

4.5  �Semi-Supervised Learning
Semi-supervised learning algorithms operate on mixed data where only some of the data

contains labels. This is often the case for real-world data. Semi-supervised learning is

becoming increasingly popular for two reasons:

•	 The data explosion megatrend has led to the increasing collection

of unstructured data that does not have a consistent application

of labels.

•	 One possible option would be to label all of the unlabeled data

in a mixed dataset and then use supervised learning algorithms.

However, because the labeling process is manual and tedious, it is too

expensive to label the sample with missing labels.

Figure 4-5 shows the process diagram for semi-supervised learning. The input and

outputs are the same as with the supervised learning style, with the exception of a switch

placed before the critic. The switch allows the critic function to be disabled when a data

sample is unlabeled.

Figure 4-5.  Semi-supervised learning logic

Chapter 4 Algorithms: The Brains of Machine Learning

185

As with the supervised and unsupervised learning styles, semi-supervised learning

has many algorithms. In Chapter 5, you will implement semi-supervised learning using

a collective classification set of algorithms. There is a growing amount of academic

research showing that semi-supervised algorithms can outperform supervised

algorithms. However, the main advantage of using semi-supervised algorithms remains

the time-savings gained by not needing to label unlabeled data.

4.6  �Alternative Learning Styles
Regression, deep learning, and reinforcement learning are learning styles with unique

algorithms that I will not cover in this chapter, with one exception: the support vector

machine algorithm that performs wells for supervised learning classification.

�Linear Regression Algorithm
Regression is useful for predicting outputs that are continuous, rather than outputs

confined to a set of labels. Linear regression is the most popular regression algorithm. All

of the cloud and desktop ML environments support the linear regression algorithm. It is

one of the more simple algorithms. If you recall back to the statistics class you suffered

through, linear regression is the process of finding the best fit line through a series of

data points. Figure 4-6 shows a linear regression example.

Chapter 4 Algorithms: The Brains of Machine Learning

186

The regression line minimizes the error values associated with each data point. The

resulting best-fit line can successfully generate or “predict” a value for any independent

variable value along the line.

Recall in Chapter 2, you applied the AWS ML regression algorithm to the PAMAP2_

Dataset. The result was poor because this dataset was not a good match for the

regression algorithm. In the example, the AWS ML wizard mistakenly considered your

target label to be a continuous value rather than an integer label. Later you will see how

to choose a better algorithm for this dataset.

In the rest of this text, you will mainly focus on CML algorithms for supervised and

unsupervised learning, but keep in mind the linear regression algorithm if you have a

simple problem that requires continuous value prediction rather than discrete labels.

�Deep Learning Algorithms
DL styles rely on neural networks with hidden layers. There are several families of

algorithms popular in DL, including convolutional neural networks (CNN) and

recurrent neural networks (RNN). One of the best summary resources for DL algorithms

is “The Mostly Complete Guide to Deep Learning Algorithms,” available at https://

asimovinstitute.org.

Figure 4-6.  Linear regression

Chapter 4 Algorithms: The Brains of Machine Learning

https://asimovinstitute.org
https://asimovinstitute.org

187

Figure 4-7 displays a simplified summary of the cells and hidden layers that

comprise some of the most popular neural networks.

Figure 4-7.  DL algorithm summary

Chapter 4 Algorithms: The Brains of Machine Learning

188

Neural networks have many types of hidden layers. Refer to the link to distinguish

the different hidden layer types because it is hard to visualize the layer types in the

greyscale image.

In the bottom left corner of Figure 4-7 is the support vector machine DL algorithm.

The SVM DL algorithm is a supervised ML algorithm you can also apply to CML. You

will take a closer look at the performance of this algorithm later in this chapter and

again in Chapter 5.

�Reinforcement Learning
Semi-supervised learning is sometimes confused with the reinforcement learning (RL)

style. They are not the same. RL is a type of supervised learning with a distinction. With

RL, each input does not always generate feedback. While semi-supervised learning uses

data with mixed labels, with RL, there are no labels.

In RL, the supervision comes from a reward signal that tells the critic how well it

is doing, but does not say what the correct action should be. Reinforcement learning

deals with the interaction of the critic with its environment (state). The actions taken by

the critic influence the distribution of states it will observe in the future. In supervised

learning, each decision is independent of the others. In RL, the labels are associated with

sequences, as opposed to individual samples in supervised learning.

Recall from Chapter 1, the Pokerbot problem was difficult to solve because poker is

a game of uncertain or incomplete information. RL works well for navigating uncertain

environments, and is thus often used for games such as poker, chess, blackjack, or Go.

Earlier, I mentioned Skymind, the creator of the Java-based DL library. Skymind also

has some great content on RL. It described RL as a goal-oriented approach to ML. You

can learn more about RL from the following link:

https://skymind.ai/wiki/deep-reinforcement-learning

In the rest of this chapter and book, you will restrict your focus to supervised and

unsupervised algorithms with or without labels because they overlap well with your

focus on CML problems.

Chapter 4 Algorithms: The Brains of Machine Learning

https://skymind.ai/wiki/deep-reinforcement-learning

189

4.7  �CML Algorithm Overview
With an understanding of the major algorithm styles, supervised, unsupervised, and

semi-supervised, and their relation to labeled vs. unlabeled data, it is now time to look

at the specific algorithms within these styles. Table 4-1 provides an index of most of the

popular supervised CML algorithms. The shaded cells indicate the key algorithms you

will explore.

Table 4-1.  Supervised ML Algorithms

Supervised ML Algorithm Family/Class

Averages one-dependency estimator (AODE) Outperforms Bayes

Analysis of variance (ANOVA) Statistical

Artificial neural network (ANN) Neural networks

Apriori algorithm Association learning (databases)

Naive Bayesian Bayes (probabilistic)

Bayesian statistics Bayes (probabilistic)

Boosting Ensemble learning

Conditional random field Statistical

C45 Decision tree

CART Decision tree

Random forest Decision tree

Sliq Decision tree

Sprint Decision tree

Eclat algorithm Association learning

Ensemble of classifiers Ensemble learning

Information fuzzy network (IFN) Decision tree but with directed graphs

Hidden Markov models Statistical, Markov process

K-nearest neighbors (KNN) Instance-based (lazy learning)

Learning automata Reinforcement

(continued)

Chapter 4 Algorithms: The Brains of Machine Learning

190

Table 4-2 provides an index of most of the popular unsupervised ML algorithms.

Table 4-2.  UnSupervised ML Algorithms

Unsupervised ML Algorithm Family/Class

COBWEB Conceptual clustering

Conceptual clustering Data clustering

DBSCAN Density-based clustering

Expectation-maximization (EM) Iterative method

FP-growth algorithm (frequent pattern) Recursive tree

Fuzzy clustering (FCM) Similar to k-means

Generative topographic map Probabilistic

HDBSCAN Density-based clustering

Information bottleneck Deep learning

K-means algorithm Vector quantization, similar to KNN

Local outlier factor Anomaly detection

OPTICS algorithm Density-based clustering

Self-organizing map (ANN) Neural network

Single-linkage clustering Hierarchical clustering

Support vector clustering Vector quantization, similar to SVM

Vector quantization Vector quantization

Supervised ML Algorithm Family/Class

Learning vector quant (LVQ) Neural network

Logistic model tree (LMT) Combines regression and decision tree

Minimum message length Instance-based

Probably approximately correct (PAC) learning Statistical

Quadratic classifiers Linear classifier

Support vector machines Non-probabilistic linear classifier

Table 4-1.  (continued)

Chapter 4 Algorithms: The Brains of Machine Learning

191

Lastly, Table 4-3 shows a list of the semi-supervised algorithms.

These tables are a nearly complete list of CML algorithms. It is not necessary to

understand all of these algorithms to write successful ML applications. If you see a

particular algorithm referenced in an ML solution, you can use the tables to identify

the class or family of algorithms and the learning style. Wikipedia has decent reference

pages for all of the algorithms if you wish to learn more about one of them.

The CML algorithm is a commodity. Algorithm innovation and perfor-
mance gains have been widely achieved. However, CML algorithms prefer
specific types of problems, so consider algorithm preference bias when
choosing your algorithm.

While knowing the details of all the CML algorithms is not necessary, it is necessary

to understand the following:

•	 What type of data you have?

•	 Which learning style is the most appropriate for your data?

•	 What is the preference bias for each ML algorithm?

Next, you will explore a process for choosing the best algorithm.

Table 4-3.  Semi-Supervised CML Algorithms

Semi-Supervised ML Algorithms Family/Class

Co-training Large amount of unlabeled data

Collective classification WEKA

Generative models Graph-based

Graph-based methods Graph-based

SARSA

(State-Action-Reward-State-Action)

Reinforcement

Temporal Reinforcement

Chapter 4 Algorithms: The Brains of Machine Learning

192

4.8  �Choose the Right Algorithm
There is a popular saying among data scientists...

Algorithms are easy; the hard part is the data.

The part about data being hard was a theme of Chapter 2. At first glance, CML

algorithms do not appear to be easy. Unlike DL algorithms, which are still undergoing

significant development, CML algorithms are widely deployed and relatively stable. This

allows us to define a decision flowchart for choosing the right CML algorithm. Figure 4-8

shows the algorithm decision process.

Figure 4-8.  ML algorithm decision flowchart

Chapter 4 Algorithms: The Brains of Machine Learning

193

This decision chart is a modified version of a more complex chart available on the

Scikit-learn resources page. If you look closely at Figure 4-8, you will notice that simple

decisions steer you into one of the three main learning style boxes: classification,

clustering, and regression. Each of these boxes highlights the key algorithms you need

to know.

As you navigate the flowchart, the decision nodes depend on the amount of data and

the type of data. In some cases, you will find there is more than one algorithm that you

could use. The general rule of thumb is to start simple by running the basic algorithms

first.

Even though Table 4-1, Table 4-2, and Table 4-3 contain many algorithms, you really

only need to consider the algorithms shown in Figure 4-8. You will take a closer look at

these specific algorithms later in the chapter.

�Functional Algorithm Decision Process
Sometimes ML practitioners take a more functional approach to algorithm selection.

Cloud platforms use this approach when they wish to remove users from the

complications associated with the data type decisions required to choose an algorithm.

Microsoft Azure ML does a particularly good job of using this approach to help users

choose the correct algorithm.

The idea is to ask yourself the simple question, “What do I want to find out?” The

answer to the question will lead you to the correct learning style and then to specific

algorithms. Figure 4-9 show a summary of this approach for each of five distinct answers

to the question, including

•	 Predict values

•	 Discover structure

•	 Predict between several categories

•	 Find unusual occurrences

•	 Predict between two categories

Figure 4-9 shows examples and algorithms for each of the five categories. Some

users appreciate this approach to algorithm selection, because it is simpler. “Discover

structure” is an easier concept to understand than “clustering.”

Chapter 4 Algorithms: The Brains of Machine Learning

194

Organizing ML algorithms in this manner shows that the same algorithm can answer

several of the different questions. The distinction lies in the number of output classes.

Notice, for example, the case of the decision tree or random forest algorithms. You can

apply these algorithms as multiclass algorithms to predict between several categories,

as 2-class algorithms to predict between two categories, or as a regression algorithm to

predict values.

Figure 4-9.  Functional algorithm decision flowchart

Chapter 4 Algorithms: The Brains of Machine Learning

195

The data-driven decision flowchart in Figure 4-8 and the functional approach in

Figure 4-9 will both lead you to the same correct learning style and algorithm choice for

your problem.

Next, you will take a closer look at the key algorithms you need to know for your CML

problems.

4.9  �The Seven Most Useful CML Algorithms
The algorithm decision charts in Figure 4-8 and Figure 4-9 guide you in the selection

of the best ML algorithm. With experience, you will find that a handful of algorithms

can solve most of your problems. This section will cover the seven most useful CML

algorithms you need in your toolbox.

The following seven algorithms are the “go-to” algorithms for CML problems. The list

includes four classifiers and three clustering algorithms.

•	 Naive Bayes (classify)

•	 Random forest (classify)

•	 K-nearest neighbors (classify)

•	 Support vector machine (classify)

•	 DBSCAN (cluster)

•	 Expectation-maximization (cluster)

•	 K-means (cluster)

Of course, the special case will arise when you need to reach for an obscure

algorithm, but 95% of time, these seven algorithms will deliver excellent results. The best

part of all, there is open source Java production code available for all of the algorithms.

�Naive Bayes Algorithm (NB)
NB is a probability-based modeling algorithm based on Bayes’ theorem. One of the goals

of this book is to avoid mathematical equations. Because of its roots in probability, the

NB algorithm represents one circumstance warranting the use of math equations, but we

will avoid the temptation.

Chapter 4 Algorithms: The Brains of Machine Learning

196

Bayes’ theorem simply states the following:

•	 The probability of an event is based on prior knowledge of conditions

that might be related to the event. Bayes’ theorem discusses

conditional probability. Conditional probability is the likelihood that

event A occurs given that condition B is true.

For example, consider human eyesight and its relationship to a person’s age.

According to Bayes’ theorem, age can help assess more accurately the probability that

a person wears glasses, compared to an assessment made without knowledge of the

person’s age. In this example, the age of the person is the condition.

The reason for the “naive” part of the name is that the algorithm makes a very “naive”

assumption about the independence of the attributes. NB algorithms assume that all the

attributes are conditionally independent given the class. Even with this assumption, NB

algorithms often outperform classifiers using techniques that are more elaborate.

Some advantages of NB algorithms include

•	 NB is good for spam detection where classification returns a category

such as spam or not spam.

•	 NB can accept categorical and continuous data types.

•	 NB can work with missing values in the dataset by omitting them

when estimating probabilities.

•	 NB is also effective with noisy data because the noise averages out

with the use of probabilities.

•	 NB is highly scalable and it is especially suited for large databases.

•	 NB can adapt to most kinds of classification. NB is an excellent algorithm

choice for document classification, spam filtering, and fraud detection.

•	 NB is good for updating incrementally.

•	 NB offers an efficient use of memory and fast training speeds. The

algorithm is suitable for parallel processing.

Disadvantages of NB include

•	 The NB algorithm does not work well when data attributes have some

degree of correlation. This violates the “naive” assumption of the algorithm.

You will implement document classification using naive Bayes in Chapter 5.

Chapter 4 Algorithms: The Brains of Machine Learning

197

�Random Forest Algorithm (RF)
If I could only choose one algorithm for my ML toolbox, I would choose the random

forest algorithm.

To understand RF, it is first necessary to understand decision trees. Decision trees

are a supervised learning method for classification. Decision tree algorithms grow trees

using the training data set. The decision tree can classify instances in the test data set.

Decision trees are a divide-and-conquer approach to learning.

A decision tree is a structure where “internal nodes” represent each attribute in the

dataset. Each “branch” of the tree represents the result of a test, and the “leaf nodes” at

the bottom of the tree represent the classification made.

The test can take on a variety of forms, including

•	 Comparing the attribute value with a constant.

•	 If the attribute is a nominal one, the number of children usually

represents the categories that match.

•	 If the attribute is numeric, the children can represent “>” or “<” or “=”

matches.

The CART (classification and regression trees) algorithm is one of the most basic

decision tree algorithms. CART uses binary trees with exactly two outputs. C45 is an

improved algorithm that handles missing values and has pruning to help with overfitting

issues. With a decision tree, you can use classification trees for discrete value targets and

regression trees for continuous value targets.

The RF algorithm is an improvement over the basic decision tree algorithms such

as CART and C45. RF is an ensemble model because it uses multiple decision trees and

bases each decision tree on a random subset of attributes (columns) and observations

(rows) from the original data. Figure 4-10 shows a graphical representation of how the RF

algorithm classifies an instance.

Chapter 4 Algorithms: The Brains of Machine Learning

198

Many trees make up the random forest, and a majority voting determines the final

classification.

The RF algorithm has several advantages:

•	 RF is easy to visualize so you can understand the factors that lead to

a classification result. This can be very useful if you have to explain

how your algorithm works to business domain experts or users.

•	 Each tree in a random forest grows the structure on random features,

minimizing the bias.

•	 Unlike the naive Bayes algorithm, the decision tree-based algorithms

work well when attributes have some correlation.

Figure 4-10.  Random forest algorithm

Chapter 4 Algorithms: The Brains of Machine Learning

199

•	 RF is one of the most simple, robust, and easily understood

algorithms.

•	 The RF bagging feature is very useful. It provides strong fit and

typically does not over-fit.

•	 RF is highly scalable and gives reasonable performance.

RF has some disadvantages:

•	 Decision trees can be slow with large training times when they are

complex.

•	 Missing values can pose a problem for decision tree-based

algorithms.

•	 Attribute ordering is important, such that those with the most

“information gain” appear first.

The RF algorithm is a good compliment to the naive Bayes algorithm. One of the

main reasons RF has become popular is because it is very easy to get good results. You

will see later in this chapter that RF algorithm can generally outperform all of the other

CML classifier algorithms.

�K-Nearest Neighbors Algorithm (KNN)
The k-nearest neighbors algorithm is a simple algorithm that yields good results. KNN is

useful for classification and regression. Recall from Table 4-1, the KNN algorithm is an

instanced-based algorithm, a class of learning also known as lazy learning. The reason

is that the work is done at the time you are ready to classify a new instance, rather than

when a training set is processed. Instance-based learning is thus “lazy”. KNN algorithms

do not make any assumptions on the underlying data and do not build models from

training data.

Because they rely on distance calculations, KNN algorithms work well with numeric

attributes, but KNN can also support categorical attributes with transformation to

numeric or binary values.

KNN algorithms classify each new instance based on the classification of its nearby

neighbor(s). Figure 4-11 shows a graphical representation of a KNN algorithm with K=5.

Chapter 4 Algorithms: The Brains of Machine Learning

200

Figure 4-11 shows two-dimensional data with three different classes. The algorithm

scans outward from the instance it is trying to classify. The algorithm maintains a

distance array that contains the distances from the unclassified instance to each

classified neighbor. Because K=5, only the five nearest neighbors are considered for a

majority vote that determines the class. In this example, a count of three classified the

unknown instance, as shown.

The trick with KNN is determining the best value for K. If you pick a K that is too

large, perhaps even equal to the total number of observations, then your classification

result will simply be the most populous class. If K is too small, the result will simply be

the class of the closest neighbor. There are many approaches to choosing K:

Figure 4-11.  KNN algorithm (k=5)

Chapter 4 Algorithms: The Brains of Machine Learning

201

•	 Make a guess and refine with trial by error.

•	 Choose a K value related to the number of classes, for example, the

number of classes + 1.

•	 Use another algorithm to choose K.

KNN advantages:

•	 KNN makes no assumptions on the underlying data.

•	 KNN is a simple classifier that works well on basic recognition

problems.

•	 KNN is easy to visualize and understand how classification is

determined.

•	 Unlike naive Bayes, KNN has no problem with correlated attributes

and works well with noisy data if the dataset is not large.

KNN disadvantages:

•	 Choosing K can be problematic and you may need to spend time

tuning K values.

•	 KNN is subject to the curse of dimensionality due to reliance on

distance-based measures. To help combat this, you can try to reduce

dimensions or perform feature selection prior to modeling.

•	 KNN is instance-based and processes the entire dataset for

classification, which is resource intensive. KNN is not a great

algorithm choice for large datasets.

•	 Transforming categorical values to numeric values does not always

yield good results.

•	 As a lazy classifier, KNN is not a good algorithm choice for real-time

classification.

KNN is a simple, useful classifier. Consider it for the initial classification attempt,

particularly if the disadvantages listed above are not an issue for your problem.

Chapter 4 Algorithms: The Brains of Machine Learning

202

�Support Vector Machine Algorithm (SVM)
The support vector machine algorithm fills a useful place in your toolbox of seven

algorithms. The SVM is technically a linear classifier, but there’s a method that will also

allow it to handle complex non-linear data.

For its input, the SVM is effective with numeric features only, but most

implementations of the algorithm allow you to transform categorical features to

numerical values. The SVM output is a class prediction.

The SVM works its magic similar to the linear regression algorithm discussed earlier.

Figure 4-12 shows the SVM concept.

Figure 4-12.  Support vector machine

The points on the dashed lines in Figure 4-12 are the support vectors. The algorithm

tries to create the optimal hyperplane decision boundary between the classes by

maximizing the margin between the support vectors.

The SVM algorithm has several advantages:

•	 SVMs have fewer parameters to set up when building the model.

•	 SVM algorithms have a good theoretical foundation.

Chapter 4 Algorithms: The Brains of Machine Learning

203

•	 SVMs are extremely flexible in the type of data they can support.

•	 SVMs require less computational resources to get an accurate model

than decision trees.

•	 SVMs are not sensitive to noisy data.

•	 SVM is a good algorithm for binary two-class outputs.

•	 You can accomplish non-linear classification with SVMs by using

kernel transformation.

•	 SVMs can work well with a large number of features and less

training data.

Disadvantages of SVM algorithms:

•	 SVMs are black boxes. Unlike decision trees, it is hard to interpret or

explain what is happening under the hood.

•	 SVMs can consume a large amount of memory. They are considered

O(n2) and O(n3), which means they scale exponentially with the

number of instances, and thus scalability issues can result.

•	 SVMs are generally good for binary classification (two-class) but do

not perform as well for multiclass classification.

You don’t always have linear data as show in Figure 4-12. Fortunately, you can

classify non-linear data with SVMs by using kernel transformation, also known as the

“kernel trick.” Using the kernel trick, SVMs can efficiently classify non-linear data by

mapping the inputs into high-dimensional feature spaces.

To understand two-dimensional-to-three-dimensional transformation, consider

the following example. A set of coins consisting of pennies and dimes are scattered

randomly on a table. They will certainly land in a non-linear pattern, such that no line

could separate them into two distinct classes. Imagine if you then raised (transform)

all of the dimes a few inches above the table. You can do this because this is supervised

learning and you have labeled data. After this transformation, you can now easily

separate the classes with a plane. That is essentially the kernel trick and it is why SVMs

have become so popular.

Chapter 4 Algorithms: The Brains of Machine Learning

204

Spoiler alert: In the next section, you will discover that SVMs can perform almost as

well as neural networks on the MNIST image classification problem. Because of such

excellent performance, SVMs are becoming increasingly popular and many people are

starting to ask if they are an alternative to neural networks. SVMs cannot match the

performance of deep networks, but they do have some advantages worth mentioning:

•	 SVMs are less prone to overfitting than neural networks.

•	 SVMs require less memory than neural networks to store the

predictive model.

•	 SVMs yield a more readable result because they have a geometrical

interpretation.

You will explore the SVM further in Chapter 5.

�K-Means Algorithm
Clustering is the main task of explorative ML, and when seeking a clustering algorithm,

k-means is the usual starting point. It works well for many datasets. Figure 4-13 shows a

simplified view of how the algorithm works.

Chapter 4 Algorithms: The Brains of Machine Learning

205

Figure 4-13.  K-means clustering algorithm

As shown in the graphic, the k-means algorithm is iterative. The algorithm tries to

partition the N observations into K clusters. You must start with the number of clusters.

The main drawback of the k-means algorithm is that you are required to know upfront

how many clusters there are. In the example shown, K=3. The algorithm then chooses

three initial “means” randomly and creates the initial clusters by assigning each

observation to the nearest mean. The centroid of each cluster becomes the new mean

and the process repeats until convergence is achieved.

K-means has been around since 1967 and it is one of the simplest unsupervised

algorithms for clustering problems. K-means performance is also relatively good.

Chapter 4 Algorithms: The Brains of Machine Learning

206

In addition to having to know the number of clusters upfront, k-means faces another

disadvantage: it does not work well for non-globular clusters. The k-means algorithm

tends to find clusters of the same comparable shape. Fortunately, additional clustering

algorithms can handle the weaknesses of k-means.

�DBSCAN Algorithm
DBSCAN stands for density-based spatial clustering of applications with noise.

The easiest way to understand density-based clustering is to look at Figure 4-14, a

reproduction of the original clusters shown from Ester et al. Ester introduced the

DBSCAN algorithm in 1996. The graphic shows three database examples. Each of the

examples contains four easily visible clusters. The clusters are non-globular, inconsistent

shapes. If you were to run a k-means clustering algorithm on the datasets shown in

Figure 4-14, the k-means algorithm would fail miserably. A density-based algorithm like

DBSCAN is required to cluster such datasets.

Chapter 4 Algorithms: The Brains of Machine Learning

207

Figure 4-14.  DBSCAN clustering examples

The three images shown highlight the strengths of density-based algorithms.

In Database 1, the relative cluster size of the larger center cluster compared to the

three surrounding clusters would be problematic for k-means. In Database 2, the

S-shaped cluster surrounding the two smaller clusters would pose trouble for k-means.

In Database 3, the random noise points dispersed throughout the area would be

problematic for the k-means algorithm.

Chapter 4 Algorithms: The Brains of Machine Learning

208

The DBSCAN algorithm employs an approach not unlike human intuition to identify

clusters and noise. To accomplish this, DBSCAN requires two important parameters:

•	 MinPts: The number of dimensions in the dataset. The value must be

at least 3.

•	 e: Epsilon is Euclidean distance. Small values are preferable. If e is too

small, a large part of the data will not cluster. If e is too large, the clusters

will merge. Choosing a good e value is the key to success with DBSCAN.

DBSCAN is one of the most common clustering algorithms and its advantages

include

•	 DBSCAN does not require prior knowledge of the number of clusters.

•	 DBSCAN can find any shape of cluster.

•	 DBSCAN can find outliers.

•	 DBSCAN can identify noise.

•	 DBSCAN requires just two parameters.

•	 The ordering of the dataset does not matter.

The key disadvantages of DBSCAN include

•	 The quality of DBSCAN depends on the e value. For high-

dimensional data, it can be difficult to find a good value for e. This is

the so-called “curse of dimensionality.” If the data and scale are not

well known, it is hard to choose e.

•	 DBSCAN cannot cluster datasets well with large differences in

density.

Note that the optics algorithm is a hierarchical version of DBSCAN. The HDBSCAN

algorithm is a faster version of the optics algorithm.

�Expectation-Maximization (EM) Algorithm
When k-means fails to achieve desirable results, consider the EM algorithm. EM often

gives excellent results for real-world datasets, especially if you have a small region of

interest.

Chapter 4 Algorithms: The Brains of Machine Learning

209

EM is an iterative algorithm that works well when the model depends on unobserved

latent variables. The algorithm iterates between two steps: expectation (E) and

maximization (M). In the expectation step (E), a function is created for the expectation

of likelihood. In the maximization step (M), parameters are created to maximize the

expected likelihood in the E step.

The theory behind the EM algorithm is difficult to understand. With EM clustering,

you are probabilistically assigning candidates to clusters. The EM algorithm tends to run

comparatively slow since it needs to calculate a lot of covariances and means.

You will explore how to implement the EM algorithm on real-world data in the next

chapter.

4.10  �Algorithm Performance
Whether you are classifying or clustering, algorithm prediction accuracy is the key

measure of the chosen algorithm’s performance. The degree of accuracy you require

is relative to the problem you are trying to solve. If you are building an ML model to

determine the best day to play golf, a 90% confidence rate is acceptable. If you are trying

to determine if a photograph of a skin spot is cancerous, or if a plot of land contains a

landmine, 90% would not be acceptable.

The rise of deep learning has, to some extent, been the result of an ever-increasing

search for algorithm accuracy. The users of CML algorithms were in search of higher

degrees of accuracy, which led them to DL algorithms.

The MNIST database is one of the most popular “Hello World” applications in

ML. MNIST is a large database of handwritten digits used to train neural networks and

CML algorithms in image recognition. Because image recognition is well suited for DL

algorithms, you will not implement MNIST. However, as MNIST has been around for a

long time, you can gain insight about the algorithm’s performance.

�MNIST Algorithm Evaluation
MNIST is the abbreviation for Mixed National Institute of Standards and Technology.

The MNIST database consists of 60,000 handwritten digits. Figure 4-15 shows what these

images look like.

Chapter 4 Algorithms: The Brains of Machine Learning

210

Figure 4-15.  MNIST sample images

Characteristics of the MNIST image database:

•	 60,000 training instances

•	 10,000 test instances

•	 Each image dimension is 28x28 pixels

•	 All images are greyscale

In addition to the image files, the MNIST database includes labels for each image.

Because the MNIST dataset contains labels, MNIST is a classification ML problem.

Figure 4-16 shows a visualization of the MNIST dataset. You can distinguish the

10 unique digits. Digits that have similar appearance appear in close proximity. For

example, x and y appear together at the top left. Digits 1 and 2 are also similar and

appear in close proximity to each other at the center of the visualization.

Chapter 4 Algorithms: The Brains of Machine Learning

211

There is a rich amount of academic research on the MNIST database. You can utilize

the results to help you understand the algorithm. Because you have labeled data, you

can understand how the supervised learning classifiers stack up against one another.

In order to evaluate a ML model on the MNIST database, it is necessary to train the

model with the 60,000 training instances. Evaluation uses the additional 10,000 test

instances. Because MNIST is such a popular dataset, many models and algorithms have

solved MNIST. You can use the results of this work to gain some insights about relative

algorithm performance.

Figure 4-16.  MNIST visualization

Chapter 4 Algorithms: The Brains of Machine Learning

212

Table 4-4 shows a summary of the results for many of the popular classifiers on

MNIST. The table summarizes MNIST results from the following references:

•	 https://en.wikipedia.org/wiki/MNIST_database

•	 Summary of Performance on the MNIST Evaluation, Data Mining,

Witten et al., pp 421

•	 MNIST website, www.nist.gov/itl/iad/image-group/emnist-dataset

•	 Author MNIST evaluation

The second column in the table displays the algorithm category as either CML or

DL. Most of the recent results with error rates < 1% use DL algorithms.

Table 4-4.  MNIST Classification Algorithm Performance Summary

Classifier Type Error (%) References

Linear classifier (1-layer neural net) CML 12.0 LeCun et al. (1998)

Linear classifier (pairwise) CML 7.6 Wikipedia

K-nearest-neighbors, Euclidean (L2) CML 5.0 LeCun et al. (1998)

2-layer neural net, 300 hidden units CML 4.7 LeCun et al. (1998)

Random forest CML 2.8 Wickham

Support vector machine, Gaussian CML 1.4 MNIST website

Convolutional net, LeNet-5 DL 0.95 LeCun et al. (1998)

Virtual support vector machine DL 0.56 DeCoste (2002)

KNN (shiftable edge preprocessing) CML 0.56 Wikipedia

Convolutional neural net DL 0.4 Simard (2003)

6-layer feed forward neural net GPU DL 0.35 Ciresan (2010)

Large deep convolutional neural net DL 0.35 Ciresan (2011)

Committee of 35 convolutional neural nets DL 0.23 Ciresan (2012)

Chapter 4 Algorithms: The Brains of Machine Learning

https://en.wikipedia.org/wiki/MNIST_database
http://www.nist.gov/itl/iad/image-group/emnist-dataset

213

Recall from Figure 4-8, k-nearest neighbor and support vector machine were two of

the recommended algorithms for classification problems. The MNIST performance of

KNN is 95% classification accuracy while SVM achieves a 98.6% accuracy. These are very

impressive results, especially for the SVM. The SVM result rivals the results seen with

several of the DL algorithms. Scanning down the bottom half of the table, you can see the

top results are obtained with DL algorithms, >99.5% accuracy.

MNIST is an image recognition problem. While the accuracy results presented

are useful, you also need to consider different problem types before reaching any

conclusions.

Earlier in the book, I discussed leveraging academic research papers as a means to

gain a competitive advantage. One of the common metrics published by researchers is

algorithm classification accuracy. Figure 4-17 shows the my summary of CML algorithm

performance across a wide variety of ML classification problems published in academic

research.

Figure 4-17.  CML classification algorithm comparison

Chapter 4 Algorithms: The Brains of Machine Learning

214

You saw earlier in the chapter that different algorithms are useful for different types

of problems. The data in Figure 4-17 represents a very wide snapshot, and it is not very

scientific to aggregate the results, but you can use it to make some general insights:

•	 With the zero-based Y-axis used in the chart, it is apparent the

differences between algorithms are not great. All of these CML

algorithms achieve accuracy in the 90% - 95% range.

•	 Random forest often does an excellent job, typically outperforming

the other classifiers. This makes random forest the go-to algorithm

for most CML classification purposes.

You saw with MNIST results that the SVM algorithm outperformed all of the non-DL

algorithms, including random forest. This is likely because decision trees do not work

as well for high-dimensional problems like MNIST. Depending on the problem, random

forest and SVM are two very important, yet different, algorithms for your toolbox.

If you are seeking to classify multi-class labeled data, just choose random
forest and save yourself precious time and effort. Nine out of ten times, ran-
dom forest will outperform the other CML classification algorithms. For
high-dimensional data such as pattern recognition, choose SVM as the
go-to algorithm.

Classification accuracy is not the only important measurement. Next, you will look at

additional important tools for algorithm measurement.

4.11  �Algorithm Analysis
Because of their close affiliation to the field of statistics, ML environments are loaded

with statistical analysis features, some of which are useful, and others not so much. Next,

you will explore the three algorithm analysis tools every ML practitioner should master:

•	 Confusion matrix

•	 ROC curves

•	 K-fold cross validation

In Chapter 5, you will explore how to use these tools to validate a model.

Chapter 4 Algorithms: The Brains of Machine Learning

215

�Confusion Matrix
One of the most important outputs of the ML model is the confusion matrix. You saw the

following confusion matrix in Chapter 3 when you ran a Weka classifier in the cloud:

001 === Confusion Matrix ===

002

003 a b c <-- classified as

004 50 0 0 | a = Iris-setosa

005 0 49 1 | b = Iris-versicolor

006 0 2 48 | c = Iris-virginica

The confusion matrix is a two-dimensional plot with a row and column for each

class. The example above had three classes. You can generate a confusion matrix for any

number of dataset classes. Figure 4-18 shows a generic 2-class confusion matrix.

Figure 4-18.  A 2-class generic confusion matrix

Chapter 4 Algorithms: The Brains of Machine Learning

216

Each element in the confusion matrix shows the number of test examples for

which the actual class is the row and the predicted class is the column. Good results

correspond to large numbers running down the diagonal of the matrix. In the 2-class

confusion matrix, the diagonal values represent true positives and true negatives.

Glancing at the values not on the main diagonal can give you excellent feedback on

how the model is performing, or more specifically, when the model is getting “confused”.

You can gain the following insights from the 3-class confusion matrix shown earlier:

•	 Two instances of iris-virginica (type c) were misclassified as iris-

versicolor (type b).

•	 One instance of iris-versicolor (type b) was misclassified as iris-

virginica (type c).

•	 All fifty instances of iris-sentosa were correctly classified.

Each time you run a classifier, an ML-Gate 2 best practice is to check the
confusion matrix results against values you predetermine to be acceptable
for the model.

�ROC Curves
ROC stands for receiver operator characteristic. The ROC curve originated in World War

II and was used by radar operators to statistically model false positive and false negative

detections in noisy environments. Because of its historical background, the ROC curve

has a better statistical background that most other measures. ROC is a standard measure

in medicine and biology.

The ROC curve has become very popular in ML to help evaluate the effectiveness of

the models we create. ROC curves plot the true positive rate on the Y-axis and the false

positive rate along the X-axis. Figure 4-19 shows a typical ROC curve.

Chapter 4 Algorithms: The Brains of Machine Learning

217

ROC curves have some interesting properties:

•	 The slope of the ROC curve is non-increasing. The slope typically

decreases. Steeper ROC curves represent better classification. A

perfect classifier would produce a vertical line ROC curve.

•	 Each point on the ROC curve represents a different tradeoff, or cost

ratio, between false positives and false negatives.

•	 The slope of the line tangent to the ROC curve defines the cost ratio.

•	 The ROC area is the area under the ROC curve. The ROC area

represents the performance averaged over all possible cost ratios.

The ROC area represents the area under the ROC curve. Table 4-5 shows the

prediction level that is associated with the ML model given its corresponding ROC area.

Figure 4-19.  ROC curve

Chapter 4 Algorithms: The Brains of Machine Learning

218

In the next chapter, you will use the Weka ML environment to graph multiple ROC

curves representing multiple algorithms. Such graphs are very useful for comparing

algorithms. When graphing multiple ROC curves, you can gain the following additional

insights:

•	 If two ROC curves do not intersect, one method dominates the other

and you should choose its corresponding algorithm.

•	 If two ROC curves intersect, one method (algorithm) is better for

some cost ratios, and the other method (algorithm) is better for the

other cost ratios.

As you will see, ML environments make it easy to visualize multiple ROC curves.

�K-Fold Cross-Validation
In the real world, it seems we never have enough data. The amount of data available

for training and testing our models is often times limited. You saw with MNIST that the

standard training method is 60,000 defined instances for training and an additional

10,000 instances for testing. This approach is called the holdout method because you

are holding out part of the data for testing purposes. It is common to hold out one-third

of the data for testing. The holdout method worked fine for MNIST because the dataset

was large. With smaller datasets, it can be problematic. How do you know which part of

the data to hold out?

Table 4-5.  ROC Area Prediction Levels

ROC area Prediction level

1.0 Perfect

0.9 Excellent

0.8 Good

0.7 Mediocre

0.6 Poor

0.5 Totally random

< 0.5 Invalid

Chapter 4 Algorithms: The Brains of Machine Learning

219

Choosing a particular set of data for testing can lead to a bias. For example, if you

are unlucky, and a particular class is completely missing in the training data, how could

you expect the classifier to predict such a value when it appears in the testing data? The

solution to bias caused by particular samples chosen for holdout is to repeat the process

several (K) times, where K can be any number such as three, five, or ten. If you desire to

train on two-thirds of the data and test on one-third, then K equals three. If you wish to

train on nine-tenths and test on one-tenth, then K equals ten.

This approach is called k-fold cross-validation. Figure 4-20 shows the example of a

5-fold cross-validation process.

Figure 4-20.  5-fold cross-validation method

Chapter 4 Algorithms: The Brains of Machine Learning

220

When you perform an n-fold cross-validation, you are actually performing multiple

(K) passes of the training and validation cycle. The resulting accuracies of each pass are

averaged to obtain the mean accuracy for the model.

K-fold cross-validation is a simple but powerful concept. The standard way
of predicting the error rate on a learning technique is to use a 10-fold cross-
validation where the dataset is divided randomly into 10 parts. 10-fold
cross-validation should be part of every ML-Gate 2 model evaluation.

Extensive tests have shown that K=10 gives the best results independent of dataset size.

4.12  �Java Source Code
Java source code for all of the popular CML algorithms used to create the ML models is

readily available. The University of Waikato has contributed greatly to the development

of Java ML algorithms and the latest version of the algorithms is available in Weka 3.8.

The source code is also available in this Subversion repository:

https://svn.cms.waikato.ac.nz/svn/weka/branches/stable-3-8/weka/src/main/

java/weka/

Apache Commons Math also includes Java code for several clustering ML algorithms:

https://commons.apache.org/proper/commons-math/userguide/ml.html

This section presents an overview of the algorithms so you will know where to find them

in the Weka Subversion repository if you wish to explore them in detail. If you are interested

in a particular algorithm, it can be very helpful to review its Java source code. These

algorithms are stable production code used on countless projects. You can learn a lot from

their implementation, including their use of Java collections, threads, and inheritance.

The base directory of the Subversion repository includes several folders:

•	 The core folder contains the Weka code.

•	 The classifiers folder contains the classification algorithms.

•	 The clusterers folder contains the clustering algorithms.

The Java files structure is hierarchical. The algorithms inherit from other underlying

algorithms. For example, if you wish to implement a random forest algorithm, each of

the following files will be included when you construct the random forest:

Chapter 4 Algorithms: The Brains of Machine Learning

https://svn.cms.waikato.ac.nz/svn/weka/branches/stable-3-8/weka/src/main/java/weka/
https://svn.cms.waikato.ac.nz/svn/weka/branches/stable-3-8/weka/src/main/java/weka/
https://commons.apache.org/proper/commons-math/userguide/ml.html

221

RandomForest.java will set the base classifier as RandomTree:

001 /**

002 * Constructor that sets base classifier to RandomTree

003 */

004 public RandomForest() {

005 RandomTree rTree = new RandomTree();

006 rTree.setDoNotCheckCapabilities(true);

007 super.setClassifier(rTree);

008 super.setRepresentCopiesUsingWeights(true);

009 setNumIterations(defaultNumberOfIterations());

010 }

The RandomTree.java class will extend the AbstractClassifier class:

001 /**

002 * Constructor for Random Tree that extends AbstractClassifier

003 */

004 �public class RandomTree extends AbstractClassifier implements

OptionHandler,

005 WeightedInstancesHandler, Randomizable, Drawable, PartitionGenerator {

006 }

The AbstractClassifier.java class will implement the Classfier class:

001 /**

002 * �Abstract classifier. All schemes for numeric or nominal prediction

in Weka

003 * extend this class. Note that a classifier MUST either implement

004 * distributionForInstance() or classifyInstance().

005 */

006 �public abstract class AbstractClassifier implements Classifier,

BatchPredictor,

007 �Cloneable, Serializable, OptionHandler, CapabilitiesHandler,

RevisionHandler,

008 CapabilitiesIgnorer, CommandlineRunnable {

009 }

Chapter 4 Algorithms: The Brains of Machine Learning

222

Classifier.java

001 /**

002 * Classifier interface. All schemes for numeric or nominal prediction in

003 * �Weka implement this interface. Note that a classifier MUST either

implement

004 * distributionForInstance() or classifyInstance().

005 */

006 public interface Classifier {

007 }

To view the Java code for any of the CML algorithms, simply navigate through the

repository into the classifiers or clusterers folders.

�Classification Algorithms
Within the classifiers folder, the algorithms fall into three categories:

•	 bayes: Contains several variants of the naive Bayes algorithms.

•	 pmml: Predictive Model Markup Language is an XML-based

interchange format. This folder contains PMML based-models such

as SVM and regression algorithms.

•	 trees: Contains all the decision tree-based algorithms, such as

random forest.

Figure 4-21 shows an expanded view of the key classifier algorithms.

Chapter 4 Algorithms: The Brains of Machine Learning

223

Figure 4-21.  Java classifier algorithms (Weka Subversion repository)

The most useful classifiers, listed earlier in Figure 4-8, are included in the repository.

Figure 4-21 shows that naive Bayes, random forest, and SVM source code are all included

in the classifiers directory.

�Clustering Algorithms
Figure 4-22 shows the Java clustering algorithms available in Weka.

Chapter 4 Algorithms: The Brains of Machine Learning

224

Figure 4-22.  Java clusterers (Weka Subversion repository)

In Figure 4-8, you saw that k-means and DBSCAN were the go-to algorithms for

clustering problems with unlabeled data. Source code for these algorithms is within

SimpleKMeans.java and DensityBasedCluster.java.

Just as you saw with the classification algorithms, the clustering algorithms also

build upon other higher-level clustering classes in the directory, such as Cluster.java

and HeirarchicalClusterer.java.

�Java Algorithm Modification
I stated earlier that CML algorithms are commodities. The source code of the Java

algorithms in the Weka Subversion repository shows the algorithm code has been stable

for several years. All of the Java code in the Weka repository is licensed under the GNU

General Public License. The code is free and you can distribute or modify it under the

terms of the license.

www.gnu.org/licenses/

Chapter 4 Algorithms: The Brains of Machine Learning

http://www.gnu.org/licenses/

225

Due to advances in the Java platform, there are several areas where these algorithms

could be improved:

•	 Lambda expressions: The addition of lambda expressions

is starting to reshape Java. Lambda expressions allow for new

capabilities in the Java API library. For example, lambda expressions

simplify the handling of for-each style operations, allowing us to

take greater advantage of parallel processing capabilities of multi-

core environments. There exists an opportunity to improves the

performance of most of the Java algorithms by introducing lambda

expressions.

•	 Stream API: The new stream API introduced in Java 8 allows us to

manipulate data in much more powerful ways. The new Stream API

works in conjunction with the Java collections class and lambda

expressions. The new Stream API can handle advanced data queries

and provides a higher level of efficiency especially for large datasets.

•	 Concurrency: If you look into the Java code, you will see that many

of the algorithms use the Java ThreadPoolExecutor to handle

their multi-threaded operations. ThreadPoolExecutor is one of

the services that make up the Java ExecutorService. JDK 7 saw the

introduction of a new service, the ForkJoinPool. The ForkJoinPool

class enables the implementation of parallel programming such

that threads can run on multiple CPUs/GPUs. The main idea behind

a ForkJoin task is the divide-and-conquer strategy, which is very

suitable for the decision tree family of algorithms, including random

forest. Updating the Java algorithms to utilize ForkJoin could

significantly improve performance.

These potential enhancements are performance-related improvements. As

discussed in Chapter 2, cloud-based providers make it easy to scale CPU resources on

demand. For this reason, when building models in the cloud, it is typically easier to add

CPU resources, rather than optimize the algorithms to take advantage of the latest JAVA

API features. The enhancements would be useful in an environment where you have

limited CPU constraints at model build time, such as building models on a mobile or

embedded device.

Chapter 4 Algorithms: The Brains of Machine Learning

227
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_5

CHAPTER 5

Machine Learning
Environments
You have learned about data and algorithms. Next, you will put the pieces together and

build the CML model. ML environments perform a critical function. They act as an

important piece of middleware, enabling you to create ML models from the data for later

use by your application. This chapter will cover the following:

•	 Introduce the steps required during the model creation phase.

•	 Review the Java-based ML environments, including a high-level

overview of the RapidMiner and KNIME Java ML environments.

•	 Offer a detailed review, including complete setup instructions for the

Weka ML environment.

•	 Implement the seven most important CML models using Weka.

•	 Cluster the Old Faithful geyser dataset using three clustering

algorithms.

•	 Classify the large PAMAP2_Dataset using four classification

algorithms.

•	 Review the accuracy performance of the four classification

algorithms.

•	 Create a combined graph representing four multiple ROC curves

using Weka KnowledgeFlow.

•	 Demonstrate how to import and export Weka ML models.

228

5.1  �Overview
In Chapter 3, you saw how easy it is to create ML and DL solutions using cloud-

based APIs. In this chapter, you will bring the solution to the desktop. Java-based

ML environments allow you to create your own models using your own computing

resources. This provides two huge advantages:

•	 You do not incur incremental costs for compute resources required to

create the models.

•	 You retain control of the models you create. This can lead to a

competitive advantage.

In this chapter, I will present several Java-based ML environments, but the

focus will be primarily on the Weka environment. If you decide to use one of

the other ML environments, the detailed implementation steps with respect to

data import, algorithms supported, and model creation/import/export should

be similar.

�ML Gates
In the ML-Gates methodology, the most important task of the ML environment is to

create the ML model you will use in your application.

Creating the best possible model is an iterative process. You saw in Chapter 4 how

to choose the best algorithm. In this chapter, you will explore how to create the best

possible model by tuning the available parameters of the algorithm.

Figure 5-1 shows the key steps involved with the model at ML-Gates 3 and

ML-Gates 2.

Chapter 5 Machine Learning Environments

229

Many ML environments can accomplish these tasks. The number of Java packages is

smaller, and I will cover them next.

5.2  �Java ML Environments
In Chapter 1, you saw how widespread Java has become. I also discussed the build vs.

buy decision process for data science platforms.

One of your main goals is to apply ML solutions at the edge. This
requires you to produce lightweight models that you can deploy into
portable devices, such as mobile phones. Java ML environments meet
these requirements.

Figure 5-1.  ML-Gates 3/2 model activity

Chapter 5 Machine Learning Environments

230

Java ML environments check all the boxes:

•	 They are free and open source.

•	 You can easily produce lightweight models.

•	 You can run Java ML environments on the desktop or in the cloud if

higher compute resources are required.

•	 It is easy to export the model for use in mobile devices or small

computer form factors such as the Raspberry Pi.

In effect, the Java ML environment acts like a piece of middleware in your ML pipeline.

Models created by the ML environment connect the input data with the user application.

Table 5-1 shows a summary of the Java-based ML environments.

Table 5-1.  Java ML Environments

Name Description Notes

Weka Waikato

Environment

for Knowledge

Analysis

ML platform developed at Waikato University in New Zealand.

Includes GUI, command line interface (CLI), and Java API. Weka is

arguably the most popular ML environment. Weka is a great ML

environment to start or practice, and you can export models for

Android. Weka is free and open source.

KNIME Konstanz

Information Miner

Konstanz University (Germany) developed KNIME. It has a focus on

pharmacy research and business intelligence. KNIME bases its GUI

on Eclipse. KNIME also contains an API interface.

RapidMiner RapidMiner The Technical University of Dortmund (Germany) developed

RapidMiner. RapidMiner contains a GUI and a Java API. RapidMiner

supports data handling, visualization, modeling, and algorithms.

RapidMiner has free and commercial distributions.

ELKI Environment for

developing KDD

applications

Data mining workbench developed at Ludwig Maximillion University

in Munich. ELKI focuses on data and knowledge discovery from data

(KDD) applications. ELKI provides a mini-GUI, CLI, and Java API. ELKI

is research software.

Java-ML The Java Machine

Learning Library

Java-ML is a collection of ML algorithms. Java-ML does not contain

a GUI.

DL4J Deep Learning4

Java

DL4J is the deep learning library for Java from Skymind. DL4J does

not support CML algorithms. See Chapter 1 for additional detail.

Chapter 5 Machine Learning Environments

231

The first five entries in Table 5-1 are mainly Java-based CML environments, and I

will discuss them briefly next, before taking a deep dive into Weka. The last entry, DL4J,

is a dedicated Java DL environment. Table 5-2 provides links for each of the Java ML

environments.

Table 5-2.  Java ML Environment Links

Name Link

Weka www.cs.waikato.ac.nz/ml/weka/

KNIME www.knime.com/knime-analytics-platform

RapidMiner https://rapidminer.com/

ELKI https://elki-project.github.io/

Java-ML http://java-ml.sourceforge.net/

DL4J E

There are several factors to consider in choosing the best Java ML environment.

The factors include

•	 License and commercial terms: You should favor free open sources

packages that allow you to create models you can use for commercial

applications.

•	 Availability of algorithms: You should look for packages that support

the seven most important algorithms discussed in Chapter 4.

•	 Ongoing support: You should look for a community of users or a

long-term commitment by the creators.

•	 Portability of models: You should look for the ability to export

models so Java clients in any device can use the models you create.

This helps you to achieve ML at the edge.

•	 Flexibility: Java continues to grow with each major release. You

need a Java-based ML environment that can grow with the language.

Perhaps in the future, we will see ML features directly included

with Java, much the same way that JSON and other features are now

candidates for inclusion.

Chapter 5 Machine Learning Environments

http://www.cs.waikato.ac.nz/ml/weka/
http://www.knime.com/knime-analytics-platform
https://rapidminer.com/
https://elki-project.github.io/
http://java-ml.sourceforge.net/

232

�Weka
Weka is an abbreviation for Waikato Environment for Knowledge Analysis. The

University of Waikato, in New Zealand, created Weka. Interestingly, Weka is also the

name of a flightless bird in New Zealand (Gallirallus Australis), hence the logo. New

Zealand seems to have many cute flightless birds.

Weka, the ML environment, has been around a while. Ported to Java in 1997, it has

been a mainstay in the data mining industry. In 2005, Weka received the Data Mining

and Knowledge Discovery Service Award from ACM at the SIGKDD Conference. The

decision to migrate Weka to Java has allowed it to stay relevant.

Recently, Weka added a package manager. Many third-party packages and algorithms

are available through the package manager. All of the important CML algorithms are

available for Weka. You will explore the Weka algorithms later in this chapter.

The University of Waikato, which maintains a stable release (currently 3.8.2) and a

development release (3.9.2), supports Weka. Unlike Android Studio, the Weka releases

are infrequent. It is safe to run the development channel release, which includes some

useful GUI improvements and support for DL4J. As Weka gains support with the ML

community, it is becoming increasingly easy to find help for problems on the popular

forums, such as Stack Overflow and YouTube videos.

Weka has a friendly license, the GNU General Public License (GPL). Therefore, it is

possible to study how the algorithms work and to modify them.

The Weka GUI looks dated. The Weka GUIs and visualization tools are not nearly as

slick as RapidMiner. However, under the hood, it lacks nothing. Weka is a very capable

ML environment that can deliver the models your ML apps require. Despite its inferior

GUI relative to RapidMiner, Weka checks all of the boxes.

To address one of the Weka weaknesses, later in the chapter I will discuss a Weka

add-on to improve the Weka charting capabilities.

�RapidMiner
RapidMiner is an incredible ML environment. Recall according to Figure 1-4, RapidMiner is

a leader in data science platforms. Java-based RapidMiner excels at the following:

•	 RapidMiner is lightning fast.

•	 RapidMiner has many tools.

•	 RapidMiner is excellent at preparing data.

•	 RapidMiner allow you to build predictive ML models.

Chapter 5 Machine Learning Environments

233

Figure 5-2 shows a screenshot of the RapidMiner main interface.

Figure 5-2.  RapidMiner main interface

As shown in Figure 5-2, RapidMiner has a nice modern GUI. The RapidMiner’s ease

of use has led to its increase in popularity. RapidMiner has a large community of users

and all of the usual support resources associated with widespread popularity.

The core of RapidMiner is open source Java code and is available on GitHub at

https://github.com/rapidminer/rapidminer-studio.

As you saw with Weka in Chapter 4, all of the ML algorithm Java code is part of core

RapidMiner and is available at the GitHub repository. Close inspection will show the

Java code base of the algorithms is not the same, although you can expect the algorithms

to achieve nearly similar results. In many algorithm cases, the RapidMiner algorithm

implementations rely on less inheritance and are easier to follow.

Aside from the RapidMiner GUI advantages, other key differences between

RapidMiner and Weka are the licensing and commercial pricing terms. RapidMiner is

licensed under the GNU AGPL 3.0 license. It has free and commercial offerings.

Chapter 5 Machine Learning Environments

https://github.com/rapidminer/rapidminer-studio

234

https://opensource.org/licenses/AGPL-3.0

RapidMiner Studio is free to download. Table 5-3 shows a summary of the

RapidMiner commercial pricing tiers, which vary depending on data rows and number

of processors used.

The RapidMiner free tier also includes a 30-day free trial for the large data row

size. This provides you the opportunity to see how RapidMiner performs on your large

data ML project. Ten thousand data rows or instances seem like a lot, but in reality, it

is common for CML projects to exceed this amount. Later in this chapter, you will see

that your classification of the PAMAP2_Dataset would require a medium tier license

to accomplish with RapidMiner. This is a non-trivial cost, especially for independent

developers without large resources. The RapidMiner licensing costs are the primary

reason you will proceed with Weka.

In terms of flexibility, both Weka and RapidMiner provide jar file libraries that you

can integrate into your Java projects. This allows you to leverage prebuilt models in your

Java applications.

Weka and RapidMiner each have their own approach to implementing model

generation. With any software platform, there is an initial time investment in learning

how to navigate them. Fortunately, the high-level steps involved at this phase in the

ML-Gates are identical.

�KNIME
Like RapidMiner, KNIME was included a leader among the data science platforms

shown in Figure 1-4. Some key selling points for KNIME:

•	 KNIME is a toolbox for data scientists.

•	 KNIME contains over 2,000 modules.

Table 5-3.  RapidMiner Pricing

Name Number of data rows Number of processors Price (per user/year)

Free 10,000 1 Free

Small 100,000 2 $2,500

Medium 1,000,000 4 $5,000

Large Unlimited Unlimited $10,000

Chapter 5 Machine Learning Environments

https://opensource.org/licenses/AGPL-3.0

235

•	 KNIME is an open platform.

•	 KNIME can run locally, on the server, or in the cloud, which is the

kind of flexibility you seek.

The latest free-download version of KNIME is 3.6.0. KNIME is licensed under GNU

GPL Version 3. KNIME has a very intuitive workbench that is similar to Weka. The GUI is

very comprehensive, which make KNIME useful for people who wish to explore ML but

do not want to code. Figure 5-3 shows the KNIME workbench.

Figure 5-3.  KNIME workbench

The KNIME interface looks very similar to RapidMiner, especially in the knowledge

flow area where users can graphically connect modules to form processes.

KNIME uses PMML (Predictive Model Markup Language) to export models. PMML

is a popular standard. You saw it referenced as a category title for some of the Weka

classification algorithms. PMML is not quite as flexible for exporting prebuilt models

for use on Android mobile devices. For this reason, Weka remains your preferred ML

environment.

Chapter 5 Machine Learning Environments

236

�ELKI
ELKI is a Java platform that excels at clustering and outlier detection. While Weka and

RapidMiner are general frameworks, ELKI does one thing and one thing well: clustering.

It contains a huge number of clustering algorithms. If the basic clustering algorithms

contained in the general frameworks are not sufficient for your ML clustering problem,

ELKI probably is the solution.

ELKI has a research and education focus. It has helped to solve real-world clustering

problems such as clustering the positions of whales and rebalancing public bike share

programs.

One of the unique features of ELKI is the use of SVG for scalable graphics output

and Apache Batik for rendering of the user interface. If you need lossless, high quality,

scalable graphics output for your clustering problems, ELKI is an excellent choice.

The general frameworks do a great job at clustering, as you will see later in the

chapter, but keep ELKI in mind if you need advanced clustering algorithms.

�Java-ML
Java-ML is a set of Java-based ML algorithms packaged into a jar library. The most recent

version of the library is 0.1.7, released in 2012. The library includes some basic clustering

and classification algorithms. Java-ML carries the GNU GPL 2.0 license. Java-ML does

not include any GUI. The Java-ML library would not be particularly useful unless you

were looking for open source Java ML algorithms not tied to Waikato University or the

RapidMiner license.

5.3  �Weka Installation
To install Weka, visit the Weka download page and choose a package for your platform:

www.cs.waikato.ac.nz/ml/weka/downloading.html

You can download Weka with or without Java. Managing Weka independently of your

Java install, as shown in Chapter 1, gives you the advantage of knowing which version of

Java you are running.

There are two current versions of Weka:

•	 3.8.2 is the latest stable release of Weka.

•	 3.9.2 is the latest development release of Weka.

Chapter 5 Machine Learning Environments

http://www.cs.waikato.ac.nz/ml/weka/downloading.html

237

Weka follows the Linux model of release numbering. Even digits after the decimal

point (such as 3.8.2) indicate a stable release, while odd digits (such as 3.9.2) indicate a

development release.

The Weka team maintains links that summarize the bug fixes and new features

in each new release. To see the new features in 3.9.2, look under the Documentation

section shown here:

https://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+Mining+Community+

Documentation

The Weka development releases are generally very safe.

After you decide on a version, the download page contains packages for the three

major platforms: Windows, Mac O/S, and Linux. Choose your package and install Weka.

	 1.	 Install Java on your system.

	 2.	 Download your desired Weka package.

	 3.	 Unzip the zip file into the new directory called weka-3-9-2.

	 4.	 Set the Java CLASSPATH environment variable. The CLASSPATH

environment variable tells Java where to look for classes to

include.

	 5.	 Change into the directory and run Weka with java -jar weka.jar.

The Weka logo, Figure 5-4, appears during the initialization.

Figure 5-4.  Weka logo

Chapter 5 Machine Learning Environments

https://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+Mining+Community+Documentation
https://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+Mining+Community+Documentation

238

After the Weka initialization completes, the main Weka GUI chooser appears, as

shown in Figure 5-5.

Before starting with the main Weka applications, you need configure Weka.

�Weka Configuration
Weka is mostly ready to go after the initial install. I will address a few configuration

updates next. Figure 5-6 shows the contents of the main Weka directory after you unzip

the install file.

Figure 5-5.  Weka GUI Chooser

Chapter 5 Machine Learning Environments

239

The weka.jar file is of interest for two reasons:

•	 The weka.jar file contains all of the Java source code for the

algorithms in Weka. You saw in Chapter 4 how to explore them in the

online Subversion repository. By unzipping the weka.jar file, you can

explore them locally.

•	 Weka uses a file named Visualize.props for many GUI configuration

properties. In order to modify the configuration, you must make a

local copy of this file.

Figure 5-6.  Weka.jar

Chapter 5 Machine Learning Environments

240

In order to view and modify the contents of the weka.jar file, you need to unzip the

jar file. The 7-Zip utility can unzip jar files. Figure 5-7 shows the 7-Zip utility download

page. The download is available at www.7-zip.org/download.html.

Install the 7-Zip utility on the platform of your choice and then unzip the weka.jar

file. Figure 5-8 shows the contents of the unzipped weka.jar.

Figure 5-7.  7-Zip unzipping tool

Figure 5-8.  Weka.jar contents

Chapter 5 Machine Learning Environments

http://www.7-zip.org/download.html

241

Weka.jar includes directories for cluster algorithms, classifier algorithms, and the

gui directory which contains the Visualize.props file you want to modify.

�Java Parameters Setup
One of the issues with Java is high memory usage. Weka always displays a status box at

the bottom of the Weka Explorer window. The status box displays messages about what

is happening within Weka. Right-clicking inside the status box brings up a menu with

two helpful options:

•	 Memory information: Shows the amount of memory available to

Weka

•	 Run garbage collector: Forces the Java garbage collector to perform

a garbage collection task in the background

You can use these options to monitor the Weka memory usage. If you should get Out
Of Memory errors, you should increase the heap size for your Java engine. The default

setting of 64MB is usually too small. You can set the memory for Java using the –Xmx

option in the Java command line. For example, increase the Java memory to 1024MB

with the following:

001 java -Xmx1024m -jar weka.jar

If you are running Windows and wish to make the change globally, you can set the

javaOpts parameter in the RunWeka.ini file like so:

001 javaOpts= -Xmx1040m

If you get Class Not Found errors, you will need to verify your CLASSPATH variable

settings. The best way to confirm your CLASSPATH setting is to use the Weka Sysinfo

display, shown in Figure 5-9.

Chapter 5 Machine Learning Environments

242

In addition to the java.class.path setting, the Weka Sysinfo page also displays the

WEKA_HOME and memory.max settings.

�Modifying Weka .prop Files
If the default setup of Weka is not to your liking, you can tweak the .prop files to modify

Weka behavior. There are many .prop files to configure Weka.

The following steps show how to modify the Visualize.props file to change the

default colors of the X-axis and Y-axis from green to black. The responsible .props file for

charts and graphs in Weka is weka/gui/visualize/Visualize.props.

	 1.	 Close Weka.

	 2.	 Extract the .props file from the weka.jar, using an archive

manager that can handle ZIP files, such as 7-Zip under Windows.

	 3.	 Place this .props file in the $WEKA_HOME/props.

	 4.	 Open the local .props file with a text editor, making sure that CRLF

and BOM characters are correct for your platform.

Figure 5-9.  Weka Help ➤ SystemInfo Display

Chapter 5 Machine Learning Environments

243

	 5.	 Modify the parameters you wish to change. The property name is on

the left side of the “=” and the property value is on the right side.

	 6.	 Save the file and restart Weka.

Figure 5-10 shows the local copy of the Visualize.props file you are updating.

Figure 5-10.  Weka Visualize.props local file copy

There are many customizable values inside the Weka .props files. The following

listing shows line 009 with the updated axis color setting:

001 # Properties for visualization

002 #

003 # Version: $Revision: 5015 $

004

005 # Maximum precision for numeric values

006 weka.gui.visualize.precision=10

007

008 # Colour for the axis in the 2D plot (can use R,G,B format)

009 weka.gui.visualize.Plot2D.axisColour=black

010

011 # Colour for the background of the 2D plot (can use R,G,B format)

012 weka.gui.visualize.Plot2D.backgroundColour=white

013

014 �# The JFrame (needs to implement the interface weka.gui.visualize.

InstanceInfo)

Chapter 5 Machine Learning Environments

244

015 # for displaying Instance information.

016 �weka.gui.visualize.Plot2D.instanceInfoFrame=weka.gui.visualize.

InstanceInfoFrame

017

018 # Defaults for margin curve plots

019 weka.gui.visualize.VisualizePanel.MarginCurve.XDimension=Margin

020 weka.gui.visualize.VisualizePanel.MarginCurve.YDimension=Cumulative

021 weka.gui.visualize.VisualizePanel.MarginCurve.ColourDimension=Margin

Using this method, most of the Weka configuration is customizable. However, there

are some settings available directly from the GUI Chooser.

�Weka Settings
Figure 5-11 shows the Weka main settings available under the Program menu selection

in the Weka GUI Chooser.

Figure 5-11.  Weka main settings

Chapter 5 Machine Learning Environments

245

There are only two settings available: LookAndFeel of the GUI and SocketTimeout

for communications. For Windows platforms, the preferred LookAndFeel setting is

WindowsLookAndFeel. It is not necessary to change this default SocketTimeout value.

�Weka Package Manager
Weka recently introduced a package manager. When you initially run Weka, there are

many preinstalled algorithms for clustering and classification. There are also many

uninstalled packages that are available for installation with the package manager.

Figure 5-12 shows the Weka package manager available from the Weka GUI Chooser.

Figure 5-12.  Weka Package Manager Chooser

When you launch the package manager, Weka gives you the option to show both the

installed and available packages.

For these projects, you must install the following two packages using the package

manager:

•	 jFreeChart: A graphical extension for Weka

•	 DBSCAN: A density-based clustering algorithm

Figure 5-13 shows the installation of jFreeChart, which provides improved chart

rendering over the basic Weka renderer. You will use jFreeChart to render the multiple

ROC curve comparison chart later in the chapter. This add-on is not required; the built-

in Weka renderer will work fine, but jFreeChart provides a much more attractive charting

option.

Chapter 5 Machine Learning Environments

246

Figure 5-14 shows that package manager and highlights the recently installed

DBSCAN algorithm. You will use the DBSCAN algorithm in a clustering example later in

the chapter.

Figure 5-13.  Weka package manager and FreeChart extension

Chapter 5 Machine Learning Environments

247

5.4  �Weka Overview
Weka is a comprehensive suite of Java class libraries. The Weka package implements

many state-of-the-art machine learning and data mining algorithms. Table 5-4 shows

a summary of the Weka modules available from the GUI Chooser, shown earlier in

Figure 5-5.

Figure 5-14.  Weka package manager and DBSCAN algorithm

Chapter 5 Machine Learning Environments

248

As shown in Table 5-4, there is some redundancy in the Weka modules. You are going

to focus on the following three Weka modules because they are more than sufficient to

create the models you need for your Java applications.

•	 Weka Explorer

•	 Weka KnowledgeFlow

•	 Weka Simple CLI

I have excluded the Experimenter and the Workbench. Later in the chapter, you will

use the KnowledgeFlow module to compare multiple ROC curves of different algorithms.

The Experimenter could do this as well, but even though Weka does not have the best

graphical interface, I prefer the graphical approach of the KnowledgeFlow module to

the Experimenter. You can use the Workbench module if you are seeking a customized

perspective for the Weka modules.

Table 5-4.  Weka Modules

Weka Module Description

Explorer Explorer is an environment for exploring data with Weka. Explorer is Weka’s main

graphical user interface. The Weka Explorer includes the main Weka packages

and a Visualization tool. Weka main features include filters, classifiers, clusterers,

associations, and attribute selections.

Experimenter Weka Experimenter is an environment for performing experiments and conducting

statistical tests between learning schemes.

KnowledgeFlow Weka KnowledgeFlow is an environment that supports the same functions as

Explorer, but contains a drag-and-drop interface.

Workbench Weka Workbench is an all-in-one application that combines the other within user-

selectable perspectives.

Simple CLI The Weka team recommends the CLI for in-depth usage of Weka. Most of the key

functions are available from the GUI interfaces, but one advantage of the CLI is

that is requires far less memory. If you find yourself running into Out Of Memory

errors, the CLI interface is a possible solution.

Chapter 5 Machine Learning Environments

249

�Weka Documentation
The Weka team does provide official documentation in the form of PDF file distributed

with each release, and the University of Waikato has many videos and support resources

for developers who want to learn Weka. The Weka manuals are 340+ pages and are

essential reading if you wish to get serious about Weka.

The following represent the official Weka documentation from the Weka creators:

•	 Weka manual: The Weka manual for the current release (such as

WekaManual-3-8-2.pdf and WekaManual-3-9-2.pdf) is always

included within the distribution. For any particular Weka release, the

manual filename is WekaManual.pdf.

•	 Weka book: The Weka team has published a book, Data Mining -
Practical Machine Learning Tools and Techniques, written by

Witten, Frank, and Hall. The book is a very good ML reference book.

While it does not cover Weka in detail, it does cover many aspects of

data, algorithms, and general ML theory.

•	 YouTube: The Weka YouTube channel, WekaMOOC, contains many

useful Weka how-to videos.

�Weka Explorer
The Explorer is the main Weka interface. Figure 5-15 shows the Weka Explorer upon

initialization.

Chapter 5 Machine Learning Environments

250

Across the top of the Explorer, you will see tabs for each of the key steps you need to

accomplish during the model creation phase:

•	 Preprocess: “Filter” is the word used by Weka for its set of data

preprocessing routines. You apply filters to your data to prepare it for

classification or clustering.

•	 Classify: The Classify tab allows you to select a classification

algorithm, adjust the parameters, and train a classifier that can be

used later for predictions.

•	 Cluster: The Cluster tab allows you to select a clustering algorithm,

adjust its parameters, and cluster an unlabeled dataset.

•	 Attributes: The Attributes tab allows you to select the best attributes

for prediction.

•	 Visualize: The Visualize tab provides a visualization of the dataset. A matrix

of visualizations in the form of 2D plots represents each pair of attributes.

Figure 5-15.  Weka Explorer

Chapter 5 Machine Learning Environments

251

�Weka Filters
You load and prepare your data during ML-Gate 4, the preprocessing phase. Weka uses

the term filters to describe the process of transforming your data. In Chapter 2, you

explored data preprocessing in general. Within Weka, you have an additional set of

internal filters you can use to prepare your data for model building. Table 5-5 shows a

summary of the Weka filters grouped by filter type.

Table 5-5.  Weka Filters

Filter type Filter name

General AllFilter

General MultiFilter

General RenameRelation

Supervised

Attribute

AddClassification, AttributeSelection, ClassConditionProbabilties, ClassOrder,

Discretize, MergeNominalValues, NominalToBinary, PartitionMembership

Supervised

Instance

ClassBalancer, Resample, SpreadSubsaple, StratifiedRemoveFolds

Unsupervised

Attribute

Add, AddCluster, AddExpression, AddID, AddNoise, AddUserFields, AddValues,

CartesianProduct, Center, ChangeDateFormat, ClassAssigner, ClusterMembership,

Copy, DateToNumeric, Discretize, FirstOrder, FixedDictionaryStringToWordVector,

InterquartileRange, KernelFilter, MakeIndicator, MathExpression,

MergeInfrequentNominalValues, MergeManyValues, MergeTwoValues,

NominalToBinary, NominalToString, Normalize, NumericCleaner, NumericToBinary,

NumericToDate, NumericToNominal, NumericTransform, Obfuscate, OrdinalToNumeric,

PartitionedMultiFilter, PKIDiscretize, PrincipalComponents, RandomProjection,

RandomSubset, Remove, RemoveByName, RemoveType, RemoveUseless,

RenameAttribute, RenameNominalValues, Reorder, ReplaceMissingValues,

ReplaceMissingWithUserConstant, ReplaceWithMissingValue, SortLabels,

Standardize, StringToNominal, StringToWordVector, SwapValues, TimeSeriesDelta,

TimeSeriesTranslate, Transpose,

Unsupervised

Instance

NonSparseToSparse, Randomize, RemoveDuplicates, RemoveFolds,

RemoveFrequentValues, RemoveMisclassified, RemovePercentage, RemoveRange,

RemoveWithValues, Resample, ReservoirSample, SparseToNonSparse,

SubsetByExpression

Chapter 5 Machine Learning Environments

252

As you can see, there are a large number of filters available for data preprocessing

with Weka, especially for unlabeled data used for unsupervised learning.

You can apply filter to data in Weka by pressing the Choose button under the filter

section at the top of the Preprocess tab, shown in Figure 5-15.

Weka, like all good ML environments, contains a wealth of Java classes for
data preprocessing. If you do not find the filter you need, you can modify an
existing Weka filter Java code to create your own custom filter. Unzip the
weka-src.jar file to access the Weka filter Java code.

In the classification example later in this chapter, you will use the Weka

NumericToNominal filter to convert the data type of an attribute from numerical to

nominal.

If you need a Java class to modify your data before building your model, Weka

probably has a Java class filter for you. If not, you can easily create your own by

modifying the existing Weka filters.

�Weka Explorer Key Options
The Weka Explorer is where the magic happens. You use the Explorer to classify or

cluster. Note that the Classify and Cluster tabs are disabled in the Weka Explorer until

you have opened a dataset using the Preprocess tab.

Within the Classify and Cluster tabs at the top of the Weka Explorer are three

important configuration sections you will frequently use in Weka:

•	 Algorithm options

•	 Test options

•	 Attribute predictor selection (label) for classification

Figure 5-16 shows these areas highlighted within the Weka Classify tab.

Chapter 5 Machine Learning Environments

253

After you confirm these three settings, press the Start button and Weka will classify

or cluster using the selected algorithm.

�Weka KnowledgeFlow
The Weka KnowledgeFlow is an alternative graphical front-end to core Weka.

KnowledgeFlow implements a dataflow-inspired graphical interface for Weka. Figure 5-17

shows a predefined KnowledgeFlow template opened in Weka KnowledgeFlow. All of

the Weka filters, classifiers, clusterers, and data tools are available in the KnowledgeFlow.

KnowledgeFlow also includes some extra tools.

Figure 5-16.  Weka Explorer classify options

Chapter 5 Machine Learning Environments

254

Using KnowledgeFlow, you can select Weka steps from a palette and place them onto

the layout canvas. The Weka building blocks can then be connected together to form a

knowledge flow, which can process and analyze the data.

The left side of the GUI contains all of the available Weka modules. You can place

these modules onto the canvas as nodes. You can configure each node individually by

right-clicking to access its configuration parameters. You create the flow by connecting

the nodes. Executing a flow produces the results, typically a model generation or often

times a visualization.

Later in the chapter, you will see how to compare multiple models with different

algorithms. You will use Weka KnowledgeFlow to compare multiple clustering

algorithms, and then use KnowledgeFlow to evaluate multiple classifiers by producing

multiple ROC curves.

Figure 5-17.  Weka KnowledgeFlow template

Chapter 5 Machine Learning Environments

255

�Weka Simple CLI
It is very easy to use graphical tools like KnowledgeFlow to build ML models. However,

Java GUI applications often require a large amount of memory and system resources,

resources you might prefer to reserve for your data, algorithms, and models. Figure 5-18

shows an alternative to KnowledgeFlow, the Weka Simple CLI Shell.

The Weka Simple CLI Shell provides access to all Weka classes, including algorithms

(classifiers and clusterers) and filters. It is a simple Weka shell with separated output and

command line.

In Chapter 3, you saw an example of the Weka command line interface when you ran

Weka in the AWS cloud. The Simple CLI Shell provides the same capabilities within your

local desktop Weka environment.

Figure 5-18.  Weka Simple CLI Shell

Chapter 5 Machine Learning Environments

256

The following commands are available in the Simple CLI:

•	 java <classname> [<args>]: Invokes a Java class with the given

arguments

•	 break: Stops the current thread, such as running a classifier, in a

friendly manner

•	 kill: Stops the current thread in an unfriendly manner

•	 cls: Clears the screen

•	 capabilities <classname> [<args>]: Lists the capabilities of the

specified class

•	 exit: Exits the Simple CLI Shell

•	 help: Provides an overview of the available commands

The Weka Simple CLI Shell is powerful because all of the filters and implementations

of the algorithms have a uniform command-line interface. The following example shows

how to train and test a random forest classifier with multiple filters from the command

line. The MultiFilter operation handles the concatenation of filters.

001 �java -classpath weka.jar weka.classifiers.meta.FilteredClassifier

-t data/ReutersCorn-train.arff -T data/ReutersCorn-test.arff -F

"weka.filters.MultiFilter -F weka.filters.unsupervised.attribute.

StringToWordVector -F weka.filters.unsupervised.attribute.

Standardize" -W weka.classifiers.trees.RandomForest -- -I 100

It is also possible to train and save a model using the –t and –d options:

001 �java -classpath weka.jar weka.classifiers.meta.MultiClassClassifier

-t data/iris.arff -d rf.model -W weka.classifiers.trees.RandomForest

-- -I 100

A serialized model can also be loaded and used for predictions using the –serialized

option to load the model and the –i option to load the input data:

001 �java -classpath weka.jar weka.filters.supervised.attribute.

AddClassification -serialized rf.model -classification -i data/iris.

arff -o predict-iris.arff

Chapter 5 Machine Learning Environments

257

It can become complicated if you try to string too many functions together on the

command line. If you wish to load models, train models, apply filters, and save models, it

is easier to use the Weka KnowledgeFlow interface to connect the various nodes. You will

see how to do this next.

5.5  �Weka Clustering Algorithms
In Chapter 4, I discussed clustering, the process of discovering structure in unlabeled

data sets. Weka, like most of the good ML environments, has a broad array of clustering

algorithms.

In this section, you will see how to implement clustering for the three most useful

clustering ML algorithms as presented in Chapter 4:

•	 K-means clustering

•	 Expectation-maximization (EM) clustering

•	 Density-based clustering (DBSCAN)

If you are interested in exploring other clustering algorithms, just substitute the

algorithm of your choice.

�Clustering with DBSCAN
The DBSCAN algorithm is included as an “available” package in the Weka package

manager. After you install the DBSCAN clustering algorithm it will be available as a

clustering option in the Weka packages.

For this clustering example, you will use the Old Faithful geyser dataset. The

original dataset is available at www.stat.cmu.edu/~larry/all-of-statistics/=data/

faithful.dat.

Old Faithful is the famous geyser in Yellowstone National Park that erupts regularly

approximately once per hour. The dataset, collected in 1990, includes 272 observations

on two variables. The two variables are

•	 Eruption time: A numeric value representing the eruption time in

minutes

•	 Waiting time: A numeric value representing the waiting time until the

next eruption in minutes

Chapter 5 Machine Learning Environments

http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

258

Table 5-6 shows the first ten instances of the dataset. The original data file name is

old-faithful-data.dat. It does not contain a header row and contains fields separated

by spaces. The modified file used in this example is old-faithful-data.csv. The file is

contained in the book resources in the Chapter 5 folder. It does contain a header row and

comma-separated values. The OpenCalc spreadsheet program created the CSV file.

Table 5-6.  Old Faithful Geyser Dataset (first 10 instances),

(Azalini and Bowman, 1990)

Instance ID Eruption time Waiting time

1 3.600 79

2 1.800 54

3 3.333 74

4 2.283 62

5 4.533 85

6 2.883 55

7 4.700 88

8 3.600 85

9 1.950 51

10 4.350 85

Using the Weka Explorer, it is straightforward to perform a DBSCAN cluster on the

data, as shown in the steps below.

	 1.	 Launch the Weka Explorer application from the Weka GUI

Chooser.

	 2.	 In the PreProcess tab, click Open File and Open the old-faithful-
data.csv file. You may have to tell the Weka CSV loader that the

values are “ , ” separated and NoHeaderRowPresent is false. When

the data loads, you will see a summary of the instances, including

the two attributes, eruptions and waiting.

	 3.	 Click the Cluster tab.

	 4.	 Under Clusterer, click the Choose button to select the algorithm.

Chapter 5 Machine Learning Environments

259

	 5.	 Select the DBSCAN algorithm from the list of available clustering

algorithms. If DBSCAN is not available, you will need to install it

using the Weka package manager.

	 6.	 Click the text in the DBSCAN algorithm box. You will be able to

enter the DBSCAN algorithm parameters. Enter .11 for Epsilon

and 6 for NumPts. Click OK.

	 7.	 Click Start to execute the DBSCAN clustering algorithm on the

dataset. After the processing is complete, the results will display.

Figure 5-19 shows the completed DBSCAN clustering results.

Figure 5-19.  DBSCAN clustering of the Old Faithful dataset

The results show that the algorithm identified two clusters for all of the 272

instances. In total, cluster0 received 175 instances, while cluster1 received 97 instances.

Chapter 5 Machine Learning Environments

260

Each time you run a cluster or classification in Weka, the Results list on the left

panel updates with a new entry. Right-clicking a results entry provides the option to

visualize the results. You can also click the Visualize tab at the top of the Weka Explorer.

Figure 5-20 shows the visualization of the two DBSCAN clusters. When you first click

the Visualize tab, you will see a matrix of visualizations. Weka prepares charts for all

combinations of the attributes. In this case, the one you are interested in maps the

waiting time and eruption time on the X and Y axes. You can select this specific chart

from the matrix, or you can use the X and Y drop-down boxes to populate the desired

attributes for the X and Y axes.

Figure 5-20.  Visualization of DBSCAN clustering

Chapter 5 Machine Learning Environments

261

You can visualize any two of the attributes, one on the X-axis and another on the

Y-axis. In this case, there are actually four attributes:

•	 The eruption time interval

•	 The waiting time interval

•	 The instance ID

•	 A newly created attribute that holds the generated cluster ID. In

effect, you now have a labeled dataset and you will take advantage of

this later.

When visualizing the data, select the plot that places the eruption and waiting times

on the axis. Plotting the other attributes is not particularly interesting. With the correct

attributes selected, as shown in Figure 5-20, the visualization provides a key insight. The

two clusters identified by the algorithm are color-coded.

The key insight you can gain from the visualization is that the two distinct clusters

represent two “modes” in which the Old Faithful geyser operates.

You can adjust the algorithm parameters if you wish to fine-tune the clusters.

Notice that some of the data points in the middle area are borderline in determining to

which cluster they belong. Figure 5-21 shows adjustments to the DBSCAN algorithm

parameters. Some algorithms have many parameters; the DBSCAN algorithm only has

two parameters.

Figure 5-21.  DBSCAN algorithm parameter adjustment

Chapter 5 Machine Learning Environments

262

By changing the epsilon parameter and the numPoints parameter, you can tighten

up the tolerance of the clusters. After changing the parameters, click OK and then press

Start to commence another clustering. Figure 5-22 shows the new results.

Figure 5-22.  Updated DBSCAN clustering results

In this case, the algorithm identified noise in the data. In total, 11 instances fell in the

boundary area. Right-click the newest DBSCAN result in the results list to show the new

visualization, shown in Figure 5-23.

Chapter 5 Machine Learning Environments

263

The circled data points did not cluster into either of the two clusters. In this

example, you have much tighter clusters. By adjusting the algorithm parameters, you

have essentially used the DBSCAN algorithm to identify outliers, one of the algorithm’s

strengths, if you recall from Chapter 4.

Figure 5-23.  Noise in the data identified by DBSCAN

Chapter 5 Machine Learning Environments

264

�Clustering with KnowledgeFlow
You have seen how the density-based clustering algorithm DBSCAN performs when

clustering the Old Faithful dataset. Now let’s compare results from the two other

clustering algorithms, k-means and EM. Rather than run independent tests as you did

with DBSCAN in the Weka Explorer, you can use the Weka KnowledgeFlow application

to simplify the comparison process.

Although the KnowledgeFlow GUI is not as stylish as you saw with RapidMiner and

KNIME in Figure 5-2 and Figure 5-3, the KnowledgeFlow application has all the same

functionality.

The KnowledgeFlow application contains several very useful templates you can use

to build layouts. KnowledgeFlow includes the following templates:

•	 Cross-validation

•	 Learn and save a model

•	 ROC curves for two classifiers

•	 Learn and evaluate naive Bayes incrementally

•	 Compare two clusters

•	 Two attribute selection schemes

•	 Save various charts to files

•	 Visualize prediction boundaries

•	 Parameterize a job

Layouts can be loaded, modified, and saved. KnowledgeFlow layouts use the .kf

extension. The book resources include two layouts you can load to compare all three

clustering algorithms we have discussed.

Figure 5-24 shows the two layouts available with the book resource download:

cluster-3-csv-cross-fold.kf uses k-fold cross-validation while cluster-3-csv-split.kf uses

a simple split of the data for training and testing. Both of the KnowledgeFlow examples

load the CSV dataset old-faithful-data.csv.

Chapter 5 Machine Learning Environments

265

The process of constructing a KnowledgeFlow is straightforward. You simply choose

nodes from the left-hand panel and add them to the canvas. The KnowledgeFlow

application organizes nodes into expandable categories including DataSources, Filters,

Classifiers, Clusterers, Visualization, and others.

When nodes placed onto the canvas, there are two configuration operations:

•	 Double-clicking a node will provide access to the node configuration

parameters, including algorithm parameters.

•	 Right-clicking a node will provide access to the node options,

including the important task of connecting the node to other nodes.

Figure 5-23 shows the cluster-3-csv-splt.kf loaded into the Weka KnowledgeFlow

application.

Descriptive notes can also be included on the canvas, as shown in Figure 5-25.

Figure 5-24.  KnowledgeFlow layouts: Comparing three clustering algorithms

Chapter 5 Machine Learning Environments

266

The following steps illustrate how to create the three-cluster comparison starting

with a blank canvas:

	 1.	 Add the following nodes to the KnowledgeFlow canvas, arranging

them as shown in Figure 5-25:

CSVLoader,

TrainTestSplitMaker,

EM Clusterer,

K-Means Clusterer,

DBSCAN Clusterer,

3 x ClustererPerformanceEvaluator,

TextViewer

Figure 5-25.  KnowledgeFlow layout: three-clusterer comparison

Chapter 5 Machine Learning Environments

267

	 2.	 Double-click the CSVLoader and set the filename to the

old-faithful-data.csv file.

	 3.	 Right-click the CSVLoader and choose dataset. Drag the dataSet

connector to the TrainTestSplitMaker.

	 4.	 Double-click the TrainTestSplitMaker and set the training

percentage to 66% or a number of your choosing.

	 5.	 Right-click the TrainTestSplitMaker, choose trainingSet, and

drag the trainingSet connector to the EM Clusterer node. Repeat

for the other two clusterers.

	 6.	 Right-click the TrainTestSplitMaker, choose testSet, drag the

testSet connector to the EM Clusterer node, and repeat for the

other two clusterers.

	 7.	 Right-click the EM Clusterer node, choose batchClusterer,

and drag the batchClusterer connector to the first

ClustererPerformanceEvaluator. Repeat for the other two

Clusterer nodes.

	 8.	 Right-click each ClustererPerformanceEvaluator, choose text,

and drag the text connector to the TextViewer.

With the KnowledgeFlow fully configured, you can execute the flow by clicking the

right Play arrow at the top of the layout. KnowledgeFlow records the progress status in

the bottom panel as the flow executes.

When all of the tasks successfully complete, KnowledgeFlow will mark status as OK,

as shown in Figure 5-25. At this point, you can right-click the TextViewer to show the

results. Figure 5-26 shows the Result List.

Chapter 5 Machine Learning Environments

268

The Result List includes reports for each of the three clustering algorithms:

DBSCAN, EM, and k-means.

The Weka KnowledgeFlow interface provides a very useful way for you to experiment

with clustering algorithms. You can easily double-click a clustering algorithm, update its

parameters, and rerun the flow. It is a very useful tool when deciding which algorithms

works best for your CML clustering problem.

5.6  �Weka Classification Algorithms
Implementing clustering algorithms to discover hidden patterns in unlabeled data, as

you saw with Old Faithful, is very interesting. However, classification problems present

an even more practical use of CML algorithms. Next, you will review the four go-to

classification algorithms and see how well they can classify the PAMAP2_Dataset from

Chapter 2.

Before you get started, you must make sure you have a well-defined problem.

Your goal in this section is build a model that can predict the current activity of a

person based on the sensor data of the device they are carrying. In Chapter 6, you will

create an Android app that can accurately determine the current active state of the

device user by making a prediction with the prebuilt model. Android mobile devices

have similar sensor functionality as the specialized hardware used by the participants in

Figure 5-26.  KnowledgeFlow TextViewer results

Chapter 5 Machine Learning Environments

269

the PAMAP2_Dataset collection. If you build a reasonably accurate model, you should be

able to predict the current activity of the mobile device user. Such an activity-monitoring

app could have potential uses for healthcare, fitness, or security applications.

�Preprocessing (Data Cleaning)
Recall that PAMAP2_Dataset was a large, labeled dataset generated by subjects wearing

sensors while performing 19 different activities.

The dataset contains data from multiple subjects. Not all subjects recorded all of

the activities. To train your model, you will use the data from Subject101. The dataset

provides a document, PerformedActivitiesSummary.pdf, to summarize the activities of

each subject.

You will clean the dataset to produce a subset that is appropriate for your well-

defined problem. There are two reasons why you want to clean the dataset:

•	 To reduce the size of the dataset. The files are huge and there is a lot

of redundant information contained within them.

•	 Your target Android devices do not have all the sensors used by the

subjects in the original data collection. There is no sense retaining

sensor data that the Android device cannot replicate.

Table 2-4 shows the structure of the original dataset. The readme.pdf file

accompanying the dataset documents this structure. The original dataset files are large.

They each contain over 300,000 instances (rows) and 54 attributes (columns). Before you

proceed with creating the model, you need to clean the data.

Follow the steps below to produce the cleaned dataset, subject101-cleaned.csv.

Note that the column numbers shown are 1-relative values.

	 1.	 Open the original subject101.dat file in Open Office Calc and

save the CSV file as subject101.csv. Figure 2-5 shows the dataset

loaded into the Open Office Calc spreadsheet. Calc converted

the original subject101.dat file to the comma-separated version,

subject101.csv. You will clean this CSV file.

	 2.	 Delete the time stamp attribute (column 1). This dataset is not

intended as time series data. Each instance can stand on its own

as a predictor for the current activity.

Chapter 5 Machine Learning Environments

https://doi.org/10.1007/978-1-4842-3951-3_2#Tab4

270

	 3.	 Delete any instance where the heart rate attribute (column 2) is a

missing value (NaN). Sensors in the collection provided rapid data

streams and only 1 in 10 samples included the heart rate. Filtering

the data when this attribute is missing will reduce the size, but not

the significance of the data.

	 4.	 Delete the heart rate attribute (column 2). You do not have a way

of using this attribute on Android.

	 5.	 Delete columns 21-37, the chest sensor data. The Android device

only has one sensor so let’s assume it is hand-based. The hand-

based sensor data is included in columns 4-20.

	 6.	 Delete columns 38-54, the foot sensor data. The Android device

only has one sensor so let’s assume it is hand-based. The hand-

based sensor data is included in columns 4-20.

	 7.	 In the hand-based sensor data, you only need to keep the

accelerometer, gyroscope, and magnetometer data. Delete

columns 1, 5-7, and 14-17.

	 8.	 Add a header row to describe the remaining 10 columns.

The resulting cleaned file has only 10 attributes (columns) and 22,846 instances. It is

much smaller at 1.8MB compared to the original file of 138MB. The first few records of

the new structure of subject101-cleaned.csv are shown below, including the header row:

001 �activityID,accelX,accelY,accelZ,gyroX,gyroY,gyroZ,magnetX,magnetY,

magnetZ

002 �1,2.301,7.25857,6.09259,-0.0699614,-0.01875,0.004568,9.15626,

-67.1825,-20.0857

003 �1,2.24615,7.4818,5.55219,-0.431227,0.002686,-0.06237,9.14612,

-67.3936,-20.5508

004 �1,2.3,7.10681,6.09309,0.07569,-0.0307922,0.005245,9.69163,-67.0898,

-21.2481

005 �1,2.49455,7.52335,6.17157,-0.259058,-0.267895,-0.03858,9.58694,

-67.0882,-20.8997

006 �1,2.71654,8.30596,4.78671,0.377115,-0.0236877,-0.02095,8.59622,

-67.1486,-20.1947

Chapter 5 Machine Learning Environments

271

007 �1,2.54954,7.63122,5.55623,-0.487667,-0.0199,-0.0894,9.00159,

-66.0543,-22.5021

008 �1,2.82407,6.1449,5.06502,-0.781563,0.198873,-0.213285,10.5845,

-63.7955,-27.5879

009 �1,2.73626,7.94195,6.52017,-0.472414,0.279868,0.03655,12.2658,

-64.6618,-27.0379

010 �1,2.38894,7.4883,6.40103,0.3579,1.04661,0.346204,12.1033,-62.2186,

-30.1344

011 �1,1.8132,6.85639,7.35672,0.360442,1.2873,0.1226,14.9204,-62.7273,

-28.6676

012 �1,0.0125249,5.2733,6.95022,0.440524,1.19843,0.1064,16.6466,-63.2981,

-25.9161

013 �1,-0.530751,7.62191,6.04895,0.179548,1.05112,0.23129,18.111,

-64.9924,-19.2388

014 �1,-1.65419,7.6992,5.22362,1.51583,0.83644,0.283502,18.1058,-65.8251,

-13.6928

015 �1,-1.09215,7.20128,5.19524,1.22541,0.65619,0.19038,17.0806,-68.1161,

-8.61366

The file contains the important ActivityID in the first column. This attribute

is the label. Columns 2-10 contain accelerometer(X,Y,Z), gyroscope(X,Y,Z), and

magnetometer(X,Y,Z) data.

Table 5-7 shows a list of the ActivityIDs and their occurrences in the cleaned dataset.

There are 22,846 total instances in the cleaned dataset, which should be a sufficient

dataset size to produce a good model. The Android app will use the model to predict

these ActivityIDs based on the device sensor input.

Chapter 5 Machine Learning Environments

272

With a much smaller and more relevant data file, you are now ready to load the

subject101-cleaned.csv file into Weka.

Start Weka, select the Weka Explorer from the GUI Chooser, and click Open File

under the Preprocess tab. Browse to the location of subject101-cleaned.csv and select it.

Because you imported a CSV file, you did not have full control over how the data

types of the attributes were treated. For this dataset, all of the attributes are numbers,

except for the ActivityID, which is a nominal value. Recall from Table 5-7, each of the

values represents an activity. To correct this issue, you need to use a Weka filter to

convert the numeric ActivityID attribute to a nominal data type.

Figure 5-27 shows the Weka Explorer after the data import and after the ActivityID

attribute was converted to a nominal data type.

Table 5-7.  ActivityID Occurrence - Subject101

ActivityID Activity name Number of instances

1 Lying 2.486

2 Sitting 2,146

3 Standing 1,984

4 Walking 2,035

5 Running 1,941

6 Cycling 2,156

7 Nordic walking 1,852

12 Ascending stairs 1,452

13 Descending stairs 1,362

16 Vacuum Cleaning 2,097

17 Ironing 2,155

24 Rope jumping 1,180

Chapter 5 Machine Learning Environments

273

Figure 5-26 shows the Weka NumericToNominal filter applied to Attribute1. Note

that in the filter option box, the filter only applies to the first attribute.

If you import CSV data into Weka and then apply preprocessing filters, it is
helpful to resave the data as ARFF format. The ARFF file format can store
data types along with the data so data conversion filters are not required at
later stages in the process.

The data is now ready for classification. Next, you start the classification analysis

with the random forest algorithm.

Figure 5-27.  Cleaned PAMAP2_Dataset with filter

Chapter 5 Machine Learning Environments

274

�Classification: Random Forest Algorithm
Classifying data is easy once the data is prepared. In Chapter 4, anecdotal evidence

suggested the RF algorithm often performs the best. You will see if this holds true for the

cleaned PAMAP dataset.

To classify data in the Weka Explorer, follow these steps:

	 1.	 Select the Classify tab in the Weka Explorer.

	 2.	 Press the Choose button to choose the classification algorithm.

	 3.	 Choose the test option. You will try both 2/3 split and 10-fold

cross-validation to evaluate the chosen algorithms.

	 4.	 Select the ActivityID as the attribute to classify.

	 5.	 Click in the options box to change any of the algorithm-specific

options if needed.

	 6.	 Press the Start button and wait for the classification to finish. It

might be quick, or it could take a long time depending on factors

such as data size, number of attributes, algorithm complexity, or

algorithm options such as iterations.

	 7.	 Click the Results List to view the results, including the

classification accuracy and confusion matrix.

Each algorithm has its own parameters with which you can experiment. For RF, one

of the most important parameters is iterations, which determines how many decision

trees the algorithm will use. Figure 5-28 shows the RF algorithm option box.

Chapter 5 Machine Learning Environments

275

The default value for iterations is 100. For your testing, you will run four tests, using

the values of 10 and 100 for iterations, and using two test options, 2/3 split and 10-fold

cross-validation.

Figure 5-29 shows the results of one RF classification with iterations=100 and using

the 10-fold cross-validation test option.

Figure 5-28.  Random forest algorithm options

Chapter 5 Machine Learning Environments

276

Because your predictive attribute is a nominal data type, Weka provided a confusion

matrix. The confusion matrix is included last. You can scroll back through the results

window to see the classification accuracy. Right-click the Results List entry if you wish

to save the results to a file. The following results show that the RF classification was very

successful.

001 === Run information ===

002

003 �Scheme: weka.classifiers.trees.RandomForest -P 100 -I 100 -K 0 -M 1.0

-V 0.001 -S 1

004 Relation: �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005 Instances: 22846

006 Attributes: �10: activityID, accelX, accelY, accelZ, gyroX,

Figure 5-29.  Random forest algorithm classification

Chapter 5 Machine Learning Environments

277

007 gyroY, gyroZ, magnetX, magnetY, magnetZ

008 Test mode: 10-fold cross-validation

009

010 === Classifier model (full training set) ===

011

012 RandomForest

013 Bagging with 100 iterations and base learner

014 �weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-

check-capabilities

015 Time taken to build model: 16.45 seconds

016

017 === Stratified cross-validation ===

018 === Summary ===

019

020 Correctly Classified Instances 20678 90.5104 %

021 Incorrectly Classified Instances 2168 9.4896 %

022 Kappa statistic 0.8961

023 Mean absolute error 0.0405

024 Root mean squared error 0.12

025 Relative absolute error 26.6251 %

026 Root relative squared error 43.4728 %

027 Total Number of Instances 22846

028

029 === Confusion Matrix ===

030

031 � a b c d e f g h i j k l <--

classified as

032 2433 17 15 1 2 2 4 2 2 3 0 5 | a = 1

033 27 2041 14 3 1 6 9 10 4 18 7 6 | b = 2

034 14 6 1910 5 2 7 11 4 7 2 12 4 | c = 3

035 56 2 2 1737 1 0 34 99 38 58 8 0 | d = 4

036 20 2 0 2 1856 5 5 9 2 9 23 8 | e = 5

037 10 0 2 2 10 2026 21 2 13 18 51 1 | f = 6

038 14 8 1 55 11 24 1615 28 19 25 22 30 | g = 7

039 0 3 2 137 6 5 31 1064 86 105 7 6 | h = 12

Chapter 5 Machine Learning Environments

278

040 1 2 3 53 1 7 42 61 1063 120 7 2 | i = 13

041 0 3 9 33 14 42 37 22 23 1886 10 18 | j = 16

042 3 6 10 6 8 22 24 4 3 12 2051 6 | k = 17

043 29 3 11 11 36 7 41 2 8 5 31 996 | l = 24

The classification accuracy was 90.5%. If you look down the diagonal of the

confusion matrix, it is obvious from the relatively large values that the RF algorithm did a

very good job.

You can see a few relatively large numbers off the main diagonal, such as the 137

instance on line 039. These instances represent ActivityID 12 (Ascending stairs) being

wrongly classified as ActivityID 4 (Walking). The next highest number was 120 instances

(line 040) representing Activity 13 (Descending stairs) wrongly classified as ActivityID 16

(Vacuum Cleaning).

The 90% accuracy achieved by the RF algorithm is a good indication that your

Android app will be successful in classifying the user’s activity. Next, you will see if the

other classification algorithms can match the performance of RF.

�Classification: K-Nearest Neighbor
Recall that the KNN algorithm is a lazy learning algorithm. Weka contains an excellent

modified version of KNN called KStar, or K*. You can learn the details of K* and how it

improved KNN from this University of Waikato research paper:

www.cs.waikato.ac.nz/~ml/publications/1995/Cleary95-KStar.pdf

KStar is available under the lazy folder when you select Choose under the classifier

section of the Weka Explorer. Figure 5-30 shows the default KStar options.

Chapter 5 Machine Learning Environments

http://www.cs.waikato.ac.nz/~ml/publications/1995/Cleary95-KStar.pdf

279

Classifying the subject101-cleaned.arff data with the KStar algorithm achieves the

following results:

001 === Run information ===

002

003 Scheme: weka.classifiers.lazy.KStar -B 20 -M a

004 Relation: �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005 Instances: 22846

006 Attributes: 10

007 Test mode: split 66.0% train, remainder test

008

009 === Classifier model (full training set) ===

010

011 KStar options : -B 20 -M a

012 Time taken to build model: 0 seconds

013

014 === Evaluation on test split ===

015

016 Time taken to test model on test split: 2512.94 seconds

Figure 5-30.  Weka KNN algorithm (KStar) options

Chapter 5 Machine Learning Environments

280

017

018 === Summary ===

019

020 Correctly Classified Instances 6434 82.827 %

021 Incorrectly Classified Instances 1334 17.173 %

022 Kappa statistic 0.8119

023 Mean absolute error 0.0339

024 Root mean squared error 0.1435

025 Relative absolute error 22.2521 %

026 Root relative squared error 51.9942 %

027 Total Number of Instances 7768

028

029 === Confusion Matrix ===

030

031 a b c d e f g h i j k l <-- classified as

032 806 20 9 2 0 0 1 0 2 0 1 0 | a = 1

033 11 689 8 4 0 3 4 0 1 1 0 1 | b = 2

034 4 4 669 3 1 1 3 0 0 1 1 1 | c = 3

035 17 7 25 566 2 2 10 35 11 11 3 2 | d = 4

036 4 2 7 4 612 3 5 5 2 7 2 6 | e = 5

037 7 4 2 2 6 677 4 1 7 6 20 0 | f = 6

038 5 15 9 37 5 27 447 13 19 20 16 16 | g = 7

039 0 11 22 74 0 6 11 305 35 28 3 4 | h = 12

040 0 8 46 40 0 8 9 31 289 28 4 1 | i = 13

041 0 10 24 53 3 30 13 22 46 512 3 3 | j = 16

042 3 11 23 7 13 54 11 7 4 20 563 11 | k = 17

043 12 5 19 10 13 4 14 4 6 7 0 299 | l = 24

The KStar algorithm achieved an impressive 82.8% accuracy. The confusion matrix

main diagonal looks clean, containing much larger numbers than the erroneous

classifications off the main diagonal.

The main issue with KNN-style algorithms is the testing time with large datasets.

You have a large dataset, and if you look closely, you can see this model required over

2,500 seconds (41 minutes) to classify the data (Intel i7 CPU in a Windows desktop).

As a result, it was not viable to use the 10-fold cross-validation test option. Instead, you

Chapter 5 Machine Learning Environments

281

specified the split (2/3 train, 1/3 test) test option. Using 10-fold cross validation would

have taken approximately 10x longer.

Overall, the KNN accuracy was comparable to RF, but the time taken to predict is

problematic for this dataset.

�Classification: Naive Bayes
The NB algorithm is the probability-based approach to classification. To classify in Weka

using NB, select the algorithm from the classifier Choose section. If naive Bayes is not

available, make sure you select the ActivityID as the attribute to classify. Naive Bayes

requires the attribute to be a nominal data type, and only the ActivityID meets this

criterion.

Recall from Chapter 4, NB is well suited for 2-class classification. In order to use NB

for multi-class data, you need to use the kernel trick. Figure 5-31 shows the kernel setting

in the NB options screen. You need to set useKernelEstimator to true. Failure to do this

will result in random output from the classifier.

Figure 5-31.  Naive Bayes kernel setting option

Chapter 5 Machine Learning Environments

282

Start the classification and you will see the following naive Bayes classification

results:

001 === Run information ===

002

003 Scheme: weka.classifiers.bayes.NaiveBayes -K

004 Relation: �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005 Instances: 22846

006 Attributes: 10

007 Test mode: split 66.0% train, remainder test

008

009 === Classifier model (full training set) ===

010

011 Naive Bayes Classifier

012 Time taken to build model: 0.09 seconds

013

014 === Evaluation on test split ===

015

016 Time taken to test model on test split: 25.44 seconds

017

018 === Summary ===

019

020 Correctly Classified Instances 5644 72.6571 %

021 Incorrectly Classified Instances 2124 27.3429 %

022 Kappa statistic 0.7004

023 Mean absolute error 0.0578

024 Root mean squared error 0.1803

025 Relative absolute error 37.9502 %

026 Root relative squared error 65.3628 %

027 Total Number of Instances 7768

028

029 === Confusion Matrix ===

030

031 a b c d e f g h i j k l <-- classified as

032 762 21 15 0 7 3 5 1 2 6 16 3 | a = 1

Chapter 5 Machine Learning Environments

283

033 0 635 25 6 0 4 5 1 6 9 22 9 | b = 2

034 1 15 603 7 7 12 16 0 16 5 6 0 | c = 3

035 17 31 16 406 16 8 21 67 42 53 10 4 | d = 4

036 6 8 5 3 540 4 12 5 6 22 22 26 | e = 5

037 6 13 6 1 6 660 4 1 8 4 27 0 | f = 6

038 6 23 5 67 38 34 292 29 30 29 42 34 | g = 7

039 0 24 15 96 5 12 31 201 62 39 10 4 | h = 12

040 0 27 15 60 6 19 8 38 234 38 18 1 | i = 13

041 0 11 9 54 14 33 32 11 22 508 12 13 | j = 16

042 2 23 13 3 24 84 13 0 5 4 542 14 | k = 17

043 8 9 22 5 25 6 21 0 14 11 11 261 | l = 243

The algorithm achieved 72.7% accuracy. Not bad, but not quite as good as RF and

KNN. However, NB did run much faster than KNN, taking only 25 seconds to complete

the classification using the 2/3 split test mode.

�Classification: Support Vector Machine
SVM algorithms are gaining popularity against neural network DL algorithms. Weka

provides the SMO (sequential minimal optimization) algorithm to implement a support

vector classifier.

If you run the SMO algorithm using default options, the results will be poor. Weka

makes it easy to tune the algorithm options. Figure 5-32 shows the option panel for the

SMO algorithm. In order to achieve better results, change the following options:

•	 Set the Complexity parameter c = 2.0.

•	 Set the Calibrator to SMO.

•	 Change the Tolerance parameter to 0.1.

•	 Set the kernel to PUK with default parameters.

Chapter 5 Machine Learning Environments

284

The SMO classifier output:

001 === Run information ===

002

003 Scheme: �weka.classifiers.functions.SMO -C 2.0 -L 0.1 -P 1.0E-

12 -N 0 -V -1 -W 1 -K "weka.classifiers.functions.

supportVector.Puk -O 1.0 -S 1.0 -C 250007" -calibrator

"weka.classifiers.functions.SMO -C 1.0 -L 0.001

-P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.

functions.supportVector.PolyKernel -E 1.0 -C 250007\"

-calibrator \"weka.classifiers.functions.Logistic -R

1.0E-8 -M -1 -num-decimal-places 4\""

Figure 5-32.  Weka SMO algorithm options

Chapter 5 Machine Learning Environments

285

004 Relation: �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005 Instances: 22846

006 Attributes: 10

007 Test mode: split 66.0% train, remainder test

008

009 === Classifier model (full training set) ===

010

011 SMO

012 Kernel used:

013 Puk kernel

014 Classifier for classes: 1, 2

015 BinarySMO

016 Time taken to build model: 108.91 seconds

017

018 === Evaluation on test split ===

019

020 Time taken to test model on test split: 28.28 seconds

021

022 === Summary ===

023

024 Correctly Classified Instances 6426 82.724 %

025 Incorrectly Classified Instances 1342 17.276 %

026 Kappa statistic 0.8107

027 Mean absolute error 0.1399

028 Root mean squared error 0.2571

029 Relative absolute error 91.8675 %

030 Root relative squared error 93.177 %

031 Total Number of Instances 7768

032

033 === Confusion Matrix ===

034

035 a b c d e f g h i j k l <-- classified as

036 801 5 21 0 0 4 1 1 8 0 0 0 | a = 1

037 19 665 14 3 0 6 3 5 1 3 1 2 | b = 2

Chapter 5 Machine Learning Environments

286

038 2 15 640 8 1 5 7 2 5 1 2 0 | c = 3

039 2 4 14 493 8 1 22 45 20 70 12 0 | d = 4

040 0 0 9 2 605 13 1 5 1 4 18 1 | e = 5

041 3 12 6 2 2 658 4 0 4 14 30 1 | f = 6

042 7 28 2 35 8 25 456 33 11 5 8 11 | g = 7

043 1 11 20 68 0 2 7 297 29 60 3 1 | h = 12

044 0 6 12 28 0 2 21 66 260 64 5 0 | i = 13

045 0 5 14 15 6 23 16 10 10 618 1 1 | j = 16

046 1 15 23 3 1 29 9 5 2 4 633 2 | k = 17

047 2 6 28 7 10 5 12 2 6 9 6 300 | l = 24

The Weka SMO algorithm achieved 82.7% accuracy on the cleaned dataset. The

result was about the same as the KNN algorithm, but the elapsed time for training and

testing was only 2 minutes for the 22,000+ instances.Next, you will take a more detailed

look at these classification algorithm results.

5.7  �Weka Model Evaluation
There are many factors to consider when evaluating a ML model.

You are trying to place ML models at the edge, so you need to think carefully about

how your model affects the limited resources of the target device. While accuracy is the

most visible performance measure, build time and test time also are important. Table 5-8

shows a summary of the classifier’s performance for the subject101-cleaned.arff

dataset.

Chapter 5 Machine Learning Environments

287

Note the DNF (Did Not Finish) entry for KNN with 10-fold test option. This means it

aborted the operation because it was taking too long.

Note the NR (Not Reported) entries for the test times with 10-fold cross validation.

Weka does not report the total training time when using the k-fold cross-validation test

option. However, if you recall from Figure 4-10, you could multiply the test training time

by k to determine an estimate for the test time, assuming you used a 90/10 split for a 10-

fold cross-validation.

A summary of observations from the table of results:

•	 RF achieves the best accuracy result.

•	 RF sits in a sweet spot considering the accuracy vs. time to train/test

tradeoff.

•	 Using the 10-fold cross-validation test option over the split improves

the accuracy of the classifier by up to 1%.

•	 The KNN test time is large. The algorithm performs a lot of

computation for every prediction due to the lazy nature of the

algorithm.

•	 The SVM/SMO training time is large. This is because the algorithm

creates so many support vectors.

Table 5-8.  Classification - Algorithm Performance Summary

Algorithm Training method Build time (sec.) Test time (sec.) Accuracy (%)

RF (i=10) 10-fold cross-val. 1.7 NR 87.7%

RF (i=10) 2/3 split 1.8 0.2 86.4%

RF (i=100) 10-fold cross-val. 16.5 NR 90.5%

RF (i=100) 2/3 split 16.5 1.3 90.0%

KNN 10-fold cross-val. DNF DNF DNF

KNN 2/3 split 0.1 2,513 82.8%

Naive Bayes 10-fold cross-val. 0.1 NR 72.9%

Naive Bayes 2/3 split 0.1 25.4 72.7%

SVM/SMO (c=2) 10-fold cross-val. 111 NR 83.4%

SVM/SMO (c=2) 2/3 split 109 28 82.7%

Chapter 5 Machine Learning Environments

288

The findings confirm the relative performance of the algorithms shown in

Figure 4-17. Although only RF achieved 90% accuracy, it is likely the results for all the

algorithms can improve by further adjusting the algorithm options.

One additional factor is extremely important in choosing the best model that I have

not discussed yet is model size. You need a model that can be stored in a device at the

edge. Such devices often have constrained memory and CPU resources due to their size.

I will discuss this important factor further in Chapter 6.

�Multiple ROC Curves
In addition to algorithm accuracy, let’s look at the ROC curve(s) of your classification

results. The ROC curve plots the true positive rate (TPR) against the false positive rate

(FPR). ROC curves work best in a 2-class case, but you can make a multi-class problem

like subject101-cleaned.arff  into a 2-class case by singling out one class and evaluating

it against the others.

You will use to Weka KnowledgeFlow application to generate the ROC comparison

chart. Open a KnowledgeFlow window from the Weka GUI Chooser and open the

Classify-4.kf  file from the book resources.

Classify-4.kf  is a knowledge flow example that performs the following actions when

executed:

•	 It loads the data from subject101-cleaned.arff.

•	 It prepares a 10-fold cross-validation of the data to send to the RF and

NB classifiers.

•	 It prepares a 2/3 split of the data to send to the KNN and SVM/SMO

classifiers. These classifiers take a longer time to test instances, so

avoid the 10-fold cross-validation test option.

•	 The four classifiers perform their classification.

•	 The results are sent to the charting module that can display the image

of the multiple ROC curves.

•	 The results also saved in a text file.

Figure 5-33 shows the Classify-4.kf  layout including the status window after the flow

executes.

Chapter 5 Machine Learning Environments

289

Before executing the flow, click the following nodes to set or confirm their

parameters:

	 1.	 Click the ARFFLoader and verify the data file is subject101-
cleaned.arff.

	 2.	 Click the ClassAssigner and verify that ActivityID is the class

attribute.

	 3.	 Click the ClassValuePicker and select the class to use for the ROC

curve. In the example, you chose class 3 (Standing). This is how

you map multi-class data for 2-class ROC curves.

	 4.	 Select the FoldMaker and the SplitMaker nodes to set the test

divisions for 10 fold and 2/3 split.

Figure 5-33.  KnowledgeFlow clustering multiple ROC output

Chapter 5 Machine Learning Environments

290

	 5.	 Click each of the four algorithm nodes and set the parameters as

discussed earlier.

	 6.	 Click the ModelPerformanceChart node and set the Renderer to

JFreeChart as shown in Figure 5-34.

Figure 5-34.  Setting the Renderer to JFreeChart

Execute the flow and wait for the results to complete. The KNN algorithm will be last

due to its long testing times. When everything completes, right-click the ImageViewer

node and show results, as in Figure 5-35.

Chapter 5 Machine Learning Environments

291

Recall from Chapter 4, to interpret the multiple ROC curves, straight vertical line are

the best. For this particular Class=3, the RF and SVM/SMO algorithms look great. The NB

algorithm is lagging, which is reasonable because it had the lowest percentage accuracy.

The accuracy and ROC curve results give you confidence these models can work

when integrated into your final application.

Figure 5-35.  Weka ROC curve comparison (Class: 3)

Chapter 5 Machine Learning Environments

292

5.8  �Weka Importing and Exporting
The ability to Load/Save models is one of Weka’s most useful features. You will explore

this further in the next chapter when you deploy pretrained CML models to devices.

Models can be loaded and saved in the Weka Explorer by right-clicking a model in

the Weka Explorer Results list. Figure 5-36 shows the Save Model drop-down dialog box.

Figure 5-36.  Weka Explorer: saving a model

Weka saves models as serialized Java objects with the .model extension. You can

import saved Weka models into your Java applications by using the Weka Java API. Once

imported, the model enables you to make predictions. In Chapter 6, you will explore the

size and structure of .model files further.

Chapter 5 Machine Learning Environments

293

One of the key issues with using prebuilt CML models on devices is the size
of the model. Model size and model accuracy are trade-offs you must care-
fully consider whenever you build and export models. I will discuss this in
detail in the next chapter.

In addition to saving models, Weka allows you to save data files with a variety of

formats. When you click the Save button in the Weka Explorer Preprocess tab, the

following file formats are available:

•	 ARFF file export

•	 ARFF data files (*.arff)

•	 ARFF data files (*.arff.gz)

•	 C4.5 file format (*.names)

•	 CSV files (*.csv)

•	 Plain text or binary serialized dictionary files (*.dict)

•	 JSON data files (*.json)

•	 JSON data files (*.json.gz)

•	 libsvm data files (*.libsvm)

This is a particularly useful feature because it allows you to convert files between

formats. For example, in the Old Faithful clustering example, you started by importing

the dataset in .csv format. After completing the clustering process, you can then export

the data, including the clustering results, in .arff  format.

The following excerpt shows the first 15 instances of the Old Faithful dataset after

clustering, in .arff  format. Notice that the dataset includes four attributes including a

Cluster attribute as the last column of the comma-separated dataset.

001 @relation old-faithful_clustered

002

003 @attribute Instance_number numeric

004 @attribute eruptions numeric

005 @attribute waiting numeric

006 @attribute Cluster {cluster0,cluster1}

007

008 @data

Chapter 5 Machine Learning Environments

294

009 0,3.6,79,cluster0

010 1,1.8,54,cluster1

011 2,3.333,74,cluster0

012 3,2.283,62,cluster1

013 4,4.533,85,cluster0

014 5,2.883,55,cluster1

015 6,4.7,88,cluster0

016 7,3.6,85,cluster0

017 8,1.95,51,cluster1

018 9,4.35,85,cluster0

019 10,1.833,54,cluster1

020 11,3.917,84,cluster0

021 12,4.2,78,cluster0

022 13,1.75,47,cluster1

023 14,4.7,83,cluster0

024 15,2.167,52,cluster1

In the next chapter, you will explore how to use this saved .arff  file to create the Old

Faithful (Figure 5-37) Classifier app for mobile.

Chapter 5 Machine Learning Environments

295

Figure 5-37.  Old Faithful geyser in Yellowstone National Park (Courtesy of Tim
Dimacchia, portfolio.timdimacchia.com)

Chapter 5 Machine Learning Environments

297
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_6

CHAPTER 6

Integrating Models
ML models only become useful when you integrate them seamlessly into your Java

applications. This chapter covers the following objectives:

•	 Manage ML models.

•	 Perform sensitivity analysis to make the best tradeoff between model

accuracy and model size.

•	 Review the key aspects of the Weka Java API. The API allows you to

open pretrained models and make predictions within Java.

•	 Use an Eclipse project to create a Weka API library you can use for

both Java and Android applications.

•	 Present an overview of integration techniques for pretrained ML

models with Android and the Raspberry Pi.

•	 Review Java code to handle sensor data on popular device platforms.

•	 Implement the Old Faithful ML app for Raspberry Pi.

•	 Implement the Activity Tracker ML Classification app for Android.

6.1  �Introduction
It is amazing how many apps are available on the app stores today. In fact, there are so

many, it has become difficult to cut through the noise and establish a presence. A small

percentage of apps on the app stores today use ML, but this is changing.

Machine learning is the future of app development. Just as we have learned to design

network performance into our apps, we must now learn to design ML performance

into the app, including considerations for model size, model accuracy, and prediction

latency.

298

In this final chapter, you will learn about model integration and deployment.

Figure 6-1 shows the ML-Gates 1 and 0 steps for this critical phase.

These final two ML-Gates represent the “business end” of the ML development

pipeline. They represent the final steps in the pipeline where you realize the benefit of

all the hard work performed in the earlier phases when you were working with data,

algorithms, and models. Model integration and deployment are the most visible stages,

the stages that enable you to monetize your applications.

6.2  �Managing Models
In ML application development, the model is one of your key assets. You must carefully

consider how to handle the model, including

•	 Model sizing considerations

•	 Model version control

•	 Updating models

Figure 6-1.  ML-Gate 1/0, Model Integration/Deployment

Chapter 6 Integrating Models

299

Models can grow to be very large, and you need to start by making sure the models

you create can physically reside on your target device.

�Device Constraints
When you use ML models from the cloud providers, you simply rely on network

connectivity and a cloud provider API to access models and make predictions. Storing

prebuilt models on devices is a different approach, requiring you to understand

the limitations of the target device. Table 6-1 shows the typical hardware storage

specifications for two Java devices, Android and Raspberry Pi.

Table 6-1.  Device Processing/Storage Summary

Specification Android Raspberry Pi

Device Category Mid-tier device, such as Moto X4

(2018)

Pi 3B+ (2017)

O/S Android 8.1 (Oreo) Linux

CPU Octa-core ARM Cortex-A53 2.2 GHz 4x ARM Cortex-A53, 1.2 GHz

GPU Adreno 508 Broadcom VideoCore IV

Internal flash 32GB N/A

RAM 3GB RAM 1 GB LPDDR2 (900 MHz)

External flash microSD, up to 256GB microSD, up to 256GB

While the devices have a somewhat similar architecture and CPU technology, the

table shows the typical Android device has more processing power and storage capacity

than the Pi 3B+.

The device specifications for Android vary widely. Table 6-1 shows a typical mid-tier

device and the latest revision Raspberry Pi, the Pi 3B+. Both devices support external SD

cards for storage. On the Pi, you must use this external storage for your application code

and the ML model. On Android devices, there is also internal storage, typically 32GB,

sometimes up to 64GB or higher on the flagship phones. There are several reasons to use

Android internal storage for ML models:

•	 Internal storage outperforms external storage by a factor of 3x for

read operations. For write operations, the difference is not usually as

significant.

Chapter 6 Integrating Models

300

•	 Many Android devices do not support external SD cards.

•	 External storage permissions have become increasingly strict in

recent Android builds.

It is common on Android devices to see applications with sizes greater than

300MB. This does not mean you should create models with sizes to match. Huge models

are difficult to manage. The primary downside of huge models is the time it takes to load

them. You will see with Android, the best approach is to load models on a background

thread, and you would like the loading operation to be complete within a few seconds.

In the chapter projects, you will load the ML models during app startup while the startup

splash screen displays.

�Optimal Model Size
In Chapter 5, you saw model accuracy, model training, and model testing times varied

for each of the classification algorithms discussed. There is an additional factor, model

size, which is equally important to consider. Table 6-2 shows the relative priority of these

factors.

Table 6-2.  Model Creation Factors

Factor Priority Reason

Model training time Low Training time is important; however, when you are deploying

static models within applications at the edge, the priority is

low because you can always apply more resources, potentially

even in the cloud, to train the model.

Model test time Medium If an algorithm produces a complex model requiring relatively

long testing times, this could result in latency or performance

issues on the device when making predictions.

Model accuracy High Model accuracy must be sufficient to produce results required

by your well-defined problem.

Model size High When deploying pretrained ML models onto devices, the

size of the model must be consistent with the memory and

processing resources of the target device.

Chapter 6 Integrating Models

301

Weka allows you to save models by right-clicking on a Result List item after a

classification completes. Table 6-3 shows the size of several models created using the

specified model options. There are two entries for RF algorithm, one representing ten

iterations (i=10) and another representing one hundred iterations (i=100).

To understand how the factors interrelate, you can perform a sensitivity analysis.

Consider the RF algorithm. You know the number of iterations, i, is a key variable for

determining how deep or how many trees the algorithm produces. More iterations

means more trees, which results in each of the following:

•	 Higher degree of accuracy

•	 Longer creation time

•	 Larger model size

You can use the Weka ML environment to run a series of model creations to see

how these factors relate. Figure 6-2 shows a sensitivity analysis plotting model accuracy

against model size for varying settings of the iteration (i) parameter.

Table 6-3.  Model Size Summary, Various Classification Algorithms

Algorithm Options Model size Accuracy (%)

Random forest i=10 5.5MB 87.7%

Random forest i=100 55.2 MB 90.5%

KNN-KStar Default 3.6 MB 82.8%

Naive Bayes Kernel default 51 KB 72.9%

SVM/SMO c=2 51.9 MB 83.4%

Chapter 6 Integrating Models

302

One of the things you immediately notice when working with the RF algorithm is

that the relationship between iterations (i) and model size is linear. For example, with all

other parameters being equal, the size of the model with i=5 is 2.76 MB, and the size of

the model with i=50 is 27.6MB. As Figure 6-2 shows, accuracy does not behave the same

way. The RF model reaches a ceiling, in this example, at approximately 90% accuracy. In

terms of model size, the 90MB model (i=150) does not produce any significantly greater

accuracy than the 40MB model (i=75).

The optimal point on the curve is the tangent line at the knee of curve. You can see

visually this point lies somewhere between the i=10 and i=25 values. The i=10 value

yields a reasonably good accuracy with a model size at only 5.5MB, so let’s proceed

with this configuration. Note that these accuracy values do not include 10-fold training;

adopting this test approach can further improve the accuracy.

Another factor influencing model size is the dataset size. The PAMAP2_dataset

you used was large. Subject101-cleaned.arff contained 22,846 instances. You already

performed feature reduction (also called dimensionality reduction) on the dataset

Figure 6-2.  Sensitivity analysis, model size vs. model accuracy

Chapter 6 Integrating Models

303

when you removed columns (attributes) that were not useful. However, consider if you

were to reduce the number of instances in the dataset. This would probably result in a

reduced model size, possibly at the expense of accuracy.

Figure 6-3 shows a second sensitivity analysis to help you explore this effect. This

chart plots the number of training instances vs. the model size, using a constant value of

ten iterations (i=10) and reducing the training instances by filtering the dataset input file.

Figure 6-3 shows four models with varying training instance sizes. The three points

on the left of the plot represent a subset of the complete dataset. The relationship to

model size is not linear because you can observe a bend in the curve. The slope of the

curve represents the utility of the training instances. As the slope decreases on the right-

hand side of the plot, the utility of each training instance is lower. This also relates to the

accuracy ceiling.

The question is, which instances should you delete? All of the ML environments,

including Weka, have filters to assist with instance reduction which try to minimize

dataset class integrity.

Figure 6-3.  Data size sensitivity analysis

Chapter 6 Integrating Models

304

Of course, reducing the training data will eventually reduce accuracy. Finding the

right balance is a trade-off decision, and you can use the sensitivity analysis to help you

choose the most efficient point along the curves.

Optimizing model size for devices involves performing a sensitivity analysis
for the critical parameter(s) of the chosen algorithm. Create models to
observe their size, and then choose tangent points along the sensitivity
curves for the optimum tradeoff.

Each algorithm has its own scaling properties. For the sensitivity analysis shown

here, you have considered just one algorithm (RF) and just one of its parameters

(iterations). ML environments like Weka make it easy to experiment with parameters to

optimize your models.

One of the huge advantages of DL algorithms is that generally, their size does not

scale linearly with the size of the dataset, as was the case for the RF algorithm. DL

algorithms such as CNN and RNN algorithms use hidden layers. As the dataset grows in

size, the number of hidden layers does not. DL models get "smarter" without growing

proportionally in size.

�Model Version Control
Once created, you should treat your ML models as valuable assets. Although you did not

write code in the creation process, you should consider them as code equivalents when

managing them. This infers that ML models be placed under version control in a similar

manner as your application source code.

Whether or not you store the actual model, a serialized Java object in the case of

Weka’s model export, depends on if the model is reproducible deterministically. Ideally,

you should be able to reproduce any of your models from the input components,

including

•	 Dataset

•	 Input configuration including filters or preprocessing

•	 Algorithm selection

•	 Algorithm parameters

Chapter 6 Integrating Models

305

For deterministic models that are reproducible, it is not necessary to store the model

itself. Instead, you can just choose to store the input components. When creation times

are long, such as with the KNN algorithm for large datasets, it can make sense to store

the model itself, along with the input components.

The following tools are free and open source, and promise to allow you to seamlessly

deploy and manage models in a scalable, reliable, and cost-optimized way:

•	 https://dataversioncontrol.com

•	 https://datmo.com

These tools support integration with the cloud providers such as AWS and GCP. They

solve the version control problem by guaranteeing reproducibility for all of your model-

based assets.

�Updating Models
One of the key aspects to consider when you begin to deploy your ML app is how you are

going to update the model in the future. The example projects later in the chapter will

simply load the ML model directly from the project's asset directory when the app starts.

This is the easiest approach when starting with ML application development, but it is the

least flexible when it comes time to upgrade your application-model combination in the

future.

A more flexible architecture is to abstract the model from the app. This provides

the opportunity to update the model in the future without the need to rebuild the

application. Table 6-4 summarizes some of the approaches for model management.

Chapter 6 Integrating Models

https://dataversioncontrol.com
https://datmo.com

306

If you wish to pursue the lazy loading or the push messaging approach, there are

sample projects for each of these in the author’s Android project book that can easily be

adapted to support ML models:

https://github.com/apress/practical-android

In the chapter projects that follow, you will use the embedded model approach for

simplicity. For production applications, the more advanced approaches in Table 6-4 are

preferred.

Table 6-4.  Model Management Approaches

Approach Description Pros/Cons

Embedded Include the model in the project assets. Easy, but the least flexible

approach.

Download Rather than store the model on the device,

download it from the cloud at application

initialization.

Network connectivity

required. Suitable for very

small models.

Lazy loading You can apply the standard image-loading

approach to ML models. This is a hybrid

combination of the first two approaches.

Many libraries are

available. Flexible, but not

ideal for large models.

SyncAdapter and

ContentManager
You can use the built-in Android network

synchronization (SyncAdapter ) and content

sharing (ContentManager ) classes.

High flexibility. Background

service architecture.

Push messaging Deliver model updates with push services, such

as Google's Firebase Cloud Messaging (FCM), or

open source alternatives such as MQTT.

Low latency. Background

service architecture.

Real-time streaming With this approach, models update progressively

as new data becomes available.

Distinctly different

architecture from pre-built

models.

Chapter 6 Integrating Models

https://github.com/apress/practical-android

307

�Managing Models: Best Practices
A summary of best practices for creating and handling prebuilt models for on-device ML

applications:

•	 Optimal model size depends on the input dataset size, attribute

complexity, and target device hardware capabilities.

•	 Prepare a model sensitivity analysis plotting model accuracy vs.

model size. Choose a point on the curve well to the left of the

algorithm ceiling.

•	 Prepare a model sensitivity analysis plotting number of training

instances vs. model size. Choose a point on the curve where the slope

is higher.

•	 For Android and Raspberry Pi devices, a good guideline for model

size is 5MB -50MB. If you are considering larger CML models, make

certain you gain sufficiently greater accuracy to justify the larger size.

•	 Use version control to manage all of the source data, algorithm

choices, algorithm parameters, and deployed models.

•	 Decide which architecture you will use for updating the model used

by your application.

In the next sections, you will explore the Weka Java API, how to load models, and

how to make predictions on devices.

6.3  �Weka Java API
You have seen how easy it is to access the Weka classifiers and clusterers from the

Simple CLI and from the various Weka GUI applications, including Explorer and

KnowledgeFlow. The real power is unlocked when you can access the Weka classes from

within your Java code. All of the Weka classes can be accesses from the Java APIs.

The Weka Java APIs allow you to do the following from Java code:

•	 Set options.

•	 Create and manage datasets attributes and instances.

Chapter 6 Integrating Models

308

•	 Load and save data in ARFF or CSV formats.

•	 Load and save serialized models.

•	 Apply any of the large number of Weka filters to datasets.

•	 Classify or cluster datasets using any of the many Weka algorithms.

•	 Select attributes as labels for classification.

•	 Visualize datasets, although this functionality is not available for the

Android platform.

It takes just a few lines of Java code to replicate most of the tasks you performed

using the Weka Explorer.

Next, I will review some of the most important Java API operations, first using the

general Java API, and then specifically for the Android platform.

�Loading Data
Your approach to place ML models at the edge means you typically will be loading

pretrained models created on higher capability desktop or server machines. However,

there may be occasional situations when you need to load datasets at the edge.

The Weka API allows you to load CSV or ARFF data files, just as you did in the Weka

desktop environment. The following code demonstrates loading CSV and ARFF files

using the API:

001 import weka.core.converters.ConverterUtils.DataSource;

002 import weka.core.Instances;

003 //

004 // Load ARFF file

005 //

006 �DataSource sourceARFF = new DataSource("/your-directory/your-data.

arff");

007 Instances dataARFF = sourceARFF.getDataSet();

008 //

009 // Load CSV file

010 //

011 �DataSource sourceCSV = new DataSource("/your-directory/your-data.csv");

012 Instances dataCSV = sourceCSV.getDataSet();

Chapter 6 Integrating Models

309

You use the Instance object to store the data. You can apply filters to the data before

running classification or clustering algorithms. The Weka API supports the same filter

and algorithm options you used in the GUI-based desktop environment.

�Working with Options
The Weka API supports options using String Arrays with the following two approaches:

001 // Manually create the String Array of options:

002 //

003 String[] options1 = new String[2];

004 options1[0] = "-R";

005 options1[1] = "1";

006 //

007 �// or, you can automatically create the options String Array using

splitOptions:

008 //

009 String[] options2 = weka.core.Utils.splitOptions("-R 1");

Once you have defined option String Arrays, you can apply them to filters or

algorithms, as shown in the next examples.

�Applying Filters
You can apply filters to classes, attributes, or instances. If you have an Instances object

containing the dataset called data, you can apply a filter as follows:

001 import weka.core.Instances;

002 import weka.filters.Filter;

003 import weka.filters.unsupervised.attribute.Remove;

004 import weka.core.converters.ConverterUtils.DataSource;

005

006 // Load Data

007 DataSource source = new DataSource("/your-directory/your-data.arff");

008 Instances data = source.getDataSet();

009

010 // Set the options for "range" and "first attribute"

Chapter 6 Integrating Models

310

011 String[] options = new String[2];

012 options[0] = "-R";

013 options[1] = "1";

014

015 // Create a new instance of the "remove" filter and set the options

016 Remove remove = new Remove();

017 remove.setOptions(options);

018 remove.setInputFormat(data);

019

020 // Apply the filter to the data object

021 Instances newData = Filter.useFilter(data, remove);

In this example, you are removing the first attribute (column) from data, and the

update is stored in the newData object.

�Setting the Label Attribute
As you saw in Chapter 2, the label attribute can be any of the attributes in the dataset.

Often, it is the first attribute, while some datasets include it as the last. It is a best practice

to specify the label attribute in your Java code. The Weka API provides the setClassIndex

to set the label attribute for classification:

001 // Set the class attribute (Label) as the first class

002 dataTest.setClassIndex(0);

Always double check that the data type of the class index is correct, especially when

reading in CSV data. Recall earlier with the PAMAP2_dataset, you needed to use a Weka

filter to convert the label attribute (class index) to the correct nominal type. ARFF files

specify the data type so conversion filters are not necessary.

�Building a Classifier
Building a classifier with the Weka API is a simple process requiring only a few lines

of code, first specifying the options and then passing the options and the data to the

classifier’s buildClassifier method.

Chapter 6 Integrating Models

311

001 import weka.classifiers.trees.J48;

002

003 // Set the option for "unpruned tree"

004 String[] options = new String[1];

005 options[0] = "-U";

006

007 // Specify the tree classifier

008 J48 tree = new J48();

009 tree.setOptions(options);

010 tree.buildClassifier(data);

All of the Weka classifiers are available in the API, including the four most important

ones discussed in Chapter 4.

�Training and Testing
The Weka API allows you to train and test classifiers. You can train a classifier by passing

training data (Instances object) to the buildClassifier method. The evaluateModel

method allows you to test a trained classifier.

001 import weka.core.Instances;

002 import weka.classifiers.Evaluation;

003 import weka.classifiers.trees.J48;

004 import weka.classifiers.Classifier;

005

006 Instances train = <your training data>

007 Instances test = <your testing data>

008

009 // Train classifier

010 try {

011 Classifier cls = new J48();

012 cls.buildClassifier(train);

013

014 // Evaluate the classifier

015 Evaluation eval = new Evaluation(train);

016 eval.evaluateModel(cls, test);

Chapter 6 Integrating Models

312

017 �System.out.println(eval.toSummaryString("\nResults\n======\n",

false));

018 } catch (Exception e) {

019 // Handle Weka exception

020 e.printStackTrace();

021 }

You will not typically be training classifiers on devices at the edge, but it is nice to

have this capability.

�Building a Clusterer
Building a clusterer with the Weka API is also straightforward. You can use the

buildClusterer method of the clusterer object to train the clusterer.

001 import weka.clusterers.EM;

002

003 // Set the options for max iterations

004 String[] options = new String[2];

005 options[0] = "-I";

006 options[1] = "10";

007

008 // Instantiate the EM Clusterer instance

009 EM clusterer = new EM();

010 clusterer.setOptions(options);

011 clusterer.buildClusterer(data);

You can evaluate a clusterer using the evaluateClusterer method.

�Loading Models
In Chapter 5, you saw how to save models created in the Weka ML environment. Now

you can use the Weka API to load these pretrained models. Use the Java InputStream

class to specify the model filename, and then provide the stream to the Weka API

SerializationHelper class.

Chapter 6 Integrating Models

313

001 // Define a Weka Classifier Object

002 Classifier mClassifier = null;

003

004 // Load the Classifier from local storage

005 try {

006 File wekaModelFileUnix = new File("/path/modelname.model");

007 FileInputStream fis = new FileInputStream(wekaModelFileUnix);

008 mClassifier = weka.core.SerializationHelper.read(fis);

009 } catch (Exception e) {

010 // Handle Weka model failed to load

011 e.printStackTrace();

012}

Later in the chapter, you will leverage this approach for loading models with the

Weka library for Android.

�Making Predictions
You can use the Weka API to make predictions, or to say it more formally, to classify a

sample. The classifyInstance method is available for all of the classifiers.

013 import weka.core.Instances;

014 import weka.core.converters.ConverterUtils.DataSource;

015 import weka.classifiers.Classifier;

016

017 // Load unlabeled data

018 �DataSource source = new DataSource("/your-directory/your-unlabeled-

data.arff");

019 Instances unlabeled = source.getDataSet();

020

021 Classifier mClassifier = null;

022

023 // set class attribute

024 unlabeled.setClassIndex(unlabeled.numAttributes() - 1);

025

026 // classify the instances

Chapter 6 Integrating Models

314

027 for (int i = 0; i < unlabeled.numInstances(); i++) {

028 �double clsLabel = mClassifier.classifyInstance(unlabeled.

instance(i));

029

030 }

You will use this logic later in the chapter to implement the Activity Tracker

Android app.

6.4  �Weka for Android
The most useful way to use the Weka ML library on Android devices is to port the library

to Android. The task is not trivial, but once completed, a Weka.jar file for Android is a

gift that keeps on giving.

It is important to use the same version of Weka throughout the ML-Gates pipeline.

If you use the latest stable version of Weka on the desktop to create ML models, you

must use the same version of Weka on the device to ensure compatibility, especially for

opening serialized pretrained models. Weka is stable so this should not pose a major

problem.

The main issue with porting Weka to Android is Weka's integration with the following

Java packages:

•	 AWT: A Java interface to native system GUI code

•	 Swing: A pure Java GUI that uses AWT to create windows and then

manipulate objects within the windows

•	 Net Beans: A platform of modular components used for developing

Java applications

Weka relies on these packages for GUI-related functionality. One of the reasons

Android is so wonderful is that it does not use any of these GUI packages. Of course, that

is also the reason it is difficult to port Weka to Android.

Fortunately, you do not need the GUI capabilities of Weka on Android. You just

require access to the data utilities, filters, algorithms, and serialization methods.

However, before you can build a Weka library for Android, you need to resolve the build

issues on Android caused by use of these packages.

Chapter 6 Integrating Models

315

The book resources include the Weka jar file you will use for Android projects:

Weka-Android-3-8-1.jar
The easy approach is to grab the Weka jar file and simply add it to your Android

Weka projects.

To demonstrate how to build the Weka-Android-3-8-1.jar library for Android, the

book resources include a complete Eclipse project. The project is also available at the

author’s GitHub page:

Weka-Android-3-8-1.zip 

https://github.com/wickapps/Weka-Android-3-8-1

The Eclipse project is useful to explore the code updates required to resolve the

many GUI-related compile errors when porting the Weka library to Android. The project

can also act as a guide if you need to create a library file for a different Weka version.

�Creating Android Weka Libraries in Eclipse
You have two approaches to port Weka to Android.

•	 Bottom-up approach: Decide which exact functionality you require,

such as the seven most useful ML algorithms. Start from the bottom,

identifying the specific classes for these algorithms and begin

including just those classes, working your way up to resolve any

needed dependency issues. When all dependencies are resolved, you

will have a bare minimum set of functionality for your library.

•	 Top-down approach: Start at the top and include all of the obvious

Weka classes (excluding KnowledgeFlow) for the Android build.

When you import the project into Eclipse as an Android project, a

large number of errors will require manual resolution.

This section will demonstrate the latter approach. The top-down approach requires

more effort than the bottom-up approach, but once you resolve all the issues, you will

have a more flexible, capable library for your Android projects. The library will support

all of the Weka filters and algorithms, and you will not need to rebuild the library until

the release of a new version Weka version.

Chapter 6 Integrating Models

https://github.com/wickapps/Weka-Android-3-8-1

316

The following steps summarize the initial setup process for porting Weka to Android:

•	 Start with the latest version of Weka that supports Java 7 (more on this

later), version 3.8.1. Navigate to the weka-src.jar file. Unzip the file

with the 7Zip utility. Navigate to src->main->java->weka. You will

import this base directory into Eclipse after making a few changes.

•	 Delete all of the gui directory, except for the following files which you

need to keep because of the high degree of dependency on objects

contained within them:

GenericPropertiesCreator.excludes

GenericPropertiesCreator.java

GenericPropertiesCreator.props

HierarchyPropertyParser.java

Loader.java

Logger.java

TaskLogger.java

•	 Delete the entire knowledgeflow directory. The KnowledgeFlow

application is not required on Android.

•	 Delete the two files in the base directory, PluginManager.props and

Run.java.

•	 Open Eclipse.

•	 Create a new Android project named Android-Weka-3-8-1.

•	 Set the project as a Library Project. The setting is in the Java Build
Path settings.

•	 With the new project highlighted, select Import->General->File
system. Import the weka base directory created earlier.

The Android Weka project is now set up, but there are many errors to resolve before

you can successfully build a Weka library for Android.

Chapter 6 Integrating Models

317

The latest versions of Weka require the Matrix Toolkit for Java (mtj) library. The Matrix

Toolkit for Java is an open-source Java software library for performing numerical linear

algebra. The following is the link for the GitHub repository for Matrix Toolkit for Java:

https://github.com/fommil/matrix-toolkits-java

Copy the mtj-1.0.1.jar library file from the book resources, or download the library

file from the Maven repository:

�https://mvnrepository.com/artifact/com.googlecode.matrix-toolkits-java/

mtj/1.0.1

The Maven repository also includes instructions for Maven or Gradle builds. Add the

mtj-1.0.1.jar to the Eclipse project as an external library file.

You may notice that there are many errors related to the Java handing of Vectors

and ArrayLists in the code. The latest versions of Weka rely heavily on ArrayLists.

Table 6-5 shows the Weka Java requirements. Java 7 (1.7) is the minimum Java version

required for the Weka version 3.8.1. The newest stable version of Weka is 3.8.2 which

requires Java 8 (1.8).

However, keep in mind that Android does not yet support full Java 8 (1.8). Android does

support some Java 8 features. The latest on Android’s Java 8 support can be found here:

https://developer.android.com/studio/write/java8-support

The highlighted cells in the table show the optimal settings: Weka version 3.8.1

running on Java version 1.7, which Android does support.

Table 6-5.  Weka Version Java Requirements

Java version
1.4 1.5 1.6 1.7 1.8

Weka version <3.4 X X X X X

3.4.x X X X X X

3.5.x 3.5.0-3.5.2 >3.5.2 X X X

3.6.x X X X X

3.7.x 3.7.0 >3.7.0 >3.7.13 X

3.8.x 3.8.1 >3.8.1

3.9.x 3.9.1 >3.9.1

Chapter 6 Integrating Models

https://github.com/fommil/matrix-toolkits-java
https://mvnrepository.com/artifact/com.googlecode.matrix-toolkits-java/mtj/1.0.1
https://mvnrepository.com/artifact/com.googlecode.matrix-toolkits-java/mtj/1.0.1
https://developer.android.com/studio/write/java8-support

318

To minimize the compile errors for Weka on Android, set the Eclipse compiler

compliance level to Java version 1.7 as shown in Figure 6-4. The default value is usually

Java 6 (1.6).

At this point, you have resolved many build errors, but there are still many build

issues that you need to manually resolve. Most of the remaining errors are due to

dependencies on the PackageManager or PluginManager classes. The errors can be

resolved with the following resolution hierarchy:

•	 Delete the offending file.

•	 Delete the method or function in the class.

•	 Resolve the error by modifying the code within the offending method

or function. This is the last resort and is required when the two prior

approaches result in an even greater number of dependency issues.

Figure 6-4.  Eclipse Java Compiler settings

Chapter 6 Integrating Models

319

With all errors in the Android Eclipse project resolved, you are ready to export the

Weka library for Android. Choose File➤Export➤Jar Library from the Eclipse main

menu. Figure 6-5 shows the export.

The size of the library file is only 3.3MB, even though it contains all the Weka Java

API classes you will need for Android. The library’s light memory footprint makes it

perfect for mobile devices. The library can rival any ML library for mobile in terms of the

size/performance trade-off.

Next, you will explore how to use the library for device ML applications.

Figure 6-5.  Eclipse exporting the Weka library file

Chapter 6 Integrating Models

320

�Adding the Weka Library in Android Studio
Add the Weka ML library to Android Studio with these steps:

•	 Create a libs directory at the app level of your Android Studio project.

•	 Copy/paste the Android-Weka-3-8-1.jar file into the libs directory.

•	 Right-click the Android-Weka-3-8-1.jar file and then click Add As
Library, as shown in Figure 6-6.

The Weka API will be available from the Android Java application.

Figure 6-7 shows a project in Android Studio after the library has been imported. On

the left side you can see the exploded Weka directory structure, and at the top of the right

side panel you can see several library imports required by the application to handle the

requested Weka API classes.

Figure 6-6.  Android Studio adding a library

Chapter 6 Integrating Models

321

6.5  �Android Integration
The Android Weka library makes it easy to integrate ML for Android. In this section,

you will implement two simple Android apps to demonstrate the following basic ML

integrations:

•	 Weka Model Create: This app will demonstrate creating ML models

in Android directly from data.

•	 Weka Model Load: This app will load a pretrained ML model and

test the model with batch dataset instances.

The first project is a useful demonstration of the Weka API capability. The second

project is a more practical architecture for the reasons discussed in earlier chapters.

Figure 6-7.  Weka library for Android Studio

Chapter 6 Integrating Models

322

�Project: Weka Model Create
For this project, you will include the following two data files, derived from the Old

Faithful geyser clustering example in Chapter 5, as part of the app’s assets. Although you

are including the data files directly in the project, the app could just as easily download

these text files from the cloud using a network operation.

•	 oldfaithful_train.arff : A subset of the ARFF data file generated in the

Chapter 5 clustering example, it contains the first 201 instances.

•	 oldfaithful_test.arff : A subset of the ARFF data file generated in

Chapter 5 clustering example, it contains the last 71 instances of the

dataset.

This Weka Model Create app will build a model from scratch, using the first file as

the training data. Note that if you want to implement the app with a single data file, you

can use a filter to perform a split of the file. K-fold cross-validation is also possible using

filters.

This app is technically a classification app. The Old Faithful data was originally a

clustering problem, but recall when the DBSCAN algorithm completed the clustering

operation, you saved the results, including the newly assigned clusterID to the new

ARFF file. When you test the model, you use the known cluster assignments to determine

the classifier accuracy.

Table 6-6 shows the project summary.

Chapter 6 Integrating Models

323

You can use a simple copy-and-paste to import the three external files (Weka jar

library and ARFF files) into their appropriate Android Studio directories. You will use

one of the ARFF files to train the model, and the second file to test the model. This is the

same approach as when you chose the Split Test Option in the desktop Weka Explorer.

The key points of MainActivity.java are as follows:

•	 The Weka imports at lines 6-10, courtesy of the Android-Weka-3-8-1.
jar file.

•	 The setClassIndex method used at line 31 and line 32 sets the

Attribute label as the last class for both the training and testing

datasets.

•	 Data is loaded in Instances objects for each of the dataset files at

lines 24 and 28.

Table 6-6.  Weka Model Create Project Summary

Project Name: Weka Model Create
Source: weka_model_create.zip
Type: Android
Notes: Create a random forest model, train it with a training dataset, evaluate the classifier
with a test dataset, and display the results in a TextView.
File Description

app->libs->
Weka-Android-3-8-1.jar

The Weka jar file for Android generated from the Eclipse

project.

app->src->main->java->
MainActivity.java

The main Java source code file. The project has a single

activity.

app->src->main->res->layout
activity_main.xml

The layout file for the single screen display output.

app->src->main->res->raw
oldfaithful_train.arff

The training dataset, 201 instances in ARFF format.

app->src->main->res->raw
oldfaithful_test.arff

The test dataset, 71 instances in ARFF format.

app->src->main->res
AndroidManifest.xml

The manifest file.

Chapter 6 Integrating Models

324

•	 The RF model is created at line 40.

•	 The RF model is trained at line 42.

•	 The RF model assumes default options because you did not specify

any additional options as shown earlier in the chapter.

Listing 6-1 shows the complete MainActivity.java code.

Listing 6-1.  Weka Model Create MainActivity.java

001 package android.wickham.com.WekaModelCreate;

002

003 import android.app.Activity;

004 import android.os.Bundle;

005 import android.widget.TextView;

006 import weka.classifiers.Classifier;

007 import weka.classifiers.evaluation.Evaluation;

008 import weka.classifiers.trees.RandomForest;

009 import weka.core.Instances;

010 import weka.core.converters.ConverterUtils.DataSource;

011

012 public class MainActivity extends Activity {

013

014 @Override

015 protected void onCreate(Bundle savedInstanceState) {

016 super.onCreate(savedInstanceState);

017 setContentView(R.layout.activity_main);

018

019 DataSource sourceTrain, sourceTest = null;

020

021 try {

022 // Load the Training data

023 �sourceTrain = new DataSource(getResources().

openRawResource(R.raw.oldfaithful_train));

024 Instances dataTrain = sourceTrain.getDataSet();

025

026 // Load the Test data

Chapter 6 Integrating Models

325

027 �sourceTest = new DataSource(getResources().

openRawResource(R.raw.oldfaithful_test));

028 Instances dataTest = sourceTest.getDataSet();

029

030 // Set the class attribute (Label) as the last class

031 �if (dataTrain.classIndex() == -1) dataTrain.

setClassIndex(dataTrain.numAttributes() - 1);

032 �if (dataTest.classIndex() == -1) dataTest.

setClassIndex(dataTest.numAttributes() - 1);

033

034 // Fill the summary information for the dataTrain set

035 int attrs = dataTrain.numAttributes();

036 int classes = dataTrain.numClasses();

037 int insts = dataTrain.numInstances();

038

039 // Setup a Random Forest classifier

040 Classifier rf = new RandomForest();

041 // Train the RF classifier

042 rf.buildClassifier(dataTrain);

043

044 // Evaluate the classifier and print the results

045 Evaluation eval = new Evaluation(dataTest);

046 eval.evaluateModel(rf, dataTest);

047

048 // Show the results

049 TextView tv_attrs = (TextView) findViewById(R.id.attrs);

050 tv_attrs.setText(String.valueOf(attrs));

051 �TextView tv_classes = (TextView) findViewById(R.

id.classes);

052 tv_classes.setText(String.valueOf(classes));

053 TextView tv_insts = (TextView) findViewById(R.id.insts);

054 tv_insts.setText(String.valueOf(insts));

055 TextView results = (TextView) findViewById(R.id.results);

056 results.setText((CharSequence) eval.toSummaryString());

057

Chapter 6 Integrating Models

326

058 } catch (Exception e) {

059 e.printStackTrace();

060 }

061 }

062 }

In this example, you create a RF classifier because of its generally superior

performance, but you have a complete Weka jar file, so you could choose any of the

classification or clustering algorithms. The following code excerpt shows how to use

the Weka API to instantiate each of the seven most useful CML algorithms presented in

Chapter 4:

001 // Set up a Random Forest classifier

002 Classifier rf = new RandomForest();

003

004 // Other classifiers or clusterers can be defined as follows

005 Classifier nb = new NaiveBayes();

006 Classifier knn = new KStar();

007 Classifier svm = new SMO();

008 Clusterer EM = new EM();

009 Clusterer KMeans = new SimpleKMeans();

010 Clusterer DBSCAN = new MakeDensityBasedClusterer();

Figure 6-8 shows a screenshot of the app when run in the Android Studio emulator

or on a device.

The numAttributes, numClasses, and numInstances methods of the dataTrain

class provide a summary of the training data set. The evaluateModel method (line 46) of

the classifier provides the classifier results.

Chapter 6 Integrating Models

327

The classifier achieved a 100% classification result- impressive work by the RF

algorithm on this dataset!

Note the app size was only 1.7MB and only contained 62 lines of Java code (much of

which was only necessary to display the results). This illustrates the efficiency of CML

for devices at the edge. The RF model was in memory when it evaluated the testing data.

It would be possible to save the serialized model, or even to upload the model created

from the source data to the cloud.

Figure 6-8.  Android app: Weka Model Create

Chapter 6 Integrating Models

328

In the next example, you’ll take a step up in complexity, working with a much larger

dataset, and loading a pretrained model instead of creating the model on the device

directly from a data source.

�Project: Weka Model Load
In this project, you will load a much larger model directly into the app. You will include

some time stamps at each stage of the process so you can check the performance.

Android has some sophisticated tools for performance benchmarking, but you will just

use a simple time stamp. The goal is to determine if the library performance on Android

is sufficient for typical use cases.

In Chapter 5, you created the following two models using the RF algorithm for

subject101 of the large PAMAP2_Dataset:

•	 rf_i10_cross.model: The RF iteration parameter i=10 and the model

size is approximately 5MB. K-fold cross-validation was used to train

the model.

•	 rf_i100.model: The RF iteration parameter i=100 and the model size

is approximately 55MB. Split data (2/3 train and 1/3 test) was used to

train the model.

In this app, you will load these models directly into Android using the Weka

API. Table 6-7 shows the project summary for the app.

Chapter 6 Integrating Models

329

After you create models in the Weka desktop environment, you can directly copy

them into the Android Studio project. Remember, the desktop version of Weka must

match the Android library file, in this case, the Weka release version 3.8.1.

There are two methods to load pretrained models in Android:

•	 Asset Manager: Use the Android Asset Manager and load the models

from the project’s assets directory.

•	 Raw files: Load the models from the app’s raw storage space.

Table 6-7.  Weka Model Load Project Summary

Project Name: Weka Model Load
Source: weka_model_load.zip
Type: Android
Notes: Load a pretrained model into the app and perform a batch classification of 5,000
instances loaded from a file to test the classifier.
File Description

app->libs->
Weka-Android-3-8-1.jar

The Weka jar file for Android generated from the Eclipse

project.

app->src->main->assets->
rf_i10_cross.model

RF pretrained model.

app->src->main->java->
MainActivity.java

The app’s main Java file. The project has a single activity.

app->src->main->res->layout
activity_main.xml

The layout file for the single screen display output.

app->src->main->res->raw->
rf_i10_cross.model

A second copy of the pretrained RF model to demonstrate

access from the raw directory.

app->src->main->res->raw->
subject101_cleaned_5k.arff

ARFF file with 5,000 instances to test the classification

model.

app->src->main->res
AndroidManifest.xml

The manifest file.

Chapter 6 Integrating Models

330

The following code excerpt shows how to load models using each approach. In each

case, you use the Weka SerializationHelper class.

001 �// In Android, we have two ways we can load models directly from the

file system

002

003 // The following code uses the AssetManager to load the model

004 // from the app->src->main->assets folder

005

006 AssetManager assetManager = getAssets();

007 InputStream is = assetManager.open("rf_i10_cross.model");

008 rf = (Classifier) weka.core.SerializationHelper.read(is);

009

010 // Alternatively, use the next line to load the model

011 // directly from the app->src->main->res->raw folder

012

013 �rf = (Classifier) weka.core.SerializationHelper.read(getResources().

openRawResource(R.raw.rf_i10_cross));

When naming saved models, it is a good practice to include the algorithm used

as part of the filename. This makes it easier when you open the model, and need to

instantiate a matching algorithm classifier or clusterer. It is possible to derive the

algorithm type from a .model file using ArrayList operations.

Because of the large model size, for this app, you wish to benchmark the following

operations:

•	 Elapsed time to load the model

•	 Elapsed time to load a file with 5,000 instances of testing data (ARFF

format)

•	 Elapsed time to evaluate the model with the 5,000 test instances

(batch testing)

You will use the following function for time-stamping the operations performed by

the app:

001 public String getCurrentTimeStamp() {

002 return new SimpleDateFormat("HH:mm:ss.SSS").format(new Date());

003 }

Chapter 6 Integrating Models

331

The timestamp provides millisecond resolution, so you will get a good indication of

how quickly the classifier performs.

Listing 6-2 shows the MainActivity.java of the application. The key code highlights:

•	 The app reads the Training dataset from local storage at line 26.

•	 The label attribute is set at line 30.

•	 The app loads the model into a RF object at line 38.

•	 The app evaluates the classifier at line 49.

•	 The StringBuilder class builds the application output. The app finally

displays the output at line 56. The StringBuilder class retrieves the

classifier capabilities at line 55.

Listing 6-2.  Weka Model Load MainActivity.java

001 package android.wickham.com.WekaModelLoad;

002

003 import ...

004

005 import weka.classifiers.Classifier;

006 import weka.classifiers.evaluation.Evaluation;

007 import weka.core.Instances;

008 import weka.core.converters.ConverterUtils;

009

010 public class MainActivity extends Activity {

011

012 @Override

013 protected void onCreate(Bundle savedInstanceState) {

014 super.onCreate(savedInstanceState);

015 setContentView(R.layout.activity_main);

016

017 ConverterUtils.DataSource sourceTrain, sourceTest = null;

018

019 StringBuilder builder = new StringBuilder();

020 TextView results = (TextView) findViewById(R.id.results);

021

Chapter 6 Integrating Models

332

022 try {

023 // Load the Test data

024 �builder.append("\n" + getCurrentTimeStamp() + ": Loading

test data");

025 �sourceTest = new ConverterUtils.DataSource

(getResources().openRawResource(R.raw.subject101_

cleaned_5k));

026 �Instances dataTest = sourceTest.getDataSet();

027 �builder.append("\n" + getCurrentTimeStamp() + ": Test

data load complete");

028

029 // Set the class attribute (Label) as the first class

030 dataTest.setClassIndex(0);

031

032 Classifier rf;

033

034 �builder.append("\n" + getCurrentTimeStamp() + ": Loading

model");

035 �// The following code utilizes the AssetManager to load

the model from the app->src->main->assets folder

036 AssetManager assetManager = getAssets();

037 InputStream is = assetManager.open("rf_i10_cross.model");

038 rf = (Classifier) weka.core.SerializationHelper.read(is);

039

040 /�/ Alternatively, use the next line to load the model

from the app->src->main->res->raw folder

041 �// rf = (Classifier) weka.core.SerializationHelper.

read(getResources().openRawResource(R.raw.rf_i10_cross));

042

043 �builder.append("\n" + getCurrentTimeStamp() + ": Model

load complete");

044 �Toast.makeText(this, "Model loaded.", Toast.LENGTH_

SHORT).show();

045

046 // Evaluate the classifier

Chapter 6 Integrating Models

333

047 �builder.append("\n" + getCurrentTimeStamp() + ": Starting

classifier evaluation");

048 Evaluation eval = new Evaluation(dataTest);

049 eval.evaluateModel(rf, dataTest);

050 �builder.append("\n" + getCurrentTimeStamp() + ":

Classifier evaluation complete");

051

052 // Show the results

053 �builder.append("\n\nModel summary: " + eval.

toSummaryString());

054 // Add the classifier capabilities

055 �builder.append("\nRF Model capabilities:\n" + rf.

getCapabilities().toString());

056 results.setText((CharSequence) builder.toString());

057

058 } catch (Exception e) {

059 e.printStackTrace();

060 }

061 }

062

063 public String getCurrentTimeStamp() {

064 return new SimpleDateFormat("HH:mm:ss.SSS").format(new Date());

065 }

066 }

The app is performing a batch classification of 5,000 instances using a pretrained

model. If you can achieve decent performance with this batch operation, you can be

confident the architecture will be sufficient to classify a single instance.

Chapter 6 Integrating Models

334

Figure 6-9 shows a screenshot of the app after it has finished its task.

The application as shown ran in the Android Studio emulator. The model loaded in

about 1.5 seconds and the evaluation completed in less than a half second. These seem

like excellent results. You will explore the performance further in the next section.

The accuracy of the batch classification was very high: only 11 out of 5,000

incorrectly classified instances. This is most likely due to the fact the testing data was a

subset of the training data originally used to build the model.

The Weka Model Load Android app proves that you can load large, pretrained

models and batch classify efficiently on Android.

Figure 6-9.  Weka Model Load

Chapter 6 Integrating Models

335

6.6  �Android Weka Model Performance
Several factors contribute to the overall performance of ML models on devices, including

•	 Model size

•	 Model complexity

•	 CPU and memory capacity of the device

•	 Application code integration of the model

The Weka Model Load app provides timestamps. You can run the app on different

devices to benchmark the relative performance. Table 6-8 shows a calculated summary

of the timestamps for three operations:

•	 Test data load time (load 5,000 instances of testing data)

•	 Model load time (load the 5MB RF PAMAP2 subject101 model)

•	 Classifier evaluation

A special version of the app was created to run on the Amazon Fire Phone and

Raspberry Pi. The app also ran in the Android studio Emulator and on a few devices,

including the Moto X4, Sony Xperia, and an older Nexus tablet.

Table 6-8.  Android Weka ML Model Performance Comparison

Device Test data load time
(5K) (sec.)

Model load time
(5MB) (sec.)

Classifier evaluation
time (sec.)

Android Studio

Emulator

0.28 1.56 0.36

Motorola X4 0.20 1.27 0.64

Sony Xperia 0.16 1.16 0.45

Nexus 7 Tablet 1.51 3.52 1.71

Amazon Fire

Phone

0.47 2.76 0.93

Raspberry Pi 3b+ 0.62 3.44 0.82

Chapter 6 Integrating Models

336

Summary of the performance results:

•	 Classification times were less than .5 second for the newer devices

that have faster CPUs.

•	 Memory was not an issue on any of the devices. The 5MB model was

easily loaded into memory, although not as quickly for devices with

slower CPUs.

•	 The Amazon Fire Phone is no longer a relevant Android device. It is

old, lacks a modern Android version, and the hardware specifications

are outdated. However, the ability of your code to function reasonably

well on this device proves an important point.

There may be times when you need to deploy CML solutions onto
Android devices that do not contain Google Play Services. The
CML solution you have deployed for Android does not require
any of the Google services and does not even require network
connectivity.

•	 The Android Studio emulator performed the best at classifying the

5,000 instances. The result is surprising, as normally you do not

expect the emulator to outperform actual hardware. However, keep

in mind the classifier evaluation is mostly a CPU-intensive operation

(algorithm processing), and the desktop has a much more powerful

CPU than the target mobile devices.

•	 The model load time is very reasonable. Typical applications will

classify a single instance incrementally, as you will see in the next

example, and this will be a much faster operation than the batch

classification of 5,000 instances.

So, what happens to the performance when you load even larger models? You may

find situations where you want to gain the increased accuracy at the expense of larger

model size.

When you built the RF model for i=10 iterations, you also built one for i=100

iterations. Recall it took much longer to create and the size was much larger,

approximately 55MB. Table 6-9 shows a model load time comparison for the smaller and

larger models.

Chapter 6 Integrating Models

337

There are several points to consider when creating and loading models of this

increased order of magnitude:

•	 Although the model is ten times larger, the loading time does not

scale linearly. In this case, for these devices, the loading times are

about eight times longer.

•	 Models of this size take approximately ten seconds to load. This is too

long to hide during app initialization. Large models will require one

of the model management strategies discussed in Table 6-4.

•	 It is feasible to integrate models of this size order of magnitude,

but you first need to establish that they are providing a sufficient

increased accuracy benefit.

Now that you have some confidence in the performance of your models on Android

mobile devices, let’s expand the target audience to include other Java devices.

6.7  �Raspberry Pi Integration
Back in Chapter 1, you saw that the market for Java devices is huge; over 3 billion devices

run Java, according to Oracle. The Raspberry Pi is a very popular device that can run

Java. In this section, you will deploy CML models to the Raspberry Pi.

Developers familiar with the Pi will also be familiar with Arduino. Arduino devices

have a smaller footprint and are thus not suitable for running Java. However, if you have

Arduino applications, you can control those devices with Java using the open source

Table 6-9.  Android Weka ML Model Performance Comparison

Device Model load time
(5MB model RF i=10) (sec.)

Model load time
(50MB model RF i=100) (sec.)

Android Studio

Emulator

1.56 12.61

Motorola X4 1.27 9.98

Sony Xperia 1.16 9.42

Chapter 6 Integrating Models

338

RXTX library. Using this library, a Java-based master device, such as the Pi, could handle

the ML operations and communicate to Arduino devices for data gathering or output of

model results. The RXTX library and additional information are available at the following

sites:

https://github.com/rxtx/rxtx

http://rxtx.qbang.org/wiki/index.php/FAQ

Table 6-1 showed the basic hardware specifications of the Raspberry Pi 3 model b+. A

quick glance at the table shows that the Pi has about one-half the processing and storage

capability compared to a mid-tier Android device. Figure 6-10 shows the Raspberry Pi 3

model b+ and highlights some of the key interfaces.

The Raspberry Pi is extremely attractive because it is inexpensive and has so many

useful features and interfaces, including HDMI, 4xUSB, USB powered, Micro SD card,

GPIO pin interface, Wifi, Gigabit Ethernet, Bluetooth, and BLE. A complete list of the

specifications can be found here:

www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Figure 6-10.  Raspberry Pi 3 model b+ with interface summary

Chapter 6 Integrating Models

https://github.com/rxtx/rxtx
http://rxtx.qbang.org/wiki/index.php/FAQ
http://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

339

All of these features make the Pi an interesting choice for many ML applications.

•	 The Pi is an excellent choice for kiosk applications. You can connect

HDMI monitors in portrait or landscape orientations and drive them

directly from Java applications.

•	 You can connect small displays directly to the Pi. These can range

from two-line LCD displays to 7-inch touchscreens.

•	 You can connect a myriad of buttons, sensors, LEDs, etc. to the

GPIO interface and control them from Java applications. Sensors are

available for motion, acceleration, temperature, water, wind, etc.

•	 The Raspberry Pi supports an external camera via the header

connection next to the HDMI port. Adding a camera module to your

Pi opens the door to picture and video data collection for use by ML

applications.

•	 You can connect wireless USB keypads and keyboards to the

Raspberry Pi. The devices can control the software application, even

if the application does not have a monitor or display.

•	 There are countless potential uses for the Raspberry Pi. A quick

Internet search reveals many amazing things developers are doing

with the Raspberry Pi.

�Raspberry Pi Setup for ML
Setting up the Raspberry Pi is easy, and there are many online support resources

available. The official Raspberry Pi setup guide is available at

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up.

Setting up Raspberry Pi 3 model b+ for ML integration does not require any special

steps. The operating system and all application software are stored on the micro SD card.

The Pi supports many operating systems, and you will choose the official Raspbian

operating system during the installation. Raspbian is an unofficial port of Debian for

ARM CPUs and it is the most popular OS for Raspberry Pi today. It is very similar to using

Ubuntu and supports Apache, Nginx, Java, Python, and MySQL.

Chapter 6 Integrating Models

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up

340

The steps below summarize the Raspberry Pi setup. Refer to the official link for the

detailed setup steps.

	 1.	 Download the Raspberry Pi NOOBS (New Out Of Box Software)

installation manager and copy it onto the micro SD card.

	 2.	 Insert the microSD card into the Pi.

	 3.	 Connect the monitor and keyboard, and power on the Pi with a

USB power cable.

	 4.	 Follow the installation instructions. Choose Raspbian as the

operating system. The good news is that Raspbian includes Java.

	 5.	 Set up the Wifi or Internet connection so you can update all the

packages after the Raspbian install completes.

	 6.	 Set up an IP address if you would like to connect to the Pi from

another networked device. This is not required because you will

be able to copy files onto the Pi by simply inserting a flash drive

and copying the files with the file manager.

	 7.	 Log into the admin user and confirm that the latest version of Java

is available. Raspbian includes Java, but the following commands

can upgrade Java on the Raspberry Pi if needed. The steps involve

removing OpenJDK, obtaining a key, and then installing the latest

Oracle Java 8.

001 // Install the latest Java version

002 // First remove OpenJDK

003 sudo apt-get purge openjdk*

004

005 // Add the digital key

006 sudo apt-key adv --recv-key --keyserver keyserver.ubuntu.com EEA14886

007 �// Using an editor such as vi or vim, add the following lines to /

etc/apt/sources.list

008 deb http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main

009 deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main

010

011 // install Java 8

Chapter 6 Integrating Models

341

012 sudo apt-get update

013 sudo apt-get install oracle-java8-installer

014 sudo apt-get install oracle-java8-set-default

015

016 // Remove the old Java(s)

017 sudo apt-get purge openjdk*

018 sudo apt-get purge java7*

019 sudo apt-get autoremove

020

021 // Check for success, we should only see Java 8

022 java -version

�Raspberry Pi GUI Considerations
One of the main challenges when writing Java applications for the Raspberry Pi,

especially for Android developers, is mastering the GUI limitation of pure Java. On the

Raspberry Pi, you lack the following elements that make it so easy to implement GUI

interfaces on Android:

•	 Android allows you to specify layouts in XML and has many graphical

tools to make GUI design easy.

•	 Android supports a huge set of widgets and classes, such as Layouts,

List Views, Constraint Layouts, and countless GUI elements and

tools.

•	 The Android platform can automatically support various screen sizes,

from small to very large devices.

•	 It offers support for 9-patch image files that make it easy for images,

such as buttons to scale.

•	 Android Studio provides a “what you see is what you get” (wysiwyg)

view for all XML layout files. You can easily create GUIs by simply

dragging and dropping GUI widget elements.

For Java ML applications on the Raspberry Pi, you will use the Swing and AWT GUI

classes available in Java. The Java GUI classes have several layout managers available.

For the project, you will implement the GroupLayout Manager.

Chapter 6 Integrating Models

342

Placing ML capability at the edge on the Raspberry Pi device is an exciting
new frontier, made possible by the Raspberry device capabilities and its
support for Java and the lightweight Weka API library.

�Weka API Library for Raspberry Pi
In order to use Weka on the Raspberry Pi, you need a Weka API jar file for Raspberry Pi

that you can include in your application. You have two options, as shown in Table 6-10.

You have two options because the stripped version you build for Android can also

work on Raspberry Pi. The advantage of this option is that it is smaller. One advantage

of the full version is that you could potentially use the graphical functions of Weka, such

as visualizations, on the Raspberry Pi. Next, you will implement ML on the Raspberry Pi,

using the Weka-Android-3-8-1.jar library.

�Project: Raspberry Pi Old Faithful Geyser Classifier
Printing out a screen filled with ML classifier statistics, as you did earlier for Android, is

not a very compelling app.

The best ML apps are the ones that produce a compelling experience for the
users, with the users never realizing that ML techniques were responsible
for achieving the result.

Table 6-10.  Raspberry Pi Weka API Library Comparison

Library Size (MB) Description

weka-src.jar 10.6 The full-function Weka API distributed with each Weka

stable release, such as Weka 3.8.1.

Weka-Android-
3-8-1.jar

3.3 The stripped version of the Weka API you built for Android

in Eclipse earlier in the chapter.

Chapter 6 Integrating Models

343

The goal for this project is to implement a GUI-based app for Raspberry Pi that

integrates a pretrained ML model to make predictions.

In Chapter 5, you reviewed the Old Faithful geyser dataset and saw how clustering

helped you to identify a hidden pattern in the data. The geyser has two “modes” which

we will call “hot mode” and “warm mode.” Geologists probably have better terminology

for this phenomenon. It makes sense that longer waiting times correlate to longer

eruption times. What is interesting is that are two distinct modes.

If you have been to Yellowstone, you may recall that the park service maintains a

simple handwritten information board suggesting when the next eruption might occur,

roughly hourly.

For this project, you will create an app for the Raspberry Pi that can inform us of

the current geyser mode based on the waiting time and eruption time. You could easily

deploy this Pi app as a kiosk application to replace the handwritten information board.

In the app, you will implement some simple requirements:

•	 Users will enter the values for the waiting time and the eruption time.

•	 Users will press a Predict button to get a prediction of the geyser

mode.

•	 The app will run on the Raspberry Pi.

•	 The app will load a prebuilt model to handle the prediction.

•	 The app will include some basic GUI elements.

The app runs manually, but you could automate the manual data input with a video

camera to detect eruptions, or possibly add push buttons and timers to help facilitate

data collection.

Chapter 6 Integrating Models

344

Table 6-11 shows the project summary.

In addition to the main Java file, the project also requires the Weka API library, the

external Weka .model file, in this case a RF classifier, and an ARFF file I will discuss later.

�App Overview

Before you review the project setup and Java code, you should launch the application to

see how the app looks. You can launch the Java app on the desktop or on the Raspberry

Pi with the following command:

001 pi@raspberrypi:/Java-proj/Weka $ java -jar OldFaithful.jar

You use the -jar option on the command line because this project build output is an

executable jar file, OldFaithful.jar. When the jar file executes, the app displays the GUI

shown in Figure 6-11. In this example, you entered two values and pressed the Predict

button and the application informs you the geyser is in warm mode.

Table 6-11.  Android Old Faithful Project Summary

Project: Old Faithful
Source: old_faithful.zip
Type: Raspberry Pi ML Application
Notes: This project is an Eclipse Java project to build and export the OldFaithful.jar
class, a classifier that can run on the Raspberry Pi device.
File Description

OldFaithful->srcOldFaithful.java The main Java class. Contains everything including

the GUI code. Loads the model and data file from the

external Unix file system directory.

OldFaithful->libsWeka-Android-3-8-1.jar The Weka API library file. You can use the Android

version for the Raspberry Pi.

/home/pi/Java-proj/Weka/old_faithful_rf_
i10.model

RF model, external file

/home/pi/Java-proj/Weka/old_faithful_
single_instance.arff

Single instance of data. External file

Chapter 6 Integrating Models

345

Entering some different data produces the hot mode result, as shown in Figure 6-12.

As you experiment with different values, you will notice the mode output by the app

is very consistent with the clustering results you derived in Figure 5-20. In Chapter 5, you

used the DBSCAN clustering algorithm to cluster the Old Faithful dataset.

Often times, classifiers are the most useful way to integrate ML models into device

applications. In this case, clustering helped you identify that the geyser has two modes,

and now you want users to be able to know in which mode the geyser resides. In other

words, the application needs to classify new instances of data. Clustering the data was

the first step to identify the hidden pattern; now you need to build a classifier.

Figure 6-11.  Old Faithful Geyser app showing warm mode

Figure 6-12.  Old Faithful Geyser app showing hot mode

Chapter 6 Integrating Models

346

�Building the Classifier Model

When you clustered the data using the DBSCAN algorithm, you also saved the output

file, old_faithful.arff. This file contained four attributes, including the cluster_ID for

each instance. You can now use this file as the input to build a classifier for the Raspberry

Pi app. Follow these steps to build a RF classifier in the Weka desktop:

	 1.	 Open the Weka Explorer application.

	 2.	 Under the Preprocess tab, select Open File to open the

old_faithful.arff file. Observe that 272 instances are loaded.

	 3.	 No filters are necessary, so click the Classify tab.

	 4.	 Under Classifiers, choose the Random Forest algorithm from the

Trees submenu. Click the algorithm and change iterations = 10.

	 5.	 Under Test Options, select Cross Validation Folds = 10.

	 6.	 Start the classifier. When it finishes, observe the accuracy is very

high, probably near 99%.

	 7.	 Right-click the Result List and save the model with the name

old_fiathful_rf_i10.model.

To use this RF classification model with the application on Raspberry Pi, save the

model on the Raspberry Pi in the same directory with the executable jar file and the

external ARFF file (you will create these assets next) as shown:

001 pi@raspberrypi:~/Java-proj/Weka $ pwd

002 /home/pi/Java-proj/Weka

003 pi@raspberrypi:~/Java-proj/Weka $ ls -lsart

004 total 3184

005 �40 -rw------- 1 pi pi 38599 Jul 27 19:27 old_faithful_rf_i10.

model

006 4 drwxr-xr-x 4 pi pi 4096 Jul 27 23:32 ..

007 �4 -rw------- 1 pi pi 207 Jul 27 23:54 old_faithful_single_

instance.arff

008 3132 -rw------- 1 pi pi 3205683 Jul 28 00:03 OldFaithful.jar

009 4 drwxr-xr-x 2 pi pi 4096 Jul 28 00:11 .

010 pi@raspberrypi:/Java-proj/Weka $ java -jar OldFaithful.jar

Chapter 6 Integrating Models

347

Next, you will look at how to build the application software, including the GUI,

loading the Weka model, and making predictions in Java.

�Project Setup

To get started with the Old Faithful project for Raspberry Pi, import the Eclipse Java

project (OldFaithful.zip) from the book resources, or follow these steps to create an

Eclipse Java project from scratch:

	 1.	 Start a new Eclipse project by selecting File➤New➤Java Project

	 2.	 Enter the project name as OldFaithful.

	 3.	 In newly created project, create a libs directory under the main

project folder.

	 4.	 Copy the Weka-Android-3-8-1.jar file into the libs directory.

	 5.	 In Project Properties, set the Java version to 1.8. For the

Raspberry Pi, you are not restricted to Java 7, as is the case for

Android.

	 6.	 In Project Properties, click Build Path➤Manage Build Path.

	 7.	 Click the Libraries tab. Click Add Jar to include the Weka-
Android-3-8-1.jar file as a jar file.

	 8.	 In the Src directory, create the OldFaithful.java main class. All of

the application code resides in this class, and you will review it in

the next section.

	 9.	 Edit the launch configuration properties. The main class should

be set to OldFaithful, as shown in Figure 6-13. If you fail to set the

launch configuration main class, you will not be able to execute

the Old Faithful app directly from the command line because the

main class will be unknown.

Chapter 6 Integrating Models

348

�Java Layout Managers

Java has seen gradual improvements in its GUI capabilities, starting with AWT, to Swing,

and the most recent addition, JavaFX, which debuted in Java 8. JavaFX is a set of graphics

and media packages that help developers design, create, test, debug, and deploy

applications that operate consistently across diverse platforms. Java FX integrates well

with the Web and rich media that is very popular today.

Unfortunately, Java FX is not a lightweight package, and it is not included in Java on

the Raspberry Pi. It is possible to add, but it does not support all of the libraries and it

is problematic to implement. For this reason, you will use the more mature Swing GUI

library for the Old Faithful app. Swing fully supports all device platforms.

Figure 6-13.  Setting the project launch configuration

Chapter 6 Integrating Models

349

Swing has several LayoutManagers, including the following:

•	 BorderLayout

•	 BoxLayout

•	 CardLayout

•	 FlowLayout

•	 GridBagLayout

•	 GridLayout

•	 GroupLayout

•	 SpringLayout

The names provide some insight to the possible use cases, but the easiest way to

understand the capabilities of these various layouts is to see them. Oracle maintains a

helpful link at

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html.

If you look closely at the GUI shown in Figure 6-12, you can see that it is comprised

of labels, text entry boxes, a button, and large-font bordered text box to display the

classification result. These GUI components are arranged in a 2-column by 5-row matrix.

You could choose several of the Swing layout managers to implement the Old

Faithful GUI based on the desired layout. If you come from an Android background, you

will find the Swing layouts difficult to use, mainly because they do not provide much

control for the spacing, padding, and general styling required to make the GUI look nice.

The GroupLayout manager tends to be the most flexible, so you will implement it.

If you find you are unable to implement Java FX, and the Swing layouts fail to meet

your GUI requirements, there are external alternative layout managers you can consider.

The Mig Layout Manager is an excellent choice. It is a lightweight Java library and is

much more flexible than the built-in Swing layout managers. Details of the library are at

www.miglayout.com/.

Chapter 6 Integrating Models

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
http://www.miglayout.com/

350

�GUI Implementation

All of the Java code for the app is contained in MainActivity.Java. The filename retains

the Android convention even though this is a Raspberry Pi app and technically is not an

activity. You will review the code in two sections: first the GUI related code, followed by

the ML logic.

The Java Swing GUI class works by allowing you to create JFrame objects. You can

add components to any frame, such as JLabels, JButtons, and JTextFields, in much the

same way Android works. To control the way the components are arranged, Swing allows

you to assign the layouts shown earlier to the JFrames. For this project, you will use the

GroupLayout.

A summary of the key GUI code highlights:

•	 Create a GUI in Java Swing by extending JFrame (line 001).

•	 Define the components, including the JFrame, GroupLayout,

JButton, JLabel, TitledBorder, and JTextField (lines 002-011).

•	 Define the Constructor (line 013).

•	 The GroupLayout builds the GUI (lines 034-055).

•	 The private method setGeyserMode (lines 066-100) updates the GUI

with new classification results from the ML model. You update the

GroupLayout by calling the replace method (line 097).

Listing 6-3 shows all of the GUI-related code.

Listing 6-3.  MainActivity.java: GUI-Related Code

001 public class OldFaithful extends JFrame {

002 static JFrame jf;

003 static GroupLayout layout;

004 static JTextField waitTime, eruptTime;

005 static JLabel priorLabel;

006 statis JButton classifyButton;

007 static TitledBorder tBorderWarm, tBorderHot, tBorderUnknown;

008 �static Border borderOrange = BorderFactory.createLineBorder

(Color.orange, 5, true);

Chapter 6 Integrating Models

351

009 �static Border borderRed = BorderFactory.createLineBorder

(Color.red, 5, true);

010 �static Border borderGray = BorderFactory.createLineBorder

(Color.gray, 5, true);

011 static String modeTitle = "Old Faithful Mode";

012

013 public OldFaithful() {

014 super("OldFaithful");

015 // Init Frame

016 JFrame.setDefaultLookAndFeelDecorated(true);

017 jf = new JFrame();

018 jf.setTitle("Old Faithful Geyser Clasifier");

019 jf.setResizable(true);

020 jf.setExtendedState(JFrame.MAXIMIZED_BOTH);

021 jf.setDefaultCloseOperation(EXIT_ON_CLOSE);

022 jf.setUndecorated(false); // true for no title and menu

023 jf.setVisible(true);

024 layout = new GroupLayout(jf.getContentPane());

025 jf.getContentPane().setLayout(layout);

026 layout.setAutoCreateGaps(true);

027 layout.setAutoCreateContainerGaps(true);

028

029 // Setup the labels

030 JLabel labelWait = new JLabel("Enter Waiting Time:");

031 JLabel labelErupt = new JLabel("Enter Eruption Time:");

032 JLabel labelResult = new JLabel("Results:");

033

034 // Build the layout using the Swing GroupLayout

035 layout.setHorizontalGroup(layout.createSequentialGroup()

036 .addGroup(layout.createParallelGroup()

037 .addComponent(labelWait)

038 .addComponent(labelErupt))

039 .addGroup(layout.createParallelGroup()

040 .addComponent(waitTime)

041 .addComponent(eruptTime)

Chapter 6 Integrating Models

352

042 .addComponent(classifyButton)

043 .addComponent(labelResult)

044 .addComponent(priorLabel))

045);

046 layout.setVerticalGroup(layout.createSequentialGroup()

047 .addGroup(layout.createParallelGroup()

048 .addComponent(labelWait)

049 .addComponent(waitTime))

050 .addGroup(layout.createParallelGroup()

051 .addComponent(labelErupt)

052 .addComponent(eruptTime))

053 .addComponent(classifyButton)

054 .addComponent(labelResult)

055 .addComponent(priorLabel)

056);

057

058 jf.pack();

059 jf.validate();

060 jf.repaint();

061 }

062

063 �// The main class includes the ML logic and is not shown in this

listing

064 public static void main(String args[]){}

065

066 private static void setGeyserMode(int mode) {

067 �// Udate the results depending on the mode the RF classifier

has returned

068 JLabel label = null;

069 if (mode == 2) {

070 tBorderHot = BorderFactory.createTitledBorder(borderRed,

071 modeTitle,

072 TitledBorder.CENTER,

073 TitledBorder.CENTER,

074 Font.decode("Arial-bold-14"));

Chapter 6 Integrating Models

353

075 label = new JLabel(" Hot Mode ");

076 label.setFont(Font.decode("Arial-bold-28"));

077 label.setBorder(tBorderHot);

078 } else if (mode == 1) {

079 tBorderWarm = BorderFactory.createTitledBorder(borderOrange,

080 modeTitle,

081 TitledBorder.CENTER,

082 TitledBorder.CENTER,

083 Font.decode("Arial-bold-14"));

084 label = new JLabel(" Warm Mode ");

085 label.setFont(Font.decode("Arial-bold-28"));

086 label.setBorder(tBorderWarm);

087 } else {

088 �tBorderUnknown = BorderFactory.createTitledBorder

(borderGray,

089 modeTitle,

090 TitledBorder.CENTER,

091 TitledBorder.CENTER,

092 Font.decode("Arial-bold-14"));

093 label = new JLabel(" Unknown Mode ");

094 label.setFont(Font.decode("Arial-bold-28"));

095 label.setBorder(tBorderUnknown);

096 }

097 layout.replace(priorLabel, label);

098 // reset the priorLabel so it can be updated next time

099 priorLabel = label;

100 }

101 }

�Single Instance Data File

Earlier in the chapter, you saw how to make batch predictions by loading a data file

containing many instances, 5,000 instances for the PAMAP2_Dataset example. For the

Old Faithful app, instead of batch classifying, you will be classifying a single instance

each time the button is pressed.

Chapter 6 Integrating Models

354

Loading a single instance ARFF file is a simple way to educate your application on

the structure of the data. Think of the single instance data file as a type of data dictionary

for the data, a best practice I discussed in Chapter 2. If you update your data structure or

change any of the data types, you should update the single instance data file.

Using the single instance ARFF file has two advantages:

•	 The approach abstracts the data structure from the application code,

making the code easier to maintain.

•	 The external file approach simplifies the ML code because it is not

necessary to define all the attributes and data types in Java.

Listing 6-4 shows the old_faithful_single_instance.arff file. You can easily create the

file from the original ARFF file by simply deleting all of the instances except for one.

Listing 6-4.  old_faithful_single_instance.arff, a Single Instance ARFF File

001 �@relation subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

002

003 @attribute activityID {1,2,3,4,5,6,7,12,13,16,17,24}

004 @attribute accelX numeric

005 @attribute accelY numeric

006 @attribute accelZ numeric

007 @attribute gyroX numeric

008 @attribute gyroY numeric

009 @attribute gyroZ numeric

010 @attribute magnetX numeric

011 @attribute magnetY numeric

012 @attribute magnetZ numeric

013

014 @data

015 �1,2.30106,7.25857,6.09259,-0.069961,-0.018328,0.004582,9.15626,

-67.1825,-20.0857

The alternative approach to loading the data structure from file is to define the

structure manually in Java using the Weka API Attribute and Instances classes.

Chapter 6 Integrating Models

355

You need to deploy the single instance ARFF file packaged together with the

executable jar file and the ML model file.

�ML Code

Listing 6-5 shows all of the ML code. It is surprisingly brief. As promised, instead of

writing vast amounts of code, you merely need to load the model and start making

predictions.

Highlights of the ML code:

•	 The main class runs the constructor (line 003). The constructor in

this example performs much of the GUI setup.

•	 It load the single instance ARFF file (lines 005-011).

•	 It load the classifier, a RF model created in Weka (lines 013-017).

•	 It sets up a button to perform the classification (line 019).

•	 It implements predictButtonPressed to read the values from the two

GUI input fields (line 031)

•	 It create a new instance to classify, specifying erupt and wait values

(lines 037-043).

•	 It classifies the instance (line 046).

•	 It sets the geyser mode according to the classification results (lines

048-050).

The ML code resides in the public main class.

Listing 6-5.  MainActivity.java: ML-Related Code

001 public static void main(String args[]){

002 // Run the constructor

003 new OldFaithful();

004 try {

005 // Load a Test data instance so we can classify more easily

006 ConverterUtils.DataSource sourceTest = null;

007 �String wekaDataStrUnix = "/home/pi/old_faithful_single_

instance.arff";

Chapter 6 Integrating Models

356

008 sourceTest = new ConverterUtils.DataSource(wekaDataStrUnix);

009 dataSet = sourceTest.getDataSet();

010 �// Set the class attribute (Label) as the last class, the

ClusterID

011 dataSet.setClassIndex(3);

012

013 �// Load the model, a RF model created from the ARFF data and

saved in Weka Explorer

014 �File wekaModelFileUnix = new File("/home/pi/old_faithful_rf_

i10.model");

015 FileInputStream fis = new FileInputStream(wekaModelFileUnix);

016 rf = (Classifier) weka.core.SerializationHelper.read(fis);

017 fis.close();

018

019 // Classify button

020 JButton classifyButton = new JButton("Predict Geyser Mode");

021 classifyButton.addActionListener(new ActionListener() {

022 public void actionPerformed(ActionEvent e) {

023 predictButtonPressed();

024 }

025 });

026 } catch (Exception e) {

027 e.printStackTrace();

028 }

029 }

030

031 private static void predictButtonPressed() {

032 // Get a prediction from the classifer and update the Geyser Mode

033 try {

034 double wait = Double.valueOf(waitTime.getText());

035 double erupt = Double.valueOf(eruptTime.getText());

036

037 // Create a new instance to classify

038 Instance newInst = new DenseInstance(4);

039 newInst.setDataset(dataSet);

Chapter 6 Integrating Models

357

040 newInst.setValue(0, 0);

041 newInst.setValue(1, erupt);

042 newInst.setValue(2, wait);

043 newInst.setValue(3, 0);

044

045 // Classify the Instance

046 double result = rf.classifyInstance(newInst);

047

048 if (result == 1.0) setGeyserMode(1);

049 else if (result == 0.0) setGeyserMode(2);

050 else setGeyserMode(0);

051 }

052 catch (NumberFormatException e) {

053 //Not a double so set unknown mode

054 setGeyserMode(0);

055 }

056 catch (Exception e) {

057 e.printStackTrace();

058 }

059 }

�Exception Handling for ML Models

Exception handling is one of the more important aspects of application development.

However, most developers do not spend enough time on it.

In ML applications, the model is a critical component of the application. The

accuracy of the model is very important, but what if the model fails altogether,

generating an exception? If the model fails, the app fails, and you need to know about it.

In most of the examples, including Listing 6-5 above, you print out a stack trace in the

event of a model exception, but fail to take any other actions. For commercial ML apps

residing on Raspberry Pi devices or Android mobile phones, you need a more robust

approach. Remote crash logging is a solution.

The idea behind remote crash logging is to collect the necessary information

required to help developers resolve the problem and send it to a remote server before

the application terminates from the crash.

Chapter 6 Integrating Models

358

On Android devices, there are many remote crash-logging services available. The

most popular service is Google’s Firebase Crashlytics. Detailed information on setting up

Crashlytics for Android is available at

https://firebase.google.com/docs/crashlytics/.

There are also many third-party services, libraries, and backend servers available to

implement Android crash logging. For a summary of all the services, refer to the crash

logging chapter in the author's Android book at

https://github.com/apress/practical-android.

On devices like the Raspberry Pi, third-party services designed for log and

sensor data collection work well for remote crash logging. One of the most popular is

LogEntries from Rapid 7, which can accept any type of JSON-formatted data as the

payload:

https://logentries.com

These services work by using the Java UncaughtExceptionHandler

method. The following code shows how to use the handler to implement the

DefaultExceptionHandler:

001 �public class DefaultExceptionHandler implements

UncaughtExceptionHandler{

002 private UncaughtExceptionHandler mDefaultExceptionHandler;

003

004 //constructor

005 �public DefaultExceptionHandler(UncaughtExceptionHandler pDefault

ExceptionHandler)

006 {

007 mDefaultExceptionHandler= pDefaultExceptionHandler;

008 }

009 public void uncaughtException(Thread t, Throwable e) {

010 //do some action like writing to file or upload somewhere

011

012 //call original handler

013 mStandardEH.uncaughtException(t, e);

014 }

015 }

Chapter 6 Integrating Models

https://firebase.google.com/docs/crashlytics/
https://github.com/apress/practical-android
https://logentries.com

359

This approach gives you the opportunity to perform some action before your

application terminates due to an uncaught exception. To help understand why a model

has generated an exception, it is usually sufficient to send the instance attribute data

values at the time of the exception, up to the service.

Fortunately, Weka model failures are rare so long as the data and data type match,

but when the inevitable crash does occur, you need remote crash logging to be able to

see and analyze the problematic data so you can fix the problem. In many cases, the

problem can be resolved by correcting the application code, while in some rare cases,

you must rebuild the model to eliminate the anomaly.

�Exporting Runnable jar Files for Raspberry Pi

Follow these steps to build the Old Faithful runnable jar file:

•	 Clean the project and confirm there are no build errors.

•	 Confirm that the Java Main class in the launch configuration is set as

shown in Figure 6-13.

•	 In the Eclipse main menu, choose File➤Export, as shown in

Figure 6-14.

Figure 6-14.  Exporting a runnable jar file

Chapter 6 Integrating Models

360

•	 Click Next, and you will see the Runnable JAR File Export screen

shown in Figure 6-15.

•	 Make sure the Library Handling radio button selects the Package
required libraries into generated JAR option. This is necessary so

the Weka API library is included in the exported application.

With the export complete, the runnable jar file, along with the other required

external files, will be sufficient to run the Old Faithful app on any Java compliant device.

Figure 6-15.  Exporting OldFaithful.jar file

Chapter 6 Integrating Models

361

�Auto Starting ML Apps on Raspberry Pi

One of the requirements for the Old Faithful project is to create a kiosk-mode app. Such

apps typically have two characteristics:

•	 Kiosk applications typically support a display or some type of visual

output, but often do not have input devices such as a keyboard or

mouse.

•	 Kiosk applications have a single purpose and are automatically

initialize at power up or when reset.

On Raspberry Pi, there are several methods to achieve automatic start of the

OldFaithful.jar file. You can use any of the following five Unix-based approaches to

implement automatic start of any application:

•	 rc.local: Add the application to launch at system startup.

•	 .bashrc: Edit the bash shell startup file to start the application at

startup.

•	 init.d tab: Use init.d, a directory that contains many start/stop

scripts for system services.

•	 systemd: Use systemd, a standard process for controlling the

processes that start in Unix.

•	 crontab: Use cron jobs to schedule when applications run.

For running executable jar files, the first approach is the most simple and it works

well. To configure automatic start on the Raspberry Pi for the OldFaithful.jar file,

implement the following steps:

	 1.	 Place the required files,

OldFaithful.jar,
old_faithful_single_instance.arff, and

old_faithful_rf_i10.model,

into the /home/pi/Weka and another directory of your choosing.

Chapter 6 Integrating Models

362

	 2.	 Change into the /etc directory and edit the rc.local file with the

nano editor:

sudo nano /etc/rc.local
The vi editor is an alternative.

	 3.	 Add the following line to the end of the file, before the exit 0:

java -jar /home/pi/Weka/OldFaithful.jar &
exit 0;

	 4.	 Save the file. Do not forget the & at the end of the line. The &

allows the command to run in a separate process. Without it, the

boot process will not complete.

	 5.	 Add a dedicated IP address to the Pi by setting the static_ip_
address in the /etc/dhcpcd.conf file. This allows access to the

device over the Ethernet connection to retain access to the kiosk

device.

	 6.	 To disable the Raspberry Pi screensaver, edit the following file:

sudo nano ~/.config/lxsession/LXDE-pi/autostart
The file should match the following code:

lxpanel --profile LXDE-pi
#@xscreensaver -no-splash
@point-rpi
@xset s off
@xset -dpms
@xset s noblank

	 7.	 Use sudo reboot to reboot the Pi and test the changes.

�Project Wrap-up

The Old Faithful project on Raspberry Pi was a simple ML application running in kiosk

mode on the device. However, it illustrates a powerful device ML architecture that you

can replicate for other potential applications.

Chapter 6 Integrating Models

363

Highlights of the Raspberry Pi ML architecture:

•	 The Pi is inexpensive and is loaded with connectivity options.

•	 The Pi runs Java, and libraries are readily available.

•	 The Weka API works well on the Pi. The memory and processing

capabilities of the device make it more than capable to handle

advanced CML problems.

6.8  �Sensor Data
Sensor data is an excellent fuel for ML apps. In Chapter 2, I introduced the mobile phone

as potentially the greatest data collection device ever invented. In this section, you will

investigate device capabilities and explore how to implement ML for Android using

sensors and the PAMAP2_Dataset covered in Chapter 2.

�Android Sensors
You know that Android supports sensors, but a deep dive into the Android APIs reveals

a surprising level of sensor coverage. Google divides the Android sensors into three

categories: motion, environmental, and position. Table 6-12 shows a summary of the

Android sensors. Most of the sensors have been in the platform since API level 14

(Android 4.0). Support for the proximity and humidity sensor is available beginning with

API level 20 (Android 4.4).

Chapter 6 Integrating Models

364

The Sensor framework allows you to use any of the Android sensors. It includes the

following classes:

•	 SensorManager: Use this class to create an instance of a sensor

service. The class contains various methods for accessing, listing,

registering, or unregistering sensors. The class also provides many of

the constants used to set sensor accuracy and data acquisition rates.

•	 Sensor: Use this class to create an instance of a specific sensor. The

class also provides methods to determine a sensor’s capabilities.

•	 SensorEvent: A sensor event object allows you to collect raw sensor

data.

•	 SensorEventListener: Use this interface method to create callback

methods that receive notifications when the sensor values change.

Table 6-12.  Android Sensor Support

Category Sensor Android sensor types

Motion Accelerometers TYPE_ACCELEROMETER

TYPE_LINEAR_ACCELERATION

Gravity TYPE_GRAVITY

Gyroscope TYPE_GYROSCOPE

Rotational Vector TYPE_ROTATION_VECTOR

Environmental Barometers TYPE_PRESSURE

Photometers TYPE_LIGHT

Thermometers TYPE_AMBIENT_TEMPERATURE

TYPE_TEMPERATURE

TYPE_RELATIVE_HUMIDITY

Position Orientation TYPE_ORIENTATION

TYPE_PROXIMITY

Magnetometers TYPE_MAGNETIC_FIELD

Chapter 6 Integrating Models

365

The Android sensors are hardware dependent, so sensor availability varies from

device to device and between Android versions. Use the following code to determine

sensor availability:

001 private SensorManager mSensorManager;

002 ...

003 �mSensorManager = (SensorManager) getSystemService(Context.SENSOR_

SERVICE);

004 ...

005 �List<Sensor> deviceSensors = mSensorManager.getSensorList(Sensor.

TYPE_ALL);

If you wish to narrow the search, you can replace the constant TYPE_ALL with

another constant, such as TYPE_GYROSCOPE or TYPE_GRAVITY.

In the Android Activity Tracker project, you will examine in detail how to implement

the Android sensors.

�Raspberry Pi with Sensors
Figure 6-10 shows a picture of the Raspberry Pi. The GPIO interface makes the Pi an

excellent device for ML with sensor data collection. The sensors are inexpensive, and

you can connect many different types of sensors to the Raspberry Pi. Table 6-13 shows

some of the sensor devices that you can connect.

Chapter 6 Integrating Models

366

The Raspberry Pi has sensors for almost anything you can imagine. The pulse sensor

shown at the bottom of Table 6-13 was the result of a recent Kickstarter campaign.

The mobile phone is a great data collection device, but for specialized dedicated data

collection systems, the Pi takes it to another level.

For specialized sensor-driven data applications, the Raspberry Pi in con-
junction with Java and the Weka API library makes a low-cost powerful
machine learning platform.

Table 6-13.  Raspberry Pi Sensor Summary

Category Sensor Description

Environment DHT11/DHT22 Measure temperature and humidity.

DS18B20/ DS18S20 Outdoor use temperature and humidity.

BMP180 Barometer for air pressure, as well as temperature and

altitude.

MQ-2 Gas sensor. Methane, butane, and smoke.

Motion PIR Motion Low-cost motion sensor sends a signal only when

something moves.

HC-SR04 Ultrasonic motion sensor. Can also measure distances.

MPU-6050 Gyroscope to detect rotation along three axes.

HMC5883L/GY-271 Compass.

Water YL-69 Soil hygrometer

Moisture sensor

Ground moisture sensor. Useful for irrigation systems.

SEN0193 Capacitive ground moisture sensor from DFrobot. More

precise and does not erode over time.

FC-37 +MCP3008 Raindrop sensor. Depending on the amount of water, the

capacitance is increased.

YF-S201C Water flow meter.

Gravity HX-711 Weight sensor and load scale.

Other Pulsesensor.com Heartbeat and pulse sensor.

Chapter 6 Integrating Models

367

To implement sensors on the Raspberry Pi, you need a Java library to interface with

the sensors. There are two options available:

•	 PI4J: A Java-based API only for the Raspberry Pi

•	 Device I/O: A Java-based API that can support many devices

The PI4J project is an open source library (LGPL version 3.0) for Java that makes

it easy to interface with the device from Java. Instructions for using PI4J including

downloads are available at http://pi4j.com/.

Accessing the GPIO and other Raspberry Pi interfaces from Java is very simple, as

shown by the following code:

001 import com.pi4j.io.gpio.GpioController;

002 import com.pi4j.io.gpio.GpioFactory;

003 import com.pi4j.io.gpio.GpioPinDigitalOutput;

004 import com.pi4j.io.gpio.PinState;

005 import com.pi4j.io.gpio.RaspiPin;

006

007 // create gpio controller

008 final GpioController gpio = GpioFactory.getInstance();

009

010 // provision gpio pin #01 as an output pin and turn on

011 �final GpioPinDigitalOutput pin = gpio.provisionDigitalOutputPin(Raspi

Pin.GPIO_01, "MyLED", PinState.HIGH);

012

013 // set shutdown state for this pin

014 pin.setShutdownOptions(true, PinState.LOW);

015

016 // turn off gpio pin #01

017 pin.low();

018

019 // toggle the current state of gpio pin #01 (should turn on)

020 pin.toggle();

Chapter 6 Integrating Models

http://pi4j.com/

368

There is some overlap between the PI4J library and Device I/O. PI4J is more feature

rich. The Device I/O library is from Oracle and was originally part of the Java ME

embedded library. It is also an open source Java-level API for accessing generic device

peripherals on embedded devices. It is under the OpenJDK project, and documentation

is available at

https://docs.oracle.com/javame/8.0/api/dio/api/index.html.

The Device I/O library has a configuration file for each board, so you can write code

once and use it on any Java device, not just limited to Raspberry Pi. The main difference

between PI4J and Device I/O is the GPIO mapping.

The following is a Java code example using the Device I/O library:

001 //

002 // Accessing the GPIO Pin number 12.

003 //

004

005 GPIOPin led = (GPIOPin)DeviceManager.open(12);

006

007 led.setValue(true) //Turns the LED on

008 led.setValue(false) //Turns the LED off

009 boolean status = led.getValue() //true if the LED is on

To use Device I/O library you will need to download the Mercurial configuration

management system and then clone the project. The name of the actual library is

dio.jar:

001 sudo apt-get install mercurial

002 hg clone http://hg.openjdk.java.net/dio/dev

To run an application using Device I/O, you will need the following:

•	 Any standard Java class with a main method

•	 java.policy, a file that contains the permissions configuration

•	 The dio.jar library file

•	 libdio.so, a linked library that contains native code interfaces

•	 dio.properties, the configuration file that contains a board-specific

configuration

Chapter 6 Integrating Models

https://docs.oracle.com/javame/8.0/api/dio/api/index.html

369

�Sensor Units of Measure
When working with sensor data, it is important to keep close track of the unit of measure

of the data. Sensor manufacturers can use a variety of different units of measure

depending on many factors, including accuracy, local standards, country of origin, etc.

Table 6-14 shows the unit of measure for some of the Android sensors.

When working with data from outside sources, you need to make sure the units are

consistent before mixing with your own device data. If the units are not the same, you

need to provide a conversion to the base data format.

In the Android Activity Tracker project, you will use the data collected for

the PAMAP2_Dataset. The cleaned data you used to build your model contained

accelerometer, gyroscope, and magnetic field data. The units of measure used by

the original collection devices match the Android sensor units, so no conversion is

necessary.

Table 6-14.  Android Sensors Unit of Measure

Android sensor name Unit of measure Data description

TYPE_MAGNETIC_FIELD uT Magnetic field strength in micro-Tesla

along three axes

TYPE_LINEAR_ACCELERATION m/s2 Acceleration along three axes

TYPE_GYROSCOPE rad/sec Angular velocity along three axis

TYPE_AMBIENT_TEMPERATURE °C Ambient air temperature

TYPE_LIGHT lx Illuminance, measured in lux units

TYPE_PRESSURE hPa or mbar Ambient air pressure

TYPE_RELATIVE_HUMIDITY % Ambient relative humidity

TYPE_TEMPERATURE °C Device temperature

Chapter 6 Integrating Models

370

�Project: Android Activity Tracker
In this project, you are creating an Android application that uses the RF model together

with the Android sensors to provide a near real-time prediction of the current activity of

the user. Table 6-15 shows the project summary.

In this project, you want to create an application that gives you a near real-time

display of the current activity. Figure 6-16 shows the screenshot of the application.

Table 6-15.  Android Activity Tracker Project Summary

Project: Activity Tracker
Source: acticity_tracker.zip
Type: Android Studio Project
Notes: This project uses a trained model from the PAMAP2_dataset in conjunction with near
real-time Android sensor data to determine the current activity of the device user.
File Description

app->libsWeka-Android-3-8-1.jar The Weka API library file for Android.

app->src->main->javaMainActivity.java The main application source code is

included in this single file.

app->src->main->res->layoutactivity_main.xml The main GUI layout file for the

application.

app->src->main->res->rawrf_i10_cross.model The RF model used by the application to

make predictions.

app->src->main->res->rawsubject101_single.arff The single instance ARFF file used by the

application to set up the data attribute

properties.

Chapter 6 Integrating Models

371

The app shows a real-time readout of the current sensor values for the

accelerometer, gyroscope, and magnetometer. At the bottom of the screen, the app

shows the current activity and the current activity ID, an integer between 1 and 12. As

you monitor the app, you will see the sensor values update in real time, while the current

activity updates twice per second.

Figure 6-16.  Activity Tracker Android application screenshot

Chapter 6 Integrating Models

372

�Application Architecture

Figure 6-17 shows the architecture of the app.

The structure of the app is similar to the previous examples in terms of loading the

model and making the prediction, but contains two additional constructs:

•	 Implements SensorEventListener to handle the incoming sensor

data from the accelerometer, gyroscope, and magnetometer.

•	 Implements a Thread to handle the timing for the classification

processing.

Figure 6-17.  Activity Tracker architecture

Chapter 6 Integrating Models

373

In this app, you will load the RF model you created in Chapter 5, rf_i10_cross.model.

You created the model from a cleaned version of the subject101 dataset. As a result,

the model allows you to track the following activities. You define these activities as the

String[], named activityID.

001 activityID = new String[] {

002 "Other (transient)", // 0

003 "Lying", // 1

004 "Sitting", // 2

005 "Standing", // 3

006 "Walking", // 4

007 "Running", // 5

008 "Cycling", // 6

009 "Nordic Walking", // 7

010 "Ascending Stairs", // 8

011 "Descending Stairs", // 9

012 "Vacuum cleaning", // 10

013 "Ironing", // 11

014 "Rope jumping" // 12

015 };

You use this String[] to print out the resulting activity. Recall, the original dataset

contained 24 activities. It would not be fair to expect your model to classify all of these

activities because half of them were not included in the training dataset. You excluded

some of the activities because the chosen subject did not perform them and you

excluded others in the cleaning process.

�Implementing Android Sensors

A key function of the app is to collect current data from the Android sensors. This is a

two-step process:

•	 Initialization

•	 Implementing the sensor listener

Chapter 6 Integrating Models

374

The initialization process involves creating objects for each of the three required

sensors in the application onCreate method. The following code shows how to create

these objects in Android and how to register the SensorEventListener. Keep in mind that

you also need to register and unregister the SensorEventListener in the onPause and

onResume methods (not shown).

001 private SensorManager mSensorManager;

002 private Sensor mAccelerometer, mGyroscope, mMagnetometer;

003

004 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

005

006 �mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_

ACCELERATION);

007 mGyroscope = mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

008 �mMagnetometer = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_

FIELD);

009

010 �mSensorManager.registerListener(mSensorEventListener, mAccelerometer,

SensorManager.SENSOR_DELAY_NORMAL);

In line 006, you create the accelerator object. In Android, there are two choices:

•	 Sensor.TYPE_LINEAR_ACCELERATOR

•	 Sensor.TYPE_ACCELERATOR

The difference between the two is the inclusion of a gravity component. The linear

accelerator removes the impact of gravity on the readings. Analysis of the initial data

shows this measurement approach is consistent with the initial data gathering protocol,

so you use this sensor in the application.

In line 010, you use the SENSOR_DELAY_NORMAL constant in the registerListener

method. This value specifies the rate at which you receive samples from the sensors.

Table 6-16 shows the options. When using sensors, there is some internal latency, so the

typical observed sample rate is higher than the Android-specified value. In the app, you

want to update the user’s current activity every 500 milliseconds (1/2 second). You have

seen that you can classify a single sample at this rate, so SENSOR_DELAY_NORMAL is

sufficient for the app. Note that the Android also uses the SENSOR_DELAY_NORMAL

for some system functions, such as determining when the user rotates the device from

portrait to landscape.

Chapter 6 Integrating Models

375

To receive sensor events, you need to implement the SensorEventListener. Android

calls this listener to report sensor events for all of the registered sensors. In this app, you

have three sensors registered. Even though you are using the least frequent sampling

rate, SENSOR_DELAY_NORMAL, there will still be many events passed to this listener.

001 �private final SensorEventListener mSensorEventListener = new

SensorEventListener() {

002 @Override

003 public void onSensorChanged(SensorEvent event) {

004 �if (event.sensor.getType() == Sensor.TYPE_LINEAR_

ACCELERATION) {

005 acc_X = event.values[0];

006 acc_Y = event.values[1];

007 acc_Z = event.values[2];

008 tv_acc_X.setText(Float.toString(acc_X));

009 tv_acc_Y.setText(Float.toString(acc_Y));

010 tv_acc_Z.setText(Float.toString(acc_Z));

011

012 } else if (event.sensor.getType() == Sensor.TYPE_GYROSCOPE) {

013 gyro_X = event.values[0];

014 gyro_Y = event.values[1];

015 gyro_Z = event.values[2];

016 tv_gyro_X.setText(Float.toString(gyro_X));

017 tv_gyro_Y.setText(Float.toString(gyro_Y));

018 tv_gyro_Z.setText(Float.toString(gyro_Z));

019

Table 6-16.  Android Sensor Delay Constants

Constantname Default constantvalue
(microseconds)

Typical observed sample
rate (milliseconds)

SENSOR_DELAY_NORMAL 200,000 225

SENSOR_DELAY_UI 60,000 78

SENSOR_DELAY_GAME 20,000 38

SENSOR_DELAY_FASTEST 0 20

Chapter 6 Integrating Models

376

020 �} else if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_

FIELD) {

021 mag_X = event.values[0];

022 mag_Y = event.values[1];

023 mag_Z = event.values[2];

024 tv_mag_X.setText(Float.toString(mag_X));

025 tv_mag_Y.setText(Float.toString(mag_Y));

026 tv_mag_Z.setText(Float.toString(mag_Z));

027 }

028 }

029

030 @Override

031 public void onAccuracyChanged(Sensor sensor, int i) {

032 }

033 };

Inside the listener, you decode the events by checking the event.sensors.getType()

and then reading the values from the event.values[] array. Depending on the event type,

the listener stores the X, Y, and Z sensor values into the following local variables:

•	 Accelerometer: acc_X, acc_Y, acc_Z (lines 005-007)

•	 Gyroscope: gyro_X, gyro_Y, gyro_Z (lines 013-015)

•	 Magnetometer: mag_X, mag_Y, mag_Z (lines 021-023)

In addition to updating the local variables that you will use as a classification

instance, the listener also updates the TextView fields on the main app GUI layout.

When you run the app, it is immediately apparent how many events the sensors generate

because you can see these values change so frequently.

The listener also requires you to implement the onAccuracyChanged method (line

031). You can leave this method empty.

�Implementing the Timer

For this app, you would like to show a continuously updated activity prediction derived

from the most recently available sensor data. This requires that you constantly feed

instances into the ML model for predictions. You know that the sensor data update

interval is approximately 200 milliseconds, because you set the sensor sample rate to

Chapter 6 Integrating Models

377

SENSOR_DELAY_NORMAL. You also know that you can classify an instance using the

Weka API with an RF model in approximately 300-500 milliseconds.

To accomplish the continuous classifications, you will implement a background

thread and define the integer updateInterval = 500 milliseconds. The thread will run

continuously until an error occurs. Each time through the main loop, a call is made to

updateActivityStatus(), which performs the classification and displays the result. The

timing is controlled by a call to the Thread.sleep(updateInterval) method. You are not

actually using Java or Android Timer objects in this code, but the implementation is a

simple and efficient way to implement continuously updating classifications.

001 Thread m_statusThread;

002 Boolean m_statusThreadStop;

003 private static Integer updateInterval = 500;

004

005 public void createAndRunStatusThread(final Activity act) {

006 m_StatusThreadStop=false;

007 m_statusThread = new Thread(new Runnable() {

008 public void run() {

009 while(!m_StatusThreadStop) {

010 try {

011 act.runOnUiThread(new Runnable() {

012 public void run() {

013 updateActivityStatus();

014 }

015 });

016 Thread.sleep(updateInterval);

017 }

018 catch(InterruptedException e) {

019 m_StatusThreadStop = true;

020 messageBox(act, "Exception in status thread: " +

021 e.toString() + " - " +

022 �e.getMessage(), "createAndRun

StatusThread Error");

023 }

024 }

025 }

Chapter 6 Integrating Models

378

026 });

027 m_statusThread.start();

028 }

The final part of the code is the model integration.

�Model Integration

As with the examples shown earlier in the chapter, the first step in model integration is to

load the single instance data source, set the class attribute label, and load the prebuilt RF

classifier model. The following code block shows the initialization steps performed on

the Android onCreate method:

001 // Load the Single Instance data source

002 �sourceSingle = new ConverterUtils.DataSource(getResources().

openRawResource(R.raw.subject101_single));

003 dataSingle = sourceSingle.getDataSet();

004

005 // Set the class attribute (Label) as the first class

006 dataSingle.setClassIndex(0);

007

008 // Load the pre-built Random Forest model

009 �rf = (Classifier) weka.core.SerializationHelper.read(getResources().

openRawResource(R.raw.rf_i10_cross));

With initialization complete, the only steps remaining are to build samples

from the sensor data, classify them, and display the result. The actions are shown in

updateActivityStatus(), which runs on the UI thread so it can display the result:

001 private void updateActivityStatus() {

002 �//Toast.makeText(MainActivity.this, "Button pressed.", Toast.

LENGTH_SHORT).show();

003 // Grab the most recent values and classify them

004 // Create a new Instance to classify

005 Instance newInst = new DenseInstance(10);

006 newInst.setDataset(dataSingle);

007 newInst.setValue(0,0); // ActivityID

008 newInst.setValue(1,acc_X); // Accelerometer X

Chapter 6 Integrating Models

379

009 newInst.setValue(2,acc_Y); // Accelerometer Y

010 newInst.setValue(3,acc_Z); // Accelerometer Z

011 newInst.setValue(4,gyro_X); // Gyroscope X

012 newInst.setValue(5,gyro_Y); // Gyroscope Y

013 newInst.setValue(6,gyro_Z); // Gyroscope Z

014 newInst.setValue(7,mag_X); // Magnetometer X

015 newInst.setValue(8,mag_Y); // Magnetometer Y

016 newInst.setValue(9,mag_Z); // Magnetometer Z

017

018 // Classify the instance and display the result

019 try {

020 double res = rf.classifyInstance(newInst);

021 �classifyResult.setText(activityID[(int) res] + ", " + String.

valueOf(res));

022 } catch (Exception e) {

023 e.printStackTrace();

024 }

025 }

You use the setValue method to load the most recent sensor values into the new

instance, and then use the Weka API classifyInstance method to retrieve a result from

the model.

�Improving the Results

While running the app and monitoring the continuous classifier result, several things are

apparent:

•	 The sensor data updates rapidly, every 200 milliseconds. This is

evidence the SensorEventListener is working hard.

•	 At times, the activity result does not appear to update. This is an effect

of the classifier returning the same result as a previous classification,

such as when the device is stationary and not moving. In such a state,

the sensors may show very small changes.

Chapter 6 Integrating Models

380

•	 The activity classification is not very accurate. While the classifier

showed an accuracy of approximately 90% with the training and test

data, real-world experience as you move with the device does not

seem to exhibit this degree of accuracy.

•	 The app is very responsive, even with the sleep time set at 500

milliseconds. It is possible to reduce this sleep interval if you require

a faster sampling rate.

This app illustrates a high performance CML app running on Android with a

complex RF model. The size of the .apk file is only approximately 3MB, illustrating how

lean the solution is.

A final step before deploying the app is to see if you can improve the classification

results. Recall in Chapter 2, I mentioned the importance of leveraging academic research

papers. Refer to the following paper:

A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity
Recognition by Saez, Baldominos, and Isazis.

www.ncbi.nlm.nih.gov/pmc/articles/PMC5298639/

This recent paper is an open access work distributed under the Creative Commons

license on the National Institute of Health website. In the paper, the authors cover

building classifiers for the PAMAP2_Dataset. While the authors do not implement a

real-time classifier on Android, they have done some great research on classifiers for this

dataset that could help improve your results.

A summary of the potential improvements for the Activity Tracker Android app:

•	 The classifier does not use time-series data. That is to say, each

instance stands on its own. You could potentially define a window

and implement time-series learning during the window.

•	 If the target Android device includes a heart rate sensor, you could

include the heart rate data and increase accuracy. You did include

magnetometer data in your classifier/app and it is not clear how

much this helps accuracy.

•	 Body temperature data could be included if the target device includes

temperature sensor.

Chapter 6 Integrating Models

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298639/

381

•	 For the app, you built the classifier using training data from

subject101. You could potentially include training data from the all of

the subjects for a complete model.

•	 The original dataset included three sensors at different locations on

the body. You chose only a single sensor at the hand location. You

could include more than one sensor, or select data from another

sensor, such as the foot, depending on which activities you are most

interested in.

The spirit of machine learning involves the search for continuous improvement,

starting from the beginning data collection, all the way through deployment of the

application.

6.9  �Weka License Notes
In Chapter 2, I discussed the potential for ML to help you monetize your apps. In this

chapter, you produced integrated ML apps on mobile devices using a Weka Android

library. When you produce integrated ML applications using Weka, or any other open

source ML package for that matter, there is often confusion regarding licensing and

commercialization issues.

First, the disclaimer: This section does not constitute legal advice. Consult an expert

before deciding on your ML app licensing and distribution strategy.

You need to consider two important but separate issues:

•	 Copyright

•	 Licensing

With respect to copyrights, the copyright of anything you create (i.e. your contribution)

remains with you, regardless of whether you officially register it or not. Registering your

copyright makes it much easier to defend if someone infringes on your copyright.

With respect to licensing, due to the open source licensing conditions, it is more

complicated situation. According to the GPL, once you produce a commercial application

that incorporates open source components, you have to make all “derivative” works public

or keep them completely private. By adhering to these terms, as you work with Weka, in

your case licensed under the GPL, you contribute to the public domain. For example, the

projects in this book are derivative works and contribute to the public domain.

Chapter 6 Integrating Models

382

The important question becomes, what is a derivative work? For example, when you

exported the Old Faithful runnable jar file, you included the modified Weka API library

in jar format. This library is certainly a derivative work, and the app itself becomes a

derivative work through the jar fie inclusion.

Derivative works:

•	 A derivative work is something that depends on Weka.

•	 Data implemented in a derivative work does NOT have to be

included under the GPL.

•	 Models produced by Weka are NOT derivative works.

•	 If applying the model depends on special classes you provide, which

are derivative works of Weka, those classes must be included under

the GPL or a compatible license.

Many individuals and companies are not comfortable releasing their classes into

the public domain. If you do not wish to make your classes available under the GPL or a

compatible open source license, there are two options:

	 1.	 You can obtain a Weka commercial license.

	 2.	 You can add a layer of abstraction between your package and the

Weka-derivative work.

Commercial Weka licenses are available. They exclude the Weka parts that are

copyright by external contributors, and there are many of them, such as the Simple

Logistic Classifier. Potential Weka commercial licensees may be only interested in a

subset of Weka, such as a specific classifier, and this should be a relevant part of the

request.

If you wish to use Weka but do not wish to make the software subject to the GPL or

obtain a commercial license, you can use a remote machine interface (RMI) to call it

remotely. This added layer of abstraction can satisfy the GPL license terms because it

removes the derivative status from the main application.

Weka is an amazing package. If you create something amazing with it, consider

releasing under the GPL and growing the public domain. Your contribution can help all

of us to become better developers.

Chapter 6 Integrating Models

383
© Mark Wickham 2018
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3

Index

A
Access points (AP), 80
Amazon AWS

advantages, 123
cloud-based services, 123
data schema, 128
data validation, 127–128
EC2 AMI, 131
free tier pricing details, 147
Java developers, 143
ML model, 126

evaluation, 130
services, 124
settings, 129

process and experiment, 131
regression algorithm, 130
RMSE, 131
SageMaker, 141
S3 input data, 127
Synergy Research Group, 123
uploading ML data, 126
Weka ML

classification, 140–141
deep learning packages, 135–136
initial connection, 135
Java, 136
OpenJDK, 136–137
Oracle JDK package, 137–138
SSH client, 135
weka-3-8-2 directory, 139

Amazon Linux, 132
AMR, 161
Android data visualization

Android Studio, 97–98
app screenshot, 102
FrameLayout, 101
mobile devices, 97
project file summary, 97
WebView class, 97–100, 102

Android SDK, 30
Android Studio, 36, 120

download, 36–37
features, 36, 37
install, 37–38
SDK Manager, 38
version 3.1.2, 38

Apache MXNet, 21
Apache OpenOffice Calc

advantgaes, 57–58
CSV file, 59, 61
installation, 58
ML data, 61–62

API, ML
API providers, 151
cloud providers, 148
high-level ML API

comparison, 149
REST APIs, 150

Artificial intelligence (AI), 3
definition, 2
with DL, 21

https://doi.org/10.1007/978-1-4842-3951-3

384

domains, 3
representation of past and present, 5
subfield relationships, 4
winter periods, 5–7

Attribute-relation file format (ARFF)
CSV file, differences, 63
Weka machine learning, 62

AWS Toolkit, 42

B
Big data, 51
BlueJ IDE, 36
Bottom-up approach, 315
bq tool, 117
Business case

challenges and concerns, 8–9
data science platform (see Data

science platform)
monetization, 13

C
Caffe, 21
Cascading style sheet (CSS), 91
Cassandra Query Language (CQL), 174
Classic machine learning (CML)

classifiers and clustering
algorithms, 195

DBSCAN, 206
definition, 2
vs. DL, 15–16
EM algorithm, 208
K-means algorithm, 204
KNN, 199
mobile devices, 16–17
NB, 195
performance and data set size, 19

Random Forest Algorithm (RF), 197
relationship diagram, 14
SVM, 202 see also Machine learning

gate (MLG)
Classification and regression trees

(CART), 197
Cloud data, ML

Apache Cassandra Java Interface, 172
AWS S3 buckets object store, 167
data storage services, 166
NoSQL databases, 168
NoSQL data store methods, 170
unstructured data, 167
virtual machine, 167

Cloud platforms
big four service providers, 106
cloud provider considerations, 108
competitive positioning, 109
IaaS, 106
ML-related services, 107
ML solutions, 105–106
pricing, 110

Cloud Tools for Eclipse (CT4E), 120
Competitive advantage

bridging domains, 45
creative thinking, 44

Computational Network
Toolkit (CNTK), 21

Confusion matrix, 215
Convolutional neural networks (CNN), 186

D
Data categories, 48–50
Data definition, 54–55
Data dictionary, 74
Data-driven documents (D3), 86
Data formats

Artificial intelligence (AI) (cont.)

Index

385

ARFF files, 62–63
CSV files, 57
.dat files, 55–57
file types, 55
JSON (see JavaScript Object

Notation (JSON))
OpenOffice (see Apache

OpenOffice Calc)
PAMAP2_Dataset, 55, 57
plain text files, 55

Dataku, 12
Data mining (DM), 2–3
Data nomenclature

qualitative data, 53
quantitative data, 53

Data preprocessing
Activity Id, 73
attributes, 73
data type identification, 74
duplicates, 75
erroneous values and outliers, 76–77
features, 73
instances, 73
JSON validation, 79–80
labels, 73
mathematical/statistical principles, 72
missing values, 74–75
ML-Gate 5, 72
OpenOffice Calc, macro

processing, 77–78
Data science platform

access prebuilt model, 11
build vs. buy decision, 10
list of popular, 12
recommendations for site visitors, 11

Data scientist, 52–53
data defining, 54–55

DataStax, 172

Data types
Nominal data, 53
Ordinal data, 53
Discrete data, 53
Continuous data, 53

Data visualization, 84
DBSCAN algorithm, 246, 257

attributes, 261
color-coded, 261
data cluster, 258–259
eruption time, 257
noise, 263
Old Faithful geyser dataset, 258
parameter adjustments, 261–262
visualization, 260
waiting time, 257
Weka Explorer, 258

Deep learning (DL)
AI definitions and domain, 3
AI engines, 21
algorithms, 186
deep networks, 20
vs. CML, 15–16
definition, 2
neural network algorithms, 52
performance and data set size, 18–19
tuning methods, 20

Dendogram, 86–87
Density-based spatial clustering of

applications with noise (DBSCAN),
206 see also DBSCAN algorithm

DL4J, 21
DNF (Did Not Finish) entry, 287
D3 Plus, 86
D3 visualization

cluster dendogram, 94–95
cluster-dendo-json.html file, 93
collapsible tree, 95–96

Index

386

CSS, 91
CSV file, 88, 90
d3.nest()function, 94
dendo-csv.html, 88–90
dendogram, 90, 96
flare.csv and flare.json, 87
graphical style, 87
JavaScript, 88, 96
JSON file, 93
project file summary, 87
radial dendogram, 92
structure of, 88
tree, 91
tree-dendo-csv.html file, 91
underscore.nest()function, 94
web server, 87–88

E
Eclipse IDE

download, 39
features, 36
for Java developers, 40–42
installing, 40
ML plugin, 42

ELKI, 236
Exception handling, 357, 359
Exercises in Programming Style (book), 27
Explorer, 249–250

Attributes tab, 250
Classify tab, 250
Cluster tab, 250
data preprocessing, 250
key options, 252–253
Visualize tab, 250

Expectation-Maximization (EM)
algorithm, 208

F
Fake data, 7

G
gcloud compute command-line tool, 118
gcloud init command, 118
gcloud tool, 116
GCP Cloud Speech API App

Android Audio
audio recording implementation, 163
AudioRecord and AudioTrack

classes, 161, 162
formats, 161
MainActivity.java, 164–165
ProcessVoice class, 162, 163
recognizeInputStream method, 163
SpeechService.java, 163–164
types, 162
VoiceRecorder.java, 162

audio input methods, 154
credential.json file, 160
displaying active credentials, 160
file summary, 153
GCP monitoring API, 165–166
JSON configuration file, 159–160
JSON private key file, 158–159
JSON service account key type, 158
ML, 156
service account key, 157
service-based architecture, 165

Google Cloud Platform (GCP)
client libraries, 120
Cloud Machine Learning Engine, 121
CT4E, 120
dashboard, 113
free tier pricing details, 122
GCE VM, 114

D3 visualization (cont.)

Index

387

Google Cloud SDK, 116
hardware and software resources, 112
higher-level categories, 112–113

Google Cloud SDK, 116
Google Cloud Speech API, 151
Google Cloud Tools, 42
Google Compute Engine (GCE) Virtual

Machines (VM), 114
Government data, 50
gsutil tool, 117

H
H2O.ai, 12
Holdout method, 218

I
IBM, 12
IDE, 36

Android Studio (see Android Studio)
BlueJ, 36
Eclipse (see Eclipse IDE)
IntelliJ IDEA, 36
NetBeans, 36

Inference process, 25
Infrastructure as a Service (IaaS), 106
Integrating models

managing models
approaches, 306
best practices, 307
device constraints, 299–300
model version

control, 304–305
optimal model size, 300–304
updating, 305–306

Raspberry Pi (see Raspberry Pi
integration)

sensor data (see Sensor data)
Weka (see Weka)

IntelliJ IDEA, 36
Internet data, 49
Iris flower dataset, 62

J
Java

cards, 29
devices, 28–29
IDE (see IDE)
installing, 31–33
lambda expressions, 30
market share, 27–28
mathematical algorithm, 34–35
programming language, 35
programming language

platforms, 29–30
Java 8, 30, 35
Java API, Weka

applying filters, 309–310
classifier, 310–311
clusterer, 312
label attribute, setting, 310
loading data, 308–309
loading models, 312–313
making predictions, 313–314
training and testing, 311–312
working with options, 309

Java FX, 30
Java ML environments, 230–231, 236

advantages, 228
ELKI, 236
factors, 231
Java-ML, 236
KNIME, 234–235
links, 231

Index

388

RapidMiner, 232, 234
Weka, 232

Java Performance (book), 31
Java Platform, Enterprise

Edition (Java EE), 29
Java Platform, Micro Edition (Java ME), 30
Java Runtime Environment (JRE), 29
JavaScript Object Notation (JSON)

Android SDK, 69–70
arrays and objects, 64
data interchange, 68
definition, 66
iris.arff file, 66–68
Java JDK, 70

Eclipse Java build path, 71–72
JSON libraries, 70
Maven repository, 71

NoSQL databases, 69
objects and arrays, 65–66
properties, 64
structure, 64–65
validation, 79–80

JavaScript visualization
libraries, 84–86

Java SE Developer Kit (JDK), 29
Java, The Complete Reference (book), 31
JSONArray, 65
JSONObject, 65

K
Keras, 21
K-fold cross-validation, 218
K-means algorithm, 204
K-nearest neighbor (KNN)

algorithm, 2, 199, 278, 305
accuracy, 280–281

issue, 280
options, 279

KNIME, 12, 234
PMML, 235

KnowledgeFlow, Weka
layouts, 264–265

result list, 268
textviewer, 267–268
three-clusterer comparison, 266–267

templates, 264
Kotlin, 35
KStar (K*), see K-nearest

neighbor (KNN) algorithm
kubectl tool, 117

L
Labeled vs. unlabeled data, 179
Lambda expressions, 30
Least squares method, 77
Linear regression algorithm, 185

M
Machine learning gate (MLG)

acquiring data, 24
deployment, 26
development projects, 22–23
generate model, 25
integrate model, 26
process/clean/visualize data, 25
test and refine model, 25
well-defined problem, 23–24

Machine Learning (ML)
algorithm analysis

confusion matrix, 215
K-fold cross-validation, 218
ROC, 216

Java ML environments (cont.)

Index

389

algorithm performance
deep learning, 209
MNIST database, 209

algorithm selection, 178
algorithm styles, 179

supervised learning, 180
API (see API, ML)
data format (see Data formats)
data preprocessing (see Data

preprocessing)
definition, 2
DL algorithms, 186, 192
domain, 3
flowchart, 192
functional algorithm decision

process, 193
Google Cloud Speech API, 178
Java

AbstractClassifier class, 221–222
classification algorithms, 222
clustering algorithms, 223
concurrency, 225
GNU General Public

License, 224
lambda expressions, 225
random forest algorithm, 220
RandomTree.java class, 221
stream API, 225
Subversion repository, 220

Java ML environments, 178
linear regression algorithm, 185
megatrends (see Megatrends)
ML-Gate 3 (MLG3), 178
red pill/blue pill metaphor, 18
reinforcement learning, 188
semi-supervised learning

algorithms, 184, 191
supervised ML Algorithms, 189

unsupervised learning
algorithms, 182, 190

MathWorks, 12
Matrix Toolkit for Java (mtj) library, 317
Megatrends

advancement, ML algorithms, 52
cloud service providers, 51
computing resources, 51
data categories, 48–50
relative data sizes, 51

Microsoft Azure, 12
Microsoft Azure Toolkit, 42
Missing Completely At Random (MCAR), 74
Mixed National Institute of Standards and

Technology (MNIST)
characteristics, 210
classification algorithm

performance, 212
classifiers, 212
CML classification algorithm, 213
data, 214
non-DL algorithms, 214
visualization of, 210–211

ML-Gates, 228–229
ML-Gates 1, 298
ML-Gates methodology, 102–103
Mobile device data, 49
MP3, 161

N
Naive Bayesian (NB) networks, 181
Naive Bayes (NB) algorithm, 2, 195

accuracy, 283
ActivityID, 281
classification, 282–283
kernel setting option, 281

NaN, 61

Index

390

Net Beans IDE, 36, 43
Neural networks (NN), 2
NR (Not Reported) entries, 287

O
Open source computer

vision (OpenCV), 21

P
PAMAP2_Dataset, 186
Predictive Model Markup

Language (PMML), 235
Private data, 50
Public data, 50
Python, 35

Q
Qualitative data, 53
Quant Components, 42
Quantitative data, 53

R
Random forest (RF) algorithm, 2, 181,

197–199
accuracy, 278
classification, 275–277
data classification, 274
options, 274

RapidMiner, 12
jar file libraries, 234
main interface, 233
pricing, 234

Raspberry Pi integration, 337
features, 339
GUI considerations, 341

Old Faithful project
auto starting ML apps, 361–362
classifier model, 346–347
exception handling, 357, 359
exporting runnable jar file, 359–360
GUI implementation, 350–351, 353
Java layout managers, 348–349
ML code, 355–356
overview, 344–345
project setup, 347
requirements, 343
single instance data file, 353–354

setup for ML, 339–340
Weka API library, 342

Raspberry Pi 3 model, 338
Receiver operator characteristic (ROC), 216
Recurrent neural networks (RNN), 186
Regression, 77
Reinforcement learning (RL), 2, 188
Relational database management

systems (RDBMS), 168
Remote machine interface (RMI), 382
R for data science, 42
Root Mean Square Error (RMSE), 131

S
SAP, 12
Semi-supervised learning

algorithms, 184
Sensor data, 49

Android Activity Tracker project, 370
architecture, 372–373
implementation, 374–376
model integration, 378–379
results, improving, 379–381
timer, implementing, 376–377

Android sensors, 363

Index

391

availability, 365
SensorEvent, 364
SensorEventListener, 364
SensorManager, 364
support, 364

Raspberry Pi, 365–368
units of measure, 369

Sequential minimal
optimization (SMO), 283

accuracy, 286
classifier output, 284–286
default options, 283–284

Service Level Agreements (SLAs), 122
The Signal and the Noise (book), 52
Smartphone, 80
Social media data, 49
Spark MLlib, 21
Statistics, 3
Support vector machine (SVM)

algorithm, 2, 181, 202, 283–286
Synthetic data, 50

T
TensorFlow, 21, 133
Theano, 21
Top-down approach, 315
Torch package, 21

U
University of Waikato, 220
Unsupervised learning algorithms, 182

V
Visualization

Android data (see Android data
visualization)

D3 Plus, 86

D3 visualization (see D3 visualization)
JavaScript visualization libraries, 84–86

W, X, Y
Waikato Environment (Weka), see Weka
Weka, 232

for Android
AWT, 314
libraries in Android Studio, 320–321
libraries in Eclipse, 315–319
Net Beans, 314
performance, 335–337
Swing, 314
Weka Model Create project, 321–327
Weka Model Load

project, 321, 328–334
clustering algorithms

DBSCAN algorithm (see DBSCAN
algorithm)

KnowledgeFlow
(see KnowledgeFlow, Weka)

CML algorithms, 232
definition, 12
documentation

PDF, 249
Weka book, 249
Weka manual, 249
YouTube, 249

Explorer (see Explorer)
filters, 251–252
importing and exporting, 292–294
installation, 236

configuration, 238, 240–241
GUI Chooser, 238
Java parameters, 241
logo, 237
package manager, 245–247

Index

392

platforms, 237
.prop files, 242–244
settings, 244
versions, 236

Java API (see Java API, Weka)
KnowledgeFlow, 253–254
license notes, 381–382
model evaluation

classifier’s performance, 286–287
DNF entry, 287
multiple ROC curves, 288–291
NR entries, 287
observations, 287

modules, 248
preprocessing (data cleaning)

ActivityIDs, 271–272
cleaned dataset, 269
reasons, 269
structure, 270

simple CLI Shell, 255
commands, 256
KnowledgeFlow interface, 257

MultiFilter
operation, 256

–serialized option, 256
SVM algorithm, 283, 285

options, 283
SMO algorithm, 284, 286

Wifi gathering
Android WifiManager, 81
AP, 80
data acquisition, 82–84
normalized value, 81
key code, 83
signal strength, 81
WifiCollect.java, 81–82
WifiManager.calculateSignalLevel

method, 81
Windows, Apache web server,

MySQL, PHP (WAMP), 88

Z
7-Zip unzipping tool, 240

Weka (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction
	1.1 Terminology
	1.2 Historical
	1.3 Machine Learning Business Case
	Machine Learning Hype
	Challenges and Concerns
	Data Science Platforms
	ML Monetization
	The Case for Classic Machine Learning on Mobile

	1.4 Deep Learning
	Identifying DL Applications

	1.5 ML-Gates Methodology
	ML-Gate 6: Identify the Well-Defined Problem
	ML-Gate 5: Acquire Sufficient Data
	ML-Gate 4: Process/Clean/Visualize the Data
	ML-Gate 3: Generate a Model
	ML-Gate 2: Test/Refine the Model
	ML-Gate 1: Integrate the Model
	ML-Gate 0: Deployment
	Methodology Summary

	1.6 The Case for Java
	Java Market
	Java Versions
	Installing Java
	Java Performance

	1.7 Development Environments
	Android Studio
	Eclipse
	Net Beans IDE

	1.8 Competitive Advantage
	Standing on the Shoulders of Giants
	Bridging Domains

	1.9 Chapter Summary
	Key Findings

	Chapter 2: Data: The Fuel for Machine Learning
	2.1 Megatrends
	Explosion of Data
	Highly Scalable Computing Resources
	Advancement in Algorithms

	2.2 Think Like a Data Scientist
	Data Nomenclature
	Defining Data

	2.3 Data Formats
	CSV Files and Apache OpenOffice
	ARFF Files
	JSON

	2.4 JSON Integration
	JSON with Android SDK
	JSON with Java JDK

	2.5 Data Preprocessing
	Instances, Attributes, Labels, and Features
	Data Type Identification
	Missing Values and Duplicates
	Erroneous Values and Outliers
	Macro Processing with OpenOffice Calc
	JSON Validation

	2.6 Creating Your Own Data
	Wifi Gathering

	2.7 Visualization
	JavaScript Visualization Libraries
	D3 Plus

	2.8 Project: D3 Visualization
	2.9 Project: Android Data Visualization
	2.10 Summary
	Key Data Findings

	Chapter 3: Leveraging Cloud Platforms
	3.1 Introduction
	Commercial Cloud Providers
	Competitive Positioning
	Pricing

	3.2 Google Cloud Platform (GCP)
	Google Compute Engine (GCE) Virtual Machines (VM)
	Google Cloud SDK
	Google Cloud Client Libraries
	Cloud Tools for Eclipse (CT4E)
	GCP Cloud Machine Learning Engine (ML Engine)
	GCP Free Tier Pricing Details

	3.3 Amazon AWS
	AWS Machine Learning
	AWS ML Building and Deploying Models
	AWS EC2 AMI
	Running Weka ML in the AWS Cloud
	AWS SageMaker
	AWS SDK for Java
	AWS Free Tier Pricing Details

	3.4 Machine Learning APIs
	Using ML REST APIs
	Alternative ML API Providers

	3.5 Project: GCP Cloud Speech API for Android
	Cloud Speech API App Overview
	GCP Machine Learning APIs
	Cloud Speech API Authentication
	Android Audio
	Cloud Speech API App Summary

	3.6 Cloud Data for Machine Learning
	Unstructured Data
	NoSQL Databases
	NoSQL Data Store Methods
	Apache Cassandra Java Interface

	3.7 Cloud Platform Summary

	Chapter 4: Algorithms: The Brains of Machine Learning
	4.1 Introduction
	ML-Gate 3

	4.2 Algorithm Styles
	Labeled vs. Unlabeled Data

	4.3 Supervised Learning
	4.4 Unsupervised Learning
	4.5 Semi-Supervised Learning
	4.6 Alternative Learning Styles
	Linear Regression Algorithm
	Deep Learning Algorithms
	Reinforcement Learning

	4.7 CML Algorithm Overview
	4.8 Choose the Right Algorithm
	Functional Algorithm Decision Process

	4.9 The Seven Most Useful CML Algorithms
	Naive Bayes Algorithm (NB)
	Random Forest Algorithm (RF)
	K-Nearest Neighbors Algorithm (KNN)
	Support Vector Machine Algorithm (SVM)
	K-Means Algorithm
	DBSCAN Algorithm
	Expectation-Maximization (EM) Algorithm

	4.10 Algorithm Performance
	MNIST Algorithm Evaluation

	4.11 Algorithm Analysis
	Confusion Matrix
	ROC Curves
	K-Fold Cross-Validation

	4.12 Java Source Code
	Classification Algorithms
	Clustering Algorithms
	Java Algorithm Modification

	Chapter 5: Machine Learning Environments
	5.1 Overview
	ML Gates

	5.2 Java ML Environments
	Weka
	RapidMiner
	KNIME
	ELKI
	Java-ML

	5.3 Weka Installation
	Weka Configuration
	Java Parameters Setup
	Modifying Weka .prop Files
	Weka Settings
	Weka Package Manager

	5.4 Weka Overview
	Weka Documentation
	Weka Explorer
	Weka Filters
	Weka Explorer Key Options
	Weka KnowledgeFlow
	Weka Simple CLI

	5.5 Weka Clustering Algorithms
	Clustering with DBSCAN
	Clustering with KnowledgeFlow

	5.6 Weka Classification Algorithms
	Preprocessing (Data Cleaning)
	Classification: Random Forest Algorithm
	Classification: K-Nearest Neighbor
	Classification: Naive Bayes
	Classification: Support Vector Machine

	5.7 Weka Model Evaluation
	Multiple ROC Curves

	5.8 Weka Importing and Exporting

	Chapter 6: Integrating Models
	6.1 Introduction
	6.2 Managing Models
	Device Constraints
	Optimal Model Size
	Model Version Control
	Updating Models
	Managing Models: Best Practices

	6.3 Weka Java API
	Loading Data
	Working with Options
	Applying Filters
	Setting the Label Attribute
	Building a Classifier
	Training and Testing
	Building a Clusterer
	Loading Models
	Making Predictions

	6.4 Weka for Android
	Creating Android Weka Libraries in Eclipse
	Adding the Weka Library in Android Studio

	6.5 Android Integration
	Project: Weka Model Create
	Project: Weka Model Load

	6.6 Android Weka Model Performance
	6.7 Raspberry Pi Integration
	Raspberry Pi Setup for ML
	Raspberry Pi GUI Considerations
	Weka API Library for Raspberry Pi
	Project: Raspberry Pi Old Faithful Geyser Classifier
	App Overview
	Building the Classifier Model
	Project Setup
	Java Layout Managers
	GUI Implementation
	Single Instance Data File
	ML Code
	Exception Handling for ML Models
	Exporting Runnable jar Files for Raspberry Pi
	Auto Starting ML Apps on Raspberry Pi
	Project Wrap-up

	6.8 Sensor Data
	Android Sensors
	Raspberry Pi with Sensors
	Sensor Units of Measure
	Project: Android Activity Tracker
	Application Architecture
	Implementing Android Sensors
	Implementing the Timer
	Model Integration
	Improving the Results

	6.9 Weka License Notes

	Index

