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Preface

It is interesting to watch trends in software development come and go, and to watch 

languages become fashionable, and then just as quickly fade away. As machine learning 

and AI began to reemerge a few years ago, it was easy to look upon the hype with a great 

deal of skepticism.

•	 AlphaGo, a UK-based company, used deep learning to defeat the Go 

masters. Go is a Chinese board game that very complicated due to a 

huge number of combinations. Living in China at the time, there was 

a lot of discussion about the panicked Go masters who refused to 

play the machine for fear that their techniques would be exposed or 

"learned" by the machines.

•	 An AI Poker Bot named Libratus individually defeated four top 

human professional players in 2017. This was surprising because 

poker is a difficult game for machines to master. In poker, unlike 

Go, there is a lot of unknown information, making it an "imperfect 

information" game.

•	 Machine traders are replacing human traders at many of the large 

investment banks. The rise of the "quant" on Wall Street is well 

documented. Examining the job opportunities at investment banks 

reveals a trend favoring math majors, data scientists, and machine 

learning experts.

•	 IBM's Watson can do amazing things, such as fix the elevator before 

breaks, adjust the sprinkler system in the vineyard to optimize yield, 

and help oilfield workers manage a drilling rig.
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Despite the hype, it was not until confronted with problems that were very difficult 

to solve with existing software tools that I began to explore and appreciate the power of 

machine learning techniques.

Today, after several years of gaining an understanding about what these new 

techniques can do, and how to apply them, I find myself thinking differently about each 

problem I encounter. Almost every piece of software can benefit in some way from 

machine learning techniques.

Developing machine learning software requires us to think differently about 

problems, resulting in a new way to partition our development efforts. However, change 

is good, and using machine learning with a data-driven development methodology can 

allow us to solve previously unsolvable problems.

In this book, I will describe what I have discovered along my journey. I hope that it 

can help you in your future software endeavors.

�Objectives
The book will meet the following objectives:

•	 Introduce readers to the exciting developments in the AI subfield 

of machine learning (ML). The book will summarize the types of 

problems machine learning can solve. Without machine learning, 

such solutions would be very difficult to accomplish.

•	 Help readers understand the importance of data as the critical input 

for any machine learning solution, and how to identify, organize, and 

architect the data required for ML. Strategies and techniques for the 

visualization and preprocessing of data will also be covered using 

available Java packages. The book will help readers who know Java to 

become more proficient in data science.

•	 Explore how to deploy ML solutions in conjunction with cloud 

service providers such as Google and Amazon.

•	 Focus exclusively on Java libraries and Java-based solutions for 

ML. The book will NOT cover other popular ML languages such as 

Python or C++.

Preface
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•	 Focus on classic machine learning solutions. The book will not cover 

implementations for deep learning, which use neural networks. Deep 

learning is a topic that requires a complete text of its own for proper 

exploration.

•	 Provide readers an overview of ML algorithms. Rather than cover 

these algorithms from a mathematical viewpoint, the book will 

present a practical review of the algorithms and explain to readers 

which algorithm to select for a particular problem.

•	 Introduce readers to the most important Java-based ML platforms. 

The book will provide a deep dive into the popular Weka Java 

environments. The book will show readers how to port the latest 

Weka version to Android.

•	 Java developers have the advantage of easily transitioning to the 

Android Mobile platform. The book will show readers how to deploy 

ML apps for Android devices using the Weka API.

•	 One of the fastest growing sources of data is sensor data. Embedded 

devices often produce sensor data, enabling a significant opportunity 

to deploy ML solutions for these devices. The book will show readers 

how to implement ML solutions for sensor data using Java.

�Audience
This book is intended for the following audiences:

•	 Developers looking to implement ML solutions for Java platforms

•	 Data scientists looking to explore Java implementation options

•	 Business decision makers looking to explore entry into machine 

learning for their organizations

The book will be of most value to experienced Java developers who have not 

implemented ML techniques before. The book will explain the various ML techniques 

that are now feasible due to recent advances in performance, storage, and algorithms.
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The book will explain how these new techniques allow developers to achieve 

interesting new functionality that was not previously possible with traditional 

development approaches.

�Conventions
�Figures and Tables
Each chapter in the book uses a mix of figures and tables to explain the chapter’s 

concepts. Figures and tables include identifiers with a chapter-derived sequence 

number displayed below or above them.

Figure P-1 shows an example figure.

Figure P-1.  Sample Figure

Table P-1 shows an example table.

Table P-1.  Sample Table

Cluster Algorithms Classify Algorithms

DBSCAN Random Forest

EM Naive Bayes

�Technical Italics
The technical italic font represents technical terms. This includes Android-specific 

terms, URLs, or general technical terms. Reference URLs are sometimes included within 

each chapter.

Preface
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�Code Listings
Code examples in the book use a fixed-width font with line numbers. They represent key 

code discussed in the text that immediately precedes or follows the block.

Listing P-1.  Sample Code Listing

01  // Define the dataset

02  newInstance.setDataset(dataUnpredicted);

03

04  // Predict the new sample

05  try {

06      double result = mClassifier.classifyInstance(newInstance);

07      String prediction = classes.get(new Double(result).intValue());

08      Toast.makeText(this, prediction, Toast.LENGTH_SHORT).show();

09  } catch (Exception e) {

10      // Oops, need to handle the Weka prediction exception

11      e.printStackTrace();

12  }

In order to help you locate the code within the associated project resources, the 

filename associated with the code block is included in the text preceding the code 

block.

Longer code blocks include the name of the project and source code file below them. 

Code blocks in the book are not always complete. Refer to the actual project source code 

to see the full code implementation.

�Key Ideas or Points
Emphasized key points or ideas use the following format:

Three megatrends have paved the way for the Machine Learning revolution 
we are now experiencing:

1) Explosion of data
2) Access to highly scalable computing resources
3) Advancement in algorithms

Preface
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�Trademark and Software License
Android is a trademark of Google Inc.

Java is a trademark of Oracle Inc.

Eclipse is a trademark of The Eclipse Foundation.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Weka is a trademark of The University of Waikato.

Software in this book written by the author carries the Apache 2.0 license, and you 

are free to use and modify the code in its entirety according to the terms of the license.

The Weka software is licensed under the GNU GPL 2.0 license.

The software written by the author includes the following Copyright notice:

01  /*

02   * Copyright (C) 2018 Mark Wickham

03   *

04   * Licensed under the Apache License, Version 2.0 (the "License");

05   * you may not use this file except in compliance with the License.

06   * You may obtain a copy of the License at

07   *

08   * http://www.apache.org/licenses/LICENSE-2.0

09   *

10   * Unless required by applicable law or agreed to in writing, software

11   * distributed under the License is distributed on an "AS IS" BASIS,

12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either implied...

13   * See the License for the specific language governing permissions and

14   * limitations under the License.

15   * �For full details of the license, please refer to the link referenced 

above.

16   */

The software projects in the book can be downloaded by clicking the Download 

Source Code button located at the book’s apress.com product page at www.apress.com/ 

9781484239506 or from the author’s GitHub page at

https://github.com/wickapps/Practical-Java-ML

The Google Cloud Speech API Android project presented in Chapter 3 is copyright by 

Google Inc. and available on the Google GitHub page.

Preface

http://www.apress.com/9781484239506
http://www.apress.com/9781484239506
https://github.com/wickapps/Practical-Java-ML


xxi

�Summary of Projects
The book uses projects to demonstrate the key topics within each chapter. Table P-2 

shows a summary of all projects in the book.

Table P-2.  Summary of Projects in the Book

Chapter Type Source Code Project Description

2 Desktop 

Browser

d3_visualization.zip D3 Visualization: This project 

demonstrates how to produce data 

visualizations on the desktop browser 

using the D3 JavaScript library.

2 Android android_data_vis.zip Android Data Visualization: This 

Android app loads data and displays 

a visualization of the data within a 

WebView control. The application 

uses the D3 JavaScript library 

and demonstrates several useful 

visualizations for machine learning.

3 Android Google Cloud Platform GitHub Google Cloud Platform Cloud Speech API: 

This Android application demonstrates 

access to deep learning functionality 

through a publicly available API.

6 Eclipse android_weka_3-8-1.zip Weka Android Port: This Eclipse project 

ports the latest Weka version (stable 

3.8.1) to Android, creating the  

Android-Weka-3-8-1.jar file. Android 

apps can then use the Weka API for 

loading, classifying, and clustering 

applications.

6 Android model_create.zip Weka Model Create: This Android project 

demonstrates how to load data files 

into Android and create a model for 

classification.

(continued)
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A summary table showing the project details and key project files precedes each 

project in the book; see Table P-3. Note that not all of the project files are included in the 

summary table.

Chapter Type Source Code Project Description

6 Android model_load.zip Weka Model Load: This Android project 

demonstrates how to load a pretrained 

model into Android. The model can 

classify samples. The app includes 

time stamping for model performance 

evaluation.

6 Raspberry Pi old_faithful.zip Raspberry Pi Old Faithful: This clustering 

project uses the Old Faithful geyser 

dataset and a Weka clustering model 

created in Chapter 5 to implement a 

clustering application for Old Faithful on 

the Raspberry Pi device.

6 Android activity_tracker.zip Android Activity Tracker: This large-

scale classification project uses the 

PAMAP2_Dataset classification model 

from Chapter 5 to implement an Android 

Activity Tracking app.

Table P-2.  (continued)
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�Abbreviations
The book frequently uses abbreviations for the following terms:

•	 AI: Artificial intelligence

•	 DM: Data mining

•	 ML: Machine learning

•	 CML: Classic machine learning

•	 DL: Deep learning

•	 NLP: Natural language processing

•	 MLG: Machine learning gates, a methodology for developing  

ML apps

•	 RF: Random forest algorithm

•	 NB: Naive Bayes algorithm

•	 KNN: K-nearest neighbor algorithm

•	 SVM: Support vector machine algorithm

Table P-3.  Sample Project Summary Table

Project: Creating Models 
Source: creating_models.zip 

Type: Android 

Notes: A simple Android app to demonstrate use of the Android Weka API to create a classification 

model

File Description

app->src->main->libs Android-Weka-3-8-1.jar External jar file for the Android Weka library

app->src->main->java MainActivity.java All of the project source code is in this Android 

activity.
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CHAPTER 1

Introduction
Chapter 1 establishes the foundation for the book.

It describes what the book will achieve, who the book is intended for, why machine 

learning (ML) is important, why Java makes sense, and how you can deploy Java ML 

solutions.

The chapter includes the following:

•	 A review all of the terminology of AI and its sub-fields including 

machine learning

•	 Why ML is important and why Java is a good choice for 

implementation

•	 Setup instructions for the most popular development environments

•	 An introduction to ML-Gates, a development methodology for ML

•	 The business case for ML and monetization strategies

•	 Why this book does not cover deep learning, and why that is a good 

thing

•	 When and why you may need deep learning

•	 How to think creatively when exploring ML solutions

•	 An overview of key ML findings

1.1  �Terminology
As artificial intelligence and machine learning have seen a surge in popularity, there has 

arisen a lot of confusion with the associated terminology. It seems that everyone uses the 

terms differently and inconsistently.
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Some quick definitions for some of the abbreviations used in the book:

•	 Artificial intelligence (AI): Anything that pretends to be smart.

•	 Machine learning (ML): A generic term that includes the subfields of 

deep learning (DL) and classic machine learning (CML).

•	 Deep learning (DL): A class of machine learning algorithms that 

utilize neural networks.

•	 Reinforcement learning (RL): A supervised learning style that 

receives feedback, but not necessarily for each input.

•	 Neural networks (NN): A computer system modeled on the human 

brain and nervous system.

•	 Classic machine learning (CML): A term that more narrowly defines 

the set of ML algorithms that excludes the deep learning algorithms.

•	 Data mining (DM): Finding hidden patterns in data, a task typically 

performed by people.

•	 Machine learning gate (MLG): The book will present a development 

methodology called ML-Gates. The gate numbers start at ML-Gate 5 

and conclude at ML-Gate 0. MLG3, for example, is the abbreviation 

for ML-Gate 3 of the methodology.

•	 Random Forest (RF) algorithm: A learning method for classification, 

regression and other tasks, that operates by constructing decision 

trees at training time.

•	 Naive Bayes (NB) algorithm: A family of “probabilistic classifiers” 

based on applying Bayes’ theorem with strong (naive) independence 

assumptions between the features.

•	 K-nearest neighbor (KNN) algorithm: A non-parametric method 

used for classification and regression where the input consists of the 

k closest training examples in the feature space.

•	 Support vector machine (SVM) algorithm: A supervised learning 

model with associated learning algorithm that analyzes data used for 

classification and regression.

Chapter 1  Introduction
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Much of the confusion stems from the various factions or “domains” that use these 

terms. In many cases, they created the terms and have been using them for decades 

within their domain.

Table 1-1 shows the domains that have historically claimed ownership to each of the 

terms. The terms are not new. Artificial intelligence is a general term. AI first appeared 

back in the 1970s.

Table 1-1.  AI Definitions and Domains

Term Definition Domain

Statistics Quantifies the data. DM, ML, DL all use statistics to 

make decisions.

Math departments

Artificial  

intelligence (AI)

The study of how to create intelligent agents. 

Anything that pretends to be smart. We program a 

computer to behave as an intelligent agent. It does 

not have to involve learning or induction.

Historical, 

Marketing, Trending.

Data mining (DM) Explains and recognizes meaningful patterns. 

Unsupervised methods. Discovers the hidden 
patterns in your data that can  

be used by people to make decisions.  

A complete commercial process flow,  

often on large data sets (Big Data).

Business 

world, business 

intelligence

Machine learning (ML) A large branch within AI in which we build models 

to predict outcomes. Uses algorithms and has 

a well-defined objective. We generalize existing 

knowledge to new data. It’s about learning a model 

to classify objects.

Academic 

departments

Deep learning (DL) Applies neural networks for ML. Pattern 

recognition is an important task.

Trending

The definitions in Table 1-1 represent my consolidated understanding after reading 

a vast amount of research and speaking with industry experts. You can find huge 

philosophical debates online supporting or refuting these definitions.

Chapter 1  Introduction
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Do not get hung up on the terminology. Usage of the terms often comes down to domain 

perspective of the entity involved. A mathematics major who is doing research on DL 

algorithms will describe things differently than a developer who is trying to solve a problem 

by writing application software. The following is a key distinction from the definitions:

Data mining is all about humans discovering the hidden patterns in data, 
while machine learning automates the process and allows the computer 
to perform the work through the use of algorithms.

It is helpful to think about each of these terms in context of “infrastructure” and 

“algorithms.” Figure 1-1 shows a graphical representation of these relationships. Notice 

that statistics are the underlying foundation, while “artificial intelligence” on the right-

hand side includes everything within each of the additional subfields of DM, ML, and DL.

Machine learning is all about the practice of selecting and applying  
algorithms to our data.

I will discuss algorithms in detail in Chapter 3. The algorithms are the secret sauce 

that enables the machine to find the hidden patterns in our data.

Figure 1-1.  Artificial intelligence subfield relationships

Chapter 1  Introduction
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1.2  �Historical
The term “artificial intelligence” is hardly new. It has actually been in use since the 1970s.  

A quick scan of reference books will provide a variety of definitions that have in fact 

changed over the decades. Figure 1-2 shows a representation of 1970s AI, a robot named 

Shakey, alongside a representation of what it might look like today.

Figure 1-2.  AI, past and present

Most historians agree that there have been a couple of “AI winters.” They represent 

periods of time when AI fell out of favor for various reasons, something akin to a 

technological “ice age.” They are characterized by a trend that begins with pessimism 

in the research community, followed by pessimisms in the media, and finally followed 

by severe cutbacks in funding. These periods, along with some historical context, are 

summarized in Table 1-2.

Chapter 1  Introduction
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It is important to understand why these AI winters happened. If we are going to 

make an investment to learn and deploy ML solutions, we want to be certain another AI 

winter is not imminent.

Is another AI winter on the horizon? Some people believe so, and they raise three 

possibilities:

•	 Blame it on statistics: AI is headed in the wrong direction because 

of its heavy reliance on statistical techniques. Recall from Figure 1-1 

that statistics are the foundation of AI and ML.

•	 Machines run amuck: Top researchers suggest another AI winter 

could happen because misuse of the technology will lead to its 

demise. In 2015, an open letter to ban development and use of 

autonomous weapons was signed by Elon Musk, Steven Hawking, 

Steve Wozniak, and 3,000 AI and robotics researchers.

Table 1-2.  History of AI and “Winter” Periods

Period Context

1974 The UK parliament publishes research that AI algorithms would grind to a halt on “real 

world” problems. This setback triggers global funding cuts including at DARPA. The crisis 

is blamed on “unrealistic predictions” and “increasing exaggeration” of the technology.

1977 AI WINTER 1

1984-1987 Enthusiasm for AI spirals out of control in the 1980s, leading to another collapse of the 

billion-dollar AI industry.

1990 AI WINTER 2 as AI again reaches a low-water mark.

2002 AI researcher Rodney Brooks complains that “there is a stupid myth out there that AI 

has failed.”

2005 Ray Kurzweil proclaims, “Many observers still think that the AI winter was the end of 

the story ... yet today many thousands of applications are deeply embedded in the 

infrastructure of every industry.”

2010 AI becomes widely used and well funded again. Machine learning gains prominence.

Chapter 1  Introduction
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•	 Fake data: Data is the fuel for machine learning (more about this in 

Chapter 2). Proponents of this argument suggest that ever increasing 

entropy will continue to degrade global data integrity to a point where 

ML algorithms will become invalid and worthless. This is a relevant 

argument in 2018. I will discuss the many types of data in Chapter 2.

It seems that another AI winter is not likely in the near future because ML is so 

promising and because of the availability of high-quality data with which we can fuel it.

Much of our existing data today is not high quality, but we can mitigate this risk by 

retaining control of the source data our models will rely upon.

Cutbacks in government funding caused the previous AI winters. Today, private 

sector funding is enormous. Just look at some of the VC funding being raised by AI 

startups. Similar future cutbacks in government support would no longer have a 

significant impact. For ML, it seems the horse is out of the barn for good this time around.

1.3  �Machine Learning Business Case
Whether you are a freelance developer or you work for a large organization with vast 

resources available, you must consider the business case before you start to apply 

valuable resources to ML deployments.

�Machine Learning Hype
ML is certainly not immune from hype. The book preface listed some of the recent hype 

in the media. The goal of this book is to help you overcome the hype and implement real 

solutions for problems.

ML and DL are not the only recent technology developments that suffer from 

excessive hype. Each of the following technologies has seen some recent degree of hype:

•	 Virtual reality (VR)

•	 Augmented reality (AR)

•	 Bitcoin

Chapter 1  Introduction
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•	 Block chain

•	 Connected home

•	 Virtual assistants

•	 Internet of Things (IoT)

•	 3D movies

•	 4K television

•	 Machine learning (ML)

•	 Deep learning (DL)

Some technologies become widespread and commonly used, while other simply 

fade away. Recall that just a few short years ago 3D movies were expected to totally 

overtake traditional films for cinematic release. It did not happen.

It is important for us to continue to monitor the ML and DL technologies closely.  

It remains to be seen how things will play out, but ultimately, we can convince ourselves 

about the viability of these technologies by experimenting with them, building, and 

deploying our own applications.

�Challenges and Concerns
Table 1-3 lists some of the top challenges and concerns highlighted by IT executives 

when asked what worries them the most when considering ML and DL initiatives. As 

with any IT initiative, there is an opportunity cost associated with implementing it, and 

the benefit derived from the initiative must outweigh the opportunity cost, that is, the 

cost of forgoing another potential opportunity by proceeding with AI/ML.

Fortunately, there are mitigation strategies available for each of the concerns. These 

strategies, summarized below, are even available to small organization and individual 

freelance developers.

Chapter 1  Introduction
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Using the above mitigation strategies, developers can produce some potentially 

groundbreaking ML software solutions with a minimal learning curve investment. It is a 

great time to be a software developer.

Next, I will take a closer look at ML data science platforms. Such platforms can help 

us with the goal of monetizing our machine learning investments. The monetization 

strategies can further alleviate some of these challenges and concerns.

�Data Science Platforms
If you ask business leaders about their top ML objectives, you will hear variations of the 

following:

•	 Improve organizational efficiency

•	 Make predictive insights into future scenarios or outcomes

•	 Gain a competitive advantage by using AI/ML

•	 Monetize AI/ML

Table 1-3.  Machine Learning Concerns and Mitigation Strategies

ML Concern Mitigation Strategy

Cost of IT 

infrastructure

Leverage cloud service providers such as Google GCP, Amazon AWS, Microsoft 

Azure

Not enough 

experienced staff

Even if we cannot hire data scientists, ML requires developers to start thinking 

like data scientists. This does not mean we suddenly require mathematics PhDs. 

Organizations can start by adopting a data-first methodology such as ML-Gates 

presented later in this chapter.

Cost of data or 

analytics platform

There are many very expensive data science platforms; however, we can start 

with classic ML using free open source software and achieve impressive results.

Insufficient data 

quality

There exists a great deal of low quality data. We can mitigate by relying less on 

“social” data and instead focusing on data we can create ourselves. We can also 

utilize data derived from sensors that should be free of such bias.

Insufficient data 

quantity

Self-generated data or sensor data can be produced at higher scale by 

controlling sampling intervals. Integrating data into the project at the early 

stages should be part of the ML methodology.

Chapter 1  Introduction
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Regardless of whether you are an individual or freelance developer, monetization is 

one of the most important objectives.

Regardless of organizational size, monetizing ML solutions requires two 
building blocks: deploying a data science platform, and following a ML 
development methodology.

When it comes to the data science platforms, there are myriad options. It is helpful 

to think about them by considering a “build vs. buy” decision process. Table 1-4 shows 

some of the typical questions you should ask when making the decision. The decisions 

shown are merely guidelines.

So what does it actually mean to “buy” a data science platform? Let’s consider an 

example.

Table 1-4.  Data Science Platform: Build vs. Buy Decision

Build vs. Buy Question Decision

Is there a package that exactly solves your problem? Yes: buy

Is there a package that solves many of your requirements? This is the common 

case and there is no an easy answer.

Undetermined

Is there an open source package you can consider? Yes: build

Is the package too difficult to implement? Yes: buy

Does your well-defined problem require deep learning? No: maybe 

build

Is analytics a critical differentiator for your business? Yes: maybe 

build

Is your analytics scenario unique? Yes: build

Is a new kind of data available? Yes: build

Does your domain require you to be agile? Yes: build

Do you have access to the data science talent your problem requires? Do not sell 

yourself or your staff short; many developers pick up data science skills quickly.

No: buy

Chapter 1  Introduction
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You wish to create a recommendation engine for visitors to your website. You 

would like to use machine learning to build and train a model using historical product 

description data and customer purchase activity on your website. You would then like 

to use the model to make real-time recommendations for your site visitors. This is a 

common ML use case. You can find offerings from all of the major vendors to help you 

implement this solution. Even though you will be “building” your own model using 

the chosen vendor’s product, you are actually “buying” the solution from the provider. 

Table 1-5 shows how the pricing might break down for this project for several of the 

cloud ML providers.

In this example, you accrue costs because of the compute time required to build your 

model. With very large data sets and construction of deep learning models, these costs 

become significant.

Another common example of “buying” an ML solution is accessing a prebuilt model 

using a published API. You can use this method for image detection or natural language 

processing where huge models exist which you can leverage simply by calling the API 

with your input details, typically using JSON. You will see how to implement this trivial 

case later in the book. In this case, most of the service providers charge by the number of 

API calls over a given time period.

Table 1-5.  Example ML Cloud Provider Pricing https://cloud.google.com/

ml-engine/docs/pricing, https://aws.amazon.com/aml/pricing/, https://

azure.microsoft.com/en-us/pricing/details/machine-learning-studio/

Provider Function Pricing

Google Cloud ML 

Engine

Model building fees 

Batch predictions 

Real-time predictions

$0.27 per hour (standard machine) 

$0.09 per node hour 

$0.30 per node hour

Amazon Machine 

Learning (AML)

Model building fees 

Batch predictions 

Real-time predictions

$0.42 per hour 

$0.10 per 1000 predictions 

$.0001 per prediction

Microsoft Azure  

ML Studio

Model building fees 

Batch predictions 

Real-time predictions

$10 per month, $1 per hour (standard) 

$100 per month includes 100,000 

transactions (API)

Chapter 1  Introduction
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So what does it mean to “build” a data science platform? Building in this case 

refers to acquiring a software package that will provide the building blocks needed to 

implement your own AI or ML solution.

The following list shows some of the popular data science platforms:

•	 MathWorks: Creators of the legendary MATLAB package, MathWorks 

is a long-time player in the industry.

•	 SAP: The large database player has a complete big data services and 

consulting business.

•	 IBM: IBM offers Watson Studio and the IBM Data Science Platform 

products.

•	 Microsoft: Microsoft Azure provides a full spectrum of data and 

analytics services and resources.

•	 KNIME: KNIME analytics is a Java-based, open, intuitive, integrative 

data science platform.

•	 RapidMiner: A commercial Java-based solution.

•	 H2O.ai: A popular open source data science and ML platform.

•	 Dataku: A collaborative data science platform that allows users to 

prototype, deploy, and run at scale.

•	 Weka: The Java-based solution you will explore extensively  

in this book.

The list includes many of the popular data science platforms, and most of them are 

commercial data science platforms. The keyword is commercial. You will take a closer 

look at Rapidminer later in the book because it is Java based. The other commercial 

solutions are full-featured and have a range of pricing options from license-based to 

subscription-based pricing.

The good news is you do not have to make a capital expenditure in order to build a 

data science platform because there are some open source alternatives available. You 

will take a close look at the Weka package in Chapter 3. Whether you decide to build 

or buy, open source alternatives like Weka are a very useful way to get started because 

they allow you to build your solution while you are learning, without locking you into an 

expensive technology solution.

Chapter 1  Introduction
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�ML Monetization
One of the best reasons to add ML into your projects is increased potential to monetize. 

You can monetize ML in two ways: directly and indirectly.

•	 Indirect monetization: Making ML a part of your product or service.

•	 Direct monetization: Selling ML capabilities to customers who in 

turn apply them to solve particular problems or create their own 

products or services.

Table 1-6 highlights some of the ways you can monetize ML.

Many of the direct strategies employ DL approaches. In this book, the focus is mainly 

on the indirect ML strategies. You will implement several integrated ML apps later in the 

book. This strategy is indirect because the ML functionality is not visible to your end user.

Customers are not going to pay more just because you include ML in your 

application. However, if you can solve a new problem or provide them capability that 

was not previously available, you greatly improve your chances to monetize.

There is not much debate about the rapid growth of AI and ML. Table 1-7 shows 

estimates from Bank of America Merrill Lynch and Transparency Market Research. Both 

firms show a double-digit cumulative annual growth rate, or CAGR. This impressive 

CAGR is consistent with all the hype previously discussed.

Table 1-6.  ML Monetization Approaches

Strategy Type Description

AIaaS Direct AI as a Service, such as Salesforce Einstein or IBM Watson.

MLaaS Direct ML as a Service, such as the Google, Amazon, or Microsoft examples in 

Table 1-5.

Model API Indirect You can create models and then publish an API that will allow others to use 

your model to make their own predictions, for example.

NLPaaS Direct NLP as a Service. Chatbots such as Apple Siri, Microsoft Cortana, or Amazon 

Echo/Alexa. Companies such as Nuance Communications, Speechamatics, 

and Vocapia.

Integrated 

ML

Indirect You can create a model that helps solve your problem and integrate that 

model into your project or app.

Chapter 1  Introduction
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These CAGRs represent impressive growth. Some of the growth is attributed to DL; 

however, you should not discount the possible opportunities available to you with CML, 

especially for mobile devices.

�The Case for Classic Machine Learning on Mobile
Classic machine learning is not a very commonly used term. I will use the term to 

indicate that we are excluding deep learning. Figure 1-3 shows the relationship. These 

two approaches employ different algorithms, and I will discuss them in Chapter 4.

This book is about implementing CML for widely available computing devices 

using Java. In a sense, we are going after the “low-hanging fruit.” CML is much easier to 

implement than DL, but many of the functions we can achieve are no less astounding.

Figure 1-3.  Classic machine learning relationship diagram

Table 1-7.  AI and ML Explosive Growth

Firm Domain Growth CAGR

Bank of America Merrill Lynch AI US$58 bn in 2015 toUS$153 bn in 2020 27%

Transparency Market Research ML US$1.07 bn in 2106 toUS$19.86 bn in 2025 38%

Chapter 1  Introduction
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There is a case for mastering the tools of CML before attempting to create DL 

solutions. Table 1-8 highlights some of the key differences between development and 

deployment of CML and DL solutions.

Table 1-8.  Comparison of Classic Machine Learning and Deep Learning

Classic machine learning Deep learning

Algorithms
Algorithms are mostly commoditized. You do  

not need to spend a lot of time choosing 

the best algorithm or tweaking algorithms. 

Algorithms are easier to interpret and 

understand.

There is a lot of new research behind neural 

network algorithms. A lot of theory is involved 

and a lot of tweaking is required to find the best 

algorithm for your application.

Data requirements
Modest amounts of data are required. You can 

generate your own data in certain applications.

Huge amounts of data are required to train DL 

models. Most entities lack sufficient data to create 

their own DL models.

Performance
Sufficient performance for many mobile, web 

app, or embedded device environments.

The recent growth in deep learning neural 

network algorithms is largely due to their ability to 

outperform CML algorithms.

Language
Many Java tools are available, both open 

source and commercial.

Most DL libraries and tools are Python or 

C++ based, with the exception of Java-based 

DL4J. There are often Java wrappers available for 

some of the popular C++ DL engines.

Model creation
Model size can be modest. Possible to create 

models on desktop environments. Easy to 

embed in mobile devices or embedded devices.

Model size can be huge. Difficult to embed models 

into mobile apps. Large CPU/GPU resources 

required to create models.

(continued)
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For mobile devices and embedded devices, CML makes a lot of sense. CML 

outperforms DL for smaller data sets, as shown on the left side of the chart in Figure 1-7.

It is possible to create CML models with a single modern CPU in a reasonable 

amount of time. CML started on the desktop. It does not require huge compute resources 

such as multiple CPU/GPU, which is often the case when building DL solutions.

The interesting opportunity arises when you build your models on the desktop and 

then deploy them to the mobile device either directly or through API interface.  

Figure 1-4 shows a breakdown of funding by AI category according to Venture Scanning.

Table 1-8.  (continued)

Classic machine learning Deep learning

Typical use cases
Regression 

Clustering 

Classification 

Specific use cases for your data

Image classification 

Speech 

Computer vision 

Playing games 

Self-driving cars 

Pattern recognition 

Sound synthesis 

Art creation 

Photo classification 

Anomaly (fraud) detection 

Behavior analysis 

Recommendation engine 

Translation 

Natural language processing 

Facial recognition

Monetization
Indirect ML Model APIsMLaaS
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The data show that ML for mobile apps has approximately triple the funding of the 

next closest area, NLP. The categories included show that many of the common DL 

fields, such as computer vision, NLP, speech, and video recognition, have been included 

as a specific category. This allows us to assume that a significant portion of the ML apps 

category is classic machine learning.

Figure 1-4.  Funding by AI category
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1.4  �Deep Learning
I will not cover deep learning in this book because we can accomplish so much more 

easily with CML. However, in this short section I will cover a few key points of DL to help 

identify when CML might not be sufficient to solve an ML problem.

Morpheus described the dilemma we face when pursuing ML in the motion picture 

“The Matrix” (see also Figure 1-5):

“You take the blue pill, the story ends; you wake up in your bed and believe 
whatever you want to believe. You take the red pill, you stay in Wonderland, 
and I show you how deep the rabbit hole goes.”

Deep learning is a sort of Wonderland. It is responsible for all of the hype we have in 

the field today. However, it has achieved that hype for a very good reason.

You will often hear it stated the DL operates at scale. What does this mean exactly? 

It is a performance argument, and performance is obviously very important. Figure 1-6 

shows a relationship between performance and data set size for CML and DL.

Figure 1-5.  Machine learning red pill/blue pill metaphor
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The chart shows that CML slightly outperforms DL for smaller data set sizes. The 

question is, how small is small? When we design ML apps, we need to consider which 

side of the point of inflection the data set size resides. There is no easy answer. If there 

were, we would place the actual numbers on the x-axis scale. It depends on your specific 

situation and you will need to make the decision about which approach to use when you 

design the solution.

Fortunately, we have tools that enable us to define the performance of our CML 

models. In Chapters 4 and 5, you will look at how to employ the Weka workbench to show 

you if increasing your data set size actually leads to increased performance of the model.

�Identifying DL Applications
Deep learning has demonstrated superior results versus CML in many specific areas 

including speech, natural language processing, computer vision, playing games, self-

driving cars, pattern recognition, sound synthesis, art creation, photo classification, 

irregularity (fraud) detection, recommendation engine, behavior analysis, translation, 

just to name a few.

As you gain experience with ML, you begin to develop a feel for when a project is a 

good candidate for DL.

Figure 1-6.  Deep learning operating at scale
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Deep networks work well when

•	 Simpler CML models are not achieving the accuracy you desire.

•	 You have complex pattern matching requirements.

•	 You have the dimension of time in your data (sequences).

If you do decide to pursue a DL solution, you can consider the following deep 

network architectures:

•	 Unsupervised pre-trained network (UPN) including deep belief 

networks (DBN) and generative adversarial networks (GAN)

•	 Convolutional neural network (CNN)

•	 Recurrent neural network (RNN) including long short-term memory 

(LSTM)

•	 Recursive neural networks

I will talk more about algorithms in Chapter 4. When designing CML solutions, 

you can start by identifying the algorithm class of CML you are pursuing, such as 

classification or clustering. Then you can easily experiment with algorithms within the 

class to find the best solution. In DL, it is not as simple. You need to match your data to 

specific network architectures, a topic that is beyond the scope of this book.

While building deep networks is more complicated and resource intensive, as 

described in Table 1-8, tuning deep networks is equally challenging. This is because, 

regardless of the DL architecture you choose, you define deep learning networks using 

neural networks that are comprised of a large number of parameters, layers, and weights. 

There are many methods used to tune these networks including the methods in Table 1-9.

Table 1-9.  Tuning Methods for DL Networks

Tuning methods for DL neural networks

Back propagation Stochastic gradient descent

Learning rate decay Dropout

Max pooling Batch normalization

Long short-term memory Skipgram

Continuous bag of words Transfer learning
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As the table suggests, DL is complicated. The AI engines available for DL try to 

simplify the process. Table 1-10 shows many of the popular AI engines that include DL 

libraries. In this book, you will focus on CML solutions for Java developers.

When you create DL solutions there are not as many Java tools and libraries 

available. DL4J and Spark ML are the two most common Java-based packages that can 

handle DL. DL4J is built from the ground up with DL in mind, whereas the popular 

Spark open source project has recently added some basic DL capabilities. Some of the 

excellent C++ libraries do provide Java wrappers, such as Apache MXNet and OpenCV.

Table 1-10.  AI Engines with Deep Learning Libraries

Package Description Language

Theano Powerful general-purpose tool for mathematical programming. Developed  

to facilitate deep learning. High-level language and compiler for GPU.

Python

Tensor 

Flow

Library for all types of numerical computation associated with deep  

learning. Heavily inspired by Theano. Data flow graphs represent the  

ways multi-dimensional arrays (tensors) communicate. (Google)

C++ and 

Python

CNTK Computational Network Toolkit. Release by Microsoft Research under a 

permissive license.

C++

Caffe Clean and extensible design. Based on the AlexNet that won the 2012 

ImageNet challenge. 

(Facebook support)

C++ and 

Python

DL4J Java-based open source deep learning library (Apache 2.0 license). Uses a multi-

dimensional array class with linear algebra and matrix manipulation. (Skymind)

Java

Torch Open source, scientific computing framework optimized for use with GPUs. C

Spark 

MLlib

A fast and general engine for large-scale distributed data processing. MLlib is 

the machine learning library. Huge user base. DL support is growing.

Java

Apache 

MXNet

Open source Apache project. Used by AWS. State of the art models: CNN and 

LSTM. Scalable. Founded by University of Washington and Carnegie Mellon 

University.

C++Java 

Wrapper

Keras Powerful, easy-to-use library for developing and evaluating DL models. Best 

of Theano and Tensor flow.

Python

OpenCV Open source computer vision library that can be integrated for Android. C++Java 

Wrapper

Chapter 1  Introduction



22

While it is entirely possibly that DL can solve your unique problem, this book 

wants to encourage you to think about solving your problem, at least initially, by using 

CML. The bottom line before we move onto ML methodology and some of the technical 

setup topics is the following:

Deep learning is amazing, but in this book, we resist the temptation and 
favor classic machine learning, simply because there are so many equally 
amazing things it can accomplish with far less trouble.

In the rest of the book, we will choose the blue pill and stay in the comfortable 

simulated reality of the matrix with CML.

1.5  �ML-Gates Methodology
Perhaps the biggest challenge of producing ML applications is training yourself to think 

differently about the design and architecture of the project. You need a new data-driven 

methodology. Figure 1-7 introduces the ML-Gates. The methodology uses these six gates 

to help organize CML and DL development projects. Each project begins with ML-Gate 6 

and proceeds to completion at ML-Gate 0. The ML-Gates proceed in a decreasing order. 

Think of them as leading to the eventual launch or deployment of the ML project.
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As developers, we write a lot of code. When we take on new projects, we typically just 

start coding until we reach the deliverable product. With this approach, we typically end 

up with heavily coded apps.

With ML, we want to flip that methodology on its head. We instead are trying to achieve 

data-heavy apps with minimal code. Minimally coded apps are much easier to support.

�ML-Gate 6: Identify the Well-Defined Problem
It all starts with a well-defined problem. You need to think a bit more narrowly in this 

phase than you do when undertaking traditional non-ML projects. This can result in 

creating ML modules that you integrate into the larger system.

To illustrate this, let’s consider an example project with client requirements.

For the project, you map the client requirements to well-defined ML solutions. 

Table 1-11 shows the original client requirements mapped to the ML models.

Figure 1-7.  ML-Gates, a machine learning development methodology
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In this example, the client wants an in-store shopping app. These are perfectly valid 

requirements, but these high-level requirements do not represent well-defined ML 

problems. Your client has “expressed” a need to provide an “enhanced user experience.” 

What does that really mean? To create an ML solution, you need to think about the 

unexpressed or latent needs of the client.

The right column shows how to map the expressed requirements to well-defined ML 

solutions. In this case, you are going to build two separate ML models. You are going to 

need data for these models, and that leads you to ML-Gate 5.

�ML-Gate 5: Acquire Sufficient Data
Data is the key to any successful ML app. In MLG5, you need to acquire the data. Notice this 

is happening well before you write any code. There are several approaches for acquiring 

data. You have several options and I will discuss the following in detail in Chapter 2:

•	 Purchase the data from a third party.

•	 Use publicly available data sets.

•	 Use your own data set.

•	 Generate new static data yourself.

•	 Stream data from a real-time source.

Table 1-11.  Mapping Requirements to ML Solution

Initial client requirement Well-defined ML solution

R1: Create a shopping app so 

customers inside the physical 

store will have an enhanced user 

experience.

You identify the need for an in-store location-based solution 

to make this app useful. You can use a clever CML approach 

to achieve this. More about the implementation at the end of 

Chapter 6.

R2: Implement a loyalty program for 

shoppers who use the app to help 

increase sales.

Loyalty programs are all about saving and recalling 

customer data. You can build a ML model using product 

inventory data and customer purchase history data 

to recommend products to customers, resulting in an 

enhanced user experience.
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�ML-Gate 4: Process/Clean/Visualize the Data
Once you have a well-defined problem and sufficient data, it is time to architect your 

solution. The next three gates cover this activity. In MLG4, you need to process, clean, 

and then visualize your data.

MLG4 is all about preparing your data for the model construction. You need to 

consider techniques such as missing values, normalization, relevance, format, data 

types, and data quantity.

Visualization is an important aspect because you strive to be accountable for your 

data. Data that is not properly preprocessed can lead to errors when you apply CML or 

DL algorithms to the data. For this reason, MLG4 is very important. The old saying about 

garbage in, garbage out is something you must avoid.

�ML-Gate 3: Generate a Model
With your data prepared, MLG3 is where you actually create the model. At MLG3, you 

will make the initial decision on which algorithm to use.

In Chapter 4, I will cover the Java-based CML environments that can generate models. 

I will cover how to create models and how to measure the performance of your models.

One of the powerful design patterns you will use to build models offline for later use 

in Java projects. Chapter 5 will cover the import and export of “pre-built” models.

At MLG3, you also must consider version control and updating approaches for your 

models. This aspect of managing models is just as important as managing code updates 

in non-ML software development.

�ML-Gate 2: Test/Refine the Model
With the initial model created, MLG2 allows you to test and refine the model. It is here 

that you are checking the performance of the model to confirm that it will meet your 

prediction requirements.

Inference is the process of using the model to make predictions. During this process, 

you may find that you need to tweak or optimize the chosen algorithm. You may find that 

you need to change your initial algorithm of choice. You might even discover that CML is 

not providing the desired results and you need to consider a DL approach.

Passing ML-Gate 2 indicates that the model is ready, and it is time to move on to 

MLG1 to integrate the model.
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�ML-Gate 1: Integrate the Model
At MLG1, it is time to write actual production code. Notice how far back in the 

methodology you have pushed the actual code writing. The good news is that you will 

not have to write as much code as you normally do because the trained model you have 

created will accomplish much of the heavy lifting.

Much of the code you need to write at MLG1 handles the “packaging” of the model. 

Later in this chapter, I will discuss potential target environments that can also affect how 

the model needs to be packaged.

Typically, you create CML models at MLG3/4 with training data and then utilize the 

model to make predictions. At MLG1, you might write additional code to acquire new 

real-time data to feed into the model to output a prediction. In Chapter 6, you will see 

how to gather sensor data from devices to feed into the model.

MLG1 is where you recognize the coding time savings. It usually only take a few lines 

of code to open a prebuilt model and make a new prediction.

This phase of the methodology also includes system testing of the solution.

�ML-Gate 0: Deployment
At MLG0, it is time for deployment of the completed ML solution. You have several 

options to deploy your solution because of the cross-platform nature of Java, including

•	 Release a mobile app though an app store such as Google Play.

•	 Ship a standalone software package to your clients.

•	 Provide the software online through web browser access.

•	 Provide API access to your solution.

Regardless of how you deploy your ML solutions, the important thing to 
remember at MLG0 is that “ship it and forget it” is wrong.

When we create models, we have to recognize that they should not become static 

entities that never change. We need a mechanism to update them and keep them 

relevant. ML models help us to avoid the downside of code-heavy apps, but instead we 

must effectively manage the models we create so they do not become outdated.
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�Methodology Summary
You now have covered the necessary background on CML, and you have a methodology 

you can use for creating CML applications.

You have probably heard that saying “When you are a hammer, everything looks 

like a nail.” After becoming proficient in CML and adopting a data-driven methodology, 

you soon discover that most problems have an elegant ML solution for at least for some 

aspect of the problem.

Next, you will look at the setup required for Java projects in the book, as well as one 

final key ingredient for ML success: creative thinking.

1.6  �The Case for Java
There is always a raging debate about which programming language is the best, which 

language you should learn, what’s the best language for kids to start coding in, which 

languages are dying, which new languages represent the future or programming, etc.

Java is certainly a big part of these debates. There are many who question the ability 

of Java to meet the requirements of a modern developer. Each programming language 

has its own strengths and weaknesses.

Exercises in Programming Style by Christina Videira Lopes is interesting because 

the author solves a common programming problem in a huge variety of languages while 

highlighting the strengths and weaknesses of each style. The book illustrates that we can 

use any language to solve a given problem. As programmers, we need to find the best 

approach given the constraints of the chosen language. Java certainly has its pro and 

cons, and next I will review some reasons why Java works well for CML solutions.

�Java Market
Java has been around since 1995 when it was first released by Sun Microsystems, 

which was later acquired by Oracle. One of the benefits of this longevity is the market 

penetration it has achieved. The Java market share (Figure 1-8) is the single biggest 

reason to target the Java language for CML applications.
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Java applications compile to bytecode and can run on any Java virtual machine 

(JVM) regardless of computer architecture. It is one of the most popular languages with 

many millions of developers, particularly for client-server web applications.

When you install Java, Oracle is quick to point out that three billion devices run Java. 

It is an impressive claim. If we drill down deeper into the numbers, they do seem to be 

justified. Table 1-12 shows some more granular detail of the device breakdown.

Figure 1-8.  Java market

Table 1-12.  Devices Running Java

Device Count

Desktops running Java 1.1 billion

JRE downloads each year 930 million

Mobile phones running Java 3 billion

Blue-ray players 100% run Java

Java cards 1.4 billion manufactured each year

Proprietary boxes Unknown number of devices which include set-top boxes, 

printers, web cams, game consoles, car navigation systems, 

lottery terminals, parking meters, VOIP phone, utility meters, 

industrial controls, etc.
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The explosion of Android development and the release of Java 8 helped Java to gain 

some of its market dominance.

Java’s massive scale is the main reason I prefer it as the language of choice 
for CML solutions. Developers only need to master one language to produce 
working CML solutions and deploy them to a huge target audience.

For your target environments, the focus will be on the following three areas that 

make up the majority of installed Java devices:

•	 Desktops running Java: This category includes personal computers 

that can run standalone Java programs or browsers on those 

computers that can run Java applets.

•	 Mobile phones running Java: Android mobile devices make up a large 

part of this category, which also includes low-cost feature phones. One 

of the key findings of ML is the importance of data, and the mobile 

phone is arguably the greatest data collection device ever created.

•	 Java cards: This category represents the smallest of the Java 

platforms. Java cards allow Java applets to run on embedded devices. 

Device manufacturers are responsible for integrating embedded Java 

and it is not available for download or installation by consumers.

�Java Versions
Oracle supplies the Java programming language for end users and for developers:

•	 JRE (Java Runtime Environment) is for end users who wish to install 

Java so they can run Java applications.

•	 JDK (Java SE Developer Kit) Includes the JRE plus additional tools for 

developing, debugging, and monitoring Java applications.

There are four platforms of the Java programming language:

•	 Java Platform, Standard Edition (Java SE)

•	 Java Platform, Enterprise Edition (Java EE), is built on top of Java SE 

and includes tools for building network applications such as JSON, 

Java Servlet, JavaMail, and WebSocket. Java EE is developed and 

released under the Java Community Process.
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•	 Java Platform, Micro Edition (Java ME), is a small footprint virtual 

machine for running applications on small devices.

•	 Java FX is for creating rich internet applications using a lightweight API.

All of the Java platforms consist of a Java Virtual Machine (JVM) and an application 

programming interface (API).

Table 1-13 summarizes the current Java releases.

The most recent versions of Java have addressed some of the areas where the 

language was lagging behind some of the newer, more trendy languages. Notably, 

Java 8 includes the far-reaching feature known as the lambda expression along with 

a new operator (->) and a new syntax element. Lambda expressions add functional 

programming features and can help to simplify and reduce the amount of code required 

to create certain constructs.

In the book, you will not be using lambda expression, nor will you use any of the 

many new features added to the language in Java 10. Nonetheless, it is best to run with 

the latest updates on either the long-term support release of Java 8 or the currently 

supported rapid release of Java 10.

Table 1-13.  Latest Supported Java Releases

Release Description

Java 8 SE build 

171

Currently supported long-term-support (LTS) version. Introduces lambda 

expressions

Java 10 SE 

10.0.1

Currently supported rapid release version. Released March 20 2018. Includes 12 

new major features. Latest update was 171.

Android SDK Alternative Java software platform used for developing Android apps.

Includes its own GUI extensive system and mobile device libraries.

Android does not provide the full Java SE standard library.

Android SDK supports Java 6 and some Java 7 features.
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If you are looking for a comprehensive Java book, Java, The Complete Reference 

Tenth Edition from Oracle, which weighs in at over 1,300 pages, is an excellent choice. It 

covers all things Java. When it comes to Java performance tuning, Java Performance by 

Charlie Hunt and John Binu is the 720-page definitive guide for getting the most out of 

Java performance.

�Installing Java
Before installing Java, you should first uninstall all older versions of Java from your 

system. Keeping old versions of Java on your system is a security risk. Uninstalling older 

versions ensures that Java applications will run with the latest security and performance 

environment.

The main Java page and links for all the platform downloads are available at the 

following URLs:

https://java.com/en/

https://java.com/en/download/manual.jsp

Java is available for any platform you require. Once you decide which load you 

need, proceed to download and install. For the projects in this book, it is recommended 

to install the latest stable release of Java 8 SE. For the Android projects, allow Android 

Studio to manage your Java release. Android Studio will typically use the latest stable 

release of Java 7 until the Android team adds support for Java 8.

Figure 1-9 shows the main Java download page.

Figure 1-10 shows the Java installation.

Figure 1-11 shows the completion of the installation.
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Figure 1-9.  Downloading Java
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�Java Performance
Steve Jobs once famously said about Java, “It’s this big, heavyweight ball and chain.” 

Of course, Apple was never a big fan of the language. One of the results or perhaps the 

reason for Java’s longevity is the support and improvements added to the language over 

the years. The latest versions of Java offer far more features and performance than the 

early versions.

Figure 1-11.  Successful Java SE installation

Figure 1-10.  Installing Java
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One of the reasons developers have been hesitant to choose Java for ML solutions is 

the concern over performance.

Asking which language is “faster” or offers better performance is not really a useful 

question. It all depends, of course. The performance of a language depends on its 

runtime, the OS, and the actual code. When developers ask, “Which language offers the 

best performance for machine learning?” we really should be asking, “Which platform 

should I use to accomplish the training and building of machine learning models the 

most quickly and easily?”

Creating ML models using algorithms is CPU intensive, especially for DL 

applications. This book is about Java, but if you research ML, you know that Python 

and C++ are also very popular languages for ML. Creating a fair comparison of the 

three languages for ML is not easy, but many researchers have tried to do this and you 

can learn from their findings. Since ML is algorithm-based, they often try to choose a 

standard algorithm and then implement a comparison with other variables being equal, 

such as CPU and operating system.

Java performance is the hardest of the languages to measure because of several 

factors including unoptimized code, Java’s JIT compilation approach, and the famous 

Java garbage collection. Also, keep in mind that Java and Python may rely on wrappers to 

C++ libraries for the actual heavy lifting.

Table 1-14 shows a high-level summary of the performance for a mathematical 

algorithm implemented in three different languages on the same CPU and operating system. 

To learn more about the underlying research used in the summary, refer to these sources:

•	 Program Speed, Wikipedia, https://en.wikipedia.org/wiki/Java_

performance

•	 A Google research paper comparing the performance of C++, Java, 

Scala, and the Go programming language:

https://days2011.scala-lang.org/sites/days2011/files/ws3-1-

Hundt.pdf

•	 Comparative Study of Six Programming Languages:

https://arxiv.org/ftp/arxiv/papers/1504/1504.00693.pdf

•	 Ivan Zahariev’s blog:

https://blog.famzah.net/2016/02/09/cpp-vs-python-vs-perl-

vs-php-performance-benchmark-2016/

Chapter 1  Introduction

https://en.wikipedia.org/wiki/Java_performance
https://en.wikipedia.org/wiki/Java_performance
https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://days2011.scala-lang.org/sites/days2011/files/ws3-1-Hundt.pdf
https://arxiv.org/ftp/arxiv/papers/1504/1504.00693.pdf
https://blog.famzah.net/2016/02/09/cpp-vs-python-vs-perl-vs-php-performance-benchmark-2016/
https://blog.famzah.net/2016/02/09/cpp-vs-python-vs-perl-vs-php-performance-benchmark-2016/


35

Table 1-14 is certainly not an exhaustive performance benchmark, but does provide 

some insight to relative performance with possible explanation for the differences.

When you create prebuilt models for your ML solutions, it is more important to focus 

on the data quality and algorithm selection than programming language. You should 

use the programming language that most easily and accurately allows you to express the 

problem you are trying to solve.

Java skeptics frequently ask, “Is Java a suitable programming language for 

implementing deep learning?” The short answer: absolutely! It has sufficient 

performance, and all the required math and statistical libraries are available. Earlier 

in the chapter, I listed DL4J as the main Java package written entirely in Java. DL4J is 

a fantastic package and its capabilities rival all of the large players in DL. Bottom line: 

With multi-node computing available to us in the cloud, we have the option to easily add 

more resources to computationally intensive operations. Scalability is one of the great 

advantages provided by cloud-based platforms I will discuss in Chapter 2.

1.7  �Development Environments
There are many IDEs available to Java developers. Table 1-15 shows the most popular 

choices for running Java on the desktop or device. There are also some online browser-

based cloud Java IDEs such as Codenvy, Eclipse Che, and Koding, which I will not cover.

Table 1-14.  Language Performance Comparison - Mathematical Algorithms

Language % Slower than C++ Note

C++ - C++ compiles to native, so it is first.

Java 8 15% Java produces bytecode for platform independence. Java’s 

“kryptonite” has been its garbage collection (GC) overhead. 

There have been many improvements made to the Java GC 

algorithms over the years.

Kotlin 15+% Kotlin also produces Java Virtual Machine (JVM) bytecode. 

Typically, Kotlin is as fast as Java.

Python 55% Python has high-level data types and dynamic typing, so the 

runtime has to work harder than Java.
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The book uses two development environments for the projects depending on the 

target platform:

•	 Google’s Android Studio helps developers create apps for mobile 

devices running Android.

•	 The Eclipse IDE for Java projects that do not target Android mobile 

devices. This includes Java programs that target the desktop, the 

browser, or non-Android devices such as the Raspberry Pi.

�Android Studio
Google makes it easy to get started with Android Studio. The latest stable release build is 

version 3.1.2 available April 2018. The download page is https://developer.android.

com/studio/.

Figure 1-12 shows the available platforms. Note that the files and disk requirements 

are large. The download for 64-bit Windows is over 700MB.

Table 1-15.  Java IDE Summary

IDE Name Features

Android 

Studio

Android-specific development environment from Google. It has become the de facto 

IDE for Android. Offers a huge number of useful development and debugging tools.

IntelliJ IDEA Full featured, professional IDE. Annual fee. Many developers love IntelliJ. Android 

Studio was based on IntelliJ.

Eclipse Free open source IDE. Eclipse public license. Supports Git. Huge number of plugins 

available.

BlueJ Lightweight development environment. Comes packaged with Raspberry Pi.

NetBeans Free open source IDE, alternative to Eclipse. The open source project is moving to 

Apache, which should increase its popularity.
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Android Studio has really been improving the last couple of years. The full featured 

development environment for Android includes

•	 Kotlin version 1.2.30

•	 Performance tools

•	 Real-time network profiler

•	 Visual GUI layout editor

•	 Instant run

•	 Fast emulator

•	 Flexible Gradle build system

•	 Intelligent code editor

Figure 1-13 shows the show the Android Studio installation setup.

Figure 1-12.  Android Studio downloads
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Figure 1-14 shows the shows the Android Studio opening banner including the 

current version 3.1.2.

Android Studio uses the SDK Manager to manage SDK packages. SDK packages are 

available for download. The SDK packages are required to compile and release your app 

for a specific Android version. The most recent SDK release is Android 8.1 (API level 27), 

also known as Oreo. Figure 1-15 shows the Android SDK Manager.

Figure 1-13.  Android Studio install

Figure 1-14.  Android Studio Version 3.1.2
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Always keep an eye out for updates to both Android Studio and the SDK 
platforms you use. Google frequently releases updates, and you want your 
development environment to stay current.

This is especially important for mobile development when end users are constantly 

buying the latest devices.

�Eclipse
Android mobile apps are a big part of our CML strategy, but not the only target audience 

we have available to us. For non-Android projects, we need a more appropriate 

development environment.

Eclipse is the versatile IDE available from the Eclipse foundation. The download 

page is https://eclipse.org/downloads. Eclipse is available for all platforms. The 

most recent version is Oxygen.3a and the version is 4.7.3a. Similar to Android, Eclipse 

uses proceeds through the alphabet and, like Android, is also currently at “O.”

Figure 1-15.  Android Studio SDK Manager
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Similar to the options available for the Java distributions, developers can choose either

•	 Eclipse IDE for Java EE Developers (includes extra tools for web 

apps), or

•	 Eclipse IDE for Java Developers

The latter is sufficient for the projects in this book. Figure 1-16 shows the Eclipse IDE 

for Java Developers installation banner.

Eclipse makes it easy to get started with your Java projects. Once installed, you will 

have the option to

•	 Create new projects.

•	 Import projects from existing source code.

•	 Check out or clone projects from the Git source code control system.

The Git checkout feature is very useful, and you can use that option to get started 

quickly with the book projects. Figure 1-17 shows the Eclipse IDE for Java Developers 

startup page with the various options.

Figure 1-16.  Eclipse install
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One of the big advantages of Eclipse is the huge number of plugins available. There 

are plugins for almost every imaginable integration. Machine learning is no exception. 

Once you get a feel for the types of ML projects you are producing, you may find the 

Eclipse plugins in Table 1-16 to be useful. For the book projects, you will use a basic 

Eclipse installation without plugins.

Figure 1-17.  Eclipse IDE for Java developers
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It is important to keep your Eclipse environment up to date. Figure 1-18 shows 

the Eclipse startup banner with the current version. Just as with your Java installation, 

Android Studio, and Android SDK platforms, always keep your Eclipse IDE up to date.

Figure 1-18.  Eclipse IDE for Java developers

Table 1-16.  Eclipse IDE Machine Learning Related Plugins

Eclipse ML plugin Description

AWS Toolkit Helps Java developers integrate to the AWS services to their Java projects.

Google Cloud Tools Google-sponsored open source plugin that supports the Google Cloud 

Platform. Cloud Tools for Eclipse enables you to create, import, edit, build, 

run, and debug in the Google cloud.

Microsoft Azure Toolkit The Azure Toolkit for Eclipse allows you to create, develop, configure, test, 

and deploy lightweight, highly available, and scalable Java web apps.

R for Data Science Eclipse has several plugins to support the R statistical language.

Eclipse IoT 80 plugins available.

Eclipse SmartHome 47 plugins available.

Quant Components Open source framework for financial time series and algorithmic trading.

Chapter 1  Introduction



43

�Net Beans IDE
The Net Beans IDE is an alternative for Java developers who do not want to use Eclipse. 

The download page is https://netbeans.org.downloads.

Eclipse has gained more users over the years, but NetBeans still has its supporters. 

Recently, Oracle announced that it would turn over NetBeans to the Apache Foundation 

for future support. Fans of NetBeans see this as a positive development because now the 

long-time supporters of NetBeans will be able to continue its development.

I will not be using NetBeans in the book, but you are free to do so. The projects 

should import easily. It is an IDE worth keeping an eye on in the future. Figure 1-19 

shows the NetBeans main page.

Figure 1-19.  NetBeans IDE
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1.8  �Competitive Advantage
Earlier in this chapter, you developed a strategy to deploy CML apps for Java-

based devices. You also established a methodology, the ML-Gates for data-driven 

development. The goal is to create a competitive advantage and monetize your ML 

solutions. Achieving this goal takes more than just using the development tools that are 

readily available to everyone.

This section will discuss two additional ingredients needed to help create a 

competitive advantage when designing ML solutions:

•	 Creative thinking

•	 Bridging domains

One of the key success factors when trying to create ML solutions is creativity. You 

need to think out of the box. It is a cliché, but it often takes a slightly different perspective 

to discover a unique ML solution.

�Standing on the Shoulders of Giants
If you visit the mathematics, computer science, or physics departments of your local 

college or university, you will find academic research papers plastered on the corridor 

walls. Upon closer look, you will find that many of these works focus on machine 

learning. If you search online, you will also find many of these papers.

PhD students in mathematics or statistics usually author these papers. They typically 

spend months or even years on the particular topic they are exploring. These papers are 

often difficult for developers to understand. Sometimes we may only grasp a fraction of 

the content. However, these papers are a very useful resource in our search for creative 

ideas.

Academic research papers can provide valuable ideas for content and 
approaches we can utilize in our machine learning apps.

Leveraging the findings of these researchers could potentially help you identify a 

solution, or save you a lot of time. If you find a relevant research paper, do not be afraid 

to reach out to the author. In most cases, they are not software developers, and you could 

form an interesting partnership.
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�Bridging Domains
Everybody has access to the technologies in this book. How can we differentiate 

ourselves? Recall from Table 1-1 in the beginning of this chapter, ML terminology 

originates from different domains. Figure 1-20 shows a graphical view of the domains. 

As developers, we approach the problem from the technology domain. With our toolkits, 

we occupy a unique position, allowing us to produce Java ML solutions that lie at the 

intersection of the domains.

Businesses have the data, the capital ($) to deploy, and many problems they need to 

solve. The scientists have the algorithms. As Java developers, we can position ourselves 

at the intersection and produce ML solutions. Developers who can best understand 

the business problem, connect the problem to the available data, and apply the most 

appropriate algorithm will be in the best position for monetization.

Figure 1-20.  Domain relationships
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1.9  �Chapter Summary
I have covered quite a few broad topic areas in this chapter. A quick review of the key 

findings follows. Keep them in mind as you proceed through the rest of the book.

�Key Findings

	 1.	 Adopt a data-driven methodology.

	 2.	 “Set it and forget it” is wrong. You need to update models 

frequently to reflect changes in the underlying data.

	 3.	 Adopt a data-driven methodology like the ML-Gates.

	 4.	 Always start with a clearly defined problem.

	 5.	 DL is not required to produce amazing solutions. You can use 

CML techniques, which are far easier to build and implement for 

many real-world scenarios.

	 6.	 DL can operate at scale. The more data you can feed to the model, 

the more accurate it becomes.

	 7.	 CML performs better for smaller data sets.

	 8.	 Think creatively to gain a competitive advantage.

	 9.	 Scientific research papers can provide an excellent source of 

ideas.

	 10.	 Think across domains. Bridge the gap between the technology, 

business, and science domains.

Chapter 1  Introduction



47
© Mark Wickham 2018 
M. Wickham, Practical Java Machine Learning, https://doi.org/10.1007/978-1-4842-3951-3_2

CHAPTER 2

Data: The Fuel 
for Machine Learning
Machine learning is all about data. This chapter will explore the many aspects of data 

with the goal of meeting the following objectives:

•	 Review the data explosion and three megatrends that are making this 

machine learning revolution possible.

•	 Introduce the importance of data and reprogramming yourself to 

think like a data scientist.

•	 Review different categories of data.

•	 Review various formats of unstructured data, including CSV, ARFF, 

and JSON.

•	 Use the OpenOffice Calc program to prepare CSV data.

•	 Find and use publicly available data.

•	 Introduce techniques for creating your own data.

•	 Introduce preprocessing techniques to enhance the quality of your 

data.

•	 Visualize data with JavaScript (Project).

•	 Implement data visualization for Android (Project).
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2.1  �Megatrends
Why is the ML revolution happening now? It is not the first time. In Chapter 1, I reviewed 

the previous AI booms and subsequent winter periods. How do we know if this time it is 

for real? Three transformational megatrends are responsible for the movement.

Three megatrends have paved the way for the machine learning revolution 
we are now experiencing:

1)	 Explosion of data

2)	 Access to highly scalable computing resources

3)	 Advancement in algorithms

It is worth diving a little deeper into each of these megatrends.

�Explosion of Data
You have probably seen those crazy statistics about the amount of data created on a 

daily basis. There is a widely quoted statistic from IBM that states that 90% of all data 

on the Internet today was created since 2016. Large amounts of data certainly existed 

prior to 2016, so the study confirms what we already knew: people and devices today are 

pumping out huge amounts of data at an unprecedented rate. IBM stated that more than 

2.5 exabytes (2.5 billion gigabytes) of data is generated every day.

How much data is actually out there, and what are the sources of the data? It is hard 

to know with any degree of certainty. The data can be broken down into the following 

categories:

•	 Internet social media

•	 Internet non-social media

•	 Mobile device data

•	 Sensor data

•	 Public data

•	 Government data

•	 Private data

•	 Synthetic data
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Table 2-1 attempts to provide some insight into each category.

Table 2-1.  Data Categories

Data Category Observation

Internet data There are 3.8 billion desktop global Internet users.

In 2017, users watched 4 million YouTube videos per minute.

There were 5 billion daily Google searches in 2017.

Social media data There are 655 million tweets per day.

There are 1 million new social media accounts per day.

There are 2 billion active Facebook users.

67 million Instagram posts are added each day

Mobile device data 22 billion text messages were sent each day in 2017.

There are 3.5 billion mobile device Internet users.

40 million wearable devices sold in 2017.

91% of people own a mobile device.

Sensor data 56% of people own a smart device.

There will be 25 billion connected things by 2020.

Individual sensors could top 1 trillion by 2020.

The Internet of Things (IoT) market is all about sensors. IoT market projected 

growth from US$ 3 trillion in 2014 to US$ 9 trillion in 2020, a 20% CAGR.

(continued)
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As Table 2-1 suggests, there are many types of data. If you require a specific type of 

data for your ML project, a quick Google search will probably identify a dataset that can 

at least get you started on a proof of concept.

We can digitize practically anything today. Once digitized, the data becomes 
eligible for machine learning.

Table 2-1.  (continued)

Data Category Observation

Public data Research institutions make available large datasets. For example, University of 

California Irvine (UCI) has many useful datasets:  

http://archive.ics.uci.edu/ml/index.php

Awesome public datasets on GitHub:  

https://github.com/awesomedata/awesome-public-datasets

CIA World Factbook offers information on the history, population, economy, 

government, infrastructure, and military of 267 countries: 

www.cia.gov/library/publications/the-world-factbook/

AWS public datasets is a huge resource of public data, including the 1000 

Genome Project and NASA’s database of satellite imagery of Earth:  

https://aws.amazon.com/datasets

Government data Census data.

Debt and financing data.

Election commission data.

The US Government pledged to make all government public data freely 

available online:  

https://data.gov

Private data Individuals increasingly are collecting their own data due to availability of low 

cost sensor devices and smartphones with accelerometers and GPS capability.

Synthetic data Computer-generated data that mimics real data.
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You have heard the term “big data.” Similar to the terminology used in ML, the usage 

of this term is also inconsistent. Table 2-2 shows some guidelines for relative data sizes 

and the related architectures.

Typically, big data refers to datasets larger than one terabyte (TB).

You may not be working with data at big data scale on your projects, but it is 

important to consider data scalability when designing ML projects. Much of the data 

existing today is unstructured. This means that it is not labelled or classified. It is often 

text-based and does not really follow a predefined structure. I will discuss unstructured 

data in Chapter 3.

Both Chapters 2 and 3 present tools to help tame the data explosion.

�Highly Scalable Computing Resources
The explosion in data would not be possible if not for the ability to store and process 

the data. The second megatrend is the highly scalable computing resources we have 

available to us today.

Cloud service providers have changed the game for practitioners of ML. They give us 

on-demand highly scalable access to storage and computing resources. These resources 

are useful for many ML functions, such as the following:

•	 Storage: We can use cloud services as a repository for our ML data.

•	 CPU resources: We can create ML models more quickly by 

configuring highly available distributed compute clusters with a large 

CPU capacity.

Table 2-2.  Relative Data Sizes

Name Size Database Architecture

Normal data < 1GB Flat/SQL Local

Small data 1GB - 100GB NoSQL Local

Medium data 100GB - 1TB NoSQL Distributed

Big data > 1TB HadoopSpark Distributed multiple clusters
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•	 Hosting: We can provide hosted access to our data or ML models 

using API or other interface methods.

•	 Tools: All of the cloud providers have a full suite of tools that we can 

use to create ML solutions.

Chapter 3 will take a closer look at the potential ML use cases with cloud providers.

�Advancement in Algorithms
The third megatrend is the advancement in ML algorithms. ML algorithms have been 

around for quite some time. However, once the explosion in data and IaaS providers 

began to emerge, a renewed effort to optimize their performance began to take place.

Advancements for DL neural network algorithms were the most significant. However, 

CML algorithm advancements also took place. Chapter 4 will explain the algorithms in 

detail.

2.2  �Think Like a Data Scientist
Data is the single most important ingredient for a successful ML project. You need high 

quality data, and you need lots of it.

DM is all about working with your data to identify hidden patterns. ML takes 

the additional step of applying algorithms to process the data. Data is the essential 

ingredient for each discipline. In both DM and ML, you are often working with large, 

loosely structured data sets.

You need a good understanding of your data before you can construct ML models 

that effectively process your data. In The Signal and the Noise by Nate Silver, the author 

encourages us to take ownership for our data. This is really the essence of thinking like a 

data scientist.

As software engineers, we are used to thinking about the code. It has always been all 

about the code for us. Recall from Chapter 1, I flipped the development methodology on 

its head, placing the data up front in the ML-Gates and holding the coding phase until 

the very end.
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Mr. Silver summed it up perfectly:

“The numbers have no way of speaking for themselves. We speak for them. 
Data-driven predictions can succeed, and they can fail. It is when we deny 
our role in the process that the odds of failure rise. Before we demand more 
of our data, we need to demand more of ourselves.”

In today’s ML world, you must start by considering how data can influence your 

solution, decide what data you have, how you can organize it, and then let the data drive 

your software architecture.

�Data Nomenclature
A first step in taking ownership for your data is classifying the type of data itself. Before 

you can understand which algorithm is best suited for your well-defined ML problem, 

you need to understand the nature and type of the data you possess. Table 2-3 shows the 

two broad types of data.

Qualitative data, classified as

•	 Nominal if there is no natural order between the categories  

(such as eye color).

•	 Ordinal if an ordering exists (such as test scores or class rankings).

Quantitative data, classified as

•	 Discrete, if the measurements are integers (such as population of a 

city or country).

•	 Continuous, if the measurements can take on any value, usually 

within some range (such as a person’s height or weight).

Table 2-3.  Summary of General Data Types

Data Type Description Example

Qualitative data Observations fall into separate distinct categories. Data 

is discrete because there is a finite number of possible 

categories into which each observation may fall.

Favorite color: blue, 

green, brown

Quantitative data Quantitative or numerical data arise when the 

observations are counts or measurements.

Height of a person
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�Defining Data
Recall from Chapter 1, MLG5 requires you to identify and define your data. Next, you 

will perform this task for a dataset that you will use for a project later in the book, the 

Android Activity Tracker application.

The data shown in Table 2-4 is from the PAMAP2_Dataset, available from the 

University of California Irvine (UCI) machine learning repository mentioned in Chapter 1. 

It is freely available data and there are no constraints when using it for research purposes. 

You can download the dataset via the link below. The dataset is not included in the book 

resources due to its size. The files are large so the download can take a bit of time.

http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring

To collect this data, the researchers asked subjects to wear sensors while performing 

various activities. The table shows each of the fields together with a data type assigned.

Table 2-4.  Defining Your Data

Field (column) Units Example Data type

Timestamp Seconds 3.38 Quantitative Continuous

Activity ID 1 lying

2 sitting

3 standing

4 walking

5 running

6 cycling

7 nordic

2 Qualitative Nominal

Heart rate BPM 104 Quantitative Discrete

Sensor 1: Temperature Degrees C 30 Quantitative Discrete

Sensor 1: 3D acceleration ms-2 2.37223 Quantitative Continuous

Sensor 1: 3D acceleration ms-2 8.60074 Quantitative Continuous

Sensor 1: 3D gyroscope rad/s 3.51058 Quantitative Continuous

Sensor 1: 3D magnetometer uT 2.43954 Quantitative Continuous

Sensor 1: Orientation rad 8.76165 Quantitative Continuous
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Recognizing what type of data you have is the first step in demanding more of 

yourself when it comes to your data. You will take a closer look at the PAMAP2_Dataset 

in Chapter 7 when you build a classifier for the data.

2.3  �Data Formats
Data format is a key consideration when building ML models. Table 2-5 shows the 

important file formats and their common file extensions.

When you locate data for your ML project, it could potentially be in any format. Plain 

text files are common. The data files are often .txt or .dat files, both of which are text 

files. Many of the data files in the University of California-Irvine repository referenced in 

Table 2-1 are .dat text files.

The first step in using text data files for ML is to open them and understand how they 

are structured. You can use any text editor. Figure 2-1 shows the subject101.dat file from 

the PAMAP2_Dataset.

Table 2-5.  Common Data File Types

File format Filename extension

Text files .txt 

.dat

Comma-separated value (CSV) Supported by all spreadsheet packages 

including MS Excel and OpenOffice Calc

.csv

Attribute-relation file format Supported by Weka .arff

JavaScript Object Notation (JSON) Standard interchange format widely used 

on the Internet

.json  

.txt
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You can see that spaces separate the data fields. Each row contains 54 values or 

columns separated by a single space character. Note that Figure 2-1 does not show all of 

the columns. The easiest way to work with datasets for ML is to convert them to CSV. The 

first step is to make a copy of the .dat file and then rename it as .csv. Figure 2-2 shows the 

list of all files in the PAMAP2_Dataset, with the newly created .csv copy file.

Figure 2-1.  File subject101.dat from the PAMAP2_Dataset opened in a text editor
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Just because you renamed the file as a .csv does not make it so. You must convert 

it. It is possible to perform the conversion with your text editor by performing a global 

search and replace of the spaces to commas, but there is a better way. You will use a 

spreadsheet program.

�CSV Files and Apache OpenOffice
Spreadsheet programs have the advantage of allowing you to do some basic editing to 

our data. They also allow you to import or export CSV files easily.

Microsoft Excel can get the job done, but the Apache open source program OpenOffice 

is a better choice. OpenOffice contains a spreadsheet, word processor, presentation 

package, database, vector graphic editor, and math equation editor. You are interested in 

Calc, the spreadsheet program. You are required to download the entire suite.

Calc has several advantages over Excel, including

•	 Calc is free and open source, licensed under the Apache 2.0 software 

license. It is part of the OpenOffice suite.

•	 Calc is better at importing and exporting CSV files. There are more 

options available, such as escaping text fields in quotation marks (“ ”).

Figure 2-2.  PAMAP2_Dataset after copying the .dat file to .csv
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•	 Calc supports UTF-8 encoding of data fields. This is important, 

especially if you have projects that use international or multi-byte 

character sets.

•	 Calc supports BOM handling. BOM stands for Byte Order Marker. 

Windows systems use the BOM as the first character in every file to 

inform applications of the byte order. Files created in Windows that 

contain the BOM can be problematic on other platforms, such as 

Unix. When you save files in Calc, Calc lets you specify how you want 

the BOM handled (very thoughtful; thank you, Apache).

Figure 2-3 shows the installation screen for Apache OpenOffice. The OpenOffice 

download link is www.openoffice.org/download/.

Figure 2-3.  Installing Apache OpenOffice
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Once you have installed OpenOffice, launch Calc. If you are familiar with the 

Microsoft Office suite, you will notice that Calc looks similar. Open the subject101.csv 

file you copied earlier. Figure 2-4 shows that Calc recognizes it as a text file and give you 

some import options on the text import window.

Calc allows you to select the character set, the field delimiter, and even the column 

type for each of the detected fields. The most important setting for this data is to select 

the space as the separator. Once you have the space checked, you will see the data 

populated correctly in the fields shown at the bottom of the text import window.

Figure 2-4.  OpenOffice Calc importing a CSV file
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After you click OK, Calc will import the data.

The PAMAP2_Dataset you will be using is large. Just the single file  
subject101.dat contains 54 columns and 376,417 rows. It is a large 
spreadsheet, so give Calc some time to import or export the file.

Figure 2-5 shows the file after importing into Calc.

Figure 2-5.  subject101.dat file imported into OpenOffice Calc
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The advantage of using Calc over a text editor is that once Calc completes the import, 

it is easy to view and manipulate the data. Some common operations for manipulating 

ML data in Calc are as follows:

•	 You can search for missing values. The data in this file is relatively 

clean. The abbreviation “NaN” stands for “Not a Number” and 

represents missing values. Column C contains mostly NaN values.

•	 It’s easy to add or delete columns. If you wish to remove a column(s), 

just highlight the column, right-click, and delete. Removing 

unneeded columns reduces the size and therefor reduces the time 

and storage space required to import, export, and train the ML model.

•	 Macros can remove rows or columns based on a condition, such as 

the value of a cell. This is useful if, for example, you want to remove 

all of the missing value rows in the data. Calc can use Excel macros. It 

also allows you to record keystrokes.

•	 You can export a file in true CSV format using “ , ” as the separator 

character.

Figure 2-6 shows the save dialog box for the CSV file export. Click the “Keep Current 

Format” box to save a CSV file.

Figure 2-6.  Saving the CSV file
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Most ML environments allow the direct import of CSV files, and Apache OpenOffice 

Calc is the best way to prepare such files. CSV is the simplest data format you can use for 

ML. Next, you will look at additional approaches that are more sophisticated.

�ARFF Files
ARFF is an abbreviation for Attribute-Relation File Format. It is an extension of the CSV 

file format. The Weka machine learning environment uses ARFF files to load data. Weka 

comes with many sample datasets. The iris flower dataset is one of the most famous in 

machine learning. The following code block shows a partial view of the iris.arff dataset 

included with the environment:

001   @relation iris-weka.filters.unsupervised.attribute.Remove-R1-2

002   % Iris.arff file available with the Weka distribution (partial file)

003

004   @attribute petallength numeric

005   @attribute petalwidth numeric

006   @attribute class {Iris-setosa,Iris-versicolor,Iris-virginica}

007

008   @data

009   1.4,0.2,Iris-setosa

010   1.4,0.2,Iris-setosa

011   1.3,0.2,Iris-setosa

012   1.7,0.2,Iris-setosa

013   1.5,0.4,Iris-setosa

014   1,0.2,Iris-setosa

015   1.7,0.5,Iris-setosa

016   1.9,0.2,Iris-setosa

017   1.5,0.2,Iris-setosa

018   1.4,0.2,Iris-setosa

019   4.7,1.4,Iris-versicolor

020   4.5,1.5,Iris-versicolor

021   4.9,1.5,Iris-versicolor

022   4,1.3,Iris-versicolor

023   3.3,1,Iris-versicolor

024   4.2,1.3,Iris-versicolor
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025   6.6,2.1,Iris-virginica

026   5.4,2.3,Iris-virginica

027   5.1,1.8,Iris-virginica

Note that the familiar CSV data follows the @data directive at the bottom of the file. 

In ARFF files, an additional header at the top provides metadata about the data and 

labels. The following describes the differences between CSV and ARFF file formats:

•	 Comments start by preceding the comment line with the percentage 

sign, %.

•	 The @relation directive starts the file and allows you to specify the 

name of the dataset.

•	 The @attribute directive defines the name and data type of each 

attribute in the dataset.

•	 The header section of ARFF files (above the @data directive) can 

contain blanks lines.

•	 Nominal data, such as the @attribute class, are followed by the set of 

values they can take on, enclosed in curly braces.

•	 CSV data follows the @data directive.

•	 Unknown or missing values in the dataset are specified with the 

question mark, ?.

Weka includes conversion tools to convert CSV data to ARFF format. Once you 

generate the initial ARFF file, there is no need to convert it again.

�JSON
CSV and ARFF files are very useful. However, the flat structure of the CSV data does 

not provide much flexibility. You need an additional tool in your toolbox to help you 

represent more complex data structures.

As Java or Android developers, you are probably familiar with JSON. JSON stands for 

JavaScript Object Notation. It is a very lightweight, text-based, flexible exchange format. 

JSON is a data exchange format that is widely used between servers and client devices.

Chapter 2  Data: The Fuel for Machine Learning



64

You can learn more about how JSON works and find downloads for all of the 

platforms at https://json.org.

JSON has several important properties that have helped to make it hugely popular 

across the Internet and especially for mobile app development:

•	 JSON is easy for us to read and write and is easy for machines to parse 

and generate.

•	 There is a JSON library available for almost every platform and 

language.

•	 JSON is based on a subset of the JavaScript programming language, 

hence its name.

•	 JSON is a text format and is language independent.

•	 JSON uses conventions that are familiar to programmers of the 

C-family of languages.

JSON uses a simple but powerful collection of arrays and objects to represent data. 

Name/value pairs often represent the data within an object. This has made JSON very 

popular throughout the Internet. The flexible structure of JSON enables it to represent 

very complex data relationships.

In JSON, the placement of parenthesis and brackets to represent arrays and objects is 

very important. Figure 2-7 shows valid construction rules for JSON structures.
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Notice the usage of the [ (left bracket) and ] (right bracket) and { (left brace) and } 

(right brace) as identifiers in JSON.

JSON consists of two primitives, objects and arrays, and values that can be strings, 

numbers, objects, arrays, or Booleans. JSON is surprisingly simple, as Figure 2-7 shows.

Using only the following two primitives, you can construct complex structures to 

represent almost any type of data relationship:

•	 JSONObject: An unordered set or collection of name/value pairs

•	 JSONArray: An ordered list of values

Figure 2-7.  JSON structure definition
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Both JSON objects and JSON arrays contain values. A value can be any of the 

following:

•	 A string in double quotes

•	 A number

•	 True

•	 False

•	 Null

•	 Another JSON object

•	 Another JSON array

Notice that values can also be JSON objects or JSON arrays. This feature of JSON 

provides the secret that makes it so powerful:

JSON is a powerful way to represent structures because it allows for nesting 
of the JSON object and JSON array structures.

Recall the iris.arff file discussed in the last section. You can also represent this data 

using JSON, as shown in part in Listing 2-1. Note that just like the ARFF file, the JSON 

representation also contains a header and a data section.

Listing 2-1.  iris.json, a JSON Representation of the iris.arff Dataset

001   {

002       "header" : {

003           "relation" : "iris",

004           "attributes" : [

005               {

006                   "name" : "sepallength",

007                   "type" : "numeric",

008                   "class" : false,

009                   "weight" : 1.0

010               },

011               {

012                   "name" : "sepalwidth",

013                   "type" : "numeric",

014                   "class" : false,
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015                   "weight" : 1.0

016               },

017               {

018                   "name" : "petallength",

019                   "type" : "numeric",

020                   "class" : false,

021                   "weight" : 1.0

022               },

023               {

024                   "name" : "petalwidth",

025                   "type" : "numeric",

026                   "class" : false,

027                   "weight" : 1.0

028               },

029               {

030                   "name" : "class",

031                   "type" : "nominal",

032                   "class" : true,

033                   "weight" : 1.0,

034                   "labels" : [

035                       "Iris-setosa",

036                       "Iris-versicolor",

037                       "Iris-virginica"

038                   ]

039               }

040           ]

041       },

042       "data" : [

043           {

044               "sparse" : false,

045               "weight" : 1.0,

046               "values" : [

047                   "5.1",

048                   "3.5",

049                   "1.4",

050                   "0.2",
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051                   "Iris-setosa"

052               ]

053           },

054           {

055               "sparse" : false,

056               "weight" : 1.0,

057               "values" : [

058                   "4.9",

059                   "3",

060                   "1.4",

061                   "0.2",

062                   "Iris-setosa"

063               ]

064           },

065           {

066               "sparse" : false,

067               "weight" : 1.0,

068               "values" : [

069                   "5.9",

070                   "3",

071                   "5.1",

072                   "1.8",

073                   "Iris-virginica"

074               ]

075           }

076       ]

077   }

The file iris.json is available in the book resources if you would like to experiment 

with the iris dataset in JSON format.

You might be asking why we need JSON for data files when we already have CSV and 

ARFF that are perfectly capable of representing data for ML. There are two reasons you 

may want to consider using JSON:

•	 JSON is ideal for data interchange over the network. If you need to 

send data to a networked device, it is a trivial task with JSON and 

HTTP, but it is not as simple to accomplish with CSV and ARFF.
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•	 Many NoSQL databases use JSON files as the object store for their 

data. I will discuss these databases further in Chapter 3. This 

database architecture solves the scalability problem presented by 

large amounts of data.

JSON files are always larger than the CSV or ARFF versions because they contain 

structure and spaces for indenting. The increased file size is a fair trade-off for the 

additional flexibility JSON provides.

The Weka desktop environment makes it easy to convert between ARFF and 

JSON. You will explore Weka in Chapter 4.

2.4  �JSON Integration
JSON is an important part of ML solutions. One of the JSON advantages is that libraries 

exist for almost every development platform. It is truly cross-platform. Because your focus 

is on Java, you will next examine how to integrate JSON for Android and the Java JDK.

�JSON with Android SDK
JSON has been included in Android since the earliest release of the SDK. Table 2-6 shows 

a list of the Android JSON classes including the exception handler.

Table 2-6.  JSON Classes Included in the Android SDK

Classes Description

JSONArray A dense indexed sequence of values

JSONObject A modifiable set of name/value mappings

JSONStringer Implements JSONObject.toString( ) and JSONArray.toString( )

JSONTokener Parses a JSON-encoded string into the corresponding object

JSONException Thrown to indicate a problem with the JSON API
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The JSONArray and JSONObject objects are all you need to manage your JSON 

encoding and decoding. The following code shows how to define JSON objects and JSON 

arrays in Android:

001   // Define a new JSON Object

002   �// Remember that JSON Objects start with { (left brace) and end with 

} (right brace)

003

004   JSONObject jsonObject = new JSONObject(myJsonDataString);

005

006   // Define a new JSON Array

007   �// Remember that JSON Arrays start with [ (left bracket) and end with ]  

(right bracket)

008

009   JSONArray jsonArray = new JSONArray(myJsonDataString);

The trick to using JSON effectively lies in defining a JSON data structure using the 

JSON object and JSON array primitives to represent your data. You will explore how to 

achieve this later in the chapter.

�JSON with Java JDK
While JSON classes have been included in the Android SDK since the very beginning, this 

is not the case for the Java JDK. To use JSON with Java, you must include the JSON library.

There are many JSON libraries available for Java. Table 2-7 shows two common 

sources for Java JDK JSON libraries.

Table 2-7.  JSON Libraries for the Java JDK

JSON Source Link

Google JSON Simple https://code.google.com/archive/p/json-simple/

Maven JSON Repository https://mvnrepository.com/artifact/org.json/json
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The Maven Repository is useful because it allows you to download the jar file 

for Eclipse. There are many version of JSON available at the Maven Repository. The 

20171018 version works well and is available at the following link:

https://mvnrepository.com/artifact/org.json/json/20171018

Figure 2-8 shows the download page for this version of Java JSON. The page contains 

instructions for many different types of build environments, including Maven, Gradle, 

SBT, Ivy, and others. The Java build environment you use will determine how you 

include the JSON library.

If you wish to download the jar file for Eclipse, select “JSON Libraries” and download 

the jar zip file. You can then directly add the jar file library to the Eclipse Java build Path.

Figure 2-9 shows the json-20171018.jar file added to the Eclipse Java build path.

Figure 2-8.  Maven Repository for Java JSON
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With JSON added to the Java JDK, you can now leverage the power of JSON for all 

of your ML data structure needs. Regardless of whether you are using the external Java 

JSON library for Eclipse or the built-in Android JSON library in Android Studio, the Java 

application code you write to work with JSON objects and arrays will be identical.

2.5  �Data Preprocessing
One of the key activities for ML-Gate 5 is data preprocessing. There are many potential 

actions you can take in this area to improve the quality of your data. This section does 

not include an exhaustive list. Nor does it provide a deep dive into the mathematical or 

statistical principles behind each technique.

There is no substitute for getting to know your data. It is a time-intensive 
manual exercise. Investing the time up front to analyze your data to improve 
its quality and integrity always pays dividends in the latter phases of the 
ML project.

Figure 2-9.  Eclipse IDE Java build path for the JSON jar library
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Think of the following sections as a checklist. You can use the checklist to explore the 

various aspects of your data before selecting the ML algorithm, building the ML model, 

or writing any code. Data cleaning pays off over time.

�Instances, Attributes, Labels, and Features
At the top of the checklist is the identification of instances, attributes, labels, and 

features. ML-Gate 6 requires you to have a well-defined problem. This directly relates to 

understanding the structure of your data. Some important definitions:

•	 Instances: A row of data. Instances are the inputs to a machine 

learning scheme. CSV files can express instances as independent 

lists, while JSON can represent relationships within the data.

•	 Attributes: A column of data. Attributes can have different data types, 

such as real, integer, nominal, or string. With supervised learning, 

there are type types of attributes, features and labels.

•	 Features: The descriptive attributes.

•	 Labels: What you are attempting to predict or forecast.

For example, if you look back at the data in Table 2-3, the table shows the attributes 

(or columns) of the PAMAP2 dataset. Recall in this dataset there are 54 attributes  

(or columns). In this dataset, the Activity Id is the label and the remaining attributes are 

features.

Checklist questions to ask:

	 1.	 Are all the instances consistent in their structure?

	 2.	 How many instances are there?

	 3.	 How many attributes are there?

	 4.	 What is the format and raw file size of the dataset?

	 5.	 Do attributes contain a label(s) or are all of the attributes features?

	 6.	 Do all label(s) contain a compliant value?

	 7.	 Can you add new attributes later?

	 8.	 If you add a new attribute, how would you update existing 

instances for the new attribute?
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The last two questions are particularly important because datasets can grow and 

evolve over time. When you add new attributes, you essentially have missing values for 

that attribute in each of the instances that predate the change. In the next section on 

missing values and duplicates, I will discuss some techniques to handle this situation.

�Data Type Identification
Table 2-2 summarized the data types for ML datasets. Define the data type of each 

attribute in your dataset. The data types can be either

•	 Qualitative data (nominal or ordinal)

•	 Quantitative data (discrete or continuous)

Some companies maintain a data dictionary for all of their software projects. The 

data dictionary represents a formal record of all of the data assets, including the data 

type of each attribute. This is a best practice. Maintaining the data dictionary creates 

overhead, but just as data cleaning pays off over time, so too does data organizational 

knowledge.

Checklist questions to ask:

	 1.	 Does each attribute in the dataset have a defined data type?

	 2.	 During the project lifecycle, when changes are made that affect 

data design, are the data types updated?

�Missing Values and Duplicates
Missing values and duplicates are an important aspect of data preprocessing.

Missing values can take the form of blanks, dashes, or NaN, as you saw in the 

PAMAP2_Dataset.

Missing values are not hard to find. The difficulty lies with what action you should 

take when you find them. Missing values tend to fall into two categories:

•	 MCAR (Missing Completely At Random)

•	 Systematically missing: The values are missing for a good reason.

Chapter 2  Data: The Fuel for Machine Learning



75

Just because the value is missing does not tell you why the value is missing. When 

you find missing values, you have to think carefully about the resolution. Most ML 

algorithms do not place significance on missing values. Replacing a missing value with a 

generated value can sometimes improve the overall data integrity. It all depends on the 

context of the data.

There are multiple approaches you can consider when handling missing values. 

When you have familiarity with the data and the collection methodology, you can make 

an informed judgement and select one of the following approaches:

•	 Take no action. Preserve the value as missing.

•	 Replace the value with a “Not Tested” or “Not Applicable” indicator. 

In such cases, you are adding detail and improving data integrity 

because you actively know that a value should not be present.

•	 If a label contains a missing value, you should consider deleting the 

entire instance because it does not add value to a model you train.

•	 Assign a lower range or upper range value for a missing value if the 

data type is quantitative and range bound. Sometimes you have 

normalized values within a range, and assigning a value minimum or 

maximum value can make the algorithm more efficient.

•	 Impute a value for the missing value. Impute means to replace the 

value with a new value based on study of other attributes.

Duplicates are not always easy to find. Once located, they are relatively easy to 

handle. They can be deleted, or if practical, they can be combined with other instances if 

not all attributes are duplicated.

Checklist questions to ask:

	 1.	 Does the dataset have duplicate values? How do you find the 

duplicate values? When duplicates exist, delete the instance if 

dataset integrity is increased.

	 2.	 Does the dataset have missing values? How will missing values be 

resolved to maximize dataset integrity?
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�Erroneous Values and Outliers
Finding errors and outliers in the data is more difficult than identifying missing values 

and duplicates.

Let’s start with an example. The dataset shown in Figure 2-10 is a time series 

containing 24 data points. The graph shows data released by the Belgium Ministry of 

Economy. It represents international phone calls made during a 23-year period.

It is obvious that the data contains several outliers during a seven-year period. 

Knowing the context of this data, something does not make sense. We could imagine 

a scenario where such a dataset could make sense. For example, what if we looked at 

manufacturing output of a steel plant, and we knew there was a multi-year period where 

a war caused a surge in demand? Such a chart might make sense.

However, in this case, the data does not make sense. Should we disregard the outliers?

It turns out this data was erroneous. During the period from 1963 to 1970, the 

ministry used a different recording methodology. During the affected period, the data 

represents the total number of minutes instead of the total number of calls. Oops.

Figure 2-10.  Time series dataset of 24 points
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Even if we did not know what caused the mistake, we should still delete the outliers 

because they do not make sense in the context of the data. We might not notice the 

minor impact at years 1963, 1970, but retaining them would not have a drastic impact.

The chart includes two regression lines. Regression is a simple way to make 

predictions. The Least Squares method is not very accurate in this case because it is 

highly susceptible to outliers. The Least Median Squares regression method does a much 

better job at ignoring the outliers.

The lesson learned in this case is that we need to assess outliers and then select an 

ML method to minimize outlier impact if possible.

Ironically, machine learning can detect outliers. One-class learning is the special 

class of ML used for this task.

Checklist questions to ask:

	 1.	 Does a visualization of the data show outliers?

	 2.	 Do the outliers make sense in the context of the data? If so, 

consider deleting the outliers.

	 3.	 If outliers persist, consider a method that can reasonably tolerate 

noisy data.

�Macro Processing with OpenOffice Calc
In Chapter 3, I will introduce the Weka ML environment. Weka has many capabilities 

for preprocessing data using its Java-based tools. However, you can also use the macro 

processing capabilities of OpenOffice Calc to preprocess your data.

Learning to use Calc spreadsheet macros is a very powerful ML tool. Macros allow 

you to make bulk changes to data files based on certain conditions. They allow you to 

automate a repetitious task. With large data sets, this can save you a lot of time and effort. 

Calc, just like Microsoft Excel, uses Visual Basic to handle macros.

Like Microsoft Excel, Calc uses the Visual Basic programming language for macros. 

It is not difficult to master. Calc macros can automate any spreadsheet operation you can 

perform manually. Calc allows you to record keystrokes to build macros. Calc also allows 

you to manually enter macro code.

Chapter 12 of the OpenOffice documentation contains an excellent introduction to 

Calc macros:

www.openoffice.org/documentation/manuals/userguide3/0312CG3-CalcMacros.pdf
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Additional documentation for Calc macros is available on the OpenOffice wiki page:

https://wiki.openoffice.org/wiki/Documentation/OOoAuthors_User_Manual/

Getting_Started/Creating_a_simple_macro

The following code shows a useful macro for iterating through all rows in a Calc 

spreadsheet and displaying non-empty cells. Calc and the Visual Basic language contain 

a huge library of functions and the possibilities are endless.

001   Sub TraverseRows

002      Dim oRange 'The primary range

003      Dim oSheet 'Sheet object

004      Dim oRows 'Rows object

005      Dim oRow 'A single row

006      Dim oRowEnum 'Enumerator for the rows

007      Dim s As String 'General String Variable

008

009      oSheet = ThisComponent.Sheets(3)

010      oRange = oSheet.getCellRangeByName("B6:C9")

011

012      oRows = oRange.getRows()

013

014      oRowEnum = oRows.createEnumeration()

015      Do While oRowEnum.hasMoreElements()

016         oRow = oRowEnum.nextElement()

017         s = s & NonEmptyCellsInRange(oRow, " ") & CHR$(10)

018      Loop

019      MsgBox s, 0, "Non-Empty Cells In Rows"

020   End Sub

If you are struggling to find a way to make a necessary cleanup of your data, Calc 

macros are a good solution, especially for CSV data.

If you have huge spreadsheets, Calc macros might not offer the best performance for 

data cleaning and manipulation. The limitations of Apache OpenOffice Calc are

•	 Maximum number of rows: 1,048,576

•	 Maximum number of columns: 1,024

•	 Maximum number of sheets: 256
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�JSON Validation
If you use JSON as a data format, you need to validate your JSON after creation. There are 

many online tools that can perform JSON validation. Many of them are open source or 

created with scripting languages, so you can run the validation locally if you wish.

Figure 2-11 shows the JSON validation of the file you created earlier in the chapter by 

the online tool available at https://jsonlint.com.

Figure 2-11.  JSON validation
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It is always a good idea to run any JSON you create, especially if you create it 

manually, through a JSON validation.

Checklist question to ask:

	 1.	 Do you represent data with JSON? Validate all JSON files prior to 

model building.

2.6  �Creating Your Own Data
Earlier in the chapter, I listed private data and synthetic data as potential data sources. 

We generate these two classes of data. Synthetic data represents data created by 

a computer. We are all carry the greatest data collection device ever created: the 

smartphone. You can leverage its data creation capability to solve a problem presented 

in Chapter 1, the indoor location tracking requirement (R1) shown in Table 1-11. You will 

explore a potential solution for this requirement next.

�Wifi Gathering
Our mobile devices are capable of scanning Wifi and Bluetooth networks. When you use 

those Wifi scanning apps, you will notice there are many Wifi signals spread across the 

available channels. These signals represent data as you move throughout a space.

Figure 2-12 shows a typical room that has three different Wifi access points (AP) 

visible to a device. The signal strength received by the device depends on many factors, 

such as proximity to the AP and obstructions within the space. The combined strength of 

these signals throughout the space can allow you to locate the device.
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Two units of measure, dBm and RSSI, represent signal strength. RSSI is a relative 

index, while dBm is an absolute number. For dBm, the closer to 0 dBm, the better  

the signal is. Android devices return relevant RSSI in the range between -100 (weakest) 

to -55 (strongest).

You’ll use the Android WifiManager to gather signal strength information from all 

the visible Wifi access points (AP). Mobile phone owners are familiar with the four bar 

Wifi signal strength icon shown in the status bar of the device. Android provides a static 

method called WifiManager.calculateSignalLevel that computes the signal level in a 

range of 0-4. Android uses this value to generate the signal strength icon. This method 

also can provide the normalized value shown in Figure 2-12.

As an example, let’s consider the simple code required to gather the Wifi signal 

strength data and save it in JSON format as the Android device moves around a room. 

Listing 2-2 shows the key Android code. This code is not a complete Android project, but 

the code excerpt file, WifiCollect.java is available in the book resources if you wish to 

leverage it when building your own project.

Figure 2-12.  Indoor location using Wifi signal strength
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Listing 2-2.  WifiCollect.java - Sample Android Code for Wifi Data Acquisition

001   private WifiManager wifi;

002   private JSONObject wifiResults = new JSONObject();

003

004   @Override

005   public void onCreate() {

006       wifi = (WifiManager) this.getSystemService(Context.WIFI_SERVICE);

007

008       // register wifi intent filter

009       IntentFilter intentFilter = new IntentFilter();

010       intentFilter.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

011       registerReceiver(mWifiScanReceiver, intentFilter);

012

013       wifiResults = new JSONObject();

014   }

015

016   �private final BroadcastReceiver mWifiScanReceiver = new 

BroadcastReceiver() {

017       @Override

018       public void onReceive(Context c, Intent intent) {

019           �if (intent.getAction().equals(WifiManager.SCAN_RESULTS_

AVAILABLE_ACTION)) {

020               List<ScanResult> wifiScanList = wifi.getScanResults();

021               for (int i = 0; i < wifiScanList.size(); i++) {

022                   �String name = wifiScanList.get(i).BSSID.

toLowerCase();

023                   int rssi = wifiScanList.get(i).level;

024                   �Log.v(TAG, "wifi-ssid: " + name + " => " + rssi + 

"dBm");

025                   try {

026                       wifiResults.put(name, rssi);

027                   } catch (Exception e) {

028                       Log.e(TAG, e.toString());

029                   }

030               }
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031               saveData();

032           }

033       }

034   };

To summarize the key code in Listing 2-2:

•	 You define a JSONObject in line 002. This object will hold the names 

(SSID) and the signal strengths of all the Wifi networks the device 

identifies during the scan.

•	 In the onCreate() method, you use the Android WifiManager to 

create an intent and register a BroadcastReceiver.

•	 Because you are using Wifi, remember to include permissions 

for SCAN_WIFI_NETWORKS and ACCESS_WIFI_STATE in the 

manifest file.

•	 You define the BroadcastReceiver in line 016. Android notifies the 

BroadcastReceiver when it detects new Wifi networks.

•	 Lines 022 and 023 show the network name and the signal level 

retrieved from the Wifi scan. These values are stored in the 

JSON object in line 026. The JSON object grows in size as the 

BroadcastReceiver receives new networks.

•	 Line 031 shows a call to a saveData() function. This function will 

save the JSON object for processing. You may wish to send it over the 

network to a server, add it to a NoSQL database, or use it internally to 

build a model on the device.

This approach to determining indoor location is very accurate and can operate with 

very low latency. To achieve the result requires a two-step process:

	 1.	 Map out your space and collect the Wifi data samples using code 

such as shown in Listing 2-2. For each sample you capture, assign 

it to a label identifying the device location within the space. For 

example, you may wish to divide your target space into a square 

grid and assign numbers to the grid locations.

	 2.	 Once you have collected all the data for the space, use it to build 

the ML model. You can then use the model to make predictions 

about where you are located in the room.
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Indoor location using ML is a powerful example of creating your own data to solve a 

problem with ML. To make the solution even more robust, you can implement the same 

approach for Bluetooth signals.

While this example illustrates the gathering and usage of RF data in the device 

vicinity, there is another type of data the smartphone excels at producing: sensor 

data. I will discuss sensor data in detail in the last chapter, including ML sensor data 

implementations for Java devices and Android smartphones.

2.7  �Visualization
Being able to visualize your data is important. Visualization allows you to gain insights 

into your data easily. Data visualization is one of the best tools you can add to your 

toolkit on the journey to demanding more from yourself with respect to your data.

One of the best approaches to implement data visualization is to use third-party 

open source graphic libraries in conjunction with the web browser or Android WebView. 
Applying this approach, you can generate amazing visualizations with minimal coding.

�JavaScript Visualization Libraries
Table 2-8 shows a partial list of visualization libraries available. JavaScript is the language 

of choice for most of these libraries because it provides the following benefits:

•	 All modern browsers support JavaScript, including Android’s 

WebView control. This means any visualizations you create will be 

widely available across platforms.

•	 JavaScript excels at interactive functionality. This makes your 

visualizations more compelling than static images.
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Table 2-8.  JavaScript Visualization Libraries

Library/Link Description

D3 Plus  

d3plus.org

D3 Plus version 2.0. Amazing set of examples and 

visualizations.

Leaflet

leafletjs.com

An open-source JavaScript library for mobile-friendly 

interactive maps.

Timeline JS  

timeline.knightlab.com

Open-source tool that enables anyone to build visually 

rich, interactive timelines.

Highcharts  

highcharts.com

Widely used library. Simple and powerful charting 

API. License required.

FusionCharts  

fusioncharts.com

JavaScript charts for web and mobile.  

Includes 90+ charts and 1000+ maps. Free.

Dygraphs  

dygraphs.com

Fast, flexible, open source JavaScript charting library. 

Allows users to explore and interpret dense data sets.

Plotly  

plot.ly

Compose, edit, and share interactive data visualization 

via the Web.

Raw  

rawgraphs.io

The missing link between spreadsheets and data 

visualization.

Chart.js  

chartjs.org

Simple, flexible JavaScript charting. Open source.  

Nice transitions and animations.

Datawrapper  

datawrapper.de

From data to beautiful charts. Used by many journalists. 

Monthly subscription model.

ChartBlocks  

chartblocks.com

Online chart building tool. Monthly subscription model.

Google Charts  

developers.google.com/chart

Simple to use, rich gallery of interactive charts. Free.

Tableau  

tableau.com

Large-scale commercial solution with many large 

clients. NYSE listed.

Infogram  

infogr.am

Large corporate vendor with complete offering.
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The libraries in Table 2-8 are all highly capable of helping you to visualize your data. 

When you explore them, you may find that one of them matches your requirements best. 

Highcharts and D3 Plus are two of the most popular libraries.

�D3 Plus
D3 stands for data-driven documents. D3 is a JavaScript visualization package. It is 

lightweight. D3 Plus is an extension to D3. The current supported version of D3 Plus is 

version 2.0.

You will explore D3 Plus in more detail for the following reasons:

•	 D3 is a based on JavaScript, which provides a smooth interactive user 

experience.

•	 All of the modern browsers can render JavaScript, so it’s a good 

solution for Java as well as Android apps.

•	 D3 Plus makes it very simple to create and display CSV and JSON 

visualizations.

•	 Free and open source.

Download links for the D3 library, D3 Plus, and a comprehensive gallery of charts are 

located at

https://d3js.org

https://d3plus.org

github.com/d3/d3/wiki/Gallery

Next, you will use the dendogram class of charts for the D3 visualization project.  

A dendogram is a tree diagram useful to display hierarchy. The D3 gallery page links to 

dendogram examples at https://bl.ocks.org/mbostock/4063570.

2.8  �Project: D3 Visualization
You saw earlier in this chapter that CSV and JSON are useful data formats for ML. In this 

project, you will implement D3 visualization for the desktop browser.

Dendograms are useful for showing hierarchy. The project will explore a variety of 

dendograms to visualize both CSV and JSON data.
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Table 2-9 shows the project file summary. The book resources contain the zip file, 

d3_visualization.zip, which includes all the project files.

Visualization is all about choosing the best graphical style to represent your data. 

Dendogram charts work well for JSON visualization because they show hierarchy.

In this project, you have two data file sources, flare.csv and flare.json. They 

represent different file formats of the same data. D3 is capable of rendering each version 

into several interesting dendograms. If you wish to render another chart type, the code 

will likely be very similar to the examples; just check the D3 gallery for a code example of 

the chart you desire.

To view the visualization in a browser, you must set up a web server to host the files 

shown in Table 2-9. If you wish to view them locally on your desktop, you can install a 

local web server, depending on your desktop platform.

If you need to install a web server, refer to the following platform-specific 

instructions:

•	 Windows: IIS is the most popular web server on Windows but is not 

enabled by default. To enable it, follow these instructions:

	 https://msdn.microsoft.com/en-us/library/ms181052 

(v=vs.80).aspx

Table 2-9.  D3Visualization Project File Summary

Project Name: D3 Visualization
Source: d3_visualization.zip
Type: Desktop browser
File Description

d3.min.js D3 library

flare.csv CSV data file

flare.json JSON data file

dendo-csv.html Dendogram example using CSV data

tree-dendo-csv.html Tree dendogram example using CSV data

radial-dendo-csv.html Radial tree dendogram example using CSV data

collapse-tree-json.html Collapsible tree dendogram example using JSON data

cluster-dendo-json.html Cluster dendogram example using JSON data
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•	 Windows: You may also install WAMP software on windows. WAMP 

stands for Windows, Apache web server, MySQL, PHP. To install 

WAMP for Windows, follow these instructions:

	 www.wampserver.com/en/

•	 Mac: Apache web server comes preinstalled on Apple computers.

Once you have your web server set up, just point your browser at one of the five HTML 

files. Each file renders a slightly different dendogram for the chosen data format type.

D3 visualizations require a minimal amount of JavaScript code. The JavaScript code 

is included within the HTML file. Listing 2-3 shows an example of the dendo-csv.html 

file that renders a dendogram from CSV data.

There are two key parts in the structure of any D3 based visualizations:

•	 A reference to the D3 library file needs to be included. You can use 

either a local copy of the library or an online repository. Include the 

library reference within <script> tags (line 014).

•	 Specify the CSV file to be loaded for the visualization using the d3.csv 

assignment statement (line 025).

Note that Listing 2-3 includes the JavaScript code (lines 016-053) and the CSS style 

code (lines 004-010) used to format the visualization.

Listing 2-3.  dendo-csv.html

001   <!DOCTYPE html>

002   <meta charset="utf-8">

003

004   <style>

005   .node circle {fill: #999;}

006   .node text {font: 10px sans-serif;}

007   .node--internal circle {fill: #555;}

008   �.node--internal text {text-shadow: 0 1px 0 #fff, 0 -1px 0 #fff, 1px 0 

0 #fff, -1px 0 0 #fff;}

009   �.link {fill: none; stroke: #555; stroke-opacity: 0.4; stroke-width: 

1.5px;}

010   </style>

011

012   <svg width="1200" height="800"></svg>
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013

014   <script src="./d3.js"></script>

015

016   <script>

017   var svg = d3.select("svg"),

018       width = +svg.attr("width"),

019       height = +svg.attr("height"),

020       g = svg.append("g").attr("transform", "translate(40,0)");

021   var cluster = d3.cluster()

022       .size([height, width - 160]);

023   var stratify = d3.stratify()

024       �.parentId(function(d) { return d.id.substring(0, d.id.

lastIndexOf(".")); });

025   d3.csv("flare.csv", function(error, data) {

026     if (error) throw error;

027     var root = stratify(data)

028         �.sort(function(a, b) { return (a.height - b.height) || a.id.

localeCompare(b.id); });

029     cluster(root);

030     var link = g.selectAll(".link")

031         .data(root.descendants().slice(1))

032       .enter().append("path")

033         .attr("class", "link")

034         .attr("d", function(d) {

035           return "M" + d.y + "," + d.x

036               + "C" + (d.parent.y + 100) + "," + d.x

037               + " " + (d.parent.y + 100) + "," + d.parent.x

038               + " " + d.parent.y + "," + d.parent.x;

039         });

040     var node = g.selectAll(".node")

041         .data(root.descendants())

042       .enter().append("g")

043         �.attr("class", function(d) { return "node" + (d.children ? " 

node--internal" : " node--leaf"); })

044         �.attr("transform", function(d) { return "translate(" + d.y + 

"," + d.x + ")"; })
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045     node.append("circle")

046         .attr("r", 2.5);

047     node.append("text")

048         .attr("dy", 3)

049         .attr("x", function(d) { return d.children ? -8 : 8; })

050         �.style("text-anchor", function(d) { return d.children ? "end" : 

"start"; })

051         �.text(function(d) { return d.id.substring(d.id.lastIndexOf(".") 

+ 1); });

052   });

053   </script>

A dendogram aligns each of the lower-level leaf nodes, so the visualization appears 

right justified. Figure 2-13 shows the dendogram visualization of the CSV file that D3 

generates when you open the dendo-csv.html file in your browser.

Figure 2-13.  Dendogram visualization generated by dendo-csv.html
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The dendogram visualization is obviously much easier to read than the raw CSV file.

If you wish to change styling of the dendogram, you can modify the CSS elements 

in the HTML file in lines 004-010. CSS stands for cascading style sheet. It is a common 

language for webpage layout design and styling. It can control all aspects of a layout such 

as font, font size, margins, padding, spacing, alignment, etc.

If you wish to change the layout structure of the rendered dendogram, you can 

modify the JavaScript code that constructs the dendogram. For example, lines 045-046 

control the radius of the circles drawn to represent each node.

There are many other related visualizations useful for depicting ML data. The tree 

visualization is a variation on the dendogram. Think of it as a left-justified dendogram, 

where the nodes extend to the right as the tree depth increases.

Figure 2-14 shows the f lare.csv data file visualized as a tree. The tree display differs 

from the dendogram because of the way the JavaScript code renders the nodes. The  

tree-dendo-csv.html file actually gives you the choice to select whether you want the 

CSV data rendered as a dendogram or a tree.

Figure 2-14.  Tree visualization rendered, tree-dendo-csv.html
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The final CSV visualization you will produce with D3 is the radial dendogram. A 

picture is worth a thousand words, and the radial dendogram is possibly the most artistic 

and useful visualization. For large datasets, the dendogram and tree can become lengthy 

and require scrolling to view the entire visualization. The radial dendogram fills a circle, 

so it tends to be more compact and easily visible.

Figure 2-15 shows a radial dendogram produced by radial-dendo-csv.html. Even 

though the font may be small and there are many labels in the dataset, the radial 

dendogram gives you a good feel for the structure of your data. With practice, you can take 

a quick glance at a radial dendogram of your data and identify problems or irregularities.

Figure 2-15.  Radial dendogram visualization, radial-dendo-csv.html
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The final two visualizations in the project will use JSON data as their source. The file 

f lare.json is a JSON version of the f lare.csv file used in the prior three visualizations.

The cluster-dendo-json.html file structure is similar to the approach used with CSV 

data. The following code block assigns the JSON file in D3 at line 008:

001   <!DOCTYPE html>

002   <meta charset="utf-8">

003   <body>

004   <script src="./d3.v3.min.js"></script><script>

005

006   ...

007

008   d3.json("flare.json", function(error, root) {

009     if (error) throw error;

010

011   ...

012

013   });

014   d3.select(self.frameElement).style("height", height + "px");

015...</script>

Note that when loading JSON into D3, there are some requirements for the JSON 

structure. The JSON needs to be compatible with D3’s hierarchy rules. If you examine the 

f lare.json file, you will see that it is comprised of “name” and “children” nodes.

001   {

002    "name": "flare",

003    "children": [

004     {

005      "name": "analytics",

006      "children": [

007       {

008        "name": "cluster",

009        "children": [

010

011         ...
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If your JSON data does not comply with this structure, you may need to convert it so 

D3 can parse and display it properly. There are tools available to handle this conversion. 

D3 includes a function called d3.nest() and there is also an external function called 

underscore.nest(). Documentation and download links for these functions can be found at

https://github.com/d3/d3-collection

https://github.com/iros/underscore.nest

Once you have your JSON data in the proper format, D3 can render it.

Figure 2-16 shows the cluster dendogram visualization of the JSON file as rendered 

by cluster-dendo-json.html.

Figure 2-16.  Cluster dendogram visualization, cluster-dendo-json.html
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Flare.json  is a large file with many nodes. D3 uses this file for many of its visualization 

examples. If you look inside the HTML file, you will see the following line of code:

<svg width="1200" height="2200"></svg>

This sets the height of the render window to 2200 pixels. That is probably larger than 

your monitor, which means you will have to scroll to see the whole visualization. If you 

reduced the height to match your display size, for example 1200 pixels, you will see that 

the visualization becomes so compressed that is no longer readable.

A solution to this problem is the collapsible tree. Remember, JavaScript is interactive. 

The collapsible tree visualization allows you to click on nodes to expand or contract 

them. Figure 2-17 shows the much cleaner collapsible tree visualization as rendered by 

collapse-tree-json.html.

Figure 2-17.  Collapsible tree, collapse-tree-json.html
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The collapsible tree is useful because it allows you to click on individual node to 

expand them. It does not leave your entire screen cluttered with the whole visualization. 

It is a much easier way to explore the data interactively. The collapse-tree-json.html 

file is larger than the other versions because it contains JavaScript code, such as the 

following function, to manage the interactive node navigation:

001   // Toggle children on click.

002   function click(d) {

003     if (d.children) {

004       d._children = d.children;

005       d.children = null;

006     } else {

007       d.children = d._children;

008       d._children = null;

009     }

010     update(d);

011   }

In this project, you covered five different data visualizations from the dendogram 

family: three with CSV source data and two with JSON source data.

JavaScript produces excellent visualizations. If you browse the D3 gallery, 
you will find a visualization suitable for your data and example JavaScript 
code to help implement your visualization.

Having a JavaScript solution for visualizing data allows you to see what the data looks 

like. These visualizations can be beautiful, and the power of visualization is obvious. 

Visualizations give you a better feel for the structure of your data than the raw data files 

can provide. This is a first step in understanding the data and being able to identify 

hidden patterns in the data.

With CSV and JSON visualization in your toolbox, you have begun to demand more 
of yourself with respect to your data.
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2.9  �Project: Android Data Visualization
This project will extend the work you with did with D3 visualizations on the desktop to 

Android mobile devices. Displaying visualization may not be a core function of your 

Android app, but there may be times when it is very helpful for your users.

Table 2-10 shows the project file summary.

You saw D3 visualization working on the desktop browser, so setting it up for Android 

is straightforward.

Rather than importing a visualization or charting library into your app, you will take 

a shortcut and use Android’s WebView class to display the D3 visualization. WebView is 

a system component powered by Chrome that allows Android apps to display content 

from the web directly inside an application. The class provides a clean, integrated user 

experience for your app. Like any good web browser, WebView supports JavaScript, so it 

works well for D3 content.

Figure 2-18 shows the Android Data Visualization project in Android Studio.

Table 2-10.  Project File Summary - Android Data Visualization

Project Name: Android Data Visualization
Source: android_data_vis.zip
Type: Android
File Description

app->src->main 
AndroidManifest.xml

Configuration file.

app->src->main->res->layout 
activity_main.xml

Layout file for display of the WebView.

app->src->main->assets 
d3.min.js 
flare.csv 
radial-dendo-csv.html

Assets if you decide to build the app with local copy of 

the assets. Not required if you load the assets from  

web server.

app->src->main->javaMainActivity.
java

Main Java source to load and display the D3 

visualization.
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There are two methods to handle the D3 integration with WebView, depending on 

how you decide to manage access to the required files:

•	 Internal: Place the required files inside the app assets folder.

•	 External: Load the assets from a remote web server.

The following code from MainActivity.java shows how to set up a full screen 

WebView layout. A progressDialog provides an indication to the user that network 

content is loading, which is especially useful if the resources are loaded from external 

server. Lines 067-068 show the radial-dendo-csv.html file reference, depending on 

whether you choose the internal or external approach.

001   package android.wickham.com.datavis;

002

003   import android.annotation.SuppressLint;

004   import android.app.Activity;

005   import android.app.ProgressDialog;

006   import android.content.DialogInterface;

Figure 2-18.  Project Android Data Visualization in Android Studio
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007   import android.graphics.Color;

008   import android.os.Bundle;

009   import android.webkit.WebChromeClient;

010   import android.webkit.WebView;

011

012   public class MainActivity extends Activity {

013

014       private WebView webView;

015

016       @SuppressLint("SetJavaScriptEnabled")

017       @Override

018       protected void onCreate(Bundle savedInstanceState) {

019           super.onCreate(savedInstanceState);

020           setContentView(R.layout.activity_main);

021

022           webView = (WebView) findViewById(R.id.wb_webview);

023

024           //Scroll bars should not be hidden

025           webView.setScrollbarFadingEnabled(false);

026           webView.setHorizontalScrollBarEnabled(true);

027           webView.setVerticalScrollBarEnabled(true);

028           webView.setFitsSystemWindows(true);

029

030           //Enable JavaScript

031           webView.getSettings().setJavaScriptEnabled(true);

032

033           //Set the user agent

034           webView.getSettings().setUserAgentString("AndroidWebView");

035

036           //Clear the cache

037           webView.clearCache(true);

038           webView.setBackgroundColor(Color.parseColor("#FFFFFF"));

039           webView.setFadingEdgeLength(10);

040           webView.getSettings().setBuiltInZoomControls(true);

041           webView.getSettings().setDisplayZoomControls(false);

042

Chapter 2  Data: The Fuel for Machine Learning



100

043           final Activity activity = this;

044           �final ProgressDialog progressDialog = new 

ProgressDialog(activity);

045           �progressDialog.setProgressStyle(ProgressDialog.STYLE_SPINNER);

046           �progressDialog.setProgressStyle(ProgressDialog.THEME_HOLO_LIGHT);

047           progressDialog.setCancelable(true);

048

049           webView.setWebChromeClient(new WebChromeClient() {

050               public void onProgressChanged(WebView view, int progress) {

051                   progressDialog.setCanceledOnTouchOutside(true);

052                   progressDialog.setTitle("Loading visualization ...");

053                   �progressDialog.setButton("Cancel", new 

DialogInterface.OnClickListener() {

054                       �public void onClick(DialogInterface dialog, int 

which) {

055                           webView.destroy();

056                           finish();

057                       } });

058                   progressDialog.show();

059                   progressDialog.setProgress(0);

060                   activity.setProgress(progress * 1000);

061                   progressDialog.incrementProgressBy(progress);

062                   if(progress == 100 && progressDialog.isShowing())

063                       progressDialog.dismiss();

064               }

065           });

066           �// Uncomment one of the following two lines based on Internal 

or External loading

067           �//webView.loadUrl("file:///android_asset/radial-dendo-csv.html");

068           �webView.loadUrl("https://www.yourwebserver.com/radial-dendo-

csv.html");

069       }

070   }
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The following code shows the layout file, fullscreen.xml. It includes the Android 

WebView control that is contained within a FrameLayout.

001   �<FrameLayout xmlns:android="http://schemas.android.com/apk/res/

android"

002       xmlns:tools="http://schemas.android.com/tools"

001       android:layout_width="match_parent"

002       android:layout_height="match_parent"

003       tools:context="android.wickham.com.datavis.MainActivity">

004

005       <WebView

006           android:id="@+id/wb_webview"

007           android:layout_width="fill_parent"

008           android:layout_height="fill_parent" />

009

010   </FrameLayout>

This Android app, when executed, downloads the HTML/JavaScript file and then 

displays the visualization on your device, as shown in Figure 2-19.
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WebView contains many configuration parameters that control how the visualization 

will appear, such as zooming, scrolling, etc. Keep in mind that this approach can display 

any D3 visualization, not just the dendograms you have focused on for their usefulness 

with ML data files such as CSV and JSON files.

2.10  �Summary
This chapter was all about data. It certainly is the fuel for machine learning. In 

the subsequent chapters, you will be selecting algorithms, building models, and 

finally integrating those models. Without careful attention to the data in this early 

phase, you will not be able to achieve the desired results. Figure 2-20 shows how the 

data topics you learned in this chapter fit into the overall ML-Gates methodology 

introduced in Chapter 1.

Figure 2-19.  Android Data Visualization app screenshot
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It should come as no surprise that the initial three gates of your methodology all 

center on the data.

Failure to invest adequate time working with your data at ML-Gates 6/5/4 will 

usually lead to poor results when you get to ML-Gates 3 and 2. At that time, it becomes 

expensive to go back to resolve data issues.

The next section offers a quick review the key chapter findings before moving on to 

cloud-based ML implementations.

�Key Data Findings
You are on the path to becoming data scientist when you follow these best practices:

•	 To develop ML applications, you must adopt a data-driven 

methodology.

Figure 2-20.  The initial three gates of the ML-Gates methodology are data driven

Chapter 2  Data: The Fuel for Machine Learning



104

•	 To develop successful ML applications, you must demand more of 

yourself with respect to your data.

•	 Most of your code is data wrangling. The 80/20 rule applies: for any 

given project you undertake, 80% of your time will be spent working 

with the data.

•	 High-quality, relevant data for a well-defined problem is the starting 

point.

•	 Understand what type of data you have. This will be necessary when 

you apply algorithms to the data in Chapter 4.

•	 Define your data types and consider keeping them in a data 

dictionary.

•	 There are many sources you can use for your ML application data: 

public, private, government, synthetic, etc.

•	 You can generate your own data. In the chapter, you saw an example 

of using Android’s Wifi capabilities to implement indoor location 

tracking.

•	 You have many tools that you can use to manipulate data, including 

the Open Office Calc spreadsheet program. In Chapter 4, you will 

explore additional data filtering tools available in ML environments.

•	 The JSON, CSV, and ARFF formats are popular data formats for 

ML. Get comfortable with them all.

•	 Most entities do not have enough high-quality data for DL, while 

CML applications only require a reasonable amount of data to 

succeed.

•	 The smartphone is the best data collection device ever invented.

•	 Visualization is a key aspect of ML and understanding your data.

•	 To help you visualize your data, you can leverage third-party 

packages that make it easy to visualize data in the browser and on 

Android devices.
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CHAPTER 3

Leveraging Cloud 
Platforms
Cloud platforms can be very helpful for deploying ML. This chapter will explore the 

cloud provider offerings with the following objectives:

•	 A review of the cloud providers who offer IaaS solutions

•	 An overview of Google Cloud Platform (GCP) and Amazon Web 

Services (AWS) cloud offerings, including data storage, data 

preprocessing, model creation, and model deployment capabilities

•	 How to implement Weka in the cloud

•	 An overview of ML cloud provider API offerings

•	 Project: Implement GCP ML using the Cloud Speech API for Android

•	 An overview of cloud data tools for ML

•	 A review of cloud data strategies for ML, including the use of NoSQL 

databases

3.1  �Introduction
The availability of highly scalable computing resources is one of the three megatrends 

driving the AI explosion. In this chapter, you will analyze the cloud service providers.  

You are specifically looking for ways they can assist you in delivering ML solutions.
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The big four cloud providers that offer Infrastructure as a Service (IaaS)  solutions 

are the drivers behind this megatrend. Table 3-1 shows a summary of the big four service 

providers.

IaaS solutions allow you to scale your compute environment to match your 

demands in terms of CPU, memory, and storage requirements. You only need to pay for 

resources required. The also give you the ability to easily distribute your resources across 

geographic regions.

This approach is much easier and affordable than building your own servers and 

upgrading them when they became too slow.

In this chapter, you will investigate the cloud offerings from the major players to see 

how they can help you create and deploy ML solutions.

�Commercial Cloud Providers
One of the advantages of creating CML solutions compared to DL is that they require 

for less data and CPU resources. This generally enables you to create solutions entirely 

on the desktop. However, you should not overlook the cloud. The cloud providers 

continuously improve their ML offerings. Today they provide an amazing array of 

services and APIs that make it easier than ever for developers who do not have prior ML 

experience to create and deploy ML solutions.

Table 3-1.  Big Four US-Based Cloud Service Providers

IaaS Provider Website Note

Google Cloud Platform cloud.google.com Easy integration with all of the useful Google tools, 

including Android for mobile.

Amazon Web Services aws.amazon.com The largest cloud provider. Full service offering for ML.

Microsoft Azure azure.microsoft.com Fastest growing IaaS provider.

IBM Cloud ibm.com/cloud Pioneer in cloud ML with Watson.
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Cloud ML services are not free. Regardless of the type of container or virtu-
alization technology they use, dedicated or shared hardware (CPU, mem-
ory, storage) is required at some point. Each provider typically has a free 
trial so you can experiment with the service before buying.

Pricing is proportional to the computing and storage resources you consume.

With your focus on Java, you will next investigate the ML cloud potential of the four 

large US-based cloud providers. In the next sections, you will review the following  

ML-related services for each of the providers:

•	 Data storage: The IaaS providers have excellent data storage 

offerings for ML solutions. They include flat file storage, traditional 

relational databases, NoSQL databases, and others.

•	 Data preprocessing: What tools does the platform provide to help 

you prepare your data (ML-Gate 4)?

•	 Model creation: What tools and ML frameworks does the cloud 

platform provide to help you create your model (ML-Gate 3)?

•	 Model deployment: What methods are available to deploy your ML 

model for predictions, such as API creation or direct hosting access?

The key considerations outlined in Table 3-2 can help you decide if cloud services 

are a good fit for your ML project.
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Table 3-2.  Cloud Provider Considerations

Category Consideration

Local resource availability Do you have a local desktop machine or server that can process large 

datasets and build ML models? Local processing allows you to retain 

control of your data and avoid cloud usage fees.

Deep learning? Deep learning projects tend to favor cloud-based architectures 

because of their reliance on larger datasets and high computational 

requirements for model creation.

Geographic diversity The cloud providers can allow you to spin up resources in a variety of 

countries and regions globally. It is advantageous to place resources as 

close as possible to users.

Data size Do you have a dataset size that is manageable on the desktop, as if 

often the case for CML projects?

Scalability Do you anticipate your data or storage requirements will grow in the 

future? Cloud providers offer much better scalability. Adding cloud 

resources is much easier than upgrading or purchasing a more 

powerful desktop/server.

Time constraints Is model creation time important? Even for CML projects with modest 

to large datasets, creating the model on the desktop or server single 

CPU could take minutes to hours. Moving these computation-intensive 

operations to the cloud could drastically cut your model creation times. 

If you need real-time or near real-time creation times, the cloud is your 

only option.

Availability Do you require high availability? Your project can benefit from the 

distributed, multi-node architectures provided by all of the cloud 

providers.

Security considerations If you operate your own Internet-connected server, you know what a 

challenge security is. Cloud providers simplify security because you can 

leverage their massive infrastructure.

Privacy considerations Your clients might not want their data on a public cloud network 

managed by one of the big four providers. In this case, you can 

implement a private cloud solution and charge a premium.
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Even if you decide against using a cloud provider for your project, it is important to 

keep an eye on their product offerings. The services are constantly being updated, and 

your decision may change based on those updates.

�Competitive Positioning
Everybody wants to know which cloud provider is the best for machine learning. Of 

course, there is no easy answer.

The incumbent advantage plays a large role in any decision. If you already have an 

established relationship with a cloud provider for non-ML services, you would more 

likely choose the same provider for its ML offerings. The downside is that you may find 

yourself locked into a certain provider. The ML landscape changes rapidly and there are 

some significant differences in the ML product offerings. Keep a watchful eye on how all 

the services are evolving.

Choosing a framework-agnostic cloud provider has advantages. You will see in the 

upcoming section that Google Cloud Platform has limited framework selection, mainly 

relying on the powerful TensorFlow framework. GCP does have the advantage of aligning 

well with your focus on mobile devices and Android.

The various cloud providers all have their strengths and weaknesses. Figure 3-1 

shows a cloud provider summary for some of the largest cloud providers. The chart 

plots market share along the X-axis with growth rate along the Y-axis. Publicly available 

corporate earnings reports provided the data. Growth rates represent quarter-by-quarter 

revenue comparisons. Market share represents reported active users for each of the 

providers. The cloud providers shown offer pay-as-you-go services that help you deploy 

ML solutions. The big four US-based players have a combined market share near 70%. 

Most observers would agree that Amazon Web Services is the market share leader. 

However, there is fierce competition amongst all the providers. Outside North America, 

particularly in Asia, Alibaba cloud, also known as Aliyun, is a very strong player.
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�Pricing
If you decide to deploy with cloud services, pricing is important. It represents a direct 

expense, sitting on the opposite side of the balance sheet as the monetization discussed 

in Chapter 1.

Fierce market competition between the big four players in recent years has driven 

down the price of cloud services. Today, there is essentially no pricing arbitrage 

opportunity available.

Due to fierce competition among the largest cloud providers, the cost of 
cloud resources today is largely identical across platforms. The big four are 
keenly aware of their competitor’s offerings, and pricing arbitrage opportu-
nities no longer exist.

Figure 3-1.  Cloud provider competitive position 
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The cloud providers make it easy to estimate your potential costs. Each provider gives 

you access to pricing calculators that can give you an accurate idea of your potential 

costs. Figure 3-2 shows GCP pricing calculator. These interactive tools allow you to 

specify many parameters including cloud service type, CPU(s), storage, operating 

system, availability, region, etc. Once you complete the required fields, the tool shows 

you a calculated monthly and hourly cost.

Figure 3-2 shows a specified minimum configuration for Google Compute Engine 

service. The results show a cost of $30 per month or $.04 per hour. If you run a similar 

calculation on AWS, Azure, or Watson, you will find that pricing is comparable.

Keep in mind when using the pricing tools that the free trial period often offered by 

the services is not included in the pricing estimates. In many cases, you can receive a 

one-year free trial to test the provider’s services.

Figure 3-2.  GCP pricing calculator
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3.2  �Google Cloud Platform (GCP)
GCP gives you access to a large and growing set of hardware and software resources, 

known as services. The GCP services offered are vast. Google distributes the GCP 

services into the higher-level categories shown in Table 3-3. There are many services in 

each category. Only the specific services you need for ML and DL are highlighted.

Table 3-3.  GCP Services (ML-Related Services Highlighted)

GCP Service Categories

Compute

Compute Engine

Storage and Databases

Big Data

Cloud AI
Cloud ML Engine
Cloud ML APIs

API Platforms and Ecosystems

Data Transfer
Identity and Security

Management Tools

Developer Tools

Cloud SDK

Cloud Tools for Eclipse

Internet of Things
Professional Services

Productivity Tools
Android

Networking
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Next, you will explore the highlighted ML-related services. The first step is to sign  

up for GCP or sign into your existing account. Figure 3-3 shows the GCP dashboard.  

The GCP dashboard address is https://console.cloud.google.com/.

The GCP dashboard shows Compute Engine midway down the left panel. 

Compute Engine lets you use virtual machines that run on Google’s infrastructure. 

When you click Compute Engine, you will be able to create your first virtual machine 

instance.

Figure 3-3.  GCP dashboard
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�Google Compute Engine (GCE) Virtual Machines (VM)
Even though the GCP ML services focus on DL, the GCE VM gives you the flexibility to 

deploy any open source package. You can deploy virtual machines to run Java, the open 

source Weka ML environment, and a Java-based data repository such as the Cassandra 

NoSQL database. Running these packages on GCE virtual machines is typically easier 

than configuring them for a local desktop environment because Google provides ready-

to-go images for many of the popular packages, and if your project needs to scale at a 

later date, you have all the advantages of cloud platform scalability.

Figure 3-4 shows the options available when you create a GCE VM.

Figure 3-4.  GCE VM instance creation options
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When creating a VM you can choose an instance name and a region for the VM.  

Of particular interest are the machine type and the boot disk. The machine type specifies 

the CPU/memory capacity. The pricing information show in the right panel directly 

relates to the machine capacity you select. For initial testing, you can choose the micro 

instance. Figure 3-5 shows the boot disk options available. Many Unix configurations are 

available.

After you create the instance, CGE will process the request. It will take a few seconds 

while the instance spins up and becomes available. Figure 3-6 shows the new micro VM 

instance. If you click the SSH drop-down dialog box, you will be able to immediately 

connect to the instance, as also shown in Figure 3-6.

Figure 3-5.  GCE VM instance operating system options
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Each VM instance you create has an internal and external IP address. If you wish to 

access the VM from the Internet, you should use the external IP address. You can use 

FTP clients that support SSH, such as FileZilla, to transfer files to/from your VM. You 

can also use third-party SSH shell programs such as Putty on Windows. For more 

information about connection to you VM instance, refer to this Google page:

https://cloud.google.com/compute/docs/instances/connecting-advanced

If you prefer to use a command-line interface to manage your CGE VMs, Google 

provides the Google Cloud SDK.

�Google Cloud SDK
Google Cloud SDK is a command-line interface for Google Cloud Platform products and 

services. Cloud SDK is a set of tools:

•	 gcloud tool: Manages authentication, local configuration, developer 

workflow, and interactions with the Cloud Platform APIs.

Figure 3-6.  SSH connection to GCE VM from the GCP dashboard

Chapter 3  Leveraging Cloud Platforms

https://cloud.google.com/compute/docs/instances/connecting-advanced


117

•	 gsutil tool: gsutil provides command line access to manage Cloud 

Storage buckets and objects.

•	 bq tool: Allows you to run queries, manipulate datasets, tables, and 

entities in BigQuery through the command line.

•	 kubectl tool: Orchestrates the deployment and management of 

Kubernetes container clusters on gcloud.

You can run each of these tools interactively or in your automated scripts. Figure 3-7 

shows the Cloud SDK download page.

Cloud SDK is available for all platforms. Figure 3-8 shows the Cloud SDK after 

successful installation.

Figure 3-7.  Google Cloud SDK download page
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Once you have installed Cloud SDK, you can manage any of the GCP services from 

the command line. This includes the Google Compute Engine (GCE) and Machine 

Learning Engine (MLE).

The gcloud compute command-line tool lets you manage your Google Compute 

Engine resources in a friendlier format than using the Compute Engine API. The gcloud 
init command shown in Figure 3-9 allows you to update the parameters of the VM if you 

decide to change them later.

Figure 3-8.  Cloud SDK installation

Chapter 3  Leveraging Cloud Platforms



119

For installing packages such as Java, Weka, or Casssandra, SSH access is the best 

method. You launched this earlier from the dashboard (Figure 3-6). If you wish to do this 

from the command line, you can use the following:

001   gcloud compute --project "subtle-bus-204821" ssh --zone "us-east1-b" 

"instance-1"

The command line possibilities are endless with Cloud SDK. Check the GCP gcloud 

reference page shown below for all of the available gcloud commands:

https://cloud.google.com/sdk/gcloud/reference/

Figure 3-9.  Configuring GCE VM with gcloud init
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�Google Cloud Client Libraries
Google makes it easy for you to use Java with all of the GCP services. The GCP Java client 

library is available on GitHub:

https://github.com/GoogleCloudPlatform/google-cloud-java

Google recommends the client libraries for calling Google Cloud APIs. According 

to Google, they provide an optimized developer experience by using each supported 

language’s natural conventions and styles.

The Java client library is also useful for Android developers who wish to integrate 

with GCP services.

�Cloud Tools for Eclipse (CT4E)
Chapter 1 covered setting up the Eclipse development environment for Java. Even 

though Android developers no longer use Eclipse in favor of Android Studio, Google 

has always been supportive of the Eclipse IDE. It is no surprise that they provide a cloud 

tools plugin for Eclipse (CT4E).

Figure 3-10 shows the CT4E documentation page. The plugin is available at

https://github.com/GoogleCloudPlatform/google-cloud-eclipse.

The CT4E wiki page also contains a lot of useful information:

https://github.com/GoogleCloudPlatform/google-cloud-eclipse/wiki/Cloud-

Tools-for-Eclipse-Technical-Design

Figure 3-10.  Cloud Tools for Eclipse Quickstart and documentation
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CT4E supports development of Java applications on GCP inside the Eclipse IDE 

version 4.5 and later. With CT4E, you can build web applications that run on top of GCE.

�GCP Cloud Machine Learning Engine (ML Engine)
You have been exploring the Google cloud platform and Cloud SDK. Now you will look at 

the Cloud ML Engine, the Google Machine Learning Engine API.

Figure 3-11 shows the GCP Cloud ML Engine setup page. The first step is to enable 

the API. It can take up to 10 minutes to enable.

The Cloud ML Engine API allows you to create and use machine learning models. 

In the prior section, you saw how to create a VM instance that could host any software 

package, such as the Weka ML Environment. The Cloud ML Engine simplifies the 

process by letting you directly interface to specific Google ML tools via API.

The downside is that you are restricted to the ML frameworks that Google MLE 

supports. Google Cloud MLE currently supports the following frameworks:

•	 Cloud ML Engine for TensorFlow

•	 Cloud ML Engine for scikit-learn and XGBoost

•	 Cloud ML Engine for Keras

Figure 3-11.  Cloud Machine Learning Engine API
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Note that none of the Google ML Engine options are Java-based.

The GCP ML services excel for developers who wish to create and deploy DL 
models based on the TensorFlow framework. Recently, Google added 
support for additional frameworks including scikit-learn and XGBoost and 
Keras. Google states that Python-based scikit-learn is for developers who 
wish to deploy classic ML models.

If you do wish to experiment with Tensorflow on GCE, Google provides an excellent 

tutorial:

https://cloud.google.com/solutions/running-distributed-tensorflow-on-

compute-engine

This tutorial shows how to set up a distributed configuration of TensorFlow on 

multiple GCE instances. The tutorial introduces the MNIST dataset. MNIST is widely 

used in machine learning as a training set for image recognition. I will discuss it more in 

Chapter 4.

If you wish to explore TensorFlow but do not want to create your own models using 

Google MLE, there is another option. You can use prebuilt DL models and access them 

with GCP ML APIs. Later in this chapter, you will implement the project for Android.

�GCP Free Tier Pricing Details
If you decide to use GCP for you ML project, you can take advantage of the one-year free 

trial to get started. With the free trial, you will get access to all Google Cloud Platform 

(GCP) products. The trial includes everything you need to build and run your apps, 

websites, and services.

The free trial has some limitations:

•	 Service Level Agreements (SLAs) do not apply. This is reasonable 

for a free tier offering. You have no recourse if the service(s) become 

unavailable for any reason.

•	 Compute engines are limited to eight cores.

•	 Not all services are available.

•	 Crypto currency mining not allowed.
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•	 Duration of the free trial is 12 months or $300 usage.

•	 Does not auto-renew. There is no auto-charge after the free trial 

ends.

The GCP free trial is a very good deal and certainly can help you identify if the 

services are suitable for your project.

While you use your GCP free trial, keep in mind that if you go over the trial usage 

limits shown below, charges will apply:

•	 1 f1-micro VM instance per month (US regions, excluding Northern 

Virginia)

•	 30GB of standard persistent disk storage per month

•	 5GB of snapshot storage per month

•	 1GB egress from North America to other destinations per month 

(excluding Australia and China)

3.3  �Amazon AWS
AWS has a bewildering number of cloud-based services. It seems like every week they 

introduce a new service. In this section, you will explore the machine learning aspects 

of AWS.

AWS has a free one-year trial that allows you to explore many of the services, 

including ML.

Earlier you saw that Synergy Research Group placed AWS in a league of its own. 

Consistent with their research, AWS does seem to have some advantages:

•	 AWS has a more robust offering of services, regions, configurations, 

etc. It really is hard to keep track of all the AWS offerings.

•	 AWS has a well-developed marketplace. Third-party vendors package 

free and commercial solutions. These marketplace offerings simplify 

the setup because you don’t have to worry about all of the setup 

steps.

•	 For ML, AWS is framework agnostic. AWS ML supports bring your 

own algorithm and bring your own framework, which provides 

maximum flexibility.
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Table 3-4 shows a list of the AWS ML and EC2 compute services.

Many of these services are similar to DL products available with GCP. You will focus 

on the two highlighted ML core services: AWS Machine Learning and SageMaker.

�AWS Machine Learning
At the heart of AWS ML is the ML service. Similar to GCP, its main interface is the 

dashboard. Figure 3-12 shows the AWs ML dashboard. The AWS ML dashboard shows all 

of your AWS ML work items in a single integrated interface.

Table 3-4.  AWS ML Services

Service Description

Amazon Comprehend Amazon’s NLP solution. Amazon Comprehend can extract insights about the 

content of documents.

Amazon DeepLens AWS DeepLens is a wireless video camera and API that allow you to 

develop computer vision applications.

Amazon Lex A service for building conversational interfaces into any application using 

voice and text.

Machine Learning The AWS core ML service for creating and deploying ML models.

Amazon Polly A cloud service that converts text into lifelike speech. You can use Amazon 

Polly to develop applications that increase engagement and accessibility.

Amazon SageMaker A fully managed machine learning service. Many algorithms are available 

based on the type of data and prediction. SageMaker allows users to deploy 

TensorFlow on AWS or Apache MXNet on AWS.

Amazon Rekognition ML API for image and video analysis. The service can identify objects, 

people, text, scenes, and activities.

Amazon Transcribe Uses ML to recognize speech in audio files and transcribe them into text.

Amazon Translate Uses ML to translate documents between English and six other languages.

EC2 Compute Engine EC2 is the main AWS compute engine you can use to manage VM instances 

for ML, including AWS Deep Learning AMIs.
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Figure 3-12 shows several types of items the AWS dashboard can manage, including

•	 Datasources

•	 Models

•	 Batch predictions

•	 Evaluations

The dashboard and intuitive AWS ML workflow make it easy to import data, build 

models, and evaluate the model results.

Figure 3-12.  AWS ML dashboard
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�AWS ML Building and Deploying Models
To demonstrate how simple AWS ML is, let’s return to the PAMAP2_Dataset introduced 

in Chapter 2. In this short example, you will load the dataset, build an ML model, 

evaluate the model, and even make some batch predictions.

S3 is the AWS storage service. With AWS ML, the first step is to upload the data to S3. 

Recall that the dataset contained several large files. Each of the files had 54 attributes 

(columns) and over 300,000 instances (rows). You will use the subject101.dat file to 

build your first model on AWS ML. In Chapter 2, you converted the file to CSV format. 

Figure 3-13 shows the CSV file after uploading to AWS S3. You specify the unique name 

of the S3 storage bucket when uploading. In this example, the S3 bucket is named 

pamap2.

Due to the size of the file, it takes a couple of minutes for the upload to complete. 

AWS S3 shows the size of the data file as 135MB. Even for CML applications, data sizes 

can be large, and this is where cloud platforms like AWS excel.

With the data uploaded to S3, the next step is to specify the input data for AWS 

ML. The easiest way to accomplish this is to use S3 data access. Figure 3-14 shows the 

AWS ML Create Datasource - Input data screen. Specify the name of the S3 storage 

bucket you wish to use in the S3 location field.

Figure 3-13.  Uploading ML data to AWS S3
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AWS ML will validate the data and let you know if the validation was successful. If 

unsuccessful, you will need to record the specific issue and then return to OpenOffice 

where you can correct the data. The three most common issues with data validation are 

as follows:

•	 Incorrect field separators are the most common validation issue. 

Make sure you use comma separators in your CSV files.

•	 Use quotation marks around text fields. Comma characters (,) inside 

the text will cause issues. OpenOffice can enclose all text fields in 

quotation marks.

•	 Save the file with no BOM (byte order mark) character.

Figure 3-14.  AWS ML input data using S3 input data
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Once the data validation is successful, the next step is setting up the schema. 

Figure 3-15 shows the AWS ML Create Datasource - Schema screen.

When AWS ML validated your data, it assigned a name and data type to each of the 

attributes (columns). In this step, you want to scan through each attribute and confirm 

that these assignments were correct. It is also a good time to check that the number of 

attributes is correct; in this case, there are 54 attributes. This confirms that your CSV 

value parsing is correct.

Step 3 in the AWS ML Create Datasource sequence is to specify the target. In 

Chapter 2, you defined this important attribute as the label. In classification, the label is 

the value you are trying to predict.

Figure 3-15.  AWS detecting data schema
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In the PAMAP2_Dataset, the label is located in column 2 and identified by assigned 

name of Var02. This label represents the Activity ID, as described earlier in Table 2-4. 

After you specify the label, press Continue, and proceed to the AWS ML model settings. It 

is now time to create the model.

Figure 3-16 shows the AWS ML model settings screen. This is where the magic 

happens.

In the AWS ML model settings, you have two options. You can choose default or 

custom model training methods.

Figure 3-16.  AWS ML model settings
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Spoiler alert: You are not going to get a good result with this model, regardless of 

which method you choose.

The custom option allows you to specify several items such as division of training 

data, random or sequential split of evaluation data, and a few other training parameters.

The problem is, even though you have a large dataset, AWS ML is going to choose a 

regression algorithm for you, regardless of whether you choose custom or go with the 

defaults. AWS ML enforces this model selection because you entered a single numeric 

value for your label.

Performing a regression on the PAMAP2_Dataset is not going to produce a great 

result. However, don’t worry about the results for now. You will explore matching 

algorithms to learning category in detail in Chapter 4.

Press the Continue button and the model is created. Because your dataset is large, 

it can take a few minutes. Note that you did not even have to create a compute resource 

with VM (virtual machine) to create the model.

After AWS ML creates the model, you can evaluate the model and make batch 

predictions. Figure 3-17 show the evaluation summary of the model.

Figure 3-17.  AWS ML model evaluation
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The evaluation summary provides useful information. As you can see, the model 

creation time was four minutes including two minutes of compute time, which is not bad 

considering how large the dataset is.

The model performance shows disappointing results: the regression algorithm 

yielded a quality score worse than the baseline. For regression tasks, AWS uses the 

standard RMSE (Root Mean Square Error) metric for the baseline. For RMSE baselines, 

the closer the value is to zero, the better. One of the goals for this book is to avoid math 

equations, but if you would like to learn more about the RMSE baseline, AWS has an 

excellent page on measuring regression model accuracy:

https://docs.aws.amazon.com/machine-learning/latest/dg/regression-model-

insights.html

The goal of building a model is to utilize it to make predictions. AWS ML allows for 

real-time, single, or batch predictions. Batch predictions are particularly useful, allowing 

you to load many instances to classify as a batch. AWS ML accomplishes this by letting 

you load the batch predictions into an S3 storage bucket, in exactly the same way you 

loaded the original dataset. You then just need to specify the S3 location of the batch 

predictions and then the model will produce the results. Making batch predictions does 

have an incremental cost and I will discuss that at the end of the section.

AWS ML is a really well-designed service. All of the assets created during the process 

of loading data through to making predictions are available at the dashboard. It is easy to 

make changes at any phase of the process and experiment with the results.

In just a few short minutes, the AWS ML service allows you to load and vali-
date data, define your schema, build a model, evaluate the model, and 
make batch prediction, all controlled by the centralized AWS ML dash-
board. It is ridiculously simple.

For those cases where you require more control over the selection of the ML 

algorithm, as with the complex PAMAP2_Dataset, let’s next explore using AWS compute 

resources to build your own ML environment.

�AWS EC2 AMI
EC2 is the AWS compute engine service. The abbreviation stands for Elastic Compute 

Cloud. EC2 uses the AMI (Amazon Machine Interface) to define its virtual instances.

EC2 supports many types of AMIs. The first step in building your own ML 

environment on AWS EC2 is selecting an AMI type to support the application software 

you intend to deploy.
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Figure 3-18 shows just a few of the AMI types available. The AMI types span the 

entire range of operating systems, including Amazon Linux, Ubuntu, Red Hat, CentOS, 

Windows, etc.

If you look closely at Figure 3-18, you will see several AMIs that are deep learning-

based. This is just another example of how easy AWS makes it to deploy ML solutions. In 

this example, you will select the Deep Learning AMI (Amazon Linux) version 13.0.

Figure 3-18.  AWS AMI selection
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The AWS ML is framework agnostic. You saw that Google GCP has a strong focus 

on TensorFlow; in contrast, AWS ML provides you many framework options. When you 

create a new instance based on the Deep Learning Base AMIs, AWS packages popular 

ML frameworks with the instance. These special AMIs contain various combinations of 

Apache MXNet, TensorFlow, Caffe, Caffe2, PyTech, Keras, Theano, CNTK, Nvidia, CUDA, 

etc. If you look back at Table 1-10 in Chapter 1, you will see that the AWS Deep Learning 

Base AMIs include almost all of the ML frameworks shown. This eliminates the need to 

download and install all of the ML framework packages, a real time saver.

After you select your AMI, the next step allows you to choose an instance type. 

Figure 3-19 shows the AWS instance type selection.

For this example, you will choose the t2.micro instance type. This is the only 

instance type that is available for the one-year free tier trial. It is capable of handling 

many applications, including your goal to host the Weka ML environment in the cloud. 

Sometimes AWS will warn you that your selected instance is not available for the free tier. 

Figure 3-19.  AWS instance type configuration
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This is often due to the storage settings. If you receive this warning, double check that your 

storage does not exceed 30GB before you launch the instance. You can edit the storage in 

the Storage section of the Review stage.

The t2.micro instance is fine for getting to know AWS ML, but Amazon recommends 

higher-level configurations for ML training and predictions. Amazon recommends the 

ml.m4, ml.c4, and ml.c5 instance families for training and the ml.c5.xl instance type for 

predictions.

Before you can access the instance, you must configure its security. Proceed through 

the steps, including assigning keys for the secure shell access.

Figure 3-20 shows the instance once it is up and running.

Notice in Figure 3-20 that the instance has a public IP and DNS name. This is how 

you will access the instance from the outside world. You will use secure shell (SSH) with 

the keys you set up during the instance security configuration.

With the instance running, you are ready to install and run Weka in the AWS cloud.

Figure 3-20.  AWS instance summary
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�Running Weka ML in the AWS Cloud
Connect to the public IP of the instance using a secure SSH client, or Putty if you are on 

Windows. When connecting, note that the user name is ec2-user and the credentials are 

the key that you created at the completion of the setup process. Figure 3-21 shows the 

initial connection.

When you first connect to the instance, you can change into the /usr/local directory 

and see the preinstalled deep learning packages included with the AMI:

001   [ec2-user@ip-172-31-3-37 local]$ pwd

002   /usr/local

003   [ec2-user@ip-172-31-3-37 local]$ ls -lsart

004   total 50096

005       4 drwxr-xr-x  2 root root     4096 Jan  6  2012 src

006       4 drwxr-xr-x  2 root root     4096 Jan  6  2012 sbin

007       4 drwxr-xr-x  2 root root     4096 Jan  6  2012 libexec

008       4 drwxr-xr-x  2 root root     4096 Jan  6  2012 games

009       4 drwxr-xr-x  2 root root     4096 Jan  6  2012 etc

010       4 drwxr-xr-x 13 root root     4096 Jan 15 18:42 ..

011       4 drwxr-xr-x  8 root root     4096 May  8 21:12 share

012       4 drwxr-xr-x 18 root root     4096 May  8 21:13 cuda-8.0

013       4 drwxr-xr-x 19 root root     4096 May  8 21:15 cuda-9.0

014       4 drwxr-xr-x 19 root root     4096 May 10 21:17 cuda-9.1

Figure 3-21.  Connection to the AWS EC2 instance
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015       4 drwxr-xr-x 19 root root     4096 May 10 21:19 cuda-9.2

016       4 drwxr-xr-x  7 root root     4096 May 10 08:18 mpi

017       4 drwxr-xr-x  7 root root     4096 May 10 09:39 lib64

018       4 drwxr-xr-x  9 root root     4096 May 10 09:39 include

019       4 drwxr-xr-x  7 root root     4096 May 10 09:39 lib

020       4 drwxr-xr-x  2 root root     4096 May 10 09:39 test

021       4 drwxr-xr-x 22 root root     4096 May 10 09:39 caffe2

022       4 drwxr-xr-x  3 root root     4096 May 10 09:39 caffe

023       4 drwxr-xr-x  2 root root     4096 May 10 09:39 bin

024       �0 lrwxrwxrwx  1 root root       20 May 10 09:51 �cuda -> /usr/

local/cuda-9.0/

025       4 drwxr-xr-x 18 root root     4096 May 30 02:35 .

Note the above code shows the packages available for Deep Learning AMI (Amazon 

Linux) version 13.0. The packages are constantly being updated by AWS, so you may see 

slightly different contents after launching your AMI.

Weka is not included so you need to add it yourself.

Note: You will prepend sudo to each of the following Unix commands to avoid 

permission issues.

Weka requires Java, so you first need to check if Java was included, and if so, which 

version:

001   [ec2-user@ip-172-31-3-37 local]$ java -version

002   openjdk version "1.8.0_121"

003   �OpenJDK Runtime Environment (Zulu 8.20.0.5-linux64) (build 1.8.0_ 

121-b15)

004   �OpenJDK 64-Bit Server VM (Zulu 8.20.0.5-linux64) (build 25.121-b15, 

mixed mode)

As is often the case with VM instances from the cloud providers, they come 

preinstalled with the OpenJDK Java distribution. OpenJDK is fine for most applications. 

However, for Weka installations, using the Oracle Java JDK is required because Weka 

requires some of the Swing GUI libraries not packaged in OpenJDK. If you try to run 

Weka with OpenJDK, you will see the following exception, indicating a Sun launcher 

class was not able to load:

001   �[ec2-user@ip-172-31-3-37 local]$ sudo java -cp weka.jar weka.

classifiers.trees.J48 -t /usr/local/weka-3-8-2/data/iris.arff
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002   �Exception in thread "main" java.lang.UnsupportedClassVersionError: 

weka/classifiers/trees/J48 : Unsupported major.minor version 52.0

003           at java.lang.ClassLoader.defineClass1(Native Method)

004           at java.lang.ClassLoader.defineClass(ClassLoader.java:803)

005           �at java.security.SecureClassLoader.

defineClass(SecureClassLoader.java:142)

006           �at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.

java:312)

007           at java.lang.ClassLoader.loadClass(ClassLoader.java:358)

008           �at sun.launcher.LauncherHelper.

checkAndLoadMain(LauncherHelper.java:482)

The solution is to download the Oracle JDK with the following wget command. Lines 

001-006 set up the environment variables. Line 008 executes the wget. Line 010 installs 

the Oracle JDK package you downloaded.

001   [ec2-user@ip-172-31-3-37 local]$ java_base_version="8"

002   [ec2-user@ip-172-31-3-37 local]$ java_sub_version="141"

003   [ec2-user@ip-172-31-3-37 local]$ java_base_build="15"

004   �[ec2-user@ip-172-31-3-37 local]$ java_version=�"${java_base_version}

u${java_sub_version}"

005   [ec2-user@ip-172-31-3-37 local]$ java_build="b${java_base_build}"

006   �[ec2-user@ip-172-31-3-37 local]$ java_version_with_build="${java_

version}-${java_build}"

007

008   �[ec2-user@ip-172-31-3-37 local]$ sudo wget --no-check-certificate 

--no-cookies --header "Cookie: oraclelicense=accept-securebackup-

cookie" http://download.oracle.com/otn-pub/java/jdk/${java_version_

with_build}/336fa29ff2bb4ef291e347e091f7f4a7/jdk-${java_version}-

linux-x64.rpm

009

010   �[ec2-user@ip-172-31-3-37 local]$ sudo yum install -y jdk-8u141-

linux-x64.rpm

After the install of Oracle JDK completes, you now have multiple version of Java 

installed on the VM instance. The following command shows that you actually have 

three versions: two versions of OpenJDK and the new Oracle JDK. It also allows you to 

select the Oracle JDK as the current selection.
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001   [ec2-user@ip-172-31-3-37 local]$ sudo alternatives --config java

002

003   There are 3 programs which provide 'java'.

004

005     Selection    Command

006   -----------------------------------------------

007      1           /usr/lib/jvm/jre-1.7.0-openjdk.x86_64/bin/java

008      2           /usr/lib/jvm/jre-1.8.0-openjdk.x86_64/bin/java

009   *+ 3           /usr/java/jdk1.8.0_141/jre/bin/java

010

011   Enter to keep the current selection[+], or type selection number: 3

012   [ec2-user@ip-172-31-3-37 local]$

Now that Java is ready to go, it is time to download and install the latest stable version 

of Weka:

001   �[ec2-user@ip-172-31-3-37 local]$ sudo wget http://svwh.

dl.sourceforge.net/project/weka/weka-3-8/3.8.2/weka-3-8-2.zip

002   �--2018-05-30 02:35:43--  http://svwh.dl.sourceforge.net/project/weka/

weka-3-8/3.8.2/weka-3-8-2.zip

003   �Resolving svwh.dl.sourceforge.net (svwh.dl.sourceforge.net)... 

72.5.72.15, 2606:c680:0:b:3830:34ff:fe66:6663

004   �Connecting to svwh.dl.sourceforge.net (svwh.dl.sourceforge.

net)|72.5.72.15|:80... connected.

005   HTTP request sent, awaiting response... 200 OK

006   Length: 51223056 (49M) [application/octet-stream]

007   Saving to: ‘weka-3-8-2.zip’

008

009   �weka-3-8-2.zip             

100%[======================================>]  48.85M  39.8MB/s     

in 1.2s

010

011   �2018-05-30 02:35:45 (39.8 MB/s) - ‘weka-3-8-2.zip’ saved 

[51223056/51223056]
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When the download completes, confirm the weka-3-8-2.zip file exists in the /usr/
local directory:

001   [ec2-user@ip-172-31-3-37 local]$ pwd

002   /usr/local

003   [ec2-user@ip-172-31-3-37 local]$ ls -lsart weka*

004   total 50096

005   50024 -rw-r--r--  1 root root 51223056 Dec 21 21:16 weka-3-8-2.zip

006   [ec2-user@ip-172-31-3-37 local]$

Next, unzip Weka as shown and when complete, change into the new weka-3-8-2 

directory, and you will see the following contents in the new directory:

007   [ec2-user@ip-172-31-3-37]$ pwd

008   /usr/local/

009

010   [ec2-user@ip-172-31-3-37]$ sudo unzip weka-3-8-2.zip

011

012   [ec2-user@ip-172.31.3.37]$ cd weka-3-8-2

013

014   [ec2-user@ip-172-31-3-37 weka-3-8-2]$ ls -l

015   total 42908

016   drwxr-xr-x 2 root root     4096 Dec 22 09:30 changelogs

017   -rw-r--r-- 1 root root    35147 Dec 22 09:30 COPYING

018   drwxr-xr-x 2 root root     4096 Dec 22 09:30 data

019   drwxr-xr-x 3 root root     4096 Dec 22 09:30 doc

020   -rw-r--r-- 1 root root      510 Dec 22 09:30 documentation.css

021   -rw-r--r-- 1 root root     1863 Dec 22 09:30 documentation.html

022   -rw-r--r-- 1 root root    16170 Dec 22 09:30 README

023   -rw-r--r-- 1 root root    43377 Dec 22 09:30 remoteExperimentServer.jar

024   -rw-r--r-- 1 root root 14763219 Dec 22 09:30 wekaexamples.zip

025   -rw-r--r-- 1 root root    30414 Dec 22 09:30 weka.gif

026   -rw-r--r-- 1 root root   359270 Dec 22 09:30 weka.ico

027   -rw-r--r-- 1 root root 11111002 Dec 22 09:30 weka.jar

028   -rw-r--r-- 1 root root  6621767 Dec 22 09:30 WekaManual.pdf

029   -rw-r--r-- 1 root root 10923433 Dec 22 09:30 weka-src.jar
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You are now ready to run Weka in the cloud. To run Weka from the command line, 

you instruct Java to run a classifier class on one of the datasets included with Weka. In 

this example, you will run the random forest classifier on the iris.arff dataset. To run a 

specified class instead of the main class, provide the –cp option. The following shows the 

successful Weka classification:

001   �[ec2-user@ip-172-31-3-37 weka-3-8-2]$ sudo java -cp weka.jar weka.

classifiers.trees.J48 -t/usr/local/weka-3-8-2/data/iris.arff

002

003   === Classifier model (full training set) ===

004

005   J48 pruned tree

006   ------------------

007   ...

008   Number of Leaves  :     5

009   Size of the tree :      9

010   Time taken to build model: 0.48 seconds

011   Time taken to test model on training data: 0.01 seconds

012

013   === Error on training data ===

014

015   Correctly Classified Instances         147               98      %

016   Incorrectly Classified Instances         3                2      %

017   Kappa statistic                          0.97

018   Mean absolute error                      0.0233

019   Root mean squared error                  0.108

020   Relative absolute error                  5.2482 %

021   Root relative squared error             22.9089 %

022   Total Number of Instances              150

023

024   ...

025

026   === Confusion Matrix ===

027

028     a  b  c   <-- classified as

029    50  0  0 |  a = Iris-setosa
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030     0 49  1 |  b = Iris-versicolor

031     0  2 48 |  c = Iris-virginica

032

033   Time taken to perform cross-validation: 0.08 seconds

034   

035   === Stratified cross-validation ===

036

037   ...

038

039   === Detailed Accuracy By Class ===

040

041   ...

042

043   === Confusion Matrix ===

044

045     a  b  c   <-- classified as

046    49  1  0 |  a = Iris-setosa

047     0 47  3 |  b = Iris-versicolor

048     0  2 48 |  c = Iris-virginica

I will cover Weka in detail in Chapter 4. This example shows that it is quite simple to 

implement Weka on the AWS cloud.

�AWS SageMaker
You have seen a couple approaches to building ML on AWS, first by using the AWS ML 

service via the dashboard, and second by implementing your own Weka environment on 

AWS EC2 compute instance.

AWS SageMaker is a fully managed platform to help you build DL models. It is one of 

the recently added AWS services. The main idea behind SageMaker is that ML has been 

difficult for developers for the following reasons:

•	 The process of gathering data, processing data, building models, 

testing models, and deploying models creates excessive manual work 

for developers.
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•	 Due to repetitive manual work, creating ML solutions is too time 

consuming.

•	 Creating ML solutions is too complicated because the required data 

and analytic skillsets have replaced traditional software development.

SageMaker tries to address these issues. It promises to remove complexity and 

overcome the barriers that slow down developers. Figure 3-22 shows the main AWS 

SageMaker page.

Like all AWS services, there is extensive online documentation to help you 

understand the service. The link for the SageMaker developer guide is

https://docs.aws.amazon.com/sagemaker/latest/dg.

SageMaker has a lot of potential. Two particularly important features make it a 

powerful way to implement ML on AWS- notebook instances, and its flexible support for 

algorithms.

Figure 3-22.  AWS SageMaker
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The SageMaker notebook instance is a compute instance running the Jupyter 

Notebook App. Jupyter is an open source web app that runs on Python (hence its 

spelling) and allows you to create and share documents that contain live code and 

visualizations. It is very popular in the Python and DL realms.

Hosted Jupyter notebooks make it easy to explore and visualize training data in 

Amazon S3 storage, similar to the JavaScript options covered in Chapter 2. There are 

several kernels for Jupyter, including support for Python, Apache MXNet, TensorFlow, 

and PySpark. Jupyter does not support a Java kernel. Notebook instances are an 

important part of implementing ML with SageMaker.

AWS Labs maintains some excellent examples for you to explore SageMaker on 

GitHub here:

https://github.com/awslabs/amazon-sagemaker-examples

The other interesting feature of SageMaker is its algorithm flexibility. SageMaker 

supports two classes of algorithms: built-in algorithms and bring-your-own algorithms. 

The list of built-in algorithms is available at

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html.

The algorithm list is very complete. AWS claims the preinstalled algorithms deliver 

10 times the performance of other providers due to optimization. That’s an impressive 

claim. However, AWS does not offer details on how they do this, or for which algorithms 

it applies.

User can bring their own algorithms or frameworks. The SageMaker examples on 

GitHub show how to do this for a variety of models and algorithms including XGBoost, 

k-means, R, scikit, MXNet, and TensorFlow.

AWS SageMaker provides impressive ML functionality, but unfortunately is does not 

integrate well with Java due to its reliance on Jupyter. Next, you will explore the AWS SDK 

for Java.

�AWS SDK for Java
Amazon supports Java developers. To show their love for us, they release the SDK for Java 

to help us accelerate our development. Figure 3-23 shows the main Explore Java on the 

AWS page available at https://aws.amazon.com/java/. The page includes links for Java, 

Eclipse, and Android.
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Figure 3-23.  AWS Java Developer Center
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The Java SDK is available in several formats. Table 3-5 provides a summary of the 

formats.

The first three formats shown in the table are available for download by directly 

clicking through the links provided in the AWS Java Development Center.

The SDK for Android download includes many library files, samples, and 

documentation for all of the AWS services. Figure 3-24 shows the ML library jar file. Note 

that it is only 48Kb. You can view the contents of the .jar library using the 7-Zip utility to 

open the archive. The link for the Maven repositories is

http://central.maven.org/maven2/com/amazonaws/aws-android-sdk-

machinelearning.

Table 3-5.  Summary of AWS Java SDK Packages

Format Notes

SDK for Java version 1.11 The currently supported SDK. Allows you to access all of the AWS 

services from Java.

Java Toolkit for Eclipse The AWS Toolkit for Eclipse conveniently includes the AWS SDK for 

Java, so you can get started building Java applications on AWS 

infrastructure services in Eclipse, including Amazon S3, Amazon 

EC2, Amazon DynamoDB, and Amazon ML.

SDK for Android Complete set of documentation, libraries, and samples to help you 

integrate AWS services into Android Apps.

Machine Learning SDK for Java This is a special SDK only for AWS ML. It is only downloadable from 

a Maven repository. If you only need AWS ML access, this smaller 

library keeps your project size lean by excluding all of the other 

AWS services.

SDK for Java version 2.0 AWS SDK for Java 2.0 Developer Preview Build Status. Version 2.0 

is currently a preview and not recommended for production use yet.
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There are two versions of the SDK for Java. Version Java 1 is the currently available 

version, and Java 2 is a developer preview rewrite of Java 1 with some new features. Both 

versions enable you to easily interface your Java projects with AWS. Java 2 includes two 

key new features:

•	 Non-blocking IO

•	 Pluggable HTTP protocol stacks

If you develop for Android, you probably know that Google discontinued use of the 

Apache HTTPClient stack in Android recently. The pluggable HTTP feature in Java 2 

follows this trend as Java 1 only supported HTTPClient. With Java 2.0 you can use other 

stacks such as HTTPurlConnection or OkHTTP.

With the Java SDK, you can get started in minutes using Maven or any build system 

that supports Maven Central as an artifact source. The developer guide includes detailed 

setup and installation instructions, available at

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/welcome.html.

If you are interested in the code for the Java SDK, it is available at the following sites:

https://github.com/aws/aws-sdk-java

https://github.com/aws/aws-sdk-java-v2

If you do not require all of the AWS services supported by the SDK, you can 

download just the SDK for Machine Learning at

Figure 3-24.  AWS SDK for Android Machine Learning Library
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https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-

machinelearning.

Figure 3-25 shows the Maven repository for the Java machine learning library. You 

can download the .jar file or see the instructions for Maven or Gradle depending on your 

build environment.

With the help of the AWS Java SDK for Machine Learning, any ML task available via 

the AWS ML dashboard is reproducible programmatically from your Java code.

�AWS Free Tier Pricing Details
Similar to GCP, AWS offers you a 12-month introductory period. The free tier includes 

some free services that never expire. Other free services are available for the 12-month 

period. Amazon provides full details of the free-tier service coverage at

https://aws.amazon.com/free/.

The AWS free tier is quite generous. The main highlights of the free tier include

•	 750 hours of EC2 t2.micro instance. You can configure the instance as 

you wish. You used the t2.micro instance earlier to configure Weka in 

the cloud.

Figure 3-25.  Maven repository for AWS ML SDK for Java
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•	 AWS provides 5GB of S3 storage in the free tier. This is adequate for 

exploring AWS ML.

•	 AWS allows 1 million API calls per month. Developers can use these 

API calls to explore the AWS ML APIs.

You can use the t2.micro instance for almost anything you wish, including machine 

learning. There are some additional considerations for developers considering the AWS 

free tier to explore ML:

•	 AWS supports EC2 instances on many regions within North America 

and globally. Not all services are available for every region. If you 

decide to use AWS ML services, you need to choose a region that 

supports the service before you create the instance.

•	 Batch predictions using AWS ML are not included in the free tier 

pricing and are not free. The cost for batch predictions is $0.10 per 

1,000 predictions. See Table 1-5.

•	 AWS EC2 instances have public IP addresses. If you stop and restart 

the instance, the IP address will change. If you wish to assign a 

permanent IP address to your EC2 instance, you need to create what 

AWS calls an elastic IP. Elastic IPs are not free and are not included 

in the AWS free tier. Stopping and restarting your EC2 instance with a 

new IP address will not cause any loss of configuration or data related 

to the instance.

If you pursue AWS SageMaker for ML, on top of the overall free tier, AWS offers an 

additional monthly free tier of 250 hours for building models plus 50 hours for training 

on SageMaker.

3.4  �Machine Learning APIs
There may be times when you don’t need to build and deploy your own ML models. In 

these cases, you can leverage the cloud APIs provided by the big four cloud providers.

In the preceding section, I covered the AWS ML services. Figure 3-26 summarizes 

the high-level APIs provided by the big four cloud providers: Amazon, Google, IBM, 

and Microsoft. All of their APIs fall into five distinct categories: language, vision, data 

insights, speech, and search.

Chapter 3  Leveraging Cloud Platforms

https://doi.org/10.1007/978-1-4842-3951-3_1#Tab5


149

While Google and AWS do a great job at providing the lower-level tools and building 

blocks we need to implement ML solutions, IBM and Microsoft do an equally fine job at 

providing higher-level models we can access by API. Figure 3-26 shows that they have 

many APIs to solve a wide variety of problems in each of the five categories.

Most of these APIs employ DL methods created from the massive amount of data 

the cloud providers own. The APIs are mostly free to try. If you decide to use these APIs 

commercially, you will typically just need to pay the cloud provider’s inference fee per 

API call. Recall that the inference fee is the fee to make predictions. You can make real 

time predictions or batch predictions. See Table 1-5 for pricing approximations.

Figure 3-26.  High-level ML API comparison
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�Using ML REST APIs
If you decide to use one of the services in Figure 3-26, they will most likely allow access 

to the service via a REST API call. Making predictions (inference) with ML model APIs 

using REST calls is easy. The APIs normally use the REST protocol with the JSON data 

format covered in Chapter 2.

When making a REST call to the API, both the request and response are in JSON 

format. For example, Listing 3-1 shows a GCP Cloud Vision API JSON request. The listing 

demonstrates only the most important fields: your API key, a reference to the image 

source, and the feature being requested. If you wish to implement this API call, refer to 

the following link for full details on the specific JSON requirements:

https://cloud.google.com/vision/docs/request

Listing 3-1.  Example of GCP Cloud Vision API JSON Request

001   POST https://vision.googleapis.com/v1/images:annotate?key=YOUR_API_KEY

002   {

003     "requests": [

004       {

005         "images": {

006           "content": "your_image.jpg"

007         },

008         "features": [

009           {

010             "type": "LABEL_DETECTION"

011           }

012         ]

013       }

014     ]

015   }

After you post the request, you will receive a JSON response. Listing 3-2 shows a 

successful JSON response; in this case, you are getting back the top two image label 

predictions for the image file submitted in the request.
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Listing 3-2.  Example of GCP Cloud Vision API JSON Response

001   {

002     "responses": [

003       {

004         "labelAnnotations": [

005           {

006             "mid": "/m/01yrx",

007             "description": "cat",

008             "score": 0.92562944

009           },

010           {

011             "mid": "/m/0307l",

012             "description": "cat like mammal",

013             "score": 0.65950978

014           }

015         ]

016       }

017     ]

018   }

To help you submit JSON requests and parse JSON responses, the Java SDK provides 

example code. Additionally, Java client libraries are available for each of the various 

APIs. For this example, refer the Cloud Vision API client library and select the Java tab, at 

https://cloud.google.com/vision/docs/libraries.

In the next section, you will use this approach to build a complete Android app using 

JSON to access the powerful GCP Cloud Speech API. The Google Cloud Speech API will 

allow you to transcribe audio files recorded by the device.

�Alternative ML API Providers
There are times when you might want to consider alternative cloud API model providers. 

If you have a niche application not covered by the big cloud players, alternative providers 

who specialize in certain applications could provide a solution.

Sometimes you just wish to differentiate your product from competitors who all use 

the large cloud provider APIs. Using alternative smaller cloud API providers in these 

cases could be a viable strategy.
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Table 3-6 shows some alternative cloud ML API providers.

Whether you use alternative ML APIs or ML APIs from the big four cloud providers, 

there are a huge number of product offerings you can choose from. If you think back to 

the M-Gates, at MLG6, you must start with a well-defined problem. At that point, it is a 

best practice to scan the available APIs to see if any of them exactly match the problem. 

There is no need to reinvent the wheel. The large cloud providers have so much data, 

it would be hard to create a better solution than the models they make available to 

us. While the large four cloud providers have many APIs, it can be fruitful to explore if 

external alternatives are available.

3.5  �Project: GCP Cloud Speech API for Android
In this project, you will implement the GCP Cloud Speech API Android app. You will use 

the Android Studio IDE. This project is copyrighted and released by Google (Apache 

license 2.0), and is available for download at the following link:

https://github.com/GoogleCloudPlatform/android-docs-samples/tree/master/

speech/Speech

Table 3-6.  Alternative Cloud ML API Providers

Provider Description

www.diffbot.com/products/automatic/ Data extraction

www.beyondverbal.com/api/ Emotion and vocal analytics from an Israeli company

www.kairos.com/face-recognition-api Face recognition

https://wit.ai/getting-started Chat bot

www.openalpr.com/cloud-api.html Real-time license plate recognition
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�Cloud Speech API App Overview
Download the project from GitHub and import it into Android Studio. Table 3-7 shows 

the summary of the key project files.

Table 3-7.  GCP Cloud Speech API Project File Summary

Project Name: GCP Cloud Speech API
Source: GitHub Google Cloud Speech Platform
Type: Android Application
File Description

app->src->main->java

MainActivity.java

The main activity that checks for device permissions, launches 

the voice recorder and speech service, and sets up the main 

view.

app->src->main->java

SpeechService.java

Service for handling API access. This Android service 

implements the interface to the GCP Cloud Speech API, 

including authentication and real-time streaming of spoken 

words.

app->src->main->java

MessageDialogFragment.java

A simple Android Dialog class that the app uses to display 

messages to the user.

app->src->main->java

VoiceRecorder.java

This class implements the Android AudioRecord class for 

voice recording.

app->src->main-> 

res->layout

main.xml

Main XML layout.

app->src->main->res->raw

credential.json

JSON credential file created on the GCP Cloud API Center. 

Place the file into the res/raw folder.

app->src->main->res->raw

audio.raw

A sample audio file stored into the /res/raw folder that 

can be sent to the API for classification. The audio file is a 

recording of the spoken words "How old is the Brooklyn 

Bridge?"

app->src->main

AndroidManifest.xml

App manifest file. Defines the activity and the service.

Chapter 3  Leveraging Cloud Platforms



154

Figure 3-27 shows a screenshot of the Android app. The app’s concept is 

straightforward. The app accepts audio input from the user and uses the Google Cloud 

Speech API to translate the audio and display a text translation. The app supports two 

methods for audio input:

•	 The app can record audio from the device microphone. Audio is 

recorded in raw PCM format. In Chapter 2, you saw that digitized 

voice is a form of data. I will discuss more about audio file formats 

later. Recorded audio is sent up the Cloud Speech API in real time for 

translation.

•	 The user can also press the LOAD FILE button to load a prerecorded 

audio file which will then be sent to the API for translation.

The Cloud Speech API uses DL to translate the recorded audio to text. The app 

receives the translated text and displays the translation in real time as the user is 

speaking. Because the API uses deep learning, it does a really impressive job at 

translating voice input.

Figure 3-27.  The GCP ML Cloud Speech API Android app
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Running the app on the device allows you to record audio using the microphone. 

The app batches spoken words in real time and passes them up to the API. If you are 

using the emulator to run the app, you will be restricted to pressing the LOAD FILE 

button to provide audio for the API to translate.

�GCP Machine Learning APIs
Before you can get the app running on your Android device, you need to perform the 

following two actions on the Google Cloud Platform dashboard:

•	 Enable the Cloud Speech API.

•	 Create the authentication key required by the Android app.

In order to enable the API, visit the following link:

https://console.cloud.google.com/apis/library?filter=category:machine-

learning

Figure 3-28 shows the currently available GCP Cloud ML APIs, including the Cloud 

Speech API you wish to implement. Click the Cloud Speech API and enable it.
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Next you need to create the authentication key that is required for the Android app.

�Cloud Speech API Authentication
The Cloud Speech API Android app requires you to provide a JSON file authentication 

key. The file will be named credential.json and will be placed in the app’s raw folder. 

Follow these steps to create the file.

Figure 3-28.  GCP Cloud ML APIs
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The first step is to create a service account key. The service account is required for 

authentication. Figure 3-29 shows the Credentials tab within the API dashboard. Choose 

Create credentials, and then select Service account key from the drop down list.

The Create service account key dialog box will be displayed, as shown in Figure 3-30.

Figure 3-29.  GCP creating a service account key
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The service account should appear as speech2text, and you should select the JSON 

type. Press the Create button and the private key will be saved to your computer, as 

shown in Figure 3-31.

Figure 3-30.  Selecting JSON service account key type
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The private key will be saved to your computer with a filename based on the name of 

the project. If you leave the project name as the default value, it will appear similar to the 

following:

My First Project-D817dcf314.json
Rename this file to

credential.json
The JSON configuration file contents will look similar to the following and is required 

to access the API from Android:

001   {

002     "type": "service_account",

003     "project_id": "subtle-bus-204821",

004     "private_key_id": "xxxxxxxxxxxxxxxxxxxxx",

005     �"private_key": "-----BEGIN PRIVATE KEY-----\nxxxxxxx\n-----END 

PRIVATE KEY-----\n",

006     �"client_email": "speech2text@subtle-bus-204821.iam.gservice 

account.com",

Figure 3-31.  Saving the JSON private key file
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007     "client_id": "xxxxxxxxxxxxxxxxxxxxx",

008     "auth_uri": "https://accounts.google.com/o/oauth2/auth",

009     "token_uri": "https://accounts.google.com/o/oauth2/token",

010     �"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/

v1/certs",

011     �"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/

x509/speech2text%40subtle-bus-204821.iam.gserviceaccount.com"

012   }

Finally, copy the credential.json file to the res/raw directory of the Android app. 

After copying the file, you can successfully build the Android app in Android Studio.

It is important to note that placing private keys in your app to handle authentication 

is a useful and simple way to test out the API, but this method is not acceptable for 

production apps. For production apps, you should implement your own app server to 

handle authentication of the app users. Since you are just testing out the API, you can copy.

You can always review and manage your service account keys in the dashboard, as 

shown in Figure 3-32.

Figure 3-32.  Displaying active credentials
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�Android Audio
With the backend setup complete, you can focus on the client Android app. In this 

section, you will cover the following key events:

•	 Recording raw audio

•	 Sending audio to the API

•	 Processing the API JSON response

Audio is a form of data. ML often uses audio data as input. Android devices are 

excellent for working with audio because the hardware supports many codecs for 

encoding and decoding.

Android devices are excellent tools for audio data processing. Android sup-
ports many codecs. The AudioRecord and AudioTrack classes support 
recording and processing of raw uncompressed audio. While latency is not 
great for Android audio, most ML Audio APIs support high throughput and 
do not require low latency.

Table 3-8 shows a list of Android’s supported audio formats. Note that Y indicates 

encoding or decoding is available in all SDK versions for a particular codec. N indicates 

encoding is not available for a codec.

Table 3-8.  Android Supported Audio Formats

Codec Encode Decode Details File Type

AAC 4.1+ Y Mono/stereo/5.0/5.1up to 48khz sample 3GPP,MP4,ADTS AAC

AMR Y Y 5-12 kbps12-24 kbps 3GPP

FLAC Y Y (3.1+) Mono/stereo/up to 44.1/48khz FLAC

MP3 N Y Mono/stereo/8-320kbps MP3

MIDI N Y Support for ringtones MID

Vorbis N Y OGG, Matroska

PCM Y (4.1+) Y 8-bit/16-bit Linear PCM rates to  

hardware limit

WAVE

Opus N Y (5.0+) Matroska
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The GCP Cloud Speech API can accept several types of audio data: FLAC (.flac), 

PCM (.wav) files, AMR, and Linear-16. The FLAC and PCM formats represent raw 

uncompressed audio data. While compressed audio data, such as MP3 files, would be 

smaller and faster to transmit to the cloud, the compression would introduce noise and 

possibly compromise accuracy.

The Android AudioRecord class is a very powerful low-level audio API. Any serious 

app that processes audio is most likely using AudioRecord. In the Cloud Speech API 

app, the AudioRecord class is used to record uncompressed raw audio, which is passed 

to the API for translation.

Listing 3-3 shows the key audio recording loop in the app. The ProcessVoice class 

shown resides inside the VoiceRecorder.java file. The code runs on a thread and is 

responsible for continuously reading uncompressed voice data from the AudioRecord 

object into the mBuffer byte array (line 013).

Listing 3-3.  ProcessVoice Class within VoiceRecorder.java

001   private AudioRecord mAudioRecord;

002   private Thread mThread;

003   private byte[] mBuffer;

004

005   private class ProcessVoice implements Runnable {

006       @Override

007       public void run() {

008           while (true) {

009               synchronized (mLock) {

010                   if (Thread.currentThread().isInterrupted()) {

011                       break;

012                   }

013                   �final int size = mAudioRecord.read(mBuffer, 0, 

mBuffer.length);

014                   final long now = System.currentTimeMillis();

015                   if (isHearingVoice(mBuffer, size)) {

016                       if (mLastVoiceHeardMillis == Long.MAX_VALUE) {

017                           mVoiceStartedMillis = now;

018                           mCallback.onVoiceStart();

019                       }
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020                       mCallback.onVoice(mBuffer, size);

021                       mLastVoiceHeardMillis = now;

022                       �if (now - mVoiceStartedMillis > MAX_SPEECH_

LENGTH_MILLIS) {

023                           end();

024                       }

025                   } else if (mLastVoiceHeardMillis != Long.MAX_VALUE) {

026                       mCallback.onVoice(mBuffer, size);

027                       �if (now - mLastVoiceHeardMillis > SPEECH_TIMEOUT_

MILLIS) {

028                           end();

029                       }

030                   }

031               }

032           }

033       }

034   }

The code in Listing 3-3 is a typical audio recording implementation. One of the 

features that makes the app so powerful is the use of the following callbacks:

•	 onVoiceStart: Called when the recorder starts hearing a voice.

•	 onVoice: Called when the recorder hears a voice.

•	 onVoiceEnd: Called when the recorder stops hearing a voice.

The use of these methods is how the app is able to provide real-time translations as 

the user speaks.

Raw audio from the microphone is sent to the Cloud Speech API by passing the data 

to the recognizeInputStream method in SpeechService.java.

SpeechService.java runs as an Android Service within the app. It is responsible for 

interfacing with the cloud API. The code in Listing 3-4 shows how the service builds the 

JSON request message for the API.

Listing 3-4.  Building the API Request within SpeechService.java

001   public void recognizeInputStream(InputStream stream) {

002       try {

003           mApi.recognize(
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004                   RecognizeRequest.newBuilder()

005                           .setConfig(RecognitionConfig.newBuilder()

006                                   �.setEncoding(RecognitionConfig.

AudioEncoding.LINEAR16)

007                                   .setLanguageCode("en-US")

008                                   .setSampleRateHertz(16000)

009                                   .build())

010                           �.setAudio(RecognitionAudio.newBuilder()

011                           �.setContent(ByteString.readFrom(stream))

012                           .build())

013                           .build(),

014                   mFileResponseObserver);

015       } catch (IOException e) {

016           Log.e(TAG, "Error loading the input", e);

017       }

018   }

After processing each audio data stream through its DL model, the Cloud Speech 

API sends the text results back to the service. The service handles everything for you. 

The code in Listing 3-5 shows an excerpt from MainActivity.java. This code sets up a 

SpeechService listener and populates the UI with the text results as they are received.

Listing 3-5.  Listening for Text Results in MainActivity.java

001   private final SpeechService.Listener mSpeechServiceListener =

002           new SpeechService.Listener() {

003               @Override

004               �public void onSpeechRecognized(final String text, final 

boolean isFinal) {

005                   if (isFinal) {

006                       mVoiceRecorder.dismiss();

007                   }

008                   if (mText != null && !TextUtils.isEmpty(text)) {

009                       runOnUiThread(new Runnable() {

010                           @Override

011                           public void run() {
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012                               if (isFinal) {

013                                   mText.setText(null);

014                                   mAdapter.addResult(text);

015                                   �mRecyclerView.smoothScroll 

ToPosition(0);

016                               } else {

017                                   mText.setText(text);

018                               }

019                           }

020                       });

021                   }

022               }

023           };

�Cloud Speech API App Summary
The Google Cloud Speech API app is a powerful example of leveraging DL models 

in the cloud. It is an advanced implementation because it provides a service-based 

architecture to handle all of the API interfaces. The use of callbacks in conjunction 

with the service architecture provides real-time translation and creates a seamless user 

experience.

It is an architecture that can be replicated for the other GCP ML APIs. Keep in mind 

that is also can create significant network traffic and API access volume.

Once you successfully deploy a solution such as the Cloud Speech API, you should 

revisit the dashboard periodically to check on traffic and errors. Figure 3-33 shows the 

Cloud Speech API Dashboard with traffic recorded. Be careful to watch the API traffic 

volume, especially if working within the constraints of the free trial.
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3.6  �Cloud Data for Machine Learning
The cloud service providers excel at storing data. While many of their ML services 

are relatively new, the data storage services they offer have been available from the 

beginning.

The data storage services they offer can take a variety of formats, including

•	 Container images

•	 Traditional databases

•	 NoSQL databases

•	 APIs and services

•	 Virtual machines

Figure 3-33.  GCP monitoring API access volumes
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Earlier in the chapter, you saw two of these approaches. You used AWS S3 buckets 

object store when you demonstrated the AWS ML consoles with the PAMAP2_Dataset. 

You then used a virtual machine for storage when setting up Weka in the cloud. Next, 

you will examine how the explosion in unstructured data is leading to increased usage of 

NoSQL databases as a storage solution.

�Unstructured Data
Chapter 2 discussed a megatrend: the explosion of data. We define unstructured data as 

data with little or no metadata and little or no classification. ML often uses unstructured 

data. Unstructured data includes many categories, such as videos, emails, images, IoT 

device data, file shares, security data, surveillance data, log files, web data, user and 

session data, chat, messaging, twitter streams sensor data, time series data, IoT device 

data, and retail customer data.

Unstructured data can be characterized by the three Vs: volume, velocity, and variety.

•	 Volume: Size of the data. See Table 2-2.

•	 Velocity: How fast the data is generated. Jet engine sensors, for 

example, can produce thousands of samples per second.

•	 Variety: There are many different kinds of data.

Figure 3-34 shows the exponential growth of unstructured data relative to structured data.

Figure 3-34.  Growth of unstructured data
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The problem with traditional databases is that they are hard to scale and not well 

suited for unstructured data. One of the best ways to store unstructured data in the cloud 

is with NoSQL databases because they do a much better job at handling this type of data.

�NoSQL Databases
NoSQL stands for “not SQL.” The approach is different from traditional relational 

database management systems (RDBMS). SQL is the query language used by relational 

databases. These databases rely on tables, columns, rows, or schemas to organize and 

retrieve the data. NoSQL databases do not rely on these structures and use more flexible 

data models. Many mainstream enterprises have adopted NoSQL.

The benefits of NoSQL databases include

•	 Scalability: Horizontal scaling architecture makes it easy to add 

commoditized nodes to increase capacity.

•	 Performance: You can easily increase performance by adding 

commoditized resources as required.

•	 High availability: NoSQL databases often use a master-less 

architecture, making them less prone to outages.

•	 Global availability: Distributed databases can be replicated across 

machines and geographic areas.

•	 Flexible modeling: Handling documents or unstructured data 

represented by JSON means there is no strict data typing, tables, or 

indexes.

To understand how NoSQL databases differ from traditional RDBMS databases, it is 

useful to review the CAP theorem, originally described by Eric Brewer. The CAP theorem 

states that for distributed database architectures, it is impossible to simultaneously 

provide more than two out of the following three guarantees:

•	 Consistency: Every read receives the most recent write or an error.

•	 Availability: Can always read or write to the system, without 

guaranteeing that it contains the most recent value.

•	 Partition tolerance: The system continues to operate despite an 

arbitrary number of messages being dropped or delayed by the 

network between nodes.
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Figure 3-35 shows a graphical representation of the CAP theorem and includes a 

classification of many popular SQL (RDBMS) and NoSQL databases.

The traditional SQL databases are on the left side of the triangle. They support 

consistency and availability. However, they do not partition easily in a distributed 

fashion. Partitioning is the key ingredient behind the massive scalability of NoSQL 

architectures. The triangle shows popular NoSQL databases at the bottom and right side 

of the triangle.

Database theorists used two interesting terms to describe these database 

philosophies:

•	 ACID: Atomicity, Consistency, Isolation, Durability

•	 BASE: Basically Available, Soft state, Eventual consistency

Figure 3-35.  Database classification per the CAP theorem
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RDBMS databases choose ACID for consistency and availability. Distributed NoSQL 

databases choose BASE for either partitioning/consistency or partitioning/availability. 

Many popular NoSQL databases use the BASE philosophy. Table 3-9 shows a summary 

of the most popular NoSQL databases.

�NoSQL Data Store Methods
The NoSQL databases shown in Table 3-8 have differences. When choosing a NoSQL 

database, the key consideration is how they store the data. There are four types of NoSQL 

data stores:

•	 Key-value data stores

•	 Document stores

•	 Wide column stores

•	 Graph stores

Table 3-9.  Popular NoSQL Databases

Database Description

Google 

Bigtable

Google’s NoSQL big data database service. Google says it can handle massive 

workloads with low latency and high throughput. It powers many of the Google 

services such as Maps, Gmail, and Search.

AWS 

DynamoDB

Fully managed proprietary NoSQL database from Amazon. DynamoDB supports key-

value and document data structures. High durability and availability.

Apache 

HBASE

A distributed, scalable big data store. HBASE is the HADOOP database. The Apache 

project’s goal is hosting very large tables of billions of rows and millions of columns. 

Written in Java and modelled after Google’s Bigtable.

Riak KV A distributed NoSQL database from Basho. Allows you to store massive amounts of 

unstructured key-value data. Popular solution for IoT.

Apache 

Cassandra

Highly scalable NoSQL database. Claims to outperform other NoSQL databases due 

to architectural choices. Used by Netflix, Apple, EBay, etc.

MongoDB Cross-platform, document-based, NoSQL database based on JSON-like documents.

CouchDB Distributed NoSQL document-oriented database optimized for interactive 

applications.
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Table 3-10 shows how the poplar NoSQL products fall into these categories.

Data size and performance are also important factors to consider when selecting a 

NoSQL database. MongoDB and CouchDB are excellent choices for small to medium 

dataset sizes, while Cassandra is excellent for large datasets.

Performance is a complex topic and beyond the scope of this chapter. For CML 

projects, you do not require top-tier performance. If you are interested in NoSQL 

performance benchmarking, Datastax has a great summary available at

www.datastax.com/nosql-databases/benchmarks-cassandra-vs-mongodb-vs-

hbase.

The cloud providers include support for many NoSQL databases. Figure 3-36 show 

the AWS Database Quickstart page.

Table 3-10.  NoSQL Data Store Methods

Data store type Characteristics Examples

Key/Value A hash table indexed by key. Entirely in 

memory or combination of memory and disk. 

Does not support secondary indexes.

Memcache

Document Principle storage object is a document, 

usually in JSON format. Supports secondary 

indexes. Offers small to medium scalability. 

Internally objects are stored in binary as 

BSON or BLOBs.

MongoDB 

CouchDB 

CouchBase 

DynamoDB 

Redis

Graph Used for storing connected datasets. Neo

Wide Column Provides a wide or big table. Supports 

millions of columns. Offers large scalability. 

Supports big data.

HBase

BigtableCassandra
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You can see AWS provides NoSQL Quickstart packages for Couchbase, MongoDB, 

two flavors of Cassandra, and its own DynamoDB NoSQL offering.

�Apache Cassandra Java Interface
Using Quickstart packages makes it easy to deploy a NoSQL database on cloud providers 

such as AWS or GCP. In this final section, you will explore, at a very high level, how you 

can interface from your Java programs to the Apache Cassandra NoSQL database.

DataStax is one of the leading distributors of Apache Cassandra. It is available for 

AWS and Google Compute Engine at the following links:

https://aws.amazon.com/quickstart/architecture/datastax-enterprise/

�https://console.cloud.google.com/marketplace/details/datastax-public/

datastax-enterprise

Note that DataStax does not charge a fee for Datastax Enterprise, but the cloud 

providers will charge a fee for compute resources. The cloud providers and DataStax 

have teamed up to make it very easy to spin up a highly scalable Cassandra cluster in the 

cloud.

Figure 3-36.  AWS Database Quickstart options
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One of the great features of the DataStax distribution is the available of drivers for 

all the popular programming languages, including Java. The Datastax Java driver is 

available at

https://github.com/datastax/java-driver.

The DataStax Java driver GitHub site has an excellent Readme.md file with very 

helpful information for getting started with Java and Cassandra. Some highlights of the 

DataStax Cassandra distribution and Java driver:

•	 Open source drivers (Apache 2.0) available for all main languages, 

including Java.

•	 The DataStax Java driver contains the logic for connecting to 

Cassandra and executing a query.

•	 The DataStax Java driver supports synchronous and asynchronous 

queries.

•	 The driver is a feature-rich and highly tunable Java client library.

•	 The driver supports Apache Cassandra (2.1+).

•	 The driver supports Cassandra’s binary protocol.

•	 The driver supports Cassandra Query Language v3.

The following code shows how to connect to a Cassandra database and execute a 

Cassandra query from Java using the DataStax driver:

001   Cluster cluster = null;

002   try {

003       // Connect to the cloud Cassandra cluster

004       cluster = Cluster.builder()

005               .addContactPoint("ip_address")

006               .build();

007       Session session = cluster.connect();

008

009       // Provide a Query String for the execute method

010       �ResultSet rs = session.execute("select release_version from 

system.local");

011
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012       // Get the first row

013       Row row = rs.one();

014       System.out.println(row.getString(0)); // The first column;

015   } finally {

016       if (cluster != null) cluster.close();

017   }

Cassandra uses the Cassandra Query Language (CQL). CQL is very similar to SQL. 

There are several ways to access CQL, including

•	 Starting cqlsh, the command-line client, on the command line of a 

Cassandra node.

•	 Using DataStax DevCenter, a graphical user interface.

•	 For developing applications, you can use one of the official DataStax 

Java drivers.

One of the most useful CQL commands is the Copy command. The CQL Copy 

command allows you to import and export CSV files. Recall from Chapter 2, these files 

are an integral part of the ML pipeline. With a single command, you are able to populate 

an entire Cassandra DB or back up the Cassandra NoSQL DB to a CSV file for offline 

processing. Complete details on the CQL Copy command are at

https://docs.datastax.com/en/cql/3.1/cql/cql_reference/copy_r.html.

For more details on other useful CQL commands including additional Java code 

examples, refer to the DataStax driver documentation at

https://docs.datastax.com/en/developer/java-driver/3.4/manual/.

One of the advantages of using a cloud-based NoSQL database like Cassandra is 

scalability. This can come in handy if you are collecting a lot of ML data and you need to 

store it. A few years ago, Google achieved 1 million writes per second using Cassandra on 

Google Compute Engine. You can learn about the deployment details in this blogpost:

https://cloudplatform.googleblog.com/2014/03/cassandra-hits-one-million-

writes-per-second-on-google-compute-engine.html

According to the author, the cost to achieve this result in 2014 was only $0.07 per 

million writes. This illustrates the powerful value proposition of the cloud platforms.
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3.7  �Cloud Platform Summary
This chapter had the lofty goal of covering cloud platforms for ML. Cloud ML is a very 

fast moving space characterized by rapid developments. Keep in mind the following 

findings as you proceed to the next chapters to cover algorithms and ML environments:

•	 When building ML solutions, always scan the available cloud services 

first to see if one exists that can solve the problem with minimal 

model building or coding.

•	 Each of the cloud providers has been investing huge resources the 

past few years to deploy compute resources, storage solutions, model 

building platforms, and DL APIs that you can leverage for your 

applications.

•	 Leverage the free tier provided by the cloud platforms to see if a 

particular service works for your specific application.

•	 Google makes it easy for Android apps to leverage Google ML Engine 

services through published JSON APIs.

•	 NoSQL databases such as Cassandra allow you to achieve massive 

scale and are relatively easy to configure.

•	 Many services, especially those provided by open source packages 

offered by the cloud providers are free, but ultimately users will pay 

for any compute resources consumed. Fortunately, these costs have 

been driven down by fierce industry competition.
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CHAPTER 4

Algorithms: The Brains 
of Machine Learning
Selecting the best algorithm for your ML problem is extremely important. This chapter 

will explore algorithms and meet the following objectives:

•	 Explain the terminology used by the scientists who create ML algorithms.

•	 Show you how to select the best algorithm by considering multiple 

factors.

•	 Summarize the three high-level styles of algorithms.

•	 Provide a complete index list of CML algorithms so you can easily 

identify which style of ML a particular algorithm utilizes.

•	 Present a decision flowchart and a functional flowchart that will help 

you to choose the best algorithm for your problem.

•	 Present an overview of the seven most important ML algorithms.

•	 Compare the performance of CML algorithms, including summary of 

CML and DL algorithms on the MNIST dataset.

•	 Review the Java source code of popular algorithms.

4.1  �Introduction
When asked why they fail to deploy ML solutions, developers often express two main 

reasons:

•	 It takes too much manual work.

•	 Algorithms and model creation are too complicated.
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The manual work typically refers to data wrangling. In Chapter 2, I covered some 

tools that can help to make this simpler. Chapter 5 will present additional tools 

integrated as part of Java ML environments. With ML, it is hard to avoid manual work 

with data. I refer back to Mr. Silver’s interesting quote about expecting more from 

ourselves before we expect more from our data.

In Figure 1-20, you saw that algorithms are rooted in the scientific domain. One of 

the main reasons developers shy away from deploying ML is that algorithm selection 

and model creation are too complicated. Fortunately, you can overcome the algorithm 

complexity issue by learning some basic principles and gaining an understanding of the 

scientific language associated with ML algorithms.

This book and chapter will mainly cover CML algorithms. In Chapter 3, you accessed 

a DL algorithm via the Google Cloud Speech API because the cloud providers tend to 

focus their ML APIs on DL solutions.

�ML-Gate 3
MLG3 is the phase during which you generate the ML model. The most important action 

during this phase is the selection and validation of the ML algorithm. This chapter will 

help you to choose the best algorithm and determine how it is performing.

When you first embark on ML solutions, choosing the best algorithm seems 

somewhat arbitrary. In Chapter 5, you will see that it is actually quite easy to randomly 

select and apply any algorithm to a dataset. This is not a particularly good use of time. In 

Chapter 3, you saw disappointing results when the AWS Machine Learning wizard chose 

the wrong algorithm after misunderstanding the label data type. There is a conventional 

wisdom for algorithm selection. Answers to the following questions help to determine 

which algorithm is best suited for your model:

•	 How much data do you have?

•	 What are you trying to predict?

•	 Is the data labeled or unlabeled?

•	 Do you require incremental or batched training?

As you gain experience, you can quickly determine which algorithm is the best 

match for your problem and data.

Chapter 4  Algorithms: The Brains of Machine Learning
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4.2  �Algorithm Styles
The world of ML algorithms is bifurcated into two equally important and useful 

categories. Before introducing the fancy terminology scientists use to describe each 

category, let’s first look at the types of data that define each category.

�Labeled vs. Unlabeled Data
You will recall in Chapter 2, I defined the term label as what you are attempting to 

predict or forecast. In Chapter 2, the PAMAP2_Dataset was labeled. Column 1 contained 

the label values. At the time of the data collection, the participants wearing sensors were 

asked to record their activity. This label value was then stored along with all of the other 

data from the sensors.

Many datasets used in ML consist of labeled data. The majority of the datasets in 

the UC Irvine repository have labels. Most of the ML competitions hosted by the ML site 

Kaggle.com use labelled data. In the real world, this is not always the case.

Some organizations consider labeled data as more valuable than unlabeled data. 

Organizations sometimes even consider unlabeled data as worthless. This is probably 

shortsighted. You shall see that ML can use both labeled and unlabeled data.

Whether or not the data contains labels is the key factor in determining the ML 

algorithm style. ML algorithms fall into three general ML styles:

•	 Supervised learning

•	 Unsupervised learning

•	 Semi-supervised learning

Figure 4-1 summarizes these three ML algorithm styles.
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All of the algorithms I will discuss fall into one of these categories. Supervised 

algorithms use data with labels. Unsupervised algorithms use data without labels. Semi-

supervised algorithms use data with and without labels.

4.3  �Supervised Learning
Supervised learning is the easiest ML learning style to understand. Supervised learning 

algorithms operate on data with labels. Because each sample includes a label, a function 

(which we will call a critic) is able to calculate an error value for each sample. Figure 4-2 

shows a graphical representation of the supervised learning process.

Figure 4-1.  ML algorithm styles
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The term “supervision” refers to the critic-error operation. This operation enables 

the algorithm to compare actual vs. desired and learn from this. There are many 

algorithms under the supervised learning umbrella. Later in this chapter, you will 

explore some of the most useful supervised algorithms:

•	 Support vector machines (SVM)

•	 Naive Bayesian (NB) networks

•	 Random forest (RF) decision trees

When you combine supervised learning with labeled data, you are able to classify 

samples. The terms “supervised learning” and “classification” are thus highly correlated.

Supervised learning classification usually happens in two phases. You divide the 

data into two parts: training data and testing data. Both sets of data contain fully labeled 

samples. In the first phase, you train the mapping function with the training data until it 

meets some level of performance (actual vs. desired output). In phase two, you use the 

testing data as input to the mapping function. Phase two provides a good measure of 

how well the model performs with unseen data.

Figure 4-2.  Supervised learning logic
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4.4  �Unsupervised Learning
Unsupervised learning algorithms operate on data without labels. The key difference 

is that unsupervised learning lacks a critic and has no way to measure its performance. 

Figure 4-3 shows the representation of an unsupervised learning system.

In this system, you do not have the necessary label to perform classification of 

individual samples. Instead, you accept data without labels as input and perform the 

task of outputting classes. Unsupervised learning is all about finding the structure of the 

data, a task commonly described as clustering, or knowledge discovery.

A common example often cited to help explain clustering is the unknown Excel 

spreadsheet. Consider a spreadsheet that contains columns of data but no headers to 

identify the data. What can you determine? You need to analyze the data contained 

in each column and attempt to discover what it means. You are essentially trying to 

uncover the structure of the data in the spreadsheet. If a new sample arrives, you would 

like to make some decisions about how it might connect to the rest of the data in the 

spreadsheet. This is clustering.

Figure 4-3.  Unsupervised learning logic
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Clustering algorithms involve determining a mapping function that categorizes 

the data into classes based on the features hidden within the data. With unsupervised 

learning, because no labels are present, you lack the knowledge to know what you wish 

to get out of the model. Instead, you look for relationships or correlations in the data.

Unsupervised learning algorithms work their magic by dividing the data into 

clusters. In Figure 2-10, you saw an interesting dataset that contained erroneous value.  

If you pass this dataset into a clustering algorithm, you might possibly obtain a result like 

that shown in Figure 4-4.

Visualization is very helpful in understanding clusters. Obviously, Cluster 2 

represents the erroneous data in the dataset. Algorithms have many different techniques 

to determine what constitutes a cluster. Later in this chapter, you will explore the pros 

and cons of the following clustering algorithms:

•	 DBSCAN

•	 Expectation-maximization (EM)

•	 K-means clustering

In Chapter 5, you will implement clustering with Java and Weka.

Figure 4-4.  Clustering of a dataset
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4.5  �Semi-Supervised Learning
Semi-supervised learning algorithms operate on mixed data where only some of the data 

contains labels. This is often the case for real-world data. Semi-supervised learning is 

becoming increasingly popular for two reasons:

•	 The data explosion megatrend has led to the increasing collection  

of unstructured data that does not have a consistent application  

of labels.

•	 One possible option would be to label all of the unlabeled data 

in a mixed dataset and then use supervised learning algorithms. 

However, because the labeling process is manual and tedious, it is too 

expensive to label the sample with missing labels.

Figure 4-5 shows the process diagram for semi-supervised learning. The input and 

outputs are the same as with the supervised learning style, with the exception of a switch 

placed before the critic. The switch allows the critic function to be disabled when a data 

sample is unlabeled.

Figure 4-5.  Semi-supervised learning logic
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As with the supervised and unsupervised learning styles, semi-supervised learning 

has many algorithms. In Chapter 5, you will implement semi-supervised learning using 

a collective classification set of algorithms. There is a growing amount of academic 

research showing that semi-supervised algorithms can outperform supervised 

algorithms. However, the main advantage of using semi-supervised algorithms remains 

the time-savings gained by not needing to label unlabeled data.

4.6  �Alternative Learning Styles
Regression, deep learning, and reinforcement learning are learning styles with unique 

algorithms that I will not cover in this chapter, with one exception: the support vector 

machine algorithm that performs wells for supervised learning classification.

�Linear Regression Algorithm
Regression is useful for predicting outputs that are continuous, rather than outputs 

confined to a set of labels. Linear regression is the most popular regression algorithm. All 

of the cloud and desktop ML environments support the linear regression algorithm. It is 

one of the more simple algorithms. If you recall back to the statistics class you suffered 

through, linear regression is the process of finding the best fit line through a series of 

data points. Figure 4-6 shows a linear regression example.
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The regression line minimizes the error values associated with each data point. The 

resulting best-fit line can successfully generate or “predict” a value for any independent 

variable value along the line.

Recall in Chapter 2, you applied the AWS ML regression algorithm to the PAMAP2_

Dataset. The result was poor because this dataset was not a good match for the 

regression algorithm. In the example, the AWS ML wizard mistakenly considered your 

target label to be a continuous value rather than an integer label. Later you will see how 

to choose a better algorithm for this dataset.

In the rest of this text, you will mainly focus on CML algorithms for supervised and 

unsupervised learning, but keep in mind the linear regression algorithm if you have a 

simple problem that requires continuous value prediction rather than discrete labels.

�Deep Learning Algorithms
DL styles rely on neural networks with hidden layers. There are several families of 

algorithms popular in DL, including convolutional neural networks (CNN) and 

recurrent neural networks (RNN). One of the best summary resources for DL algorithms 

is “The Mostly Complete Guide to Deep Learning Algorithms,” available at https://

asimovinstitute.org.

Figure 4-6.  Linear regression
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Figure 4-7 displays a simplified summary of the cells and hidden layers that 

comprise some of the most popular neural networks.

Figure 4-7.  DL algorithm summary
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Neural networks have many types of hidden layers. Refer to the link to distinguish 

the different hidden layer types because it is hard to visualize the layer types in the 

greyscale image.

In the bottom left corner of Figure 4-7 is the support vector machine DL algorithm. 

The SVM DL algorithm is a supervised ML algorithm you can also apply to CML. You 

will take a closer look at the performance of this algorithm later in this chapter and 

again in Chapter 5.

�Reinforcement Learning
Semi-supervised learning is sometimes confused with the reinforcement learning (RL) 

style. They are not the same. RL is a type of supervised learning with a distinction. With 

RL, each input does not always generate feedback. While semi-supervised learning uses 

data with mixed labels, with RL, there are no labels.

In RL, the supervision comes from a reward signal that tells the critic how well it 

is doing, but does not say what the correct action should be. Reinforcement learning 

deals with the interaction of the critic with its environment (state). The actions taken by 

the critic influence the distribution of states it will observe in the future. In supervised 

learning, each decision is independent of the others. In RL, the labels are associated with 

sequences, as opposed to individual samples in supervised learning.

Recall from Chapter 1, the Pokerbot problem was difficult to solve because poker is 

a game of uncertain or incomplete information. RL works well for navigating uncertain 

environments, and is thus often used for games such as poker, chess, blackjack, or Go.

Earlier, I mentioned Skymind, the creator of the Java-based DL library. Skymind also 

has some great content on RL. It described RL as a goal-oriented approach to ML. You 

can learn more about RL from the following link:

https://skymind.ai/wiki/deep-reinforcement-learning

In the rest of this chapter and book, you will restrict your focus to supervised and 

unsupervised algorithms with or without labels because they overlap well with your 

focus on CML problems.
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4.7  �CML Algorithm Overview
With an understanding of the major algorithm styles, supervised, unsupervised, and 

semi-supervised, and their relation to labeled vs. unlabeled data, it is now time to look 

at the specific algorithms within these styles. Table 4-1 provides an index of most of the 

popular supervised CML algorithms. The shaded cells indicate the key algorithms you 

will explore.

Table 4-1.  Supervised ML Algorithms

Supervised ML Algorithm Family/Class

Averages one-dependency estimator (AODE) Outperforms Bayes

Analysis of variance (ANOVA) Statistical

Artificial neural network (ANN) Neural networks

Apriori algorithm Association learning (databases)

Naive Bayesian Bayes (probabilistic)

Bayesian statistics Bayes (probabilistic)

Boosting Ensemble learning

Conditional random field Statistical

C45 Decision tree

CART Decision tree

Random forest Decision tree

Sliq Decision tree

Sprint Decision tree

Eclat algorithm Association learning

Ensemble of classifiers Ensemble learning

Information fuzzy network (IFN) Decision tree but with directed graphs

Hidden Markov models Statistical, Markov process

K-nearest neighbors (KNN) Instance-based (lazy learning)

Learning automata Reinforcement

(continued)
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Table 4-2 provides an index of most of the popular unsupervised ML algorithms.

Table 4-2.  UnSupervised ML Algorithms

Unsupervised ML Algorithm Family/Class

COBWEB Conceptual clustering

Conceptual clustering Data clustering

DBSCAN Density-based clustering

Expectation-maximization (EM) Iterative method

FP-growth algorithm (frequent pattern) Recursive tree

Fuzzy clustering (FCM) Similar to k-means

Generative topographic map Probabilistic

HDBSCAN Density-based clustering

Information bottleneck Deep learning

K-means algorithm Vector quantization, similar to KNN

Local outlier factor Anomaly detection

OPTICS algorithm Density-based clustering

Self-organizing map (ANN) Neural network

Single-linkage clustering Hierarchical clustering

Support vector clustering Vector quantization, similar to SVM

Vector quantization Vector quantization

Supervised ML Algorithm Family/Class

Learning vector quant (LVQ) Neural network

Logistic model tree (LMT) Combines regression and decision tree

Minimum message length Instance-based

Probably approximately correct (PAC) learning Statistical

Quadratic classifiers Linear classifier

Support vector machines Non-probabilistic linear classifier

Table 4-1.  (continued)
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Lastly, Table 4-3 shows a list of the semi-supervised algorithms.

These tables are a nearly complete list of CML algorithms. It is not necessary to 

understand all of these algorithms to write successful ML applications. If you see a 

particular algorithm referenced in an ML solution, you can use the tables to identify 

the class or family of algorithms and the learning style. Wikipedia has decent reference 

pages for all of the algorithms if you wish to learn more about one of them.

The CML algorithm is a commodity. Algorithm innovation and perfor-
mance gains have been widely achieved. However, CML algorithms prefer 
specific types of problems, so consider algorithm preference bias when 
choosing your algorithm.

While knowing the details of all the CML algorithms is not necessary, it is necessary 

to understand the following:

•	 What type of data you have?

•	 Which learning style is the most appropriate for your data?

•	 What is the preference bias for each ML algorithm?

Next, you will explore a process for choosing the best algorithm.

Table 4-3.  Semi-Supervised CML Algorithms

Semi-Supervised ML Algorithms Family/Class

Co-training Large amount of unlabeled data

Collective classification WEKA

Generative models Graph-based

Graph-based methods Graph-based

SARSA

(State-Action-Reward-State-Action)

Reinforcement

Temporal Reinforcement
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4.8  �Choose the Right Algorithm
There is a popular saying among data scientists...

Algorithms are easy; the hard part is the data.

The part about data being hard was a theme of Chapter 2. At first glance, CML 

algorithms do not appear to be easy. Unlike DL algorithms, which are still undergoing 

significant development, CML algorithms are widely deployed and relatively stable. This 

allows us to define a decision flowchart for choosing the right CML algorithm. Figure 4-8 

shows the algorithm decision process.

Figure 4-8.  ML algorithm decision flowchart
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This decision chart is a modified version of a more complex chart available on the 

Scikit-learn resources page. If you look closely at Figure 4-8, you will notice that simple 

decisions steer you into one of the three main learning style boxes: classification, 

clustering, and regression. Each of these boxes highlights the key algorithms you need 

to know.

As you navigate the flowchart, the decision nodes depend on the amount of data and 

the type of data. In some cases, you will find there is more than one algorithm that you 

could use. The general rule of thumb is to start simple by running the basic algorithms 

first.

Even though Table 4-1, Table 4-2, and Table 4-3 contain many algorithms, you really 

only need to consider the algorithms shown in Figure 4-8. You will take a closer look at 

these specific algorithms later in the chapter.

�Functional Algorithm Decision Process
Sometimes ML practitioners take a more functional approach to algorithm selection. 

Cloud platforms use this approach when they wish to remove users from the 

complications associated with the data type decisions required to choose an algorithm. 

Microsoft Azure ML does a particularly good job of using this approach to help users 

choose the correct algorithm.

The idea is to ask yourself the simple question, “What do I want to find out?” The 

answer to the question will lead you to the correct learning style and then to specific 

algorithms. Figure 4-9 show a summary of this approach for each of five distinct answers 

to the question, including

•	 Predict values

•	 Discover structure

•	 Predict between several categories

•	 Find unusual occurrences

•	 Predict between two categories

Figure 4-9 shows examples and algorithms for each of the five categories. Some 

users appreciate this approach to algorithm selection, because it is simpler. “Discover 

structure” is an easier concept to understand than “clustering.”
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Organizing ML algorithms in this manner shows that the same algorithm can answer 

several of the different questions. The distinction lies in the number of output classes. 

Notice, for example, the case of the decision tree or random forest algorithms. You can 

apply these algorithms as multiclass algorithms to predict between several categories, 

as 2-class algorithms to predict between two categories, or as a regression algorithm to 

predict values.

Figure 4-9.  Functional algorithm decision flowchart
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The data-driven decision flowchart in Figure 4-8 and the functional approach in 

Figure 4-9 will both lead you to the same correct learning style and algorithm choice for 

your problem.

Next, you will take a closer look at the key algorithms you need to know for your CML 

problems.

4.9  �The Seven Most Useful CML Algorithms
The algorithm decision charts in Figure 4-8 and Figure 4-9 guide you in the selection 

of the best ML algorithm. With experience, you will find that a handful of algorithms 

can solve most of your problems. This section will cover the seven most useful CML 

algorithms you need in your toolbox.

The following seven algorithms are the “go-to” algorithms for CML problems. The list 

includes four classifiers and three clustering algorithms.

•	 Naive Bayes (classify)

•	 Random forest (classify)

•	 K-nearest neighbors (classify)

•	 Support vector machine (classify)

•	 DBSCAN (cluster)

•	 Expectation-maximization (cluster)

•	 K-means (cluster)

Of course, the special case will arise when you need to reach for an obscure 

algorithm, but 95% of time, these seven algorithms will deliver excellent results. The best 

part of all, there is open source Java production code available for all of the algorithms.

�Naive Bayes Algorithm (NB)
NB is a probability-based modeling algorithm based on Bayes’ theorem. One of the goals 

of this book is to avoid mathematical equations. Because of its roots in probability, the 

NB algorithm represents one circumstance warranting the use of math equations, but we 

will avoid the temptation.
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Bayes’ theorem simply states the following:

•	 The probability of an event is based on prior knowledge of conditions 

that might be related to the event. Bayes’ theorem discusses 

conditional probability. Conditional probability is the likelihood that 

event A occurs given that condition B is true.

For example, consider human eyesight and its relationship to a person’s age. 

According to Bayes’ theorem, age can help assess more accurately the probability that 

a person wears glasses, compared to an assessment made without knowledge of the 

person’s age. In this example, the age of the person is the condition.

The reason for the “naive” part of the name is that the algorithm makes a very “naive” 

assumption about the independence of the attributes. NB algorithms assume that all the 

attributes are conditionally independent given the class. Even with this assumption, NB 

algorithms often outperform classifiers using techniques that are more elaborate.

Some advantages of NB algorithms include

•	 NB is good for spam detection where classification returns a category 

such as spam or not spam.

•	 NB can accept categorical and continuous data types.

•	 NB can work with missing values in the dataset by omitting them 

when estimating probabilities.

•	 NB is also effective with noisy data because the noise averages out 

with the use of probabilities.

•	 NB is highly scalable and it is especially suited for large databases.

•	 NB can adapt to most kinds of classification. NB is an excellent algorithm 

choice for document classification, spam filtering, and fraud detection.

•	 NB is good for updating incrementally.

•	 NB offers an efficient use of memory and fast training speeds. The 

algorithm is suitable for parallel processing.

Disadvantages of NB include

•	 The NB algorithm does not work well when data attributes have some 

degree of correlation. This violates the “naive” assumption of the algorithm.

You will implement document classification using naive Bayes in Chapter 5.
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�Random Forest Algorithm (RF)
If I could only choose one algorithm for my ML toolbox, I would choose the random 

forest algorithm.

To understand RF, it is first necessary to understand decision trees. Decision trees 

are a supervised learning method for classification. Decision tree algorithms grow trees 

using the training data set. The decision tree can classify instances in the test data set. 

Decision trees are a divide-and-conquer approach to learning.

A decision tree is a structure where “internal nodes” represent each attribute in the 

dataset. Each “branch” of the tree represents the result of a test, and the “leaf nodes” at 

the bottom of the tree represent the classification made.

The test can take on a variety of forms, including

•	 Comparing the attribute value with a constant.

•	 If the attribute is a nominal one, the number of children usually 

represents the categories that match.

•	 If the attribute is numeric, the children can represent “>” or “<” or “=” 

matches.

The CART (classification and regression trees) algorithm is one of the most basic 

decision tree algorithms. CART uses binary trees with exactly two outputs. C45 is an 

improved algorithm that handles missing values and has pruning to help with overfitting 

issues. With a decision tree, you can use classification trees for discrete value targets and 

regression trees for continuous value targets.

The RF algorithm is an improvement over the basic decision tree algorithms such 

as CART and C45. RF is an ensemble model because it uses multiple decision trees and 

bases each decision tree on a random subset of attributes (columns) and observations 

(rows) from the original data. Figure 4-10 shows a graphical representation of how the RF 

algorithm classifies an instance.
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Many trees make up the random forest, and a majority voting determines the final 

classification.

The RF algorithm has several advantages:

•	 RF is easy to visualize so you can understand the factors that lead to 

a classification result. This can be very useful if you have to explain 

how your algorithm works to business domain experts or users.

•	 Each tree in a random forest grows the structure on random features, 

minimizing the bias.

•	 Unlike the naive Bayes algorithm, the decision tree-based algorithms 

work well when attributes have some correlation.

Figure 4-10.  Random forest algorithm
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•	 RF is one of the most simple, robust, and easily understood 

algorithms.

•	 The RF bagging feature is very useful. It provides strong fit and 

typically does not over-fit.

•	 RF is highly scalable and gives reasonable performance.

RF has some disadvantages:

•	 Decision trees can be slow with large training times when they are 

complex.

•	 Missing values can pose a problem for decision tree-based 

algorithms.

•	 Attribute ordering is important, such that those with the most 

“information gain” appear first.

The RF algorithm is a good compliment to the naive Bayes algorithm. One of the 

main reasons RF has become popular is because it is very easy to get good results. You 

will see later in this chapter that RF algorithm can generally outperform all of the other 

CML classifier algorithms.

�K-Nearest Neighbors Algorithm (KNN)
The k-nearest neighbors algorithm is a simple algorithm that yields good results. KNN is 

useful for classification and regression. Recall from Table 4-1, the KNN algorithm is an 

instanced-based algorithm, a class of learning also known as lazy learning. The reason 

is that the work is done at the time you are ready to classify a new instance, rather than 

when a training set is processed. Instance-based learning is thus “lazy”. KNN algorithms 

do not make any assumptions on the underlying data and do not build models from 

training data.

Because they rely on distance calculations, KNN algorithms work well with numeric 

attributes, but KNN can also support categorical attributes with transformation to 

numeric or binary values.

KNN algorithms classify each new instance based on the classification of its nearby 

neighbor(s). Figure 4-11 shows a graphical representation of a KNN algorithm with K=5.
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Figure 4-11 shows two-dimensional data with three different classes. The algorithm 

scans outward from the instance it is trying to classify. The algorithm maintains a 

distance array that contains the distances from the unclassified instance to each 

classified neighbor. Because K=5, only the five nearest neighbors are considered for a 

majority vote that determines the class. In this example, a count of three classified the 

unknown instance, as shown.

The trick with KNN is determining the best value for K. If you pick a K that is too 

large, perhaps even equal to the total number of observations, then your classification 

result will simply be the most populous class. If K is too small, the result will simply be 

the class of the closest neighbor. There are many approaches to choosing K:

Figure 4-11.  KNN algorithm (k=5)
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•	 Make a guess and refine with trial by error.

•	 Choose a K value related to the number of classes, for example, the 

number of classes + 1.

•	 Use another algorithm to choose K.

KNN advantages:

•	 KNN makes no assumptions on the underlying data.

•	 KNN is a simple classifier that works well on basic recognition 

problems.

•	 KNN is easy to visualize and understand how classification is 

determined.

•	 Unlike naive Bayes, KNN has no problem with correlated attributes 

and works well with noisy data if the dataset is not large.

KNN disadvantages:

•	 Choosing K can be problematic and you may need to spend time 

tuning K values.

•	 KNN is subject to the curse of dimensionality due to reliance on 

distance-based measures. To help combat this, you can try to reduce 

dimensions or perform feature selection prior to modeling.

•	 KNN is instance-based and processes the entire dataset for 

classification, which is resource intensive. KNN is not a great 

algorithm choice for large datasets.

•	 Transforming categorical values to numeric values does not always 

yield good results.

•	 As a lazy classifier, KNN is not a good algorithm choice for real-time 

classification.

KNN is a simple, useful classifier. Consider it for the initial classification attempt, 

particularly if the disadvantages listed above are not an issue for your problem.
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�Support Vector Machine Algorithm (SVM)
The support vector machine algorithm fills a useful place in your toolbox of seven 

algorithms. The SVM is technically a linear classifier, but there’s a method that will also 

allow it to handle complex non-linear data.

For its input, the SVM is effective with numeric features only, but most 

implementations of the algorithm allow you to transform categorical features to 

numerical values. The SVM output is a class prediction.

The SVM works its magic similar to the linear regression algorithm discussed earlier. 

Figure 4-12 shows the SVM concept.

Figure 4-12.  Support vector machine

The points on the dashed lines in Figure 4-12 are the support vectors. The algorithm 

tries to create the optimal hyperplane decision boundary between the classes by 

maximizing the margin between the support vectors.

The SVM algorithm has several advantages:

•	 SVMs have fewer parameters to set up when building the model.

•	 SVM algorithms have a good theoretical foundation.
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•	 SVMs are extremely flexible in the type of data they can support.

•	 SVMs require less computational resources to get an accurate model 

than decision trees.

•	 SVMs are not sensitive to noisy data.

•	 SVM is a good algorithm for binary two-class outputs.

•	 You can accomplish non-linear classification with SVMs by using 

kernel transformation.

•	 SVMs can work well with a large number of features and less  

training data.

Disadvantages of SVM algorithms:

•	 SVMs are black boxes. Unlike decision trees, it is hard to interpret or 

explain what is happening under the hood.

•	 SVMs can consume a large amount of memory. They are considered 

O(n2) and O(n3), which means they scale exponentially with the 

number of instances, and thus scalability issues can result.

•	 SVMs are generally good for binary classification (two-class) but do 

not perform as well for multiclass classification.

You don’t always have linear data as show in Figure 4-12. Fortunately, you can 

classify non-linear data with SVMs by using kernel transformation, also known as the 

“kernel trick.” Using the kernel trick, SVMs can efficiently classify non-linear data by 

mapping the inputs into high-dimensional feature spaces.

To understand two-dimensional-to-three-dimensional transformation, consider 

the following example. A set of coins consisting of pennies and dimes are scattered 

randomly on a table. They will certainly land in a non-linear pattern, such that no line 

could separate them into two distinct classes. Imagine if you then raised (transform) 

all of the dimes a few inches above the table. You can do this because this is supervised 

learning and you have labeled data. After this transformation, you can now easily 

separate the classes with a plane. That is essentially the kernel trick and it is why SVMs 

have become so popular.
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Spoiler alert: In the next section, you will discover that SVMs can perform almost as 

well as neural networks on the MNIST image classification problem. Because of such 

excellent performance, SVMs are becoming increasingly popular and many people are 

starting to ask if they are an alternative to neural networks. SVMs cannot match the 

performance of deep networks, but they do have some advantages worth mentioning:

•	 SVMs are less prone to overfitting than neural networks.

•	 SVMs require less memory than neural networks to store the 

predictive model.

•	 SVMs yield a more readable result because they have a geometrical 

interpretation.

You will explore the SVM further in Chapter 5.

�K-Means Algorithm
Clustering is the main task of explorative ML, and when seeking a clustering algorithm, 

k-means is the usual starting point. It works well for many datasets. Figure 4-13 shows a 

simplified view of how the algorithm works.
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Figure 4-13.  K-means clustering algorithm

As shown in the graphic, the k-means algorithm is iterative. The algorithm tries to 

partition the N observations into K clusters. You must start with the number of clusters. 

The main drawback of the k-means algorithm is that you are required to know upfront 

how many clusters there are. In the example shown, K=3. The algorithm then chooses 

three initial “means” randomly and creates the initial clusters by assigning each 

observation to the nearest mean. The centroid of each cluster becomes the new mean 

and the process repeats until convergence is achieved.

K-means has been around since 1967 and it is one of the simplest unsupervised 

algorithms for clustering problems. K-means performance is also relatively good.
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In addition to having to know the number of clusters upfront, k-means faces another 

disadvantage: it does not work well for non-globular clusters. The k-means algorithm 

tends to find clusters of the same comparable shape. Fortunately, additional clustering 

algorithms can handle the weaknesses of k-means.

�DBSCAN Algorithm
DBSCAN stands for density-based spatial clustering of applications with noise. 

The easiest way to understand density-based clustering is to look at Figure 4-14, a 

reproduction of the original clusters shown from Ester et al. Ester introduced the 

DBSCAN algorithm in 1996. The graphic shows three database examples. Each of the 

examples contains four easily visible clusters. The clusters are non-globular, inconsistent 

shapes. If you were to run a k-means clustering algorithm on the datasets shown in 

Figure 4-14, the k-means algorithm would fail miserably. A density-based algorithm like 

DBSCAN is required to cluster such datasets.
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Figure 4-14.  DBSCAN clustering examples

The three images shown highlight the strengths of density-based algorithms. 

In Database 1, the relative cluster size of the larger center cluster compared to the 

three surrounding clusters would be problematic for k-means. In Database 2, the 

S-shaped cluster surrounding the two smaller clusters would pose trouble for k-means. 

In Database 3, the random noise points dispersed throughout the area would be 

problematic for the k-means algorithm.
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The DBSCAN algorithm employs an approach not unlike human intuition to identify 

clusters and noise. To accomplish this, DBSCAN requires two important parameters:

•	 MinPts: The number of dimensions in the dataset. The value must be 

at least 3.

•	 e: Epsilon is Euclidean distance. Small values are preferable. If e is too 

small, a large part of the data will not cluster. If e is too large, the clusters 

will merge. Choosing a good e value is the key to success with DBSCAN.

DBSCAN is one of the most common clustering algorithms and its advantages 

include

•	 DBSCAN does not require prior knowledge of the number of clusters.

•	 DBSCAN can find any shape of cluster.

•	 DBSCAN can find outliers.

•	 DBSCAN can identify noise.

•	 DBSCAN requires just two parameters.

•	 The ordering of the dataset does not matter.

The key disadvantages of DBSCAN include

•	 The quality of DBSCAN depends on the e value. For high-

dimensional data, it can be difficult to find a good value for e. This is 

the so-called “curse of dimensionality.” If the data and scale are not 

well known, it is hard to choose e.

•	 DBSCAN cannot cluster datasets well with large differences in 

density.

Note that the optics algorithm is a hierarchical version of DBSCAN. The HDBSCAN 

algorithm is a faster version of the optics algorithm.

�Expectation-Maximization (EM) Algorithm
When k-means fails to achieve desirable results, consider the EM algorithm. EM often 

gives excellent results for real-world datasets, especially if you have a small region of 

interest.
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EM is an iterative algorithm that works well when the model depends on unobserved 

latent variables. The algorithm iterates between two steps: expectation (E) and 

maximization (M). In the expectation step (E), a function is created for the expectation 

of likelihood. In the maximization step (M), parameters are created to maximize the 

expected likelihood in the E step.

The theory behind the EM algorithm is difficult to understand. With EM clustering, 

you are probabilistically assigning candidates to clusters. The EM algorithm tends to run 

comparatively slow since it needs to calculate a lot of covariances and means.

You will explore how to implement the EM algorithm on real-world data in the next 

chapter.

4.10  �Algorithm Performance
Whether you are classifying or clustering, algorithm prediction accuracy is the key 

measure of the chosen algorithm’s performance. The degree of accuracy you require 

is relative to the problem you are trying to solve. If you are building an ML model to 

determine the best day to play golf, a 90% confidence rate is acceptable. If you are trying 

to determine if a photograph of a skin spot is cancerous, or if a plot of land contains a 

landmine, 90% would not be acceptable.

The rise of deep learning has, to some extent, been the result of an ever-increasing 

search for algorithm accuracy. The users of CML algorithms were in search of higher 

degrees of accuracy, which led them to DL algorithms.

The MNIST database is one of the most popular “Hello World” applications in 

ML. MNIST is a large database of handwritten digits used to train neural networks and 

CML algorithms in image recognition. Because image recognition is well suited for DL 

algorithms, you will not implement MNIST. However, as MNIST has been around for a 

long time, you can gain insight about the algorithm’s performance.

�MNIST Algorithm Evaluation
MNIST is the abbreviation for Mixed National Institute of Standards and Technology. 

The MNIST database consists of 60,000 handwritten digits. Figure 4-15 shows what these 

images look like.
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Figure 4-15.  MNIST sample images

Characteristics of the MNIST image database:

•	 60,000 training instances

•	 10,000 test instances

•	 Each image dimension is 28x28 pixels

•	 All images are greyscale

In addition to the image files, the MNIST database includes labels for each image. 

Because the MNIST dataset contains labels, MNIST is a classification ML problem.

Figure 4-16 shows a visualization of the MNIST dataset. You can distinguish the 

10 unique digits. Digits that have similar appearance appear in close proximity. For 

example, x and y appear together at the top left. Digits 1 and 2 are also similar and 

appear in close proximity to each other at the center of the visualization.
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There is a rich amount of academic research on the MNIST database. You can utilize 

the results to help you understand the algorithm. Because you have labeled data, you 

can understand how the supervised learning classifiers stack up against one another.

In order to evaluate a ML model on the MNIST database, it is necessary to train the 

model with the 60,000 training instances. Evaluation uses the additional 10,000 test 

instances. Because MNIST is such a popular dataset, many models and algorithms have 

solved MNIST. You can use the results of this work to gain some insights about relative 

algorithm performance.

Figure 4-16.  MNIST visualization
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Table 4-4 shows a summary of the results for many of the popular classifiers on 

MNIST. The table summarizes MNIST results from the following references:

•	 https://en.wikipedia.org/wiki/MNIST_database

•	 Summary of Performance on the MNIST Evaluation, Data Mining, 

Witten et al., pp 421

•	 MNIST website, www.nist.gov/itl/iad/image-group/emnist-dataset

•	 Author MNIST evaluation

The second column in the table displays the algorithm category as either CML or 

DL. Most of the recent results with error rates < 1% use DL algorithms.

Table 4-4.  MNIST Classification Algorithm Performance Summary

Classifier Type Error (%) References

Linear classifier (1-layer neural net) CML 12.0 LeCun et al. (1998)

Linear classifier (pairwise) CML 7.6 Wikipedia

K-nearest-neighbors, Euclidean (L2) CML 5.0 LeCun et al. (1998)

2-layer neural net, 300 hidden units CML 4.7 LeCun et al. (1998)

Random forest CML 2.8 Wickham

Support vector machine, Gaussian CML 1.4 MNIST website

Convolutional net, LeNet-5 DL 0.95 LeCun et al. (1998)

Virtual support vector machine DL 0.56 DeCoste (2002)

KNN (shiftable edge preprocessing) CML 0.56 Wikipedia

Convolutional neural net DL 0.4 Simard (2003)

6-layer feed forward neural net GPU DL 0.35 Ciresan (2010)

Large deep convolutional neural net DL 0.35 Ciresan (2011)

Committee of 35 convolutional neural nets DL 0.23 Ciresan (2012)
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Recall from Figure 4-8, k-nearest neighbor and support vector machine were two of 

the recommended algorithms for classification problems. The MNIST performance of 

KNN is 95% classification accuracy while SVM achieves a 98.6% accuracy. These are very 

impressive results, especially for the SVM. The SVM result rivals the results seen with 

several of the DL algorithms. Scanning down the bottom half of the table, you can see the 

top results are obtained with DL algorithms, >99.5% accuracy.

MNIST is an image recognition problem. While the accuracy results presented 

are useful, you also need to consider different problem types before reaching any 

conclusions.

Earlier in the book, I discussed leveraging academic research papers as a means to 

gain a competitive advantage. One of the common metrics published by researchers is 

algorithm classification accuracy. Figure 4-17 shows the my summary of CML algorithm 

performance across a wide variety of ML classification problems published in academic 

research.

Figure 4-17.  CML classification algorithm comparison
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You saw earlier in the chapter that different algorithms are useful for different types 

of problems. The data in Figure 4-17 represents a very wide snapshot, and it is not very 

scientific to aggregate the results, but you can use it to make some general insights:

•	 With the zero-based Y-axis used in the chart, it is apparent the 

differences between algorithms are not great. All of these CML 

algorithms achieve accuracy in the 90% - 95% range.

•	 Random forest often does an excellent job, typically outperforming 

the other classifiers. This makes random forest the go-to algorithm 

for most CML classification purposes.

You saw with MNIST results that the SVM algorithm outperformed all of the non-DL 

algorithms, including random forest. This is likely because decision trees do not work 

as well for high-dimensional problems like MNIST. Depending on the problem, random 

forest and SVM are two very important, yet different, algorithms for your toolbox.

If you are seeking to classify multi-class labeled data, just choose random 
forest and save yourself precious time and effort. Nine out of ten times, ran-
dom forest will outperform the other CML classification algorithms. For 
high-dimensional data such as pattern recognition, choose SVM as the 
go-to algorithm.

Classification accuracy is not the only important measurement. Next, you will look at 

additional important tools for algorithm measurement.

4.11  �Algorithm Analysis
Because of their close affiliation to the field of statistics, ML environments are loaded 

with statistical analysis features, some of which are useful, and others not so much. Next, 

you will explore the three algorithm analysis tools every ML practitioner should master:

•	 Confusion matrix

•	 ROC curves

•	 K-fold cross validation

In Chapter 5, you will explore how to use these tools to validate a model.
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�Confusion Matrix
One of the most important outputs of the ML model is the confusion matrix. You saw the 

following confusion matrix in Chapter 3 when you ran a Weka classifier in the cloud:

001   === Confusion Matrix ===

002

003     a  b  c   <-- classified as

004    50  0  0 |  a = Iris-setosa

005     0 49  1 |  b = Iris-versicolor

006     0  2 48 |  c = Iris-virginica

The confusion matrix is a two-dimensional plot with a row and column for each 

class. The example above had three classes. You can generate a confusion matrix for any 

number of dataset classes. Figure 4-18 shows a generic 2-class confusion matrix.

Figure 4-18.  A 2-class generic confusion matrix
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Each element in the confusion matrix shows the number of test examples for 

which the actual class is the row and the predicted class is the column. Good results 

correspond to large numbers running down the diagonal of the matrix. In the 2-class 

confusion matrix, the diagonal values represent true positives and true negatives.

Glancing at the values not on the main diagonal can give you excellent feedback on 

how the model is performing, or more specifically, when the model is getting “confused”. 

You can gain the following insights from the 3-class confusion matrix shown earlier:

•	 Two instances of iris-virginica (type c) were misclassified as iris-

versicolor (type b).

•	 One instance of iris-versicolor (type b) was misclassified as iris-

virginica (type c).

•	 All fifty instances of iris-sentosa were correctly classified.

Each time you run a classifier, an ML-Gate 2 best practice is to check the 
confusion matrix results against values you predetermine to be acceptable 
for the model.

�ROC Curves
ROC stands for receiver operator characteristic. The ROC curve originated in World War 

II and was used by radar operators to statistically model false positive and false negative 

detections in noisy environments. Because of its historical background, the ROC curve 

has a better statistical background that most other measures. ROC is a standard measure 

in medicine and biology.

The ROC curve has become very popular in ML to help evaluate the effectiveness of 

the models we create. ROC curves plot the true positive rate on the Y-axis and the false 

positive rate along the X-axis. Figure 4-19 shows a typical ROC curve.
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ROC curves have some interesting properties:

•	 The slope of the ROC curve is non-increasing. The slope typically 

decreases. Steeper ROC curves represent better classification. A 

perfect classifier would produce a vertical line ROC curve.

•	 Each point on the ROC curve represents a different tradeoff, or cost 

ratio, between false positives and false negatives.

•	 The slope of the line tangent to the ROC curve defines the cost ratio.

•	 The ROC area is the area under the ROC curve. The ROC area 

represents the performance averaged over all possible cost ratios.

The ROC area represents the area under the ROC curve. Table 4-5 shows the 

prediction level that is associated with the ML model given its corresponding ROC area.

Figure 4-19.  ROC curve
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In the next chapter, you will use the Weka ML environment to graph multiple ROC 

curves representing multiple algorithms. Such graphs are very useful for comparing 

algorithms. When graphing multiple ROC curves, you can gain the following additional 

insights:

•	 If two ROC curves do not intersect, one method dominates the other 

and you should choose its corresponding algorithm.

•	 If two ROC curves intersect, one method (algorithm) is better for 

some cost ratios, and the other method (algorithm) is better for the 

other cost ratios.

As you will see, ML environments make it easy to visualize multiple ROC curves.

�K-Fold Cross-Validation
In the real world, it seems we never have enough data. The amount of data available 

for training and testing our models is often times limited. You saw with MNIST that the 

standard training method is 60,000 defined instances for training and an additional 

10,000 instances for testing. This approach is called the holdout method because you 

are holding out part of the data for testing purposes. It is common to hold out one-third 

of the data for testing. The holdout method worked fine for MNIST because the dataset 

was large. With smaller datasets, it can be problematic. How do you know which part of 

the data to hold out?

Table 4-5.  ROC Area Prediction Levels

ROC area Prediction level

1.0 Perfect

0.9 Excellent

0.8 Good

0.7 Mediocre

0.6 Poor

0.5 Totally random

< 0.5 Invalid
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Choosing a particular set of data for testing can lead to a bias. For example, if you 

are unlucky, and a particular class is completely missing in the training data, how could 

you expect the classifier to predict such a value when it appears in the testing data? The 

solution to bias caused by particular samples chosen for holdout is to repeat the process 

several (K) times, where K can be any number such as three, five, or ten. If you desire to 

train on two-thirds of the data and test on one-third, then K equals three. If you wish to 

train on nine-tenths and test on one-tenth, then K equals ten.

This approach is called k-fold cross-validation. Figure 4-20 shows the example of a 

5-fold cross-validation process.

Figure 4-20.  5-fold cross-validation method
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When you perform an n-fold cross-validation, you are actually performing multiple 

(K) passes of the training and validation cycle. The resulting accuracies of each pass are 

averaged to obtain the mean accuracy for the model.

K-fold cross-validation is a simple but powerful concept. The standard way 
of predicting the error rate on a learning technique is to use a 10-fold cross-
validation where the dataset is divided randomly into 10 parts. 10-fold 
cross-validation should be part of every ML-Gate 2 model evaluation.

Extensive tests have shown that K=10 gives the best results independent of dataset size.

4.12  �Java Source Code
Java source code for all of the popular CML algorithms used to create the ML models is 

readily available. The University of Waikato has contributed greatly to the development 

of Java ML algorithms and the latest version of the algorithms is available in Weka 3.8. 

The source code is also available in this Subversion repository:

https://svn.cms.waikato.ac.nz/svn/weka/branches/stable-3-8/weka/src/main/

java/weka/

Apache Commons Math also includes Java code for several clustering ML algorithms:

https://commons.apache.org/proper/commons-math/userguide/ml.html

This section presents an overview of the algorithms so you will know where to find them 

in the Weka Subversion repository if you wish to explore them in detail. If you are interested 

in a particular algorithm, it can be very helpful to review its Java source code. These 

algorithms are stable production code used on countless projects. You can learn a lot from 

their implementation, including their use of Java collections, threads, and inheritance.

The base directory of the Subversion repository includes several folders:

•	 The core folder contains the Weka code.

•	 The classifiers folder contains the classification algorithms.

•	 The clusterers folder contains the clustering algorithms.

The Java files structure is hierarchical. The algorithms inherit from other underlying 

algorithms. For example, if you wish to implement a random forest algorithm, each of 

the following files will be included when you construct the random forest:
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RandomForest.java will set the base classifier as RandomTree:

001   /**

002    * Constructor that sets base classifier to RandomTree

003    */

004   public RandomForest() {

005       RandomTree rTree = new RandomTree();

006       rTree.setDoNotCheckCapabilities(true);

007       super.setClassifier(rTree);

008       super.setRepresentCopiesUsingWeights(true);

009       setNumIterations(defaultNumberOfIterations());

010   }

The RandomTree.java class will extend the AbstractClassifier class:

001   /**

002    * Constructor for Random Tree that extends AbstractClassifier

003    */

004   �public class RandomTree extends AbstractClassifier implements 

OptionHandler,

005      WeightedInstancesHandler, Randomizable, Drawable, PartitionGenerator {

006   }

The AbstractClassifier.java class will implement the Classfier class:

001   /**

002    * �Abstract classifier. All schemes for numeric or nominal prediction 

in Weka

003    * extend this class. Note that a classifier MUST either implement

004    * distributionForInstance() or classifyInstance().

005    */

006   �public abstract class AbstractClassifier implements Classifier, 

BatchPredictor,

007       �Cloneable, Serializable, OptionHandler, CapabilitiesHandler, 

RevisionHandler,

008       CapabilitiesIgnorer, CommandlineRunnable {

009   }
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Classifier.java

001   /**

002    * Classifier interface. All schemes for numeric or nominal prediction in

003    * �Weka implement this interface. Note that a classifier MUST either 

implement

004    * distributionForInstance() or classifyInstance().

005    */

006   public interface Classifier {

007   }

To view the Java code for any of the CML algorithms, simply navigate through the 

repository into the classifiers or clusterers folders.

�Classification Algorithms
Within the classifiers folder, the algorithms fall into three categories:

•	 bayes: Contains several variants of the naive Bayes algorithms.

•	 pmml: Predictive Model Markup Language is an XML-based 

interchange format. This folder contains PMML based-models such 

as SVM and regression algorithms.

•	 trees: Contains all the decision tree-based algorithms, such as 

random forest.

Figure 4-21 shows an expanded view of the key classifier algorithms.
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Figure 4-21.  Java classifier algorithms (Weka Subversion repository)

The most useful classifiers, listed earlier in Figure 4-8, are included in the repository. 

Figure 4-21 shows that naive Bayes, random forest, and SVM source code are all included 

in the classifiers directory.

�Clustering Algorithms
Figure 4-22 shows the Java clustering algorithms available in Weka.

Chapter 4  Algorithms: The Brains of Machine Learning



224

Figure 4-22.  Java clusterers (Weka Subversion repository)

In Figure 4-8, you saw that k-means and DBSCAN were the go-to algorithms for 

clustering problems with unlabeled data. Source code for these algorithms is within 

SimpleKMeans.java and DensityBasedCluster.java.

Just as you saw with the classification algorithms, the clustering algorithms also 

build upon other higher-level clustering classes in the directory, such as Cluster.java 

and HeirarchicalClusterer.java.

�Java Algorithm Modification
I stated earlier that CML algorithms are commodities. The source code of the Java 

algorithms in the Weka Subversion repository shows the algorithm code has been stable 

for several years. All of the Java code in the Weka repository is licensed under the GNU 

General Public License. The code is free and you can distribute or modify it under the 

terms of the license.

www.gnu.org/licenses/
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Due to advances in the Java platform, there are several areas where these algorithms 

could be improved:

•	 Lambda expressions: The addition of lambda expressions 

is starting to reshape Java. Lambda expressions allow for new 

capabilities in the Java API library. For example, lambda expressions 

simplify the handling of for-each style operations, allowing us to 

take greater advantage of parallel processing capabilities of multi-

core environments. There exists an opportunity to improves the 

performance of most of the Java algorithms by introducing lambda 

expressions.

•	 Stream API: The new stream API introduced in Java 8 allows us to 

manipulate data in much more powerful ways. The new Stream API 

works in conjunction with the Java collections class and lambda 

expressions. The new Stream API can handle advanced data queries 

and provides a higher level of efficiency especially for large datasets.

•	 Concurrency: If you look into the Java code, you will see that many 

of the algorithms use the Java ThreadPoolExecutor to handle 

their multi-threaded operations. ThreadPoolExecutor is one of 

the services that make up the Java ExecutorService. JDK 7 saw the 

introduction of a new service, the ForkJoinPool. The ForkJoinPool 

class enables the implementation of parallel programming such 

that threads can run on multiple CPUs/GPUs. The main idea behind 

a ForkJoin task is the divide-and-conquer strategy, which is very 

suitable for the decision tree family of algorithms, including random 

forest. Updating the Java algorithms to utilize ForkJoin could 

significantly improve performance.

These potential enhancements are performance-related improvements. As 

discussed in Chapter 2, cloud-based providers make it easy to scale CPU resources on 

demand. For this reason, when building models in the cloud, it is typically easier to add 

CPU resources, rather than optimize the algorithms to take advantage of the latest JAVA 

API features. The enhancements would be useful in an environment where you have 

limited CPU constraints at model build time, such as building models on a mobile or 

embedded device.
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CHAPTER 5

Machine Learning 
Environments
You have learned about data and algorithms. Next, you will put the pieces together and 

build the CML model. ML environments perform a critical function. They act as an 

important piece of middleware, enabling you to create ML models from the data for later 

use by your application. This chapter will cover the following:

•	 Introduce the steps required during the model creation phase.

•	 Review the Java-based ML environments, including a high-level 

overview of the RapidMiner and KNIME Java ML environments.

•	 Offer a detailed review, including complete setup instructions for the 

Weka ML environment.

•	 Implement the seven most important CML models using Weka.

•	 Cluster the Old Faithful geyser dataset using three clustering 

algorithms.

•	 Classify the large PAMAP2_Dataset using four classification 

algorithms.

•	 Review the accuracy performance of the four classification 

algorithms.

•	 Create a combined graph representing four multiple ROC curves 

using Weka KnowledgeFlow.

•	 Demonstrate how to import and export Weka ML models.
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5.1  �Overview
In Chapter 3, you saw how easy it is to create ML and DL solutions using cloud-

based APIs. In this chapter, you will bring the solution to the desktop. Java-based 

ML environments allow you to create your own models using your own computing 

resources. This provides two huge advantages:

•	 You do not incur incremental costs for compute resources required to 

create the models.

•	 You retain control of the models you create. This can lead to a 

competitive advantage.

In this chapter, I will present several Java-based ML environments, but the  

focus will be primarily on the Weka environment. If you decide to use one of  

the other ML environments, the detailed implementation steps with respect to  

data import, algorithms supported, and model creation/import/export should  

be similar.

�ML Gates
In the ML-Gates methodology, the most important task of the ML environment is to 

create the ML model you will use in your application.

Creating the best possible model is an iterative process. You saw in Chapter 4 how 

to choose the best algorithm. In this chapter, you will explore how to create the best 

possible model by tuning the available parameters of the algorithm.

Figure 5-1 shows the key steps involved with the model at ML-Gates 3 and  

ML-Gates 2.
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Many ML environments can accomplish these tasks. The number of Java packages is 

smaller, and I will cover them next.

5.2  �Java ML Environments
In Chapter 1, you saw how widespread Java has become. I also discussed the build vs. 

buy decision process for data science platforms.

One of your main goals is to apply ML solutions at the edge. This 
requires you to produce lightweight models that you can deploy into 
portable devices, such as mobile phones. Java ML environments meet 
these requirements.

Figure 5-1.  ML-Gates 3/2 model activity
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Java ML environments check all the boxes:

•	 They are free and open source.

•	 You can easily produce lightweight models.

•	 You can run Java ML environments on the desktop or in the cloud if 

higher compute resources are required.

•	 It is easy to export the model for use in mobile devices or small 

computer form factors such as the Raspberry Pi.

In effect, the Java ML environment acts like a piece of middleware in your ML pipeline. 

Models created by the ML environment connect the input data with the user application.

Table 5-1 shows a summary of the Java-based ML environments.

Table 5-1.  Java ML Environments

Name Description Notes

Weka Waikato  

Environment  

for Knowledge 

Analysis

ML platform developed at Waikato University in New Zealand. 

Includes GUI, command line interface (CLI), and Java API. Weka is 

arguably the most popular ML environment. Weka is a great ML 

environment to start or practice, and you can export models for 

Android. Weka is free and open source.

KNIME Konstanz 

Information Miner

Konstanz University (Germany) developed KNIME. It has a focus on 

pharmacy research and business intelligence. KNIME bases its GUI 

on Eclipse. KNIME also contains an API interface.

RapidMiner RapidMiner The Technical University of Dortmund (Germany) developed 

RapidMiner. RapidMiner contains a GUI and a Java API. RapidMiner 

supports data handling, visualization, modeling, and algorithms. 

RapidMiner has free and commercial distributions.

ELKI Environment for 

developing KDD 

applications

Data mining workbench developed at Ludwig Maximillion University 

in Munich. ELKI focuses on data and knowledge discovery from data 

(KDD) applications. ELKI provides a mini-GUI, CLI, and Java API. ELKI 

is research software.

Java-ML The Java Machine 

Learning Library

Java-ML is a collection of ML algorithms. Java-ML does not contain 

a GUI.

DL4J Deep Learning4  

Java

DL4J is the deep learning library for Java from Skymind. DL4J does 

not support CML algorithms. See Chapter 1 for additional detail.
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The first five entries in Table 5-1 are mainly Java-based CML environments, and I 

will discuss them briefly next, before taking a deep dive into Weka. The last entry, DL4J, 

is a dedicated Java DL environment. Table 5-2 provides links for each of the Java ML 

environments.

Table 5-2.  Java ML Environment Links

Name Link

Weka www.cs.waikato.ac.nz/ml/weka/

KNIME www.knime.com/knime-analytics-platform

RapidMiner https://rapidminer.com/

ELKI https://elki-project.github.io/

Java-ML http://java-ml.sourceforge.net/

DL4J E

There are several factors to consider in choosing the best Java ML environment.  

The factors include

•	 License and commercial terms: You should favor free open sources 

packages that allow you to create models you can use for commercial 

applications.

•	 Availability of algorithms: You should look for packages that support 

the seven most important algorithms discussed in Chapter 4.

•	 Ongoing support: You should look for a community of users or a 

long-term commitment by the creators.

•	 Portability of models: You should look for the ability to export 

models so Java clients in any device can use the models you create. 

This helps you to achieve ML at the edge.

•	 Flexibility: Java continues to grow with each major release. You 

need a Java-based ML environment that can grow with the language. 

Perhaps in the future, we will see ML features directly included 

with Java, much the same way that JSON and other features are now 

candidates for inclusion.
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�Weka
Weka is an abbreviation for Waikato Environment for Knowledge Analysis. The 

University of Waikato, in New Zealand, created Weka. Interestingly, Weka is also the 

name of a flightless bird in New Zealand (Gallirallus Australis), hence the logo. New 

Zealand seems to have many cute flightless birds.

Weka, the ML environment, has been around a while. Ported to Java in 1997, it has 

been a mainstay in the data mining industry. In 2005, Weka received the Data Mining 

and Knowledge Discovery Service Award from ACM at the SIGKDD Conference. The 

decision to migrate Weka to Java has allowed it to stay relevant.

Recently, Weka added a package manager. Many third-party packages and algorithms 

are available through the package manager. All of the important CML algorithms are 

available for Weka. You will explore the Weka algorithms later in this chapter.

The University of Waikato, which maintains a stable release (currently 3.8.2) and a 

development release (3.9.2), supports Weka. Unlike Android Studio, the Weka releases 

are infrequent. It is safe to run the development channel release, which includes some 

useful GUI improvements and support for DL4J. As Weka gains support with the ML 

community, it is becoming increasingly easy to find help for problems on the popular 

forums, such as Stack Overflow and YouTube videos.

Weka has a friendly license, the GNU General Public License (GPL). Therefore, it is 

possible to study how the algorithms work and to modify them.

The Weka GUI looks dated. The Weka GUIs and visualization tools are not nearly as 

slick as RapidMiner. However, under the hood, it lacks nothing. Weka is a very capable 

ML environment that can deliver the models your ML apps require. Despite its inferior 

GUI relative to RapidMiner, Weka checks all of the boxes.

To address one of the Weka weaknesses, later in the chapter I will discuss a Weka 

add-on to improve the Weka charting capabilities.

�RapidMiner
RapidMiner is an incredible ML environment. Recall according to Figure 1-4, RapidMiner is 

a leader in data science platforms. Java-based RapidMiner excels at the following:

•	 RapidMiner is lightning fast.

•	 RapidMiner has many tools.

•	 RapidMiner is excellent at preparing data.

•	 RapidMiner allow you to build predictive ML models.
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Figure 5-2 shows a screenshot of the RapidMiner main interface.

Figure 5-2.  RapidMiner main interface

As shown in Figure 5-2, RapidMiner has a nice modern GUI. The RapidMiner’s ease 

of use has led to its increase in popularity. RapidMiner has a large community of users 

and all of the usual support resources associated with widespread popularity.

The core of RapidMiner is open source Java code and is available on GitHub at 

https://github.com/rapidminer/rapidminer-studio.

As you saw with Weka in Chapter 4, all of the ML algorithm Java code is part of core 

RapidMiner and is available at the GitHub repository. Close inspection will show the 

Java code base of the algorithms is not the same, although you can expect the algorithms 

to achieve nearly similar results. In many algorithm cases, the RapidMiner algorithm 

implementations rely on less inheritance and are easier to follow.

Aside from the RapidMiner GUI advantages, other key differences between 

RapidMiner and Weka are the licensing and commercial pricing terms. RapidMiner is 

licensed under the GNU AGPL 3.0 license. It has free and commercial offerings.
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https://opensource.org/licenses/AGPL-3.0

RapidMiner Studio is free to download. Table 5-3 shows a summary of the 

RapidMiner commercial pricing tiers, which vary depending on data rows and number 

of processors used.

The RapidMiner free tier also includes a 30-day free trial for the large data row 

size. This provides you the opportunity to see how RapidMiner performs on your large 

data ML project. Ten thousand data rows or instances seem like a lot, but in reality, it 

is common for CML projects to exceed this amount. Later in this chapter, you will see 

that your classification of the PAMAP2_Dataset would require a medium tier license 

to accomplish with RapidMiner. This is a non-trivial cost, especially for independent 

developers without large resources. The RapidMiner licensing costs are the primary 

reason you will proceed with Weka.

In terms of flexibility, both Weka and RapidMiner provide jar file libraries that you 

can integrate into your Java projects. This allows you to leverage prebuilt models in your 

Java applications.

Weka and RapidMiner each have their own approach to implementing model 

generation. With any software platform, there is an initial time investment in learning 

how to navigate them. Fortunately, the high-level steps involved at this phase in the  

ML-Gates are identical.

�KNIME
Like RapidMiner, KNIME was included a leader among the data science platforms 

shown in Figure 1-4. Some key selling points for KNIME:

•	 KNIME is a toolbox for data scientists.

•	 KNIME contains over 2,000 modules.

Table 5-3.  RapidMiner Pricing

Name Number of data rows Number of processors Price (per user/year)

Free 10,000 1 Free

Small 100,000 2 $2,500

Medium 1,000,000 4 $5,000

Large Unlimited Unlimited $10,000
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•	 KNIME is an open platform.

•	 KNIME can run locally, on the server, or in the cloud, which is the 

kind of flexibility you seek.

The latest free-download version of KNIME is 3.6.0. KNIME is licensed under GNU 

GPL Version 3. KNIME has a very intuitive workbench that is similar to Weka. The GUI is 

very comprehensive, which make KNIME useful for people who wish to explore ML but 

do not want to code. Figure 5-3 shows the KNIME workbench.

Figure 5-3.  KNIME workbench

The KNIME interface looks very similar to RapidMiner, especially in the knowledge 

flow area where users can graphically connect modules to form processes.

KNIME uses PMML (Predictive Model Markup Language) to export models. PMML 

is a popular standard. You saw it referenced as a category title for some of the Weka 

classification algorithms. PMML is not quite as flexible for exporting prebuilt models 

for use on Android mobile devices. For this reason, Weka remains your preferred ML 

environment.

Chapter 5  Machine Learning Environments



236

�ELKI
ELKI is a Java platform that excels at clustering and outlier detection. While Weka and 

RapidMiner are general frameworks, ELKI does one thing and one thing well: clustering. 

It contains a huge number of clustering algorithms. If the basic clustering algorithms 

contained in the general frameworks are not sufficient for your ML clustering problem, 

ELKI probably is the solution.

ELKI has a research and education focus. It has helped to solve real-world clustering 

problems such as clustering the positions of whales and rebalancing public bike share 

programs.

One of the unique features of ELKI is the use of SVG for scalable graphics output 

and Apache Batik for rendering of the user interface. If you need lossless, high quality, 

scalable graphics output for your clustering problems, ELKI is an excellent choice.

The general frameworks do a great job at clustering, as you will see later in the 

chapter, but keep ELKI in mind if you need advanced clustering algorithms.

�Java-ML
Java-ML is a set of Java-based ML algorithms packaged into a jar library. The most recent 

version of the library is 0.1.7, released in 2012. The library includes some basic clustering 

and classification algorithms. Java-ML carries the GNU GPL 2.0 license. Java-ML does 

not include any GUI. The Java-ML library would not be particularly useful unless you 

were looking for open source Java ML algorithms not tied to Waikato University or the 

RapidMiner license.

5.3  �Weka Installation
To install Weka, visit the Weka download page and choose a package for your platform:

www.cs.waikato.ac.nz/ml/weka/downloading.html

You can download Weka with or without Java. Managing Weka independently of your 

Java install, as shown in Chapter 1, gives you the advantage of knowing which version of 

Java you are running.

There are two current versions of Weka:

•	 3.8.2 is the latest stable release of Weka.

•	 3.9.2 is the latest development release of Weka.
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Weka follows the Linux model of release numbering. Even digits after the decimal 

point (such as 3.8.2) indicate a stable release, while odd digits (such as 3.9.2) indicate a 

development release.

The Weka team maintains links that summarize the bug fixes and new features 

in each new release. To see the new features in 3.9.2, look under the Documentation 

section shown here:

https://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+Mining+Community+ 

Documentation

The Weka development releases are generally very safe.

After you decide on a version, the download page contains packages for the three 

major platforms: Windows, Mac O/S, and Linux. Choose your package and install Weka.

	 1.	 Install Java on your system.

	 2.	 Download your desired Weka package.

	 3.	 Unzip the zip file into the new directory called weka-3-9-2.

	 4.	 Set the Java CLASSPATH environment variable. The CLASSPATH 

environment variable tells Java where to look for classes to 

include.

	 5.	 Change into the directory and run Weka with java -jar weka.jar.

The Weka logo, Figure 5-4, appears during the initialization.

Figure 5-4.  Weka logo
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After the Weka initialization completes, the main Weka GUI chooser appears, as 

shown in Figure 5-5.

Before starting with the main Weka applications, you need configure Weka.

�Weka Configuration
Weka is mostly ready to go after the initial install. I will address a few configuration 

updates next. Figure 5-6 shows the contents of the main Weka directory after you unzip 

the install file.

Figure 5-5.  Weka GUI Chooser
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The weka.jar file is of interest for two reasons:

•	 The weka.jar file contains all of the Java source code for the 

algorithms in Weka. You saw in Chapter 4 how to explore them in the 

online Subversion repository. By unzipping the weka.jar file, you can 

explore them locally.

•	 Weka uses a file named Visualize.props for many GUI configuration 

properties. In order to modify the configuration, you must make a 

local copy of this file.

Figure 5-6.  Weka.jar
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In order to view and modify the contents of the weka.jar file, you need to unzip the 

jar file. The 7-Zip utility can unzip jar files. Figure 5-7 shows the 7-Zip utility download 

page. The download is available at www.7-zip.org/download.html.

Install the 7-Zip utility on the platform of your choice and then unzip the weka.jar 

file. Figure 5-8 shows the contents of the unzipped weka.jar.

Figure 5-7.  7-Zip unzipping tool

Figure 5-8.  Weka.jar contents
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Weka.jar includes directories for cluster algorithms, classifier algorithms, and the 

gui directory which contains the Visualize.props file you want to modify.

�Java Parameters Setup
One of the issues with Java is high memory usage. Weka always displays a status box at 

the bottom of the Weka Explorer window. The status box displays messages about what 

is happening within Weka. Right-clicking inside the status box brings up a menu with 

two helpful options:

•	 Memory information: Shows the amount of memory available to 

Weka

•	 Run garbage collector: Forces the Java garbage collector to perform 

a garbage collection task in the background

You can use these options to monitor the Weka memory usage. If you should get Out 
Of Memory errors, you should increase the heap size for your Java engine. The default 

setting of 64MB is usually too small. You can set the memory for Java using the –Xmx 

option in the Java command line. For example, increase the Java memory to 1024MB 

with the following:

001   java -Xmx1024m -jar weka.jar

If you are running Windows and wish to make the change globally, you can set the 

javaOpts parameter in the RunWeka.ini file like so:

001   javaOpts= -Xmx1040m

If you get Class Not Found errors, you will need to verify your CLASSPATH variable 

settings. The best way to confirm your CLASSPATH setting is to use the Weka Sysinfo 

display, shown in Figure 5-9.
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In addition to the java.class.path setting, the Weka Sysinfo page also displays the 

WEKA_HOME and memory.max settings.

�Modifying Weka .prop Files
If the default setup of Weka is not to your liking, you can tweak the .prop files to modify 

Weka behavior. There are many .prop files to configure Weka.

The following steps show how to modify the Visualize.props file to change the 

default colors of the X-axis and Y-axis from green to black. The responsible .props file for 

charts and graphs in Weka is weka/gui/visualize/Visualize.props.

	 1.	 Close Weka.

	 2.	 Extract the .props file from the weka.jar, using an archive 

manager that can handle ZIP files, such as 7-Zip under Windows.

	 3.	 Place this .props file in the $WEKA_HOME/props.

	 4.	 Open the local .props file with a text editor, making sure that CRLF 

and BOM characters are correct for your platform.

Figure 5-9.  Weka Help ➤ SystemInfo Display
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	 5.	 Modify the parameters you wish to change. The property name is on 

the left side of the “=” and the property value is on the right side.

	 6.	 Save the file and restart Weka.

Figure 5-10 shows the local copy of the Visualize.props file you are updating.

Figure 5-10.  Weka Visualize.props local file copy

There are many customizable values inside the Weka .props files. The following 

listing shows line 009 with the updated axis color setting:

001   # Properties for visualization

002   #

003   # Version: $Revision: 5015 $

004

005   # Maximum precision for numeric values

006   weka.gui.visualize.precision=10

007

008   # Colour for the axis in the 2D plot (can use R,G,B format)

009   weka.gui.visualize.Plot2D.axisColour=black

010

011   # Colour for the background of the 2D plot (can use R,G,B format)

012   weka.gui.visualize.Plot2D.backgroundColour=white

013

014   �# The JFrame (needs to implement the interface weka.gui.visualize.

InstanceInfo)
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015   # for displaying Instance information.

016   �weka.gui.visualize.Plot2D.instanceInfoFrame=weka.gui.visualize.

InstanceInfoFrame

017

018   # Defaults for margin curve plots

019   weka.gui.visualize.VisualizePanel.MarginCurve.XDimension=Margin

020   weka.gui.visualize.VisualizePanel.MarginCurve.YDimension=Cumulative

021   weka.gui.visualize.VisualizePanel.MarginCurve.ColourDimension=Margin

Using this method, most of the Weka configuration is customizable. However, there 

are some settings available directly from the GUI Chooser.

�Weka Settings
Figure 5-11 shows the Weka main settings available under the Program menu selection 

in the Weka GUI Chooser.

Figure 5-11.  Weka main settings
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There are only two settings available: LookAndFeel of the GUI and SocketTimeout 

for communications. For Windows platforms, the preferred LookAndFeel setting is 

WindowsLookAndFeel. It is not necessary to change this default SocketTimeout value.

�Weka Package Manager
Weka recently introduced a package manager. When you initially run Weka, there are 

many preinstalled algorithms for clustering and classification. There are also many 

uninstalled packages that are available for installation with the package manager. 

Figure 5-12 shows the Weka package manager available from the Weka GUI Chooser.

Figure 5-12.  Weka Package Manager Chooser

When you launch the package manager, Weka gives you the option to show both the 

installed and available packages.

For these projects, you must install the following two packages using the package 

manager:

•	 jFreeChart: A graphical extension for Weka

•	 DBSCAN: A density-based clustering algorithm

Figure 5-13 shows the installation of jFreeChart, which provides improved chart 

rendering over the basic Weka renderer. You will use jFreeChart to render the multiple 

ROC curve comparison chart later in the chapter. This add-on is not required; the built-

in Weka renderer will work fine, but jFreeChart provides a much more attractive charting 

option.
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Figure 5-14 shows that package manager and highlights the recently installed 

DBSCAN algorithm. You will use the DBSCAN algorithm in a clustering example later in 

the chapter.

Figure 5-13.  Weka package manager and FreeChart extension
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5.4  �Weka Overview
Weka is a comprehensive suite of Java class libraries. The Weka package implements 

many state-of-the-art machine learning and data mining algorithms. Table 5-4 shows 

a summary of the Weka modules available from the GUI Chooser, shown earlier in 

Figure 5-5.

Figure 5-14.  Weka package manager and DBSCAN algorithm
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As shown in Table 5-4, there is some redundancy in the Weka modules. You are going 

to focus on the following three Weka modules because they are more than sufficient to 

create the models you need for your Java applications.

•	 Weka Explorer

•	 Weka KnowledgeFlow

•	 Weka Simple CLI

I have excluded the Experimenter and the Workbench. Later in the chapter, you will 

use the KnowledgeFlow module to compare multiple ROC curves of different algorithms. 

The Experimenter could do this as well, but even though Weka does not have the best 

graphical interface, I prefer the graphical approach of the KnowledgeFlow module to 

the Experimenter. You can use the Workbench module if you are seeking a customized 

perspective for the Weka modules.

Table 5-4.  Weka Modules

Weka Module Description

Explorer Explorer is an environment for exploring data with Weka. Explorer is Weka’s main 

graphical user interface. The Weka Explorer includes the main Weka packages 

and a Visualization tool. Weka main features include filters, classifiers, clusterers, 

associations, and attribute selections.

Experimenter Weka Experimenter is an environment for performing experiments and conducting 

statistical tests between learning schemes.

KnowledgeFlow Weka KnowledgeFlow is an environment that supports the same functions as 

Explorer, but contains a drag-and-drop interface.

Workbench Weka Workbench is an all-in-one application that combines the other within user-

selectable perspectives.

Simple CLI The Weka team recommends the CLI for in-depth usage of Weka. Most of the key 

functions are available from the GUI interfaces, but one advantage of the CLI is 

that is requires far less memory. If you find yourself running into Out Of Memory 

errors, the CLI interface is a possible solution.
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�Weka Documentation
The Weka team does provide official documentation in the form of PDF file distributed 

with each release, and the University of Waikato has many videos and support resources 

for developers who want to learn Weka. The Weka manuals are 340+ pages and are 

essential reading if you wish to get serious about Weka.

The following represent the official Weka documentation from the Weka creators:

•	 Weka manual: The Weka manual for the current release (such as 

WekaManual-3-8-2.pdf and WekaManual-3-9-2.pdf) is always 

included within the distribution. For any particular Weka release, the 

manual filename is WekaManual.pdf.

•	 Weka book: The Weka team has published a book, Data Mining - 
Practical Machine Learning Tools and Techniques, written by 

Witten, Frank, and Hall. The book is a very good ML reference book. 

While it does not cover Weka in detail, it does cover many aspects of 

data, algorithms, and general ML theory.

•	 YouTube: The Weka YouTube channel, WekaMOOC, contains many 

useful Weka how-to videos.

�Weka Explorer
The Explorer is the main Weka interface. Figure 5-15 shows the Weka Explorer upon 

initialization.
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Across the top of the Explorer, you will see tabs for each of the key steps you need to 

accomplish during the model creation phase:

•	 Preprocess: “Filter” is the word used by Weka for its set of data 

preprocessing routines. You apply filters to your data to prepare it for 

classification or clustering.

•	 Classify: The Classify tab allows you to select a classification 

algorithm, adjust the parameters, and train a classifier that can be 

used later for predictions.

•	 Cluster: The Cluster tab allows you to select a clustering algorithm, 

adjust its parameters, and cluster an unlabeled dataset.

•	 Attributes: The Attributes tab allows you to select the best attributes 

for prediction.

•	 Visualize: The Visualize tab provides a visualization of the dataset. A matrix 

of visualizations in the form of 2D plots represents each pair of attributes.

Figure 5-15.  Weka Explorer
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�Weka Filters
You load and prepare your data during ML-Gate 4, the preprocessing phase. Weka uses 

the term filters to describe the process of transforming your data. In Chapter 2, you 

explored data preprocessing in general. Within Weka, you have an additional set of 

internal filters you can use to prepare your data for model building. Table 5-5 shows a 

summary of the Weka filters grouped by filter type.

Table 5-5.  Weka Filters

Filter type Filter name

General AllFilter

General MultiFilter

General RenameRelation

Supervised  

Attribute

AddClassification, AttributeSelection, ClassConditionProbabilties, ClassOrder, 

Discretize, MergeNominalValues, NominalToBinary, PartitionMembership

Supervised  

Instance

ClassBalancer, Resample, SpreadSubsaple, StratifiedRemoveFolds

Unsupervised  

Attribute

Add, AddCluster, AddExpression, AddID, AddNoise, AddUserFields,  AddValues, 

CartesianProduct, Center, ChangeDateFormat, ClassAssigner, ClusterMembership, 

Copy, DateToNumeric, Discretize, FirstOrder, FixedDictionaryStringToWordVector, 

InterquartileRange, KernelFilter, MakeIndicator, MathExpression, 

MergeInfrequentNominalValues, MergeManyValues, MergeTwoValues, 

NominalToBinary, NominalToString, Normalize, NumericCleaner, NumericToBinary, 

NumericToDate, NumericToNominal, NumericTransform, Obfuscate, OrdinalToNumeric, 

PartitionedMultiFilter, PKIDiscretize, PrincipalComponents, RandomProjection, 

RandomSubset, Remove, RemoveByName, RemoveType, RemoveUseless, 

RenameAttribute, RenameNominalValues, Reorder, ReplaceMissingValues, 

ReplaceMissingWithUserConstant, ReplaceWithMissingValue, SortLabels, 

Standardize, StringToNominal, StringToWordVector, SwapValues, TimeSeriesDelta, 

TimeSeriesTranslate, Transpose,

Unsupervised  

Instance

NonSparseToSparse, Randomize, RemoveDuplicates, RemoveFolds, 

RemoveFrequentValues, RemoveMisclassified, RemovePercentage, RemoveRange, 

RemoveWithValues, Resample, ReservoirSample, SparseToNonSparse, 

SubsetByExpression
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As you can see, there are a large number of filters available for data preprocessing 

with Weka, especially for unlabeled data used for unsupervised learning.

You can apply filter to data in Weka by pressing the Choose button under the filter 

section at the top of the Preprocess tab, shown in Figure 5-15.

Weka, like all good ML environments, contains a wealth of Java classes for 
data preprocessing. If you do not find the filter you need, you can modify an 
existing Weka filter Java code to create your own custom filter. Unzip the 
weka-src.jar file to access the Weka filter Java code.

In the classification example later in this chapter, you will use the Weka 

NumericToNominal filter to convert the data type of an attribute from numerical to 

nominal.

If you need a Java class to modify your data before building your model, Weka 

probably has a Java class filter for you. If not, you can easily create your own by 

modifying the existing Weka filters.

�Weka Explorer Key Options
The Weka Explorer is where the magic happens. You use the Explorer to classify or 

cluster. Note that the Classify and Cluster tabs are disabled in the Weka Explorer until 

you have opened a dataset using the Preprocess tab.

Within the Classify and Cluster tabs at the top of the Weka Explorer are three 

important configuration sections you will frequently use in Weka:

•	 Algorithm options

•	 Test options

•	 Attribute predictor selection (label) for classification

Figure 5-16 shows these areas highlighted within the Weka Classify tab.
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After you confirm these three settings, press the Start button and Weka will classify 

or cluster using the selected algorithm.

�Weka KnowledgeFlow
The Weka KnowledgeFlow is an alternative graphical front-end to core Weka. 

KnowledgeFlow implements a dataflow-inspired graphical interface for Weka. Figure 5-17  

shows a predefined KnowledgeFlow template opened in Weka KnowledgeFlow. All of 

the Weka filters, classifiers, clusterers, and data tools are available in the KnowledgeFlow. 

KnowledgeFlow also includes some extra tools.

Figure 5-16.  Weka Explorer classify options
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Using KnowledgeFlow, you can select Weka steps from a palette and place them onto 

the layout canvas. The Weka building blocks can then be connected together to form a 

knowledge flow, which can process and analyze the data.

The left side of the GUI contains all of the available Weka modules. You can place 

these modules onto the canvas as nodes. You can configure each node individually by 

right-clicking to access its configuration parameters. You create the flow by connecting 

the nodes. Executing a flow produces the results, typically a model generation or often 

times a visualization.

Later in the chapter, you will see how to compare multiple models with different 

algorithms. You will use Weka KnowledgeFlow to compare multiple clustering 

algorithms, and then use KnowledgeFlow to evaluate multiple classifiers by producing 

multiple ROC curves.

Figure 5-17.  Weka KnowledgeFlow template
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�Weka Simple CLI
It is very easy to use graphical tools like KnowledgeFlow to build ML models. However, 

Java GUI applications often require a large amount of memory and system resources, 

resources you might prefer to reserve for your data, algorithms, and models. Figure 5-18 

shows an alternative to KnowledgeFlow, the Weka Simple CLI Shell.

The Weka Simple CLI Shell provides access to all Weka classes, including algorithms 

(classifiers and clusterers) and filters. It is a simple Weka shell with separated output and 

command line.

In Chapter 3, you saw an example of the Weka command line interface when you ran 

Weka in the AWS cloud. The Simple CLI Shell provides the same capabilities within your 

local desktop Weka environment.

Figure 5-18.  Weka Simple CLI Shell
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The following commands are available in the Simple CLI:

•	 java <classname> [<args>]: Invokes a Java class with the given 

arguments

•	 break: Stops the current thread, such as running a classifier, in a 

friendly manner

•	 kill: Stops the current thread in an unfriendly manner

•	 cls: Clears the screen

•	 capabilities <classname> [<args>]: Lists the capabilities of the 

specified class

•	 exit: Exits the Simple CLI Shell

•	 help: Provides an overview of the available commands

The Weka Simple CLI Shell is powerful because all of the filters and implementations 

of the algorithms have a uniform command-line interface. The following example shows 

how to train and test a random forest classifier with multiple filters from the command 

line. The MultiFilter operation handles the concatenation of filters.

001   �java -classpath weka.jar weka.classifiers.meta.FilteredClassifier 

-t data/ReutersCorn-train.arff -T data/ReutersCorn-test.arff -F 

"weka.filters.MultiFilter -F weka.filters.unsupervised.attribute.

StringToWordVector -F weka.filters.unsupervised.attribute.

Standardize" -W weka.classifiers.trees.RandomForest -- -I 100

It is also possible to train and save a model using the –t and –d options:

001   �java -classpath weka.jar weka.classifiers.meta.MultiClassClassifier 

-t data/iris.arff -d rf.model -W weka.classifiers.trees.RandomForest 

-- -I 100

A serialized model can also be loaded and used for predictions using the –serialized 

option to load the model and the –i option to load the input data:

001   �java -classpath weka.jar weka.filters.supervised.attribute.

AddClassification -serialized rf.model -classification -i data/iris.

arff -o predict-iris.arff
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It can become complicated if you try to string too many functions together on the 

command line. If you wish to load models, train models, apply filters, and save models, it 

is easier to use the Weka KnowledgeFlow interface to connect the various nodes. You will 

see how to do this next.

5.5  �Weka Clustering Algorithms
In Chapter 4, I discussed clustering, the process of discovering structure in unlabeled 

data sets. Weka, like most of the good ML environments, has a broad array of clustering 

algorithms.

In this section, you will see how to implement clustering for the three most useful 

clustering ML algorithms as presented in Chapter 4:

•	 K-means clustering

•	 Expectation-maximization (EM) clustering

•	 Density-based clustering (DBSCAN)

If you are interested in exploring other clustering algorithms, just substitute the 

algorithm of your choice.

�Clustering with DBSCAN
The DBSCAN algorithm is included as an “available” package in the Weka package 

manager. After you install the DBSCAN clustering algorithm it will be available as a 

clustering option in the Weka packages.

For this clustering example, you will use the Old Faithful geyser dataset. The 

original dataset is available at www.stat.cmu.edu/~larry/all-of-statistics/=data/

faithful.dat.

Old Faithful is the famous geyser in Yellowstone National Park that erupts regularly 

approximately once per hour. The dataset, collected in 1990, includes 272 observations 

on two variables. The two variables are

•	 Eruption time: A numeric value representing the eruption time in 

minutes

•	 Waiting time: A numeric value representing the waiting time until the 

next eruption in minutes
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Table 5-6 shows the first ten instances of the dataset. The original data file name is 

old-faithful-data.dat. It does not contain a header row and contains fields separated 

by spaces. The modified file used in this example is old-faithful-data.csv. The file is 

contained in the book resources in the Chapter 5 folder. It does contain a header row and 

comma-separated values. The OpenCalc spreadsheet program created the CSV file.

Table 5-6.  Old Faithful Geyser Dataset (first 10 instances),  

(Azalini and Bowman, 1990)

Instance ID Eruption time Waiting time

1 3.600 79

2 1.800 54

3 3.333 74

4 2.283 62

5 4.533 85

6 2.883 55

7 4.700 88

8 3.600 85

9 1.950 51

10 4.350 85

Using the Weka Explorer, it is straightforward to perform a DBSCAN cluster on the 

data, as shown in the steps below.

	 1.	 Launch the Weka Explorer application from the Weka GUI 

Chooser.

	 2.	 In the PreProcess tab, click Open File and Open the old-faithful-
data.csv file. You may have to tell the Weka CSV loader that the 

values are “ , ” separated and NoHeaderRowPresent is false. When 

the data loads, you will see a summary of the instances, including 

the two attributes, eruptions and waiting.

	 3.	 Click the Cluster tab.

	 4.	 Under Clusterer, click the Choose button to select the algorithm.
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	 5.	 Select the DBSCAN algorithm from the list of available clustering 

algorithms. If DBSCAN is not available, you will need to install it 

using the Weka package manager.

	 6.	 Click the text in the DBSCAN algorithm box. You will be able to 

enter the DBSCAN algorithm parameters. Enter .11 for Epsilon 

and 6 for NumPts. Click OK.

	 7.	 Click Start to execute the DBSCAN clustering algorithm on the 

dataset. After the processing is complete, the results will display.

Figure 5-19 shows the completed DBSCAN clustering results.

Figure 5-19.  DBSCAN clustering of the Old Faithful dataset

The results show that the algorithm identified two clusters for all of the 272 

instances. In total, cluster0 received 175 instances, while cluster1 received 97 instances.
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Each time you run a cluster or classification in Weka, the Results list on the left 

panel updates with a new entry. Right-clicking a results entry provides the option to 

visualize the results. You can also click the Visualize tab at the top of the Weka Explorer. 

Figure 5-20 shows the visualization of the two DBSCAN clusters. When you first click 

the Visualize tab, you will see a matrix of visualizations. Weka prepares charts for all 

combinations of the attributes. In this case, the one you are interested in maps the 

waiting time and eruption time on the X and Y axes. You can select this specific chart 

from the matrix, or you can use the X and Y drop-down boxes to populate the desired 

attributes for the X and Y axes.

Figure 5-20.  Visualization of DBSCAN clustering
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You can visualize any two of the attributes, one on the X-axis and another on the 

Y-axis. In this case, there are actually four attributes:

•	 The eruption time interval

•	 The waiting time interval

•	 The instance ID

•	 A newly created attribute that holds the generated cluster ID. In 

effect, you now have a labeled dataset and you will take advantage of 

this later.

When visualizing the data, select the plot that places the eruption and waiting times 

on the axis. Plotting the other attributes is not particularly interesting. With the correct 

attributes selected, as shown in Figure 5-20, the visualization provides a key insight. The 

two clusters identified by the algorithm are color-coded.

The key insight you can gain from the visualization is that the two distinct clusters 

represent two “modes” in which the Old Faithful geyser operates.

You can adjust the algorithm parameters if you wish to fine-tune the clusters. 

Notice that some of the data points in the middle area are borderline in determining to 

which cluster they belong. Figure 5-21 shows adjustments to the DBSCAN algorithm 

parameters. Some algorithms have many parameters; the DBSCAN algorithm only has 

two parameters.

Figure 5-21.  DBSCAN algorithm parameter adjustment
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By changing the epsilon parameter and the numPoints parameter, you can tighten 

up the tolerance of the clusters. After changing the parameters, click OK and then press 

Start to commence another clustering. Figure 5-22 shows the new results.

Figure 5-22.  Updated DBSCAN clustering results

In this case, the algorithm identified noise in the data. In total, 11 instances fell in the 

boundary area. Right-click the newest DBSCAN result in the results list to show the new 

visualization, shown in Figure 5-23.
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The circled data points did not cluster into either of the two clusters. In this 

example, you have much tighter clusters. By adjusting the algorithm parameters, you 

have essentially used the DBSCAN algorithm to identify outliers, one of the algorithm’s 

strengths, if you recall from Chapter 4.

Figure 5-23.  Noise in the data identified by DBSCAN
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�Clustering with KnowledgeFlow
You have seen how the density-based clustering algorithm DBSCAN performs when 

clustering the Old Faithful dataset. Now let’s compare results from the two other 

clustering algorithms, k-means and EM. Rather than run independent tests as you did 

with DBSCAN in the Weka Explorer, you can use the Weka KnowledgeFlow application 

to simplify the comparison process.

Although the KnowledgeFlow GUI is not as stylish as you saw with RapidMiner and 

KNIME in Figure 5-2 and Figure 5-3, the KnowledgeFlow application has all the same 

functionality.

The KnowledgeFlow application contains several very useful templates you can use 

to build layouts. KnowledgeFlow includes the following templates:

•	 Cross-validation

•	 Learn and save a model

•	 ROC curves for two classifiers

•	 Learn and evaluate naive Bayes incrementally

•	 Compare two clusters

•	 Two attribute selection schemes

•	 Save various charts to files

•	 Visualize prediction boundaries

•	 Parameterize a job

Layouts can be loaded, modified, and saved. KnowledgeFlow layouts use the .kf 

extension. The book resources include two layouts you can load to compare all three 

clustering algorithms we have discussed.

Figure 5-24 shows the two layouts available with the book resource download: 

cluster-3-csv-cross-fold.kf uses k-fold cross-validation while cluster-3-csv-split.kf uses 

a simple split of the data for training and testing. Both of the KnowledgeFlow examples 

load the CSV dataset old-faithful-data.csv.
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The process of constructing a KnowledgeFlow is straightforward. You simply choose 

nodes from the left-hand panel and add them to the canvas. The KnowledgeFlow 

application organizes nodes into expandable categories including DataSources, Filters, 

Classifiers, Clusterers, Visualization, and others.

When nodes placed onto the canvas, there are two configuration operations:

•	 Double-clicking a node will provide access to the node configuration 

parameters, including algorithm parameters.

•	 Right-clicking a node will provide access to the node options, 

including the important task of connecting the node to other nodes.

Figure 5-23 shows the cluster-3-csv-splt.kf  loaded into the Weka KnowledgeFlow 

application.

Descriptive notes can also be included on the canvas, as shown in Figure 5-25.

Figure 5-24.  KnowledgeFlow layouts: Comparing three clustering algorithms
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The following steps illustrate how to create the three-cluster comparison starting 

with a blank canvas:

	 1.	 Add the following nodes to the KnowledgeFlow canvas, arranging 

them as shown in Figure 5-25:

CSVLoader,

TrainTestSplitMaker,

EM Clusterer,

K-Means Clusterer,

DBSCAN Clusterer,

3 x ClustererPerformanceEvaluator,

TextViewer

Figure 5-25.  KnowledgeFlow layout: three-clusterer comparison
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	 2.	 Double-click the CSVLoader and set the filename to the  

old-faithful-data.csv file.

	 3.	 Right-click the CSVLoader and choose dataset. Drag the dataSet 

connector to the TrainTestSplitMaker.

	 4.	 Double-click the TrainTestSplitMaker and set the training 

percentage to 66% or a number of your choosing.

	 5.	 Right-click the TrainTestSplitMaker, choose trainingSet, and 

drag the trainingSet connector to the EM Clusterer node. Repeat 

for the other two clusterers.

	 6.	 Right-click the TrainTestSplitMaker, choose testSet, drag the 

testSet connector to the EM Clusterer node, and repeat for the 

other two clusterers.

	 7.	 Right-click the EM Clusterer node, choose batchClusterer, 

and drag the batchClusterer connector to the first 

ClustererPerformanceEvaluator. Repeat for the other two 

Clusterer nodes.

	 8.	 Right-click each ClustererPerformanceEvaluator, choose text, 

and drag the text connector to the TextViewer.

With the KnowledgeFlow fully configured, you can execute the flow by clicking the 

right Play arrow at the top of the layout. KnowledgeFlow records the progress status in 

the bottom panel as the flow executes.

When all of the tasks successfully complete, KnowledgeFlow will mark status as OK, 

as shown in Figure 5-25. At this point, you can right-click the TextViewer to show the 

results. Figure 5-26 shows the Result List.
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The Result List includes reports for each of the three clustering algorithms: 

DBSCAN, EM, and k-means.

The Weka KnowledgeFlow interface provides a very useful way for you to experiment 

with clustering algorithms. You can easily double-click a clustering algorithm, update its 

parameters, and rerun the flow. It is a very useful tool when deciding which algorithms 

works best for your CML clustering problem.

5.6  �Weka Classification Algorithms
Implementing clustering algorithms to discover hidden patterns in unlabeled data, as 

you saw with Old Faithful, is very interesting. However, classification problems present 

an even more practical use of CML algorithms. Next, you will review the four go-to 

classification algorithms and see how well they can classify the PAMAP2_Dataset from 

Chapter 2.

Before you get started, you must make sure you have a well-defined problem.

Your goal in this section is build a model that can predict the current activity of a 

person based on the sensor data of the device they are carrying. In Chapter 6, you will 

create an Android app that can accurately determine the current active state of the 

device user by making a prediction with the prebuilt model. Android mobile devices 

have similar sensor functionality as the specialized hardware used by the participants in 

Figure 5-26.  KnowledgeFlow TextViewer results
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the PAMAP2_Dataset collection. If you build a reasonably accurate model, you should be 

able to predict the current activity of the mobile device user. Such an activity-monitoring 

app could have potential uses for healthcare, fitness, or security applications.

�Preprocessing (Data Cleaning)
Recall that PAMAP2_Dataset was a large, labeled dataset generated by subjects wearing 

sensors while performing 19 different activities.

The dataset contains data from multiple subjects. Not all subjects recorded all of 

the activities. To train your model, you will use the data from Subject101. The dataset 

provides a document, PerformedActivitiesSummary.pdf, to summarize the activities of 

each subject.

You will clean the dataset to produce a subset that is appropriate for your well-

defined problem. There are two reasons why you want to clean the dataset:

•	 To reduce the size of the dataset. The files are huge and there is a lot 

of redundant information contained within them.

•	 Your target Android devices do not have all the sensors used by the 

subjects in the original data collection. There is no sense retaining 

sensor data that the Android device cannot replicate.

Table 2-4 shows the structure of the original dataset. The readme.pdf file 

accompanying the dataset documents this structure. The original dataset files are large. 

They each contain over 300,000 instances (rows) and 54 attributes (columns). Before you 

proceed with creating the model, you need to clean the data.

Follow the steps below to produce the cleaned dataset, subject101-cleaned.csv. 

Note that the column numbers shown are 1-relative values.

	 1.	 Open the original subject101.dat file in Open Office Calc and 

save the CSV file as subject101.csv. Figure 2-5 shows the dataset 

loaded into the Open Office Calc spreadsheet. Calc converted 

the original subject101.dat file to the comma-separated version, 

subject101.csv. You will clean this CSV file.

	 2.	 Delete the time stamp attribute (column 1). This dataset is not 

intended as time series data. Each instance can stand on its own 

as a predictor for the current activity.
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	 3.	 Delete any instance where the heart rate attribute (column 2) is a 

missing value (NaN). Sensors in the collection provided rapid data 

streams and only 1 in 10 samples included the heart rate. Filtering 

the data when this attribute is missing will reduce the size, but not 

the significance of the data.

	 4.	 Delete the heart rate attribute (column 2). You do not have a way 

of using this attribute on Android.

	 5.	 Delete columns 21-37, the chest sensor data. The Android device 

only has one sensor so let’s assume it is hand-based. The hand-

based sensor data is included in columns 4-20.

	 6.	 Delete columns 38-54, the foot sensor data. The Android device 

only has one sensor so let’s assume it is hand-based. The hand-

based sensor data is included in columns 4-20.

	 7.	 In the hand-based sensor data, you only need to keep the 

accelerometer, gyroscope, and magnetometer data. Delete 

columns 1, 5-7, and 14-17.

	 8.	 Add a header row to describe the remaining 10 columns.

The resulting cleaned file has only 10 attributes (columns) and 22,846 instances. It is 

much smaller at 1.8MB compared to the original file of 138MB. The first few records of 

the new structure of subject101-cleaned.csv are shown below, including the header row:

001   �activityID,accelX,accelY,accelZ,gyroX,gyroY,gyroZ,magnetX,magnetY, 

magnetZ

002   �1,2.301,7.25857,6.09259,-0.0699614,-0.01875,0.004568,9.15626, 

-67.1825,-20.0857

003   �1,2.24615,7.4818,5.55219,-0.431227,0.002686,-0.06237,9.14612, 

-67.3936,-20.5508

004   �1,2.3,7.10681,6.09309,0.07569,-0.0307922,0.005245,9.69163,-67.0898, 

-21.2481

005   �1,2.49455,7.52335,6.17157,-0.259058,-0.267895,-0.03858,9.58694, 

-67.0882,-20.8997

006   �1,2.71654,8.30596,4.78671,0.377115,-0.0236877,-0.02095,8.59622, 

-67.1486,-20.1947
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007   �1,2.54954,7.63122,5.55623,-0.487667,-0.0199,-0.0894,9.00159, 

-66.0543,-22.5021

008   �1,2.82407,6.1449,5.06502,-0.781563,0.198873,-0.213285,10.5845, 

-63.7955,-27.5879

009   �1,2.73626,7.94195,6.52017,-0.472414,0.279868,0.03655,12.2658, 

-64.6618,-27.0379

010   �1,2.38894,7.4883,6.40103,0.3579,1.04661,0.346204,12.1033,-62.2186, 

-30.1344

011   �1,1.8132,6.85639,7.35672,0.360442,1.2873,0.1226,14.9204,-62.7273, 

-28.6676

012   �1,0.0125249,5.2733,6.95022,0.440524,1.19843,0.1064,16.6466,-63.2981, 

-25.9161

013   �1,-0.530751,7.62191,6.04895,0.179548,1.05112,0.23129,18.111, 

-64.9924,-19.2388

014   �1,-1.65419,7.6992,5.22362,1.51583,0.83644,0.283502,18.1058,-65.8251, 

-13.6928

015   �1,-1.09215,7.20128,5.19524,1.22541,0.65619,0.19038,17.0806,-68.1161, 

-8.61366

The file contains the important ActivityID in the first column. This attribute 

is the label. Columns 2-10 contain accelerometer(X,Y,Z), gyroscope(X,Y,Z), and 

magnetometer(X,Y,Z) data.

Table 5-7 shows a list of the ActivityIDs and their occurrences in the cleaned dataset. 

There are 22,846 total instances in the cleaned dataset, which should be a sufficient 

dataset size to produce a good model. The Android app will use the model to predict 

these ActivityIDs based on the device sensor input.
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With a much smaller and more relevant data file, you are now ready to load the 

subject101-cleaned.csv file into Weka.

Start Weka, select the Weka Explorer from the GUI Chooser, and click Open File 

under the Preprocess tab. Browse to the location of subject101-cleaned.csv and select it.

Because you imported a CSV file, you did not have full control over how the data 

types of the attributes were treated. For this dataset, all of the attributes are numbers, 

except for the ActivityID, which is a nominal value. Recall from Table 5-7, each of the 

values represents an activity. To correct this issue, you need to use a Weka filter to 

convert the numeric ActivityID attribute to a nominal data type.

Figure 5-27 shows the Weka Explorer after the data import and after the ActivityID 

attribute was converted to a nominal data type.

Table 5-7.  ActivityID Occurrence - Subject101

ActivityID Activity name Number of instances

1 Lying 2.486

2 Sitting 2,146

3 Standing 1,984

4 Walking 2,035

5 Running 1,941

6 Cycling 2,156

7 Nordic walking 1,852

12 Ascending stairs 1,452

13 Descending stairs 1,362

16 Vacuum Cleaning 2,097

17 Ironing 2,155

24 Rope jumping 1,180
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Figure 5-26 shows the Weka NumericToNominal filter applied to Attribute1. Note 

that in the filter option box, the filter only applies to the first attribute.

If you import CSV data into Weka and then apply preprocessing filters, it is 
helpful to resave the data as ARFF format. The ARFF file format can store 
data types along with the data so data conversion filters are not required at 
later stages in the process.

The data is now ready for classification. Next, you start the classification analysis 

with the random forest algorithm.

Figure 5-27.  Cleaned PAMAP2_Dataset with filter
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�Classification: Random Forest Algorithm
Classifying data is easy once the data is prepared. In Chapter 4, anecdotal evidence 

suggested the RF algorithm often performs the best. You will see if this holds true for the 

cleaned PAMAP dataset.

To classify data in the Weka Explorer, follow these steps:

	 1.	 Select the Classify tab in the Weka Explorer.

	 2.	 Press the Choose button to choose the classification algorithm.

	 3.	 Choose the test option. You will try both 2/3 split and 10-fold 

cross-validation to evaluate the chosen algorithms.

	 4.	 Select the ActivityID as the attribute to classify.

	 5.	 Click in the options box to change any of the algorithm-specific 

options if needed.

	 6.	 Press the Start button and wait for the classification to finish. It 

might be quick, or it could take a long time depending on factors 

such as data size, number of attributes, algorithm complexity, or 

algorithm options such as iterations.

	 7.	 Click the Results List to view the results, including the 

classification accuracy and confusion matrix.

Each algorithm has its own parameters with which you can experiment. For RF, one 

of the most important parameters is iterations, which determines how many decision 

trees the algorithm will use. Figure 5-28 shows the RF algorithm option box.
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The default value for iterations is 100. For your testing, you will run four tests, using 

the values of 10 and 100 for iterations, and using two test options, 2/3 split and 10-fold 

cross-validation.

Figure 5-29 shows the results of one RF classification with iterations=100 and using 

the 10-fold cross-validation test option.

Figure 5-28.  Random forest algorithm options
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Because your predictive attribute is a nominal data type, Weka provided a confusion 

matrix. The confusion matrix is included last. You can scroll back through the results 

window to see the classification accuracy. Right-click the Results List entry if you wish 

to save the results to a file. The following results show that the RF classification was very 

successful.

001   === Run information ===

002

003   �Scheme: weka.classifiers.trees.RandomForest -P 100 -I 100 -K 0 -M 1.0 

-V 0.001 -S 1

004   Relation:     �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005   Instances:    22846

006   Attributes:   �10: activityID, accelX, accelY, accelZ, gyroX,

Figure 5-29.  Random forest algorithm classification
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007                     gyroY, gyroZ, magnetX, magnetY, magnetZ

008   Test mode:    10-fold cross-validation

009

010   === Classifier model (full training set) ===

011

012   RandomForest

013   Bagging with 100 iterations and base learner

014   �weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1 -do-not-

check-capabilities

015   Time taken to build model: 16.45 seconds

016

017   === Stratified cross-validation ===

018   === Summary ===

019

020   Correctly Classified Instances       20678               90.5104 %

021   Incorrectly Classified Instances      2168                9.4896 %

022   Kappa statistic                          0.8961

023   Mean absolute error                      0.0405

024   Root mean squared error                  0.12

025   Relative absolute error                 26.6251 %

026   Root relative squared error             43.4728 %

027   Total Number of Instances            22846

028

029   === Confusion Matrix ===

030

031   �    a    b    c    d    e    f    g    h    i    j    k    l   <-- 

classified as

032    2433   17   15    1    2    2    4    2    2    3    0    5 |    a = 1

033      27 2041   14    3    1    6    9   10    4   18    7    6 |    b = 2

034      14    6 1910    5    2    7   11    4    7    2   12    4 |    c = 3

035      56    2    2 1737    1    0   34   99   38   58    8    0 |    d = 4

036      20    2    0    2 1856    5    5    9    2    9   23    8 |    e = 5

037      10    0    2    2   10 2026   21    2   13   18   51    1 |    f = 6

038      14    8    1   55   11   24 1615   28   19   25   22   30 |    g = 7

039       0    3    2  137    6    5   31 1064   86  105    7    6 |    h = 12
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040       1    2    3   53    1    7   42   61 1063  120    7    2 |    i = 13

041       0    3    9   33   14   42   37   22   23 1886   10   18 |    j = 16

042       3    6   10    6    8   22   24    4    3   12 2051    6 |    k = 17

043      29    3   11   11   36    7   41    2    8    5   31  996 |    l = 24

The classification accuracy was 90.5%. If you look down the diagonal of the 

confusion matrix, it is obvious from the relatively large values that the RF algorithm did a 

very good job.

You can see a few relatively large numbers off the main diagonal, such as the 137 

instance on line 039. These instances represent ActivityID 12 (Ascending stairs) being 

wrongly classified as ActivityID 4 (Walking). The next highest number was 120 instances 

(line 040) representing Activity 13 (Descending stairs) wrongly classified as ActivityID 16 

(Vacuum Cleaning).

The 90% accuracy achieved by the RF algorithm is a good indication that your 

Android app will be successful in classifying the user’s activity. Next, you will see if the 

other classification algorithms can match the performance of RF.

�Classification: K-Nearest Neighbor
Recall that the KNN algorithm is a lazy learning algorithm. Weka contains an excellent 

modified version of KNN called KStar, or K*. You can learn the details of K* and how it 

improved KNN from this University of Waikato research paper:

www.cs.waikato.ac.nz/~ml/publications/1995/Cleary95-KStar.pdf

KStar is available under the lazy folder when you select Choose under the classifier 

section of the Weka Explorer. Figure 5-30 shows the default KStar options.
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Classifying the subject101-cleaned.arff data with the KStar algorithm achieves the 

following results:

001   === Run information ===

002

003   Scheme:       weka.classifiers.lazy.KStar -B 20 -M a

004   Relation:     �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005   Instances:    22846

006   Attributes:   10

007   Test mode:    split 66.0% train, remainder test

008

009   === Classifier model (full training set) ===

010

011   KStar options : -B 20 -M a

012   Time taken to build model: 0 seconds

013

014   === Evaluation on test split ===

015

016   Time taken to test model on test split: 2512.94 seconds

Figure 5-30.  Weka KNN algorithm (KStar) options
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017

018   === Summary ===

019

020   Correctly Classified Instances        6434               82.827  %

021   Incorrectly Classified Instances      1334               17.173  %

022   Kappa statistic                          0.8119

023   Mean absolute error                      0.0339

024   Root mean squared error                  0.1435

025   Relative absolute error                 22.2521 %

026   Root relative squared error             51.9942 %

027   Total Number of Instances             7768

028

029   === Confusion Matrix ===

030

031      a   b   c   d   e   f   g   h   i   j   k   l   <-- classified as

032    806  20   9   2   0   0   1   0   2   0   1   0 |   a = 1

033     11 689   8   4   0   3   4   0   1   1   0   1 |   b = 2

034      4   4 669   3   1   1   3   0   0   1   1   1 |   c = 3

035     17   7  25 566   2   2  10  35  11  11   3   2 |   d = 4

036      4   2   7   4 612   3   5   5   2   7   2   6 |   e = 5

037      7   4   2   2   6 677   4   1   7   6  20   0 |   f = 6

038      5  15   9  37   5  27 447  13  19  20  16  16 |   g = 7

039      0  11  22  74   0   6  11 305  35  28   3   4 |   h = 12

040      0   8  46  40   0   8   9  31 289  28   4   1 |   i = 13

041      0  10  24  53   3  30  13  22  46 512   3   3 |   j = 16

042      3  11  23   7  13  54  11   7   4  20 563  11 |   k = 17

043     12   5  19  10  13   4  14   4   6   7   0 299 |   l = 24

The KStar algorithm achieved an impressive 82.8% accuracy. The confusion matrix 

main diagonal looks clean, containing much larger numbers than the erroneous 

classifications off the main diagonal.

The main issue with KNN-style algorithms is the testing time with large datasets. 

You have a large dataset, and if you look closely, you can see this model required over 

2,500 seconds (41 minutes) to classify the data (Intel i7 CPU in a Windows desktop). 

As a result, it was not viable to use the 10-fold cross-validation test option. Instead, you 
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specified the split (2/3 train, 1/3 test) test option. Using 10-fold cross validation would 

have taken approximately 10x longer.

Overall, the KNN accuracy was comparable to RF, but the time taken to predict is 

problematic for this dataset.

�Classification: Naive Bayes
The NB algorithm is the probability-based approach to classification. To classify in Weka 

using NB, select the algorithm from the classifier Choose section. If naive Bayes is not 

available, make sure you select the ActivityID as the attribute to classify. Naive Bayes 

requires the attribute to be a nominal data type, and only the ActivityID meets this 

criterion.

Recall from Chapter 4, NB is well suited for 2-class classification. In order to use NB 

for multi-class data, you need to use the kernel trick. Figure 5-31 shows the kernel setting 

in the NB options screen. You need to set useKernelEstimator to true. Failure to do this 

will result in random output from the classifier.

Figure 5-31.  Naive Bayes kernel setting option
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Start the classification and you will see the following naive Bayes classification 

results:

001   === Run information ===

002

003   Scheme:       weka.classifiers.bayes.NaiveBayes -K

004   Relation:     �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005   Instances:    22846

006   Attributes:   10

007   Test mode:    split 66.0% train, remainder test

008

009   === Classifier model (full training set) ===

010

011   Naive Bayes Classifier

012   Time taken to build model: 0.09 seconds

013

014   === Evaluation on test split ===

015

016   Time taken to test model on test split: 25.44 seconds

017

018   === Summary ===

019

020   Correctly Classified Instances        5644               72.6571 %

021   Incorrectly Classified Instances      2124               27.3429 %

022   Kappa statistic                          0.7004

023   Mean absolute error                      0.0578

024   Root mean squared error                  0.1803

025   Relative absolute error                 37.9502 %

026   Root relative squared error             65.3628 %

027   Total Number of Instances             7768

028

029   === Confusion Matrix ===

030

031      a   b   c   d   e   f   g   h   i   j   k   l   <-- classified as

032    762  21  15   0   7   3   5   1   2   6  16   3 |   a = 1

Chapter 5  Machine Learning Environments



283

033      0 635  25   6   0   4   5   1   6   9  22   9 |   b = 2

034      1  15 603   7   7  12  16   0  16   5   6   0 |   c = 3

035     17  31  16 406  16   8  21  67  42  53  10   4 |   d = 4

036      6   8   5   3 540   4  12   5   6  22  22  26 |   e = 5

037      6  13   6   1   6 660   4   1   8   4  27   0 |   f = 6

038      6  23   5  67  38  34 292  29  30  29  42  34 |   g = 7

039      0  24  15  96   5  12  31 201  62  39  10   4 |   h = 12

040      0  27  15  60   6  19   8  38 234  38  18   1 |   i = 13

041      0  11   9  54  14  33  32  11  22 508  12  13 |   j = 16

042      2  23  13   3  24  84  13   0   5   4 542  14 |   k = 17

043      8   9  22   5  25   6  21   0  14  11  11 261 |   l = 243

The algorithm achieved 72.7% accuracy. Not bad, but not quite as good as RF and 

KNN. However, NB did run much faster than KNN, taking only 25 seconds to complete 

the classification using the 2/3 split test mode.

�Classification: Support Vector Machine
SVM algorithms are gaining popularity against neural network DL algorithms. Weka 

provides the SMO (sequential minimal optimization) algorithm to implement a support 

vector classifier.

If you run the SMO algorithm using default options, the results will be poor. Weka 

makes it easy to tune the algorithm options. Figure 5-32 shows the option panel for the 

SMO algorithm. In order to achieve better results, change the following options:

•	 Set the Complexity parameter c = 2.0.

•	 Set the Calibrator to SMO.

•	 Change the Tolerance parameter to 0.1.

•	 Set the kernel to PUK with default parameters.
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The SMO classifier output:

001   === Run information ===

002

003   Scheme:       �weka.classifiers.functions.SMO -C 2.0 -L 0.1 -P 1.0E-

12 -N 0 -V -1 -W 1 -K "weka.classifiers.functions.

supportVector.Puk -O 1.0 -S 1.0 -C 250007" -calibrator 

"weka.classifiers.functions.SMO -C 1.0 -L 0.001 

-P 1.0E-12 -N 0 -V -1 -W 1 -K \"weka.classifiers.

functions.supportVector.PolyKernel -E 1.0 -C 250007\" 

-calibrator \"weka.classifiers.functions.Logistic -R 

1.0E-8 -M -1 -num-decimal-places 4\""

Figure 5-32.  Weka SMO algorithm options
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004   Relation:     �subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

005   Instances:    22846

006   Attributes:   10

007   Test mode:    split 66.0% train, remainder test

008

009   === Classifier model (full training set) ===

010

011   SMO

012   Kernel used:

013     Puk kernel

014   Classifier for classes: 1, 2

015   BinarySMO

016   Time taken to build model: 108.91 seconds

017

018   === Evaluation on test split ===

019

020   Time taken to test model on test split: 28.28 seconds

021

022   === Summary ===

023

024   Correctly Classified Instances        6426               82.724  %

025   Incorrectly Classified Instances      1342               17.276  %

026   Kappa statistic                          0.8107

027   Mean absolute error                      0.1399

028   Root mean squared error                  0.2571

029   Relative absolute error                 91.8675 %

030   Root relative squared error             93.177  %

031   Total Number of Instances             7768

032

033   === Confusion Matrix ===

034

035      a   b   c   d   e   f   g   h   i   j   k   l   <-- classified as

036    801   5  21   0   0   4   1   1   8   0   0   0 |   a = 1

037     19 665  14   3   0   6   3   5   1   3   1   2 |   b = 2
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038      2  15 640   8   1   5   7   2   5   1   2   0 |   c = 3

039      2   4  14 493   8   1  22  45  20  70  12   0 |   d = 4

040      0   0   9   2 605  13   1   5   1   4  18   1 |   e = 5

041      3  12   6   2   2 658   4   0   4  14  30   1 |   f = 6

042      7  28   2  35   8  25 456  33  11   5   8  11 |   g = 7

043      1  11  20  68   0   2   7 297  29  60   3   1 |   h = 12

044      0   6  12  28   0   2  21  66 260  64   5   0 |   i = 13

045      0   5  14  15   6  23  16  10  10 618   1   1 |   j = 16

046      1  15  23   3   1  29   9   5   2   4 633   2 |   k = 17

047      2   6  28   7  10   5  12   2   6   9   6 300 |   l = 24

The Weka SMO algorithm achieved 82.7% accuracy on the cleaned dataset. The 

result was about the same as the KNN algorithm, but the elapsed time for training and 

testing was only 2 minutes for the 22,000+ instances.Next, you will take a more detailed 

look at these classification algorithm results.

5.7  �Weka Model Evaluation
There are many factors to consider when evaluating a ML model.

You are trying to place ML models at the edge, so you need to think carefully about 

how your model affects the limited resources of the target device. While accuracy is the 

most visible performance measure, build time and test time also are important. Table 5-8  

shows a summary of the classifier’s performance for the subject101-cleaned.arff 

dataset.
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Note the DNF (Did Not Finish) entry for KNN with 10-fold test option. This means it 

aborted the operation because it was taking too long.

Note the NR (Not Reported) entries for the test times with 10-fold cross validation. 

Weka does not report the total training time when using the k-fold cross-validation test 

option. However, if you recall from Figure 4-10, you could multiply the test training time 

by k to determine an estimate for the test time, assuming you used a 90/10 split for a 10-

fold cross-validation.

A summary of observations from the table of results:

•	 RF achieves the best accuracy result.

•	 RF sits in a sweet spot considering the accuracy vs. time to train/test 

tradeoff.

•	 Using the 10-fold cross-validation test option over the split improves 

the accuracy of the classifier by up to 1%.

•	 The KNN test time is large. The algorithm performs a lot of 

computation for every prediction due to the lazy nature of the 

algorithm.

•	 The SVM/SMO training time is large. This is because the algorithm 

creates so many support vectors.

Table 5-8.  Classification - Algorithm Performance Summary

Algorithm Training method Build time (sec.) Test time (sec.) Accuracy (%)

RF (i=10) 10-fold cross-val. 1.7 NR 87.7%

RF (i=10) 2/3 split 1.8 0.2 86.4%

RF (i=100) 10-fold cross-val. 16.5 NR 90.5%

RF (i=100) 2/3 split 16.5 1.3 90.0%

KNN 10-fold cross-val. DNF DNF DNF

KNN 2/3 split 0.1 2,513 82.8%

Naive Bayes 10-fold cross-val. 0.1 NR 72.9%

Naive Bayes 2/3 split 0.1 25.4 72.7%

SVM/SMO (c=2) 10-fold cross-val. 111 NR 83.4%

SVM/SMO (c=2) 2/3 split 109 28 82.7%
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The findings confirm the relative performance of the algorithms shown in  

Figure 4-17. Although only RF achieved 90% accuracy, it is likely the results for all the 

algorithms can improve by further adjusting the algorithm options.

One additional factor is extremely important in choosing the best model that I have 

not discussed yet is model size. You need a model that can be stored in a device at the 

edge. Such devices often have constrained memory and CPU resources due to their size. 

I will discuss this important factor further in Chapter 6.

�Multiple ROC Curves
In addition to algorithm accuracy, let’s look at the ROC curve(s) of your classification 

results. The ROC curve plots the true positive rate (TPR) against the false positive rate 

(FPR). ROC curves work best in a 2-class case, but you can make a multi-class problem 

like subject101-cleaned.arff  into a 2-class case by singling out one class and evaluating 

it against the others.

You will use to Weka KnowledgeFlow application to generate the ROC comparison 

chart. Open a KnowledgeFlow window from the Weka GUI Chooser and open the 

Classify-4.kf  file from the book resources.

Classify-4.kf  is a knowledge flow example that performs the following actions when 

executed:

•	 It loads the data from subject101-cleaned.arff.

•	 It prepares a 10-fold cross-validation of the data to send to the RF and 

NB classifiers.

•	 It prepares a 2/3 split of the data to send to the KNN and SVM/SMO 

classifiers. These classifiers take a longer time to test instances, so 

avoid the 10-fold cross-validation test option.

•	 The four classifiers perform their classification.

•	 The results are sent to the charting module that can display the image 

of the multiple ROC curves.

•	 The results also saved in a text file.

Figure 5-33 shows the Classify-4.kf  layout including the status window after the flow 

executes.
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Before executing the flow, click the following nodes to set or confirm their 

parameters:

	 1.	 Click the ARFFLoader and verify the data file is subject101-
cleaned.arff.

	 2.	 Click the ClassAssigner and verify that ActivityID is the class 

attribute.

	 3.	 Click the ClassValuePicker and select the class to use for the ROC 

curve. In the example, you chose class 3 (Standing). This is how 

you map multi-class data for 2-class ROC curves.

	 4.	 Select the FoldMaker and the SplitMaker nodes to set the test 

divisions for 10 fold and 2/3 split.

Figure 5-33.  KnowledgeFlow clustering multiple ROC output
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	 5.	 Click each of the four algorithm nodes and set the parameters as 

discussed earlier.

	 6.	 Click the ModelPerformanceChart node and set the Renderer to 

JFreeChart as shown in Figure 5-34.

Figure 5-34.  Setting the Renderer to JFreeChart

Execute the flow and wait for the results to complete. The KNN algorithm will be last 

due to its long testing times. When everything completes, right-click the ImageViewer 

node and show results, as in Figure 5-35.
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Recall from Chapter 4, to interpret the multiple ROC curves, straight vertical line are 

the best. For this particular Class=3, the RF and SVM/SMO algorithms look great. The NB 

algorithm is lagging, which is reasonable because it had the lowest percentage accuracy.

The accuracy and ROC curve results give you confidence these models can work 

when integrated into your final application.

Figure 5-35.  Weka ROC curve comparison (Class: 3)
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5.8  �Weka Importing and Exporting
The ability to Load/Save models is one of Weka’s most useful features. You will explore 

this further in the next chapter when you deploy pretrained CML models to devices.

Models can be loaded and saved in the Weka Explorer by right-clicking a model in 

the Weka Explorer Results list. Figure 5-36 shows the Save Model drop-down dialog box.

Figure 5-36.  Weka Explorer: saving a model

Weka saves models as serialized Java objects with the .model extension. You can 

import saved Weka models into your Java applications by using the Weka Java API. Once 

imported, the model enables you to make predictions. In Chapter 6, you will explore the 

size and structure of .model files further.
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One of the key issues with using prebuilt CML models on devices is the size 
of the model. Model size and model accuracy are trade-offs you must care-
fully consider whenever you build and export models. I will discuss this in 
detail in the next chapter.

In addition to saving models, Weka allows you to save data files with a variety of 

formats. When you click the Save button in the Weka Explorer Preprocess tab, the 

following file formats are available:

•	 ARFF file export

•	 ARFF data files (*.arff)

•	 ARFF data files (*.arff.gz)

•	 C4.5 file format (*.names)

•	 CSV files (*.csv)

•	 Plain text or binary serialized dictionary files (*.dict)

•	 JSON data files (*.json)

•	 JSON data files (*.json.gz)

•	 libsvm data files (*.libsvm)

This is a particularly useful feature because it allows you to convert files between 

formats. For example, in the Old Faithful clustering example, you started by importing 

the dataset in .csv format. After completing the clustering process, you can then export 

the data, including the clustering results, in .arff  format.

The following excerpt shows the first 15 instances of the Old Faithful dataset after 

clustering, in .arff  format. Notice that the dataset includes four attributes including a 

Cluster attribute as the last column of the comma-separated dataset.

001   @relation old-faithful_clustered

002

003   @attribute Instance_number numeric

004   @attribute eruptions numeric

005   @attribute waiting numeric

006   @attribute Cluster {cluster0,cluster1}

007

008   @data
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009   0,3.6,79,cluster0

010   1,1.8,54,cluster1

011   2,3.333,74,cluster0

012   3,2.283,62,cluster1

013   4,4.533,85,cluster0

014   5,2.883,55,cluster1

015   6,4.7,88,cluster0

016   7,3.6,85,cluster0

017   8,1.95,51,cluster1

018   9,4.35,85,cluster0

019   10,1.833,54,cluster1

020   11,3.917,84,cluster0

021   12,4.2,78,cluster0

022   13,1.75,47,cluster1

023   14,4.7,83,cluster0

024   15,2.167,52,cluster1

In the next chapter, you will explore how to use this saved .arff  file to create the Old 

Faithful (Figure 5-37) Classifier app for mobile.
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Figure 5-37.  Old Faithful geyser in Yellowstone National Park (Courtesy of Tim 
Dimacchia, portfolio.timdimacchia.com)
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CHAPTER 6

Integrating Models
ML models only become useful when you integrate them seamlessly into your Java 

applications. This chapter covers the following objectives:

•	 Manage ML models.

•	 Perform sensitivity analysis to make the best tradeoff between model 

accuracy and model size.

•	 Review the key aspects of the Weka Java API. The API allows you to 

open pretrained models and make predictions within Java.

•	 Use an Eclipse project to create a Weka API library you can use for 

both Java and Android applications.

•	 Present an overview of integration techniques for pretrained ML 

models with Android and the Raspberry Pi.

•	 Review Java code to handle sensor data on popular device platforms.

•	 Implement the Old Faithful ML app for Raspberry Pi.

•	 Implement the Activity Tracker ML Classification app for Android.

6.1  �Introduction
It is amazing how many apps are available on the app stores today. In fact, there are so 

many, it has become difficult to cut through the noise and establish a presence. A small 

percentage of apps on the app stores today use ML, but this is changing.

Machine learning is the future of app development. Just as we have learned to design 

network performance into our apps, we must now learn to design ML performance 

into the app, including considerations for model size, model accuracy, and prediction 

latency.



298

In this final chapter, you will learn about model integration and deployment.

Figure 6-1 shows the ML-Gates 1 and 0 steps for this critical phase.

These final two ML-Gates represent the “business end” of the ML development 

pipeline. They represent the final steps in the pipeline where you realize the benefit of 

all the hard work performed in the earlier phases when you were working with data, 

algorithms, and models. Model integration and deployment are the most visible stages, 

the stages that enable you to monetize your applications.

6.2  �Managing Models
In ML application development, the model is one of your key assets. You must carefully 

consider how to handle the model, including

•	 Model sizing considerations

•	 Model version control

•	 Updating models

Figure 6-1.  ML-Gate 1/0, Model Integration/Deployment
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Models can grow to be very large, and you need to start by making sure the models 

you create can physically reside on your target device.

�Device Constraints
When you use ML models from the cloud providers, you simply rely on network 

connectivity and a cloud provider API to access models and make predictions. Storing 

prebuilt models on devices is a different approach, requiring you to understand 

the limitations of the target device. Table 6-1 shows the typical hardware storage 

specifications for two Java devices, Android and Raspberry Pi.

Table 6-1.  Device Processing/Storage Summary

Specification Android Raspberry Pi

Device Category Mid-tier device, such as Moto X4 

(2018)

Pi 3B+ (2017)

O/S Android 8.1 (Oreo) Linux

CPU Octa-core ARM Cortex-A53 2.2 GHz 4x ARM Cortex-A53, 1.2 GHz

GPU Adreno 508 Broadcom VideoCore IV

Internal flash 32GB N/A

RAM 3GB RAM 1 GB LPDDR2 (900 MHz)

External flash microSD, up to 256GB microSD, up to 256GB

While the devices have a somewhat similar architecture and CPU technology, the 

table shows the typical Android device has more processing power and storage capacity 

than the Pi 3B+.

The device specifications for Android vary widely. Table 6-1 shows a typical mid-tier 

device and the latest revision Raspberry Pi, the Pi 3B+. Both devices support external SD 

cards for storage. On the Pi, you must use this external storage for your application code 

and the ML model. On Android devices, there is also internal storage, typically 32GB, 

sometimes up to 64GB or higher on the flagship phones. There are several reasons to use 

Android internal storage for ML models:

•	 Internal storage outperforms external storage by a factor of 3x for 

read operations. For write operations, the difference is not usually as 

significant.
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•	 Many Android devices do not support external SD cards.

•	 External storage permissions have become increasingly strict in 

recent Android builds.

It is common on Android devices to see applications with sizes greater than 

300MB. This does not mean you should create models with sizes to match. Huge models 

are difficult to manage. The primary downside of huge models is the time it takes to load 

them. You will see with Android, the best approach is to load models on a background 

thread, and you would like the loading operation to be complete within a few seconds. 

In the chapter projects, you will load the ML models during app startup while the startup 

splash screen displays.

�Optimal Model Size
In Chapter 5, you saw model accuracy, model training, and model testing times varied 

for each of the classification algorithms discussed. There is an additional factor, model 

size, which is equally important to consider. Table 6-2 shows the relative priority of these 

factors.

Table 6-2.  Model Creation Factors

Factor Priority Reason

Model training time Low Training time is important; however, when you are deploying 

static models within applications at the edge, the priority is 

low because you can always apply more resources, potentially 

even in the cloud, to train the model.

Model test time Medium If an algorithm produces a complex model requiring relatively 

long testing times, this could result in latency or performance 

issues on the device when making predictions.

Model accuracy High Model accuracy must be sufficient to produce results required 

by your well-defined problem.

Model size High When deploying pretrained ML models onto devices, the 

size of the model must be consistent with the memory and 

processing resources of the target device.
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Weka allows you to save models by right-clicking on a Result List item after a 

classification completes. Table 6-3 shows the size of several models created using the 

specified model options. There are two entries for RF algorithm, one representing ten 

iterations (i=10) and another representing one hundred iterations (i=100).

To understand how the factors interrelate, you can perform a sensitivity analysis. 

Consider the RF algorithm. You know the number of iterations, i, is a key variable for 

determining how deep or how many trees the algorithm produces. More iterations 

means more trees, which results in each of the following:

•	 Higher degree of accuracy

•	 Longer creation time

•	 Larger model size

You can use the Weka ML environment to run a series of model creations to see 

how these factors relate. Figure 6-2 shows a sensitivity analysis plotting model accuracy 

against model size for varying settings of the iteration (i) parameter.

Table 6-3.  Model Size Summary, Various Classification Algorithms

Algorithm Options Model size Accuracy (%)

Random forest i=10 5.5MB 87.7%

Random forest i=100 55.2 MB 90.5%

KNN-KStar Default 3.6 MB 82.8%

Naive Bayes Kernel default 51 KB 72.9%

SVM/SMO c=2 51.9 MB 83.4%
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One of the things you immediately notice when working with the RF algorithm is 

that the relationship between iterations (i) and model size is linear. For example, with all 

other parameters being equal, the size of the model with i=5 is 2.76 MB, and the size of 

the model with i=50 is 27.6MB. As Figure 6-2 shows, accuracy does not behave the same 

way. The RF model reaches a ceiling, in this example, at approximately 90% accuracy. In 

terms of model size, the 90MB model (i=150) does not produce any significantly greater 

accuracy than the 40MB model (i=75).

The optimal point on the curve is the tangent line at the knee of curve. You can see 

visually this point lies somewhere between the i=10 and i=25 values. The i=10 value 

yields a reasonably good accuracy with a model size at only 5.5MB, so let’s proceed 

with this configuration. Note that these accuracy values do not include 10-fold training; 

adopting this test approach can further improve the accuracy.

Another factor influencing model size is the dataset size. The PAMAP2_dataset 

you used was large. Subject101-cleaned.arff contained 22,846 instances. You already 

performed feature reduction (also called dimensionality reduction) on the dataset 

Figure 6-2.  Sensitivity analysis, model size vs. model accuracy
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when you removed columns (attributes) that were not useful. However, consider if you 

were to reduce the number of instances in the dataset. This would probably result in a 

reduced model size, possibly at the expense of accuracy.

Figure 6-3 shows a second sensitivity analysis to help you explore this effect. This 

chart plots the number of training instances vs. the model size, using a constant value of 

ten iterations (i=10) and reducing the training instances by filtering the dataset input file.

Figure 6-3 shows four models with varying training instance sizes. The three points 

on the left of the plot represent a subset of the complete dataset. The relationship to 

model size is not linear because you can observe a bend in the curve. The slope of the 

curve represents the utility of the training instances. As the slope decreases on the right-

hand side of the plot, the utility of each training instance is lower. This also relates to the 

accuracy ceiling.

The question is, which instances should you delete? All of the ML environments, 

including Weka, have filters to assist with instance reduction which try to minimize 

dataset class integrity.

Figure 6-3.  Data size sensitivity analysis
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Of course, reducing the training data will eventually reduce accuracy. Finding the 

right balance is a trade-off decision, and you can use the sensitivity analysis to help you 

choose the most efficient point along the curves.

Optimizing model size for devices involves performing a sensitivity analysis 
for the critical parameter(s) of the chosen algorithm. Create models to 
observe their size, and then choose tangent points along the sensitivity 
curves for the optimum tradeoff.

Each algorithm has its own scaling properties. For the sensitivity analysis shown 

here, you have considered just one algorithm (RF) and just one of its parameters 

(iterations). ML environments like Weka make it easy to experiment with parameters to 

optimize your models.

One of the huge advantages of DL algorithms is that generally, their size does not 

scale linearly with the size of the dataset, as was the case for the RF algorithm. DL 

algorithms such as CNN and RNN algorithms use hidden layers. As the dataset grows in 

size, the number of hidden layers does not. DL models get "smarter" without growing 

proportionally in size.

�Model Version Control
Once created, you should treat your ML models as valuable assets. Although you did not 

write code in the creation process, you should consider them as code equivalents when 

managing them. This infers that ML models be placed under version control in a similar 

manner as your application source code.

Whether or not you store the actual model, a serialized Java object in the case of 

Weka’s model export, depends on if the model is reproducible deterministically. Ideally, 

you should be able to reproduce any of your models from the input components, 

including

•	 Dataset

•	 Input configuration including filters or preprocessing

•	 Algorithm selection

•	 Algorithm parameters
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For deterministic models that are reproducible, it is not necessary to store the model 

itself. Instead, you can just choose to store the input components. When creation times 

are long, such as with the KNN algorithm for large datasets, it can make sense to store 

the model itself, along with the input components.

The following tools are free and open source, and promise to allow you to seamlessly 

deploy and manage models in a scalable, reliable, and cost-optimized way:

•	 https://dataversioncontrol.com

•	 https://datmo.com

These tools support integration with the cloud providers such as AWS and GCP. They 

solve the version control problem by guaranteeing reproducibility for all of your model-

based assets.

�Updating Models
One of the key aspects to consider when you begin to deploy your ML app is how you are 

going to update the model in the future. The example projects later in the chapter will 

simply load the ML model directly from the project's asset directory when the app starts. 

This is the easiest approach when starting with ML application development, but it is the 

least flexible when it comes time to upgrade your application-model combination in the 

future.

A more flexible architecture is to abstract the model from the app. This provides 

the opportunity to update the model in the future without the need to rebuild the 

application. Table 6-4 summarizes some of the approaches for model management.
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If you wish to pursue the lazy loading or the push messaging approach, there are 

sample projects for each of these in the author’s Android project book that can easily be 

adapted to support ML models:

https://github.com/apress/practical-android

In the chapter projects that follow, you will use the embedded model approach for 

simplicity. For production applications, the more advanced approaches in Table 6-4 are 

preferred.

Table 6-4.  Model Management Approaches

Approach Description Pros/Cons

Embedded Include the model in the project assets. Easy, but the least flexible 

approach.

Download Rather than store the model on the device, 

download it from the cloud at application 

initialization.

Network connectivity 

required. Suitable for very 

small models.

Lazy loading You can apply the standard image-loading 

approach to ML models. This is a hybrid 

combination of the first two approaches.

Many libraries are 

available. Flexible, but not 

ideal for large models.

SyncAdapter and 

ContentManager
You can use the built-in Android network 

synchronization (SyncAdapter ) and content 

sharing (ContentManager ) classes.

High flexibility. Background 

service architecture.

Push messaging Deliver model updates with push services, such 

as Google's Firebase Cloud Messaging (FCM), or 

open source alternatives such as MQTT.

Low latency. Background 

service architecture.

Real-time streaming With this approach, models update progressively 

as new data becomes available.

Distinctly different 

architecture from pre-built 

models.
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�Managing Models: Best Practices
A summary of best practices for creating and handling prebuilt models for on-device ML 

applications:

•	 Optimal model size depends on the input dataset size, attribute 

complexity, and target device hardware capabilities.

•	 Prepare a model sensitivity analysis plotting model accuracy vs. 

model size. Choose a point on the curve well to the left of the 

algorithm ceiling.

•	 Prepare a model sensitivity analysis plotting number of training 

instances vs. model size. Choose a point on the curve where the slope 

is higher.

•	 For Android and Raspberry Pi devices, a good guideline for model 

size is 5MB -50MB. If you are considering larger CML models, make 

certain you gain sufficiently greater accuracy to justify the larger size.

•	 Use version control to manage all of the source data, algorithm 

choices, algorithm parameters, and deployed models.

•	 Decide which architecture you will use for updating the model used 

by your application.

In the next sections, you will explore the Weka Java API, how to load models, and 

how to make predictions on devices.

6.3  �Weka Java API
You have seen how easy it is to access the Weka classifiers and clusterers from the 

Simple CLI and from the various Weka GUI applications, including Explorer and 

KnowledgeFlow. The real power is unlocked when you can access the Weka classes from 

within your Java code. All of the Weka classes can be accesses from the Java APIs.

The Weka Java APIs allow you to do the following from Java code:

•	 Set options.

•	 Create and manage datasets attributes and instances.
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•	 Load and save data in ARFF or CSV formats.

•	 Load and save serialized models.

•	 Apply any of the large number of Weka filters to datasets.

•	 Classify or cluster datasets using any of the many Weka algorithms.

•	 Select attributes as labels for classification.

•	 Visualize datasets, although this functionality is not available for the 

Android platform.

It takes just a few lines of Java code to replicate most of the tasks you performed 

using the Weka Explorer.

Next, I will review some of the most important Java API operations, first using the 

general Java API, and then specifically for the Android platform.

�Loading Data
Your approach to place ML models at the edge means you typically will be loading 

pretrained models created on higher capability desktop or server machines. However, 

there may be occasional situations when you need to load datasets at the edge.

The Weka API allows you to load CSV or ARFF data files, just as you did in the Weka 

desktop environment. The following code demonstrates loading CSV and ARFF files 

using the API:

001   import weka.core.converters.ConverterUtils.DataSource;

002   import weka.core.Instances;

003   //

004   // Load ARFF file

005   //

006   �DataSource sourceARFF = new DataSource("/your-directory/your-data.

arff");

007   Instances dataARFF = sourceARFF.getDataSet();

008   //

009   // Load CSV file

010   //

011   �DataSource sourceCSV = new DataSource("/your-directory/your-data.csv");

012   Instances dataCSV = sourceCSV.getDataSet();
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You use the Instance object to store the data. You can apply filters to the data before 

running classification or clustering algorithms. The Weka API supports the same filter 

and algorithm options you used in the GUI-based desktop environment.

�Working with Options
The Weka API supports options using String Arrays with the following two approaches:

001   // Manually create the String Array of options:

002   //

003   String[] options1 = new String[2];

004   options1[0] = "-R";

005   options1[1] = "1";

006   //

007   �// or, you can automatically create the options String Array using 

splitOptions:

008   //

009   String[] options2 = weka.core.Utils.splitOptions("-R 1");

Once you have defined option String Arrays, you can apply them to filters or 

algorithms, as shown in the next examples.

�Applying Filters
You can apply filters to classes, attributes, or instances. If you have an Instances object 

containing the dataset called data, you can apply a filter as follows:

001   import weka.core.Instances;

002   import weka.filters.Filter;

003   import weka.filters.unsupervised.attribute.Remove;

004   import weka.core.converters.ConverterUtils.DataSource;

005

006   // Load Data

007   DataSource source = new DataSource("/your-directory/your-data.arff");

008   Instances data = source.getDataSet();

009

010   // Set the options for "range" and "first attribute"
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011   String[] options = new String[2];

012   options[0] = "-R";

013   options[1] = "1";

014

015   // Create a new instance of the "remove" filter and set the options

016   Remove remove = new Remove();

017   remove.setOptions(options);

018   remove.setInputFormat(data);

019

020   // Apply the filter to the data object

021   Instances newData = Filter.useFilter(data, remove);

In this example, you are removing the first attribute (column) from data, and the 

update is stored in the newData object.

�Setting the Label Attribute
As you saw in Chapter 2, the label attribute can be any of the attributes in the dataset. 

Often, it is the first attribute, while some datasets include it as the last. It is a best practice 

to specify the label attribute in your Java code. The Weka API provides the setClassIndex 

to set the label attribute for classification:

001   // Set the class attribute (Label) as the first class

002   dataTest.setClassIndex(0);

Always double check that the data type of the class index is correct, especially when 

reading in CSV data. Recall earlier with the PAMAP2_dataset, you needed to use a Weka 

filter to convert the label attribute (class index) to the correct nominal type. ARFF files 

specify the data type so conversion filters are not necessary.

�Building a Classifier
Building a classifier with the Weka API is a simple process requiring only a few lines 

of code, first specifying the options and then passing the options and the data to the 

classifier’s buildClassifier method.
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001   import weka.classifiers.trees.J48;

002

003   // Set the option for "unpruned tree"

004   String[] options = new String[1];

005   options[0] = "-U";

006

007   // Specify the tree classifier

008   J48 tree = new J48();

009   tree.setOptions(options);

010   tree.buildClassifier(data);

All of the Weka classifiers are available in the API, including the four most important 

ones discussed in Chapter 4.

�Training and Testing
The Weka API allows you to train and test classifiers. You can train a classifier by passing 

training data (Instances object) to the buildClassifier method. The evaluateModel 

method allows you to test a trained classifier.

001   import weka.core.Instances;

002   import weka.classifiers.Evaluation;

003   import weka.classifiers.trees.J48;

004   import weka.classifiers.Classifier;

005

006   Instances train = <your training data>

007   Instances test =  <your testing data>

008

009   // Train classifier

010   try {

011       Classifier cls = new J48();

012       cls.buildClassifier(train);

013

014       // Evaluate the classifier

015       Evaluation eval = new Evaluation(train);

016       eval.evaluateModel(cls, test);
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017       �System.out.println(eval.toSummaryString("\nResults\n======\n", 

false));

018   } catch (Exception e) {

019       // Handle Weka exception

020       e.printStackTrace();

021   }

You will not typically be training classifiers on devices at the edge, but it is nice to 

have this capability.

�Building a Clusterer
Building a clusterer with the Weka API is also straightforward. You can use the 

buildClusterer method of the clusterer object to train the clusterer.

001   import weka.clusterers.EM;

002

003   // Set the options for max iterations

004   String[] options = new String[2];

005   options[0] = "-I";

006   options[1] = "10";

007

008   // Instantiate the EM Clusterer instance

009   EM clusterer = new EM();

010   clusterer.setOptions(options);

011   clusterer.buildClusterer(data);

You can evaluate a clusterer using the evaluateClusterer method.

�Loading Models
In Chapter 5, you saw how to save models created in the Weka ML environment. Now 

you can use the Weka API to load these pretrained models. Use the Java InputStream 

class to specify the model filename, and then provide the stream to the Weka API 

SerializationHelper class.
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001   // Define a Weka Classifier Object

002   Classifier mClassifier = null;

003

004   // Load the Classifier from local storage

005   try {

006       File wekaModelFileUnix = new File("/path/modelname.model");

007       FileInputStream fis = new FileInputStream(wekaModelFileUnix);

008       mClassifier = weka.core.SerializationHelper.read(fis);

009   } catch (Exception e) {

010       // Handle Weka model failed to load

011       e.printStackTrace();

012}

Later in the chapter, you will leverage this approach for loading models with the 

Weka library for Android.

�Making Predictions
You can use the Weka API to make predictions, or to say it more formally, to classify a 

sample. The classifyInstance method is available for all of the classifiers.

013   import weka.core.Instances;

014   import weka.core.converters.ConverterUtils.DataSource;

015   import weka.classifiers.Classifier;

016

017   // Load unlabeled data

018   �DataSource source = new DataSource("/your-directory/your-unlabeled-

data.arff");

019   Instances unlabeled = source.getDataSet();

020

021   Classifier mClassifier = null;

022

023   // set class attribute

024   unlabeled.setClassIndex(unlabeled.numAttributes() - 1);

025

026   // classify the instances
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027   for (int i = 0; i < unlabeled.numInstances(); i++) {

028        �double clsLabel = mClassifier.classifyInstance(unlabeled.

instance(i));

029

030   }

You will use this logic later in the chapter to implement the Activity Tracker  

Android app.

6.4  �Weka for Android
The most useful way to use the Weka ML library on Android devices is to port the library 

to Android. The task is not trivial, but once completed, a Weka.jar file for Android is a 

gift that keeps on giving.

It is important to use the same version of Weka throughout the ML-Gates pipeline. 

If you use the latest stable version of Weka on the desktop to create ML models, you 

must use the same version of Weka on the device to ensure compatibility, especially for 

opening serialized pretrained models. Weka is stable so this should not pose a major 

problem.

The main issue with porting Weka to Android is Weka's integration with the following 

Java packages:

•	 AWT: A Java interface to native system GUI code

•	 Swing: A pure Java GUI that uses AWT to create windows and then 

manipulate objects within the windows

•	 Net Beans: A platform of modular components used for developing 

Java applications

Weka relies on these packages for GUI-related functionality. One of the reasons 

Android is so wonderful is that it does not use any of these GUI packages. Of course, that 

is also the reason it is difficult to port Weka to Android.

Fortunately, you do not need the GUI capabilities of Weka on Android. You just 

require access to the data utilities, filters, algorithms, and serialization methods. 

However, before you can build a Weka library for Android, you need to resolve the build 

issues on Android caused by use of these packages.
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The book resources include the Weka jar file you will use for Android projects:

Weka-Android-3-8-1.jar
The easy approach is to grab the Weka jar file and simply add it to your Android 

Weka projects.

To demonstrate how to build the Weka-Android-3-8-1.jar library for Android, the 

book resources include a complete Eclipse project. The project is also available at the 

author’s GitHub page:

Weka-Android-3-8-1.zip  

https://github.com/wickapps/Weka-Android-3-8-1

The Eclipse project is useful to explore the code updates required to resolve the 

many GUI-related compile errors when porting the Weka library to Android. The project 

can also act as a guide if you need to create a library file for a different Weka version.

�Creating Android Weka Libraries in Eclipse
You have two approaches to port Weka to Android.

•	 Bottom-up approach: Decide which exact functionality you require, 

such as the seven most useful ML algorithms. Start from the bottom, 

identifying the specific classes for these algorithms and begin 

including just those classes, working your way up to resolve any 

needed dependency issues. When all dependencies are resolved, you 

will have a bare minimum set of functionality for your library.

•	 Top-down approach: Start at the top and include all of the obvious 

Weka classes (excluding KnowledgeFlow) for the Android build. 

When you import the project into Eclipse as an Android project, a 

large number of errors will require manual resolution.

This section will demonstrate the latter approach. The top-down approach requires 

more effort than the bottom-up approach, but once you resolve all the issues, you will 

have a more flexible, capable library for your Android projects. The library will support 

all of the Weka filters and algorithms, and you will not need to rebuild the library until 

the release of a new version Weka version.
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The following steps summarize the initial setup process for porting Weka to Android:

•	 Start with the latest version of Weka that supports Java 7 (more on this 

later), version 3.8.1. Navigate to the weka-src.jar file. Unzip the file 

with the 7Zip utility. Navigate to src->main->java->weka. You will 

import this base directory into Eclipse after making a few changes.

•	 Delete all of the gui directory, except for the following files which you 

need to keep because of the high degree of dependency on objects 

contained within them:

GenericPropertiesCreator.excludes

GenericPropertiesCreator.java

GenericPropertiesCreator.props

HierarchyPropertyParser.java

Loader.java

Logger.java

TaskLogger.java

•	 Delete the entire knowledgeflow directory. The KnowledgeFlow 

application is not required on Android.

•	 Delete the two files in the base directory, PluginManager.props and 

Run.java.

•	 Open Eclipse.

•	 Create a new Android project named Android-Weka-3-8-1.

•	 Set the project as a Library Project. The setting is in the Java Build 
Path settings.

•	 With the new project highlighted, select Import->General->File 
system. Import the weka base directory created earlier.

The Android Weka project is now set up, but there are many errors to resolve before 

you can successfully build a Weka library for Android.
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The latest versions of Weka require the Matrix Toolkit for Java (mtj) library. The Matrix 

Toolkit for Java is an open-source Java software library for performing numerical linear 

algebra. The following is the link for the GitHub repository for Matrix Toolkit for Java:

https://github.com/fommil/matrix-toolkits-java

Copy the mtj-1.0.1.jar library file from the book resources, or download the library 

file from the Maven repository:

�https://mvnrepository.com/artifact/com.googlecode.matrix-toolkits-java/

mtj/1.0.1

The Maven repository also includes instructions for Maven or Gradle builds. Add the 

mtj-1.0.1.jar to the Eclipse project as an external library file.

You may notice that there are many errors related to the Java handing of Vectors 

and ArrayLists in the code. The latest versions of Weka rely heavily on ArrayLists. 

Table 6-5 shows the Weka Java requirements. Java 7 (1.7) is the minimum Java version 

required for the Weka version 3.8.1. The newest stable version of Weka is 3.8.2 which 

requires Java 8 (1.8).

However, keep in mind that Android does not yet support full Java 8 (1.8). Android does 

support some Java 8 features. The latest on Android’s Java 8 support can be found here:

https://developer.android.com/studio/write/java8-support

The highlighted cells in the table show the optimal settings: Weka version 3.8.1 

running on Java version 1.7, which Android does support.

Table 6-5.  Weka Version Java Requirements

Java version
1.4 1.5 1.6 1.7 1.8

Weka version <3.4 X X X X X

3.4.x X X X X X

3.5.x 3.5.0-3.5.2 >3.5.2 X X X

3.6.x X X X X

3.7.x 3.7.0 >3.7.0 >3.7.13 X

3.8.x 3.8.1 >3.8.1

3.9.x 3.9.1 >3.9.1
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To minimize the compile errors for Weka on Android, set the Eclipse compiler 

compliance level to Java version 1.7 as shown in Figure 6-4. The default value is usually 

Java 6 (1.6).

At this point, you have resolved many build errors, but there are still many build 

issues that you need to manually resolve. Most of the remaining errors are due to 

dependencies on the PackageManager or PluginManager classes. The errors can be 

resolved with the following resolution hierarchy:

•	 Delete the offending file.

•	 Delete the method or function in the class.

•	 Resolve the error by modifying the code within the offending method 

or function. This is the last resort and is required when the two prior 

approaches result in an even greater number of dependency issues.

Figure 6-4.  Eclipse Java Compiler settings
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With all errors in the Android Eclipse project resolved, you are ready to export the 

Weka library for Android. Choose File➤Export➤Jar Library from the Eclipse main 

menu. Figure 6-5 shows the export.

The size of the library file is only 3.3MB, even though it contains all the Weka Java 

API classes you will need for Android. The library’s light memory footprint makes it 

perfect for mobile devices. The library can rival any ML library for mobile in terms of the 

size/performance trade-off.

Next, you will explore how to use the library for device ML applications.

Figure 6-5.  Eclipse exporting the Weka library file
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�Adding the Weka Library in Android Studio
Add the Weka ML library to Android Studio with these steps:

•	 Create a libs directory at the app level of your Android Studio project.

•	 Copy/paste the Android-Weka-3-8-1.jar file into the libs directory.

•	 Right-click the Android-Weka-3-8-1.jar file and then click Add As 
Library, as shown in Figure 6-6.

The Weka API will be available from the Android Java application.

Figure 6-7 shows a project in Android Studio after the library has been imported. On 

the left side you can see the exploded Weka directory structure, and at the top of the right 

side panel you can see several library imports required by the application to handle the 

requested Weka API classes.

Figure 6-6.  Android Studio adding a library
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6.5  �Android Integration
The Android Weka library makes it easy to integrate ML for Android. In this section, 

you will implement two simple Android apps to demonstrate the following basic ML 

integrations:

•	 Weka Model Create: This app will demonstrate creating ML models 

in Android directly from data.

•	 Weka Model Load: This app will load a pretrained ML model and 

test the model with batch dataset instances.

The first project is a useful demonstration of the Weka API capability. The second 

project is a more practical architecture for the reasons discussed in earlier chapters.

Figure 6-7.  Weka library for Android Studio
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�Project: Weka Model Create
For this project, you will include the following two data files, derived from the Old 

Faithful geyser clustering example in Chapter 5, as part of the app’s assets. Although you 

are including the data files directly in the project, the app could just as easily download 

these text files from the cloud using a network operation.

•	 oldfaithful_train.arff : A subset of the ARFF data file generated in the 

Chapter 5 clustering example, it contains the first 201 instances.

•	 oldfaithful_test.arff : A subset of the ARFF data file generated in 

Chapter 5 clustering example, it contains the last 71 instances of the 

dataset.

This Weka Model Create app will build a model from scratch, using the first file as 

the training data. Note that if you want to implement the app with a single data file, you 

can use a filter to perform a split of the file. K-fold cross-validation is also possible using 

filters.

This app is technically a classification app. The Old Faithful data was originally a 

clustering problem, but recall when the DBSCAN algorithm completed the clustering 

operation, you saved the results, including the newly assigned clusterID to the new 

ARFF file. When you test the model, you use the known cluster assignments to determine 

the classifier accuracy.

Table 6-6 shows the project summary.
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You can use a simple copy-and-paste to import the three external files (Weka jar 

library and ARFF files) into their appropriate Android Studio directories. You will use 

one of the ARFF files to train the model, and the second file to test the model. This is the 

same approach as when you chose the Split Test Option in the desktop Weka Explorer.

The key points of MainActivity.java are as follows:

•	 The Weka imports at lines 6-10, courtesy of the Android-Weka-3-8-1.
jar file.

•	 The setClassIndex method used at line 31 and line 32 sets the 

Attribute label as the last class for both the training and testing 

datasets.

•	 Data is loaded in Instances objects for each of the dataset files at 

lines 24 and 28.

Table 6-6.  Weka Model Create Project Summary

Project Name: Weka Model Create
Source: weka_model_create.zip
Type: Android
Notes: Create a random forest model, train it with a training dataset, evaluate the classifier 
with a test dataset, and display the results in a TextView.
File Description

app->libs->
Weka-Android-3-8-1.jar

The Weka jar file for Android generated from the Eclipse 

project.

app->src->main->java->
MainActivity.java

The main Java source code file. The project has a single 

activity.

app->src->main->res->layout
activity_main.xml

The layout file for the single screen display output.

app->src->main->res->raw
oldfaithful_train.arff

The training dataset, 201 instances in ARFF format.

app->src->main->res->raw
oldfaithful_test.arff

The test dataset, 71 instances in ARFF format.

app->src->main->res
AndroidManifest.xml

The manifest file.
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•	 The RF model is created at line 40.

•	 The RF model is trained at line 42.

•	 The RF model assumes default options because you did not specify 

any additional options as shown earlier in the chapter.

Listing 6-1 shows the complete MainActivity.java code.

Listing 6-1.  Weka Model Create MainActivity.java

001   package android.wickham.com.WekaModelCreate;

002

003   import android.app.Activity;

004   import android.os.Bundle;

005   import android.widget.TextView;

006   import weka.classifiers.Classifier;

007   import weka.classifiers.evaluation.Evaluation;

008   import weka.classifiers.trees.RandomForest;

009   import weka.core.Instances;

010   import weka.core.converters.ConverterUtils.DataSource;

011

012   public class MainActivity extends Activity {

013

014       @Override

015       protected void onCreate(Bundle savedInstanceState) {

016           super.onCreate(savedInstanceState);

017           setContentView(R.layout.activity_main);

018

019           DataSource sourceTrain, sourceTest = null;

020

021           try {

022               // Load the Training data

023               �sourceTrain = new DataSource(getResources().

openRawResource(R.raw.oldfaithful_train));

024               Instances dataTrain = sourceTrain.getDataSet();

025

026               // Load the Test data
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027               �sourceTest = new DataSource(getResources().

openRawResource(R.raw.oldfaithful_test));

028               Instances dataTest = sourceTest.getDataSet();

029

030               // Set the class attribute (Label) as the last class

031               �if (dataTrain.classIndex() == -1) dataTrain.

setClassIndex(dataTrain.numAttributes() - 1);

032               �if (dataTest.classIndex() == -1) dataTest.

setClassIndex(dataTest.numAttributes() - 1);

033

034               // Fill the summary information for the dataTrain set

035               int attrs = dataTrain.numAttributes();

036               int classes = dataTrain.numClasses();

037               int insts = dataTrain.numInstances();

038

039               // Setup a Random Forest classifier

040               Classifier rf = new RandomForest();

041               // Train the RF classifier

042               rf.buildClassifier(dataTrain);

043

044               // Evaluate the classifier and print the results

045               Evaluation eval = new Evaluation(dataTest);

046               eval.evaluateModel(rf, dataTest);

047

048               // Show the results

049               TextView tv_attrs = (TextView) findViewById(R.id.attrs);

050               tv_attrs.setText(String.valueOf(attrs));

051               �TextView tv_classes = (TextView) findViewById(R.

id.classes);

052               tv_classes.setText(String.valueOf(classes));

053               TextView tv_insts = (TextView) findViewById(R.id.insts);

054               tv_insts.setText(String.valueOf(insts));

055               TextView results = (TextView) findViewById(R.id.results);

056               results.setText((CharSequence) eval.toSummaryString());

057
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058           } catch (Exception e) {

059               e.printStackTrace();

060           }

061       }

062   }

In this example, you create a RF classifier because of its generally superior 

performance, but you have a complete Weka jar file, so you could choose any of the 

classification or clustering algorithms. The following code excerpt shows how to use 

the Weka API to instantiate each of the seven most useful CML algorithms presented in 

Chapter 4:

001   // Set up a Random Forest classifier

002   Classifier rf = new RandomForest();

003

004   // Other classifiers or clusterers can be defined as follows

005   Classifier nb = new NaiveBayes();

006   Classifier knn = new KStar();

007   Classifier svm = new SMO();

008   Clusterer EM = new EM();

009   Clusterer KMeans = new SimpleKMeans();

010   Clusterer DBSCAN = new MakeDensityBasedClusterer();

Figure 6-8 shows a screenshot of the app when run in the Android Studio emulator 

or on a device.

The numAttributes, numClasses, and numInstances methods of the dataTrain 

class provide a summary of the training data set. The evaluateModel method (line 46) of 

the classifier provides the classifier results.
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The classifier achieved a 100% classification result- impressive work by the RF 

algorithm on this dataset!

Note the app size was only 1.7MB and only contained 62 lines of Java code (much of 

which was only necessary to display the results). This illustrates the efficiency of CML 

for devices at the edge. The RF model was in memory when it evaluated the testing data. 

It would be possible to save the serialized model, or even to upload the model created 

from the source data to the cloud.

Figure 6-8.  Android app: Weka Model Create
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In the next example, you’ll take a step up in complexity, working with a much larger 

dataset, and loading a pretrained model instead of creating the model on the device 

directly from a data source.

�Project: Weka Model Load
In this project, you will load a much larger model directly into the app. You will include 

some time stamps at each stage of the process so you can check the performance. 

Android has some sophisticated tools for performance benchmarking, but you will just 

use a simple time stamp. The goal is to determine if the library performance on Android 

is sufficient for typical use cases.

In Chapter 5, you created the following two models using the RF algorithm for 

subject101 of the large PAMAP2_Dataset:

•	 rf_i10_cross.model: The RF iteration parameter i=10 and the model 

size is approximately 5MB. K-fold cross-validation was used to train 

the model.

•	 rf_i100.model: The RF iteration parameter i=100 and the model size 

is approximately 55MB. Split data (2/3 train and 1/3 test) was used to 

train the model.

In this app, you will load these models directly into Android using the Weka 

API. Table 6-7 shows the project summary for the app.

Chapter 6  Integrating Models



329

After you create models in the Weka desktop environment, you can directly copy 

them into the Android Studio project. Remember, the desktop version of Weka must 

match the Android library file, in this case, the Weka release version 3.8.1.

There are two methods to load pretrained models in Android:

•	 Asset Manager: Use the Android Asset Manager and load the models 

from the project’s assets directory.

•	 Raw files: Load the models from the app’s raw storage space.

Table 6-7.  Weka Model Load Project Summary

Project Name: Weka Model Load
Source: weka_model_load.zip
Type: Android
Notes: Load a pretrained model into the app and perform a batch classification of 5,000 
instances loaded from a file to test the classifier.
File Description

app->libs->
Weka-Android-3-8-1.jar

The Weka jar file for Android generated from the Eclipse 

project.

app->src->main->assets->
rf_i10_cross.model

RF pretrained model.

app->src->main->java->
MainActivity.java

The app’s main Java file. The project has a single activity.

app->src->main->res->layout
activity_main.xml

The layout file for the single screen display output.

app->src->main->res->raw->
rf_i10_cross.model

A second copy of the pretrained RF model to demonstrate 

access from the raw directory.

app->src->main->res->raw->
subject101_cleaned_5k.arff

ARFF file with 5,000 instances to test the classification 

model.

app->src->main->res
AndroidManifest.xml

The manifest file.
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The following code excerpt shows how to load models using each approach. In each 

case, you use the Weka SerializationHelper class.

001   �// In Android, we have two ways we can load models directly from the 

file system

002

003   // The following code uses the AssetManager to load the model

004   // from the app->src->main->assets folder

005

006   AssetManager assetManager = getAssets();

007   InputStream is = assetManager.open("rf_i10_cross.model");

008   rf = (Classifier) weka.core.SerializationHelper.read(is);

009

010   // Alternatively, use the next line to load the model

011   // directly from the app->src->main->res->raw folder

012

013   �rf = (Classifier) weka.core.SerializationHelper.read(getResources().

openRawResource(R.raw.rf_i10_cross));

When naming saved models, it is a good practice to include the algorithm used 

as part of the filename. This makes it easier when you open the model, and need to 

instantiate a matching algorithm classifier or clusterer. It is possible to derive the 

algorithm type from a .model file using ArrayList operations.

Because of the large model size, for this app, you wish to benchmark the following 

operations:

•	 Elapsed time to load the model

•	 Elapsed time to load a file with 5,000 instances of testing data (ARFF 

format)

•	 Elapsed time to evaluate the model with the 5,000 test instances 

(batch testing)

You will use the following function for time-stamping the operations performed by 

the app:

001   public String getCurrentTimeStamp() {

002       return new SimpleDateFormat("HH:mm:ss.SSS").format(new Date());

003   }
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The timestamp provides millisecond resolution, so you will get a good indication of 

how quickly the classifier performs.

Listing 6-2 shows the MainActivity.java of the application. The key code highlights:

•	 The app reads the Training dataset from local storage at line 26.

•	 The label attribute is set at line 30.

•	 The app loads the model into a RF object at line 38.

•	 The app evaluates the classifier at line 49.

•	 The StringBuilder class builds the application output. The app finally 

displays the output at line 56. The StringBuilder class retrieves the 

classifier capabilities at line 55.

Listing 6-2.  Weka Model Load MainActivity.java

001   package android.wickham.com.WekaModelLoad;

002

003   import ...

004

005   import weka.classifiers.Classifier;

006   import weka.classifiers.evaluation.Evaluation;

007   import weka.core.Instances;

008   import weka.core.converters.ConverterUtils;

009

010   public class MainActivity extends Activity {

011

012       @Override

013       protected void onCreate(Bundle savedInstanceState) {

014           super.onCreate(savedInstanceState);

015           setContentView(R.layout.activity_main);

016

017           ConverterUtils.DataSource sourceTrain, sourceTest = null;

018

019           StringBuilder builder = new StringBuilder();

020           TextView results = (TextView) findViewById(R.id.results);

021
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022           try {

023               // Load the Test data

024               �builder.append("\n" + getCurrentTimeStamp() + ": Loading 

test data");

025               �sourceTest = new ConverterUtils.DataSource 

(getResources().openRawResource(R.raw.subject101_

cleaned_5k));

026               �Instances dataTest = sourceTest.getDataSet();

027               �builder.append("\n" + getCurrentTimeStamp() + ": Test 

data load complete");

028

029               // Set the class attribute (Label) as the first class

030               dataTest.setClassIndex(0);

031

032               Classifier rf;

033

034               �builder.append("\n" + getCurrentTimeStamp() + ": Loading 

model");

035               �// The following code utilizes the AssetManager to load 

the model from the app->src->main->assets folder

036               AssetManager assetManager = getAssets();

037               InputStream is = assetManager.open("rf_i10_cross.model");

038               rf = (Classifier) weka.core.SerializationHelper.read(is);

039

040               /�/ Alternatively, use the next line to load the model 

from the app->src->main->res->raw folder

041               �// rf = (Classifier) weka.core.SerializationHelper.

read(getResources().openRawResource(R.raw.rf_i10_cross));

042

043               �builder.append("\n" + getCurrentTimeStamp() + ": Model 

load complete");

044               �Toast.makeText(this, "Model loaded.", Toast.LENGTH_

SHORT).show();

045

046               // Evaluate the classifier
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047               �builder.append("\n" + getCurrentTimeStamp() + ": Starting 

classifier evaluation");

048               Evaluation eval = new Evaluation(dataTest);

049               eval.evaluateModel(rf, dataTest);

050               �builder.append("\n" + getCurrentTimeStamp() + ": 

Classifier evaluation complete");

051

052               // Show the results

053               �builder.append("\n\nModel summary: " +  eval.

toSummaryString());

054               // Add the classifier capabilities

055               �builder.append("\nRF Model capabilities:\n" +  rf.

getCapabilities().toString());

056               results.setText((CharSequence) builder.toString());

057

058           } catch (Exception e) {

059               e.printStackTrace();

060           }

061       }

062

063       public String getCurrentTimeStamp() {

064           return new SimpleDateFormat("HH:mm:ss.SSS").format(new Date());

065       }

066   }

The app is performing a batch classification of 5,000 instances using a pretrained 

model. If you can achieve decent performance with this batch operation, you can be 

confident the architecture will be sufficient to classify a single instance.
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Figure 6-9 shows a screenshot of the app after it has finished its task.

The application as shown ran in the Android Studio emulator. The model loaded in 

about 1.5 seconds and the evaluation completed in less than a half second. These seem 

like excellent results. You will explore the performance further in the next section.

The accuracy of the batch classification was very high: only 11 out of 5,000 

incorrectly classified instances. This is most likely due to the fact the testing data was a 

subset of the training data originally used to build the model.

The Weka Model Load Android app proves that you can load large, pretrained 

models and batch classify efficiently on Android.

Figure 6-9.  Weka Model Load
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6.6  �Android Weka Model Performance
Several factors contribute to the overall performance of ML models on devices, including

•	 Model size

•	 Model complexity

•	 CPU and memory capacity of the device

•	 Application code integration of the model

The Weka Model Load app provides timestamps. You can run the app on different 

devices to benchmark the relative performance. Table 6-8 shows a calculated summary 

of the timestamps for three operations:

•	 Test data load time (load 5,000 instances of testing data)

•	 Model load time (load the 5MB RF PAMAP2 subject101 model)

•	 Classifier evaluation

A special version of the app was created to run on the Amazon Fire Phone and 

Raspberry Pi. The app also ran in the Android studio Emulator and on a few devices, 

including the Moto X4, Sony Xperia, and an older Nexus tablet.

Table 6-8.  Android Weka ML Model Performance Comparison

Device Test data load time 
(5K) (sec.)

Model load time  
(5MB) (sec.)

Classifier evaluation  
time (sec.)

Android Studio 

Emulator

0.28 1.56 0.36

Motorola X4 0.20 1.27 0.64

Sony Xperia 0.16 1.16 0.45

Nexus 7 Tablet 1.51 3.52 1.71

Amazon Fire 

Phone

0.47 2.76 0.93

Raspberry Pi 3b+ 0.62 3.44 0.82
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Summary of the performance results:

•	 Classification times were less than .5 second for the newer devices 

that have faster CPUs.

•	 Memory was not an issue on any of the devices. The 5MB model was 

easily loaded into memory, although not as quickly for devices with 

slower CPUs.

•	 The Amazon Fire Phone is no longer a relevant Android device. It is 

old, lacks a modern Android version, and the hardware specifications 

are outdated. However, the ability of your code to function reasonably 

well on this device proves an important point.

There may be times when you need to deploy CML solutions onto 
Android devices that do not contain Google Play Services. The 
CML solution you have deployed for Android does not require 
any of the Google services and does not even require network 
connectivity.

•	 The Android Studio emulator performed the best at classifying the 

5,000 instances. The result is surprising, as normally you do not 

expect the emulator to outperform actual hardware. However, keep 

in mind the classifier evaluation is mostly a CPU-intensive operation 

(algorithm processing), and the desktop has a much more powerful 

CPU than the target mobile devices.

•	 The model load time is very reasonable. Typical applications will 

classify a single instance incrementally, as you will see in the next 

example, and this will be a much faster operation than the batch 

classification of 5,000 instances.

So, what happens to the performance when you load even larger models? You may 

find situations where you want to gain the increased accuracy at the expense of larger 

model size.

When you built the RF model for i=10 iterations, you also built one for i=100 

iterations. Recall it took much longer to create and the size was much larger, 

approximately 55MB. Table 6-9 shows a model load time comparison for the smaller and 

larger models.
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There are several points to consider when creating and loading models of this 

increased order of magnitude:

•	 Although the model is ten times larger, the loading time does not 

scale linearly. In this case, for these devices, the loading times are 

about eight times longer.

•	 Models of this size take approximately ten seconds to load. This is too 

long to hide during app initialization. Large models will require one 

of the model management strategies discussed in Table 6-4.

•	 It is feasible to integrate models of this size order of magnitude, 

but you first need to establish that they are providing a sufficient 

increased accuracy benefit.

Now that you have some confidence in the performance of your models on Android 

mobile devices, let’s expand the target audience to include other Java devices.

6.7  �Raspberry Pi Integration
Back in Chapter 1, you saw that the market for Java devices is huge; over 3 billion devices 

run Java, according to Oracle. The Raspberry Pi is a very popular device that can run 

Java. In this section, you will deploy CML models to the Raspberry Pi.

Developers familiar with the Pi will also be familiar with Arduino. Arduino devices 

have a smaller footprint and are thus not suitable for running Java. However, if you have 

Arduino applications, you can control those devices with Java using the open source 

Table 6-9.  Android Weka ML Model Performance Comparison

Device Model load time  
(5MB model RF i=10) (sec.)

Model load time  
(50MB model RF i=100) (sec.)

Android Studio 

Emulator

1.56 12.61

Motorola X4 1.27 9.98

Sony Xperia 1.16 9.42
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RXTX library. Using this library, a Java-based master device, such as the Pi, could handle 

the ML operations and communicate to Arduino devices for data gathering or output of 

model results. The RXTX library and additional information are available at the following 

sites:

https://github.com/rxtx/rxtx

http://rxtx.qbang.org/wiki/index.php/FAQ

Table 6-1 showed the basic hardware specifications of the Raspberry Pi 3 model b+. A 

quick glance at the table shows that the Pi has about one-half the processing and storage 

capability compared to a mid-tier Android device. Figure 6-10 shows the Raspberry Pi 3 

model b+ and highlights some of the key interfaces.

The Raspberry Pi is extremely attractive because it is inexpensive and has so many 

useful features and interfaces, including HDMI, 4xUSB, USB powered, Micro SD card, 

GPIO pin interface, Wifi, Gigabit Ethernet, Bluetooth, and BLE. A complete list of the 

specifications can be found here:

www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Figure 6-10.  Raspberry Pi 3 model b+ with interface summary
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All of these features make the Pi an interesting choice for many ML applications.

•	 The Pi is an excellent choice for kiosk applications. You can connect 

HDMI monitors in portrait or landscape orientations and drive them 

directly from Java applications.

•	 You can connect small displays directly to the Pi. These can range 

from two-line LCD displays to 7-inch touchscreens.

•	 You can connect a myriad of buttons, sensors, LEDs, etc. to the 

GPIO interface and control them from Java applications. Sensors are 

available for motion, acceleration, temperature, water, wind, etc.

•	 The Raspberry Pi supports an external camera via the header 

connection next to the HDMI port. Adding a camera module to your 

Pi opens the door to picture and video data collection for use by ML 

applications.

•	 You can connect wireless USB keypads and keyboards to the 

Raspberry Pi. The devices can control the software application, even 

if the application does not have a monitor or display.

•	 There are countless potential uses for the Raspberry Pi. A quick 

Internet search reveals many amazing things developers are doing 

with the Raspberry Pi.

�Raspberry Pi Setup for ML
Setting up the Raspberry Pi is easy, and there are many online support resources 

available. The official Raspberry Pi setup guide is available at

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up.

Setting up Raspberry Pi 3 model b+ for ML integration does not require any special 

steps. The operating system and all application software are stored on the micro SD card. 

The Pi supports many operating systems, and you will choose the official Raspbian 

operating system during the installation. Raspbian is an unofficial port of Debian for 

ARM CPUs and it is the most popular OS for Raspberry Pi today. It is very similar to using 

Ubuntu and supports Apache, Nginx, Java, Python, and MySQL.
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The steps below summarize the Raspberry Pi setup. Refer to the official link for the 

detailed setup steps.

	 1.	 Download the Raspberry Pi NOOBS (New Out Of Box Software) 

installation manager and copy it onto the micro SD card.

	 2.	 Insert the microSD card into the Pi.

	 3.	 Connect the monitor and keyboard, and power on the Pi with a 

USB power cable.

	 4.	 Follow the installation instructions. Choose Raspbian as the 

operating system. The good news is that Raspbian includes Java.

	 5.	 Set up the Wifi or Internet connection so you can update all the 

packages after the Raspbian install completes.

	 6.	 Set up an IP address if you would like to connect to the Pi from 

another networked device. This is not required because you will 

be able to copy files onto the Pi by simply inserting a flash drive 

and copying the files with the file manager.

	 7.	 Log into the admin user and confirm that the latest version of Java 

is available. Raspbian includes Java, but the following commands 

can upgrade Java on the Raspberry Pi if needed. The steps involve 

removing OpenJDK, obtaining a key, and then installing the latest 

Oracle Java 8.

001   // Install the latest Java version

002   // First remove OpenJDK

003   sudo apt-get purge openjdk*

004

005   // Add the digital key

006   sudo apt-key adv --recv-key --keyserver keyserver.ubuntu.com EEA14886

007   �// Using an editor such as vi or vim, add the following lines to /

etc/apt/sources.list

008   deb http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main

009   deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu trusty main

010

011   // install Java 8
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012   sudo apt-get update

013   sudo apt-get install oracle-java8-installer

014   sudo apt-get install oracle-java8-set-default

015

016   // Remove the old Java(s)

017   sudo apt-get purge openjdk*

018   sudo apt-get purge java7*

019   sudo apt-get autoremove

020

021   // Check for success, we should only see Java 8

022   java -version

�Raspberry Pi GUI Considerations
One of the main challenges when writing Java applications for the Raspberry Pi, 

especially for Android developers, is mastering the GUI limitation of pure Java. On the 

Raspberry Pi, you lack the following elements that make it so easy to implement GUI 

interfaces on Android:

•	 Android allows you to specify layouts in XML and has many graphical 

tools to make GUI design easy.

•	 Android supports a huge set of widgets and classes, such as Layouts, 

List Views, Constraint Layouts, and countless GUI elements and 

tools.

•	 The Android platform can automatically support various screen sizes, 

from small to very large devices.

•	 It offers support for 9-patch image files that make it easy for images, 

such as buttons to scale.

•	 Android Studio provides a “what you see is what you get” (wysiwyg) 

view for all XML layout files. You can easily create GUIs by simply 

dragging and dropping GUI widget elements.

For Java ML applications on the Raspberry Pi, you will use the Swing and AWT GUI 

classes available in Java. The Java GUI classes have several layout managers available. 

For the project, you will implement the GroupLayout Manager.
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Placing ML capability at the edge on the Raspberry Pi device is an exciting 
new frontier, made possible by the Raspberry device capabilities and its 
support for Java and the lightweight Weka API library.

�Weka API Library for Raspberry Pi
In order to use Weka on the Raspberry Pi, you need a Weka API jar file for Raspberry Pi 

that you can include in your application. You have two options, as shown in Table 6-10.

You have two options because the stripped version you build for Android can also 

work on Raspberry Pi. The advantage of this option is that it is smaller. One advantage 

of the full version is that you could potentially use the graphical functions of Weka, such 

as visualizations, on the Raspberry Pi. Next, you will implement ML on the Raspberry Pi, 

using the Weka-Android-3-8-1.jar library.

�Project: Raspberry Pi Old Faithful Geyser Classifier
Printing out a screen filled with ML classifier statistics, as you did earlier for Android, is 

not a very compelling app.

The best ML apps are the ones that produce a compelling experience for the 
users, with the users never realizing that ML techniques were responsible 
for achieving the result.

Table 6-10.  Raspberry Pi Weka API Library Comparison

Library Size (MB) Description

weka-src.jar 10.6 The full-function Weka API distributed with each Weka 

stable release, such as Weka 3.8.1.

Weka-Android- 
3-8-1.jar

3.3 The stripped version of the Weka API you built for Android 

in Eclipse earlier in the chapter.
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The goal for this project is to implement a GUI-based app for Raspberry Pi that 

integrates a pretrained ML model to make predictions.

In Chapter 5, you reviewed the Old Faithful geyser dataset and saw how clustering 

helped you to identify a hidden pattern in the data. The geyser has two “modes” which 

we will call “hot mode” and “warm mode.” Geologists probably have better terminology 

for this phenomenon. It makes sense that longer waiting times correlate to longer 

eruption times. What is interesting is that are two distinct modes.

If you have been to Yellowstone, you may recall that the park service maintains a 

simple handwritten information board suggesting when the next eruption might occur, 

roughly hourly.

For this project, you will create an app for the Raspberry Pi that can inform us of 

the current geyser mode based on the waiting time and eruption time. You could easily 

deploy this Pi app as a kiosk application to replace the handwritten information board.

In the app, you will implement some simple requirements:

•	 Users will enter the values for the waiting time and the eruption time.

•	 Users will press a Predict button to get a prediction of the geyser 

mode.

•	 The app will run on the Raspberry Pi.

•	 The app will load a prebuilt model to handle the prediction.

•	 The app will include some basic GUI elements.

The app runs manually, but you could automate the manual data input with a video 

camera to detect eruptions, or possibly add push buttons and timers to help facilitate 

data collection.
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Table 6-11 shows the project summary.

In addition to the main Java file, the project also requires the Weka API library, the 

external Weka .model file, in this case a RF classifier, and an ARFF file I will discuss later.

�App Overview

Before you review the project setup and Java code, you should launch the application to 

see how the app looks. You can launch the Java app on the desktop or on the Raspberry 

Pi with the following command:

001   pi@raspberrypi:/Java-proj/Weka $ java -jar OldFaithful.jar

You use the -jar option on the command line because this project build output is an 

executable jar file, OldFaithful.jar. When the jar file executes, the app displays the GUI 

shown in Figure 6-11. In this example, you entered two values and pressed the Predict 

button and the application informs you the geyser is in warm mode.

Table 6-11.  Android Old Faithful Project Summary

Project: Old Faithful
Source: old_faithful.zip
Type: Raspberry Pi ML Application
Notes: This project is an Eclipse Java project to build and export the OldFaithful.jar 
class, a classifier that can run on the Raspberry Pi device.
File Description

OldFaithful->srcOldFaithful.java The main Java class. Contains everything including 

the GUI code. Loads the model and data file from the 

external Unix file system directory.

OldFaithful->libsWeka-Android-3-8-1.jar The Weka API library file. You can use the Android 

version for the Raspberry Pi.

/home/pi/Java-proj/Weka/old_faithful_rf_
i10.model

RF model, external file

/home/pi/Java-proj/Weka/old_faithful_
single_instance.arff

Single instance of data. External file
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Entering some different data produces the hot mode result, as shown in Figure 6-12.

As you experiment with different values, you will notice the mode output by the app 

is very consistent with the clustering results you derived in Figure 5-20. In Chapter 5, you 

used the DBSCAN clustering algorithm to cluster the Old Faithful dataset.

Often times, classifiers are the most useful way to integrate ML models into device 

applications. In this case, clustering helped you identify that the geyser has two modes, 

and now you want users to be able to know in which mode the geyser resides. In other 

words, the application needs to classify new instances of data. Clustering the data was 

the first step to identify the hidden pattern; now you need to build a classifier.

Figure 6-11.  Old Faithful Geyser app showing warm mode

Figure 6-12.  Old Faithful Geyser app showing hot mode
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�Building the Classifier Model

When you clustered the data using the DBSCAN algorithm, you also saved the output 

file, old_faithful.arff. This file contained four attributes, including the cluster_ID for 

each instance. You can now use this file as the input to build a classifier for the Raspberry 

Pi app. Follow these steps to build a RF classifier in the Weka desktop:

	 1.	 Open the Weka Explorer application.

	 2.	 Under the Preprocess tab, select Open File to open the  

old_faithful.arff file. Observe that 272 instances are loaded.

	 3.	 No filters are necessary, so click the Classify tab.

	 4.	 Under Classifiers, choose the Random Forest algorithm from the 

Trees submenu. Click the algorithm and change iterations = 10.

	 5.	 Under Test Options, select Cross Validation Folds = 10.

	 6.	 Start the classifier. When it finishes, observe the accuracy is very 

high, probably near 99%.

	 7.	 Right-click the Result List and save the model with the name  

old_fiathful_rf_i10.model.

To use this RF classification model with the application on Raspberry Pi, save the 

model on the Raspberry Pi in the same directory with the executable jar file and the 

external ARFF file (you will create these assets next) as shown:

001   pi@raspberrypi:~/Java-proj/Weka $ pwd

002   /home/pi/Java-proj/Weka

003   pi@raspberrypi:~/Java-proj/Weka $ ls -lsart

004   total 3184

005     �40 -rw------- 1 pi pi   38599 Jul 27 19:27 old_faithful_rf_i10.

model

006      4 drwxr-xr-x 4 pi pi    4096 Jul 27 23:32 ..

007      �4 -rw------- 1 pi pi     207 Jul 27 23:54 old_faithful_single_

instance.arff

008   3132 -rw------- 1 pi pi 3205683 Jul 28 00:03 OldFaithful.jar

009      4 drwxr-xr-x 2 pi pi    4096 Jul 28 00:11 .

010   pi@raspberrypi:/Java-proj/Weka $ java -jar OldFaithful.jar
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Next, you will look at how to build the application software, including the GUI, 

loading the Weka model, and making predictions in Java.

�Project Setup

To get started with the Old Faithful project for Raspberry Pi, import the Eclipse Java 

project (OldFaithful.zip) from the book resources, or follow these steps to create an 

Eclipse Java project from scratch:

	 1.	 Start a new Eclipse project by selecting File➤New➤Java Project

	 2.	 Enter the project name as OldFaithful.

	 3.	 In newly created project, create a libs directory under the main 

project folder.

	 4.	 Copy the Weka-Android-3-8-1.jar file into the libs directory.

	 5.	 In Project Properties, set the Java version to 1.8. For the 

Raspberry Pi, you are not restricted to Java 7, as is the case for 

Android.

	 6.	 In Project Properties, click Build Path➤Manage Build Path.

	 7.	 Click the Libraries tab. Click Add Jar to include the Weka-
Android-3-8-1.jar file as a jar file.

	 8.	 In the Src directory, create the OldFaithful.java main class. All of 

the application code resides in this class, and you will review it in 

the next section.

	 9.	 Edit the launch configuration properties. The main class should 

be set to OldFaithful, as shown in Figure 6-13. If you fail to set the 

launch configuration main class, you will not be able to execute 

the Old Faithful app directly from the command line because the 

main class will be unknown.
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�Java Layout Managers

Java has seen gradual improvements in its GUI capabilities, starting with AWT, to Swing, 

and the most recent addition, JavaFX, which debuted in Java 8. JavaFX is a set of graphics 

and media packages that help developers design, create, test, debug, and deploy 

applications that operate consistently across diverse platforms. Java FX integrates well 

with the Web and rich media that is very popular today.

Unfortunately, Java FX is not a lightweight package, and it is not included in Java on 

the Raspberry Pi. It is possible to add, but it does not support all of the libraries and it 

is problematic to implement. For this reason, you will use the more mature Swing GUI 

library for the Old Faithful app. Swing fully supports all device platforms.

Figure 6-13.  Setting the project launch configuration

Chapter 6  Integrating Models



349

Swing has several LayoutManagers, including the following:

•	 BorderLayout

•	 BoxLayout

•	 CardLayout

•	 FlowLayout

•	 GridBagLayout

•	 GridLayout

•	 GroupLayout

•	 SpringLayout

The names provide some insight to the possible use cases, but the easiest way to 

understand the capabilities of these various layouts is to see them. Oracle maintains a 

helpful link at

https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html.

If you look closely at the GUI shown in Figure 6-12, you can see that it is comprised 

of labels, text entry boxes, a button, and large-font bordered text box to display the 

classification result. These GUI components are arranged in a 2-column by 5-row matrix.

You could choose several of the Swing layout managers to implement the Old 

Faithful GUI based on the desired layout. If you come from an Android background, you 

will find the Swing layouts difficult to use, mainly because they do not provide much 

control for the spacing, padding, and general styling required to make the GUI look nice. 

The GroupLayout manager tends to be the most flexible, so you will implement it.

If you find you are unable to implement Java FX, and the Swing layouts fail to meet 

your GUI requirements, there are external alternative layout managers you can consider. 

The Mig Layout Manager is an excellent choice. It is a lightweight Java library and is 

much more flexible than the built-in Swing layout managers. Details of the library are at

www.miglayout.com/.
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�GUI Implementation

All of the Java code for the app is contained in MainActivity.Java. The filename retains 

the Android convention even though this is a Raspberry Pi app and technically is not an 

activity. You will review the code in two sections: first the GUI related code, followed by 

the ML logic.

The Java Swing GUI class works by allowing you to create JFrame objects. You can 

add components to any frame, such as JLabels, JButtons, and JTextFields, in much the 

same way Android works. To control the way the components are arranged, Swing allows 

you to assign the layouts shown earlier to the JFrames. For this project, you will use the 

GroupLayout.

A summary of the key GUI code highlights:

•	 Create a GUI in Java Swing by extending JFrame (line 001).

•	 Define the components, including the JFrame, GroupLayout, 

JButton, JLabel, TitledBorder, and JTextField (lines 002-011).

•	 Define the Constructor (line 013).

•	 The GroupLayout builds the GUI (lines 034-055).

•	 The private method setGeyserMode (lines 066-100) updates the GUI 

with new classification results from the ML model. You update the 

GroupLayout by calling the replace method (line 097).

Listing 6-3 shows all of the GUI-related code.

Listing 6-3.  MainActivity.java: GUI-Related Code

001   public class OldFaithful extends JFrame {

002       static JFrame jf;

003       static GroupLayout layout;

004       static JTextField waitTime, eruptTime;

005       static JLabel priorLabel;

006       statis JButton classifyButton;

007       static TitledBorder tBorderWarm, tBorderHot, tBorderUnknown;

008       �static Border borderOrange = BorderFactory.createLineBorder 

(Color.orange, 5, true);
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009       �static Border borderRed = BorderFactory.createLineBorder 

(Color.red, 5, true);

010       �static Border borderGray = BorderFactory.createLineBorder 

(Color.gray, 5, true);

011       static String modeTitle = "Old Faithful Mode";

012

013       public OldFaithful() {

014           super("OldFaithful");

015           // Init Frame

016           JFrame.setDefaultLookAndFeelDecorated(true);

017           jf = new JFrame();

018           jf.setTitle("Old Faithful Geyser Clasifier");

019           jf.setResizable(true);

020           jf.setExtendedState(JFrame.MAXIMIZED_BOTH);

021           jf.setDefaultCloseOperation(EXIT_ON_CLOSE);

022           jf.setUndecorated(false);   // true for no title and menu

023           jf.setVisible(true);

024           layout = new GroupLayout(jf.getContentPane());

025           jf.getContentPane().setLayout(layout);

026           layout.setAutoCreateGaps(true);

027           layout.setAutoCreateContainerGaps(true);

028

029           // Setup the labels

030           JLabel labelWait = new JLabel("Enter Waiting Time:");

031           JLabel labelErupt = new JLabel("Enter Eruption Time:");

032           JLabel labelResult = new JLabel("Results:");

033

034           // Build the layout using the Swing GroupLayout

035           layout.setHorizontalGroup(layout.createSequentialGroup()

036               .addGroup(layout.createParallelGroup()

037                   .addComponent(labelWait)

038                   .addComponent(labelErupt))

039               .addGroup(layout.createParallelGroup()

040                   .addComponent(waitTime)

041                   .addComponent(eruptTime)
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042                   .addComponent(classifyButton)

043                   .addComponent(labelResult)

044                   .addComponent(priorLabel))

045           );

046           layout.setVerticalGroup(layout.createSequentialGroup()

047               .addGroup(layout.createParallelGroup()

048                   .addComponent(labelWait)

049                   .addComponent(waitTime))

050               .addGroup(layout.createParallelGroup()

051                   .addComponent(labelErupt)

052                   .addComponent(eruptTime))

053               .addComponent(classifyButton)

054               .addComponent(labelResult)

055               .addComponent(priorLabel)

056           );

057

058           jf.pack();

059           jf.validate();

060           jf.repaint();

061       }

062

063       �// The main class includes the ML logic and is not shown in this 

listing

064       public static void main(String args[]){}

065

066       private static void setGeyserMode(int mode) {

067           �// Udate the results depending on the mode the RF classifier 

has returned

068           JLabel label = null;

069           if (mode == 2) {

070               tBorderHot = BorderFactory.createTitledBorder(borderRed,

071                      modeTitle,

072                      TitledBorder.CENTER,

073                      TitledBorder.CENTER,

074                      Font.decode("Arial-bold-14"));
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075               label  = new JLabel("   Hot Mode   ");

076               label.setFont(Font.decode("Arial-bold-28"));

077               label.setBorder(tBorderHot);

078           } else if (mode == 1) {

079               tBorderWarm = BorderFactory.createTitledBorder(borderOrange,

080                      modeTitle,

081                      TitledBorder.CENTER,

082                      TitledBorder.CENTER,

083                      Font.decode("Arial-bold-14"));

084               label  = new JLabel("   Warm Mode  ");

085               label.setFont(Font.decode("Arial-bold-28"));

086               label.setBorder(tBorderWarm);

087           } else {

088               �tBorderUnknown = BorderFactory.createTitledBorder 

(borderGray,

089                      modeTitle,

090                      TitledBorder.CENTER,

091                      TitledBorder.CENTER,

092                      Font.decode("Arial-bold-14"));

093               label  = new JLabel(" Unknown Mode ");

094               label.setFont(Font.decode("Arial-bold-28"));

095               label.setBorder(tBorderUnknown);

096           }

097           layout.replace(priorLabel, label);

098           // reset the priorLabel so it can be updated next time

099           priorLabel = label;

100       }

101   }

�Single Instance Data File

Earlier in the chapter, you saw how to make batch predictions by loading a data file 

containing many instances, 5,000 instances for the PAMAP2_Dataset example. For the 

Old Faithful app, instead of batch classifying, you will be classifying a single instance 

each time the button is pressed.
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Loading a single instance ARFF file is a simple way to educate your application on 

the structure of the data. Think of the single instance data file as a type of data dictionary 

for the data, a best practice I discussed in Chapter 2. If you update your data structure or 

change any of the data types, you should update the single instance data file.

Using the single instance ARFF file has two advantages:

•	 The approach abstracts the data structure from the application code, 

making the code easier to maintain.

•	 The external file approach simplifies the ML code because it is not 

necessary to define all the attributes and data types in Java.

Listing 6-4 shows the old_faithful_single_instance.arff file. You can easily create the 

file from the original ARFF file by simply deleting all of the instances except for one.

Listing 6-4.  old_faithful_single_instance.arff, a Single Instance ARFF File

001   �@relation subject101-cleaned-weka.filters.unsupervised.attribute.

NumericToNominal-Rfirst

002

003   @attribute activityID {1,2,3,4,5,6,7,12,13,16,17,24}

004   @attribute accelX numeric

005   @attribute accelY numeric

006   @attribute accelZ numeric

007   @attribute gyroX numeric

008   @attribute gyroY numeric

009   @attribute gyroZ numeric

010   @attribute magnetX numeric

011   @attribute magnetY numeric

012   @attribute magnetZ numeric

013

014   @data

015   �1,2.30106,7.25857,6.09259,-0.069961,-0.018328,0.004582,9.15626, 

-67.1825,-20.0857

The alternative approach to loading the data structure from file is to define the 

structure manually in Java using the Weka API Attribute and Instances classes.
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You need to deploy the single instance ARFF file packaged together with the 

executable jar file and the ML model file.

�ML Code

Listing 6-5 shows all of the ML code. It is surprisingly brief. As promised, instead of 

writing vast amounts of code, you merely need to load the model and start making 

predictions.

Highlights of the ML code:

•	 The main class runs the constructor (line 003). The constructor in 

this example performs much of the GUI setup.

•	 It load the single instance ARFF file (lines 005-011).

•	 It load the classifier, a RF model created in Weka (lines 013-017).

•	 It sets up a button to perform the classification (line 019).

•	 It implements predictButtonPressed to read the values from the two 

GUI input fields (line 031)

•	 It create a new instance to classify, specifying erupt and wait values 

(lines 037-043).

•	 It classifies the instance (line 046).

•	 It sets the geyser mode according to the classification results (lines 

048-050).

The ML code resides in the public main class.

Listing 6-5.  MainActivity.java: ML-Related Code

001   public static void main(String args[]){

002       // Run the constructor

003       new OldFaithful();

004       try {

005           // Load a Test data instance so we can classify more easily

006           ConverterUtils.DataSource sourceTest = null;

007           �String wekaDataStrUnix = "/home/pi/old_faithful_single_

instance.arff";
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008           sourceTest = new ConverterUtils.DataSource(wekaDataStrUnix);

009           dataSet = sourceTest.getDataSet();

010           �// Set the class attribute (Label) as the last class, the 

ClusterID

011           dataSet.setClassIndex(3);

012

013           �// Load the model, a RF model created from the ARFF data and 

saved in Weka Explorer

014           �File wekaModelFileUnix = new File("/home/pi/old_faithful_rf_

i10.model");

015           FileInputStream fis = new FileInputStream(wekaModelFileUnix);

016           rf = (Classifier) weka.core.SerializationHelper.read(fis);

017           fis.close();

018

019           // Classify button

020           JButton classifyButton = new JButton("Predict Geyser Mode");

021           classifyButton.addActionListener(new ActionListener() {

022               public void actionPerformed(ActionEvent e) {

023                   predictButtonPressed();

024               }

025           } );

026       } catch (Exception e) {

027           e.printStackTrace();

028       }

029   }

030

031   private static void predictButtonPressed() {

032       // Get a prediction from the classifer and update the Geyser Mode

033       try {

034           double wait = Double.valueOf(waitTime.getText());

035           double erupt = Double.valueOf(eruptTime.getText());

036

037           // Create a new instance to classify

038           Instance newInst = new DenseInstance(4);

039           newInst.setDataset(dataSet);
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040           newInst.setValue(0, 0);

041           newInst.setValue(1, erupt);

042           newInst.setValue(2, wait);

043           newInst.setValue(3, 0);

044

045           // Classify the Instance

046           double result = rf.classifyInstance(newInst);

047

048           if (result == 1.0) setGeyserMode(1);

049           else if (result == 0.0) setGeyserMode(2);

050           else setGeyserMode(0);

051       }

052       catch (NumberFormatException e) {

053            //Not a double so set unknown mode

054           setGeyserMode(0);

055       }

056       catch (Exception e) {

057           e.printStackTrace();

058       }

059   }

�Exception Handling for ML Models

Exception handling is one of the more important aspects of application development. 

However, most developers do not spend enough time on it.

In ML applications, the model is a critical component of the application. The 

accuracy of the model is very important, but what if the model fails altogether, 

generating an exception? If the model fails, the app fails, and you need to know about it. 

In most of the examples, including Listing 6-5 above, you print out a stack trace in the 

event of a model exception, but fail to take any other actions. For commercial ML apps 

residing on Raspberry Pi devices or Android mobile phones, you need a more robust 

approach. Remote crash logging is a solution.

The idea behind remote crash logging is to collect the necessary information 

required to help developers resolve the problem and send it to a remote server before 

the application terminates from the crash.
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On Android devices, there are many remote crash-logging services available. The 

most popular service is Google’s Firebase Crashlytics. Detailed information on setting up 

Crashlytics for Android is available at

https://firebase.google.com/docs/crashlytics/.

There are also many third-party services, libraries, and backend servers available to 

implement Android crash logging. For a summary of all the services, refer to the crash 

logging chapter in the author's Android book at

https://github.com/apress/practical-android.

On devices like the Raspberry Pi, third-party services designed for log and 

sensor data collection work well for remote crash logging. One of the most popular is 

LogEntries from Rapid 7, which can accept any type of JSON-formatted data as the 

payload:

https://logentries.com

These services work by using the Java UncaughtExceptionHandler 

method. The following code shows how to use the handler to implement the 

DefaultExceptionHandler:

001   �public class DefaultExceptionHandler implements 

UncaughtExceptionHandler{

002       private UncaughtExceptionHandler mDefaultExceptionHandler;

003

004       //constructor

005       �public DefaultExceptionHandler(UncaughtExceptionHandler pDefault 

ExceptionHandler)

006       {

007           mDefaultExceptionHandler= pDefaultExceptionHandler;

008       }

009       public void uncaughtException(Thread t, Throwable e) {

010           //do some action like writing to file or upload somewhere

011

012           //call original handler

013           mStandardEH.uncaughtException(t, e);

014       }

015   }
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This approach gives you the opportunity to perform some action before your 

application terminates due to an uncaught exception. To help understand why a model 

has generated an exception, it is usually sufficient to send the instance attribute data 

values at the time of the exception, up to the service.

Fortunately, Weka model failures are rare so long as the data and data type match, 

but when the inevitable crash does occur, you need remote crash logging to be able to 

see and analyze the problematic data so you can fix the problem. In many cases, the 

problem can be resolved by correcting the application code, while in some rare cases, 

you must rebuild the model to eliminate the anomaly.

�Exporting Runnable jar Files for Raspberry Pi

Follow these steps to build the Old Faithful runnable jar file:

•	 Clean the project and confirm there are no build errors.

•	 Confirm that the Java Main class in the launch configuration is set as 

shown in Figure 6-13.

•	 In the Eclipse main menu, choose File➤Export, as shown in 

Figure 6-14.

Figure 6-14.  Exporting a runnable jar file
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•	 Click Next, and you will see the Runnable JAR File Export screen 

shown in Figure 6-15.

•	 Make sure the Library Handling radio button selects the Package 
required libraries into generated JAR option. This is necessary so 

the Weka API library is included in the exported application.

With the export complete, the runnable jar file, along with the other required 

external files, will be sufficient to run the Old Faithful app on any Java compliant device.

Figure 6-15.  Exporting OldFaithful.jar file
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�Auto Starting ML Apps on Raspberry Pi

One of the requirements for the Old Faithful project is to create a kiosk-mode app. Such 

apps typically have two characteristics:

•	 Kiosk applications typically support a display or some type of visual 

output, but often do not have input devices such as a keyboard or 

mouse.

•	 Kiosk applications have a single purpose and are automatically 

initialize at power up or when reset.

On Raspberry Pi, there are several methods to achieve automatic start of the 

OldFaithful.jar file. You can use any of the following five Unix-based approaches to 

implement automatic start of any application:

•	 rc.local: Add the application to launch at system startup.

•	 .bashrc: Edit the bash shell startup file to start the application at 

startup.

•	 init.d tab: Use init.d, a directory that contains many start/stop 

scripts for system services.

•	 systemd: Use systemd, a standard process for controlling the 

processes that start in Unix.

•	 crontab: Use cron jobs to schedule when applications run.

For running executable jar files, the first approach is the most simple and it works 

well. To configure automatic start on the Raspberry Pi for the OldFaithful.jar file, 

implement the following steps:

	 1.	 Place the required files,

OldFaithful.jar,
old_faithful_single_instance.arff, and

old_faithful_rf_i10.model,

into the /home/pi/Weka and another directory of your choosing.
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	 2.	 Change into the /etc directory and edit the rc.local file with the 

nano editor:

sudo nano /etc/rc.local
The vi editor is an alternative.

	 3.	 Add the following line to the end of the file, before the exit 0:

java -jar /home/pi/Weka/OldFaithful.jar &
exit 0;

	 4.	 Save the file. Do not forget the & at the end of the line. The & 

allows the command to run in a separate process. Without it, the 

boot process will not complete.

	 5.	 Add a dedicated IP address to the Pi by setting the static_ip_
address in the /etc/dhcpcd.conf file. This allows access to the 

device over the Ethernet connection to retain access to the kiosk 

device.

	 6.	 To disable the Raspberry Pi screensaver, edit the following file:

sudo nano ~/.config/lxsession/LXDE-pi/autostart
The file should match the following code:

lxpanel --profile LXDE-pi
#@xscreensaver -no-splash
@point-rpi
@xset s off
@xset -dpms
@xset s noblank

	 7.	 Use sudo reboot to reboot the Pi and test the changes.

�Project Wrap-up

The Old Faithful project on Raspberry Pi was a simple ML application running in kiosk 

mode on the device. However, it illustrates a powerful device ML architecture that you 

can replicate for other potential applications.
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Highlights of the Raspberry Pi ML architecture:

•	 The Pi is inexpensive and is loaded with connectivity options.

•	 The Pi runs Java, and libraries are readily available.

•	 The Weka API works well on the Pi. The memory and processing 

capabilities of the device make it more than capable to handle 

advanced CML problems.

6.8  �Sensor Data
Sensor data is an excellent fuel for ML apps. In Chapter 2, I introduced the mobile phone 

as potentially the greatest data collection device ever invented. In this section, you will 

investigate device capabilities and explore how to implement ML for Android using 

sensors and the PAMAP2_Dataset covered in Chapter 2.

�Android Sensors
You know that Android supports sensors, but a deep dive into the Android APIs reveals 

a surprising level of sensor coverage. Google divides the Android sensors into three 

categories: motion, environmental, and position. Table 6-12 shows a summary of the 

Android sensors. Most of the sensors have been in the platform since API level 14 

(Android 4.0). Support for the proximity and humidity sensor is available beginning with 

API level 20 (Android 4.4).
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The Sensor framework allows you to use any of the Android sensors. It includes the 

following classes:

•	 SensorManager: Use this class to create an instance of a sensor 

service. The class contains various methods for accessing, listing, 

registering, or unregistering sensors. The class also provides many of 

the constants used to set sensor accuracy and data acquisition rates.

•	 Sensor: Use this class to create an instance of a specific sensor. The 

class also provides methods to determine a sensor’s capabilities.

•	 SensorEvent: A sensor event object allows you to collect raw sensor 

data.

•	 SensorEventListener: Use this interface method to create callback 

methods that receive notifications when the sensor values change.

Table 6-12.  Android Sensor Support

Category Sensor Android sensor types

Motion Accelerometers TYPE_ACCELEROMETER 

TYPE_LINEAR_ACCELERATION

Gravity TYPE_GRAVITY

Gyroscope TYPE_GYROSCOPE

Rotational Vector TYPE_ROTATION_VECTOR

Environmental Barometers TYPE_PRESSURE

Photometers TYPE_LIGHT

Thermometers TYPE_AMBIENT_TEMPERATURE 

TYPE_TEMPERATURE 

TYPE_RELATIVE_HUMIDITY

Position Orientation TYPE_ORIENTATION 

TYPE_PROXIMITY

Magnetometers TYPE_MAGNETIC_FIELD
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The Android sensors are hardware dependent, so sensor availability varies from 

device to device and between Android versions. Use the following code to determine 

sensor availability:

001   private SensorManager mSensorManager;

002   ...

003   �mSensorManager = (SensorManager) getSystemService(Context.SENSOR_

SERVICE);

004   ...

005   �List<Sensor> deviceSensors = mSensorManager.getSensorList(Sensor.

TYPE_ALL);

If you wish to narrow the search, you can replace the constant TYPE_ALL with 

another constant, such as TYPE_GYROSCOPE or TYPE_GRAVITY.

In the Android Activity Tracker project, you will examine in detail how to implement 

the Android sensors.

�Raspberry Pi with Sensors
Figure 6-10 shows a picture of the Raspberry Pi. The GPIO interface makes the Pi an 

excellent device for ML with sensor data collection. The sensors are inexpensive, and 

you can connect many different types of sensors to the Raspberry Pi. Table 6-13 shows 

some of the sensor devices that you can connect.
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The Raspberry Pi has sensors for almost anything you can imagine. The pulse sensor 

shown at the bottom of Table 6-13 was the result of a recent Kickstarter campaign. 

The mobile phone is a great data collection device, but for specialized dedicated data 

collection systems, the Pi takes it to another level.

For specialized sensor-driven data applications, the Raspberry Pi in con-
junction with Java and the Weka API library makes a low-cost powerful 
machine learning platform.

Table 6-13.  Raspberry Pi Sensor Summary

Category Sensor Description

Environment DHT11/DHT22 Measure temperature and humidity.

DS18B20/ DS18S20 Outdoor use temperature and humidity.

BMP180 Barometer for air pressure, as well as temperature and 

altitude.

MQ-2 Gas sensor. Methane, butane, and smoke.

Motion PIR Motion Low-cost motion sensor sends a signal only when 

something moves.

HC-SR04 Ultrasonic motion sensor. Can also measure distances.

MPU-6050 Gyroscope to detect rotation along three axes.

HMC5883L/GY-271 Compass.

Water YL-69 Soil hygrometer 

Moisture sensor

Ground moisture sensor. Useful for irrigation systems.

SEN0193 Capacitive ground moisture sensor from DFrobot. More 

precise and does not erode over time.

FC-37 +MCP3008 Raindrop sensor. Depending on the amount of water, the 

capacitance is increased.

YF-S201C Water flow meter.

Gravity HX-711 Weight sensor and load scale.

Other Pulsesensor.com Heartbeat and pulse sensor.
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To implement sensors on the Raspberry Pi, you need a Java library to interface with 

the sensors. There are two options available:

•	 PI4J: A Java-based API only for the Raspberry Pi

•	 Device I/O: A Java-based API that can support many devices

The PI4J project is an open source library (LGPL version 3.0) for Java that makes 

it easy to interface with the device from Java. Instructions for using PI4J including 

downloads are available at http://pi4j.com/.

Accessing the GPIO and other Raspberry Pi interfaces from Java is very simple, as 

shown by the following code:

001   import com.pi4j.io.gpio.GpioController;

002   import com.pi4j.io.gpio.GpioFactory;

003   import com.pi4j.io.gpio.GpioPinDigitalOutput;

004   import com.pi4j.io.gpio.PinState;

005   import com.pi4j.io.gpio.RaspiPin;

006

007   // create gpio controller

008   final GpioController gpio = GpioFactory.getInstance();

009

010   // provision gpio pin #01 as an output pin and turn on

011   �final GpioPinDigitalOutput pin = gpio.provisionDigitalOutputPin(Raspi

Pin.GPIO_01, "MyLED", PinState.HIGH);

012

013   // set shutdown state for this pin

014   pin.setShutdownOptions(true, PinState.LOW);

015

016   // turn off gpio pin #01

017   pin.low();

018

019   // toggle the current state of gpio pin #01 (should turn on)

020   pin.toggle();
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There is some overlap between the PI4J library and Device I/O. PI4J is more feature 

rich. The Device I/O library is from Oracle and was originally part of the Java ME 

embedded library. It is also an open source Java-level API for accessing generic device 

peripherals on embedded devices. It is under the OpenJDK project, and documentation 

is available at

https://docs.oracle.com/javame/8.0/api/dio/api/index.html.

The Device I/O library has a configuration file for each board, so you can write code 

once and use it on any Java device, not just limited to Raspberry Pi. The main difference 

between PI4J and Device I/O is the GPIO mapping.

The following is a Java code example using the Device I/O library:

001   //

002   // Accessing the GPIO Pin number 12.

003   //

004

005   GPIOPin led = (GPIOPin)DeviceManager.open(12);

006

007   led.setValue(true) //Turns the LED on

008   led.setValue(false) //Turns the LED off

009   boolean status = led.getValue() //true if the LED is on

To use Device I/O library you will need to download the Mercurial configuration 

management system and then clone the project. The name of the actual library is  

dio.jar:

001   sudo apt-get install mercurial

002   hg clone http://hg.openjdk.java.net/dio/dev

To run an application using Device I/O, you will need the following:

•	 Any standard Java class with a main method

•	 java.policy, a file that contains the permissions configuration

•	 The dio.jar library file

•	 libdio.so, a linked library that contains native code interfaces

•	 dio.properties, the configuration file that contains a board-specific 

configuration
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�Sensor Units of Measure
When working with sensor data, it is important to keep close track of the unit of measure 

of the data. Sensor manufacturers can use a variety of different units of measure 

depending on many factors, including accuracy, local standards, country of origin, etc. 

Table 6-14 shows the unit of measure for some of the Android sensors.

When working with data from outside sources, you need to make sure the units are 

consistent before mixing with your own device data. If the units are not the same, you 

need to provide a conversion to the base data format.

In the Android Activity Tracker project, you will use the data collected for 

the PAMAP2_Dataset. The cleaned data you used to build your model contained 

accelerometer, gyroscope, and magnetic field data. The units of measure used by 

the original collection devices match the Android sensor units, so no conversion is 

necessary.

Table 6-14.  Android Sensors Unit of Measure

Android sensor name Unit of measure Data description

TYPE_MAGNETIC_FIELD uT Magnetic field strength in micro-Tesla 

along three axes

TYPE_LINEAR_ACCELERATION m/s2 Acceleration along three axes

TYPE_GYROSCOPE rad/sec Angular velocity along three axis

TYPE_AMBIENT_TEMPERATURE °C Ambient air temperature

TYPE_LIGHT lx Illuminance, measured in lux units

TYPE_PRESSURE hPa or mbar Ambient air pressure

TYPE_RELATIVE_HUMIDITY % Ambient relative humidity

TYPE_TEMPERATURE °C Device temperature
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�Project: Android Activity Tracker
In this project, you are creating an Android application that uses the RF model together 

with the Android sensors to provide a near real-time prediction of the current activity of 

the user. Table 6-15 shows the project summary.

In this project, you want to create an application that gives you a near real-time 

display of the current activity. Figure 6-16 shows the screenshot of the application.

Table 6-15.  Android Activity Tracker Project Summary

Project: Activity Tracker 
Source: acticity_tracker.zip 
Type: Android Studio Project 
Notes: This project uses a trained model from the PAMAP2_dataset in conjunction with near 
real-time Android sensor data to determine the current activity of the device user.
File Description

app->libsWeka-Android-3-8-1.jar The Weka API library file for Android.

app->src->main->javaMainActivity.java The main application source code is 

included in this single file.

app->src->main->res->layoutactivity_main.xml The main GUI layout file for the 

application.

app->src->main->res->rawrf_i10_cross.model The RF model used by the application to 

make predictions.

app->src->main->res->rawsubject101_single.arff The single instance ARFF file used by the 

application to set up the data attribute 

properties.
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The app shows a real-time readout of the current sensor values for the 

accelerometer, gyroscope, and magnetometer. At the bottom of the screen, the app 

shows the current activity and the current activity ID, an integer between 1 and 12. As 

you monitor the app, you will see the sensor values update in real time, while the current 

activity updates twice per second.

Figure 6-16.  Activity Tracker Android application screenshot
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�Application Architecture

Figure 6-17 shows the architecture of the app.

The structure of the app is similar to the previous examples in terms of loading the 

model and making the prediction, but contains two additional constructs:

•	 Implements SensorEventListener to handle the incoming sensor 

data from the accelerometer, gyroscope, and magnetometer.

•	 Implements a Thread to handle the timing for the classification 

processing.

Figure 6-17.  Activity Tracker architecture
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In this app, you will load the RF model you created in Chapter 5, rf_i10_cross.model. 

You created the model from a cleaned version of the subject101 dataset. As a result, 

the model allows you to track the following activities. You define these activities as the 

String[], named activityID.

001   activityID = new String[] {

002           "Other (transient)",    // 0

003           "Lying",                // 1

004           "Sitting",              // 2

005           "Standing",             // 3

006           "Walking",              // 4

007           "Running",              // 5

008           "Cycling",              // 6

009           "Nordic Walking",       // 7

010           "Ascending Stairs",     // 8

011           "Descending Stairs",    // 9

012           "Vacuum cleaning",      // 10

013           "Ironing",              // 11

014           "Rope jumping"          // 12

015   };

You use this String[] to print out the resulting activity. Recall, the original dataset 

contained 24 activities. It would not be fair to expect your model to classify all of these 

activities because half of them were not included in the training dataset. You excluded 

some of the activities because the chosen subject did not perform them and you 

excluded others in the cleaning process.

�Implementing Android Sensors

A key function of the app is to collect current data from the Android sensors. This is a 

two-step process:

•	 Initialization

•	 Implementing the sensor listener
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The initialization process involves creating objects for each of the three required 

sensors in the application onCreate method. The following code shows how to create 

these objects in Android and how to register the SensorEventListener. Keep in mind that 

you also need to register and unregister the SensorEventListener in the onPause and 

onResume methods (not shown).

001   private SensorManager mSensorManager;

002   private Sensor mAccelerometer, mGyroscope, mMagnetometer;

003

004   mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

005

006   �mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_

ACCELERATION);

007   mGyroscope = mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);

008   �mMagnetometer = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_

FIELD);

009

010   �mSensorManager.registerListener(mSensorEventListener, mAccelerometer, 

SensorManager.SENSOR_DELAY_NORMAL);

In line 006, you create the accelerator object. In Android, there are two choices:

•	 Sensor.TYPE_LINEAR_ACCELERATOR

•	 Sensor.TYPE_ACCELERATOR

The difference between the two is the inclusion of a gravity component. The linear 

accelerator removes the impact of gravity on the readings. Analysis of the initial data 

shows this measurement approach is consistent with the initial data gathering protocol, 

so you use this sensor in the application.

In line 010, you use the SENSOR_DELAY_NORMAL constant in the registerListener 

method. This value specifies the rate at which you receive samples from the sensors. 

Table 6-16 shows the options. When using sensors, there is some internal latency, so the 

typical observed sample rate is higher than the Android-specified value. In the app, you 

want to update the user’s current activity every 500 milliseconds (1/2 second). You have 

seen that you can classify a single sample at this rate, so SENSOR_DELAY_NORMAL is 

sufficient for the app. Note that the Android also uses the SENSOR_DELAY_NORMAL 

for some system functions, such as determining when the user rotates the device from 

portrait to landscape.
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To receive sensor events, you need to implement the SensorEventListener. Android 

calls this listener to report sensor events for all of the registered sensors. In this app, you 

have three sensors registered. Even though you are using the least frequent sampling 

rate, SENSOR_DELAY_NORMAL, there will still be many events passed to this listener.

001   �private final SensorEventListener mSensorEventListener = new 

SensorEventListener() {

002       @Override

003       public void onSensorChanged(SensorEvent event) {

004           �if (event.sensor.getType() == Sensor.TYPE_LINEAR_

ACCELERATION) {

005               acc_X = event.values[0];

006               acc_Y = event.values[1];

007               acc_Z = event.values[2];

008               tv_acc_X.setText(Float.toString(acc_X));

009               tv_acc_Y.setText(Float.toString(acc_Y));

010               tv_acc_Z.setText(Float.toString(acc_Z));

011

012           } else if (event.sensor.getType() == Sensor.TYPE_GYROSCOPE) {

013               gyro_X = event.values[0];

014               gyro_Y = event.values[1];

015               gyro_Z = event.values[2];

016               tv_gyro_X.setText(Float.toString(gyro_X));

017               tv_gyro_Y.setText(Float.toString(gyro_Y));

018               tv_gyro_Z.setText(Float.toString(gyro_Z));

019

Table 6-16.  Android Sensor Delay Constants

Constantname Default constantvalue 
(microseconds)

Typical observed sample 
rate (milliseconds)

SENSOR_DELAY_NORMAL 200,000 225

SENSOR_DELAY_UI 60,000 78

SENSOR_DELAY_GAME 20,000 38

SENSOR_DELAY_FASTEST 0 20
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020           �} else if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_

FIELD) {

021               mag_X = event.values[0];

022               mag_Y = event.values[1];

023               mag_Z = event.values[2];

024               tv_mag_X.setText(Float.toString(mag_X));

025               tv_mag_Y.setText(Float.toString(mag_Y));

026               tv_mag_Z.setText(Float.toString(mag_Z));

027           }

028       }

029

030       @Override

031       public void onAccuracyChanged(Sensor sensor, int i) {

032       }

033   };

Inside the listener, you decode the events by checking the event.sensors.getType() 

and then reading the values from the event.values[] array. Depending on the event type, 

the listener stores the X, Y, and Z sensor values into the following local variables:

•	 Accelerometer: acc_X, acc_Y, acc_Z (lines 005-007)

•	 Gyroscope: gyro_X, gyro_Y, gyro_Z (lines 013-015)

•	 Magnetometer: mag_X, mag_Y, mag_Z (lines 021-023)

In addition to updating the local variables that you will use as a classification 

instance, the listener also updates the TextView fields on the main app GUI layout. 

When you run the app, it is immediately apparent how many events the sensors generate 

because you can see these values change so frequently.

The listener also requires you to implement the onAccuracyChanged method (line 

031). You can leave this method empty.

�Implementing the Timer

For this app, you would like to show a continuously updated activity prediction derived 

from the most recently available sensor data. This requires that you constantly feed 

instances into the ML model for predictions. You know that the sensor data update 

interval is approximately 200 milliseconds, because you set the sensor sample rate to 
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SENSOR_DELAY_NORMAL. You also know that you can classify an instance using the 

Weka API with an RF model in approximately 300-500 milliseconds.

To accomplish the continuous classifications, you will implement a background 

thread and define the integer updateInterval = 500 milliseconds. The thread will run 

continuously until an error occurs. Each time through the main loop, a call is made to 

updateActivityStatus(), which performs the classification and displays the result. The 

timing is controlled by a call to the Thread.sleep(updateInterval) method. You are not 

actually using Java or Android Timer objects in this code, but the implementation is a 

simple and efficient way to implement continuously updating classifications.

001   Thread m_statusThread;

002   Boolean m_statusThreadStop;

003   private static Integer updateInterval = 500;

004

005   public void createAndRunStatusThread(final Activity act) {

006       m_StatusThreadStop=false;

007       m_statusThread = new Thread(new Runnable() {

008           public void run() {

009               while(!m_StatusThreadStop) {

010                   try {

011                       act.runOnUiThread(new Runnable() {

012                           public void run() {

013                               updateActivityStatus();

014                           }

015                       });

016                       Thread.sleep(updateInterval);

017                   }

018                   catch(InterruptedException e) {

019                       m_StatusThreadStop = true;

020                       messageBox(act, "Exception in status thread: " +

021                                       e.toString() + " - " +

022                                       �e.getMessage(), "createAndRun 

StatusThread Error");

023                   }

024               }

025           }
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026       });

027       m_statusThread.start();

028   }

The final part of the code is the model integration.

�Model Integration

As with the examples shown earlier in the chapter, the first step in model integration is to 

load the single instance data source, set the class attribute label, and load the prebuilt RF 

classifier model. The following code block shows the initialization steps performed on 

the Android onCreate method:

001   // Load the Single Instance data source

002   �sourceSingle = new ConverterUtils.DataSource(getResources().

openRawResource(R.raw.subject101_single));

003   dataSingle = sourceSingle.getDataSet();

004

005   // Set the class attribute (Label) as the first class

006   dataSingle.setClassIndex(0);

007

008   // Load the pre-built Random Forest model

009   �rf = (Classifier) weka.core.SerializationHelper.read(getResources().

openRawResource(R.raw.rf_i10_cross));

With initialization complete, the only steps remaining are to build samples 

from the sensor data, classify them, and display the result. The actions are shown in 

updateActivityStatus(), which runs on the UI thread so it can display the result:

001   private void updateActivityStatus() {

002       �//Toast.makeText(MainActivity.this, "Button pressed.", Toast.

LENGTH_SHORT).show();

003       // Grab the most recent values and classify them

004       // Create a new Instance to classify

005       Instance newInst = new DenseInstance(10);

006       newInst.setDataset(dataSingle);

007       newInst.setValue(0,0);   // ActivityID

008       newInst.setValue(1,acc_X);  // Accelerometer X
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009       newInst.setValue(2,acc_Y);  // Accelerometer Y

010       newInst.setValue(3,acc_Z);  // Accelerometer Z

011       newInst.setValue(4,gyro_X); // Gyroscope X

012       newInst.setValue(5,gyro_Y); // Gyroscope Y

013       newInst.setValue(6,gyro_Z); // Gyroscope Z

014       newInst.setValue(7,mag_X);  // Magnetometer X

015       newInst.setValue(8,mag_Y);  // Magnetometer Y

016       newInst.setValue(9,mag_Z);  // Magnetometer Z

017

018       // Classify the instance and display the result

019       try {

020           double res = rf.classifyInstance(newInst);

021           �classifyResult.setText(activityID[(int) res] + ", " + String.

valueOf(res));

022       } catch (Exception e) {

023           e.printStackTrace();

024       }

025   }

You use the setValue method to load the most recent sensor values into the new 

instance, and then use the Weka API classifyInstance method to retrieve a result from 

the model.

�Improving the Results

While running the app and monitoring the continuous classifier result, several things are 

apparent:

•	 The sensor data updates rapidly, every 200 milliseconds. This is 

evidence the SensorEventListener is working hard.

•	 At times, the activity result does not appear to update. This is an effect 

of the classifier returning the same result as a previous classification, 

such as when the device is stationary and not moving. In such a state, 

the sensors may show very small changes.
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•	 The activity classification is not very accurate. While the classifier 

showed an accuracy of approximately 90% with the training and test 

data, real-world experience as you move with the device does not 

seem to exhibit this degree of accuracy.

•	 The app is very responsive, even with the sleep time set at 500 

milliseconds. It is possible to reduce this sleep interval if you require 

a faster sampling rate.

This app illustrates a high performance CML app running on Android with a 

complex RF model. The size of the .apk file is only approximately 3MB, illustrating how 

lean the solution is.

A final step before deploying the app is to see if you can improve the classification 

results. Recall in Chapter 2, I mentioned the importance of leveraging academic research 

papers. Refer to the following paper:

A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity 
Recognition by Saez, Baldominos, and Isazis. 

www.ncbi.nlm.nih.gov/pmc/articles/PMC5298639/

This recent paper is an open access work distributed under the Creative Commons 

license on the National Institute of Health website. In the paper, the authors cover 

building classifiers for the PAMAP2_Dataset. While the authors do not implement a 

real-time classifier on Android, they have done some great research on classifiers for this 

dataset that could help improve your results.

A summary of the potential improvements for the Activity Tracker Android app:

•	 The classifier does not use time-series data. That is to say, each 

instance stands on its own. You could potentially define a window 

and implement time-series learning during the window.

•	 If the target Android device includes a heart rate sensor, you could 

include the heart rate data and increase accuracy. You did include 

magnetometer data in your classifier/app and it is not clear how 

much this helps accuracy.

•	 Body temperature data could be included if the target device includes 

temperature sensor.
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•	 For the app, you built the classifier using training data from 

subject101. You could potentially include training data from the all of 

the subjects for a complete model.

•	 The original dataset included three sensors at different locations on 

the body. You chose only a single sensor at the hand location. You 

could include more than one sensor, or select data from another 

sensor, such as the foot, depending on which activities you are most 

interested in.

The spirit of machine learning involves the search for continuous improvement, 

starting from the beginning data collection, all the way through deployment of the 

application.

6.9  �Weka License Notes
In Chapter 2, I discussed the potential for ML to help you monetize your apps. In this 

chapter, you produced integrated ML apps on mobile devices using a Weka Android 

library. When you produce integrated ML applications using Weka, or any other open 

source ML package for that matter, there is often confusion regarding licensing and 

commercialization issues.

First, the disclaimer: This section does not constitute legal advice. Consult an expert 

before deciding on your ML app licensing and distribution strategy.

You need to consider two important but separate issues:

•	 Copyright

•	 Licensing

With respect to copyrights, the copyright of anything you create (i.e. your contribution) 

remains with you, regardless of whether you officially register it or not. Registering your 

copyright makes it much easier to defend if someone infringes on your copyright.

With respect to licensing, due to the open source licensing conditions, it is more 

complicated situation. According to the GPL, once you produce a commercial application 

that incorporates open source components, you have to make all “derivative” works public 

or keep them completely private. By adhering to these terms, as you work with Weka, in 

your case licensed under the GPL, you contribute to the public domain. For example, the 

projects in this book are derivative works and contribute to the public domain.
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The important question becomes, what is a derivative work? For example, when you 

exported the Old Faithful runnable jar file, you included the modified Weka API library 

in jar format. This library is certainly a derivative work, and the app itself becomes a 

derivative work through the jar fie inclusion.

Derivative works:

•	 A derivative work is something that depends on Weka.

•	 Data implemented in a derivative work does NOT have to be 

included under the GPL.

•	 Models produced by Weka are NOT derivative works.

•	 If applying the model depends on special classes you provide, which 

are derivative works of Weka, those classes must be included under 

the GPL or a compatible license.

Many individuals and companies are not comfortable releasing their classes into 

the public domain. If you do not wish to make your classes available under the GPL or a 

compatible open source license, there are two options:

	 1.	 You can obtain a Weka commercial license.

	 2.	 You can add a layer of abstraction between your package and the 

Weka-derivative work.

Commercial Weka licenses are available. They exclude the Weka parts that are 

copyright by external contributors, and there are many of them, such as the Simple 

Logistic Classifier. Potential Weka commercial licensees may be only interested in a 

subset of Weka, such as a specific classifier, and this should be a relevant part of the 

request.

If you wish to use Weka but do not wish to make the software subject to the GPL or 

obtain a commercial license, you can use a remote machine interface (RMI) to call it 

remotely. This added layer of abstraction can satisfy the GPL license terms because it 

removes the derivative status from the main application.

Weka is an amazing package. If you create something amazing with it, consider 

releasing under the GPL and growing the public domain. Your contribution can help all 

of us to become better developers.
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