DR.ALVIN'S P UBLICATIONS

PRINCIPAL COMPONENT ANALYSIS (PCA)

USING PYTHON
DR. ALVIN ANG

$$
\mathbf{1} \| \text { P A G E }
$$

CONTENTS

I. Understanding Principal Component Analysis (PCA) 3
A. in a Nutshell. 4
B. Simplicity vs Interpretability. 5
C. PCA in Practice 5
II. PCA with Python 6
A. Importing Libraries 6
B. Import Dataset and View 6
C. Extract Rows and Columns from Dataset 9
D. Standardizing the Data. 10
E. PCA the Standardized Data 11
F. Plotting. 12
G. Scree Plot 13
H. Variance Ratio 13
About Dr. Alvin Ang 14

Most of the stuff here are abstracted frrom:
https://www.amazon.com/Grokking-Machine-Learning-Luis-Serrano/dp/1617295914

- There are various categories at https:// scikit-learn.org/stable/
- Objective of PCA is to cut down the number of columns in your dataset (if you have too many) AND Combine them;
- Whilst trying not to lose too much valuable information.
- PCA is one of the many techniques to speed up Machine Learning.

A. IN A NUTSHELL....

Dimensionality reduction

- You have too many columns / features and you need to merge them for faster processing.

4 | P A G E

- If you combine both Clustering + PCA together, you are doing Matrix Factorization.
- But Matrix Factorization is out of scope for now.

B. SIMPLICITY VS INTERPRETABILITY

- PCA is a trade-off between SIMPLICITY vs INTERPRETABILITY.
- PCA increases SIMPLICITY of Machine Learning models.
- But PCA increases the difficulty of INTERPRETING the meaning of each variable.
- Because every Principal Component is a linear combination of all the other variables.

C. PCA IN PRACTICE

- PCA is used with Machine Learning (Classification models like logistic regression or k nearest neighbours) to make predictions.

References here:
https://www.datacamp.com/community/tutorials/principal-component-analysis-in-python https://nickmccullum.com/python-machine-learning/principal-component-analysis-python/

IPYNB here: $\underline{\text { https: } / / w w w . a l v i n a n g . s g / s / P C A ~ w i t h ~ P y t h o n . i p y n b ~}$
A. IMPORTING LIBRARIES
[1] import pandas as pd import numpy as np
import matplotlib.pyplot as plt import seaborn \%matplotlib inline

B. IMPORT DATASET AND VIEW

(1) from sklearn.datasets import load_breast_cancer raw_data = load_breast_cancer() raw_data

```
\(\Gamma \rightarrow\) \{'DESCR': '.. _breast_cancer_dataset: \(\backslash n \backslash n B r e a s t ~ c a n c e r ~ w i s c o n s i n ~(d i a g n o s t i c) ~ d a t a s e t \backslash n-~\)
    'data': array ([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
        1.189e-01],
        \([2.057 e+01,1.777 e+01,1.329 e+02, . . ., 1.860 e-01,2.750 e-01\),
            8.902e-02],
        \([1.969 e+01,2.125 e+01,1.300 e+02, \ldots, 2.430 e-01,3.613 e-01\),
        8.758e-02],
        \([1.660 \mathrm{e}+01,2.808 \mathrm{e}+01,1.083 \mathrm{e}+02, . . ., 1.418 \mathrm{e}-01,2.218 \mathrm{e}-01\),
        7.820e-02],
        \([2.060 e+01,2.933 e+01,1.401 e+02, . . ., 2.650 e-01,4.087 e-01\),
            1.240e-01],
        \([7.760 \mathrm{e}+00,2.454 \mathrm{e}+01,4.792 \mathrm{e}+01, \ldots, 0.000 \mathrm{e}+00,2.871 \mathrm{e}-01\),
            7.039e-02]]),
        'data_module': 'sklearn.datasets.data',
```


- We see that the Breast Cancer dataset is feature rich \rightarrow it is stored as a Dictionary \rightarrow Key Value pairs.
- 'feature_names': columns of the dataset
- 'data': values inside the dataset
- 'target': Malignant (1) or Benign (0)
- The Breast Cancer data set consists of two classes:
- Malignant $=$ harmful / has cancer
- Benign $=$ not harmful $/$ no cancer
- Malignant class has 212 samples.
- Benign class has 357 samples.

worst oothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension	
4100	0.21130	0.4107	0.2216	0.2060	0.07115	Benign
1660	0.19220	0.3215	0.1628	0.2572	0.06637	Benign
1390	0.30940	0.3403	0.1418	0.2218	0.07820	Benign
6500	0.86810	0.9387	0.2650	0.4087	0.12400	Benign
18996	0.06444	0.0000	0.0000	0.2871	0.07039	Malignant

- You can see that the dataset uses 30 features / columns: radius, texture, perimeter, area, smoothness, fractal dimension, etc. in order to predict Benign or Malignant.
- Later on, we will use PCA to shrink these 30 columns to 2 columns and plot them.
- Thereafter, the 2 columns (known as Principal Component 1 and 2) plot can be used to see whether "Malignant" or "Benign".

$$
8 \mid \mathrm{P} \text { A G E }
$$

C. EXTRACT ROWS AND COLUMNS FROM DATASET

raw_data_frame = pd.DataFrame(raw_data['data'], columns = raw_data['feature_names']) raw_data_frame

- From the Breast Cancer dictionary, we extract out:
- 'feature_names' as the column headers
- 'data' as the values in the rows

raw_data_frame.columns

$\Gamma \rightarrow$ Index(['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension'], dtype='object')

D. STANDARDIZING THE DATA

[6] \#Standardize the data

from sklearn.preprocessing import StandardScaler
data_scaler = StandardScaler()
data_scaler.fit(raw_data_frame)
scaled_data_frame = data_scaler.transform(raw_data_frame)

- Since its quite hard to see in array format, we use pandas to reformat it as below....

[13]	aa	pd.DataFrame(scaled_data_frame)													
		\bigcirc	1	2	3	4	5	6	7	8	9	\ldots	20	21	22
	0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515	2.652874	2.532475	2.217515	2.255747	...	1.886690	-1.359293	2.303601
	1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072	-0.023846	0.548144	0.001392	-0.868652	...	1.805927	-0.369203	1.535126
	2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926	1.363478	2.037231	0.939685	-0.398008	...	1.511870	-0.023974	1.347475
	3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909	1.915897	1.451707	2.867383	4.910919	...	-0.281464	0.133984	-0.249939
	4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340	1.371011	1.428493	-0.009560	-0.562450	...	1.298575	-1.466770	1.338539
	\ldots	\ldots
	564	2.110995	0.721473	2.060786	2.343856	1.041842	0.219060	1.947285	2.320965	-0.312589	-0.931027	...	1.901185	0.117700	1.752563
	565	1.704854	2.085134	1.615931	1.723842	0.102458	-0.017833	0.693043	1.263669	-0.217664	-1.058611	...	1.536720	2.047399	1.421940

$$
\mathbf{1 0} \text { | P A G E }
$$

E. PCA THE STANDARDIZED DATA

```
\bullet #Perform the principal component analysis transformation
from sklearn.decomposition import PCA
```

pca $=$ PCA n components $=2$)
pca.fit(scaled_data_frame)
[\boldsymbol{P} PCA(n_components=2)
we decide to shrink the number of columns from 30 to 2.
$\mathrm{n}=2$ means that we are going to use PCA to compress those 30 columns (from the breast cancer dataset) down to 2 columns.

```
[37] #Peeking at the Principal Component 1
    pca.components_[0]
```

 \(\operatorname{array}([0.21890244,0.10372458,0.22753729,0.22099499,0.14258969\),
 \(0.23928535,0.25840048,0.26085376,0.13816696,0.06436335\),
 \(0.20597878,0.01742803,0.21132592,0.20286964,0.01453145\),
 \(0.17039345,0.15358979,0.1834174,0.04249842,0.10256832\),
 \(0.22799663,0.10446933,0.23663968,0.22487053,0.12795256\),
 \(0.21009588,0.22876753,0.25088597,0.12290456,0.13178394]\))
 © \#Peeking at the Principal Component 2
pca.components_[1]

Γ	-0.23385713,	-0.05970609,	-0.21518136,	-0.23107671,	0.18611302,
	0.15189161 ,	0.06016536,	-0.0347675	0.19034877 ,	0.36657547 ,
	-0.10555215,	0.08997968 ,	-0.08945723,	-0.15229263,	0.20443045 ,
	0.2327159	0.19720728 ,	0.13032156,	0.183848 ,	0.28009203 ,
	-0.21986638,	-0.0454673	-0.19987843,	-0.21935186,	$0.17230435,$
	0.14359317 ,	0.09796411 ,	-0.00825724,	0.14188335 ,	$0.27533947])$

F. PLOTTING

- \#Visualize the principal components with a color scheme plt.scatter(x_pca[:,0],x_pca[:,1], c=raw_data['target']) plt.xlabel('First Principal Component') plt.ylabel('Second Principal Component')

- From the graph, you can observe the two classes: Benign and Malignant

G. SCREE PLOT

import matplotlib.pyplot as plt
import numpy as np
PC_values = np.arange(pca.n_components_) + 1
plt.plot(PC_values, pca.explained_variance_ratio_, 'o-', linewidth=2, color='blue') plt.title('Scree Plot')
plt.xlabel('Principal Component')
plt.ylabel('Variance Explained')
plt.show()

H. VARIANCE RATIO

- print(pca.explained_variance_ratio_)

[0.44272026 0.18971182]

- The Scree Plot shows the Variance Ratio for Principal Component (PC) 1 and 2.
- Meaning, PC 1 holds 44.2% of the information
- PC 2 holds 19% of the information
- The remaining 36.8% information was lost due to PCA (i.e. compressing 30 columns to 2 columns).

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at www.AlvinAng.sg.

