FULL ARCHIVE

ltla

avichawla.substack.com

avichawla.substack.com

Table of Contents

A Visual Guide to Stochastic, Mini-batch, and Batch Gradient Descent.............. 8
A Lesser-Known Difference Between For-Loops and List Comprehensions........ 11
The Limitation of PCA Which Many Folks Often Ignore.................c..cceveeuereeanens 13
Magic Methods: An Underrated Gem of Python OORP................cccevvvevvenecisnnne. 16

The Taxonomy Of Regression Algorithms That Many Don't Bother To Remember
19

A Highly Overlooked Approach To Analysing Pandas DataFrames................... 21
Visualise The Change In Rank Over Time With Bump Charts...............ccccuveeenns 22
Use This Simple Technique To Never Struggle With TP, TN, FP and FN Again.... 23
The Most Common Misconception About Inplace Operations in Pandas.......... 25
Build Elegant Web Apps Right From Jupyter Notebook with Mercury.............. 27
Become A Bilingual Data Scientist With These Pandas to SQL Translations...... 29
A Lesser-Known Feature of Sklearn To Train Models on Large Datasets........... 31
A Simple One-Liner to Create Professional Looking Matplotlib Plots................ 33
Avoid This Costly Mistake When Indexing A DataFrame.................cccceeevueeeeennns 35
9 Command Line Flags To Run Python Scripts More Flexibly...............cccccevvuuueen. 38
Breathing KMeans: A Better and Faster Alternative to KMeans....................... 40
How Many Dimensions Should You Reduce Your Data To When Using PCA?.....43
%" Mito Just GOt SUPErcRArged With All.........ueeueeeeeeevesevevvsevesevssveseesvesensseens 46
Be Cautious Before Drawing Any Conclusions Using Summary Statistics.......... 48
Use Custom Python Objects In A Boolean CoNtext.............ceeeveeeeeevennrereennnnenes 50
A Visual Guide To Sampling Techniques in Machine Learning........................... 52
You Were Probably Given Incomplete Info About A Tuple's Immutability......... 56
A Simple Trick That Significantly Improves The Quality of Matplotlib Plots...... 58
A Visual and Overly Simplified Guide t0 PCA............cccuueeeueceeerreeeunrciessseennssssnnns 60
Supercharge Your Jupyter Kernel With ipyflow...............cevveeeeueciienreeeneccinnnnnen. 63
A Lesser-known Feature of Creating Plots with Plotly....................cccccuuuueeunnee.. 65
The Limitation Of Euclidean Distance Which Many Often Ignore...................... 67
Visualising The Impact Of Regularisation Parameter...................cceveeuereeeneenn.. 70
AutoProfiler: Automatically Profile Your DataFrame As You Work................... 72

avichawla.substack.com

A Little Bit Of Extra Effort Can Hugely Transform Your Storytelling Skills.......... 74
A Nasty Hidden Feature of Python That Many Programmers Aren't Aware Of. 76
Interactively Visualise A Decision Tree With A Sankey Diagram....................... 79
Use Histograms With Caution. They Are Highly Misleading............................. 81
Three Simple Ways To (Instantly) Make Your Scatter Plots Clutter Free............ 83
A (Highly) Important Point to Consider Before You Use KMeans Next Time...... 86
Why You Should Avoid Appending Rows To A DataFrame................ccecceeeveveneene 89
Matplotlib Has Numerous Hidden Gems. Here's One of Them.......................... 91
A Counterintuitive Thing About Python DictionQries...............cccceeeeveueeereeeeneneen. 93
Probably The Fastest Way To Execute Your Python Code..............ccceeevevevreeeenn. 96
Are You Sure You Are Using The Correct Pandas Terminologies?...................... 98
Is Class Imbalance Always A Big Problem To Deal With?...............cceeuureereennens 101
A Simple Trick That Will Make Heatmaps More Elegant...................cccceveeeee... 103
A Visual Comparison Between Locality and Density-based Clustering............ 105
Why Don't We Call It Logistic Classification Instead?.................cccceeueuueecennene. 106
A Typical Thing About Decision Trees Which Many Often Ignore.................... 108
Always Validate Your Output Variable Before Using Linear Regression.......... 109
A Counterintuitive Fact About Python FUNCtions..................ceveeeriereensereeenninnee 110

Why Is It Important To Shuffle Your Dataset Before Training An ML Model.... 111
The Limitations Of Heatmap That Are Slowing Down Your Data Analysis....... 112

The Limitation Of Pearson Correlation Which Many Often Ignore.................. 113
Why Are We Typically Advised To Set Seeds for Random Generators?............ 114
An Underrated Technique To Improve Your Data Visualizations..................... 115
A No-Code Tool to Create Charts and Pivot Tables in Jupyter..............ccccceeuun. 116
If You Are Not Able To Code A Vectorized Approach, Try This...........ccceeuueeennn. 117
Why Are We Typically Advised To Never Iterate Over A DataFrame?.............. 119
Manipulating Mutable Objects In Python Can Get Confusing At Times.......... 120
This Small Tweak Can Significantly Boost The Run-time of KMeans............... 122
Most Python Programmers Don't Know This About Python OORP................... 124
Who Said Matplotlib Cannot Create Interactive Plots?..................cceeeeeueen.... 126
Don't Create Messy Bar Plots. Instead, Try Bubble Charts.............................. 127
You Can Add a List As a Dictionary's Key (Technically)!.......................ceeuu..... 128

avichawla.substack.com

Most ML Folks Often Neglect This While Using Linear Regression.................. 129
35 Hidden Python Libraries That Are Absolute Gems..............c.cceveeeeerveennenee. 130
Use Box Plots With Caution! They May Be Misleading................ccceceveueeeenanens 131
An Underrated Technique To Create Better Data Plots...............ccceeeeeeneeenen.. 132

The Pandas DataFrame Extension Every Data Scientist Has Been Waiting For133

Supercharge Shell With Python Using Xonsh................cccccevvvvvvsuueeveveeeeennnnen. 134
Most Command-line Users Don't Know This Cool Trick About Using Terminals.....
135

A Simple Trick to Make The Most Out of Pivot Tables in Pandas..................... 136
Why Python Does Not Offer True OOP Encapsulation................cceeeeeveveneenennn. 137
Never Worry About Parsing Errors Again While Reading CSV with Pandas..... 138
An Interesting and Lesser-Known Way To Create Plots Using Pandas............. 139
Most Python Programmers Don't Know This About Python For-loops............ 140
How To Enable Function Overloading In Python.................ccoveueeeiennscsnennsonnns 141
Generate Helpful Hints As You Write Your Pandas Code..................cccceeuuuuueen. 142
Speedup NumPy Methods 25x With Bottleneck..............cccceevveuverveerierenenannn. 143
Visualizing The Data Transformation of a Neural Network............................ 144
Never Refactor Your Code Manually Again. Instead, Use Sourcery................. 145
Draw The Data You Are Looking For In Seconds...............e.uceveeerceneeenirnenesonnnes 146
Style Matplotlib Plots To Make Them More Attractive..............cccecevvevuerveennens 147
Speed-up Parquet /O Of PANAQAS DY 5X......ccceeeeeeeeererrrsssssseeeeeseeeesessssssssssssssnns 148
40 Open-Source Tools to Supercharge Your Pandas Workflow........................ 149
Stop Using The Describe Method in Pandas. Instead, use Skimpy................... 150
The Right Way to Roll Out Library Updates in Python..................cevvvvvvvnnenenns 151
Simple One-Liners to Preview a Decision Tree Using Sklearn.......................... 152

Stop Using The Describe Method in Pandas. Instead, use Summarytools....... 153

Never Search Jupyter Notebooks Manually Again To Find Your Code............. 154
F-strings Are Much More Versatile Than You ThinK..............cccceeeeeeevrrvvennnncens 155
Is This The Best Animated Guide To KMeans EVer?.................ccceeevvevrrvvrrnnnnnnns 156
An Effective Yet Underrated Technique To Improve Model Performance......... 157
Create Data Plots Right From The Termingl................ceeeeuerevenceeeeenserevensenennn. 158
Make Your Matplotlib Plots More Professional................ccceeueeeeeeneereeneneennnnns 159
37 Hidden Python Libraries That Are Absolute Gems..............ccccevveeeerevennenenes 160

avichawla.substack.com

Preview Your README File Locally In GitHub Style..............ccccuuecevrvvvveeeiinnnn. 161
Pandas and NumPy Return Different Values for Standard Deviation. Why?... 162

Visualize Commit History of Git Repo With Beautiful Animations................... 163
Perfplot: Measure, Visualize and Compare Run-time With Ease..................... 164
This GUI Tool Can Possibly Save You Hours Of Manual Work.......................... 165
How Would You Identify Fuzzy Duplicates In A Data With Million Records?....166
Stop Previewing Raw DataFrames. Instead, Use DataTables..................ccc..... 168
%" A Single Line That Will Make Your Python Code Faster............................ 169
Prettify Word Clouds IN PYEtRON...............ceeeeeeeeeeeneeeeenreeeennseeeennseseenssesssnssesennnes 170
How to Encode Categorical Features With Many Categories?........................ 171
Calendar Map As A Richer Alternative to Line PIot................ceeeeeeeveenrereennnenee 172
10 Automated EDA Tools That Will Save You Hours Of (Tedious) Work........... 173
Why KMeans May Not Be The Apt Clustering Algorithm Always.................... 174
Converting Python To LaTeX Has Possibly Never Been So Simple.................... 175
Density Plot As A Richer Alternative to Scatter Plot..............cccccevvverirvneneenen. 176
30 Python Libraries to (Hugely) Boost Your Data Science Productivity............ 177
Sklearn One-liner to Generate Synthetic Data.............ccccceceveueiereeencrneesionennnns 178
Label Your Data With The Click Of A BULLON...........c...ceveeeeenerceeenreennneesnneennnnns 179
Analyze A Pandas DataFrame Without Code..............cuueuceeveercerveerienneenienennnas 180
Python One-Liner To Create Sketchy Hand-drawn Plots....................cccccuueuu..... 181
70x Faster Pandas By Changing Just One Line of Code...............cccc.cevueuueunne... 182
An Interactive Guide To Master Pandas In ONe Go...............ccceeeeeveerrreerrrennnnns 183
Make Dot Notation More Powerful in Python................ueeeeeeevvvvveneecisnnnnnnnnnens 184
The Coolest Jupyter NoteboOok HACK............cccceuuurrvevrivevuensiisrnivneesisisrnnsnnsnsssnns 185
Create a Moving Bubbles Chart in PYythonN.................ueceevvveevenscissnnennessssssennnns 186
Skorch: Use Scikit-learn APl on PyTorch Models................cccuuuveueeiirrvvvnnnneennns 187
Reduce Memory Usage Of A Pandas DataFrame By 90%.............ccccceveueeeeen.. 188
An Elegant Way To Perform Shutdown Tasks in Python.................cccceeeuueeenns 189
Visualizing Google Search Trends of 2022 using Python................cccceevvuueennns 190
Create A Racing Bar Chart In PYtRON.............cccueeeeueecirrivvenniissssnnnnsssesssnsnnannes 191
Speed-up Pandas Apply 5X With NUMPY...............eeeeeeeeeeeensererensererenseneeesseneennns 192
A No-Code Online Tool To Explore and Understand Neural Networks............. 193

avichawla.substack.com

What Are Class Methods and When To Use Them?..............ccccecevvrrvrrvvvvvennnnee. 194
Make Sklearn KMeans 20X times faster...........cc.ceeevvrevveeniisssinennssssssssssnnnsssnns 195
Speed-up NUMPY 20X With NUMEXPFc..eeeeeeeereeeneereeanserevensesennssesensssssennnnns 196
A Lesser-Known Feature of Apply Method In Pandas..................cccceuueeeeeneeeene. 197
An Elegant Way To Perform Matrix Multiplication...................cccceeeveveeirrnnenn. 198
Create Pandas DataFrame from Dataclass..............ceeeeueeeeeeneeeeneneeeeenneneennneene 199
Hide Attributes While Printing A Dataclass ODbject..............ccceeeeeereeenerveneneenens 200
N3 S 7]] [Y -1 S (P OO OO 201
Difference Between Dot and Matmul in NUMPY.............ee.eeveeereereeereerenneesennns 202
Run SQL in Jupyter To Analyze A Pandas DataFrame..................eeeeevrevevenneneee 203
Automated Code Refactoring With SOUICErY............eeeeeueeeeeeererevensereensserennnnens 204
__Post_init__: Add Attributes To A Dataclass Object Post Initialization.......... 205
Simplify Your Functions With Partial FUNCLIONS...............eeeeeeeerenerserenneerennnnene 206
When You Should Not Use the head() Method In Pandas...................cccceuuee.... 207
DotMap: A Better Alternative to Python Dictionary...............ccceevevveeriernnenans 208
Prevent Wild Imports With __all__ in PYython...............ccueeueervvercerienniesenencnnes 209
Three Lesser-known Tips For Reading a CSV File Using Pandas....................... 210
The Best File Format To Store A Pandas DataFrame....................cccceevvvrveernnnes 211
Debugging Made Easy With PYSNOOPETceueereereeeriisieerisieeeiosenssossennnans 212
Lesser-Known Feature of the Merge Method in Pandas.......................ceveeuuens 213
The Best Way to Use Apply() in Pandas....................eeeeeeeeeeceeeeeeeennnceeensenennnnns 214
Deep Learning Network Debugging Made EQsy..............cceueeucereeencerneeniennennans 215
Don't Print NumPy Arrays! Use Lovely-NumPy Instead.................cccceevvuuueeenn. 216
Performance Comparison of Python 3.11 and Python 3.10............................. 217
View Documentation in Jupyter NotebooK...............cceerrvvveueiisrnnvennnicssnnnnnnnnes 218
A No-code Tool To Understand Your Data Quickly..............cccuuecevvrveveeneiennnne. 219
Why 256 is 256 But 257 iS NOt 2572.....ccceeuueeiririeenuniessnninnensssssssnssssssssssssssnanees 220
Make a Class Object Behave Like a FUNCLION...........c...eeevvveeveencisnnnennenissnsennnns 222
Lesser-known feature Of Pickle Files..............cccuueeevveeevenesinrnnneensssssnnnsnnssssnnns 224
Dot Plot: A Potential Alternative to Bar PlOt................eeeeeeeeeiiiirnverennenvnnnnnee. 226
Why Correlation (and Other Statistics) Can Be Misleading............................. 227
Supercharge value_counts() Method in Pandas With Sidetable..................... 228

avichawla.substack.com

Write Your Own Flavor Of Pandas................cceveveeneencissnnnnnnssssssnsssssssssssssssnnnes 229
CodeSquire: The Al Coding Assistant You Should Use Over GitHub Copilot..... 230
Vectorization Does Not Always Guarantee Better Performance..................... 231
In Defense of Match-case Statements in PYthRon...............cceeeueeeeeeneerevencenenannns 232
Enrich Your Notebook With Interactive Controls..................ccccevevvvrvueueevennnnes 234
Get Notified When Jupyter Cell Has EXeCUted..............e.ceeeeereeeeeereeeennneneennnenns 236
Data Analysis Using No-Code Pandas In JUPYEEF...........ceeeeeeeeerereeeneereeeneesennnns 237
Using Dictionaries In Place of If-conditions..............cceueeeeeeeeveenneeeeenreneennncenes 238
Clear Cell Output In Jupyter Notebook During Run-time.................ccceeveeeeues.. 240
A Hidden Feature of Describe Method In Pandas................cceeeeeeveunrereennneneen. 241
Use Slotted Class To Improve Your Python Code.............cceueeeeerereenneerevnnsenenn. 242
Stop Analysing Raw Tables. Use Styling Instead\.................cceeuueeeeveerrerenneeneen 243
Explore CSV Data Right From The Termingl................ceeueeeeereenereerereererneneennnne 244
Generate Your Own Fake Data In S€CONGS............coeeeeeeeeeveeeeueenssisisisiiiieennnnns 245
Import Your Python Package as a Module................cccuuceeveeriereveriesinnsionenenaens 246
Specify Loops and RUNs In %%tiMeit..............ceeeeeeeeiiiinninnninnenneennennensssssssssses 247
Waterfall Charts: A Better Alternative to Line/Bar Plot................ccceevvvuvvevenens 248
Hexbin Plots As A Richer Alternative to Scatter Plots....................cccceeeuuuuu..... 249
Importing Modules Made Easy with PYforest.............cccceeveeucerveeniereeeniennnanans 250
Analyse Flow Data With Sankey Diagrams................cceeeeeeveeriereeenserseessosencnas 252
Feature Tracking Made Simple In Sklearn Transformers...................ccccuueu...... 254
Lesser-known Feature of f-strings in Python.................ceueeucereeenceeeenniereennennnes 256
Don't Use time.time() To Measure Execution Time................ccceeeeeeesisnnnnnnnnnnns 257
Now You Can Use DALL-E With OPenAl API............eeeeeviveveeeiiisrvvvennssessnsnennnnnes 258
Polynomial Linear Regression Plot Made Easy With Seaborn......................... 259
Retrieve Previously Computed Output In Jupyter Notebook........................... 260
Parallelize Pandas Apply() With SWifter..........cccceeveeeeeeeeeevveueeneesssessessssssssnnnnns 261
Create DataFrame Hassle-free By Using Clipboard.................ccceevvvvvveeeiinnnnen. 262
Run Python Project Directory As A SCript..........cceeueeerrivveneiiissnnennsssssssnesnnnnnns 263
Inspect Program FIOw With ICECream...............cceeeueceerreevennsssssnnensssssssssesnannnns 264
Don't Create Conditional Columns in Pandas with Apply.................cceeeueeenee... 265
Pretty Plotting With PANAQS...............ceeeeeereeeneeeeeenserenesseseeensnrenesessensssnsennsenes 266

avichawla.substack.com

Build Baseline Models Effortlessly With Sklearn..................ccovvvvveevecisernennnnn. 267
Fine-grained Error Tracking With Python 3.11.............cccovvvvvuucisrsnvvneneissssnnnns 268
Find Your Code Hiding In Some Jupyter Notebook With Ease.......................... 269
Restart the Kernel Without Losing Variables................e.ueeeeeeeereveneereeenserenenens 270
How to Read Multiple CSV Files Efficiently..............cceeueeeeeneerereneereeenserencnnenens 271
Elegantly Plot the Decision Boundary of a Classifier............ccccceeeveeeeveveneeeenann. 273
An Elegant Way to Import Metrics From Sklearn...............ccceueeeeueeeeveeeeneennn. 274
Configure Sklearn To Output Pandas DataFrame.................ceeeeeeeeeeererevennenenns 275
Display Progress Bar With Apply() in PaNdas...............eeeeeeeeeeveeereerennreeeennnenne 276
Modify a Function DUring RUN-EIMe.............ceeeueeeeerrereeeneerevenserennnserennsserennnnens 277
Regression Plot Made Easy With PIOtly...........cceeuueeeeueeeveenrerveneseerennensennseeeens 278
Polynomial Linear Regression With NUMPY...........cceeeeeeeveeeeereeeesereennserennssenenns 279
Alter the Datatype of Multiple Columns at ONce...............ceevveeeeeeciirrreeennnsennns 280
Datatype For Handling Missing Valued Columns in Pandas..................ccceuuueu. 281
Parallelize Pandas with Pandarallel....................eueeeeeeeeeeeeeuuenssisssiiiiiinnnennnnns 282
Why you should not dump DataFrames to G CSV..........coueeevrvverierienrisrenennnns 283
Save Memory with Python Generators.............ccccceeeveeerierenesisneneissenssosssnoanans 285
Don't use print() to debug your code..............uuuuuueeeeeeeenecieisreeeensiisssneennnsssnens 286
Find Unused Python Code With EQSe............ccc.ceveeerierieeniereeesiessnnssosenesesssnanans 288
Define the Correct DataType for Categorical Columns......................ceeeeueen..... 289
Transfer Variables Between Jupyter NotebooKs.............ccceveeercereeenceneenncnnnnnn. 290
Why You Should Not Read CSVs with Pandas.................cuueeuceveeenceneennernecnnnnns 291
Modify Python Code During RUN-TIiMme............cc.ceeevvrvvvveecssnrnnnnessssssnnssssssssnnns 292
Handle Missing Data With MiSSiNgNO...........ccccceeeueerrrveveenisisrirennsssssssssessannnns 293

avichawla.substack.com

A Visual Guide to Stochastic,
Mini-batch, and Batch Gradient
Descent

_ avichawla.substack.com

#1
Stochastic
&rudient

Descen Update

S
weights

#2

Mini-Batch
eradient
Descent { Updote

—

weights

MINI-BATCH
of data

#3
Batch
Grodient
Descent

Gradient descent is a widely used optimization algorithm for training machine
learning models.

Stochastic, mini-batch, and batch gradient descent are three different variations of
gradient descent, and they are distinguished by the number of data points used to
update the model weights at each iteration.

\o avichawla.substack.com

‘ Stochastic gradient descent: Update network weights using one data point at a
time.

Stachastu
Sritient
Dessant

e Advantages:
o Easier to fit in memory.

o Can converge faster on large datasets and can help avoid local
minima due to oscillations.

e Disadvantages:

o Noisy steps can lead to slower convergence and require more
tuning of hyperparameters.

o Computationally expensive due to frequent updates.

o Loses the advantage of vectorized operations.

‘ Mini-batch gradient descent: Update network weights using a few data points
at a time.

i~ avichawla.substack.com

Mini-Datch
e Gradient
D000 Descunt D) € Update

—_— —_—
OO0 00 S ¢ nzights

Training Data

e Advantages:

o More computationally efficient than batch gradient descent due to
vectorization benefits.

avichawla.substack.com

o Less noisy updates than stochastic gradient descent.

o Disadvantages:
o Requires tuning of batch size.

o May not converge to a global minimum if the batch size is not
well-tuned.

’ Batch gradient descent: Update network weights using the entire data at once.

Eradient
Descant

e Advantages:

o Less noisy steps taken towards global minima.
o Can benefit from vectorization.

o Produces a more stable convergence.

o Disadvantages:
o Enforces memory constraints for large datasets.

o Computationally slow as many gradients are computed, and all
weights are updated at once.

Over to you: What are some other advantages/disadvantages you can think of? Let
me know :)

10

avichawla.substack.com

A Lesser-Known Difference Between
For-Loops and List Comprehensions

Value
unchanged

In the code above, the for-loop updated the existing variable (z), but list
comprehension didn't. Can you guess why? Read more to know.

A loop variable is handled differently in for-loops and list comprehensions.

A for-loop leaks the loop variable into the surrounding scope. In other words,
once the loop is over, you can still access the loop variable.

We can verify this below:

11

avichawla.substack.com

In the main snippet above, as the loop variable (=) already existed, it was
overwritten in each iteration.

But a list comprehension does not work this way. Instead, the loop variable always
remains local to the list comprehension. It is never leaked outside.

We can verify this below:

defined

That is why the existing variable (z), which was also used inside the list
comprehension, remained unchanged. The list comprehension defined the loop
variable (=) local to its scope.

Over to you: What are some other differences that you know of between for-loops
and list comprehension?

12

avichawla.substack.com

The Limitation of PCA Which Many
Folks Often Ignore

% avichawla.substack.com

Linearly
inseparable
data

Linearly
separable
data

R R R

Imagine you have a classification dataset. If you use PCA to reduce dimensions, it
is inherently assumed that your data is linearly separable.

But it may not be the case always. Thus, PCA will fail in such cases.

13

avichawla.substack.com

If you wish to read how PCA works, I would highly recommend reading one of

my previous posts: A Visual and Overly Simglified Guide to PCA.

To resolve this, we use the kernel trick (or the KernelPCA). The idea is to:

Project the data to another space using a kernel function, where the data becomes
linearly separable.

Apply the standard PCA algorithm to the transformed data.

For instance, in the image below, the original data is linearly inseparable. Using
PCA directly does not produce any desirable results.

' avichawla.substack.com

Linearly
inseparable
data

Data still
linearly
inseparable

But as mentioned above, KernelPCA first transforms the data to a linearly
separable space and then applies PCA, resulting in a linearly separable dataset.

14

https://avichawla.substack.com/p/a-visual-and-overly-simplified-guide

avichawla.substack.com

2" avichawla.substack.com

Linearly
inseparable
data

Linearly
separable
data

Sklearn provides a KernelPCA wrapper, supporting many popularly used kernel
functions. You can find more details here: Sklearn Docs.

Having said that, it is also worth noting that the run-time of PCA is cubic in
relation to the number of dimensions of the data.

Runtime : O(nd* + d°)
d : dimensions

n : samples

When we use a KernelPCA, typically, the original data (in n dimensions) is
projected to a new higher dimensional space (in m dimensions; m>n). Therefore, it
increases the overall run-time of PCA.

15

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html

\o avichawla.substack.com

Magic Methods: An Underrated Gem
of Python OOP

< avichawla.substack.com

Usage/Description

Envoked bafore __nit__ %
- -~ p— —_—
—hew__{cix, “args, "wwags): cllocate memory te shject
Invoind after _newm__ 1o
mitiohae the object
Dowehad whest stol]) o
print(ab)) v used

__init__{saif, "orgz, *“kwaga)
r__(seif)
Int__[self) Lrmvoked wiven int{sb)) (v used

ey [salf) Invohed when deriob)) v woed

Invoded when clexy object i3
colied ma @ function: obj()
LIiveed when o ject
Is ndexed| shjlkey)
Dnwoked whan object i indexed
utd value it sa1i ob [y} valie
Trvohed when sbject's index
Ie defeted: de! abjfkey)
Tewched when the In cperator
5 e Tem in ob)
Irvakied when object i1 used
Bsolean contaxt! if sbl ar boul{ab))
Dowvehed when sblect is
tarated: for o in sb)
Tivoked whan ++ sparator i uted Yo
cumpare two sbijects: obijl »» obi2

—mull__[self, “orgs, ““hwwgs)
__getirem__[self, key)
_gutivem__(zedf, hay, value):
_deltes [seif hay)
__containg__ (seif itam):
Dool_{calf)
Mer__(nelf)i

_eq__{valf other)

Trvuied witen |+ sperater i used o
tompare twoe objects: sbjl I» obj2
Tovohed when Ywn objecty
e gddud: abjl » obj2
Ervahnd whan Pwn cbjects sre
ndtpling: abjl * obijd
Ervobedl to congute abssiute value of
cbject: abalob))

Invohad when smary eperstur -
it ued on on object: -sb)
Imvoked whan ~{tide) operutor
it used 5 inver? an sbject: -ah)

ne_ [sel other):

odd __(salf, other)

ol [neif, ovher):
)
ey (velf)

__owart__[saif)

Magic Methods (also called dunder methods) are special methods defined
inside a Python class' implementation.

On a side note, the word “Dunder” is short
for Double Underscore.

They are prefixed and suffixed with double underscores, such
as len , str ,and many more.

16

avichawla.substack.com

Magic Methods offer immense flexibility to define the behavior of class objects in
certain scenarios.

For instance, say we want to define a custom behavior for adding two objects of
our class (objl + obj2).

An obvious and straightforward to do this is by defining a method,
say add objects (), and passing the two objects as its argument.

add_objects(self, other):

new_a self.a + other.a

MyClass Ww a)

objl.add_objects(obj2)

While the above approach will work, invoking a method explicitly for adding two
objects isn't as elegant as using the + operator:

objl + obj2

17

avichawla.substack.com

This is where magic methods come in. In the above example, implementing
the add magic method will allow you to add the two objects using
the + operator instead.

Thus, magic methods allow us to make our classes more intuitive and easier to
work with.

As aresult, awareness about them is extremely crucial for developing elegant, and
intuitive pipelines.

The visual summarizes ~20 most commonly used magic methods in Python.

Over to you: What other magic methods will you include here? Which ones do
you use the most? Let me know :)

18

avichawla.substack.com

The Taxonomy Of Regression
Algorithms That Many Don't Bother
To Remember

| Regression Type { Description

Simple Linear Ons dpenden? 60 ot p=wzr+b
am”iﬂl e Yepeades! [v) warathle Loy & Z L e
"

-

2 | Pulyrer=s les~aws ' t) = unr . ""D.r.‘ e b
Polynomial Linear ol Qe My ;

1
QIM‘M v SApmAmeny! [y) snralite Loy = z: ¥ .v.l
n

. Artirrary feanees =wyryuyrg+ -+ b
Multiple Linear ARy

nw,m —e 'l.|- -’3'17 (y) weredbe Lons = Y“ p—w
- "

W2 n
5 Yy~ u) —

2 T Linesr Regezime — i J
Ridge Regression , ot L Ragderiaetion Lass =" e Ay w

' (v~ i)
Lrwmar Negamiiee e a8 e MR sl &
Losso Regression Lows E :

L1 Regidarixatien n

Regularited

Liwet Bagrestion ot ™

Elastic Net BOTH LL wet L2

Ragutnszetar

O [Swrn) Sdepaninnt

Logistic Regression varveboels) Yo praiict P(X)=]

EINAEY wyame wretadiilvy

p=lmadegryso46)

- : LT e W e |
Mudtinomial | og : Tow (p¢ weru| mtwpmeactant MOOrey,

* 2 e | wirtabde(s) %2 premdict Pf)- = 3.‘5,\' ' = -
ion MULTIME tutegeresd ' . N proore |
| (or Seftmax Regreasion) pretetlh e | v jul

———

Cotegarical
Probability
|

Regression algorithms allow us to model the relationship between a dependent
variable and one or more independent variables.

After estimating the parameters of a regression model, we can gain insight into
how changes in one variable affect another.

Being widely used in data science, an awareness of their various forms is crucial
to precisely convey which algorithm you are using.

Here are eight of the most standard regression algorithms described in a single
line:

Linear Regression

o Simple linear regression: One independent (x) and one
dependent (y) variable.

19

avichawla.substack.com

e Polynomial Linear Regression: Polynomial features and one
dependent (y) variable.

e Multiple Linear Regression: Arbitrary features and one
dependent (y) variable.

Regularized Regression
e Lasso Reg ression: Linear Regression with L1 Regularization.
e Ridge Regression: Linear Regression with L2 Regularization.

e Elastic Net: Linear Regression with BOTH L1 and L2
Regularization.

Categorical Probability Prediction
o Logistic Regression: Predict binary outcome probability.

o Multinomial Logistic Regression (or Softmax
Reg ression): Predict multiple categorical probabilities.

Over to you: What other regressions algorithms will you include here?

20

avichawla.substack.com

A Highly Overlooked Approach To
Analysing Pandas DataFrames
- ';ﬁehawhsnbstack.com

- O

2
3
4
5
6
7
8
a

© O N O O s L e

-
o

-

o

-

.
-
-

Instead of previewing raw DataFrames, styling can make data analysis much
easier and faster. Here's how.

Jupyter is a web-based IDE. Anything you print is rendered using HTML and
CSS.

This means you can style your output in many different ways.

To style Pandas DataFrames, use its Styling API (df.style). As a result, the
DataFrame is rendered with the specified styling.

Read more here: Documentation.

21

https://pandas.pydata.org/pandas-docs/version/1.1/user_guide/style.html

I \e avichawla.substack.com

Visualise The Change In Rank Over
Time With Bump Charts

' avichawla.substack.com

Cluttered
and difficult
to understand

iy

Clean and
easy to
understand

When visualizing the change in rank over time, using a bar chart may not be
appropriate. Instead, try Bump Charts.

They are specifically used to visualize the rank of different items over time.

In contrast to the commonly used bar chart, they are clear, elegant, and easy to
comprehend.

Over to you: What are some other bar chart alternatives to try in such cases? Let
me know :)

Find the code for creating a bump chart in Python here: Notebook.

22

https://github.com/ChawlaAvi/Daily-Dose-of-Data-Science/blob/main/Plotting/Bump-chart.ipynb

avichawla.substack.com

Use This Simple Technique To Never
Struggle With TP, TN, FP and FN
Again
' avichawla substack.com
QL id the model get 1t right? — Yes (True). "QL 4d the model get it right? — No (False)

Q2 What was the prediction? — Pasitive l Q2 What was the prediction? — Pesitive
TRUE POSITIVE FALSE POSITIVE

\ Actual Class

A\
.
! True Fatse

é PFesitien (TF) Fusttien (F7)

' False Tree
Nt;n'w [FW) | Hc?:' e [TNI

A
\.
-

-
“
k|
Qo
9
u
-
3
9
»
;
=8

\

- \\.

QL Dvdfhemddmn;;ght7- No (False) ‘Qt Oid the model get it nght? — Vum'u)
QZ What was the prediction? — Negative Q2 What was the predictien? — Negative

FALSE NEGATIVE TRUE NEGATIVE

Do you often struggle to label model predictions as TP, TN, FP and FN, and
comprehend them? If yes, here's a simple guide to help you out.

When labeling any prediction, ask yourself two questions:
Did the model get it right? Answer: yes (or True) / no (or False).

What was the predicted class? Answer: Positive/Negative.
Next, combine the above two answers to get the final label.

For instance, say the actual and predicted class were positive.
Did the model get it right? The answer is yes (or TRUE).
What was the predicted class? The answer is POSITIVE.
Final label: TRUE POSITIVE.

As an exercise, try labeling the following predictions. Consider the “Cat” class as
“Positive” and the “Dog” class as “Negative”.

23

P\ avichawla.substack.com

' avichawla.substack.com

Predicted
Class

24

avichawla.substack.com

The Most Common Misconception
About Inplace Operations in Pandas

.‘:,:{ avichawla.substack.com

Run-time

Method

inplace=False

inplace=True

df .replace()

140 us

244 ps (Slow)

df.sort_values()

450 ps (Slow)

df .reset_index()

10 ys (Fast)

df .drop()

262 us (Slow)

df . fillna()

222 us (Slow)

df .dropna()

1088 us (Slow)

df .drop_duplicates()

1058 ps (Slow)

—

df.rename()

152 us (Equal)

Pandas users often modify a DataFrame inplace expecting better performance.
Yet, it may not always be efficient. Here's why.

The image compares the run-time of inplace and non-in-place operations. In most
cases, inplace operations are slow.

Why?

Contrary to common belief, most inplace operations DO NOT prevent the creation
of a new copy. It is just that inplace assigns the copy back to the same address.

25

avichawla.substack.com

But during this assignment, Pandas performs some extra checks

(SettingWithCopy) to ensure that the DataFrame is being modified correctly. This,
at times, can be an expensive operation.

Yet, in general, there is no guarantee that an inplace operation is faster.

What’s more, inplace operations do not allow chaining multiple operations, such
as this:

Method chaining

)\
|

df ,reset_index().fillna(®).drop_duplicates()

df.reset_index(inplace
df.fillna(o, nlace

df.drop_duplicates(inp

26

avichawla.substack.com

Build Elegant Web Apps Right From
Jupyter Notebook with Mercury

::,:-: avichawla.substack.com

Notehook

Mercury App

What s your name?

Linear Data

L

Mercury Welcome Avi.
web app Nurrbet of poects

—_—
™
e

o SN

Exploring and sharing data insights using Jupyter is quite common for data folks.
Yet, an interactive app is better for those who don’t care about your code and are
interested in your results.

While creating presentations is possible, it can be time-consuming. Also, one has
to leave the comfort of a Jupyter Notebook.

Instead, try Mercury. It's an open-source tool that converts your jupyter notebook
to a web app in no time. Thus, you can create the web app without leaving the
notebook.

A quick demo is shown below:

27

avichawla.substack.com

Lt L — —— ———— o

- » L) B - - - »] 'Jt't u.v Aﬂu
| . Linear Data App
>y vyt Al Welcome A
el = e iy
—.-.}_.: WO . ,sf
-
Linear Deta App ~Vf
= o N
: - > /:‘"
mmmm
Wt e b
1}..-“
-f“'\”
o
\:l-f
A

What's more, all updates to the Jupyter Notebook are instantly reflected in the
Mercury app.

In contrast to the widely-adopted streamlit, web apps created with Mercury can
be:

Exported as PDF/HTML.
Showcased as a live presentation.

Secured with authentication to restrict access.

28

[avichawla.substack.com

Become A Bilingual Data Scientist
With These Pandas to SQL
Translations

avichawla.substack.com

Opomlon’ SQL

LOAD DATA INFILE 'datn oo
TNTO TABLE teble
Read CSV pd.read_cavifile) FIELDS YERMINATED QY *.°
LINES TERMINATED &Y "\’
TENORE 1| AOWS.

Print first 10 SELECT * FROM table
’ - hmak10) LIMIT 10

' df .shape SELECT count(™) FROM table:

df dyyes DESCRIBE toble!

SELECT * FROM toble

df{df celuma>10] where column»10;

¢f . column SELECT column FROM toble;

SELECT * FROM tobie
ORDER BY column;

df _sort_values(“colume’™)

UPDATE table
df . column. filina(0) SET column=0
WHERE column IS NULL;

SELECT * FROM tablel
JCUIN tabled
ON (toblel col = toble col).

SELECY * FROM rablel
UNION ALL roble2;

df . groupby(“column™) SELECT ;;ko'x ":b\?:(og'“‘)

ogg_col. mean() SROUP BY column;

pd. merge(dfl, diE, on s"cal",
how » "inner™)

pd.concat((dfl, df2))

SELECT DISTINCT column
FROM roble;

ALTER TABLE troble
RENAME COLUMN
old_nome TO new_nome.

df column unique()

df .rename(columns =
{"old_name™: “new_name"})

ALTER TABLE table

df .drop{columns = [“colmw*}) DROP COLUMN cod

SQL and Pandas are both powerful tools for data scientists to work with data.

Together, SQL and Pandas can be used to clean, transform, and analyze large
datasets, and to create complex data pipelines and models.

29

avichawla.substack.com

Thus, proficiency in both frameworks can be extremely valuable to data scientists.

This visual depicts a few common operations in Pandas and their corresponding
translations in SQL.

I have a detailed blog on Pandas to SQL translations with many more examples.
Read it here: Pandas to SQL blog.

Over to you: What other Pandas to SQL translations will you include here?

30

https://bit.ly/pdtosql

avichawla.substack.com

A Lesser-Known Feature of Sklearn
To Train Models on Large Datasets

l

LN N

sklearn.linear_model

SGDClassifier
clf SGDClassaifierx(

clf.fic(X, vy)

data pd, read_csv({"data.csv", chunk

batch 1 data:

clf.partial_fit(batch["X"],

pat l,"”: " 'y"

It is difficult to train models with sklearn when you have plenty of data. This may
often raise memory errors as the entire data is loaded in memory. But here's what
can help.

Sklearn implements the partial_fit API for various algorithms, which offers
incremental learning.

As the name suggests, the model can learn incrementally from a mini-batch of
instances. This prevents limited memory constraints as only a few instances are
loaded in memory at once.

31

avichawla.substack.com

e Traininﬁ
S Failed
Load and
troin on
ertire data
A Tr‘ofmir\g
— B > sl
Looad anrd UCCESSTu

Tran chunk-wise

Chunked data

As shown in the main image, c1f.fit (x, y) takes the entire data, and thus, it
may raise memory errors. But, loading chunks of data and invoking
the c1f.partial fit () method prevents this and offers seamless training.

Also, remember that while using the partial_fit API, a mini-batch may not have
instances of all classes (especially the first mini-batch). Thus, the model will be
unable to cope with new/unseen classes in subsequent mini-batches. Therefore,
you should pass a list of all possible classes in the c1asses parameter.

Having said that, it is also worth noting that not all sklearn estimators implement
the partial_fit API. Here's the list:

« Classification

sklearn.naive bayes.MultinomialNB
sklearn.naive_bayes.BernoulliNB
sklearn.linear_model.Perceptron

> sklearn.lincar model.SGDClassifier

sklearn.lincar model.PassiveAggressiveClassifier

« Regression
sklearn.linear_model.SGDRegressor

sklearn,linear model.PassiveAggressiveRegressor

» Clustering

sklearn.cluster. . MiniBatchEMeans

+ Decomposition / feature Extraction

sklearn.decomposition MiniBatchDictionaryLearning

sklearn.cluster. . MiniBatchKMeans

Yet, it is surely worth exploring to see if you can benefit from it :)

32

avichawla.substack.com

A Simple One-Liner to Create
Professional Looklng Matplotlib Plots

'- avichawla.substack.com

Default
Matplotlib plot

Styled with

LovelyPlots = sinbn
—e— sin(2x)

\) —a— gin(3x)

The default styling of matplotlib plots appears pretty basic at times. Here's how
you can make them appealing.

To create professional-looking plots for presentations, reports, or scientific papers,
try LovelyPlots.

It provides many style sheets to improve their default appearance, by simply
adding just one line of code.

To install LovelyPlots, run the following command:
pip install LovelyPlots

Next, import the matplotlib library, and change the style as follows: (You don’t
have to import LovelyPlots anywhere)

import matplotlib.pyplot as plt

plt.style.use(style) ## change to the style provided by LovelyPlots

Print the list of all possible styles as follows:

plt.style.available

Get Started: LovelyPlots Repository.

33

https://github.com/killiansheriff/LovelyPlots/tree/master

avichawla.substack.com

34

avichawla.substack.com

Avoid This Costly Mistake When
Indexing A DataFrame

df .shape avichawla.substack.com

(32768000, 9)

First column then row

$timeit df["col”)["row")

2.96 us ¢t 7.17 ns per loop

Selecting a

First row then column column first

is over
ttimeit df.loc["row"]["col"] 15x faster

45.4 us t 384 ns per loop

When indexing a dataframe, choosing whether to select a column first or slice a
row first is pretty important from a run-time perspective.

As shown above, selecting the column first is over 15 times faster than slicing
the row first. Why?

As I have talked before, Pandas DataFrame is a column-major data structure.
Thus, consecutive elements in a column are stored next to each other in memory.

35

avichawla.substack.com

As processors are efficient with contiguous blocks of memory, accessing a column
1s much faster than accessing a row (read more about this in one of my previous

posts here).

But when you slice a row first, each row is retrieved by accessing non-contiguous
blocks of memory, thereby making it slow.

Also, once all the elements of a row are gathered, Pandas converts them to a
Series, which is another overhead.

Sicing & Mo
J

et K ‘-/

We can verify this conversion below:

dtype: inté4d

tvpe(df.loc([O])

pandas.core.series.Series

Instead, when you select a column first, elements are retrieved by accessing
contiguous blocks of memory, which is way faster. Also, a column is inherently a
Pandas Series. Thus, there is no conversion overhead involved like above.

36

https://avichawla.substack.com/p/why-are-we-typically-advised-to-never

avichawla.substack.com

Name: A, dtype: intéd

type(dfl("A"])

pandas.core.series.Series

Overall, by accessing the column first, we avoid accessing non-contiguous
memory access, which does happen when we access the row first.

This makes selecting the column first faster than slicing a row first in indexing
operations.

If you are confused about what selecting, indexing, slicing, and filtering mean,
here’s what you should read next:

https://avichawla.substack.com/p/are-you-sure-you-are-using-the-correct.

37

https://avichawla.substack.com/p/are-you-sure-you-are-using-the-correct

o\80
].‘\°°. avichawla.substack.com

9 Command Line Flags To Run
Python Scripts More Flexibly

Python Command Line Flags

Description Usage ‘

Run a single python) -
: pytbong-c “print(‘Hello”) |

Run interactive Python
shell after running a python -i seript.py |
script |

Ignore assert |
o) : python <O script.py

Im assert
python -O0O statements and python -00 script.py

docstrings
python -W Ignore warnings python -W script.py

python - Run a module as a python -m
=9 script my_package.my_module

Enable verbose mode,

pythen -v inf Mmi ml et python -v script.py

interpreter is doing

the first line of
python -x the script (often the
shebang line)

Ignore all Python
python -E , Environment variables

.+.'» avichawla.substack.com

When invoking a Python script, you can specify various options/flags. They are
used to modify the behavior of the Python interpreter when it runs a script or
module.

Here are 9 of the most commonly used options:

38

avichawla.substack.com

& python -c: Run a single Python command. Useful for running simple
one-liners or testing code snippets.

& python -i: Run the script as usual and enter the interactive mode instead of
terminating the program. Useful for debugging as you can interact with objects
created during the program.

& python -0: Ignore assert statements (This is alphabet ‘O’). Useful for
optimizing code by removing debugging code.

@ python -00: Ignore assert statements and discard docstrings. Useful for
further optimizing code by removing documentation strings.

& python -W: Ignore all warnings. Useful for turning off warnings temporarily
and focusing on development.

& python -m: Run a module as a script.

& python -v: Enter verbose mode. Useful for printing extra information during
program execution.

@ python -x: Skip the first line. Useful for removing shebang lines or other
comments at the start of a script.

& python -E: ignore all Python environment variables. Useful for ensuring a
consistent program behavior by ignoring environment variables that may affect
program execution.

Which ones have I missed? Let me know :)

39

B

Breathing KMeans: A Better and
Faster Alternative to KMeans

KMeans++ = avichawlasubstack com
centroids

avichawla.substack.com

'ﬁ . KMeans Avg.
; Convergence
Time:

Breathing KMeans

- 5k] .’;.' -
Breathing Kmeans # %“"“#‘bg x

Avg. Convergence el

Time: ‘ . \” ' -z:
e T

b X4

e

-

The performance of KMeans is entirely dependent on the centroid initialization
step. Thus, obtaining inaccurate clusters is highly likely.

While KMeans++ offers smarter centroid initialization, it does not always
guarantee accurate convergence (read how KMeans++ works in my Qrevious

POst). This is especially true when the number of clusters is high. Here,
repeating the algorithm may help. But it introduces an unnecessary overhead in
run-time.

Instead, Breathing KMeans is a better alternative here. Here’s how it works:

e Step 1: Initialise k centroids and run KMeans without repeating. In other
words, don’t re-run it with different initializations. Just run it once.

e Step 2 — Breathe in step: Add m new centroids and run KMeans with
(k+m) centroids without repeating.

40

https://avichawla.substack.com/p/this-small-tweak-can-significantly
https://avichawla.substack.com/p/this-small-tweak-can-significantly

avichawla.substack.com

e Step 3 — Breathe out step: Remove m centroids from existing (k+m)
centroids. Run KMeans with the remaining k centroids without repeating.

e Step 4: Decrease m by 1.
e Step S: Repeat Steps 2 to 4 until m=0.

Breathe in step inserts new centroids close to the centroids with the largest errors.
A centroid’s error is the sum of the squared distance of points under that centroid.

Breathe out step removes centroids with low utility. A centroid’s utility is
proportional to its distance from other centroids. The intuition is that if two
centroids are pretty close, they are likely falling in the same cluster. Thus, both
will be assigned a low utility value, as demonstrated below.

Utility (Utility

0.2

N
N
roe
N
o

$=13.8

¢=14.1

(a) Two neighboring centroids (b) Removing one of them makes
with low utility values (red). the other one very useful (red).

With these repeated breathing cycles, Breathing KMeans provides a faster and
better solution than KMeans. In each cycle, new centroids are added at “good”
locations, and centroids with low utility are removed.

In the figure below, KMeans++ produced two misplaced centroids.

41

avichawla.substack.com

KMeans++ weww

.

N
- . *)
-

. <

* .. » #5 ms

Breathing KMeans

£ o .

However, Breathing KMeans accurately clustered the data, with
a 50% improvement in run-time.

You can use Breathing KMeans by installing its open-source
library, bkmeans, as follows:

pip install bkmeans

Next, import the library and run the clustering algorithm:

In fact, the BKMeans class inherits from the KMeans class of sklearn. So you can
specify other parameters and use any of the other methods on the BxMeans object
as needed.

More details about Breathing KMeans: GitHub | Paper.

42

https://github.com/gittar/breathing-k-means
https://arxiv.org/pdf/2006.15666.pdf

avichawla.substack.com

How Many Dimensions Should You
Reduce Your Data To When Using
PCA?

'+ avichawla.substack.com

Cumulative Explained Variance Plot
for PCA

g% 97% o8% 99% 100%

93%

~&— Cumulative Variance
s Individual Component Variance

:
3
=
2
B
g

I l I. n S e ——
2 3 - 5 6 7 8
Principal Component Number

When using PCA, it can be difficult to determine the number of components to
keep. Yet, here's a plot that can immensely help.

Note: If you don’t know how PCA works, feel free to read my detailed post: A
Visual Guide to PCA.

Still, here’s a quick step-by-step refresher. Feel free to skip this part if you
remember my PCA post.

43

https://avichawla.substack.com/p/a-visual-and-overly-simplified-guide
https://avichawla.substack.com/p/a-visual-and-overly-simplified-guide

AL avichawla.substack.com

o :f_ avichawla.substack.com

High dimensionsl data Datermine ¢ system of UNCORAELATE

ganz (X", y') v represent the dotn

Y »

_ Direction of

LOW serisss

Oiesction of

/" HigH varionce

FINAL DATA WITH REDUCED DIMENSIONS

Step 1. Take a high-dimensional dataset ((X,) in the above figure) and

represent it with uncorrelated axes (X", Y¥~) in the above figure). Why
uncorrelated?

This is to ensure that data has zero correlation along its dimensions and each new
dimension represents its individual variance.

For instance, as data represented along (X, Y) is correlated, the variance

along X is influenced by the spread of data along Y.

Instead, if we represent data along (X‘, y‘), the variance along X' is not
influenced by the spread of data along y‘.

The above space is determined using eigenvectors.

Step 2. Find the variance along all uncorrelated axes (X , Y). The eigenvalue
corresponding to each eigenvector denotes the variance.

Step 3. Discard the axes with low variance. How many dimensions to discard
(or keep) is a hyperparameter, which we will discuss below. Project the data along
the retained axes.

44

avichawla.substack.com

When reducing dimensions, the purpose is to retain enough variance of the
original data.

As each principal component explains some amount of variance, cumulatively
plotting the component-wise variance can help identify which components have
the most variance.

This is called a cumulative explained variance plot.

o' avichawla.substack.com

Cumulative Explained Variance Plot
for PCA

oghy 97 98% 99% 100%

3%

~&- Cumulative Variance
e Individual Component Variance

Principal Component Number

For instance, say we intend to retain ~85% of the data variance. The above plot
clearly depicts that reducing the data to four components will do that.

Also, as expected, all ten components together represent 100% variance of the
data.

Creating this plot is pretty simple in Python. Find the code
here: PCA-CEV Plot.

45

https://github.com/ChawlaAvi/Daily-Dose-of-Data-Science/blob/main/Machine%20Learning/PCA-Dimensions-Hyperparameter.ipynb

avichawla.substack.com

%’ Mito Just Got Supercharged With
Al!

N TR

Personally, I am a big fan of no-code data analysis tools. They are extremely
useful in eliminating repetitive code across projects—thereby boosting
productivity.

Yet, most no-code tools are often limited in terms of the functionality they
support. Thus, flexibility is usually a big challenge while using them.

Mito is an incredible open-source tool that allows you to analyze your data within
a spreadsheet interface in Jupyter without writing any code.

What’s more, Mito recently supercharged its spreadsheet interface with Al. As a
result, you can now analyze data in a notebook with text prompts.

One of the coolest things about using Mito is that each edit in the spreadsheet
automatically generates an equivalent Python code. This makes it convenient to
reproduce the analysis later.

46

0 “\g [s]
(_°° avichawla.substack.com

Automatic code generation

from nitosheot.public.v]) import *; registor analysis{’id-utbdshmhvd”)y
izport pandas as pd

¥ lspusrted seployes datavet . cav

erployes_dataset = pd.read cavis ssploges dstsset.cuv)

group e city and fiod avy salary and ratisg
df2 = asployse_dataset.groupby| 'Clity').agg({ 'Salary s "sean’, ‘Mating’: “mman’))

top § seployeas with highewt salary
top_employess =~ esployce dataset.nlargest(5, ‘Salary')

You can install Mito using pip as follows:

python -m pip install mitosheet

Next, to activate it in Jupyter, run the following two commands:

python -m jupyter nbextension install --py —--user mitosheet
python -m jupyter nbextension enable --py --user mitosheet

47

avichawla.substack.com

Be Cautious Before Drawing Any
Conclusions Using Summary Statistics

Datasets with ZERO correlation

While analyzing data, one may be tempted to draw conclusions solely based on its
statistics. Yet, the actual data might be conveying a totally different story.

Here's a visual depicting nine datasets with approx. zero correlation between the
two variables. But the summary statistic (Pearson correlation in this case) gives no
clue about what's inside the data.

What's more, data statistics could be heavily driven by outliers or other artifacts. I
covered this in a previous post here.

Thus, the importance of looking at the data cannot be stressed enough. It saves

you from drawing wrong conclusions, which you could have made otherwise by
looking at the statistics alone.

For instance, in the sinusoidal dataset above, Pearson correlation may make you
believe that there is no association between the two variables. However, remember

48

https://avichawla.substack.com/p/why-correlation-and-other-statistics

avichawla.substack.com

that it is only quantifying the extent of a linear relationship between them. Read

more about this in another one of my previous posts Nere.

Thus, if there’s any other non-linear relationship (quadratic, sinusoid, exponential,
etc.), it will fail to measure that.

49

https://avichawla.substack.com/p/the-limitation-of-pearson-correlation

avichawla.substack.com

Use Custom Python Objects In A
Boolean Context

In a boolean context, Python always evaluates the objects of a custom class to
True. But this may not be desired in all cases. Here's how you can override this
behavior.

The __bool__ dunder method is used to define the behavior of an object when
used in a boolean context. As a result, you can specify explicit conditions to
determine the truthiness of an object.

This allows you to use class objects in a more flexible and intuitive way.

As demonstrated above, without the __bool__ method (without_bool.py), the
object evaluates to True. But implementing the __bool__ method lets us override
this default behavior (with_bool.py).

Some additional good-to-know details

When we use ANY object (be it instantiated from a custom or an in-built class) in
a boolean context, here’s what Python does:

50

avichawla.substack.com

does its class
implement the
\‘__bool__ uathod?4)

does its class
impleoment the
~len__ method?

YES NO
- 3 1
it \ J

First, Python checks for the __bool__ method in its class implementation. If
found, it is invoked. If not, Python checks for the __len__ method. If found,
__len__ is invoked. Otherwise, Python returns True.

This explains the default behavior of objects instantiated from a custom class. As
the Cart class implemented neither the __bool__ method nor the __len__
method, the cart object was evaluated to True.

51

avichawla.substack.com

A Visual Guide To Sampling
Techniques in Machine Learning

Simple Random Sompling

Q0Q00 s} 2
00000 © ©
20000 9000
00000 o

Every deta point has egusl probeteiity

.'_-,:-: avichawla.substack.com

Cluxter Sampling (Single Stage)

00000 Q0000
0000
Q000G 0
00000 00000

Whole clusters are selecied

Cluster Sampling (Two Stage)

Q0000 Q0000 o

090000
0000

—_——

Q0000

00000 @ © ©

i. Select clusters 2, Select data points

00000

00000

0000
0000

Stratified Sampling

Q0000
0000
00000
00000 ©

—_

|. Creats stratas 2. Draw samples from each strata

When you are dealing with large amounts of data, it is often preferred to draw a
relatively smaller sample and train a model. But any mistakes can adversely affect

the accuracy of your model.

52

avichawla.substack.com

Bad/! Unrepresentative @
sa-\ple

Bad Mode!

Representative . ; ,,}j
e Good Mode!

This makes sampling a critical aspect of training ML models.
Here are a few popularly used techniques that one should know about:

+ Simple random sampling: Every data point has an equal probability of being
selected in the sample.

Simple Random Sampling

00000 @ ©
00000 @ ©
00000 000
00000 ©

Every data point has equal probability

+ Cluster sampling (single-stage): Divide the data into clusters and select a
few entire clusters.

Cluster Sampling (Single Stage)

Q0000 00000

Q0000

0000

P0Q00® oYoXoXoXo
Whole clusters are selected

——p

53

\e avichawla.substack.com

+ Cluster sampling (two-stage): Divide the data into clusters, select a few
clusters, and choose points from them randomly.

Cunter Sampling (Twe Stoge)

0000 0000
00000
se00e
00000 00000
I Select chusters 1. Selext datu puinty

54

\o avichawla.substack.com

+ Stratified sampling: Divide the data points into homogenous groups (based
on age, gender, etc.), and select points randomly.

Stratified Sampling

00000 00000 @ o
Q0000 @000

—_—

0000 0000 0
0000 0000 & &

1. Create stratas 2. Draw samples from each strata

What are some other sampling techniques that you commonly resort to?

55

avichawla.substack.com

You Were Probably Given Incomplete
Info About A Tuple's Immutability

my_tuple

my_tuple
[2, 3])

my_tuplel1].append(4)

Tuple

my_tuple
(1 [2; 3 4])) Modified

When we say tuples are immutable, many Python programmers think that the
values inside a tuple cannot change. But this is not true.

The immutability of a tuple is solely restricted to the identity of objects it holds,
not their value.

In other words, say a tuple has two objects with IDs 1 and 2. Immutability says
that the collection of IDs referenced by the tuple (and their order) can never
change.

Yet, there is N O such restriction that the individual objects with
IDs 1 and 2 cannot be modified.

Thus, if the elements inside the tuple are mutable objects, you can indeed modify
them.

And as long as the collection of IDs remains the same, the immutability of a tuple
is not violated.

56

avichawla.substack.com

This explains the demonstration above. As append is an inplace operation, the
collection of IDs didn't change. Thus, Python didn't raise an error.

We can also verify this by printing the collection of object IDs referenced inside
the tuple before and after the append operation:

00

my_tuple = (1, [2, 3])

1id(my_tuplel©]), id(my_tuple(l])
434810)

my_tuplell].append(4)

1d(my_tuplel©]), id(my_tuple[l])

434810)

As shown above, the IDs pre and post append are the same. Thus, immutability
isn’t violated.

57

AN
[°\S, avichawla.substack.com

A Simple Trick That Significantly
Improves The Quality of Matplotlib
Plots

¥ Crwate & plot
pit.sdow()

Bartmdy Lam Vew Ongd Darrmanyn

from satplotlil isline backend inline import set matplotliib formata
sat_watplotlin_formata| ‘avy ')

Blurry Plot

=
)
ﬂ
'\
'\

»

L)

Crearw a plac

;xi.omn

Matplotlib plots often appear dull and blurry, especially when scaled or zoomed.
Yet, here's a simple trick to significantly improve their quality.

Matplotlib plots are rendered as an image by default. Thus, any scaling/zooming
drastically distorts their quality.

Instead, always render your plot as a scalable vector graphic (SVG). As the name
suggests, they can be scaled without compromising the plot's quality.

As demonstrated in the image above, the plot rendered as SVG clearly outshines
and is noticeably sharper than the default plot.

58

avichawla.substack.com

The following code lets you change the render format to SVG. If the difference is
not apparent in the image above, I would recommend trying it yourself and
noticing the difference.

Alternatively, you can also use the following code:

P.S. If there’s a chance that you don’t know what is being depicted in the bar plot
above, check out this YouTube video by Numberphile.

59

https://www.youtube.com/watch?v=XXjlR2OK1kM&ab_channel=Numberphile

avichawla.substack.com

A Visual and Overly Simplified Guide
to PC

" avichawln.substack.com

e
l.‘ '.

FINAL BATA WITH BICLCED DEMINSONS

Many folks often struggle to understand the core essence of principal component
analysis (PCA), which is widely used for dimensionality reduction. Here's a
simplified visual guide depicting what goes under the hood.

In a gist, while reducing the dimensions, the aim is to retain as much variation in
data as possible.

To begin with, as the data may have correlated features, the first step is to
determine a new coordinate system with orthogonal axes. This is a space where all
dimensions are uncorrelated.

60

avichawla.substack.com

The above space is determined using the data's eigenvectors.

Next, we find the variance of our data along these uncorrelated axes. The variance
is represented by the corresponding eigenvalues.

Dwnction of

LOW vanance

Direction of

HISH vorerce

Next, we decide the number of dimensions we want our data to have
post-reduction (a hyperparameter), say two. As our aim is to retain as much
variance as possible, we select two eigenvectors with the highest eigenvalues.

Why highest, you may ask? As mentioned above, the variance along an
eigenvector is represented by its eigenvalue. Thus, selecting the top two
eigenvalues ensures we retain the maximum variance of the overall data.

Lastly, the data is transformed using a simple matrix multiplication with the top
two vectors, as shown below:

61

\o avichawla.substack.com

After reducing the dimension of the 2D dataset used above, we get the following.

Discard directions of LOW varionce (y")
NG praject the cata along
directions of MIGM wvarionce (x')

|

S
P —

[
v

° SN I3 B 318811000 -
x

FINAL DATA WITH REDUCED DIMENSIONS

This is how PCA works. I hope this algorithm will never feel daunting again :)

62

avichawla.substack.com

Supercharge Your Jupyter Kernel
With ipytlow

This is a pretty cool Jupyter hack I learned recently.

While using Jupyter, you must have noticed that when you update a variable, all
its dependent cells have to be manually re-executed.

Also, at times, isn't it difficult to determine the exact sequence of cell executions
that generated an output?

This is tedious and can get time-consuming if the sequence of dependent cells is
long.

To resolve this, try ipyflow. It is a supercharged kernel for Jupyter, which tracks
the relationship between cells and variables.

t BIRgy aa np

Automatic Execution of Dependent Celis

flow mode reactive

Export Code

from lpyflow lspast code

Qoo [N pat |

Thus, at any point, you can obtain the corresponding code to reconstruct any
symbol.

What's more, its magic command enables an automatic recursive re-execution of
dependent cells if a variable is updated.

As shown in the demo above, updating the variable X automatically triggers its
dependent cells.

63

avichawla.substack.com

Do note that ipyflow offers a different kernel from the default kernel in Jupyter.
Thus, once you install ipyflow, select the following kernel while launching a new
notebook:

Upload News <

Notoboo

| (Python 3 (ipyﬂowD '
Python 3 (ipykernel)

Text File
Folder

Terminal

Find more details here: i[zyﬂOW.

64

https://github.com/ipyflow/ipyflow

avichawla.substack.com

A Lesser-known Feature of Creating
Plots with Plotly

Plotly is pretty diverse when it comes to creating different types of charts. While
many folks prefer it for interactivity, you can also use it to create animated plots.

Here's an animated visualization depicting the time taken by light to reach
different planets after leaving the Sun.

Speed of Light Visuasization

g"'

Several functions in Plotly support animations using
the animation_frame and animation_group parameters.

The core idea behind creating an animated plot relies on plotting the data one
frame at a time.

For instance, consider we have organized the data frame-by-frame, as shown
below:

65

avichawla.substack.com

Now, if we invoke the scatter method with the animation_frame argument, it will
plot the data frame-by-frame, giving rise to an animation.

In the above function call, the data corresponding to frame_id=0 will be plotted

first. This will be replaced by the data with frame_id=1 in the next frame, and
S0 on.

Find the code for this post here: GitHub.

66

https://github.com/ChawlaAvi/Daily-Dose-of-Data-Science/blob/main/Plotting/Animated-Plotting-With-Plotly.ipynb

avichawla.substack.com

The Limitation Of Euclidean Distance
Which Many Often Ignore

' avichawla.substack.com

Euclidean Mahalanobis

Distance Distance

Euclidean distance is a commonly used distance metric. Yet, its limitations often
make it inapplicable in many data situations.

Euclidean distance assumes independent axes, and the data is somewhat
spherically distributed. But when the dimensions are correlated, euclidean may
produce misleading results.

Mahalanobis distance is an excellent alternative in such cases. It is a multivariate
distance metric that takes into account the data distribution.

As a result, it can measure how far away a data point is from the distribution,
which Euclidean cannot.

67

avichawla.substack.com

As shown in the image above, Euclidean considers pink and green points
equidistant from the central point. But Mahalanobis distance considers the green
point to be closer, which is indeed true, taking into account the data distribution.

Mahalanobis distance is commonly used in outlier detection tasks. As shown
below, while Euclidean forms a circular boundary for outliers, Mahalanobis,
instead, considers the distribution—producing a more practical boundary.

% avichawla.substack,com

/\- Centesr

Outlier Outlier

R Wi Window

Mahalanobis

Essentially, Mahalanobis distance allows the data to construct a coordinate system
for itself, in which the axes are independent and orthogonal.

Computationally, it works as follows:
° Step 1: Transform the columns into uncorrelated variables.
o Step 2: Scale the new variables to make their variance equal to 1.

° Step 3: Find the Euclidean distance in this new coordinate system,
where the data has a unit variance.

So eventually, we do reach Euclidean. However, to use Euclidean, we first
transform the data to ensure it obeys the assumptions.

Mathematically, it is calculated as follows:

D!=(z—p)"-C'-(z—p)

e x: rows of your dataset (Shape: n_samples*n_dimensions).
e 1 mean of individual dimensions (Shape: 1*n_dimensions).

e (C/-]:Inverse of the covariance matrix
(Shape: n_dimensions*n_dimensions).

68

avichawla.substack.com

e D”2: Square of the Mahalanobis distance
(Shape: n_samples*n_samples).

Find more info here: Scipy docs.

69

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.mahalanobis.html

\oo
l P\S avichawla.substack.com

Visualising The Impact Of
Regularisation Parameter

' avichawla.substack.com

A= 002 A= 010

Increasing regularization parameter (A)

gives simple decision boundaries

Regularization is commonly used to prevent overfitting. The above visual depicts
the decision boundary obtained on various datasets by varying the regularization
parameter.

As shown, increasing the parameter results in a decision boundary with fewer
curvatures. Similarly, decreasing the parameter produces a more complicated
decision boundary.

But have you ever wondered what goes on behind the scenes? Why does
increasing the parameter force simpler decision boundaries?

To understand that, consider the cost function equation below (this is for
regression though, but the idea stays the same for classification).

It is clear that the cost increases linearly with the parameter A.

70

A avichawla.substack.com

Cost Function = Loss + L2 Weight Penalty

M N
= ZO’: -) xyw)? +

Squared Error

Now, if the parameter is too high, the penalty becomes higher too. Thus, to
minimize its impact on the overall cost function, the network is forced to approach
weights that are closer to zero.

This becomes evident if we print the final weights for one of the models, say one
at the bottom right (last dataset, last model).

In [17): clf.coefs_

Out|17): array((| 8.35476806e~06, -1.29066987e~0%, 1.49535843e-0%,
8.43964067e-06, 5.46943218e-06, 1.18557175e-05,

1.01037005e-05, 3.70503012e-06, 2.12142850e-06,
~9.7B452613e-06),

[-1.35980250e-05, 1,52132934e-05, 3.30936991e-06,
7.41538247e-07, 1.6852687%e~05, 1.14315983e-05,
6.64292409¢~07, ~1.40798113e~06, 1.31551207e~05,
2.52379486e-05)])

Having smaller weights effectively nullifies many neurons, producing a much
simpler network. This prevents many complex transformations, that could have
happened otherwise.

71

avichawla.substack.com

AutoProfiler: Automatically Profile
Your DataFrame As You Work

8 DataFrames Sort by Lawt Updated +

“ my_ #1000 9
Name (8
Company Name 5
Employes_Jub_TI "
Erployee_City ey
Errploywe_Courtry AN
Employee_Salary

min e s
/%o
s median ¢
Automatically maan <+
TEN
profiled s+
} Show semmary
Erployment_Sta
it Emgloyos_Rating
Creaty

Pandas AutoProfiler: Automatically profile Pandas DataFrames at each execution,
without any code.

AutoProfiler is an open-source dataframe analysis tool in jupyter. It reads your
notebook and automatically profiles every dataframe in your memory as you
change them.

In other words, if you modify an existing dataframe, AutoProfiler will
automatically update its corresponding profiling.

Also, if you create a new dataframe (say from an existing dataframe), AutoProfiler
will automatically profile that as well, as shown below:

72

= avichawla.substack.com

avichawla.substack.com

Aepnrt pordan wx o
w2 = pel vl _coetttibe o)

mew df = wyp_ o), Semmiediioe)

New

DataFrame

Profile

Profiling info includes column distribution, summary stats, null stats, and many
more. Moreover, you can also generate the corresponding code, with its export
feature.

o' avichawla.substack.com

isport pandas as pd
w At o« pdorend_cavi™fiie one™)

Wy A0 Iy St Nasw™] == “Larat Sminc]

Code added
in cell

LR)

Find more info here: GitHUb Repo.

73

https://github.com/cmudig/AutoProfiler

avichawla.substack.com

A Little Bit Of Extra Effort Can
Hugely Transform Your Storytelling
Skills

I Profit Margin for top five spend categories

Consumers are willing to pay higher prices for acsthetic and decorative items for their home
Stationery 20%
Toys 14%
Electronics 13%
Clothing 10%

avichawla.substack.com

"Data from Jan-2022 1o Mar-2023

Matplotlib is pretty underrated when it comes to creating professional-looking
plots. Yet, it is totally capable of doing so.

For instance, consider the two plots below.

Yes, both were created using matplotlib. But a bit of formatting makes the second
plot much more informative, appealing, and easy to follow.

The title and subtitle significantly aid the story. Also, the footnote offers extra
important information, which is nowhere to be seen in the basic plot.

Lastly, the bold bar immediately draws the viewer's attention and conveys the
category's importance.

So what's the message here?

74

avichawla.substack.com

Towards being a good data storyteller, ensure that your plot demands minimal
effort from the viewer. Thus, don’t shy away from putting in that extra effort. This
is especially true for professional environments.

At times, it may be also good to ensure that your visualizations convey the right
story, even if they are viewed in your absence.

75

avichawla.substack.com

A Nasty Hidden Feature of Python
That Many Programmers Aren't
Aware Of

Mutable Default
Parameter

Appended to
the same list

/ o

Mutability in Python is possibly one of the most misunderstood and overlooked
concepts. The above image demonstrates an example that many Python
programmers (especially new ones) struggle to understand.

Can you figure it out? If not, let’s understand it.

The default parameters of a function are evaluated right at the time the function is
defined. In other words, they are not evaluated each time the function is called
(like in C++).

Thus, as soon as a function is defined, the function object stores the default
parameters in its defaults__ attribute. We can verify this below:

76

https://avichawla.substack.com/p/a-counterintuitive-fact-about-python

avichawla.substack.com

Thus, if you specify a mutable default parameter in a function and mutate it, you
unknowingly and unintentionally modify the parameter for all future calls to that
function.

This is shown in the demonstration below. Instead of creating a new list at each
function call, Python appends the element to the same copy.

..
%% avichawla.substack.com

77

avichawla.substack.com

So what can we do to avoid this?

Instead of specifying a mutable default parameter in a function’s definition,
replace them with None. If the function does not receive a corresponding value
during the function call, create the mutable object inside the function.

This is demonstrated below:

Replace mutable
parameter

As shown above, we create a new list if the function didn’t receive any value when
it was called. This lets you avoid the unexpected behavior of mutating the same
object.

78

avichawla.substack.com

Interactively Visualise A Decision Tree
With A Sankey Diagram

avichawla.substack.com

In one of my earlier posts, I explained why sklearn's decision trees always overfit
the data with its default parameters (read here if you wish to recall).

To avoid this, it is always recommended to specify appropriate hyperparameter
values. This includes the max depth of the tree, min samples in leaf nodes, etc.

But determining these hyperparameter values is often done using trial-and-error,
which can be a bit tedious and time-consuming.

The Sankey diagram above allows you to interactively visualize the predictions of
a decision tree at each node.

Also, the number of data points from each class is size-encoded on all nodes, as
shown below.

79

https://avichawla.substack.com/p/a-typical-thing-about-decision-trees

AL avichawla.substack.com

Number of Class1 Samples

This immediately gives an estimate of the impurity of the node. Based on this, you
can visually decide to prune the tree.

For instance, in the full decision tree shown below, pruning the tree at a depth of
two appears to be reasonable.

Once you have obtained a rough estimate for these hyperparameter values, you
can train a new decision tree. Next, measure its performance on new data to know
if the decision tree is generalizing or not.

80

avichawla.substack.com

Use Histograms With Caution. They
Are Highly Misleading!

avichawla.substack.com
Same Data, VERY Different Histograms

B Count = 10 B Coum = 15

Bin Count = 30

B Count « 40

™ mwh 3 1 s o

Histograms are commonly used for data visualization. But, they can be misleading
at times. Here's why.

Histograms divide the data into small bins and represent the frequency of each
bin.

Thus, the choice of the number of bins you begin with can significantly impact its
shape.

The figure above depicts the histograms obtained on the same data, but by altering
the number of bins. Each histogram conveys a different story, even though the
underlying data is the same.

This, at times, can be misleading and may lead you to draw the wrong
conclusions.

The takeaway is NOT that histograms should not be used. Instead, look at the
underlying distribution too. Here, a violin plot and a KDE plot can help.

Violin plot

Similar to box plots, Violin plots also show the distribution of data based on
quartiles. However, it also adds a kernel density estimation to display the density
of data at different values.

81

\e avichawla.substack.com

Violin Plot

50 % 100 125 150
Price

avichawla substack.com

This provides a more detailed view of the distribution, particularly in areas with
higher density.

KDE plot

KDE plots use a smooth curve to represent the data distribution, without the need
for binning, as shown below:

AVICRawia saubsinck cam

As a departing note, always remember that whenever you condense a dataset, you
run the risk of losing important information.

Thus, be mindful of any limitations (and assumptions) of the visualizations you
use. Also, consider using multiple methods to ensure that you are seeing the
whole picture.

82

\ge
Q .
I o\, avichawla.substack.com

Three Simple Ways To (Instantly)
Make Your Scatter Plots Clutter Free

Cluttered and
difficult to

Scatter plots are commonly used in data visualization tasks. But when you have
many data points, they often get too dense to interpret.

Here are a few techniques (and alternatives) you can use to make your data more
interpretable in such cases.

One of the simplest yet effective ways could be to reduce the marker size. This, at
times, can instantly offer better clarity over the default plot.

83

. avichawla.substack.com

Cluttered and Claar and
difficult to easy to
interprot interprot

Next, as an alternative to a scatter plot, you can use a density plot, which depicts
the data distribution. This makes it easier to identify regions of high and low
density, which may not be evident from a scatter plot.

Cluttered and k Data
difficult to Density

interpret Curve

Lastly, another better alternative can be a hexbin plot. It bins the chart into
hexagonal regions and assigns a color intensity based on the number of points in
that area.

84

o

Cluttered and
difficult to
interprat

avichawla.substack.com

Hexagonally

arouped
data

85

I \b avichawla.substack.com

A (Highly) Important Point to
Consider Before You Use KMeans
Next Time

50 Models of KMeans++

2 |] 3 "

Number of Misplaced Centroids

The most important yet often overlooked step of KMeans is its centroid
initialization. Here's something to consider before you use it next time.

KMeans selects the initial centroids randomly. As a result, it fails to converge at
times. This requires us to repeat clustering several times with different
initialization.

Yet, repeated clustering may not guarantee that you will soon end up with the
correct clusters. This is especially true when you have many centroids to begin
with.

Instead, KMeans++ takes a smarter approach to initialize centroids.

The first centroid is selected randomly. But the next centroid is chosen based on
the distance from the first centroid.

86

I \®S, avichawla.substack.com

Initial Centroid 1 Initial Centroid 2

o Ny « B oo".".". o sd" R oo“.'o““.
. o . .. > ¥ .
.’o... : ".o .' AN |
TR T
| . ® . g
SRE . e SBE . R
Initial Cantroid 4 Initial Centroid 3 -
4@.. ot o . g“':i oB ot -qi '3g -
.' . > : .0 .. S
. o .: - .'. “. -

In other words, a point that is away from the first centroid is more likely to be
selected as an initial centroid. This way, all the initial centroids are likely to lie in
different clusters already, and the algorithm may converge faster and more
accurately.

The impact is evident from the bar plots shown below. They depict the frequency
of the number of misplaced centroids obtained (analyzed manually) after
training 50 different models with KMeans and KMeans++.

On the given dataset, out of the 50 models, KMeans only produced zero misplaced
centroids once, which is a success rate of just 2%.

87

~ 00
oo

avichawla.substack.com

50 Models of KMeans

KMeans converges
correctly only once

o ' 3 3 a4 5 o ” n

Number of Misplaced Centroids

50 Models of KMeans++

KMeans++
converges

Luckily, if you are using sklearn, you don’t need to worry about the initialization
step. This is because sklearn, by default, resorts to the KMeans++ approach.

However, if you have a custom implementation, do give it a thought.

88

avichawla.substack.com

Why You Should Avoid Appending
Rows To A DataFrame

~ avichawla.substack.com
DataFrame Size vs Row Append Time

]W
E |
3 g .
e Uptrend in
S Append
2 Run-time

Total Rows :

As we append more and more rows to a Pandas DataFrame, the append run-time
keeps increasing. Here's why.

A DataFrame is a column-major data structure. Thus, consecutive elements in a
column are stored next to each other in memory.

coll col2 cold cold

89

avichawla.substack.com

As new rows are added, Pandas always wants to preserve its column-major form.

But while adding new rows, there may not be enough space to accommodate them
while also preserving the column-major structure.

In such a case, existing data is moved to a new memory location, where Pandas
finds a contiguous block of memory.

Thus, as the size grows, memory reallocation gets more frequent, and the run time
keeps increasing.

The reason for spikes in this graph may be because a column taking higher
memory was moved to a new location at this point, thereby taking more time to
reallocate, or many columns were shifted at once.

So what can we do to mitigate this?

The increase in run-time solely arises because Pandas is trying to maintain its
column-major structure.

Thus, if you intend to grow a dataframe (row-wise) this frequently, it is better to
first convert the dataframe to another data structure, a dictionary or a numpy array,
for instance.

Carry out the append operations here, and when you are done, convert it back to a
dataframe.

P.S. Adding new columns is not a problem. This is because this operation does not
conflict with other columns.

90

avichawla.substack.com

Matplotlib Has Numerous Hidden
Gems. Here's One of Them.

Lines on top .. avichawla.substack.com

%)

e
|
b
g

c/ ~
g (,9"‘ o, ‘?
¢ : o
‘ D
a a 7 ')
\\ —— “(.“‘J /'/
& -9 o
,/'J
v . e r_;,"
Dots on top
_
>
»”
[P o
» -
' > 2. 9
& « \
% T %
l-l Q
& ‘
\ p b
~o—o*
G ' 4
»
> p
— . J

One of the best yet underrated and underutilized potentials of matplotlib is
customizability. Here's a pretty interesting thing you can do with it.

By default, matplotlib renders different types of elements (also called artists), like
plots, legend, texts, etc., in a specific order.

But this ordering may not be desirable in all cases, especially when there are
overlapping elements in a plot, or the default rendering is hiding some crucial
details.

With the zorder parameter, you can control this rendering order. As a result, plots
with higher zorder value appear closer to the viewer and are drawn on top of
artists with lower zorder values.

91

= avichawla.substack.com

Lastly, in the above demonstration, if we specify zorder=0 for the line plot, we
notice that it goes behind the grid lines.

You can find more details about zorder here: Matplotlib docs.

92

https://matplotlib.org/stable/gallery/misc/zorder_demo.html

avichawla.substack.com

A Counterintuitive Thing About
Python Dictionaries

~ avichawla.substack.com

(Q . '\-fr

my_dict = {
'One (float)',
'One (int)',
'One (bool)',

'One (stxing)'

. my_dict
{1.0 : 'One (bool)',
'1' : 'One (string)'}

Despite adding 4 distinct keys to a Python dictionary, can you tell why it only
preserves two of them?

Here’s why.

In Python, dictionaries find a key based on the equivalence of hash (computed
using hash()), but not identity (computed using id()).

In this case, there’s no doubt that 1.0, 1, and True inherently have different
datatypes and are also different objects. This is shown below:

93

avichawla.substack.com

~ avichawla.substack.com

Yet, as they share the same hash value, the dictionary considers them as the same
keys.

~. avichawla.substack.com

But did you notice that in the demonstration, the final key is 1.0, while the value
corresponds to the key True.

~ avichawla.substack.com

94

avichawla.substack.com

This is because, at first, 1.0 is added as a key and its value is 'One (float)'.
Next, while adding the key 1, python recognizes it as an equivalence of the hash
value.

Thus, the value corresponding to 1.0 is overwritten by 'one (int) ', while the
key (1.0) is kept as is.

Finally, while adding True, another hash equivalence is encountered with an
existing key of 1.0. Yet again, the value corresponding to 1.0, which was updated
to 'One (int) ' in the previous step, is overwritten by 'Oone (bool) '.

I am sure you may have already guessed why the string key ‘1’ is retained.

95

avichawla.substack.com

Probably The Fastest Way To Execute
Your Python Code

o0 # big loop.py

ppend((a,b))

. N N Codon

§ codon xrun bi€_loop.py

Many Python programmers are often frustrated with Python’s run-time. Here’s
how you can make your code blazingly fast by changing just one line.

Codon is an open-source, high-performance Python compiler. In contrast to being
an interpreter, it compiles your python code to fast machine code.

Thus, post compilation, your code runs at native machine code speed. As a result,
typical speedups are often of the order 50X or more.

According to the official docs, if you know Python, you already know 99% of
Codon. There are very minute differences between the two, which you can read
here: Codon docs.

Find some more benchmarking results between Python and Codon below:

96

https://docs.exaloop.io/codon/general/differences

avichawla.substack.com

~+ avichawla.substack.com

97

avichawla.substack.com

Are You Sure You Are Using The
Correct Pandas Terminologies?

~ avichawla.substack.com

Many Pandas users use the dataframe subsetting terminologies incorrectly. So let's
spend a minute to get it straight.

SUBSETTING means extracting value(s) from a dataframe. This can be done in
four ways:

1) We call it SELECTING when we extract one or more of its COLUMNS based
on index location or name. The output contains some columns and all rows.

| i .
coll cold colS cold cold colYy

0 0

1 i
— >

< i

3 3

98

avichawla.substack.com

2) We call it SLICING when we extract one or more of its ROWS based on index
location or name. The output contains some rows and all columns.

coll qo!ﬂ cold coly

0 coll col2 col® coly
’ 0
P
2 3
3

3) We call it INDEXING when we extract both ROWS and COLUMNS based on

index location or name.

coll col2 col® cold

0 ‘ | : col® coly
' 0
{ —
2 2
3

4) We call it FILTERING when we extract ROWS and COLUMNS based on

conditions.
coll col cclS coly
0 A col!l eel2 col®coly
{1 B MldPeoll =2 4] O A
| ———
~ I = | 4
5 | A

Of course, there are many other ways you can perform these four operations.

Here’s a comprehensive Pandas guide I prepared once: Pandas Map. Please refer
to the “DF Subset” branch to read about various subsetting methods :)

99

https://bit.ly/pandas-map

1553 g
[‘Q%. avichawla.substack.com

Is Class Imbalance Always A Big
Problem To Deal With?

Imbalance with
high "class

Addressing class imbalance is often a challenge in ML. Yet, it may not always
cause a problem. Here's why.

One key factor in determining the impact of imbalance is class separability.

As the name suggests, it measures the degree to which two or more classes can be
distinguished or separated from each other based on their feature values.

When classes are highly separable, there is little overlap between their feature
distributions (as shown below). This makes it easier for a classifier to correctly
identify the class of a new instance.

100

o) -
(i% avichawla.substack.com

Distribution

Thus, despite imbalance, even if your data has a high degree of class separability,
imbalance may not be a problem per se.

To conclude, consider estimating the class separability before jumping to any
sophisticated modeling steps.

This can be done visually or by evaluating imbalance-specific metrics on simple
models.

The figure below depicts the decision boundary learned by a logistic regression
model on the class-separable dataset.

Decision
Boundary

101

B

A Simple Trick That Will Make
Heatmaps More Elegant

avichawla.substack.com

Color-encoded
heatmap

NI WS YOCHE A

&S S8 8P OB L IR

m

B

Color + size
encoded
heatmap

A 8 €
H-n
..-‘
(N
L B
BN
2]
m
]

o
o
-n
]
[B
-n
" »
an
LN]
o
R
S

A
e
c
D
E
; v
G
H

I..-
s mEBEEEE =0

se el - EEEN " -

Heatmaps often make data analysis much easier. Yet, they can be further enriched
with a simple modification.

A traditional heatmap represents the values using a color scale. Yet, mapping the
cell color to numbers is still challenging.

Embedding a size component can be extremely helpful in such cases. In essence,
the bigger the size, the higher the absolute value.

This is especially useful to make heatmaps cleaner, as many values nearer to zero
will immediately shrink.

In fact, you can represent the size with any other shape. Below, I created the same
heatmap using a circle instead:

102

A avichawla.substack.com

®

Color + size
encodad
heatmap

5

000 ® « » o

" ®er00000
o
©
o
-~

RN ¥ Y BN Y XN
2000 9000

.
L
E
L
’

[
"

Find the code for this post here: GitHub.

103

https://github.com/ChawlaAvi/Daily-Dose-of-Data-Science/blob/main/Plotting/Size-encoded-heatmaps.ipynb

\ge
Q .
I o\, avichawla.substack.com

A Visual Comparison Between
Locality and Density-based Clustering

The utility of KMeans is limited to datasets with spherical clusters. Thus, any
variation is likely to produce incorrect clustering.

Density-based clustering algorithms, such as DBSCAN, can be a better alternative
in such cases.

They cluster data points based on density, making them robust to datasets of
varying shapes and sizes.

The image depicts a comparison of KMeans vs. DBSCAN on multiple datasets.

As shown, KMeans only works well when the dataset has spherical clusters. But
in all other cases, it fails to produce correct clusters.

Find more here: Sklearn Guide.

104

https://bit.ly/sklearn-clustering

avichawla.substack.com

Why Don't We Call It Logistic
Classification Instead?

Logistic Reegression

Classification

Have you ever wondered why logistic regression is called "regression" when we
only use it for classification tasks? Why not call it "logistic classification" instead?
Here's why.

Most of us interpret logistic regression as a