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A Visual Guide to Stochastic,
Mini-batch, and Batch Gradient
Descent

Gradient descent is a widely used optimization algorithm for training machine
learning models.

Stochastic, mini-batch, and batch gradient descent are three different variations of
gradient descent, and they are distinguished by the number of data points used to
update the model weights at each iteration.
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Stochastic gradient descent: Update network weights using one data point at a
time.

● Advantages:

o Easier to fit in memory.

o Can converge faster on large datasets and can help avoid local
minima due to oscillations.

● Disadvantages:

o Noisy steps can lead to slower convergence and require more
tuning of hyperparameters.

o Computationally expensive due to frequent updates.

o Loses the advantage of vectorized operations.

Mini-batch gradient descent: Update network weights using a few data points
at a time.

● Advantages:
o More computationally efficient than batch gradient descent due to

vectorization benefits.
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o Less noisy updates than stochastic gradient descent.

● Disadvantages:
o Requires tuning of batch size.

o May not converge to a global minimum if the batch size is not
well-tuned.

Batch gradient descent: Update network weights using the entire data at once.

● Advantages:
o Less noisy steps taken towards global minima.

o Can benefit from vectorization.

o Produces a more stable convergence.

● Disadvantages:
o Enforces memory constraints for large datasets.

o Computationally slow as many gradients are computed, and all
weights are updated at once.

Over to you: What are some other advantages/disadvantages you can think of? Let
me know :)
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A Lesser-Known Difference Between
For-Loops and List Comprehensions

In the code above, the for-loop updated the existing variable (a), but list
comprehension didn't. Can you guess why? Read more to know.

A loop variable is handled differently in for-loops and list comprehensions.

A for-loop leaks the loop variable into the surrounding scope. In other words,
once the loop is over, you can still access the loop variable.

We can verify this below:
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In the main snippet above, as the loop variable (a) already existed, it was
overwritten in each iteration.

But a list comprehension does not work this way. Instead, the loop variable always
remains local to the list comprehension. It is never leaked outside.

We can verify this below:

That is why the existing variable (a), which was also used inside the list
comprehension, remained unchanged. The list comprehension defined the loop
variable (a) local to its scope.

Over to you: What are some other differences that you know of between for-loops
and list comprehension?

12
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The Limitation of PCA Which Many
Folks Often Ignore

Imagine you have a classification dataset. If you use PCA to reduce dimensions, it
is inherently assumed that your data is linearly separable.

But it may not be the case always. Thus, PCA will fail in such cases.
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If you wish to read how PCA works, I would highly recommend reading one of

my previous posts: A Visual and Overly Simplified Guide to PCA.

To resolve this, we use the kernel trick (or the KernelPCA). The idea is to:

Project the data to another space using a kernel function, where the data becomes
linearly separable.

Apply the standard PCA algorithm to the transformed data.

For instance, in the image below, the original data is linearly inseparable. Using
PCA directly does not produce any desirable results.

But as mentioned above, KernelPCA first transforms the data to a linearly
separable space and then applies PCA, resulting in a linearly separable dataset.

14
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Sklearn provides a KernelPCA wrapper, supporting many popularly used kernel

functions. You can find more details here: Sklearn Docs.
Having said that, it is also worth noting that the run-time of PCA is cubic in
relation to the number of dimensions of the data.

When we use a KernelPCA, typically, the original data (in n dimensions) is
projected to a new higher dimensional space (in m dimensions; m>n). Therefore, it
increases the overall run-time of PCA.

15
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Magic Methods: An Underrated Gem
of Python OOP

Magic Methods (also called dunder methods) are special methods defined
inside a Python class' implementation.

On a side note, the word “Dunder” is short
for Double Underscore.
They are prefixed and suffixed with double underscores, such
as __len__, __str__, and many more.
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Magic Methods offer immense flexibility to define the behavior of class objects in
certain scenarios.

For instance, say we want to define a custom behavior for adding two objects of
our class (obj1 + obj2).

An obvious and straightforward to do this is by defining a method,
say add_objects(), and passing the two objects as its argument.

While the above approach will work, invoking a method explicitly for adding two
objects isn't as elegant as using the + operator:
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This is where magic methods come in. In the above example, implementing
the __add__ magic method will allow you to add the two objects using
the + operator instead.

Thus, magic methods allow us to make our classes more intuitive and easier to
work with.

As a result, awareness about them is extremely crucial for developing elegant, and
intuitive pipelines.

The visual summarizes ~20 most commonly used magic methods in Python.
Over to you: What other magic methods will you include here? Which ones do
you use the most? Let me know :)
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The Taxonomy Of Regression
Algorithms That Many Don't Bother
To Remember

Regression algorithms allow us to model the relationship between a dependent
variable and one or more independent variables.

After estimating the parameters of a regression model, we can gain insight into
how changes in one variable affect another.

Being widely used in data science, an awareness of their various forms is crucial
to precisely convey which algorithm you are using.

Here are eight of the most standard regression algorithms described in a single
line:

Linear Regression

● Simple linear regression: One independent (x) and one
dependent (y) variable.
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● Polynomial Linear Regression: Polynomial features and one
dependent (y) variable.

● Multiple Linear Regression: Arbitrary features and one
dependent (y) variable.

Regularized Regression

● Lasso Regression: Linear Regression with L1 Regularization.
● Ridge Regression: Linear Regression with L2 Regularization.
● Elastic Net: Linear Regression with BOTH L1 and L2

Regularization.

Categorical Probability Prediction

● Logistic Regression: Predict binary outcome probability.
● Multinomial Logistic Regression (or Softmax

Regression): Predict multiple categorical probabilities.
Over to you: What other regressions algorithms will you include here?
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A Highly Overlooked Approach To
Analysing Pandas DataFrames

Instead of previewing raw DataFrames, styling can make data analysis much
easier and faster. Here's how.

Jupyter is a web-based IDE. Anything you print is rendered using HTML and
CSS.

This means you can style your output in many different ways.

To style Pandas DataFrames, use its Styling API (𝗱𝗳.𝘀𝘁𝘆𝗹𝗲). As a result, the
DataFrame is rendered with the specified styling.

Read more here: Documentation.

21
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Visualise The Change In Rank Over
Time With Bump Charts

When visualizing the change in rank over time, using a bar chart may not be
appropriate. Instead, try Bump Charts.

They are specifically used to visualize the rank of different items over time.

In contrast to the commonly used bar chart, they are clear, elegant, and easy to
comprehend.

Over to you: What are some other bar chart alternatives to try in such cases? Let
me know :)

Find the code for creating a bump chart in Python here: Notebook.

22
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Use This Simple Technique To Never
Struggle With TP, TN, FP and FN
Again

Do you often struggle to label model predictions as TP, TN, FP and FN, and
comprehend them? If yes, here's a simple guide to help you out.

When labeling any prediction, ask yourself two questions:

Did the model get it right? Answer: yes (or True) / no (or False).
What was the predicted class? Answer: Positive/Negative.
Next, combine the above two answers to get the final label.

For instance, say the actual and predicted class were positive.

Did the model get it right? The answer is yes (or TRUE).
What was the predicted class? The answer is POSITIVE.

Final label: TRUE POSITIVE.

As an exercise, try labeling the following predictions. Consider the “Cat” class as
“Positive” and the “Dog” class as “Negative”.
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The Most Common Misconception
About Inplace Operations in Pandas

Pandas users often modify a DataFrame inplace expecting better performance.
Yet, it may not always be efficient. Here's why.

The image compares the run-time of inplace and non-in-place operations. In most
cases, inplace operations are slow.

Why?

Contrary to common belief, most inplace operations DO NOT prevent the creation
of a new copy. It is just that inplace assigns the copy back to the same address.

25
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But during this assignment, Pandas performs some extra checks
(SettingWithCopy) to ensure that the DataFrame is being modified correctly. This,
at times, can be an expensive operation.

Yet, in general, there is no guarantee that an inplace operation is faster.

What’s more, inplace operations do not allow chaining multiple operations, such
as this:

26
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Build Elegant Web Apps Right From
Jupyter Notebook with Mercury

Exploring and sharing data insights using Jupyter is quite common for data folks.
Yet, an interactive app is better for those who don’t care about your code and are
interested in your results.

While creating presentations is possible, it can be time-consuming. Also, one has
to leave the comfort of a Jupyter Notebook.

Instead, try Mercury. It's an open-source tool that converts your jupyter notebook
to a web app in no time. Thus, you can create the web app without leaving the
notebook.

A quick demo is shown below:
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What's more, all updates to the Jupyter Notebook are instantly reflected in the
Mercury app.

In contrast to the widely-adopted streamlit, web apps created with Mercury can
be:

Exported as PDF/HTML.

Showcased as a live presentation.

Secured with authentication to restrict access.

28
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Become A Bilingual Data Scientist
With These Pandas to SQL
Translations

SQL and Pandas are both powerful tools for data scientists to work with data.

Together, SQL and Pandas can be used to clean, transform, and analyze large
datasets, and to create complex data pipelines and models.
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Thus, proficiency in both frameworks can be extremely valuable to data scientists.

This visual depicts a few common operations in Pandas and their corresponding
translations in SQL.

I have a detailed blog on Pandas to SQL translations with many more examples.

Read it here: Pandas to SQL blog.
Over to you: What other Pandas to SQL translations will you include here?

30
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A Lesser-Known Feature of Sklearn
To Train Models on Large Datasets

It is difficult to train models with sklearn when you have plenty of data. This may
often raise memory errors as the entire data is loaded in memory. But here's what
can help.

Sklearn implements the 𝐩𝐚𝐫𝐭𝐢𝐚𝐥_𝐟𝐢𝐭 API for various algorithms, which offers
incremental learning.

As the name suggests, the model can learn incrementally from a mini-batch of
instances. This prevents limited memory constraints as only a few instances are
loaded in memory at once.
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As shown in the main image, clf.fit(X, y) takes the entire data, and thus, it
may raise memory errors. But, loading chunks of data and invoking
the clf.partial_fit() method prevents this and offers seamless training.

Also, remember that while using the 𝐩𝐚𝐫𝐭𝐢𝐚𝐥_𝐟𝐢𝐭 API, a mini-batch may not have
instances of all classes (especially the first mini-batch). Thus, the model will be
unable to cope with new/unseen classes in subsequent mini-batches. Therefore,
you should pass a list of all possible classes in the classes parameter.

Having said that, it is also worth noting that not all sklearn estimators implement
the 𝐩𝐚𝐫𝐭𝐢𝐚𝐥_𝐟𝐢𝐭 API. Here's the list:

Yet, it is surely worth exploring to see if you can benefit from it :)
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A Simple One-Liner to Create
Professional Looking Matplotlib Plots

The default styling of matplotlib plots appears pretty basic at times. Here's how
you can make them appealing.

To create professional-looking plots for presentations, reports, or scientific papers,
try LovelyPlots.

It provides many style sheets to improve their default appearance, by simply
adding just one line of code.

To install LovelyPlots, run the following command:

pip install LovelyPlots

Next, import the matplotlib library, and change the style as follows: (You don’t
have to import LovelyPlots anywhere)

import matplotlib.pyplot as plt

plt.style.use(style) ## change to the style provided by LovelyPlots

Print the list of all possible styles as follows:

plt.style.available

Get Started: LovelyPlots Repository.

33
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Avoid This Costly Mistake When
Indexing A DataFrame

When indexing a dataframe, choosing whether to select a column first or slice a
row first is pretty important from a run-time perspective.

As shown above, selecting the column first is over 15 times faster than slicing
the row first. Why?

As I have talked before, Pandas DataFrame is a column-major data structure.
Thus, consecutive elements in a column are stored next to each other in memory.
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As processors are efficient with contiguous blocks of memory, accessing a column
is much faster than accessing a row (read more about this in one of my previous

posts here).
But when you slice a row first, each row is retrieved by accessing non-contiguous
blocks of memory, thereby making it slow.

Also, once all the elements of a row are gathered, Pandas converts them to a
Series, which is another overhead.

We can verify this conversion below:

Instead, when you select a column first, elements are retrieved by accessing
contiguous blocks of memory, which is way faster. Also, a column is inherently a
Pandas Series. Thus, there is no conversion overhead involved like above.
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Overall, by accessing the column first, we avoid accessing non-contiguous
memory access, which does happen when we access the row first.

This makes selecting the column first faster than slicing a row first in indexing
operations.

If you are confused about what selecting, indexing, slicing, and filtering mean,
here’s what you should read next:

https://avichawla.substack.com/p/are-you-sure-you-are-using-the-correct.
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9 Command Line Flags To Run
Python Scripts More Flexibly

When invoking a Python script, you can specify various options/flags. They are
used to modify the behavior of the Python interpreter when it runs a script or
module.

Here are 9 of the most commonly used options:
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𝐩𝐲𝐭𝐡𝐨𝐧 -𝐜: Run a single Python command. Useful for running simple
one-liners or testing code snippets.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐢: Run the script as usual and enter the interactive mode instead of
terminating the program. Useful for debugging as you can interact with objects
created during the program.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐎: Ignore assert statements (This is alphabet ‘O’). Useful for
optimizing code by removing debugging code.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐎𝐎: Ignore assert statements and discard docstrings. Useful for
further optimizing code by removing documentation strings.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐖: Ignore all warnings. Useful for turning off warnings temporarily
and focusing on development.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐦: Run a module as a script.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐯: Enter verbose mode. Useful for printing extra information during
program execution.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐱: Skip the first line. Useful for removing shebang lines or other
comments at the start of a script.𝐩𝐲𝐭𝐡𝐨𝐧 -𝐄: ignore all Python environment variables. Useful for ensuring a
consistent program behavior by ignoring environment variables that may affect
program execution.

Which ones have I missed? Let me know :)
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Breathing KMeans: A Better and
Faster Alternative to KMeans

The performance of KMeans is entirely dependent on the centroid initialization
step. Thus, obtaining inaccurate clusters is highly likely.

While KMeans++ offers smarter centroid initialization, it does not always

guarantee accurate convergence (read how KMeans++ works in my previous
post). This is especially true when the number of clusters is high. Here,
repeating the algorithm may help. But it introduces an unnecessary overhead in
run-time.

Instead, Breathing KMeans is a better alternative here. Here’s how it works:

● Step 1: Initialise k centroids and run KMeans without repeating. In other
words, don’t re-run it with different initializations. Just run it once.

● Step 2 — Breathe in step: Add m new centroids and run KMeans with
(k+m) centroids without repeating.
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● Step 3 — Breathe out step: Remove m centroids from existing (k+m)
centroids. Run KMeans with the remaining k centroids without repeating.

● Step 4: Decrease m by 1.

● Step 5: Repeat Steps 2 to 4 until m=0.

Breathe in step inserts new centroids close to the centroids with the largest errors.
A centroid’s error is the sum of the squared distance of points under that centroid.

Breathe out step removes centroids with low utility. A centroid’s utility is
proportional to its distance from other centroids. The intuition is that if two
centroids are pretty close, they are likely falling in the same cluster. Thus, both
will be assigned a low utility value, as demonstrated below.

With these repeated breathing cycles, Breathing KMeans provides a faster and
better solution than KMeans. In each cycle, new centroids are added at “good”
locations, and centroids with low utility are removed.

In the figure below, KMeans++ produced two misplaced centroids.
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However, Breathing KMeans accurately clustered the data, with
a 50% improvement in run-time.

You can use Breathing KMeans by installing its open-source

library, bkmeans, as follows:
pip install bkmeans

Next, import the library and run the clustering algorithm:

In fact, the BKMeans class inherits from the KMeans class of sklearn. So you can
specify other parameters and use any of the other methods on the BKMeans object
as needed.

More details about Breathing KMeans: GitHub | Paper.
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How Many Dimensions Should You
Reduce Your Data To When Using
PCA?

When using PCA, it can be difficult to determine the number of components to
keep. Yet, here's a plot that can immensely help.

Note: If you don’t know how PCA works, feel free to read my detailed post: A
Visual Guide to PCA.

Still, here’s a quick step-by-step refresher. Feel free to skip this part if you
remember my PCA post.
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Step 1. Take a high-dimensional dataset ((x, y) in the above figure) and
represent it with uncorrelated axes ((x`, y`) in the above figure). Why
uncorrelated?

This is to ensure that data has zero correlation along its dimensions and each new
dimension represents its individual variance.

For instance, as data represented along (x, y) is correlated, the variance
along x is influenced by the spread of data along y.
Instead, if we represent data along (x`, y`), the variance along x` is not
influenced by the spread of data along y`.
The above space is determined using eigenvectors.

Step 2. Find the variance along all uncorrelated axes (x`, y`). The eigenvalue
corresponding to each eigenvector denotes the variance.

Step 3. Discard the axes with low variance. How many dimensions to discard
(or keep) is a hyperparameter, which we will discuss below. Project the data along
the retained axes.
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When reducing dimensions, the purpose is to retain enough variance of the
original data.

As each principal component explains some amount of variance, cumulatively
plotting the component-wise variance can help identify which components have
the most variance.

This is called a cumulative explained variance plot.

For instance, say we intend to retain ~85% of the data variance. The above plot
clearly depicts that reducing the data to four components will do that.

Also, as expected, all ten components together represent 100% variance of the
data.

Creating this plot is pretty simple in Python. Find the code
here: PCA-CEV Plot.
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Mito Just Got Supercharged With
AI!

Personally, I am a big fan of no-code data analysis tools. They are extremely
useful in eliminating repetitive code across projects—thereby boosting
productivity.

Yet, most no-code tools are often limited in terms of the functionality they
support. Thus, flexibility is usually a big challenge while using them.

Mito is an incredible open-source tool that allows you to analyze your data within
a spreadsheet interface in Jupyter without writing any code.

What’s more, Mito recently supercharged its spreadsheet interface with AI. As a
result, you can now analyze data in a notebook with text prompts.

One of the coolest things about using Mito is that each edit in the spreadsheet
automatically generates an equivalent Python code. This makes it convenient to
reproduce the analysis later.
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You can install Mito using pip as follows:

python -m pip install mitosheet

Next, to activate it in Jupyter, run the following two commands:

python -m jupyter nbextension install --py --user mitosheet
python -m jupyter nbextension enable --py --user mitosheet
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Be Cautious Before Drawing Any
Conclusions Using Summary Statistics

While analyzing data, one may be tempted to draw conclusions solely based on its
statistics. Yet, the actual data might be conveying a totally different story.

Here's a visual depicting nine datasets with approx. zero correlation between the
two variables. But the summary statistic (Pearson correlation in this case) gives no
clue about what's inside the data.

What's more, data statistics could be heavily driven by outliers or other artifacts. I

covered this in a previous post here.
Thus, the importance of looking at the data cannot be stressed enough. It saves
you from drawing wrong conclusions, which you could have made otherwise by
looking at the statistics alone.

For instance, in the sinusoidal dataset above, Pearson correlation may make you
believe that there is no association between the two variables. However, remember
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that it is only quantifying the extent of a linear relationship between them. Read

more about this in another one of my previous posts here.
Thus, if there’s any other non-linear relationship (quadratic, sinusoid, exponential,
etc.), it will fail to measure that.
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Use Custom Python Objects In A
Boolean Context

In a boolean context, Python always evaluates the objects of a custom class to
True. But this may not be desired in all cases. Here's how you can override this
behavior.

The __𝐛𝐨𝐨𝐥__ dunder method is used to define the behavior of an object when
used in a boolean context. As a result, you can specify explicit conditions to
determine the truthiness of an object.

This allows you to use class objects in a more flexible and intuitive way.

As demonstrated above, without the __𝐛𝐨𝐨𝐥__ method (without_bool.py), the
object evaluates to True. But implementing the __𝐛𝐨𝐨𝐥__ method lets us override
this default behavior (with_bool.py).

Some additional good-to-know details

When we use ANY object (be it instantiated from a custom or an in-built class) in
a boolean context, here’s what Python does:
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First, Python checks for the __𝐛𝐨𝐨𝐥__ method in its class implementation. If
found, it is invoked. If not, Python checks for the __𝐥𝐞𝐧__ method. If found,
__𝐥𝐞𝐧__ is invoked. Otherwise, Python returns True.
This explains the default behavior of objects instantiated from a custom class. As
the Cart class implemented neither the __𝐛𝐨𝐨𝐥__ method nor the __𝐥𝐞𝐧__
method, the cart object was evaluated to True.

51



avichawla.substack.com

A Visual Guide To Sampling
Techniques in Machine Learning

When you are dealing with large amounts of data, it is often preferred to draw a
relatively smaller sample and train a model. But any mistakes can adversely affect
the accuracy of your model.
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This makes sampling a critical aspect of training ML models.

Here are a few popularly used techniques that one should know about:

 Simple random sampling: Every data point has an equal probability of being
selected in the sample.

 Cluster sampling (single-stage): Divide the data into clusters and select a
few entire clusters.
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 Cluster sampling (two-stage): Divide the data into clusters, select a few
clusters, and choose points from them randomly.
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 Stratified sampling: Divide the data points into homogenous groups (based
on age, gender, etc.), and select points randomly.

What are some other sampling techniques that you commonly resort to?
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You Were Probably Given Incomplete
Info About A Tuple's Immutability

When we say tuples are immutable, many Python programmers think that the
values inside a tuple cannot change. But this is not true.

The immutability of a tuple is solely restricted to the identity of objects it holds,
not their value.

In other words, say a tuple has two objects with IDs 1 and 2. Immutability says
that the collection of IDs referenced by the tuple (and their order) can never
change.

Yet, there is NO such restriction that the individual objects with

IDs 1 and 2 cannot be modified.
Thus, if the elements inside the tuple are mutable objects, you can indeed modify
them.

And as long as the collection of IDs remains the same, the immutability of a tuple
is not violated.
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This explains the demonstration above. As append is an inplace operation, the
collection of IDs didn't change. Thus, Python didn't raise an error.

We can also verify this by printing the collection of object IDs referenced inside
the tuple before and after the append operation:

As shown above, the IDs pre and post append are the same. Thus, immutability
isn’t violated.
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A Simple Trick That Significantly
Improves The Quality of Matplotlib
Plots

Matplotlib plots often appear dull and blurry, especially when scaled or zoomed.
Yet, here's a simple trick to significantly improve their quality.

Matplotlib plots are rendered as an image by default. Thus, any scaling/zooming
drastically distorts their quality.

Instead, always render your plot as a scalable vector graphic (SVG). As the name
suggests, they can be scaled without compromising the plot's quality.

As demonstrated in the image above, the plot rendered as SVG clearly outshines
and is noticeably sharper than the default plot.
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The following code lets you change the render format to SVG. If the difference is
not apparent in the image above, I would recommend trying it yourself and
noticing the difference.

Alternatively, you can also use the following code:

P.S. If there’s a chance that you don’t know what is being depicted in the bar plot
above, check out this YouTube video by Numberphile.
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A Visual and Overly Simplified Guide
to PCA

Many folks often struggle to understand the core essence of principal component
analysis (PCA), which is widely used for dimensionality reduction. Here's a
simplified visual guide depicting what goes under the hood.

In a gist, while reducing the dimensions, the aim is to retain as much variation in
data as possible.

To begin with, as the data may have correlated features, the first step is to
determine a new coordinate system with orthogonal axes. This is a space where all
dimensions are uncorrelated.
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The above space is determined using the data's eigenvectors.

Next, we find the variance of our data along these uncorrelated axes. The variance
is represented by the corresponding eigenvalues.

Next, we decide the number of dimensions we want our data to have
post-reduction (a hyperparameter), say two. As our aim is to retain as much
variance as possible, we select two eigenvectors with the highest eigenvalues.

Why highest, you may ask? As mentioned above, the variance along an
eigenvector is represented by its eigenvalue. Thus, selecting the top two
eigenvalues ensures we retain the maximum variance of the overall data.

Lastly, the data is transformed using a simple matrix multiplication with the top
two vectors, as shown below:
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After reducing the dimension of the 2D dataset used above, we get the following.

This is how PCA works. I hope this algorithm will never feel daunting again :)
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Supercharge Your Jupyter Kernel
With ipyflow
This is a pretty cool Jupyter hack I learned recently.

While using Jupyter, you must have noticed that when you update a variable, all
its dependent cells have to be manually re-executed.

Also, at times, isn't it difficult to determine the exact sequence of cell executions
that generated an output?

This is tedious and can get time-consuming if the sequence of dependent cells is
long.

To resolve this, try 𝐢𝐩𝐲𝐟𝐥𝐨𝐰. It is a supercharged kernel for Jupyter, which tracks
the relationship between cells and variables.

Thus, at any point, you can obtain the corresponding code to reconstruct any
symbol.

What's more, its magic command enables an automatic recursive re-execution of
dependent cells if a variable is updated.

As shown in the demo above, updating the variable x automatically triggers its
dependent cells.
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Do note that 𝐢𝐩𝐲𝐟𝐥𝐨𝐰 offers a different kernel from the default kernel in Jupyter.
Thus, once you install 𝐢𝐩𝐲𝐟𝐥𝐨𝐰, select the following kernel while launching a new
notebook:

Find more details here: ipyflow.
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A Lesser-known Feature of Creating
Plots with Plotly
Plotly is pretty diverse when it comes to creating different types of charts. While
many folks prefer it for interactivity, you can also use it to create animated plots.

Here's an animated visualization depicting the time taken by light to reach
different planets after leaving the Sun.

Several functions in Plotly support animations using

the animation_frame and animation_group parameters.

The core idea behind creating an animated plot relies on plotting the data one
frame at a time.

For instance, consider we have organized the data frame-by-frame, as shown
below:
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Now, if we invoke the scatter method with the animation_frame argument, it will
plot the data frame-by-frame, giving rise to an animation.

In the above function call, the data corresponding to frame_id=0 will be plotted
first. This will be replaced by the data with frame_id=1 in the next frame, and
so on.

Find the code for this post here: GitHub.
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The Limitation Of Euclidean Distance
Which Many Often Ignore

Euclidean distance is a commonly used distance metric. Yet, its limitations often
make it inapplicable in many data situations.

Euclidean distance assumes independent axes, and the data is somewhat
spherically distributed. But when the dimensions are correlated, euclidean may
produce misleading results.

Mahalanobis distance is an excellent alternative in such cases. It is a multivariate
distance metric that takes into account the data distribution.

As a result, it can measure how far away a data point is from the distribution,
which Euclidean cannot.
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As shown in the image above, Euclidean considers pink and green points
equidistant from the central point. But Mahalanobis distance considers the green
point to be closer, which is indeed true, taking into account the data distribution.

Mahalanobis distance is commonly used in outlier detection tasks. As shown
below, while Euclidean forms a circular boundary for outliers, Mahalanobis,
instead, considers the distribution—producing a more practical boundary.

Essentially, Mahalanobis distance allows the data to construct a coordinate system
for itself, in which the axes are independent and orthogonal.

Computationally, it works as follows:

● Step 1: Transform the columns into uncorrelated variables.

● Step 2: Scale the new variables to make their variance equal to 1.

● Step 3: Find the Euclidean distance in this new coordinate system,
where the data has a unit variance.

So eventually, we do reach Euclidean. However, to use Euclidean, we first
transform the data to ensure it obeys the assumptions.

Mathematically, it is calculated as follows:

● x: rows of your dataset (Shape: n_samples*n_dimensions).

● μ: mean of individual dimensions (Shape: 1*n_dimensions).

● C^-1: Inverse of the covariance matrix
(Shape: n_dimensions*n_dimensions).
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● D^2: Square of the Mahalanobis distance
(Shape: n_samples*n_samples).

Find more info here: Scipy docs.
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Visualising The Impact Of
Regularisation Parameter

Regularization is commonly used to prevent overfitting. The above visual depicts
the decision boundary obtained on various datasets by varying the regularization
parameter.

As shown, increasing the parameter results in a decision boundary with fewer
curvatures. Similarly, decreasing the parameter produces a more complicated
decision boundary.

But have you ever wondered what goes on behind the scenes? Why does
increasing the parameter force simpler decision boundaries?

To understand that, consider the cost function equation below (this is for
regression though, but the idea stays the same for classification).

It is clear that the cost increases linearly with the parameter λ.
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Now, if the parameter is too high, the penalty becomes higher too. Thus, to
minimize its impact on the overall cost function, the network is forced to approach
weights that are closer to zero.

This becomes evident if we print the final weights for one of the models, say one
at the bottom right (last dataset, last model).

Having smaller weights effectively nullifies many neurons, producing a much
simpler network. This prevents many complex transformations, that could have
happened otherwise.
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AutoProfiler: Automatically Profile
Your DataFrame As You Work

Pandas AutoProfiler: Automatically profile Pandas DataFrames at each execution,
without any code.

AutoProfiler is an open-source dataframe analysis tool in jupyter. It reads your
notebook and automatically profiles every dataframe in your memory as you
change them.

In other words, if you modify an existing dataframe, AutoProfiler will
automatically update its corresponding profiling.

Also, if you create a new dataframe (say from an existing dataframe), AutoProfiler
will automatically profile that as well, as shown below:
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Profiling info includes column distribution, summary stats, null stats, and many
more. Moreover, you can also generate the corresponding code, with its export
feature.

Find more info here: GitHub Repo.
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A Little Bit Of Extra Effort Can
Hugely Transform Your Storytelling
Skills

Matplotlib is pretty underrated when it comes to creating professional-looking
plots. Yet, it is totally capable of doing so.

For instance, consider the two plots below.

Yes, both were created using matplotlib. But a bit of formatting makes the second
plot much more informative, appealing, and easy to follow.

The title and subtitle significantly aid the story. Also, the footnote offers extra
important information, which is nowhere to be seen in the basic plot.

Lastly, the bold bar immediately draws the viewer's attention and conveys the
category's importance.

So what's the message here?
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Towards being a good data storyteller, ensure that your plot demands minimal
effort from the viewer. Thus, don’t shy away from putting in that extra effort. This
is especially true for professional environments.

At times, it may be also good to ensure that your visualizations convey the right
story, even if they are viewed in your absence.
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A Nasty Hidden Feature of Python
That Many Programmers Aren't
Aware Of

Mutability in Python is possibly one of the most misunderstood and overlooked
concepts. The above image demonstrates an example that many Python
programmers (especially new ones) struggle to understand.

Can you figure it out? If not, let’s understand it.

The default parameters of a function are evaluated right at the time the function is
defined. In other words, they are not evaluated each time the function is called
(like in C++).

Thus, as soon as a function is defined, the function object stores the default
parameters in its __defaults__ attribute. We can verify this below:
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Thus, if you specify a mutable default parameter in a function and mutate it, you
unknowingly and unintentionally modify the parameter for all future calls to that
function.

This is shown in the demonstration below. Instead of creating a new list at each
function call, Python appends the element to the same copy.
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So what can we do to avoid this?

Instead of specifying a mutable default parameter in a function’s definition,
replace them with None. If the function does not receive a corresponding value
during the function call, create the mutable object inside the function.

This is demonstrated below:

As shown above, we create a new list if the function didn’t receive any value when
it was called. This lets you avoid the unexpected behavior of mutating the same
object.
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Interactively Visualise A Decision Tree
With A Sankey Diagram

In one of my earlier posts, I explained why sklearn's decision trees always overfit

the data with its default parameters (read here if you wish to recall).
To avoid this, it is always recommended to specify appropriate hyperparameter
values. This includes the max depth of the tree, min samples in leaf nodes, etc.

But determining these hyperparameter values is often done using trial-and-error,
which can be a bit tedious and time-consuming.

The Sankey diagram above allows you to interactively visualize the predictions of
a decision tree at each node.

Also, the number of data points from each class is size-encoded on all nodes, as
shown below.
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This immediately gives an estimate of the impurity of the node. Based on this, you
can visually decide to prune the tree.

For instance, in the full decision tree shown below, pruning the tree at a depth of
two appears to be reasonable.

Once you have obtained a rough estimate for these hyperparameter values, you
can train a new decision tree. Next, measure its performance on new data to know
if the decision tree is generalizing or not.
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Use Histograms With Caution. They
Are Highly Misleading!

Histograms are commonly used for data visualization. But, they can be misleading
at times. Here's why.

Histograms divide the data into small bins and represent the frequency of each
bin.

Thus, the choice of the number of bins you begin with can significantly impact its
shape.

The figure above depicts the histograms obtained on the same data, but by altering
the number of bins. Each histogram conveys a different story, even though the
underlying data is the same.

This, at times, can be misleading and may lead you to draw the wrong
conclusions.

The takeaway is NOT that histograms should not be used. Instead, look at the
underlying distribution too. Here, a violin plot and a KDE plot can help.

Violin plot

Similar to box plots, Violin plots also show the distribution of data based on
quartiles. However, it also adds a kernel density estimation to display the density
of data at different values.

81



avichawla.substack.com

This provides a more detailed view of the distribution, particularly in areas with
higher density.

KDE plot

KDE plots use a smooth curve to represent the data distribution, without the need
for binning, as shown below:

As a departing note, always remember that whenever you condense a dataset, you
run the risk of losing important information.

Thus, be mindful of any limitations (and assumptions) of the visualizations you
use. Also, consider using multiple methods to ensure that you are seeing the
whole picture.
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Three Simple Ways To (Instantly)
Make Your Scatter Plots Clutter Free

Scatter plots are commonly used in data visualization tasks. But when you have
many data points, they often get too dense to interpret.

Here are a few techniques (and alternatives) you can use to make your data more
interpretable in such cases.

One of the simplest yet effective ways could be to reduce the marker size. This, at
times, can instantly offer better clarity over the default plot.
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Next, as an alternative to a scatter plot, you can use a density plot, which depicts
the data distribution. This makes it easier to identify regions of high and low
density, which may not be evident from a scatter plot.

Lastly, another better alternative can be a hexbin plot. It bins the chart into
hexagonal regions and assigns a color intensity based on the number of points in
that area.
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A (Highly) Important Point to
Consider Before You Use KMeans
Next Time

The most important yet often overlooked step of KMeans is its centroid
initialization. Here's something to consider before you use it next time.

KMeans selects the initial centroids randomly. As a result, it fails to converge at
times. This requires us to repeat clustering several times with different
initialization.

Yet, repeated clustering may not guarantee that you will soon end up with the
correct clusters. This is especially true when you have many centroids to begin
with.

Instead, KMeans++ takes a smarter approach to initialize centroids.

The first centroid is selected randomly. But the next centroid is chosen based on
the distance from the first centroid.
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In other words, a point that is away from the first centroid is more likely to be
selected as an initial centroid. This way, all the initial centroids are likely to lie in
different clusters already, and the algorithm may converge faster and more
accurately.

The impact is evident from the bar plots shown below. They depict the frequency
of the number of misplaced centroids obtained (analyzed manually) after
training 50 different models with KMeans and KMeans++.

On the given dataset, out of the 50 models, KMeans only produced zero misplaced
centroids once, which is a success rate of just 2%.
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In contrast, KMeans++ never produced any misplaced centroids.

Luckily, if you are using sklearn, you don’t need to worry about the initialization
step. This is because sklearn, by default, resorts to the KMeans++ approach.

However, if you have a custom implementation, do give it a thought.
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Why You Should Avoid Appending
Rows To A DataFrame

As we append more and more rows to a Pandas DataFrame, the append run-time
keeps increasing. Here's why.

A DataFrame is a column-major data structure. Thus, consecutive elements in a
column are stored next to each other in memory.
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As new rows are added, Pandas always wants to preserve its column-major form.

But while adding new rows, there may not be enough space to accommodate them
while also preserving the column-major structure.

In such a case, existing data is moved to a new memory location, where Pandas
finds a contiguous block of memory.

Thus, as the size grows, memory reallocation gets more frequent, and the run time
keeps increasing.

The reason for spikes in this graph may be because a column taking higher
memory was moved to a new location at this point, thereby taking more time to
reallocate, or many columns were shifted at once.

So what can we do to mitigate this?

The increase in run-time solely arises because Pandas is trying to maintain its
column-major structure.

Thus, if you intend to grow a dataframe (row-wise) this frequently, it is better to
first convert the dataframe to another data structure, a dictionary or a numpy array,
for instance.

Carry out the append operations here, and when you are done, convert it back to a
dataframe.

P.S. Adding new columns is not a problem. This is because this operation does not
conflict with other columns.
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Matplotlib Has Numerous Hidden
Gems. Here's One of Them.

One of the best yet underrated and underutilized potentials of matplotlib is
customizability. Here's a pretty interesting thing you can do with it.

By default, matplotlib renders different types of elements (also called artists), like
plots, legend, texts, etc., in a specific order.

But this ordering may not be desirable in all cases, especially when there are
overlapping elements in a plot, or the default rendering is hiding some crucial
details.

With the zorder parameter, you can control this rendering order. As a result, plots
with higher zorder value appear closer to the viewer and are drawn on top of
artists with lower zorder values.
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Lastly, in the above demonstration, if we specify zorder=0 for the line plot, we
notice that it goes behind the grid lines.

You can find more details about zorder here: Matplotlib docs.
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A Counterintuitive Thing About
Python Dictionaries

Despite adding 4 distinct keys to a Python dictionary, can you tell why it only
preserves two of them?

Here’s why.

In Python, dictionaries find a key based on the equivalence of hash (computed
using hash()), but not identity (computed using id()).

In this case, there’s no doubt that 1.0, 1, and True inherently have different
datatypes and are also different objects. This is shown below:
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Yet, as they share the same hash value, the dictionary considers them as the same
keys.

But did you notice that in the demonstration, the final key is 1.0, while the value
corresponds to the key True.
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This is because, at first, 1.0 is added as a key and its value is 'One (float)'.
Next, while adding the key 1, python recognizes it as an equivalence of the hash
value.

Thus, the value corresponding to 1.0 is overwritten by 'One (int)', while the
key (1.0) is kept as is.

Finally, while adding True, another hash equivalence is encountered with an
existing key of 1.0. Yet again, the value corresponding to 1.0, which was updated
to 'One (int)' in the previous step, is overwritten by 'One (bool)'.

I am sure you may have already guessed why the string key ‘1’ is retained.
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Probably The Fastest Way To Execute
Your Python Code

Many Python programmers are often frustrated with Python’s run-time. Here’s
how you can make your code blazingly fast by changing just one line.

Codon is an open-source, high-performance Python compiler. In contrast to being
an interpreter, it compiles your python code to fast machine code.

Thus, post compilation, your code runs at native machine code speed. As a result,

typical speedups are often of the order 50x or more.
According to the official docs, if you know Python, you already know 99% of
Codon. There are very minute differences between the two, which you can read

here: Codon docs.
Find some more benchmarking results between Python and Codon below:
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Are You Sure You Are Using The
Correct Pandas Terminologies?

Many Pandas users use the dataframe subsetting terminologies incorrectly. So let's
spend a minute to get it straight.𝐒𝐔𝐁𝐒𝐄𝐓𝐓𝐈𝐍𝐆 means extracting value(s) from a dataframe. This can be done in
four ways:

1) We call it 𝐒𝐄𝐋𝐄𝐂𝐓𝐈𝐍𝐆 when we extract one or more of its 𝐂𝐎𝐋𝐔𝐌𝐍𝐒 based
on index location or name. The output contains some columns and all rows.
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2) We call it 𝐒𝐋𝐈𝐂𝐈𝐍𝐆 when we extract one or more of its 𝐑𝐎𝐖𝐒 based on index
location or name. The output contains some rows and all columns.

3) We call it 𝐈𝐍𝐃𝐄𝐗𝐈𝐍𝐆 when we extract both 𝐑𝐎𝐖𝐒 and 𝐂𝐎𝐋𝐔𝐌𝐍𝐒 based on
index location or name.

4) We call it 𝐅𝐈𝐋𝐓𝐄𝐑𝐈𝐍𝐆 when we extract 𝐑𝐎𝐖𝐒 and 𝐂𝐎𝐋𝐔𝐌𝐍𝐒 based on
conditions.

Of course, there are many other ways you can perform these four operations.

Here’s a comprehensive Pandas guide I prepared once: Pandas Map. Please refer
to the “DF Subset” branch to read about various subsetting methods :)
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Is Class Imbalance Always A Big
Problem To Deal With?

Addressing class imbalance is often a challenge in ML. Yet, it may not always
cause a problem. Here's why.

One key factor in determining the impact of imbalance is class separability.

As the name suggests, it measures the degree to which two or more classes can be
distinguished or separated from each other based on their feature values.

When classes are highly separable, there is little overlap between their feature
distributions (as shown below). This makes it easier for a classifier to correctly
identify the class of a new instance.
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Thus, despite imbalance, even if your data has a high degree of class separability,
imbalance may not be a problem per se.

To conclude, consider estimating the class separability before jumping to any
sophisticated modeling steps.

This can be done visually or by evaluating imbalance-specific metrics on simple
models.

The figure below depicts the decision boundary learned by a logistic regression
model on the class-separable dataset.
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A Simple Trick That Will Make
Heatmaps More Elegant

Heatmaps often make data analysis much easier. Yet, they can be further enriched
with a simple modification.

A traditional heatmap represents the values using a color scale. Yet, mapping the
cell color to numbers is still challenging.

Embedding a size component can be extremely helpful in such cases. In essence,
the bigger the size, the higher the absolute value.

This is especially useful to make heatmaps cleaner, as many values nearer to zero
will immediately shrink.

In fact, you can represent the size with any other shape. Below, I created the same
heatmap using a circle instead:
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Find the code for this post here: GitHub.
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A Visual Comparison Between
Locality and Density-based Clustering

The utility of KMeans is limited to datasets with spherical clusters. Thus, any
variation is likely to produce incorrect clustering.

Density-based clustering algorithms, such as DBSCAN, can be a better alternative
in such cases.

They cluster data points based on density, making them robust to datasets of
varying shapes and sizes.

The image depicts a comparison of KMeans vs. DBSCAN on multiple datasets.

As shown, KMeans only works well when the dataset has spherical clusters. But
in all other cases, it fails to produce correct clusters.

Find more here: Sklearn Guide.
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Why Don't We Call It Logistic
Classification Instead?

Have you ever wondered why logistic regression is called "regression" when we
only use it for classification tasks? Why not call it "logistic classification" instead?
Here's why.

Most of us interpret logistic regression as a classification algorithm. However, it is
a regression algorithm by nature. This is because it predicts a continuous outcome,
which is the probability of a class.

It is only when we apply those thresholds and change the interpretation of its
output that the whole pipeline becomes a classifier.
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Yet, intrinsically, it is never the algorithm performing the classification. The
algorithm always adheres to regression. Instead, it is that extra step of applying
probability thresholds that classifies a sample.
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A Typical Thing About Decision Trees
Which Many Often Ignore

Although decision trees are simple and intuitive, they always need a bit of extra
caution. Here's what you should always remember while training them.

In sklearn's implementation, by default, a decision tree is allowed to grow until all
leaves are pure. This leads to overfitting as the model attempts to classify every
sample in the training set.

There are various techniques to avoid this, such as pruning and ensembling. Also,
make sure that you tune hyperparameters if you use sklearn's implementation.

This was a gentle reminder as many of us often tend to use sklearn’s
implementations in their default configuration.

It is always a good practice to know what a default implementation is hiding
underneath.
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Always Validate Your Output Variable
Before Using Linear Regression

The effectiveness of a linear regression model largely depends on how well our
data satisfies the algorithm's underlying assumptions.

Linear regression inherently assumes that the residuals (actual-prediction) follow
a normal distribution. One way this assumption may get violated is when your
output is skewed.

As a result, it will produce an incorrect regression fit.

But the good thing is that it can be corrected. One common way to make the
output symmetric before fitting a model is to apply a log transform.

It removes the skewness by evenly spreading out the data, making it look
somewhat normal.

One thing to note is that if the output has negative values, a log transform will
raise an error. In such cases, one can apply translation transformation first on the
output, followed by the log.

108



avichawla.substack.com

A Counterintuitive Fact About Python
Functions

Everything in python is an object instantiated from some class. This also includes
functions, but accepting this fact often feels counterintuitive at first.

Here are a few ways to verify that python functions are indeed objects.

The friction typically arises due to one's acquaintance with other programming
languages like C++ and Java, which work very differently.

However, python is purely an object-oriented programming (OOP) language. You
are always using OOP, probably without even realizing it.
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Why Is It Important To Shuffle Your
Dataset Before Training An ML
Model

ML models may fail to converge for many reasons. Here's one of them which
many folks often overlook.

If your data is ordered by labels, this could negatively impact the model's
convergence and accuracy. This is a mistake that can typically go unnoticed.

In the above demonstration, I trained two neural nets on the same data. Both
networks had the same initial weights, learning rate, and other settings.

However, in one of them, the data was ordered by labels, while in another, it was
randomly shuffled.

As shown, the model receiving a label-ordered dataset fails to converge. However,
shuffling the dataset allows the network to learn from a more representative data
sample in each batch. This leads to better generalization and performance.

In general, it's a good practice to shuffle the dataset before training. This prevents
the model from identifying any label-specific yet non-existing patterns.

In fact, it is also recommended to alter batch-specific data in every epoch.
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The Limitations Of Heatmap That
Are Slowing Down Your Data Analysis

Heatmaps often make data analysis much easier. Yet, they do have some
limitations.

A traditional heatmap does not group rows (and features). Instead, its orientation
is the same as the input. This makes it difficult to visually determine the similarity
between rows (and features).

Clustered heatmaps can be a better choice in such cases. It clusters the rows and
features together to help you make better sense of the data.

They can be especially useful when dealing with large datasets. While a traditional
heatmap will be visually daunting to look at.

However, the groups in a clustered heatmap make it easier to visualize similarities
and identify which rows (and features) go with one another.

To create a clustered heatmap, you can use the 𝐬𝐧𝐬.𝐜𝐥𝐮𝐬𝐭𝐞𝐫𝐦𝐚𝐩() method from
Seaborn. More info here: Seaborn docs.

111

https://bit.ly/cl-htmap


avichawla.substack.com

The Limitation Of Pearson
Correlation Which Many Often
Ignore

Pearson correlation is commonly used to determine the association between two
continuous variables. But many often ignore its assumption.

Pearson correlation primarily measures the LINEAR relationship between two
variables. As a result, even if two variables have a non-linear but monotonic
relationship, Pearson will penalize that.

One great alternative is the Spearman correlation. It primarily assesses the
monotonicity between two variables, which may be linear or non-linear.

What's more, Spearman correlation is also useful in situations when your data is
ranked or ordinal.

112



avichawla.substack.com

Why Are We Typically Advised To Set
Seeds for Random Generators?

From time to time, we advised to set seeds for random numbers before training an
ML model. Here's why.

The weight initialization of a model is done randomly. Thus, any repeated
experiment never generates the same set of numbers. This can hinder the
reproducibility of your model.

As shown above, the same input data gets transformed in many ways by different
neural networks of the same structure.

Thus, before training any model, always ensure that you set seeds so that your
experiment is reproducible later.
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An Underrated Technique To Improve
Your Data Visualizations

At times, ensuring that your plot conveys the right message may require you to
provide additional context. Yet, augmenting extra plots may clutter your whole
visualization.

One great way to provide extra info is by adding text annotations to a plot.

In matplotlib, you can use 𝐚𝐧𝐧𝐨𝐭𝐚𝐭𝐞(). It adds explanatory texts to your plot,
which lets you guide a viewer's attention to specific areas and aid their
understanding.

Find more info here: Matplotlib docs.
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A No-Code Tool to Create Charts and
Pivot Tables in Jupyter

Here's a quick and easy way to create pivot tables, charts, and group data without
writing any code.

PivotTableJS is a drag-n-drop tool for creating pivot tables and interactive charts
in Jupyter. What's more, you can also augment pivot tables with heatmaps for
enhanced analysis.

Find more info here: PivotTableJS.

Watch a video version of this post for enhanced
understanding: Video.
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If You Are Not Able To Code A
Vectorized Approach, Try This.

Although we should never iterate over a dataframe and prefer vectorized code,
what if we are not able to come up with a vectorized solution?

In my yesterday's post on why iterating a dataframe is costly, someone posed a
pretty genuine question. They asked: “Let’s just say you are forced to iterate.
What will be the best way to do so?”

Firstly, understand that the primary reason behind the slowness of iteration is due
to the way a dataframe is stored in memory. (If you wish to recap this, read

yesterday’s post here.)
Being a column-major data structure, retrieving its rows requires accessing
non-contiguous blocks of memory. This increases the run-time drastically.

Yet, if you wish to perform only row-based operations, a quick fix is to convert the
dataframe to a NumPy array.
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NumPy is faster here because, by default, it stores data in a row-major manner.
Thus, its rows are retrieved by accessing contiguous blocks of memory, making it
efficient over iterating a dataframe.

That being said, do note that the best way is to write vectorized code always. Use
the Pandas-to-NumPy approach only when you are truly struggling with writing
vectorized code.
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Why Are We Typically Advised To
Never Iterate Over A DataFrame?

From time to time, we are advised to avoid iterating on a Pandas DataFrame. But
what is the exact reason behind this? Let me explain.

A DataFrame is a column-major data structure. Thus, consecutive elements in a
column are stored next to each other in memory.

As processors are efficient with contiguous blocks of memory, retrieving a column
is much faster than a row.

But while iterating, as each row is retrieved by accessing non-contiguous blocks
of memory, the run-time increases drastically.

In the image above, retrieving over 32M elements of a column was still over 20x
faster than fetching just nine elements stored in a row.
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Manipulating Mutable Objects In
Python Can Get Confusing At Times

Did you know that with mutable objects, “𝐚 +=” and “𝐚 = 𝐚 +” work differently in
Python? Here's why.

Let's consider a list, for instance.

When we use the = operator, Python creates a new object in memory and assigns it
to the variable.

Thus, all the other variables still reference the previous memory location, which
was never updated. This is shown in Method1.py above.

But with the += operator, changes are enforced in-place. This means that Python
does not create a new object and the same memory location is updated.

Thus, changes are visible through all other variables that reference the same
location. This is shown in Method2.py above.

We can also verify this by comparing the 𝐢𝐝() pre-assignment and
post-assignment.
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With “𝐚 = 𝐚 +”, the 𝐢𝐝 gets changed, indicating that Python created a new object.
However, with “𝐚 +=”, 𝐢𝐝 stays the same. This indicates that the same memory
location was updated.
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This Small Tweak Can Significantly
Boost The Run-time of KMeans

KMeans is a popular but high-run-time clustering algorithm. Here's how a small
tweak can significantly improve its run time.

KMeans selects the initial centroids randomly. As a result, it fails to converge at
times. This requires us to repeat clustering several times with different
initialization.

Instead, KMeans++ takes a smarter approach to initialize centroids. The first
centroid is selected randomly. But the next centroid is chosen based on the
distance from the first centroid.

In other words, a point that is away from the first centroid is more likely to be
selected as an initial centroid. This way, all the initial centroids are likely to lie in
different clusters already and the algorithm may converge faster.
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The illustration below shows the centroid initialization of KMeans++:
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Most Python Programmers Don't
Know This About Python OOP

Most python programmers misunderstand the __𝐢𝐧𝐢𝐭__() method. They think that
it creates a new object. But that is not true.

When we create an object, it is not the __𝐢𝐧𝐢𝐭__() method that allocates memory
to it. As the name suggests, __𝐢𝐧𝐢𝐭__() only assigns value to an object's attributes.
Instead, Python invokes the __𝐧𝐞𝐰__() method first to create a new object and
allocate memory to it. But how is that useful, you may wonder? There are many
reasons.

For instance, by implementing the __𝐧𝐞𝐰__() method, you can apply data
checks. This ensures that your program allocates memory only when certain
conditions are met.

Other common use cases involve defining singleton classes (classes with only one
object), creating subclasses of immutable classes such as tuples, etc.
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Who Said Matplotlib Cannot Create
Interactive Plots?

Please watch a video version of this post for better understanding: Video Link.

In most cases, Matplotlib is used to create static plots. But very few know that it
can create interactive plots too. Here's how.

By default, Matplotlib uses the 𝐢𝐧𝐥𝐢𝐧𝐞 mode, which renders static plots. However,
with the %𝐦𝐚𝐭𝐩𝐥𝐨𝐭𝐥𝐢𝐛 𝐰𝐢𝐝𝐠𝐞𝐭 magic command, you can enable interactive
backend for Matplotlib plots.

What's more, its 𝐰𝐢𝐝𝐠𝐞𝐭𝐬 module offers many useful widgets. You can integrate
them with your plots to make them more elegant.

Find a detailed guide here: Matplotlib widgets.

124

https://www.linkedin.com/feed/update/urn:li:ugcPost:7038823248310001664/
https://bit.ly/mat-widgets


avichawla.substack.com

Don't Create Messy Bar Plots.
Instead, Try Bubble Charts!

Bar plots often get incomprehensible and messy when we have many categories to
plot.

A bubble chart can be a better choice in such cases. They are like scatter plots but
with one categorical and one continuous axis.

Compared to a bar plot, they are less cluttered and offer better comprehension.

Of course, the choice of plot ultimately depends on the nature of the data and the
specific insights you wish to convey.

Which plot do you typically prefer in such situations?
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You Can Add a List As a Dictionary's
Key (Technically)!

Python raises an error whenever we add a list as a dictionary's key. But do you
know the technical reason behind it? Here you go.

Firstly, understand that everything in Python is an object instantiated from some
class. Whenever we add an object as a dict's key, Python invokes the __𝐡𝐚𝐬𝐡__
function of that object's class.

While classes of int, str, tuple, frozenset, etc. implement the __𝐡𝐚𝐬𝐡__ method, it
is missing from the list class. That is why we cannot add a list as a dictionary's
key.

Thus, technically if we extend the list class and add this method, a list can be
added as a dictionary's key.

While this makes a list hashable, it isn't recommended as it can lead to unexpected
behavior in your code.
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Most ML Folks Often Neglect This
While Using Linear Regression

The effectiveness of a linear regression model is determined by how well the data
conforms to the algorithm's underlying assumptions.

One highly important, yet often neglected assumption of linear regression is
homoscedasticity.

A dataset is homoscedastic if the variability of residuals (=actual-predicted) stays
the same across the input range.

In contrast, a dataset is heteroscedastic if the residuals have non-constant variance.

Homoscedasticity is extremely critical for linear regression. This is because it
ensures that our regression coefficients are reliable. Moreover, we can trust that
the predictions will always stay within the same confidence interval.
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35 Hidden Python Libraries That Are
Absolute Gems

I reviewed 1,000+ Python libraries and discovered these hidden gems I never
knew even existed.

Here are some of them that will make you fall in love with Python and its
versatility (even more).

Read this full list here:

https://avichawla.substack.com/p/35-gem-py-libs.
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Use Box Plots With Caution! They
May Be Misleading.

Box plots are quite common in data analysis. But they can be misleading at times.
Here's why.

A box plot is a graphical representation of just five numbers – min, first quartile,
median, third quartile, and max.

Thus, two different datasets with similar five values will produce identical box
plots. This, at times, can be misleading and one may draw wrong conclusions.

The takeaway is NOT that box plots should not be used. Instead, look at the
underlying distribution too. Here, histograms and violin plots can help.

Lastly, always remember that when you condense a dataset, you don't see the
whole picture. You are losing essential information.
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An Underrated Technique To Create
Better Data Plots

While creating visualizations, there are often certain parts that are particularly
important. Yet, they may not be immediately obvious to the viewer.

A good data storyteller will always ensure that the plot guides the viewer's
attention to these key areas.

One great way is to zoom in on specific regions of interest in a plot. This ensures
that our plot indeed communicates what we intend it to depict.

In matplotlib, you can do so using 𝐢𝐧𝐝𝐢𝐜𝐚𝐭𝐞_𝐢𝐧𝐬𝐞𝐭_𝐳𝐨𝐨𝐦(). It adds an indicator
box, that can be zoomed-in for better communication.

Find more info here: Matplotlib docs.
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The Pandas DataFrame Extension
Every Data Scientist Has Been
Waiting For

Watch a video version of this post for better understanding: Video Link.
PyGWalker is an open-source alternative to Tableau that transforms pandas
dataframe into a tableau-style user interface for data exploration.

It provides a tableau-like UI in Jupyter, allowing you to analyze data faster and
without code.

Find more info here: PyGWalker.
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Supercharge Shell With Python Using
Xonsh

Traditional shells have a limitation for python users. At a time, users can either
run shell commands or use IPython.

As a result, one has to open multiple terminals or switch back and forth between
them in the same terminal.

Instead, try Xonsh. It combines the convenience of a traditional shell with the
power of Python. Thus, you can use Python syntax as well as run shell commands
in the same shell.

Find more info here: Xonsh.
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Most Command-line Users Don't
Know This Cool Trick About Using
Terminals

Watch a video version of this post for better
understanding: Video Link.
After running a command (or script, etc.), most command-line users open a new
terminal to run other commands. But that is never required.

Here's how.

When we run a program from the command line, by default, it runs in the
foreground. This means you can't use the terminal until the program has been
completed.

However, if you add '&' at the end of the command, the program will run in the
background and instantly free the terminal.

This way, you can use the same terminal to run another command.

To bring the program back to the foreground, use the 'fg' command.
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A Simple Trick to Make The Most Out
of Pivot Tables in Pandas

Pivot tables are pretty common for data exploration. Yet, analyzing raw figures is
tedious and challenging. What's more, one may miss out on some crucial insights
about the data.

Instead, enrich your pivot tables with heatmaps. The color encodings make it
easier to analyze the data and determine patterns.
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Why Python Does Not Offer True
OOP Encapsulation

Using access modifiers (public, protected, and private) is fundamental to
encapsulation in OOP. Yet, Python, in some way, fails to deliver true
encapsulation.

By definition, a public member is accessible everywhere. A private member can
only be accessed inside the base class. A protected member is accessible inside
the base class and child class(es).

But, with Python, there are no such strict enforcements.

Thus, protected members behave exactly like public members. What's more,
private members can be accessed outside the class using name mangling.

As a programmer, remember that encapsulation in Python mainly relies on
conventions. Thus, it is the responsibility of the programmer to follow them.
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Never Worry About Parsing Errors
Again While Reading CSV with
Pandas

Pandas isn't smart (yet) to read messy CSV files.

Its read_csv method assumes the data source to be in a standard tabular format.
Thus, any irregularity in data raises parsing errors, which may require manual
intervention.

Instead, try CleverCSV. It detects the format of CSVs and makes it easier to load
them, saving you tons of time.

Find more info here: CleverCSV.
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An Interesting and Lesser-Known
Way To Create Plots Using Pandas

Whenever you print/display a DataFrame in Jupyter, it is rendered using HTML
and CSS. This allows us to format the output just like any other web page.

One interesting way is to embed inline plots which appear as a column of a
dataframe.

In the above snippet, we first create a plot as we usually do. Next, we return the
<img> HTML tag with its source as the plot. Lastly, we render the dataframe as
HTML.

Find the code for this tip here: Notebook.
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Most Python Programmers Don't
Know This About Python For-loops

Often when we use a for-loop in Python, we tend not to modify the loop variable
inside the loop.

The impulse typically comes from acquaintance with other programming
languages like C++ and Java.

But for-loops don't work that way in Python. Modifying the loop variable has no
effect on the iteration.

This is because, before every iteration, Python unpacks the next item provided by
iterable (𝐫𝐚𝐧𝐠𝐞(5)) and assigns it to the loop variable (𝐧𝐮𝐦).

Thus, any changes to the loop variable are replaced by the new value coming from
the iterable.
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How To Enable Function Overloading
In Python

Python has no native support for function overloading. Yet, there's a quick
solution to it.

Function overloading (having multiple functions with the same name but different
number/type of parameters) is one of the core ideas behind polymorphism in OOP.

But if you have many functions with the same name, python only considers the
latest definition. This restricts writing polymorphic code.

Despite this limitation, the dispatch decorator allows you to leverage function
overloading.

Find more info here: Multipledispatch.
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Generate Helpful Hints As You Write
Your Pandas Code

When manipulating a dataframe, at times, one may be using unoptimized
methods. What's more, errors introduced into the data can easily go unnoticed.

To get hints and directions about your data/code, try Dovpanda. It works as a
companion for your Pandas code. As a result, it gives suggestions/warnings about
your data manipulation steps.

P.S. When you will import Dovpanda, you will likely get an error. Ignore it and
proceed with using Pandas. You will still receive suggestions from Dovpanda.

Find more info here: Dovpandas.
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Speedup NumPy Methods 25x With
Bottleneck

NumPy's methods are already highly optimized for performance. Yer, here's how
you can further speed them up.

Bottleneck provides a suite of optimized implementations of NumPy methods.

Bottleneck is especially efficient for arrays with NaN values where performance
boost can reach up to 100-120x.

Find more info here: Bottleneck.
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Visualizing The Data Transformation
of a Neural Network

If you struggle to comprehend how a neural network learns complex non-linear
data, I have created an animation that will surely help.

Please find the video here: Neural Network Animation.
For linearly inseparable data, the task boils down to projecting the data to a space
where it becomes linearly separable.

Now, either you could do this manually by adding relevant features that will
transform your data to a linear separable form. Consider concentric circles for
instance. Passing a square of (x,y) coordinates as a feature will do this job.

But in most cases, the transformation is unknown or complex to figure out. Thus,
non-linear activation functions are considered the best bet, and a neural network is
allowed to figure out this "non-linear to linear transformation" on its own.

As shown in the animation, if we tweak the neural network by adding a 2D layer
right before the output, and visualize this transformation, we see that the neural
network has learned to linearly separate the data. We add a layer 2D because it is
easy to visualize.

This linearly separable data can be easily classified by the last layer. To put it
another way, the last layer is analogous to a logistic regression model which is
given a linear separable input.

The code for this visualization experiment is available here: GitHub.
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Never Refactor Your Code Manually
Again. Instead, Use Sourcery!

Refactoring code is an important step in pipeline development. Yet, manual
refactoring takes additional time for testing as one might unknowingly introduce
errors.

Instead, use Sourcery. It's an automated refactoring tool that makes your code
elegant, concise, and Pythonic in no time.

With Sourcery, you can refactor code from the command line, as an IDE plugin in
VS Code and PyCharm, pre-commit, etc.

Find more info here: Sourcery.
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Draw The Data You Are Looking For
In Seconds

Please watch a video version of this post for better understanding: Video
Link.
Often when you want data of some specific shape, programmatically generating it
can be a tedious and time-consuming task.

Instead, use drawdata. This allows you to draw any 2D dataset in a notebook and
export it. Besides a scatter plot, it can also create histogram and line plot

Find more info here: Drawdata.
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Style Matplotlib Plots To Make Them
More Attractive

Matplotlib offers close to 50 different styles to customize the plot's appearance.

To alter the plot's style, select a style from 𝐩𝐥𝐭.𝐬𝐭𝐲𝐥𝐞.𝐚𝐯𝐚𝐢𝐥𝐚𝐛𝐥𝐞 and create the
plot as you originally would.

Find more info about styling here: Docs.
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Speed-up Parquet I/O of Pandas by 5x

Dataframes are often stored in parquet files and read using Pandas'𝐫𝐞𝐚𝐝_𝐩𝐚𝐫𝐪𝐮𝐞𝐭() method.
Rather than using Pandas, which relies on a single-core, use fastparquet. It offers
immense speedups for I/O on parquet files using parallel processing.

Find more info here: Docs.

146

https://bit.ly/fastparquet


avichawla.substack.com

40 Open-Source Tools to Supercharge
Your Pandas Workflow

Pandas receives over 3M downloads per day. But 99% of its users are not
using it to its full potential.

I discovered these open-source gems that will immensely supercharge your
Pandas workflow the moment you start using them.

Read this list here:
https://avichawla.substack.com/p/37-open-source-tools-to-supercharge-pandas.
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Stop Using The Describe Method in
Pandas. Instead, use Skimpy.

Supercharge the describe method in Pandas.

Skimpy is a lightweight tool for summarizing Pandas dataframes. In a single line
of code, it generates a richer statistical summary than the describe() method.

What's more, the summary is grouped by datatypes for efficient analysis. You can
use Skimpy from the command line too.

Find more info here: Docs.
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The Right Way to Roll Out Library
Updates in Python

While developing a library, authors may decide to remove some
functions/methods/classes. But instantly rolling the update without any prior
warning isn't a good practice.

This is because many users may still be using the old methods and they may need
time to update their code.

Using the 𝐝𝐞𝐩𝐫𝐞𝐜𝐚𝐭𝐞𝐝 decorator, one can convey a warning to the users about
the update. This allows them to update their code before it becomes outdated.

Find more info here: GitHub.
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Simple One-Liners to Preview a
Decision Tree Using Sklearn

If you want to preview a decision tree, sklearn provides two simple methods to do
so.

1. 𝐩𝐥𝐨𝐭_𝐭𝐫𝐞𝐞 creates a graphical representation of a decision tree.
2. 𝐞𝐱𝐩𝐨𝐫𝐭_𝐭𝐞𝐱𝐭 builds a text report showing the rules of a decision tree.
This is typically used to understand the rules learned by a decision tree and
gaining a better understanding of the behavior of a decision tree model.
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Stop Using The Describe Method in
Pandas. Instead, use Summarytools.

Summarytools is a simple EDA tool that gives a richer summary than describe()
method. In a single line of code, it generates a standardized and comprehensive
data summary.

The summary includes column statistics, frequency, distribution chart, and
missing stats.

Find more info here: Summary Tools.
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Never Search Jupyter Notebooks
Manually Again To Find Your Code

Have you ever struggled to recall the specific Jupyter notebook in which you
wrote some code? Here's a quick trick to save plenty of manual work and time.

nbcommands provides a bunch of commands to interact with Jupyter from the
terminal.

For instance, you can search for code, preview a few cells, merge notebooks, and
many more.

Find more info here: GitHub.
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F-strings Are Much More Versatile
Than You Think

Here are 6 lesser-known ways to format/convert a number using f-strings. What is
your favorite f-string hack?
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Is This The Best Animated Guide To
KMeans Ever?

Have you ever struggled with understanding KMeans? How it works, how are the
data points assigned to a centroid, or how do the centroids move?

If yes, let me help.

I created a beautiful animation using Manim to help you build an intuitive
understanding of the algorithm.

Please find this video here: Video Link.
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An Effective Yet Underrated
Technique To Improve Model
Performance

Robust ML models are driven by diverse training data. Here's a simple yet highly
effective technique that can help you create a diverse dataset and increase model
performance.

One way to increase data diversity is using data augmentation.

The idea is to create new samples by transforming the available samples. This can
prevent overfitting, improve performance, and build robust models.

For images, you can use imgaug (linked in comments). It provides a variety of
augmentation techniques such as flipping, rotating, scaling, adding noise to
images, and many more.

Find more info: Imgaug.
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Create Data Plots Right From The
Terminal

Visualizing data can get tough when you don't have access to a GUI. But here's
what can help.

Bashplotlib offers a quick and easy way to make basic plots right from the
terminal. Being pure python, you can quickly install it anywhere using pip and
visualize your data.

Find more info here: Bashplotlib.
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Make Your Matplotlib Plots More
Professional

The default matplotlib plots are pretty basic in style and thus, may not be the apt
choice always. Here's how you can make them appealing.

To create professional-looking and attractive plots for presentations, reports, or
scientific papers, try Science Plots.

Adding just two lines of code completely transforms the plot's appearance.

Find more info here: GitHub.
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37 Hidden Python Libraries That Are
Absolute Gems

I reviewed 1,000+ Python libraries and discovered these hidden gems I never
knew even existed.

Here are some of them that will make you fall in love with Python' and its
versatility (even more).

Read this list here: https://avichawla.substack.com/p/gem-libraries.
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Preview Your README File Locally
In GitHub Style

Please watch a video version for better understanding: Video Link.
Have you ever wanted to preview a README file before committing it to
GitHub? Here's how to do it.

Grip is a command-line tool that allows you to render a README file as it will
appear on GitHub. This is extremely useful as sometimes one may want to
preview the file before pushing it to GitHub.

What's more, editing the README instantly reflects in the browser without any
page refresh.

Read more: Grip.
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Pandas and NumPy Return Different
Values for Standard Deviation. Why?

Pandas assumes that the data is a sample of the population and that the obtained
result can be biased towards the sample.

Thus, to generate an unbiased estimate, it uses (n-1) as the dividing factor instead
of n. In statistics, this is also known as Bessel's correction.

NumPy, however, does not make any such correction.

Find more info here: Bessel’s correction.
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Visualize Commit History of Git Repo
With Beautiful Animations

As the size of your project grows, it can get difficult to comprehend the Git tree.

Git-story is a command line tool to create elegant animations for your git
repository.

It generates a video that depicts the commits, branches, merges, HEAD commit,
and many more. Find more info in the comments.

Please watch a video version of this post here: Video.
Read more: Git-story.
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Perfplot: Measure, Visualize and
Compare Run-time With Ease

Here's an elegant way to measure the run-time of various Python functions.

Perfplot is a tool designed for quick run-time comparisons of many
functions/algorithms.

It extends Python's timeit package and allows you to quickly visualize the
run-time in a clear and informative way.

Find more info: Perfplot.
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This GUI Tool Can Possibly Save You
Hours Of Manual Work

Please watch a video version of this post for better understanding: Link.
This is indeed one of the coolest and most useful Jupyter notebook-based data
science tools.

Visual Python is a GUI-based python code generator. Using this, you can easily
eliminate writing code for many repetitive tasks. This includes importing libraries,
I/O, Pandas operations, plotting, etc.

Moreover, with the click of a couple of buttons, you can import the code for many
ML-based utilities. This covers sklearn models, evaluation metrics, data splitting
functions, and many more.

Read more: Visual Python.

163

https://www.linkedin.com/feed/update/urn:li:activity:7024696963556093953/
https://bit.ly/visual-py


avichawla.substack.com

How Would You Identify Fuzzy
Duplicates In A Data With Million
Records?

Imagine you have over a million records with fuzzy duplicates. How would you
identify potential duplicates?

The naive approach of comparing every pair of records is infeasible in such cases.
That's over 10^12 comparisons (n^2). Assuming a speed of 10,000 comparisons
per second, it will take roughly 3 years to complete.

The csvdedupe tool (linked in comments) solves this by cleverly reducing the
comparisons. For instance, comparing the name “Daniel” to “Philip” or
“Shannon” to “Julia” makes no sense. They are guaranteed to be distinct records.

Thus, it groups the data into smaller buckets based on rules. One rule could be to
group all records with the same first three letters in the name.
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This way, it drastically reduces the number of comparisons with great accuracy.

Read more: csvdedupe.
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Stop Previewing Raw DataFrames.
Instead, Use DataTables.

After loading any dataframe in Jupyter, we preview it. But it hardly tells anything
about the data.

One has to dig deeper by analyzing it, which involves simple yet repetitive code.

Instead, use Jupyter-DataTables.
It supercharges the default preview of a DataFrame with many common
operations. This includes sorting, filtering, exporting, plotting column distribution,
printing data types, and pagination.

Please view a video version here for better understanding: Post Link.
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A Single Line That Will Make
Your Python Code Faster

If you are frustrated with Python's run-time, here's how a single line can make
your code blazingly fast.

Numba is a just-in-time (JIT) compiler for Python. This means that it takes your
existing python code and generates a fast machine code (at run-time).

Thus, post compilation, your code runs at native machine code speed. Numba
works best on code that uses NumPy arrays and functions, and loops.

Get Started: Numba Guide.
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Prettify Word Clouds In Python

If you use word clouds often, here's a quick way to make them prettier.

In Python, you can easily alter the shape and color of a word cloud. By supplying
a mask image, the resultant world cloud will take its shape and appear fancier.

Find more info here: Notebook Link.
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How to Encode Categorical Features
With Many Categories?

We often encode categorical columns with one-hot encoding. But the feature
matrix becomes sparse and unmanageable with many categories.

The category-encoders library provides a suite of encoders specifically for
categorical variables. This makes it effortless to experiment with various encoding
techniques.

For instance, I used its binary encoder above to represent a categorical column in
binary format.

Read more: Documentation.
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Calendar Map As A Richer
Alternative to Line Plot

Ever seen one of those calendar heat maps? Here's how you can create one in two
lines of Python code.

A calendar map offers an elegant way to visualize daily data. At times, they are
better at depicting weekly/monthly seasonality in data instead of line plots. For
instance, imagine creating a line plot for “Work Group Messages” above.

To create one, you can use "plotly_calplot". Its input should be a DataFrame. A
row represents the value corresponding to a date.

Read more: Plotly Calplot.
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10 Automated EDA Tools That Will
Save You Hours Of (Tedious) Work

Most steps in a data analysis task stay the same across projects. Yet, manually
digging into the data is tedious and time-consuming, which inhibits productivity.

Here are 10 EDA tools that automate these repetitive steps and profile your data in
seconds.

Please find this full document in my LinkedIn
post: Post Link.
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Why KMeans May Not Be The Apt
Clustering Algorithm Always

KMeans is a popular clustering algorithm. Yet, its limitations make it inapplicable
in many cases.

For instance, KMeans clusters the points purely based on locality from centroids.
Thus, it can create wrong clusters when data points have arbitrary shapes.

Among the many possible alternatives is DBSCAN, which is a density-based
clustering algorithm. Thus, it can identify clusters of arbitrary shape and size.

This makes it robust to data with non-spherical clusters and varying densities.
Find more info in the comments.

Find more here: Sklearn Guide.
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Converting Python To LaTeX Has
Possibly Never Been So Simple

If you want to display python code and its output as LaTeX, try latexify_py. With
this, you can print python code as a LaTeX expression and make your code more
interpretable.

What’s more, it can also generate LaTeX code for python code. This saves plenty
of time and effort of manually writing the expressions in LaTeX.

Find more info here: Repository.
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Density Plot As A Richer Alternative
to Scatter Plot

Scatter plots are extremely useful for visualizing two sets of numerical variables.
But when you have, say, thousands of data points, scatter plots can get too dense
to interpret.

A density plot can be a good choice in such cases. It depicts the distribution of
points using colors (or contours). This makes it easy to identify regions of high
and low density.

Moreover, it can easily reveal clusters of data points that might not be obvious in a
scatter plot.

Read more: Docs.
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30 Python Libraries to (Hugely) Boost
Your Data Science Productivity

Here's a collection of 30 essential open-source data science libraries. Each has its
own use case and enormous potential to skyrocket your data science skills.

I would love to know the ones you use.

Please find this full document in my LinkedIn post: Post Link.
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Sklearn One-liner to Generate
Synthetic Data

Often for testing/building a data pipeline, we may need some dummy data.

With Sklearn, you can easily create a dummy dataset for regression, classification,
and clustering tasks.

More info here: Sklearn Docs.
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Label Your Data With The Click Of A
Button

Often with unlabeled data, one may have to spend some time annotating/labeling
it.

To do this quickly in a jupyter notebook, use 𝐢𝐩𝐲𝐚𝐧𝐧𝐨𝐭𝐚𝐭𝐞. With this, you can
annotate your data by simply clicking the corresponding button.

Read more: ipyannotate.

Watch a video version of this post on LinkedIn: Post Link.
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Analyze A Pandas DataFrame
Without Code

If you want to analyze your dataframe in a GUI-based application, try Pandas
GUI. It provides an elegant GUI for viewing, filtering, sorting, describing tabular
datasets, etc.

What's more, using its intuitive drag-and-drop functionality, you can easily create
a variety of plots and export them as code.

Watch a video version of this post on LinkedIn: Post Link.

178

https://www.linkedin.com/feed/update/urn:li:activity:7019618604878868480/


avichawla.substack.com

Python One-Liner To Create Sketchy
Hand-drawn Plots

xkcd comic is known for its informal and humorous style, as well as its stick
figures and simple drawings.

Creating such visually appealing hand-drawn plots is pretty simple using
matplotlib. Just indent the code in a 𝐩𝐥𝐭.𝐱𝐤𝐜𝐝() context to display them in comic
style.

Do note that this style is just used to improve the aesthetics of a plot through
hand-drawn effects. However, it is not recommended for formal presentations,
publications, etc.

Read more: Docs.
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70x Faster Pandas By Changing Just
One Line of Code

It is challenging to work on large datasets in Pandas. This, at times, requires
plenty of optimization and can get tedious as the dataset grows further.

Instead, try Modin. It delivers instant improvements with no extra effort. Change
the import statement and use it like the Pandas API, with significant speedups.
Find more info in the comments.

Read more: Modin Guide.
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An Interactive Guide To Master
Pandas In One Go

Here’s a mind map illustrating Pandas Methods on one page. How many do you
know :)

Load/Save

DataFrame info

Filter

Merge

Time-series

Plot

and many more, in a single map.

Find the full diagram here: Pandas Mind Map.
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Make Dot Notation More Powerful in
Python

Dot notation offers a simple and elegant way to access and modify the attributes of
an instance.

Yet, it is a good programming practice to use the getter and setter method for such
purposes. This is because it offers more control over how attributes are
accessed/changed.

To leverage both in Python, use the @𝐩𝐫𝐨𝐩𝐞𝐫𝐭𝐲 decorator. As a result, you can
use the dot notation and still have explicit control over how attributes are
accessed/set.
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The Coolest Jupyter Notebook Hack

Have you ever forgotten to assign the results to a variable in Jupyter? Rather than
recomputing the result by rerunning the cell, here are three ways to retrieve the
output.

1) Use the underscore followed by the output-cell-index.

2/3) Use the 𝐎𝐮𝐭 or _𝐨𝐡 dict and specify the output-cell-index as the key.
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Create a Moving Bubbles Chart in
Python

Ever seen one of those moving points charts? Here's how you can create one in
Python in just three lines of code.

A Moving Bubbles chart is an elegant way to depict the movements of entities
across time. Using this, we can easily determine when clusters appear in our data
and at what state(s).

To create one, you can use "d3blocks”. Its input should be a DataFrame. A row
represents the state of a sample at a particular timestamp.
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Skorch: Use Scikit-learn API on
PyTorch Models

skorch is a high-level library for PyTorch that provides full Scikit-learn
compatibility. In other words, it combines the power of PyTorch with the elegance
of sklearn.

Thus, you can train PyTorch models in a way similar to Scikit-learn, using
functions such as fit, predict, score, etc.

Using skorch, you can also put a PyTorch model in the sklearn pipeline, and many
more.

Overall, it aims at being as flexible as PyTorch while having a clean interface as
sklearn.

Read more: Documentation.
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Reduce Memory Usage Of A Pandas
DataFrame By 90%

By default, Pandas always assigns the highest memory datatype to its columns.
For instance, an integer-valued column always gets the int64 datatype, irrespective
of its range.

To reduce memory usage, represent it using an optimized datatype, which is
enough to span the range of values in your columns.

Read this blog for more info. It details many techniques to optimize the
memory usage of a Pandas DataFrame.
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An Elegant Way To Perform
Shutdown Tasks in Python

Often towards the end of a program's execution, we run a few basic tasks such as
saving objects, printing logs, etc.

To invoke a method right before the interpreter is shutting down, decorate it with
the @𝐚𝐭𝐞𝐱𝐢𝐭.𝐫𝐞𝐠𝐢𝐬𝐭𝐞𝐫 decorator.
The good thing is that it works even if the program gets terminated unexpectedly.
Thus, you can use this method to save the state of the program or print any
necessary details before it stops.

Read more: Documentation.
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Visualizing Google Search Trends of
2022 using Python

If your data has many groups, visualizing their distribution together can create
cluttered plots. This makes it difficult to visualize the underlying patterns.

Instead, consider plotting the distribution across individual groups using
FacetGrid. This allows you to compare the distributions of multiple groups side by
side and see how they vary.

As shown above, a FacetGrid allows us to clearly see how different search terms
trended across 2022.

P.S. I used the year-in-search-trends repository to fetch the trend data.
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Create A Racing Bar Chart In Python

Ever seen one of those racing bar charts? Here's how you can create one in Python
in just two lines of code.

A racing bar chart is typically used to depict the progress of multiple values over
time.

To create one, you can use the "𝐛𝐚𝐫-𝐜𝐡𝐚𝐫𝐭-𝐫𝐚𝐜𝐞" library.
Its input should be a Pandas DataFrame where every row represents a single
timestamp. The column holds the corresponding values for a particular category.

Read more: Documentation.
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Speed-up Pandas Apply 5x with
NumPy

While creating conditional columns in Pandas, we tend to use the 𝐚𝐩𝐩𝐥𝐲() method
almost all the time.

However, 𝐚𝐩𝐩𝐥𝐲() in Pandas is nothing but a glorified for-loop. As a result, it
misses the whole point of vectorization.

Instead, you should use the 𝐧𝐩.𝐬𝐞𝐥𝐞𝐜𝐭() method to create conditional columns. It
does the same job but is extremely fast.

The conditions and the corresponding results are passed as the first two
arguments. The last argument is the default result.

Read more here: NumPy docs.
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A No-Code Online Tool To Explore
and Understand Neural Networks

Neural networks can be intimidating for beginners. Also, experimenting
programmatically does not provide enough intuitive understanding about them.

Instead, try TensorFlow Playground. Its elegant UI allows you to build, train and
visualize neural networks without any code.

With a few clicks, one can see how neural networks work and how different
hyperparameters affect their performance. This makes it especially useful for
beginners.

Try here: Tensorflow Playground.
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What Are Class Methods and When
To Use Them?

Class methods, as the name suggests, are bound to the class and not the instances
of a class. They are especially useful for providing an alternative interface for
creating instances.

Moreover, they can be also used to define utility functions that are related to the
class rather than its instances.

For instance, one can define a class method that returns a list of all instances of the
class. Another use could be to calculate a class-level statistic based on the
instances.

To define a class method in Python, use the @𝐜𝐥𝐚𝐬𝐬𝐦𝐞𝐭𝐡𝐨𝐝 decorator. As a
result, this method can be called directly using the name of the class.
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Make Sklearn KMeans 20x times
faster

The KMeans algorithm is commonly used to cluster unlabeled data. But with large
datasets, scikit-learn takes plenty of time to train and predict.

To speed-up KMeans, use Faiss by Facebook AI Research. It provides faster
nearest-neighbor search and clustering.

Faiss uses "Inverted Index", an optimized data structure to store and index the data
points. This makes performing clustering extremely efficient.

Additionally, Faiss provides parallelization and GPU support, which further
improves the performance of its clustering algorithms.

Read more: GitHub.
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Speed-up NumPy 20x with Numexpr

Numpy already offers fast and optimized vectorized operations. Yet, it does not
support parallelism. This provides further scope for improving the run-time of
NumPy.

To do so, use Numexpr. It allows you to speed up numerical computations with
multi-threading and just-in-time compilation.

Depending upon the complexity of the expression, the speed-ups can range from
0.95x and 20x. Typically, it is expected to be 2x-5x.

Read more: Documentation.
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A Lesser-Known Feature of Apply
Method In Pandas

After applying a method on a DataFrame, we often return multiple values as a
tuple. This requires additional steps to project it back as separate columns.

Instead, with the result_type argument, you can control the shape and output type.
As desired, the output can be either a DataFrame or a Series.
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An Elegant Way To Perform Matrix
Multiplication

Matrix multiplication is a common operation in machine learning. Yet, chaining
repeated multiplications using𝐦𝐚𝐭𝐦𝐮𝐥 function makes the code cluttered and
unreadable.

If you are using NumPy, you can instead use the @ operator to do the same.
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Create Pandas DataFrame from
Dataclass

A Pandas DataFrame is often created from a Python list, dictionary, by reading
files, etc. However, did you know you can also create a DataFrame from a
Dataclass?

The image demonstrates how you can create a DataFrame from a list of dataclass
objects.
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Hide Attributes While Printing A
Dataclass Object

By default, a dataclass prints all the attributes of an object declared during its
initialization.

But if you want to hide some specific attributes, declare 𝐫𝐞𝐩𝐫=𝐅𝐚𝐥𝐬𝐞 in its field,
as shown above.
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List : Tuple :: Set : ?

Dictionaries in Python require their keys to be immutable. As a result, a set cannot
be used as keys as it is mutable.

Yet, if you want to use a set, consider declaring it as a frozenset.

It is an immutable set, meaning its elements cannot be changed after it is created.
Therefore, they can be safely used as a dictionary’s key.
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Difference Between Dot and Matmul
in NumPy

The 𝐧𝐩.𝐦𝐚𝐭𝐦𝐮𝐥() and 𝐧𝐩.𝐝𝐨𝐭() methods produce the same output for 2D (and
1D) arrays. This makes many believe that they are the same and can be used
interchangeably, but that is not true.

The 𝐧𝐩.𝐝𝐨𝐭() method revolves around individual vectors (or 1D arrays). Thus, it
computes the dot product of ALL vector pairs in the two inputs.

The 𝐧𝐩.𝐦𝐚𝐭𝐦𝐮𝐥() method, as the name suggests, is meant for matrices. Thus, it
computes the matrix multiplication of corresponding matrices in the two inputs.
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Run SQL in Jupyter To Analyze A
Pandas DataFrame

Pandas already provides a wide range of functionalities to analyze tabular data.
Yet, there might be situations when one feels comfortable using SQL over Python.

Using DuckDB, you can analyze a Pandas DataFrame with SQL syntax in Jupyter,
without any significant run-time difference.

Read the guide here to get started: Docs.
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Automated Code Refactoring With
Sourcery

Refactoring codebase is an important yet time-consuming task. Moreover, at
times, one might unknowingly introduce errors during refactoring.

This takes additional time for testing and gets tedious with more refactoring,
especially when the codebase is big.

Rather than following this approach, use Sourcery. It's an automated
refactoring tool that makes your code elegant, concise, and Pythonic in no time.

With Sourcery, you can refactor code in many ways. For instance, you can refactor
scripts through the command line, as an IDE plugin in VS Code and PyCharm,
etc.

Read my full blog on Sourcery here: Medium.
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__Post_init__: Add Attributes To A
Dataclass Object Post Initialization

After initializing a class object, we often create derived attributes from existing
variables.

To do this in dataclasses, you can use the __𝐩𝐨𝐬𝐭_𝐢𝐧𝐢𝐭__ method. As the name
suggests, this method is invoked right after the __𝐢𝐧𝐢𝐭__ method.
This is useful if you need to perform additional setups on your dataclass instance.

203



avichawla.substack.com

Simplify Your Functions With Partial
Functions

When your function takes many arguments, it can be a good idea to simplify it by
using partial functions.

They let you create a new version of the function with some of the arguments
fixed to specific values.

This can be useful for simplifying your code and making it more readable and
concise. Moreover, it also helps you avoid repeating yourself while invoking
functions.
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When You Should Not Use the head()
Method In Pandas

One often retrieves the top 𝐤 rows of a sorted Pandas DataFrame by using 𝐡𝐞𝐚𝐝()
method. However, there's a flaw in this approach.

If your data has repeated values, 𝐡𝐞𝐚𝐝() will not consider that and just return the
first 𝐤 rows.
If you want to consider repeated values, use 𝐧𝐥𝐚𝐫𝐠𝐞𝐬𝐭 (or 𝐧𝐬𝐦𝐚𝐥𝐥𝐞𝐬𝐭) instead.
Here, you can specify the desired behavior for duplicate values using the 𝐤𝐞𝐞𝐩
parameter.
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DotMap: A Better Alternative to
Python Dictionary

Python dictionaries are great, but they have many limitations.

It is difficult to create dynamic hierarchical data. Also, they don't offer the widely
adopted dot notation to access values.

Instead, use DotMap. It behaves like a Python dictionary but also addresses the
above limitations.

What's more, it also has a built-in pretty print method to display it as a dict/JSON
for debugging large objects.

Read more: GitHub.
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Prevent Wild Imports With __all__ in
Python

Wild imports (𝐟𝐫𝐨𝐦 𝐦𝐨𝐝𝐮𝐥𝐞 𝐢𝐦𝐩𝐨𝐫𝐭 *) are considered a bad programming
practice. Yet, here's how you can prevent it if someone irresponsibly does that
while using your code.

In your module, you can define the importable functions/classes/variables in
__𝐚𝐥𝐥__. As a result, whenever someone will do a wild import, Python will only
import the symbols specified here.

This can be also useful to convey what symbols in your module are intended to be
private.
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Three Lesser-known Tips For Reading
a CSV File Using Pandas

Here are three extremely useful yet lesser-known tips for reading a CSV file with
Pandas:

1. If you want to read only the first few rows of the file, specify the 𝐧𝐫𝐨𝐰𝐬
parameter.

2. To load a few specific columns, specify the 𝐮𝐬𝐞𝐜𝐨𝐥𝐬 parameter.
3. If you want to skip some rows while reading, pass the 𝐬𝐤𝐢𝐩𝐫𝐨𝐰𝐬 parameter.
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The Best File Format To Store A
Pandas DataFrame

In the image above, you can find the run-time comparison of storing a Pandas
DataFrame in various file formats.

Although CSVs are a widely adopted format, it is the slowest format in this list.

Thus, CSVs should be avoided unless you want to open the data outside Python
(in Excel, for instance).

Read more in my blog: Medium.
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Debugging Made Easy With
PySnooper

Rather than using many print statements to debug your python code, try
PySnooper.

With just a single line of code, you can easily track the variables at each step of
your code's execution.

Read more: Repository.
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Lesser-Known Feature of the Merge
Method in Pandas

While merging DataFrames in Pandas, keeping track of the source of each row in
the output can be extremely useful.

You can do this using the 𝐢𝐧𝐝𝐢𝐜𝐚𝐭𝐨𝐫 argument of the𝐦𝐞𝐫𝐠𝐞() method. As a
result, it augments an additional column in the merged output, which tells the
source of each row.
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The Best Way to Use Apply() in
Pandas

The image above shows a run-time comparison of popular open-source libraries
that provide parallelization support for Pandas.

You can find the links to these libraries here. Also, if you know any other similar
libraries built on top of Pandas, do post them in the comments or reply to this
email.
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Deep Learning Network Debugging
Made Easy

Aligning the shape of tensors (or vectors/matrices) in a network can be
challenging at times.

As the network grows, it is common to lose track of dimensionalities in a complex
expression.

Instead of explicitly printing tensor shapes to debug, use 𝐓𝐞𝐧𝐬𝐨𝐫𝐒𝐞𝐧𝐬𝐨𝐫. It
generates an elegant visualization for each statement executed within its block.
This makes dimensionality tracking effortless and quick.

In case of errors, it augments default error messages with more helpful details.
This further speeds up the debugging process.

Read more: Documentation
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Don't Print NumPy Arrays! Use
Lovely-NumPy Instead.

We often print raw numpy arrays during debugging. But this approach is not very
useful. This is because printing does not convey much information about the data
it holds, especially when the array is large.

Instead, use 𝐥𝐨𝐯𝐞𝐥𝐲-𝐧𝐮𝐦𝐩𝐲. Rather than viewing raw arrays, it prints a summary
of the array. This includes its shape, distribution, mean, standard deviation, etc.

It also shows if the numpy array has NaNs and Inf values, whether it is filled with
zeros, and many more.

P.S. If you work with tensors, then you can use 𝐥𝐨𝐯𝐞𝐥𝐲-𝐭𝐞𝐧𝐬𝐨𝐫𝐬.
Read more: Documentation.
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Performance Comparison of Python
3.11 and Python 3.10

Python 3.11 was released recently, and as per the official release, it is expected to
be 10-60% faster than Python 3.10.

I ran a few basic benchmarking experiments to verify the performance boost.
Indeed, Python 3.11 is much faster.

Although one might be tempted to upgrade asap, there are a few things you should

know. Read more here.
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View Documentation in Jupyter
Notebook

While working in Jupyter, it is common to forget the parameters of a function and
visit the official docs (or Stackoverflow). However, you can view the
documentation in the notebook itself.

Pressing 𝐒𝐡𝐢𝐟𝐭-𝐓𝐚𝐛 opens the documentation panel. This is extremely useful and
saves time as one does not have to open the official docs every single time.

This feature also works for your custom functions.

View a video version of this post on LinkedIn: Post Link.
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A No-code Tool To Understand Your
Data Quickly

The preliminary steps of any typical EDA task are often the same. Yet, across
projects, we tend to write the same code to carry out these tasks. This gets
repetitive and time-consuming.

Instead, use 𝐩𝐚𝐧𝐝𝐚𝐬-𝐩𝐫𝐨𝐟𝐢𝐥𝐢𝐧𝐠. It automatically generates a standardized report
for data understanding in no time. Its intuitive UI makes this effortless and quick.

The report includes the dimension of the data, missing value stats, and column
data types. What's more, it also shows the data distribution, the interaction and
correlation between variables, etc.

Lastly, the report also includes alerts, which can be extremely useful during
analysis/modeling.

Read more: Documentation.
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Why 256 is 256 But 257 is not 257?

Comparing python objects can be tricky at times. Can you figure out what is going
on in the above code example? Answer below:

---

When we run Python, it pre-loads a global list of integers in the range [-5, 256].
Every time an integer is referenced in this range, Python does not create a new
object. Instead, it uses the cached version.

This is done for optimization purposes. It was considered that these numbers are
used a lot by programmers. Therefore, it would make sense to have them ready at
startup.
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However, referencing any integer beyond 256 (or before -5) will create a new
object every time.

In the last example, when a and b are set to 257 in the same line, the Python
interpreter creates a new object. Then it references the second variable with the
same object.

Share this post on LinkedIn: Post Link.
The below image should give you a better understanding:
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Make a Class Object Behave Like a
Function

If you want to make a class object callable, i.e., behave like a function, you can do
so by defining the __𝐜𝐚𝐥𝐥__ method.
This method allows you to define the behavior of the object when it is invoked like
a function.
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This can have many advantages. For instance, it allows us to implement objects
that can be used in a flexible and intuitive way. What's more, the familiar
function-call syntax, at times, can make your code more readable.

Lastly, it allows you to use a class object in contexts where a callable is expected.
Using a class as a decorator, for instance.
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Lesser-known feature of Pickle Files

Pickles are widely used to dump data objects to disk. But folks often dump just a
single object into a pickle file. Moreover, one creates multiple pickles to store
multiple objects.

However, did you know that you can store as many objects as you want within a
single pickle file? What's more, when reloading, it is not necessary to load all the
objects.

Just make sure to dump the objects within the same context manager (using𝐰𝐢𝐭𝐡).
Of course, one solution is to store the objects together as a tuple. But while
reloading, the entire tuple will be loaded. This may not be desired in some cases.
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Dot Plot: A Potential Alternative to
Bar Plot

Bar plots are extremely useful for visualizing categorical variables against a
continuous value. But when you have many categories to depict, they can get too
dense to interpret.

In a bar plot with many bars, we’re often not paying attention to the individual bar
lengths. Instead, we mostly consider the individual endpoints that denote the total
value.

A Dot plot can be a better choice in such cases. They are like scatter plots but with
one categorical and one continuous axis.

Compared to a bar plot, they are less cluttered and offer better comprehension.
This is especially true in cases where we have many categories and/or multiple
categorical columns to depict in a plot.

Read more: Documentation.
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Why Correlation (and Other
Statistics) Can Be Misleading.

Correlation is often used to determine the association between two continuous
variables. But it has a major flaw that often gets unnoticed.

Folks often draw conclusions using a correlation matrix without even looking at
the data. However, the obtained statistics could be heavily driven by outliers or
other artifacts.

This is demonstrated in the plots above. The addition of just two outliers changed
the correlation and the regression line drastically.

Thus, looking at the data and understanding its underlying characteristics can save
from drawing wrong conclusions. Statistics are important, but they can be highly
misleading at times.
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Supercharge value_counts() Method
in Pandas With Sidetable

The 𝐯𝐚𝐥𝐮𝐞_𝐜𝐨𝐮𝐧𝐭𝐬() method is commonly used to analyze categorical columns,
but it has many limitations.

For instance, if one wants to view the percentage, cumulative count, etc., in one
place, things do get a bit tedious. This requires more code and is time-consuming.

Instead, use 𝐬𝐢𝐝𝐞𝐭𝐚𝐛𝐥𝐞. Consider it as a supercharged version of𝐯𝐚𝐥𝐮𝐞_𝐜𝐨𝐮𝐧𝐭𝐬(). As shown below, the 𝐟𝐫𝐞𝐪() method from sidetable provides a
more useful summary than 𝐯𝐚𝐥𝐮𝐞_𝐜𝐨𝐮𝐧𝐭𝐬().
Additionally, sidetable can aggregate multiple columns too. You can also provide
threshold points to merge data into a single bucket. What's more, it can print
missing data stats, pretty print values, etc.

Read more: GitHub.
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Write Your Own Flavor Of Pandas

If you want to attach a custom functionality to a Pandas DataFrame (or series)
object, use "pandas-flavor".

Its decorators allow you to add methods directly to the Pandas' object.

This is especially useful if you are building an open-source project involving
Pandas. After installing your library, others can access your library's methods
using the dataframe object.

P.S. This is how we see 𝐝𝐟.𝐩𝐫𝐨𝐠𝐫𝐞𝐬𝐬_𝐚𝐩𝐩𝐥𝐲() from 𝐭𝐪𝐝𝐦,𝐝𝐟.𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥_𝐚𝐩𝐩𝐥𝐲() from 𝐏𝐚𝐧𝐝𝐚𝐫𝐚𝐥𝐥𝐞𝐥, and many more.
Read more: Documentation.
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CodeSquire: The AI Coding Assistant
You Should Use Over GitHub Copilot

Coding Assistants like GitHub Copilot are revolutionary as they offer many
advantages. Yet, Copilot has limited utility for data professionals. This is because
it's incompatible with web-based IDEs (Jupyter/Colab).

Moreover, in data science, the subsequent exploratory steps are determined by
previous outputs. But Copilot does not consider that (and even markdown cells) to
drive its code suggestions.

CodeSquire is an incredible AI coding assistant that addresses the limitations
of Copilot. The good thing is that it has been designed specifically for data
scientists, engineers, and analysts.

Besides seamless code generation, it can generate SQL queries from text and
explain code. You can leverage AI-driven code generation by simply installing a
browser extension.

Read more: CodeSquire.

Watch a video version of this post on LinkedIn: Post Link.
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Vectorization Does Not Always
Guarantee Better Performance

Vectorization is well-adopted for improving run-time performance. In a nutshell, it
lets you operate data in batches instead of processing a single value at a time.

Although vectorization is extremely effective, you should know that it does not
always guarantee performance gains. Moreover, vectorization is also associated
with memory overheads.

As demonstrated above, the non-vectorized code provides better performance than
the vectorized version.

P.S. 𝐚𝐩𝐩𝐥𝐲() is also a for-loop.
Further reading: Here.
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In Defense of Match-case Statements
in Python

230



avichawla.substack.com

I recently came across a post on𝐦𝐚𝐭𝐜𝐡-𝐜𝐚𝐬𝐞 in Python. In a gist, starting Python
3.10, you can use𝐦𝐚𝐭𝐜𝐡-𝐜𝐚𝐬𝐞 statements to mimic the behavior of 𝐢𝐟-𝐞𝐥𝐬𝐞.
Many responses on that post suggested that 𝐢𝐟-𝐞𝐥𝐬𝐞 offers higher elegance and
readability. Here's an example in defense of𝐦𝐚𝐭𝐜𝐡-𝐜𝐚𝐬𝐞.
While if-else is traditionally accepted, it also comes with many downsides. For
instance, many-a-times, one has to write complex chains of nested if-else
statements. This includes multiple calls to 𝐥𝐞𝐧(), 𝐢𝐬𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞() methods, etc.
Furthermore, with 𝐢𝐟-𝐞𝐥𝐬𝐞, one has to explicitly destructure the data to extract
values. This makes your code inelegant and messy.

Match-case, on the other hand, offers Structural Pattern Matching which makes
this simple and concise. In the example above, match-case automatically handles
type-matching, length check, and variable unpacking.

Read more here: Python Docs.
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Enrich Your Notebook With
Interactive Controls

While using Jupyter, we often re-run the same cell repeatedly after changing the
input slightly. This is time-consuming and also makes your data exploration tasks
tedious and unorganized.
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Instead, pivot towards building interactive controls in your notebook. This allows
you to alter the inputs without needing to rewrite and re-run your code.

In Jupyter, you can do this using the 𝐈𝐏𝐲𝐰𝐢𝐝𝐠𝐞𝐭𝐬 module. Embedding interactive
controls is as simple as using a decorator.

As a result, it provides you with interactive controls such as dropdowns and
sliders. This saves you from tons of repetitive coding and makes your notebook
organized.

Watch a video version of this post on LinkedIn: Post Link.

233

https://www.linkedin.com/posts/avi-chawla_python-datascience-jupyternotebook-activity-7001499142493495296-4aeM?utm_source=share&utm_medium=member_desktop


avichawla.substack.com

Get Notified When Jupyter Cell Has
Executed

After running some code in a Jupyter cell, we often navigate away to do some
other work in the meantime.

Here, one has to repeatedly get back to the Jupyter tab to check whether the cell
has been executed or not.

To avoid this, you can use the %%𝐧𝐨𝐭𝐢𝐟𝐲 magic command from the𝐣𝐮𝐩𝐲𝐭𝐞𝐫𝐧𝐨𝐭𝐢𝐟𝐲 extension. As the name suggests, it notifies the user upon
completion (both successful and unsuccessful) of a jupyter cell via a browser
notification. Clicking on the notification takes you back to the jupyter tab.

Read more: GitHub.
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Data Analysis Using No-Code Pandas
In Jupyter

The Pandas API provides a wide range of functionalities to analyze tabular
datasets.

Yet, across projects, we often use the same methods over and over to analyze our
data. This quickly gets repetitive and time-consuming.

To avoid this, use Mito. It's an incredible tool that allows you to analyze your data
within a spreadsheet interface in Jupyter, without writing any code.

The coolest thing about Mito is that each edit in the spreadsheet automatically
generates an equivalent Python code. This makes it extremely convenient to
reproduce the analysis later.

Read more: Documentation.
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Using Dictionaries In Place of
If-conditions

Dictionaries are mainly used as a data structure in Python for maintaining
key-value pairs.

However, there's another special use case that dictionaries can handle. This is —
Eliminating IF conditions from your code.

Consider the code snippet above. Here, corresponding to an input value, we
invoke a specific function. The traditional way requires you to hard-code every
case.

But with a dictionary, you can directly retrieve the corresponding function by
providing it with the key. This makes your code concise and elegant.
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Clear Cell Output In Jupyter
Notebook During Run-time

While using Jupyter, we often print many details to track the code's progress.

However, it gets frustrating when the output panel has accumulated a bunch of
details, but we are only interested in the most recent output. Moreover, scrolling to
the bottom of the output each time can be annoying too.

To clear the output of the cell, you can use the 𝗰𝗹𝗲𝗮𝗿_𝗼𝘂𝘁𝗽𝘂𝘁 method from the𝗜𝗣𝘆𝘁𝗵𝗼𝗻 package. When invoked, it will remove the current output of the cell,
after which you can print the latest details.

238



avichawla.substack.com

A Hidden Feature of Describe Method
In Pandas

The 𝗱𝗲𝘀𝗰𝗿𝗶𝗯𝗲() method in Pandas is commonly used to print descriptive statistics
about the data.

But have you ever noticed that its output is always limited to numerical columns?
Of course, details like mean, median, std. dev., etc. hold no meaning for
non-numeric columns, so the results make total sense.

However, 𝗱𝗲𝘀𝗰𝗿𝗶𝗯𝗲() can also provide a quick summary of non-numeric columns.
You can do this by specifying 𝗶𝗻𝗰𝗹𝘂𝗱𝗲="𝗮𝗹𝗹." As a result, it will return the number
of unique elements, the top element with its frequency.

Read more: Documentation.

Use Slotted Class To Improve Your
Python Code
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If you want to fix the attributes a class can hold, consider defining it as a slotted
class.

While defining classes, __𝘀𝗹𝗼𝘁𝘀__ allows you to explicitly specify the class
attributes. This means you cannot randomly add new attributes to a slotted class
object. This offers many advantages.

For instance, slotted classes are memory efficient and they provide faster access to
class attributes. What's more, it also helps you avoid common typos. This, at
times, can be a costly mistake that can go unnoticed.

Read more: StackOverflow.

Stop Analysing Raw Tables. Use
Styling Instead!
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Jupyter is a web-based IDE. Thus, whenever you print/display a DataFrame in
Jupyter, it is rendered using HTML and CSS.

This means you can style your output in many different ways.

To do so, use the Styling API of Pandas. Here, you can make many different
modifications to a DataFrame's styler object (𝗱𝗳.𝘀𝘁𝘆𝗹𝗲). As a result, the DataFrame
will be displayed with the specified styling.

Styling makes these tables visually appealing. Moreover, it allows for better
comprehensibility of data than viewing raw tables.

Read more here: Documentation.
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Explore CSV Data Right From The
Terminal

If you want to quickly explore some CSV data, you may not always need to run a
Jupyter session. 

Rather, with "𝐜𝐬𝐯𝐤𝐢𝐭", you can do it from the terminal itself. As the name
suggests, it provides a bunch of command-line tools to facilitate data analysis
tasks.

These include converting Excel to CSV, viewing column names, data statistics,
and querying using SQL. Moreover, you can also perform popular Pandas
functions such as sorting, merging, and slicing.

Read more: Documentation.
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Generate Your Own Fake Data In
Seconds

Usually, for executing/testing a pipeline, we need to provide it with some dummy
data.

Although using Python's "𝐫𝐚𝐧𝐝𝐨𝐦" library, one can generate random strings,
floats, and integers. Yet, being random, it does not output any meaningful data
such as people's names, city names, emails, etc.

Here, looking for open-source datasets can get time-consuming. Moreover, it's
possible that the dataset you find does not fit pretty well into your requirements.

The 𝐅𝐚𝐤𝐞𝐫 module in Python is a perfect solution to this. Faker allows you to
generate highly customized fake (yet meaningful) data quickly. What's more, you
can also generate data specific to a demographic.

Read more here: Documentation.
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Import Your Python Package as a
Module

A python module is a single python file (.𝗽𝘆). An organized collection of such
python files is called a python package.

While developing large projects, it is a good practice to define an __𝗶𝗻𝗶𝘁__.𝗽𝘆 file
inside a package.

Consider 𝘁𝗿𝗮𝗶𝗻.𝗽𝘆 has a 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴 class and 𝘁𝗲𝘀𝘁.𝗽𝘆 has a 𝗧𝗲𝘀𝘁𝗶𝗻𝗴 class.
Without __𝗶𝗻𝗶𝘁__.𝗽𝘆, one has to explicitly import them from specific python files.
As a result, it is redundant to write the two import statements.

With __𝗶𝗻𝗶𝘁__.𝗽𝘆, you can group python files into a single importable module. In
other words, it provides a mechanism to treat the whole package as a python
module.

This saves you from writing redundant import statements and makes your code
cleaner in the calling script.

Read more in this blog: Blog Link.
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Specify Loops and Runs In %%timeit

We commonly use the %𝘁𝗶𝗺𝗲𝗶𝘁 (or %%𝘁𝗶𝗺𝗲𝗶𝘁) magic command to measure the
execution time of our code.

Here, 𝘁𝗶𝗺𝗲𝗶𝘁 limits the number of runs depending on how long the script takes to
execute. This is why you get to see a different number of loops (and runs) across
different pieces of code.

However, if you want to explicitly define the number of loops and runs, use the -𝗻
and -𝗿 options. Use -𝗻 to specify the loops and -𝗿 for the number the runs.

245



avichawla.substack.com

Waterfall Charts: A Better
Alternative to Line/Bar Plot

If you want to visualize a value over some period, a line (or bar) plot may not
always be an apt choice.

A line-plot (or bar-plot) depicts the actual values in the chart. Thus, sometimes, it
can get difficult to visually estimate the scale of incremental changes.

Instead, you can use a waterfall chart, which elegantly depicts these rolling
differences.

To create one, you can use 𝘄𝗮𝘁𝗲𝗿𝗳𝗮𝗹𝗹_𝗰𝗵𝗮𝗿𝘁 in Python. Here, the start and final
values are represented by the first and last bars. Also, the marginal changes are
automatically color-coded, making them easier to interpret.

Read more here: GitHub.
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Hexbin Plots As A Richer Alternative
to Scatter Plots

Scatter plots are extremely useful for visualizing two sets of numerical variables.
But when you have, say, thousands of data points, scatter plots can get too dense
to interpret.

Hexbins can be a good choice in such cases. As the name suggests, they bin the
area of a chart into hexagonal regions. Each region is assigned a color intensity
based on the method of aggregation used (the number of points, for instance).

Hexbins are especially useful for understanding the spread of data. It is often
considered an elegant alternative to a scatter plot. Moreover, binning makes it
easier to identify data clusters and depict patterns.
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Importing Modules Made Easy with
Pyforest

The typical programming-related stuff in data science begins by importing
relevant modules.

However, across notebooks/projects, the modules one imports are mostly the
same. Thus, the task of importing all the individual libraries is kinda repetitive.

With 𝗽𝘆𝗳𝗼𝗿𝗲𝘀𝘁, you can use the common Python libraries without explicitly
importing them. A good thing is that it imports all the libraries with their standard
conventions. For instance, 𝗽𝗮𝗻𝗱𝗮𝘀 is imported with the 𝗽𝗱 alias.
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With that, you should also note that it is a good practice to keep Pyforest limited
to prototyping stages. This is because once you say, develop and open-source your
pipeline, other users may face some difficulties understanding it.

But if you are up for some casual experimentation, why not use it instead of
manually writing all the imports?

Read more: GitHub.
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Analyse Flow Data With Sankey
Diagrams

Many tabular data analysis tasks can be interpreted as a flow between the source
and a target.

Here, manually analyzing tabular reports/data to draw insights is typically not the
right approach.

Instead, Flow diagrams serve as a great alternative in such cases.
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Being visually appealing, they immensely assist you in drawing crucial insights
from your data, which you may find challenging to infer by looking at the data
manually.

For instance, from the diagram above, one can quickly infer that:

1. Washington hosts flights from all origins.

2. New York only receives passengers from London.

3. Majority of flights in Los Angeles come from Dubai.

4. All flights from New Delhi go to Washington.

Now imagine doing that by just looking at the tabular data. Not only will it be
time-consuming, but there are chances that you may miss out on a few insights.

To generate a flow diagram, you can use floWeaver. It helps you to visualize flow
data using Sankey diagrams.

Read more here: Documentation.
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Feature Tracking Made Simple In
Sklearn Transformers

Recently, scikit-learn announced the release of one of the most awaited
improvements. In a gist, sklearn can now be configured to output Pandas
DataFrames.

Until now, Sklearn's transformers were configured to accept a Pandas DataFrame
as input. But they always returned a NumPy array as an output. As a result, the
output had to be manually projected back to a Pandas DataFrame. This, at times,
made it difficult to track and assign names to the features.
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For instance, consider the snippet above.

In 𝗻𝘂𝗺𝗽𝘆_𝗼𝘂𝘁𝗽𝘂𝘁.𝗽𝘆, it is tricky to infer the name (or computation) of a column
by looking at the NumPy array.

However, in the upcoming release, the transformer can return a Pandas DataFrame
(𝗽𝗮𝗻𝗱𝗮𝘀_𝗼𝘂𝘁𝗽𝘂𝘁.𝗽𝘆). This makes tracking feature names incredibly simple.
Read more: Release page.
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Lesser-known Feature of f-strings in
Python

While debugging, one often explicitly prints the name of the variable with its
value to enhance code inspection.

Although there's nothing wrong with this approach, it makes your print statements
messy and lengthy.

f-strings in Python offer an elegant solution for this.

To print the name of the variable, you can add an equals sign (=) in the curly
braces after the variable. This will print the name of the variable along with its
value but it is concise and clean.
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Don't Use time.time() To Measure
Execution Time

The 𝘁𝗶𝗺𝗲() method from the time library is frequently used to measure the
execution time.

However, 𝘁𝗶𝗺𝗲() is not meant for timing your code. Rather, its actual purpose is to
tell the current time. This, at many times, compromises the accuracy of measuring
the exact run time.

The correct approach is to use 𝗽𝗲𝗿𝗳_𝗰𝗼𝘂𝗻𝘁𝗲𝗿(), which deals with relative time.
Thus, it is considered the most accurate way to time your code.
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Now You Can Use DALL·E With
OpenAI API

DALL·E is now accessible using the OpenAI API.

OpenAI recently made a big announcement. In a gist, developers can now
integrate OpenAI's popular text-to-image model DALL·E into their apps using
OpenAI API.

To achieve this, first, specify your API key (obtained after signup). Next, pass a
text prompt to generate the corresponding image.
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Polynomial Linear Regression Plot
Made Easy With Seaborn

While creating scatter plots, one is often interested in displaying a linear
regression (simple or polynomial) fit on the data points.

Here, training a model and manually embedding it in the plot can be a tedious job
to do.

Instead, with Seaborn's 𝗹𝗺𝗽𝗹𝗼𝘁(), you can add a regression fit to a plot, without
explicitly training a model.

Specify the degree of the polynomial as the "𝗼𝗿𝗱𝗲𝗿" parameter. Seaborn will add
the corresponding regression fit on the scatter plot.

Read more here: Seaborn Docs.
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Retrieve Previously Computed Output
In Jupyter Notebook

This is indeed one of the coolest things I have learned about Jupyter Notebooks
recently.

Have you ever been in a situation where you forgot to assign the results obtained
after some computation to a variable? Left with no choice, one has to unwillingly
recompute the result and assign it to a variable for further use.

Thankfully, you don't have to do that anymore!

IPython provides a dictionary "𝗢𝘂𝘁", which you can use to retrieve a cell's output.
All you need to do is specify the cell number as the dictionary's key, which will
return the corresponding output. Isn't that cool?

View a video version of this post on LinkedIn: Post Link.
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Parallelize Pandas Apply() With
Swifter

The Pandas library has no inherent support to parallelize its operations. Thus, it
always adheres to a single-core computation, even when other cores are idle.

Things get even worse when we use 𝐚𝐩𝐩𝐥𝐲(). In Pandas, 𝐚𝐩𝐩𝐥𝐲() is nothing but a
glorified for-loop. As a result, it cannot even take advantage of vectorization.

A quick solution to parallelize 𝗮𝗽𝗽𝗹𝘆() is to use 𝘀𝘄𝗶𝗳𝘁𝗲𝗿 instead.
Swifter allows you to apply any function to a Pandas DataFrame in a parallelized
manner. As a result, it provides considerable performance gains while preserving
the old syntax. All you have to do is use 𝗱𝗳.𝘀𝘄𝗶𝗳𝘁𝗲𝗿.𝗮𝗽𝗽𝗹𝘆 instead of 𝗱𝗳.𝗮𝗽𝗽𝗹𝘆.
Read more here: Swifter Docs.
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Create DataFrame Hassle-free By
Using Clipboard

Many Pandas users think that a DataFrame can ONLY be loaded from disk.
However, this is not true.

Imagine one wants to create a DataFrame from tabular data printed on a website.
Here, they are most likely to be tempted to copy the contents to a CSV and read it
using Pandas' 𝗿𝗲𝗮𝗱_𝗰𝘀𝘃() method. But this is not an ideal approach here.
Instead, with the 𝗿𝗲𝗮𝗱_𝗰𝗹𝗶𝗽𝗯𝗼𝗮𝗿𝗱() method, you can eliminate the CSV step
altogether.

This method allows you to create a DataFrame from tabular data stored in a
clipboard buffer. Thus, you just need to copy the data and invoke the method to
create a DataFrame. This is an elegant approach that saves plenty of time.

Read more here: Pandas Docs.
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Run Python Project Directory As A
Script

A Python script is executed when we run a .𝗽𝘆 file. In large projects with many
files, there's often a source (or base) Python file we begin our program from.

To make things simpler, you can instead rename this base file to __𝗺𝗮𝗶𝗻__.𝗽𝘆. As
a result, you can execute the whole pipeline by running the parent directory itself.

This is concise and also makes it slightly easier for other users to use your project.
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Inspect Program Flow with IceCream

While debugging, one often writes many 𝗽𝗿𝗶𝗻𝘁() statements to inspect the
program's flow. This is especially true when we have many IF conditions.

Using empty 𝗶𝗰() statements from the IceCream library can be a better alternative
here. It outputs many additional details that help in inspecting the flow of the
program.

This includes the line number, the name of the function, the file name, etc.

Read more in my Medium Blog: Link.
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Don't Create Conditional Columns in
Pandas with Apply

While creating conditional columns in Pandas, we tend to use the 𝐚𝐩𝐩𝐥𝐲() method
almost all the time.

However, 𝐚𝐩𝐩𝐥𝐲() in Pandas is nothing but a glorified for-loop. As a result, it
misses the whole point of vectorization.

Instead, you should use the 𝐧𝐩.𝐰𝐡𝐞𝐫𝐞() method to create conditional columns. It
does the same job but is extremely fast.

The condition is passed as the first argument. This is followed by the result if the
condition evaluates to True (second argument) and False (third argument).

Read more here: NumPy docs.
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Pretty Plotting With Pandas

Matplotlib is the default plotting API of Pandas. This means you can create a
Matplotlib plot in Pandas, without even importing it.

Despite that, these plots have always been basic and not so visually appealing.
Plotly, with its pretty and interactive plots, is often considered a suitable
alternative. But familiarising yourself with a whole new library and its syntax can
be time-consuming.

Thankfully, Pandas does allow you to change the default plotting backend. Thus,
you can leverage third-party visualization libraries for plotting with Pandas. This
makes it effortless to create prettier plots while almost preserving the old syntax.
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Build Baseline Models Effortlessly
With Sklearn

Before developing a complex ML model, it is always sensible to create a baseline
first.

The baseline serves as a benchmark for the engineered model. Moreover, it
ensures that the model is better than making random (or fixed) predictions. But
building baselines with various strategies (random, fixed, most frequent, etc.) can
be tedious.

Instead, Sklearn's 𝐃𝐮𝐦𝐦𝐲𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐞𝐫() (and 𝐃𝐮𝐦𝐦𝐲𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐨𝐫()) makes it
totally effortless and straightforward. You can select the specific behavior of the
baseline with the 𝐬𝐭𝐫𝐚𝐭𝐞𝐠𝐲 parameter.
Read more here: Documentation.
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Fine-grained Error Tracking With
Python 3.11

Python 3.11 was released today, and many exciting features have been introduced.

For instance, various speed improvements have been implemented. As per the
official release, Python 3.11 is, on average, 25% faster than Python 3.10.
Depending on your work, it can be up to 10-60% faster.

One of the coolest features is the fine-grained error locations in tracebacks.

In Python 3.10 and before, the interpreter showed the specific line that caused the
error. This, at many times, caused ambiguity during debugging.

In Python 3.11, the interpreter will point to the exact location that caused the
error. This will immensely help programmers during debugging.

Read more here: Official Release.

Find Your Code Hiding In Some
Jupyter Notebook With Ease
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Programmers who use Jupyter often refer to their old notebooks to find a piece of
code.

However, it gets tedious when they have multiple files to look for and can't recall

the specific notebook of interest. The file name 𝐔𝐧𝐭𝐢𝐭𝐥𝐞𝐝1.𝐢𝐩𝐲𝐧𝐛, ..., and𝐔𝐧𝐭𝐢𝐭𝐥𝐞𝐝82.𝐢𝐩𝐲𝐧𝐛, don't make it any easier.
The "𝐠𝐫𝐞𝐩" command is a much better solution to this. Very know that you can
use "𝐠𝐫𝐞𝐩" in the command line to search in notebooks, as you do in other files
(.txt, for instance). This saves plenty of manual work and time.

P.S. How do you find some previously written code in your notebooks (if not
manually)?
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Restart the Kernel Without Losing
Variables

While working in a Jupyter Notebook, you may want to restart the kernel due to
several reasons. But before restarting, one often tends to dump data objects to disk
to avoid recomputing them in the subsequent run.

The "store" magic command serves as an ideal solution to this. Here, you can
obtain a previously computed value even after restarting your kernel. What's more,
you never need to go through the hassle of dumping the object to disk.
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How to Read Multiple CSV Files
Efficiently

In many situations, the data is often split into multiple CSV files and transferred to
the DS/ML team for use.

As Pandas does not support parallelization, one has to iterate over the list of files
and read them one by one for further processing.

"Datatable" can provide a quick fix for this. Instead of reading them iteratively
with Pandas, you can use Datatable to read a bunch of files. Being parallelized, it
provides a significant performance boost as compared to Pandas.
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The performance gain is not just limited to I/O but is observed in many other
tabular operations as well.

Read more here: DataTable Docs.
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Elegantly Plot the Decision Boundary
of a Classifier

Plotting the decision boundary of a classifier can reveal many crucial insights
about its performance.

Here, region-shaded plots are often considered a suitable choice for visualization
purposes. But, explicitly creating one can be extremely time-consuming and
complicated.

Mlxtend condenses that to a simple one-liner in Python. Here, you can plot the
decision boundary of a classifier with ease, by just providing it the model and the
data.
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An Elegant Way to Import Metrics
From Sklearn

While using scikit-learn, one often imports multiple metrics to evaluate a
model. Although there is nothing wrong with this practice, it makes the code
inelegant and cluttered - with the initial few lines of the file overloaded with
imports.

Instead of importing the metrics individually, you can use the 𝐠𝐞𝐭_𝐬𝐜𝐨𝐫𝐞𝐫()
method. Here, you can pass the metric's name as a string, and it returns a scorer
object for you.

Read more here: Scikit-learn page.
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Configure Sklearn To Output Pandas
DataFrame

Recently, Scikit-learn announced the release of one of the most awaited
improvements. In a gist, sklearn can now be configured to output Pandas
DataFrames instead of NumPy arrays.

Until now, Sklearn's transformers were configured to accept a Pandas DataFrame
as input. But they always returned a NumPy array as an output. As a result, the
output had to be manually projected back to a Pandas DataFrame.

Now, the 𝐬𝐞𝐭_𝐨𝐮𝐭𝐩𝐮𝐭 API will let transformers output a Pandas DataFrame
instead.

This will make running pipelines on DataFrames smoother. Moreover, it will
provide better ways to track feature names.
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Display Progress Bar With Apply() in
Pandas

While applying a method to a DataFrame using 𝐚𝐩𝐩𝐥𝐲(), we don't get to see the
progress and an estimated remaining time.

To resolve this, you can instead use 𝐩𝐫𝐨𝐠𝐫𝐞𝐬𝐬_𝐚𝐩𝐩𝐥𝐲() from 𝐭𝐪𝐝𝐦 to display a
progress bar while applying a method.

Read more here: GitHub.
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Modify a Function During Run-time

Have you ever been in a situation where you wished to add more details to an
already running code?

This is typically observed in ML where one often forgets to print all the essential
training details/metrics. Executing the entire code again, especially when it has
been up for some time is not an ideal approach here.

If you want to modify a function during execution, decorate it with the reloading
decorator (@𝐫𝐞𝐥𝐨𝐚𝐝𝐢𝐧𝐠). As a result, Python will reload the function from the
source before each execution.

Link to reloading: GitHub.
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Regression Plot Made Easy with Plotly

While creating scatter plots, one is often interested in displaying a simple linear
regression fit on the data points.

Here, training a model and manually embedding it in the plot can be a tedious job
to do.

Instead, with Plotly, you can add a regression line to a plot, without explicitly
training a model.

Read more here.
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Polynomial Linear Regression with
NumPy

Polynomial linear regression using Sklearn is tedious as one has to explicitly code
its features. This can get challenging when one has to iteratively build
higher-degree polynomial models.

NumPy's 𝐩𝐨𝐥𝐲𝐟𝐢𝐭() method is an excellent alternative to this. Here, you can
specify the degree of the polynomial as a parameter. As a result, it automatically
creates the corresponding polynomial features.

The downside is that you cannot add custom features such as
trigonometric/logarithmic. In other words, you are restricted to only polynomial
features. But if that is not your requirement, NumPy's 𝐩𝐨𝐥𝐲𝐟𝐢𝐭() method can be a
better approach.

Read more: https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html.
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Alter the Datatype of Multiple
Columns at Once

A common approach to alter the datatype of multiple columns is to invoke the𝐚𝐬𝐭𝐲𝐩𝐞() method individually for each column.
Although the approach works as expected, it requires multiple function calls and
more code. This can be particularly challenging when you want to modify the
datatype of many columns.

As a better approach, you can condense all the conversions into a single function
call. This is achieved by passing a dictionary of column-to-datatype mapping, as
shown below.
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Datatype For Handling Missing
Valued Columns in Pandas

If your data has NaN-valued columns, Pandas provides a datatype specifically for
representing them - called the Sparse datatype.

This is especially handy when you are working with large data-driven projects
with many missing values.

The snippet compares the memory usage of float and sparse datatype in Pandas.
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Parallelize Pandas with Pandarallel

Pandas' operations do not support parallelization. As a result, it adheres to a
single-core computation, even when other cores are available. This makes it
inefficient and challenging, especially on large datasets.

"Pandarallel" allows you to parallelize its operations to multiple CPU cores - by
changing just one line of code. Supported methods include apply(), applymap(),
groupby(), map() and rolling().

Read more: GitHub.
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Why you should not dump
DataFrames to a CSV

The CSV file format is widely used to save Pandas DataFrames. But are you
aware of its limitations? To name a few,

1. The CSV does not store the datatype information. Thus, if you modify the
datatype of column(s), save it to a CSV, and load again, Pandas will not return the
same datatypes.

2. Saving the DataFrame to a CSV file format isn't as optimized as other
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supported formats by Pandas. These include Parquet, Pickle, etc.

Of course, if you need to view your data outside Python (Excel, for instance), you
are bound to use a CSV. But if not, prefer other file formats.

Further reading: Why I Stopped Dumping DataFrames to a CSV
and Why You Should Too.
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Save Memory with Python Generators

If you use large static iterables in Python, a list may not be an optimal choice,
especially in memory-constrained applications.

A list stores the entire collection in memory. However, a generator computes and
loads a single element at a time ONLY when it is required. This saves both
memory and object creation time.

Of course, there are some limitations of generators too. For instance, you cannot
use common list operations such as append(), slicing, etc.

Moreover, every time you want to reuse an element, it must be regenerated (see
Generator.py: line 12).
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Don't use print() to debug your code.

Debugging with print statements is a messy and inelegant approach. It is
confusing to map the output to its corresponding debug statement. Moreover, it
requires extra manual formatting to comprehend the output.

The "icecream" library in Python is an excellent alternative to this. It makes
debugging effortless and readable, with minimal code. Features include printing
expressions, variable names, function names, line numbers, filenames, and many
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more.

P.S. The snippet only gives a brief demonstration. However, the actual
functionalities are much more powerful and elegant as compared to debugging
with print().

More about icecream here: https://github.com/gruns/icecream.
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Find Unused Python Code With Ease

As the size of your codebase increases, so can the number of instances of unused
code. This inhibits its readability and conciseness.

With the "vulture" module in Python, you can locate dead (unused) code in your
pipeline, as shown in the snippet.
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Define the Correct DataType for
Categorical Columns

If your data has categorical columns, you should not represent them as int/string
data type.

Rather, Pandas provides an optimized data type specifically for categorical
columns. This is especially handy when you are working with large data-driven
projects.

The snippet compares the memory usage of string and categorical data types in
Pandas.
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Transfer Variables Between Jupyter
Notebooks

While working with multiple jupyter notebooks, you may need to share objects
between them.

With the "store" magic command, you can transfer variables across notebooks
without storing them on disk.

P.S. You can also restart the kernel and retrieve an old variable with "store".
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Why You Should Not Read CSVs with
Pandas

Pandas adheres to a single-core computation, which makes its operations
extremely inefficient, especially on large datasets.

The "datatable" library in Python is an excellent alternative with a Pandas-like
API. Its multi-threaded data processing support makes it faster than Pandas.

The snippet demonstrates the run-time comparison of creating a "Pandas
DataFrame" from a CSV using Pandas and Datatable.
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Modify Python Code During
Run-Time

Have you ever been in a situation where you wished to add more details to an
already running code (printing more details in a for-loop, for instance)?

Executing the entire code again, especially when it has been up for some time, is
not the ideal approach here.

With the "reloading" library in Python, you can add more details to a running code
without losing any existing progress.
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Handle Missing Data With Missingno

If you want to analyze missing values in your dataset, Pandas may not be an apt
choice.

Pandas' methods hide many important details about missing values. These include
their location, periodicity, the correlation across columns, etc.

The "missingno" library in Python is an excellent resource for exploring missing
data. It generates informative visualizations for improved data analysis.

The snippet demonstrates missing data analysis using Pandas and Missingno.
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