

PYTHON
 TIPS & TRICKS

A COLLECTION OF

 100 BASIC & INTERMEDIATE TIPS AND TRICKS

 Benjamin Bennett Alexander

Copyright © 2022 by Benjamin Bennett Alexander

All rights are reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted in any

form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without prior permission of the

publisher.

Every effort has been made in the preparation of this book to

ensure the accuracy of the information presented. However, we

do not warrant or represent its completeness or accuracy.

Feedback and Reviews

I welcome and appreciate your feedback and reviews. Feedback

help independent writers reach more people. So please consider

leaving feedback on the platform you got this book from. Send

queries to: benjaminbennettalexander@gmail.com.

file:///C:/Users/benji/OneDrive/Documents/benjaminbennettalexander@gmail.com

Table of Contents

Feedback and Reviews ... 3

About this Book .. 9

1 Printing Horizontally .. 10

2 Merging Dictionaries .. 11

3 Calendar with Python ... 12

4 Get Current Time and Date ... 13

5 Sort a List in Descending Order .. 14

6 Swapping Variables .. 15

7 Counting Item Occurrences ... 16

8 Flatten a Nested List ... 17

9 Index of the Biggest Number .. 18

10 Absolute Value of a Number .. 19

11 Adding a Thousand Separator ... 20

12 Startswith and Endswith Methods 21

13 Nlargest and Nsmallest .. 22

14 Checking for Anagram .. 23

15 Checking Internet Speed .. 24

16 Python Reserved keywords .. 25

17 Properties and Methods ... 26

18 Open a Website Using Python ... 27

19 Most Frequent in a String .. 28

20 Memory Size Check .. 29

21 Accessing Dictionary Keys ... 30

22 Iterable or Not ... 31

23 Sorting a List of Tuples .. 32

24 Sort List with Sorted & Lambda 33

25 Access News Using Python .. 34

26 A List of Tuples with Enumerate 35

27 Assertion .. 36

28 Print Colored Texts... 38

29 Find Index Using Enumerate .. 39

30 Create Class Using Type Function 40

31 Checking if a String is Empty .. 41

32 Flatten Nested List ... 42

33 Checking if a File Exists ... 43

34 Set Comprehension .. 44

35 Python *args and **Kwargs ... 45

36 The Filter Function ... 46

37 Dictionary Comprehension.. 48

38 DataFrame from Two Lists.. 49

39 Adding a Column to a DataFrame 50

40 Timer Decorator ... 51

41 List Comprehension vs Generators 52

42 Writing to File ... 53

43 Merge PDF Files .. 55

44 Return vs Yield .. 56

45 High Order Functions .. 57

46 Grammar Errors ... 58

47 Zen of Python .. 59

48 Sorted by Pprint .. 60

49 Convert Picture to Grey Scale ... 61

50 Time it with timeit .. 62

51 Shortening URL with Python .. 63

52 The Round Function ... 64

53 Convert PDF files to Doc .. 65

54 Text from PDF File ... 66

55 Libraries Locations ... 68

56 Create a Barcode ... 69

57 Indices Using Len & Range Functions 70

58 Convert Emoji to Text .. 71

59 Currency Converter .. 72

60 Generate Custom Font ... 73

61 Language Detector .. 74

62 Refresh URL with Selenium .. 75

63 Substring of a String ... 76

64 Difference Between Two Lists ... 77

65 Sorting a List of Dictionaries ... 78

66 Bytes to String ... 79

67 Multiple Input from User .. 80

68 The _iter_() Function .. 81

69 Two Lists into a Dict ... 82

70 Finding Permutations of a string 83

71 Unpacking a List ... 84

72 Type Hints .. o85

73 File Location .. 86

74 Python Deque .. 87

75 Python ChainMap .. 88

76 Progress Bar with Python .. 89

77 Convert Text to Handwriting .. 90

78 Taking a Screenshot .. 91

79 Return Multiple Function Values 92

80 Download YouTube Videos ... 93

81 Convert a String to a List .. 94

82 Loop Over Multiple Sequences .. 95

83 Extend vs. Append ... 96

84 Memory and _slots_ ... 97

85 Watermark Image with Python 98

86 Extracting Zip Files ... 100

87 Generate Dummy Data ... 101

88 Flatten a list with more_itertools.................................. 103

89 Factorial of a Number ... 104

90 List of Prime Numbers .. 105

91 RAM & CPU Usage ... 106

92 Concatenation vs. Join .. 108

93 Recursion Limit.. 110

94 Country Info Using Python .. 111

95 Factorial Using One Line .. 112

96 Spelling Errors ... 113

97 List Elements Identical? ... 114

98 Censor Profanity with Python .. 115

99 Monotonic or Not?... 117

100 Find Factors of a Number ... 118

Other Books by Author .. 119

 About this Book

This book is a collection of Python tips and tricks. I have put

together 100 Python tips and tricks that you may find helpful if

you are learning Python. The tips cover mainly basic and

intermediate levels of Python.

In this book you will find tips and tricks on:

• How to print horizontally using the print function

• How to use list comprehensions to make code my concise

• How to update a dictionary using dictionary comprehensions

• How to merge dictionaries

• Swapping variables

• Merging PDF files

• Creating DataFrames using pandas

• Correct spelling errors with Python

• Censor profanity using Python

• How to reset recursion limit

• Extracting zip files using Python

• Converting text to handwriting

• Taking screen shots with Python

• Generate dummy data with Python

• Finding permutations of a string

• Using sort method and sorted function to sort iterables

• Writing CSV files and many more

To fully benefit, please try your best to write the code down and

run it. It is important that you try to understand how the code

works. Modify and improve the code. Do not be afraid to

experiment.

By the end of it all, I hope that the tips and tricks will help you

level up your Python skills and knowledge.

Let’s get started.

1 | Printing Horizontally

When looping over an iterable, the print function prints each

item on a new line. This is because the print function has a

parameter called end. By default, the end parameter has an

escape character (end = "\n"). Now, to print horizontally, we

need to remove the escape character and replace it with an

empty string (end = ""). In the code below, take note of the space

between the commas (" "); this is to ensure that the numbers are

printed with spaces between them. If we remove the space (""),

the numbers will be printed like this: 1367. Here is the code to

demonstrate that:

list1 = [1, 3, 6, 7]

for number in list1:
 print(number, end= " ")

 Output:
1 3 6 7

The print function has another parameter called sep. We use

sep to specify how the output is separated. Here is an example:

print('12','12','1990', sep='/')
Output:
12/12/1990

2 | Merging Dictionaries

If you have two dictionaries that you want to combine, you can

do so using two easy methods. You can use the merge (|)

operator or the (**) operator. Below, we have two dictionaries,

a and b. We are going to use these two methods to combine the

dictionaries. Here are the codes below:

Method 1

Using the merge (|) operator.

name1 = {"kelly": 23,
 "Derick": 14, "John": 7}
name2 = {"Ravi": 45, "Mpho": 67}

names = name1 | name2
print(names)
Output:
{'kelly': 23, 'Derick': 14, 'John': 7, 'Ravi': 45,
'Mpho': 67}

Method 2

Using the merge (**) operator. With this operator, you need to

put the dictionaries inside the curly brackets.

name1 = {"kelly": 23,
 "Derick": 14, "John": 7}
name2 = {"Ravi": 45, "Mpho": 67}

names = {**name1, **name2}
print(names)
Output:
{'kelly': 23, 'Derick': 14, 'John': 7, 'Ravi': 45,
'Mpho': 67}

3 | Calendar with Python

Did you know that you can get a calendar using Python?

 Python has a built-in module called calendar. We can import

this module to print out the calendar. We can do a lot of things

with calendar.

 Let’s say we want to see April 2022; we will use the month class

of the calendar module and pass the year and month as

arguments. See below:

import calendar

month = calendar.month(2022, 4)
print(month)
Output:
 April 2022

Mo Tu We Th Fr Sa Su

 1 2 3

 4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30

There are so many other things you can do with the calendar.

For example, you can use it to check if a given year is a leap

year or not. Let’s check if 2022 is a leap year.

import calendar

month = calendar.isleap(2022)
print(month)
Output:
False

4 | Get Current Time and Date

The below code demonstrates how you can get the current time

using the datetime() module. The strftime() method formats

time for the desired output. This code breaks down how you can

use the datetime module with the strftime() method to get a

formatted string of time in hours, minutes, and seconds format.

from datetime import datetime

time_now = datetime.now().strftime('%H:%M:%S')
print(f'The time now is {time_now}')
Output:
The time now is 17:53:19

What if we want to return today’s date? We can use the date class

from the datetime module. We use the today() method. See

below:

from datetime import date

today_date = date.today()
print(today_date)
Output:
2022-07-21

5 | Sort a List in Descending Order

The sort() method will sort a list in ascending order (by default).

For the sort method to work, the list should have the same type

of objects. You cannot sort a list mixed with different data types,

such as integers and strings. The sort() method has a parameter

called reverse; to sort a list in descending order, set reverse to

True.

list1 = [2, 5, 6, 8, 1, 8, 9, 11]

list1.sort(reverse=True)
print(list1)
Output:
[11, 9, 8, 8, 6, 5, 2, 1]

Remember, sort() is strictly a list method. You cannot use it to

sort a set, a tuple, a string, or a dictionary.

The sort() method does not return a new list; it sorts an existing

list. If you try to create a new object using the sort() method, it

will return None. See below:

list1 = [2, 5, 6, 8, 1, 8, 9, 11]
list2 = list1.sort(reverse=True)
print(list2)
Output:
None

6 | Swapping Variables

In Python, you can swap variables once they have been assigned

to objects. Below, we initially assign 20 to x and 30 to y, but then

we swap them: x becomes 30 and y becomes 20.

x, y = 20, 30
x, y = y, x

print('x is', x)
print('y is', y)

 Output:
x is 30
y is 20

In Python, we can also use the XOR (exclusive or) operator to

swap variables. This is a three-step method. In the example

below, we are swapping the values of x and y.

x = 20
y = 30

step one
x ^= y
step two
y ^= x
step three
x ^= y

print(f'x is: {x}')
print(f'y is: {y}')
Output:
x is: 30
y is: 20

7 | Counting Item Occurrences

If you want to know how many times an item appears in an

iterable, you can use the counter() class from the collection

module. The counter() class will return a dictionary of how many

times each item appears in an iterable. Let’s say we want to know

how many times the name Peter appears in the following list;

here is how we can use the counter() class of the collections

module.

from collections import Counter

list1 = ['John','Kelly', 'Peter', 'Moses', 'Peter']

count_peter = Counter(list1).get("Peter")

print(f'The name Peter appears in the list '
 f'{count_peter} times.')
Output:
The name Peter appears in the list 2 times.

Another way you can do it is by using a normal for loop. This is

the naive way. See below:

list1 = ['John','Kelly', 'Peter', 'Moses', 'Peter']

Create a count variable
count = 0
for name in list1:
 if name == 'Peter':
 count +=1
print(f'The name Peter appears in the list'
 f' {count} times.')

 Output:

The name Peter appears in the list 2 times.

8 | Flatten a Nested List

I will share with you three (3) ways you can flatten a list. The

first method employs a for loop, the second employs the

itertools module, and the third employs list comprehension.

list1 = [[1, 2, 3],[4, 5, 6]]

newlist = []
for list2 in list1:
 for j in list2:
 newlist.append(j)
print(newlist)
Output:
[1, 2, 3, 4, 5, 6]

Using itertools

import itertools

list1 = [[1, 2, 3],[4, 5, 6]]

flat_list = list(itertools.chain.from_iterable(list1)))
print(flat_list)
Output:
[1, 2, 3, 4, 5, 6]

Using list comprehension

If you do not want to import itertools or the normal for loop,

you can just use list comprehension.

list1 = [[1, 2, 3], [4, 5, 6]]

flat_list= [i for j in list1 for i in j]
print(flat_list)
Output:
[1, 2, 3, 4, 5, 6]

9 | Index of the Biggest Number

Using the enumerate(), max(), and min() functions, we can find

the index of the biggest and the smallest number in a list. The

max function is a high-order function; it takes another function

as an argument.

In the code below, the max() function takes the list and the

lambda function as arguments. We add the enumerate()

function to the list so it can return both the number in the list

and its index (a tuple). We set the count in the enumerate

function to start at position zero (0). The lambda function tells

the function to return a tuple pair of the maximum number and

its index.

Find the index of the largest number

x = [12, 45, 67, 89, 34, 67, 13]

max_num = max(enumerate(x, start=0),
 key = lambda x: x[1])
print('The index of the largest number is',
 max_num[0])
Output:
The index of the biggest number is 3

Finding the index of the smallest number

This is similar to the max() function, only that we are now

using the min() function.

x = [12, 45, 67, 89, 34, 67, 13]

min_num = min(enumerate(x, start=0),
 key = lambda x : x[1])
print('The index of the smallest number is',
 min_num[0])
Output:
The index of the smallest number is 0

10 | Absolute Value of a Number

Let’s say you have a negative number and you want to return

the absolute value of that number; you can use the abs()

function. The Python abs() function is used to return the

absolute value of any number (positive, negative, and complex

numbers). Below, we demonstrate how we can return a list of

absolute numbers from a list of numbers that have negative and

positive numbers. We use list comprehension.

list1 = [-12, -45, -67, -89, -34, 67, -13]

print([abs(num) for num in list1])
 Output:
 [12, 45, 67, 89, 34, 67, 13]

You can also use the abs() function on a floating number, and

it will return the absolute value. See below:

a = -23.12
print(abs(a))
Output:
23.12

When you use it on a complex number, it returns the magnitude

of that number. See below:

complex_num = 6 + 3j
print(abs(complex_num))
Output:
6.708203932499369

11 | Adding a Thousand Separator

If you are working with large figures and you want to add a

separator to make them more readable, you can use the format()

function. See the example below:

a = [10989767, 9876780, 9908763]

new_list =['{:,}'.format(num) for num in a]
print(new_list)
Output:
['10,989,767', '9,876,780', '9,908,763']

We can also use f-strings to add a thousand separators. Notice

below that instead of using a comma (,) as a separator, we are

using an underscore (_).

a = [10989767, 9876780, 9908763]

new_list =[f"{num:_}" for num in a]
print(new_list)
Output:
['10_989_767', '9_876_780', '9_908_763']

Have you noticed that we are using list comprehension to add

the separator on both occasions? Cool thing, right? 😊.

Later on, we'll look at another method for adding a thousand

separator.

12 | Startswith and Endswith Methods

The startswith() and endswith() are string methods that return

True if a specified string starts with or ends with a specified

value.

Let’s say you want to return all the names in a list that start with

"a."; here is how you would use startswith() to accomplish that.

Using startswith()

list1 = ['lemon','Orange',
 'apple', 'apricot']

new_list = [i for i in list1 if i.startswith('a')]
print(new_list)
Output:
['apple', 'apricot']

Using endswith()

list1 = ['lemon','Orange',
 'apple', 'apricot']

new_list = [i for i in list1 if i.endswith('e')]
print(new_list)
Output:
['Orange', 'apple']

Notice that for both examples above, we are using list

comprehension.

13 | Nlargest and Nsmallest

Let’s say you have a list of numbers and you want to return the

five largest numbers or the five smallest numbers from that list.

Normally, you can use the sorted() function and list slicing, but

they only return a single number.

def sort_list(arr: list):
 a = sorted(arr, reverse=True)
 return a[:5]

results = [12, 34, 67, 98, 90, 68, 55, 54, 64, 35]

print(sort_list(results))
Output:
[98, 90, 68, 67, 64]

This is cool, but slicing does not make code readable. There is a

Python built-in module that you can use that will make your life

easier. It is called heapq. With this module, we can easily return

the 5 largest numbers using the nlargest method. The method

takes two arguments: the iterable object and the number of

numbers we want to return. Below, we pass 5, because we want

to return the five largest numbers from the list.

Using nlargest

import heapq

results = [12, 34, 67, 98, 90, 68, 55, 54, 64, 35]
print(heapq.nlargest(5, results))
Output:
[98, 90, 68, 67, 64]

Using nsmallest

Import headq

results = [12, 34, 67, 98, 90, 68, 55, 54, 64, 35]
print(headq.nsmallest(5, results))

 Output:
[12, 34, 35, 54, 55]

14 | Checking for Anagram

You have two strings; how would you go about checking if they

are anagrams?

If you want to check if two strings are anagrams, you can use

counter() from the collections module. The counter() supports

equality tests. We can basically use it to check if the given

objects are equal. In the code below, we are checking if a and b

are anagrams.

from collections import Counter

a = 'lost'
b = 'stol'
print(Counter(a)==Counter(b))
Output:
True

We can also use the sorted() function to check if two strings

are anagrams. By default, the sorted() function will sort a

given string in ascending order. So, when we pass strings as

arguments to the sorted function for equality tests, first the

strings are sorted, then compared. See the code below:

a = 'lost'
b = 'stol'

if sorted(a)== sorted(b):
 print('Anagrams')
else:
 print("Not anagrams")
Output:
Anagrams

15 | Checking Internet Speed

Did you know that you can check internet speed with Python?

There is a module called speedtest that you can use to check the
speed of your internet. You will have to install it with pip.

pip install speedtest-cli

Since the output of speedtest is in bits, we divide it by 8000000

to get the results in mb. Go on, test your internet speed using

Python.

Checking download speed

import speedtest

d_speed = speedtest.Speedtest()
print(f'{d_speed.download()/8000000:.2f}mb')

 Output:
213.78mb

Checking upload speed

import speedtest

up_speed = speedtest.Speedtest()
print(f'{up_speed.upload()/8000000:.2f}mb')

 Output:
85.31mb

16 | Python Reserved keywords

If you want to know the reserved keywords in Python, you can

use the help() function. Remember, you cannot use any

of these words as variable names. Your code will

generate an error.

print(help('keywords'))
Output:
Here is a list of the Python keywords. Enter any

keyword to get more help.

False class from

or
None continue global

pass
True def if

raise
and del import

return
as elif in

try
assert else is

while
async except lambda

with
await finally nonlocal

yield
break for not

None

17 | Properties and Methods

If you want to know the properties and methods of an object or

module, use the dir() function. Below, we are checking for the

properties and methods of a string object. You can also use dir()

to check the properties and methods of modules. For instance,

if you wanted to know the properties and methods of the

collections module, you could import it and pass it as an

argument to the function print(dir(collections)).

a = 'I love Python'
print(dir(a))
Output:
['__add__', '__class__', '__contains__', '__delattr__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__getnewargs__',
'__gt__', '__hash__', '__init__', '__init_subclass__',
'__iter__', '__le__', '__len__', '__lt__', '__mod__',
'__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmod__', '__rmul__',
'__setattr__', '__sizeof__', '__str__',
'__subclasshook__', 'capitalize', 'casefold', 'center',
'count', 'encode', 'endswith', 'expandtabs', 'find',
'format', 'format_map', 'index', 'isalnum', 'isalpha',
'isascii', 'isdecimal', 'isdigit', 'isidentifier',
'islower', 'isnumeric', 'isprintable', 'isspace',
'istitle', 'isupper', 'join', 'ljust', 'lower',
'lstrip', 'maketrans', 'partition', 'removeprefix',
'removesuffix', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines',
'startswith', 'strip', 'swapcase', 'title', 'translate',
'upper', 'zfill']

18 | Open a Website Using Python

Did you know that you can open a website using a Python

script?

To open a website using Python, import the webbrowser

module. This is a built-in module, so you don’t have to install

anything. Below, we are trying to open google.com using the

open() method of the module. You can do this with any website

if you know its URL.

import webbrowser

url = "https://www.google.com/"
open_web = webbrowser.open(url)
print(open_web)

You can also specify if you want to open a new tab in a browser

or a new browser window. See the code below:

import webbrowser

url = "https://www.google.com/"

This opens a new tab in your browser
webbrowser.open_new_tab(url)

This opens a new browser window
webbrowser.open_new(website)

19 | Most Frequent in a String

Let’s say you have a string and you want to find the most

frequent element in the string; you can use the max() function.

The max() function will count the items in the string and return

the item that appears the most. You just have to pass the string

count method to the key parameter. Let’s use the string below

to demonstrate this.

a = 'fecklessness'

most_frequent = max(a, key = a.count)
print(f'The most frequent letter is, '
 f'{most_frequent}')
Output
The most frequent letter is, s

 Now, if there is more than one most frequent item in the string,

the max() function will return the element that comes first

alphabetically. For example, if the string above had 4 Fs and 4 Ss,

the max function would return "f" instead of "s" as the most

frequent element because "f" comes first alphabetically.

 We can also use the Counter class from the collections module.

The most_common() method of this class will count how many

times each element appears in the list, and it will return all the

elements and their counts, as a list of tuples. Below, we pass the

parameter (1) because we want it to return the number one most

common element of the list. If we pass (2), it will return the two

most common elements.

import collections

a = 'fecklessness'

print(collections.Counter(a).most_common(1))
Output:
('s', 4)

20 | Memory Size Check

Do you want to know how much memory an object is consuming

in Python?

The sys module has a method that you can use for such a task.

Here is a code to demonstrate this. Given the same items, which

one is more memory efficient among a set, a tuple, and a list?

Let's use the sys module to find out.

import sys

a = ['Love', 'Cold', 'Hot', 'Python']
b = {'Love', 'Cold', 'Hot', 'Python'}
c = ('Love', 'Cold', 'Hot', 'Python')

print(f'The memory size of a list is '
 f'{sys.getsizeof(a)} ')

print(f'The memory size of a set is '
 f'{sys.getsizeof(b)} ')

print(f'The memory size of a tuple is '
 f'{sys.getsizeof(c)} ')
Output:
The memory size of a list is 88
The memory size of a set is 216
The memory size of a tuple is 72

As you can see, lists and tuples are more space efficient than

sets.

21 | Accessing Dictionary Keys

How do you access keys in a dictionary? Below are three

different ways you can access the keys of a dictionary.

1. Using set comprehension

Set comprehension is similar to list comprehension. The

difference is that it returns a set.

dict1 = {'name': 'Mary', 'age': 22,
 'student':True,'Country': 'UAE'}

print({key for key in dict1.keys()})

 Output:
{'age', 'student', 'Country', 'name'}

2. Using the set() function

dict1 = {'name': 'Mary', 'age': 22,
 'student':True,'Country': 'UAE'}

print(set(dict1))

 Output:
{'name', 'Country', 'student', 'age'}

3. Using the sorted() function

dict1 = {'name': 'Mary', 'age': 22,
 'student':True,'Country': 'UAE'}

print(sorted(dict1))

 Output:
['Country', 'age', 'name', 'student']

22 | Iterable or Not

Question: How do you confirm if an object is iterable using

code?

This is how you can use code to check if an item is iterable or

not. We are using the iter() function. When you pass an item

that is not iterable as an argument to the iter() function, it

returns a TypeError. Below, we write a short script that checks

if a given object is an iterable.

arr = ['i', 'love', 'working', 'with', 'Python']

try:
 iter_check = iter(arr)
except TypeError:
 print('Object a not iterable')
else:
 print('Object a is iterable')

Check the second object
b = 45.7

try:
 iter_check = iter(b)
except TypeError:
 print('Object b is not iterable')
else:
 print('Object b is iterable')
Output:
Object a is iterable
Object b is not iterable

23 | Sorting a List of Tuples

You can sort a list of tuples using the itemgetter() class of the

operator module. The itemgetter() function is passed as a key

to the sorted() function. If you want to sort by the first name,

you pass the index (0) to the itemgetter() function. Below are

different ways you can use itemgetter() to sort the list of tuples.

from operator import itemgetter

names = [('Ben','Jones'),('Peter','Parker'),
 ('Kelly','Isa')]

#Sort names by first name
sorted_names = sorted(names,key=itemgetter(0))
print('Sorted by first name',sorted_names)

sort names by last name
sorted_names = sorted(names,key=itemgetter(1))
print('Sorted by last name',sorted_names)

sort names by first name, then last name
sorted_names = sorted(names,key=itemgetter(0,1))
print('Sorted by last name & first name',sorted_names)
Output:
Sorted by first name [('Ben', 'Jones'), ('Kelly',

'Isa'), ('Peter', 'Parker')]

Sorted by last name [('Kelly', 'Isa'), ('Ben', 'Jones'),

('Peter', 'Parker')]

Sorted by last name & first name [('Ben', 'Jones'),

('Kelly', 'Isa'), ('Peter', 'Parker')]

24 | Sort List with Sorted & Lambda

The sorted() function is a high-order function because it takes
another function as a parameter. Here, we create a lambda
function that is then passed as an argument to the sorted()
function key parameter. By using a negative index [-1], we are
telling the sorted() function to sort the list in descending
order.

list1 = ['Mary', 'Peter', 'Kelly']

a = lambda x: x[-1]
y = sorted(list1, key=a)
print(y)
Output:
['Peter', 'Mary', 'Kelly']

To sort the list in ascending order, we can just change the

index to [:1]. See below:

list1 = ['Mary', 'Peter', 'Kelly']

a = lambda x: x[:1]
y = sorted(list1, key=a)
print(y)
Output:
['Kelly', 'Mary', 'Peter']

Another easy way to sort the list in ascending order would be

to use just the sorted() function. By default, it sorts an iterable

in ascending order. Since the key parameter is optional, we

just leave it out.

list1 = ['Mary', 'Peter', 'Kelly']

list2 = sorted(list1)
print(list2)
Output
['Kelly', 'Mary', 'Peter']

 25 | Access News Using Python

You can do a lot of things with Python, even read the news. You
can access the news using the Python newspapers module. You
can use this module to scrape newspaper articles. First, install the
module.

pip install newspaper3k

Below we access the title of the article. All we need is the article
URL.

from newspaper import Article

news = Article("https://indianexpress.com/article/"
 "technology/gadgets/"
 "apple-discontinues-its-last-ipod-model-7910720/")

news.download()
news.parse()
print(news.title)
Output
End of an Era: Apple discontinues its last iPod model

We can also access the article text, using the text method.

news = Article("https://indianexpress.com/article/"
 "technology/gadgets/"
 "apple-discontinues-its-last-ipod-model-7910720/")

news.download()
news.parse()
print(news.text)
Output:
Apple Inc.’s iPod, a groundbreaking device that upended the
music and electronics industries more than two decades ago...

We can also access the article publication date.

news = Article("https://indianexpress.com/article/"
 "technology/gadgets/"
 "apple-discontinues-its-last-ipod-model-7910720/")

news.download()
news.parse()
print(news.publish_date)
Output:
2022-05-11 09:29:17+05:30

26 | A List of Tuples with Enumerate

Since enumerate counts (adds a counter) the items it loops over,

you can use it to create a list of tuples. Below, we create a list of

tuples of days in a week from a list of days. Enumerate has a

parameter called "start." Start is the index at which you want

the count to begin. By default, the start is zero (0).

Below, we have set the start parameter to one (1). You can start

with any number you want.

days = ["Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"]

days_tuples = list(enumerate(days, start=1))
print(days_tuples)
Output:
[(1, 'Sunday'), (2, 'Monday'), (3, 'Tuesday'), (4,
'Wednesday'), (5, 'Thursday'), (6, 'Friday'), (7, 'Saturday')]

It is also possible to create the same output with a for loop. Let’s

create a function to demonstrate this.

def enumerate(days, start= 1):
 n = start
 for day in days:
 yield n, day
 n += 1

days = ["Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"]

print(list(enumerate(days)))
Output:
[(1, 'Sunday'), (2, 'Monday'), (3, 'Tuesday'), (4, 'Wednesday'), (5,
'Thursday'), (6, 'Friday'), (7, 'Saturday')]

27 | Assertion

We can use the assert statement to check or debug your code. The

assert statement will catch errors early on in the code. The assert

statement takes two arguments: a condition and an optional

error message. Here is the syntax below:

assert <condition>, [error message]

The condition returns a Boolean value of either True or False. The

error message is the message we want to be displayed if the

condition is False.

Below, we insert an assert statement in the code. This code takes

a list of names and returns all the names in lowercase letters. We

expect all the items in the list to be strings, so we use the insert

statement to debug for non-string entries. The insert statement

will check if all the items in the list are of type str. If one of the

items is not a string, it will evaluate to False. It will halt the

program and throw an AssertionError. It will display the error

message that "non-string items are in the list." If all the

items are strings, it will evaluate to True and run the rest of the

code. The code returns an error because the fourth name in the

list of names is not a string.

name = ["Jon","kelly", "kess", "PETR", 4]

lower_names = []
for item in name:
 assert type(item) == str, 'non-string items in the list'
 if item.islower():
 lower_names.append(item)

print(lower_names)
Output:
AssertionError: non-string items in the list

If we remove the non-string item from the list, the rest of the

code runs.

name = ["Jon","kelly", "kess", "PETR"]

lower_names = []
for item in name:
 assert type(item) == str, 'non-string items in the list'
 if item.islower():
 lower_names.append(item)

print(lower_names)
Output:
['kelly', 'kess']

28 | Print Colored Texts

Did you know that you can add color to your code using Python

and ANSI escape codes? Below, I created a class of codes and

applied it to the code that I printed out.

class Colors():
 Black = '\033[30m'
 Green = '\033[32m'
 Blue = '\033[34m'
 Magenta = '\033[35m'
 Red = '\033[31m'
 Cyan = '\033[36m'
 White = '\033[37m'
 Yellow = '\033[33m'

print(f'{Colors.Red} Warning: {Colors.Green} '
 f'Love Don\'t live here anymore')
Output:
Warning: Love Don't live here anymore

29 | Find Index Using Enumerate

The simplest way to access the index of items in an iterable is by

using the enumerate() function. By default, the enumerate

function returns the element and its index. We can basically use

it to loop over an iterable, and it will return a counter of all the

elements in the iterable.

Let’s say we want to find the index of the letter "n" in str1 below.

Here is how we can use the enumerate function to achieve that:

str1 = 'string'

for index, value in enumerate(str1):
 if value =='n':
 print(f"The index of n is {index}")
Output
The index of 'n' is 4

If we want to print all the elements in the string and their

indexes, here is how we can use enumerate.

str1 = 'string'
for i, j in enumerate(str1):
 print(f"Index: {i}, Value: {j}")
Output:
Index: 0, Value: s
Index: 1, Value: t
Index: 2, Value: r
Index: 3, Value: i
Index: 4, Value: n
Index: 5, Value: g

If you don’t want to use a for loop, you can use enumerate with

the list function, and it will return a list of tuples. Each tuple will

have a value and its index.

str1 = 'string'
str_counta = list(enumerate(str1))
print(str_counta)
Output:
[(0, 's'), (1, 't'), (2, 'r'), (3, 'i'), (4, 'n'), (5, 'g')]

30 | Create Class Using Type Function

The type() function is usually used to check the type of an object.

However, it can also be used to create classes dynamically in

Python.

Below I have created two classes, the first one using the class

keyword and the second one using the type() function. You can

see that both methods achieve the same results.

Creating dynamic class using the class keyword
class Car:
 def __init__(self, name, color):
 self.name = name
 self.color = color

 def print_car(self):
 return f'The car is {self.name} ' \
 f'and its {self.color} in color'

car1 = Car('BMW', 'Green')
print(car1.print_car())

Creating dynamic class using the type keyword
def cars_init(self, name ,color):
 self.name = name
 self.color = color

Cars = type("Car",(),
 {'__init__': cars_init,
 'print_car':lambda self:
 f'The car is {self.name} '
 f'and its {self.color} in color'})

car1 = Cars("BMW", "Green")
print(car1.print_car())
Output:
The car is BMW and its Green in color
The car is BMW and its Green in color

31 | Checking if a String is Empty

The simple way to check if a given string is empty is to use the

if statement and the not operator, which will return a Boolean

value. Empty strings in Python evaluate to False, and strings

that are not empty evaluate to True. The not operator returns

True if something is False and False if something is True. Since

an empty string evaluates to False, the not operator will return

True. Below, if a string is empty, the if statement will evaluate

to True, so that part of the code will run. If a string is not empty,

the else statement will run.

Empty string
str1 = ''

if not str1:
 print('This string is empty')
else:
 print('This string is NOT empty')
Output:
This string is empty

Example 2

Let's try to insert something into the string now.

Not empty string
str2 = 'string'

if not str1:
 print('This string is empty')
else:
 print('This string is NOT empty')
Output:
This string is NOT empty

32 | Flatten Nested List

What is a nested list? A nested list is a list that has another list as

an element (a list inside a list). You can flatten a nested list using

the sum() function. Note that this will work on a two-dimensional

nested list.

nested_list = [[2, 4, 6],[8, 10, 12]]

new_list = sum(nested_list,[])
print(new_list)
Output:
[2, 4, 6, 8, 10, 12]

Please note that this is not the most efficient way to flatten a list.

It is not easy to read. But it's still pretty cool to know, right? 😊

Using reduce function

Here is another cool trick you can use to flatten a two-dimensional

list. This time we use reduce from functools module. This is

another high order function in Python.

from functools import reduce

nested_list = [[2, 4, 6], [8, 10, 12]]

new_list = reduce(lambda x, y: x+y, nested_list)
print(new_list)
Output:
[2, 4, 6, 8, 10, 12]

33 | Checking if a File Exists

Using the OS module, you can check if a file exists. The os module

has an exists() function from the path() class that returns a

Boolean value. If a file exists, it will return True; if not, it will

return False. When working with files, it is important to check if

a file exists before trying to run it to avoid generating errors. Let's

say you want to delete or remove a file with Python; if the file does

not exist, your code will generate an error. See the following

example:

import os

os.remove("thisfile.txt")
Output:
FileNotFoundError: [WinError 2] The system cannot find the file
specified: 'thisfile.txt'

To avoid this error, we have to check if the file exists before

removing it. We will pass the file path or file name as an

argument to os.path.exists(). If the file is in the same folder as your

Python file, we can pass the file name as an argument.

In the code below, we use the file name as an argument because

we assume the file is in the same folder as the Python file. You

can see from the output that even though the file does not exist,

our code does not generate an error.

import os.path

file = os.path.exists('thisfile.txt')

if file:
 os.remove("thisfile.txt")
else:
 print('This file does Not exist')
 Output:
This file does Not exist

34 | Set Comprehension

Set comprehension is similar to list comprehension; the only

difference is that it returns a set and not a list. Instead of square

brackets, set comprehension uses curly brackets. This is because

sets are enclosed in curly brackets. You can use set comprehension

on an iterable (list, tuple, set, etc.).

Let’s say we have a list of uppercase strings and we want to convert

them into lowercase strings and remove duplicates; we can use set

comprehension. Since sets are not ordered, the order of the items

in the iterable will be changed. Sets do not allow duplicates, so only

one "PEACE" will be in the output set.

list1 = ['LOVE', 'HATE', 'WAR', 'PEACE', 'PEACE']

set1 = {word.lower()for word in list1}
print(set1)
Output:
{'love', 'peace', 'war', 'hate'}

Here is another way we can use set comprehension. Let’s say we
have a list of numbers and we want to return all the numbers from
the list that are divisible by 2 and remove duplicates at the same
time. Here is the code below: Remember, sets do not allow
duplicates, so it will remove all the numbers that appear more than
once.

arr = [10, 23, 30, 30, 40, 45, 50]

new_set = {num for num in arr if num % 2 == 0}
print(new_set)
Output:
{40, 10, 50, 30}

35 | Python *args and **Kwargs

When you are not sure how many arguments you will need for

your function, you can pass *args (non-keyword arguments) as a

parameter. The * notation tells Python that you are not sure how

many arguments you need, and Python allows you to pass in as

many arguments as you want. Below, we calculate the average

with different numbers of arguments. First, we pass three (3)

numbers as arguments. Then we pass six numbers as arguments.

The *args make functions more flexible when it comes to

arguments.

def avg(*args):
 avg1 = sum(args)/len(args)
 return f'The average is {avg1:.2f}'

print(avg(12, 34, 56))
print(avg(23,45,36,41,25,25))

 Output:
The average is 34.00
The average is 32.50

When you see **kwargs (keyword arguments) as a parameter, it

means the function can accept any number of arguments as a

dictionary (arguments must be in key-value pairs). See the

example below:

def myFunc(**kwargs):
 for key, value in kwargs.items():
 print(f'{key} = {value}')
 print('\n')

myFunc(Name = 'Ben',Age = 80, Occupation ='Engineer')
Output:
Name = Ben
Age = 80
Occupation = Engineer

36 | The Filter Function

We can use the filter() function as an alternative to the for loop.

If you want to return items from an iterable that match certain

criteria, you can use the Python filter() function.

Let’s say we have a list of names and we want to return a list of

names that are lowercase; here is how you can do it using the

filter() function.

The first example uses a for loop for comparison purposes.

Example 1: Using a for loop

names = ['Derick', 'John', 'moses', 'linda']

for name in names:
 if name.islower():
 lower_case.append(name)
print(lower_case)
Output:
['moses', 'linda']

Example 2: Using filter function with lambda function

The filter() function is a higher-order function. The filter

function takes two arguments: a function and a sequence. It uses

the function to filter the sequence. In the code below, the filter

function uses the lambda function to check for names in the list

that are lowercase.

names = ['Derick', 'John', 'moses', 'linda']

lower_case = list(filter(lambda x:x.islower(), names))
print(lower_case)
Output:
['moses', 'linda']

Example 3: Using filter function with a function

If we do not want to use a lambda function, we can write a

function and pass it as an argument to the filter function. See

the code below:

names = ['Derick', 'John', 'moses', 'linda']

Creating a function
def lower_names(n:str):
 return n.islower()

passing the function as argument of the filter function
lower_case = list(filter(lower_names, names))
print(lower_case)
Output:
['moses', 'linda']

37 | Dictionary Comprehension

Dictionary comprehension is a one-line code that transforms a

dictionary into another dictionary with modified values. It makes

your code intuitive and concise. It is similar to list

comprehension.

Let’s say you want to update the values of the dictionary from

integers to floats; you can use dictionary comprehension. Below,

k accesses the dictionary keys, and v accesses the dictionary

values.

dict1 = {'Grade': 70, 'Weight': 45, 'Width': 89}

Converting dict values into floats
dict2 = {k: float(v) for (k, v) in dict1.items()}
print(dict2)
Output:
{'Grade': 70.0, 'Weight': 45.0, 'Width': 89.0}

Let’s say we want to divide all the values in the dictionary by 2;

here is how we do it.

dict1 = {'Grade': 70, 'Weight': 45, 'Width': 89}

dividing dict values by 2
dict2 = {k: v/2 for (k, v) in dict1.items()}
print(dict2)
Output:
{'Grade': 35.0, 'Weight': 22.5, 'Width': 44.5}

38 | DataFrame from Two Lists

The easiest way to create a DataFrame from two lists is to use

the pandas module. First install pandas with pip:

pip install pandas

Import pandas, and pass the lists to the DataFrame constructor.

Since we have two lists, we have to use the zip() function to

combine the lists.

Below, we have a list of car brands and a list of car models. We

are going to create a DataFrame. The DataFrame will have one

column called Brands, and another called Models, and the

index will be the numbers in ascending order.

import pandas as pd

list1 = ['Tesla', 'Ford', 'Fiat']
models = ['X', 'Focus', 'Doblo']

df = pd.DataFrame(list(zip(list1,models)),
 index =[1, 2, 3],
 columns=['Brands','Models'])

print(df)
Output:
Brands Models
1 Tesla X
2 Ford Focus
3 Fiat Doblo

39 | Adding a Column to a DataFrame

Let’s continue with the tip from the previous tip (38). One of the

most important aspects of pandas DataFrame is that it is very

flexible. We can add and remove columns. Let’s add a column

called Age to the DataFrame. The column will have the ages of

the cars.

import pandas as pd

list1 = ['Tesla', 'Ford', 'Fiat']
models = ['X', 'Focus', 'Doblo']

df = pd.DataFrame(list(zip(list1,models)),
 index =[1, 2, 3],
 columns=['Brands','Models'])
Adding a column to dataFrame
df['Age'] = [2, 4, 3]
print(df)
Output:
Brands Models Age
1 Tesla X 2
2 Ford Focus 4
3 Fiat Doblo 3

Dropping or removing a column

Pandas has a drop() method that we can use to remove columns

and rows from a DataFrame. Let’s say we want to remove the

column "Models" from the DataFrame above. You can see from

the output that the "Models" column has been removed. The

inplace=True means we want the change to be made on the

original DataFrame. On a DataFrame, axis 1 means columns. So,

when we pass 1 to the axis parameter, we are dropping a column.

df.drop('Models', inplace=True, axis=1)
print(df)
Output:
 Brands Age

1 Tesla 2

2 Ford 4

3 Fiat 3

40 | Timer Decorator

Below, I created a timer function that uses the perf_counter class

of the time module. Notice that the inner() function is inside the

timer() function; this is because we are creating a decorator.

Inside the inner() function is where the "decorated" function will

run. Basically, the "decorated" function is passed as an argument

to the decorator. The decorator then runs this function inside the

inner() function.

The @timer right before the range_tracker function means that

the function is being decorated by another function. To

"decorate" a function is to improve or add extra

functionality to that function without changing it. By

using a decorator, we are able to add a timer to the

range_tracker function. We are using this timer to check how

long it takes to create a list from a range.

import time

def timer(func):
 def inner():
 start = time.perf_counter()
 func()
 end = time.perf_counter()
 print(f'Run time is {end-start:.2f} secs')
 return inner

@timer
def range_tracker():
 lst = []
 for i in range(10000000):
 lst.append(i**2)

range_tracker()
Output:
Run time is 10.25 secs

41 | List Comprehension vs Generators

A generator is similar to a list comprehension, but instead of

square brackets, you use parenthesis. Generators yield one item

at a time, while list comprehension releases everything at once.

Below, I compare list comprehension to a generator in two

categories:

1. Speed of execution.

2. Memory allocation.

Conclusion

List comprehension executes much faster but takes up more

memory. Generators execute a bit slower, but they take up less

memory since they only yield one item at a time.

import timeit
import sys

function to check time execution
def timer(_, code):
 exc_time = timeit.timeit(code, number=1000)
 return f'{_}: execution time is {exc_time:.2f}'

function to check memory allocation
def memory_size(_, code):
 size = sys.getsizeof(code)
 return f'{_}: allocated memory is {size}'

one = 'Generator'
two = 'list comprehension'

print(timer(one, 'sum((num**2 for num in range(10000)))'))
print(timer(two, 'sum([num**2 for num in range(10000)])'))
print(memory_size(one,(num**2 for num in range(10000))))
print(memory_size(two,[num**2 for num in range(10000)]))
Output:
Generator: execution time is 5.06
list comprehension: execution time is 4.60
Generator: allocated memory is 112
list comprehension: allocated memory is 85176

42 | Writing to File

Let’s say you have a list of names and you want to write them

in a file, and you want all the names to be written vertically.

Here is a sample code that demonstrates how you can do it.

The code below creates a CSV file. We tell the code to write

each name on a new line by using the escape character ('\n').

Another way you can create a CSV file is by using the CSV

module.

names = ['John Kelly', 'Moses Nkosi', 'Joseph Marley']

with open('names.csv', 'w') as file:
 for name in names:
 file.write(name)
 file.write('\n')

reading CSV file
with open ('names.csv', 'r') as file:
 print(file.read())
Output:
John Kelly
Moses Nkosi
Joseph Marley

Using CSV module

If you don’t want to use this method, you can import the CSV

module. CSV is a built-in module that comes with Python, so

there is no need to install it. Here is how you can use the CSV

module to accomplish the same thing. Example code on the

next page:

import csv

names = ['John Kelly', 'Moses Nkosi', 'Joseph Marley']

with open('names.csv', 'w') as file:
 for name in names:
 writer = csv.writer(file,lineterminator = '\n')
 writer.writerow([name])

Reading the file
with open ('names.csv', 'r') as file:
 print(file.read())
Output:
John Kelly
Moses Nkosi
Joseph Marley

43 | Merge PDF Files

If we want to merge PDF files, we can do it with Python. We

can use the PyPDF2 module. With this module, you can

merge as many files as you want. First, install the module

using pip.

pip install pyPDF2

import PyPDF2
from PyPDF2 import PdfFileMerger, PdfFileReader,

Create a list of files to merge
list1 = ['file1.pdf', 'file2.pdf']

merge = PyPDF2.PdfFileMerger(strict=True)
for file in list1:
 merge.append(PdfFileReader(file,'rb+'))

Merge the files and name the merged file
merge.write('mergedfile.pdf')
merge.close()
Reading the created file
created_file = PdfFileReader('mergedfile.pdf')
created_file
Output:
<PyPDF2.pdf.PdfFileReader at 0x257d1c8ba90>

For this code to run successfully, make sure that the files

you are wanting to merge are saved in the same location as

your Python file. Create a list of all the files that you are

trying to merge. The output simply confirms that the

merged file has been created. The name of the file is

mergedfile.pdf.

44 | Return vs Yield

 Do you understand the distinction between a return statement

and a yield statement in a function? The return statement returns

one element and ends the function. The yield statement returns

a "package" of elements called a generator. You have to "unpack"

the package to get the elements. You can use a for loop or the

next() function to unpack the generator.

 Example 1: Using return statement

def num (n: int) -> int:
 for i in range(n):
 return i

print(num(5))
Output:
0

You can see from the output that once the function returns 0, it

stops. It does not return all the numbers in the range.

Example 2: Using yield

def num (n: int):
 for i in range(n):
 yield i

creating a generator
gen = num(5)

#unpacking generator
for i in gen:
 print(i, end = '')
Output:
0 1 2 3 4

The yield function returns a "package" of all the numbers in the

range. We use a for loop to access the items in the range.

45 | High Order Functions

A high-order function is a function that takes another function

as an argument or returns another function. The code below

demonstrates how we can create a function and use it inside a

high-order function. We create a function called sort_names,

and we use it as a key inside the sorted() function. By using

index[0], we are basically telling the sorted function to sort

names by their first name. If we use [1], then the names would

be sorted by the last name.

def sort_names(x):
 return x[0]

names = [('John','Kelly'),('Chris','Rock'),
 ('Will','Smith')]

sorted_names = sorted(names, key= sort_names)
print(sorted_names)
Output:
[('Chris', 'Rock'), ('John', 'Kelly'), ('Will', 'Smith')]

If we don’t want to write a function as above, we can also use

the lambda function. See below:

names = [('John','Kelly'),('Chris','Rock'),
 ('Will','Smith')]

sorted_names = sorted(names, key= lambda x: x[0])
print(sorted_names)
Output:
[('Chris', 'Rock'), ('John', 'Kelly'), ('Will', 'Smith')]

46 | Grammar Errors

Did you know that you can correct grammar errors in text using
Python? You can use an open-source framework called Gramformer.
Gramformer (created by Prithviraj Damodaran) is a framework for
highlighting and correcting grammar errors in natural-language text.
Here is a simple code that demonstrates how you can use
gramformer. to correct errors in a text.

First, you need to install it. Run this below:

!pip3 install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio==0.8.2 -

f https://download.pytorch.org/whl/lts/1.8/torch_lts.html

!pip3 install -U git+https://github.com/PrithivirajDamodaran/Gramformer.git

from gramformer import Gramformer

instantiate the model
gf = Gramformer(models=1, use_gpu=False)

sentences = [
 'I hates walking night',
 'The city is were I work',
 'I has two children'
]

for sentence in sentences:
 correct_sentences = gf.correct(sentence)
 print('[Original Sentence]', sentence)
 for correct_sentence in correct_sentences:
 print('[Corrected sentence]', correct_sentence)
Output:
[Original Sentence] I hates walking night
[Corrected sentence] I hate walking at night.
[Original Sentence] The city is were I work
[Corrected sentence] The city where I work.
[Original Sentence] I has two children
[Corrected sentence] I have two children.

https://download.pytorch.org/whl/lts/1.8/torch_lts.html

47 | Zen of Python

A Zen of Python is a list of 19 guiding principles for writing

beautiful code. Zen of Python was written by Tim Peters and

later added to Python.

Here is how you can access the Zen of Python.

import this

print(this)
Output:
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

48 | Sorted by Pprint

Did you know that you can print out a sorted dictionary using

the pprint module? Below, we use the module to print out a

dictionary in ascending order. The dictionary is sorted by key.

import pprint

a = {'c': 2, 'b': 3, 'y': 5,'x': 10}

pp = pprint.PrettyPrinter(sort_dicts=True)
pp.pprint(a)

 Output:
 {'b': 3, 'c': 2, 'x': 10, 'y': 5}

Please note that pprint does not change the order of the actual

dictionary; it just changes the printout order.

Insert underscore

Pprint can also be used to insert a thousand separator into

numbers. Pprint will insert an underscore as a thousand

separator. It has a parameter called underscore_numbers. All we

have to do is set it to True. See the code below:

import pprint

arr = [1034567, 1234567, 1246789, 12345679, 987654367]

pp = pprint.PrettyPrinter(underscore_numbers=True)
pp.pprint(arr)
Output:
[1_034_567, 1_234_567, 1_246_789, 12_345_679, 987_654_367]

49 | Convert Picture to Grey Scale

Do you want to convert a color image into grayscale? Use

Python’s cv2 module.

First install cv2 using > pip install opencv-python<

Below we are converting a color book image to grayscale. You

can replace that with your own image. You must know where

the image is stored.

When you want to view an image using CV2, a window will

open. The waitkey indicates how long we expect the display

window to be open. If a key is pressed before the display time is

over, the window will be destroyed or closed.

import cv2 as cv

img = cv.imread('book.jpg')

show the original image
img1 = cv.imshow('Original', img)
cv.waitKey(5)

Converting image to Gray
grayed_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

Show grayed-out image
img2 = cv.imshow('grayed_image', grayed_img)
cv.waitKey(5000)

#Save image
cv.imwrite('grayed.jpg', grayed_img)

50 | Time it with timeit

If you want to know the execution time of a given code, you can

use the timeit() module. Below, we create a function called timer

that uses timeit() from the timeit module. We're basically using

timeit to determine how long it takes to run sum(num**2 for

num in range(10000)).The first parameter of the timeit

function in the code below is stmt. This is where we pass the

Python code that we want to measure. This parameter only takes

a string as an argument, so we have to ensure that we convert our

code to a string format. The number parameter is basically the

number of executions we want to run on this code.

import timeit

def timer(code):
 tm = timeit.timeit(code,number=1000)
 return f'Execution time is {tm:.2f} secs.'

if __name__ == "__main__":
 print(timer('sum(num**2 for num in range(10000))'))
Output:
Execution time is 5.05 secs.

It’s not necessary to create a function like we did above. You can

also use timeit without creating a function. Let’s simplify the

above code by writing it without a function. Remember that the

stmt parameter only takes a string as an argument; that is why

the test variable below, which is the code that we pass to the

timeit() function, is a string.

import timeit

test = "sum(num ** 2 for num in range(10000))"
tm = timeit.timeit(stmt=test,number=1000)
print(f'{tm:.2f} secs')
Output
2.20 secs

51 | Shortening URL with Python

Most of us have used programs that generate short URLs.

Python has a library called pyshorteners used to shorten a

URL. First install it using pip:

pip install pyshorteners

Once you install it, you can import it into your script. The

function below demonstrates how we can use pyshorteners.

We pass a very long URL to the function, and it returns a short

URL.

import pyshorteners

def shorter_url(s: str):
 # iniatialize the shortener
 pys = pyshorteners.Shortener()
 # Using the tinyurl to shorten
 short_url = pys.tinyurl.short(s)
 return 'Short url is', short_url

print(shorter_url(

"https://www.google.com/search?q=python+documentation&newwind
ow=1&sxsrf=ALiCzsYze-"

"G2AArMZtCrJfyfVcqq6z8Rwg%3A1662044120968&ei=2McQY4PaOp68xc8P
yp-qIA&oq=python+do&gs_lcp="

"Cgdnd3Mtd2l6EAEYATIFCAAQgAQyBQgAEIAEMgUIABCABDIFCAAQgAQyBQgA
EIAEMgUIABCABDIFCAAQg"

"AQyBQgAEIAEMgUIABCABDIFCAAQgAQ6BwgAEEcQsAM6DQguEMcBENEDELADE
EM6BwgAELADEEM6BAgj"

"ECc6BAgAEEM6BAguECdKBAhBGABKBAhGGABQ1xBY70JgxlVoAXABeACAAYgB
iAGWCJIBAzAuOZgBA"
 "KABAcgBCsABAQ&sclient=gws-wiz"))

 Output
('Short url is', 'https://tinyurl.com/2n2zpl8d')

52 | The Round Function

 How do you easily round off a number in Python? Python has a

built-in round function that handles such tasks. The syntax is:

 round (number, number of digits)

The first parameter is the number to be rounded, and the

second parameter is the number of digits a given number will

be rounded to. That is the number of digits after the point. The

second parameter is optional. Here is an example:

num = 23.4567
print(round(num, 2))

 Output:
23.46

You can see that we have two digits after the decimal point. If

we didn’t pass the second parameter (2), the number would be

rounded to 23.

To round up or down a number, use the ceil and floor methods

from the math module. The ceil rounds up a number to the

nearest integer greater than the given number. The floor

method rounds down a number to the nearest integer that is less

than the given number.

import math

a = 23.4567
rounding up
print(math.ceil(a))
rounding down
print(math.floor(a))
Output:
24
23

53 | Convert PDF Files to Doc

Did you know that you can convert a PDF file to a Word

document using Python?

Python has a library called pdf2docs. With this library, you can

convert a pdf file to a word document with just a few lines of

code. Using pip, install the library;

pip install pdf2docx

We are going to import the Converter class from this module.

If the file is in the same directory as your Python script, then

you can just provide the name of the file instead of a link. The

new doc file will be saved in the same directory.

from pdf2docx import Converter

path to your pdf file
pdf = 'file.pdf'

Path to where the doc file will be saved
word_file = 'file.docx'

#instantiate converter
cv = Converter(pdf)
cv.convert(word_file)

#close file
cv.close()

54 | Text from PDF File

We can use the Python library PyPDF2 to extract text from

PDFs. First, install the library using pip;

pip install PyPDF2

We use the PdfFilereader class from the module. This class
will return the number of files in the pdf document, and it has
a get page method, which we can use to specify the page we
want to extract information from. Below, we extract text from
the book 50 Days of Python.

import PyPDF2

Open a pdf file
pdf_file = open('50_Days_of_Python.pdf', 'rb')

Read pdf reader
read_file = PyPDF2.PdfFileReader(pdf_file)

Read from a specified page
page = read_file.getPage(10)

extracting text from page
print(page.extractText())
closing pdf file
pdf_file.close()
Output:

Day 2 : Strings to Integers
Write a function called convert _add that takes a list of strings
as an argument and converts it to integers and sums the list. For
example [‘1’, ‘3’, ‘5’] should be converted to [1, 3, 5] and
summed to 9.

Extra Challenge: Duplicate Names

Write a function called check _duplicates that takes a list of
strings as an argument. The function should check if the list
has
any duplicates. If there are duplicates, the function should
return
the duplicates. If there are no duplicates, the function should

https://benjaminb.gumroad.com/l/zybjn

return "No duplicates ". For example, the list of fruits below
should return apple as a duplicate and list of names should
return "no duplicates ".
fruits = ['apple', 'orange', 'banana', 'apple']
names = ['Yoda ', 'Moses ', 'Joshua ', 'Mark ']

55 | Libraries Locations

Have you ever wondered where your installed libraries are

located on your machine? Python has a very simple syntax for

getting the locations of installed libraries. If you have installed

pandas, here is how to find its location. Here is what I get when

I run it on my computer:

import pandas

print(pandas)
Output:

<module 'pandas' from

'C:\\Users\\Benjamin\\AppData\\Local\\Programs\\Pytho

n\\Python310\\lib\\site-packages\\pandas__init__.py'>

If a module is built-in (a built-in module comes preinstalled

with Python), you will not get information on where it is

installed. Let’s try to print the sys module.

print(sys)
Output:
<module 'sys' (built-in)>

56 | Create a Barcode

How about creating a barcode using Python? You can use

python-barcode to generate different types of objects. First,

install the barcode: Pip install python-barcode

Below, we are going to create an ISBN13 barcode. Please note
that this module supports many other types of barcodes. We
are going to generate a PNG image of the barcode. We will use
the pillow module to view the image. You can install pillows by
running: pip install pillow

Pass a 12-digit number as a string.

from barcode import ISBN13
from barcode.writer import ImageWriter
from PIL import Image

num = '979117528719'
saving image as png
bar_code = ISBN13(num, writer=ImageWriter())
save image
bar_code.save('bar_code')
#read the image using pillow
img = Image.open("bar_code.png")
img.show()
Output

57 | Indices Using Len & Range

Functions

If you want to get the indices of items in a sequence, such as a

list, we can use the len() and range() functions if you don’t want

to use the enumerate() function. Let’s say we have a list of

names and we want to return the indices of all the names in the

list. Here is how we can use the len() and range() functions:

names = ['John', 'Art', 'Messi']

for i in range(len(names)):
 print(i, names[i])
Output:
0 John
1 Art
2 Messi

If we want to return just the index of one of the names in the

list, we can combine the len() and range() functions with a

conditional statement. Let’s say we want the index of the name

"Messi"; here is how we can do it:

names = ['John', 'Art', 'Messi']

for i in range(len(names)):
 if names[i] == 'Messi':
 print(f'The index of the name {names[i]} is {i}')
 break
Output:
The index of the name Messi is 2

58 | Convert Emoji to Text

Did you know that you can extract text from emojis? Let’s say

you have a text with emojis and you don’t know what the emojis

mean. You can use a Python library to convert the emojis to text.

First install the library.

Pip install demoji

The demoji library returns a dictionary of all the emojis in a text.

The emoji is the key, and the value is the emoji converted to text.

Output

59 | Currency Converter

In Python, with just a few lines of code, you can write a program

that converts one currency into another using up-to-date

exchange rates. First, install the forex library using: pip install

forex-python

The code below will convert any currency. You just have to know

the currency codes of the currencies you are about to work with.

Try it out.

from forex_python.converter import CurrencyRates

Instantiate the converter
converter = CurrencyRates()

def currency_converter():
 # Enter the amount to convert
 amount = int(input("Please enter amount to convert: "))
 # currency code of the amount to convert
 from_currency = input("Enter the currency code of "
 "amount you are converting : ").upper()
 # currency code of the amount to convert to
 to_currency = input("Enter the currency code you "
 "are converting to: ").upper()
 # convert the amount
 converted_amount = converter.convert(from_currency,
 to_currency, amount)
 return f' The amount is {converted_amount:.2f} and ' \
 f'the currency is {to_currency}'

print(currency_converter())

60 | Generate Custom Font

Python has a cool library that you can use to generate custom

fonts. This library is designed for the purpose of creating fancy

texts for our programs. For example, we can use a generated

font to create a cool article title. Below, we are going to

demonstrate how we can create a fancy title with the module.

Install with pip;

pip install pyfiglet

The figlet_format() method takes two arguments: the text we

want to format and the font. The font parameter is optional. If

we do not pass an argument for the font, the default font will be

applied to our text.

import pyfiglet

text = pyfiglet.figlet_format("Love Python",
font="puffy")
print(text)
Output:

You can also generate a list of fonts that you can use for your text.

Run this code below and you will get a list of fonts that are

available.

import pyfiglet

print(pyfiglet.FigletFont.getFonts())

61 | Language Detector

You can detect language in a text using a Python library

called langdetect. At the moment, this detector supports

about 55 languages. Here are the supported languages

below:

af, ar, bg, bn, ca, cs, cy, da, de, el, en, es,

et, fa, fi, fr, gu, he,

hi, hr, hu, id, it, ja, kn, ko, lt, lv, mk, ml,

mr, ne, nl, no, pa, pl,

pt, ro, ru, sk, sl, so, sq, sv, sw, ta, te, th,

tl, tr, uk, ur, vi, zh - cn, zh - tw

To use the library, install using pip;

pip install langdetect

It takes a string of words and detects the language. Below, it can

be detected that the language is Japanese.

from langdetect import detect

Language to detect
lang = detect(" ⇔≡╢")

print(lang)
Output:
ja

62 | Refresh URL with Selenium

Did you know that you can refresh a URL using Python?

Usually, to refresh a page, we have to do it manually. However,

we can automate the process with just a few lines of code. We

will use the selenium module for this. Install the following:

pip install selenium

pip install webdriver-manager

Now, let’s write the code. I am using the Chrome web browser,

so I will need Chrome dependencies. If you are using another

browser, you will need to install a driver for that browser. So,

we need the URL link of the website that we want to open. The

time is the number of seconds we want to wait before refreshing

the page. The code will automatically refresh the page once the

waiting time is over.

import time
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager

Url to open and refresh
url = "url to open and refresh"

installs web driver for chrome
driver = webdriver.Chrome(service=Service(ChromeDriverManager()
 .install()))

driver.get(url)
waiting time before refresh
time.sleep(10)
driver.refresh()

63 | Substring of a String

If you want to check if a string is a substring of another string,

you can use the in and not in operators. Let’s say we want to

test if "like" is a substring of string s. Here is how we do it using

the in operator: The in operator will evaluate to True if "like”

is a substring of s and False if it is not.

s = 'Please find something you like'

if 'like' in s:
 print('Like is a substring of s')
else:
 print('Like is not a substring of s')
Output:
Like is a substring of s

We can also use the "not in" operator. The "not in" operator is

the opposite of the in operator.

s = 'Please find something you like'

if 'like' not in s:
 print('Like is not a substring of s')
else:
 print('Like is a substring of s')
Output:
Like is a substring of s

Python advises only using the find() method to know the

position of a substring. If we wanted to find the position of

"something" in a string, here is how we would use the find()

method: The find method returns the index where the substring

starts.

s = 'Please find something you like'

print(s.find('something'))

 Output:
12

64 | Difference Between Two Lists

If you have two lists and you want to find the difference

between the lists, that is, elements that are in list a but not

in list b, use the set().difference(set()) method.

a = [9, 3, 6, 7, 8, 4]
b = [9, 3, 7, 5, 2, 1]

difference = set(a).difference(set(b))
print(list(difference))

 Output:
[8, 4, 6]

Another naive way would be to use a for loop. See below:

a = [9, 3, 6, 7, 8, 4]
b = [9, 3, 7, 5, 2, 1]

difference = []
for number in a:
 if number not in b:
 difference.append(number)
print(difference)

 Output:
[6, 8, 4]

You can also convert the above code into a list comprehension.

a = [9, 3, 6, 7, 8, 4]
b = [9, 3, 7, 5, 2, 1]

dif = [number for number in a if number not in b]
print(dif)

 Output:
[6, 8, 4]

65 | Sorting a List of Dictionaries

If you have a list of dictionaries and you want to sort them by

their values, you can use the itemgetter class from the operator

module and the sorted function. Here is an example to

demonstrate.

from operator import itemgetter

d = [{"school":"yale", "city": "Beijing"},
 {"school":"cat", "city": "Cairo"}]

sorted_list = sorted(d, key=itemgetter('school'))
print(sorted_list)
Output:
[{'school': 'cat', 'city': 'Cairo'}, {'school': 'yale',
'city': 'Beijing'}]

The above example sorts a list in ascending order. If you

wanted to sort the list in descending order, you would have

to set the reverse parameter in the sorted function to True. You

can see below that the list has been sorted in descending order.

from operator import itemgetter

d = [{"school":"yale", "city": "Beijing"},
 {"school":"Cat", "city": "Cairo"}]

sorted_list = sorted(d, key=itemgetter('school'),reverse=True)
print(sorted_list)
Output:
[{'school': 'yale', 'city': 'Beijing'}, {'school': 'Cat',
'city': 'Cairo'}]

66 | Bytes to String

There are two methods we can use to convert bytes into strings.

Method number one is to use the str() function. The second

method is to use the decode method. First, here is a byte data

type:

s = b'Love for life'
print(type(s))
Output:
<class 'bytes'>

Now let’s convert this into a string.

Method 1: Using the str function

s = b'Love for life'
str1 = str(s,"UTF-8")
print(type(str1))
print(str1)
Output:
<class 'str'>
Love for life

Method 2: Using the decode method

s = b'Love for life'

str1 = s.decode()
print(type(str1))
print(str1)
Output:
<class 'str'>
Love for life

67 | Multiple Input from User

What if you want to get multiple inputs from a user? How do you

do it in Python? Python uses the input() function to get input

from the user. The input() function takes one input at a time;

that’s the default setting. How can we modify the input function

so it can accept multiple inputs at a time? We can use the input()

function together with the string method, split(). Here is the

syntax below:

input().split()

With the help of the split() function, the input() function can
take multiple inputs at the same time. The split() method
separates the inputs. By default, the split method separates
inputs right at the whitespace. However, you can also specify a
separator. Below, we ask a user to input three (3) numbers. We
use the split() method to specify the separator. In this case, we
separate the inputs with a comma (,). Then we calculate the
average of the three numbers. If the inputs are 12, 13, and 14,
we get the output below:

a, b, c = input("Please input 3 numbers: ").split(sep=',')

average = (int(a) + int(b) + int(c))/3
print(average)
Output:
13

We can also get multiple values from a user. Below, we ask a

user to input multiple names using list comprehension. If the

user enters Kelly, John, Trey, and Steven, the output will be:

Getting multiple values using list comprehension
n = [nam for nam in input("Enter multiple names: ").split(sep=',')]

print(n)
Output:
['Kelly', ' John', ' Trey', 'Steven']

68 | The _iter_() Function

If you want to create an iterator for an object, use the iter()

function. Once the iterator object is created, the elements can

be accessed one at a time. To access the elements in the iterator,

you will have to use the next() function. Here is an example to

demonstrate this:

names = ['jake', "Mpho", 'Peter']
Creating an iterator
iter_object = iter(names)
Accessing items using next function
name1 = next(iter_object)
print('First name is', name1)
name2 = next(iter_object)
print('Second name is', name2)
name3 = next(iter_object)
print('Third name is', name3)

Output:
First name is jake
Second name is Mpho
Third name is Peter

Because the list only has three elements, attempting to print the

fourth element in the iterable will result in a StopIteration

error.

We can also elegantly put the next() function in a loop. See

below:

names = ['Jake', "Mpho", 'Peter']
iter_object = iter(names)
while True:
 # accessing the items in object using next func
 try:
 print(next(iter_object))
 except:
 break
Output:
Jake
Mpho

Peter

Why use iterators? Iterators have better memory efficiency.

69 | Two Lists into a Dict

Sometimes, while working with lists, you may want to change the

data type to a dictionary. That is, you may want to combine the lists

into a dictionary. To do this, you may have to use the zip() function

and the dict() function. The zip() function takes two iterables and

pairs the elements. The first element in iterable one is paired with

the first element in iterable two, and the second element with

another second element, etc. The zip() function returns an iterator

of tuples. The dict() function will convert the paired elements into a

key-value combination, creating a dictionary.

list1 = ['name', 'age', 'country']
list2 = ['Yoko', 60, 'Angola']

dict1 = dict(zip(list1,list2))
print(dict1)
Output:
{'name': 'Yoko', 'age': 60, 'country': 'Angola'}

If an element in the list cannot be paired with another element,

then it will be left out. Let’s say list1 has four elements and

list2 has five; the fifth item in list2 will be left out. You can see

below that "Luanda" has been left out.

list1 = ['name', 'age', 'country']
list2 = ['Yoko', 60, 'Angola', "Luanda"]

dict1 = dict(zip(list1,list2))
print(dict1)
Output:
{'name': 'Yoko', 'age': 60, 'country': 'Angola'}

70 | Finding Permutations of a string

Permutations of a string are different orders in which we can

arrange the elements of the string. For example, given an "ABC"

string, we can rearrange it into ["ABC," "ACB," "BAC," "BCA,"

"CAB," "CBA."]. In Python, the easiest way to find permutations

of a string is to use itertools. Itertools has a permutation class.

Here is how we can do it, using itertools.

from itertools import permutations

def get_permutations(s: str):
 arr = []
 for i in permutations(s):
 arr.append(''.join(i))
 return a

print(get_permutations('ABC'))
Output:
['ABC', 'ACB', 'BAC', 'BCA', 'CAB', 'CBA']

Another way to do it.

def find_permute(string, j):
 if len(string) == 0:
 print(j, end=" ")

 for i in range(len(string)):
 char = string[i]
 s = string[0:i] + string[i + 1:]
 find_permute(s, j + char)
 return j

print(find_permute('ABC', ''))
Output:
ABC ACB BAC BCA CAB CBA

71 | Unpacking a List

Sometimes you want to unpack a list and assign the elements to

different variables. Python has a method that you can use to

make your life easier. We can use the Python unpacking

operator, asterisk (*). Below is a list of names. We want to get

the boy’s name and assign it to the variable "boy_name." The

rest of the names will be assigned to the variable "girls_name."

So, we assign (unpack from the list) the first item on the list to

the boy variable. We then add "*" to the girls_name variable.

By adding * to the girl’s name, we are basically telling Python

that once it unpacks the male name, all the other remaining

names must be assigned to the girls_name variable. See the

output below:

names = ['John', 'Mary', 'Lisa’, ‘Rose']

boy_name, *girls_name = names
print(boy)
print(girls)
Output:
John
['Mary', 'Lisa', 'Rose']

If the name "John" was at the end of the list, we would put the
name with the asterisk at the beginning. See below:

names = ['Rose', 'Mary', 'Lisa’, ‘John']

*girls, boy = names
print(boy)
print(girls)
Output:
John
['Mary', 'Lisa', 'Rose']

72 | Type Hints

Python provides a way to give hints on what type of argument is

expected in a function or what data type a function should

return. These are called "type hints." Here is an example of how

typing hints are used.

def translate(s: str) -> bool:
 if s:
 return True

Here we have a simple function. Notice that the function has

one parameter, s. The "str" after the s parameter is a typing hint.

It simply means that the function expects (or hints) that the

argument that should be passed for parameter "s" must be a

string. Notice the "-> bool" at the end? This is another typing

hint. It hints that it expects the return value of the function to

be a Boolean value. Now, hints are not enforced at runtime by

Python; that means that if a non-string argument is passed and

a non-Boolean value is returned by the function, the code will

run just fine.

Why type hints? Type hints simply help to make the code more

readable and more descriptive. By just looking at the hint

annotations, a developer will know what is expected of the

function.

73 | File Location

Do you want to know the directory of your Python file? Use
the os module. The os module has a getcwd() method that
returns the location of the directory. Simply type:

import os

directory_path = os.getcwd()
print(directory_path)

This code will return the location of the current working
directory.

74 | Python Deque

If you want to add and pop elements from both sides of a list,
you can use deque (double-ended queue). Unlike a normal list
that lets you add and remove elements from one end, deque
allows you to add and remove elements from both the left and
right sides of the list. This makes it quite handy if one has a big
stack. Deque is found in the collections module. In the example
below, see how we are able to append elements at both ends of
the list.

from collections import deque

arr = deque([1, 3])
appending on the left end of the list
arr.appendleft(5)
appending on the right end of the list
arr.append(7)
print(arr)
Output:
 deque([5, 1, 3, 7])

Deque also makes it easy to pop (remove) elements on both

ends of the list. See the example below:

from collections import deque

arr = deque([1, 3, 9, 6])
pop element on the left end of the list
arr.popleft() # pops 6
pop element on the right end of the list
arr.pop() # pops 1
print(arr)
Output:
deque([3, 9])

You can see from the output that we have popped elements from

both ends of the list.

75 | Python ChainMap

What if you have a number of dictionaries and you want to

wrap them into one unit? What do you use? Python has a class

called chainMap that wraps different dictionaries into a single

unit. It groups multiple dictionaries together to create one

unit. ChainMap is from the collections module. Here is how it

works:

from collections import ChainMap

x = {'name': 'Jon','sex': 'male'}
y = {'name': 'sasha', 'sex': 'female'}

dict1 = ChainMap(x, y)

print(dict1)

 Output:
ChainMap({'name': 'Jon', 'sex': 'male'}, {'name':
'sasha', 'sex': 'female'})

We can also access the keys and values of the dictionaries

wrapped in a ChainMap. Below, we print out the keys and

values of the dictionaries.

from collections import ChainMap

x = {'name': 'Jon','sex': 'male'}
y = {'car': 'bmw', 'make': 'x6'}

dict1 = ChainMap(x, y)

print(list(dict1.keys()))
print(list(dict1.values()))
Output:
['car', 'make', 'name', 'sex']
['bmw', 'x6', 'Jon', 'male']

76 | Progress Bar with Python

When you are executing loops (especially really large ones), you

can show a smart progress bar. A library called tqdm creates a

progress meter that keeps track of the progress of your loop. To

install the library, run:

Pip install tqdm

Let’s say you have a range of 100000 that you want your loop to

run through, and after every loop, you want your code to sleep

for 0.001 sec. Here's how to do it with tqdm so you can monitor

the loop's progress. When you run this code, you will get the

progress meter below as the output.

from tqdm import tqdm

for i in tqdm(range(100000)):
 pass
 time.sleep(0.001)

 Output:

You can also put a description in the function to make the

progress meter more intuitive.

for i in tqdm(range(100000), desc='progress'):
 pass
 time.sleep(0.001)
Output

You can now see the word "progress" in the progress meter. You

can put in whatever description you want. Explore the module

some more.

77 | Convert Text to Handwriting

You can convert text into handwriting with Python. Python has

a module called pywhatkit. Install pywhatkit using pip.

pip install pywhatkit

Below, we use pywhatkit to convert text to handwriting and

save it as an image. We then use the cv2 library to view the

image. Run this code below:

import pywhatkit
import cv2 as cv

text to convert to handwriting
text = 'Python is great'
converting text to handwriting and saving as image
pywhatkit.text_to_handwriting(text,
save_to='new_text.png')

reaading image using cv
hand_text = cv.imread("new_text.png")
cv.imshow("hand_text", hand_text)
cv.waitKey(0)
cv.destroyAllWindows()
Output:

78 | Taking a Screenshot

You can take a screenshot with Python. Python has a library

called pyautogui, which is an automation tool. Install the

library using pip:

 pip install pyautogui

Below, we use pyautogui to take a screenshot. We then save the

image and convert it from RGB to BGR using cv2 and numpy.

We convert the image so it can be read by the cv2 library. Run

this code below to see the magic. You can install the other

libraries using:

Pip install numpy

pip install opencv-python

import pyautogui
import numpy as np
import cv2 as cv

Taking screenshot
image = pyautogui.screenshot()

image.save('my_screenshot.png')
convert RGB 2 BGR
image = cv.cvtColor(np.array(image),
 cv.COLOR_RGB2BGR)

cv.imshow("image", image)
cv.waitKey(0)
cv.destroyAllWindows()

79 | Return Multiple Function Values

By default, a function returns one value, and it stops. Below, we

have 3 values in the return statement. When we call the

function, it returns a tuple of all three items.

def values():
 return 1, 2, 3

print(values())

 Output:
(1, 2, 3)

What if we want to return three separate values? How do we do

it in Python? We create a variable for each value we want to

return. This makes it possible to access each value separately.

See the code below:

def values():
 return 1, 2, 3

x, y, z = values()

print(x)
print(y)
print(z)
Output:
1
2
3

80 | Download YouTube Videos

Python makes it super easy to download YouTube videos. With

just a few lines of code, you will have your favorite videos saved

on your computer. The Python library that you need to

download videos is pytube. Install it with:

pip install pytube

First, we import the module into our script. We then get the link

to the video we are trying to download.

from pytube import YouTube
yt_video = YouTube ("<video link>")

Next, we set the type of file or extension that we want to

download and the resolution of the video.

v_file = yt_video.streams.filter(file_extension="mp4")\
 .get_by_resolution("360p")

We then download the file. You can also input the path where

you want the file to be saved.

V_file.download("path to save file.")

81 | Convert a String to a List

In Python, we can easily convert a string to a list of strings. We

can combine the list() function with the map() function. The

map function returns a map object, which is an iterator. The

map() function takes two arguments: a function and an iterable.

Below, the list is an iterable, and str() is the function. We then

use the list() function to return a list. The split() method divides

or splits a string at whitespaces.

s = "I love Python"

str1 = list(map(str,s.split()))
print(str1)

 Output:
['I', 'love', 'Python']

You can convert a list of strings back to a string using the map()

function in conjunction with the join() method. Let’s convert

the output of the above code back to a string using the map()

and join() methods.

list1 = ['I','love','Python']

str1 = ' '.join(map(str, list1))
print(str1)

 Output:
I love Python

82 | Loop Over Multiple Sequences

What if you have two sequences and you want to loop over them

at the same time? How can you go about it in Python? This is

when the zip() function comes in handy. The zip() function

creates pairs of items in the sequences. The element at index

one in sequence one is paired with the element at index one in

sequence two. This process repeats for all the other indexes.

Let’s demonstrate how we can loop over two sequences at the

same time.

list one
first_names = ['George','Keith', 'Art']
list two
last_names = ['Luke', 'Sweat','Funnel']

for first, last in zip(first_names,last_names):
 print(first, last)
Output:
George Luke
Keith Sweat
Art Funnel

You can see from the output that we have combined the two lists

using the zip() function. We have paired the first names with

the last names.

83 | Extend vs. Append

Extend and append are both list methods. They both add

elements to an existing list. The append() method adds one (1)

item to the end of the list, whereas the append() method does

not. The extend() method adds multiple items to the end of the

list. Below, we use the append() method to append numbers2

to numbers1. You can see that the whole list of numbers2 has

been appended to numbers1 as one (1) item.

numbers1 = [1, 2, 3]
numbers2 = [4, 5, 6]

using append method
numbers1.append(numbers2)
print(numbers1)
Output:
[1, 2, 3, [4, 5, 6]]

When we use the extend() method, notice the difference from

the append() method above. The extend() method takes the

elements in number2, and appends them to numbers1, one

item at a time, not as a whole list. See below:

numbers1 = [1, 2, 3]
numbers2 = [4, 5, 6]

using extend method
numbers1.extend(numbers2)
print(numbers1)
Output:
[1, 2, 3, 4, 5, 6]

84 | Memory and _slots_

What are __slots__? Slots are used in classes. They are

basically attributes that an instance object will have. Here is an

example of slots in action:

class Cars:
 __slots__ = ["make", 'brand']

We expect every object in the Cars class to have these attributes

– make and brand.

So why use slots? We use slots because they help save memory

space. Class objects take up less space when we use slots. See

the difference in object size in the following examples:

import sys

class Cars:
 def __init__(self, make, brand):
 self.make = make
 self.brand = brand

print(f'The memory size is {sys.getsizeof(Cars)}')
Output:
The memory size is 1072

Example 2

class Cars:
 __slots__ = ["make", 'brand']

 def __init__(self, make, brand):
 self.make = make
 self.brand = brand

print(f'The memory size is {sys.getsizeof(Cars)}')
Output:
The memory size is 904

You can see from the outputs above that using slots saves

memory space.

85 | Watermark Image with Python

With just a few lines of code, we can watermark our images

using Python. We are going to use the pillow library for this

task. Install the pillow module using:

Pip install pillow

From this library, we are going to import ImageDraw,

ImageFont, and Image.

Below is the image we are going to use for demonstration from

https://www.worldwildlife.org/

Let’s now import the classes from the pillow module and write

the code that we need to watermark this image.

from PIL import ImageDraw
from PIL import Image
from PIL import ImageFont

 # Pass link to your image location
pic = Image.open('lion.jpeg')
make a copy of the pic
drawing = ImageDraw.Draw(pic)
fill color for the font
fill_color =(255,250,250)
watermark font
font = ImageFont.truetype("arial.ttf", 60)
Watermark position
position = (0, 0)
Writing text to picture
drawing.text(position, text='Lion is King',
fill=fill_color, font=font)
pic.show()
saving image
pic.save('watermarkedimg.jpg')

After running this code, we get a watermarked image below:

86 | Extracting Zip Files

Python has a module that you can use to extract zip files. This

is an in-built module, so we do not have to install it. If the file

is in the same directory as the Python script, we just pass the

file name to the code. We use the with statement to open the

file. This will ensure that the file is automatically closed at the

end of the operation. We open the file in read mode because

we just want to read the contents of the file. The printdir()

method returns all the content of the file we are extracting. The

extractall() method extracts all the files in the zip file.

from zipfile import ZipFile

open file in read mode
with ZipFile('file.zip', 'r') as zipFile: #
 print('printing the contents of the zip file')
 zipFile.printdir()
 # Extracting zip files
 zipFile.extractall()

Use this simple code to extract your zip files.

87 | Generate Dummy Data

You can generate fake data using Python. Python has a library

called Faker that generates different types of data. Install

Faker by:

pip install Faker

Let’s say we want to generate a random list of Ten countries,

here is how we do it:

from faker import Faker

fake = Faker()

for i in range(20):
 print(fake.country())
Output:
Cameroon
Tajikistan
Ethiopia
Liechtenstein
Netherlands
Grenada
Switzerland
Singapore
Estonia
San Marino
Malaysia
New Zealand
Azerbaijan
Monaco
British Indian Ocean Territory (Chagos Archipelago)
Brazil
Austria
Saint Barthelemy
Zimbabwe
Korea

Since this is random, every time you run it, it will generate a

different list of countries.

You can also generate profile data using this model. Below,
we generate profile data and pass it to pandas to generate a
Pandas DataFrame.

from faker import Faker
import pandas as pd

fake = Faker()

profiles = [fake.simple_profile() for i in range(10)]
#Generate a dataframe using pandas
df = pd.DataFrame(profiles)
print(df)
Output

There are many other types of data that you can generate with

this module. Explore the module further.

88 | Flatten a list with more_itertools

There are many ways to flatten a list. We have covered other

methods already. There is another way we can flatten a nested

list. We can use a module called more_itertools. We will use

the collapse() class from this module. This is a one-line

solution. First, install the module using:

pip install more_itertools

Let’s use to flatten a list.

import more_itertools

nested_list = [[12, 14, 34, 56], [23, 56, 78]]

print(list(more_itertools.collapse(nested_list)))
Output:
[12, 14, 34, 56, 23, 56, 78]

Collapse a list of tuples

The power of the collapse() method is that it will flatten any

list, even a list of tuples. See below:

import more_itertools

list_tuples = [(12, 14, 34, 56),(23, 56, 78),(12, 23, 56)]

print(list(more_itertools.collapse(list_tuples)))
Output:
[12, 14, 34, 56, 23, 56, 78, 12, 23, 56]

89 | Factorial of a Number

Below, we write a code that calculates the factorial of a given

number. A factorial of a number is the product of all integers

from 1 to that number. The factorial of 3 is calculated as (1 * 2 *

3), which is 6. The for loop in the function below executes this

calculation. Below, we calculate the factorial of the integer 8.

def factorial_number(n: int):
 f = 1
 if n < 0:
 return 'Negatives numbers have no factorial'
 else:
 for k in range(1, n + 1):
 f = f * k
 return f'The factorial of number is {f}'

print(factorial_number(8))

 Output:
 The factorial of number is 40320

90 | List of Prime Numbers

Given a number, can you write a code that returns a list of all

the prime numbers in its range? For example, 6 should return

[2, 3, 5]. The code below returns a list of all prime numbers in a

given range of a given number. A prime number has two factors:

one and itself. Prime numbers start at 2. Here is the code below:

def prime_numbers() -> list:
 # Empty list to append prime numbers
 prime_num = []

 n = int(input('Please enter a number (integer): '))
 for i in range(0, n + 1):
 # prime numbers start from 2
 if i > 1:
 # A number divisible by any num
 # in the range then not prime number
 for j in range(2, i):
 if i % j == 0:
 break
 else:
 prime_num.append(i)

 return prime_num

print(prime_numbers())

91 | RAM & CPU Usage

Do you want to know the resources your machine is using?

Python has a library called psutil that calculates the resource

usage of a computer. You can find out how much RAM and

CPU your computer is using with just a few lines of code.

Install the library using pip:

pip install psutil

Below is a script that calculates how much RAM a machine is

using. This is what I get when I run this on the machine I am

using right now. Since psutil gives results in bytes, we use

(1024**3) to convert them to gigabytes.

import psutil

memory = psutil.virtual_memory()

def ram_usage():
 print(f'Total available memory in gigabytes '
 f'{memory.total/(1024**3):.3f}')
 print(f'Total used memory in gigabytes '
 f'{memory.used/(1024**3):.3f}')
 print(f'Percentage of memory under use:'
 f' {memory.percent}%')

ram_usage()
Output:
Total available memory in gigabytes 7.889
Total used memory in gigabytes 6.960
Percentage of memory under use: 88.2%

If we want to know the CPU usage of the machine, we can use
psutil.cpu_percent. This will return a usage percentage for
each CPU on the machine. If I run this on the machine I am
using now, here is what I get:

import psutil

cpu_core = psutil.cpu_percent(percpu=True)

for cpu, usage in enumerate(cpu_core):
 print(f"# {cpu+1} CPU: {usage}%")
Output:
1 CPU: 8.8%
2 CPU: 6.2%
3 CPU: 7.4%
4 CPU: 6.2%

Run this on your machine to see what you get.

92 | Concatenation vs. Join

There are two ways you can join strings in Python. The first

way is by using concatenation (basically joining strings using

the + operator). The second way is to use the string method,

join(). Let’s find out which one is faster. We are going to use

perf_counter from the time module to time the runtime of our

codes.

a = 'Hello'
b = 'Python'
c = 'world'
f = 'People'
Using concatenation
start = time.perf_counter()
for _ in range(10000):
 d = a + b + c + f
end = time.perf_counter()
print(f'concatenation time is {end - start:.5f}')
Output:
concatenation time is 0.00311

Using the Join method

a = 'Hello'
b = 'Python'
c = 'world'
f = 'People'
using the join method
start = time.perf_counter()
for _ in range(10000):
 d = ''.join([a, b, c, f])
end = time.perf_counter()
print(f'joining time is {end - start:.5f}')
Output:
joining time is 0.00290

You can see from the outputs that the join() method is faster

than concatenation. If you want faster code, use the join()

method. However, you should note that the join() method

executes faster when you have more strings to join (more than

3 strings, at least). The concatenation method executes slower

because for every concatenation, Python has to create a string

and allocate memory. This slows down the process. But by

using the join() method, Python only creates one string. This

makes the process much faster. Try running the code and

documenting your findings. Note that your execution times

will be different from my output.

93 | Recursion Limit

Do you want to know the recursion limit in Python? You can use

the sys module. Here is the code below:

import sys

print(sys.getrecursionlimit())
Output:
1000

1000 is the default recursion limit in Python. Python sets this

limit to prevent stack overflows. However, Python also provides

a method to change the recursion limit to suit your needs. Here

is how you can adjust the limit.

import sys

sys.setrecursionlimit(1200)
print(sys.getrecursionlimit())
Output:
1200

You can see that the limit has changed from 1000 to 1200. So,

if you ever get a maximum recursion depth error, just make the

adjustment.

94 | Country Info Using Python

You can get information about a country using Python. Python

has a module called countryinfo that returns data about

countries. All you have to do is pass the country name to the

module. Let’s say we want to know about the provinces in

Zambia. We enter the country "Zambia" as the argument, and

then use the provinces method to return all the provinces in
Zambia.

from countryinfo import CountryInfo

country = CountryInfo("Zambia")
print(country.provinces())
Output:
['Central', 'Copperbelt', 'Eastern', 'Luapula',

'Lusaka', 'North-Western', 'Northern', 'Southern',
'Western']

Let’s say we want to get information about the currency used by

a given country; we just use the currency method. The

currencies() method is used below to determine China's

currency.

from countryinfo import CountryInfo

country = CountryInfo("China")
print(country.currencies())
Output:
['CNY']

95 | Factorial Using One Line

We saw earlier how we can calculate the factorial of a number

using a function. Do you know that you can write a one-line

function that calculates the factorial of a number? To make this

work, we are going to need the reduce function from itertools and

the lambda function.

from functools import reduce

num = 7

f = reduce(lambda a, b: a * b, range(1, num+1))
print(f)

 Output:
5040

You can change the num variable to any integer number and it

will still spit out a factorial of that number. Only one line of

code—how cool is that? Let’s try 10.

from functools import reduce

num = 10

f = reduce(lambda a, b: a * b, range(1, num+1))
print(f)
Output:
3628800

96 | Spelling Errors

Did you know that you can correct spelling errors in text using
Python? Python has a library called textblob that corrects spelling
errors. Using pip, install the library:

pip install -U textblob

Below, we pass a string to textblob that has spelling errors. You can
see that the errors have been replaced with the correct spelling.
Textblob will pick the most likely correct word for the misspelled
word.

from textblob import TextBlob

def correct_text(n : str):
 textblob = TextBlob(n)
 corrected_text = textblob.correct()
 return corrected_text

print(correct_text("I make manys speling mistakess."))
Output:
I make many spelling mistakes.

Another interesting thing about this library is that you can use

it to pluralize words. See below:

from textblob import Word

word = Word('Buy potatoe').pluralize()
print(word)
Output:
Buy potatoes

97 | List Elements Identical?

Given a list, how do you check if all the elements in the list are

identical. We can use the Python all() function. This function

takes an iterable as an argument and returns True if all the

elements are true. We can use it to check if all elements in a list

are identical. If they are, it will return True.

def check_list(arr: list):
 return all(arr[0] == arr[i] for i in arr)

print(check_list([1,1,1]))
Output:
True

So, the code above returns True because all the elements in the

list [1, 1, 1] are identical. What if the elements are not identical?

Let’s see what happens.

def check_list(arr: list):
 return all(arr[0] == arr[i] for i in arr)

print(check_list([1,1,2,3]))
Output:
False

The function returns False because elements in [1, 1, 2, 3] are not

identical.

98 | Censor Profanity with Python

If you have bad words in your text that you want to censor, you

can use the Python profanity module. Install using pip:

pip install better_profanity

First thing, import profanity from better_profanity. Below, we
have a string that has a bad word; we are going to pass the string
to the module to have the bad word censored.

from better_profanity import profanity

text = ' I hate this shit'
censored_text = profanity.censor(text)
print(censored_text)
Output:
I hate this ****

By default, it uses the asterisk (*) to censor bad words. However,
you can also set your own censor character. See the example
below. We set $ as the set character.

text = 'I hate this shit so much'

Setting the censor character.
censored_text = profanity.censor(text, censor_char='$')
print(censored_text)
Output:
I hate this $$$$ so much

If you just want to check if a string contains a bad word, you can

use the contains_profanity() method, which will return a Boolean

value of True if it contains profanity and False if it has no profanity.

text = 'I hate this shit so much'

Checking if text contains profanity
print(profanity.contains_profanity(text))
Output:
True

You can also create a custom list of words you want to censor. If

a text contains a word from your list, then it will be censored.

bad_words = ['Hate', 'War', 'evil']

Create a custom list of words to censor
profanity.load_censor_words(bad_words)

text = 'People that love war are evil'

censored_text = profanity.censor(text)
print(censored_text)
Output:
People that love **** are ****

99 | Monotonic or Not?

How do you check if an array is monotonic? An array is

monotonic if the elements are sorted either in descending order

or ascending order. For example, [4, 5, 5, 7] is monotonic. [4,

10, 2, 5] is not monotonic. We use the all() function to check if

the numbers in the array are ascending or descending. If they

are ascending or descending, it will return True. If they are not,

it will return False.

def check_monotonic(arr: list):
 if all(arr[i] >= arr[i + 1] for i in range(len(arr)-1)):
 return True
 elif all(arr[i] <= arr[i + 1] for i in range(len(arr)-1)):
 return True
 else:
 return False

list1 = [4, 5, 5, 7]
print(check_monotonic(list1))
Output:
True

The code returns True because [4, 5, 5, 7] is monotonic. If we try [4, 10,

2, 5], here is what we get:

def check_monotonic(arr: list):
 if all(arr[i] >= arr[i + 1] for i in range(len(arr)-1)):
 return True
 elif all(arr[i] <= arr[i + 1] for i in range(len(arr)-1)):
 return True
 else:
 return False

list1 = [4, 10, 2, 5]
print(check_monotonic(list1))
Output:

False

100 | Find Factors of a Number

Factors of a number are all the numbers that can be divided

into a given number without leaving a remainder. We are

going to use the range function to get all the numbers to divide

the given number with. If any of those numbers does not

return a remainder, we want to print out those numbers. Here

is the full code, using the for loop and the if statement.

def number_factors(n: int):
 for i in range(1, n + 1):
 if n % i == 0:
 print(i)

print(number_factors(8))

 Output:
1
2
4
8

We can also use list comprehension. If the user enters 8, this

will be the output:

n = int(input('Please enter number: '))

factors = [i for i in range(1, n + 1) if n % i == 0]
print(factors)
Output:
[1, 2, 4, 8]

Other Books by the Author

1. 50 Days of Python: A Challenge a Day

Gumroad link: https://benjaminb.gumroad.com/l/zybjn

Amazon link: https://www.amazon.com/dp/B09TQ83JQB

2. Master Python Fundamentals: The Ultimate Guide for

Beginners

Amazon link: https://www.amazon.com/dp/B0BKVCM6DR

https://benjaminb.gumroad.com/l/zybjn
https://www.amazon.com/dp/B09TQ83JQB
https://www.amazon.com/dp/B0BKVCM6DR

Cover image

Image by liuzishan of Freepik

%3ca%20href=%22https:/www.freepik.com/free-vector/combination-circuit-head-shape-artificial-intelligence-moral-electronic-world-illustration_14803707.htm#query=machine%20learning&position=3&from_view=search&track=sph">Image by liuzishan on Freepik

The End

