
Recurrent Neural 
Network (RNN)



What is RNN?

A recurrent neural network (RNN) is a type of 
artificial neural network that is designed to 
process sequential data. Unlike feedforward 
neural networks, which process data in a strictly 
forward direction, RNNs have connections 
between nodes that allow information to flow in 
cycles, enabling them to capture dependencies 
and patterns in sequential data.

RNN is commonly used for ordinal or temporal 
problems, such as language translation, natural 
language processing (NLP) and speech 
recognition.
 



Hidden State: The internal memory of an RNN 
that persists across time steps and allows the 
network to remember information from earlier 
elements in the sequence.

Recurrent Unit: The basic building block of an 
RNN that takes an input and the previous hidden 
state as inputs and produces an output and a new 
hidden state.

Long Short-Term Memory (LSTM): A variant of 
RNNs that introduces gating mechanisms to 
control the flow of information through the 
hidden state, enabling the network to capture 
long-term dependencies in sequential data.

Key Terms



Gated Recurrent Unit (GRU): Another variant of 
RNNs that also uses gating mechanisms but has a 
simpler architecture compared to LSTM.

Vanishing Gradient Problem: A challenge in 
training RNNs where the gradients used for 
updating the network weights can become 
extremely small, leading to slow or ineffective 
learning.

Exploding Gradient Problem: A challenge in 
training RNNs where the gradients become 
extremely large, causing instability during the 
learning process.
 
 

Key Terms



Sequence-to-Sequence (Seq2Seq): A framework 
that uses RNNs for tasks involving sequential 
input and output, such as machine translation or 
text generation.

Bidirectional RNN: An RNN variant that 
processes the input sequence in both forward 
and backward directions, allowing the network to 
capture dependencies from both past and future 
elements.

Time Step: A discrete point in time in the 
sequential data being processed by an RNN.

 
 

Key Terms



Teacher Forcing: A technique commonly used 
during training of RNNs, where the true output 
values are fed back as inputs instead of predicted 
values, aiding in learning long-range 
dependencies.

Epoch: A complete pass through the entire 
training dataset during the training phase of an 
RNN.
 
 

Key Terms



Example



How RNN Works?

Step 1. Input Preparation: Each element in the 
sequential data (e.g. words in a sentence, time 
steps in a time series) is encoded as a feature 
vector or embedding. These input vectors are fed 
into the RNN one at a time, sequentially.

Step 2. Hidden State Initialization: Before 
processing the first element, the RNN's hidden 
state is typically initialized to zeros or small 
random values. The hidden state acts as the 
network's memory and holds information from 
previous elements in the sequence.

 



How RNN Works?

Step 3. Recurrent Unit Operation: At each time 
step, the input vector and the previous hidden 
state are combined in some way and fed into the 
recurrent unit. The recurrent unit performs 
computations using the input and hidden state to 
produce an output and an updated hidden state.

Step 4. Output Generation: The output from the 
recurrent unit at the current time step can be 
used for various purposes, depending on the task. 
For example, in language modeling, the output 
can be used to predict the next word in the 
sequence.

 
 



How RNN Works?

Step 5. Hidden State Update: The updated 
hidden state from the recurrent unit becomes the 
hidden state for the next time step. This allows 
the RNN to retain information from earlier 
elements and capture dependencies across time.

Step 6. Repeat for Remaining Elements: Steps 
3-5 are repeated for each element in the 
sequential data, allowing the RNN to process the 
entire sequence.
 



How RNN Works?

Step 7. Output Utilization: After processing all 
elements, the RNN can use the final hidden state 
or the sequence of outputs for the desired task, 
such as making predictions, classification, or 
generating new sequences.
 



Capturing Sequential Dependencies: RNNs excel 
at capturing dependencies and patterns in 
sequential data. They can maintain an internal 
memory or hidden state that allows them to 
remember and utilize information from previous 
elements in the sequence. This capability enables 
RNNs to model long-term dependencies, making 
them effective for tasks where the order and 
context of the data are crucial.

Variable Length Input/Output: RNNs can handle 
variable-length input sequences and generate 
variable-length output sequences. Unlike fixed-size 
input networks like feedforward neural networks, 
RNNs can process inputs of different lengths, which 
is particularly useful in natural language processing, 
where sentences can have varying numbers of 
words.

Advantages 
of RNN



Parameter Sharing: RNNs share the same set of 
parameters across all time steps, allowing them to 
reuse knowledge learned from earlier elements in 
the sequence. This parameter sharing makes RNNs 
more efficient and reduces the number of 
parameters needed to process a sequence 
compared to models that treat each time step 
independently.

Language Modeling and Sequence Generation: 
RNNs are commonly used for language modeling 
tasks, such as predicting the next word in a 
sentence or generating new text. Their ability to 
capture dependencies and context makes them 
effective for generating coherent and contextually 
relevant sequences.

Advantages 
of RNN



Time Series Analysis: RNNs are well-suited for 
analyzing and predicting time series data. They 
can effectively capture temporal dependencies 
and patterns, making them useful for tasks such 
as forecasting, anomaly detection, and signal 
processing.

Handling Irregular Time Intervals: RNNs can 
handle irregular time intervals between elements 
in a sequence. For example, in natural language 
processing, the time intervals between words can 
vary. RNNs can process the sequence based on 
the actual time intervals between elements rather 
than assuming a fixed interval.

Advantages 
of RNN



Vanishing and Exploding Gradients: Training 
RNNs can be challenging due to the problem of 
vanishing or exploding gradients. When gradients 
are backpropagated through many time steps, 
the gradient signals can become extremely small 
or large, leading to difficulties in learning long-
term dependencies or causing instability in the 
training process.
 
Computational Complexity: RNNs can be 
computationally expensive to train and evaluate, 
especially when dealing with long sequences or 
large hidden state sizes. The sequential nature of 
RNNs makes it difficult to parallelize the 
computations across time steps, which can slow 
down the training process and limit the scalability 
of the model.

Disadvantages 
of RNN



Difficulty in Capturing Long-Term Dependencies: 
While RNNs are designed to capture dependencies 
over time, they can still struggle with capturing very 
long-term dependencies. If the relevant information 
is located far back in the sequence, the gradient 
signal might become too weak to propagate 
effectively, leading to limitations in modeling long-
range dependencies.

Lack of Global Context: RNNs primarily rely on the 
information contained in their hidden state to 
capture context and dependencies. However, the 
hidden state may not always capture the global 
context of the entire sequence, especially when 
dealing with long sequences. This can limit the 
ability of RNNs to make accurate predictions or 
classifications that require a broader context.

Disadvantages 
of RNN



Sensitivity to Input Order: RNNs are sensitive to 
the order of inputs in the sequence. Even a slight 
permutation of the input sequence can result in 
different predictions or outputs. This sensitivity 
can make RNNs more susceptible to noise or 
variations in the input data.

Lack of Attention Mechanism: Traditional RNNs 
do not have an explicit mechanism to focus on 
specific parts of the input sequence. This 
limitation can make it challenging for RNNs to 
effectively handle long sequences or sequences 
with important segments that require more 
attention.

Disadvantages 
of RNN
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