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Preface

Neural networks is a subject lying at the intersection of psychology, mathematics, neuro-
science, and systems theory. Currently this field is experiencing rapid development because
of its applications. The applications include robotics, pattern recognition (for speech and
vision systems), and understanding human brain-mind processes. This volume presents the
basic ideas of neural networks.

The point of view is modeling biological nervous systems. This powerful and elegant
approach to neural networks is attractive because it pushes system design toward the higher-
performing biological systems. Moreover, these biological models give a springboard for
a broad range of applications.

The text develops neural network theory and design principles as follows.

Chapters 1 and 2 outline the structure of the human brain, the physics of neurons, and
derive the standard neuron state equations. In a sense, the remainder of the book presents
the consequences of solving these equations.

Chapter 3 derives a set of simple networks. These networks can filter, recall, switch,
amplify, and recognize input signals (patterns of neuron activation). Neural networks can
also account for many experimental psychology results. ' )

Chapter 4 discusses properties of general neuron groups. Adaptive resonance theory
neural networks (ART-1 and ART-2) combine several functions simultaneously and can
serve as memory modules. The chapter discusses the well-known Hopfield and perceptron
neural networks by this unified biological approach, including new design procedures for
both.

Chapters 5 and 6 apply the theory to synthesize neural networks for specialized
tasks. These systems can process data from a variety of sensors and can approach human
performance.

vil



viit Preface

Chapter 5 outlines the design of machine vision systems. The chapter describes an
architecture for a general purpose system that can learn to recognize stationary objects —
such as vehicles or cancer cells—in their natwral background.

Chapter 6 outlines motor control in human beings. It then presents two examples of
robotic hand-eye systems.

Chapter 7 wurns to the mathematical task of solving large systems of interconnected

neurons. A very simple genetic algorithm gives new techniques for designing complex neu-

ral networks with fixed arbitrary connections. These modules can function as preprocessors,
controllers, and feature detectors in complex systems.

Chapter 8 outlines global control and modulation in the human brain-mind. This
material leads to a new understanding of many mental illnesses. Indeed, explaining human
mental functions is an emerging application of neural networks.

Chapter 9 ends this volume by brietly considering some philosophical issues —espe-
cially consciousness—{rom a neural network view. Though perhups controversial, these
issues are nevertheless at the heart of many students’ and researchers’ interest in nevral
networks. In a sense, this short chapter may point to the next major milestone —designing
neural networks that mimic high-level human processes.

The course for which this text is designed normally carries a prerequisite of courses
in conventional signal processing. An effort was made, however, to keep the book self-
contained.

The mathematical background needed is the customary undergraduate courses in ad-
vanced calculus, lineur algebra, und ordinary differential equations. An elementary acquain-
tance with control theory and its simpler concepts of stability, is helpful for understanding
general cooperative-competitive systems,

The exercises of each chapter have been limited to those extending the text, or il-
lustrating a point. Pedantic museum pieces have been avoided. A solutions manual is
available for instructors from the publisher. Some exercises may provoke original thought;
some could be developed in a thesis.

References at the end of each chapter amplify the material discussed or treat points
not touched on. The accompanying evaluations are purely personal, of course. It was
felt necessary, however, to provide the student with some guide to the bewildering maze of
literature on neural networks. The bibliography at the end of the book lists these references,
along with muny more. The listis notintended to be complete in uny sense. The list contains
the references used in writing this book. Thus, it serves to acknowledge my debt to these
sources. o

Notation is always a vexing question. Achieving a consistent, practical, unambiguous
system of notation is impossible. ‘A separate index at the end of the book lists the initial
appearance of important symbols. Minor characters, appearing only once, are not included.

Terminology is also a bothersome issue, especially so with a subject cutting across
many highly developed fields. To mitigate terminology problems, a glossary at the end of the
book has common terms from philosophy. psychology, neuroscience, and neuroanatomy.

The present text evolved from courses on neural networks [ taught at Northeastern
University during 1990 w 1992 in the Graduate School of Engineering and the State-of-
the-Art program. [ am grateful to Professor John Proakis, chairman of the Northeastern

Preface ix

¢ !
University Department of Electrical and Computer Engineering, for many personal and
official encouragements. [ also wish to record my deep gratitude to the students in my
courses. Their favorable reactions provided the impetus for this work.

I would like to thank Doctor Peter G. Anderson of the Rochester Institute of Tech-
nology, Doctor John Wu of Auburn University, and Professor N. K. Bose, HRB Systems
Pro[e'ssor and Director of the Spatial and Temporal Signal Processing Center of the Penn-
sylvania State University, for reviewing the manuscript and offering valuable suggestions.
The responsibility of the present book rests with me, of course. Suggestions are welcome.

[ wish to thank M.LT. Lincoln Laboratory for providing support and for a stimulating
environment in which the book could be developed.

Finally, [ wish to acknowledge others who helped me during this project: Gail Car-
penter, Mike Carter, Paul DiCaprio, Dan Dudgeon, John Dugan, Mary Fouser, Stephen
Grossberg, Alfred Gschwendtner, Karl Heinemann, David Hestenes, Patrick Hirschler-
Marchand, Eric Kandel, Emest Kent, Glora Liias, Courosh Mehanian, Murali Menon,
Charles Niessen, Linda Peterson, Barney Reiffen, Mark Silverman, Alex Sonnenschein,
John Uhran, and Rose Harvey.

Robert L. Harvey
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Introduction

Intelligent machines with huge numbers of simple elements was a research subject for
many science pioneers. References to this subject can be found in the scientific literature of
the nineteenth century and, with increasing frequency, into the 1950s. Starting in the late
fifties, a ficld known as neural networks (NNs) evolved. Today NN is distinct from signal
processing, artificial intelligence (Al), and neuroscience, though it overlaps these fields and
others.

The purpose of this book is to develop NN principles from a biological viewpoin, to
give NN design methods for applications, and to outline human brain-mind functioning by
a NN model.

Any scientific brain-mind theory has a number of fundamental coneepts, such as
memory and consciousness. The notion of these and other concepts will be examined briefly.
For the most part, however, many fundamental concepts will be assumed as terms whose
meanings are familiar. A glossary summarizes some terms from contributing disciplines.

1.1 ROAD MAP FOR NE)URAL NETWORKS

NNs is part of systems theory because of its mathematical style {6,18). Figure 1.1 is a
simplified road map of current systems theory. The selected topics are familiar to students
in many fields, especially engineering. As shown, the figure defines the branches of systems
theory by their main characteristics.

To the left in figure 1.1 are topics in conventional signal processing. These subjects
are the basic tools for designing modern electronic systems. Typically, the first years of an
electrical engineering or a computer engineering graduate program introduce these subjects.
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Figure 1.1 A simplified road map of systems theory. The major branches and subjects
are shown, Neural networks is alonyg a nonlinear branch. All branches share tenninology,
mathematival techniques. and with interpretation, results. Physics, chemistry, and the life
sciences also contribute to neural networks and to the other branches.

To the right in figure 1.1 are branches of computing theory. Al is shown as be-
ing primarily serial processing, though much Al research is independent of the computer
technology. For simplicity figure 1.1 omits many subdivisions of Al

NNs branches from parallel processing on a branch labeled “massively parallel pro-
cessing” by, say, one billion and more elements. The number of elements distinguishes
NNs from connection machines. The NN branch, however, refers to the theory, not imple-
mentation, because current NN rarely have more than a few thousand elements.

Figure [.2is the first of many definitions. The figure shows a NN schematically.

A neural network is a dynamical system with one-way interconnections. It carries
out processing by its response to inputs. The processing elements are the nodes; the inter-
connects are directed tinks. Each processing element has a single output signal from which
copies fan out.

Researchers approach NNs from many disciplines. Summarizing all the current ap-
proaches is difficult, because NN is in rapid transition. Nevertheless, from an architectural
viewpoint, current NN theory has three main branches: perceptron, associative memory,
and biological model. These are suggestive labels, not standard terminology. Figure 1.3
shows the three branches and some leading researchers associated with each branch.

The perceptron branch, associated with Rosenblatt, is the oldest (late 1950s) and most
developed. Currently, most NNs are perceptrons of one form or another (see section 4.4),

The associative memory branch is the source of the current revival in NNs (see section
4.3). Many reseurchers trace this revival to John Hopfield's 1982 paper (see chapter |
references).

Sec. 1.1 Road Map for Neural Networks

INPUTS
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N
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Figure 1.2 Schematic drawing of a neural network. Each processing element
(neuron) has many signal inputs and a single output that branches into copies.
The signal paths are one-way. The neurons are interconnected in large numbers
and operate asynchronously.

NEURAL
NETWORKS
PERCEPTRON ASSOCIATIVE BIOLOGICAL
(Rosenblatt, 1957) MEMORY MODEL
MULTILAYER HOPFIELD BIDIRECTIONAL ART
PERCEPTRONS NET {Kosko, 1987) (Carpanter and

Grossberg, 1986)

'7\ {Hoptleld, 1382)

ADALINE BACK PROPAGATION
(Widrow, 1960s) (Werbus, 1974)

Figure 1.3 A simplified depiction of the major neural network schools. Per-
ceptron, associative memory, and biological mode! are three categories of neural
networks that overlap but differ by their emphasis in modeling, applications, and
mathematics. The principles are the same for all schools.
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The biological model branch, associated with Steve Grossberg and Guil Carpenter,
is the fastest developing and might have the greatest long-term impact. This book treats
topics in the three branches but emphasizes the biological model branch (see chapters 2, 3,
and 4).

NN has a general mathematical theory. Developed from basic principles, the theory
models biological neurons and biological nervous systems. As shown in later chapters, the
theory leads to many applications and verifiuble predictions. In the scientific tradition, NN
theory is constantly being refined by experimental findings. In a sense, the relationship be-
tween NN theory and the applications is like that of Maxwell's electromagnetism equations
to circuits, antennas, and wave guides. That is, a general mathematical theory describes a
natural phenomena, which is then applied to design useful systems.

1.2 OVERVIEW OF THE HUMAN BRAIN

A major theme of this book is modeling the human brain by NNs. Forcontextand reference,
this section briefly reviews the human brain by describing its anatomy, input-output (1/0)
channels, sensory characteristics, and gross mental functioning. The section starts with a
summary of the biological evolution that produced the human brain.

In summary [4), about 33 million years ago an animal called aegyplopitheous appeared
in present-day Egypt. Aegyptopitheous is known as a prehominoid primate and was neither
a monkey nor an ape. Aegyptopitheous is considered ancestral o all living primates,
including apes, monkeys, and human beings.

Eight million years later the earliest known hominoid, called Proconsul, appeared.
Hominoids have highly specialized shaped limb bones, though their skulls and teeth are
generalized. They are distinguished from monkeys, which retain generalized shaped limb
bones.

About five to ten million years ago the ancestors of the gorilla, chimpanzees, and
human beings split from a common stock. Australopithecines, which were early hominids
with characteristics intermediate between apes and later human beings, appeared two to
five million years ago.

In general, the last three million years of fossil record is well known and well docu-
mented. Earlier fossil records have gaps. Two million years ago the genus homo emerged,
with a distinctively larger brain and a pelvic and limb structure like present-day human
beings. About 250 thousand years ago appeared an archaic form of our own species, homo
sapiens.

Around 35 thousand years ago an early kind of human being appeared in Europe, called
Cro-Magnon after the French cave producing the first remains. Paleontologists believe Cro-
Magnon and other homo sapiens evolved from earlier types in Africa and spread to Europe
where they displaced the occupying Neanderthals, another kind of archaic sapien. Since
the Cro-Magnon, the homo sapien has spread worldwide, and recent evolutionary changes
include local adapuations and the well-known “races.”

Thus, in the geologically short time span of 35 million years, hominoids underwent
considerable evolution 1o become homo sapien, the most versatile hominoid.
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A plot of brain volume (from fossil skulls) versus time shows that over the past five
million years, the hominoidic brain volume increased about one percent per 50 thousand
years, so in the last 50 thousand years the human brain has been essentially unchanged.
This brain inspires NN research.

) Today the human brain ranges in weight from | to 2 kg, with an average of 1349
gm for men and 1206 gm for women. Iis volume is about 1400 cm®. Research shows
no sysfematic relationship between intefligence and an individual's race, gender, or brain
size [9].

To summarize its anatomy [9,21], the human brain has three main parts or regions:
the forebrain, midbrain, and hindbrain. Table 1.1 summarizes the brain’s main anatomical
regions, structures, and gross functions. Figure 1.4 shows a sketch of these main structures,

TABLE 1.1 MAJOR ANATOMICAL BRAIN REGIONS,
STRUCTURES, AND FUNCTIONS

Region Structure Gross Function

1. Forebrain Neocortex (two hemispheres)

Occipital Vision '
Temporal Hearing, speech
Parjetal Vision
Frontal Cognition
Amygdala Emotion
Hippocampus Emotion
Basal ganglia Motor
Septum Emotion

2. Midbrain Thalamus /0 1o forebrain
Hypothalamus [ntemal regulation

3. Hindbrain  Pons Sleeping, waking, attention
Briinstem Sleeping, waking, attention
Medulla Sleeping, waking, attention
Cerebellum Motor

The forebrain contains the cerebral conex, or neocortex. For protection it floats on a
pool of fluid. The neurons, cells primarily responsible for the brain's signal processing. are
near the outer surface. The interconnection paths, called axons, are interior and connect
nearby and widely separated brain areas. Besides the neocortex, the forebrain contains other
structures, for example, the amygdaloid complex. The forebrain primarily does processing

for the senses (for example vision) and higher cognitive functions.

The midbrain contains the thalamus and hypothalamus. These structures are the /O
ports and internal regulators of, for example, appetite.

The hindbrain contains the brainstem structures and the cerebellum. The brainstem
regulates consciousness; the cerebellum regulates motor control,

About 70 percent of the human nervous system is neocortex. Although it has many
wrinkles and folds, neocortex topology is nearly two dimensional, Indeed, if spread flat,
the neocortex is two thin continuous sheets connected by a fiber called the corpus callosum.
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MOTOR CORTEX
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PARIETAL
LOBE

| OCCIPITAL
TEMPORAL LoBE
LOBE

HYPOTHALAMUS
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Figure 1.4 Schematic function and
structure map of the human brain.
CEREBELLUM ’/ ( (From Bloom, et al. Brain, Mind, and
MEDULLA / Behavior. Reprinted by permission of
SPINAL CORD * W. H. Freeman and Co., 1985.)

The neocortex sheets vary in thickness from 1.5 mm to 5 mm (2.5 mm is typical)
and has six layers, though researchers have distinguished up to twelve layers in some

regions. Indeed, measuring neocortex area is difficult because of its many folds. Recent
estimates give 1,600 em? for the planar area of each sheet, or 3,200 cm? for the entire adult
cortex. .

While the neuron density varies in the neocortex, remarkably, the number of neurons
under each unit area is nearly constant across the sheet (and from species to species!). The
surface density of neurons is about eight million per cm?. For the striate cortex of primates,
however, (the area involved with vision and about 15 percent of the total), the surface density
is about 20 million per cm®. These areas and densities suggest about 30 biltion neurons,
or active elements, in the neoconex. (The nonneural cells in the neocortex, the glial cells,
outnumber the neurons about 10 to 50 times.)

Mapping the brain regions and their functions is an immense and ongoing activity. In
practice, researchers distinguish brain areas by differences in nerve cell and fiber structure.

The standard mapping of the human brain is due to Brodmann (1909). The 52
Brodmann areas or modules are from anatomy or function, or both. Figure 1.5 shows some ~
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of the 52 Brodmann maps. Relating Brodmann area to function is often straightforward,
for example, areas 17, 18, and 19 are associated with vision. Recent studies suggest the
neocortex has at most about 200 modules and that finer subdivision is probably not helpful

-for understanding its operation.

Figure 1.5 Brodmann's map of the human brain. The numbered areas chiefly
reflect cell structure. Some are also connected to function. For example, areas 17,
18, and 19 are associated with vision. (Frum The Diugrum Group. The Bruin—A
User's Manual. Reprinted by permission of Diagram Visual Information Limited,
1987; originally from Brodmann, 1908.)

Besides the anatomical description is the system description. Table 1.2 summarizes
the major brain-mind systems and their functions. As shown, the major brain systems are
sensory, motor, internal regulation, behavioral, and emotional. Research shows that each
system is distributed over many areas of the brain. '

To operate, the brain needs /O signals. Major /O channels to the outside world are
the 12 pairs of cranial nerves, shown in figure 1.6 and described in table 1.3. As shown,
some nerve bundles are one-way; others are two-way.

Other /O channels are along the spinal cord (in an evolutionary sense the brain is
an outgrowth of the spinal cord). The spine gets sensor signals, sends commands to the
muscles, and makes simple decisions (reflex actions).
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TABLE 1.2 MAJOR BRAIN SYSTEMS AND
THEIR FUNCTIONS .

System Function
Sensory Vision
Hearing
Olfaction
Taste
Somatic sensation
Mouotor Retlexes

Movement of joints
Internal regubation  Appetite

Sex
Saluwater balances
Behavioral Sleeping/waking
Attention
Limbic Emotions

(motivation and priorities)

=== SENSORY 1
= MOTOR (/" M S LTSSttt teeteeceeenn

NN

\\!..':5\-))}!\ "
<
N )

Figure 1.6 Schematic diagram of the cranial nervous system. Twelve puirs
of nerves are important input-output signal paths o the brain. Table 1.3 de-
seribes their function. (From The Diagram Group. The Brain—A User's Manual.
Reprinted by permission of Diagram Visual Information Limited, 1987.)

Sec.1.2 - Overview of the Human Brain 9

TABLE 1.3 THE CRANIAL NERVES AND THEIR FUNCTION

Nerve Signul
(12 Pairs) Direction Sense Mutor
1. Olfuctory i Smell —
2. Optic [ Vision —
R 3. Oculomotor tand O — Eye motion
4. Trochlear lTand O — Eye motion
5. Trigeminal TandO Facial sensations Jaw motion
6. Abducens land O Facial sensations Eye mation
7. Facial land O Taste Faciul expressions
8. Acoustic t Hearing —
9. Glossopharyngeal  [and O Taste Phurynx/speech
10, Vagus fand O Breathing/heanbeat/digestion
L1, Accessory (8] — Neck/shoulders
12. Hypoglossal (o] — Tongue/speech

I'= input to brain: O = output from brain.

As shown in table 1.4, at intervals along the spine, 31 nerve pairs pass through gaps
in the surrounding bone vertebras. '

TABLE 1.4 THE SPINAL NERVES AND FUNCTIONS

Spinal Nerve Body

group pairs ared
Cervical 8 Throat, chest, arms, hands
Thoracie 12 Top of breast bone 1o bottom of ribs
Lumbar 5 Front of legs and feet
Sacral 5 Soles of feet and back of legs
Coceygeal t Soles of feet and back of legs

Several million cranial nerves link the brain to sense organs in the head, and about 10
million nerves run from the brain to the spinal cord.

The five traditional senses are sight, hearing, smell, taste, and touch. For reference,
table 1.5 summarizes some characteristics of human vision, hearing, and touch ([82].

The minimum perceptible visual input approaches the quantum mechanical limit
for detecting photons (see chapter 1 exercises). Human vision also has, in engineering
terminology, a dynamic range of 90 dB and a relative color discrimination of 7 bits.

Standard terminology for /O is as follows. Nerve endings are one of three kinds.
Exteroceptors bring information from outside the body, for example, vision. Interoceptors
bring information originating from within the body. Proprioceptors bring information about
joint position and muscle tension. The direction of signal flow is cither afferent (input) or
etferent (output).

Standard terminology for naming brain regions is as follows. Some brain structures
are superior (above) or inferior (below). Names of brain structures are also from the bone
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TABLE 1.5 SELECTED CHARACTERISTICS OF THREE PRIMARY
HUMAN SENSES (From Sheridan and Ferrel. AMan-Muchine Svstems.,
Adapted by permission of the MIT Press, 1974)

Atnibute Vision Heuring Touch
Minimum perceptible 3 % 10" Werg 10 %erg/em? Ix 107 erg
magnitude
Maximum toleruble 10° times min 10" times min 10% times
magnitude minimum
Relative magnitude 370 325 ar midfreq 15 at
discrimination 200300 Hz
Absolute magnitude 5-7 steps on 5-7 steps at 5-7 steps at
discrimination gray scale 1000 1o 2000 Hz 200 10 300 Hz
Frequency runge 03w tium 201w 20,000 Hz 010 10,000 He
Relative frequency 128 1800 200
discrimination at 60 dB
Absolute frequency £2-13 hues 59 upto depends on
discrimination 80 for perfect pitch  skin area

covering the structure. Thus, the inferior temporal cortex (ITC) is the brain area below and
under the temporal bone (area 20 in figure 1.5).

Considering gross mental functioning, evidence from brain-damaged individuals sug-
gests the cortex halves have specialized functions. Localizing function in brain areas is an
active research topic, and research is refining the findings,

To a first approximation. for most individuals, the right hemisphere processes infor-
mation as complete patterns and is sensitive to, for example, static shapes.

The left hemisphere processes information sequentially (or dynamically), and thus is
involved in, for example, speech and language. The vision areas lie in the two hemispheres
and thus are sensitive to pattern and motion.

In human brain functioning, research has two major directions: localizing function
and discovering mechanisms. Localization usually tells little about the logical operations
of brain function. Localization, however, can sometimes set limits on the processing (see
chapter | exercises).

Discovery of mechanisms is limited by experimental techniques, especially for com-
plex behavior. The limitations include recording time of a neuron, methods for recording
from millions of neurons, and the means for storing and interrelating data. Many researchers
believe a computer simulation might be the best explanation for various kinds of behavior.

Research shows neuron structure and signaling are remarkably similar throughout
the brain. That is, meaning is associated with brain area and not the kind of signal. Thus,
“seeing” is signals in the vision system; “hearing” is signals in the auditory system.

The phenomenon of consciousness interests students and researchers alike. Con-
sciousness is a difficult phenomenon to define, let alone model or build into machines.
Indeed, many researchers distinguish between consciousness and self-awareness.

Consciousness, many believe, resides in the reticular formation, a group of cells within
the brain stem. Nerves from this area go to all parts of the midbrain and forebrain and arouse
these regions. The reticular formation is likened to a power supply driving the neocortex.

Sec. 1.2 .. Overview of the Human Brain 1"

Without reticular signals the brain grows sleepy. Damage to the reticular formation causes
unconsciousness; irreversible reticular damage causes coma.

Self-awareness is the result of neocortex activity, according to many theories. Edel-
man’s theory (1977) [29] postulates that awareness is interchanging signals among neuron
groups. In Edelman’s theory, matching current inputs and stored memories produces what .
we call awareness. Nonawareness corresponds to nonmatching between these patterns.

3elf-awareness is explained by Dennett (1991} [26] as many simultaneous, parallel
brain activities. Indeed, the phenomenon cannot be localized in time or area. Dennett's
model also explains many findings and paradoxes.

Recently a wholly biological mechanism for self-awareness is emerging from physical
findings, summarized by Black [8] (see chapter 2). Self-awareness is taken up again in
chapter 9 and discussed briefly by the NN theory developed in the intervening text.

In summary, the basic hypothesis of this book is that brain-mind functioning, normal
and abnormal, is explainable by its structure. These functions include moving, sensing, and
talking. The hypothesis also includes “higher functions” such as hoping, dreaming, and
thinking.

This hypothesis, however, is controversial and some writers have challenged a wholly
physical model for the human brain-mind system (see chapter | references).

The traditional paradigm of philosophy and cognition science is that an objective
reality “out there™ is simply mirrored by mental representations “in here.” Moreover, the
categories of individuals for classifying experiences are uniiversal and invariant.

The new paradigm, suggested by NN theory and the life sciences, is that mental
processes emerge from physical mechanisms. Indeed, the classifying categories are from
prototypes defined in unique and unexpected ways. Chapter 9 considers some philosophical
implications.

SUGGESTED REFERENCES!

F. BLOOM. Brain, Mind, and Behavior and The Diagram Group, The Brain—A User's Manual.
These are two surveys of neuroscience for the educated reader. They have many well-drawn
sketches and diagrams. Bloom's book was written as part of a teaching package for a TV serjes
and has a psychological viewpoint, while the Diagram Group has a medical viewpoint. Both are
nonmathematical. .

. GOLDBERG, Clinical Neuroanatomy made Ridiculously Easy. This is a book intended to help nurses,
medical students, and paramedical personnel master essential pans of neuroanatomy. The book is
brief and readable. It gives many examples of dysfunctions. The mnemonics and humor in this
book are an effective educational device, which unfortunately is not frequently tried in academic
education, -~ '

E. KENT, The Brains of Men and Machines. An excellent book describing human brain architecture
by processing modules. Although it does not treat neural networks, it has descriptions of percep-
tual functions, for example vision, written from a signal processing point of view. The book is
nonmathematical with many block diagrams.

w

! For convenience the references at the end of each chapter are fisted only by short title. Full bibliographical
description will be found in the bibliography at the end of the book.
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R. PENROSE, The Empervr's New Mind. This book discusses computers, minds, and the laws of
physics on an advanced level. Penrose argues for a non-algorithmic basis for consciousness. The
book challenges the busic hypothesis of the text. This book can serve as an excellent point of
depurture for reading on the basic ideas involved in neural networks. The mathematics is at a
senjor undergraduate level.

D. RUMELHART, Purailel Distributed Prucessing. This two-volume book is a standurd reference and
is a unique source for many specialized topics. Chapter 20 is an excellent summary of anatomy
and physiology of the cerebral cortex.

G. EpELMAN and V. MOUNTCASTLE, The Mindful Bruin. The first chapter describes Mountcastle’s
column organization of the cerebral cortex, a major finding in neuroscience. The second chapter
by Edelman connects the column structure of neuron groups (originated by Mountcastle) to con-
sciousness. A theory of consciousness is an active research area, and new results are published
monthly. These two chapters are excellent background to current research.

M. Minsky and S. PAPERT, Perveptruns: An Introduction to Compuwativnal Geometry. Many re-
searchers credit-this classical and coatroversial (1960s) book with stopping research in highly
parallel networks (a claim denied by the authors). Hopfield's paper later revived interest in neural
networks. Minsky and Papent based their urguments on two-layer perceptrons (see chupter4). Most
of Minsky's and Papert’s conclusions do not hold for multilayer perceptrons and other complex
neural networks. The book gives background of modern neural network theory.

fu

. HOPFIELD, Neural Nenvorks and Physical Systems with Emergent Collective Computational Abili-
ries. This is a landmark paper (1982) in neural networks. It gives an algorithm for an asynchronous
parallel processor, including associative memories from neurobiology (see chapter 4). This paper
created interest in neural networks after the field lost its popularity in the 1960s. The reference is
recommended tor background because its neural network is a special inswnce of the modern theory
developed in the text.

EXERCISES

—

. Assume the minimum perceptible visual stimulus magnitude is 3 x 107" ergs. What is the
approximate minimum number of photons the human eye can detect? Is the human brain a quantum
meuasurement instrument?

19

. Assuming the resolution at fovea with good contrast is about one minute of are, how close is the
human eye to the diffraction imit? Assuming diffraction limits optics, what is the approximate
spacing of the photon detectors at fovea?

(=

. Assume the following:
» pulse frequency along axons = 100 Hz
« pulses needed to fire a neuron in each module =2 to 5
« pulse propagation speed along axon = 100 m/s
o time to recognize an object=0.5s
Assuming at least one layer of neurons in each module, about how many modules in series are in
human vision for initial recognition?

2

Neuron Physics
and State Equations

This chapter presents the “standard model” for neurons. For the historian, the model's
development is a rich story filled with false starts, theoretical preconceptions, and the
interplay of personalities. The model’s equations are the starting point to design systems
and to understand human brain-mind functioning. This chapter summarizes the biological
basis for the model in sufficient detail for understanding its derivation and —if needed — for
refining it to depict the underlying biology more closely.

How sure are we that the standard model is reasonably correct? Will discoveries
overthrow it and replace it with a significantly different model? Perhaps. In fact, section
2.4 discusses recent new research findings not yet part of the standard model.

If supplanted, however, the standard model will have played a valuable role because
testing ideas and designing systems is respectable (though only in the last decade or s0),
especially since the national DARPA sludy [23] which surveyed the NN state of the art and
identified applications. -

Moreover, researchers commonly Jubtlf)’ Lheu- programs with the standard modcl
Thus, the mode! gives a shared language allowing designers, researchers, and sponsors to
appreciate and support each other. As seen in later chapters, the model also gives a powerful
new tool to apply to real problems.

I researchers develop a better theory someday, it will probubly be traced to results
for improving the standard model.

13
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2.1 NEURON STRUCTURE, PULSE GENERATION,
AND PROPAGATION

The accepted human brain model is a system of 10" to 10'? neurons of rather uniform ma-
terial and strucwure. Studies show the neurons organized into about 200 modules with a few
basic interneural kinds of signals. Groups of neurcns with precise interconnections produce
the systems and the functions of natural brain-minds. This section describes the traditional
biochemical view of how a prototypical neuron functions in the central nervous system
(CNS). It also introduces the basic language and gives a brief review of neurochemistry.

Summarizing [8.9,21.22,27,56], figure 2.1 shows a typical neuron. The neuron cell
body. containing the nucleus and cytoplasm, is like other cells in basic structure and basic
function. A neuron cell body difters from other cells because of the dendrites and axons.

Dendrites are branchlike protrusions from the neuron cell body. A typical cell has
many. The receiving zones of impulses, called synapses, are on the cell body and dendrites.
Some kinds of neuron have spines on the dendrites, thus creating more receiving sites.

An axon, the transmit channel of the impulses, is a long, fiberlike extension of the cell
body. Each neuron has one axon, which branches or fans out to other neurons. The fan-out
is typically 1:10,000 and more. The same signal, with varying time delays, propagates
along each branch. Indeed, the large fan-out produces the brain's parallelism.

Euch branch end has a synapse. A typical synapse is a bulblike structure at the end
of an axon branch. The synapses are on the cell body. dendrites, and spines, shown in
figure 2.2. There may be 10* to 10° synapses on a neuron.

Between the synapse and the target neuron is a narrow gap, typically 20 nanometers
wide. Special molecules called neurotransmitters cross the synaptic gap to receptor sites
on the target neuron. The flow of neurotransmitter molecules is the transmission of signals
between synapse and neuron.

The signals from a neuron are inhibitory or excitatory, not both. Excitatory signals
tend to fire the target neuron; inhibitory signals tend to prevent firing. A neuron fires, that is,
sends a signal along its axon, depending on the time-integrated effect of all signals crossing
its synaptic gaps,

Moreover, each neuron sends only one kind of signal. That is, a neuron cannot
be excitatory to some target neurons and inhibitory to others. (Recent studies show that
some neurons in the retina may be excitatory and inhibitory, but they are the only known
exceptions {69].)

An electrochemical mechanism produces and propagates signals along the axon. At
equilibrium (no signaling) the interior of the neuron and its axon is negative relative to the
exterior because the interior has an excess of negative ions, while the exterior has an excess
of positive jons. The negative ions are C1=, PhO~, and carbon-oxygen acids. The positive
ions are Na*, K, Ca*, and Mg*.

A biological ion pump, powered by mitochondria, causes the ion concentrations in
and around the neuron. Mitochondria are structures in the neuron using and transferring the
energy produced by burning fuel (sugar) and molecular oxygen. In a sense, mitochondria
are Microscopic energy sources.

The excess of positive and negative charges generates an electric field across the
neuron surface, shown in figure 2.3, The plusma membrane of the neuron holds the charges

Sec. 2.1 Neuron Structure, Pulse Generation, and Propagation 15

DENDRITE

SMOOTH
ENDOPLASMIC
RETICULUM

UCLEUS
NUCLEOLUS

ROUGH
ENDOPLASMIC
RETICULUM

[ CELL WALL

[—— AXON

= MICROTUBULES

Figure 2.1 Structure of 2 typical
mammalian neuron. A neuron functions
metabolically like other cells. It has a
single long axon from the cell body w
the synapses. Dendrites are outgrowths
of the cell body and form Synapses with
MITOCHONDRION other neurons. (Figure 2.2 shows more
SYNAPTIC detail.) The synaptic terminal stores
VESICLE neurotransmitters in vesicles.
REUPTAKE Microwbules provide structural rigidity
SYNAPSE and transport material wong the axon.
(From Bloom, et al. Brain, Mind and
Behuvivr. Reprinted by permission of
W. H. Freeman and Co., 1985.)

RELEASE OF RECEPTOR
NEUROTRANSMITTER SITES

apart. The membrane is selective to diffusion of particular molecules, and its diffusion
selectivity varies with time and length along the axon. Indeed, varying the membrane
diffusivity produces and propagates signal pulses along the axon and across the synaptic
gaps.

The axon signal pulses, also called action potentials, are described electrically by
current-voltage characteristics, shown in ﬁgmg a current pulse into the axon
causes the potential across the membrane to vary. Chemical signals at excitatory synapses

Inject current into the axon. As described next, the current pulses stimulate an excitatory
neuron o fire.
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Figure 2.2 A ncuron may be
connected with others by tens of
thousands of synaptic contacts on its
dendrites and cetl body. The synaptic
contacts are small compured with the
cell body. (From The Diagram Group.
The Brain—A User's Muanual.
Reprinted by permission of Diagram
Visual Information Limited, 1987.)

The equilibrium potential of the axon is about =70 mV. When injected with an
inhibitory (hyperpolarization) signal pulse, the response is a RC-type, that is exponen-
tial, followed by relaxation to equilibrium. When injected with a small excitatory pulse
(depolarization), the response is also a RC-type response followed by relaxation.

When the injection current causes the voltage to exceed threshold (typically —40
mV), the potential rapidly continues to rise. Thus, the current produces a single pulse with
a peak-to-peak amplitude of about 120 mV and a duration of | ms.

A pulse, caused by injected current, propagates without weakening along all branches
of the axon. A complex, not fully understood sequence involving the ions maintains the
pulse shape and strength.

A brief description of the production and propagation of a pulse by a step-by-step
electrochemical process follows, and is also shown in figure 2.5.

1. Chemical signals at excitatory synapses inject current in the axon.

2. Rising positive charges in the cell trigger Na* gates along the membrane to open
(threshold about —40 mV).

3. Aninflux of Na* causes the interior to go positive (+60 mV). The influx is caused by
the electrical potential and the concentration gradients.

4. The positive interior causes adjacent Na*t gates to open so that an impulse propagates
down the axon. The propagating speed is 0.5 mv/s to 120 m/s depending on the axon
diameter. (For example, during each pulse in a 1-pm diameter squid axon, about 3
picomoles of Na per em* enter the axon.)
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Figure 2.3 The movement of electrically charged fons across the neuron’s cell
wall mcn}bmuc produces the pulses along an axon. At equilibrium a neuron has a
netnegative charge inside and a net positive charge outside caused by the pumping
of sodium n{\d potassium ions (sodium uu(wurd:'pomssium inwurd)-. The chulr)ucz
{)rod;c:e u‘r} inward-directed electrical field and a voltage potential of abuut —360
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3. The Na™* gates close by the outflow of K* from the interior.
6. Na collects in the interior from each pulse while the exterior loses

Hects in ¢ K. The rec
to equilibrium is by a Na-K exchange process. R

The N:A-K.cxchzmge. or pump, is driven by the hydrolysis of adenosine triphosphate
(ATP). ATP is widely used in nature to furnish energy for chemical reactions. ATP sponta-

neously goes to adenosine diphosphate (ADP) and inoreanic ph i
. h { ’
with the release of 30 kJ/mol. That is il phosphate (B by hydolysis

ATP — ADP + P, (release 30 kJ/mol).

This energy can be used to drive a biochemical reaction that might not normally proceed.
For example, consider the reaction X — Y for which 20 kd/mol must be supplied

under standard conditions. If the conversion of X oYi i
. X is coupled to ATP hyd Si§
combined reaction would be P ’ TO‘)’}lb, e
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ATP + X — ADP + P; + Y (release 10 kJ/mol).

Under standard conditions the reaction proceeds spontaneously.

Many versions of the Na-K pump are energetically plausible, and it remains o be

determined which version occurs in living cells.

Summarizing [28], a proposed model for the Na-K pump is the following sequence.

1. Exterior reactions: ) .
K*+ protein — protein—K
The protein—K* diftuses to the interfor by a concentration gradient.
2. Interior reactions:
ATP + protein—K* + Na* — ADP + K* + phosphoprotein—Na*

The phosphoprotein—Na* complex diffuses to the exterior by a concentration gradi-

ent.

PPN

.
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Figure 2.5 Process for generating 4 pulse in an axon. Sodium and potassium
channels cover the axon membrane. At equilibium the channels are closed,
When a depolarization voltage exceeds threshold the channels open for about |
ms during which time about 6000 sodium jons pass. The flow of ions causes a
pulse, and the axon voltage goes from about =70 mV to +50 mV. The channels
then close spontaneously and recovery to equilibrium occurs by an energy-driven
ion pump, which is also part of the membrane.

3. Exterior reactions:
phosphoprotein—Na* - Nu* + protein
This last reaction takes place because of an enzyme.

The pump model assumes a carrier protein molecule shuttling back and forth across
the membrane, transporting K* on the inward trip and Na* on the outward trip. Movement
of the carrier-passenger complex is driven by a concentration gradient, this gradient being
determined by the state of the phosphorylation of the carrier.

In comparison, [22] describes another pump model. In this model, a large protein
molecule (mol. wt. = 120,000), called Na*K*-ATPase, is oriented in the membrane with
part of the protein exposed at other faces. The protein neither rotates nor shuttles back and
forth. Three Na* ions bind to sites on the inner surface, and two K* ions bind to sites on
the outer surface. The protein then undergoes a conformational change and the three Nat+
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ions are pumped outward, possibly by the creation of a channel. The two K* ions are then
moved inward, by another conformational change, back to the original shape.

The Na-K pump has been studied in detadl because of its importance. The mechanism,
however, for transporting Na* out of and K7 into the membrane is not known in detail,
although most researchers now believe that conformational changes in the Na-K-ATPase
enable the ion movements.

The above description of a propagating axon pulse assumes a smooth, uniform axon
surface. In factasheath of myelin with gaps along its length frequently encloses many axons.
The busic mechanism, however, still holds. With myelin sheaths, the pulse propagates by
jumping from gap to gup along the axon, resulting in higher propagation speeds.

While the model describes the production and propagation of a single pulse, one pulse
does not carry information. In fact, many processes produce pulses randomly.

Research shows that encoding of information is by the frequency of the pulse train, a
process called frequency shift keying (FSK) in digital communications. The frequency is
in the runge of 10 to 100 Hz.

Anexample of neural FSK is in the measurement of muscle motion. Muscle spindles,
a kind of sensor, measure the rate and extent of muscle stretch. As shown in figure 2.6,
mechunical motion leads to local depolarization in the nerve terminal by locally decreasing
the electrical field. The depolarization. equivalent to a current injection, causes a train
of impulses ulony the axon when currents exceed the threshold. The frequency of the
impulses is proportional to the depolarization. In tumn, depolarization is proportional to the
mechanical movement. Thus, the pulse train frequency encodes the signal that measures
the muscle motion.

WEAK STRONG
. STRETCH STRETCH
S o2
E Figure 2.6 Pulse trains produced by
—&' stretching muscles. A sensory nerve
I responds to the stretching of a muscle
2 by firing at a rate proportional to the
6 o stretch. (From Kuffler, et al. Frum
a L& 0} L4 1 |  NeurontoBrain. Reprinted by
0 300 0 300 permission of Sinauer Associates, Inc.,
TIME (ms) 1934.)

When a pulse train signal reaches a synapse, synaptic transmission transfers the signal
to the target neuron. Synupdc transmission is the chemical transfer of signals from one
neuron to another across the synaptic gap. The signaling is an extension of nerve impulse
transmission and membrane potential characteristics. While direct electrical interactions
amoung neighboring neurons is possible, chemical transmission is the dominant mechanism
of signaling among neurons.

Synaptic transmission raises two main questions: How do neurotransmitters act on
the postsynaptic neuron to produce excitation and inhibition? How does the presynaptic
terminal release the neurotransmitters?

Figure 2.7 shows the prototypical model of a synapse.
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Figure 2.7 A slcp-by-s}cp sequence of neurotransmitter release and recovery
(n:upufke) at nhhypolhencal synapse. (From Bloom, et al. Brain, Mind and
Behavior. Reprinted by permission of W. H. Freeman and Co., 1985.)

.Slaning with the first question, increasing the permeability to Na™ and K* of the
Ros(-_;unctional membrane produces synaptic excitation, leading to a depolarizing synap-
tic po(cntial.. Excitation results from driving the membrane potential over lhresBol'd‘ A
common excitatory neurotransmitter is acetylcholine (ACh).

Summarizing [56], the sequence for synaptic excitation by ACh is as follows.
1. Presynapse sites release ACh* (see below).
2. ACh* diffuses across the synaptic gap to the postsynaptic membrane,
3. The postsynaptic membrane permeability to Nat and K™ greatly increases.
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4. Na* and K* ion currents across the membrane drive the potential in the target neuron
to the —20 mV-to-0 mV range. A large amplifying mechanism takes place because
one ACh* ion causes about 1000 Nat/K* ions to cross the membrane.

Increasing the permeability to CI~ and K+ of the post-junctional membrane pro-
duces synaptic inhibition, leading to a hyperpolarizing synaptic potential. Dn.vmg the
membrane potential away from threshold gives inhibition. Inhibitory neurotransmitters are
mainly unknown; however, one identified inhibitory neurotransmitter s y-aminobutyric
acid (GABA). o ]

The sequence for synaptic inhibition is as follows.

1. Presynapse sites release an inhibitory neurotransmitter (see below).
- The neurotransmiuer diffuses across the synaptic gap to the postsynaptic membrane.

(]

3. The postsynaptic membrane permeability to C1™ and K* greatly increases.
4. CI~ and K7 jon currents across the membrane drive the potential of the target neuron

below —70 mV.

The differences in excitation and inhibition are primarily membrane permeability
differences. Inhibition, however, is difficult to account for by changes only in postsynaptic
permeability. .

Figure 2.8 shows an axoaxonic synapse where an inhibitory synapse goes to th'c
presynu;;Lic junction of an excitatory synapse. Researchers hLWc? found, by electron mi-
Croscopy, axoaxonic synapses at many locations in the mammalian CNS. (NN modeling
rarely assumes axouaxonic mechanisms.)

AXQAXQONIC
SYNAPSE iINHIBITORY o
SYNAPSES  Figure 2.8 Presynaptic inhibition. An
EXCITATORY —u excitatory synapse is affected by an
SYNAPSE TARGET inhibitory axoaxonic synapse. Thc.
NEURON effect is to reduce the neurotransmitter
quanta released from the excittory
terminal.

Presynaptic inhibition is helpful when many pathways converge bcc:?usc the system
can selectively suppress inputs. The selection cannot be done by posLsynapnc. conductance,
which changes the whole target cell. Researchers do not know the relative importance of
presynaptic and postsynaptic inhibition in the CNS: : )

Considering the second question of presynaptic release, the release of nc.uro(runsm.w
ters in the synaptic gap is a complex process. Observations show that an action .pclch:nuaJ
pulse in the presynaptic fiber normally gives rise, after a deln}f, to a large depolarizing po-
tential in the postsynaptic membrane. The depolarizing potential usually reaches threshold
and produces an action potential, ' . .

Figure 2.9 shows the presynaptic and postsynaptic potentials. The m:Lxxml{m exci-
tatory p5515y11uptic potential (epsp) is related to the maximum presynaptic potential. The
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delay time is sensitive to temperature. For example, squid neuron results show delay times
varying from 0.5 ms at 20° C to 7 ms at 2° C
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Another finding is that removing calcium or adding magnesium to the presynaptic
junction reduces the neurotransmitter ACh release. Research shows that the release of
neurotransmitter ACh™ is in quanta having about 1000 molecules of ACh*. Although the
Quanta may vary, research shows fixed molecules perquanta. (For example, neuromuscular
synapses have about 200 quanta per release.) In general, the quanta per release depends on
the neuron and varies widely. Finally, at Jow Ca concentration, releases have only a few
quanta.

The origin and targets of nerve fibers establish information and meaning because
signals are similar in all nerve cells. That is, meaning has to do with the particular neural
group, while frequency coding conveys information about the stimulus intensity. Thus,
precise connections among selected neurons produce the wealth ot information reaching us
in the visual and other sensory systems.

Learning is connected to synaptic processes. Leaming correlates to and is affected by
synaptic efficacy, which has to do with heurotransmitter release. The efficacy is caused by
changes in the quanta per release, not the molecules perquanta. Trains of impulses can lead
to a continuing rise in the response. The rise, called facilitation, is caused by increases in
the quanta released by the presynaptic terminal, Figure 2.10 shows facilitation graphically.
Presynaptic inhibition, on the other hand, reduces the quanta released from the affected
terminal. . ;

Learning also affects the shape of the synapses. The presynaptic cavities change from
a triangular cross section to a rounded cross section. Research shows that the cross-section
change is permanent. : .

Moreover, learning affects the number of synapses on the neurons, especially during
the early years of life. In the developing brain, the Synapses to each neuron grow to a
maximum at about age two in human beings. Between ages two and seven the number
of synapses reduces about one-half. The drop is during the intense learning of basic
skills. After age seven, the neuron population remains nearly constant until shortly before
death,

Many studies show relationships between talent and neuron structure, In general,
research shows more dendrites associated with talent. For example, an expert pianist has a
more complex dendritic structure in the motor system than the average person.
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Other nonneural structures also play a part in overall functioning. For example,
measurements show that samples of the frontad lobe of Einstein's brain had more glial cells
per neuron than average. (The glial cells are support cells of the brain and greatly outnumber
neurons.)

[n summury, the traditional view of neural functioning provides a basis for the stundard
NN model, presented next. The standard model gives powerful insights into human brain-
mind thought processes, shown in later chapters. Section 2.4 summarizes recent findings
not yet in the standard model.

2.2 NEURON STATE EQUATIONS

Eurly NN researchers formulated equations describing biological nervous systems primar-
ily from the emergent behavior of interconnected elementary units (neurons) rather than
from detailed modeling of neural mechanisms, such as the Hodgkin-Huxley system {47].
Although it is well known that a neuron transmits voltage spikes along its axon, many stud-
ies show that the eftects on the receiving neurons can be usefully summarized by voltage
potentials in the neuron interior diat vary sfowly and continuously during the time scale of
a single spike. That is, the time scale of the interior neuron potential is long compared to
the spike duration. The standard NN equations reflect this viewpoint.

Assume a neuron interacting with other neurons and outside stimuli, shown in fig-
ure 2.11. Denoting the ith neuron by v;, the model starts by defining two variables, x; and
Z,;. which describe the neuron’s state. :

One state variable of v; is x;, where

x, (1) = activation level of the ith neuron.
Or (physiological view),

x,(r) = deviation of neuron potential from equilibdum [volts).

oSy
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Figure 2,11 Schematic diagram of a neuron and a neural nerwork. (a) Neuron,
v;. with potential, x; relative to equilibrium, sends a signal, §;;, along the axon to
atarget neuron, v;. The signal affects the target neuron with a coupling strenyth,
Z;;. The signal may be excitatory (2,; > 0) orinhibitory (Z,; < 0). O(hcrinp:us.
{,. to the neuron model external stimuli. (b) Interconnections of many neurons
form a neural network, which approximates the signal processing of biological
NErvous systems.

Or (psychological view),
xi(r) = short-term memory (STM) trace,

The second state variable, Z,;, is associated with v;’s interaction with v; (another
neuron), where

Z;;(t) = synaptic coupling coefficient.
Or (physiological view),
Z;;(t) = neurotransmitter average release rate per unit axon signal
frequency [volts/sec/Hz = volts].

Or (psychological view),

Z;j(t) = long-term memory (LTM) trace.

Four models for the STM and LTM traces are

1. Additive STM equation
2. Passive decay LTM equation
3. Shunting STM equation
4. Extended LTM equation

In practice, the model selected depends on the application.
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1. Additive STM equation. To formulate a set of ordinary differential equations for

xi(t)and Z,;(1), assume a change in neuron potential from equilibrium (—70 mV). In general
the change is cuused by internal and extertfal processes.

dI,’ d.l',‘ dx,' .
BALOY afai) + == L Vi (2.1
di de internal dt external

Assume inputs from other neurons and stimuli are additive (agrees with many experiments).

dx; dx; dx; dx; dx; .
— = + = - == + = LYE(22)
dt de internal dt excitatory dr inhibitory dt stimuli

Assume the intemal neuron processes are stable.

d.l’; -
—) = — (), Ai(x) >0, Yi. (2.3)
dt internal

Assume additive synaptic excitation proportional to the pulse train frequency.
dI,‘ . . e
ar o3 Z (average axon frequency) (synaptic coupling coefficient).  (2.4)
t excitutory

other
neuruns

Or,
dx z
—_— =) SuZy, Vi 25
(d[ )uciwwry Z b [ ( )

b}
k#Ei

The phrase “Zy; gates Sy; " describes the term Sy; Zy,, where S, = frequency of signal
in the vy — v; axon evaluated at v;.
Ingeneral, Sy, called the signal function, depends on the propagation time delay from
vr o v; (13;) and the threshold for firing of vy (). Formally,
Ski (1) = Seilei(t — ty) ~ T] = 0. (2.6)

Si; is referred to in two ways depending on the situation:

S = Sampling signal when considered input, or
¥ =] Performance signal when considered output.

Figure 2.12 shows the following three common signal functions:
Piecewise linear signal function,

Sii() = by flalt — wi) = Ty, 2.7

where
[x]" = max{0, x;}. (2.8)
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[x]*

(b)

x Figure 2.12  Common neural network
1 signal functions. (a) A piecewise linear
. { - N
14+ @0x function models the nonlinear off-on

characteristic of neurons. (b) A step
© function gives the abrupt off-on
characteristic and 1 maximum output.
Am{v (c) A sigmoid function models the
off-on, nonlinear, smooth, and bounded
characteristics. The abruptness is set by
the slope near zero. Other signal
functions are possible.

Step function signal function,

Sigmoid function signal function,
S3ilt) = by flo(t — 1) — T, by > 0, (2.10)
where, for example,
J®) = : (2.11)

1+ emor’

Other signal functions are also possible. Moreover, many global NN properties are only
weakly dependent on the particular signal function. Some NN properties, however, are
dependent on the signal function (see section 4.1).

Assume hardwiring of the inhibitory inputs from other neurons, that is, their coupling
strength, or effectiveness, is constant. Then,

dx; " i
(le“m =) Cu, Cy 20, Vi, @.12)

dmi

ks#i
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(2.13)

where )
Co(t) =criglalt — i) =Tkl ey 2 0

and g[ ]is a sigmoid or a piecewise linear function.
2. Passive decay LTM equation. Assume the excitatory coupling strength varies with

time. A common model is

dZ,; o
TUZ_BIJ(ZI/')Z[]—*_S‘(/["']]*I Vl,_/. (214)

S,'j is like S, but it may differ in presynaptic dependency on x;. Assume
(2.13)

S0y = by Sl = 1) = T 1™, k.0
The term S[][.r/ |7 in (2.14) shows thut to increuse Z;;, v; must send a signal Sf/ vy,

and at the sume time v; be activated (x; > 0).

Note that the STM and LTM equations are not solvable until specifying a set of
coeflicients, A;. Su. Cu. Bij. S,'J, and vntil giving the external stimuli /;(r).

3. Shunting STM equation. The shunting STM equation is a better model of the
neuron physics than the additive STM equation; however, it is more complex. Consider an
equivalent electrical circuit for the membrane, shown in figure 2.13. The equation for this

cireuit is

ar
CET =T =T+ (T = )T+ (VP ~ V)g? (2.16)
where figure 2,13 detines ¥ (1), V7, V=, and ¥ P, Assume
Vosk@ <
2.17)

V- <¥e < ¥
[ << V¥t —V?r

The circuit relaxes from an initial value to a final value depending on the three right-

hand termns in (2.16).
For example, first assume V(0) = #. Then, for g*, g? = 0. the system goes from

FP 1o ¥, Second, for g¥, g# =0, it then relaxes from ¥ 10 V'~ Third, for g¥, g~ =0,

it relaxes from ¥~ to ¥# (equilibrium).

The membrane equation approximates the action potential in an axon, shown in

figure 2.14.
The shunting STM equation starts by defining the following varuables. Let

Vi) =x;
V=B
V™ =-D;
Ve=0
(2.18)

e =l 4 T SuZy!
e =di+ Y8z
gf =4

C=1
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L ..TJ%T. '-T%: ,,,Té: 7
[ T ]

Figure 2.13 Circuitanalogy for a neuron membrane. ¥ 7, V=, ¥ # are the max-
tmum, minimum, and equilibrium voliages, respectively, inside a neuron. The
voltages act like batteries in an electrical circuit. They produce a fluctuating
output voltage, ¥ (1), representing the action potential inside the neuron, nf':
membrane model leads to the shunting STM equation.
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/
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!
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~40 i
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-50 |- l' \
——= - VP
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F.igu!-e 2.14  Action potential and its approximation, Proper selection of the
circuit parameters (see figure 2.13), C, R*, R-, R?, gives a pulse shape that
approximates a biological neuron pulse.

Substituting (2.18) in (2.16) gives the shunting STM equation,
ti= A+ (B - )Y SuZi + 1)
ki
=+ DY) Szl + J), i

1=i

29

(2.19)
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4. Extended LTM equation. The passive decay LTM equation does not explicitly
model the neuroransmitter level needed for some applications. For these applications,
redefine some of the variables as follows.

Let

Zi = usable excitatory neurotransmitter level [moles],

and
M = maximum excitatory neurotransmitter level [moles),

(the LTM trace in this case).

Model the usable neurotransmitter level by
Zu = K(My = Zi) = CS, Zyy. K > C, ¥i, k. (2.20)
Model the LTM trace by
My = —BMy + S Lx]", ViLk. (2.2

Examination of (2.20) and (2.21) gives the following characteristics. Without signals on
an axon, the neurotransmitter level, Zy,, rises at rate X to a maximum level, M, (mod-
eling reuptake of the neurotransmitters). The second right-hand term in (2.20) shows that
axon signuls deplete the neurouansmitter at rate C. Experimentally K is somewhat larger
than C.

Note that for long time intervals, x, is proportional to Zy, by the STM equation. By
the LTM equation, x; is also proportional to My;. Or, M, is proportional to Zy,.

Thus, the simple passive decay LTM equation corresponds to long times. To study
short-term effects, however, requires using the more realistic extended three-variable LTM
model.

2.3 NETWORK EQUATIONS

Interactions amony neurons are generally nonlinear, chiefly because of the signal function.
In principle, the nonlinear differential equations that describe the STM trace and LTM trace
of a group of neurons can be solved. In practice, except for the simplest cases, the equations
are intractable, and researchers must apply other approaches.

Using a single node to represent a pool of interacting neurons is often convenient.
Figure 2.15 shows a typical situation consisting of a group of neurons and one output node.
In the group,

N N
= —dx + ZS)UZIU - Z Cii + 1;. Vi, (2.22)
ket ek
and
2= =ByZ+ Sl Vil (2.23)

where the summation indices reflect the interconnections.
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N INTERACTING NEURONS

Figure 2,15 If the time scales of the
input and neuron dynamics are properly
chosen, a single neuron, vy, may
represent a group of neurons, In this
interpretation, the activation level of vy
is proportional to the fraction of excited

SINGLE QUTPUT SUMMING
NODE THAT “REPRESENTS"

THE NETWORK neurons in the group.
Al the output node,
¥ ‘
Xo = —Ayxo + Z SinZyg+ Iy (2.24)
i=1
and
Zip = ~BigZiy + Siolxa]™. Vi (2.23)

With assumptions, x, is proportional to the number of excited neurons in the pool.
For example, let

Zip = constant (slowly varying), Vi,
. 2.26
Sio & siolx;]* (short delays, low thresholds. vi). ( )

Then (2.24) becomes

N
fo = —Aoxo + ) solx]* Zo + . (227
i=1 :
If A‘o is large and the time scales for integrating inputs in (2.24) are short, xy is
proportional to the number of excited nodes in the poolas r — co.
The preceding example leads to a formulation for groups of neurons.
Consider groups of interacting neurons (v}, v,...}. Let x; be redefined to be

X; = potentials of cell populations in group v;.

Assume v; has B excitable sites, with x; sites excited and B-x; sites unexcited. This is a
binary model, that is, the neurons are on or off.
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The shunting STM equation then gives

b= A+ B = XY SuZil + )

e (2.28)
-+ DY SuZy” o+ S Vi
I&t
Assuming certain terms negligible gives
fo= A  (B= X0l = x L Vi (2.29)
kgt

Thus, the state equations for 1 single neuron have the same form as that for a group of
interacting neurons. With this interpretation, x; is the excited state in a group. Fora group,
however, A, = 4;(x;) and thus is not constant. .

The two interpretations of v, —excitation of a neuron or excited neurons ina group—
may cause confusion. The application mustcarefully state the interpretation. The following
chu'p!crs apply both interpretations.

2.4 RECENT NEURAL-BIOLOGY FINDINGS

Section 2.1 describes the traditional biochemical view of a prototypical neuron in the F’NS.
The NN models, derived in sections 2.2 and 2.3, reflect this view. Recent findings m.thc
brain sciences, however, have altered the traditional view. Most of this new information,
outlined below, remains to be incorporated into NN models. Undoubtedly, future NN
models will contain some of the new findings. '

To summarize for perspective, in the traditional view of a CNS neuron, particular
molecules function as neurotransmitters and charge-carriers in membrane ion .ch.unncls.
The movement of these molecules is the mechanism for the millisecond-to-millisecond
communication in the brain-mind. ' o )

The prototypical neurotransmitters are the catecholamines (?A): studied since 1905.
These are 3,4 dihydroxy derivatives of phenylephyamine, occurring in the brainstem nu-
clei and elsewhere, which enable mental functioning. Section 2.1 describes the synthesis,
storage, release, receptor interaction, and action termination of neurotransmitters. )

“In the traditional view, starting with the pioneering work of Hebb (1949), a blf)logy
theory relates synaptic function to learning and memory. !n this theory, a neuron is not
a simple digital switch as envisioned by McCulloch and Pius {66]. "I'hal is, the 1r}tcmnl
cellular environment, the local external cellular environment, and distance regulation by
hormones affect synaptic functioning. )

Moreover, in the traditional model, presynaptic activity causes postsynaptic receptor
activity and ion fluxes, resulting in permanent changes of the synaptic structure, which in
turn alter function. The structural changes are changes of the postsynaptic density (PSD),
a protein layer in the synaptic gap that anchors the n:t.t::ptors. Ch:.mges‘in the PSD shape
expose formerly hidden receptors and alter the electrical properties of the synupse. An
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example is the NMDA receptors of the neurotransmitter glutamate in synaptic spines of
hippocampal neurons [62].

This is the traditiona! biochemical view of neural functioning. 1t gives the most
useful model for molecular-physiologic-behavior interactions (see chapter 8). Nevertheless,
new findings, especially in the lust five years, are rapidly altering this view in significant
ways.

Recent research {8] strongly suggests that the human brain-mind has a control hier-
archy of modules among many levels of organization. The hierarchy is the whole brain,
neural groups, neurons, synapses, molecules, and genes. A basic finding is that the CNS
reacts to external stimuli at all levels of organization down to the genome in a well-defined
cascade of biochemical processes.

Moreover, a stimulus alters functioning throughout this hierarchy on a millisecond
time scale. That is, stimuli—such as stress——affect the rate of gene readout in brain cells
on a millisecond time scale!

Another finding is that neurons commonly use more than one kind of neurotransmitter
and that the kind of neurotransmitter may chunge over time, giving another mechanism for
memory and learning. The traditional view of synapses with a single kind of neurotrans-
mitter is being refined and extended to the view of multiple transmitters at each synapse.

Another finding is that receptors also occur on the presynaptic junction. The presy-
naptic receptors give a negative feedback mechanism.

The implications of these findings, for which a detailed description is beyond the
scope of the text, are enormous and profound.

For example, the connectionist view that knowledge lies in the synapses is too re-
strictive and ignores molecular and genome processes. The functionalism view that mental
activity is, in principle, possible in many media is not supported by the physical evidence.
The brain-mind has no hardware-software partitioning, and basic biochemical processes
intimately root cognition to the genome level. On the other hand, the extreme reductionist
view that complete knowledge of the genome and the molecular physics is sufficient, ig-
nores the cases of, say, genetically identical aquatic Aeas with different nervous systems.

Thus, both genetic and molecular knowledge is necessary to understand mechanisms;
by themselves they are insufficient.

Indeed, an emerging view of brain-mind functioning is that of neural dynamics across
many levels of organization on a millisecond time scale, and that learning is caused by altered
synaptic structures and by altered DNA readout. Current research in the life sciences is
becoming focused on defining the control levels and delineating the rules of interaction
among the levels, e :

Chapters 8 and 9 return to NN models of complex and higher cognitive processes.
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EXERCISES
L. Starting with the shunting STM equation, show that it simplifies to the additive STM equation.
2. For the system in figure 2.16, write out the additive STM and passive decay LTM equations.

4

l

for exercises 2 and 3. The open
synapses are excitatory; the dark
synapses are inhibitory.

t Figure 2.16 A four-neuron network
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3. Write out the equations for exercise 2 assuming negligible delay times and zero thresholds,

4." For exercise 2, assume no interactions among vy, v, and v3. Assume vy has only an external input
Iy, that is, no inputs from the other neurons. Simplify the system of exercise 2.

§. Construct neural network state equations modeling presynaptic inhibition.
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Simple Networks

Chapters | and 2 presented fundamentals about human brains and their protypical neurons.
Chapter 2 derived mathematical equations from these fundamentals. This chapter and
the next apply these equations to derive NN modules that perform elementary functions.
The chapter starts with the simplest NNs, those storing, recalling, and recognizing neuron
activation patterns. In later chapters, these modules are the building blocks of complex
systems.

3.1 OUTSTARS

The outstar is a NN for learning and recalling external inputs impressed on an array of
neurons. The inputs produce a spatial pattern of neuron activations, shown in figure 3.1,
The name “outstar” comes from the geometry when arranging the input neurons in a circle
with the command neuron in the center. The outstar is [undamental in NN theory because it
tells the kind of information encoded (reflectance patterns) and what controls the learning
rate (tota] intensity).

Qutstar functioning comes directly from the prototype neuron model. The command
neuron axon connects with all input neurons. Axons of the input neurons are not considered
because they do not affect outstar functioning.

To describe outstar functioning, consider inputs labeled {/;,i = 1,...,n}, as in
figure 3.1. The inputs activate the neurons. Another input, fy. turns on the command
neuron, vy, producing axon signals to the input neurons. The external inputs and axon
signals modify the LTM traces, storing the input spatial pattern in the LTM trace. After
removing the inputs, the spatial pattern can be restored (recalled) across the input neurons
by tumning on vy.

36
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Figure 3.1 The outstar neural network. This neural network learns :'md recalls
an input pattern. To leam, input fy wms on the command neuron causing a
leaning signal to the input neurons. An input pattern, given by say, ¢ight inputs,
is learned and stored at the synapses. To recall, the command neuron reactivates
the input neurons proportionally to the previously learned input. (Figure 3.2
shows more detail.) .

A simple mathematical treatment of the outstar follows from the additive STM equa-
tion and the passive decay LTM equation (see chapter 2). Writing the equations for the
system shown in figure 3.1, for the command neuron vy

.\.’0 = —axy + 10(/). (3[)
For the input neurons, )
X,

ZO:

—ax; + Sy Zoi + 1, Vi,
—BZu + Sy L6t Vi,

[}

(3.2)

il

Solve the equations by making assumptions about coefficients and considering the
steady-state behavior as follows. The discussion treats learning and recalling separately.

1. Learning. Assume J, is a step function. Then, the solution to (3.1) is
i .
xo(f) = x¢(0)e™ " + IO/ ey, . (3.3)
[} . .

Integration gives I
xo(t) = xo(0)e™ + 2(1 — ™).
o

Xo(t) asymptotically goes to Jy/a with time constant 1 /e, that is,

Iy
xdni:;,al»l. 3.4
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Equation (3.2) describes the input neurons of the system. The steady-state solution
to (3.2), with no signals from vy (S = 0), is

!
.r,(/)z/- a0 ()T,
i}

Assume /(1) varies slowly compared with «. Then,

Li(n) <
X () = — x> . (3.3)
o
Write the inputs, {/,.i =1...., n} in the following convenient form:
L) =8,1(n). Vi, (3.6)

where /(1) is the total intensity of the inputs (/ = ¥ 1), and 6, is a refectance coefficient
(with 3_ 8, = 1),

Note that the wual intensity, /(¢), may vary with time while the relative magnitudes,
{6 ], are fixed. Thus, the reflectance coefficients define a spatial pattern.

By (3.5) and (3.6), the steady-state response, expressed as reflectance coefficients, is

6,1
() = ———ﬂ at > 1, Vi, (3.7
[*3

Consider the LTM trace. Assume at ¢t = ¢, the command neuron, vy, sends a signal
S down the axon. Then, (3.2) and (3.7) give

t
6;
Zoilt) / e 2 ()T, Vi
I3 (%4

Or,
Zy = 1V([)9‘, Vi, (38)

where V(1) comes from the general solution of (3.2). Thus, the steady-state LTM trace is
proportional to the input spatial pattern.

Forexample, to find A'(¢), assume S5, () and 1 (¢) vary slowly compared with ¢=84=",
Then, the steady-state form of N (1) is

SO0
B

Note that for learning, a large /(r) is equivalent to a short-time constant. That is
stronger signals cause faster learning. )

Figure 3.2 graphically shows outstar leaming in a step-by-step sequence. First, an
input pattern is applied. Second, the neurons relax with time constant 1 /a. Third, Iy excites
ty causing a (sampling) signal to the input neurons. Fourth, the synaptic coupling relaxes
with time constant 1 /8, storing the pattern. When the sampling signal is removed, the LTM
trace decays, yet retains the pattern throughout,

N(r) =~ (3.9)
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Figure 3.2 Time history of outstar learning. Input /, is applied to the ith input
neuron v; and removed attime ;. The activation of v; rises 1o a maximum and falls
after /; is removed. An input /y activates the command neuron vy and produces
a learning signal S to v;. The long-term memory trace of the input neuron
v, increases because an input signal and commund signal oceur together. The
steady-state Z; is proportional to /,.

The extension of outstar learning to many pét[cms, applied one after the other, is as
follows. Assume 6; changes from 6" during [, 2] to 8 during {r2, £]. Then, the LTM
trace goes to ' ‘ ’

2)
Gi

- 1(0)dr, Vi,
a

[+4

‘ Cpn I 1,
Zoi (D) x/ e ft-0g I 1 (1)t +/ emPU-n g
i n

The steady-state LTM trace has the form

Zoi(t) = N8 + N6, Vi, (3.10)
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and
Y Zu = N0+ Na() = N(o). (3.11)
‘
Thus, the LTM trace. Zy,. stores a weighted average of the sampled patterns. That is,
Zyulty = N()B;, vi. (3.12)

where N(r) and 8; are generalizations of (3.10) and (3.11). This result is known as the
Outstar Learning Theorem (Grossberg).

2, Recalling. Activating the command neuron, vg, recovers the stored patterns. With
no inputs, the STM equation for v, is

X, = —ax;(t) + Sult) Zoilr), Vi. (3.13)

If a (read-out) signal, Sy, is sent, v; refaxes to

() = &N(l)ﬂ,‘, Vi. (3.14)
o

That is, x; & [(r)8, regardless of the initial state. Thus, a readout signal restores (recalls)
the spatial pattemn on the input neurons.

Outstur learning and recalling, though simple, give insights into how neuron systems
function. The results suguest that the information encoded in the LTM trace is spatial neuron
activation patterns. Moreover, a NN factors a spatial pattern into a reflectance puttern while
the total intensity controls the learning rate. Indeed, forgetting is not merely passive decay
of LTM traces. Forgetting is interference of initial patterns by new patterns.

The outstar is the simplest model of learning in the central nervous system (CNS).
As seen later, more complex NNs, like perceptrons and ARTs, are collections of outstars.

Applying the outstar results gives a simple explanation of Hebb's law and the Paviov's
dog result of clussical psychology. Hebb's law (1949) states that a neuron repeatedly con-
tributing to firing another neuron will have increased capability to do so. In NN theory, the
LTM model (3.2) contains Hebb's law because if xg is ON, Z5 increases. Consider the
torm

Zes==BZcs+ Slult,

where the notation is from figure 3.3.

Hebb’s law has to do with Pavlov's dog result. A simple model for Paviov's dog
is a single neuron, vy, representing a system. The neuron can be turned on by an UCS
(unconditioned stimulus, or food), producing a response (salivation). If vy is fired by the
UCS, xg > 0. If v, the CS (conditioned stimulus, or bell), is also fired when vy is fired,
Z., increases with time according to the LTM equation. Eventually, Z,, is lurge enough so
that the CS alone can fire vy producing the response. Thus, the dog is trained to salivate
when a bell is rung, a behavior traceable to properties of neurons.
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Xg
Zes
CONDITIONED UNCONDITIONED
sTimuLus O <] RESPONSE
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Figure 3.3 A simple neural network simulating Hebbian learning. Hebb's law
(1949) is that a neuron that repeatedly contributes to firing another neuron will
have increasing capability to do so. An unconditioned stimulus (UCS) alone pro-
duces an unconditioned response (UCR). If a conditioned stimulus (CS) occurs at
the same time as the UCS, Z,, increases and eventually produces the UCR with-
out the UCR. The property follows from the protypical neuron model discussed
in the text. )

In summary, the outstar NN gives a powerful and elegant module for designing com-
plex processing systems, including modeling parts of the human brain-mind. This NN is a
universal learning device, and different interpretations identify the kinds of learning.

For example, top-down expectancy learning occurs when the LTM pattern is played
buack to represent the expected input of a current event. Second, motor learning occurs
when each input neuron excites a muscle group and the command neuron learns to con-
trol a particular movement. Third, temporal learning occurs when the inputs represent
sequences of items on a list, such as a phone number. Later chapters develop these and
other interpretations.

3.2 AVALANCHES

An avalanche is a NN for learning and recalling space-time patterns. As seen later, this NN
is a collection of sequentially activated outstars. Although something of an idealizution
because practical space-time pattern learning is more complex, the avalanche concept is
quite useful and deserves exposition. :

Figure 3.4 shows that a space-time pattern on an array of, say, sensory neurons, is
a set of time-varying spalml patterns. ‘At a discrete sampling time, #, a set of rcﬂe&.mncc
coefﬁueuls (9 (k),i =1,..., n}, represents a spatial pattern in the form

‘5‘ L) = 6t (), Vi k

An avalanche with a single command neuron, shown in figure 3.5, samples input
patterns by time delays on the axon. As described in the preceding section, the inputs cause
responses that quickly relax to a steady state. A sampling signal propagates and reaches
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2 (t)

In (1}

8 (0

—~ — — kth SPATIAL PATTERN
!
81 (k)

B2 (1)

8n (t)

8, (k) Figure 3.4 Nomenclature for a
time-varying input pattem to a group of

neurons. Neurons vy, vy, ..., v, have
inputs 7,(¢), [{(1), ..., [,(¢).
respectively. Each input is scaled and

|

|

1 represented by a reflectance coefficient
! O1(1), a(¢), ..., 04 (1), respectively.
[

1

1

Sampling the inputs at times
1y, by, oo, 0 gives a set of refiectance

[T

— cocflicients {6,(1)./ = 1,...,n) for
22 2 ka t cach time.
the first set of synapses at time ¢, learning the pattern. Ata later time, f, + A, the sampling
signal reaches a second set of synapses, learning a different pattern. The process continues
through the sampling interval. In this way, the NN learns a time-varying spatial pattern at
discrete times.

The number of input neurons fixes the spatial resolution. The number of time intervals
fixes its temporal resolution. Thus, an avalanche can learn a space-time pattern to an
arbitrary degree of accuracy.

()
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Figure 3.5 An avalanche neural
DISCRETE TIMES

network with a single command cell,
An avalanche neural network can learn
a time-varying input pattern. Time
delays on the command axon sample
the input at selected times and store it
on discrete synapse sets, with each set
acting as an outstar, Thus, a single

. command neuron successively activates
the outstars,

Y]

. X .
’

Sending a read-out signal from the command neuron recalls a complete space-time
pattern without interruption. The read- out produces a STM pattern across the input neurons
proportional to the original pattern. '

Variations of avalanche architectures are readily constructed. Figure 3.6 shows an
avalanche with many command neurons controlled by a single higher-level command neu-
ron. This NN has a command neuron for each pattern.

Avalanches of avalanches allow for interrupting the learning and recalling. These NNs
introduce inhibitory signals to the command cells. The operation of these NNs, however,
follows directly without new insights and thus are not discussed.

Estimate the memory capacity of neuron group organized as avalanches. Assume
N (sensor) neuroas in the input layer. Assume each input pattern has a command neuron.
Then, the number of neurons is ¥, + N., where ¥, is the number of patterns memorized.

Using avalanches, the memory capacity gives neuron populations consistent with the
human brain.

For example, assume most of the patterns we learn have to do with vision (normally
the dominant sense organ), About 10° (1000 x 1000) pixels are in each pattern impressed
on the visual cortex. So, N, = 10°. For an upper bound, assume we memorize one pattern
a second for 100 years. The number of seconds is about 3.15 x 10°, So, N, =3.15 x 10°.
Thus, the number of neurons in an avalanche capable for the task is less than 3.2 x 10°,
The number of neurons in the human brain is at least 10'2, Thus, the avalanche model is
consistent. . . :

Unquestionably, however, the structures for human memory are more complex than
suggested above. These are estimates to be taken figuratively because the above mode!
assumes large fan-outs and playback is uninterrupted once started. Nevertheless, the ar-
gument suggests the avalanche model is consistent with the massive storage capacity of
biological systems.

Having described a class of elementary NNs capable of spatiotemporal pattern learn-
ing, we will modify such NNs according to the application in later chapters.
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Figure 3.6  Avalanches with several command cells controlled by a single cell.
(a) A single command neuron vy controls other neurons that in tum sequentially
activate outstars for sampling and storing a time-varying input pattem. Thus,
different command neurons can sample the same outstar. (b) A single command
neuron v, in layer £y prepares a neural network for activation by a leaming
signal. The learning signal activates neurons in layer £y sequentially by lateral
si;'nuls. These neurons in tum activate outstars in layer Fy. Thus, a general
arousal stimulus caused by a context prepares the outstars for learning.

3.3 INSTARS

Chap. 3

Aninstar is a NN for recognizing spatial patterns. As with outstars, the name comes from

the geometry, shown in figure 3.7.

The mathematics of instars is like that of outstars. The differential equations for the

input neurons are
X,o= —dx, 4+ 1(1). Vi,
and for the output neuron,
Xy = —Axp + Z, SZyi. Vi k,

Zio=—BZy + Sulxxlt. Vi k.

(3.15)

(3.16)
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Figure 3.7 The instar ncural network. This neural network learns and recog-
nizes an input pattern. To learn, an input pattern is applied, causing signals to the
center neuron. Activating the center neuron causes the long-term niemory trace
1o go to a steady state proportional to the inputs. To recognize, another input
turns on the center neuron if it is tike the long-term memory trace. (Figure 3.8
shows more detail.)

To solve the differential equations, make assumptions about the coefficients and con-
sider the steady state. As in the outstar, treat learning and recognizing separately.

1. Learning. Let reflectance coefficients represent the input pattern. That is,
() = 6;1(1), vi. (3.17)

Then, the steady-state STM of the input neurons is proportional to the reflectance coeffi-
cients, or )

XX 9,’, Vi,
Activating the input neurons produces axon signals of the form
Sie{t) = sie flxilt — ta) — Ty Vi, k.

After relaxation (r > 1/4), the signals are proportional to the input pattern. Assuming
x; > T,

Sk o x; x 8, Vi,

Let
Siv = ub;, i k, (3.18)

where g is a proportionality constant.
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For convenience, write the LTM equations in (3.16) in matrix notation. Let,

Zu Zy Stk
= -8B . + . [xe]t, vk, (3.19)
Z_\k Z,\'k S‘Vk
By (3.18), ,
Zi = ~BZLi + plx]™, VK, (3.20

where 8 is the vector of reflectance coeflicients.
Ast — o¢, Z; reluxes o

7,0) = “[';] N(1)8, Vi, k. (3.21)

Or, ifx; > 0,
Zix 8, Yk, (3.22)

In words, the steady-state LTM vector is proportional to the input pattern expressed
as a reflectance coeflicient vector. That is, the NN learns the pattern and stores it in the
LTM trace, as in outstar training.

When the instar learns more than one input pattern, the vector, Zy, asymptotically
aligns itselt with a weighted average of the reflectance vectors. This result is known as
the instar code development theorem, proved by repeatedly solving (3.15) and (3.16) over
discrete time intervals.

Thus, the LTM trace for A input patterns is

Zy < fi0y + f101 4+ fuBy, V&, (3.23)
where f; = fraction of time 6 is present.

2. Recognition. Instar recognition is by comparing an input pattern to the stored LTM
vector. Assume a new input pattern, P. The STM of an output neuron is

B o= o— iy L Z S 7. Vk.

where S, is proportional to the input pattern and Z; is proportional to the stored pattern
(Note: Sy Zix can be written as a matrix dot product of Z; and 6;.)

Then, the input pattern, P, belongs to the pattern class represented by Zy if it causes
the output neuron to exceed threshold. As shown in figure 3.8, the output neuron fires if
Xy > 1y, thus “recognizing the pattern.”

In summary, instar and outstar NNs are dual to one another. When drawn in their
symmetric forms, they differ only in the signal direction.

An outstar can recall but cannot recognize a pattern, while an instar can recognize
but cannot recall. That is, the outstar is blind; the instar is dumb.

These two elementary NN offer a general architecture for solving many signal proc-
essing problems. Later chupters give examples. ‘
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Figure 3.8 Recognition of a pattern by an instar neural network. An unknown
input pattern is applied to an instar. The inputs cause signal §; along the axon
to a center neuron. The signal is multiplied by the long-term memory, summed,
and compared with a threshold. If the center neuron fires, the input pattern is

recognized as belonging to the pattern class represented by the long-term memory
trace. )

3.4 MULTIPLE INSTARS

f\lulliplc instars can classify spatial input patterns.  For example, figure 3.9 shows three
instars that can classify a pattern 10 one of three classes. Each instar works as described in
the preceding section. Select the thresholds to define the output classes.

X @

4

kY I (1)
Figure 3.9 Multiple instars can classify an input pattern into one of & classes.
Input neurons are in layer £ and the center neuron of the instars are in layer Fi.
The long-term memory trace of each £; neuron represents a pattern class. When

inpuvs are applied to £}, one or more neurons in F are activated showing thar the
input belongs to the corresponding pattern(s).
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More complex NNs are built up from instars and Q}.\tsmrs. ARTs .(see s'ccuorf 4_’[_’_:1:1:
multiple instars and outstars dcsignc?d to geeall, recognize, z\f\d CVOTPMC.»;p:)n;:lmmplc
complex NNs also do other processing mnks Perc.:eptron% (see bCLllf)n. u
instars, classifying inputs according to decision regions defined by training.

3.5 SIMPLE LATERAL INTERACTIONS

All NNs discussed up to this point are systems with only feedforward or fccdb;{zk. TI.m! 115.
no connections occur among neurons lying in the same layer. This section considers simp

- . - . n e e s vo-
lateral connections in a layer. Connections of this kind give a NN that is sensitive to tv

dimensional shapes. ' . .
Assume 2 layer of interacting neurons with an input pattern. The STM trace is

N N
. ) ,
‘: = —u;X; + ZSI: le - Z Ch + [x- Vi. (3—4)

1#i tzil

Assume lateral inhibition and no lateral excitations. Then,

N
-"‘A = oy Zch + [A- Vi,
k=i
Assume piecewise lineur excitation for Cy,. Then,
N
+ .
&= —ax = 9 eyleelt = n) = Cul™ + L, Vi
Lgi
Assume negligible delay times (neurons close together). Then,
N |
+ .
&= = 9 eulnl) = Tul™ + 1, Vi
k&
For convenience. define the excitation, e,, of a neuron when no inhibition is present.
That is, when ¢, = 0. Then,

é, = —a;e; + [i{1), Yi.

Subtracting gives

N
+ s
(= é) = —a,(xy = &) = ) enlee(t) = Tu) ", Vi,
kgi
Assume a constant steady state and a constant constant. Then,
N

X = [Bt - Zch[-"k - rki]+]+» Vi, (325)

k#i

This is the Hartline—Ratliff equation. Hartline, Raliff, and others modeled the eye

se-crab Li ] 23) [66].
response of the hourse-crab Limulus by (3.2 : N - . ;
° To illustrate lateral inhibitory effects with the Hartline-Ratliff .cn}uauon. c.(.)n_sndc.r
neurons in a two- dimensional triangular pattern with symmetrical inhibitory coc.thmc'nls,
shown in figure 3.10. Each neuron is surrounded by six adjacent neurons. Consider illu-
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minating the amay with a simple dark and light pattern. Let a pauern be defined by two
straight lines at an angle, shown in figure 3.11.

Figure 3.10  Neurul network with
lateral interconnections. Neurons in a
layer are interconnected so tha adjacent
inputs affect each neuron’s activation
level. In a simple case, the
interconnections may be symmetrical
and model the eye response of the
horse-crab Limulus studied by Hurtline
and Ratliff. (Figure 3.11 shows more

detail.)
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Figure 3.11  Response of a neuron that measures the angle of a comer. The
eye of Limulus consists of about 1000 visual elements, called ommatidia, in an
interconnected network. When an element is illuminated, it inhibits surround-
ing elements. The degree of inhibition measures the angle between lines in a
dark-light pattern. When the element is uniformly illuminated, the response is
0, corresponding to a uniform input. When panially illuminated, the response
increases and is maximum for a pinhole pattern. (Figure 3.12 shows more detail.)

By (3.23), the response of a neuron, x;, near the comer measures the angle. That is,
the neurons in the uniform dark and light have zero response while those near the edge in
the light have responses that increase nearer the corner. Figure 3.11 shows that the response
of a neuron near the corner as the angle defining the dark region varies from 0° to 360°,

To generalize, consider a pattern consisting of straight lines, shown in figure 3.12.
The number of maxima gives the number of corners in the pattern. Moreover, because of
the architecture, the number of maxima is independent of size, rotations, and translatjons.
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Select a threshold for responses only on the corners. Thus, the architecture leads to a NN
for recognizing polygons, shown in figure.3.13.

TWO-DIMENSIONAL ARRAY

OF LATERALLY INHIBITED
/ NEURONS

AESPONSE OF NEURONS
ALONG A LIGHT

_—"" TRIANGLE PATTERN
- ON A DARK BACKGROUND

Figure 3.12  Response of neurons to a
tiangular shape. By laterally
interconnecting neurons in a layer, the
response to, say, a tiangular pattern is
maximum at the corners. (Figure 3.13
shows mare detail.)

2-D ARRAY OF =25t FIRES WHEN
N NEURONS WITH / CORNERS =3
SYMMETRIC LATERAL

FIRES WHEN
COHRNERS 2 4

i
TYPICAL NEURON
FAN QUT = 1:2 x SHAPES

"= 4.5t

FAN IN = N:1

t = THRESHOLD FOR DETECTING A CORNER RESPONSE
" = THRESHOLD FCR COUNTING RESPONSES (Comars)

Figure 3.13 A neural network for detecting shapes rf:gardlcss of size, (‘)\:mn‘m-
tion. and location. Each neuron in a neural network with lulcr‘.ﬂ connects is part
of an instar. By selecting the threshold, the instar can recognize gt:omcl.ncApul-
terns consisting of straight lines. It follows that lh‘.: numbcr.of maxima gives the
number of comers in the pattern regardless of its size, location, and orientation.
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The NN for recognizing light polygons on a dark background assumes convex interior
angles. For sensitivity to convex and concave angles, first apply the pattern and count the
number of corners. Second, reverse the image (black — white and white — black), and

. count the number of corners. Third, add the results to give the total number of corners.

3.6 ENHANCEMENT AND SELECTION

The preceding section considered the steady-state STM response. NNs with lateral in-
hibition can select the maximum input or enhance an input pattemn. Assume a luyer of
interacting neurons with lateral inhibition, negligible thresholds and time delays, and unity
time constant. Then, the STM response of a neuron js

Xj=—x; — chif[-"k] + [, Vi,
k
Assume a piecewise linear sigmoid function
G=—x =) Culul® + I, Vi, ' (3.26)
k

Assume a system of N neurons with constant inhibitory coefficients equalto I/N. Equation
(3.26) goes to

. ! .
i - Y bt + 1, i (3.27)

ki

To use the NN, apply the input, wait until the steady state is reached, and then remove
the input. The response after removing the input is by

= -y — 1 Lot (0 = I, Vi, (3.28)

N
Figure 3.14 illustrates two examples of this system. As seen, relaxation selects the
maximum response to a pattern (a). Moreover, during relaxation, the system enhances the
pattern so that its features are exaggerated (b). Thus, the output response of the neurons can
be sampled to give an enhanced version of the input or, by waiting, to give the maximum
input. This NN is called the Maxnet. - Lo : :

3.7 GATED DIPOLES - -

A gated dipole is a NN that can work as a clock. This section applies the extended LTM
equation (see chapter 2) to construct a NN as an oscillation source. Other applications of
the gated dipole NN are modeling diverse kinds of learning, such as superconditioning, self-
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x(0) xity) x{tz) x{t3)
| -|
‘ ) F (a)
l | I

(0) xéh) x(t2) x{ta)

or (b) select one or more maxima of the
original pattern,

| | !
Figure 3.14  Time history of
interconnected neurons. A layer of
interconnected neurons responds o
(b) input activations. After reaching steady
state, the pattern is removed. As the
neurons relax, the fateral
interconnections {a) enhance the pattern
l ! I

stimulation, vicious eircle behavior, and learned helplessness. These processes take place
simultaneously on different spatial and temporal scales (for a review, see (34, chap. 5]).

Consider a neuron with a single synapse. A model of neurotransmitter depletion and
uptake is

r = —ax, + §Z,
z = k(M - 2)~c(5Z). (3.29)
M= —BM + Slx]™.

where the notation is from section 2.2,

To understand this system, assume the axon signal is a square pulse, shown in fig-
ure 3.15. The signal, §, causes a decrease in the neurotransmitter level, Z. As shown, the
neuron activity increases, leading to an overshoot. As Z decreuses, Lhe activity reaches a
peak and then starts o decrease.

After the axon pulse ends, the neurotransmitter level increases because of up-
take. The activation level, after undershooting, then retums to equilibrium. As shown,
the neurotransmitter level, A, is little changed by this single pulse because of its large time
constant.

By this model, the gated dipole NN shown in figure 3.16 produces a periodic pulse
train. The architecture has upper and lower branches with recirculating feedback loops.
The branches are arranged so the cross-coupling cancels out common inputs.

Feedbuck causes oscillations. Starting with the bottom-left neuron, a trigger produces
apulse. The square pulse is modified by overshoot and undershoot. Inhibition (third neuron)
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S(t) = INPUT
A

(a)
>t
211 .J~euno TRANSMITTER LEVEL
(b}
> {
QOVERSHOOT
xX(t) = ACTIVATION __—"
A
UNDERSHOOT '
(c)
>t
M(t) = LONG-TERM MEMORY
A
N,
(d)

» 1

Figure 3.l§ Characteristics of the extended long-term memory model. (a) A
step axon signal causes (b) a decrease in the presynaptic neurotransmitter level
Z_. (c) The neuron activation level overshoots at first, then declines. When the

signal ends, the activation rapidly decreuses, undershoots, and recovers 1o zero
(d) The long-term memory is little affected by a single step. .

cancels the constant level. The modified pulse returns by feedback to the first neuron and
cycles through again. The shape is again modified, producing a sharper pulse. The upper
and lower circuits produce pulses with the pulse frequency depending on the delay time.
Thus, for example, a Circadian pacemaker circuit is realized [13].

' In summary, the chapter discussed NNs exploiting the simplest neuron models, except
for the gated dipole. Indeed, their elementary nature results in widespread utility. Viewed in
the context of applications and modeling biological nervous systems, the elementary NNs
are the building blocks for more complex assemblies and, eventually, systems.
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Figure 3.16  The dipole neural network. The tigger introduces a step input
signal to the system leading to oscillations because of the extended long-term
memory model characteristics shown in figure 3.13. Starting with the lower
branch, the signal propagates along and crosses over to the upper branch.
Feedback foops on the two branches cause the pulses to produce an oscillatory
activation. The figure shows approximate pulse shapes for the first two cycles.
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l(!h::i Fxr?ud'ian pucemaker) discussed in the text. The idea of slow chemical activity for timing
;‘J s (o' an important NI?J m})dulc.. For example, it enables modeling sleep and nocturnal activities

vreover, from an applications viewpoint, 1 gated dipole can be the master oscillator of a sysu:m‘

EXERCISES

1. Some characteristics of the human auditory system are
a. Frequency Range: 20-20,000 Hz
b. Relative discrimination of different tones: 1800 “just noticeable differences™ at 60 dB
Assun'u: the system works by sampling the output of a bank of 1800 frequency filters. Assume the
sampling rate is 2x the maximum frequency. ’ .

a E%‘nmmc the nufnber of neurons needed to memorize Beethoven's Oth Symphony (time = 64
minutes), assuming an avalanche-type neural network. ’

b. What fun-out is needed from each command neuron to the sensor armay neurons?

¢. Sketch the avalanche structure.

2. Consider a two-input outstar shown in figure 3.17:

Xy

Iy ———)><::::jif; Zy Yo
Sq
12 ——§—<:::;::> Z;

X2

<y
S2

Figure 3.17  Neural network for
exercise 2.

a. Write the Additive STM and Passive Decay LTM equations for this system.

b. Simplify the equations by assuming negligible delay times and thresholds.
c. Assume the following inputs for /; and [

fsinar 0<r<2

Lh={ isinwr 2<r<3
0, 3=t
jsinor 0<t<2

L= %sinwl 221 <3
0, 3=t

What is the steady-state value of the LTM trace for r > 39
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3. Consider the following system shown in figure 3.18:
a. Write the Additive STM and Pussive Degay LTM equations for this system assuming negligible
delay times and thresholds. . . .
b. Assume a piecewise linear function for §; and 5, all coefficients = unity magnitude, 1y, x; > 0,
and £, > [~ What is the steady-state value for the STM when [y = 0?

X1

/

z
— 1 %o
Dy
~f——— 'Q
02
—_ Z2

\ Figure 3.18 Neural network for
*2 exercise 3.

Iy

Ia

4. Consider simulating two characteristics of a Rana Catesbeiana (frog).
a. An insect crossing the field of view (FOV) causes the tongue to catch it,
b. A large shadow crossing the FOV causes the froy to jump. .
These retlexes are automatic without involving higher brain centers. Using the elementary 'nciuml
network modules developed to date, design a neural network implementing these characteristics.
3. Consider a shunting STM equation,
X, = —=dx, + (8 - x) (1), Vi.

a. Find the steady-state response.
b. Given initial value x, (0), solve for x, (1) for time r > 0.
¢. How does the rate of «, (1) approaching its steady state depend on [;?

ol

A
Complex Networks

The preceding chapter derived simple NN modules and Hlustrated standard mathematical
techniques. This chapter describes complex networks and their properties starting with a
general class of NNs. The chapter discusses the major design problems, such as noise-
saturation and stability-plasticity tradeoffs.

4.1 COOPERATIVE-COMPETITIVE SYSTEMS

Cooperative-competitive (CC) NNs are complex systems of interconnected excitatory and
inhibitory neurons.

CC NN are difficult 1o analyze because of the nonlinear signal function (see chapter

. 2). This section considers topics about CC NNs. The approach considers the simplest
CC systems first and then builds up to more complex systems. Examples illustrate the
mechanisms responsible for network properties. :

The simple NNs of chapter 3 ignored two important issues: noise and saturation.
Noise is important because many biological NNs operate near the quantum limit, for exam-
ple, vision. Saturation is important because neurons have finite operating ranges. Saturation
means larger signals do not cause larger responses.

A NN may need a wide dynamic range between the noise floor and a saturation limit
because of wide fluctuations in signal levels.

The dynamic range issue in NN theory is called the noise-saturation dilemma, and is
well known to designers of electronic circuits. The noise-saturation dilemma is as follows.

If the NN is sensitive to large inputs, how does it distinguish small inputs from
internal noise? If the NN is sensitive to small inputs, how does it remain responsive to large

57
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inputs? The following sections analyze the noise-saturation dilemma starting with simple
CC systems.

1. Interacting Neurons and Groups of NNs. Assume the shunting STM model that
models axon membrane characteristics. As shown in chapter 2, the activation is

b= =i+ (B = x)) CufHZT + 1)
/ .1
= (i + DY Eugle) 2y + 4, Vi
k

Note that A;, B, Cji, Dy, and £; are positive. By considering the sign of x;, the steady-state
X; is between —D; and B;.

Equation (4.1) describes interacting neurons or interacting groups of neurons. When
interpreted as interacting neurons, the coctficients are axon membrane parameters. When
interpreted as interacting groups, B; is the excitable neurons in the NN denoted by v;. Ofthis
number, x; are excited and B;-x; are unexcited. (x; < 0 means the NN is hyperpolarized,
needing excitation first to x; = 0 and then to x; > 0.)

2. Simplest Network with Automatic Gain Control. Apply (4.1) to the system shown
in figure 4.1. This system is an on-center/off-surround (ON CTR/OFF SUR) feedforward
NN. As shown, an input to a neuron tends to turn on the neuron while tending to turn off
adjacent neurons. This system has no interactions among the neurons.

Writing J; = }:‘k#‘. I, (4.1) simplifies to

¥i= —dx 4+ (B = x)f ~ (x; + D) Z L, Vi. 4.2)

L

Rearranging the terms of (4.2) gives

fi= Ay + (BL=DY I —xhi+ ) ), Vi,

kgt k#i
Setting ¥; = 0 and solving for the steady state gives

BL-DY, . L

ooy -

A+ L+ 3k “-3

&

Assume no luteral interactions, thatis 37, ; fy = 0. Then

Bli 1~
fi= g (4.4)
A+
For this NN, each x;(f) saturates at B for large inputs, regardless of the input pattern.
A system needs lateral interactions to avoid saturation.
Consider a system with lateral interaction terms. Rewrite (4.3) as

. _BL-DU-1)

7, vi, 45
g A+ 1 : 4-3)

Sec. 4.1 Cooparative-Competitive Systems

59
N
|
[
!
I
!
Iy I

Flgl.m: 4..1 An on-centet/off-surround feedforward neural network with auto-

matic gam.control. lngut I; excites neuron v; while inhibiting the other neurons.

A second xr}pufr;, excites neuron vy and inhibits v;. The system has automatic

gain control. That is, the steady-state responses aj iong g

B y-si ponses remain proportional to large

where
I=5L+Y L Vi (4.6)
ki
With lateral interactions, the steady state has the form
- (B+ D)/ D
X =l - ——), Vi :
i e, (& B+D)' i, CN))

where 6; = [;/1 are the reflectance coefficients (see chapter 3).

‘ The first term, (B + D)[/‘A + 1, gives information about the background by /. The
second lcrm,‘ 6; — D/(B + D)), gives information about the pattern by 6;. The term
D/(8B + D) is called the adaptation level.

With lateral interactions, the stead ill gi i
. , y-state response still gives pattern informatio
large inputs. That is, * P neer

- - D .
X — (B+ D)@ — i
i ( ) B+D)' Yi. (4.8)

Thus, in electrical engineering terminology, the system has automatic gain control.

3. Noise §upprcssion. Equation (4.7) shows 6; must exceed D/(B + D) to excite the
NN. Assume N inputs, 71, I, ..., Iy. Setting the adaptation level to 1/N gives

_=(B+D)[ 1

Xi ’T+I—(9; - N)' Vi, (4.9)
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This system has noise suppression in its simplest form. That is, for a uniform (noisy)
input, (6; = 1/N). %, = 0,Vi.
4. Pattern Matching. The noise suppression brings about pattern matching in the
following sense. Assume each input /; is the sum of two inputs J; and K;. That is,
I, = J; + Ki. Vi, corresponding to patterns J = (Ji, ..., Jy) and K = (K, ..., Ky).

The NN compures patterns J and X as follows. 1f J and K are mismatched, their
peaks and troughs tend to produce a uniform pattern. Thus, the neurons will be inhibited
and their steady-state response tends to zero. (The next section develops this property.)

If the two patterns are matched, they reinforce each other. For perfect matching, that
is. J; = ¢ K,. the steady-state response is
. [B+ DU+ w)K)

X,

1
PERETIYS (91—:\7). Vi, (4.10)
where £ = 3", Ki. Thus, maching J and K amplifies the steady-state response without
changing the pattern §;.

The preceding ON CTR/OFF SUR NN expluains some empirical results.

The Weber—Fechner law (W=F law) is a well-known psychophysics result found in
variety of sensory phenomena. The W-F taw says that over a broad range of input values

Al
-+ = constant, &1

where A/ is the “just noticeable” input difference compared with a background input /.
(See table 1.5 for vision, hearing, and touch thresholds in human beings.)
NN considerations can derive the W-F law. Starting with (4.7), let

I'"=1+al
Substituting gives
L (B+ D) +al) D
NS T YTyl T ErD"
Assume A + / > A/, Then,
SN
X !
or
Ax, AT
T

Interpreting this result, if AF;/%; is the “just noticeable™ difference in the NN re-
sponse. Al/{ = constant as observed.
Another empirical result, about brightness, can also be explained. Let .X be the total
steady-state activity, That is,
X=) % .12)
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By (4.7)

- (B+ D) D
Y= -
A+ S NB+D)' ¢-13)

. vThus. n D/(B + Dy = I/N, X = 0. That is, for a network receiving uvﬁxed
l_llumm:.mce, if one part is made brighter (increasing £,), the other part is darker (d;creusinu
X;). This property explains the brightness contrast illustrated in figure 4.2, )

Figure 4.2 Examplc of brightness contrast. For an on-center/ott-surround neu-
ral network with fixed input, if responses of one part increase, the responses of the
remaining part decrease. To illustrate, the central area on the right looks darker
than the identical central area on the left because the surround
lighter than the surround on the left.

nd on the right is

5. Noise Suppression and Contrast Improvement. Lateral interactions between in-
;?uls and n:spons.t:s produce other NN properties. Figure 4.3 shows a simple system with
feedback. Equation (4.14) describes the system.

Ti=—dix+ (B = xS0 + 1] = 5l fla) + 4, vi (14
k&l

where

O<.\:,’<B.

o Assume J; and J; act before ¢ = 0 to establish an initial activation pattern, x, (0)
xn(0). - ' T

After removing the inputs, the response for t > 0 is

fo=—dixi + (B~ x) flx) =5 Y flx), Vi, {4.15)
ki
The kind of the feedback signal function, JS(). affects the steady-state responses.

anur'e 4.4 shows the initial activation pattern at the top. The left column shows possible
functions for f(x;), while the middle column shows the steady-state responses.
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Figure 4.3 An on-center/off-surround neural network with feedback. The lat-
erul feedback interactions among the neurons produce noise suppression and
contrast enhancement,

When f(x;) is slower than linear, noise is amplified and the response is uniform, that
is, the network experiences seizure. When f(x,) is linear, the pattern is unchanged and
the systems amplifies noise and signal equally. When f(x;) is faster than linear, noise is
suppressed and the maximum is a unique winner-takes-all.

Combining these results, noise is suppressed and the signal is amplified when f(x;)
is sigmoidal. The quenching threshold, QT7, defines noise and signal. That is, signal is
X > QT noiseis; < OT.

For this simple system, the quenching threshold can be calculated and is

Xy

o7 =

. (4.16)

A
X, = 3
where ﬁgUl’C 4.4 defines XXy, and S.

6. Temporal Stability and the Stability-Plasticity Dilemma. NN theory has two sta-
bility issues. First, is the temporal stability, well known from conventional systems theory.
Stability in this sense has to do with the asymptotic behavior at large times.

Few general temporal stability conditions are known for the STM and LTM state
equations. One well-known result is the Cohen-Grossberg theorem for STM temporal
stability in the sense of Lyapunov.

Lyapunov’'s approach is to associate an energy function, ¥ (t) (the Lyapunov function)
with the system. If this function decreases as time increases, energy is leaving the system
so the system relaxes o zero. [n practice, however, finding a Lyapunov function for the
system may be difficult.

PN
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X(0)
A INPUT PATTERN
QT —f
. SIGNAL STEADY-STATE
FUNCTION RESPONSE EFFECT ON
1) INPUT PATTERN
X{ (o)
SLOWER AMPLIFIES NOISE
THAN SEIZURE
LINEAR
UNCHANGED
LINEAR
F?:IER QUENCHES NOISE
UneaR WINNER-TAKE-ALL
SIGMOID
QUENCHES NOISE
SLOPE=S ENHANCES SIGNAL
X x,
Figure 4.4 Summary of signal enhancement and noise suppression in feedback
_ncuml networks. :I'hc steady-state response depends on the signal function. To
illustrate, for the input pattern shown at the top, the signal functions in the left
column prod}xce the responses in the middle column. A signal function that is
slower than lfnear amplifies noise, linear produces no changes, faster-than-linear
qycnc!)cs noise, .and sigmoid enhances the signal and suppresses noise. For a
sigmoid, signal is defined as being above a quenching threshold (QT). (From
Gmss.berg, Nonlinear Neural Networks: Principles, Mechanisms, and Architec-
- tures in Neural Nenworks, Vol. 1. Reprinted by permission of S. Grossberg, 1988).
Cohen and Grossberg [35, p. 25] assumed the system
B = axlbi(a) = ) cjdy(xp), Vi, .17)
i

which is like the STM equations. This system has a Lyapunov function if the coefficients
satisfy
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Cij = Cyis
ai(x) =2 0,
d/f(.'v,) > 0.
The Lyapunov function is
. , o
Vi =-y [ biEDEE + 5 ) e, (x)di(x). (4.18)
i Y |

V(1) has the following time dedvative V()
Fiy==) adlb -y cdl (4.19)
i J

The time derivative is negative because of the coefficients. The Lyapunov function
is positive when activation is positive. Thus, ¥ (r) will decrease with time to zero. That is,
the system is stable in the sense of Lyapunov.

Second, is the stability of stored patterns. In a NN sense, learning a pattern means
associating a neuron with each pattern, for example, the control neuron in an avalanche,
The system is unstable in the encoding sense if during learning these neurons toggle back
and forth among patterns.

Encoding instabilities occur because learning changes the stored patterns. These
instabilities can be seen from the general state equations. When a pattern is impressed on
the system, the STM trace quickly reaches steady-state, d/dr ST M = 0, while the LTM
trace continues to change, thatis, d /dt LT M # 0. As the LTM trace reaches steady-state,
d/dr LT M = 0. Then, the STM trace becomes a function of the current input pattern and
the previous inputs, setting off another cycle of STM and LTM changes.

The stabitity-plasticity dilemma is keeping the system responsive to new inputs while
preserving the effects of past inputs, that is, not recoding the past memory. The next section
discusses this dilemma further.

In summary, CC NNs exhibit many properties through luteral interactions by feed-
forward of inputs and feedback among neurons. These properties include gain control,
noise suppression, and pattern matching. The properties are sensitive to the kind of signal
function, however. General results are sparse. Indeed, to continue theory development calls
for studying individual NN, for example, the ART NNs.

4.2 ADAPTIVE RESONANCE THEORY

Adaptive Resonance Theory (ART) is a class of NNs modeling behavioral and psycholog-
ical phenomena. These phenomena include plasticity (coding the inputs—especially new
ones), stubility (not recoding noise or irrelevant inputs), and atention (quickly processing
familiar inputs and resetting if unfamiliar). ART makes no constraints on the inputs, such
as orthogonal or linear predictable. In practice, the ART NNs are the most powerful NNs
known and so deserve extended exposition.

Reseurchers developed several classes of ARTs. The plan for this section is twofold:
(1) to develop the basic ideas by presenting in detail ART-1 and ART-2; (2) to show examples
of learning and recognizing patterns. :

s

.
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1. ART-1. Figure 4.5 shows the notation. To summarize, the characteristics of ART-1
are as follows.

1. ART-1is atwo-layer NN. The layers called £ and £ have feedforward and feedback

signals between them and inhibitory interactions within F. Fyis the feature field:
£y is the category field.

2. ART-1 functions as a classifier or associative memory.

3. ART-1 consists of instars (F) — F) and outstars (Fy — Fy) with contrast improve-
meat in F.

4. ART-1 uses resets for sequential searches.

5. ART-1 is unsupervised, that is, the NN does not need a truth set during learning
because it defines its own classification catesories.

6. ART-1 resonates (defined below) when input pattern and LTMs match according to a

criterion.
F2 VMat
\%
(Top Layer) " '
LTM TRACES
1zy2y |
STM ACTIVITY
PATTERNS
2]
F\ Vi VM
{Bottom Layer)
INPUT
PATTERN

-
thi
it

Iy i I

Figure 4.5 ART-I nottion. The input puttern { produces activations X, UCTOSS
layer F, cpnsisling of neurons vy, ..., vy. The input to v, is /,. Neurons in F
connect with neurons in layer F3 by long-term memory traces Z{(Fi = Fyyand
Z;(Fy — Fy). F; consists of neurons vy, ..., vy with activations x;. ’

: Fig‘ur;z 4.6 shows a flow diagram of the ART—I valgon'thm.‘Thc step-by-step operitio
of ART-1 is as follows. Lo Py operon

1. ?rescn( a binary input pattern across F}. The resulting STM activity of £, excites
instarnodes on F3. Lateralinteractions in F; pick the maximum response and suppress
the others. The surviving node of £ excites an outstar in £.

2. Make a comparison by adding the outstar pattern to the input pattern. If a match
occurs, the same instar is excited in £ and leads to an increase in the STM activity
on £. That is, resonance takes place.
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2ERO
F1 AND £y

EXCITE
Fy
7 INSTAR (Fy — Fy)
EXCITE
F2
UPDATE UPDATE
£y ANDF2 EXCITABLE
LT™ F2 NODES
QUTSTAR
(F2— Fy)
EXCITE
ST‘;“ED INHIBIT
! ACTIVEF; { GATED
‘ NODE OIPOLE
SUM
INPUT AND
STORED
| _NONSPECIFIC
RESET
WAVE
N Y
(Resonanca) (Search)
Loap Loop

Figure 4.6 Flow diagram for the ART-1 algorithm.

3. Select, or associate, a node in /3 with the input pattern.

4. Update the LTMs of £ and F. If a match does not occur, that is, the comparison on
F{ leads to a more uniform input, the STM activity decreases.

. If the decrease is below a threshold, called the vigilance, reset 3. The reset zeros-out
the current active node in F3 and reestablishes the original input pattern.

6. Reexcite the instars and choose a new maximum while suppressing the original active

node.
7. Compare a second outstar pattern with the input.
8. Continue the sequence until matching (resonance), or until no active £ nodes remain.

wn

9. Reinitial F| and F; before each new input pattern.
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With notation from chapter 3, the equations for the ART-1 are as follows, Starting

with the Fy layer, assume the STM shunting equation. Then,

E.fj = —X; 4+ (I - A,.\:,-)Jf" bl (B| + ClIi)J'_, Vi,

(4.20)

where JF is the total excitatory inputs and J;” is the total inhibitory inputs. That is, v

.

Sr=L+DYy [z vi,
J
and
JT =" flep. i
i
Substituting gives
E.f[ =—-x;+ (1 - AIX,')[[,‘ + D| Z f(.rj)Z/;]
i
—(Bi+ Cix)lY_ fx)), Vi
J
The F, steady-state STM activation, ¥,, is bounded by

_ 1
—— < X; € —, V¥i.
t Ay

When Fi is inactive (x; = 0, V), (4.23) becomes
et = —x; + (1= A, Vi,
which gives a steady-state STM of

- ]
X = .
1+ AT,

When node v, € F; is active, only x; # 0. Equa[idn (4.23) becomes
€f; = —x;i + (| = Aix)(i + D1 Z ) = (By + Cixy), Vi,

assuming f(x;) = 1. :
Then, the steady-state STM is
_ L +DZ,; — B,
L+ i+ D2+ C)

X Vi,

where Z j; is the LTM for x; > 0. Note, ; > 0if and only if

[i+D|Z_/,'-—B;>O. vi.

#.20

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)

(4.28)
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That is, the LTM trace satisfies
B~ .
Z_/,‘ > —T‘, Yi.
Assume binary inputs. Then, /; € {0, 1} giving

B -1

2,>2= 5 Vi, (4.29)
Continuing with £, the STM is

€x; = —x; + (1 = xS = (Br+ Cax)) S, Y, (4.30)

where
JT =gl + Dy h(x)Ziy. V). (4.31)

)
and

J7=) " glx). V). (432)

ke

Substituting gives

€t = —x; + (1 = Arplglr) + D1 ) h(x)Ziy)

/ (4.33)
- (B + CZI/)[ZS(I&)L v
k#y
The F steady-state STM activation, X, is bounded by
B 1 .
G SR so \7 (4.34)

Turning nextto the LTM, the F; — F; (bottom-up) LTM trace assumes a gated dipole
model:

Zi; =k JUepl=EyZiy + h(x)). Yi, . (4.35)

Choose E;; for distinguishing between subsets and supersets and for modeling the
W-F law (see section 4-1). Figure 4.7 shows two patterns. Make assumptions so that the
W-F law holds.

F) excites £ so

=Y f)Zy =12 ). , (4.36)
Thus, changes in the input patterns give
Ax; = Al(Z;). .37
Or,
2y = A—I = constant. (4.38)
X, I
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s {xp)y

. O O

| [

—_—r - ~ ——
o Al " Aty

Figure 47 The Weber-Fechner law is that the response o a change in input,
A/, depends on the relative change A///. The ART-1 algorithm gives the same
response if Aly /1y = AL/ L, as shown.

If a minimum 8x; is just noticeable, say 8 = (AX))ihreshota» (4.38) gives

e (A-\'j )lhre.rhuld

- constant
Thus,

Xj &= constant = |/|Z;; = constant.
That is, for a W-F law response, increasing the active £ nodes decreases the magni-

tude of Z;; (the LTM trace).

To build this relationship in E;j, assume competition among the Z;; terms for synaptic

sites. Let
Eip = hix;) + % gh(m, vi, j (4.39)
o k=KL, (4.40)
Subsﬁ[uﬁng in (4.35) gives '
2y = KJG) = Zi)Lh(x) ~ 2, Y hso). @41
L

The size of Z;; depends on the number of active nodes. That is,
- Lh(x,) 1
I e ——
DU LA+ L b X
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where | X] is the active £ nodes and L is the relative strength of bottom-up competition
among the LTM traces. L small (near one) implies stronger LTM competition.

Figure 4.8 illustrates the response [ subsets and supersets. When input 70 js im-
pressed, the F> response is largest at vy, because (Zijh > (Zip)2. When input JERT
impressed, containing /", the response is largest at vy. In this way ART- I distinguishes a
set and a supersel.

RESPONSES (Typleal)

T
O O vi2)

vil)

vit )l i ‘: @{,(2)

LM =
TRACE
(Typical)
v - \
/\/\ l(’) - l(z) \'
D v

) 12
Figure 4.8 ART-1 contains the Weber-Fechner law by making the long-term
memory traces inversely proportional to the activated F; neurons. Then, ART-1

can distinguish a subset /' from a superset /9, as shown.

Further simplify by assuming

Sy =1, x; ON, (4.42)
h{x;) =1, x, ON.
Then
KW= Zi;L - Zy(lXf = 1), v, v ON,
Zij={ ~KIX|Zy, v; OFF, vj ON, (4.43)
0, v; OFF.
Assume fast learning. That is, by (4.43) the steady-state' LTM s
L
A B = R ON,
Zy = { 0. v; OFF, v, ON. (44

Tuming next to the F3 — F (top-down) LTM trace, -assume a gated dipole model,
that is

K¢
;
£
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Zi =k fG=EyZi; + h(x)), Vi, . ' (4.45)
Assume Ej; = 1, giving
Zji = fO=Zij + hixp)].
. Assume

Sy =1, x;ON,
h(x) =1, x;ON, (4.46)

to give.

—'Zl';‘*‘l, L','.Uj ON.

Zi=1{ -z v; OFF, u; ON, “.47)
0, v; OFF.
Assuming fast learning gives
l, Vi, UI' ON.

2= 4.48
! 0. v; OFF, v, ON. (.48)
When a mismatch happens on Fj, a more uniform activity pattern appears. This
uniformity leads 1o a decrease in the active nodes, that is, | X} decreases. When £ is not
active, || = |/|. When F; is active and mismatched, | X] < 1.
Define p (the vigilance) so that if

|X
17

<p,0<p=l, (4.49)

reset occurs. .

Alsume resetinhibits the currently active 3 node for a prolonged time. Define Slxp)
so that =

1, if T; = max(Txlke T},
Sl = -
0, otherwise.
where:F.3s the-set of indices of F; nodes that may be activated.
At figst; .

T=(M+1,M+2,... N} (4.50)

Assameande for matching input and LTM traces, called the 2/3 Rule (defined below).
The system-reeds this rule because readout of ¥/ (outstar) may activate some F| nodes
not previcusly activaswd by the input / alone. This activation would result in preventing the
input frouvbeing encoded in the F> LTM. Moreover, a single node in F; may code disjoint
input patterns, déspite-the fact the two patterns shared no features.
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The 2/3 rule controls which v; in £y remains active. Let T be the indice set receiving
positive inputs. That is,

T={(12.....M). (4.51)
Let ¥/ be the indices of Fy that are ON when vy is ON.
Example: For the situation in figure 4.9, 7 = (1,2, 4, 5} and vy, = {1,3,3}. If X is
the indice set of F} that are ON, the 2/3 rule is
v T, if F> OFF, (4.52)
L = 4.32
Invyy, ifv; € F> ON. ;

For the figure 4.9 example, &' = {1, 3).
O

< O O ‘O

Figure 49  Example of ART-1. An ART-1 with five £} nodes has external inputs
10 vy, va, v3, vy and vs. A F3 node activates and produces more inputs to nodes
vy, b3, and v by the £3 — F long-term memory trace.

Summarizing ART-1, the algorithm is as follows. For a binary pattern /, with com-
ponents /;,

1, ifieT,
li = . 4.53
{ 0. otherwise. ¢ )
The bottom-up activation is
Ty=DyY Zy. V). (4.54)

ieX

The F> node turned-on is

f(v)-[ 1, if T; = max(Tilke T}
X)) =

0, otherwise,

where 7 are the indices that may be activated.
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Apply the 2/3 rule for F} activation:

Y= 7, if /> OFF,
Tl N, ifueR ON.
Reset (zero-out) the current £3 node for the duration of the input if

i
(4

<p,0<p<l, (4.53)

where p is given. If reset does not happen, update the LTM traces using fast learning.

L -

| = vi.v; ON (i € .Y), X

2y = { 0, v, OFF, v; ON (i € .Y). (+.36)
and

5 _ L vy ON, s

” 0. v; OFF, v; ON. :

The initial bottom-up LTM trace is
L

0<Zij(0) <« ———n .5

<40 < Ty (+.58)

where £ and Af are given.
The inequality allows direct access. That is, if v; has learned an input, v; is the first
node chosen during search. The initial top-down LTM trace is

- —1
Z: <Z_/,'(0)<l.

where max{!l, D\} < B, < 1 + Dy.
Consider a simple example of ART-1. Figure 4.10 shows the problem, with M =
3, N=35.Let L =2. Then

L
0<2z; -
<2y < g =V

Assume for Z;;(0). In matrix form for convenience,

/4 1/8
(Zy )= 1/4 1/8
174 1/8

Let Dy = 1 and B, = 3/2. The initial top-down LTM is Z < Zji < 1, where

= B -1
= — =1/2
Dy /
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E - Q ) " Q

o Q VZO VJO

Figure 4.10  Example ART-1 neural network.

Assume

_[ 34 3/4 374
[Zj,(o)]—{;;/.; 3/4 3/4:].

Assume /™Y shown in figure 4.10. If v; ON, assume D> = | and h(x;) = |. Then,
the inputs to £ are

To=3,Zu=2Zy+Zy =12,
Ts=3,Zis =25+ Zrs = 1/4.
Thus, vy is ON and vs is OFF because Ty > Ts. Applying the 2/3 rule,

X=T( V¥ = v,

vy eV WifzZy > Z =1/2,

where

giving .
XY= (L2 L2 = (1,2).

The reset test gives

[ S
i)~ 2
That is, no reset occurs. Thus, learning takes place. Fast learning gives

L 2
Z”zL—1+m1=2—1+2
Zyy =23 =2/3, Z33=0,

Zji =1, vi.v; ON,
Zo=Za=1, Zy =0.

= 2/3, Vi, Uj ON,
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After I'V is applied, the bottom-up LTM traces are

273 18
[(Z;®)=1 2/3 1/8 |,
0 18

and the top-down LTM traces are

1 1 o0
[Zﬁ(o)]==[ 3/4 374 3/4 ]'

Continuing with /), shown in figure 4.10, after learning

23 0
[z = 273 273 |,
0 2/3

and
110
[Z;i(0)] = [ 001 1 ]

This simple system can learn only two patterns because F3 has two nodes.

In summary, the ART-1 algorithm can learn and recognize binary patterns. In real-
world applications, use processing to give the binary inputs. One extension is analog input
patterns, considered next.

2. ART-2. ART-2 extends ART-1. The characteristics of ART-2 are as follows.

- ART-2 can handle binary or analog (gray-scale, continuous-valued) inputs,

- ART-2 has the same overall structure as ART-1, that is, two layers £} and F3.

- ART-2 matches the input and LTM trace by an L metric. (ART-1 matched by
counting bits—the Hamming metric.) F| includes noise suppression and contrast
improvement. Thus, the input may be noisy. (Contrast improvement is not an issue
with ART-1.) .

4. ART-2 normalizes the input patterns so the dynamic range may be large and considers

patterns that are multiples of each other the same.

[ N

Figure 4.6 shows a flow diagram of the ART-2 algorithm. The step-by-step operation
of ART-2isas follows. ... .. ... .

1. Present an input pattern across the bottom of Fy. The resulting STM activity in F}
excites instar nodes on F3. Lateral interactions in F3 pick the maximum response and
suppresses the other nodes. The surviving node on £ excites an outstar in .

- Apply the outstar pattern to the top of £}, allowing a comparison between the filtered
inputand a LTM trace. A match reexcites the current instar on 5, leading to increased
STM activity on £. That is, resonance takes place. Resonance associates the node
in F; with the input pattern.

»
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3. Update the LTMs of Fy and F. If a match does not happen, the comparison on F

leads to a more uniform input, and the Fy STM activity decreases.

4. If the decrease is below a lhrcshold_(lh'c vigilance), reset F3. The reset zeros-out the

current active node in /3 by a gated dipole.
. Reestablish the original input pattern and reexcite the instars. Choose a new Fa
maximum.

6. Compare a new outstar pattern with the filtered input.
7. Continue the sequence until matching (resonance), or until no nodes remain to be

activated on Fo.

8. Reinitial the Fy and £ fields before each new input pattern.

With notation from chapter 3, the equations for the ART-2 are as follows. Starting

with the £ layer. £y consists of three levels shown in figure .11, F| hus the following
characteristics:

1. The three levels allow amplifying the input pattern in the bottom and middle levels,
while suppressing noise.

2. Readoutof a top-down LTM pattemn, to match with the STM pattern at the top F level,
does not change the STM patterns of the bottom and middle layers. This decoupling

LTM™
STORED STM
STORED PATTERN
\
RESET —d—| MATCHING
A
NORMALIZED PATTERN

CONTRAST ENHANCEMENT

A

INPUT PATTERN

Figure 411 Architecture of the ART-2 F| layer. The F| layer consists of three
levels, which roughly operate as follows. The bottom level filters by enhanc-
ing and normalizing the input. The long-term memory activates the top level,
restoring a past pattern. The middle level compares the filtered input and 1 stored
pattern. I mismatch occurs, the system RESETs and continues.
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ensures that the LTM traces do not affect the amplifying and the noise suppression.
The decoupling handles the stability-plasticity dilemma.

- The top-down LTM trace learns the STM pattern, called the exemplar, produced at

the top level of Fj. As learning tkes place, the LTM trace changes. A mismatch
cuaused by learning does not reset f5. :

. Figure 4.12 shows the three £} levels in detail. Each input node, /;, is associated with

six nodes, labeled p;, q;, u;, v;, x,, and w;. The shunting STM equation describes node
activation. That is,

EV,-=—.4V,~+(l-BV,)J‘.*—(C+DV,-)J", (4.59)
Yy
Fa reset
F
Z; ﬂ 2
/
alyp)
l ) '
2y
neé il =@ q
‘\./’N/’
Y bi(qy)
‘\./O vi
Yy
auy f(x)

Figure 412 Deuails of the ART-2 F layer. Each input /, to £} has six neurons
in three levels. The dark circles denote normalizing. The text gives the activation
equations. (From Carpenter and Grossberg. ART-2: Self-Organization of Stable
Category Recognition Codes for Analog Input Patterns in Applied Oprtics, Vol. 26.
Reprinted by permission of G. Carpenter and The Optical Society of America,
1987).
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where € is the ratio of STM-t0-LTM relaxation times, with 0 < € « 1. /¥ is the total
excitatory inputs; J; is the total inhibitory inputs.
Assuming 8, C = 0 in (4.39), the steady-state STM of a F| node is
- Jr

A — (4.60)
A+ DJ”

Construct ART-2 by specifying equations for Jf and /” and by giving the connections
between the nodes.
The STM equations for the top, middle, and bottom levels are

pi = u; + Zg(,v,)Z,'i. (4601
J
pi
g = . (4.62)
SRR
u; = i . (4.63)
e+ Jjul]
vo= fla) +bf(q). (+.64)
w; = I; +uauy, (4.63)
and
G (4.66)
e+ [wll
Continuing with 3, the STM is the same as ART-1. That is, let T} be the input from
F.

T, = Z piZi. (4.67)

Assume for the F> STM trace, y;, that lateral interactions causes y; — O for j # J,
where

T)=ma(T;. j=M4+1..... N}, (4.68)
7

Reset F3 (by a gated dipole field in F3), giving

d, if T; = max;{T;} not previously reset,
gy = t 1= ma{T)) not previously 469
i 0, otherwise.
Thus,
’ u,, if /> mnctl.ve, . 4.70)
u, +dZy. ifvy, € Fyis active,

where 0 < d < |,
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Tumning to the LTM, the top-down LTM trace is

Zsi = g (pi — Z,0). @71

" The bottom-up LTM trace is

. Zy= g pi — Zi)). (4.72)

Note Z;;, Zj; = 0if y; = 0. Thatis, for j 5 J
For v, active and v; inactive, f # J by (4.70). Then,

Zij=d(pi = Zij) =d(u; +dZ;; — Z,).
That is, for the top-down LTM trace
Zi=dQ —d) (== - Z,). .73)
Similarly, for the bottom-up LTM trace
2y =d(l - d)(;“_;d - Zip). (4.74)
ART-2 uses a L; norm for measuring the degree of matching. Let

_ ui +cp;
e+ lull + llepll’

where |||l isa Ly normof r = (r, ..., ry), that is,

Hril=ri+... +r. (4.76)

The norm, ||r||, measures the match between the input, ;, and stored LTM, p;. By
algebraic manipulation,

(4.75)

!+ 2leplicos(u, p) + licplf?

4.77
Hrit = UF Tlepl @77
Write (4. 77) with Z; = (ZJ[, vovv Zgpg). That s,

(] = [ €2+ 20 +)lledZllcos(u, Z,) + |ledZ, ]2 78

U+ e 4+ 2clled Zl[cos (u, Z,) + |led Z (] /2.

Figure 4.13 shows that over the range ||cdZJ|] < | the norm liril is a m.m:hmu

* parameter. The vertical coordinate gives the degree of matching. The horizontal coordinate

gives the degree of learning, or sensitivity. For increased sensitivity with increased leaming
(larger Z ), assume [lcdZJ|} < 1.

By (4.73) the steady-state Z j; = “ 7+ The constraint ||cd Z,|| < | becomes

cd
I—-d

< 1. #.79)
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el cos{u, zg)=1
1
p b =
cos{u, z5) =0
0.7

1 Hedzyli

Figure 413 Plot of the ART-2 norm that gauges mawching. |jr]|, which is a
function of cosiu. p) and |jcd Z,||, maches the filtered input patern, u. and
a stored pattern, p. Restricting {[cd Z 1] < 1 shows {|r|| = 1 fpr a perfect
match and |jr{l = 0 for u and p orthogonal. ART-2 is reset if ||r|| is below the
vigilunce purameter p, which adjusts matching sensitivity. (From‘C.nrpcmcr and
Grossberg. ART-2: Self-Orguanization of Stable Cutegory Recognition Codcsifor
Analog lr:put Patterns in Applied Optics, Vol. 26. Reprinted by permission of G.
Carpenter and The Opticul Society of America, 1987).

Thus, the closer cd /(1 —d) is to one, the more sensitive the system. The learning cutc.gon'gs
are also more stable. Thus, initial categories are the same as later categories (stability in
the encoding sense). . .

Resetoceursif |r}| < p, thatis, when the input-LTM matching is below the vigilance.
If|{r]l < p.learning takes place when the input-LTM match is above vigilance. (The match
may not be perfect, but is close enough.) Then, update the LTM (bottom-up and top-down)
traces.

Choose initial LTM traces for proper operation as follows. )

By figure 4.13.if 1 Z 41| — 0, no reset occurs during learning. Thus, setting top-down
LTM truces to

Z;(0) =0 ; (+.80)
enables initial learning.

Choose the initial bottom-up LTM taces to stabilize the category selection. The
steady-state botom-up LTM truces are

< 1
= L (+81)
Nz~ —

. . 7J it o ass
To have || Z7]| for 4 committed node larger than || 27| for an uncommitted node, assume

Bz’ ol < (4.82)

t—d’

!

et
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If Z7(0) is uniform,

0<Z;0) < (4.83)

1
(I-d)JM

Thus, choose initial bottom-up LTM traces to satisty the inequality. A common set
of inital values is

Zij(0) =

!
. 4.84
(= d)/af &)

In summary, the ART-2 NN is fairly complex. Nevertheless, simple examples can
show its global behavior, The exercises give examples computable by hand.

The ART-2 algorithm has some arbitrariness. When to make the norm-to-threshold
comparison is unclear for deciding reset. In practice the matching test is made before the
Fi STM reaches steady-state.

The adaptive-resonance-theoretic NNs are important for modeling and for applica-
tions. And many researchers expect their importance to increase relative to other kinds of
NNs. Recently, ART-2A and ART-3 were introduced [16,17]. '

ART-2A is a version of ART-2 for large-scale neural computations. The operuting
principles of ART-2A are the same as ART-2.

ART-3 isamuliilayer NN, that is, with Fi. £, ... thatmodels the bivlogical synapse.
Discussion of ART-3 is postponed until researchers develop its utility.

4.3 HOPFIELD NEURAL NETWORKS

The preceding ART NNs model biology. This section and the next develop two nonbiologi-
cal NNs, Hopfield NNs and perceptrons. They are interesting because of their applications.
These nonbiological NNs are special cases of the general theory developed in chapter 2.

Historically, the Hopfield NN regenerated interest in the field. This NN is popular
with theoreticians because its simplicity allows for extended mathematical analyses. The
Hopfield NN often serves to exhibit properties of NNs 10 new readers. Its applications,
however, are limited because more powerful NNs are known.

Matrix notation is convenient for deriving the Hopfield NN. Let

x=(x...., xy)7 : (4.85)

be a NV x | matrix associated with an N-element memory, where x is the STM trace, x; € W,
and ()7 is the transpose operation.
Let

=, )T (4.86)

be the ith stored memory with N elements, where zj € M. ' is a LTM trace. Assume M
stored memories, given by the set (=},
Construct a dynamic system with specified asymptotic properties as follows.
Starting from an initial vector, x(0), the system is to relax to the nearest =¥, A metric
measures closeness. Write the system symbolically as
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dx P M ;
— = [z, (4.87)

where x is the dependent variable and =!, ..., z* are parameters.

To show asymplotic properties, define a potential function, P(x, z', ..., =*), for the
right-side of (4.87). Let
dP
—_ =—f(x,:1,...‘:‘”). (4.88)
dx
where P() is a scalar. Matrx differentiation rules define d P/dx {20, p. 135].
To be stable P(x) generully opens upward. The vectors {z}, ..., 2V} establish the
minima of P{x). The vectors are the asymptotic stable points of the system.
For example, a simple stable potential is the form

Pzt sy =g/ e+ Pl s L 2, (4.89)

where P’( ) is a perturbation from a reference quadratic potential.
The dynamic system is

de dP (4.90)
o A .
The simplest system has a single memory (M = 1). Let
Pl st o M) = (a2 e+ 2Tk, fora > 0, (4.91)
giving
dx _ + 4.92
= ax + z. .92)

This system relaxes to x = z/u for every initial condition, x(0), as shown in figure 4.14.
Construct a two memory system (M = 2) as follows.
dx ) 11 3.2
o= —ax + C{x, 2z + Cylx, )27, (4.93)
‘ .
where C(, ) and C2{, ) are coefficients.
Choose C,(. ) to measure closeness of x(¢) to z'. Assume a = 1 (equivalent to
rescaling the variables). If Cy 3 Ca, the system relaxes to z', as shown in figure 4.15.
A simple closeness measure is using the inner product of sgn x and z'. Applying an
inner product, let

N
Cy(x, = (sgnx, M= Z(sgn X :}. (4.94)
i=1
Whenx = =', (4.94) becomes
Ci(z' 2l = (sgn ', 2! =||:l'|[|. (4.95)
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X(t)= .gf
x(t) P(x)
‘ r
N\,
. X
K 2 +k
— -
x(0) P(x)
A §
Qx +C
c k-
—x—z- Cx+k
2 +
= X
! c

Figure :t.l-l Two simple differential equations that are asymptotically stable
and !h(?lr pou?nnul functions. Stable potential functions are concave upward.
Extension to finite dimensional systems is direct using matrix notation.

Many inner products are possible for liz}1l. The standard inner product gives

N
l=lle= )12, (4.96)
i=1

which is the sum norm, or more picturesquely, the Manhattan norm.
When x = 22, (4.94) becomes

Ci(z3,zh =0 (497

for uncorrelated coefficients of the memory vectors.

Defining C2(, ) in a similar way, these coefficients measure the closeness of x(f) to
each stored memory.

Generalizing to M memories, the system becomes

dx ! 1 Y] \
o =-—ax+z(sgnx,z')+...+z"(sgnx, z'l)‘, (4.98)
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P(x)

2

S Cilx 2 - Calx, 29 +

l1 12
At x
vy i

oy Vo

Ve (W)

\1‘ Y]

|

-Cifx, 2"
-Calx, 23

Figure 4.13  The Hopfield neural network constructs a potential that gcnu’:r.ally
opens upward. To illustrate, consider two functions, (2, x) and (23, x). When
x is close o 7y, (). x) dominates over (23, x). Then, the system rFI:ucs to zy.
Simifar comments hold for ;. As shown, the potential has local minima near the
stored memories, 2 and 2y, The potental, however, may have other (spurious)
minima causing the system 10 relax to nonsense values.

Rewrite (+4.98) exploiting the identities

Hsgnx,z)={gna, )= (:‘rxgn X))z = 'zzr}sgn X.
Factoring out sgn x gives
‘Z—f— = —ax+ 2T 42 sk (4.99)
r .
The standard form of the Hopfield NN is
d_.r = —uax + T'sgnx, (4.100)

dt

where

r=3 T (.101)
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is the sum of the outer products of the stored memory vectors.
The perturbation potential is
dp’
— =-Tsgnx, (4.102)
dx :
where P’(x) opens downward. Adding P’(x) to the upward-opening quadratic term pro-
duces local minima.
Some minima correspond to memories. Other minima are spurious stable points, that
is, not vectors used in defining 7.
Choose the coefficient a to normalize the memory lengths. As x(¢) approaches z!,
the system becomes

g+ 1M
dt CooT e
Ifx(r) — =, 45 — 0 for ¢ large, giving
0= —ax + ')}, ,
Thus, a = {|z'|};. Similar comments hold for 22, ... =M. Assuming all stored

memories have the same length, settingu = ||z'|| ensures convergence to the stored memory
and not to a scalar multiple.

If |1=]] is the same for all memory vectors, the memory vectors are distributed on the
surface of an N-dimensional sphere. This is the simplex signal set in digital communication
theory.

Other norms may be used. For example, the weighted norm

Ci(x,z)=(sgnx, 2)y = zTngn X,

where I¥ is positive definite, that is, a square matrix with positive real eigenvalues. This
nonm allows weighting the significance of each element. For example, the most significant
bit (MSB) could be weighted more than the least significant bit (LSB).

Summarizing the properties of the Hopfield NN, the system from (4.98) is

€% = —x + z‘(:gn Y+ z'”(sgn x, zY). (+.103)
If x is nearest to z! as measured by the sum norm,
€X; = —x + z'(:gn 2!, I zM(sgn 2!, z‘")
and
€x = —~x+z'(sgnz', 2.

Or, x(0) — z' as t — co.
Computer simulation shows that to avoid convergence (o a spurious minima,

M <0.15N. (+4.104)
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That is, the stored memories are equal to or less than 13 percent of the elements.
Connecting the Hopfield NN with the general theory of chapter 2 is by manipulation.
Write (4.103) in component form

N
€x, = —x, + Z!,,sgn Xj. . (4.105)
J=t

Replace the sgn () function with a sigmoid function, that is,
sgnx; — f(x)). (4.106)

giving

h
e =—xi+ Y1, /(x). (4.107)

J=1

Let f(,\'j) = SI‘ and Ly = Z,.. Then,
h
€¥, = —x; + Z SiZji. (4.108)
i=t

which is the additive STM equation without external inputs derived in chapter 2.

Thus, derive the Hopfield NN by stanting with the general additive STM equations,
neglecting terms and making simplifications. Not vice versa.

Applications of the Hopfield NN follow from its properties and interpreting the inputs-
outputs strings. First, if the initial vector, x(0), is a message N-bits long with errors, the
NN relaxes to the nearest correct message. That is, the Hopfield NN gives forward error
correction (FEC) by operating as a decoder of a block-encoded message.

Second, if the initial vector is part of a stored memory, the NN relaxes to the nearest
complete memory. That is, the NN is a content-addressable memory (CAM).

Third, if the initial vector is a memory trace, the NN relaxes to a different memory
having to do with the input. That is, the NN is an associative memory.

4.4 PERCEPTRONS

Nonbiological NNs have many applications. The preceding Hopfield NN is one class of
nonbiological NNs. Another class is perceptrons. The advantages of these nonbiological
NN lie in their use as calculation tools and not in the insight they give to neural operition.

Understanding perceptrons, however, is important for at least two reasons. First, per-
ceptrons compose the majority of NNs today. For this reason they are a common reference
for comparing NNs. Second, a researcher faced with meetings, discussions, and journal
articles needs an understanding of perceptron basics and rules of thumb.

This section introduces perceptrons as follows. First, it develops the feedforward
structure by a geometric approach for convex and nonconvex decision regions, multiple
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c.lnssiﬁcation categories, and multidimensional inputs.” Next, it shows that the most general
perceptron I.ws.(wo hidden layers, and it discusses the classical exclusive OR (XOR) prob-
lem. Thcn, itdiscusses self-learning strategies to speed up the widely used backpropagation
algorithm,

o Consider specifying regions in a two-dimensional (2-D) space. Figure 4.16 shows a
..-l? uzput space with Cartesian coordinates x, and xa. A line separates two semi-infinite
regions. To establish notation, assume the equation of the line is

wyxy + wixy — 8 = 0. (4.109)
The region to the right or below the line is

wixy 4+ waxs — 9 > 0. «.110)
The region to the left or above the line is

wyxy 4+ waxs — 8 < 0.

Equivalently, this region is also

—wxp =~ wixas 4+ 6 > 0. +.111)

X2

WXy + WaXp~8=0

WXy + WoXgz=0<Q——nr
OR
“WiXy = WpXa=+0>0

< WXy + WX ~8>0

— Xy

Flgurg 4.16 _Scmi-inﬁniuf regions in two dimensions. Replacing the equal sign
by an inequality in the equation for a line defines regions to the left or right.

In the following treatment, the > inequality is convenient, so equations (4.110) and
(4.111) are used. Note that except for the sign, (4.110) and (4.1 1 1) are the same.

For example, figure 4.17 shows a triangular region R. Region R, a set of points
(xy. x2), satisfies three inequalities of the forms of (4.110). Thatis, region R is right of line
I and above line 2 and left of line 3. In defining line 1, line 2, and line 3, choose the siens
of the coefficients so that the terms are positive in the inequalities. }

Thus, write R as

R= ((~f1--fz)l(w|1-fl +wpx + 6, > 0)‘
((wx + wors + 62 > 0) (4.112)
m(wnfl + wyrx + 65 > 0)).

where () is the logical AND (intersection) operator.



Complex Networks Chap. 4

88
A x2 ~——————— WXy + WypXg =8y
R —]
WoyXy + WaoXz =83
——— W3 %y + W3pXp = -85
-
» X

Figure 4.17  Specifying a tinite region in two dimensions. To apply to neural
e - Tl = (- atign
networks, use set notation and greater-than inequalities.

Figure 4.18 shows a network implementing (4.112). Each summation node generates
a line. The unit step function, [1( ), gives the inequality, where [1(0) = 1. A three-input
AND gate gives the intersection operation. Note, the biases, 8, map a zero input (o a nonzero

output.

]
+
B
O(xy,x2) € R
® - 1(xy, x2) € R
X2 -
_‘_,@’ A
. \_

(x)

1
2
o)
J .
}

“igure 4.18 A network for a triangular region in two dimensions. 'I"hn:c tn-
:Lllt:irxfms represented by the three paths in lh? network, flcﬁnc the tegion. Thc
parameters, wyy, wy:. 8y, define one of Lhr::c‘lmc:: boundupg the region. A ul?\u
step function, () delines the inequality. If the input point (x,, x2) hc:?.ln e
region, the logic AND gate produces an output 1. Otherwise, the output is 0.

Figure 4.19 shows a NN implementing a three-input AND gate. The biases are in the

interval (=3, =2).
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e
—p]
[S—
. g€ [-3,-2)
{0, 1}
n o) .

/

Figure 4.19  Perceptron implementation of a three-input logic AND gate. Inputs
are O or 1. Because of a bius § in the range —3 > § < 2 and a unit step function,
the output is 1 if and only if all three inputs are 1. Otherwise, the output is 0.

Combining figures 4.18 and 4.19 gives a NN for 2-D triangular decision regions,
shown in figure 4.20. Three layers can be identified: (1) an INPUT layer, (2) 1 PLANE
layer. and (3) an AND layer. The AND layer is the OUTPUT layer for this NN. Figure
4.20 shows the neurons for each layer. By adding neurons to the PLANE layer, this NN is
sufficient for every finite simply connected region.

A first extension is to arbitrarily shaped regions. First, assume two separale regions,
shown in figure 4.21. Region R, is a triangular region. Region Ra is a semi-infinjte region
to the left of two lines. Assume points in both regions belong to a region called R.

Then, inequalities define R as

3
R = {(x, x3)] ﬂ(w,m + wpxas +6; > 0)
j=l

s (.113)
U(ﬂ(w/x-\‘l +wpr + 6, > 0)),
=4

where { J is the logical OR (union) operation. )

Figure 4.21 shows a NN implementing (4.113). The OR gate is simply a summation
with a smaller bias than for an AND gate.

In figure 4.22, four layers define an arbitrary decision region. The OR layer acts
as the OUTPUT layer. Moreover, no classification task takes more than four layers (two
hidden layers), because every expression in mathematical logic is expressible in conjunction
normal form.

While four layers are enough for an arbitrary nonconvex region, in general the mini-
mum layers may be less than four. The AND-OR layers can often be combined in a single
layer consisting of a bias and a summation,
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X2

X1

0{xy,x2)& R
1{xy,x2)€R

INPUT PLANE AND (Qutput)
LAYER LAYER LAYER
@ @) utx) {1)

Figure 4.20 A perceptron for a triangular region in two dimensions. Each
summing node-step function represents an idealized neuron (node), which first
multiples inputs by the weights and then if above a threshold, produces an output
1. As shown, this example has six nodes and three layers. The first layer is
the input layer. The second layer, called the plane layer, defines lines (pluanes)
bounding the region. The third layer, called the AND layer, has the logic AND
and is also the output layer.

Figure 4.23 shows a nonconvex region realized by three layers using appropriate
biases and weights [SO]. For 2-D this simplification can be frequently found. Simplification
with higher dimensional inputs is more difficult. And while three-layer NNs are possible,
equivalent four-layer NNs are easily constructed and interpreted.

A second extension is discriminating many classes.

Figure 4.24 shows the decision regions for three classes. Define each class by the
INPUT-PLANE-AND-OUTPUT(OR) architecture. By this approach, three classes (and
their negation) lead to three neurons in the QUTPUT layer.

A third extension is to higher dimensional inputs. Figure 4.25 shows a slab in 3-D
space, specified by two inequalities. A 3-D cube is the intersection (AND) of three slabs.
Thus, a cubic decision region in 3-D input space leads to the network shown in figure 4.26.
To define the decision region, fix the weights and adjust the biases. Extension to higher
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X2 |

Ry

X1

3
R = {(xq, xz)ln(w“:q + WXy + 8> 0)
=1

v
i

n Jwm

(wjixq + WaXz + 6> 0)]}
4

OR

Figure 4.21 A network for two regions, R, isatri i

' r » Ry and Ry, Ry is a triangular region
dcﬁm:.d as in figure 4.20. Rz' is a semi-infinite region defined by two lines, orglwo
paths in the network. If the input point (x,, x,) lies in either region, the logic OR
gate produces 1. Otherwise, the output is 0.

fjimensional decision regions is direct and involves the intersection of planes defined in the
input space. N

'lfhle XOR problem is historically significant in perceptron theory. Minsky and Papert
7 cr'mqucd the two-layer perceptron on its failure to solve the XOR problem. To the
author’s knowledge, however, this multilayer perceptron theory was not known when the

- objection was made., . .. . . -

.Figure. 4.27 shows the XOR problem in the present notation. The XOR operator
clasm.ﬁefs points (1,0) and (0,1) as “one” and other points as “zero.” A NN defines regions
containing (1,0) and (0,1). Figure 4.28 shows square regions around the points. The decision
region, R, consists of R and R.. That s,

R= (el x) € R | JGom) € R @114
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X2

INPUT PLANE AND OR (Output)
LAYER LAYER LAYER LAYER

Figure 4.22 A perceptron for the region shown in figure 4.21. For clarity some
connections are not shown. A node with threshold =2 implements the two-input
logic OR gate. In general, four layers is the maximum number of layers needed
for an input space, although fewer fayers are sometimes adequate (see figure
4.23).

In the notation of figure 4.28, (4.114) becomes
R = {{x, xa)f{xy > 1 — mel =1 +emx3 > —¢€ ﬂx; < €)

U(.r, > —eﬂ.vl < eﬂ.r; > 1 ——sﬂx; > 1 +€)).

Figure 4.29 shows a NN implementation of (4.114). Asseen, the NN needs 13 neurons

(4.113)

in four layers.
Figure 4.30 shows a simpler XOR solution. The decision region is defined by two

lines. The NN hus five neurons in three layers.

Thus, a solution to XOR depends on how the output is defined for inputs not 0 or 1.
So the XOR solution is not unique, and many solutions are possible.

The geometric description of perceptrons suggests many learning algorithms. Two
simple self-learning algorithms follow. Assume a 2-D input space. A simple algorithm
uses a set of training points to define a rectangular decision region for class 1. Figure 4.31
shows implementing this region with four neurons with fixed known weights. The biases

are adjusted to enclose the region.

iR o TR
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DECISION REGION FOR CLASS A

¥20 by by by by
[l

™~y ™~

--b
’(2 -‘1 :
. - - by

0 1 2 3 4 x

(b)

Figure 4.23  (a) A three-layer perceptron forming disjoint regions for class A
(_shudcd areas). The left part shows connection weights and node biases. Dashed
lines show the lines formed by nodes. Armrows point to the half plane where the
node outputs are 1. (b) Ten example regions formed by three-layer perceptrons,

Let the set {xy(h), x2k)} with k = 1,... N be N training points. The biases
6:.9,.....6:.0; are from

68, = mkux[.n(k)] (+.116)

and
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CLASS =1

=

CLASS
C
o s l
C
Xy —d c
s ) |
12 (e
G
? {
INPUT PLANE

AND OQR/QUTPUT

Figure 4.24 A network for two-dimensional inputs. multiple decision regions,

CLASS = 2
—
~J

=3

0{xy, xp) &€ Cy
1{xq, xz) € Cy

0(xy,Xg) & Cq
1(x;, %) € Cg

0 (x4, x) € Cq
1{xy,x2) € Cq

and three classes, illustrating extension of network in figure 4.21.

9; = mkin(.r,(k)).

Chap. 4

#1117

To implement (-h.116) in a recursive way, assume 8, (k + 1) is from the inequalities

>0, k+1)=xk)
xi(k) — 6, (k)

<0, &k+1)=086,0k).

Equivalently. 8, (k) is by

Ok + 1) = 30 (k) + (1 — w)x k),

4.118)

(+4.119)
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X3
. 8
Y4
+— x2
PLANE
=8
X |~ X2=82
REGION TO LEFT —
X3~8<0
OR
~X3+ 820
SLAB
Xz + 82. >0
AND X2 =8,
~X3+082>0
Xg = 95 ———p
Figure 4.25  Specifving three-dimensional slabs. Replacing the equal sign by
an inequality in the equation for a plane that is perpendicular to a coordinate axis
defines a volume to the left or right. Combining two inequalities defines a slab.
where o R,
y=M(-x +6)). I (4.120)

2y

Figure 4.32 shows computing y by the system, then computing 8, (k 4 1) by a first-

order feedback system. This approach leads to a learning feedback system, shown in figure
4.33.

Another self-learning strategy is to bound a simply connected decision region by

straight lines produced in a stepwise fashion. Figure 4.3 shows the idea. Start with three

points to form a triangle. Add a fourth training point. If the fourth point is in the triangle,
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Figure 4.26 A network for a parallelopiped region in three din.]cr.\sions, As
shown, the thresholds define the sides. The logic AND gate has six inputs. All
inputs must be 1 if the input point (x;, xz. x3) lies in the region.
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B : 1 A, B DIFFERENT
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Xy

&

Figure 4.27  XOR definition. The logic XOR gate produces 0 ifa!l inputs are
the sume. Otherwise, it produces 1. For two dimensions, define regions Ry and
R: 1s shown. For an XOR network, inputs lying in Ry and R; produce 1.
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Figure 4.28  Decision region for the XOR problem illustrating regions R, und
R, derined by lines perpendicular to the coordinate axes.

INPUT ‘PLANE - 7 _AND OR/QUTPUT
. 2 1=13

2 R 8

Figure 4.29 A pe}cc;ptmn for the XOR problem with regions from figure 4.28.
The network has 13 nodes arranged in four layers.

no change is made. If the point is outside the triangle, change the region to four-sided by
adding another neuron.

The decision region changes to that shown in figure 4.35. As more points are added,
there is a neuron in the second layer for every line. The lower figure shows alternate decision
regions for the same training set. That is, the solution is not unique.
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Figure 430 A perceptron for the XOR problem with regions defined by two
lines. The network has five nodes arranged in three layers.
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Figure 431 A simple two-dimensional region enclosing a set of points and the
carresponding network. The biases define the lines.
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K

81 =min {xy, (k)}
X

>0,8; (k+1)= X, (k)
xq (k) = 8(k
k 1t <0, 84 (K + 1) = 8y (k)
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Figure 432 Update system illustrating simple feedback to adjust biases. An
input.x; attime index k, x, (k) produces output y, shown in figure 4.31. The input
x (k) is also sent to another system to produce the updated bias 8, (k + 1).

BIAS
UPDATE

1”1

X4

Figure 4.33  Combining networks of figures 4.31 and 4.32 gives a network that
automatically adjusts biases. During a training period, an input dataset passes
through the system to set the biases. After training, the perceptron classifies other
inputs.
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Figure 434 A perceptron that adjusts the nodes in the plane layer. During
training on an input dataset, if a, say, fourth point lies outside of the region for a
class, the output is 0. Adding another node to the plane layer changes the region,
as shown.

Figure 4.36 summarizes the general structure of percepurons. That is, the architec-
ture consists of four layers: INPUT-PLANE-AND-OUTPUT(OR). Two layers are hidden.
Three layers have coefticients defining one or more decision regions. Figure 4.36 shows
the neurons in each laver. :
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X2

(a)

Xy

Xy

Figure 435  Evolution of the region with more training inputs. (a) Adding
nodes to the plane layer produces a region bounded by lines. (b) Alternatively,
with the sume training dataset, adjusting the biases produces a region with sides
perpendicular to the coordinate axes.

Currently, the most widely used method of setting the weights and biases is the gen-
eralized delta algorithm known as backpropagation [79, ch. 8]. In the backpropagation
algorithm, the weights and biases in the three adjustable layers (PLANE-AND-OR) are
set to small random values at first. A training set recursively adjusts the weights.
Practice shows many iterations are needed. For example, a three-layer NN (one hidden
layer) with 15-30-1 neurons typically needs over 100, 000 iterations before reaching steady
state. .. .. . ) . B

The geometric viewpoint, however, suggests prior knowledge about the classification
problem can structure the NN, estimate coefficients, and develop new learning algorithms.
(For a related approach, see {10] which describes using Voronoi diagrams—a partition of
the space into convex regions.)

Finally, other extensions, not discussed, include use of sigmoid rather than step func-
tions, and nonlinear functions of the input coordinates to form, say, spherical decision
regions. Indeed, the geometric viewpoint gives a convenient baseline for understanding
perceptron NNs and further work.
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Figure 4.36  General structure of perceptrons in four layers. While algorithms,
such as backpropagation, can define biases and weights in each layer, insight into
the application may produce a perceptron design faster and better.

SUGGESTED REFERENCES

B. Kosko, Unsupervised Learning in Noise. This paper considers the stability of neural networks
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- for Analog Input Parterns. This is the best treatment of the ART-2 algorithm, and it is a classic
paper in the field. It contains much information, especially the purameter sensitivity studies.

J. HOPFIELD, Neural Nenworks and Physical Svstems with Emergent Collective Compurational Abili-
fies. This is a NN classic. The paper discusses associative memory by systems with many simple
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problems such as the traveling salesman problem. The major impuact of the paper, however, was in
producing interest in the field, which led to more powerfu! NNs.

K. Passino, Neural Computing for Numeric-to-Symbolic Conversion in Control §; vstems. Perceptrons
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examples are given. The paper sets the biases and weights as described in the text. In this paper
the technique is referred to as “Harvey'’s method.” The method is an alternative way to speed up
the well-known backpropagation algorithm.

EXERCISES

—

. Assume the following:

2. An ART-1 neural network with Af = 3, ¥ = 5, shown in figure 4.37.
b. A set of consistent parameters and choose an initial set of LTMs.
¢. Training inputs /(1) = (110}, /(2) = {01 1).
d. Fast learning and other parameters.
Compute the LTMs after a single training sequence cycle. What are the classifications of 1(3) =
(100). 7{4) = (001), and /(5) = (010)?
- What are the classifications of /(3) = (100), /(4) = (001), and 1(5) = (010} after this training
sequence?

(]

3. Let /; be the ith input 10 ART-2. Assume zero top-down LTM trace. Find the noise threshold
that attenuates /;.

4. Let a saw-tooth input be presented to ART-2 varying between /; and /-, with I, < . Find the
ratio f3/1; so I, is stored as zero.

5. Show that multiples of the input to ART-2 are indistinguishable.

6. Show how the magnitude of the LTM trace varies with input pattern length.

7. Consider # medical diagnosis application of ART-2. Assume there are 25 characteristics, each
with 5 values or levels, which are collected during interviews and observations of a patient.
Assume some characteristics are critical for making a correct diagnosis, while some character-
istics are not applicable for particular diagnoses. Design, describe the training, and outline the use
of an ART-2 that recognizes patterns of input characteristics in 5 diagnostic categories (see (43]
for a nursing diagnosis example). How could the system be updated with new information? How
could the system be verified (algorithm correct), validated (agrees with reality), and accredited
(accepted for use by practitioners)?

8. Design a Hopfield associative memory to store two memories, /(1) = (110) and £(2) == (01 1).

9. Show (1) and /(2) are stable points.

10. Let /(3) = (100). Show it relaxes to /(1).
11. Designa multilayer perceptron to classify /(1) = (110) and /(2) = (011) in different categories.
12, Let /(3) = (100). In what category is /(3) classified?
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Vision Systems

The first four chapters presented elementary NN modules. Inthe lateral interaction modules,
we have controllers, feature detectors, and front-end processors. In the perceptron networks,
we have simple clussifiers. And in the ART networks, we have general memory units. This
chapter applies these elementary modules to design machine vision systems that roughly
mode! biology.

5.1 OVERVIEW OF HUMAN VISION

The plan of this chapter is to approach vision from a biological point of view. This section
summarizes primate vision.

Vision here means higher prmate vision, especially human vision. Although data
are available for several species, many results come from the macaque monkey, an animal
with visual capabilities like those of human beings. In comparison, the vision systems for
creatures lower than primates differ significantly from primate vision.

The visual pathway from the eye goes to the visual cortex in two steps, shown in
figure 5.1. The output from each retina divides at the optic chiasm and ends on neurons
in the lateral geniculute nucleus (LGN). In turn the LGN axons project along the optic
radiation to the visual cortex.

Table 1.5 summarizes characteristics of human vision. The retina has about 1.25 x 103
receptors. Processing in the retina compresses the data about 125 to 1. Thus, the resolution
near fovea, the most sensitive part of the retina, is about 1000 x 1000 pixels.

The relative discrimination to brightness variations is 570 “just noticeable differ-
ences.” Discrimination of frequency variations is 128 “just noticeable differences.”
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Figure 5.1 The underview of the human brain showing the visual pathways,
For euch retina, half of the axons go to the right truct, and the other half go to the
left ract. (From Kuffler, et al. From Neuron to Brain. Reprinted by permission
of Sinauer Associates, Inc., 1984). ‘

The field of view (FOV) of each pixel is about 0.5 minutes of arc (8 millidegrees)
at fovea with good contrast and brightness [51, p. 43]. Thus, the FOV of each eye for the
highest acuity is 500 minutes of arc, or 8.3°. Moreover, the eyes can track with a precision
of about | minute of arc [51, p. 34].

Assuming typical values of 7 bits per pixel and a 100 Hz pulse frequency along the
optic nerve, the data rate to the visual cortex is about 700 Mb/s, fess than the capacity of
current fiber optic channels.

Pathway characteristics of key brain areas in vision, shown in figure 5.2, are as
follows. Research shows vision involves at least a dozen cortical areas in primates [83,
p. 371). Moreover, the vision system has a hierarchical structure. That is, researchers
can assign distinct processing levels to the modules making up the system. (Deductively,
there is no reason to expect such organization. For example, the brain could be a complex
network without distinct hierarchical levels [83, p-3711) Co o

Researchers have mapped over 30 pathways among vision-related areas. The number
of actual pathways is probably much larger because many connections have not been studied.

A basic finding is that most pathways connect the areas in reciprocal fashion (83, p. 371}

For the dozen visual areas, the overall cortical hierarchy has six levels, Researchers
constructed the hierarchy by assigning each area 1o a level just above _Lhe"h'ghe‘sl area
providing an input [83, p. 372]. The procedure leads to the six levels.”

Architectural characteristics of vision processing are as follows. _Anatomical, be-
havioral, and physiological data reveal two distinet channels for locating and classifying,
shown in figure 5.2 by the dotted line and the X-Y pathways. The two channels separate at
the retina and have separate retinal detector cells, labeled X and Y. They remain separate at
the cortical and midbrain levels.
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Figure 5.2 Schematic of visual projections to the brain areas involved in vision.
(From Kandel and Schwanz. Principles of Neural Science. Adapted, with per-
mission, from the Annual Review of Neuroscience Vol. 2, 1979, E. Kandel, and
Appicton & Lange, 1985).

Evidence shows the classification channel analyzes form and color. The location
channel analyzes visual motion across the FOV {85, p. 372).

The X-cells go to the classification channel [5, p. 353). They are medium-sized cells
with small optical fields which give high acuity and comparatively slow response times.

The Y-cells go to the location channel, They are big cells with large optical fields
which give low acuity and fast response times.

(The W-cells, a third kind of retinal cell, go to the midbrain areas. The W-cells
have small fields. They coordinate the FOV to head and eye movements. The population
distribution is about 50 percent for X, 3 percent for Y, and 45 percent for W.)

The classification channel works as follows. The classification channel starts at the
X-cells of the retina. The channel then goes to the retinal ganglion cell (RGC). It continues
to the LGN, to the primary visual cortex (Vl1—also called area 17), and the secondary
visual cortex (V2-V5——also called area 18). It then goes to the inferior temporal cortex
(ITC—also called areas 20 and 21). ' c A

The visual pathway maps the FOV seen by the eyes onto V1. The mapping to VI
impresses the FOV on the fourth layer—of six layers—of the cortex sheet. The mapping
is continuous, has the well-known logarithmic distortion near fovea, and rotates the external
image about the horizontal axis, as shown next.

Figures 5.3 and 5.4 illustrate the mapping of the external FOV onto V1. In figure 5.3
(top), the external image has horizontal and vertical lines with a circle around the origin.
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Figure 5.3  Retinotopic mapping of the visual field of view to the striate cortex.

* The mapping distorts and rotates the image about the horizontal axis. The right-
eye view corresponds to the left cortex hemisphere, and vice versa. Distortion
causes magnification near fovea. (Adapted from Frisby, 1980)

The figure numbers positions 1 through 5 along the horizontal line. The figure also
marks positions A through E along the vertical. The circle has a radius of 8°, the FOV for
highest acuity without moving the eyes.
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In figure 3.3 (bottom), crossover connections map the right-hand FOV of the two eyes
to the left-side of V1 (as seen from the rear of the head). The mapping also interlaces the
images from the two eyes. The images remain separate. Similarly, crossover connections
mupvlhc left-hund FOV of the two eyes to the right-side of V1. The mapping also rotates
the image about the horizontal axis.

Figure 5.3 shows magnification of the image. The mapping expands the region near
the fovea, the region of highest acuity. For example, the distance from 3 1o 4 and from 4
o 5 are equal in the external image. In V1 the distance from 3 to 4 is greater than from
410 5. Similarly, remarks hold for distances along the vertical.

Figure 5.4 shows the mapping of a word and the mapping of radial and circular lines.
The mapping distorts and rotates the V1 image for a single eye. Circles in the external image
get mapped to near vertical lines,"and external radial lines get mapped to near horizontal
lines. Measurements show the mapping is like a complex logarithm function.

The vision feature detectors work as follows. Areas VI, V2, and V3 function as feature
detectors. As discovered by Hubel and Weisel (1933) [51], the features give contour and
orientation informution about the pattern.

Researchers huve measured the response of individual cells (neurons) along the clas-
sification channel to external images [31, p. 69]. In the retina and LGN, the response is
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on-center/off-surround or off-center/on-surround. In VI, three cell types have been found:

*simple, complex, and hypercomplex.

Simple cells respond to stationary edges, slits, or lines in the external i image at precise
orientation angles. In human beings the angular resolution between two straight lines is
about 10° {30, p. 48]. Interpolation allows discrimination between two lines differing by
about 3°. A stationary line must be carefully oriented and positioned to produce a response
frorh a simple cell.

The receptive field of a V1 neuron is a small area of the retina on which light must
f.xll to affect the neuron. At fovea simple cells have receptive fields measuring About Py

- Atthe periphery, the receptive field size is about 1° by 1°,

Complex cells respond to moving edges, slits, or lines in a precise direction. About
75 percent of cells in VI are complex [51, p. 74). The receptive field of complex CLII>
is slwhlly larger than that for simple cells. Near fovea the receptive field size is ubou[ 3
bV 3.

Hypercomplex cells respond if one or two ends of a line stop in the receptive area. If
the line goes through the receptive area without stopping. the hypercomplex cell response
goes to 0 or 1o a constant value.

Summarizing the feature detectors, the features in primate vision are stationary or
moving edges, slots, or lines. In comparison, these are not the features commonly used in
current machine vision (MV) algorithms. Typical features in MV algorithms are corners,
faces, frequencies, or responses of matched filters.

(Although u global Fourier transformed by the visual cortex was hypothesized er-
roneously, research shows a local spatial frequency analysis starting in the striate cortex
{60,74). This analysis is done by interactions among adjacent simple cells.)

The ITC (areas 20 and 21) in the classification channel works like a classifier. The
ITC output goes to higher level centers of logic and emotion [53, ch. 5], The location
channel works as follows.

A location channel starts at the Y-cells of the retina. The channel goes through the
midbrain areas to the superior colliculus (SC) and then to the pulvinar nucleus (PT). It then
8oes 1o the posterior parictal (PP). The output of this channel goes to the frontal eye fields
(area 8). Evidence suggests this system is responsible for location analyses of objects in
the FOV. -

Interconnections link the classification and location channels. The SC projects di-
rectly to the ITC, bypassing the rest of the main route. The PT projects to the secondary
visual cortices and to the ITC. The classification channel also passes data to the location
channel by paths from V1 to the SC and to the PT [33, p. 101]. :

Counsidering the system as a whole, researchers believe it works as follows. -Retinal
lmages send data for pattern analysis by the classification channel. The classifying system
passes the data from RGC to LGN to VI, then through paths in V2, V3, V4, and V5, and
then to the ITC.

At the same time, retinal images pass through midbrain routes that locate objects
and analyze spatial relations and motion. Moreover, the location system interacts with the
pattern analysis system at most steps along the route. Key interactions occur in the location
visual cortex for constructing spatial relations [53, p. 101].
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Besides the level scheme, a relationship exists between the level and the receptive
field size.

Receptive fields are smallest in VI. The fields increase in size at successive levels
of the hierarchy [83, p. 372]. Researchers also found that receptive field parameters—
size, shape, and location—vary [53, ¢h. 5]. That is, a mechanism, probably presynaptic
inhibition, adaptively adjusts a feature detecting cell. (Presynaptic inhibition is 2 mechanism
that acts to turn off selected inputs to a neuron—see chapter 2.)

Presynaptic inhibition in the feature detection stages changes the shape and location
of the receptive field. Under normal conditions, stimulating the ITC changes the receptive
fields of area VI, suggesting that the ITC may exent feedback control over the feature
detectors. Moreover, emotional states also alter the receptive fields.

Thus, recognition is likely an active feedback process that restructures the feature
extraction stages. That is, feedforward and feedbuck signals continue until matching an
input and some known class of stimulus {53, p. 108].

Recognition starts with standard receptive fields. If matching by the ITC fails, feed-
buck shifts the processes in the preceding stages to extract features for another object class.

Reseurch also suggests a mechanism for directing attention to selected locations in
the FOV. In short, windowing occurs.

Windowing focuses on small details and ends notice of other objects in the FOV.
Researchers suspect that the midbrain directs this process, perhaps cued by cortical inputs.

The vision system has other inputs besides those from the retina.  Signals from
the motor systems give data about eye position. Moreover, inputs from the frontal cor-
tex may be the source of selective attention. These attention inputs direct goal-related
processes.

Visual memory is another source of input, which may improve the search strategy in
the perceptual analysis {53, p. 132].

Research shows considerable use of feedforward signals. Outputs of the visual front
end supply a variety of luter stages. Indeed, the higher processing levels may tap the early
stages for simple data, such as overall brightness.
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In practice the longest times are a fractio
" visual interaction time with the outside world.

‘ Summm.izing the above description, figure 5.5 shows a block diagram of the brain’s
visual processing. The systemisa sensor-preprocessor-feature-extracting-classifier system
A small number of serial stages move large arrays of data. In each stage the procéssing 15
heu.vily parallel. Feedforward and feedback pathways connect the modules, .
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P:lgure 5.5 A block diagram of the vision system containing modules. (From
Kent. The Brains of Men and Machines. Reprinted with permission of E. Kent

Output from euch stage of processing is probably available to all parts of the system. 1981).

The primary cortex, however, gives information about the detailed nature of the visual field

Bric

and its spatial structure. The primary cortex does not analyze patterns into objects. To
organize patterns, the higher levels draw on experience, that is memory.

After visual processing, the bruin uses outputs from the visual system throughout.
One area records visual objects (memory). Another area organizes a logical world model

from experience and sensory inputs (cognition). Yet another area responds emotionally to

perceived objects (motivation) [53, ch. §). ) L L

The system is asynchronous, that is, it has no master clock. The system is a serial-
parallel, analog, asynchronous, real-time Compuling machine. In comparison man-made
computers are mostly serial, digital, synchronous, and off-line.

The system continually updates on each pathway. Thus, there will be differences
among the modules in the processing time, in the spatial relations of FOV objects, and in
the external representation of the external world. In short, spatial-temporal smearing occurs
(see chapter 9 for further discussion).

5.2 AN ARCHITECTURE FOR MACHINE VISION

Research suggests that the advantages of biological vision over current MV are from feed-
back, flexible control, and the kinds of feature detectors. This section describes an example
general purpose MV system having some of these biological characteristics,”

. The purpose of the system is to find and identify spatial patierns of luiminance in the
FOV. The term “general purpose™ means recognizing objects of different classés without
changing the algorithm. Applying the system means setting a few sensitivity parameters
and training by examples. : ) o -

The design method is to model the human vision system. The functions of the
modules approximate those of the human brain. For convenience, implementation in a
testbed (described below) uses a mixture of NNs and standard processing algorithms.

) The system recognizes gray images in the FOV, with arbitrary translations and rota-
tions. It does not emulate certain biological characteristics. Not emulated are binocularity,
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size invariance, motion perception, color sensitivity, and discernment of virtual boundaries.
Indeed, many applications can omit these properties.

The architecture of the system has location and classification channels that work
together. The location channel searches for objects of interest in the FOV and, after one is
found, the classification channel clussifies it .

The block dizgram follows from biology (figure 5.6). The following paragraphs
describe the functions of each module.
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Figure 3.6  Block diagram of a neural network architecture for machine vision.
A 323 x 523-pixel image with 8-bit pixels has been included at the left of the
figure as an example input image.

To illustrate how the system works, the description carries through an example of
a 525 x 525-pixel input image with 8-bit pixels. The example assumes objects of size
175 x 175 pixels appear in the input image. This object size corresponds to normal cells in
a Pap smear image at x400 magnification, discussed below.

1. Classification Channel. Some classification channel modules approximate the
functioning of selected brain areas: the lateral geniculate nucleus (LGN), visual area 1
(V1, also called A17), visual area 2 (V2, also called A18), inferior temporal cortex | (ITCI,
also called A20), and inferior temporal cortex 2 (ITC2, also called A21). Other modules
approximalte certain biologicu! functions without the anatomical comrespondence, such as
the SUM module. ’

2. LGN —Grayness Processing. Figure 3.7 shows the front-end processing stages in
the classification channel. The classification channel has feedforward and feedback signals.
Signals flow from the input image through the feature extracting stages to ITC1 input.

The first module in the classification channel is the LGN, The LGN contains the
CALIBRATE and NORMALIZATION boxes (figure 5.6).
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Flg_ure 57 ) Summur_y of image processing operations. For the example of a
52? x_SZS-plx::l input image, the classification channel places a window of 175 x
l?:—plxcis around the object in the image. (The window size is set 1o fit the object
size.) The 175 x 175 window is then broken into subwindows 1o extrict details
of the image, and the details are stored in the feature vector, A

T.he CALIBRATE and NORMALIZATION boxes handle the grayness and adjust for
overall ilumination in the FOV. These boxes decouple the image’s grayness and illumination
from the rest of the processing. The decoupling allows designing the remaining modules
for pixel values lying in the range of O to 1. o )

Assume the location channel has found an objectin the FOV (see below). The location
channel sends the pattern’s position to the LGN module (figure 5.7, bottom). In the example
the windowed image covers 175 x 175 pixels. ’ : ‘
. The CALIBRATE box computes a histogram of the windowed image. The testbed
images have 8-bit pixels. Histograms of these images are often concentrated in a small band
in the range from 0 to 255. Calibrating spreads the intensity values over the entire 0-t0-255
range by linearly mapping the lower part to 0 and the upper part to 253, :

The histogram’s lower limit is the point where the cumulative count is | percent of the
peak value. The upper limit is where the cumulative count exceeds 99.25 percent. These
limits prevent outlying pixel values from affecting the histogram stretching factors.

The NORMALIZE box rescales the pixel values so that pixels leaving the LGN
module are in the range from 0 to 1. The box divides the calibrated pixel values by 255,

3 Vi —-High. Resolution Features. The first feature-generating module is A17 (or
V1). It breaks the input window into subwindows of 7 x 7 pixels. Thus, the example
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175 x 175-pixel window has 625 subwindows. Note that the 7 x 7 subwindow size is
independent of the input image size. -

SPIRAL MAP and VISAREAT then process each 7 x 7 subwindow. SPIRAL MAP
(figure 5.6) scans through the subwindows in a spiral pattern. The mapping proceeds left
1o right across the top row, down the right column, right to left across the bottom row, up
the left column, back across the second row, and so on. The scanning ends at the center
subwindow. The purpose of the spiral mapping is to simplify interpretation of the feature
data.

VISAREA (figure 5.6) does the high-resolution feature extraction. It measures lumi-
nance gradients (increasing or decreasing) in four directions for each 7 x 7-pixel subwindow.

A gradient is a characteristic of gray images and is analogous to an edge in a binary
image. The luminance gradient in the system is the rate of change, or slope, in brightness
across a 7 x 7 subwindow.

Windows with an abrupt step in brightness in one direction have a large gradient in
that direction. Windows with a gradual change in brightness from one side to the other have
a small gradient. Windows with uniform brightness, that is, with no visible edges, have
zero gradient.

The gradients usually differ because the lJuminance slope depends on direction. The
system produces gradients in four directions — vertical, horizontal, and the 45° diagonals —
for each 7 x 7 subwindow.

Figure 5.8 shows the operations for producing the four orientation features of each
7 = 7 subwindow. The system needs only two different NNs, with rotating and reflecting
the input.

The gradient detectors in the system are CC NNs. In the testbed, these NNs have
25 hidden neurons and | output neuron. As suggested by biology [21], each neuron is
excitatory or inhibitory, not both. Figure 5.9 illustrates this NN,

The gradient-measuring NNs give responses to selected patterns. Figure 5.10 shows
the design patterns. Each feature detector NN has 1924 fixed interconnecting weights for
the testbed.

A genetic algorithm technique computed the weights off-line (see chapter 7). The
weights are fixed. Figure 5.11 shows the horizontal responses to the design patterns. Fig-
ure 3.12 shows the diagonal responses.

4. V2-—Shape Features. The second feature-generating module is A18 (or V2). It

detects edges near the perimeter of the input window. V2 is also part of the location channel

(see below). lts output contains data about an object’s general shape. ... . 1, -
The AVERAGE box defocuses the image to produce a single 7 x 7 image, regardless

of the size of the input image (figure 5.6). For the 175 x 175 input example, the defocusing

averages over 23 x 25 input pixels to produce each output pixel. The averaging smears
pattern details (details captured by V1), but retains data about the outside edges.

Figure 5.13 illustrates averaging a cell fully in the window (a) and partly in the window
(b). As shown, the averaging produces a single smeared 7 x 7-pixel image of the pattern
in the window.

VISAREA2 detects edges near the four sides of the defocused image. In VISAREA2,
a3 x 7-pixel detector senses the presence of near-horizontal edges at the top and bottom of
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Figure5.9  Architecture for a feature detector neural network. An input pattemn,
shown in cross-hatching, is impressed on M neurons. Each input neuron is
connected to N hidden neurons and a single output neuron, whose output is high
fora c.hosen angular orientation of the input pattern and low for other orientations.
The hidden neurons may be excitatory (labeled +) or inhibitory (labeled —) and

are interconnected. In the baseline system the input pattern is 7 x 7 pixels with
25 hidden neurons. .
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Figure 5,10 Gray patterns used to desiyn the V1 feature detectors, as described
in section 7.5, The set includes horizontal (1-3), 45% diagonal (4-6), vertical
(7-9), and 1357 diagonal (10-12) with two gradient directions.

the smeared image. A 7 x 3-pixel detector senses the presence of near-vertical edges at the
right and at the left of the smeared image. Figure 5.14 shows the position of the detectors.

When a window centers on an object, edges occur on four sides. The VISAREA?2
output s four values. The values measure the UP, DOWN, RIGHT, and LEFT edge strengths.
The feature vector includes these four values, shown in figure 5.15. A single 7 x 3 NN,
with rotations and complementing, can do all V2 feature detection.

Figure 5.16 shows the design patterns for VISAREA2. A genetic algorithm technique
uses these patterns to design a7 x 3-pixel input NN (see chapter 7). Patterns | to 4 represent
edges of a gray image properly windowed. Patterns 5 to 8 represent patterns not properly
windowed.
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Figure5.12  Response of the 45 diagonal feature detector to the design patterns.,

The VISAREA? edge detectors use fixed weight CC NNs with 25 neurons and one
output. Figure 5.17 shows the response of the V2 vertical (LEFT) edge detector module to
the design patterns. The presence of an edge in this section of the image (patterns 1 to 4)
gives a large response.»Whilc the others (patterns 5 to 8) give small responses.

5. SUM—Size Feature, The third feature-generating module is SUM (figure 5.6). It
adds up the pixel values of the input window. Thus, the single output from SUM measures
the object’s gross size after normalization. For convenience, the architecture separates this
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Figure 5,13 The AVERAGE module in V2 takes a, say, 175 x l75-pixcvl input
image and smears its details to give 2 7 x 7-pixel output image that fetaing the
general shape information. The position of the input image may bc.wuhm (a) or
outside (b) the window. This position corresponds 1o the position of the smeared
output image,
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the edges (if any)in 3 = 7-and 7 x 3-pixel sections of ll\g 7 x T input image.
The four outputs show the presence or absence of an edye in the corresponding
section of the 7 x 7 input image.
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Figure 5.13  Details of the V2 VISAREA? modules. The gray input image is
rotated and complemented as shown so that only one NN is needed for detecting
edges in the four sections of the image.
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function from V1 and V2, though the biological function occurs in V1 and in V2 (see section
5.1). The feature vector includes the SUM output.

6. Feature Vector. The system classifies with data about size (SUM), overall shape
(V2). and detailed structure (V1). The different subwindow sizes of SUM, V2, and VI
model roughly the different size receptive areas of the visual cortex. For the 175 x 175-
pixel window, there is one value from SUM, four values from V2, and 2500 values from
V1. These 2505 values form the feature vector.
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Figure 5.17  Response of the vertical LEFT feature detector to the design
patterns. For the buseline system, when an edge is present in one side of an
image, the response is high, Otherwise itis low. The signal-to-noise ratio is at
leust 50 for the design images.

Note the system does not use operations common to other systems. 1t uses no Fourier
transform nor does it have face, corner, circle detectors, or matched-filters.

The testbed arranged the SUM, V2, and V1 outputs in a vertical vector (figure 5.7)
o help interpret the fewure values from SPIRALMAP and VISAREAL

The teature values from the image’s outer parts are at the top of the vector. Feature
values from inner parts are at the bottom. Thus data about the general shape of an image
are found at the top of the vector, and data about the interior are at the bottom.

Adjust the SUM, V1, and V2 values to give, roughly, equal influence to an object’s
size, shape, and detail structure (see {42} for examples of the procedure).

For example. figure 5.18 shows the feature vector of a human cell from a normal
Pap smear cell (see description below). Note the relative sizes of the SUM, V2, and VI
components.

Figure 3.19 shows examples of normal () and abnormal (b) cervical smear cells taken
at x 400 magnification. The grid, not to scale, suggests the matrix of 7 x 7 subwindows.
The figure also displays part of their VI feature vectors. As seen, the feature vectors of
normals and abnormals are different.

7. ITCt —Classitication. The recognition process consists of an unsupervised clas-
sifier (ITC1) followed by a supervised one (ITC2). The unsupervised classifier is an ART-2
NN. The testbed applies an ART-2 over other NN classifiers— perceptrons and Hopfield
NNs—because of its speed, stability, feature amplification, and noise reduction. These
characteristics better suit the application. ART-2 is also a better model of the biology (see
chapter 4).

To train the ART-2, set the initial LTM trace values according to a rule given at the
end of section 4.2, Next, present a set of training patterns to F1, one after the other. At first,
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Figure 5.18  Featre vector of a normal Pap smear cell. The three kinds of
components ($UM. V2, and V1) of the feature vector are weighted so that
classification is from size (SUM), general shape (V2), and interior details (V1).

Figu_re 5.19 Compn_rison of (a) normal Pap smear and (b) abnormal Pap smear cells, Shuwn.on
th; right are 512 of 2500 V1 features from the center of the images, that is, near the nucleus. The
grid (not to scale) suggests the 7 x 7 boxes of V1 where the system detects edges.

when ART-2 is untrained, the first pattern immediately causes the NN 1o enter the learning
mode. The network learns the pattern by modifying the weights associated with an F2 node.
After learning the first pattern, each succeeding pattern will trigger the network to search
for a match among the F2 nodes.
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If the pattern is a close match to a previously learned one, ART-2 enters the learning
mode. ART-2 modifies the LTM trace so the truce represents a composition of all the past
closely matched patterns. -

If the pattern mismatches all the previously learned ones, ART-2 goes to the learning
mode. ART-2 modifies the weights associated with an unused F2 node. Thus ART-2
adtomatically associates each pattern with an F2 node. In this way ART-2 programs itself.

After training, present a new pattern. ART-2 produces the pattern’s exemplar and
searches the LTM trace for the most closely matched exemplar, When a match is found,
the corresponding F2 neuron gives the category best matching the pattern,

An important parameter is the vigilance, the degree-of-similarity threshold, between
the LTM truce and the input exemplar. If the ART-2 metric equals or exceeds the vigilance,
ART-2 associates the pattern with the corresponding F2 node. If the metric is less that the
vigilunce, ART-2 declures a mismatch and searches among the other nodes for a match,

A low vigilance value (near zero) causes the system to tolerate lurge difterences and
results in coarsely defined categories. A high vigilance value (near one) causes increased
sensitivity in discrimination and results in finely defined categories.

In practice, setthe vigilance high enough to distinguish patterns that represent different
categories. The value, however, should be low enough and so slight that changes from wrong
information will not cause misclassification.

8. ITC2—External Names, After training, the ITCI (ART-2) output nodes of F2
correspond to particular objects in the FOV. For example. if the first ten training images are
normal cells, the first ten ITC! output nodes correspond to NORMAL.

ITC2 is a simple logicul OR operation that associates activity of these nodes with
the nume of the object, say, NORMAL. (Note: ITCI is called an unsupervised classifier
because the algorithm automatically defines the input-to-F2 node associations. 1TC2 is
called a supervised classifier because the operator defines the input-to-output labels.)

After ITC2 processing, the system decides whether to store the object’s name and
location. The ART-2 marching parameter {13} is the confidence measure for this decision.
For example, if the matching parameter just passes a threshold (the vigilance), the “confi-
dence level™ is, say, 50 percent. A perfect match corresponds to a “confidence level” of,
say, 100 percent.

If the "confidence level” pusses a second threshold specified by the user, the system
stores the results. If the confidence level is not sufficiently high, the location channel adjusts
the window (discussed next) and the system processes the image again.

9. Location Channel. The location channel places an input window around an object
so the system might classify it. The location channel consists of the superior colliculus
(SUPERC), LGN, V2, und posterior parietal cortex (PPC) modules, shown in figure 5.6.

Location is a two-stage process consisting of coarse location followed by pull-in.

In practice the processing for location is as complex as the processing for classification.
Location must quickly find patterns of interest in the background clutter. For example, the
search for one or two abnormal cells in 50,000 (typical of a Pap smear slide) is a location
problem. After finding an abnormal cell, recognition is relatively easy.
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' 10. SUPERC —Coarse Location, SUPERC processing uses a second ART-2 NN to
perform coarse location, shown in figure 5.20. The network’s LTM trace, computed off-line,
corresponds to general shapes of interest. This trace primes the system.

F2 ENABLE

F2

TOP-DOWN IMAGE
"PRIMES" F1

F1
(3 Layers)

R
MEASURE -~———
PARAMETER IS
WINDOW ENABLE

INPUT IMAGE

Figure 5.20  Schemuatic of the coarse location processing. A stored top-down
exemplar in an ART-2 neural network primes the system for detecting objects of
general size and shape, even if off-center. .

To detect the presence of an object, the SUPERC ART-2 compares the exemplar of
its current window to the LTM trace. If the object's size is correct, even an off-center object
triggers a match.

In the example, SUPERC extracts a 175 x 175-pixel window from the 525 x 525-pixel
FOV input image. It impresses the window on the F1 bottom layer. The 175 x 175-pixel
images produce 30,625 inputs to the ART-2.

The ART-2 computes the exemplar. The system compares the LTM trace to the
exemplar. The designer selects the LTM trace so an object of the correct general size causes
a match, even if off-center. A match suggests an object of this size is present.

If the system finds no match in a window, it moves on to an abutting window. In the
example system, there are nine coarse location positions.

The system uses the match parameter as an enable signal to the LGN module. A
module inside SUPERC selects the coarse window positions. The system sends the coarse
position to the ADJ box for further adjustment (figure 5.6).

11. PPC—Fine Location. The second stage of location is pull-in, or fine adjustment
of the coarse location. Pull-in operates on a feedback path consisting of the LGN, V2, and
PPC modules,
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The PPC mukes small changes in the window's position using the outputs of V2,
When the system centers a window on an object, all the V2 edge strengths are about equal.
Olher\vise.‘PPC tries to equalize the V2 .cdgr: strengths.

For example, figure 5.21 shows the V2 output for an object fully in (a) and partly in
the window (b).
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Figure 3,21 Examples of (4) the window centered on an object and the
corresponding four V2 outputs, uand (b) the window not centered. When the
window is not centered, the unequal V2 outputs produce signals that move the
window (pull-in).

When centered in the window, the object’s edge strengths are about equal. When
not centered, that is purtly in the window, one or more edges will be missing. Thc?n. the
corresponding edge strength is small. The system then moves the window to equalize the
edge strengths.

" To move the window on an object, the system routes the edge strengths from V2 to
the DELTAL box in PPC. This box carries out a control law for moving the window.

For example, figure 53.21 shows uan object that is below and to the right of the window:
The position produces a smaller UP than DOWN response and a stronger RIG}HT than LEFT
response. To center the object, the DELTAT box (figure 5.6) moves the window DOWN
and RIGHT.

In the design example, the control law is a standard bang-bang rule with a dead zone
for both vertical and horizontal directions. The outputs of the DELTA box are the changes
in the vertical and horizontal directions.

Figure 5.22 shows the control laws in the example.

A second pull-in path, which consists of LGN, V2, ITC!, ITC2, and PP(:,‘. makc.js
repeuted tries at recognition. ITC2 activates this path when the classification contidence is
low in a match between an input pattern and the closest stored pattern.

When activated, the DELTA?2 box produces a small, random change of the window's
position. and the system then tries to classify the object with greater confidence. A counter
limits the number of tries.
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Figure 5.22  The baseline control law for vertical pull-in of the window. The
two V2 outputs, UP and DOWN, are subtracted. If the thresholds are'exceeded,
the window is moved. In practice, select the thresholds and step size according
to the application. Horizontal pull-in uses a similar system with the RIGHT and
LEFT V2 outputs.

12, System dynamics. In computer simulations, the system runs sequentially. First,
P T TS . . .o .
the location channel finds and windows an object. The classification channel then does
recognition.

Ina parallel implementation with custom hardware, the modules run simultuneously.
Sequence control is by enable signals and carefully chosen time constants.

The time constants associated with the location channel are short, so the system con-
verges quickly to the location. The classification channel time constants are longer, making
the recognition process slower. The difference in the time constants ensures classification
on a centered object.

13. Computer Simulations. MIT Lincoln Laboratory colleagues and 1 developed a
softwure testbed of this architecture. Computer simuiations run on a network of SUN
workstations and a CONVEX 220 supercomputer. We studied several classes of images,
including vehicles and cytology specimens (cells) [38,39,40,41.42}). We also trained on
TV images and tested on corresponding laser radar images, and vice versa [39]. We se-
lected these classes because large databases exist. Moreover most researchers judge them
unrelated, thus, showing the generality of the system.

We separately tested the main modules, the location channel, and the classification
channel to characterize each. The preliminary classifying results of the cytology study are
as follows. We applied the classifying channel to images of human cervical smears (GYN
pup). In collaboration with pathologists from the Lahey Clinic, Burlington, Massachusetts,
we selected prototypical normal and abnormal cells to train and to test. We photographed
the cells, made slides, and then transferred the images to the computer. For these tests, we
centered the cells by hand: tests on locating cells are in [42]
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Table 5.1 summarizes the cytology training and classifying results. Our original
database consisted of 23 normal and 16 abnormal cells. We generated data for different
orientations by rotating each image 90°7180°, and 270°. The procedure expanded the data
set 10 92 normals and 64 abnormals, or 156 altogether.

TABLE 5.1. PRELIMINARY CYTOLOGY
RESULTS USING ITERATIVE TRAINING

Using Iterutive Training
System Classification
Cell Tipe  Train  Nurmal — Abnormal  Toral

Nornal 26 66 0 92
Abnormal 3l 0 33 [

Experiments showed an iterative training procedure gives good results. At first, we
trained the system on two normal and two abnormal images. We then tested on the remaining
152 images. We increased the training set by adding, roughly, equal numbers of normals
from the false positives and abnormals from false negatives. Error rates drop as one repeats
the procedure. Tuble 3.1 shows no false positives and false negatives with 118 training
images.

These results suggest the system generalizes from its training. In mathematical terms,
the feature vectors e ina 2503-dimensional vector space. The normal cells lie in a subspace;
the ubnormal cells tie in a different subspace. These results suggest the boundary in feature
spuce between normal and abnormal cells is comparatively smooth. That is, the system
generalizes. A highly jageed or checkerboard boundary would need all the images for
training (no generalizing). The results also suggest the system may have promise for initial
cytology screening [80,81]. These results suggest one can drive the error rates for a slide to
less than, say, five percent. This can be done with training sets of several hundred examples
for each cell type.

More testing is needed to confirm these preliminary results and to assess the system’s
practical value. These tests, currently being conducted, include a much larger database so
they can measure error rates less than a few percent.

5.3 DISCUSSION

Researchers have studied MV for muny years, and they have developed a standard technol-
ogy. Yettosome, MV’s performance is disuppointing. To show the context of the preceding
section, a summary of conventional non-NN MV by Rosenfeld, a leading practitioner, fol-
lows,

The prevalent opinion in machine vision today is that any significant increase in processing
complexity for industrial applications must await the arrival of new special-purpose, parallel-
type computer architectures. {78, p. viii]

There is inadequucy in current theories [of machine vision]. There is paucity of well defined
problems that huve well defined rewards associated with them., [78, p. 189-90}
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Another problem associated with current activities on the theory of machine vision is an un-

derlying assumption that a theory of “general” machine vision is achievable. This assumption

may be false. {78, p. 189-90)

-+« standard vision techniques for feature detection, segmentation, recovery, eic., often do not

perform very well when applied to natural scenes, [78, p. 867}

Ideally, the [vision process) stages should be closely integrated; the results obtained at a given

stage should provide feedback to modify the techniques used at previous stages. This is rarcly
* done in existing vision systems, and as a result, little is known about how to design systems

that incorporate feedback between stages. [78, p. 868)

Little is known about visual knowledge representation or about flexible control structures for

vision systems. [78, p. 868]

- - - humans can recognize objects — even complex objects whose presence was unexpected —

i a fraction of a second, which is enough time for only a few hundred (!) “cycles” of the

neural “hardware’ in the human visual system. Computer vision systems have o long way to

20 before they will be able to martch this performance. {78, p. 868]

In summary, current MV performance is significantly less than the performance of
biological vision. Note the references to parallel types of architectures, feedback 1o earlier
stages, and flexible contro! structures. Note also the need for well-defined problems, a
general structure, and applications to natural scenes. The NN architecture described in the
preceding section has these features. (

SUGGESTED REFERENCES

D. HUBEL, Eye, Brain, and Vision. The literature on primate vision is lurge. Many books deal with
this subject alone, and every general treatise on human biology devotes some space to it. Technicul
Journals publish a continuing series of articles on vision. One of the best summaries of this field
is by Hubel. It covers the pioneering work of Hubel and Wiesel, whose discoveries have rightly
become recognized as of great imporuance.  Although many other works are for the specialist,
Hubel's work is pleasantly discursive. His style is less formal and more physical, consequently,
more intelligible.

D. ROSE AND V. DOBSON (ed.), Models of the Visual Cortex. A quarter of a century has passed since
the work of Hubel and Wiesel. During that time there has been a profusion of ideas about the
exact nature of the underlying mechanisms in the visual cortex. This book presents the ideas and
conclusions of 75 of the most prominent theorists in the field. The subject matter is concentrated
on area 17. The mathematics is limited to calculus.

J. MAUNSELL, Physiological Evidence for Two Visual Subsystems. Many studies describe two distinct
kinds of higher functions in the visual system. One function involves primarily shape, color,
and pattern. The other function involves motion and spatial refationships. The paper discusses the
behavioral, physiological, and anatomical data bearing on these two visual functions. The functions
occur in different brain regions. A duality arises in the organization of the earliest stages of the
visual system.

D. VaN ESSEN AND J. MAUNSELL, Hierarchical Organizations and Functional Streams in the Visual
Cortex. Hubel and Wiesel obtained evidence for many sequential stages of information processing
along the visual pathway. As researchers studied the visual pathways in greater detail, they found
evidence not supporting a strictly serial scheme of organization. In fact, Hubel and Wiesel's own
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findings —that area 17 projects to severl cortical areas —demonstrates parallel outputs from a
single area. The article concerns mainly the relationships among visual areas, rather than with their
internal circuitry. It presents evidence for at feast two major streams of processing as described in
the text,

H. L1 axD J. KENDER (eds.), Computer Vision. This is an overview of conventional machine vision

theory and technology, circa 1988, The 13 papers fall in four groups: introductory, theoretic
foundations, hardwure architectures, and applications. A main result from this overview is that
standard vision techniques for featre detection, segmentation, and so on, often do not perform very
well when applied to nutural scenes. Human beings can recognize objects —even objects whose
presence wus unexpected —in a {raction of a second. Computer vision systems have a long way
w go betore they will be able to match this performance.

1. LLoyp, Thermul Imaging Systems. Many studies demonstrate that bar chart equivalents are useful in

—

[

[

assessing a muchine vision system. Section 10.4 of this reference discusses the bar chart equivalent,
known as the Johnson criteria, for detecting (object present), recognition (man or woman), and
identification (an individual). The Johnson criteria are a well-known way of connecting laboratory
meusurements o in-the-field performance.

EXERCISES

. Design a neural network visual system for reading English leters and words. Size the modules.

Describe the training and testing.

- Design a neural network visuul system for recognizing common vehicles ata fixed distance away.

. Describe how to combine the outputs of two different sensors, say, a video camera and an imaging

radar, for increase performance. (Hint: Combine the feature detector outputs of the two sensors in
one fused feature vector.)
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6
Hand-Eye Systems

The preceding chapter considered NN machine vision systems. This chapter extends NN
vision by combining vision and motor control. Besides being of practical importance, this
material introduces NN control system design from a biological viewpoint.

The program for the chapter is twofold. First, it summarizes selected characteristics
of biological motor control. Second, it presents two examples of eye-motor systems that
model selected properties.

These eye-motor systems apply the elementary modules derived in preceding chapters.
Assuming familiarity with previous material, the discussion emphasizes new themes and
the added theory.

6.1 OVERVIEW OF HUMAN MOTOR CONTROL

A long series of investigations have shown the design of motor systems in living creatures.
This section summarizes motor control in human beings.

Summarizing [9,56,75] researchers classify muscle as smooth or striated. Smooth
muscle appears structureless under the microscope. This muscle is primarily concerned
with slow contracts in intemal organs and is under involuntary control. Striated muscle,
appearing filamentous under the microscope, is cardiac or skeletal. Cardiac muscle produces
regular, self-sustaining contractions, controlled by nerves and chemical hormones.

Skeletal muscle—the subject of this chapter—is under voluntary control. Though
served by nerves and hormones, the control mechanisms —described below —difter from
those of cardiac muscle,

129
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Most striated muscles connect two bones across a joint. (The exceptions are extraocu-
lar muscles which move the eyeballs and lingual muscles which move the tongue.) Another
muscle opposes every muscle pulling a bone in one direction. That is, there are antagonistic
muscle pairs.

Skeletal muscles work in groups. About 630 muscles sheath the human skeleton.
One walking step uses about 200 muscles. Forty or more muscles lift a leg and move it
forward. Strength depends on the fibers in the muscle. The fibers consist of muscle cells.

Striated muscle cells are a few millimeters long. A membrane called the sarcolemma
surrounds these cells. In each cell are many rodlike myofibrils, responsible for the contrac-
tion.

A myofibril hus repeating light-dark regions, causing the striped appearance of the
muscle under the microscope. A myofibril consists of thick filaments sliding inside thin
filaments. The thick filaments contain myosin; the thin filaments contain actin.

The sliding-filament model explains contraction. In this model the lengths of the
thick and thin filaments remain the same and slide past each other. During contraction the
cell length may decrease 50 percent.

The molecular mechanism of muscle contraction is an actin-myosin interaction cycle.
The energy source is ATP, discussed in chapter 2.

Motor neurons cantrol muscle contraction. The axons of these neurons release acetyl-
choline, a neurotransmitter, cuusing contraction. The axens per motor neuron vary from
three for eyeball muscles to hundreds for, say, thigh muscles. Generally, if a single motor
neuron innervates few muscle fibers, the movements produced are subtler and more finely
graded.

Besides motor neurons, sensory receptors in the muscles give tension measurements,
and sensory receptors on tendons give joint positions. Tendons are tough inelastic tissue
connecting muscle to bone.

Voluntary movements start in the motor cortex. Like the sensory cortex, the motor
cortex has a vertical, columnar erganization. Each motor column is a small group of neurons
affecting the muscles of a joint. Research shows that movement commands encode to reach
a certain joint position, not to activate a series of muscles.

The motor cortex neurons, called Betz cells, communicate directly with the motor
neurons of the spinal cord. The axons converge in a lurge bundle called the pyramidal tract.

Besides the motor cortex, two other brain structures regulate voluntiry movements.
The basal ganglia in the midbrain, consisting of the striatum, pallidum, subthalamic nucleus,
and substantia nigra, gets sensory inputs and starts slow directed large movements. That is,
it does coarse adjustments,

The cerebellum in the hindbrain also gets sensory inputs and initiates fast smaller
movements. Thatis, it does fine adjustments. The pyramidal tract sends these adjustments.
The cerebellum stores programs of learned movements which the motor cortex can activate.

To make fine adjustments, the cerebellum tracks the position of head and trunk by
signals from the muscles and tendons. Large cerebellum neurons called Purkinje cells
combine this information, constantly monitoring a map of body position and location.
Each Purkinje cell typically gets up to 100,000 inputs from sensory neurons.

&
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6.2 ADAPTIVE EYE-HAND COORDINATION

Developing NN models of the human motor control system is just starting—a task to
continue for many years because of its complexity. To date researchers have designed NN
capturing some important biological characteristics. And indeed, practical applications of
these control systems are also starting.

‘This section and the next describe example NN eye-motor control systems inspired by
biology. These systems develop accurate sensory-motor coordination despite changes in the
body dimensions, motor strength, and unpredictable events. Moreover, this coordination is
automatic.

For simplicity consider a system consisting of two eyes and one arm. The purpose
of the system is to look at an object and reach for it with the arm. The system trains and
corrects itself. (The model can easily be generalized to more sensory inputs and more limb
joints.)

Following Kuperstein {57}, develop the system as follows:

L. Arm-Muscle Signals. Assume a limb consisting of two joints, a shoulder, and an
elbow. To introduce notation, let a,, be the arm-muscle signals, shown in figure 6.1.

f

SHOULDER SHC;?:'Q?ER
PITCH
SHOULDER
ROLL

ELBOW
ROLL

Figure 6.1 Nomenclature for a simple two-joint limb. Arm-muscle signals,
apy. activate antagonistic muscle pairs (p = 1, 2) in five degrees of freedom
(g = 1.....5). For the shoulder, g = 1 (roll), ¢ = 2 (pitch), and ¢ = 3 {yaw).
For the elbow, ¢ = 4 (roll) and g = § (yaw).

Denote the antagonistic muscle pairs by p = 1,2. Denote shoulder roll, pitch, and
yaw by g = I, 2, and 3. Denote elbow roll by ¢ = 4 and yaw by g = 5.

2. Joint-Angle Activation. Assume a joint angle is linearly proportional to the muscle
activation. Assume a monotonic dependency between angle and activation (this is a major
assumption-—see section 6.3).

3. Eye-Muscle Signals. The signals that contract and point each eye are ep,. Denote
the antagonistic muscle pairs by p = 1, 2. Following human biology, an eye is pulled in
three directions spaced 60° apart. The direction indices are g = 1,2, and 3 (figure 6.2).
Denote the right-eye signals by €y, and the left-eye signals by e’N.
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21

e

3

€2

Figure 6.2 Nomenclature for the eye-ball muscles. Eye-muscle signals, e,
activate antagonistic muscle pairs (p = 1, 2) in three directions spaced 60° apart
(g =1, 2.3).

4. Retinul Map. Each eye registers light intensity on a two-dimensional space. The
light intensity at position i, j is v;,. Denote the right eye by vi; and the lefteye by v{j. The
indicesi=1,2,..., Jand j = 1,2,..., J span the two-dimensional visual space.

5. Eye Foveation. This system relates ep, and v;; of each eye. Many models are
possible. For simplicity, assume the system points the eyeballs toward the visual center of
an object in the field of view, shown in figure 6.3. (For a better model use the material on
vision in chapter 5.)

6. Gaze Map. Biology vision systems do not have sensors directly measuring eye
position, so the eye position must be computed from the eye signals. The gaze map gives
the eye positions from the foveation signals.

The gaze map is three distributions of activations, £, _,.. Eﬁ,q <isoand E;{‘,d).which
give right. left, and difference (disparity) in eye pointing.
The recruitment function gives the gaze map as follows:
Eppers = [/U)]en — gD, 6.1y

at
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\./ VISUAL CONTRAST CENTER

EYEBALL
V“
¥ Figure 6.3 Foveation system for
pointing a sénsor. An eye foveation
epq FOVEATION control system points the two eyes
CONTROL toward the visual contrast center of an
object in the visual field of view.
where
. i
Sliy=a=.i=1,....1 (6.2)
!
and '
. i
g(l)=ﬂ—[‘.l=l....‘[. (6.3)

These equations model the oculomotor nuclei in the midbrain, shown schematically in
figure 6.4,

7. Retinal and Orientation Maps. [n human beings the visual cortex processes retinul
maps for orientations in lines, slots, and edges. The resultof this processing is the orientation
maps.

To model visual cortex processing, assume the system is sensitive to orientations in
four directions: 0°, 452, 907, and 135>, Assume a convolution gives this processing, as
follows.

V_r<ij> = Vaij> * ke (6.4)

where £, are kernel matrices.

The kernel matrices have the same negative coefficients everywhere except along
one string in one of four orientations. The coefficients in that string are the same positive
number. -

Comparing ¥[_;;. and Vx’<ij> gives de<ij>' Interleave the V; ;. elements to form
the visual map. The visual map mimics the retinotopic layout of neural responses in the
A-17 visual cortex, shown in figure 6.5. (See chapter 5 for a better model of the feature
detectors.)

8. Weight Maps. Combine the gaze and visual maps through weight maps to produce
arm-muscle signals. Let ;. 0> be weight maps used to gate (multiply) the gaze map and
the visual map. The i indices give the map position in the two-dimensional gaze map and
the visual map. The pq indices give the limb-muscle elements.
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Figure 6.4 Guaze map schematic. The gaze map is a set of three neural acti-
vations £ (letn), Eeen trighyy. and EX (disparity), where p. g are as
infigure 0.3 and i = 1., I tnetwork population). The recruitment function
mups the eye-muscle signals to the three activation distributions. The gaze map
mimics neural responses in the oculomotor nuclei of the midbrain.

9. Motor Signals. Assume computed motor signals, from gaze and vision, are M,’,q.
Compute M, by

Moy = S Wiepyns (6.5)
J

where 5, is an elemeat from the gaze map or the visual map.

10. Arm-Muscle Signals. The motor signals from the brain produce the arm-muscle
signals. Assume

Moy + My,

A My 6.6
O My M) ©6)

where M, is the actual motor signal traveling from brain to spinal cord. At first, the arm-
muscle signals may be random. Note, the denominator normalizes the antagonistic muscle
pairs.

L. Learning Rule. Learning adjusts the weight maps of the system. Comparing the
actual and computed motor signals produces an error, which is

€py = My = M. (6.7)
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Figure 6.5 Visual map schematic. The visual map is a set of neural activations
Vi, Ueft), ¥7_,. (dgho, and Ve, (disparity), where < ij > are the two-

x<if> h <if> . K " A - -
dimensional coordmates of the retina and x indexes the orientation. say, 0°, 457,
907, and 135°. The visual map mimics the retinotopic layout of some neural
responses in the visual cortex.

The learning rule
;V(" + l)ij<pq> = ’V(n)ij<pq> +US;/'EP‘1 (68)
adjusts the weight maps, where o is the learning rate.

Figure 6.6 shows a block diagram of the system. The system is first trained and then
operated as follows.

12. Training Procedure. To train the system, follow these steps:

a. Initialize Wijegp> = 0.

b. Choose random values for the motor signals, M, and for the object positions in
the FOV.

c. Foveate on the object.

d. Compute the gaze map and the visual map.

e. Update the weight map by the learning rule.

f. Repeat steps (b) to (e) for other motor signals and other object positions.

13. Operating. After training, the system can accurately reach for objects. First, the
eyes search and find an object in the FOV. Second, the system computes motor signals.
Third. the signals move the limb to reach the object.
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ARM-MUSCLE SIGNALS

M
| VISUAL N
VISUAL NORMALIZE
MAP WEIGHTS
MOTOR
TRAINING
INPUTS
GAZE »i GAZE -
i -
el . RECRUIT MAP WEIGHTS,
+
A A
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3
(Sll)v/ ADJUST |
»{ WEIGHTS
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Figure 6.6  Block diagram of a neural network for adaptive hand-eye coordina-
tion. During learning, a random generator produces signals positioning the arm
while the hand holds an object. The two eyes orient 1o the object. The eye-muscle
signals transtorm to u gaze map. The visual signals transform to a visual map,
Stereo views of the object register in the retinas, The V1 module processes these
images for orientation and disparity. The visual weights gate signals from each
visual map unit to each arm-muscte unit. Normalizing the sum of the products
of guze map and visual map produces the arm-muscle signals. The comparator
matches these gaze-visual product signals. The difference changes the vitlues in
the two weight mups. )

During learning. a random generator produces signals positioning the arm while the
hand holds an object. The two eyes orient to the object.

The eye-muscle signals transtorm to a gaze mup. Each leg of the gaze map represents
the pulling direction of either eye. The gaze-map values (weights) gate signals from each
gaze map unit to each arm-muscle unit,

The visual signals transform to a visual map. First, stereo views of the object register
in the retinas. In each trial, the VI module processes these images for orientation and
disparity. The visual map interleaves the orientation and disparity responses from the two
eyes. The visual weights gate signals from each visual map unit to each arm-muscle unit.

Normalizing the sum of the products of gaze map and visual map produces the arm-
muscle signals. The comparator matches these guze-visual product signals, The difference
changes the values in the two weight maps.
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Kuperstein's {57} computer simulations show learning converges in 3000 to 5000
trials, with learning rates, o, about 10™3. After training, the average errors over many trials
are about four percent of the arm’s length and 4° in angle.

6.3 PLANNED ARM MOVEMENTS

The preceding section presented a simple NN eye-hand system. This section generalizes
the movement dynamics.

In the preceding model the joint angles are a monotonic function of the muscle signals
and. when activated, the limb goes 1o its wrget position. The system is an example of a
spring-to-endpoint (STE) system.

This section modifies the above STE mode! to include muscle dynamics, initial condi-
tions, muscle contraction rates, and feedback signals from muscle sensors (proprioceptors).
The preceding model has none of these characteristics. This section first describes the
system and then defines it mathematically.

Following Bullock and Grossberg [12], to move a limb, ussume the sensorimotor
system computes a target position command (TPC) for the limb. A TPC specities where a
movement intends to stop.

In response to a TPC, a limb must move different distances and different directions
depending on its initial position.

Assume the system also computes a present position command {PPC). This command
accounts for initial positions of the limb and is the signal sent to the muscles. Thus, u single
TPC can produce many PPCs corresponding to different trajectories of the limb.

The difference between a TPC and a PPC is the ertor signal or difference vector (DV).
A central issue is computing DV. In general

DV ={n(T PC ~ PPC). (6.9)

Computing TPCs, PPCs, and DV to produce a trajectory is a newer way of designing
control systems than the conventional method from Newtonian kinematics. (In the Newto-
nian method the system explicitly controls every position of the trajectory. In practice, this
method leads o a combinatorial explosion. Moreover. this NN method is different from
standard control theory though having a superficial likeness to (1) classical control theory —
predominantly single-input-single-output modets—and (2) modern state-variable control
theory —predominantly multiple input-multiple output models.)

Figure 6.7 shows a schematic block diagram for TPC, PPC, and DV. Meuasurements
show this system models well the cell populations in the motor cortex. The system embodies
the idea of intention through computation of a TPC. Intention also leads to variable speed
control.

An “act of will” or GO signal convents the TPC to the selected motion. The system
needs such a mechanism because movements usually have several options — for example,
fast or slow. That is, the GO signal specifies the overall speed.
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TARGET
POSITION
COMMAND
DIFFERENCE MATCH
VECTOR INTERFACE

Figure 6.7 Block diagram of a basic

- motor command system. The system
matches a target position command

se or

(TPC) to a present position conunand

(PPC), producing a difference vector
PRESENT (DV). The DV then adaptively changes
POSITION INTEGRATOR  PPC, driving it to the TPC. (From
COMMAND Grossberg and Bullock. Neural
Dynamics of Planned Arm Movements:
Emergent Invariants and
Speed-Accuracy Properties during
EZVELMOEVLT Trajectory Formation in Grossberg
COMMAND (ed.). Neural Nerworks and Natural

Intelligence. Reprinted with permission
of The MIT Press, 1988).

In the model, a GO signal gates (multiplies) actuation of a movement and regulates
the rate of PPC update. A GO signal regulates a system shown in figure 6.8.

The system produces coordinated movements of muscles. The system automatically
compensates for the different contractions of each muscle group. Researchers call a coor-
dinated muscle group a synergy.

To reach an object, a synergy may first activate the shoulder, elbow, wrist, and fingers.
Then another synergy may activate wrist and fingers to grasp the object.

Learning produces the synergies. Neural control structures quickly and flexibly re-
organize muscle groups needed for a synergy. Moreover, the TPC and PPC commands
organize muscle groups in synergies.
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¥ Figure 6.8 Block diagram of system
with a GO signal for controlling speed.

A GO signal gates the DV signal, so the
’r:gglsTEIg; PPC goes to the TPC at a rate regulated

by GO. (From Grossberg and Bullock.
COMMAND Neural Dynamics of Planned Arm
Movements: Emergent Invariants and
Speed-Accuracy Properties during
Trajectory Formation in Grossberg
(ed.). Neural Networks and Natural
Intelligence. Reprinted with permission
of The MIT Press, 1988).

The contraction duration is roughly equal across a set of muscles for each multijoint
synergistic action. Thus, the contraction rates are unequal, because the contraction distances
are often unequal. That is, the contraction rates compensate for inequalities of distances
with the GO signal controlling the contraction rate.

The degree of matching between a TPC and a PPC controls learning a synerey. That
is, learning updates a motor LTM trace only when the TPC equals the PPC. Thus, DV
controls the gating signal and prevents learning a bad match.

To illustrate, figure 6.9 shows DV gating the learning. The gating prevents incorrect
associations from occuring between eye-hand TPCs and hand-arm TPCs.

The organization of mammalian motor systems are pairs of agonist and antagonist
muscles, described in section 6.1. The system applies an opponent organization to convert
DVs to a PPC that matches a TPC. Figure 6.10 shows the model for an agonist-antagonist
organization,

Having described a sensory-motor system inspired by biology, a mathematical model
follows. (Many models are consistent with the above overall block diagrams. Bullock and
Grossberg [12] developed the following model.) Let
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EYE-HEAD HAND-ARM

TPC ‘ TPC

LEAANING
GATE

Figure 6.9 VITE system with learning. If nonzero the DV signal produces in-
hibition. The inhibition prevents wrong associations between eve-heud TPCs and
hand-arm TPCs. (From Grossberg and Bullock. Neural Dynamics of Planned
Arm Movements: Emergent Invariants and Speed-Accuracy Properties during
Trajectory Formation in Grossberg (ed.). Neural Nenvorks and Natural Intelli-
yence. Reprinted with permission of The MIT Press, 1988).

v
s w(=V +T =Py, (6.10)
dr
JP
_— = ;/' v 6-11
’r Gy, 6.11)

where

T = arget position input (TPC}),

I = DV activity.

P = PPC activity,

G = GO signal.
Note that ¥ in (6.10) averages the error signal T — £. Note alsothat it G = 01in (6.11), P
is constant.
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AGONIST ANTAGONIST OV STAGE

GO

Figure 6.10  VITE system with
agonist and antagonist muscles, The
DV stage and PPC have two channels
cross coupling for agonistic and
antagonistic interaction. The cross
coupling coordinates updating PPCs.
(From Grossberg and Bullock. Neural
Dynamics of Plunned Arm Movements:
Emergent Invariants and

Speed-Accuracy Properties during
Trajectory Formation in Grossberg
(ed.). NVeural Nerworks and Nutural
Intelligence. Reprinted with permission

AGONIST ANTAGONIST PPC STAGE

of The MIT Press, 1983).

Figure 6.11 shows the general behavior of this system for step inputs. At = 0, a
step TPC is introduced (a). Assume the GO signal is a faster-than-linear signal (b). The
error signal DV quickly increases 1o a maximum, then decreases as the PPC (c¢) approaches
the TPC (a).

Figure 6.11 shows two movements of different size with equal GO signals. The
movements have about the same duration. That is, GO controls the speed or duration
regardless of movement size.

Figure 6.12 shows movements of the same size with different GO signals. The
movements have different durations and contraction rates. The larger the GO signal, the
shorter the duration. Thus, the above model has many of the dynamic characteristics of
human motor control systems.

Figure 6.13 summurizes this model in a classical contro! representation. The system
for V" is a low-pass filter with the error T — P as input. The GO signal multiplies the
output of a nonlinear system, giving d P/dt. Negative feedback produces the error signal.
Integrating produces PPC. This architecture is called vector-integration-to-endpointor VITE
in the literature.

While the VITE model exhibits correct dynamics, it is incomplete because there is no
sensory feedback from the muscles. The sensory feedback is needed to account for passive
movements caused by, say, gravity.

During passive movements, a signal from the muscles updates the PPC. That is, the
system has passive update of position or PUP. Adding a signal produced by the feedback
modities the PPC equation. The PUP model is
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Figure 6.11 Example of a VITE
solution. A step input TPC () and a
GO signal (b) produce a DV signal (c),
driving the PPC signal to the TPC (a).
(From Grossberg and Bultock. Neural
Dynamics of Planned Arm Movements:
Emergent Invadants and
Speed-Accuracy Properties during
Trajectory Formation in Grossberg
(ed.). Neural Nerworks and Nuatural
Intelligence. Reprinted with permission
of The MIT Press, 1988).

GIVI* + G, LM, (6.12)
~BM +yl—2ZP, (6.13)
3G, (—€Z + [M]Y) (6.14)
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Figure 6.12  Movements of equal size and different durations and speeds have

similar contraction speeds. (From Grossberg and Bullock. Neural Dynamics of

Planned Arm

Movements: Emergent Invariants and Speed-Accuruey Properties

during Trajectory Formation in Grossberg (ed.). Neural Nenvorks and Natural
Intelligence. Reprinted with permission of The MIT Press, 1988).
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GO = G(Y)

P{1) = PPC
—»

. _T-P v K
N bl I

TPC = V(()——W in

Figure 6.13  The VITE system for a single muscle group in classical control
representation.

As seen. £ depends on a matching signal M. The matching signal depends on the
feedback, /. A LTM wace. Z, recalibrates the scale of P so that / and P correspond. -

This system models the slow longz-term adjusuments from growth and aging. A pussive
GO signal, G, gates the LTM truce. When the muscle is active, the passive part is wrned
off, and the séstcm acts as the preceding VITE NN. A

Figure 6.14 shows a block diagram of the combined VITE and PUP system. This
stmcturg\\ould be replicated for euch muscle and, as discussed, different muscle combina-
tions would produce the synergies.

T-P

TPC = V(i ~
——Lbﬁ po——
-~ P ~ PPC
3

Figure 6.14  The VITE-PUP system for a single muscle group in classical con-
trol representation.
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A. REES anD M. STERNBERG, From Cells to Atoms. Chapter 37 summarizes the sliding-titament

mudel fur muscle contraction. The style is Huent and easy to read.

MLOKUPERSTEIN, Newral Model of Aduptive Hund-Eve Courdination for Single Postures. This is the
best treatment of section 6.2, The article devotes littde time to material underlying the model. Thus,
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S. GROSSBERG AND M. KUPERSTEIN, Neural Dynamics of Adaptive Sensory-Motor Comrol. This
- book introduces a neural theory of saccadic eye movements, which are lurge foveation movements
across the field of view. The brain regions involved include the superior colliculus, parietal cortex,
oculomotor nuclei, and others. The treatment suggests models for general adaptive mapping by
signals derived only from sensory receptors and motor feedback. .

D. BULLOCK AND §. GROSSBERG, Neural Dynamics of Planned Arm Movements: Emergent Invariunts
and-Speed-Accuracy Properties during Trujectory Formation. This reference describes the VITE
and PUP systems of section 6.3. More than half of this article is concerned with the physiology to
justity the modeling. The article is in the final chapter of a book covering neural network modeling
research. Other topics covered are perception, cognition processing, and motor control.

P. GAUDIANO AND S. GROSSBERG, Vector Associarive Mups: Unsupervised Real-Time Error-Bused
Learning and Control of Movement Trajecrories. This anticle extends the model of Bullock and
Grussberg (section 6.3) by developing modules producing consistent TPC and PPC pairs. The
learning scheme is called a vector associate map (VAM). The VAM models and ART models
(described in chapter 4) represent complementary means for matching, leaming, and performing
in neural networks.

W.MILLER {1, R, SUTTON, AND P. WERBOS, Newral Nenvorks for Contrul. The literature on adap-
tive control systems is extensive, Several books cover neural network adaptive control systems.
This reference is a good overview. In contrast to the text, most chapters of"this book consider
nonbiological systems.

EXERCISES
L. Apply the STE method of the text for vision-motor neural networks 1o a single eye and a 2-D arm.

Assume two variubles describe the arm as shown in figure 6.13. Write out explicitly the equations
for each module of the system. Outline a training procedure.

NEURAL
NETWORK
{To Be
Defined)

Figure 6.15  Exercise figure for eye-arm neural network.

2. Solve exercise | using the VITE method for neural dynamics of planned arm movements.
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Advanced Design Methods

The preceding two chapters applied elementary modules to'dcsign v.ision and mo(or con}r‘ol
systems. This chapter resumes theory development. Nothing new is added (o‘lhc physics.
We gain, however, a powertul method of working with the standard @odf:ls otA neurons.

) The chapter describes a practical method for designing NNs with hxf:d m(.erconnec-
tions among the neurons. This class of NNs is useful for modeling selected blo.logncal-neu.ral
groups and for use as preprocessors, feature detectors, and control modules in application
Systems,

' The method derives from the genetic algorithm (GA), a procedure suggested by natural

heredity and evolution for efficiently searching over a parameter spuce. o
The design method avoids common simplifying assumptions, and it cnu.blcs designing

complex generul cooperative-competitive (CC) NNs with feedback that realize (or model)

signer-specified input-output functions.

dc“:“g;:{li)o; 7.5 giv{:zs dcsiin examples of on-center/off-surround (ON CTR/OFF §UR)

architectures that crudely model the simple cells in the visual cortex z.md are nppl'lcu‘blc

as feature detectors in machine vision systems. Scaling laws are described for designing

. . .
general cooperative-competitive NNs,

7.1 BACKGROUND ON NEURAL NETWORK DESIGN TECHNIQUES

Designing NNs for modeling and for applications is an intensive, ongoing activity reported
in co.untl;ss research articles. Standard NN design techniques simplify to get a tractable

problem.

146
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Common simplifying assumptions include arranging the neurons in layers, no lateral
connections in a layer, and only feedforward signals between layers. Or, a neuron can be
buth excitatory and inhibitory. That is, the connection weights from a neuron to others,
modeling synaptic transmission coupling, can be positive to some and negative to others.

’ These assumptions are significant restrictions, especially in modeling biological sys-
tems. Moreover, they differ from our present knowledge of the anatomy and physiology of
the cetebral cortex of higher animals {21 1.

Nevertheless, with these assumptions, researchers have developed design methods
for muny kinds of NNs. For NN feature detectors, a common design is to compute the
output by convolving the input pattern with a kernel matrix. The designer selects the kernel
matrix so that the output measures, say, the orientation of an edge in the input pattern. The
response mimics the orientation responses to illumination contrast of simple cells in the
visual cortex [51].

While mathematically convenient, the method is at best a rough approximation of
biological feature detectors because convolution is linear. Nonlinear feature detectors may
be better, although no careful study is known to the author. Indeed, designing these nonlinear
NNs is difficult. A typical robotic application with this design is by Kuperstein [57],
discussed in chapter 6. :

In feedforward NN, adjusting connection weights is currently done by the simulated
annealing (SA) and backpropagation (BP) methods. SA includes the Boltzmann machine
{1} and is slow. BP is the most common method. Werbos [84] originated BP, and Rumelhart
(1986) and other members of the PDP group [79] developed ir.

Though advances continue, nevertheless, BP—and it many variations — suffer from
stowness for many problems [44), besides being restricted to feedforward NNs.

Adaptive Resonance Theory (ART) architectures, discussed in chapter 4, are NNs
that usually function with variable —not fixed—interconnections among the neurons, De-
signing ART NNs is not considered here [14,15,16].

Many applications have assemblies of fixed and variable modules, as shown in chap-
ters 5 and 6. The variable modules, those with learning, may use an ART NN. The fixed
modules—say the feature detectors—may use a NN designed by the technique described
below. Thus, the NNs with fixed interconnections are important in modeling and applica-
tions.

The GA design method described below does not make the common assumptions.
Thus, it should be of interest to theorists and to designers of applications. Indeed, the
resulting NNs may be smaller for the same function and easier to implement in software or
hardware.

7.2 GENETIC ALGORITHM BACKGROUND

For over a decade the GA community, originated by Holland (48], has pursued trial-and-
error strategies for designing adaptive systems. The GA is a search procedure, inspired
by evolution and heredity, for finding high performance structures in a complex parameter
domain.
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For NN design purposes, the GA s a search method for finding a good set of weights

in a high-dimensional nonlinear weight spuce. (Degenerate forms of the GA are the well-
known gradient-descent techniques, including BP.)

Holland originated two distinct GA approaches. Researchers named the two ap-
proaches — Michigan and Pittsburgh—after the communities where they were first elabo-
rated.

In the Michigan approach a single system consists of a set of rules, or parameters.
Genetic operators applied to existing rules discover new rules. The approach assigns a value
to exch rule. expressing the rule’s fitness tor reaching a payolf. Rules ean high value by
achieving direct payolt in the task environment, or by setting the stage for luter rules.

Thus. in the Michican approach, the GA operates on the rules—or internal pa-
rameters —of 4 single system. The GA picks the “best rules” as the system adapts to
an environment,

In the Piusbursh approach many systems, each with a set of rules, compete. Holland's
original book defined reproductive plans (48, pp. 90-111}. A reproductive plan maintains a
set of pussible systems. The plan selects an individual system according to its performunce
rank. modities it by one or more genetic operators, evaluates it by the environment that
contains external inputs, and then replaces a rundomly selected member of the set by it

In the Piusburgh upproach the set of systems evolves to contain members with high
performance, because the better an individual performs. the more offspring it has.

The Michigan approach is most practical in on-line real-time environments because
of the reduced computational loads. The Pitsburgh approach is appropriate in off-line
environments where more leisurely exploration is acceprable.

In GA terminology, this chapter uses primarily a Michigan approach.

GA theory gives guidelines for constructing practical search techniques [7,25]. (A
direct random search of purameter space is not practical because the trials increase expo-
nentially with the neurons.)

The fundamental requirements are that the problem be represented by some data
structure, the solutions be cupable of evaluation, the advances already made be retained.
and the population of retained structures be increused.

in GA applications the mujor problems are finding a convenient representation of
the svstem. devising genetic operators that produce good solutions, and detining payoff
functions.

Following these guidelines, define a GA as follows. First, create a set of structures —
generation — that try (o solve a problem, Second, manipulate the structures — parents —by
a set of genetic vperators (traditionally crossover, inversion, and mutation) to create a new
set of structures. Third, evaluate the new structures on how well they solve the problem.
Fourth, save the best set of structures—the next generation. Fifth, repeat the process until
a structure produces un acceptable solution to the problem.

Researchers have applied the GA to design simple NNs. Recent examples are Miller,
Todd, and Hegde [68]. who assume a feedforward NN. A matrix of digits denotes the nature
of interconnections among the neurons. The GA picks rows of this matrix and swaps with
the parent. The resulting NN is trained by BP and evaluated.
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‘ Whitley and Hansen [85] represent a feedforward NN in binary form with 4 or 8 bits
for eaf.‘h conncging weight. They concatenate the weight bits to form a string, which an
aduptive mutation operator manipulates. They then train the NN by BP and evul'ume it
) H:U‘p: Samad, and Guha [37] also represent connections by a bit string, use the S;un-
dard mutuzfon operator, and train the system by BP. Their studies. consideri;x'" only simple
e}(amples like the XOR problem, assume feedforward NNs, BP-related pcrfgmmnce mit
rics, and b.inury string representations for the connection weights. -
Cellier [19], in a chapter entitled “Artificial NNs and Génelic Algorithms,” describes
a GA method that defines four classes of values for the weights ranginz from vc'ry small to
very lu.rgc. He assigns each weight to a size class and arranges the Eiz;labcls (A,B,C.D)
in astring, for example, ABACCBDADBCBBADCA. The ;umbcr of fa ¢ num

of weights. The method HENM

the crossover and mu[uligﬁrg:’:\”s;:r:x;grlzd 5“'21"5"5 e ; ge'nmc Doy il bt
cross . produce new strings that they evaluate and sort.
He applies this .GA method 1o design feedforward NNs with 67 unknown parameters

) The r.emmndcr of this chapter describes a method for designing NNs with ﬁ(cd.con-
nection .welghls. It demonstrates the method by nontrivial cxnmpl¢;~75 ncuro;ls 1920
connection .weighls—~of orientation detectors modeling simple cell modules in the vvisu-nl
cortex of primates. Moreover, the design examples satisfy important biological constraints.

7.3 FORMULATION

bew lb Activation Equation. Suppose a set of neurons {v;} form a feature detector moduie.
hv:sc.n :cmh neuron by equations that roughly model the biological processes. Following
2 Tt o 1 N N N N - ; ) >
¢ Aa}g)h:rl 2, characterize the ith neuron, v,, by its activation level, x;, and by its connections
with other neurons. Give the connections S ing coefficients
by a set of coupling coefficients, (Z;i).

For the activation level, or short-term memory (STM), assume an equation for v; of

the form
({.\',‘
o= —an+ Z Z,iflx) + I, ¥i. (7.1
J
where
Y, = activation of the ith neuron,
Zji = long-term memory (LTM) trace from the Jth neuron to the ith neuron
I, = external input to the ith nevron,
J() = anonlinear signal function,
@ = relaxation time constant parameter.

This equation, called the additive STM equation, is basic in NN research and is
udequ.ulr: for many NN designs. (If desired, replace the additive STM equation by the
shunting STM equation for a better mode! of the biology —see chapter 2).

Assurfxc the coupling coefficients (or the LTM traces) are constant and unknown

' For this cluss of NNs with fixed interconnections, the main problem is to find a sél of
weights, (Z;], satisfying prescribed /0 relations.
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To illustrate the method, the following discussion considers a feature detector module.
Designing NNs for other functions using a similar method follows,

A simple design of a feature detector module gives a single output for some spatial
activation pattern defined on an array of input neurons. The output could show the, say,
angular orientation of the pattern.

For a feature detector assume input patterns defined on M input neurons, N hidden
(internal) neurons, and a single output neuron. Thus, each input puttern is characterized by
the activation level of a single output neuron, as shown in chapter 3, figure 5.9.

The input pattern muy be binary or gray, that is, the inputs, /;, may have values 0 or
| (binary) or, say, 0, 1, 2, ..., 255 (7 bits of gray).

Assume no feedback from the hidden neurons or from the output neuron to the input
neurons. Nevertheless. assume feedback among the hidden neurons and assume direct
connections from the input neurons to the output neuron.

For this example, write a set of STM equations from (7.1) as follows.

« Input Neurons

dx,
— = —ax,+ L 0i=1,..., M. (7.2)
dt
e Hidden Neurons
dx Moy
—r = e S Zuflg) i =1L N (1.3)
[#
j=1
o Output Neuron
dxy MY
o = Ten Z Zjo f(x)). (71.4)
[
J=1

2. Mauix Formulation. Write the STM equations of the hidden neurons as

Ix, oo " )
‘d—‘[ = et + ) Zifl) + Y 2y ). i =1 N, (7.5)
k=1

=1
where

Zji = LTM trace of the hidden neurons,

Z,, = LTM trace from the input neurons to the hidden neurons.

Assume « = | (equivalent to rescaling the other variables). Then, the input neuron
activations approach the external inputs, thatis, xy — [,k =1,..., M ast — cointhe
steady state. Assume no selt-sustained oscillations.

[n the steady state the hidden neuron activations become

A \
X = Zl Zuf )+ 3 2L S i =1 LN, (7.6)
=

=1

@~
SRR

5w 7

&
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For convenience, introduce matrix notation with standard state-variable symbols. Let

X= . . (7.7
Xy

Here X is the activation vector of the hidden neurons, written as a v x | matrix
The steady-state hidden neuron equation, (7.6) in matrix notation becomes

X = Af(X) + Bf(1) (7.8)
where
Zy o e Zay ]
A= ' (7.9)
is a constant N x N matrix,
Zh o 24y ]
B=| . : (7.10)
Zix Z.';/.v J
is a constant N x M matrix,
Sl
fiX) = (7.1
f(-;iv)
isan N x 1 matrix with the signal function applied to each element, and
Sy
= . (7.12)
f(}.\l)

isan M x I matrix. (Note the indices in A and B are reversed from the usual matrix notation
because of how the terms are defined.)
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No assumptions are made about the kind of signvul function in this formulation. The
model also is a “sum-of-sigmoids,” not the usual simplifying approximation of “sigmoid-
of-sums.”
Let the steady-state output be Z (not the LTM trace). that is, Z = xy(t — o0). Then,

(7.4) gives

v M
2= Zoft)+ Y ZinSUn). (7.13)
=1
which in matrix form is
Z = CI(X) + DI (7.14)
where
C=[ Zm Z,\D ] (7!5)

is a constant | x N matrix, and
D:[ Zy o Zigg ] (7.16)

is a constant | x Af matrix. Thus, four matrices, {A, B, C, D}. describe the NN.

To design a NN with given VO characteristics, determine matrices (A, B, C, D). In
the GA method, copies of the system with random changes are simply copies of the matrix
set with random changes in their elements. The matrix elements play a role analogous to
the DNA molecules in biological evolution.

Given a system described by the set {A, B, C, Dj and an input matrix, I, solve for
the steady-state activation vector, X, of the hidden system (7.8). Compute the output Z by
(7.14) once X is known.

3. Assumptions for Mimicking Biological Neural Networks. To illustrate the design
method, consider a problem that is difficult by other methods. Assume the NN is to model—
crudely —biological feature detectors such as those found in the human primary visual
cortex. (Such a NN is useful for applications because, presumably, its performance is like
the high performance of natural vision systems.)

To model biological NNs, follow experimental findings. Crick and Asanuma {21]
discuss assumptions for mimicking biological NNs, summarized here in the first two items.
Assume the following for feature detectors:

« Each neuron is type I (excitatory) or type I (inhibitory) and cannot be both types. (An
exception are amacrine cells of the rabbit retina that may be excitatory and inhibitory
[691.)

o A neuron cannot excite or inhibit itself by axon signals.

o The NNs are in an ON CTR/OFF SUR architecture. (Extension to the more general
CC architecture is below.)

With these assumptions, the system matrices for ON CTR/OFF SUR NNs have the
following properties. shown in figure 7.1:

&

R
B o ]
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1. A has zero diagonal components,
2. A and C have negative or zero elements,
3. B and D have positive or zero elements,

4. The columns of A give the lateral inhibition to other hidden neurons (for example,

column | is the inhibition of neuron vy on the other neurons, and so on for the other
columns),

NO FEEDBACK

EITHER EXCITATORY (+}
OR INHIBITORY (-)
NOT BOTH

X oM X O X M
oM M MK MK

NXN

Figure 7.1 Structure of the matrices,

1xM (A, B, C, D}, characterizing feature
detector neural networks that have
neurons with properties from anatomy
and physiology.

LT ]
COLUMNS HAVE SAME SIGN

These constraints are difficult to impose in standard design methods; however, they
can be easily accommodated with this method.

Matrix A gives the connections among N hidden neurons. The zero diagonal ele-
ments of A depict no connections of a neuron with itself, Matrix B gives the connec-
tions from A input neurons to the hidden neurons. Matrix C gives connections from the
hidden neurons to a single output neuron. Matrix D gives connections from the inputs to
the output. )

A column of A and the corresponding element of C give the connection weights of
a hidden neuron to the others. The elements in the indicated columns have the same sign
because natural neurons are excitatory (positive elements) or inhibitory (negative elements).
The elements of B and D are positive.

For ON CTR/OFF SUR architectures, the elements of A and C are negative. For CC
architectures, the elements of A and C are mixtures of positive and negative values, with
the diagonal elements of A still zero.
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7.4 DESIGN PROCEDURE -

By the GA, the computational steps for the design procedure are as follows:

1.

[ 3

Randomly choose 4 beginning matrix set, {A, B, C, D}, with the properties shown in
figure 7.1.

. Copy the purentset {A, B, C, D}. In each copy. randomly select columns of the parent,

Randomly change the elements of the selected columns subject to the constraints, In
GA terminology. the random changes are by a mutation operator (see example in
section 7.3).

- Define input training paterns. For each training pattern and each copy, solve for the

output. (Note: A solution may not always exist—see below.)

+h. Select the best copy according to a payoff criterion (see below). Make this copy the

o

survivor.
- Using the survivor as the purent for the next generation, repeat steps 2to 4.
- Continue until the payoff criterion is met. The surviving system, {A, B, C, Dj}.

describes the NN.
Figure 7.2 shows u flow diagrum of the procedure.
CHOOSE

INITIAL
(A.B8,C.0}

MAKE RANDOM
COPIES
&
SOLVE

!

SELEC\
TRAINING SMALLEST

-

PATTERNS METRIC

AN

N,

Figure 7.2 Computational low
diagram of the design method.

4. Payoff criteria. Defining a good payoff function is essential. For illustration,

choose a metric that measures the distance (error) of the output from a desired output for
cach training pattern. Many metrics—or more precisely pseudometrics —are applicable.

A practical metric specifies that for each input training pattern, the output response lies

in a band of upper and lower thresholds. The designer specifies the thresholds. Formulate
the HI-L.O metric as follows.

For Vp training patterns, the metric, d, is

Ny
d=3TLO, <2 sTHI). (717

. A

LEE

i

%
X
T

e
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where

Z; = output for the ith input training pattern,
TLO; = lower bound for the ith input pattern,
THI, = upperbound for the ith input pattern,

and

0 ifTLO, <Z and Z, < THI.

(TLO, <Z, <THI) =
I otherwise.

(7.18)

A second practical metric specifies that the output be above a passband threshold
for certain patterns and below a stopband threshold for the other patterns. Formulate the
PASS-STOP criterion as follows. For Ny PASS patterns and », STOP patterns, with
Np = N\ + N, the metric, d, is

Bl Ny
d=3(Zi2T)+) (2, < T). , (7.19)
izl J=1
where
i = selection thresholds,
I Lo..., Np,
and
0 ifz, >T,
(Z,>T) = =
iz [ 1 otherwise, (720
0 itZ, <T;
(ZisT)= .
! ) [ I otherwise. (720
The following inequalities hold for these two metrics:
0<d < Np. (7.22)

- AThe condition d = Np means the system, {A, B, C, D}, satisfies none of the payoft
cn_(cna (maximum error). The condition d = 0 means the system satisfics the selection
criterion and that a solution has been reached. In practice the metric, d, starts at Np (or
smaller) and monotonically decreases 1o zero.

5. Solve the activation equation. To implement step 3 of the algorithm, for each set
{A, B, I}, solve the equation

X = AfX) + Bi(T). (7.23)

Three outcomes are possible when trying to solve (7.23): No solutions may exist, a
single solution may exist, or multiple solutions may exist. (The three outcomes are easily
seen by assuming I is binary and solving (7.23) by hand for a low-dimension system.)
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Many authors have studied solving nonlinear matrix equations such as (7.23) [24].
The method used here is a combination of operator decomposition followed by a recursion
such as those in fixed-point theorems.

Following Adomian and Adomian (3]. the first two terms of an operator decomposition
solution, Xy and Xy, are

Xy = Bf(I), (7.24)
and
Xi=A XD+ X (7.25)
The recursion is
X{n + 1) = Af(X(n)) + Bf(1) (7.26)
where
) = first trial solution,
X(n) = current trial solution for X,
X{n+1) = nexttrial solution for X.

The recursion is continued until X{n + 1) = X(n), or fails after fixed tries.

This recursion converges to a solution if and only if the operator defined by the right-
side of (7.23) is a contraction operator [24]. In practice, an operator may be a contraction
in some subspaces and not in other subspaces.

For the examples below, the first X; produced by operator decomposition is in a
contraction subspace for about 90 percent of the choices of {A, B, I}. It typically takes
seven 1o ten recursions to reach a solution (when it exists) of the activation equation (7.23),
that is, to reach X{n+1) = X(n). (This scheme for solving (7.23) is preferable to one
applying only the operator decomposition method for NNs with many hidden neurons. For
small systems with, say, ten or less hidden neurons, the operator decomposition method
gives solutions after computing less than four terms. See {3] fora description of the operator
decomposition method.)

7.5 EXAMPLES

The first design example is an ON CTR/OFF SUR NN sensitive to horizontal binary patterns
on a square array of neurons that has a resolution of 45°. Common design procedures for
this problem have simplified topologies or applied ad hoc methods.

(An example of an ad hoc method for this problem is to sum the ON input neurons
in each row of an input square arruy und pick the maximum. Similarly, compute the
sums for the two diagonal and vertical directions for measuring the “response strengths™ in
those directions. Comparing the four direction values measures “pattern orientation.” This
orientation detector, however, is unsatisfactory because patterns can be easily constructed
with unreasonable responses.)
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Table 7.1 shows the assumed parameters for the GA design example. The example
assumes an input pattern defined on 7 x 7 or 49 input neurons. (A NN with an angular

.resolution of, say, 10> would have more input neurons and could also be designed by this
method.) The hidden system has 235 neurons.

.

TABLE 7.1. INPUT PARAMETERS FOR
DESIGNING A HORIZONTAL FEATURE
DETECTOR USING AN ON-CENTER-OFF-

SURROUND NEURAL'NETWORK

Input neurons (M) 7 x 7(49)

Hidden neuruns (V) 23

Copies per generation 10

Fraction of weights chunged

Per copy 1/3

Search ringe 0.21,£2,..., %10

High band 500 100 ,
Low band —1001t0 10

Starting with a random set {A, B, C, D) for the first generation, at each generation
ten copies are made of the parent set.

For each copy, a third of the matrix elements (weights) are randomly changed by
selecting integer values over the range —10 to +10, subject to the constraints given in
section 7.3.

Assume a HI-LO metric for the training patterns with some of the outputs in a high
band and the others in a low band. Thatis, the desired output response to the high (horizontal)
training patterns is 50 to 100. The desired response to the low (nonhorizontal) training
patterns is —100 to 10.

Row-by-row scanning produces the input vector, 1, for each training pattern. That is,
Iy to I; are-the first row, /g to /4 are the second row, and I43 10 g are the seventh row.
The example determines 1924 coefficients for this NN. For simplicity. assume the signal
function is a unit step.

Compute the HI-LO metrics of the ten copies and compare them with the metric of
the parent set. If an offspring metric is below the parent metric, the offspring replaces the
parent set for the next generation.

Figure 7.3 shows 12 training patterns. For a horizontal detector assume the desired
responses are high (50 to 100) to the horizontal patterns and are low (—100 to 10) to the
others. As seen, training is on three horizontal patterns and nine other patterns. Each
training pattern has about two hidden neurons.

The design algorithm was coded in the APL*PLUS programming language and run
onan 8-MHz IBM PC/AT machine. Figure 7.4 shows the history of the metric as the system
evolves 10 a solution in about 600 generations. The metric started at d = 10 and ended at
d = 1at 600 generations. The one remaining error was a response above the high threshold,
and so the run was stopped.
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Figure 7.5 shows the resulting system's response to the training .patterns. It shows e o
that the high-to-low responses —the signal-to-noise ratio—is above 5,'corresponding to
the responses of horizontal-to-nonhorizontal training patterns. o
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as in the horizontal example. The payoff criterion is different. 8 “Hom ver |
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For this NN. the high responses are the 437 training patterns, and the others-hme a .
Jow response. Figure 7.5 Response of a horizontal feature detector to 12 training patterns.
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Figure 7.6 shows the responses of a diagonal feature detector to the training pat-
terns, Thus, the method easily produces designs for orientation detectors (with 45° angular
resolution) satistying biological constraints.
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200 ~ HIDDEN NEURONS 25

OUTPUT NEURONS 1
(2]
z NETWORK TYPE  ON CTR/ OFF SUR
E
z PATTERNS 12
[}
Z PATTERN TYPE BINARY
S o100
< CRITERIA TYPE HI & LO
xIr
=
g PASS BAND
g sor- e © MINIMUM
@
-
« STOP BAND
5 B - “-- MAXIMUM
£ s ' 1z PATTERN NUMBER
]
3 .
-100 L
wor | vea !

DIAG UP DIAG DN
Figure 7.6 Response of a 437 diagonal feature detector to 12 training patterns.

The third design example is a feature detector NN that has gray input images. This
example is like the preceding examples in most respects. ]

The muin ditference is modifying for gray levels in the input. For gray responsiveness,
assume a piecewise linear signal function with saturation. (Other signal functions preserving
the grayness could be used.)

" The activation equation (7.8) becomes

X = Af(X) + B6L:() (1.27)
and the output equation (7.14) becomes
Z = Cf(X) + Dfa(1), (7.28)

where fi{ ) may be a unit step like before and () is a piecewise-linear signal with
saturation such as

0. X<0
HX)y=¢ X, 0<X<1 (7.29)
I, X=>1
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A summary of recent work [42] that used gray inputs in the machine vision (MV)
system described in chapter 5 follows.

First, preprocessing scales the input values to lie in the interval 0 < x < 1. Second,
produce 12 gray training patterns, analogous to those shown in figure 7.3. The NN is sen-
sitive to gradients (increasing or decreasing) in four directions with these training patterns.
Third, apply the GA design method with a payoff function that is sensitive to gradients in
selected directions.

The results are like those shown in figures 7.5 and 7.6, that is, high responses in
a selected direction and low responses in the other directions. Harvey, DiCaprio, and
Heinemann [42] describe applying these feature detector NNs in a complete MV system.
(A brief description of the system is also in (41}, along with references (o test results.)

7.6 SCALING LAWS FOR COOPERATIVE-COMPETITIVE NEURAL
NETWORKS

As seen, parameters—like those in table 7.1 —must be chosen so that the payoff function
can be satisfied by the search. While the preceding section illustrates the' method, choosing
the parameters is of practical interest for minimizing computational time and for designing
the more general CC NNs.,

The CC NNs are more general NNs, and as a result they can satisfy /O requirements
that ON CTR/OFF SUR NNs cannot. To produce rough guidelines for the piarameters,
many design exercises of CC NN orientation detectors were run.

Ina CC NN, the hidden neurons may be type I (excitatory) or type Il (inhibitory). (In
comparison, the ON CTR/OFF SUR NNGs in the preceding section have only type 1 hidden
neurons.) The extension is straightforward.

For CC NNs change the system matrix properties for ON CTR/OFF SUR NNs as
follows (see section 7.2):

1. Property (1) still holds.
2. Change properties (2) and (3) so that the corresponding columns of A and C and B
and D have the same sign.

Minimizing computation time is desirable in practice. Two important parameters in
the algorithm are the hidden neurons and the copies per generation.
Write a general relationship assuming a power law

Ny o N“N? (7.30)
where
N, = generations,
N = hidden neurons,
Ne = copies per generation.

Figure 7.7 shows the generations needed to find a solution as a function of the hidden
neurons. The vertical axis shows the generations needed in the design algorithm from
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many exercises to sulisfy the payolf function as the hidden neurons were varied, with other
architectural parameters fixed.

1 TT

T

T T VT

NUMBER OF GENERATIONS (NG)
=

1 1 I N A AN | L TE WO W U U
1 10 10

NUMBER OF HIDDEN NEURONS (N)

Figure 7.7 Scaling for the design generations versus the hidden neurons for
cooperative-competitive architectures. The brackets show the range of the design
examples.

Figure 7.8 shows the generations needed as a function of the copies made per gener-
ation. Again, the vertical uaxis shows the generations needed in the design algorithm from
many exercises (o satisfy the payoff function as the copies were varied, with other archi-
tectural parameters fixed. The brackets show the range of the generations needed to reach
a solution. (The figures are from 22 points.)

As shown, for the CC NNs, @ = | and B &= —~3/2. These approximate values are
from fimited tests and are meant as rough guidelines. Designing many NNs with parameters
over a broader range remains to be done.

At first approximation the computational time varies like ¥ x N, because the
computer time is proportional to the copies, that is, to Nyx N.. The mutation process is
random, so the generations needed for solution are random. Thus, the guideline (7.30)
shows the mverage generations.
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Figure 7.8 Scaling for the design generations versus the copies made each gen-
eration for cooperative-competitive architectures. The brackets show the range
of the design examples.

7.7 DISCUSSION

This chapter gives a unified, practical method for designing complex, fixed interconnected
NNs that realizes designer-specified 1/O characteristics and (if desired) meets constraints
emerging from the experimental studies of natural brains, By a GA, the chapter gives o
convenient representation, a genetic operator, and a payoff function.

The chapter also describes designing CC and ON CTR/OFF SUR NNs that model
orientation detectors in the visual cortex and that meet specified /O functions according to
two criteria. Moreover, examples show the method produces NN designs with good output
signal-to-noise margins. Finally, some rough guidelines for selecting parameters are given
for CC NNs.

The method has several extensions of interest to theorists and application designers.
In the applications, designers can apply the technigue to multiple-output NNs with specified
/O properties. Designs have been done of NN with two outputs for a control system (see
problems). For the theorists, researchers can model veto cells and neural systems with
diffuse inputs, described in Crick and Asanama [21).
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While this chapter describes a few examples, and those not thoroughly, nevertheless,
the sheer simplicity and flexibility of the method suggest further study is worthwhile,

SUGGESTED REFERENCES

—

HOLLAND, Adapration in Natural and Artificial Systems. The literature on the genetic algorithm is
extensive. One of the best is the original work by Hollund. The work contains much material not
readily available elsewhere. Discussions of the underlying concepts are long and eluborate. It lays
the foundutions of the Michigan and Pitsburgh approuaches.

Proceedings of International Conference vn Genetic Algorithms and Their Applications. This con-
ference series ilustrates applying GA to many tields, including NNs. The series is recommended
for background.

G. ADOMIAN AND G. E. ADOMIAN, A Globul Method for Solution of Complex Systems. This is a

tutorial puper introducing a method for solving dynamic systems that may be strongly nonlinear,

The method is applicable to a wide class of problems in physics, engineering, and other disciplines.

EXERCISES

1. Sturting with the text design method, deseribe a NN design technique for M-inputs, two-outputs.
Include a description of the payolf criterion.

2. Assumie designs of NN edge detectors have been found for 0- and 45° (see text examples). Using
these NN modules, develop a block diagram for feature detector modules that have an angular
resolution of 45, That is, they meusure the edye strength of input patterns at angles 0°, 457, 90°,
and 1337, (Hine: Rotate the input patterns.)

8

Brain Control
.-and Modulation Systems

NN theory is contributing to understanding normal and abnormal behavior in human beings.
The advantages of the NN approach lie in its deeper insights, primarily from the ideas of
pattern mixing, matching, stability, switching, and enhancement. As a result, we are led to
anew view of mental functioning. This chapter presents an overview of global brain-mind
functioning and relates it to NN,

The NN viewpoint is also of interest for constructing theories of complex processing
and for being potentially of considerable help in treating mental itlness. Indeed, a NN theory
of human behavior serves as a point of departure for theories about complex networks. The
equal status accorded to thought and neuron-activation patterns suggests designing machines
that think and understand.

INTRODUCTION

Researchers have produced hypotheses connecting NNs and human brain-mind functioning,
all having some experimental support. First, all mental functioning is pattern processing
by neuron activity. This includes perception, emotion, cognition, learning, memory, and
molor control.

Second, a central control system coordinates the pattern processing in different brain
modules. Monamine neurotransmitters, primarily, exert control chemically. In each brain
module the monamine neurotransmitters perform many functions. They regulate pattern

165
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formation, stabilize node encoding, mix sensory inputs, and match short-term and long-term
memory traces. B

Third. mental disorders, such as manic-depression and schizophrenia, are malfunc- -
tions of the control system. Thus. mental disorders are breakdowns in pattern processing.
Indeed, a task just starting connects a mental illness to a pattern processing dysfunction and
then to a control system maltfunction.

Fourth, NN theory describes pattern development and processing in human beings,

Thus, NNs, control theory, and physiology together increase the understanding of
human behavior and psychology.

The next sections develop these hypotheses.

8.2 NEUROTRANSMITTERS

Abasic issue in neuroscience is how the brain-mind represents information. The NN answer
is that patterns of neural activity —established by LTM truces —represent information.
Neurotransmitters in the synapses produce the LTM traces.

(Current NN theory may be expanded to include new results in cellular and molec-
ular biology summarized by Bluck {8]. The NN models discussed in this text are a first
approximation to better models—see section 2.4.)

The traditional biochemicul view of the synapse considers neurotransmitters for con-
trol and for processing. The neurotransmitters for information processing have receptors
with fast (1 ms) response times. Those neurotrunsmitters for control have receptors with
stow (100 ms and tonger) response times,

The two classes of fust and slow neurotransmitiers have other distinguishing charac-
teristics. Tuble 8.1 shows a classification of neurotransmitters, their effect, and their func-
tion. Information processing in the CNS comes from the y-aminobutyric acid (GABA) or
actetylcholine (ACh) neurotransmitters.

TABLE 8.1. CLASSIFICATION OF NEUROTRANSMITTERS

Response Drug Principal
Time Eftect Class Molecule Function
Fust Excitatory Glulumate  Information
(1 ms) Inhibitory GABA Processing
Slow Excittory  Neuropeptides — Control
(100 ms Monamines DA and
LX) 4) NA mudulation
Iohibitory  Neuropeptides —_
Monamines 5-HT
ACh

DA = dopamine: NA = norepinephrine; 5-HT = serotonin;
ACh = acetylcholine; GABA = y-aminobutyric acid.

Control and modulation in the CNS come from amines such as norepinephrine (NA),
serotonin (3-HT). and dopamine (DA). They modulate by changing the effects of other

s ook B B
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neurotransmitters, that is, by making other neurotransmitters less effective, or preventing
release altogether.

Indeed, two different neurotransmiuers, such as an amine and a peptide, can coexist
in the same synapses. Moreover, the mode of action for control can be quite different from
the punctual actions of GABA or ACh for processing. .

The neurotransmitter release sites may not be close to the postsynaptic membrane.
Transmitters may diffuse widely to affect distant targets and thus, influence many neu-
rons rather uniformly. Table 8.2 shows the control and modulation function of common
neurotransmitters in mammalian CNS.

TABLE 8.2. SUMMARY OF NEUROTRANSMITTERS FOR
CONTROL AND MODULATION OF THE CENTRAL NERVOUS

SYSTEM
Transmitter  Effect  Source Target Action
DA + SN Basal Ganglia Damage of
SN causes
movement
disorders.
Cortex Parkinson's (DA |)
Schizophrenia (DA 1)
NA + LC Cerebellar Destruction of L.C
Purkinje cells chunges development
Cerebral cortex  of visual comex.
Thalamus
5-HT - RN Ubiquitous Level of wakefulness

No synaptic Pain sensation
specialization

DA = dopamine: NA = norepinephrine; 5-HT = serotonin;
SN = substantia nigra; LC = locus coeruleus: RN = raphe nuclei;
(+) = excitatory: {-) = inhibitory.

Figure 8.1 shows the molecular structure of common neurotransmitters. Biogenic
amines, that is, those needed for the life process, include 5-HT, NA. DA, and epinephrine
(EP). Ot these amines, the catecholamines contain a benzene ring with two adjacent hydroxyl
groups.

Enzymes synthesize the catechols from dietary tyrosine in the following sequence:
tyrosine — L-Dopa — DA — NA — EP[8, p. 27].

A common feature of mammalian brains is discrete neurons groups sharing the same
neurotransmitter. Thus, populations of neurons containing 5-HT, NA, and DA aggregate in
separate clusters.

Small groups of nerve cells in discrete locutions in the CNS are the principal—and
sometimes the only —sources of axons containing 5-HT, DA, and NA. The axons branch
extensively to supply widespread areas of the brain, with profound consequences.

Synapses continually secrete neurotransmitters, as described in chapter 2. Indeed,
how the brain produces and transports neurotransmitters is an active research area. Neuro-
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Figure 8.1 Chemical structures of neurotransmitters. (From Kuffler et al. From Newron
10 Brain. Reprinted by pennission of Sinauer Associates, Inc., 1984),

transmitters may be shipped ready-made to the synapses from another site. They may be
assemnbled from parts from the cell body. Or, they may be synthesized at the synapse.

For example, tryptophan—the amino acid precursor of 5-HT—is bro‘ught to the
presynapic neuron through the blood. 5-HT is synthesized from tryptophan inside the axon
terminal and stored in vesicles.

8.3 THE MONAMINE CONTROL SYSTEM

Experiments show that the monamine neurotransmitiers control and modulate the activities
of different bruin modules. Evidence of monamine effects on global mental functions is
also well-known. )

Al least three monamines dominate. They are DA, NA, and 3-HT. DA and NA are
excitatory; 5-HT is primarily inhibitory. .

Summarizing (46), anatomical evidence in mammals shows a direct pathway from the
limbic system through the nucleus accumbeus (NAC) to the pallidum. Researchers believe
the pullidum is the motor output for the basal ganglia. N

This pathway initiates and executes goal-oriented behavior. For this reason it is called
the execution pathway, shown in figure 8.2. .

The execution pathway turns impulses produced by the limbic system into motor
outputs to the spinal column. The origin of limbic and neocortex outputs in turn involves
higher-level processing.
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Figure 8.2 Model for the execution pathway producing and controlling behav-
iors. (From Hestenes. A Neural Network of Theory of Manic-Depressive lliness
in Levine and Leven (eds.). Motivation, Emotion, and Goal Direciton in Neural
Nenworks. Reprinted with permission of D. Hestenes and Lawrence Erlbaum
Associates, Inc., 1992),

Anatomic evidence suggests the NAC is a gate—or switch—through which the
limbic system affects behavior. Evidence suggests DA inputs from the ventral tegmentum
(VT) open the NAC gate, and 5-HT inputs from the raphe dorsalis (RD) close the NAC
gate. The VT and RD are nuclei of neurons in the midbrain and central brainstem.

Thus, the execution pathway starts and actuates goal-directed behavior. Evidence
supports the following observations.

Stimulating the NAC with DA agonists (elevators) causes hyperactivity because DA
has an excitatory effect facilitating passage of limbic signals. Common DA agonists are
amphetamine and cocaine. Stimulating DA antagonists (suppressors) reduce activity.

This evidence leads to the hypothesis that manic-depression (M-D) is caused by
malfunctioning VI/DA regulation. That is, patients exhibit manic symptoms —impulsive
behavior and pressured speech—because of high DA. They exhibitdepressive symptoms —
inability to experience pleasure—because of low DA.

In contrast, 5-HT inputs from the RD have an inhibitory effect opposing the facilituory
effect of VI/DA input.

Anatomic evidence also suggests a second parallel pathway. This pathway, called the
selection pathway, organizes and selects behavior plans. The selection pathway has direct
access to sensory and motor data.

Figure 8.3 shows the selection pathway. The striatum plays the same gating role as
the NAC. Moreover, the striatum is controlled like the NAC. .

Combining the execution and selection pathways gives the behavioral control system.
Figure 8.4 shows the overall functional organization of the system. Although the anatomical
components and connections are well known, researchers understand their functions poorly.

Thus, two pathways select and execute behavioral plans. They converge at the pal-
lidum where the final decision is made and broadeast by releasing GO signals (see chapter
6) to the spinal column.
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Figure 8.3 Model tor the selection pathway organizing and controlling
behaviors.

Inhibition control is by 3-HT neurotransmitters of the RM and RD neurons. RM
projects to limbic components, while RD projects to motor components in the two pathways.

Excitatory control is by DA neurotransmitters of the VT and SN neurons. VT regulates
the execution pathway, and SN regulates the selection pathway. A feedback path, VT —
NAC — SN, coordinates the two pathways.

The RD also exerts indirect control by projecting to the VT and SN as well as direct
control of the NAC and STR. This control inhibits DA output and is a mechanism for 5-HT
simultancously regulating DA gain in the VT and the SN.

Moreover, the RD responds to stress and to external stimuli. When stress occurs,
locus coeruleus (LC) signals inhibit the RD. Thus, stress prepares the NAC, VT, and SN
for vigorous behavioral response by increasing DA, Experimentally, RD lesions stop DA
responses (o stress stimuli.

8.4 CORTICAL CONTROL MODULES

The RD and LC modules play major roles in modulation processing. RD neurons, which
innervate the entire neocortex, have a slow regular output. During sleep, RD outputs
decrease, going to zero during paradoxical sleep. The effects are slow to start and slow to
end. That is, the time constant is long. Moreover, the responses to inputs are nonspecific
and stereotyped.

LC neurons also innervate the entire neocortex but at different layers than the RD.
NA from the LC ends spontaneous firing of target neurons. The LC fires as a group and
influences the entire brain simultaneously, that is, fast and bursty. Moreover, the LC output
increases to new, aversive, or rewarding stimuli.

Signal propagation in LC neurons is comparatively slow, requiring 400 ms to reach
the entire brain. During sleep, the LC outputs decrease and go to zero in REM sleep.

When the LC activity is high. the output of active nodes increases in all cortical
modules and-—by lateral interaction —depresses inactive nodes.

Sec. 8.4 Cortical Control Modules
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Figure 8.4 Mode! of human behavior system. (From Hestenes. A Neural Net-
work Theory of Manic-Depressive [llness in Levine and Leven (eds.). Motivation,
Eimotion, and Goal Direciton in Neural Networks. Reprinted with permission of
D. Hestenes and Lawrence Erlbaum Associates, Inc., 1992).

This LC activity sharpens active patterns, stabilizes existing patterns, produces se-
lected attention, increases signal strength between modules, and strengthens the associations
between patterns.

Thus, the NA from the LC tends to increase and stabilize active patterns in all modules
while increasing the strength of signals transmitted between them. NA can accélerate
associative learning by synaptic plasticity.

LC/NA output acts as a vigilance control variable sensitizing the entire brain to vital
stimuli, The slow onset of the LC signal allows time for significant patterns to set up and
for enhancing the patterns.

For making complex associations, patterns of activities must set up and be synchro-
nized in more than two modules. The LC does the setup and synchronizing tasks. Ex-
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perimentally, lesions of the LC have no effect on learning simple associations but makes
learning complex associations impossible. -

8.5 DYSFUNCTIONS OF THE CONTROL SYSTEM

A basic hypothesis of neuroscience is that everything the brain-mind does is explainable
with nerve cells, their neurotransmitters, and their responsive cells. The preceding model
leads to hypotheses about the causes of many mental illnesses.

A disease is defined when enough doctors agree that a cluster of symptoms are re-
producible. -

In contrast, a disorder is an abnormal, incompletely defined condition. A disorder
muy become a disease when its signs are recognized as having a consistent form. Diseases
and disorders may not be understood nor treatments known for them,

The mcdicu'l community categorizes psychiatric disorders. The basic reference is the
Diugnostic and Statistical Manual of Mental Disorders (3rd ed). This reference may be the
most significant development in psychiatry in the past 100 yeurs, because it gives a tool for
consistent diagnoses in most cases.

Affective psychosis accounts for 70 percent of psychiatric diagnoses. Currently,
affective psychosis is a severe mood disturbance in which long periods of inappropriate
depression alternate with normal or inappropriate euphoria. M-D is the most common
aftective psychosis. M-D-caused suicide accounts for about 23,000 deaths a year in the
United States, making it a feading cause of death.

For M-D und unipolar anhedonic depression (depression of activity rather than feeling
sad). a hypothesis is that malfunctioning gain regulation by the VT of the NAC causes these
disorders. .

A second hypothesis is that corresponding malfunctions of NAC and STR mechanisms
should have corresponding clinical signs.

Schizophrenia is a severe and chronic disturbance of mental function churuclcriz.ed
by mixed up thinking, feeling, and behavior. Symptoms include hearing voices, luughm«%
inappropriately, und having luose associations. Schizophrenia accounts for more l‘hun.'l)
percent of all hospital admissions. New cases number about 300,000 a year, making it a
major health problem. -

Type | schizophrenia is characterized by hallucinations, thought disorders, delusions,
and paranoia.

A hypothesis is that high DA causes type 1 schizophrenia. The high DA produces the
behavioral changes exhibited in the disorder.

Obsessive-compulsive disorder (OCD) is charucterized by persistent, recurrent and
repugnant thoughts (obsession) and senseless and bizarre ritualistic behavior (compulsi(.)n).

A hypothesis is that disruption of the competitive pattern selection mechanism
causes OCD. This disruption of the selection process causes ill-suited patterns to re-
peatedly win the competition for expression. 5-HT modulates the competition in the STR.
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Clinically, increasing 5-HT or using 5-HT reuptake blockers o keep 5-HT available are
effective.

Pattern instabilities for speech output can produce frequent, sudden switches of mean-
ing in midsentences. The instabilities also cause returning to overlearned associations with
tendencies for punning and free association. . )

Delusion and hallucination result from selecting unlikely interpretations of the stimuli.
Drug hallucinations inhibit RD/5-HT transmission to the visual cortex.

Instabilities of pattern formation in the visual cortex occur when the cooperative-
competitive strength ratio reaches a critical value. Logarithmic mapping of the visual field
in the visual cortex causes the cobweb, spiral, and funnel forms typical in early stages of
LSD action.

Normal perceptual mechanisms produce dreams.” As a rule, perceptual modules get
top-down expectation inputs and bottom-up sensory inputs. The top-down expectations are
needed to resolve ambiguities in the sensory input.

If the top-down inputs are too strong, they override the sensory inputs altogether
so that the percepts —the mental results of perceiving —are simply a readout of internal
expectations.

5-HT modulates the relative gains of bottom-up and top-down inputs. Moreover,
when REM sleep starts, RD/5-HT is turned off. Thus, reduced 3-HT is a major feature in
all models of psychoses including dreaming.

Reality checking is necessary for rational thinking. A simple decrease in gain control
of RD/5-HT in the frontal cortex may result in the top-down readout of plans. These pluns
are self-confirming because of not enough reality checking by bottom-up inputs,

RD/5-HT input modulates pattern matching. Maltunctions in this matching produces
hallucinations and delusions. Rapid pattern switching is done by gated dipoles (see chapter
3). Monamines can affect the switching action of a gated dipole.

Unconscious inference combines experience and sensory data to construct a percepl.
In NNs a percept is a state of resonant activation among different modules. The resonance
implies a consistent encoding or interpreting of sensory inputs.

The RD/5-HT function is inhibitory as described. NN theory suggests RD/3-HT
input to each target module regulates the relutive strengths of excitatory-inhibitory lateral
inteructions. The lateral gain parameter regulates the stability of pattern formulation and
the sharpness of competitive pattern selection.

Thought disorders appearing in mania and schizophrenia may be caused by instubil-
ities in pattern formation. The symptoms depend on the module affected.

Forexample, alcohol abuse may damage the LC. This damage may lead to Korsakoft's
disease. A Korsakoff patient can learn simple associations but cannot learn complex ones.

8.6 SUMMARY

This chapter outlines human brain-mind control and modulation from a NN viewpoint.
Presently, NN theory is in the first stages of explaining global brain-mind functioning.
Nevertheless, a sweeping theory is emerging in the literature.
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SUGGESTED REFERENCES

D. HESTENES, A Newral Network Theory of Muhic-Depressive lllness. Though no single reference
covers all the material of this chapter, the article by Hestenes comes the closest. The article deals
chiefly with manic depression. The first part of the paper describes the control system discussed
in the text. The second part describes the results of a drug therapy from this model. The paper
illustrates the clinical potential of the theory for interpreting symptoms and suggesting therapies.

L. BLack, Informarion in the Brain. The models in this book do not incorporate the most recent cellular
and molecular biology results. For this reason, these models are —at best—a crude approximation
to brain-mind functioning. Black’s book summarizes recent findings that show the CNS reacts to
outside stimuli at all levels: behavior, system, cellular, molecular, and genomic. A mathematical
formulation incorporating these results is starting.

EXERCISE

—

. As a first step in designing a high-level processor, construct a block diagrum of the control and
modulation system of the text using conventional control theory.

9

Philosophical Implications

NNs combines many disciplines. Previous chapters showed links among biology, psychol-
ogy, physiology. control theory, signal processing, and nonlinear mathematics. This chapter
considers philosophy.

Although sometimes controversial, philosophical issues are at the heart of many
students’ and researchers’ interest in NN, especially the nature of consciousness. This
line of thought leads directly to some of the central philosophical questions debated since
antiquity.

Because the chapter may be provocative, let me say outright that I wish to assert
that NNs support a view of Aristotle regarding consciousness. NN theory also corrects
a mistake made by philosophers about consciousness since the seventeenth century. The
mistake started with Thomas Hobbes in England and René Descartes in France,

9.1 CONSCIOUSNESS

The subject of consciousness lies at the very basis of modern questions about the brain-mind
of human beings. Indeed, human consciousness may be the last surviving mystery because
people do not know how to think about it.

Without much reflection about it, most people suppose they are directly aware of
the contents of their own minds, and they are when they feel pains, pleasures, and bodily
strains. Such feelings, however, are different from quantities we call perceptions, memories,
imaginations, dreams, and thoughts.

175



176 Philosophical Implications Chap. 8

The words—pleusures, pains, feelings, perceptions, memories, imaginations, and
thoughts —capture nearly all the conscioys acts. To focus the discussion, following [2),
consider the following question: When conscious, what are we conscious of?

The important word in the question is the preposition “of™ that calls for an object. We
customarily speak of the stream of consciousness, or flow of thought. Thus, an equivalent
question is: What is the content of consciousness?

Historically, philosophers give two difterent answers to the question, not counting
variations. As with technical subjects, some notation must be introduced.

John Locke introduced the term “idea." Idea in modern philosophy is applied in an
omnpicomprehensive fashion. Ideas refer to a variety of items including images, percepts,
memories, thoughts, concepts, feelings, and sensations.

Returning to the question (When conscious, what are we conscious of?), Locke's
answer is: When we are conscious all ideas are possible objects of our minds.

This answer, though reasonable at first glunce, leads to several philosophical dead ends
in the opinion of many. Consider the consequences. After long argument and discussion
Locke's answer leads to absurdities, roughly as follows.

—

. All ideus are the objects when conscious. (Locke)

2. Consciousness is u privale experience.

3. Indeed, all ideas are private.

4. Each person is contained in their own private world.

5. So proving an external reality that agrees with other people’s reality is impossible.
6. Thus, skepticism is complete regarding outside reality.
7

. Alternatively, everything | am aware of is a figment of my own mind. (solipsism)

To avoid the absurd consequences of skepticism or solipsism, the argument is tried
that ideas are representations, an argument, however, that leads to a contradiction. If people
are aware of only ideas, reality can never be directly experienced. Indeed, their ideas cannot
imitate reality because, say, a portrait can represent a person if and only if the portrait and
the person can be compared. If the person is never seen, no claim of representation can be
made.

Thus. Locke's answer about consciousness—and of many modemn philosophers —
leads to absurdity or contradiction. )

Anistotle, and later Thomas Aquinas, gave another answer. To state this answer, define
another term as follows.

Cognitive ideas are those ideas excluding feelings, emotions, and bodily sensations.
That is, cognitive ideas are memories, concepts, and precepts. Cognitive ideas are the
agent for apprehending the objects of consciousness. Thus, noncognitive ideas are feelings,
emotions, and bodily sensations.

Rerurning to the question (When conscious, what are we conscious of?), Aristotle’s
answer is: When we are conscious, the objects of our minds are noncognitive ideas.

Interpreting this answer, while we can remember the feelings and sensations of past
events, we are never aware of the memories or concepts by which we recall them,
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A simple analogy is if memories are likened 1o a radio (cognitive ideas), we can hear
"messages (noncognitive ideas) produced by the radio, but we cannot know anything about
the radio itself.

Again consider the consequences of this answer. After much argument and discussion,
the answer leads to consequences that agree with experience and common sense.

k. When we are conscious, noncognitive ideas are the objects of our minds. (Aristotle)

2. Indeed, thoughts, experiences, and past events are the objects when conscious.

3. We are directly acquainted with the public existence of other people and objects.

4. Moreover, we can share noncognitive ideas, though we cannot share our cognitive
ideas, because we are never conscious of them.

9.2 A NEURAL NETWORK INTERPRETATION

Readers of the previous chapters will immediately see a NN interpretation of the preceding
notions.

Cognitive ideas are equivalent to—or are modeled by —the LTM truces in, say,
ART-2. In NN terminology, Aristotle asserts people cannot be conscidusly aware of their
own-—or others’ —LTM traces.

Once sensory experience —and other mechanisms— produce LTM traces, these pat-
terns cannot be directly accessed.

The objects of consciousness—the flow of thoughts in our minds—are the STM
patterns in NNs. Moreover, we are aware of only some of the STM patterns. Those STM
patterns associated with, say, motor activity are usually unconscious.

9.3 FINAL REMARKS

Dennett [26] observed most brain researchers pretend that, for them, the brain is just another
organ. Indeed, there is a reluctance to confront the “big issues,” like consciousness.

Some researchers, feigning amnesiy, pretend we do not have experiences we know
full well we have. Others nitpick empirical details, such as some of Hubel and Wiesel's
discoveries about vision.

Nonetheless, how the brain-mind works needs new ways of thinking. Neuroscience
by itself is not enough, anymore than electronics is sufficient for understanding, say, virtual
memory structures in modern computers.

NNs gives a viewpoint for developing and testing on machines new theories about
phenomena in complex networks. Moreover, NNs helps organize coherent testable hy-
potheses.

The claim that a NN viewpoint is no possible explanation of the human brain-mind
calls for showing what it has to leave out or cannot do. The claim that a NN model is
incorrect in many details is conceded.

While NN modeling of higher processing is barely starting, nevertheless, its direction
is clear: Philosophically speaking, NNs is a version of functionalism——that is, if you build
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the entire functional structure of the human brain, you would reproduce all the mental
properties as well. -

This introductory volume presents some of the necessary NN basics. Application
of NNs for mimicking consciousness and higher-level mental processing may be the next
major milestone.

SUGGESTED REFERENCES

MUADLER, Ten Philosophical Mistakes. This book is a look at common errors in modern philosophical
thought. The text summarizes the first chapter about consciousness. Later chapters discuss per-
ceptual und conceptual thought, the source of word meanings, and the difference between opinion
and knowledge.

G. EpELMAN, Group Selection and Phasic Reentrant Signaling: A Theory of Higher Brain Func-
tion. Most researchers believe all nervous systems obey similar principles in their mechanisms
of signaling. At a functional level, however, confusion reigns. Indeed, until recently the neural
structure for higher brain functions has been left to philosophical speculation and psychological
testing. These efforts do not address the most challenging problem of neurobiology, namely the
cellular mechanisms of higher brain functions, particularly consciousness. Edelman hypothesizes
that consciousness results from stored patterns and current sensory input. Sensory and motor sig-
nals continually update consciousness. Sufficient conditions for conscious awareness include the
quality of sensory inputs. something present theories of consciousness have not given, If a machine
with these properties were built, it would report conscious states,

—

- HAGELIN, Is Consciousness the Unified Field? A Field Theorist's Perspective. This paper, written
by a theorctical physicist, proposes a unified ficld theory. The theory combines standard quantum
mechanics with a field of “pure consciousness.” Such a theory is consistent with all physical
principles. It may account for experimentally observed field effects of consciousness. The paper
is recommended as background.

D. DENNETT, Consciousness Explained. This recent work on consciousness has all the appearances

of a typical nonscientitic psychology work. Appearances are deceiving, however. The book is

remarkably readable with a graceful, informal style that has fluency and notice of technical details.

The central idea is that highly parallel processing, well known to the NN community, produces the

phenomenon of consciousness. The book is highly recommended as background for this chapter,

especially in comparison with Penrose’s The Emperor’s New Mind. Penrose suggests a revolution
in physics is needed before consciousness is accessible to scientific investigation,

-

Glossary

Neuroanatomy Terms

Amygdala A neural group in the dorsomedial temporal lobe bilaterally that enubles learning in
conjunction with the hippocampus.

Cerebellum  Part of the brain lying above brainstem that governs coordination of motor function
and body orientation.

Cerebral cortex  The layer neurons covering the hemispheres on their external surfaces. The cortex
supports many functions, including cognition. Called also the neocortex.

Corpus callosum A large group of nerve fibers connecting the two cerebral hemispheres.

Dendrites The branch-like structure of neurons that serves to sum impulses from other neurons.

Frontal lobe The most forward part of the cerebral cortex enabling motor function and reasoning.

Interpreter Anareain the dominant hemisphere that seems to produce hypotheses and explanations
about internal and external inputs,

Locus coeruleus A group of about 1400 noradrenergic neurons in the brain stem that regulate
attention and anxiety level.

Striatum A group of neurons in the cerebral white matter, regulating motor programs and coor-
dination. Inputs are from the substantia nigra, thalamus, and motor cortex. Outputs are to the
hypothalamus, thalamus, and motor neural groups.

Synapse The connection area between neurons through which signaling occurs.
Neuroscience Terms

Acetylcholine  An excitatory amine transmitter used throughout the nervous system. The transmitter
is synthesized by the enzyme choline acetyltransferase from acetyl coenzyme A and choline and
is metabolized by the enzyme acetylcholinesterase.

178
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Amphetamines A class of pharmacologic agents that release catecholamines from nerve terminals
and inhibit the uptake and inactivation of amings. Amphetamine overdose may cause a paranoid
psychosis.

Catalysis Conversion of substances to products by an enzyme.

Catecholamine A family of neurotransmitters defined chemically as 3.4-dihydroxy derivatives of
phenylethylamines. Well-known members are dopamine, norepinephrine, and epinephrine.

Dopamine A catecholamine neurontrunsmitter used by the substantia nigra neurons regulating
motor function.

Enzyme A molecule greatly increasing the rate of chemical reactions, without being permanently
altered itself.

Epinephrine A catecholamine neurontransmitter used by the adrenal medulla to regulate cardio-
vascular function in response (o stress.

Gene A unit of hereditary DNA molecule encoding a biological function.

Glia  Nonneural brain cells providing support and other functions.

Habituation The decrease in synaptic efficiency from repeated exposure to a stimulus.

lon channel A large molecule or group of molecules inserted in the cell membrane forming a route
for passage of particular charged molecules.

Long-term potentiation  Strengthening of synaptic efficiency by the simulataneous input signals
10 a neuron.

Serotonin A neurotransmitter derived from dietary tryptophan that is localized in the raphe neurons
of the bruin stem und regulates sleep.

Philosophy Terms

Connectionism A computational model of cognition where knowledge exists in the pattern and
strengths of connections among elements, perhaps neural. Learning is the altering of the connec-
tions. Also termed purallel distributed processing.

Functionalism  The view that intelligence can be implemented by a variety of means, including
computers.

Reductionism  The view that brain-mind functioning is explainable in terms of physical structure,
Psychology Terms

Conditioning, classical The process of relating two stimuli, a conditioned and an unconditioned
stimulus, resulting in a conditioned response.

Conditioning, instrumental  The process of relating the response and a reinforcing stimulus.
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Reprinted by permission of E. Kent.

Figures 6.7, 6.8,6.9,6.10, 6.11, and 6.12: From “Neural Dynamics of Planned Arm Move-
mients: Emergent Invariants and Speed-Accuracy Properties during Trajectory Formation”
by Bullock and Grossberg in S. Grossberg (ed.), Neural Networks and Natural Intelligence.
Copyright ©1988 by The Massachusetts Institute of Technology. Reprinted by permission
of The MIT Press.

Figures 8.2 and 8.4: From “A Neural Network Theory of Manic-Depressive Hiness” by
Hestenes in Levine and Leven (eds.), Motivation, Emation, and Goal Direction in Neu-
ral Nenworks. Copyright ©1992 by Lawrence Erlbaum Associates, Inc. Adapted with
permission of Lawrence Erlbaum Associates, Inc. and D. Hestenes,

Table 1.5: From Man-Machine Systems by Sheridan and Ferrell. Copyright ©1974 by
The Massachusetts Institute of Technology. Reprinted by permission of The MIT Press.
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Cerebral hemispheres. 10
left and language, 10
right and pattern processing, 10
Cervical smears (GYN pup), 123
Channels in machine vision systems,
classification, 112-22
levation, 122-25
Chemical ransmitters, see Neurotrunsmitters
Chimpinzee, 4
Chlorine, 14,22
Circadian circuit, 53
Classifier, unsupervised, 120
Classical conditioning, 4031
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Hantline-Ratliff equation, 48
Harvey's method, 103
Heuring,

brain structures, 3,9

threshold in human beings, 10
Hebb, D., 32
Hebb's law, 40
Hemispheres, 10-11
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