DR. ALVIN'S PUBLICATIONS

SIMPLE LINEAR REGRESSION USING PYTHON

DR. ALVIN ANG

1 | P A G E

I. II	ntroduction3
II. P	ython - using Statsmodel4
(Adve	rtising.csv)4
Α.	Load and Glance4
В.	Initialize and Fit Linear Model4
C.	Produce the Model5
D.	Predict the Model5
Ε.	Store the Prediction Model5
F.	Plot6
<i>III.</i>	Python - using SKLearn7
(Auto	mobileEDA.csv)7
Α.	Load and Glance7
в.	Part II: Visualize / Plot the Regression Model8
1	Step 1: Load the LR Modules and Create the LR Object8
2	Step 2: Define Our X and Y8
2	
3	Step 3: Fit / Train the Linear Model8
3 4	Step 3: Fit / Train the Linear Model8 Step 4: Visualize Price vs highway-mpg9
3 4 C.	Step 3: Fit / Train the Linear Model
3 4 C. 1	Step 3: Fit / Train the Linear Model
3 4 C. 1 2	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10
3 4 C. 1 2 3	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11
3 4 C. 1 2 3 D.	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12
4 C. 1 2 3 D. E.	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12 Part V: Use R2 and MSE as indicators to determine the accuracy of the Linear 12
4 C. 1 2 3 D. E. Reg	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12 Part V: Use R2 and MSE as indicators to determine the accuracy of the Linear ression fit 14
4 C. 1 2 3 D. E. Reg 1	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12 Part V: Use R2 and MSE as indicators to determine the accuracy of the Linear 14 Step 1: Calculate the R2 for "highway_mpg" vs "Price" 14
3 4 C. 1 2 3 D. E. Reg 1 2	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12 Part V: Use R2 and MSE as indicators to determine the accuracy of the Linear 14 Step 1: Calculate the R2 for "highway_mpg" vs "Price" 14 Step 2: Calculate the MSE 15
3 4 C. 1 2 3 D. E. Reg 1 2	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12 Part V: Use R2 and MSE as indicators to determine the accuracy of the Linear 14 Step 1: Calculate the R2 for "highway_mpg" vs "Price" 14 Step 2: Calculate the MSE 15 a) Firstly, predict the output "yhat" 15
4 C. 1 2 3 D. E. Reg 1 2	Step 3: Fit / Train the Linear Model 8 Step 4: Visualize Price vs highway-mpg 9 Part III: Generate a Linear Regression Equation 10 Step 1: Find the Y-Intercept 10 Step 2: Find the Gradient 10 Step 3: Test Some Predictions 11 Part IV: Use a Residual Plot to visually inspect if Linear Regression fits the model 12 Part V: Use R2 and MSE as indicators to determine the accuracy of the Linear 14 Step 1: Calculate the R2 for "highway_mpg" vs "Price" 14 Step 2: Calculate the MSE 15 a) Firstly, predict the output "yhat" 15 b) "mean_squared_error" 15

CONTENTS

2 | P A G E

3 | P A G E

II. PYTHON - USING STATSMODEL

(ADVERTISING.CSV)

A. LOAD AND GLANCE

- Dataset can be found here: <u>https://www.alvinang.sg/s/Advertising.csv</u>
- <u>https://www.alvinang.sg/s/Simple Linear Regression with Statsmodel by Dr Alvin Ang.ipynb</u>

```
D
  import pandas as pd
   # Import and display first five rows of advertising dataset
   advert = pd.read_csv('https://www.alvinang.sg/s/Advertising.csv')
   advert.head()
C→
                                         1
      Unnamed: 0
                 TV Radio Newspaper Sales
   0
             1 230.1
                     37.8
                              69.2
                                    22.1
                44.5
                     39.3
                              45.1
                                    10.4
    1
   2
             3 17.2
                                    9.3
                              69.3
             4 151.5
                     41.3
                              58.5
                                    18.5
```

58.4 12.9

B. INITIALIZE AND FIT LINEAR MODEL

```
import statsmodels.formula.api as smf
# Initialise and fit linear regression model using `statsmodels`
model = smf.ols('Sales ~ TV', data=advert)
model = model.fit()
/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the
import pandas.util.testing as tm
```

• $Y \sim Sales$

4

• $X \sim TV$ (advertising)

5 180.8

10.8

4 | P A G E

C. PRODUCE THE MODEL

model.params							
#Sales =	7.032 + 0.047*TV						
Intercept TV dtype: float	7.032594 0.047537 64						

D. PREDICT THE MODEL

E. STORE THE PREDICTION MODEL

5 | PAGE

F. PLOT

6 | P A G E

III. PYTHON - USING SKLEARN

(AUTOMOBILEEDA.CSV)

- The dataset is here:
 - o <u>https://www.alvinang.sg/s/automobileEDA.csv</u>
 - <u>https://www.alvinang.sg/s/Simple Linear Regression using SKLearn by Dr Alv</u> <u>in Ang.ipynb</u>

A. LOAD AND GLANCE

[2] import pandas as pd import numpy as np import matplotlib.pyplot as plt

path = 'https://www.alvinang.sg/s/automobileEDA.csv
df = pd.read_csv(path)
df.head()

• Output:

/r	nboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	length	 compression- ratio	horsepower	peak- rpm	city- mpg	highway- mpg	price
	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111.0	5000.0	21	27	13495.0
	3	122	alfa- romero	std	two	convertible	rwd	front	88.6	0.811148	 9.0	111.0	5000.0	21	27	16500.0
	1	122	alfa- romero	std	two	hatchback	rwd	front	94.5	0.822681	 9.0	154.0	5000.0	19	26	16500.0
	2	164	audi	std	four	sedan	fwd	front	99.8	0.848630	 10.0	102.0	5500.0	24	30	13950.0
	2	164	audi	std	four	sedan	4wd	front	99.4	0.848630	 8.0	115.0	5500.0	18	22	17450.0

vs × 29 columns

7 | PAGE

- B. PART II: VISUALIZE / PLOT THE REGRESSION MODEL
- 1. STEP 1: LOAD THE LR MODULES AND CREATE THE LR OBJECT

2. STEP 2: DEFINE OUR X AND Y

3. STEP 3: FIT / TRAIN THE LINEAR MODEL

8 | P A G E

4. STEP 4: VISUALIZE PRICE VS HIGHWAY-MPG

(0.0, 48180.533904764896)

- Comments:
 - Price is negatively correlated to highway-mpg.
 - The data points are scattered badly around the regression line.
 - o A linear model is NOT the best fit.

9 | P A G E

C. PART III: GENERATE A LINEAR REGRESSION EQUATION

- 1. STEP 1: FIND THE Y-INTERCEPT
- Y-Intercept refers to the C of the Y = mX + C.

- 2. STEP 2: FIND THE GRADIENT
- Gradient refers to the m of the Y = mX + C

- This means that the Linear Equation is
 - price = 38423.31 821.73 x highway-mpg → Y = C + mX

3. STEP 3: TEST SOME PREDICTIONS

• Since we already have the LR Equation Y = mX +C, we test it using the first 5 rows of values of the Dataset.

✓ Os	D	Yhat=lm.predict(X)
		Yhat[0:5]
		array([16236.50464347, 16236.50464347, 17058.23802179, 13771.3045085 , 20345.17153508])

• Note that the first 5 rows of the "highway-mpg" are as follows:

T	highway-mng	nrice	,
Ē	1116111104 111PB	12405	È
	27	15495	
L	27	16500	
)	26	16500	
ł	30	13950	
3	22	17450	

• In other words, the "forecasted" values in the prediction array were using the values

o 27 / 27 / 26 / 30 / 22

• This differs quite a bit from the real pricings!

D. PART IV: USE A RESIDUAL PLOT TO VISUALLY INSPECT IF LINEAR REGRESSION FITS THE MODEL

- Residual plot has been described and defined here:
 - o <u>https://www.alvinang.sg/s/Multiple-Regression-MR-by-Dr-Alvin-Ang.pdf</u>
 - A residual plot is a graph that shows the residuals on the vertical y-axis and the independent variable on the horizontal x-axis.
- What is a Residual? The difference between the observed value (y) and the predicted value (Yhat).
- If the points in a Residual Plot are randomly spread out around the x-axis, then a linear model is appropriate for the data.
- Because randomly spread out residuals means that the variance is constant, and thus the linear model is a good fit for this data.

• Output:

- Comments:
 - This residual plot shows that the residuals are not randomly spread around the x-axis.
 - Maybe a non-linear model is more appropriate for this data.

E. PART V: USE R2 AND MSE AS INDICATORS TO DETERMINE THE ACCURACY OF THE LINEAR REGRESSION FIT

- R2 has been explained here:
 - <u>https://www.alvinang.sg/s/How-to-Perform-Simple-Linear-Regression-using-Excel-Dr-Alvin-Ang-watermarked.pdf</u>
 - R squared, also known as the coefficient of determination, is a measure to indicate how close the data is to the fitted regression line.
- Mean Squared Error (MSE) has been explained here:
 - o https://www.alvinang.sg/s/Forecasting-by-Dr-Alvin-Ang-watermarked-hjr9.pdf
 - The Mean Squared Error measures the average of the squares of errors, that is, the difference between actual value (y) and the estimated value (ŷ).
 - 1. STEP 1: CALCULATE THE R2 FOR "HIGHWAY_MPG" VS "PRICE"

- Comment:
 - We can say that ~ 49.659% of the variation of the "price" is explained by this simple linear model "highway_mpg".
 - Below 50% means that actually a linear model is not a good fit...which means that the actual data is far from the fitted line...

14 | P A G E

2. STEP 2: CALCULATE THE MSE

a) Firstly, predict the output "yhat"

D Yhat=lm.predict(X) print('The output of the first four predicted value is: ', Yhat[0:4]) The output of the first four predicted value is: [16236.50464347 16236.50464347 17058.23802179 13771.3045085]

b) "mean_squared_error"

- Comment:
 - At this point, we are unable to say if MSE is high or low.
 - MSE is used to measure against another method of fitting i.e. it cannot be used as a standlone measure.
 - That is, currently we are doing Linear Regression (LR) for model fitting and we have this MSE.
 - We can only compare this MSE with another MSE of another model fit... E.g. Multiple Regression (MR)... in which we will showcase this in another article.

15 | P A G E

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at <u>www.AlvinAng.sg</u>.

16 | P A G E