
2024 Spring Soya Kim

1

GT CSE6250 Big Data Healthcare
Instructor: Jimeng Sun

Description

In healthcare, large amounts of heterogeneous medical data have become available in various healthcare
organizations (payers, providers, pharmaceuticals). This data could be an enabling resource for deriving
insights for improving care delivery and reducing waste. The enormity and complexity of these data-sets
present great challenges in analyses and subsequent applications to a practical clinical environment. In this
course, we introduce the characteristics of medical data and associated data mining challenges on dealing
with such data. We cover various algorithms and systems for big data analytics. We focus on studying those
big data techniques in the context of concrete healthcare analytic applications such as predictive modeling,
computational phenotyping, and patient similarity. We also study big data analytic technology:

1. Scalable machine learning algorithms such as online learning and fast similarity search;
2. Big data analytic system such as Hadoop family (Hive, Pig, HBase), Spark and Graph DB

Table of Contents

CSE6250 Big Data Healthcare .. 1

01 Introduc,on to Big Data ... 2

02 Big Data Course Overview ... 4

03 Predictive Modeling .. 8

04 MapReduce ... 14

05 Classification Methods Metrics .. 20

06 Ensemble Methods .. 25

07 Computational Phenotyping .. 31

08 Clustering ... 37

09 Spark .. 44

10 Medical Ontology .. 50

11 Graph Analysis .. 56

12 Dimensionality ReductionTensor Factorization ... 60

13 Patient Similarity ... 67
14 Deep Neural Network .. 71

15 Convolutional Neural Network ... 77

2024 Spring Soya Kim

2

01 Introduc,on to Big Data
0 Welcome to Big Data Analy2cs for Healthcare. I'm Jimeng Sun, associate professor in college
compu2ng at Georgia Tech. I'm here at Children's Healthcare, Atlanta to tell you a liDle bit about this
course. First, let me tell you a liDle bit about me. I was born in Beijing, China. No? I'll skip ahead. My
research area is in healthcare analy2cs and data mining. Before Georgia Tech, I worked at IBM TJ Watson
Research Center in Healthcare Informa2cs. I also enjoy swimming. In this lesson, we'll discuss what you'll
do for this course and what you will learn, and why you should care.

1 This course exists at the intersec2on of house care and big data. On the one hand, we have house
care, we talk about house care applica2ons as well as house care data. On the other hand, we have data
science and big data analy2cs. We'll talk about different algorithms. And systems for processing and
analyzing big data. We'll focus on the intersec2on between these two and how one is applied to the other.

2 Our learning goals for this class are understanding healthcare data, understanding different
analy2cs algorithms, and understanding big data systems. What will I be able to do once I complete this
course? You'll be able build models on healthcare data. For example, models for individual disease risk
predic2on, recommending treatments, cluster a pa2ent into groups with common characteris2cs, and
find similar pa2ents. How will I be assessed? You do have few homework assignments, using big data
tools. You do a project involving building a system to analyze healthcare data, wri2ng a report, and giving
a presenta2on.

3 Health care industry is huge, and there are a lot of data coming out of health care. U.S. health
care is incredibly expensive. Overall spending is $3.8 trillion in U.S. per year. That's more than the value
of ten biggest companies plus ten Beijing Olympics plus a Warren Buffet, and a Bill Gates. But does it
have to be that way? There is massive waste in health care unfortunately. The es2mated waste in U.S.
healthcare alone is $765 billion. That's equivalent to the NASA's total budget for the past 50 years. Not
only the cost is an issue, but also the quality of healthcare is poor. There are 200 to 400 thousand
preventable deaths per year in the U.S. That's 1,000 people per day. Four preventable deaths occurred
during this video. If we classify the preventable deaths against other causes of deaths, it will be the
number three causes of deaths in the United States. A`er only heart disease and cancer. So, there are
massive problems presented in modern health care. Including high costs, high waste, and low quality.
How can big data help? The hope is big data can lead to beDer care and lower cost.

4 And big data for healthcare. People talk about the four v's. Volume. There's a massive amount of
data, which gives analy2cs algorithms or systems a lot to act on. Variety. There's a variety of data that
lets us connect lots of informa2on sources together. Velocity, o`en 2mes, this data, are coming in, in real
2me. Meaning that, data is coming in live, and needs to be processed, and analyzed, live. Veracity, there's
a common problem with veracity. There's a lot of noise, a lot of missing data, a lot of errors, and a lot of
false alarms.

5 Healthcare generates a large volume of date. For example, for genomic data each human genome
requires 200 gigabytes of raw data or 125 megabytes, if we store just snipes. For medical imaging data,
a single fMRI is about 300 gigabytes. Medical imaging data generated in the US, per year was es2mated
to be 100 petabyte. That's a lot of data. Healthcare also generates a lot of different kind of informa2on.
Such as clinical informa2on, including pa2ent's demographics, diagnosis, procedure, medica2on, lab
results, and the clinical notes. And pa2ent generated data such as informa2on coming out of arm body

2024 Spring Soya Kim

3

sensors and other devices that pa2ents wear. And real 2me data sources such as blood pressure
measures, temperature, heart rate, drug dispensing levels at intensive care units. Our main focus is on
dealing with this wide variety of data. So, we'll talk a lot about this later in this course.

6 So that's why you should care about the health care side. What about the data science side?
There's an ar2cle in Harcord Business Reviews named Data Scien2st, The Sexiest Job in the 21st Century.
Here are some main points in that ar2cle. Capitalizing on big data depends on hiring scarce data scien2sts.
Scien2sts. What data scien2sts do is to make discoveries while swimming in big data. I already told you I
enjoy swimming by the way. Data scien2sts realize that they face technical limita2ons, but they won't
allow that to bog down their search for novel solu2ons. Data scien2sts actually created the systems that
we will discuss in this course, like Hadoop and Spark.

7 Now it's 2me for a quiz. First, true, or false? Gedng a graduate level degree is necessary for
becoming a data scien2st.

8 The answer is true.

9 Next, guess how much does a data scien2st make, on average.

10 The answer is $120,000 per year. An experienced data scien2st actually make over $150,000 year.

11 And finally, what skills do data scien2sts need to know?

12 The answer is: math and sta2s2cs, domain knowledge and skills, programming and databases,
and communica2on and visualiza2on.

2024 Spring Soya Kim

4

02 Big Data Course Overview
13 In the first lesson, we talked about big data analy2cs for healthcare as a whole and what we
expect from this course overall. Now, let's break down the actual topics we will cover. We'll start by talking
about some of the healthcare applica2ons for big data. Then we'll talk about some of the algorithms we
will use in those applica2ons. And then we'll talk about some of the so`ware systems that we will use to
implement those algorithms and to support those applica2ons. If you look at the calendar, you'll see that
throughout the semester, we alternate among those general topics. So, let's start by talking about
healthcare applica2ons.

14 To understand this course in general let's look at the big picture. So, this course we'll talk about
three different things. We'll talk about big data systems. We also will introduce scalable mission learning
algorithms. Then we'll talk about healthcare applica2ons. And see how we can use those mission learning
algorithms and big data system together to solve healthcare problems. So, let's start by talking about
healthcare applica2ons.

15 We'll talk about three types of healthcare applica2ons in this course. Predic2ve modeling is about
using historical data to view the model for predic2ng future outcome. Computa2onal phenotyping is
about turning messy electronic health records into meaningful clinical concepts. And pa2ent similarity, it
uses health data to iden2fy groups of pa2ents sharing similar characteris2cs. We'll begin with predic2ve
modeling.

16 Predic2ve modeling is about using historical data to view the model for predic2ng future events.
For example, we want to predict which treatment is likely to work for an epilepsy pa2ent. Why do you
we want to do predic2ve modelling? Let's mo2vate predic2ve modeling with. let's try to es2mate which
percentage pa2ent was epilepsy in US responded to treatment Group A within first two years of
treatment, Group B between two to five years of treatment, and Group C con2nued to suffer even a`er
five years of treatment. So, write your number in those boxes, and they should probably add up to a
hundred.

17 Here's the answer, group A, within the first two years of treatment, only 32% of pa2ent in that
group. Group B, between two and five years, there are 24% of pa2ent, and group C con2nue to suffer
a`er five years, there are 44% of pa2ent. So clearly this is a problem, we like group A to be the majority.
Predic2ve modeling would help in proof matching pa2ents to the right treatment quickly. So that late
responders in group B will be come early responder in group A. Also, this will help iden2fy non-responder
in group C quickly, so that new treatment can be developed for them.

18 So what makes predic2ve modeling difficult? We have millions of pa2ents we want to analyze and
their diagnosis informa2on, medica2on informa2on, and so on. So, all this data combined together,
create a big challenge. The second challenge in predic2ve modeling is there's so many models to be built.
Predic2ve modeling is not a single algorithm, it's a sequence of computa2onal tasks. We'll introduce
predic2ve modeling pipeline in more details in a later lecture. But every steps in this pipeline has many
different op2ons. All of those combined give us many, many pipelines to be evaluated and compared.

19 We just talked about predic2ve modeling. Next, let's talk about computa2onal phenotyping. The
input to computa2onal phenotyping is the raw pa2ent data. It consists of many different sources such as
demographic informa2on, diagnosis, medica2on, procedure, lab test, and clinical notes. And
phenotyping is the process of turning the raw pa2ent data into medical concepts or phenotypes.

2024 Spring Soya Kim

5

20 To help us understand phenotyping beDer, let's do a quiz. Imagine you're trying to extract
phenotypes from this raw data, so what are the waste products we should deal with? For example,
missing data could be one. So, write down some of those wast product in this box.

21 Okay, here are some possible answers. Missing value, some important data may be missing from
the raw data. We have to deal with that. Duplicates, some pa2ent record may show up mul2ple 2mes
due to recording errors. Irrelevant data, not all the raw informa2on are relevant for a specific task. We
want to get rid of those irrelevant informa2on. Redundant informa2on, different data records can
indicate the same underlying problems. For example, both diagnosis and medica2on records from a
pa2ent indicates underlying condi2on of Type 2 diabetes. So, we want to consolidate those redundant
informa2on.

22 Next let's see an example of phenotyping algorithm for type 2 diabetes. So, the input to the
algorithm is EHR, Electronic Health Record of a pa2ent. Then we'll first check whether the pa2ent record
indicate type 1 diabetes diagnosis. If the answer is no, then we con2nue checking with a Type 2 Diabetes
diagnosis is present. If again no, would check whether Type 2 medica2on is given. Then if the answer is
yes, we check whether any abnormal lapse is present. If yes, then we confirm this pa2ent record, indicate
this pa2ent has Type 2 Diabetes. And this is not the only way to iden2fying Type Two Diabetes cases.
There's a different path. For example, from here we can check Type 2 Diabetes diagnosis, if the answer
is yes, we'll check medica2on for Type 1 Diabetes. If the answer is no, we'll check medica2on for Type 2
Diabetes. And if this answer is no, then we go back to check for abnormal labs. If the answer is yes, again
this record indicates Type 2 Diabetes. If at this stage the Type 2 Diabetes medica2on is confirmed, then
immediately we know this record indicates Type 2 Diabetes pa2ent. And this is s2ll not the complete
algorithm. There's two other paths can lead to type 2 diabetes. Does the en2re flow chart give us one
example of phenotyping algorithm for type 2 diabetes? So, you may wonder why do we need such a
complicated algorithm to determine whether pa2ent have Type 2 Diabetes. Can we just ask whether
pa2ent have Type 2 Diabetes diagnoses present in the data? Shouldn't that be enough? The answer is
no. The reason is because electronic house record data's very unreliable. There are missing data,
redundant informa2on, so some2mes for Type 2 Diabetes pa2ent, the diagnosis is not present in the
record. So, we s2ll have other way to check whether our Type 2 Diabetes pa2ent, for example, their
medica2on, lab tests. So that's why it's not sufficient just checking one source of informa2on. At the
same 2me, even the Type 2 Diabetes diagnosis is present, it's not necessarily confirmed the pa2ent has
Type 2 Diabetes, because pa2ent can come to the clinics for a checkup, for screening purpose, then this
diagnosis code can s2ll be present in the data. So, we have to check addi2onal things, such as medica2on,
and lab tests to really confirm this pa2ent has Type 2 Diabetes. In this class, we'll learn how to develop
phenotyping algorithm look like this from data, and also how to implement such algorithm efficiently
using big data systems.

23 Okay, so we talked about predic2ve modeling applica2on phenotyping. Next, we'll introduce
pa2ent similarity. To mo2vate pa2ent similarity let's do another quiz. So, which of the following type of
reason do doctors engage most o`en during pa2ent encounters. Is it based on flowchart reasoning like
what we have seen it phenotyping algorithm? Or is it based on her ins2nct and intui2on? Or is it
comparison to past individual pa2ents?

2024 Spring Soya Kim

6

24 So the correct answer is comparison to the past individual pa2ents or case-based reasoning.
Based on our anecdotal experiences, doctor o`en compared the current pa2ent to the old pa2ent they
have seen.

25 So pa2ent similarity is about simula2ng the doctor's case based with the computer algorithms.
Instead of depending on one doctor's memory, wouldn't it be nice if we can leverage all the pa2ent data
in the en2re database? So, the idea is when the pa2ent comes in, the doctor does some examina2on on
the pa2ent. Then, based on that informa2on, we can do a similarity search through the database. Find
those poten2ally similar pa2ents, then doctor can provide some supervision on that result to find those
truly similar pa2ents to the specific clinical context. Then we can group those pa2ents, based on what
treatment they are taking, and look at what outcome they're gedng. Then recommend the treatment
with the best outcome to the current pa2ent. And that's what pa2ent similarity does. So, in this course,
we'll learn about different pa2ent similarity algorithms and how to implement that in an efficient manner
using big data systems

26 So far, we talked about health care applica2ons. Next, we introduce what machine learning
algorithms will be covered in this course. So, in this course, we'll cover big data algorithms. We'll talk
about classifica2on algorithms, clustering algorithms, dimensionality reduc2on algorithms and graph
analysis. First, let's talk about classifica2on algorithm. So given a matrix X, here every row represent a
pa2ent, every column represent a disease and every element here indicate whether a specific pa2ent
has a specific disease. Then, we learn a func2on f that map each pa2ent to a target variable y. For example,
here, the target could be whether a pa2ent had a heart aDack or not in next six months. And we'll also
talk about clustering algorithms. So here the input of clustering algorithm is similar to classifica2on. So,
we have a matrix x, every row represent a pa2ent, every column represent a disease, and we want to
learn a func2on f that par22on the set of pa2ent into different clusters. For example, x1, x2, x3 represent
different pa2ent clusters. And the pa2ent within a cluster are similar to each other and they're different
from pa2ent in different clusters. We'll also talk about dimensionality reduc2on algorithm. Here the input
is a large matrix of the set of pa2ents with large number of features. And the output of dimensionality
reduc2on is a smaller matrix, x prime, that consists of the same set of pa2ents with smaller number of
features. There are different ways to construct those features. Some2mes those features are good
summary of all the feature in the original matrix. Some2mes those are the only features we care about
in order to predict a specific target. We also learned graph analysis. For example, we have two pa2ent
here, and we connect those pa2ents to a set of diseases they have and also connect the diseases are
related to each other. Given this network of pa2ents and diseases, and we want to learn what are the
important pa2ents or disease in this network and also how they related to each other?

27 So far we're talking about healthcare applica2on and machine learning algorithms. Next we'll talk
about big data systems. In order to deal with big data set and implement your algorithm to process big
data set, we need big data systems. So, in this course we'll introduce two popular big data systems.
Hadoop and Spark. Hadoop is a distributed disk-based big data systems that all the data are stored in
disks. Well, Spark is a distributed in-memory big data systems. That most data store in memory. So, Spark
in general is much faster than Hadoop, but both are popular big data system that people are using. In
this course, we'll talk about Hadoop and all the important building blocks in Hadoop. We'll talk about the
core infrastructure of Hadoop, the MapReduce programming model and HDFS storage systems, and the
high-level processing systems, such as Pig, Hive, and HBase. So, in this course, we will also talk about
Spark, the core infrastructure of Spark, how do we store data and how do we process data. Using Spark

2024 Spring Soya Kim

7

and the high-level abstrac2ons such as Spark SQL and Spark streaming, MLLib for large scale machine
learning library using Spark, and GraphX for processing graph data using Spark.

28 So today we talked about three big parts of this course. We talked about the healthcare
applica2ons, the machine learning algorithms, and the big data systems. We integrate all of this
throughout the course. We'll move back and forth between applica2on, algorithm, and systems. For
example, we might build a scalable classifier using logis2c regression on Hadoop for predic2ng heart
failure. So, let's get started.

2024 Spring Soya Kim

8

03 Predictive Modeling
29 This lesson is about predic2ve modeling. What is predic2ve modeling? Not quite. Predic2ve
modeling is a process of modeling historical data for predic2ng future events. For example, we want to
use electronic health record that we have available to view a model of heart failure. So that we can
predict pa2ents who are at risk of developing heart failure sooner. The key goal we want to answer in
this lessons is how do we develop a good predic2ve model using electronic health record quickly?

30 In this lesson we'll focus on describing how to perform predic2ve modeling using electronic health
records, or EHR. To demonstrate the importance of predic2ve modeling and EHR, here we're showing
the number of publica2ons with the keyword predic2ve model over 2mes and the number of
publica2ons with the keyword EHR over 2me. Especially in the past few years, there is an explosion of
interest in EHR as EHR become a major data sources for clinical predic2ve modeling research. Therefore,
it's important to learn how to develop a good predic2ve model using EHR data.

31 Predic2ve modeling is not a single algorithm, but a computa2onal pipeline that involves mul2ple
steps. First, we decide the predic2on target, for example, whether a pa2ent will develop heart failure in
the next few years. Second, we construct the cohort of relevant pa2ents for the study. Third, we define
all the poten2ally relevant features for the study. Fourth, we select which features are actually relevant
for predic2ng the target. Fi`h, we compute the predic2ve model, and sixth, we evaluate the predic2ve
model. Then we iterate this process several 2mes un2l we are sa2sfied with the resul2ng model. Now
let's start with predic2on target.

32 There are o`en many targets that an inves2gator want to predict using the data they have.
However, only a subset of them are possible. So, we should choose the predic2on target that addresses
the primary ques2on that is both interes2ng to the inves2gator and possible to be answered using the
data. For this lessons, let's focus on predic2ng the onset of heart failure, which is an interes2ng and
poten2ally possible target.

33 Here's a quiz ques2on on heart failure. Make a guess. How many new cases of heart failure
pa2ents occurred each year in the U.S.? Is it a 17,000 pa2ents? Or b, 260,000 pa2ents? Or c, 550,000
pa2ents? Or d, 1,250,000 pa2ents?

34 The correct answer is 550 thousand pa2ents, which is a huge health care problem.

35 So we want to develop a predic2ve model for heart failure. But what are the mo2va2ons for early
detec2on of heart failure? First, heart failure is a complex disease. There is no widely accepted
characteriza2on and defini2on of heart failure. Probably because the complexity of the syndrome. It has
many poten2al ideologies, diverse clinical features, and numerous clinical subsets. If we can detect heart
failure earlier, we can poten2ally reduce the cost of hospitaliza2on associated with heart failure. We can
also poten2ally introduce new early interven2on to try to slow down the progression of heart failure,
improve the quality of life, and reduce mortality. In the long term we can improve exis2ng clinical
guidelines for heart failure preven2on. So, in this class we'll show you how to develop a predic2ve model
for predic2ng heart failure earlier.

36 So far, we're talked about how to define the predic2on target. Next, we introduce the Cohort
Construc2on step. Cohort construc2on is about defining the study popula2on. For a given predic2on
target, there are only a subset of pa2ent that are relevant among the whole pa2ent-popula2on. And they

2024 Spring Soya Kim

9

are the Study Popula2on. Be aware, o`en may not be possible to obtain data from everybody in the
study popula2on. As a result, the data set we studied is only a subset of those Study Popula2on. So, the
ques2on is, how do we define the Study Popula2on? There are two different axes to be considered. One
the ver2cal axis, we have prospec2ve study versus retrospec2ve study. On the horizontal axis, we have
cohort study verses case-control study. Depending on the combina2ons, we have four different op2ons.
Perspec2ve Cohort study, Perspec2ve Case-Control study, Retrospec2ve Cohort study, and Retrospec2ve
Case-Control study. Now let's look at this two axis in more details.

37 Now, let's talk about prospec2ve versus retrospec2ve studies. In a prospec2ve study, we first
iden2fy the cohort of pa2ents, then decide what informa2on to collect and how to collect them. Then
start the data collec2on. In contrast, in a retrospec2ve study, we first iden2fy the pa2ent cohort from
exis2ng data. For example, past electronic health records of pa2ents, then retrieve all the data about the
cohort. So, in prospec2ve study, we iden2fy the cohort and collect the data from scratch. But in the
retrospec2ve study, the data set already exists. We just need to iden2fy the right subset and retrieve
them.

38 Here's a quiz ques2on to compare perspec2ve and retrospec2ve studies. Each row represents a
par2cular property. Pick the study that has the corresponding property. More specifically, which one has
more noise in their data? Which one is more expensive to conduct? Which one takes a longer 2me to
conduct, and which one is more commonly done on larger dataset?

39 Here are the answers. So, retrospec2ve study o`en work on data with more noise, because data
are o`en created for other purpose, not research. In contrast, prospec2ve study, because you design a
dataset collec2on process specifically for this research, the quality of the data is o`en higher. As a result,
less noise. Prospec2ve study is o`en more expensive and takes longer 2me to conduct because the data
has to be collected from scratch. Finally, because the cost and 2me constraints, the size of the data set
prospec2ve study used is o`en smaller and limited. On the other hand, retrospec2ve study deal with
historical data. It o`en can work with much larger data set.

40 Next let's talk about COHORT study. In a COHORT study, the goal is to select a group of pa2ents
who are exposed to a par2cular risk, for example, if we want to be in a predic2ve model for predic2ng
heart failure readmission. Here heart failure readmission means, heart failure pa2ent a`er discharged
from the hospital, comes back again to the hospital due to heart failure. In this case, the COHORT should
contain all the heart failure pa2ents who discharged from the hospital, because they can poten2ally be
readmiDed a`er discharge. The key in COHORT study is to define the right inclusion and exclusion criteria
to figure out what pa2ent to include. Here's a visual illustra2on. We start with all pa2ents, then we try
to iden2fy the relevant pa2ent for a par2cular risk, for example, these three pa2ents are relevant for this
risk, such as heart failure readmission. Then we want to build a model to predict the target risk. In this
case, the COHORT contains both posi2ve and nega2ve examples, for example, pa2ent with heart failure
readmission and pa2ent without heart failure readmission. All this relevant pa2ent is a COHORT in this
study.

41 The other common study design is case-control study. In this design, we try to iden2fy two sets
of pa2ent, namely cases and controls. And we put them together to construct the cohort. Cases are
pa2ents with posi2ve outcome. For example, the pa2ent who develop the disease. Controls are the
pa2ents with nega2ve outcomes. That is, they're healthy pa2ents, but otherwise similar to the cases. For
example, they can have the same age, gender, and visit the same clinics. And the key here is to develop

2024 Spring Soya Kim

10

the matching criteria between cases and controls. For example, we want you to predict a model of heart
failure. Then we iden2fy a study popula2on of over 50,000 pa2ents, and we have 4,644 case pa2ents.
Those are the pa2ents who developed heart failure. And we matched them against a set of control
pa2ents on age, gender, and clinics. And we end up with 45,000 control pa2ents. No2ce that in this study,
we have a lot fewer cases with heart failures than the controls without heart failures. This is preDy typical
because in a real-world scenario, pa2ents with the specific disease condi2ons are o`en harder to obtain,
while there are a lot more pa2ents without that disease are available to serve as a control. To summarize,
in a case-control study, we first iden2fy the cases, then try to match them to a set of control pa2ents. In
a cohort study, we'll iden2fy all the pa2ents who are exposed to the risk and the matching criterias are
not involved.

42 So far we talked about how to define the predic2on target, how to construct the pa2ent cohort,
next we introduce feature construc2on step. The goal of feature construc2on is to construct all
poten2ally relevant features about pa2ents in order to predict the target outcome. Next, we introduce a
few key concepts that are related to feature construc2on. First, the raw pa2ent data arriving as event
sequences over 2me. Diagnosis date is the date that the target outcome happened. In the heart failure
predic2ve modeling example, each pa2ent is diagnosed with heart failure on this date. Since control
pa2ent does not have heart failure diagnosis, in theory, we can use any days from control pa2ent as the
diagnosis date. But commonly we choose to use the heart failure diagnosis date of the matching case
pa2ent as diagnosis date for the corresponding control. Before the diagnosis day, we have a 2me window,
called predic2on window. Before the predica2on window, we have the index day at which we want to
use the learn predicted model to make a predic2on about the target outcome. Before the index day, we
have another 2me window called observa2on window. We use all the pa2ent informa2on happening
during this observa2on window to construct features. There are many different ways to construct
features. For instance, we can count the number of 2mes an event happens. For example, if type two
diabetes code happened three 2mes during this observa2on window, the corresponding feature for type
two diabetes equals three. Or some2mes we can take average of the even value. For example, if pa2ent
has two HBA1C measures during observa2on window, we can take the average of this two measurement
as a feature for HBA1C. The length of predic2on window and observa2on window are two important
parameters that going to impact the model performance. Next, we illustrate their impact using some
examples.

43 Here's Chris to help us understand the impact of predic2on window and observa2on window.
Which of the following 2melines is easiest for modeling? Is it A, large observa2on window and small
predic2on window? Or B, small observa2on window and large predic2on window? Or C, small
observa2on window and small predic2on window. Or D, large observa2on window and large predic2on
window.

44 The answer is A, large observa2on window and small predic2on window. Because it is o`en easier
to predict event in the near future, that is, small predic2on window. On the other hand, large observa2on
window means more informa2on to be used to construct features, which is o`en beDer since we can
model pa2ent beDer with more data. Therefore, large observa2on window and small predic2on window
is easiest for modeling.

2024 Spring Soya Kim

11

45 Here is another quiz. Which of these 2meline is the most useful model? Large observa2on window,
small predic2on window. Or small observa2on window, large predic2on window. Or small observa2on
window and small predic2on window. Or large observa2on window and large predic2on window.

46 The answer is B. Small observa2on window, large predic2on window. In this idea situa2on, if we
can construct a good model, we want to predict far into future. Therefore, large predic2on window,
without much data about the pa2ent. Therefore, small observa2on window. That's why B reflects
idealis2c 2meline. If we compute a model in this sedng, this will be the most useful model. However,
the sedng is o`en difficult to model, therefore unrealis2c.

47 Here's another example illustra2ng the impact of predic2on window. In this chart, the y axis is
the accuracy of the model, the higher the beDer. The x axis is the size of the predic2on window, which
varies from zero days to 900 days. We can see the accuracy of the model drops as we increase the
predic2on window. Because it's easier to predict things happen in near future, than things happen far
into the future.

48 Here's another quiz ques2on on predic2on window. Which of the following op2ons is the most
desirable predic2on curve? Is it A, or B, or C, or D?

49 The answer is B because we can predict accurately for fairly long periods of 2mes up to 450 days
of predic2on window. While the performance of all the other model jobs fairly quickly as the predic2on
window increases. You may no2ce that A has the maximum accuracy at the beginning. However, as the
predic2on window increases, the performance of A drops quite quickly. So, it's not that of useful model
for predic2ng long term things.

50 Now let's consider the performance of different observa2on windows. Typically, as the
observa2on window increases, the performance improves because you know more about the pa2ent as
the observa2on window increases.

51 Here's the quiz on observa2on window. Given the performance curve when we vary the
observa2on window like this. What is the op2mal observa2on window we should choose? Is it A, 90 days,
or 270 days, or C, 630 days, or D, 900 days?

52 The answer is C, because the model performance plateaued a`er 630 days. It indicates a
diminishing return as we go further beyond that point. Therefore 630 days is a good choice. So, you may
wonder, choosing 900 days may also be a good choice, but it's a trade-off between how long is the
observa2on window, and how many pa2ents have that much data. So, if you chose 900 days as
observa2on window for pa2ents who do not have enough data up to 900 days, they will be excluded
from the study.

53 We covered the first three steps. Next we'll talk about the feature selec2on step. In the feature
selec2on step, we have talked about how construct features using pa2ent event sequences from the HRC
data. In par2cular, we construct feature from raw data in the observa2on window. If we look closely at
the observa2on window, we see event sequence data, which are corresponding to different types of
clinical events. For example, diagnosis, symptoms, medica2ons, pa2ent demographics, lab results, and
vital signs. We can construct features from all those events. However, not all the events are relevant for
predic2ng a specific target. The goal of feature selec2on is to find the truly predic2ve features to be
included in the model. For example, here are two pa2ent charts. We can see some features such as

2024 Spring Soya Kim

12

demographics, including age, race, and gender, and vital signs such as blood pressures, and diagnosis
such as diabetes and hypertension. However, in reality this pa2ent chart is not that simple. In fact, we
can construct a long list of features over 20,000 features, from a typical EHR data set. Not all of this are
relevant for predic2ng a target. We need to select the ones that are relevant to the target condi2on. For
example, if we want to predict heart failure, maybe those yellow features are relevant. However, for a
different condi2on, such as, diabetes. Maybe those purple features are relevant. The goal of features
selec2ons is to iden2fy those predic2ve features. Giving a specific target condi2on.

54 So far we've figured out what we want to predict and who we will use to make the predic2on and
what feature is to be used in this predic2on. And next let's see how we make the predic2on. Predic2ve
model is the func2on that maps the input features of the pa2ent to the output target. For example, if we
know a pa2ent's past diagnosis, medica2on, and lab result, if we also know this func2on, then we can
assess how likely the pa2ent will have heart failure. Depending on the value of the target, the model can
be either regression problems or a classifica2on problem. In regression problem, the target is con2nuous.
For example, if we want to predict the cost that a pa2ent will incur to the healthcare systems, then it's a
regression problem, and y is the cost in dollars. And the popular method includes linear regression and
generalized addi2ve model. And if the target is categorical, for example, whether the pa2ent has heart
failure or not, then it's a classifica2on problem. Popular method include logis2c regression, support
vector machine, decision tree, and random forest. You may have learned all those methods in other
courses such as machine learning. And in this course, we'll u2lize all those methods again in the context
of building a predic2ve model for solving healthcare problems.

55 The final step of this pipeline is to assess how good our model is through performance evalua2on.
Evalua2on of predic2ve models is one of the most crucial steps in the pipeline. The basic idea is to
develop the model using some training samples but test this train model on some other unseen samples,
ideally from future data. It is important to note that the training error is not very useful, because you can
very easily over fit the training data by using complex models which do not generalize well to future
samples. Tes2ng error is the key metric because it's a beDer approxima2on of the true performance of
the model on future samples. The classical approach for evalua2on is through cross-valida2on process
or CV.

56 Now, let's talk about cross-valida2on. The main idea behind cross-valida2on is to itera2vely split
a data set into training and valida2on sets. And we want to view the model on the training set, and test
the model on the valida2on step, but do this itera2vely, many 2mes. Finally, the performance matrix are
aggregated across this itera2ons o`en by taking the average. There are three common messes for cross-
valida2ons namely Leave-1-out cross-valida2on, k-fold cross-valida2on, and randomized cross-valida2on.
In Leave-1-Out cross valida2on, we take one example at 2me as our valida2on set and use the remaining
set as the training set. Then repeat this process many 2mes, goes through the en2re data set. The final
performance is computed by averaging the predic2on performance across all itera2ons. K-Fold's cross
varia2on is very similar to leave-1-out valida2on. But instead of just using one example of valida2on set,
we have mul2ple examples in the valida2on set. More specifically, we split the en2re data set into K-
Folds. And we itera2vely choose each fold as set, valida2on set and use the remaining Folds as a trimming
set. For example, the Fold 1 would be used as the valida2on set, and the remaining fold will be used as a
trimming set to view the model. Then we use a Fold 2 as the valida2on set, the remaining fold as the
training set to be build another model. And repeat this process K 2mes, and the final performance is the
average over this four different models. Finally, randomized cross valida2on will randomly split the data

2024 Spring Soya Kim

13

set into training and tes2ng. For each such split, the model is fit to the training data set, and the predic2on
accuracy is assessed using the valida2on set. The result are then averaged over all the splits. The
advantage of this method over the K-fold cross valida2on is that the propor2on of the training and
valida2on set is not depends on the number of fold. The disadvantage of this method is that some
observa2on may never be selected Into the valida2on set because there's randomiza2on process.
Whereas some other samples may be selected more than ones into the valida2on set. In other words,
valida2on set may overlap.

57 To conclude, in this lesson, we introduced the key steps in building a predic2ve model. Which
include define what is the predic2on target and construct the right pa2ent cohort, then construct all the
possible relevant features from data, then find which features are relevant, and view the predic2ve
model, and finally, evaluate the model performance. Now you should be able to design a high-level
predic2ve modeling study using this pipeline on the HR data.

2024 Spring Soya Kim

14

04 MapReduce
58 In the past couple of lessons, we have been talking about predic2ve modeling on big data. Today
we're going to talk about a tool for processing big data called MapReduce. MapReduce is a powerful
system that can perform some of the methods we have talked about so far. On big data set using
distributed computa2on and distributed storage. We'll start by discussing what MapReduce is. Then we'll
discuss how MapReduce takes care of fault tolerance ina distributed environment. Finally, we'll talk about
some of the analy2cs that can be performed when snap produce and the limita2ons it carries.

59 Now let's talk about Hadoop and MapReduce. So, what is Hadoop or MapReduce? Is it a
programming model for developer to specify parallel compe22on algorithms? Yup. We talk about
MapReduce paradigm. Is it an execu2on environment? Hadoop is the Java implementa2on of
MapReduce and Hadoop distributed file system. So, it is an execu2on environment. Is it a so`ware
package? Sure is! In fact, there are many so`ware tools have been developed to facilitate development
effort for data science tasks, such as data processing, extrac2on, transform and loading process, sta2s2c
computa2on, and analy2c modeling using Hadoop. In summary, Hadoop and MapReduce enables a
powerful big data ecosystem by providing the combina2on of all these things. So, in fact, MapReduce or
Hadoop is a big data system that provides the following capability, distributed storage for large data set
through Hadoop distributed file system, distributed computa2on through programming interface
MapReduce, and fault tolerance systems in order to cope with constant system failures on large
distributed systems that are built on top of commodity hardware.

60 Originally, MapReduce was proposed by Jeff Dean and Sanjay Ghemawat from Google in 2004
and were implemented inside Google as a proprietor so`ware for suppor2ng many of their search engine
ac2vi2es. Then later on, Apache Hadoop is developed as an open-source so`ware that mimic original
Google's MapReduce systems. It was wriDen in Java for distribu2ng storage and distribute processing of
very large dataset to program. On Hadoop systems, we have to use the programming abstrac2on
MapReduce, which provides a very limited, but powerful programming paradigm for parallel processing
on a large dataset. All the algorithm running on MapReduce or Hadoop have to be specified as
MapReduce programs. The reason for this very constrained programming model is to support super
scalable, parallel and fault tolerance implementa2on of data processing algorithm that can run on large
dataset. To u2lize Hadoop and MapReduce for data analy2cs, we have to understand and master
common paDerns for computa2on using MapReduce. We explain this next.

61 There's a fundamental paDern for wri2ng a data mining or mission learning algorithm using
Hadoop is to specify machine learning algorithms as compu2ng aggrega2on sta2s2cs. Say we want to
implement in a machine learning algorithm for iden2fying the most common risk factors of heart failure.
We need to decompose the algorithm into a set of smaller computa2on units. In par2cular, we need to
specify a map func2on f, where f will be applied to all the heart failure pa2ents in the large database. For
example, we want to extract the list of risk factors related to heart failure appear in each pa2ent's record.
Then result from this map func2on will be aggregated by a reduce func2on. For example, instead of lis2ng
the risk factors for each pa2ent, we want to compute the frequency of each risk factor over the en2re
popula2on. Then in this case, the reduce func2on would do that by performing the aggrega2on sta2s2c
on the result from the map func2on. So, this process is quite abstract. Next we'll go into more details to
explain why such abstrac2on is required and what are the benefit and limita2on of this abstrac2on.

2024 Spring Soya Kim

15

62 Here's an example to illustrate MapReduce in more details. Say we have a large database of
pa2ents stored in the Hadoop distributed file system. Each pa2ent is stored as a separate record, and
each record consists of the history of this pa2ent encounter. For example, the diagnosis, medica2on,
procedure, and clinical notes are all stored in those pa2ent records. Our goal is to write up MapReduce
programs to compute the number of cases in each disease. To do this in MapReduce, we first specify the
map func2on that goes through each pa2ent records, and extrac2ng the disease men2ons and output
that. For example, we have two pa2ent record over here, and when we apply the map func2on, we'll first
find the disease men2oned in this record. For example, for the first record, we iden2fy hypertension and
diabetes are in the record. Then, for the list of disease men2oned, we iden2fied inside this record, we
emit the disease name and the value 1. And the output from each map func2on looks like this. For
example, for this pa2ent we have a hypertension and value 1, and diabetes with a value 1. For the second
pa2ent, he has heart disease with value 1 and a hypertension with value 1. And the disease name in this
case is the key, and the value 1 is the value. So, map func2on would process input record, and output a
set of key value pairs. You no2ce that the same key value pairs may appear as output from different map
func2on. For example, hypertension. Value 1 happened in this output and also in this output. So, the
next phase will combine them. All the output from map func2on will be processed internally by Hadoop.
In par2cular, all those output will be shuffled and aggregated. For example, hypertension happened twice
over here, and a`er the shuffling and combina2on phase, we have hypertension and all those associate
value. Diabetes, on the other hand, only happened once in this record, so the corresponding lists of value
only have one value, and similarly for heart failure, we only have one value here. And this intermediate
result will be the input for the reduce func2on. To write a map reduce program we need to specify the
map func2on, and the reduce func2on. So, here's one example for a reduce func2on. The reduce func2on
will take the disease, key, and a list of disease values. For example, we have hypertension as the disease
key, and we have a values 1 and 1. So in this reduce func2on, we'll take the disease and the list of value,
and we sum up those value. So, the result of the reduce func2on would give us hypertension value 2,
diabetes value 1, and heart disease value 1. So, in this very simple example, you may feel like this two-
stage process is very strange. But if we're dealing with large data set, with billions of records, this two-
faced process is very important. And next, we'll explain how internally macro view system works. And
you understand why we have to specify the compe22on in these two phases.

63 So far, we illustrate the high-level ideas on how to write a MapReduce program. But how does
MapReduce work? And why it requires such a strange two-phased process? We have to realize; the real
word data set is o`en too big to be stored and processed on a single machine. So, we have to split the
data into par22ons so that each par22on can be stored and processed in parallel on mul2ple machines.
So, MapReduce systems has two components, mappers, and reducers. So, all those data will be
par22oned and processed by mul2ple mappers. And each mapper deal with a par22on, which is a subset
of records in the en2re dataset. For example, mapper 1 processes three records, mapper 2 processes
another three records and mapper 3 process the remaining records. Then, we have reducers, in this case,
we have reducer 1 and reducer 2. So, they are also divided the work by processing intermediate result,
in certain ranges. For example, reducer 1 will be in charge of heart disease, and reducer 2 will be in charge
of cancers. So, in the map phase, each mapper will itera2vely apply the map func2on on the data that
they're in charge of. And also, they will prepare the output that will be sent to the corresponding reducer.
For example, we have a set of intermediate result prepared for reducer one. And we have a set of
intermediate result prepared to be sent to reducer 2. And across different mappers, this process are

2024 Spring Soya Kim

16

happening in parallel. For example, mapper 1 is processing the first record by applying the map func2on.
So, iden2fy two diseases men2oned. One Is to be sent to reducer 1, is about heart disease and second
disease men2oned is about cancer. It will be sent to the reducer 2 and the same process is happening
concurrently on different mappers. For mapper 2, the first record would emit one disease men2oned for
reducer 2. And for mapper 3, we admit one record for reducer 1. And this process is itera2vely going
through all the records. And all those intermediate results will be processed internally through a
combina2on and shuffling process. So, we'll combine the values for the same disease at each mapper,
then stand out all those intermediate results to the corresponding reducers. So, at the reducer side, once
they receive those records, they can start genera2ng the final output by applying the reduce func2on.
For example, this R2 hypertension men2ons, and we obtain the final com, that's 3. And we're going
through the other disease and compute the final com. Then output the result, so these are the final
output from two different reducers. For example, for hypertension, it happened 3 2mes. For another
heart disease, it happened 2 2mes, for these two types of cancers, they both happen 3 2mes. So, to
summarize, this MapReduce system has three different phases. The map stage, where we performed
map func2on and the pre-aggrega2on and combina2on func2ons. Then we'll have a shuffle stage, all of
the intermediate results will be sent to the corresponding reducers. And we have the final reduce stage,
where the final output are generated.

64 So one of the key func2onality that MapReduce or Hadoop system provide is fault tolerance. On
a large cluster environment, many things can fail at any given 2mes. So, failure recovery is very costly,
and o`en 2mes, data scien2sts do not want to deal with failure recovery when they implement their
algorithms. They want to assume the system will always work. It's really on the shorter of the system to
take care of all the poten2al failures that can happen in this distributed environment. For example, this
mapper two can fail during execu2on of map reduce program. And this 2me, the map reduce system will
restart mapper two then goes through the same workload again, by genera2ng the intermediate result.
Then all the intermediate results will be sent to the corresponding reducers and the final output will be
generated. Similarly, reducer can also fail. For example, if reducer two failed, then Map Reduce system
will automa2cally restart reducer two and extract the corresponding intermediate result again back from
the mappers and re compute all those reduce func2ons. But keep in mind, the system of Map Reduce is
designed in a way that they want to minimize the re-computa2on. Ideally, when a component failed, only
that component should be re-computed. For example, when reducer two failed, reducer one should not
be impacted at all. So, Map Reduce systems is designed in a way that such op2miza2on is taken into place,
and all those re-computa2on, is minimized.

65 The MapReduce system is just part of the Hadoop systems. There is another part that's very
crucial as well, that is the distributed file systems. Here, we're going to illustrate the ideas behind the
Hadoop Distributed File System or HDFS. Given a large file, it's impossible and imprac2cal to store the
whole file on a single machine. O`en2mes, we split this large file into different par22on, for example,
here we have four par22on, A, B, C, D. Then we store those different par22on on different machines
where we call workers. Here we have four workers, and the other thing we do is, we store mul2ple copy
of the same par22on on different workers. For example, for par22on A, we store it on three workers, on
2, 3, and 4. Same for B, C, and D. So, this way, we distribute a large file across mul2ple machines. In order
to access these large files, we can retrieve those different par22ons many different ways. There are two
benefits for doing this. One is now we can access the mul2ple par22ons in the single file concurrently.
So, the root speed is actually faster than accessing the single file on a single machine. But more

2024 Spring Soya Kim

17

importantly, if any of those workers failed, we s2ll can't retrieve a large file. Say we have two worker
failed, worker 1 and worker 3. We can s2ll access the en2re file by retrieving all of those par22ons from
worker 2 and 4. So HDFS is the backhand file system to store all the data you want to process using
MapReduce program.

66 So the key design philosophy behind MapReduce is not to include many func2onali2es that
people may want. The key design decision is, what func2onality can we remove so the system is more
reliable and more scalable? At the same 2me, we want to make sure even with the minimum func2onality
that provided by MapReduce, so we can s2ll enable powerful computa2onal algorithms such as machine
learning. So given the machine learning algorithms, there's a lot of limita2on to u2lize MapReduce. For
example, we can't really direct access data. Instead, we have to specify map and reduce func2on and
compute in a very restricted forms this aggrega2on query. So, all those map func2on are those func2on
applied to the individual data records. And then this aggrega2on query in this example, which is taking
the sum and averaging that, is the reduce func2on. So, this seems to be a very restricted computa2on
paradigm, but surprisingly, many of the machine learning algorithms can s2ll be supported with
MapReduce. On the other hand, Hadoop systems will provide distributed file systems and distributed
computa2on. And more importantly they will ensure fault tolerance and straggler mi2ga2on. So here,
straggler mi2ga2on is really an extension of fault tolerance. For example, if we have one mapper that
runs very slowly, we'll correc2vely start the same mapper on a different machine. Then leave both
mapper runs, and whichever finish first will take the result and stop the other one.

67 Next we'll talk about some analy2c example using MapReduce. So, in par2cular, we'll cover a k-
nearest neighbor classifier and linear regression.

68 Now let's talk about how to use MapReduce to write a K nearest neighbor classifier. Given a set
of pa2ents, say we want to predict whether a given pa2ent will have a heart failure or not, by finding a
similar pa2ent to this query pa2ent. So here we have a set of pa2ents, and we plot them in this two-
dimensional space. X axis is the cholesterol level, and y axis the blood pressure. And every black point
over here indicate a pa2ent, and the value on those points are whether they had heart failure or not. For
example, a pa2ent over here as heart failure, and a pa2ent over here does not. And the goal is, given a
query pa2ent, for example, this pa2ent over here. We want to find the nearest neighbors, then do the
majority vote and to predict whether this pa2ent will have heart failure or not based on those similar
pa2ents. In the map reduce sedng, all those pa2ents will be split into mul2ple par22on. In this case we
have a two different par22on and this green par22on for mapper one is brown par22on for mapper two.
And this red point over here is our query data point. And we want to find three nearest neighbor. Now
we need to specify the map and reduce func2ons. So, the input to the map func2on are all those data
points and this par2cular query point. To output are K nearest neighbors for each par22on, and the
algorithm is quite simple. For each par22on we'll go through all those data points, and you need the K
closest point. For example, in these three points over here are the local nearest neighbor in par22on one
and this three points over here are the local nearest neighbor in par22on two. And those will be the
intermediate results sending to the reduced phase. So, in the reduced phase we need the local nearest
neighbors and the query point, and the output is a final global nearest neighbor, and the algorithm is
almost the same as the map func2on, so reduced func2on will go through all those local nearest neighbor
to iden2fy the global nearest neighbor, which are the three points over here.

2024 Spring Soya Kim

18

69 Now let's talk about how to use to implement linear regression. For example, we want to view
the linear regression that map pa2ents informa2on to heart disease risk. And we want to find out the
coefficients associated with all those pa2ent features. So, in this par2cular case, we have input feature
matrix which is n by d and n is number of pa2ents, d is number of features and the output target variable
which is n by 1. Every row here is the heart disease risk associated with that individual. Finally, we have
a d by 1 vector and every element here tells us about the coefficients in their linear regression model for
that corresponding features. For example, the first features may be the coefficient for age, the second
feature may be the coefficient for height, and so on. So now let's see how we compute such a model
using MapReduce. So, from sta2s2c class, we know that there's many way to solve linear regression, and
one of the popular way to do that is using this normal equa2on. That is, the op2mal coefficient in
maximum likely cosines can be computed by taking X transpose X inverse 2mes X transpose Y. If we have
a small data set, this can be easily computed on a single machine using your favorite sta2s2cal tools, such
as R or MadLab. However, if we have a very large data set with billions of pa2ents, this computa2on
cannot be done on a single machine. And next we'll see how we can use MapReduce to help us to do
this. To write this as a MapReduce program, we have to understand this equa2on a liDle bit beDer. There
are two steps involved here. One is to compute X transpose X. The other part is to compute X transpose
Y. And both can be further decomposed into aggrega2on sta2s2cs. For example, here X transpose X
becomes summa2on from a one to n over xi 2mes xi transpose. And, similarly, x transpose y becomes
summa2on over i from 1 to n, xi 2mes yi. So here, immediately, we can see the paDerns we're looking
for in term of aggrega2on sta2s2cs. This can easily be mapped to MapReduce computa2on. For example,
this xi 2mes xi transpose becomes the map func2on, and this xi 2mes yi becomes another map func2on,
f2. For example, to implement the first one as a MapReduce func2on, here are the pseudo code. For the
map func2on, the input is those x and y pairs, and x is the pa2ent feature and y is the heart disease risk.
In this par2cular case, we only need the x feature vector, and we want to compute x 2mes x transpose.
In the reduce phase, we take all the output of those xi 2mes xi transpose and compute the sum

70 Now we understand how to decompose this normal equa2on into two map reduce formula2on.
We already shown you how to specify this part, x transpose x, as map reduce computa2on. And now let's
do a quiz. Can you specify the pseudo code for map and reduce func2on for compu2ng x transpose y?

71 So here are the answers. So, in the map phase, we're taking our pa2ent record and their heart
disease risk, and we just simply compute x 2mes y. So, in this case, this corresponding to Xi 2mes the
heart disease risk, Yi. And the reduce func2on is the same as before. So, we take all those Xi 2mes yi from
each pa2ents and just compute the sum.

72 So far we've talked about MapReduce and have demonstrate some example using MapReduce
for machine learning. And what are the limita2on of MapReduce? Let's illustrate that through an example.
One of the popular machine learning algorithm is logis2c regression. So, it's the classifica2on model, and
the formula2on is very similar to linear regression, but It's not very easy to implement using map reduce.
Here's why. For example, we have a set of data points and x are the set of pa2ents who are likely to have
heart failure. Yellows are the set of pa2ents who do not have heart failure. And we want to learn a
classifier to separate them. And this line is op2mal separa2on, and we want to find that. So, recall we
have talked about gradient descent and stochas2c gradient descent in an earlier lecture. And here, if we
want to use gradient descent to find op2mal classifica2on line, how would that work? So, for simple
demonstra2on we have a very clear separa2on between this two groups of pa2ents. And this line is what
we want to learn. So, we may start with a random ini2al points, then start compu2ng the gradient, then

2024 Spring Soya Kim

19

update the gradients, then itera2vely it will converge to the op2mal line. So that's how reading design
works, and that's also how many machine learning algorithms work. They all require this itera2ve
computa2on. So, if we want to map this using MapReduce paradigms, how would this look like? Next,
we'll see how we can map this into a MapReduce computa2on. Then you will realize why it's not efficient
to use MapReduce for this type of workload. In order to implement the machine learning algorithms, we
have to formulate this as a set of aggrega2on sta2s2c computa2on. So, a`er specified the map func2ons,
then it will be applied to the en2re data set and then we aggregate the result and then that will be the
reduced func2on. To compute logis2c regression using map reduce, we have to specify a map func2on
which corresponding to compu2ng the gree2ng for a single pa2ent. Then this func2on will be applied to
a large data set with millions of pa2ent. Then, a`er we apply this math func2on over all the pa2ents,
then we aggregate them together. That give us the gradient. Then we update the parameters of the
logis2c regression using gradient descent and iterate. To use a MapReduce to compute logis2c regression
requires this itera2ve process. Every itera2on requires loading the data two 2mes, one for compute the
map func2ons, one for compute the re use func2on. And we have to do this itera2on many, many 2mes,
so it's not efficient. So, in summary, MapReduce is not op2mized for itera2on or this mul2stage
computa2on.

73 Now let's do a quiz about MapReduce. So, which of the following would be the best for a
MapReduce job? Single pass over the data versus mul2ple pass over the data. The key distribu2ons are
skewed versus uniformly-distributed keys. So here what I mean by that is, for example, if the age is the
key, and age is concentrated only on the age range of twenty to thirty, then it's skewed distribu2on. While
if the age is uniformly distributed from one to eighty, then it's uniform distributed keys. Third, no
synchroniza2on needed between different part of computa2on, versus a lot of synchroniza2on is
required.

74 The answer is MapReduce is best for single pass, such as compu2ng histograms. But it's not good
for mul2 pass, for example, compu2ng itera2ve op2miza2on algorithms, such as logis2c regression. So,
MapReduce is good for uniformly distributed keys. And also good for Skewed distribu2on of Keys. If we
have a Skewed distribu2on of Keys, then only one reducer has to do all the jobs. As opposed to Uniformly-
distributed across all reducers. Finally, map reduce is good for No synchroniza2on is required. It's not so
good when a lot of synchroniza2on is required. In fact, MapReduce has very liDle synchroniza2on. The
only synchroniza2on in the MapReduce drop, is between map and reduce phase. So, during map phase,
everything is done in parallel independently. And everything inside the reduce phase, is done
independently in parallel. And the only synchroniza2on is between map and reduce phase.

2024 Spring Soya Kim

20

05 Classification Methods Metrics
75 Last 2me, we talked about the overall process of predicted modeling. Now, we'll talk about how
to evaluate the performance of predicted models. When we are doing predicted modeling, one of our
fundamental concerns is the quality of the models we developed and so we need metrics to evaluate the
quality of the models. And there are many evalua2on metrics, such as accuracy, sensi2vity, and specificity,
which we'll talk about in this lesson. A big part of working with big data is developing mul2ple moDos
and comparing them against one another. An evalua2on metrics are the language we use to make these
comparisons.

76 In the last lesson we talked about predic2ve modeling pipeline. It involved mul2ple
computa2onal steps. In this lesson, we'll focus on performance evalua2on, and go into details, what are
those different performance evalua2on metrics. Predic2ve model is a func2on that map feature x to
predict output target y. The most common predic2ve models are either classifica2on problems or
regression problem. For classifica2ons the target variable y is either binary or categorical. There are many
performance metrics associated with classifica2on problems such as, true posi2ve rate, false posi2ve
rate, posi2ve predic2ve values, F1 score, area under the ROC curve, and many, many more. On the other
hand, if the target variable Y is con2nuous we also have a different performance metrics. Such as mean
absolute error, mean squared error, and R squared. In this lesson, we'll go through all those different
performance metrics and explain the defini2ons and how they're related to each other.

77 Now let's start with performance metrics for a classifica2on problem. In this lesson, we focus on
describing metrics for evalua2ng binary classifica2on problems, for example predic2ng whether pa2ents
would develop heart failure or not. These metrics can be generalized to the sedng with mul2ple classes
as well. But in this lesson, we'll focus on the binary sedng. There are many evalua2on metrics for
classifica2on model. Next we'll illustrate how they're all connected. To depending on the predic2on and
the Ground Truth value, we have four different possible outcomes. True Posi2ve, False Posi2ve, False
Nega2ve and True Nega2ve. Next, we explain their defini2on and rela2onship to each other. So, the
output of a binary predic2ve model, can be either Posi2ve or Nega2ve. So here you can see a zoom in
version of this. To differen2ate with the Ground Truth value, we call this Predic2on Outcome Posi2ve,
and Predic2on Outcome Nega2ve. Similarly, we have the Ground Truth value can be either Posi2ve or
Nega2ve. Again, to differen2ate with the predic2on value, we call this Condi2on Posi2ve and Condi2on
Nega2ve. If the Predic2on Outcome is posi2ve, and the Ground Truth's value is also posi2ve, then we call
this, True Posi2ve. However, if the Predic2on Outcome is posi2ve, but the Ground Truth condi2on is
nega2ve, then we call this False Posi2ve, or Type I error. Conversely, if the Predic2on Outcome is nega2ve,
and the Ground Truth Condi2on is posi2ve, we call this False Nega2ve, or Type II error. Finally, a True
Nega2ve occur when Predic2on Outcome and Ground Truth Condi2on are both Nega2ve. In fact, this 2x2
matrix is called a Confusion Matrix, or a Con2ngency table. Now, we understand all the defini2ons of this
basic matrix. Let's look at the rela2onship among this matrix. First, each row and column of this matrix
sum up to the marginal. For example, True Posi2ve plus False Posi2ve equals Predic2on Outcome Posi2ve.
And the True Posi2ve plus the False Nega2ve equals the Condi2on Posi2ve. And the Total Popula2on
equals the Predic2on Outcome Posi2ve plus Predic2on Outcome Nega2ve. Or Condi2on Posi2ve plus
Condi2on Nega2ve.

2024 Spring Soya Kim

21

78 Now let's do a quiz to beDer understand the rela2onship of all this metric in this confusion matrix.
Go ahead, fill in the true posi2ve, true nega2ve, condi2on posi2ve, predic2on outcome nega2ve and the
total popula2on.

79 I hope this quiz is not too confusing for you. Here are the answers. The key insight for solving this
quiz is leverage. The row sum and the column sums equals to the marginal. For example, true posi2ve
equals predic2on outcome posi2ve subtract false posi2ve. For example, 155 minus 100 equal to 55. And
the true nega2ve equals the condi2on nega2ve, subtract the false posi2ve. 935 minus 100 equals to 835.
Now you have all those four numbers, and the condi2on posi2ve can be calculated by taking the sum
between true posi2ve and false nega2ve. 65 equals to 55 plus 10. And similarly, predic2on outcome
nega2ve equals the false nega2ve plus true nega2ve. 10 plus 835 equal to 845. And finally, the total
popula2on can be calculated easier by sum up, predic2on outcome posi2ve, and predic2on outcome
nega2ve. Or you can sum up the condi2on posi2ve with condi2on nega2ve, so the total popula2on equal
to 1000.

80 Knowing this two-by-two confusion matrix is just the beginning. There are many different metrics
can be derived from those basic metrics. In par2cular, many metrics can be derived by taking ra2os of
different numbers from this basic metrics. First, let's introduce a set of metrics that are derived by
normalizing some terms with the ground truth value, either the total popula2on or the condi2on posi2ve
or the condi2on nega2ve. So, all these metrics are defined by some cona2ve divided by those
normaliza2on terms. For example, accuracy is the ra2o from the sum of true posi2ve and true nega2ve
divided by the total popula2on. Accuracy is the most basic metric that many people have intui2ve
understanding, but accuracy is not always the best measure when the class label are very imbalanced. If
only 1% of the total popula2on have heart failure, models can be achieved 99% accuracy by simply
predic2ng everyone would not have heart failure. So, it is important to use the appropriate metric for
measuring the performance of a predic2ve model. Another important metric is true posi2ve rate or
sensi2vity or recall. So, they have different names, because the same metric has been developed by
different communi2es, and true posi2ve rate equals the true posi2ve divided by the condi2on posi2ve
in the ground truth. To explain the intui2on, let's assume posi2ve means heart failure and nega2ve means
without heart failure. The intui2on of true posi2ve rate is to measure among all people with heart failure,
what percentage is correctly iden2fied by the predic2ve model? A very related metric can be derived
called false nega2ve rate, which equals 1 minus true posi2ve rate. The intui2on of false nega2ve rate is
among all heart failure pa2ents, what percentage of those pa2ents is missed by the predic2ng model?
False posi2ve rate is the ra2o between false posi2ve and the condi2on nega2ve. The intui2on of false
posi2ve rate is to measure among all people without heart failure, what percentage of them is incorrectly
predicted by the model as to have heart failure? Finally, true nega2ve rate or specificity is the number of
true nega2ve divided by the ground truth condi2on nega2ve, which also equals 1 minus false posi2ve
rate. The intui2on behind true nega2ve rate is to find among all people without heart failure, what
percentage of them is correctly classified as non-heart failure pa2ents? Note that accuracy measures the
combina2on performance of true posi2ve and true nega2ve, while true posi2ve rate measures the
performance only about true posi2ve, and true nega2ve rate measures the performance only about true
nega2ve. It is o`en possible to obtain high performance on a single metrics such as accuracy, while it's
difficult to obtain high performance on all metrics. That's why we o`en test a predic2ve model against
mul2ple metrics. First of all, different metrics are designed for different situa2ons. It is important to
choose the proper metric for your predic2on study.

2024 Spring Soya Kim

22

81 So now let's do another quiz on those new metric we just learned. Fill in the box based on the
number already provided here. Let's calculate the true posi2ve rate, false posi2ve rate, false nega2ve
rate, and true nega2ve rate. The detailed formula of all this metrics are provided in the instructor notes.

82 I hope your answers are accurate. The true posi2ve rate can be calculated by taking the true
posi2ve divided by the condi2on posi2ve and that give us 85%, and the true nega2ve rate can be
calculated by taking the true nega2ve divided by the condi2on nega2ve. That give us 89%. Next, for false
posi2ve rate, we can calculate that by either taking the false posi2ve divided by the condi2on nega2ve,
or just simply taking one minus the true nega2ve rate, which is 11%. Finally, the false nega2ve rate can
be calculated by taking the false nega2ve divided by the condi2on posi2ve, or simply one minus the true
posi2ve rate. That'd give us 15%.

83 So far we have learned all the accuracy metrics which are normaliza2on by the ground truth
values. Next, we'll learn another set of metrics that are defined by some commodity divided by the
predic2on outcomes. Either the predic2on outcome posi2ve or predic2on outcome nega2ve. First
prevalence. Prevalence is the ra2o between condi2on posi2ve and total popula2on. And prevalence
measures how likely the disease occurs in the total popula2on. For example, for different disease
condi2on, the prevalence can be very different. For heart failure. Among older popula2on, the
prevalence might be quite high such as 20%. For a rare type of cancer, the prevalence of that disease can
be quite low maybe 0.001%. Now let's look at posi2ve predic2ve value or precision. Posi2ve predictor
value is the true posi2ve divided by predic2ve outcome posi2ve. Posi2ve predic2ve value measures
among all pa2ents that are predicted to have heart failure. What percentage of them would actually have
heart failure? A rela2ve metrics is called false discovery rate. Which measures the number of False
Posi2ves divided by the Predic2on Outcome Posi2ves, or 1 minus posi2ve predicted value. The intui2on
behind False Discovery Rate is that, among all pa2ents that are predicted to have heart failure, what
percentage of those predic2ons is incorrect? Similarly, we can have nega2ve predic2ve value which
defines as the true nega2ve divide it by predic2on outcome nega2ve. The intui2on behind nega2ve
predic2ve value is among all pa2ent who are predicted to not have heart failure by the model. What
percentage of the predic2on is correct? And finally, we can also define false omission rate, which is the
false nega2ve divided by the predic2on outcome nega2ve. The intui2on behind false omission rate is
among all people who are predic2ve not to have heart failure by the model, what percentage of them
will actually develop heart failure? That means the predic2on is inaccurate there.

84 Now let's do another quiz. Please fill in the numbers for Prevalence, Posi2ve Predic2ve Value, and
False Discovery Rate.

85 so here are the answers. Prevalence can be computed by taking the condi2on posi2ve divided by
the total popula2on. So, it's close to seven percent, and the posi2ve predic2ve value equals the true
posi2ve, divided by the predic2on outcome posi2ve. We have 35% here. And the false discovery rate can
be calculated by taking false posi2ve divided by predic2on outcome posi2ve, or simply, one minus
posi2ve predic2ve value, which is 65%. I hope you predicted correctly, all those numbers. [SOUND]

86 Another popular metric is called F1 score. It combines the true posi2ve rate and the posi2ve
predic2ve value. And the F1 score is two 2mes posi2ve predict value 2mes true posi2ve rate divided by
the sum of those two measures. In fact, this fancy formula2on is really a harmonic mean of those two
measures, posi2ve predic2ve value, and the true posi2ve rate.

2024 Spring Soya Kim

23

87 Let's do another quiz about F1 score. Based on the informa2on in this table, please calculate F1
score.

88 And the answer is close to 0.5. You can calculate the F1 score by taking the true posi2ve rate 2mes
the posi2ve predic2ve value, then divide it by the sum of those two measures. And scale that by 2, which
will give you the number 0.5.

89 Now we have learned many different classifica2on metrics. Let's use that to decide which one of
this is the best classifier. Here are the different confusion matrix of these three classifiers and the
corresponding performance metrics. This is the true posi2ve rate, this is the false posi2ve rate and this
false nega2ve rate, and this is true nega2ve rate, and the numbers on the side are the marginal. This are
the ground truth's condi2on posi2ve and the ground truth's condi2on nega2ve. And this is predicted
outcome posi2ve and this predic2ve outcome nega2ve. And this is the total popula2on.

90 And the answer is C because it has higher performance matrix in all the three measures, posi2ve
predict values, F1 score, and accuracy.

91 Now we change the performance measures on classifier C. Can you tell me which one of this is
the best classifier?

92 The answer is s2ll C. This might be surprising to many of you. Although A seems to have a higher
performance measure than B and C, C can be easily improved by reversing the predic2on. We can change
the posi2ve to nega2ve, and nega2ve to posi2ve. This way the performance measure will become highest,
the same as before. So, in this manner the C classifier will s2ll perform the best.

93 In general, predictor models output con2nuous predic2on score. For example, in binary
classifica2on, it will be between 0 and 1. The value closer to 1 means predic2on outcome posi2ve, and
the value closer to 0 means predic2on outcome nega2ve. In this case, we need a threshold as the
predic2on boundary. This threshold has a significant impact on all the performance metric we have
discussed so far. And receiver opera2ng characteris2c, or ROC curve, provide a way to compare different
classifiers as a predic2on boundary is varied, and this curve is created by plodng the true posi2ve rate
against the false posi2ve rate at various threshold values. So, such a curve can be generated by going
through all the data points in the descending order of their predic2on score and using those predic2on
scores as threshold values. For example, we have 20 pa2ents. Ten of them have posi2ve outcomes
indicated by leDer p, and ten of them have a nega2ve outcome indicated by leDer n. We sort them based
on the predic2on score. Then we start using those predic2on score as threshold points. We start from
the point where the true posi2ve rate and the false posi2ve rate are both 0. Next, we pick the threshold
value to be 0.9, which means the predic2on score greater than or equal to 0.9 will be predicted as posi2ve,
and otherwise predicted as nega2ve. In this case, the true posi2ve rate will be 0.1, because only one out
of the ten pa2ents with posi2ve outcome are predicted correctly. The false posi2ve rate in this case is 0,
because no one has been mis-classified. Next, we change the threshold to 0.8. In this case, two posi2ve
pa2ents are classified correctly out of ten. Therefore, the true posi2ve rate improved to 0.2. S2ll, the
false posi2ve rate remained 0 because no mis-classifica2on has happened yet. Now let's change the
threshold value to 0.7. Now we actually mis-classified this instance to be posi2ve, but the actual outcome
is nega2ve. Therefore, the false posi2ve rate become 0.1, since one out of ten nega2ve examples are mis-
classified as posi2ve. The true posi2ve rate remains the same. We can go through all those data points
by changing the special values to complete this ROC curve. The ROC curve illustrates overall performance

2024 Spring Soya Kim

24

of a classifier when we're varying the threshold value. One important metric is the area under this ROC
curve, or AUC. Since AUC doesn't depend on the choice of the threshold, it becomes the most popular
performance metric for classifica2on problems.

94 Now we understand ROC curve, and the concept of AUC. We can use that to choose the best
classifier. However, to u2lize that classifier to make a predic2on, we s2ll have to choose a threshold. Now
which of the following would be a good threshold for this classifier? Is this A, 0.8, or B, 0.54, or C, 0.38,
or D, 0.3?

95 The answer is it really depends. If you're really curious about false posi2ve rate to be low, then A
is a good choice. If you really want to have a high true posi2ve rate, then C and D might be good choices.
If you care true posi2ve rate and the false posi2ve rate equally, then B will be the good choice. So, the
boDom line is, the op2mal classifica2on threshold may vary depending on your preferences.

96 So far we introduced many classifica2on metrics. Next, we'll present some popular regression
performance metrics. The most popular regression metrics are mean absolute error, MAE, or mean
squared error, MSE. The mean absolute error, MAE, measures the average of the absolute errors, that is
the difference between the predic2on and the ground truth value, and the mean squared error MSE, on
the other hand, measures the average of the squared error. MSE is easier to work with because the
deriva2ve of the square term is linear, but MSE will greatly be affected by outliers because of the square
term as well. On the other hand, MAE is more robust against the outliers, but it's harder to work with
because this absolute value is not differen2able. Here are some visual illustra2ons. The X axis is the grand
truth value, and the Y axis is the predic2on. As the amount of noise increases from le` to right, both MAE
and MSE increase. You can also no2ce that MSE increased a lot faster because the square of error term.

97 Both mean absolute error and mean squared error, a popular metrics. But they're not bonded in
a fixed range, so it's not possible to compare across data sets. Next, we'll introduce another regression
metrics called r squared which has a fixed maximum score of 1. So formally r squared, or coefficient of
determina2on is one minus the ra2o between MSE and variance. For example, if we have a linear
regression model looking like this, the mean square error can be equal to .86, while the variance equals
4.9 and r squared for this par2cular example is around 0.82, which is considered to be very good. In fact,
r squared of 1 indicate the regression is perfectly fits data while r squared of 0 indicate the line does not
fit the data at all. It is important to no2ce that by this defini2on, it's possible to have nega2ve values of r
squared. Which means the predic2ve model performed worse than a simple average over the original
data. Again, the same visual illustra2on as we increase the noise level, we can see the r squared value
also decreases.

2024 Spring Soya Kim

25

06 Ensemble Methods
98 Last 2me we talked about metrics to evaluate predic2ve models. Now that we know what we're
looking for in our models, let's talk about how we actually develop those models using big data. We'll
start by talking about some of the algorithms used in big data analy2cs like stochas2c gradient descent.
We'll then talk about ensemble method. A powerful class of machinery algorithms that o`en lead to the
best performing models. In par2cular, we'll talk about two criteria, bias and variance, and the tradeoff
between them. And finally, we'll talk about bagging and boos2ng, two ensemble methods.

99 Now let’s start with gradient descent method for classifica2on. Gradient descent is a basic
op2miza2on method that has been widely used in machine learning and data mining applica2ons. Next,
let’s go to the high-level procedure about how to apply gradient descent method for classifica2on and
regression problem. So, remember, the input to any classifica2on or regression problem is a training data
set consis2ng of end pairs of data points, x, and the corresponding target, y. And the final output of the
model is usually involving some parameters set. For example, to see the, in linear regression are the
linear coefficient beta. And the first step of gradient descent is to specify the likelihood func2on of input
data D given parameter Theta. The likelihood func2on is really the joint distribu2on of the data points,
given the model parameter theta. In these steps, some2mes it's easier to use log likelihood func2on
instead of likelihood func2on since log transforma2on is monotonically increasing and leads to the same
op2mal as the original likelihood func2on. But the resul2ng terms are o`en a lot easier to manipulate.
A`er we specify the likelihood func2on, next, we want to find the deriva2ve, also called gradient, of the
likelihood func2on, given theta. This step is a crucial step. Most of the computa2on really happens in this
step, and depending on how likelihood func2on is specified, finding the deriva2ve can be easy or can be
very hard. Once we completed gradient, we'll update the parameter theta by moving the old parameter
towards the direc2on of the gradient. Finally, we repeat this process un2l it converges which means the
theta is no longer changing. And this process illustrates the high-level idea of gradient descent. But the
algorithm actually requires some addi2onal tuning parameters. For example, the learning rate or the step
size, which controls how far we update the theta based on the gradient. And the step size can be learned
through cross-valida2on. And also note that gradient descent is the simplest gradient based op2miza2on
algorithm. There are many other algorithms, are more advanced but s2ll based on gradient computa2on,
such as conjugate gradient, and method. So, in fact, as long as you can specify the formula for compu2ng
the gradient, and you can use more advanced op2miza2on method as black box by just simply plugging
those gradient computa2on as a func2on.

100 Now let's illustrate the gradient descent method using linear regression. Imagine we're giving a
data set D, every row corresponding to a pa2ent and every pa2ent is characterized by a set of features,
specified in X and we also have an outcome variable Y. For example, in this case, it could be the cost of
this pa2ent, and the goal of the model is to map the input feature X from the pa2ent to the output cost
Y that this pa2ent incurs. So first, we want to specify the log likely to func2on for linear regression. In this
case, linear regression assumes Gaussian distribu2on. If you carry out all the calcula2on based on
Gaussian probabilis2c distribu2on, then you will see this log likelihood func2on involves some constants,
subtract a sum over a set of squared terms. And these summa2on terms is the sum over all the pa2ents.
And for each pa2ent, we find the true cost this pa2ent I incurred, subtract what the model predicts. Here
this beta are the coefficient from this regression model, and xi are all the features from pa2ent I. So, the
intui2on is, we want to learn a linear model that convert the input features such as age, gender,

2024 Spring Soya Kim

26

demographics, from this pa2ent to the cost this pa2ent incurred at the hospital. Once we have the log
likelihood, we can take the deriva2ve of this log likelihood to find the gradient, which is specified over
here. This nota2on means par2al deriva2ve of beta on its base element. The en2re gradient is also a
vector over all the beta j's. So, the intui2on is, we have a set of parameters, one for each feature and we
want to create a gradient for each one of those parameters as well. If we look closely at this gridding
computa2on, we no2ce that it involve a summa2on over all the pa2ents. And then for each pa2ent, we
compute this linear term and scale that by a scaler. So, the intui2on is if we want to compute the gradient
of a specific feature, for example age, want to know how important is age in this linear regression model,
then we have to go through the en2re data set to compute this sum and also for each of this term with
scaled by the H feature for a specific pa2ent. Once we have this gradient, then we can just update each
beta coefficient by moving towards this grading direc2on. Here, we added the step size, eta, as addi2onal
parameter so that you realize, in the real implementa2on, you have to specify the step size as well. Then
again, this process has to be repeated many 2mes un2l all the betas are converged. So, note that the
gridding computa2on involve going through the en2re data set and we have compute this gridding many
2mes. So, this algorithm can be very expensive given a large data set. So next we'll see how we can
address that challenge using a slightly different method.

101 So, Stochas2c Gradient Descent, or SGD Method, is a variant of gradient descent for handling big
data set. So, in tradi2onal Gradient Descent Method, we have to compute the likelihood of the en2re
data set, then compute the gradient of the en2re data set, then repeat, this, many, many 2mes. Which
can be too expensive to do on a large data set. The idea of SGD is actually quite simple. Instead of
compu2ng the likelihood over the en2re data set, the idea is to compute the likelihood func2on and the
gradient on a random subset of data points. For example, B data points. Some2mes, SGD referring
specifically to when we update one data point at a 2me, while for larger B it referred as a mini batch
update. But the intui2on are the same. We take a subset of data points, compute the likelihood on that
subset, then compute the gradient on that subset, then perform that date and repeat. And sample
another set of random data points then repeat this process. So compared to tradi2onal gradient descent,
SGD method can compute this update much more quickly.

102 Next let's see how we can run stochas2c gradient descent for linear regression. Here, we're using
the same dataset as before. Every row is a pa2ent, and we have a set of features associated with each
pa2ent, such as age, gender, what disease they have and what medica2on they're taking and the goal is
to predict a target Y, which is the cost they will incur at the hospital. So next, if we want to compute SGD
on this data set, we randomly sample one pa2ent and compute a log likelihood of this pa2ent. If we look
closely at this log likelihood term, we no2ce that this only involve a single pa2ent, pa2ent i. And intui2on
here is, it measures how well the model performed for this specific pa2ent. Then we compute the
gradient on this pa2ent and the gradient in this case is this linear term, scaled by this corresponding
feature j. Then we can perform the update just like before. Using the gradient, and then repeat the
process by sampling another pa2ent. Then go through this update. So, this process is very similar to
gradient descent for linear regression. So, the main difference is, when we compute the log likelihood
and the gradient, only single pa2ent is involved. We don't have to do this for the en2re dataset. And this
is much more efficient.

103 So far, we've talked about stochas2c gradient descent as an efficient method for dealing with large
dataset. Next, we introduce ensemble method which is another popular method for classifica2on.
Ensemble method combines mul2ple models to form a beDer model. Tradi2onally ensemble method

2024 Spring Soya Kim

27

refers to combining models using the same base learning algorithms. Such as random forest. However,
more generally it can also refer to combining models using different algorithms. Ensemble model o`en
outperform other classifica2on method. For example, Neclix price an open compe22on for the best
recommenda2on algorithm to predict user's ra2ng for movies, Neclix provided a training data set over
100 million ra2ngs that close to half a million user give to 17,000 movies. The goal is to improve 10% in
root mean square errors, or RMSE, over the exis2ng Neclix internal algorithm. The compe22on began in
October 2006, and ended in September 2009. Which lasted almost three years. And here are the
leaderboards. No2ce that the top two teams had the same exact performance gain over the baseline
method. And the number one team won simply because they submit earlier. In fact, all the top ranked
teams are based on ensemble methods. If we look closely, we can even see the ensemble in their team
names. So ini2ally, number 12 BellKor merged with number 10, BigChaos and they became number seven,
Bellkor in BigChaos. Then later on BellKor in BigChaos combine with Pragma2c Theory, it becomes the
final winner, BellKor's Pragma2c Chaos, and likewise the number two teams is also named The Ensemble.
So, as you can see, method really work in prac2ce. Now let's learn some of the most popular ensemble
method together.

104 In general ensemble method involves three steps. First given an input data set, we need to
generate a set of data set, D1 to DT for subsequent model training. In this step, those data set can be
easier generate independently like in bagging, or sequen2ally like in boos2ng. And bagging and bus2ng
are two different methods we will talk about in this lesson. Second, each data set will be used to train a
separate model. M1 to MT. Those models can be independently trained from the input data or there can
be dependency among those models as well. Finally, we need to construct an aggrega2on func2on F to
combine the result from all those t models. This aggrega2on func2on can be as simple as taking simple
average or taking a weighted average, and the weight are determined by the algorithm. Depending on
how we generate the data's and how we trim those models and what aggrega2on func2on to use.
Different ensemble algorithms can be developed.

105 In order to explain why ensemble method work, we need to understand bias and variance tradeoff.
Here's the visual illustra2on of the concept of bias versus variance. Bias refers to the predic2on error due
to the wrong modeling assump2on. For example, if the model assumes linear rela2onship between the
targets. However, in reality the data do not follow the linear trend, then the difference will be due to the
bias of the model. The variance on the other hand, refers to the error from the sensi2vity to small
fluctua2on in the training data set. Ideally, we want a model to have both low variance and low bias.
Intui2vely, it can be illustrated by the following example. Here we have a two-by-two example, and x-axis
shows the low variance versus high variance. While the y-axis shows the low bias versus high bias. The
red center in every figure Indicate the ground truths target, and all those blue dots are predic2on from
the model. In this first example, all the model predic2ons, those blue dots, are concentrated on the red
target. This means the model has low bias and low variance. And this is the op2mal scenario for modeling.
In the second example, the model predic2on are scaDered around the center, but not really concentrated
in the center. So, this means the model has low bias, but high variance. In this third example the model
predic2on are clustered at one posi2on, but not on the target. So, this means the model has high bias
but low variance. In this case the model can be easily fixed by shi`ing the predic2on towards the center.
In the fourth example, the model predic2ons are scaDered and away from the target. This means the
model has high bias and high variance, and this is the worst possible situa2on. Now we understand the
intui2on behind the bias and variance. Now let's look at the rela2onship between bias variances. I want

2024 Spring Soya Kim

28

to explore the rela2onship using this plot. The x-axis is model complexity, and the y-axis is the error from
the model. In general, there's a tradeoff between bias and variance. As we can see from this curve, as we
increase the complexity of the model, bias decreases. This is because a flexible or complex model can
o`en fit the data beDer. Therefore, low bias. However, the error coming from variance will increase as
we increase the complexity of the model. This is because a complex model is more suscep2ble to over
fidng, hence high variance. So, the total error is error due to the bias, plus the error coming from the
variance. Our goal is to find op2mal model complexity that balance the right amount of bias and variance
that lead to the minimal error. And note that the best model will change from task to task, and from data
set to data set. So, it's not possible to expect the same algorithm that always perform well in all cases.
Therefore, it's important to understand the trade off and search for the best model for your task.

106 Now we understand the bias and variance tradeoff. Let's do a quiz about model complexity. Here
are four regression models, and x axis is input feature and y axis is the output target. Rank all those four
models from lowest to highest model complexity. And we have four models here. A is this linear line. B
is this curved line. And C, is this wiggly line and D is this flat line. So, rank these four models from lowest
to the highest model complexity.

107 And here are the answers. The flat line, D, is the model with the lowest complexity because it has
smallest variance, with just a single parameter to specify. That is the height of this line. And this linear
line, A, is the second because it is also preDy simple model and can be specified with just two parameters.
And the variance of this model is also quite low. And the smooth curve, B, ranked as third. Because it is
more complex than the linear line and the flat line. And finally, the wiggly line C is the most complex one,
due to the complex shape of this func2on.

108 Let’s do another quiz, using the same examples. Note that, all those four models are trying to
approximate under line data, which are those loop dots. So, which of the models is the best for
approxima2ng the underlying data?

109 The answer is B, because B fits the data beDer than A and D, which means the modeling
assump2on of B is closer to the underlying data than those linear models. At the same 2mes, the
complexity of B is much beDer than this wiggly line that's specified by C. So, B actually balanced the bias
and variance trade off and it's the best model.

110 Now let's talk about some popular ensemble method. Let's start with bagging. Bagging is a simple,
yet powerful ensemble strategy, which is named by Leo Brayman. Given an input data set, the idea behind
bagging is to take repeated bootstrap samples from input data set. To generate all those sample data set,
D1 to DT. Here bootstrap sampling means sampling with replacement from the original data set, then
based on the sample data set, we separate models, M1 to MT. Then, finally we classify a new data point
by taking the majority vote or average of all those models.

111 Bagging is one general strategy for ensemble. Random forest is a classical bagging algorithm,
where the underlying models are decision trees. So, now let's talk about random forest, how it works.
Imagine we have a large pa2ent database. Every dot's here corresponding to a pa2ent, and each pa2ent
is represented by a high dimensional feature vectors, such as age, gender, diagnosis, medica2on. Then
we can represent those pa2ents by a matrix, for example, we have N pa2ents and D features. Every row
is a pa2ent, every column is the features. That's our en2re data set. Then Random Forest will randomly
sample subset of pa2ents in every row corresponding to a pa2ent in the original database and every

2024 Spring Soya Kim

29

column corresponding to a feature. Then Random Forest will randomly sample a subset of pa2ent and a
subset of features to construct a sub-matrix, like D1 or D2. Then Random Forest will use those sub-
matrices as their input data to build separate decision tree. And the way how the tree are constructed is
simply recursively select a feature from the sub-matrix and split based on that feature and repeat this
process un2l all the features in this sub-matrix are used. In this manner we would generate mul2ple trees.
Once we have all those models, when a new pa2ent comes we can score that pa2ent against all those
models, then taking an average, and use that average as our final predic2on. Note that the algorithm for
construc2ng those trees in Random Forest is much simpler than a tradi2onal decision tree algorithm,
such as C5. This choice is inten2onal. In fact, there are theore2cal studies showing that it's actually
important to use those simple methods, so that we generate a diverse set of models in bagging. The
other benefit for using those simple algorithm is computa2onal cost will be drama2cally reduced.

112 So why does bagging work? The reason is because, bagging reduces the variance of the final
model without increasing the bias. Since the final model is just take the mean over mul2ple model, the
mean of the final model is the same as the individual model. Therefore, bias is the same. However, the
variance of the model can be reduced by averaging. So, the infusion come from simple sta2s2c. That the
variance of a random variable X, can be reduced by a factor of T, if we measure the variance of the mean
over T independent iden2cally distributed samples of x. So, in backing, all the models are viewed along
both trap samples, which can be considered close to IID. Therefore, the variance of the final model can
be greatly reduced by averaging.

113 So boos2ng involve incrementally building those models one at a 2me and emphasized the later
model to the training instances that the previous model misclassified. For example, so we start with
building model M1 on the first data set, D1. Then we test the performance of model M1 on data set D2.
Then based on what mistakes, what misclassifica2on has happened on D2, we train another model M2
to really focus on correct those misclassifica2on has happened because of M1. Then we repeat this
process by combining M1 and M2 together and test it against the third data set, D3. Again, these three
is trying to correct the mistakes, the combined model of M1 and M2 misclassified, then repeat this
process again on D4, and to get the final model M4. And the final model become a weighted average of
all the past model we have trained. So, in some cases, boos2ng has shown to be yield beDer accuracy
than bagging, but it also tend to be more likely to over fit the training data. By far the most popular
boos2ng algorithm is Eta-Boost. But there are many other boos2ng algorithms out there as well. So, more
details will be provided in the instructor note.

114 Here's a quiz to compare bagging and boos2ng. Here, every rows are some characteris2c of the
method. First, how do we combine those different models, it says by taking simple average, or weighted
average, or can the method be done in parallel? Is it easy or hard? And how sensi2ve is the method
towards noise? It's more sensi2ve or less sensi2ve? And finally, what about the accuracy?

115 So here are the answers. In bagging, we use simple average to combine all those models, because
the models are developed independently. And in boos2ng, we take weighted average, because there is
a sequen2al dependency among all those models. In terms of parallel compu2ng, bagging is very easy
because all those models are independent. Then you can use those models separately on different course,
or different machines. Parallel compu2ng for bagging is easy. But, for boos2ng, parallel compu2ng is hard
because there is a sequen2al dependency between the early model to the later model. We can't really
compute the later model in parallel with early model. In term of noise, bagging is less sensi2ve to noise

2024 Spring Soya Kim

30

because the model being combined are o`en2mes much more diverse, since they're viewed
independently on the separate samples. Well, for boos2ng, it's more sensi2ve to noise because the
sequen2al dependency and later model, hard to correct errors that made by the earlier models, and it
can over fit the data, therefore sensi2ve to noise. Finally, in term of accuracy, bagging o`en achieve good
performance in all cases, while boos2ng, in most of the cases, give a beDer result, but because of over
fidng problem, some2mes they perform much worse in some cases. So, the knowledge is bagging is like
a Japanese car. It always gets the job done. It's not always the fastest car, but it's a preDy reliable car. And
boos2ng is like a sports car. It's much faster when it works, but when it has a problem, it can cost you a
lot. [SOUND]

116 So in this lecture, we talked about ensemble method. So now, let's summarize the overall pros
and cons of ensemble method. In term of advantages, ensemble method are o`en simple. Almost have
no parameters, except how many models to be combined. And it's quite flexible, you can combine many
algorithms together. And there's many different ways how to combine them. And there are also
theore2cal guarantee wide works. In term of disadvantages, it's mostly coming from computa2onal
challenges. Because now, we have to build mul2ple models, not only at the training 2me, but also at the
scoring 2me. Every 2me we want to score a pa2ent instead of scoring that pa2ent against single model.
Now we have to score that against three different models. The other disadvantage is, is lack of
interpreta2on. Because the final model is a combina2on of mul2ple models. The interpreta2on
o`en2mes can be very difficult.

2024 Spring Soya Kim

31

07 Computational Phenotyping
117 In this lesson, we're going to discuss a healthcare applica2on of clustering called phenotyping.
Phenotypes are medical concepts such as diseases or condi2ons. We know many phenotypes of pa2ents
based on exis2ng medical knowledge such as major diseases. But there are many more phenotypes and
their subtypes out there that we haven't discovered. Computa2onal phenotyping is a way to use data
available to us to discover those novel phenotypes. Phenotypes aren't just for disease diagnosis, though.
We can also use those phenotypes for predic2ng healthcare cost, readmission risk, and suppor2ng
genomic studies.

118 Now let's talk about computa2onal phenotyping. So, recall, computa2onal phenotyping is about
conver2ng raw electronic health record through phenotyping algorithms into a set of meaningful medical
concepts, or phenotypes. For example, a specific disease can be a phenotype. Such as type 2 diabetes.
And the raw data, in this case, consists of many different sources. Such as demographics about pa2ents,
diagnosis code, medica2on informa2on, clinical procedure, lab result, and clinical notes. There are many
reasons why phenotypes are not represented consistently or reliably in the raw data. First, the data are
noisy, there are missing data and raw informa2on in the raw data. And second, the main usage of this
data is to support clinical opera2ons, such as billing. And it's not designed directly for suppor2ng research.
Third, there are many overlapping and redundant informa2on. For example, diagnosis informa2on can
be found in the structure field corresponding to diagnosis code. But the same informa2on can also be
present as end structure informa2on in the clinical notes. This informa2on is overlapping and redundant
in the raw data. And phenotyping is this process of deriving research grade phenotypes from clinical data,
using computer algorithms.

119 Here's a phenotyping algorithm for Type 2 diabetes. And the goal here is, we want to determine
whether pa2ent has Type 2 diabetes based on her electronic health records. For example, we can first
check whether the pa2ent has Type 1 diabetes code in her record. If no, then we check whether Type 2
diabetes diagnosis are present in her record. If s2ll no, then we check medica2on for Type 2 diabetes.
Then, check abnormal lab result related to diabetes. If these two steps are confirmed then we confirm
she has Type 2 diabetes. And there are many different paths that can lead to the confirma2on of Type 2
diabetes, and this decision flow is a phenotyping algorithm. And this was developed manually by clinical
experts. More details about this algorithm can be found in the instructor note.

120 There are many different applica2ons that require phenotyping. For example, genomic study,
which is about finding rela2onship between genomic data and phenotypic data. Clinical predic2ve
modeling, which is about building an accurate, robust, and interpretable predic2on model about disease
onset and other related targets, such as hospitaliza2on. And pragma2c clinical trials, which is about
comparing treatment effec2veness in the real-world clinical environment using observa2onal data, like
electronic health records. And healthcare quality measurement, which is about measuring efficiency and
quality of care across different hospitals. All those applica2ons depends on phenotyping algorithms. We'll
show them in more details next.

121 Phenotyping algorithm is very important in suppor2ng genome-wide associa2on study. What is a
genome-wide associa2on study? It's an approach that involves scanning biomarkers such as single
nucleo2de polymorphism. Or SNP's from DNA of many people, in order to find gene2c varia2on,
associated with a par2cular disease field phenotypes. Once new gene2c associa2ons are iden2fied,
researchers can use that informa2on to develop beDer strategies. To detect and treat and prevent

2024 Spring Soya Kim

32

diseases. So, how are genomic wide-associa2on studies conducted? To run a genomic wide-associa2on
study, or GWAS, we first iden2fy the disease phenotypes. Then group the par2cipants into these two
groups, cases and these are people with disease phenotypes. And controls, those are similar pa2ent
without the disease phenotype. Then we need to obtain DNA samples from all these par2cipants. >From
DNA samples, we can use lab machines to quickly survey each par2cipant's genomes for gene2c varia2on.
Which are called single-nucleo2de polymorphism or SNP. If certain gene2c varia2on have found to be
significantly more frequent in the people with the disease phenotypes compared to people without the
disease phenotype. These varia2ons are said to be associated with the disease. We do this by compu2ng
the frequencies of SNPs on the cases and on the controls. Then based on the frequency, we calculate the
odds ra2o. >From there, we can calculate the corresponding p-value for the odds ra2o. If the p-value is
small, then we conclude this varia2on is significant. The associated gene2c varia2ons can serve as
powerful pointers to the region of the human genome that may cause the disease. Here's an example
showing more details on how the GWAS is computed. We first iden2fied the cases and controls. That is,
the people with the disease phenotype and the people without the disease phenotype. In this case, we
have 4000 pa2ents with the disease phenotype and 6000 pa2ents without the disease phenotype. Then
we iterate over all the SNPs to compare the relevant frequencies. For instance, for SNP1 for the control
group, we have 2676 out of 6000 has the corresponding varia2on G, at this loca2on. And the frequency
of G in this case is 44.6%. in the case group, we have 2104 out of 4000 with the corresponding varia2on
G at this loca2on. So, the frequency is 52.6%. If we go through the calcula2on, now we’ll find the P-value
is 5 2mes 10 to the minus 15. Which means, this is extremely significant. We can conduct the same
calcula2on on SNP2 and find out the P-value here is 0.33 which is not significant. And there's support
GWAS study, we need to know high quality phenotypes on the cases and controls. In order to perform
this calcula2on, that's why phenotyping algorithm, is very important.

122 As we have shown in the genome-wide associa2on studies, we need phenotypic data in order to
analyze genomic data. But in general, why do we care about phenotyping algorithms in genomic study?
In fact, many people argue that we need rich and deep phenotypic data in order to analyze genomic data.
Especially as sequencing technology improves, the cost of genera2ng genomic data is dropping so fast
over 2me. While the cost of compu2ng or Moore's Law cannot keep up with the improvement of
sequencing technology, which means we'll have more and more genomic data in near future about many
individuals. However, due to the complexity of the electronic health record, the cost for genera2ng high
quality phenotypic data is actually increasing, while the cost of genomic data is dropping dras2cally. That
is why we really need to invent beDer phenotyping algorithms to reduce the cost of acquiring high quality
phenotypic data and to support genomic studies.

123 Finger typing algorithms can also help with clinical predic2ve modeling. We have talked about
predic2ve modeling in other lectures. Clinical predic2ve modeling starts with the raw EHR data as the
input, then goes through the predic2ve modeling phase. Then we come up with accurate predic2ve
model, such as predic2ng whether a pa2ent will develop heart failure or not in the next six months. There
are many problems with predic2ve modeling directly on the raw data. First, as we all know, the raw data
are very noisy. The resul2ng model may not perform as well because of the noise in the data. The raw
data are also very complex and height dimensional. The resul2ng model may be difficult to interpret.
Third, because the model is 2ed directly to the raw data, it can be difficult to adapt the model from one
hospital to another, because their input data format can be different. So, instead of directly modeling
over the raw data, we can first convert the raw data through phenotyping to high quality, low dimensional

2024 Spring Soya Kim

33

medical concept, or phenotypes. Then use the phenotypes as input to the predic2ve modeling process
to get the accurate model. So, this way we can remove a lot of noise from the raw data thanks to the
phenotyping algorithm. We can also get beDer interpre2ve model since the input to the model are
meaningful phenotypes instead of complex raw data from EHR. The resul2ng model can be applied across
hospitals because the input are general phenotypes, as opposed to a specific data format from a hospital.

124 Another applica2on of phenotyping algorithms is to support pragma2c clinical trials. So clinical
trials can be described as either tradi2onal trials or pragma2c trials. So tradi2onal clinical trials generally
measure efficacy, which means the benefit that treatment produces under ideal condi2ons. So, it deals
with one condi2on. The pragma2c trial deals with real-world pa2ents, o`en have mul2ple condi2ons
simultaneously. In the tradi2onal trials, we only test one drug at a 2me. In the pragma2c trials, pa2ents
poten2ally can take mul2ple drugs at the same 2me. In the tradi2onal trial, randomiza2on is required,
which means some pa2ent will be given the drug, some pa2ent will be given a placebo. And this
randomiza2on is very important because it deal with the bias in the clinical research. However, in the
pragma2c trials, randomiza2on is o`en not possible because it's real-world environment. The other
difference is tradi2onal clinical trials recruits homogeneous popula2on. In the tradi2onal trials, the
pa2ents are carefully selected, o`en with very strict inclusion and exclusion criteria. So, for pragma2c
trials, there's no pa2ent selec2on criterias introduced, any pa2ent can be poten2ally included. So, in
summary, tradi2onal trial really is designed with a very well controlled environment, while pragma2c
trials deal with real world environment. High quality phenotyping algorithms are very important for
pragma2c trials because we need to know what disease condi2on pa2ent has and what medica2on
they're on. Those are all can be derived as phenotypes.

125 Phenotyping algorithm is also very important for house care quality measures. It is important to
compare house quality measure across hospitals. One way for doing that is to have all those hospital
sending their raw EHR data to the central side. The central side can be an insurance company or public
health agency such as Centers for Disease Control. Then the central side has to aggregate all those raw
informa2on in order to compute all those health care quality measure. And this become very difficult
task because all those hospital can use very different format to represent their raw data and this center
side has to figure it out how to process them differently. In more scalable way for dealing with this
problem was to process all those raw EHR data through phenotyping first, then obtain the high-quality
phenotypic informa2on then share that with the central site. With those consistent phenotypic
informa2on sending from different hospitals, now the central side can aggregate those informa2on to
compute the healthcare quality measures then compare them across hospitals. So, in this case, high
quality and consistent phenotypic data are crucial to enable this house care quality measure comparison
across hospitals.

126 Now understand phenotyping is a very important process, then what are the phenotyping
method? There are two main categories of phenotyping method, supervised learning, and unsupervised
learning. They're actually corresponding to two important topics in machinery. I'll have Charles and
Michael to explain what they are from Machine Learning. So, what do you think supervised learning is? I
think of supervised learning as being the problem of taking labeled data sets, gleaning informa2on from
it, so that you can label new data sets. That's fair. I call that func2on approxima2on. So, here's an example
of supervised learning. I'm going to give you an input and an output. And I'm going to give them to you
as pairs, and I want you to guess what the func2on is. Sure. Okay, okay. 1 1, 2 4. Wait, hang on, is one the
input, and one the output? Yes. And 2 the input, 4 the output? Correct. Okay, I think I'm on to you. 3 9,

2024 Spring Soya Kim

34

4 16, 5 25, 6 36, 7 49. Nice, this is very hip data set. It is. What's the func2on? It's hip to be squared.
Exactly, maybe. Now if you believe that's true, then tell me if the input is ten, what's the output? A
hundred. And that's right if it turns out in fact that the func2on is x squared. But the truth is we have no
idea whether the func2on is x squared or not, not really. I have a preDy good idea. You do? Where does
that idea come from? And it comes from having spoken with you over a long period of 2me and plus
math. And plus, math. Well, I'm going to- You can't say I'm wrong. You're wrong. You just said I was wrong.
Yeah, I did. No, you've talked to me for a long 2me and plus math, I agree with that. Okay. But I'm going
to claim that you're making a leap of faith, despite being a scien2st, by deciding that the input is 10, and
the output is 100. Sure, I would agree with that. What's that leap of faith? Well, I mean, from what you
told me, it's s2ll consistent with lots of other mappings from input to output. Like 10 gets mapped to 11.
Right, or everything's x squared except ten. Sure. Where everything's x squared up to ten. Right, that
would be mean. That would be mean. But it's not logically impossible. Or would it be the median? Ha.
Thank you very much, man. I was saving that one up. What about unsupervised learning? Right, so
unsupervised learning, we don't get those examples. We have just essen2ally something like input. And
we have to derive some structure from them just by looking at the rela2onship between the inputs
themselves. Right, so give me an example of that. So, when you're studying different kinds of animals,
say, even as a kid, you might start to say, there's these animals that all look kind of the same. They're all
four-legged. I'm going to call of them dogs, even if they happen to be horses or cows or whatever. But I
have developed, without anyone telling me, this sort of no2on that all these belong in the same class,
and it's different from things like trees. Which don't have four legs. Well, some do, but I mean, they both
bark, is all I'm saying. Did I really set you up for that? Not on purpose. I'm sorry, I want to apologize to
each and every one of you for that. But that was preDy good. Michael's very good at word play, which I
guess is o`en unsupervised as well. No, I get a lot of supervision. You certainly get a lot of feedback. Yeah,
that's right, please stop with that. So, if supervised learning is about func2on approxima2on, then
unsupervised learning is about descrip2on. It's about taking a set of data and figuring out how you might
divide it up in one way or the other. Or maybe even summariza2on. It's not just a descrip2on, but it's a
shorter descrip2on. Yeah, it's usually a concise, compact- Compression. Descrip2on. So, I might take a
bunch of pixels like I have here and might say male. Wait, wait, wait, wait, I'm pixels now? As far as we
can tell. 100 That's fine. 101 I however am not pixels. 102 I know I'm not pixels. 103 I'm preDy sure the
rest of you are pixels. 104 That's right. So, I have a bunch of pixels and 105 I might say male, or I might
say female, or I might say dog, or I might say tree, 106 but the point is I don't have a bunch of labels that
say, dog, tree, 107 male, or female, I just decide that pixels like this belong with pixels like 108 this as
opposed to pixels like something else that I'm poin2ng to behind me. 109 Yeah, we're living in a world
right now that is devoid of any other object. 110 Chairs. 111 Chairs, right. 112 We got chairs. 113 So these
pixels are very different from those pixels, 114 because of where they are rela2ve to the other pixels. 115
Exactly, right? 116 So if you were- I'm 117 not sure that's helping me understand unsupervised learning.
118 Go outside and look at a crowd of people and 119 try to decide how you might divide them up. 120
Maybe you'll divide them up by ethnicity. 121 Maybe you'll divide them up whether they have purposely
shaven their hair in 122 order to mock the bald, or whether they have curly hair. 123 Maybe you'll divide
them up by whether they have goatees- 124 Facial hair. 125 Or whether they have gray hair. 126 There
are lots of things that you might do in order- 127 Did you just point at me and 128 say gray hair? 129 I
was poin2ng, and your head happened to be there. 130 Come on. Where's the gray hair? 131 Right there.
132 It's right where your split curl is. 133 All right. 134 Okay, so imagine you're dividing a world up that
way. 135 You can divide it up male and female. 136 You can divide it up short and tall, wears hats, doesn't

2024 Spring Soya Kim

35

wear hats, 137 all kinds of ways you can divide it up, and 138 no one's telling you the right way to divide
it up, at least not directly. 139 That's unsupervised learning. 140 That's descrip2on, because now, rather
than having to send pixels of 141 everyone or having to do a complete descrip2on of this crowd, 142 you
can say there were 57 males and 23 females exactly. 143 Or there are mostly people with beards or
whatever. 144 I like summariza2on for that. 145 I like summariza2on for that, it's a nice concise
descrip2on. 146 Good. That's unsupervised learning. 147 Very good. 148 And that's different from
supervised learning. 149 It's different from supervised learning, and 150 it's different in a couple of ways.
151 One way that it's different is all of those ways that we could have divided up 152 the world? 153 In
some sense, they're all equally good. 154 So I can divide it by sex, or I can divide it by height, or 155 I can
divide it by clothing or whatever, and they're all equally good absence 156 some other signal later telling
you how you should be dividing up the world. 157 But supervised learning directly tells you, here's a
signal, 158 this is what it ought to be, and that's how you train. 159 They're very different. 160 But I can
see ways that unsupervised learning could be helpful in 161 the supervised sedng. 162 Right, so if I do
get a nice descrip2on, and it's the right kind of 163 descrip2on, it might help me do the func2on
approxima2on beDer. 164 Right, so instead of taking pixels as input and labels like male or female, 165 I
could just simply take summariza2on of you, like, how much hair, rela2ve, 166 the height to weight, and
various things like that might help me do it, 167 that's right. 168 And by the way, in prac2ce, 169 this
turns out to be things like tensity es2ma2on. 170 We do end up turning it into sta2cs at the end of the
day. 171 O`en. 172 It was sta2cs from the beginning, but when you say density es2ma2on- 173 Yes. 174
Are you saying I'm stupid? 175 No. 176 All right, so what is density es2ma2on? 177 Well, they'll have to
take the class to find out. 178 I see. 179 Okay.

127 One way to defining Supervised Learning is to develop expert-defined rules like the ones we have
seen in the early slide for type 2 diabetes. And this is probably the most widely adopted method for
phenotyping. And this approach begins with manually develop the algorithm, o`en use Boolean logic or
scoring threshold or decision tree based on domain exper2se. Then the logic is itera2vely enhanced
through valida2on and chart review on EHR data. So, the advantage of this approach is, it provides a
human interpretable algorithm. The number of chart review to validate this algorithm can be low
because o`en 2mes the expert can come up with a preDy good algorithm to start with. However, the
effort and 2me for developing such an algorithm can be significant because it requires clinical and
informa2c knowledge. And this approach cannot be used to iden2fy phenotypes that are not well
understood by the clinical experts. We can also use supervised machine learning to train a classifier to
differen2ate the cases and the controls. Depending on the algorithm classifica2on models some2mes
can be difficult to interpret. And it requires significant amount of training data, and it may not transfer
well from one hospital to another. As the model may learn features that are unique to a specific hospital.
Unsupervised learning provide approaches to cluster EHR data into pa2ent groups corresponding to
phenotypes or subtypes. Unsupervised learning does not require expert labels which tremendously
reduce the 2me needed for manual chart review. However, the valida2on of the resul2ng phenotypes
can be challenging because there's no ground on what those phenotypes are. While this method o`en
require very large amount of trea2ng data, they do not carry the cost of manually labeling individuals as
cases or controls, as what is required in the supervised method. So, example of unsupervised learning
for phenotyping include dimensionality reduc2on, such as modeling and tensor factoriza2on. We'll talk
more about them in other lectures.

2024 Spring Soya Kim

36

128 So here a quiz of phenotyping missile. Which of the phenotyping approach require more human
effort during evalua2on? Is it expert-defined rules or classifica2on models? And which phenotyping
approach is easier to interpret? Is it expert-defined rules or classifica2on models?

129 And the answer is classifica2on models o`en require more human effort during evalua2on,
because they require a large amount of label training data in order to be a good model. However, the
expert-defined rules, because the quality of those rules are o`en very good, so, during evalua2on phase,
it doesn't require a lot of human effort. The expert-defined rules are easier to interpret because they're
designed directly by clinical experts, follows clinical intui2on and knowledge. While the classifica2on
models some2mes can be difficult to interpret because they're derived directly from data, may or may
not follow the clinical intui2on.

2024 Spring Soya Kim

37

08 Clustering
130 Now we're going to move on to a different method called clustering. In classifica2on, we group
data by label or categories that we already knew. But in clustering, we want to discover those labels or
categories form raw data. We'll start by defining clustering. Then we'll describe some algorithms for
clustering, such as K-means and Gaussian mixture models. Then, we'll describe scalable classroom
algorithms for handling big data sets. Finally, we'll preview some of the healthcare applica2ons of
clustering.

131 There are many healthcare applica2ons for clustering. For example, pa2ent stra2fica2on is about
grouping pa2ents into clusters such that pa2ent within the same cluster share many common
characteris2cs, and pa2ents across cluster share very few common characteris2cs. And disease hierarchy
discovery is about learning a hierarchical structure about all the diseases and how they relate to each
other from data. And phenotyping is about conver2ng raw data into meaningful clinical concepts or
phenotypes. The phenotypes is actually a cluster of pa2ents that share some commonali2es.

132 So what is clustering? Let's illustrate clustering using the following example. Imagine we have a
pa2ent by disease matrix, where the columns are all the different diseases, and rows are different
pa2ents. And other elements indicate whether a specific pa2ent has a specific disease. If we want to
apply clustering on the rows of this matrix, which means you want to learn a func2on f that par22ons
this matrix into a set of groups. Each group corresponding to a set of pa2ents, P1, P2 and P3. Once we
have all those pa2ent groups or pa2ent clusters, we can u2lize those to support applica2on such as
phenotyping and pa2ent stra2fica2on. And similarly, we can apply clustering on the columns of the
matrix to par22on all the diseases into different disease group, such as D1,D2, and D3. And we can further
group all those disease groups into a hierarchy, and this will support the disease discovery applica2on.

133 In this class we'll introduce two sets of clustering algorithms. The classical clustering algorithms
and the scalable clustering algorithms. For classical algorithms, we'll discuss K-means, hierarchical
clustering, and Gaussian mixture model. For scalable algorithms, we'll introduce mini batch K-means and
DBScan.

134 Now let's talk about K means clustering. So, the input to the K means algorithm is a set of data
points X1 X2 to Xn and the perimeter K indicate the number of clusters. And the output of K means
clustering are K clusters S1, S2 to SK and each cluster contains a set of data points and the union of all
those clusters give us all the data points. The objec2ve of K-means clustering is it minimize the sum of all
the data points, x, to its corresponding center, mu i. Here mu i is the center for cluster Si. In order to
minimize this objec2ve, we want to find the op2mal assignment of all this data points into K cluster, such
that this term is minimized. Now let's talk about the algorithm for K means. First we specified K as the
number of clusters. Then we ini2alized K centers. Then we'll assign each data point to its closest center.
Once we have all the assignments we update the K centers. For this step we update the new center mu i
by averaging all the data points within the cluster Si. Then we check whether the algorithm converged or
not. Which means we can check whether any cluster assignment has changed from the previous itera2on.
Or some pre-defined maximum number of itera2on has been reached. Then we iterate into the
convergence criteria as math then we output the clusters. And this is the K means algorithm. Now, let's
visually illustrate how K means works using this example. We want to run K means algorithm on this set
of points with K = 2. To start, let's ini2alize the two-cluster center with the blue cross and red cross. Then
we'll assign all the data points to as close the center. And all those blue points are assigned to the blue

2024 Spring Soya Kim

38

cluster, and all the red points are assigned to the red cluster. Then we find the new cluster center by
averaging all the blue points and all the red points. So, this blue and red cross are the two new centers.
Then we iterate this process over three itera2ons, and two had converged. This is the final result when
we want K means with setup points, with K equal to two.

135 Now let's do a quiz on K-means. Given n is the number of data points, k is the number of clusters,
and d is dimensionality of each data points, and i is the number of itera2on of the K-means algorithm,
what is the computa2onal complexity of K-means? This is the algorithmic illustra2on to help you find the
answer and put your answer in this box.

136 And the answer is big O of n 2mes k 2mes d 2mes i. Now let's see how we got this answer. When
we run k-means algorithm most of the computa2on goes to clustering assignment and center update.
For clustering assignment, we need to compare end data points to K centers. So that takes n 2mes k
comparisons. Since each comparison is order d opera2on, because each datapoint has d dimensions and
the total complexity for each itera2on is n 2mes k 2mes d. Similarly, we can derive the center update of
the same complexity and the total complexity of k means algorithms becomes n 2mes k 2mes d 2mes i.

137 Next let's introduce hierarchical clustering. The goal of hierarchical clustering is to learn hierarchy
over a set of data points. For example, given five different diseases, we want to construct such a hierarchy
so that similar diseases are grouped together into this tree structure. There are two main ways for doing
this. One is the boDom-up approach called agglomera2ve method. We'll start with individual disease, d1
to d5, as their own clusters, then interac2vely group those smaller clusters into bigger clusters, un2l only
one cluster remains. For example, d1 and d2 will first be grouped together, then d4, d5 will group together.
Then subsequently, d3 and d4, d5 will be grouped together and finally, all five diseases will be merged
into one cluster. The other approach is a top-down approach called a divisive method. We'll start with a
single cluster with all the diseases in it, then itera2vely divide the bigger cluster into smaller clusters, and
thus, the divisive method. In general, this agglomera2ve method boDom-up approach is more efficient,
therefore, more popular in prac2ce.

138 Now let's talk about agglomera2ve clustering algorithm. We'll start with a set of data points x1 to
xn. First we compute all paired distance matrix. This will be a n-by-n matrix, and every element in this
matrix corresponding to the distance between the pair of points. Then we ini2alize each data points as
their own cluster. So, we have n cluster here. Then we check how many clusters are le`. If we only have
one cluster le`, that's it, that's the final result. We output the hierarchy. If we have more than one cluster,
we merge the closest clusters. Then we update the distance matrix. We will run this algorithm for the
first 2mes, we'll start with a n-by-n distance matrix, then we merge two closest clusters, and update the
distance matrix, here the distance matrix will be of size n- 1 by n- 1. Then we iterate, con2nue to merge
to a closest cluster together and also update the distance matrix un2l we have only one cluster le`, and
that's the final result.

139 Next we'll talk about Gaussian mixture model. So far we have talked about two clustering
algorithm, K-means, and hierarchical clustering. They are both hard clustering method, which means
every data points only belong to a single cluster, and Gaussian mixture model is a so` clustering method.
So`? Yes, so` clustering. So, every data points can belong to mul2ple clusters with a different degree. So,
first, what is a Gaussian? Gaussian distribu2on is the most popular con2nuous probability distribu2on,
and it's also known as the normal distribu2on. The shape of Gaussian is a bell curve, like this, and
Gaussian distribu2on has two parameters, mu, and sigma. And the mu variable corresponding to the

2024 Spring Soya Kim

39

center of the bell curve, and the variance sigma capture the spread of this bell curve. When the variance
is small, the spread will be small, which means all the probability will be concentrated around the mean.
When the variance is large, the probability will be scaDered, which means the events that are far away
from the mean can s2ll happen with large probability. Now let's introduce the mathema2cal defini2on
of Gaussian Mixture Model. The probability of a data point X is the weighted sum over k Gaussian
distribu2on. Here at the pi k is the mixing coefficient for cluster k. Intui2vely, it tells us how big the cluster
k is, and mu k is the mean of cluster k or the cluster center for cluster k, and sigma k is the co-variance
for cluster k. So, here's an example when we have a two Gaussian distribu2on and data points x will be
generated from this two underlying Gaussians. For a Gaussian mixture model, the goal is to figure out
the parameters of the two underlying Gaussians, namely finding out pi k, mu k, and sigma k, given all the
observed data points.

140 To compute a Gaussian mixture model, we u2lize a popular op2miza2on strategy called
expecta2on maximiza2on, or Algorithm. Next, let's see how Algorithm works for Gaussian mixture model.
We first ini2alize all the parameters for Gaussian mixture model and could mix in coefficient pi k. The
center mu k and variance sigma k. Then in the E Step, we assign each data point Xn with a score gamma
nk for each cluster K. So, in this case, data points Xn will have K scores, one for each cluster. In par2cular,
gamma nk tells us how likely Xn is generated from cluster K. Once we have all the assignments, then in
the M Steps we update all those model parameter, pi k, mu k, sigma k, using the scores we have learned
from those assignments. Then we check if convergence criteria are met. For example, likelihood is no
longer changing, or parameters are stabilized. If no, we con2nue this Itera2ons into convergence. If yes,
we return all the model parameters for Gaussian mixture model. Next, let's look at those steps in more
details.

141 In order to run Algorithms for Gaussian mixture model, we have to ini2alize all those parameters.
In par2cular, we have to find the mixing coefficients, the centers, and variance for each clusters. And this
ini2aliza2on step is very important. A bad ini2aliza2on can cause many subsequent itera2ons into
convergence. A good ini2aliza2on can save a lot of itera2on so that the convergence can happen very
quickly. For example, in this picture, if we ini2alized these two clusters here and here as the center and
also give equal weights for the mixing coefficients, this will be a preDy bad ini2aliza2on, because the
star2ng point of these two-cluster center do not coincide with any data points. Which means
subsequently the Algorithm has to iterate many 2mes to correct this bad ini2aliza2on. So, what will be a
beDer ini2aliza2on? We can actually use K-means result to ini2alize for Gaussian mixture model. For
example, the center in the Gaussian mixture model will be the center from K-means result. The
covariance matrix sigma K can be computed by using all the data points from the corresponding clusters.
And finally, the mixing coefficient pi k can be simply computed as the size of the cluster K divided by the
total number of data points. And usually this ini2aliza2on with K-means result will be much beDer than
a random ini2aliza2on like this. Next, let's talk about the E step. In this step, we'll assign each data point
a score gamma nk for each cluster K. And the gamma nk can be calculated with this equa2on. And the
numerator has two terms, pi k, the mixing coefficient for cluster K, the probability of xn in cluster K. And
the denominator has to normalize this assignment score to between zero and one. For example, we have
one blue Gaussian over here and one orange Gaussian over here. The assignment score for this point is
0.5 for the blue Gaussian and 0.5 for the orange Gaussian. Which means this point is equally likely to
belong to the blue cluster or the orange cluster. The assignment score for this point is 0.8 for blue
Gaussian, and 0.2 for orange Gaussian. Which means this coin is more likely to come from this blue cluster.

2024 Spring Soya Kim

40

And the E step is to go through all these data points by assigning all these assignment scores. Now let's
talk about the M step of Gaussian mixture model. In this step, we'll update all the model parameter pi k,
mu k, sigma k, using all the assignment score we have learned from the E step for each cluster K. First
let's define an auxiliary term Nk, which equals the sum of all gamma n k for a specific k. And intui2vely,
Nk is the size of cluster k. The we calculate mu k equals the weighted sum of the data points in cluster k
divided by Nk, the size of cluster k. And intui2vely, mu k is the center for cluster k. Then the covariance
sigma k can be computed with this equa2on. These par2cular terms corresponding to the covariance
from the data points xn. Intui2vely, sigma k is the covariance of all data points in cluster k. And finally,
the mixing coefficient pi k is propor2onal to the size of the cluster Nk. In other words, pi k is a prior
probability for data points to belong to cluster k.

142 Now let's visually illustrate how Gaussian mixture model works. The goal is to run Gaussian
mixture model over this set of points. We first ini2alize two Gaussians indicated by the blue and red
circles. Then we compute assignment scores for each data points. The bluer points indicate the
assignment score for the blue cluster are higher. Likewise, the redder points indicate the assignment
score for the red cluster are higher. Then we update the Gaussian mixture model's parameters based on
the new assignment scores. In par2cular we update mu, sigma, and pi. Then we iterate the E step and N
steps un2l converges. And here are the final result of Gaussian mixture model a`er 20 itera2ons

143 Now let's compare two clustering method. K-means and Gaussian Mixture Model. In term of
clustering algorithm itself, K-mean is a hard clustering algorithm. Each data points only belong to one
cluster. Gaussian Mixture is a so` clustering algorithm. Each data points can belong to mul2ple clusters
with different weights. Or K-means the only parameter is the center, mu k, for each cluster, but for
Gaussian mixture, we have three parameters. In addi2on to the center, mu k, we also have mixing
coefficient, pi k, and covariance, sigma k. Both K-means and Gauss mixture model u2lize Algorithms
where they itera2vely update the clustering assignment and model parameters.

144 So far, we'll have talked about three classical clustering algorithm. K-mean, hierarchical clustering,
and Gaussian mixture model. Next, we'll describe two scalable clustering algorithm. Mini batch K-means
and DBScan. So, one problem with K-mean's algorithm is that it needs to assign all the data points to
cluster centers at each itera2on. When we have a billion data points, this can be very expensive. Mini-
batch K-means avoids doing these global assignments by working with smaller batches. And here's the
high-level algorithm. To start, we ini2alize K centers as a set C. And there are many different ways for this
ini2aliza2on. For example, we can randomly sample K data points as the centers. Then we update those
centers t 2mes, as the following. We first sample b data points to form a batch M. Then we assign the
data points in M to the closest center in C. Then we update the centers based on the assignments in M.
Next let's look at step b and c and more details. In step b, for each data points x in mini batch M, we'll
first find it closest center C to x, then cache this result in the hash map d[x] so that later we can retrieve
this center quickly. Next, in step C we update the center based on the assignments in this mini-batch M.
In this step, again we go through all the data points x in this mini-batch. First, we retrieve the
corresponding center, then we increment the corresponding center count by one. Then we set the step
size as the inverse of the center count. Finally, we update the center by 1- eta 2mes the old center c +
eta 2mes this data points x. So intui2vely, we move the old center towards this data point x by the step
size eta. So, note that as the center count increases, the step size becomes smaller and smaller. As a
result, the center update becomes smaller and smaller over 2me. Therefore, the center will eventually
be stabilized.

2024 Spring Soya Kim

41

145 Now let's do a quiz on our mini batch k-means. Given k is the number of cluster centers, t is
number of itera2ons, and b is the batch size, and d is dimensionality of the data points. What is the
computa2onal complexity of mini batch k-means? And here is the pseudo code of the algorithm to help
you answer the ques2on and put your answer in this box.

146 And the answer is, big olive, t 2me b 2mes k 2mes d. The reason is the most expensive step in
this algorithm is to assign data points to its closest center. Since we have b data points in each batch and
K centered. So, we have to compute k 2mes b comparisons. And each data point is of dimensionality d,
so each itera2on, the total cost is b 2mes k 2mes d. Since we iterate this algorithm t 2mes, the total cost
becomes t 2mes b 2mes k 2mes d.

147 Now let's talk about DBSCAN algorithm. DBSCAN stands for Density-Based Spa2al Clustering of
Applica2ons with Noise. The main intui2on behind DBSCAN is to define clusters as areas of high densi2es
separated by areas of low density. As a result, o`en2mes the cluster found by DBSCAN can be of any
shape. Here's an example. If we run DBSCAN on this data set, we'll have two clusters. The blue areas is
one cluster, and the red area is another cluster. Both are defined by high-density regions, and they are
separated by low-density regions. More details about the algorithm can be found in the instructor notes.

148 In order to explain DBSCAN algorithm we have to introduce some key concepts. First, how do we
measure the density? In DBSCAN, the density at a point p is defined as the number of points within
absolute distance to p. For example, here are a set of points in two-dimensional space. This point A was
equal to one, has density three, because there are three points in this circle. Then what is the dense
region? At data point P, in a dense region, of the density of P is greater than some threshold, the mean
data points. For example, this data point B is in the dense region, whereas the mean point equal to four.
Because there are more than four points within radius one to data point B, but A is not in a dense region,
because there are only three points within radius one to A, which is less than the mean points four. Now
we understand the density and what is the dense region. Next we can define a set of key concepts. Core,
border, and noise. Core points are points in the dense region. For example, B is a core point because it's
in the dense region. And the border points, are points was in absolute distance to a core point. For
example, A is a border point because A was within absolute distance with B and B is a core point. And all
the other points outside absolute distance to the core points are noise.

149 Now we understand the key concept of core point, border points, and noise. We can use that to
explain the algorithm. To start, for each core point c, we create edge to the points of absolute distance.
For example, B is a core point. Then we connect B, to all the points within absolute distance to B, and
those are the edges we created here. Next, we define N as a set of nodes in the graph, which are really
all the data points in the data set. If no core points in the set N then we're done. If there are s2ll core
points in the set N we pick a random core point C. Then we find the connected components from C. For
example, if we pick this point over here as the core point C, then the connected component can look like
the following. Then we update the remaining set of points N by removing all the points in x from N. So,
this operator indicate the set difference by removing x from N. Then we go back to step three and
con2nue the itera2on.

150 Now let's look at some examples of DBSCAN giving a set of two-dimensional data points. Look
like this. We want to find a set of clusters using DBSCAN. The first step of DBSCAN will try to classify all
those data points into this three categories. The core points are those gold color points. And the border
points are those blue color points. And the noises are the orange color points. Then we iterate through

2024 Spring Soya Kim

42

DB scan algorithms, we'll find this one, two, three, four five, six clusters. And you no2ce that there are
points not belong to any of those clusters, they are the noises.

151 Here's a quiz for DBscan. So, how many cluster can a datapoint belong to, using DBscan algorithm?
Put your answer in this orange box.

152 And the answer is 0 or 1. If the data point is a noise, it won't belong to any cluster, so it will be 0.
If the data point is a core points or a border point, then it will belong to 1 cluster. So, the key here is all
the noises are not assigned to any cluster.

153 So far we have talked about clustering algorithms. Next we introduce a set of evalua2on metrics
for clustering. In par2cular, we'll talk about rand index, mutual informa2on, and silhoueDe coefficient.
And rand index and mutual informa2on requires we know the ground truths of the clustering result. And
silhoueDe coefficient does not require any ground truths.

154 Now let's talk about Rand Index or RI. Given n data points, let's say X is the clustering assignment
from the algorithm and y is the ground truth. In here, we illustrate a cluster X1 that comes from the
algorithm and cluster Y1 come from the ground truth. Then we compute the term a, which is the number
of pairs that belong to the same cluster in X and in Y. For example, these two data points, P1 and P2
belong to the same cluster in X because they both belong to X1. And also, they belong to the same cluster
in Y because they both belong to Y1. And this pair will be counted towards this term. We want to find all
such pairs that belong to the same cluster in both X and Y. Then we compute another term, b,
corresponding to the number of pair that belong to different cluster in X and Y. For example, these two
points P3 and P4. The P3 belong to X1, and P4 belong to Y1. They belong to different clusters. And we
want to find all such pairs. So, once we know A and B, the Rand Index is defined as a plus b divided by
the total number of pairs. In this case, the total number of pairs is n 2mes n minus 1 divided by 2. The
Rand Index is between 0 and 1. 0 means bad clustering assignment, and 1 means perfect clustering
assignment. So, in general, we want to have an algorithm with high Rand Index.

155 Like grand index, mutual informa2on is another way to measure clustering quality. And mutual
informa2on is a concept from informa2on theory which measures the mutual dependency of two
random variables. In this case, the two random variables are clustering assignment x and the ground
truth assignment y. More specifically, X has K cluster, X1, X2 to XK and Y has R cluster, Y1, Y2 to Yr, and
then the entropy of X is defined as sum of probability PX 2mes log of PX. And this entropy term measures
uncertainty of x. And the entropy term is between 0 and 1. And 0 means the variable is determinis2c.
And 1 means the variable is completely random. Then we define the mutual informa2on between x and
y. As sum over both x and y of the joint probability p (x, y) 2mes log of p (x, y) divided by the marginal
probability p (x) 2mes marginal probability of p (y). And the range of mutual informa2on is between 0
and entropy of x. So, when mutual informa2on equals 0. Means x and y are independent. When mutual
informa2on equals H(x), then it means y is completely determined by x. If we apply mutual informa2on
as cluster and evalua2on metric, then higher value means good clustering assignment. Some2mes,
people want the metric to be normalized between 0 and 1. So in this case, we can define this normalized
mutual informa2on as the mutual informa2on between x and y, divided by the square root of entropy of
x 2mes entropy of y.

156 There are a lot of commonality between Rand index and mutual informa2on. So, what are the
pros and cons of this Q evalua2on metric. They both provided bounded ranges when the metric is close

2024 Spring Soya Kim

43

to 0, which means bad clustering assignment. When it's close to one, means good cluster assignment.
And there's no assump2on of clustering shape, so you work with arbitrary cluster algorithms, but a
disadvantage is it will require ground truth cluster assignment. In many cases we don't know the ground
truth, even the data set, so this will be a big limita2on for both rand index and mutual informa2on.

157 Next let's introduce silhoueDe coefficient, which is another popular clustering evalua2on metric.
In this case, we do not require any ground truce informa2on. Here's the main idea behind silhoueDe
coefficient. Given the data point x, we first want to find the cluster containing x, then we want to find the
next nearest cluster to x. So visually, it's illustrated as the following. So, we have these two clusters, C
contains x and C prime is another cluster that's very close to x. Then we compute this measure a, which
is average distance of x to all the data points in cluster C, which means we compute the distance of x to
all the other data points in C and find the average. Similarly, we define the term b, which is average
distance from x to all the other points in C prime. For example, in this case, we'll compute the distance
from x to all the other points in C prime and then take the average. And the silhoueDe coefficient on x =
b- a divided by max(a,b). The intui2on is if the assignment of x is good, then the difference between b
and a should be large, then we'll have a large value for this coefficient, which means good clustering
assignment. If x is assigned to a cluster which is so close to another cluster, then the difference will be
small. In that case, the silhoueDe coefficient will be small. In that case, it will be a bad clustering
assignment.

158 In summary, here are the pros and cons for a silhoueDe coefficient. Again, it provided a bounded
range between minus 1 and 1. And minus 1 means very bad clustering assignment, 1 means very good
clustering assignment, and 0, in this case, means overlapping cluster. The limita2on here is silhoueDe
coefficient assumes spherical clusters. For the clustering algorithms that generated non spherical clusters,
such as DBScan, silhoueDe coefficient would not be a good evalua2on metric.

2024 Spring Soya Kim

44

09 Spark
159 Previously, we have talked about MapReduce, a distributed fault tolerance system, for processing
large data set. However, MapReduce, is not efficient for suppor2ng itera2ve workload as many machine
learning algorithm require. Today, we'll introduce Spark, another big data system that provides beDer
performance, by using distributed memory, across many machines. We'll talk about the key concept
behind Spark. Namely, Resilient Distributed Dataset or RDD. We'll explain how Spark can beDer support
itera2ve algorithms. We also provide some example of house care applica2ons using Spark.

160 Before we introduce the big data system Spark, let's first remind ourselves of the compu2ng
environment we're using here. For big data analy2cs, we usually need to perform all the analy2cs in a
data center look like this. Many racks of servers that are interconnected through Internet. A lot of 2me
we access this environment through cloud compu2ng services such as, Amazon Web Services, Google
Cloud Placorm and Microso` Azure. With this environment in mind, next we'll see why we need to design
another big data system like Spark

161 In the previous lecture we have introduced Hadoop and MapReduce. Hadoop is a big data system
that operates on acyclic data flow graphs from stable storage to stable storage. So, the input and output
of Hadoop jobs are from the stable storage system. For example, hard disks in the distributed
environment. The compu2ng jobs follows the MapReduce paradigm, which forms acyclic data flow graph
that look like this. And all the input and output from each Map and Reduce func2on are in this stable
storage system. So, Hadoop system is based on acyclic data flow graph and stable storage to ensure fault
tolerance. So, the benefit of such a design is that at one 2me we can decide where to run different tasks.
So, the map and reduce func2on can be run on different machine in the distributed environment. And
we can automa2cally recover from failures because the input and output of those MapReduce func2ons
are stored in a stable storage. For example, disk. So now we know Hadoop can work with big data using
MapReduce computa2on. So, what are the limita2ons of Hadoop? Hadoop o`en does not perform well
when the workload involves cycles. More precisely, Hadoop is inefficient for applica2on that repeatedly
reuse a working set of data. So, what are those applica2on that require such workload? There are some
major applica2ons such as itera2ve algorithms and interac2ve data mining tools that fall into this
category. Itera2ve algorithm contains many machine learning algorithms, such as clustering, classifica2on.
They o`en 2mes need to be repeatedly computed on the same data set. Then we have graph analysis.
Many graph algorithms, such as page rank computa2on, spectral clustering, they also fall into this
itera2ve algorithm category. Also, more and more data mining prac2ce need interac2ve response. This
days, data scien2sts using interac2ve tools such as R and Python to explore data, form hypotheses, and
validate those hypotheses and repeat on the same data set. It will be great to provide more efficient big
data placorm that can support all this.

162 Next let's illustrate the inefficiency of Hadoop using one concrete example. Say we want to a
machine learning model on this training set. And the model is specified by the model parameter w.
Typically, a machine learning algorithm start with some ini2al model. Then they run the algorithm for
one itera2on. For example, this can be implemented as the map-reduce job. And the resul2ng model, W
(1) is also going to be stored on the disk. Then we repeat this process with this new model parameter
against the same training data to get the next itera2on of model. And this process repeated many 2mes
un2l convergence. If you look at this computa2on paDern, you quickly realize that we repeatedly load
the same data from disk to memory in order to perform the computa2on. At the same 2me, we have to

2024 Spring Soya Kim

45

write the result, in this case, are those model parameter repeatedly to disk from itera2on to itera2on.
And this repeated reading and wri2ng to disk are the inefficiencies of Hadoop.

163 Next let's illustrate these two types of workload, itera2ve algorithm, and interac2ve computa2on.
For itera2ve algorithm, we apply the same computa2on logic on the same input data set again and again
to generate different itera2on of result set. And those result are o`en corresponding to the model
parameters. Interac2ve computa2on is slightly different. In this case, we itera2vely perform some
computa2on. Across the itera2on, those computa2on can be very different. For example, we start with
some raw data, then perform some data cleaning, get a cleaner data, then perform modeling algorithms
to get the model. And the requirement is, we want this itera2on to itera2on to be fast so that we can
perform this work in an interac2ve manner. So, the key objec2ve for suppor2ng itera2ve algorithms and
interac2ve computa2on is to keep the working set in memory so that we can perform all those opera2ons
fast. So here we illustrate that ideas using this diagram. For itera2ve algorithm, what we want to do here
is load the en2re data set into a distributed memory across many machines. So that when we perform
all of this itera2ve computa2on, all the data are in memory, so we don't have to read and write to disk.
For the interac2ve computa2on, the idea is also very similar. We want to keep the intermediate result all
in memory so that the next itera2on can perform immediately once the first itera2on is done. There is
no read and write to disk anymore.

164 So what's the challenge about keeping everything in memory? The key challenge is how do we
design a distributed memory abstrac2on that is both fault-tolerant and efficient. Hadoop guarantee fault-
tolerance by using disk so that they can keep data and intermediate result in a stable storage. But
memory is not a stable storage. It's, by defini2on, efficient, but it's not fault-tolerant. To guarantee both
fault-tolerance and efficiency is the challenge for such a system. Next, let's look at some op2ons here. A
lot of exis2ng distributed storage systems depends on fine-grained updates. For example, given the table
look like this, we can re-write from any place in this table. So those dots indicate a place we want to read
and write a specific cell from that table. Example of such abstrac2on include database systems, key-value
stores, and distributed memory. So, the way to make this type of storage abstrac2on fault-tolerance is
we have to replicate data like what we have done in the Hadoop sedng where we replicate data several
2mes and store on different machines. Or we have to keep track what opera2on has happened using logs.
But if we have this very fine-grained updates any place on this table, then keeping track of what has been
changed or replica2ng all those data become very expensive.

165 To solve this problem, spark decides to strike a balance between granularity of the computa2on
and the efficiency for enabling fall tolerance. In this case, RDD provide an interface based on coarse-
grained transforma2ons of the en2re data set. For example, a map func2on can be performed on every
record in this dataset. Similarly for group-by or join or filter. So, this opera2on are course-grained
opera2ons because it's not focusing on a specific part of the dataset. They are being applied on the en2re
dataset. If we only have to keep track of the course-grained transforma2ons, all opera2ons can be
efficiently tracked. In this case, efficient fault recovery can be done using lineage. So, lineage here looks
like a family tree. It keeps track of all the transforma2on across different RDD. It may start with the root
RDD, and some transforma2on being applied to those RDD and derived RDD are generated. So, if we only
support coarse-grained transforma2on, we can log those opera2ons that apply to many elements in this
RDD. And we can re compute the failure happened because we have the opera2on being logged. And
more importantly, since everything is in memory, there's no cause if nothing fails. So, this is very efficient
mechanism to enable fault tolerance.

2024 Spring Soya Kim

46

166 Next let's illustrate how RDD can recover from failure. Again, we have these two different
scenarios. This is for itera2ve algorithms, and this is for interac2ve computa2on. It's quite obvious for the
interac2ve computa2on. For example, the result from the second itera2on failed. In this case, we only
need to repeat the second itera2on to regenerate the same result. If both results are failed in memory,
we can repeat itera2on one and two to recompute the result. For itera2ve algorithms, if only part of data
has failed in memory, we can load the corresponding chunk from the stable storage to refresh that
memory. Also, those results from each itera2on are stored in memory. So, if part of that is filled, like the
latest one, then we only need to repeat that from the previous one to regenerate the latest one. And this
is the key idea behind spark, so spark is really a big data systems built on top of RDD.

167 So`ware stack for Spark already become quite rich. The Spark core contains the basic
func2onality of Spark including components for scheduling, memory management, fault recovery, and
interac2ng with storage systems and more. And Spark Core is a home API for RDD and this RDD, as we
just illustrated, is the main programming abstrac2on. And RDD are represented as a collec2on of data
points distributed across many computer nodes and can be manipulated in parallel. Spark Core provides
many APIs for building and manipula2ng this RDD. Spark SQL is Spark package for working with structure
data. It allows querying data via SQL like syntax. Spark streaming is a spark component that enable
processing real-2me data such as weblogs. Spark also has a machine learning library called MLib. MLib
provide many machine learning algorithms including classifica2on, regression, clustering, collabora2ve
futuring, and so on. All this machine learning algorithm in MLib are designed to scale to a cluster of
computers. GraphX is a graph processing engine for Spark. It can manipulate large graph such as social
networks of friends, cita2on network of papers, publica2ons, and pa2ent and disease graph as well as all
those medical ontologies. GraphX provide various operators on graphs, such as extrac2ng sub graphs and
map ver2ces. It also provide a library of common graph algorithms such as PageRank. Under the hood,
Spark is designed to efficiently scale up from one machine to many machines. To achieve this flexibility,
Spark can run over a variety of cluster managers such as Standalone Scheduler on a single machine, and
Hadoop YARN, and Apache Mesos.

168 Next let's talk about programming interface for Spark. The core interface is wriDen in Scala. It has
several other different languages being supported such as Python and Java. There are three different
types of API. There's one set of API is about crea2ng and manipula2ng RDD. Then we have these different
opera2ons on RDD, such as transforma2on of one RDD to another, an ac2on that has to operate on an
RDD in order to compute some results. Spark also provide a way to share global variables across machines
through this restricted share variable mechanism, such as broadcast and accumulator.

169 Next let's look at some example of RDD transforma2on. Here's example illustrate map versus
flatMap, given an RDD look like this we have three different type of symptoms, sprained ankles, fractured
ankle, and severe sprained knee. Then we want to apply this map func2on with this par2cular opera2on
tokenize. For example, when we tokenize this strain we'll get the list of words. For example, the input is
"sprained ankle" then output is two words, "sprained" and "ankle". And that's a list so if we applied this
with the map func2on we'll have a set of list one for each element here. For example, sprained ankle ill
become a list of two word, sprained and ankle. And fractured ankle will be another list, fractured and
ankle. And the severe sprained knee becomes a list of three words severe, sprained, knee. So, the result
of map func2on become a list of lists. In many cases, we don't want this two-level structure. We want
one level list with all those words in the same list. So, in that case we can apply flatMap. The result of
flatMap is a list of all those individual words. So essen2ally we're flaDening the RDD from map func2on

2024 Spring Soya Kim

47

into this one level list or another way to say that is, we concatenate all those lists together. Make them a
single list. Now some more examples of RDD transforma2on. Now, given an RDD of words, if we apply
dis2nct transforma2on, the result of that will be the dis2nct word in the original RDD. So sprained only
show up once in the resul2ng RDD. The result on this opera2on is rela2vely cheap. Another commonly
used opera2on is union. So, union works with two RDDs. So now we have this RDD1, with the set of
words. RDD2 with another set of words. Now, if we apply union, so RDD1.union(RDD2) So this will give
us a resul2ng RDD that merged this two RDD together. In this opera2on is also rela2vely cheap because
it only involves these two already together. No2ce that this is really a simple concatenate of two RDD
together. The redundancy across this RDD s2ll remains in this resul2ng RDD. Other popular opera2ons,
such as intersec2on, is also supported. Now given these two RDDs, we want to find intersec2on between
these two, and that will be the sprain and knee because they are in both RDD. This opera2on is more
expensive because it involve sor2ng, refining out dis2nct values and finding out overlapping across two
RDD. So, this is more expensive to do another transforma2on such as subtract. That's also a set opera2on.
Given two RDDs, we want to remove the elements in RDD2 from RDD1. So RDD1.subtract(RDD2). So, this
gives us the resul2ng RDD, which is the remaining element in RDD1 that are not in RDD2. This opera2on
can be expensive because we have to find the dis2nct elements in both RDDs, then perform a set
difference opera2on.

171 Now let's do a crisp on RDD transforma2on. So, what is the output of each given transforma2on
for this input RDD. This is the map func2on applying to x and return x 2mes x. Then will have this filter
func2on apply to x which was x equal to one. So, write your result in this red boxes.

172 When we apply mapped func2on, this is the result. 1, 4, 9, 16. When we apply filtered func2on,
in this case, we only return the value when they are not equal to one. We have value 2, 3 and 4.

173 Spark provides many opera2ons that categorize into these two groups, transforma2ons, which
define a new RDD from an input RDD, and ac2ons, that return a result to the driver program. For example,
for transforma2ons, we talked about map, filter, and there are many more, such as sample, groupByKey,
reduceByKey, sortByKey, flatMap, union, join, cogroup, Cross, mapValues. So, it's a very rich set up of
transforma2ons, way beyond what MapReduce provide us in Hadoop. Same for Ac2ons. Ac2on is like the
reduce phase in MapReduce. So, it can collect the values from RDD. We can perform a reduce func2on,
we can count how many records, we can save it somewhere else, we can look up by key to find a subset.
These are example set of transforma2on and ac2ons, but there are many more opera2ons for Spark, and
more examples will be in the instructor notes.

174 Another important concept in Spark is this shared variable. The way to create a shared variable is
to use this broadcast variable that allows us to efficiently send a large, read-only values to all the worker
nodes. Next, let's illustrate a Spark job using this example. Say we have a large volume of clinical nodes.
We want to find certain paDerns. So, Spark job runs on a clusters. You have two sets of nodes. The driver
which is like MapReduce master. And workers, which just like MapReduce slaves. The drivers coordinate
the en2re task, and the workers perform all those individual computa2on. Here are some example of a
Spark code. First step, we want to load this clinical node from hdfs. So, we load all the lines in this clinical
nodes. So that's our base RDD. Next we want to filter all those lines to find the line start with keyword
SYMPTOM. This will become the transformed RDD. Then we want to split the symptom lines with
deliminator tab. Then find the third element with this parameter 2. For example, in this case we'll assume
the third element corresponding to the symptom name. So that's what we want. Since we know we're

2024 Spring Soya Kim

48

going to find various paDerns on those symptom names, so we cache this result. So far everything runs
on driver and no computa2on has really happened, un2l we reach an ac2on. Here is an ac2on. We want
to filter all these symptom names to find the keyword, fever, and we want to count those lines. So, we
want to know how many 2mes symptom fever occurs in this case. So, this is an ac2on, and they will
happen. When we reach this ac2on line, the driver will send those tasks to individual workers to work on
their own block. Then the worker will go through the steps to try to find fevers and count the number of
2mes they occurred. And the result will be sent back to the driver node, and that's the total count for
fever. At the same 2mes, the cache will be created on all those worker nodes. So next 2me we don't have
to do all the beginning opera2ons, because the result are cached, so the next line is another ac2on. Here
we'll look for a different symptom, cough, and we'll want to count how many 2mes they occur in the
clinical nodes. In this case we send the task, again, to the workers, and they already have the cache. So,
they don't have to go through the raw data again. So, what they need to do is con2nue from this cached
line to compute the number of 2mes cough occurred. And the result will be returned back to the driver
and the process con2nued. So, this is an illustra2on of how Spark job works. Spark can give quite amazing
results because this in-memory opera2on. For example, full-text search on Wikipedia takes less than 1
second versus 20 seconds if it's read from disk. With Spark, we can scale to 1 TB data in 5-7 seconds
versus 170 seconds just to read from disk. So, the reason we can get this 5-7 second near real 2me
response on a huge data set is because now we can read and processing data in parallel. And also cache
the result in memory whenever needed.

175 Now, let's illustrate how fault tolerance is enabled using RDD. So, RDD tracks that lineage
informa2on of all those different transforma2ons, and they can recompute efficiently if lost par22on
happen. In the previous example, we have seen that this sequence of transforma2on help us to find the
symptom names. So, we first filter to find the line contain symptom then split and extract the individual
elements which is the symptom name. So, visually, what happens is we're first read a file from HDFS,
perform filter opera2on, then we have this filtered RDD. Then, the filtered RDD will be the input to the
map func2on to generate the mapped RDD. For example, if part of the result from the filtered RDD is lost,
we can recompute very quickly from the previous step. By the way, all those transforma2on are tracked
because they're the lineage informa2on for us to reconstruct the RDDs we need if lost par22on happen.

176 With Spark, now we can efficiently support itera2ve algorithms such as machine learning
algorithm like logis2c regression. So, giving logis2c regression as a classifica2on algorithm, trying to find
the best line to separate these two sets of points. And this is the target we want to learn. We start with
this random ini2al line. First, we compute a gree2ng over all the data points, then we update this ini2al
line by moving towards the gree2ng. Then we recompute the gree2ng again on all the data points, update
the line, and do this update again, again, and again, un2l it converges. That's how we get the final target
line. Because the input and output are all capped in memory. This update can be done very quickly. Here's
example of spark code for wri2ng logis2c regression. We start by loading the data from disk into memory
and cache that. Then we ini2alize the model parameters w. Then we perform the following itera2ons.
Then we complete the gradient over the en2re data set, which is really involve a map func2on over all
the data points. And for each data points, we perform this calcula2on, then perform the reduce func2on.
This is really to sum them up, that give us the gradient. No2ce that with this one simple opera2on, we
performed a MapReduce func2on to compute the gradient. Once we have the gradient, we can update
the moDo parameters then repeat this process. Finally, we have the final parameters once it's done the
all the itera2ons. Here is a performance comparison between Hadoop and Spark for compu2ng logis2c

2024 Spring Soya Kim

49

regression. So, X axis indicates the number of itera2ons from first itera2on to 30th itera2on. So, Y axis is
total running 2me. And in this case, the lower the beDer. No2ce that every itera2on of Hadoop takes
about 127 second. No2ce that for Spark the first itera2on is even longer than Hadoop because the
caching opera2on. Then the further itera2ons for Spark only take six seconds as opposed to over 100
seconds. That's why Spark's in total running 2me is much lower than Hadoop.

177 Next let's illustrate Spark with another house care example. Say we have matrix R which is the
pa2ent by disease. Every row corresponding to a pa2ent, every column corresponding to a disease. And
the goal here is to predict the disease risk based on exis2ng disease diagnosis. For example, we know for
a pa2ent what disease they already have, but for the ones they don't have, we want to assess the risk.
So those are all those ques2on marks. So how do we model that problem? This is really a collabora2ve
filtering problems. We can model a large matrix R with many missing values with a product of two
matrices, A and B. A corresponding to all the pa2ent features, and the B corresponding to all the disease
features. So, the way to do that is through this alterna2ng least squares opera2on, ALS. So, we'll fix one
of this matrix. For example, we'll fix B then update A, then we can fix A update B. So, this is called
alterna2ng least squares. So, the algorithm goes as follows, we start with a random ini2aliza2on of A and
B. They'll start to op2mize the pa2ent feature vectors, A, based on the disease feature vector, B. Then we
do that for the disease feature vectors based on the pa2ent feature vectors. Then we repeat this process
un2l convergence. So, if we want to write this using Spark, it's actually quite easy to do.

178 Next let's talk about how do we do this using Spark. So, we can right this simple 0 implementa2on
of alterna2ng lee square. First, we can read the data matrix R. Then, we can ini2alize A and B randomly.
A`er that, we can start this itera2ve opera2on. Here we want to update A and B alterna2vely. For
example, we have U pa2ents, for each pa2ent I will update that corresponding pa2ent based on the
matrix B and input matrix R. Say we have a func2on for doing that. This is actually quite straight forward
because it's just simple B square problem can be solved with a linear regression opera2on. That is just to
update for pa2ent I. We want to update A and B alterna2vely. So, these are the range values. So, for A
we update each pa2ent from 0 to U minus 1, and for B we update each disease from 0 to M minus 1. So,
for each pa2ent we want to update the pa2ent based on the input matrix, R. And the disease matrix
speed. So, this really becomes really a regression problems. And we want to do this for every pa2ent. So
that's where this map func2on comes in. For each pa2ent I, from zero to U minus 1 we apply this func2on.
Similarly, we can do that for disease. For each disease, we update the disease based on input data matrix
R, and pa2ent matrix A. So next, let's see how we can do this in parallel.

179 Again, we read the input data, and we ini2alize A and B, then here, we can run all of those update
for each pa2ent in parallel. Then, collect those result to the driver node. So, spark.parallelize provide the
way for us to perform this parallel computa2on. And similarly, we can perform this parallelized opera2on
on diseases. For each disease, we want to update that as well. And the problem here is the big data
matrix R has to be sent to all the node in each itera2on. This is very inefficient if we have a large data
matrix. So, this is where we use broadcast. Instead of reading data directly, we can use spark.broadcast
to create this read only object. Then when we want to use this matrix, we can do R.value to access that
par2cular variable. It has been shown that we can achieve three 2mes performance improvement by
simply doing broadcast.

2024 Spring Soya Kim

50

10 Medical Ontology
180 One of the things that make healthcare a unique domain for big data analy2cs is the existence of
structured medical knowledge, which are o`en represented as ontologies or knowledge graphs. For
historical reason, healthcare and medicine domain have already developed many ontologies for
organizing diseases, medical procedures, medica2ons, lab tests, and more. These ontologies give us great
resources to understand house care data and to enhance and validate all of the models developed using
big data analy2cs tools. In this lesson we discuss several just ontologies and illustrate how they can help
us in our analysis.

181 Now let's talk about health data standards. There are many different health data standards. In
this lecture, we'll present several important ones. Each has its own unique focus. Let's illustrate all those
data standards through an example of pa2ent encounter. For example, this pa2ent is coming to hospital
to get a lab test, and the result of the lab test is stored using LOINC, or Logical Observa2on Iden2fiers
Names and Codes. LOINC typically represents all different kinds of lab tests. So, the lab test result goes
to the doctor, and the doctor diagnoses pa2ent with different disease code, or ICD. It stands for
Interna2onal Classifica2on of Disease. That represents different diagnoses and different diseases. Once
we have the diagnosis on this given pa2ent, we may want to treat this pa2ent with a medical procedure
that's represented by CPT code, or Current Procedural Terminology. So, CPT represents all different
procedures that can happen, to give an individual. Of course, the pa2ent can also take some medica2on,
and that's represented by NDC code, or Na2onal Drug Code. So, for a given pa2ent, during a typical
medical encounter, all different types of informa2on are coded with different health data standards.
LOINC code for labs, ICD code for diagnosis, CPT code for procedures, and NDC code for medica2ons, and
all those codes interac2ng with each other can be represented by a medical ontology. The most popular
medical ontology is called SNOMED, it stands for Systemized Nomenclature of Medicine. It's a huge graph
of medical concepts and their rela2ons. Of course, to u2lize all this informa2on in a huge oncology like
SNOMED, you need so`ware systems to interact with all those concepts and rela2ons. The most popular
so`ware for accessing this medical knowledge is UMLS. It stands for Unified Medical Language System.
UMLS is a set of so`ware tools that provide integra2on of mul2ple sources of medical knowledge and
medical ontologies. So next we'll talk about all these different health data standards. We'll first cover all
those individual set of data standards for different types of medical data. Then we'll talk about SNOMED
and UMLS as a way to integrate all those different medical concepts together. All these health data
standards are very important to support common healthcare opera2ons, such as efficient insurance claim
processing. For example, when a healthcare encounter has happened and all this informa2on has been
recorded through electronic health records, and that informa2on will be sent to an insurance company
in order to process those claims so that the doctor can get paid. And all those health data standards
support efficient insurance processing. The secondary use of these health data standards are to support
research and development. Because house care's data are encoded largely in structured forms, so that it
can be easily analyzed and standardized. Next we'll introduce all of them in more details.

182 First let's talk about ICD code for diagnosis. ICD stands for Interna2onal Classifica2on of Diseases
which was developed by World Health Organiza2on, and the focus of ICD codes is to categorize diseases.
In US currently, we're using the version nine of ICD and we're already moving towards ICD-10, and most
of the rest of the world are currently using version 10. And version-9 of ICD code has over 17,000
individual codes. It covers both diagnosis and procedures. And ICD-10 code is the next genera2on of ICD

2024 Spring Soya Kim

51

code. It has over 141,000 unique code. Next let's talk about ICD-9 and ICD-10 in more details. First, let's
introduce ICD-9 code. ICD-9 code has three to five digit with three different levels. Namely, the categories
which cover the first three digit, the subcategories which is the fourth digit. And the subclassifica2on,
which correspond to the last digit. There are 17 categories plus several supplementary categories in ICD-
9. The 17 categories correspond to major disease categories, such as infec2ous disease, neoplasia, and
et cetera. ICD-9 code in the 17 categories have only numerical digits. For example, 250 is a category code
for diabetes. And 250.01 is the subclassifica2on for type one diabetes without complica2ons. In addi2on
to the 17 categories, there are supplementary categories star2ng with leDer E or leDer V. For example,
V85, corresponding to body mass index. And V85.0 indicate BMI less than 19. V85.1 indicate BMI
between 19 and 24. And V85.2 indicate BMI between 25 and 29. Now let’s talk about ICD-10 code. ICD-
10 code can have seven alphanumerical characters. So, it's longer than ICD-9 code, which only have five
digits. First three characters indicate the disease category. The fourth character indicates E2ology of the
disease. That is the cause of the disease. The fi`h character indicate body part affected. And the six
characters indicate the severity of the eonis. And the character seven is the place holder for extension of
the code to increase specificity. For example, E110, indicate disease category with type one diabetes.
And nine indicate there's no complica2on. Here's an example of a more complicated ICD-10 code. M1A
indicates the disease, chronic gout disease. And a three indicate the E2ology of renal impairment. And
one indicate the body part, in this case is the shoulder. And two indicate the severity or vital details, so
in this case two means the le` shoulder. And the last one, zero for extension. Here zero means without
tophus. So, as you can see ICD-10 code can be quite complicated.

183 Because of the prac2cal need, there are a huge effort involved in mapping from ICD-9 code to
ICD-10 code. In general, a mapping from ICD-9 code to ICD-10 code is a one-to-many rela2onship,
because ICD-10 code is just more specific than ICD-9. So, in some cases, ICD-9 is already preDy specific.
In this case, they will have one-to-one mapping. For example, for this Tietze's Syndrome, they are both
having unique code in ICD-9 and ICD-10. So, the mapping is one-to-one. But in most cases, we'll see one-
to-many mappings. For example, 649.51, spodng complica2ons during pregnancy, maps to three codes
in ICD-10. So, in this case, complica2ons during each trimester has its separate code in ICD-10. Some2mes
the mapping from ICD-9 to ICD-10 can be quite complicated. For example, 733.82 in ICD-9 has a mapping
of 2,530 in ICD-10. So, ICD 10 is just going through a lot more details about the disease. So, the mapping
can be quite tricky.

184 Here's a quiz ques2on. Which of the following are not an ICD-9 code? Is this 501 or U80.1, 802.3,
V70, E820.0, and 5A0.01?

185 Let's go through them, one by one. ICD-9 code is between three and five digits. So, 501 is valid.
And U80.1 is not valid, as the ini2al leDer can only be E or V. And 802.3 is valid. And V70 and E820.0 are
both valid because they corresponding to valid supplementary code. It start with V or E. And 5A0.01 is
not a valid ICD-9 code because ICD-9 cannot have leDer a`er the first posi2on. So, the answers are U80.1
and 5A0.01. These two are not valid ICD-9 code.

186 Next let's do another quiz. Please search online to find the corresponding ICD-9 and ICD-10 codes
for Influenza.

187 Here's the answer for ICD-9, 487.1 stands for Influenza. And for ICD-10, the answer is J11.1.

2024 Spring Soya Kim

52

188 CPT code is another important coding system used in US healthcare. CPT stands for Current
Procedure Terminology. The focus of CPT is to describe medical, surgical, and diagnos2c services. It's a
US standard for coding medical procedures. CPT is maintained by American Medical Associa2on. And CPT
is mainly used by insurance company to determine how much to pay for a medical service. In general,
reimbursement rate will be associated with each CPT code has been used in the claims. So, CPT is very
important in the US, since it 2ed to how much money doctor will make. Now let's talk about CPT code in
more details. CPT is a five-digit code, has three different categories. Category one, corresponding to
widely performed procedures. And Category two, corresponding to quality metrics performed in
healthcare organiza2on. Then we have Category three, it's again four digits, follows with leDer T for
experimental use. Now let's talk about Category one, CPT code. We can take quick look at the different
sec2ons of Category one CPT code. They're arranged in their numerical ranges. They are divided into six
sec2ons, Evalua2on and Management, Anesthesia, Surgery, Radiology, Pathology and Laboratory,
Medicine. And here are the Category two CPT code. There are supplementary code for tracking the
performance measure. And the different ranges of the code map to different types of services. It include,
Composite measures, Pa2ent management, Pa2ent history, Physical examina2on, Diagnos2c/screening
process and result, Therapeu2c and preven2ve or other interven2ons, Follow up or other outcome,
Pa2ent safety and Structural measures. For example, blood pressure measured is one of the Composite
measures, and there are other Composite measures, as well, they're all in this range.

189 Here's a quiz on CPT code. Search online, try to find a CPT code for detailed office visit.

190 The office visit is in the range of 99201 to 99205. And all those different codes represent an office
visit. However, the dis2nc2on is mainly on how much 2me you spent face to face with the pa2ent. So,
99201 is for ten minutes 2me, while 99205 corresponding to an hour 2me. So, you can see that which
code you use to document the service will make a big difference. However, the underlying service can be
very similar.

191 Next let's talk about LOINC. LOINC is a standard for lab and clinical observa2on, and it's created
by Regenstrief Ins2tute which is a non-profit organiza2on in Indiana. LOINC has been created mainly to
capturing lab test. And a LOINC code contains digits like 2865-4, and this is a LOINC code. Of course,
LOINC code itself has a number and also has aDributes associated with this lab test. And different
aDributes are separated by a column. Let us talk about loinc aDribute and loinc number. Here's the
aDribute of a specific loinc code. They're separated by colon. The first part is the component name, and
this specify the specific lab test. The second part is the property of the lab measurement. And the third
part is a 2me aspect whether it's measured at a point of 2me or over some dura2ons specified here.
Here Pt means point of 2me. The fourth part is a type of sample. For example, serum or plasma in this
example. Next is the scale. The scale may be quan2ta2ve, ordinal, or nominal or narra2ve. Finally, we
have the method, that has been used to conduct this lab test. And this par2cular aDribute corresponding
to a LOINC number of 2865-4.

192 Here's the quiz on LOINC code. Try to search online to find LOINC code for lab test Crea2nine.

193 And the answer is 2160-0. You may find Azure lab tests also contains the term crea2nine, and this
is one of the most popular one, a test for crea2nine.

194 Next let's talk about NDC code. NDC stands for Na2onal Drug Code. NDC is the standard for
medica2ons, and NDC is registered and maintained by FDA, the Food and Drug Administra2on. And FDA

2024 Spring Soya Kim

53

maintains a searchable database of all the NDC code on their website. NDC codes are used throughout
the en2re drug supply chain, from pharmaceu2cal company to drug distribu2on companies, to medical
community, and to insurance company, and government. They all use NDC code to track medica2ons.
NDC have three parts. The first part is the four to five digits that indicates the labeler that is a company
produce the drug. 0777 is a labeler code for Dista Products, and the second part is the product code to
indicate what drug it is. For example, 3105 corresponds to Prozac Capsules of 20mg. And then the final
one or two digit corresponding to the package code. In this case, 02 indicate there are hundred pills in
this package. NDC code exists in different ways of grouping those three segments. It has a four digit here
as labeler, four digit here as the product code, and two digit as a package code. Or it could have a five-
digit labeler, three-digit product code and two-digit package. Or it could have five-digit labeler, four-digit
product code and one digit package code. But overall, all NDC code have ten digits.

195 Here's a quiz ques2on on NDC code. Search online, find the NDC code for mecormin
hydrochloride, 500 milligram.

196 One of the answer could be, 0093-7214-01. Your answer could be different from this depending
on who is the labeler, and what's the product code and this can look different, even for the same drug.

197 Next let's talk about SNOMED. SNOMED is one of the most comprehensive mul2lingual medical
ontology that describes different clinical and healthcare terminologies, and their rela2onships. And
SNOMED stands for systema2zed nomenclature of medicine. And SNOMED is maintained by another
non-profit standard organiza2on called IHT SDO, which is based in Denmark. And the objec2ve of
SNOMED is to encode all kinds of health informa2on, and to support effec2ve clinical recording of data
was the aim of improving pa2ent care. Next, let's look into more details of SNOMED. First, let's talk about
SNOMED Development Cycle. It starts from the central organiza2on, IHTSDO. It maintains the
interna2onal version of SNOMED ontology. More specifically, it maintains the SNOMED's development,
release, distribu2on, maintenance, and educa2on. And this organiza2on released the SNOMED CT
interna2onal which is the interna2onal version of SNOMED. Then there are different members, those are
different countries. Each country can have their own na2onal release. For example, US can have their
own SNOMED version. Those different versions are called reference set. There could be SNOMED CT US
Na2onal Edi2on and released in 2005. That could be one reference set. Then there's different
implementa2on which may only cover a subset of the en2re reference set within a country. Then once
we have the implementa2on of SNOMED. And the users of SNOMED are quite broad. They could be
clinicians, researchers, or data analysts. And the purpose of SNOMED is to help improve clinical
documenta2on and understand seman2c interoperability of medical concepts, and to enable clinical
decision support, as well as data retrieval, analy2cs, sta2s2cs, informa2on management purpose.

198 Now let’s talk about the Logical Model of Snomed CT. The logical model of Snomed CT is quite
simple. It asks three types of components, concepts, descrip2ons about concepts, and the rela2onship
between concepts. Every concept has a unique iden2fier, our SNOMED CT iden2fier. This is a machine-
readable iden2fier. Then each concept can be associated with one or more descrip2ons. And the
descrip2ons provide human readable forms of the concept. There are two types of descrip2ons. One is
the fully specified names, FSN. That is the most precise explana2on of that concept. And there are also
other synonym that provide different version, or different ways of describing the same concept. And
rela2onship captures interac2ons between mul2ple concepts. Usually two concepts. For example, the
most important rela2onship is the is a rela2onship, or subtype rela2onship. It gives you a way to

2024 Spring Soya Kim

54

generalize a concept from more specific level to more general level. Then there's the aDribute
rela2onship. Each concept can have mul2ple different aDribute.

199 Now let's see an example of SNOMED concept. The concept ID is the following, 22298006. It is
definitely in a machine-readable form. This concept ID is associated with different descrip2ons, and
among which myocardial infarc2on disorder is a fully specified name for this concept. Then there are
many synonyms include myocardial infarc2on, infarc2on of the heart, MI, heart aDack, and so on. Some
of those descrip2on are considered preferred. For example, myocardial infarc2on disorder and
myocardial infarc2on. And some are considered acceptable. So, the rest of those descrip2ons are
considered acceptable. So, note that the concept of preferred or acceptable, they're implemented in the
US English Language Reference Set, which may not be in the reference set from other countries.

200 Now let's talk about IS a rela2onship. IS a rela2onship indicate generaliza2on from a specific
concept to a more general concept. For example, celluli2s of foot is a celluli2s, so this is a IS a rela2onship.
At the same 2mes, celluli2s of foot is also a disorder of foot. So, there's two different paths to generalize
this concept. And you no2ce that IS a rela2onship is direc2onal. So, two concept are directly linked by IS
a rela2onship. The source concept is said to be the subtype. And the des2na2on concept is said to be the
supertype. If we generalize all those concepts to the most general forms, we have a single root of the
en2re hierarchy. Besides IS a rela2onship, there are other rela2onship as well. For example, abscesses of
heart Is associated morphology to abscesses. And it has a finding site to heart structure.

201 Here's a summary of SNOMED. SNOMED Ontology consist of different type of concepts, and those
concepts are organized in a hierarchy. For example, from top down, there is 19 level of hierarchy, start
from body structure go down to the substance. For example, arthri2s of knee is the is arthropathy of
knee joint is an arthropathy, is a joint finding, and so on, so you can see all those different levels of
concepts can be mapped through the hierarchy of the en2re SNOMED concept. In the top level are the
most general or low granularity concept, and the lowest level here are the high granular or the most
specific concepts. Concepts and hierarchies, we also have rela2onship and their aDribute. For example,
here are two different rela2onships. Arthropathy is a joint finding, and another one Appendici2s is
associated morphology to inflamma2on. So here associated morphology is an aDribute in this rela2on,
and every concept has a unique machine-readable iden2fier, and each concept also has associated
descrip2ons. One of those is fully specified name.

202 Here's the quiz on SNOMED code. Search online, try to find a SNOMED code for chronic gouty
arthri2s.

203 And the answer is 68451005.

204 Here's another quiz. What is the resul2ng structure of all the ISA rela2onship, in SNOMED? Is this
an undirected graph? Is this a tree? Is it directed graph without cycles? Or is it undirected graph with
cycles?

205 And the answer is C, it's a directed graph without cycles. It's a directed graph because all those
ISA rela2onship has direc2on, so it's a directed graph. The reason it's a directed graph without cycle is
because every rela2onship has direc2on, from the subtype to the super type. And given a concept, it can
have mul2ple parents or mul2ple super types, so it's not a tree. And there's no cycle in this graph because
it always start from specific concept to more general concept. It won't come back, there's no cycle in this
graph.

2024 Spring Soya Kim

55

206 Next let's talk about UMLS. UMLS stands for Unified Medical Language System. It is a set of
so`ware tools that maintained by Na2onal Library of Medicine in the US. It's a comprehensive thesaurus
and ontology of all biomedical concepts. It integrates all those exis2ng data standards we just talked
about. It also provides so`ware tools to map data to those clinical concepts. So, what are the different
components in UMLS? So UMLS recognizes that there are many exis2ng ontologies and terminologies.
They want to integrate all of them together, you see one system, so that people can access all of those
medical concepts through the systems. There are three knowledge sources in UMLS, the metathesaurus,
seman2c network, and specialist, lexicon, and tools. There's over 1 million biomedical concepts from
over 100 different sources that cons2tute this medical storage. It includes all the ones we have talked
about such as ICD and Snomed. It covers 135 broad categories and 54 different type of rela2onship
between all those concepts, and the seman2c type and rela2onship provide a consistent categoriza2on
of concept and their rela2onship represented in UMLS metathesaurus. Third is the lexicon informa2on
and tools that can help processing medical texts. Next, let's provide more details on each one of them.

207 Metathesaurus Concepts. The idea is very similar to SNOMED. Each concept has a specific
iden2fier and organizes into a hierarchy. At the lowest level we have atom, at over 7.4 million atoms or
AUI. Those are concept name in a specific source. For example, all this different AUIs mapped to
something related to headache. Then there are strings, they're are dis2nct concept names. So, you no2ce
that on the atom level even the same men2on can have different AUI because they come from different
ontology, different sources. One from MeSH, one from ICD-10. But they have the same string, so string
or SUI will be the same. Then we have terms, that's a set of normalized names. For example, here,
headache and headaches all map to the same term, or LUI. Then on the highest level, we have concept,
or CUI. That's a set of synonyms. And all of this together, for example, correspond to a single CUI, or
cooey.

208 Now let's talk about Seman2c Network. So, there are over a 135 seman2c types such as, disease,
syndromes, clinical drugs, all those are different seman2c types. Seman2c Network organize all those
different types into And then organize those into hierarchies. And there are 54 different type of seman2c
rela2onships, such as cause, treat, all those are different type of rela2onship. And combine them together,
the seman2c types plus the seman2c rela2onship. That give us the seman2c network, and the concept
of seman2c network in UMLS is very similar to SNOWMED. The only difference here is here we have
much richer informa2on because mul2ple data sources, a different thesaurus, has to be integrated into
UMLS, into the same seman2c network.

209 Finally, we have the specialist lexicon, which is English language lexicon of common words and
biomedical terms. So, we have over 300,000 biomedical terms, and their syntax, how the words are put
together, morphology, such as inflec2on, deriva2on, compounding, all those language expressions, and
orthography, that is really the spelling of those terms. And lexicon is used with lexicon tools in a variety
of ways for natural language processing For example, MMTX and MetaMap are two so`ware tools
provided as part of UMIS to parse medical text

2024 Spring Soya Kim

56

11 Graph Analysis
210 In this lesson we'll talk about graph analysis. Graph analysis is a set of methods, that are
commonly used in search engines, and social networks. And in fact, we'll start by describing graph
analysis examples, in search engine tasks. We describe some core algorithms, used likely by search
engines. However, just as graph analysis can find a cluster of web pages, that are related to one another,
it can also find a cluster of pa2ents, or condi2ons, that are related to one another. We turn to house care
applica2ons of graph analysis, while discussing similarity graph, and spectral clustering.

211 Today we'll talk about two important graph-based algorithms. First, we'll talk about PageRank.
Given a large direc2ve graph, PageRank ranks all the node on this graph based on their importance.
Second, we'll talk about spectral clustering, which is clustering algorithm based on graph par22oning.
Let's start with PageRank.

212 PageRank is an algorithm that was originally developed by Google's co-founder to rank webpages.
Tradi2onal way to assess the importance of webpages is based on the content. However, content-based
analysis is very suscep2ble to spend. And Google's co-founders, Larry, and Sergey, figured out a very
smart way to rank webpages based on the link structures between the pages, instead of using the content
in the page. For example, even this small direc2ve graph, we can rank those four pages based on the link
structure instead of the content inside those web pages. And the intui2on behind PageRank is if more
high-quality page link to you, then you're consider higher ranked. Now let's illustrate the effect of
PageRank using this example. PageRank operates on directed network, for example, given a directed
graph like this, we can run PageRank algorithms to figure out what nodes are important and what nodes
are not important. For example, those red nodes are considered important or higher ranked because
there are many incoming edges poin2ng to them. And those smaller nodes are considered less important
because they don't have many node connect directly to them. And this is intui2on behind PageRank
algorithm. Next, let's see how can we formulate this intui2on into a mathema2cal algorithm. Now let's
come back to this toy example. In order to describe PageRank algorithm, we have to represent graph as
a matrix. For example, this small graph will be converted to adjacency matrix to look like this. Every row
represents a source, and every column represents a des2na2on. For example, for page Google, there are
three outgoing links, and you can see in the adjacency matrix, we have three entries with value one. And
there are two outgoing links from Wikipedia, and we have two entries here corresponding to those two
edges. And similarly, we can construct the rows for YouTube and Facebook that completes the adjacency
matrix. And we call this matrix, A. Once we have the adjacency matrix, we can further normalize each
row to make them sum to one. So, every non-zero element will be corresponding to a probability of
jumping from the source page to the des2na2on page. Once we have the normalized adjacency matrix
A, PageRank can be described with this simple recursion. In this recursion, the q vector corresponding to
all of the PageRank, and the PageRank can be computed as the sum of these two parts, browsing and
telepor2ng. For the browsing part, we just redistribute the old PageRank using the source des2na2on
adjacency matrix. C is the weight assigned to the browsing part, and c is a value between 0 and 1. For
example, we can assign c equal to 0.85 meaning that 85% of the weight will be given to the browsing,
the rest will be given to the telepor2ng part. The telepor2ng part is just randomly jump to a page. In this
case, e is all one vector and N is the number of node in the en2re graph. This is mathema2cal defini2on
of PageRank. Next, let's see how we can implement this efficiently using big data systems, such as
MapReduce in Hadoop.

2024 Spring Soya Kim

57

213 In order to implement PageRank using MapReduce, we have to par22on the computa2on into
map phase and reduce phase. So, in the map phase, we'll distribute the exis2ng PageRank from the
source to des2na2on, following the outgoing links. Here's a pseudocode for the map func2on. The input
is a key value pair, where key is a webpage, and the value is the current PageRank for this page qx and
outgoing links y1 to ym. And output is another set of key value pairs where key is another page and value
is the par2al sum of the PageRank. And here's the algorithm. We'll first emit the page with a valid 0 to
make sure all the pages are emiDed. Then we follow the outgoing links. For each outgoing links we'll emit
that corresponding page, yi and distribute a por2on of exis2ng PageRank to that page. In this par2cular
case it will be qx/m, where m is the number of outgoing links from page x. Next, let's illustrate this map
func2on using an example over here. In this case, we're working with the same graph. We just reassigned
the ID to each page, 1, 2, 3, 4. So, when we run the map func2on for each page it has its current page
rank, q1, q2, q3, and q4. Now let's look at page 1 as an example. So, we know page one has three outgoing
links. You can see the PageRank for q1 will be equally divided into three parts and assigned to the
outgoing pages. Of course, we also emit the page itself with 0 value, and we do the same for the second
page. If we look at the second page as an example, it has the two outgoing links. So, we par22on the
exis2ng PageRank for a second page equally and assign to those two pages. And we do the same for the
third page and the fourth page. This illustrates the map phase of the algorithm for PageRank. Now let's
illustrate the reduce phase of PageRank algorithm. Here's the pseudocode for the reduce func2on. The
input is a key value pair, and the key is a page x, and the value is a list of par2al sum of the PageRank for
x. The output is another key value pair, and the key is the page x and the value is the updated PageRank
for x. The algorithm is quite simple, we neutralize the page rank to be 0. We sum up the par2al value
from the value list. That give us the PageRank from the browsing part. Next, we re-normalize this to take
into account of the telepor2ng parts. Finally, we emit this page x and its updated PageRank, qx. So, what's
happening here is the Hadoop system will perform the shuffling opera2on by grouping all the par2al sum
for each page together to get this list of par2al sum of PageRank. Then the reduce func2on will be
applying to the list of par2al sums computer updated PageRank. Now we understand the map and reduce
func2on. To compute the final page rank we have to itera2vely running this map reduce job many 2mes
in order to compute the final page rank.

214 Here's the quiz for PageRank. Give a directed graph look like this, mentally compute PageRank,
and rank the following sites from highest to the lowest based on PageRank. So, in the events of 2e, you
can assign both side with the same number.

215 Let's figure out the answer together. The top ranked page is YouTube because it has three
incoming links. Likewise, you can see Google ranked the last because there's no incoming links to this
page, so it ranks number six. And similarly, TwiDer ranked the number fi`h, second to the last because it
only has one incoming link. So, the rest of the pages, Wikipedia, Amazon, and Facebook, they all have
two incoming links. You may think they will have the same PageRank, but in fact they don't. If you actually
carry out the recursive algorithm PageRank does, you will realize Amazon has a higher rank than
Wikipedia, than Facebook. So, because of the recursive nature of the algorithm, even the page with very
similar local structure s2ll has a very different ranking using PageRank.

216 Next let's talk about spectral clustering. In tradi2onal clustering algorithms, given the input data
and matrix, for example this disease by pa2ent matrix. Every row corresponding to a pa2ent, every
column corresponding to a disease. We want to learn a func2on, f, that par22on this matrix into P1, P2,
P3. Each par22on corresponding to a pa2ent cluster. In the tradi2onal clustering sedng, this func2on is

2024 Spring Soya Kim

58

directly applied to this matrix. While in spectral clustering this func2on is more involved. So next, let's
talk about how do we construct this func2on in the sedng of spectral clustering. The first step of spectral
clustering is to construct the graph. The input to the spectral clustering are pa2ent vectors. The first step
we want to connect all those pa2ents together based on their similarity. In other words, we want to
construct this similarity graph. So, every node on this graph is a pa2ent, and every edge indicates the
similarity between two pa2ents. Once we have this graph representa2on, we can store that efficiently
using a matrix. Just like what we described in the PageRank, we can use the same adjacency matrix
representa2on to store the similarity graph. The second step of spectral clustering is to find the top k
eigen value of this graph. For example, here w represent the top k eigenvectors, and the middle matrix
is the diagonal matrix with eigenvalue on the diagonal. This this third step is we want to group those
pa2ents into k groups using the eigenvectors. This is the high-level algorithm for spectral clustering. It
depends on how do you implement each steps, there are many different varia2ons of spectral clustering.
Next let's look at some of the varia2ons.

217 The first thing is, how do we construct the similarity graph? On high level, we want to view the
similarity graph, based on the local rela2onship between pa2ents. So similar pa2ent will have a stronger
rela2onship. There are several common ways for building such graph. We can base on epsilon
neighborhood. We can use k-nearest neighbors. We can also fully connect the graph but assign a different
way to the address. Next, let's look at them in more details.

218 Let's start with Epsilon Neighborhood Graph. Let's illustrate the idea using this example. Every
node here indicate a pa2ent, and in this example we have ten pa2ents. For Epsilon Neighborhood Graph,
what we are going to do here is, we'll connect pa2ents if they are within epsilon distance to each other.
For example, this two pa2ents are within epsilon distance, so an edge formed between them. But the
distance between these two pa2ents is greater than epsilon, so there's no edge between them. In this
case, the epsilon is indicated by this length.

219 Another way to compute similarity graph is based on K-nearest Neighbor Search. For example,
we have this 10 pa2ent over here. We want to perform K-nearest neighbor search from each pa2ent and
the resul2ng graph is this directed graph indicate the two nearest neighbor from each node. For example,
the two nearest neighbor of this pa2ent are this one and this one. So, one benefit of this k-nearest
neighbor graph is the graph can be very sparse when the k is small, and there is several different varia2on
of such graph. For example, we can have the edge to be binary, just zero and one, or we can actually
assign different ways based on the distance between those two neighbors.

220 Another way to construct the similarity graph is to just use the fully connected graph, but
parameterize the edges differently, based on similarity. For example, for this ten pa2ents, we can connect
everybody to everybody, have this fully connected graph. Then the edge wave will be determined by this
Gaussian kernel or this Radial based func2on. For example, the edge wave, Wij between those two
pa2ents, can be computed using this formula, which indicate the Gaussian kernel.

221 Now let's do a quiz on absolute neighborhood graph. Given a set of pa2ents and their two-
dimensional posi2on in this space, what is the op2mal value for epsilon? Is this this long, or this long, or
this long, or this long?

222 The correct answer should lead to class string structure on the graph. So, when the epsilon is too
small, the graph will be highly disconnected. That will lead to many clusters. When the epsilon is too large

2024 Spring Soya Kim

59

then everybody is connected to everybody else. The en2re graph becomes a single cluster. So good
epsilon should review the clustering structure. For example, when we choose B, then we'll see this four
clusters. Or we can choose C that give us this two bigger clusters. So, both B and C are correct answers.

223 So far, we explained the high-level ideas of spectral clustering. Depending on how you implement
each steps, there are many different varia2ons. If you want to learn more about different varia2on of
spectral clustering, please refer to this tutorial, and to learn about all those different varia2ons. For
example, we can have this very simple unnormalized spectral clustering, just involve building the graph
compute eigenvectors, then perform k-mean clusters on those eigenvectors. This is probably the simplest
spectral clustering algorithms out there. Then there are different enhancement on the original algorithms,
by normalizing the graph differently. For example, this normalized spectral clustering published in 2000
and another different normalized spectral clustering published in 2002. Spectral clustering perform really
well in prac2ce even when the data are high dimensional or noisy. In fact, there are very good theore2cal
founda2on behind spectral clustering. If you are interested in learning more, you can refer to this paper.
In that paper, they actually illustrate theore2cally why spectral clustering works. Intui2vely speaking if
the data are not really clusterable in the original space. By performing the spectral clustering, you can
transform the original data into the space where the clusters are well defined. So, for example here, the
color indicate different clusters, in the original space, it's very difficult to carve out these three clusters.
But when you perform spectral clustering, in the eigenspace you can find all those three clusters are well
separated.

224 Congratula2ons. You made to the end of the videos. Thank you for joining me. I'm Jimmy Son,
signing off.

2024 Spring Soya Kim

60

12 Dimensionality ReductionTensor Factorization
225 So now we're going to discuss dimensionality reduc2on. This is our method for dis2lling very
complex and noisy raw data into robust core components. We'll start by talking about dimensionality
reduc2on. Including singular value decomposi2on, principal component analysis, and CUR
decomposi2on. Then, we'll discuss a more advanced method called Tensor Factoriza2on. That handles
higher order interac2on among data. Finally, we'll see how this method applies to predic2ve modeling
and phenotyping in healthcare.

226 First, a recap of clustering algorithms. In previous lectures, we talked about hard clustering, such
as k-means, hierarchical clustering. We talked about so` clustering algorithms such as Gaussian mixture
model. We also talked about scalable clustering algorithms. Such as, mini batch k-means and DBScan. In
this lecture, we'll talk about dimensionality reduc2on. The reason for dimensionality reduc2on is because,
it's o`en more robust and efficient to work with low dimensional data. Such as, a data set with 10 to 100
dimensions. But the original data, or the raw data o`en contains of much higher original data set. Say, in
order of tens of thousands to even a million dimensions. So, the dimensionality reduc2on is a set up
method to reduce dimensionality of original data. While s2ll maintaining the underlying data
characteris2cs. So ,we talk about Singular Value Decomposi2on, SVD, and Principal Component Analysis,
PCA. Those are two classical method that summarize original set of features as linear combina2ons. Then
we also talk about CUR decomposi2on. Instead of using linear combina2on of original features. CUR
samples actual columns and rows from the original dataset. So, it's more intui2ve and o`en leads to
sparse result. Then we'll talk about tensor factoriza2on, as another set of method to reduce
dimensionality. When we're dealing with higher order tensor instead of matrixes.

227 First, let's talk about singular value decomposi2on, or SVD. SVD vectorized the input matrix X as
product of three matrices. U, sigma, V transpose. Where the U and V matrices are which means U
transpose 2mes U equals to V transposed 2mes V equal to iden2ty matrix. Visually, given a large matrix
X. And here, every columns represent a disease. Every row represent a pa2ent. For example, X1
corresponding to the disease indicator of all the pa2ent for the first disease and X2 represent the disease
indicator for all the pa2ent for the second disease, and so on. Then we can vectorize X as matrix U 2mes
a diagonal matrix sigma 2mes V transpose. Here X consists of all the input data, the pa2ent by disease
matrix, and the U matrix consists of le` singular vectors. So, every column here in U represent le`
singular vector. And sigma is a diagonal matrix, whereas diagonal elements are non-zeros, and off-
diagonal elements are all zeros. And all the sigmas are the singular values. They're assorted in descending
order. So, sigma one is greater than or equal to sigma two, which is greater than or equal to sigma three,
and so on. Then the columns in V corresponding to the right singular vectors. And this is the mathema2cal
defini2on of singular vector decomposi2on.

228 Now let's see an example of SVD. Given SVD over X, if we represent SVD as the matrix factoriza2on,
then we have this U 2mes sigma 2mes V transpose. However, we can also separate all those columns of
U and V separately to obtain a different view we call spectral view. Here, sigma 1 2mes U1 2mes V1
transpose is a rank one approxima2on of the original matrix X, and sigma 2 U2 V2 transpose is another
rank one approxima2on of the original matrix. If you sum up all those rank one approxima2ons, you get
original matrix X. So visually we have matrix X represent a set of documents and a set of terms used in
those documents. For example, here we have two set of documents. The red ones are computer science
document, and the purple ones are medical documents. And you can imagine the vocabulary used in

2024 Spring Soya Kim

61

these two sets of documents are very different. So, the terms used in CS documents are very different
from the terms used in the medical documents. If we want to summarize this big matrix using SVD, then
we can summarize this input matrix as product of three matrices, U sigma V transpose. And if we look at
the spectral view, what it means is, it's a set of rank one approxima2on. For example, this red part
corresponding to this first rank one approxima2on, so this is sigma 1, U1, V1 transpose. Pudng them
together gives us the CS documents and the corresponding terms. Then we have another rank one
approxima2on. This purple one's sigma 2, U2, V2 transpose. Mul2ply them together. Gives us the medical
documents and terms. So, by looking at the spectral view you can see that we reduce the of this huge
matrix Into this two-dimensional space. One for CS document, one for medical document.

229 Next let's talk about the property of SVDs. SVD is the matrix factoriza2on, factorize input X as the
product of three smaller matrices. U sigma, V transpose. And V are the eigenvectors of the covariance
matrix X transpose X. So, if we mul2ply X transpose X together and you carry out this calcula2on, you'll
find out V 2mes sigma square 2mes V transpose equals X transpose X, which means V is the eigenvector
of X transpose X. With eigenvalues Sigma square. And similarly, U are the eigenvectors of the Gram matrix,
or inner-product matrix X X transpose. So here, given X X transpose, if you carry out this calcula2on, you
find it equals U 2mes Sigma square 2mes U transpose. Which means U is the eigenvectors of X, X
transpose with the eigenvalues sigma squared.

230 Let's do a quiz to understand SVD beDer. Given a document-by-term matrix like the one we have
shown you in the previous slide, what is A transpose A? Is it a document-to-document similarity matrix?
Or is it term-to-term similarity matrix? Or is term-to-document similarity matrix?

231 The answer is, it's actually a term-to-term similarity matrix, because when you compute A
transpose A, the number of rows and columns of this resul2ng matrix equals the number of terms. And
every element represents the similarity between two pairs of terms.

232 Next let’s talk about principal component analysis, PCA. PCA is very related to SVD. So, we already
know, using SVD, we can factorize the matrix x as a product of three matrixes U sigma V transpose. Now
if we group u and sigma together Into one matrix and we call that principal components and we transpose,
we call that loading. This essen2ally give us the principal component analysis. So visually, given this large
input matrix, n by m, and every row represent a pa2ent, every column represent a disease then we can
factorize this into U sigma and V transpose, and if we group U and sigma together and the result of U
2mes sigma become the principal components, and V transpose become the loading matrix. And in
par2cular, this U1 2mes Sigma1 give us the first principle component. The direc2on of the first principle
component is specified by the corresponding vectors in the loading matrix.

233 Now let's illustrate PCA with a visual representa2on. Given a set of two-dimensional points
scaDered like this. If we want to reduce this set of two-dimensional points into one dimensional space,
we need to find a direc2on to project those points to. For example, the first principle component
direc2on is poin2ng this way, and if we project all those points onto this first principle components, the
corresponding offset along this direc2on will become the coefficient to represent those points. And they
are the first principle components. For example, if x axis is represen2ng weight and y axis represent height,
every data point represents a specific individual, then if we want to project those individuals into a one-
dimensional space, and this one dimension is a linear combina2on of weight and height and the offset
on this one dimension is the first principle component.

2024 Spring Soya Kim

62

234 So what's the problem with SVD or PCA? It has a sparsity problem. For example, most of the input
dataset for analy2cs are o`en sparse, meaning that only a small number of elements in the large matrix
are non zeros, majority of these elements are zeros. For example, every row represent a pa2ent, every
column represent a possible disease, then for a given pa2ent, there's only a few disease this pa2ent has,
so this input matrix is very sparse. So SVD is one of the best dimensionality reduc2on approach, because
it gives the best low rank approxima2on. However, the result of SVD, in par2cular the U and V matrices,
are large and dense, so SVD destroys the sparsity in the original data. As a consequence, the result from
SVD would take a lot more storage space and compe22on with 2me for the subsequent analysis.
Alterna2vely, we may want to use those factoriza2ons that preserves the sparsity. For example, we can
use actual columns and actually rows from the original matrix to form the factoriza2on, and this is called
CUR decomposi2on. C represent the sample columns from the original matrix and R represent the sample
row from the original matrix. So, CUR, in this case, maintains the sparsity of the original data. As a result,
the storage cost of CUR decomposi2on is much smaller than SVD.

235 So CUR decomposi2on uses actual rows and columns to form the factoriza2ons. So, here's the
defini2on for CUR. Given an input matrix A, find a set of columns in C and a set of row in R and a matrix
U, such that the norm of A minus CUR is small. This norm must indicate the errors of approxima2ng our
original matrix A using C 2mes U 2mes R. So visually given the input matrix A, which is m by n, we want
to approximate A with a smaller matrix C which is m by c, 2mes a small matrix c by r, and a matrix R,
which is n by r. Here, C come from the columns of A, and R come from row in A. Let's use this two-
dimensional example to compare CUR to SVD. So SVD will try to find the best direc2on to project all those
data points to. And this direc2on o`en is a linear combina2on of all these data points. However, CUR will
try to find an actual data point. And to project the rest of data points towards that direc2on. For example,
CUR may sample this data point over here, then try to project all the other data point to this direc2on.

236 Next, let's talk about the actual algorithm for CUR. In the input to CUR algorithms is the matrix A
and the number of columns we want to sample, C and the number of row we want to sample, R. And the
output of CUR is these three matrices. C, U, and R. There are many different algorithms that achieve CUR
the composi2on. There's different computa2onal complexity and different approxima2on error
guarantees. And this lecture will show you an algorithm for CUR that based on SV. So, in this specific
algorithm, the first step is we do SVD decomposi2on. Find a top rank-k approxima2on that's the SVD.
Then we sample c columns to form matrix C, and sample R rows to form matrix R. Finally, the U matrix
can be computed as C pseudo inverse 2mes A 2mes R pseudo inverse. So, this symbol represents pseudo-
inverse. Pseudo-inverse of matrix X can be computed with SVD. So, if we have SVD of X which is U 2mes
Sigma 2mes V transpose. And the pseudo-inverse of X is actually V 2mes sigma-inverse, 2mes U
Transpose. And the property of pseudo-inverse is X 2mes X-plus, equal to iden2ty. Next, we talk about
these two key steps. How do we sample columns and rows based on SVD. So, from the previous step,
step one, we have this rank here approxima2on using SVD. Approximate matrix A by U 2mes sigma 2mes
V transpose. Here we have K columns in U and the same for V. Sigma is K by K matrix, were actually
sampled based on the row lengths of U and V matrix. If the row length of this corresponding pa2ent is
large, then we're more likely to sample this pa2ent to form R. Similarly, if the row lengths in this main
matrix is large, then we're more likely to sample the corresponding columns to form C. So, the probability
of sampling is propor2onal to the row lengths of U and V matrix.

237 Here's a quiz on CUR decomposi2on. If we apply CUR on this pa2ent-by-diagnosis matrix A, to get
the CUR decomposi2on from this pa2ent-by-diagnosis matrix, then what are the columns in C? Are they

2024 Spring Soya Kim

63

actual diagnoses, combina2on of all diagnoses, or combina2on of a subset of diagnoses? Similarly, what
are the rows in R? Are they actual pa2ents, combina2on of all pa2ents, or a combina2on of a subset of
pa2ents?

238 And the answers are actual diagnoses and actual pa2ents. So that's a key characteris2c of CUR
decomposi2on. You sample actual columns and row from the input matrix. In this case, we'll actually get
diagnosis and pa2ent from the original matrix to form the C and R matrices. So, they are more intui2ve,
and also preserves the sparsity in the original data.

239 Next, we want to talk about tensor factoriza2on as another dimensionality reduc2on method,
but first, what is a tensor? Tensor is a generaliza2on of a matrix. A matrix is actually a special case of
tensor of the second order, so we call matrix a second order tensor. Tensor can beDer capture interac2ons
across concepts. For example, we can have a pa2ent by diagnosis, by medica2on tensor, a third order
tensor, and we call those pa2ent diagnosis medica2on or the tensor mode. This element indicate, for this
given pa2ent, what diagnosis she has, and for trea2ng this diagnosis, what medica2on has been given.
This tensor representa2on can capture diverse data types, so the element of this tensor can be quite
diverse. It can be binary, indicate whether pa2ent has been taking this drug trea2ng this disease, or it
could be count, or integer, at coun2ng the number of 2mes such diagnoses has been given, and for
trea2ng this diagnosis, this number of medica2on has been given. Or it can be some numerical
con2nuous values, so it's quite general.

240 Now let's talk about some basic opera2on on tensor. Tensor slicing is an opera2on to extract a
subtensor, in this case, a matrix. So, the idea is to set all the mode except two modes the same. By doing
so, we'll get a matrix. For example, given this third alter tensor, pa2ent, diagnosis, medica2ons, we can
get a diagnosis medica2on matrix for a specific pa2ent. So that's tensor slicing along this par2cular
pa2ent dimension, for example, this healthy pa2ent we can extract a specific matrix for her. Then for a
sick pa2ent, we can extract another slice of this tensor that corresponding to this pa2ent that is sick.
Similarly, we can extract pa2ents associated with medica2on for trea2ng a specific disease, say
hypertension. We can also extract all the pa2ents and their corresponding disease, by a par2cular
medica2on, say beta blocker. So, these are all different ways for slicing a tensor to get a matrix.

241 We can mul2ple tensors from electronic health records. For example, we can construct this
pa2ent by medica2on matrix, or second order tensor. We can construct this pa2ent-diagnosis-medica2on
tensor, a third order tensor. We can construct a pa2ent-lab result tensors and we can construct a pa2ent-
symptom tensor, and finally, we can construct a pa2ent-diagnosis by procedure tensor. There's many
different ways to construct those tensors from electronic health records. Another important tensor
concept is rank-1 tensor. So, rank-1 tensor is altering product of a set of vectors, one from each mode.
For example, given this third order tensor x, if x is rank-1, then it equals to this other product of three
vector, a, b, and c. So, the mathema2cal nota2on of this rank-1 tensor is represented as this auto product
opera2ons of the three-vector a, b, c. And the corresponding element in this tensors, this ijk element in
this tensors is simply mul2plica2on of the ith element from vector a, the jth element from vector b, and
kth element from vector c.

242 Now let's try to connect tensor factoriza2on and rank one tensor to phenotyping. Here's one
example of phenotype we want to discover from data. And those phenotypes actually corresponding to
a rank one tensor. In this par2cular case, we have a pa2ent vectors, diagnosis vector, and a medica2on
vector. And this give us a rank one tensor, which correspond to a phenotype. So, in this par2cular

2024 Spring Soya Kim

64

phenotypes, 40% of pa2ents has this phenotype, meaning that 40% of entries in this pa2ent vectors are
non-zeros. The rest are zeros. The corresponding diagnosis in this diagnosis vectors is hypertension. And
for trea2ng hypertension, three medica2on has been commonly prescribed. Beta blocker, diure2c, and
so on. So, in this case, phenotypes is a group of pa2ent that share common characteris2c. They share
some common diagnoses and common medica2ons. Next, we'll show you how to use tensor factoriza2on
to discover such phenotypes.

243 Now we want to talk about how do we extract phenotypes using tensor factoriza2on. Given this
pa2ent by diagnosis by medica2on tensor, we can factorize this tensor as the sum of R rank 1 tensor,
each one of this rank 1 tensor corresponding to a specific phenotype. Each rank 1 tensors has three
factors, pa2ent factors, diagnosis factor, and medica2on factor. An ultraproduct of this three factors give
us a rank 1 approxima2on of the input tensor, and we have R of those. And combine all of them together,
give us approxima2on of the original tensor, and the lambda corresponding to the importance of these
phenotypes. You can imagine different phenotypes may have different importance for represen2ng this
input popula2on. So, lambda captures that. And this intui2vely, how do we use tensor factoriza2on result
for phenotyping? Next, let's see what's the computa2onal method for conduc2ng tensor factoriza2on.

244 Simply the composi2on factorized in X as sum of a set of rank one testers. Mathema2cally, it can
be represented as tester X, approximated by a sum from one to R and a set of rank one testers. Each rank
one tester is represented by a scalar lambda i, and set of vectors, one for each mode, ai1, ai2, and ai3.
And this whole thing is the ice rank one tensor to approximate the input tensor. Of course, we can
reorganize all this vectors into matrices. And that give us the model. So visually, what it does is, all those
corresponding vectors, coming from the same mode, will be put together, become a matrix A(1). And
similarly for all those vectors coming from the second mode, will be put together so we get A(2). And
finally, we get A(3). All those three matrices are part of the model, and that's the output of CP
decomposi2on. Again, all those corresponding lambdas scalar values tells us how important each rank
one tensors are also being put together into this vector lambda. And this whole thing give us the model
for CP. And this is the high-level intui2on of CP decomposi2on. Like SVD, another matrix factoriza2on,
tensor factoriza2on start to become a standard opera2ons. Depending on the loss func2on and different
constraint put onto those components, there is different algorithm to perform CP like decomposi2on.
For phenotyping applica2on, we use a variant of CP Decomposi2on with non-nega2ve constraints.
However, overall, as a data analyst, you can probably treat this tensor factoriza2on as a black box, just
like SVD and PCA.

245 So what is the process for using tensor factoriza2on for phenotyping? So, you already have input
tensors. Using tensor factoriza2on, you have already learned a set of phenotypes. In par2cular, you have
learned the phenotype defini2on based on the combina2on of diagnosis and medica2on. Next a new set
of pa2ent comes in. How do you apply those exis2ng phenotype defini2ons to this new pa2ent? In fact,
just like PCA, you can project this new pa2ent's data towards the direc2on, as specified by the phenotype
defini2on. Then you will get a low dimensional representa2on, which is every row represent a pa2ent,
and every column represent a phenotype. For example, this would tell us, for a given pa2ent, which
phenotypes she has.

246 Next let's see how we can construct tensor vectoriza2ons for phenotyping and use it for predic2ve
modelling. So pa2ent EHR data are o`en represented as event sequences. For a specific pa2ent, we have
five records, from t0 to t4. Each record contains one or more diagnosis and medica2on pairs. For example,

2024 Spring Soya Kim

65

diabetes and sulfonylureas at t0. Then at t1, three different diagnosis and medica2on pairs happen in
this pa2ent record. And t2, two diagnosis and medica2on pairs happen. And t3, another two pairs. And
t4, heart failure happened, and loop diure2c has been used. And this is the event sequence for a given
pa2ent. And note that the goal of this predic2ve modeling is to predict heart failure, which is event
happen at this 2me, t4. To construct tensor, we need to find the index day and observa2on window, then
aggregate all this diagnosis medica2on pairs within the observa2on window to populate this tensor. For
example, this pa2ent diagnosed with heart failure at t4, which is the index date. Then we look back two
years to construct observa2on window, then we count the number of occurrences of all diagnosis and
medica2on pairs. For example, this Diabetes and Sulfonylureas happened twice within the observa2on
window. The corresponding element in this tensor will be two. Then we go through all the pa2ent to
populate the en2re tensors, we'll have this pa2ent by diagnosis by medica2on tensor. Based on the
informa2on from the observa2on window prior to the index date. For example, in this specific case, we
can construct a tensor of size 31,000 pa2ents by 170 disease diagnosis by 470 medica2ons. And 15% of
pa2ents in this tensor had heart failure. And we want to apply tensor factoriza2on on this tensor to
extract phenotypes, then use those phenotypes as features to predict whether pa2ent will have heart
failure or not.

247 So here's a predic2ve performance. Here, we're trying to compare different dimensionality
reduc2on method. And using those low dimensional representa2on as features. To predict whether the
pa2ent will have heart failure or not. In this case, the baseline performance is indicated by this line. Is
AUC close to 0.7? Then we're comparing three different methods. a tensor vectoriza2on, non-ac2ve-
matrix vectoriza2on, and principle component analysis. And this is the baseline performance using all
the raw data, 640 features. And the classifier we're using, are all the same, it's logis2c regression with L1
regulariza2on. Then, as we increase the number of phenotypes or increase the load emission of
representa2on. You can see the performance improves for PCA. Similar trend has been observed for non-
nega2ve matrix factoriza2on, NMF. And also, for the tensor method, which is based on non-aggrega2ve
tensor factoriza2on. And here, you no2ce that, with only a small number of phenotypes, in this case, 30.
All those dimensionality reduc2on methods outperforms the baseline method, which use 640 features.
This really shows all those dimensionality reduc2on method really works. So, as we increase the number
of phenotypes, you can see tensor method and NMF perform beDer than PCA. But between those two,
they are quite similar in term of predic2ve performance.

248 Next, I want to show you intui2vely how those phenotypes look like. Using tensor factoriza2on,
we're able to extract different disease phenotypes, some corresponding to major disease such as
diabetes without complica2ons, so we call this uncomplicated diabetes phenotypes that cover 17.6% of
the popula2on. Then we have another phenotypes corresponding to mild hypertension which covers
31.1% of pa2ent that has hypertension, and two other medica2ons commonly used for trea2ng
hypertension. In this par2cular example, the results from the tensor factoriza2on method are presented
to a cardiologist, and he thinks those result make sense, and assign label as aDacks. And the tensor
factoriza2on mess not only can discover major disease phenotypes, but also can discover disease
subtypes. Here are three different phenotypes discovered by tensor factoriza2on. They all shared a
common diagnosis, which is hypertension. But the medica2on for trea2ng those pa2ents with
hypertension are very different. Because of that, the cardiologists give the labels of these three
phenotypes as mild hypertension, moderate hypertension, and severe hypertension.

2024 Spring Soya Kim

66

249 So you may wonder how does tensor factoriza2on compare to this nonnega2ve matrix
factoriza2on? So, tensor factoriza2on can provide much concise phenotype representa2on. For example,
here's one phenotype coming out of tensor factoriza2on. It consists of two diagnosis and a set of
medica2ons. Well for the corresponding phenotypes, in NMF, it looks a lot more complicated because it
captured all interac2on between diagnosis and medica2on and the list is much longer. In fact, there is
over 1000 different combina2on of these medica2on has to be specified in order to summarize these
phenotypes. So that the tensor phenotypes is much more concise. As a result, it's much more intui2ve
to present a tensor phenotype to clinicians.

250 So in summary, we talk about tensor factoriza2on as a way for doing phenotypic, and it represents
a pa2ent as the tensor. For example, this pa2ent diagnosis medica2on tensor, then summarize that tensor
as a set of rank one tensors. There's several different benefits for using tensor factoriza2on for
phenotyping. First, In the unsupervised method, we can discover mul2ple phenotypes simultaneously,
without any supervision from experts. And the resul2ng phenotypes can have predic2ve power. As we
have shown you, using those phenotypes, we can predict heart failure beDer than using the raw data.

2024 Spring Soya Kim

67

13 Patient Similarity
251 In this lesson we'll talk about how pa2ent similarity can bring up a new paradigm of medical
prac2ce. We'll discuss how to find the most similar pa2ent for a specific clinical context. We'll also talk
about how pa2ent similarity can support pragma2c trials and prac2ce-based medicine. Finally, we
introduce a supervised distance metric learning algorithm for pa2ent similarity.

252 To mo2vate the importance of patent similarity search we need to understand the paradigm shi`
of medicine. Tradi2onal paradigm considered randomized clinical trial as the gold standard for genera2ng
new evidence, and this paradigm is o`en called evidence-based medicine. The current recommenda2on
for clinicians is to follow the evidence generated in the medical literature or clinical guidelines. And this
evidence are largely created through RCT. There are several major challenges with this paradigm. For
example, pa2ents are heterogeneous, and can be very different from one another. And this one size fits
all solu2on may not work in many clinical scenarios. Some2mes the guidelines are not up to date,
some2mes they're not applicable to a specific pa2ent. Thanks to the growth of electronic health records,
we have a new paradigm that is emerging. We can conduct pragma2c trials based on EHR data. We can
even consider doing prac2ce-based medicine if the data driven evidence is strong. This new paradigm is
called precision medicine, where personalized medical decision making is recommended. In this new
paradigm, it is extremely important to be able to measure similarity among pa2ents for a given clinical
scenario. Next, let's elaborate both paradigms in more details.

253 The tradi2onal paradigm is some2me called evidence-based medicine. The overall theme of
evidence-based medicine is to make medical decisions based on the well designed and conducted
research. And evidence-based medicine follows this four steps. It starts with perspec2ve randomized
clinical trials to test hypothesis. The successful hypothesis become evidence, which can be medical
publica2ons or new drugs that has been approved. Then medical experts work together to organize and
priori2ze all the related evidence into clinical guidelines. Finally, the clinicians apply this guideline in
prac2ce for trea2ng pa2ents.

254 Now let's talk about the new paradigm precision medicine. The goal of precision medicine is to
create a new year of medicine in which researchers, health care providers, and pa2ents all work together
to develop personalized care. And precision medicine follows the following four steps. You start with
pragma2c trials, which u2lize large amount of historical data in the ehr systems to generate data driven
evidence. Then we can apply pa2ent similarity search for a given individual to find the similar pa2ents.
Then figure out what worked for those similar pa2ents. Then recommend those treatment for the current
pa2ent. And this is o`en called prac2ce-based evidence. If we follow prac2ce-based evidence, we'll be
able to create individualized recommenda2on or personalized care for a given individual. And this is how
we achieve precision medicine.

255 Next, let's talk about randomized clinical trials or RCT. To conduct RCT we start with the study
popula2on then we randomly assign everybody in this study popula2on into two groups. In the control
group, everybody is taking the current treatment or placebo and in the treatment group, everybody is
taking the new treatment we're tes2ng. Then we look at the treatment outcome for both groups and
there will be pa2ents have improved outcome in the control group, and some do not have improved
outcome. In the control group and similarly in the treatment group there will be people improve their
outcome and some people do not improve their outcome. An RCT will compare the outcome from both
group trying to figure out whether the treatment group on average have beDer outcome than the control

2024 Spring Soya Kim

68

group. And if the RCT confirmed the treatment group on average, have beDer outcome than the control
group, would consider this trial as a success. Otherwise, this trial is a failure.

256 Now let’s do a quiz on RCT. What are some drawbacks of RCT? Here are the op2ons. It requires a
controlled environment. It generally tests only one thing at a 2me. RCT can test new drugs. RCT is
expensive and 2me-consuming. RCT discovers causal rela2onships. RCT deals with noisy data.

257 Here's the answers. RCT requires a controlled environment. The studied popula2on in RCT are
o`en 2mes carefully selected with very strict inclusion and exclusion criteria. So, the studied popula2on
o`en do not reflect the general popula2on in the real world. Another drawback of RCT is it generally
tests only one thing at a 2me. O`en2mes a RCT is specifically designed to test one drug. If the hypothesis
of this RCT is rejected, the en2re effort will be wasted. So, in that sense, RCT can be very risky. And RCT
does test new drugs, but this is not a drawback. Another drawback of RCT is, it is very expensive and
2me-consuming. Because we have to conduct a perspec2ve study by recrui2ng pa2ents and follow up
with those pa2ents, collec2ng data, then analyze that data to draw a conclusion so that can be very
expensive and 2me consuming. RCT does discover causal rela2onship thanks for the randomiza2on
process, but this is not a drawback. Finally, because RCT is prospec2ve study, and the data are carefully
designed and collected. O`en 2me they are clean. So, we don't have to deal with noisy data

258 Next let's talk about pragma2c trials. So, in tradi2onal RCT, we generally measure the efficacy of
a treatment that produces under ideal condi2ons. O`en use carefully designed pa2ent popula2on in a
research clinic. Pragma2c trials on the other hand, try to measure the effec2veness of a treatment that's
produced in a rou2ne clinical prac2ce. For example, when a pa2ent comes to a clinic, we can do a
similarity search against a large pa2ent database, try to find a similar pa2ent to the current pa2ent, then
group those similar pa2ents by treatment they have taken. Then look at the outcome they are gedng,
then recommend the treatment with the best outcome to the current pa2ent. This is the overall idea for
pragma2c trials. And the design of pragma2c trials reflects a varia2on between pa2ents that occur in the
real clinical prac2ce and aims to inform choices between those treatments that works for a given
individual.

259 Now let's do a quiz on pragma2c trials. What are some benefits of pragma2c trial? Can it test new
drugs? Can it operate in a real-world sedng? Can it automa2cally gather more data through this process?
Is it expensive and 2me-consuming? Can it discover causal rela2onships? Does it deal with noisy data?

260 So let's go through this list, one by one. First, pragma2c trials cannot test new drugs. Because
pragma2c trials depends on the historical data and all the treatments already happened in the past. In
that case, we won't have any informa2on about effec2veness of a new drug. And pragma2c trials do
operate in real world sedng, which is a benefit. Because it operate in the real-world sedng, pragma2c
trials can automa2cally gather more and more data over 2me. Because every pa2ent encounter will be
able to generate new data that can be used for future pragma2c trials. Comparing to RCT, pragma2c trials
is not expensive and 2me-consuming because we're dealing with historical data that already been
collected. In general, pragma2c trials aren't able to discover causal rela2onships because randomiza2on
is not involved. Because we're opera2ng in a real-world sedng, pragma2c trial has to deal with the noisy
data generated in the electronic health record.

261 Now let's look at what's the process to u2lize pa2ent similarity today. We start with prac2ce-
based medicine. For a given pa2ent, we'll look for similar pa2ents. Then based on what happened to

2024 Spring Soya Kim

69

those similar pa2ents, we can generate hypothesis, what could work best for the current pa2ent. So
those hypotheses, are generated based on retrospec2ve evidence. In order to confirm those hypotheses,
we o`en2mes, have to go back to randomized clinical trials, to confirm those hypotheses through a
prospec2ve study. Once we generate those evidence, we can update the clinical guidelines, then apply
those guideline in prac2ce. Pa2ent similarity, and prac2ce-based medicine provide an intelligent way to
generate hypotheses, in order to guide the randomized clinical trials, and evidence-based medicine.
Here's another illustra2on of how we can use pa2ent similarity in clinical prac2ce. Imagine a pa2ent
comes into the clinic. The first thing we can do is, try to see whether appropriate guideline available to
apply to the given individual. If there are a proper guideline, then we can directly use the clinical guideline
to treat this pa2ent. If we don’t have a guideline, that is suitable for this individual, we could go ahead
look for similar pa2ent in the history. If we do have a large cohort of similar pa2ent, we can use prac2ce-
based medicine, figuring out what treatment, were likely to work based on similar pa2ents. If we don't
have enough similar pa2ents, available in the database, then we have to rely on professional judgment.
And as we go through this prac2ce-based medicines, many 2mes, we can develop hypotheses, that worth
conduc2ng RCT. If we're ready for RCT, then we can conduct the RCT, to improve the guideline. If we're
not ready for RCT, we can s2ll use exis2ng guidelines, along with similar pa2ents' informa2on to treat
future pa2ents. This region indicate evidence-based medicine, where clinical prac2ce is largely depends
on the guideline. And the green region, indicate a way to generate prac2ce-based evidence from data.
As you can see, both paradigm are quite complementary to each other. And they can work very nicely
together, as indicated here. But the challenge is, how do we find similar pa2ent from historical data?
Next, we'll illustrate some of the algorithmic approach for pa2ent similarity.

262 One way for solving pa2ent similarity problem is to approach this as distance metric learning
problem. Assume we have a list of pa2ent, and we know who is similar to whom. We also have a pa2ent
representa2on, and every pa2ent is represented by a feature vector. For example, here are two pa2ents,
X1 and X2. And here, Y indicate the ground truth. For example, if two pa2ent, X1 and X2, are similar, then
they have the same label. If they are different, then they will have a different label. Then it's become a
supervised distance metric learning problem. Given the ground truth label and feature vectors, we want
to learn a distance metric, d(x1,x2). And this func2on will tell us about the distance between those two
pa2ent. If they are similar, the distance will be small. If they are not similar, the distance will be large.
Besides distance metric learning, we can also use a graph-based similarity learning to figure out pa2ent
similarity. For example, given a set of pa2ents, we want to figure out who is similar to whom. In medicine,
we have a lot of medical knowledge that o`en represented as ontology, or a graph. Here is the human
disease network. Every node indicate a disease, and every edge indicate a connec2on between two
disease. And if you want to know more about medical oncology, we have a separate lecture specific on
that. Now given the medical ontology or, in this case, a disease network, we can connect those pa2ents
to the diseases. For example, this pa2ent have one disease, this pa2ent have two. And the graph-based
similarity learning is trying to figure out, given this heterogeneous graph that connec2ng pa2ents to
diseases. How can we figure out who is similar to whom?

263 Now let's learn a specific distance metric learning algorithm. Called locally supervised metric
learning. First, let's illustrate the intui2on behind this algorithm. For example, we want to develop a
distance metric under a specific clinical context. Such as, heart failure management. We have a query
pa2ent comes in and using some base line similarity measure. For example, Euclidean distance or cosine
similarity we can retrieve a set of pa2ents. That are poten2ally similar to this query pa2ent. This

2024 Spring Soya Kim

70

algorithm is a supervised approach. So, we have some ground troops label. For example, we know, these
four pa2ents are indeed similar to this query pa2ent. And we call them homogeneous neighbor. And we
also know, these four pa2ents are not similar to the query pa2ent. We call them heterogeneous
neighbors. And given these two sets of neighbors, we want to change the underlying distance measure.
So that, the homogenous neighbor becomes closer and closer to the query pa2ent. And the
heterogeneous neighbor, becomes further and further away from the query pa2ent. And we want an
algorithm that can do this automa2cally. Now, understanding the intui2on behind the algorithm. Now,
let's formulate the problem mathema2cally. The goal of this problem is to learn a generalized
Mahalanobis distance. For a specific clinical context. That is, we want to learn a sigma matrix. Which is d
by d, where d is number of dimensions in the feature vectors. We assume the sigma matrix is symmetric
and low rank. So that we can factorize sigma, as w 2mes w transpose. Where w is rectangular matrix of
d by K, where K is much smaller than d. And in this case, the goal is to learn the w matrix. Mathema2cally,
we want to learn this distance func2on, d(xi,xj). Which is very similar to equa2ng distance. Except the
sigma matrix in the middle. And the sigma matrix, is this symmetric low rank matrix, can be factorized as
w 2mes w transpose. And w, is what we need to learn from the data. So, the locally supervised metric
learning, follows intui2on we explained earlier. We want to define this margin for each pa2ent. The
margin is defined as, the total distance to the heterogeneous neighbors. Subtract the total distance to
the homogeneous neighbors. Intui2vely, it's indicated by this gap over here. And we want this margin to
be large, so that the truly similar pa2ent will be closer to the query pa2ent. And we'd want to do this for
all the pa2ents. So, we could define the total margin, which is the summa2on over all the margin for each
pa2ent. And the goal is to maximize the total margin by changing the W matrix. Now we understand the
objec2ve func2on, is to maximize the total margin. We can rewrite the objec2ve func2on in this matrix
form, as trace of W transposed 2mes H 2mes W. And H is defined as, the difference between these two
matrix. Le coming from all the heterogeneous neighbor, and L0 come from the homogeneous neighbor.
Since H in this case, is a symmetric matrix. And the solu2on, is the eigenvectors of H with all the posi2ve
eigen values. And the complexity for solving this problem, is eigen validate composi2on of this matrix H.

2024 Spring Soya Kim

71

14 Deep Neural Network
264 to describe the deep neural network we start with the simplest one that comprises of a single
neuron a neuron is a computa2onal unit that takes an input value x1 x2 to xn and their associate weight
w1 w2 2 WN and a bias term B and going through a computa2onal process and output a value Y and this
computa2onal process involve a linear combina2on and a nonlinear ac2va2on more specifically the
linear combina2on produces an intermediate output Z which is sum of W I 2mes X I plus the bias term B
then we pass the Z through a nonlinear ac2va2on func2on G to produce the final output Y depending on
the specific tasks Y can be either binary for classifica2on tasks or numerical for regression task to learn a
model of the single neuron we need to specify the nonlinear ac2va2on func2on G and learn the weight
w1 w2 to WN and the bias term B from data

265 ac2va2on func2ons describes the nonlinear transforma2on in the neuron which needs to be
specified by the modeler it is not usually learned from the data for ac2va2on func2ons there are a few
popular choices including the sigmoid 10 age and rec2fied linear with sigmoid func2on the input can be
arbitrary real values and output will be in the range of 0 to 1 which can be naturally interpreted as the
probability of an event for example the probability of having heart diseases as a result a signal func2on
is a popular choice for classifica2on tasks mathema2cally sigmoid func2on is specified as 1 over 1 plus e
to the minus X and Sigma func2on has vanishing gradient problems as we will show later neural network
learning depends on gradient based op2miza2on if the gree2ng is too close to 0 op2miza2on process
will not be able to make progress this is called vanishing gradient problem for example the gradient of
both end of the signal func2on is very close to zero for example the gradient when X is very small or the
gradient for X is very large are both close to 0 as a result it may cost vanishing gradient problem

266 10h is another popular ac2va2on func2on it has mul2ple mathema2cal forms it can be either
specified as e to the X minus e to the minus x over e to the X plus e to the minus X or a`er some
calcula2on you see it's equivalent to 2 over 1 plus e to the minus 2x minus 1 the second expression is
probably computa2onally more efficient because it only involved one exponen2al calcula2on well in the
previous case in in mauve two different kinds the output of 10H func2ons is centered around 0 and
bounded between minus 1 to 1 in fact 10H is the shi`ed and rescaled version of signaling because of the
risk Geylang 10H has larger gree2ngs especially near zero however 10H s2ll has vanishing gradient
problems when input X is far away from zeros in this region or in this region

267 in the rec2fied linear func2ons which is called ReLu is a simple and more modern ac2va2on
func2on rarely is specified as maximum over zero and input X the output of value is between zero and
plus infinity and visually it's linearly increasing curve when X is greater than zero and threshold at zero
rarely is very different from 10h and signaling in a sense that the output doesn't have an upper bound
unlike Sigma and 10h rally does not suffer from vanishing gradient problem as grading is constant one for
all the value of x greater than zero

268 so to summarize ac2va2on func2ons are crucial building blocks for newer networks there are a
few popular choices of ac2va2on func2ons including sigmoid 10h and ReLu their rela2ve rela2onships
are ploDed in this figure you can see sigmoid and 10h are bonded in small range while ReLu is only lower
bounded by zero and does not have an upper bound to learn in your network model we need to specify
the choice of ac2va2on func2on as part of the neural network architecture which ac2va2on func2ons to
choose is highly dependent on the applica2on

2024 Spring Soya Kim

72

269 now let's consider the simplest neural network a single neuron and trying to see how do we learn
the model parameters for such a neural network in par2cular we want to learn the weight w1 w2 to WN
and the bias term B and we break down the computa2on of the neuron into two steps the linear
combina2on and the nonlinear transforma2on the linear combina2on confused the weighted sum of x1
to xn and the bias term B we call this intermediate result z and the nonlinear transforma2on as the
ac2va2on func2on over at z to produce the output Y in a supervised learning sedng we want the output
Y to close to the target value T for example T can be a binary indicator of whether a pa2ent has the heart
disease or not and why it's the predic2on of such a target to measure the model quality we need to
specify a loss func2on to measure how much difference is between the output Y and the target T for
example we can use a squared loss or squared Euclidean distance like this our goal of training such a
neuron is to minimize the loss func2on on the training data by adjus2ng the weight of the neural network

270 to use in your network s moDo we have to learn the parameter of the neuron which are the
weights w1 to WN and bias term B want to systema2cally move the weights and bias such that the output
is gedng closer to the target that is small loss one computa2onally efficient way for doing that is the
stochas2c gradient descent algorithm or SGD. SGD takes the training data set and the learning rate EDA
as input if first ini2alize all the weight WI and the bias term B to some small random values then they
start itera2ng over all the training examples for each training example here X is the input feature vector
and T is the target label you will first compute the gradient vectors with respect to all the weight W and
the bias term B note that this nebula operator represent all the deriva2ve of the loss with respect to
different ww1 to W n so it's n dimensional vector the deriva2ve of the loss with respect to the bias is a
scalar a`er we have the gradient we simply update the weight vector W and the bias term B in the
opposite direc2on of the gradient here the EDA is the learning rate which need to be set or can be
adjusted using a different algorithm and the key for neural network learning is how do you compute the
gradient of all this different parameter efficiently

271 so to update an Iran based on the training data we need to perform two passes over the network
one form has to compute output Y and the loss and one backward pass to compute the gree2ng for each
parameter in this case we first compute the linear combina2on Z which is sum over all WI 2mes XI plus
bias term B then we perform nonlinear ac2va2on G over Z for example in this case the ac2va2on func2on
G can be a signal func2on keep in mind this two terms have deriva2ves which will be used in the backward
pass for example the deriva2ve of Z with respect to WI is just XI and the deriva2ve of Y with respect to G
is y 2mes 1 minus y for sigmoid the second deriva2ve is a liDle bit complicated to derive but you can
probably s2ll derive that with rudimentary knowledge of calculus finally modern deep learning so`ware
package or have automated gree2ng computa2on so in most of cases you don't have to worry about
specifying gree2ng yourself but it's important to note overall algorithms

272 a`er the four pass we know the output Y and then loss we can perform a backward pass to find
all the deriva2ve of those parameters and mathema2cally we're going to apply chain of the deriva2ves
from output to input for example using chain rule the deriva2ve of the loss with respect to WI can be
specified as the product of three deriva2ve the deriva2ve of L with respect to Y and the deriva2ve of Y
with respect to Z and the deriva2ve Z with respect to WI then we can do some calcula2on of the
deriva2ve to find out the first deriva2ve e goes to y minus T at the second term equal is y 2mes one
minus y and the last one is just XI so the final deriva2ve is y minus T 2mes y 2mes one minus y 2mes XI
so that's the deriva2ve for WI similarly using chain rule the deriva2ve of L with respect to bias term B is
the product of three deriva2ve as well the deriva2ve of L with respect to Y the deriva2ve of Y with respect

2024 Spring Soya Kim

73

to Z and the deriva2ve of Z with respect to B and similar calcula2on apply we have Y minus T 2mes y
2mes 1 minus y 2mes deriva2ve of Z with respect to B in this case it's constant so here's the final
deriva2ve the only difference is we don't have this X I term anymore and it's just Y minus T 2mes y 2mes
1 minus y now we have the deriva2ve we can use them in any gradient based op2miza2on algorithm
such as the SGD algorithm we specified earlier to find the op2mal weights and the bias

274 to train such a mul2-layer in your network again we use stochas2c gradient descent algorithm to
do that input to the SGD algorithms are the training data and the learning rate we first ini2alize all those
weight and bias at each layer to small random values then we process the training example one at a 2me
we first compute the deriva2ves of the loss with respect to the weights and with respect to the bias term
then we perform the gradient updates so this is very similar to the algorithm we shown earlier for training
a single neuron again the key is how to compute those deriva2ves for an arbitrary deep neural network

275 the four of house of newer network is important for scoring a new data point to get the output
value why it is also an Cuccia bu2ng block for learning the new network as we will explain later in the
backpropaga2on hours so now let's illustrate the for computa2on step by step here is an example given
X1 X2 X3 a 3 dimensional data point we need to compute 3 linear combina2on for h1 h2 and h3 this 3
hidden unit in par2cular Z1 superscript in parenthesis 2 indicates the linear combina2on for unit h1 which
is specified as sum over w1i superscrip2on process is 1/10 X I plus B1 superscript in process is 1 so visually
all this are highlighted here this Z1 superscript in parenthesis 2 eCos W1 1 superscript in parenthesis 1
2mes X1 plus W1 2 superscript empresas is 1 2mes X2 n w1 3 super scribbling process is 1 2mes X3 plus
B 1 superscript in process is one here superscript impress this is 1 indicates the layer number in this case
is the inflator a`er this linear combina2on H1 will perform a nonlinear ac2va2on G 2 superscript
impresses 2 over this intermediate result Z1 superscript in process is 2 to obtain the output value of H1
which is represented as a 1 superscript in parentheses 2 so similarly for the second linear combina2on
for unit H2 we can compute Z 2 super Scribbins two as another weighted sum over input X plus the
corresponding bias term and likewise the unit H2 performed the same nonlinear ac2va2on over a
different linear combina2on Z 2 superscript in processes 2 to obtain the output for H2 again we do the
same for unit h3 to compute the linear combina2on these three superscrip2on parentheses - then we
perform the ac2va2on over the linear combina2on to get the output a3 superscript in parentheses - now
we have all the output for unit h1 h2 and h3 they become the input for the next layer in this case it is the
output layer in this network in par2cular the linear combina2on of the output unit Y is Z superscript in
parenthesis free which is the weighted sum of all the AJ superscript in France this is 2 plus is biased term
B superscrip2on processes to note that unlike the previous layer since there's just a single output unit
why there's only one subscripts for the weight and there's no index for bias term be visually is highlight
here so these superscript process is 3 is sum of a one super scrubbing process one 2mes W1 superscript
in process is 2 plus a 2 super scribbling process is 2 2mes W2 super scrubbing process is Q plus a 3
superscript in processes 2 2mes W 3 super scrip2ng process is 2 plus B superscrip2on prac2ces - likewise
the upper unit wine performs the nonlinear ac2va2on func2on G superscript in parenthesis 3 over the
linear combina2on G superscript in parentheses 3 to get the final output a superscript in parentheses 3
and it's also represented just simply sy

276 to summarize we put equa2ons for forward computa2on for this par2cular neural network here
the neural network is fully connected meaning that all the unit between layers are connected for example
X1 X2 X3 connect with H1 H2 H3 then H1 H2 H3 connect with Y each unit computes a linear combina2on
Z first then followed by nonlinear ac2va2on G as you can see there are a lot of symmetry here mul2ple

2024 Spring Soya Kim

74

neurons are involved to perform similar opera2ons and collec2vely they help to learn a complex mapping
from input to output

277 this forward computa2on can be represented by a mall compact vector nota2ons so the weight
W IJ superscript in parentheses one become a matrix W superscript in parentheses 1 and the bias be
super scribbling parenthesis becomes a vector and the linear combina2on for all those weights become
a matrix vector mul2plica2on so Z superscript in parenthesis is 2 as a vector EKOS W superscript in
parentheses 1 temps input vector X plus this bias term B superscript in processes 1 we also extend
ac2va2on func2ons to apply to vectors in an element-wise fashion so for example g superscrip2on
parentheses to applied to this vector z superscript in parentheses 2 is just applying the same ac2va2on
func2ons to each element of this vector z superscript in processes 2 so likewise we have linear
combina2on for the output layer the superscript in parentheses is 3 and gedng the final output a
superscript in parentheses 3

278 so far we have shown you a simple architecture with one hidden layers however in general this
forward computa2on is not limited to that simple architecture a more general case of forward
computa2on from layer L to layer l plus 1 can be specified with this simple equa2on so the superscript L
plus 1 in parenthesis equals to this matrix of weights superscript impresses as L 2mes the input from the
previous layer a superscript appearances as L plus this bias factor be super scary impress SSL and similarly
this ac2va2on applies for each element of the superscript L plus 1 and to get the output from this layer
and it's also the input to the next layer

279 here's the complete summary of four paths of a newer network we can represent all the
computa2on in a unit-by-unit fashion like this or using a more compact nota2ons represented as vector
form or in more general case for arbitrary depths of neural networks in fact is actually code to represent
a neural network computa2on as a vector opera2on so that they can be run more efficiently in parallel

280 to recap we have talked about discrete InDesign algorithms for learning parameters for your
network in this case we ini2alize the weight and the bias term to some small random values then for
each training example we try to compute the corresponding deriva2ve with respect to W and with
respect to B then a`er that we just do a simple update based on the gradient for both W and B, so the
key is to efficiently compute this two deriva2ve that's where the back propaga2on algorithm comes in

281 how do we use back propaga2on to compute the gradient of the loss with respect to w ji
superscript in process L so as we will show you that this par2cular deriva2ve is a product of two term the
first term is actually straight forward is AI superscript in parentheses L minus 1 so this is the input from
the previous layer and the second term is more interes2ng is actually the deriva2ve of the loss with
respect to the linear combina2on the J's superscript in process is L so this term intui2vely measures how
much this par2cular node HJ at the L layer was responsible for the final error again let's use the chain
rule so the deriva2ve of the loss with respect to W ji superscript in parentheses l equals to this two terms
as par2al deriva2ve of L with respect to the linear combina2on ZJ superscript in process as L and the
deriva2ve of VJ superscript and prances as L with respect to W ji and the first term by defini2on is this
Delta J superscript impress assist L so we'll worry about that later that actually turned out to be the key
part for back propaga2on but the second part is actually easy to derive so if we write out the formula for
Z is really just the sum over WJ s 2mes S Plus this bias term bs so if you look at this second deriva2ve
term you no2ce that all this weighted sum term we have a deriva2ve at zero except one when this w ji

2024 Spring Soya Kim

75

matches this wjs so in that case the corresponding input is the breeze out of the deriva2ve so AI
superscript empresas L minus 1 and that's how we get this formula

282 now let's look at the second deriva2ve term the deriva2ve of the laws with respect to the bias
term BJ superscript in-process SL it's actually quite similar to the previous deriva2on for W and again
here Delta J superscript L is the deriva2ve of the loss with respect to the linear combina2on Z J superscript
in processes L and using chain rule we can breaking down the deriva2ve with respect to B as this product
of two terms again the first term deriva2ve of L with respect to Z is by defini2on this Delta term Delta J
superscript in process SL again the second term was the same logic will lead to actually a constant one
as the deriva2ve so the result for this whole thing is just Delta J superscrip2on processes L so now we
understand how do we compute this two deriva2ve terms and the key now is how do we efficiently
compute all this Delta J term for arbitrary neural network

283 in summary now we have this two deriva2ve one with respect to Wji1 with respect to Vj and it
involved in W case the input from the previous layer and this Daode term is actually lead to the deriva2ve
for the output and in this BJ case is just this doubt at J superscript princess is L now we have to figure out
how do we compute this doubter term efficiently in fact the Delta J superscript empresas L can be
computed in a backward fashion from the output layer to the input layer

284 now let's see how do we compute all this doubt a term in a backward fashion at the very end of
this network we have doubt a que superscript in parentheses is four in this case is just par2al deriva2ve
of the loss with respect to Z K superscript n processes for and by defini2on in this final stage this Z case
superscript princess is 4 is just output Y and the loss func2on can be specified here and in this par2cular
example the loss func2on is the square loss in this par2cular case the deriva2ve is just - t - y

285 now we have this Delta 4 layer for now let's see how do we compute the other term for layer 3
so in this case this Delta for layer 3 is par2al deriva2ve with respect to the loss for the superscrip2on
process 3 and again applying chain rule and we have par2al deriva2ve of L with respect to Y and the
par2al deriva2ve Y with respect to Z superscript in process of 3 and the first term is just Delta 4 which
we just computed in the previous slide and the second term is just the deriva2ve of the ac2va2on
func2on because these three Z superscrip2on processes 3 is input to this ac2va2on func2on now we're
just taking the deriva2ve of this ac2va2on func2on so the final result is just minus t minus 1 2mes the
deriva2ve of this ac2va2on func2on G's superscript in parenthesis 3

286 now let's look at Delta superscript in parentheses - in the second layer in the second layer we
have mul2ple unit h1 h2 and h3 correspondingly we have Delta 1 Delta 2 and doubt a 3 for the second
layer so let's just look at this doubt I super scribbling process is 2 so in this case again we applying chain
rule the first term is par2al deriva2ve of laws with respect to ZJ superscript in process is 3 in and the
second term is par2al deriva2ve of ZJ's superscript process 3 with respect to VI superscript processes to
the first term is actually easy is just Delta superscript in parenthesis 3 is something we just computed
previously and the second term again we applying chain rule again and to get this two terms one is this
is EJ super square be princes 3 write it out and with respect to a I superscript empresas to this input and
then par2al deriva2ve of AI superscrip2on process - whispers track - zi super scrubbing process is - so
again with similar kind of deriva2on you will see that the middle term just lead to you one term here WI
super su Caribbean process is - when AI this - AI matches and the rest cases they are all zeros and the
last term is just the deriva2ve of the ac2va2on func2on again so it's the deriva2ve of this ac2va2on
func2on G super scribbling process - and with the input VI superscrip2on processes -

2024 Spring Soya Kim

76

287 so now let's write down all this different Delta func2ons so we can see that Delta superscript
parentheses for the last layer we have minus t minus 1 and then for Delta 3 we have minus t minus y
2mes this deriva2ve of ac2va2on func2on at the third layer and so on so you can see that the paDern
already and in general this Delta J superscript L follows this form so it's really a summa2on of K of wkj
super scrubbing processes L 2mes Delta K superscript L plus 1 n 2mes this deriva2ve of the ac2va2on
func2on at this else layer so the first term is a liDle bit complicated in the simpler example we shown
here where we only have one output unit and there's only one term here but when you have mul2ple
output unit and you can lead to mul2ple term and weighted by the weight and sum them up but the
important thing is all this deriva2ve at any posi2on of this new network can be computed with a single
backward propaga2on from this network so you don't have to go through this network mul2ple 2mes
just one pass backward to compute all the gradients for all this different Delta and then just mul2ply the
staudte with corresponding input you can compute the deriva2ve for W and or for the deriva2ve with
respect to the bias

288 now let's summarize the backward propaga2on algorithm it involves two passes of the newer
networks one forward has is star wist input X and goes through the en2re network to compute output
value and in this process you will compute all this intermediate result the linear combina2on Z and the
nonlinear ac2va2on a for each layer then we do the backward pass we first compute this Delta func2on
for the output unit then going backwards to compute the rest of the Delta func2on and also use that to
compute the deriva2ve of the loss func2on with respect to W and the deriva2ve of the last func2on with
respect to the bias term B so that's the backward propaga2on algorithm for neural networks

2024 Spring Soya Kim

77

15 Convolutional Neural Network
289 in previous lessons we introduced the feed-forward neural network all the unit from one layer
will connect all the unit in the next layer so between this two consecu2ve layers all units are fully
connected when we have high dimensional input data for example medical images with thousand by
thousand pixels EHR data was over ten thousand medical codes the fully connectedness will have too
many parameters therefore too expensive to learn to make the computa2on of more efficient we can
force the neuron to have smaller number of connec2ons for example in this figure each hidden unit h1
and h2 only connect with adjacent input unit so we can extend this idea of local connec2vity to many
layers to obtain a deep but locally connected networks convolu2onal neural network or CNN is one type
of this locally connected Network while using locally connected structure like this has significantly
reduced number of parameters we can achieve further parameter reduc2on with weight sharing so
weight sharing means some parameters over here will be shared at different loca2on across the input so
for example the model on the le` have six different weight parameters W1 W2 u2 w6 and if we shared
the weight at different loca2ons then we can have one copy of this weight W1 W2 W3 for H1 then apply
another copy of the same weights W1 W2 W3 for H2 so this way we can reduce the number of
parameters from 6 to 3 and the weight sharing resembled the convolu2onal technique in signal
processing which can be considered as a future or a kernel Hume any posi2on in the input data this future
opera2on is called convolu2on in signal processing

290 in addi2on to convolu2on or weight sharing we can add a pooling layer in addi2on to the
convolu2onal layer the boast convolu2on and pooling layers have this transla2onal invariant property for
example we may want the output to be stable even when the input images shi`ed or distorted slightly
since the transla2on is the main source of distor2on for images and 2me series Network design was
pooling layers can be more effec2ve in recognizing the correct paDerns regardless of transla2on for
example we have this simple example of five dimensional input X1 X22 X5 then construed the
convolu2onal layers it will generate two hidden dimensions H1 and H2 if we apply another pooling layer
on top for example max pooling which takes the maximum value from all the input to this unit then that
will give us the final output for example if we apply this to different input vector 0 1 0 0 0 vs 0 0 0 1 0
through this architecture we can see that for the first one a`er convolu2on will get a vector of W2 for H1
and 0 for H2 because if we do a weighted sum over this W1 W2 and W3 OS X1 X2 and X3 we can see that
it will give us W2 because X1 and X3 at 0 only X2 is 1 and H2 likewise will give us 0 and the second input
vectors will give us 0 and W2 because only this the fourth posi2on have value 1 and the corresponding
weight SW2 and that will give us that reach you at H2 posi2on if we apply a max pulling on this size two
vectors it will give us W2 assuming W2 is posi2ve and so in this case in both example the final output will
be the same although the input is actually translated by 2 pixel right you can shi` X the first example and
the second example very similar the only difference is as this first example need to be translated
horizontally but 2 pixels to generate the second example so if we apply this architecture it will lead to the
same output or we call this transla2onal invariance because the output for both input or BW2 which is
what we want

291 to summarize convolu2onal neural network it's a very powerful model for processing grid light
structures such as images and waveform it u2lized a set of special opera2ons such as convolu2ons and
pooling the advantage of a CNN moDo is it gives us a very sparse interconnec2on in the newer networks

2024 Spring Soya Kim

78

it also leveraged parameter sharing number of parameters in the CNN moDo is o`en very small and it
also supports transla2onal invariance thanks for pulling and convolu2on opera2on

292 next let's look closely what CNN architecture looked like so a CNN architecture o`en involve a
stack of opera2ons such as convolu2on layer pooling layer fully connected layer usually a CNN
architecture takes in inputs such as an image or 2me series and pass it the data through a sequence of
convolu2on pooling and convolu2on pooling opera2ons then finally it usually goes through a set of fully
connected layers to generate the final classifica2on output so that's a very typical CNN architectures so
in this par2cular case we first have a convolu2on layer followed by max pooling layer followed by another
convolu2on layer by another max pooling layers then we apply three convolu2onal layer consecu2vely
apply another pooling layer then followed by three layers of fully connected layers next we'll go into more
details so that we understand what those numbers mean and how do we design such architecture

293 so let's talk about convolu2on and pooling opera2ons now let's take a look at the details of the
convolu2on opera2on in this example we take one day input sequence of 1 2 minus 1 1 and minus 3 and
pass it through a 1 the convolu2on opera2on and generate another one-dimensional output sequence
minus 2 2 1 2 and 1 so how do we generate such output sequence we slide a future of size 3 some2mes
we call this kernel over the sequence and every step it involve inner product between the future and a
subset of the input so in this case we'll take element wise mul2plica2on then sum the result up let's look
at this example more closely so the parameter of the future is 1 0 minus 1 in fact there could be also be
a bias term which I'm not showing here for simplicity then we perform an inner product of this
parameters with a sliding window through the input sequence we start with the first input dimension
with value 1 to construct a window centered around this value since this is the first dimension we usually
pad the le` hand side with zeros in this case we've had 1 zeros and we call this 0 padding and the output
for the first dimension is minus 2 because 0 2mes 1 plus 1 2mes 0 plus 2 2mes minus 1 equal to minus 2
then we just perform such an inner product between the future parameters and the sliding window of
the input sequence and we start to generate all this output sequences we repeat this process and here
the last dimension is processed in this par2cular case we've had 0 on the right hand side and apply the
same opera2on to generate the final output value 1 so we call this sliding window opera2on a
convolu2on opera2on so mathema2cally we denote the input sequence as func2on ` and the future
opera2on GT and the final output of the convolu2on F star G T another concept of convolu2on is straight
which is the space between two consecu2ve future calcula2on so in this case we apply this future at
every dimension in this case straight a go to 2 we do this future opera2on every 2 element at a 2me so
you can observe the number of parameters for convolu2on opera2on are fairly small it's just this size of
future here we have to apply this future at every loca2on of the input so this can be computa2onally very
expensive luckily this computa2on can be efficiently done in parallel especially on modern hardware such
as GPU

294 so here is the example of neural network representa2on of 1d convolu2on with strike two without
zero padding the computa2on in this case can be represented as mul2plica2on of this weight vector W1
W2 W3 with a subset of input dimensions in this par2cular case X1 X2 and X3 in this par2cular case the
output of the convolu2on opera2on has two dimension the first one h1 has W1 2mes X1 plus W2 2mes
X2 plus W3 2mes X3 and the second dimension H2 as applying the same future on X3 X4 and X5

296 so now let's visualize convolu2onal opera2ons for 1d input which shown on the le` you can see
that we apply one deconvolu2on first then o`en2mes the output of convolu2onal layer goes through

2024 Spring Soya Kim

79

some nonlinear transforma2on such as a rail Euler layer some2mes we have mul2ple futures not just
one for example for this three-dimensional input we have two futures of size four by four then we'll have
two output feature Maps in this par2cular case three by three then we'll put them together concatenate
them or think of this as a 3d tensors of size three by three by Q and then we can pass this feature map
sure another ReLu func2on to get the final output feature Maps which is three by three by two so don't
worry about those numbers for now we'll explain how do we derive and those numbers and we'll the
rela2onship across different layers next but the key here is to keep in mind o`en2mes we do apply
mul2ple futures given the same input so intui2onist each future is trying to extract one type of paDerns
for example this future one is trying to extract average value in the image and the future two is trying to
extract some line in this image and so on so it futures corresponding to a single paDerns and when you
have many different paDerns you want to extract you probably want to have many different futures

297 so pulling opera2on is another common opera2on in convolu2on your network and it can be
considered as smart non sample strategy for example in this case one the future with stride 2 so we will
get a two-dimensional output from this four dimensional input similarly we can apply pooling on two-
dimensional input as well so in this case we'll specify a pooling layer with a future Q by 2 with stride 2
then we can apply this 2 by 2 window futures a different loca2on of this input feature map then to
generate different type of output feature mapping for example this max pooling opera2on would take
the maximum value in this each filter and just keep that maximum value for example in this par2cular
case we'll generate 4 5 6 & 5 from the original feature Maps of course we can use different pooling
opera2ons such as taking the sum or taking mean or average but in general max pooling seems to work
really well and it's probably the most popular choices so far

298 now let's understand the rela2onship between input output size of a convolu2onal neural
network so this is the general case where we'll take input in this case a three dimensional volume of size
W1 2mes H1 2mes D1 and in this example we have a kind of a color image of size 227 2mes two hundred
twenty seven 2mes three right there's three different channels then for the convolu2on layers we have
a bunch of hyper parameters number futures K spa2al extents this is the size of the future things and the
stride s and the padding P so in here for example we have 96 futures of k equal to 96 and the spa2al
extent is 11 so the future size is 11 by 11 and the strike s4 and the output feature map will be a volume
of size W2 2mes H2 2mes D2 and they can be calculated with this formula so W2 you go to W1 - spa2al
extent F plus 2 2mes of the padding divided by the stride plus 1 and similarly H2 you go to H1 - spa2al
extent F and plus 2 2mes F 2 padding divided by its strike plus 1 and D2 equals a number of futures so in
this par2cular case you can see giving this convolu2onal layer and the output feature map is actually of
size 55 2mes 55 2mes 96 in this par2cular example actually I didn't specify the number of padding's here
but given the output size you can probably figure out what this padding size

299 next let's look at the dimension of the pooling layers so again the general case showing on the
right if we take an input volume of size W1 2mes H 2mes D1 then the hyper parameter here or cooling
layer is just the spa2al extent F and the stripe s and the output is another feature map of the size W2 H2
2mes D2 so here it's actually very similar because we don't have the padding anymore and the W2 is just
W1 minus F divided by s plus 1 H2 equal to H1 minus F divided by s plus 1 and D2 equal to D1 so a`er
pooling the depths actually remains the same so if we look at this par2cular example you can see that
given this input feature map of 55 by 55 by 96 4 if we apply this 3 by 3 futures doing max pooling with
try to we can get this final answer which 27 2mes 27 2mes 96

2024 Spring Soya Kim

80

300 so with this you can now read a convolu2onal neural network architecture like this and now you
can understand that what are those numbers means right there we have first layers which is convolu2on
layer with 96 futures with size 11 by 11 with strike four then followed by a pooling layer of three by three
futures with strike two followed by another convolu2on layer with 256 futures of size 11 by 11 and so on
and the important part you should understand is the depths of the network o`en communists become
deeper and deeper and majority of the layers about convolu2on or pooling x' and a few layers at the end
are those fully connected layers if you do a simple calcula2on of the parameters you actually will realize
this convolu2on layers despite the fact there are many more of those layers then the fully connected
layers the number of parameters actually rela2vely much smaller than the parameter in the final few
fully connected layers so in this par2cular case we have 3.7 million parameters in this all disk emo2onal
layers and for this last three fully connected layers we have 58.6 meaning parameter a lot more so that's
kind of the intui2on you should have that for a convolu2onal neural networks the parameter is actually
not that many and most parameter actually are s2ll coming from this fully connected layers

301 now let's look at the calcula2on using convolu2onal neural network so if we look at the forward
calcula2on of convolu2onal layer if you look at the general case with the input of size w1 2mes H1 2mes
d1 and here is a parameter for this convolu2on layers and the number of calcula2on you need to do are
actually a lot which is really the output size this w2 2mes H2 2mes T2 and for every output elements you
have to apply this future so this future is F 2mes F 2mes the depth D1 so that's kind of the roughly the
number of calcula2on you need when you apply convolu2on later so you can use this example to figure
out kind of the number of calcula2ons and the size of the output by the way we already discussed
previously and I'm just lis2ng the formula here for your convenience

302 and similarly we can't figure out the number of forward calcula2on for the pooling layer which is
preDy much of the same spirit Thanksgiving this input size and the parameter for this pooling layers
spa2ally extend, and stride and we can see okay here's the number of calcula2on which is again the size
of the output plus the future size

303 finally if we look at the fully connected layers the number of calcula2on is actually quite
straighcorward it's just the size of the input to this fully connected layer when you and I've vectorized
this 3d tensors into a vectors 2mes the output dimensions in this case 4096-dimension 2mes whatever
this number is so that will give you the number of calcula2ons you need to do for this fully connected
layers in this par2cular case as the output size T 2mes the input size

305 next let's look at some CNN architectures and then look at some of the healthcare applica2ons
so Alex Ned is the first color chenille network that shown great performance gain in an image
classifica2on context they won the compe22on around the year 2010 and by improving the performance
by a huge margin in fact this is more or less darker texture we explained in our previous example but they
just draw this in a more kind of intui2ve structures show the size of the feature map and the
corresponding future says Incep2on that is another very powerful convolu2onal neural network
architectures you can see that every liDle box here is a layer of easier convolu2on layer or pooling layer
or fully connected layer and so on so you can see that the key differences is first of all it's much deeper
many more layers than before second they introduced some kind of this parallel path right so when you
go from here to here you actually go either one convolu2on layer or three of war or average pooling
followed by another convolu2on layer then you concatenate them right you can you can see there as
many of those in a parallel pass happening over again later on there is another very powerful convolu2on

2024 Spring Soya Kim

81

neural networks called residual networks and the key idea is in addi2on to you all this convolu2on layers
now they also introduced this so-called skip connec2on right so allowed the input go to the output
directly so the integra2on is when you go through many of those layers of calcula2on maybe one of the
layer in the middle it's already very good features right you want to actually keep the feature towards
the end how do we do that if we introduce the skip connec2on actually allowed the model to great out
that okay if this layer is already giving up very good features then all escape connec2on can s2ll maintain
this intermediate and this powerful feature and use it at the end so essen2ally it actually alleviate some
of this vanishing gree2ng problem because the skip connec2on essen2ally reduced the depths of the
network and also it combines both the shallow and deep networks thanks to this skip connec2ons if we
look at the performance of all the CNN architectures for some real work tasks like ImageNet classifica2on
performance here we're showing error rate so the lower the beDer ways in the past with warner network
the best winning performance it's about 25 percent errors then when Alex net introduced in 2012 and
error rate reduced to 16 percent then vgg network further reduced the errors to 7 percent and then lately
the residual network rest net only produced less than 4 percent error which is actually a human level
performance already and in this par2cular case the number of layers 152 is truly deep neural networks

306 so now let's talk about house care applica2on of CNN algorithms so in this par2cular paper it's
about detec2ng diabetes represen2ng obviously using CNN algorithms it's published at JAMA Journal of
American Medical Associa2on one of the top medical journal so the idea is given the image of the eyes
like this can the algorithm figure out which one is a health individual which one is the one with diabetes
Rep democracy so this is currently done manually by doctors and thanks to deep learning in this par2cular
case CNN models the algorithm actually can perform to the level of domain experts so in this par2cular
result curve you can see that so this ROC curve is really good and all those dots are actually human
experts you can see the algorithm which is this line it's actually performed as good as human doctors

307 so there is another paper called dermatology level classifica2on of skin cancer with deep neural
networks and in this par2cular case it's published at Nature so the goal of this work is to look at actual
photograph of skin like this trying to decide whether it's benign or is malignant again the use CNN models
achieve human-level performance in this par2cular case they're showing for three different type of
images for different cancers you can see this blue curve is the algorithms and the red dots are the actual
domain experts you can see that in many cases this blue curve is above the red dots in par2cular case
this Green Cross indicates average performance of those doctors you can see they are actually entered
this blue curve meaning that the algorithm is actually beDer than the average domain experts in this
par2cular case

