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Praise for Google BigQuery: The Definitive Guide

This book is essential to the rapidly growing list of businesses that are
migrating their existing enterprise data warehouses from legacy
technology stacks to Google Cloud. Lak and Jordan provide a
comprehensive coverage of BigQuery so that you can use it not only as
your Enterprise Data Warehouse, for business analytics— but also use
SOL to query real-time data streams; access BigQuery from managed
Hadoop and Spark clusters, and use machine learning to automatically
categorize and run forecasting and predictions on your data.

—Thomas Kurian, CEO, Google Cloud

Every once in a great while a piece of software or service comes along
that changes everything. BigQuery has changed the way enterprises can
think about their data, all of it. Designed from the beginning to handle
the world's largest datasets, BigQuery has gone on to be one of the best
platforms for analyzing and learning from data. Announced in June
2016, “Standard SQL " is one of the most clean, complete, powerful,
implementations of SOL ever designed. Powerful features include deeply
nested data, user defined functions in JavaScript and SQOL, geospatial
data, integrated machine learning, and URL addressable data sharing,
just to name a few. There is no better place to learn about BigQuery than
from this book by Jordan and Lak, two of the people who know BigQuery
best.

—Lloyd Tabb, Cofounder and CTO, Looker

Even though I've been using BigQuery for over seven years, I was
pleased to discover that this book taught me things I never knew about it!
It provides invaluable insights into best practices and techniques, and
explains concepts in an easy to understand fashion. The code examples
are a great way to follow the content in a practical, hands-on manner,
and they kept the book fun and engaging. This book will undoubtedly
become the go-to reference for BigQuery users.

—Graham Polley, Managing Consultant, Servian



BigQuery can handle a lot of data very fast and at a low cost. The
platform is there to help you get all your data in one place for faster
insights. This book is a deep dive into key parts of BigQuery. In this quest
along with two prominent legendary Googlers—Lak Lakshmanan and
Jordan Tigani—you’ll learn the essentials of BigQuery as well as
advanced topics like machine learning. I'm a huge BigQuery advocate.
Having used the tool firsthand, I can say that it will easily make your big
data life a lot easier. This was an amazing read and now the BigQuery
journey starts for you! Jump in!

—Mikhail Berlyant, SVP Technology, Viant Inc.
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Preface

Enterprises are becoming increasingly data driven, and a key component of
any enterprise’s data strategy is a data warehouse—a central repository of
integrated data from all across the company. Traditionally, the data
warehouse was used by data analysts to create analytical reports. But now it
is also increasingly used to populate real-time dashboards, to make ad hoc
queries, and to provide decision-making guidance through predictive
analytics. Because of these business requirements for advanced analytics
and a trend toward cost control, agility, and self-service data access, many
organizations are moving to cloud-based data warehouses such as Google

BigQuery.

In this book, we provide a thorough tour of BigQuery, a serverless, highly
scalable, low-cost enterprise data warehouse that is available on Google
Cloud. Because there is no infrastructure to manage, enterprises can focus
on analyzing data to find meaningful insights using familiar SQL.

Our goal with BigQuery has been to build a data platform that provides
leading-edge capabilities, takes advantage of the many great technologies
that are now available in cloud environments, and supports tried-and-true
data technologies that are still relevant today. For example, on the leading
edge, Google’s BigQuery is a serverless compute architecture that
decouples compute and storage. This enables diverse layers of the
architecture to perform and scale independently, and it gives data
developers flexibility in design and deployment. Somewhat uniquely,
BigQuery supports native machine learning and geospatial analysis. With
Cloud Pub/Sub, Cloud Dataflow, Cloud Bigtable, Cloud Al Platform, and
many third-party integrations, BigQuery interoperates with both traditional
and modern systems, at a wide range of desired throughput and latency.
And on the tried-and-true front, BigQuery supports ANSI-standard SQL,
columnar optimization, and federated queries, which are key to the self-
service ad hoc data exploration that many users demand.



Who Is This Book For?

This book is for data analysts, data engineers, and data scientists who want
to use BigQuery to derive insights from large datasets. Data analysts can
interact with BigQuery through SQL and via dashboarding tools like
Looker, Data Studio, and Tableau. Data engineers can integrate BigQuery
with data pipelines written in Python or Java and using frameworks such as
Apache Spark and Apache Beam. Data scientists can build machine
learning models in BigQuery, run TensorFlow models on data in BigQuery,
and delegate distributed, large-scale operations to BigQuery from within a
Jupyter notebook.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or values
determined by context.



TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at Attps://github.com/GoogleCloudPlatform/bigquery-oreilly-
book.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.


https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Google BigQuery: The Definitive Guide by Valliappa Lakshmanan and
Jordan Tigani (O’Reilly). Copyright 2020 Valliappa Lakshmanan and
Jordan Tigani, 978-1-492-04446-8.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O 'Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit Attp://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Sebastopol, CA 95472


mailto:permissions@oreilly.com
http://oreilly.com/
http://www.oreilly.com/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https.//oreil.ly/google bigquery tdg.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at Attp://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Follow the authors on Twitter: Attps://twitter.com/lak gcp and
https://twitter.com/jrdntgn

Watch us on YouTube: http.//www.youtube.com/oreillymedia
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Chapter 1. What Is Google
BigQuery?

Data Processing Architectures

Google BigQuery is a serverless, highly scalable data warehouse that comes
with a built-in query engine. The query engine is capable of running SQL
queries on terabytes of data in a matter of seconds, and petabytes in only
minutes. You get this performance without having to manage any
infrastructure and without having to create or rebuild indexes.

BigQuery has legions of fans. Paul Lamere, a Spotify engineer, was thrilled
that he could finally talk about how his team uses BigQuery to quickly
analyze large datasets: “Google’s BigQuery is *da bomb*,” he tweeted in
February 2016. “I can start with 2.2Billion ‘things’ and compute/summarize
down to 20K in < 1 min.” The scale and speed are just two notable features
of BigQuery. What is more transformative 1s not having to manage
infrastructure because the simplicity inherent in serverless, ad hoc querying
can open up new ways of working.

Companies are increasingly embracing data-driven decision making and
fostering an open culture where the data is not siloed within departments.
BigQuery, by providing the technological means to enact a cultural shift
toward agility and openness, plays a big part in increasing the pace of
innovation. For example, Twitter recently reported in its blog that it was
able to democratize data analysis with BigQuery by providing some of its
most frequently used tables to Twitter employees from a variety of teams
(Engineering, Finance, and Marketing were mentioned).

For Alpega Group, a global logistics software company, the increased
innovation and agility offered by BigQuery were key. The company went
from a situation in which real-time analytics was impossible to being able
to provide fast, customer-facing analytics in near real time. Because Alpega
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Group does not need to maintain clusters and infrastructure, its small tech
team is now free to work on software development and data capabilities.
“That was a real eye opener for us,” says the company’s lead architect, Aart
Verbeke. “In a conventional environment we would need to install, set up,
deploy and host every individual building block. Here we simply connect to
a surface and use it as required.”

Imagine that you run a chain of equipment rental stores. You charge
customers based on the length of the rental, so your records include the
following details that will allow you to properly invoice the customer:

1. Where the item was rented
2. When it was rented

3. Where the item was returned
4. When it was returned

Perhaps you record the transaction in a database every time a customer
returns an item.’

From this dataset, you would like to find out how many “one-way” rentals
occurred every month in the past 10 years. Perhaps you are thinking of
imposing a surcharge for returning the item at a different store and you
would like to find out what fraction of rentals would be affected. Let’s posit
that wanting to know the answer to such questions is a frequent occurrence
—it 1s important for you to be able to answer such ad hoc questions because
you tend to make data-driven decisions.

What kind of system architecture could you use? Let’s run through some of
the options.

Relational Database Management System

When recording the transactions, you are probably recording them in a
relational, online transaction processing (OLTP) database such as MySQL
or PostgreSQL. One of the key benefits of such databases is that they


https://cloud.google.com/customers/alpega

support querying using Structured Query Language (SQL)—your staff
doesn’t need to use high-level languages like Java or Python to answer
questions that arise. Instead, it is possible to write a query, such as the
following, that can be submitted to the database server:

SELECT
EXTRACT(YEAR FROM starttime) AS year,
EXTRACT(MONTH FROM starttime) AS month,
COUNT(starttime) AS number_one_way

FROM
mydb.return_transactions
WHERE
start_station_name != end_station_name

GROUP BY year, month
ORDER BY year ASC, month ASC

Ignore the details of the syntax for now; we cover SQL queries later in this
book. Instead, let’s focus on what this tells us about the benefits and
drawbacks of an OLTP database.

First, notice that SQL goes beyond just being able to get the raw data in
database columns—the preceding query parses the timestamp and extracts
the year and month from it. It also does aggregation (counting the number
of rows), some filtering (finding rentals where the starting and ending
locations are different), grouping (by year and month), and sorting. An
important benefit of SQL is the ability to specify what we want and let the
database software figure out an optimal way to execute the query.

Unfortunately, queries like this one are quite inefficient for an OLTP
database to carry out. OLTP databases are tuned toward data consistency;
the point is that you can read from the database even while data is
simultaneously being written to it. This 1s achieved through careful locking
to maintain data integrity. For the filtering on station_name to be efficient,
you would need to create an index on the station name column. If the station
name 1s indexed, then and only then does the database do special things to
the storage to optimize searchability—this is a tradeoft, slowing writing
down a bit to improve the speed of reading. If the station name is not



indexed, filtering on it will be quite slow. Even if the station name is an
index, this particular query will be quite slow because of all the
aggregating, grouping, and ordering. OLTP databases are not built for this
sort of ad hoc? query that requires traversal through the entire dataset.

MapReduce Framework

Because OLTP databases are a poor fit for ad hoc queries and queries that
require traversal of the entire dataset, special-purpose analyses that require
such traversal might be coded in high-level languages like Java or Python.
In 2003, Jeft Dean and Sanjay Ghemawat observed that they and their
colleagues at Google were implementing hundreds of these special-purpose
computations to process large amounts of raw data. Reacting to this
complexity, they designed an abstraction that allowed these computations to
be expressed in terms of two steps: a map function that processed a
key/value pair to generate a set of intermediate key/value pairs, and a
reduce function that merged all intermediate values associated with the
same intermediate key.3 This paradigm, known as MapReduce, became
hugely influential and led to the development of Apache Hadoop.

Although the Hadoop ecosystem began with a library that was primarily
built in Java, custom analysis on Hadoop clusters is now typically carried
out using Apache Spark. Spark programs can be written in Python or Scala,
but among the capabilities of Spark is the ability to execute ad hoc SQL
queries on distributed datasets.

So, to find out the number of one-way rentals, you could set up the
following data pipeline:

1. Periodically export transactions to comma-separated values (CSV)
text files in the Hadoop Distributed File System (HDFS).

2. For ad hoc analysis, write a Spark program that does the following:

a. Loads up the data from the text files into a “DataFrame”


http://spark.apache.org/

b. Executes an SQL query, similar to the query in the
previous section, except that the table name is replaced by
the name of the DataFrame

c. Exports the result set back to a text file
3. Run the Spark program on a Hadoop cluster.

Although seemingly straightforward, this architecture imposes a couple of
hidden costs. Saving the data in HDFS requires that the cluster be large
enough. One underappreciated fact about the MapReduce architecture is
that it usually requires that the compute nodes access data that is local to
them. The HDFS must, therefore, be sharded across the compute nodes of
the cluster. With both data sizes and analysis needs increasing dramatically
but independently, it is often the case that clusters are underprovisioned or
overprovisioned.* Thus, the need to execute Spark programs on a Hadoop
cluster means that your organization will need to become expert in
managing, monitoring, and provisioning Hadoop clusters. This might not be
your core business.

BigQuery: A Serverless, Distributed SQL Engine

What if you could run SQL queries as in a Relational Database
Management System (RDBMS) system, obtain efficient and distributed
traversal through the entire dataset as in MapReduce, and not need to
manage infrastructure? That’s the third option, and it is what makes
BigQuery so magical. BigQuery is serverless, and you can run queries
without the need to manage infrastructure. It enables you to carry out
analyses that process aggregations over the entire dataset in seconds to
minutes.

Don’t take our word for it, though. Try it out now. Navigate to
https://console.cloud.google.com/bigquery (logging into Google Cloud
Platform and selecting your project if necessary), copy and paste the
following query in the window,” and then click the “Run query” button:


https://console.cloud.google.com/bigquery

SELECT
EXTRACT(YEAR FROM starttime) AS year,
EXTRACT(MONTH FROM starttime) AS month,
COUNT(starttime) AS number_one_way

FROM

‘bigquery-public-data.new_york citibike.citibike trips"
WHERE

start_station_name != end_station_name

GROUP BY year, month
ORDER BY year ASC, month ASC

When we ran it, the BigQuery user interface (UI) reported that the query
involved processing 2.51 GB and gave us the result in about 2.7 seconds, as
illustrated in Figure 1-1.
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SELECT
EXTRACT(YEAR FROM starttime) AS year,
EXTRACT(MONTH FROM starttime) AS month,
COUNT(starttime) AS number one way

FROM
“bigguery-public-data.new york citibike.citibike trips”

WHERE
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9 GROUP BY year, month

10 ORDER BY year ASC, month ASC
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Row year month number_one_way

1 2013 7 815324
2 2013 8 970474
3 2013 9 1007799

Figure I-1. Running a query to compute the number of one-way rentals in the BigQuery web Ul

The equipment being rented out is bicycles, and so the preceding query
totals up one-way bicycle rentals in New York month by month over the
extent of the dataset. The dataset itself is a public dataset (meaning that
anyone can query the data held in it) released by New York City as part of
its Open City initiative. From this query, we learn that in July 2013, there
were 815,324 one-way Citibike rentals in New York City.

Note a few things about this. One is that you were able to run a query
against a dataset that was already present in BigQuery. All that the owner of
the project hosting the data had to do was to give you® “view” access to this
dataset. You didn’t need to start up a cluster or log in to one. Instead, you



just submitted a query to the service and received your results. The query
itself was written in SQL:2011, making the syntax familiar to data analysts
everywhere. Although we demonstrated on gigabytes of data, the service
scales well even when it does aggregations on terabytes to petabytes of
data. This scalability is possible because the service distributes the query
processing among thousands of workers almost instantaneously.

Working with BigQuery

BigQuery is a data warehouse, implying a degree of centralization and
ubiquity. The query we demonstrated in the previous section was applied to
a single dataset. However, the benefits of BigQuery become even more
apparent when we do joins of datasets from completely different sources or
when we query against data that is stored outside BigQuery.

Deriving Insights Across Datasets

The bicycle rental data comes from New York City. How about joining it
against weather data from the US National Oceanic and Atmospheric
Administration (NOAA) to learn whether there are fewer bicycle rentals on
rainy days?7

- Are there fewer bicycle rentals on rainy days?
WITH bicycle_rentals AS (
SELECT
COUNT(starttime) as num_trips,
EXTRACT(DATE from starttime) as trip_date
FROM “bigquery-public-data.new_york_citibike.citibike_trips"
GROUP BY trip_date
)s

rainy_days AS
(
SELECT
date,
(MAX(prcp) > 5) AS rainy
FROM (
SELECT



wx.date AS date,

IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp
FROM

“bigquery-public-data.ghcn_d.ghcnd_2016" AS wx
WHERE

wx.id = 'USW00094728'

)
GROUP BY

date
)

SELECT
ROUND(AVG(bk.num_trips)) AS num_trips,
wx.rainy

FROM bicycle_rentals AS bk

JOIN rainy_days AS wx

ON wx.date = bk.trip_date

GROUP BY wx.rainy

Ignore the specific syntax of the query. Just notice that, in the bolded lines,
we are joining the bicycle rental dataset with a weather dataset that comes
from a completely different source. Running the query satisfyingly yields
that, yes, New Yorkers are wimps—they ride the bicycle nearly 20% fewer
times when it rains:®

Row num_trips rainy
1 39107.0 false
2 32052.0 true

What does being able to share and query across datasets mean in an
enterprise context? Different parts of your company can store their datasets
in BigQuery and quite easily share the data with other parts of the company
and even with partner organizations. The serverless nature of BigQuery
provides the technological means to break down departmental silos and
streamline collaboration.

ETL, EL, and ELT

The traditional way to work with data warehouses is to start with an
Extract, Transform, and Load (ETL) process, wherein raw data is extracted



from its source location, transformed, and then loaded into the data
warehouse. Indeed, BigQuery has a native, highly efficient columnar
storage format® that makes ETL an attractive methodology. The data
pipeline, typically written in either Apache Beam or Apache Spark, extracts
the necessary bits from the raw data (either streaming data or batch files),
transforms what it has extracted to do any necessary cleanup or
aggregation, and then loads it into BigQuery, as demonstrated in Figure 1-2.

Extract Transform Load
Events, metrics, Cloud | Stream
andsoon ’ Pub/Sub
Cloud :
. | Dataflow W BigQuery

Raw logs, files, assets, Cloud "
Google Analytics data, — grorace [Forch Batc

and soon 8 atc

Figure 1-2. The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed
on Cloud Dataflow and can handle both streaming and batch data using the same code

Even though building an ETL pipeline in Apache Beam or Apache Spark
tends to be quite common, it is possible to implement an ETL pipeline
purely within BigQuery. Because BigQuery separates compute and storage,
it 1s possible to run BigQuery SQL queries against CSV (or JSON or Avro)
files that are stored as-is on Google Cloud Storage; this capability is called
federated querying. You can take advantage of federated queries to extract
the data using SQL queries against data stored in Google Cloud Storage,
transform the data within those SQL queries, and then materialize the
results into a BigQuery native table.

If transformation is not necessary, BigQuery can directly ingest standard
formats like CSV, JSON, or Avro into its native storage—an EL (Extract
and Load) workflow, if you will. The reason to end up with the data loaded
into the data warehouse is that having the data in native storage provides the
most efficient querying performance.

We strongly recommend that you design for an EL workflow if possible,
and drop to an ETL workflow only if transformations are needed. If
possible, do those transformations in SQL, and keep the entire ETL pipeline



within BigQuery. If the transforms will be difficult to implement purely in
SQL, or if the pipeline needs to stream data into BigQuery as it arrives,
build an Apache Beam pipeline and have it executed in a serverless fashion
using Cloud Dataflow. Another advantage of implementing ETL pipelines
in Beam/Dataflow is that, because this is programmatic code, such pipelines
integrate better with Continuous Integration (CI) and unit testing systems.

Besides the ETL and EL workflows, BigQuery makes it possible to do an
Extract, Load, and Transform (ELT) workflow. The idea is to extract and
load the raw data as-is and rely on BigQuery views to transform the data on
the fly. An ELT workflow is particularly useful if the schema of the raw
data is in flux. For example, you might still be carrying out exploratory
work to determine whether a particular timestamp needs to be corrected for
the local time zone. The ELT workflow is useful in prototyping and allows
an organization to start deriving insights from the data without having to
make potentially irreversible decisions too early.

The alphabet soup can be confusing, so we’ve prepared a quick summary in
Table 1-1.



Table I-1. Summary of workflows, sample architectures, and the
scenarios in which they would be used

Workflow Architecture When you’d use it

EL Extract data from files on Batch load of historical data.
Google Cloud Storage. Scheduled periodic loads of log files (e.g., once a
Load it into BigQuery’s day).

native storage.

You can trigger this from
Cloud Composer, Cloud
Functions, or scheduled
queries.

ETL Extract data from Pub/Sub, When the raw data needs to be quality controlled,
Google Cloud Storage, Cloud transformed, or enriched before being loaded into
Spanner, Cloud SQL, etc. BigQuery.

Transform the data using When the data loading needs to happen
Cloud Dataflow. continuously, i.e., if the use case requires
Have Dataflow pipeline write streaming.

to BigQuery When you want to integrate with continuous

integration/continuous delivery (CI/CD) systems
and perform unit testing on all components.

ELT Extract data from files in Experimental datasets where you are not yet sure
Google Cloud Storage. what kinds of transformations are needed to make
Store data in close-to-raw the data usable.
format in BigQuery. Any production dataset where the transformation

Transform the data on the fly can be expressed in SQL.
using BigQuery views.

The workflows in Table 1-1 are in the order that we usually recommend.

Powerful Analytics

The benefits of a warehouse derive from the kinds of analyses that you can
do with the data held within it. The primary way you interact with
BigQuery is via SQL, and because BigQuery is an SQL engine, you can use
a wide variety of Business Intelligence (BI) tools such as Tableau, Looker,
and Google Data Studio to create impactful analyses, visualizations, and
reports on data held in BigQuery. By clicking the “Explore in Data Studio”
button in the BigQuery web UI, for example, we can quickly create a



visualization of how our one-way bike rentals vary by month, as depicted in
Figure 1-3.

BigQuery provides full-featured support for SQL:2011, including support
for arrays and complex joins. The support for arrays in particular makes it
possible to store hierarchical data (such as JSON records) in BigQuery
without the need to flatten the nested and repeated fields. Besides the
support for SQL:2011, BigQuery has a few extensions that make it useful
beyond the core set of data warehouse use cases. One of these extensions is
support for a wide range of spatial functions that enable location-aware
queries, including the ability to join two tables based on distance or overlap
criteria.’? BigQuery is, therefore, a powerful engine to carry out descriptive
analytics.
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Figure 1-3. Visualization in Data Studio of how one-way rentals vary by month; nearly 15% of all
one-way bicycle rentals in New York happen in September

Another BigQuery extension to standard SQL supports creating machine
learning models and carrying out batch predictions. We cover the machine
learning capability of BigQuery in detail in Chapter 9, but the gist is that
you can train a BigQuery model and make predictions without ever having
to export data out of BigQuery. The security and data locality advantages of
being able to do this are enormous. BigQuery is, therefore, a data



warehouse that supports not just descriptive analytics but also predictive
analytics.

A warehouse also implies being able to store different types of data. Indeed,
BigQuery can store data of many types: numeric and textual columns, for
sure, but also geospatial data and hierarchical data. Even though you can
store flattened data in BigQuery, you don’t need to—schemas can be rich
and quite sophisticated. The combination of location-aware queries,
hierarchical data, and machine learning make BigQuery a powerful solution
that goes beyond conventional data warehousing and business intelligence.

BigQuery supports the ingest both of batch data and of streaming data. You
can stream data directly into BigQuery via a REST API. Often, users who
want to transform the data—for example, by adding time-windowed
computations—use Apache Beam pipelines executed by the Cloud
Dataflow service. Even as the data is streaming into BigQuery, you can
query it. Having common querying infrastructure for both historical (batch)
data and current (streaming) data is extremely powerful and simplifies
many workflows.

Simplicity of Management

Part of the design consideration behind BigQuery is to encourage users to
focus on insights rather than on infrastructure. When you ingest data into
BigQuery, there is no need to think about different types of storage, or their
relative speed and cost tradeoffs; the storage is fully managed. As of this
writing, the cost of storage automatically drops to lower levels if a table is
not updated for 90 days.""

We have already talked about how indexing is not necessary; your SQL
queries can filter on any column in the dataset, and BigQuery will take care
of the necessary query planning and optimization. For the most part, we
recommend that you write queries to be clear and readable and rely on
BigQuery to choose a good optimization strategy. In this book, we talk
about performance tuning, but performance tuning in BigQuery consists
mainly of clear thinking and the appropriate choice of SQL functions. You



will not need to do database administration tasks like replication,
defragmentation, or disaster recovery; the BigQuery service takes care of all
that for you.

Queries are automatically scaled to thousands of machines and executed in
parallel. You don’t need to do anything special to enable this massive
parallelization. The machines themselves are transparently provisioned to
handle the different stages of your job; you don’t need to set up those
machines in any way.

Not having to set up infrastructure leads to less hassle in terms of security.
Data in BigQuery is automatically encrypted, both at rest and in transit.
BigQuery takes care of the security considerations behind supporting
multitenant queries and providing isolation between jobs. Your datasets can
be shared using Google Cloud Identity and Access Management (IAM), and
it 1s possible to organize the datasets (and the tables and views within them)
to meet different security needs, whether you need openness or auditability
or confidentiality.

In other systems, provisioning infrastructure for reliability, elasticity,
security, and performance often takes a lot of time to get right. Given that
these database administration tasks are minimized with BigQuery,
organizations using BigQuery find that it frees their analysts’ time to focus
on deriving insights from their data.

How BigQuery Came About

In late 2010, the site director of the Google Seattle office pulled several
engineers (one of whom is an author of this book) off their projects and
gave them a mission: to build a data marketplace. We tried to craft the best
way to come up with a viable marketplace. The chief issue was data sizes,
because we didn’t want to provide just a download link. A data marketplace
is infeasible if people need to download terabytes of data in order to work
with it. How would you build a data marketplace that didn’t require users to
start by downloading the datasets to their own machines?



Enter a principle popularized by Jim Gray, the database pioneer. When you
have “big data,” Gray said, “you want to move the computation to the data,
rather than move the data to the computation.” Gray elaborates:

The other key issue is that as the datasets get larger, it is no longer
possible to just FTP or grep them. A petabyte of data is very hard to
FTP! So at some point, you need indices and you need parallel data
access, and this is where databases can help you. For data analysis, one
possibility is to move the data to you, but the other possibility is to move
your query to the data. You can either move your questions or the data.

Often it turns out to be more efficient to move the questions than to move
the data.’?

In the case of the data marketplace that we were building, users would not
need to download the datasets to their own machines if we made it possible
for them to bring their computations to the data. We would not need to
provide a download link, because users could work on their data without the
need to move it around.’3

We, the Googlers who were tasked with building a data marketplace, made
the decision to defer that project and focus on building a compute engine
and storage system in the cloud. After ensuring that users could do
something with the data, we would go back and add data marketplace
features.

In what language should users write their computation when bringing
computation to the data on the cloud? We chose SQL because of three key
characteristics. First, SQL is a versatile language that allows a large range
of people, not just developers, to ask questions and solve problems with
their data. This ease of use was extremely important to us. Second, SQL is
“relationally complete,” meaning that any computation over the data can be
done using SQL. SQL is not just easy and approachable. It is also very
powerful. Finally, and quite important for a choice of a cloud computation
language, SQL is not “Turing complete” in a key way: it always
terminates.'* Because it always terminates, it is ok to host SQL
computation without worrying that someone will write an infinite loop and
monopolize all the compute power in a datacenter.


https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)

Next, we had to choose an SQL engine. Google had a number of internal
SQL engines that could operate over data, including some that were very
popular. The most advanced engine was called Dremel; it was used heavily
at Google and could process terabytes’ worth of logs in seconds. Dremel
was quickly winning people over from building custom MapReduce
pipelines to ask questions of their data.

Dremel had been created in 2006 by engineer Andrey Gubarev, who was
tired of waiting for MapReduces to finish. Column stores were becoming
popular in the academic literature, and he quickly came up with a column
storage format (Figure 1-4) that could handle the Protocol Buffers
(Protobufs) that are ubiquitous throughout Google.
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Figure 1-4. Column stores can reduce the amount of data being read by queries that process all rows
but not all columns

Although column stores are great in general for analytics, they are
particularly useful for logs analysis at Google because many teams operate
over a type of Protobuf that has hundreds of thousands of columns. If
Andrey had used a typical record-oriented store, users would have needed
to read the files row by row, thus reading in a huge amount of data in the
form of fields that they were going to discard anyway. By storing the data
column by column, Andrey made it so that if a user needed just a few of the
thousands of fields in the log Protobufs, they would need to read only a
small fraction of the overall data size. This was one of the reasons why
Dremel was able to process terabytes’ worth of logs in seconds.

The other reason why Dremel was able to process data so fast was that its
query engine used distributed computing. Dremel scaled to thousands of



workers by structuring the computation as a tree, with the filters happening
at the leaves and aggregation happening toward the root.

By 2010, Google was scanning petabytes of data per day using Dremel, and
many people in the company used it in some form or another. It was the
perfect tool for our nascent data marketplace team to pick up and use.

As the team productized Dremel, added a storage system, made it self-
tuning, and exposed it to external users, the team realized that a cloud
version of Dremel was perhaps even more interesting than their original
mission. The team renamed itself “BigQuery,” following the naming
convention for “Bigtable,” Google’s NoSQL database.

At Google, Dremel is used to query files that sit on Colossus, Google’s file
store for storing data. BigQuery added a storage system that provided a
table abstraction, not just a file abstraction. This storage system was key in
making BigQuery simple to use and always fast, because it allowed key
features like ACID (Atomicity, Consistency, Isolation, Durability)
transactions and automatic optimization, and it meant that users didn’t need
to manage files.

Initially, BigQuery retained its Dremel roots and was focused on scanning
logs. However, as more customers wanted to do data warehousing and more
complex queries, BigQuery added improved support for joins and advanced
SQL features like analytic functions. In 2016, Google launched support for
standard SQL in BigQuery, which allowed users to run queries using
standards-compliant SQL rather than the awkward initial “DremelSQL”
dialect.

BigQuery did not start out as a data warehouse, but it has evolved into one
over the years. There are good things and bad things about this evolution.
On the positive side, BigQuery was designed to solve problems people have
with their data, even if they don’t fit nicely into data warehousing models.
In this way, BigQuery 1s more than just a data warehouse. On the downside,
however, a few data warehousing features that people expect, like a Data
Definition Language (DDL; e.g., CREATE statements) and a Data
Manipulation Language (DML; e.g., INSERT statements), were missing



until recently. That said, BigQuery has been focusing on a dual path: first,
adding differentiated features that Google is in a unique position to provide;
and second, becoming a great data warehouse in the cloud.

What Makes BigQuery Possible?

From an architectural perspective, BigQuery is fundamentally different
from on-premises data warehouses like Teradata or Vertica as well as from
cloud data warehouses like Redshift and Microsoft Azure Data Warehouse.
BigQuery is the first data warehouse to be a scale-out solution, so the only
limit on speed and scale is the amount of hardware in the datacenter.

This section describes some of the components that go into making
BigQuery successful and unique.

Separation of Compute and Storage

In many data warehouses, compute and storage reside together on the same
physical hardware. This colocation means that in order to add more
storage, you might need to add more compute power as well. Or to add
more compute power, you’d also need to get additional storage capacity.

If everyone’s data needs were similar, this wouldn’t be a problem; there
would be a consistent golden ratio of compute to storage that everyone
would live by. But in practice, one or the other of the factors tends to be a
limitation. Some data warehouses are limited by compute capacity, so they
slow down at peak times. Other data warehouses are limited by storage
capacity, so maintainers need to figure out what data to throw out.

When you separate compute from storage as BigQuery does, it means that
you never need to throw out data, unless you no longer want it. This might
not sound like a big deal, but having access to full-fidelity data is
immensely powerful. You might decide you want to calculate something in
a different way, so you can go back to the raw data to requery it. You would
not be able to do this if you had discarded the source data due to space
constraints. You might decide that you want to dig into why some aggregate



value exhibits strange behavior. You couldn’t do this if you had deleted the
data that contributed to the aggregation.

Scaling compute is equally powerful. BigQuery resources are denominated
in terms of “slots,” which are, roughly speaking, about half of a CPU core
(we cover slots in detail in Chapter 6). BigQuery uses slots as an abstraction
to indicate how many physical compute resources are available. Queries
running too slow? Just add more slots. More people want to create reports?
Add more slots. Want to cut back on your expenses? Decrease your slots.

Because BigQuery is a multitenant system that manages large pools of
hardware resources, it is able to dole out the slots on a per-query or per-user
basis. It is possible to reserve hardware for your project or organization, or
you can run your queries in the shared on-demand pool. By sharing
resources in this way, BigQuery can devote very large amounts of
computing power to your queries. If you need more computing power than
is available in the on-demand pool, you can purchase more via the
BigQuery Reservation API.

Several BigQuery customers have reservations in the tens of thousands of
slots, which means that if they run only one query at a time, those queries
can consume tens of thousands of CPU cores at once. With some reasonable
assumptions about numbers of CPU cycles per processed row, it is pretty
easy to see that these instances can process billions or even trillions of rows
per second.

In BigQuery, there are some customers that have petabytes of data but use a
relatively small amount of it on a daily basis. Other customers store only a
few gigabytes of data but perform complex queries using thousands of
CPUs. There isn’t a one-size-fits-all approach that works for all use cases.
Fortunately, the separation of compute and storage allows BigQuery to
accommodate a wide range of customer needs.

Storage and Networking Infrastructure

BigQuery differs from other cloud data warehouses in that queries are
served primarily from spinning disks in a distributed filesystem. Most



competitor systems need to cache data within compute nodes to get good
performance. BigQuery, on the other hand, relies on two systems unique to
Google, the Colossus File System and Jupiter networking, to ensure that
data can be queried quickly no matter where it physically resides in the
compute cluster.

Google’s Jupiter networking fabric relies on a network configuration where
smaller (and hence cheaper) switches are arranged to provide the capability
for which a much larger logical switch would otherwise be needed. This
topology of switches, along with a centralized software stack and custom
hardware and software, allows one petabit of bisection bandwidth within a
datacenter. That is equivalent to 100,000 servers communicating at 10
Gb/sec, and it means that BigQuery can work without the need to colocate
the compute and storage. If the machines hosting the disks are at the other
end of the datacenter from the machines running the computation, it will
effectively run just as fast as if the two machines were in the same rack.

The fast networking fabric comes in handy in two ways: to read in data
from a disk, and to shuffle between query stages. As discussed earlier, the
separation of compute and storage in BigQuery enables any machine within
the datacenter to ingest data from any storage disk. This requires, however,
that the necessary input data to the queries be read over the network at very
high speeds. The details of shuffle are described in Chapter 6, but it suffices
for now to understand that running complex distributed queries usually
requires moving large amounts of data between machines at intermediate
stages. Without a fast network connecting the machines doing the work,
shuffle would become a bottleneck that slows down the queries
significantly.

The networking infrastructure provides more than just speed: it also allows
for dynamic provisioning of bandwidth. Google datacenters are connected
through a backbone network called B4 that is software-defined to allocate
bandwidth in an elastic manner to different users, and to provide reliable
quality of service for high-priority operations. This is crucial for
implementing high-performing, concurrent queries.
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Fast networking isn’t enough, however, if the disk subsystem is slow or
lacks enough scale. To support interactive queries, the data needs to be read
from the disks fast enough so that they can saturate the network bandwidth
available. Google’s distributed filesystem is called Colossus and can
coordinate hundreds of thousands of disks by constantly rebalancing old,
cold data and distributing newly written data evenly across disks."® This
means that the effective throughput is tens of terabytes per second. By
combining this effective throughput with efficient data formats and storage,
BigQuery provides the ability to query petabyte-sized tables in minutes.

Managed Storage

BigQuery’s storage system is built on the idea that when you’re dealing
with structured storage, the appropriate abstraction is the table, not the file.
Some other cloud-based and open source data processing systems expose
the concept of the file to users, which puts users on the hook for managing
file sizes and ensuring that the schema remains consistent. Even though
creating files of an appropriate size for a static data store is possible, it is
notoriously difficult to maintain optimal file sizes for data that is changing
over time. Similarly, it is difficult to maintain a consistent schema when you
have a large number of files with self-describing schemas (e.g., Avro or
Parquet)—typically, every software update to systems producing those files
results in changes to the schema. BigQuery ensures that all the data held
within a table has a consistent schema and enforces a proper migration path
for historical data. By abstracting the underlying data formats and file sizes
from the user, BigQuery can provide a seamless experience so that queries
are always fast.

There is another advantage to BigQuery managing its own storage:
BigQuery can continue to become faster in a way that is transparent to the
end user. For example, improvements in storage formats can be applied
automatically to user data. Similarly, improvements in storage infrastructure
become immediately available. Because BigQuery manages all of the
storage, users don’t need to worry about backup or replication. Everything



from upgrades and replication to backup and restoration are handled
transparently and automatically by the storage management system.

One key advantage of working with structured storage at the abstraction
level of a table (rather than of a file) and of providing storage management
to these tables transparently to the end user is that tables allow BigQuery to
support database-like features, such as DML. You can run a query that
updates or deletes rows in a table and leave it to BigQuery to determine the
best way to modify the storage to reflect this information. BigQuery
operations are ACID; that is, all queries will commit completely or not at
all. Rest assured that your queries will never see the intermediate state of
another query, and queries started after another query completes will never
see old data. You do have the ability to fine-tune the storage by specifying
directives that control how the data is stored, but these operate at the
abstraction level of tables, not files. For example, it is possible to control
how tables are partitioned and clustered (we cover these features in detail in
Chapter 7) and thereby improve the performance and/or reduce the cost of
queries against those tables.

Managed storage is strongly typed, which means that data is validated at
entry to the system. Because BigQuery manages the storage and allows
users to interact with this storage only via its APIs, it can count on the
underlying data not being modified outside of BigQuery. Thus, BigQuery
can guarantee to not throw a validation error at read time about any of the
data present in its managed storage. This guarantee also implies an
authoritative schema, which is useful when figuring out how to query your
tables. Besides improving query performance, the presence of an
authoritative schema helps when trying to make sense of what data you
have because a BigQuery schema contains not just type information but
also annotations and table descriptions about how the fields can be used.

One downside of managed storage is that it is more difficult to directly
access and process the data using other frameworks. For example, had the
data been available at the abstraction level of files, you might have been
able to directly run a Hadoop job over a BigQuery dataset. BigQuery
addresses this issue by providing a structured parallel API to read the data.



This API lets you read at full speed from Spark or Hadoop jobs, but it also
provides extra features, like projection, filtering, and dynamic rebalancing.

Integration with Google Cloud Platform

Google Cloud follows the design principle called “separation of
responsibility,” wherein a small number of high-quality, highly focused
products integrate tightly with each other. It is, therefore, important to
consider the entire Google Cloud Platform (GCP) when comparing
BigQuery with other database products.

A number of different GCP products extend the usefulness of BigQuery or
make it easier to understand how BigQuery is being used. We talk about
many of these related products in detail in this book, but it is worth being
aware of the general separation of responsibilities:

e StackDriver monitoring and audit logs provide ways to understand
BigQuery usage in your organization.

e Cloud Dataproc provides the ability to read, process, and write to
BigQuery tables using Apache Spark programs.

e Federated queries allow BigQuery to query data held in Google
Cloud Storage, Cloud SQL (a relational database), Bigtable (a
NoSQL database), Spanner (a distributed database), or Google
Drive (which offers spreadsheets).

e Google Cloud Data Loss Prevention API helps you to manage
sensitive data and provides the capability to redact or mask
Personally Identifiable Information (PII) from your tables.

e Other machine learning APIs extend what it is possible on data
held in BigQuery; for example, the Cloud Natural Language API
can identify people, places, sentiment, and more in free-form text
(such as those of customer reviews) held in some table column.

e AutoML Tables and AutoML Text can create high-performing
custom machine learning models from data held in BigQuery


https://cloud.google.com/dlp

tables.

e Cloud Catalog provides the ability to discover data held across
your organization.

e You can use Cloud Pub/Sub to ingest streaming data and Cloud
Dataflow to transform and load it into BigQuery. You can use
Cloud Dataflow to carry out streaming queries as well. You can, of
course, interactively query the streaming data within BigQuery
itself. 10

e Data Studio provides charts and dashboards driven from data in
BigQuery. Third-party tools such as Tableau and Looker also
support BigQuery as a backend.

e Cloud Al Platform provides the ability to train sophisticated
machine learning programs from data held in BigQuery.

e Cloud Scheduler and Cloud Functions allow for scheduling or
triggering of BigQuery queries as part of larger workflows.

e Cloud Composer allows for orchestration of BigQuery jobs along
with tasks that need to be performed in Cloud Dataflow or other
processing frameworks, whether on Google Cloud or on-premises
in a hybrid cloud setup.

Taken together, BigQuery and the GCP ecosystem have features that span
several other database products from other cloud vendors; you can use them
as an analytics warehouse but also as an ELT system, a data lake (queries
over files), or a source of BI. The rest of this book paints a broad picture of
how you can use BigQuery in all of its aspects.

Security and Compliance

The integration with GCP goes beyond just interoperability with other
products. Cross-cutting features provided by the platform provide consistent
security and compliance.



The fastest hardware and most advanced software are of little use if you
can’t trust them with your data. BigQuery’s security model is tightly
integrated with the rest of GCP, so it is possible to take a holistic view of
your data security. BigQuery uses Google’s IAM access-control system to
assign specific permissions to individual users or groups of users. BigQuery
also ties in tightly with Google’s Virtual Private Cloud (VPC) policy
controls, which can protect against users who try to access data from
outside your organization, or who try to export it to third parties. Both [AM
and VPC controls are designed to work across Google Cloud products, so
you don’t need to worry that certain products create a security hole.

BigQuery is available in every region where Google Cloud has a presence,
enabling you to process the data in the location of your choosing. As of this
writing, Google Cloud has more than two dozen datacenters around the
world, and new ones are being opened at a fast rate. If you have business
reasons for keeping data in Australia or Germany, it is possible to do so.
Just create your dataset with the Australian or German region code, and all
of your queries against the data will be done within that region.

Some organizations have even stronger data location requirements that go
beyond where data is stored and processed. Specifically, they want to
ensure that their data cannot be copied or otherwise leave their physical
region. GCP has physical region controls that apply across products; you
can create a “VPC service controls” policy that disallows data movement
outside of a selected region. If you have these controls enabled, users will
not be able to copy data across regions or export to Google Cloud Storage
buckets in another region.

Summary

BigQuery is a highly scalable data warehouse that provides fast SQL

analytics over large datasets in a serverless way. Although users appreciate
the scale and speed of BigQuery, company executives often appreciate the
transformational benefits that come from being able to do ad hoc querying



in a serverless way, opening up data-driven decision making to all parts of
the company.

To ingest data into BigQuery, you can use an EL pipeline (commonly used
for periodic loads of log files), an ETL pipeline (commonly used when data
needs to be enriched or quality controlled), or an ELT pipeline (commonly
used for exploratory work).

BigQuery is designed for data analytics (OLAP) workloads and provides
full-featured support for SQL:2011. BigQuery can achieve its scale and
speed because it is built on innovative engineering ideas such as the use of
columnar storage, support for nested and repeated fields, and separation of
compute and storage, about which Google went on to publish papers.
BigQuery is part of the GCP ecosystem of big data analytics tools and
integrates tightly with both the infrastructure pieces (such as security,
monitoring, and logging) and the data processing and machine learning
pieces (such as streaming, Cloud DLP, and AutoML) of the platform.

1 Inreality, you’ll need to start the record keeping at the time customers borrow the equipment,
so that you will know whether customers have absconded with the equipment. However, it’s
rather early in this book to worry about that!

2 In this book, we use “ad hoc” query to refer to a query that is written without any attempt to
prepare the database ahead of time by using features such as indexes.

3 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” OSDI ’04: Sixth Symposium on Operating Systems Design and Implementation,
San Francisco, CA (2004), pp. 137-150. Available at
https://research.google.com/archive/mapreduce-osdi04.pdyf.

4 On Google Cloud Platform, Cloud Dataproc (the managed Hadoop offering) addresses this
conundrum in a different way. Because of the high bisectional bandwidth available within
Google datacenters, Cloud Dataproc clusters are able to be job specific—the data is stored on
Google Cloud Storage and read over the wire on demand. This is possible only if bandwidths
are high enough to approximate disk speeds. Don’t try this at home.

5 For your copy and pasting convenience, you can find all of the code and query snippets in this
book (including the query in the example) in the GitHub repository for this book.

6 Not you specifically. This is a public dataset, and the owner of the dataset gave this
permission to all authenticated users. You can be less permissive with your data, sharing the
dataset only with those within your domain or within your team.


https://research.google.com/archive/mapreduce-osdi04.pdf
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/01_intro/queries.txt
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

7 This code can be downloaded from the book’s GitHub repository.
8 Keep in mind that both authors live in Seattle, where it rains 150 days each year.
9 You can find more details on the columnar storage format in “How BigQuery Came About”.

10 For example, to compute conversion metrics based on the distance that a customer would
need to travel to purchase a product.

11 We believe all mentions of price to be correct as of the writing of this book, but please do
refer to the relevant policy and pricing sheets, as these are subject to change.

12 Jim Gray on eScience: A Transformed Scientific Method”, from The Fourth Paradigm: Data-
Intensive Scientific Discovery, ed. Tony Hey, Stewart Tansley, and Kristin Tolle (Microsoft,
2009), xiv. Available at https.//oreil.ly/M6zMN.

13 Today, BigQuery does provide the ability to export tables and results to Google Cloud
Storage, so we did end up building the download link after all! But BigQuery is not just a
download link—most uses of BigQuery involve operating on the data in place.

14 SQL does have a RECURSIVE keyword, but like many SQL engines, BigQuery does not
support this. Instead, BigQuery offers better ways to deal with hierarchical data by supporting
arrays and nesting.

15 To read more about Colossus, see http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-
Google-Keynote.pdf and https.://www.wired.com/2012/07/google-colossus/.

16 The separation of responsibility here is that Cloud Dataflow is better for ongoing, routine
processing while BigQuery is better for interactive, ad hoc processing. Both Cloud Dataflow
and BigQuery handle batch data as well as streaming data, and it is possible to run SQL queries
within Cloud Dataflow.
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Chapter 2. Query Essentials

BigQuery is first and foremost a data warehouse, by which we mean that it
provides persistent storage for structured and semi-structured data (like
JSON objects). The four basic CRUD operations are supported on this
persistent storage:

Create
To insert new records. This is implemented through load operations, by
the SQL INSERT statement, and through a streaming insert API. You can
also use SQL to create database objects like tables, views, and machine
learning models as part of BigQuery’s support of the Data Definition
Language (DDL). We go into examples of each later.

Read

To retrieve records. This is implemented by the SQL SELECT statement
as well as the bulk read API.

Update
To modify existing records. This is implemented by the SQL UPDATE
and MERGE statements, which are part of BigQuery’s support of the Data
Manipulation Language (DML). Note that, as we discussed in
Chapter 1, BigQuery is an analytics tool and is not meant to be used for
frequent updates.

Delete

To remove existing records. This is implemented by SQL DELETE, which
is also a DML operation.

BigQuery is a tool for data analysis, and the majority of queries you can
expect to write will be the aforementioned Read operations. Reading and
analyzing your data is accomplished by the SELECT statement, which is the
focus of this chapter. We cover creating, updating, and deleting data in later
chapters.



Simple Queries

BigQuery supports a dialect of SQL that is compliant with SQL:2011.
When the specification is ambiguous or otherwise lacking, BigQuery
follows the conventions set by existing SQL engines. There are other areas
in which there is no specification at all, such as with machine learning; in
these cases, BigQuery defines its own syntax and semantics.


https://www.iso.org/standard/53681.html

WHAT’S LEGACY SQL?

For a long time, BigQuery supported only a limited subset of SQL with
some Google enhancements. This was because BigQuery was based on
an internal SQL query engine at Google (called Dremel) that was
originally built to process log data held in Protocol Buffers
(Protobufs).” Because it was not built as a general-purpose SQL engine,
Dremel could use a dialect of SQL (now referred to as legacy SOL) that
was well suited to Protobufs, which are used to hold hierarchical
structures. For example, the legacy SQL dialect distinguished between
records (the complete hierarchical structure pertaining to a log message)
and rows (slices through the structure).? Therefore, COUNT(*) in
Dremel counts the number of non-NULL values in the most repeated
field. Even though such features made certain types of queries much

easier to write, Dremel took some getting used to because it was not
standard SQL.

In this book, we focus exclusively on standard SQL. The BigQuery user
interface (UI) in the Google Cloud Platform (GCP) Cloud Console
defaults to standard SQL, and new features are not being backported to
legacy SQL. However, some tools and user interfaces still default to
legacy SQL. If that is the case for any tool that you are using, preface
the query with #standardsql on the first line, as shown in the
following example:

#standardsql
SELECT DISTINCT gender
FROM “bigquery-public-data’ .new_york citibike.citibike_trips

If the BigQuery service receives a query string whose first line consists
of #standardsql, the query engine will treat what follows as standard
SQL even if the client itself does not know about standard SQL.



Retrieving Rows by Using SELECT

The SELECT statement allows you to retrieve the values of specified
columns from a table. For example, consider the New York bicycle rentals
dataset—it contains several columns relating to bicycle rentals, including
the trip duration and the gender of the person renting the bicycle. We can
pull out the values of these columns by using the SELECT statement (lines
beginning with double dashes or # are comments):

- simple select
SELECT
gender, tripduration
FROM
‘bigquery-public-data’ .new_york citibike.citibike trips
LIMIT 5

The result looks something like this:

Row gender tripduration

1 male 371

2 male 1330
3 male 830
4 male 555
5 male 328

The result set has two columns (gender and tripduration) in the order
specified in the SELECT. There are five rows in the result set because we
limited it to five in the final line of the query. BigQuery distributes the task
of fetching rows to multiple workers, each of which can read a different
shard (or part) of the dataset, so if you run the previous query, you might
get a different set of five rows.

Note that using a LIMIT constrains only the amount of data displayed to you
and not the amount of data the query engine needs to process. You are
typically charged based on the amount of data processed by your queries,
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and this usually implies that the more columns your query reads, the higher
your cost will be. The number of rows processed will usually be the total
size of the table that you are reading, although there are ways to optimize
this (which we cover in Chapter 7). We examine performance and pricing
considerations in later chapters.

The values are being retrieved from the following:

bigquery-public-data.new_york citibike.citibike trips

Here, bigquery-public-data is the project ID, new_york_citibike is
the dataset, and citibike_trips is the table. The project ID indicates
ownership of the persistent storage associated with the dataset and its
tables. The owner of bigquery-public-data is paying the storage costs
associated with the new_york dataset. The cost of the query is paid by the
project within which the query is issued. If you run the preceding query,
you pay the query costs. Datasets provide for Identity and Access
Management (IAM). The person who created the new_york_citibike
dataset® in BigQuery made it public, which is why we were able to list the
tables in the dataset and query one of those tables. The citibike_trips
table contains all of the bicycle trips. The project, dataset, and table are
separated by dots. The backtick is needed as an escape character in this case
because the hyphen (-) in the project name (bigquery-public-data)
would otherwise be interpreted as subtraction. Most developers simply
enclose the entire string within backticks, as shown here:

- simple select
SELECT
gender, tripduration
FROM
‘bigquery-public-data.new_york_citibike.citibike_trips"
LIMIT 5

Although this is simpler, you lose the ability to use the table name
(citibike_trips) as an alias. So it is worth developing the habit of putting
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the backticks only around the project name and avoiding the use of hyphens
when you create your own datasets and tables.

For a long time, our recommendation was that tables in BigQuery be stored
in denormalized form (i.e., a single table often containing all of the data
you’d need without the need for joining multiple tables). However, with
improvements in the service, this is no longer necessary. It is possible now
to achieve good performance even with a star schema.

Table 2-1 reviews the three key components of the name “bigquery-
public-data’.new_york_citibike.citibike_trips.

Table 2-1. Summary of BigQuery objects and descriptions

BigQuery

object Name Description

Project bigquery- Owner of the persistent storage associated with the dataset and its
public-da tables. The project also governs the use of all other GCP products as
ta well.

Dataset new_york_ Datasets are top-level containers that are used to organize and

citibike control access to tables and views. A user can own multiple datasets.

Table/View citibike A table or view must belong to a dataset, so you need to create at
trips least one dataset before loading data into BigQuery.?

a See https://cloud.google.com/bigquery/docs/datasets-intro.

Distinguishing between each of these three will be critical later when we
discuss geographic location, data access, and sharing of data.

Aliasing Column Names with AS

By default, the names of the columns in the result set match those of the
table from which the data is retrieved. It is possible to alias the column

names by using AS:

-- Aliasing column names
SELECT
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gender, tripduration AS rental_duration
FROM

‘bigquery-public-data’ .new_york citibike.citibike trips
LIMIT 5

This now yields the following (your results might be a different set of five):

Row gender rental_duration

1 male 432

2 female 1186
3 male 799
4 female 238
5 male 668

Aliasing is useful when you are transforming data. For example, without the
alias, a statement such as

SELECT
gender, tripduration/60
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
LIMIT 5

would result in an automatically assigned column name for the second
column in the result set:

Row gender f0_

1 male 6.183333333333334
2 male 22.166666666666668
3 male 13.833333333333334
4 male 9.25

5 male 5.466666666666667

You can assign the second column a more descriptive name by adding an
alias to your query:



SELECT

gender, tripduration/60 AS duration_minutes
FROM

‘bigquery-public-data’ .new_york_citibike.citibike_trips
LIMIT 5

This yields a result similar to the following:

Row gender duration_minutes
1 male 6.183333333333334
2 male 22.166666666666668
3 male 13.833333333333334
4 male 9.25

5 male 5.466666666666667

Filtering with WHERE

To find rentals of less than 10 minutes, we could filter the results returned
by SELECT by using a WHERE clause:

SELECT
gender, tripduration
FROM
‘bigquery-public-data’ .new_york_citibike.citibike_trips
WHERE tripduration < 600
LIMIT 5

As expected, the result set now consists only of rows for which the trip
duration is less than 600 seconds:

Row gender tripduration
1 male 178

2 male 518
3 male 376
4 male 326
5 male 516



The WHERE clause can include Boolean expressions. For example, to find
trips rented by females and lasting between 5 and 10 minutes, you could use
this:

SELECT
gender, tripduration
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE tripduration >= 300 AND tripduration < 600 AND gender = 'female'
LIMIT 5

The OR keyword also works, as does NOT. For example, to find nonfemale

riders (i.e., male riders and those whose gender is unknown), the WHERE
clause could be as follows:

WHERE tripduration < 600 AND NOT gender = 'female'

It is also possible to use parentheses to control the order of evaluation. To
find female riders who take short trips as well as all male riders, you could
use this:

WHERE (tripduration < 600 AND gender = 'female') OR gender = 'male’

The WHERE clause operates on the columns in the FROM clause; thus, it is not
possible to reference aliases from the SELECT list in the WHERE clause. In
other words, to retain only trips shorter than 10 minutes, it is not possible to
use the following:

SELECT
gender, tripduration/60 AS minutes
FROM
‘bigquery-public-data’ .new_york citibike.citibike trips
WHERE—mtnutes—<—16 -- CAN NOT REFERENCE ALIAS IN WHERE
LIMIT 5



Instead, you need to repeat the transformation in the WHERE clause (we
explore better alternatives later):

SELECT
gender, tripduration / 60 AS minutes
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE (tripduration / 60) < 10
LIMIT 5

SELECT *, EXCEPT, REPLACE

For cost and performance reasons (which we cover in detail in Chapter 7), it
is better to select only the columns that you want. If, however, you do want

to select all of the columns in the table, you can use SELECT *:

SELECT

*

FROM
‘bigquery-public-data’ .new_york_citibike.citibike_stations
WHERE name LIKE '%Riverside%'

The WHERE clause uses the LIKE operator to look for stations that have
Riverside anywhere in their name.

To select all except for a few columns, use SELECT EXCEPT:

SELECT
* EXCEPT(short_name, last_reported)
FROM
‘bigquery-public-data’.new_york_citibike.citibike_stations
WHERE name LIKE '%Riverside%'

This query returns the same result as the previous one except that two of the
columns (short_name and last_reported) are omitted.



To select all of the columns but replace a column with another, you can use

SELECT REPLACE. For example, you can add 5 to the number of bikes
reported to be available using the following:

SELECT
* REPLACE(num_bikes_available + 5 AS num_bikes_available)
FROM
‘bigquery-public-data’.new_york_citibike.citibike_stations

Subqueries with WITH

You can reduce the repetitiveness and retain the use of the alias by using a
subquery:

SELECT * FROM (

SELECT
gender, tripduration / 60 AS minutes
FROM
“bigquery-public-data’ .new_york_citibike.citibike_trips
)
WHERE minutes < 10
LIMIT 5

The outer SELECT operates on the inner subquery that is enclosed within
parentheses. Because the alias happens in the inner query, the outer query

can use the alias in its WHERE clause.

Queries with parentheses can become quite difficult to read. A better
approach is to use a WITH clause to provide names to what would otherwise
have been subqueries:

WITH all_trips AS (
SELECT
gender, tripduration / 60 AS minutes
FROM
‘bigquery-public-data’ .new_york_citibike.citibike_trips



SELECT * from all_trips
WHERE minutes < 10
LIMIT 5

In BigQuery, the WITH clause behaves like a named subquery and does not

create temporary tables. We will refer to all_trips as a “from_item”—it’s
not a table, but you can select from it.

Sorting with ORDER BY

To control the order of rows in the result set, use ORDER BY:

SELECT
gender, tripduration/60 AS minutes
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE gender = 'female'
ORDER BY minutes DESC
LIMIT 5

By default, rows in results are not ordered. If an order column is specified,
the default is ascending order. By asking for the rows to be listed in

descending order and limiting to 5, we get the five longest trips by women
in the dataset:

Row gender minutes

1 female 250348.9

2 female 226437.93333333332
3 female 207988.71666666667
4 female 159712.05

5 female 154239.0

Note that we are ordering by minutes, which 1s an alias—because the ORDER
BY is carried out after the SELECT, it is possible to use aliases in ORDER BY.



Aggregates

In the example in the previous section, when we converted seconds to
minutes by dividing by 60, we operated on every row in the table and
transformed it. It is also possible to apply a function to aggregate all of the
rows so that the result set contains only one row.

Computing Aggregates by Using GROUP BY

To find the average duration of trips by male riders, you could do the
following:

SELECT
AVG(tripduration / 60) AS avg_trip_duration
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE
gender = 'male’

This yields the following:

Row avg_trip_duration
1 13.415553172043886

This indicates that the average bicycle trip taken by male riders in New
York is about 13.4 minutes. Because the dataset is continuously updated,
though, your result might be different.

How about female riders? Although you could run the previous query
twice, once for male riders and the next for females, it seems wasteful to
traverse through the dataset a second time, changing the WHERE clause.
Instead, you can use a GROUP BY:

SELECT
gender, AVG(tripduration / 60) AS avg trip_duration
FROM



‘bigquery-public-data’ .new_york_citibike.citibike_trips
WHERE

tripduration is not NULL
GROUP BY

gender
ORDER BY

avg_trip_duration

This yields the following result:

Row gender avg_trip_duration

1 male 13.415553172043886
2 female 15.977472148805207
3 unknown 31.4395230232542

The aggregates have now been computed on each group separately. The
SELECT expression can include the thing being grouped by (gender) and
aggregates (AVG). Note that there are actually three genders in the dataset:
male, female, and unknown.

Counting Records by Using COUNT

To see how many rides went into the previous averages, you can simply add
a COUNT():

SELECT
gender,
COUNT(*) AS rides,
AVG(tripduration / 60) AS avg_trip_duration
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE
tripduration IS NOT NULL
GROUP BY
gender
ORDER BY
avg_trip_duration

This gives us the result shown here:



Row gender rides avg_trip_duration
1 male 35611787 13.415553172043888
2 female 11376412 15.97747214880521

3 unknown 6120522 31.439523023254207

Filtering Grouped Items by Using HAVING

It is possible to post-filter the grouped operations via the HAVING clause. To
learn which genders take trips that, on average, last longer than 14 minutes,
you can use this:

SELECT
gender, AVG(tripduration / 60) AS avg_trip_duration
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE tripduration IS NOT NULL
GROUP BY
gender
HAVING avg_trip_duration > 14
ORDER BY
avg_trip_duration

This yields the following:

Row gender avg_trip_duration
1 female 15.977472148805209
2 unknown 31.439523023254203

Note that, even though it is possible to filter the gender or trip duration with

a WHERE clause, it is not possible to use it to filter by average duration,
because the average duration is computed only after the items have been

grouped (try it!).

Finding Unique Values by Using DISTINCT



What values of gender are present in the dataset? Although you could use
GROUP BY, a simpler way to get a list of distinct values of a column is to use
SELECT DISTINCT:

SELECT DISTINCT
gender
FROM
‘bigquery-public-data’ .new_york_citibike.citibike_trips

This yields a result set with just four rows:

Row gender
1 male

2 female

3 unknown
4

Four rows? What is the fourth row? Let’s explore:

SELECT

bikeid,

tripduration,

gender
FROM

"bigquery-public-data’ .new_york_citibike.citibike_trips

WHERE gender = ""
LIMIT 100

This yields the result shown here:

Row bikeid tripduration gender
1 null null
2 null null
3 null null



In this particular case, a blank gender value seems to indicate missing or
poor-quality data. We discuss missing data (NULL values) and how you can
account for and transform them in Chapter 3, but briefly: if you want to
filter for NULLs in a WHERE clause, use the IS NULL or IS NOT NULL
operators because other comparison operators (=, !=, <, >) applied to a NULL
return NULL and therefore will never match the WHERE condition.

Going back to our original query for DISTINCT genders, it’s important to
note that the DISTINCT modifies the entire SELECT, not just the gender

column. To see what we mean, add a second column to the query’s SELECT
list:

SELECT DISTINCT
gender,
usertype
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE gender != "'

This results in six rows; that is, you get a row for every combination of
unique gender and user type (subscriber or customer) that exists in the
dataset:

Row gender usertype
1 male Subscriber
unknown Customer

female Subscriber

2
3
4 female  Customer
5 male Customer
6

unknown Subscriber

A Brief Primer on Arrays and Structs

In this section, we provide a brief primer on arrays so that we can illustrate
many of the data types and functions in the next chapter on small,



illustrative datasets. The combination of ARRAY (the square brackets in the
query that follows) and UNNEST gives us a quick way to experiment with
queries, functions, and data types.

For example, if you want to know how the SPLIT function of a string
behaves, simply try it out:

SELECT
city, SPLIT(city, ' ') AS parts
FROM (
SELECT * from UNNEST([
'Seattle WA', 'New York', 'Singapore'
1) AS city
)

Here’s the result of this quick query:

Row city parts
1 Seattle Seattle
WA
WA
2 New York New
York

3 Singapore Singapore

This ability to hardcode an array of values in the SQL query itself allows
you to play with arrays and data types without the need to find an
appropriate dataset or wait for long queries to finish. Even better, this
processes 0 bytes and therefore does not incur BigQuery charges.*

Another way to quickly experiment with a set of values employs UNION
ALL to combine single row SELECT statements:

WITH example AS (
SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways
UNION ALL SELECT 'Sun', 2376, 936



UNION ALL SELECT 'Mon', 1476, 736
)

SELECT * from example
WHERE numrides < 2000

This yields the two rows in the small inline dataset that have fewer than
2,000 rides:

Row day numrides oneways
1 Sat 1451 1018
2 Mon 1476 736

In the next chapter, we use such inline datasets with hardcoded numbers to
illustrate various aspects of the way different data types and functions
behave.

The purpose of this section is to quickly introduce arrays and structs so that
we can use them in illustrative examples. We review these concepts in
greater detail in Chapter 8, so feel free to quickly skim the remainder of this
section for now.

Creating Arrays by Using ARRAY_AGG
Consider finding the number of trips by gender and year:

SELECT
gender
, EXTRACT(YEAR from starttime) AS year --
, COUNT(*) AS numtrips

FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE gender != 'unknown' and starttime IS NOT NULL

GROUP BY gender, year
HAVING year > 2016

This returns the following:



Row gender year numtrips
1 male 2017 9306602
male 2018 3955871
female 2018 1260893
female 2017 3236735

AW N

TIP

What’s with the leading commas in the SELECT clause? Standard SQL (at least as of this writing)
does not support a trailing comma, and so moving the comma to the next line allows you to easily
reorder or comment lines and still have a working query:

SELECT

gender

, EXTRACT(YEAR from starttime) AS year

-- comment out this line , COUNT(1) AS numtrips
FROM etc.

Trust us, the leading comma will become second nature after a while and will greatly speed up
your development.5

What would be required, though, if we want to get a time-series of the
number of trips associated with each gender over the years—in other words,
the following result?

Row gender numtrips
1 male 9306602
3955871
2 female 3236735
1260893

To get this, you would need to create an array of the numbers of trips. You
can represent that array in SQL using the ARRAY type and create such an
array by using ARRAY_AGG:



SELECT
gender
s ARRAY_AGG(numtrips order by year) AS numtrips
FROM (
SELECT
gender
, EXTRACT(YEAR from starttime) AS year
, COUNT(1) AS numtrips

FROM
‘bigquery-public-data’ .new_york citibike.citibike_ trips
WHERE gender !'= 'unknown' and starttime IS NOT NULL

GROUP BY gender, year
HAVING year > 2016

)
GROUP BY gender

Normally, when you group by gender, you compute a single scalar value for
the group, such as the AVG(numtrips) to find the average number of trips
across all years. ARRAY_AGG allows you to collect the individual values and
put them into an ordered list, or ARRAY.

The ARRAY type is not limited to the results of queries. Because BigQuery
can ingest hierarchical formats such as JSON, it is possible that the input
data contains JSON arrays—for example:

"gender": "male",

"numtrips": [
"9306602",
"3955871"

]

"gender": "female",

"numtrips": [
"3236735",
"1260893"

]



Creating a table by ingesting such a JSON file will result in a table whose
numtrips column is an ARRAY type. An array is an ordered list of non-NULL
elements; for instance, ARRAY<INT64> is an array of integers.

NOTE

Technically, NULL elements in arrays are permissible as long as you don’t try to save them to a
table. Thus, for example, the following will not work, because you are trying to save the array [1,

NULL, 2] to the temporary table that holds the results:

WITH example AS (
SELECT true AS is_vowel, 'a' as letter, 1 as position

UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)
SELECT ARRAY_AGG(IF(position = 2, NULL, position)) as

positions from example

However, the following will work because the intermediate array with a NULL element is not

being saved:

WITH example AS (
SELECT true AS is_vowel, 'a' as letter, 1 as position

UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)
SELECT ARRAY_LENGTH(ARRAY_AGG(IF(position = 2, NULL,

position))) from example

Array of STRUCT

A STRUCT 1s a group of fields in order. The fields can be named (if omitted,
BigQuery will assign them names), which we recommend for readability:

SELECT
[



STRUCT('male' as gender, [9306602, 3955871] as numtrips)
, STRUCT('female' as gender, [3236735, 1260893] as numtrips)
1 AS bikerides

This results in the following:

Row bikerides.gender bikerides.numtrips

1 male 9306602
3955871
female 3236735
1260893

TUPLE

We could have left out the STRUCT keyword and the names of the fields, in
which case we would have ended up with a tuple or anonymous struct.
BigQuery assigns arbitrary names for unnamed columns and struct fields in
the result of a query; thus

SELECT

[
('male', [9306602, 3955871])
, ('female', [3236735, 1260893])

yields this result:

Row f0_. field 1 f0_. field_2

1 male 9306602
3955871

female 3236735
1260893

Obviously, leaving out aliases for the field names makes subsequent queries
unreadable and unmaintainable. Do not do this except for throwaway
experimentation.



Working with Arrays

Given an array, we can find the length of the array and retrieve individual
items:

SELECT

ARRAY_LENGTH(bikerides) as num_items

, bikerides[ OFFSET(0) ].gender as first_gender
FROM
(SELECT

[
STRUCT('male' as gender, [9306602, 3955871] as numtrips)

, STRUCT('female' as gender, [3236735, 1260893] as numtrips)
] AS bikerides)

This yields the following:

Row num_items first_gender

1 2 male

Offsets are numbered starting at zero, which is why OFFSET(0) gives us the
first item in the array.®

UNNEST an Array
In the query

SELECT

[
STRUCT('male' as gender, [9306602, 3955871] as numtrips)

, STRUCT('female' as gender, [3236735, 1260893] as numtrips)

the SELECT returns exactly one row containing an array, and so both genders
are part of the same row (look at the Row column):



Row f0_.gender f0_.numtrips

1 male 9306602
3955871

female 3236735
1260893

UNNEST i1s a function that returns the elements of an array as rows, so you

can UNNEST the result array to get a row corresponding to each item in the
array:

SELECT * from UNNEST(

[
STRUCT( 'male' as gender, [9306602, 3955871] as numtrips)
, STRUCT('female' as gender, [3236735, 1260893] as numtrips)

D

This yields the following:

Row gender numtrips

1 male 9306602
3955871

2 female 3236735
1260893

Notice that UNNEST is actually a from_item—you can SELECT from it. You
can select just parts of the array as well. For example, we can get only the

numtrips column by using this:

SELECT numtrips from UNNEST(
[
STRUCT('male' as gender, [9306602, 3955871] as numtrips)
, STRUCT('female' as gender, [3236735, 1260893] as numtrips)
1



This gives us the following results:

Row numtrips

1 9306602
3955871
2 3236735
1260893

Joining Tables

Data warehouse schemas often rely on a primary “fact” table that contains
events, and satellite “dimension” tables that contain extended, slowly
changing information. For example, a retail schema might have a “Sales”
table as the fact table and then “Products” and “Customers” tables as
dimensions. When using this type of schema, the majority of queries will
require a JOIN operation, such as to return the names of all the products
purchased by a particular customer.

BigQuery supports all of the common join types from relational algebra:
inner joins, outer joins, Cross joins, anti-joins, semi-joins, and anti-semi-
joins. Although it can sometimes be faster to avoid a JOIN, BigQuery can
efficiently join tables of almost any size. Chapter 7 discusses more about
how to optimize JOIN performance, but for now, we describe only the basic
JOIN operation.

The JOIN Explained

In Chapter 1, we looked at an example of a JOIN across tables in two
different datasets produced by two different organizations. Let’s revisit that
for a refresher:

WITH bicycle_rentals AS (
SELECT
COUNT(starttime) as num_trips,
EXTRACT(DATE from starttime) as trip_date



FROM “bigquery-public-data’.new_york_citibike.citibike_trips
GROUP BY trip_date
)s

rainy_days AS
(
SELECT
date,
(MAX(prcp) > 5) AS rainy
FROM (
SELECT
wx.date AS date,
IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp
FROM
“bigquery-public-data .ghcn_d.ghcnd_2016 AS wx
WHERE
wx.id = 'USWO0094728'
)
GROUP BY
date

)

SELECT
ROUND(AVG(bk.num_trips)) AS num_trips,
wx.rainy

FROM bicycle_rentals AS bk

JOIN rainy_days AS wx

ON wx.date = bk.trip_date

GROUP BY wx.rainy

In Chapter 1, we asked you to ignore the syntax, but let’s parse it now.

The first WITH pulls out the number of trips by day from the
citibike_trips table into a from item called bicycle_rentals. This is
not a table, but it is something from which we can select. Hence, we will
refer to it as a “from_item.” The second from_item is called rainy_days
and is created from the Global Historical Climate Network (GHCN)
observation in each day. This from_item marks each day as being rainy or
not depending on whether at least five mm of precipitation was observed at
weather station 'USWO0094728"', which happens to be in New York.

So now we have two from_items. Let’s visualize them separately:



WITH bicycle_rentals AS (
SELECT
COUNT(starttime) as num_trips,
EXTRACT(DATE from starttime) as trip_date
FROM “bigquery-public-data’.new_york citibike.citibike_trips
GROUP BY trip_date

)
SELECT * from bicycle_rentals LIMIT 5

The bicycle_rentals from item looks like this:

Row num_trips trip_date

1 31287 2013-09-
16

2 22477 2015-12-
30

3 37812 2017-09-
02

4 54230 2017-11-
15

5 25719 2013-11-
07

Similarly, the rainy_days from item looks like this:

Row date rainy
1 2016-10-11 false
2 2016-12-13 false
3 2016-09-28 false
4 2016-01-25 false
5 2016-05-24 false

We can now join these from_items using the join condition that the
trip_date in one is the same as the date in the second:

SELECT



bk.trip_date,
bk.num_trips,
wx.rainy
FROM bicycle_rentals AS bk
JOIN rainy_days AS wx
ON wx.date = bk.trip_date
LIMIT 5

This creates a table in which columns from the two tables are joined by
date:

Row trip_date num_trips rainy

1 2016-07- 55486 false
13

2 2016-04- 42308 false
25

3 2016-09- 61346 true
27

4 2016-07- 48572 false
15

5 2016-05- 52543 false
20

Given this, finding the average number of trips on rainy and nonrainy dates
is straightforward.

What we have illustrated is called an inner join, and it is the type of JOIN
used if no join type is specified.

Here’s how the JOIN works:

e Create two from_items. These can be anything: any two of a table,
a subquery, an array, or a WITH statement from which you can
select.

e [dentify a join condition. The join condition does not need to be an
equality condition; any Boolean condition that uses the two
from_items will do.



e Select the columns that you want. If identically named columns
exist in both from_items, use aliases (bk, wx in the previous
example query) to clearly specify from which from_item the
column needs to come.

e If not using an inner join, specify a join type.

The only requirement for carrying out such a join is that all the datasets
used to create the from_items are in the same BigQuery region (all
BigQuery public datasets are in the US region).

INNER JOIN

There are several types of joins. The INNER JOIN (or simply JOIN), to
which the previous example defaulted, creates a common set of rows to
select from:

WITH from_item_a AS (
SELECT 'Dalles' as city, 'OR' as state
UNION ALL SELECT 'Tokyo', 'Tokyo'
UNION ALL SELECT 'Mumbai', 'Maharashtra’

)s

from_item b AS (
SELECT 'OR' as state, 'USA' as country
UNION ALL SELECT 'Tokyo', 'Japan'
UNION ALL SELECT 'Maharashtra', 'India'

)

SELECT from_item_a.*, country

FROM from_item_a

JOIN from_1item_b

ON from_item_a.state = from_1item_b.state

The first from_item has a list of cities, and the second from_item identifies
the country each of the states belongs to. Joining the two yields a dataset
with three columns:



Row city state country
1 Dalles OR USA
2 Tokyo  Tokyo Japan
3 Mumbai Maharashtra India

Again, the join condition does not need to be an equality check. Any
Boolean condition will do, although it’s best to use an equality condition if
possible because BigQuery will return an error if the JOIN cannot be
executed efficiently.

For example, we might have a business rule that shipping from one country
to another involves a surcharge. To get a list of countries for which there
will be a surcharge from a given location, we could have specified this:

SELECT from_item_a.*, country AS surcharge
FROM from_item_a
JOIN from_1item_b
ON from_item_a.state != from_item_b.state

We would obtain the following:

Row city state surcharge
1 Dalles OR Japan
2 Dalles OR India
3 Tokyo  Tokyo USA
4 Tokyo  Tokyo India
5 Mumbai Maharashtra USA
6 Mumbai Maharashtra Japan

Notice that we get a row for each time that the join condition is met.
Because there are two rows for which the state doesn’t match, we get two
rows for each row in the original from item_a. If the join condition is not
met for some row, that row’s data items will not make it to the output.



CROSS JOIN

The CROSS JOIN, or cartesian product, is a join with no join condition. All
rows from both from_items are joined. This is the join that we would get if

the join condition of an INNER JOIN always evaluated to true.

For example, suppose that you organized a tournament and have a table of
the winners of each event in the tournament, and another table containing
the gifts for each event. You can give each winner the gift corresponding to

their event only by doing an INNER JOIN:

WITH winners AS (
SELECT 'John' as person, '100m' as event
UNION ALL SELECT 'Hiroshi', '200m'
UNION ALL SELECT 'Sita', '400m'

)s

gifts AS (
SELECT 'Google Home' as gift, '100m' as event
UNION ALL SELECT 'Google Hub', '200m'
UNION ALL SELECT 'Pixel3', '400m'

)
SELECT winners.*, gifts.gift

FROM winners
JOIN gifts

This would provide the following result:

Row person event gift

1 John 100m Google Home
2 Hiroshi 200m Google Hub

3 Sita 400m Pixel3

On the other hand, if you want to give each gift to each winner (i.e., each
winner gets all three gifts), you could do a CROSS JOIN:

WITH winners AS (
SELECT 'John' as person, '100m' as event
UNION ALL SELECT 'Hiroshi', '200m'



UNION ALL SELECT 'Sita', '400m'

)s

gifts AS (
SELECT 'Google Home' as gift
UNION ALL SELECT 'Google Hub'
UNION ALL SELECT 'Pixel3'

)
SELECT person, gift

FROM winners
CROSS JOIN gifts

This yields a row for each potential combination:

Row person gift

1 John Google
Home

2 John Google
Hub

3 John Pixel3

4 Hiroshi Google
Home

5 Hiroshi Google
Hub

6 Hiroshi Pixel3

7 Sita Google
Home

8 Sita Google
Hub

9 Sita Pixel3

Even though we wrote

SELECT from_item_a.*, from _item b.*
FROM from_item_a
CROSS JOIN from_item_b

we could also have written this:



SELECT from_item_a.*, from _item _b.*
FROM from_item_a, from_item_b

Therefore, a CROSS JOIN is also termed a comma cross join.

OUTER JOIN

Suppose that we have winners in events for which there is no gift, and gifts
for events that didn’t take place in our tournament:

WITH winners AS (
SELECT 'John' as person, '100m' as event
UNION ALL SELECT 'Hiroshi', '200m'
UNION ALL SELECT 'Sita', '400m'
UNION ALL SELECT 'Kwame', '50m'

)s

gifts AS (
SELECT 'Google Home' as gift, '100m' as event
UNION ALL SELECT 'Google Hub', '200m'
UNION ALL SELECT 'Pixel3', '400m'
UNION ALL SELECT 'Google Mini', '5000m'

In an INNER JOIN (on the event column), the winner of the 50-meter dash
doesn’t receive a gift, and the gift for the 5,000-meter event goes
unclaimed. In a CROSS JOIN, as we noted, every winner receives every gift.
OUTER JOINs control what happens if the join condition is not met. Table 2-
2 summarizes the various types of joins and the resulting output.



Table 2-2. Summary of types of joins and their outputs

Syntax

SELECT person, gift FROM winners INNER
JOIN gifts ON winners.event = gifts.ev
ent

SELECT person, gift FROM winners FULL
OUTER JOIN gifts ON winners.event = gi
fts.event

SELECT person, gift FROM winners LEFT
OUTER JOIN gifts ON winners.event = gi
fts.event

SELECT person, gift FROM winners RIGHT
OUTER JOIN gifts ON winners.event = gi
fts.event

Saving and Sharing

What happens

Only rows that meet the
join condition are
retained

All rows are retained
even if the join condition
1S not met

All the winners are
retained, but some gifts
are discarded

All the gifts are retained,
but some winners aren’t

Row

AW N =

Output

person
John
Hiroshi

Sita

person
John
Hiroshi
Sita

Kwame

person
John
Hiroshi
Sita

Kwame

person
John
Hiroshi

Sita

gift

Google Home
Google Hub
Pixel3

gift
Google Home
Google Hub

Pixel3

Google Mini
gift

Google Home
Google Hub
Pixel3

gift

Google Home
Google Hub
Pixel3

Google Mini

The BigQuery web UI offers the ability to save and share queries. This is

handy for collaboration because you can send colleagues a link to the query
text that enables them to execute the query immediately. Be aware, though,
that if someone has your query, they might not be able to execute it if they

don’t have access to your data. We discuss how to share and limit access to

your datasets in Chapter 10.

Query History and Caching

We should note that BigQuery retains, for audit and caching purposes, a
history of the queries that you submitted to the service (regardless of
whether the queries succeeded), as illustrated in Figure 2-1.



Query history Query editor

Saved queries 1 WITH winners AS (
2 SELECT 'John' as person, 'l100m' as event
) 3 UNION ALL SELECT 'Hiroshi', '200m'
Job history UNION ALL SELECT 'Sita’, '400m’
UNION ALL SELECT 'Kwame', '50m’'
Transfers [/] 6 ),
Processing location: US
Resources =+ ADD DATA w
3 Bas= .
n S ini g More ~
Search for your tables and datasets O Ru query =i Save query i Saveview | X% More
v [ usa_names Query history C REFRESH
» [Z] usda_nass_agriculture
» [E] usfs_fia Personal history Project history
» [Z]  utility_eu
Sortby Date «
v [&] utility_us
FH country_code_iso Today
[ date_greg 1:48 AM & WITH winners AS ( SELECT "John' as person, "100m' as ev
B num_999999 1:46 AM & WITH winners AS ( SELECT 'John' as person, '100m' as ev
- 1:45 AM & WITH winners AS ( SELECT 'John' as person, '100m' as ev
time
1:43 AM & WITH winners AS ( SELECT 'John' as person, '100m' as ev
fel us_cities_area 1:.43 AM © WITH winners AS ( SELECT 'John' as person, "100m' as ev
B us_congressional_districts_area 1:39 AM & WITH winners AS ( SELECT 'John' as person, '100m' as ev

Figure 2-1. The history of queries submitted to the BigQuery service is available via the “Query
history” tab in the web Ul

This history includes all queries submitted by you to the service, not just
those submitted via the web UI. Clicking any of the queries provides the
text of the query and the ability to open the query in the editor so that you
can modify and rerun it. In addition, the historical information includes the
amount of data processed by the query and the execution time. As of this
writing, the history is limited to 1,000 queries and six months.

The actual results of the query are stored in a temporary table that expires
after about 24 hours. If you are within that expiry window, you will also be
able to browse the results of the query from the web UI. Your personal
history is available only to you. Administrators of the project to which your
query was billed will also see your query text in the project’s history.

This temporary table is also used as a cache if the exact same query text is
submitted to the service and the query does not involve dynamic elements

such as CURRENT_TIMESTAMP() or RAND( ). Cached query results incur no



charges, but note that the algorithm to determine whether a query is a
duplicate simply does a string match—even an extra whitespace can result
in the query being reexecuted.

Saved Queries

You can save any query by loading it into the query editor, clicking the
“Save query” button, and then giving the query a name, as shown in
Figure 2-2. BigQuery then provides a URL to the query text.

Save query

Name

| demo_query|

Visibility
= Personal (editable only by you)

CANCEL SAVE

Figure 2-2. Save a query by clicking the “Save query” button in the web Ul

You can also choose to make the saved query shareable, in which case
anyone who has the URL will be directed to a page with the query text
prepopulated.

When you share a query, all that you share is the text of the query; you do
not share access to any data. Dataset permissions to execute the query must
be provided independently using the IAM controls (we discuss these in
Chapter 10). Also, unlike most BigQuery features, the ability to save and
share queries is available only from the web UI. As of this writing, there is
no REST API or client library available for this.



The list of saved queries is available from the UI. You can turn off link
sharing at any time to make the query text private again, as illustrated in
Figure 2-3.

G LINK SHARING [+) HIDE EDITOR

Query sharing @ Link sharing: ON

This query is editable only by you, but is visible
to anyone with the link.

https://console.cloud. google. com/bigque Wj

Ve view L More ~ This query will process 2.15 GB when run. Q

Figure 2-3. You can turn off link sharing at any time to make the query text private again

Views Versus Shared Queries

One of the advantages of sharing a query link (as opposed to simply
copying the text of the query into an email) is that you can continue to edit
the query so that your collaborators always get the latest version of the
query. This is useful when the envisioned use case is that they might want
to examine the query text, modify it, and then run the query.

The query text does not need to be syntactically correct; you can save and
share incomplete query text or template queries that need to be completed
by the end user. These capabilities are helpful when you’re collaborating
with colleagues.

If you expect the person to whom you are sending the query to subset or
query the results of your query, it is better to save your query as a view and
send your colleague a link to the view. Another advantage of views over
shared queries is that views are placed into datasets and offer fine-grained
IAM controls. Views can also be materialized.



We look at authorized views and at dynamically filtering them based on the
user in Chapter 10.

Summary

In this chapter, you saw how BigQuery supports SQL:2011: selecting
records (SELECT), aliasing column names (AS), filtering (WHERE), using
subqueries (parentheses and WITH), sorting (ORDER), aggregating (GROUP,
AVG, COUNT, MIN, MAX, etc.), filtering grouped items (HAVING), filtering
unique values (DISTINCT), and joining (INNER/CROSS/OUTER JOIN). There
is also support for arrays (ARRAY_AGG, UNNEST) and structs (STRUCT). You
also looked at how to review the history of queries (the text of the query,
not the results) submitted to the service. This history is available, you
learned, to the user who submitted the query, and to project administrators.
And you learned that it is possible to share query text through a link.

1 This is a data format that is very popular within Google because it provides efficient storage
in a programming-language-neutral way. It is now open source; see
https://developers.google.com/protocol-buffers/.

2 For more details on Dremel, see https://ai.google/research/pubs/pub36632.

3 The “person” in this case is one of the members of the Google Cloud Platform public datasets
team. See Google Cloud Public Datasets for what else is available.

4  We believe all mentions of price to be correct as of the writing of this book, but please do
refer to the relevant policy and pricing sheets because these are subject to change.

5 For an entertaining data-driven examination of the correlation between project success and the
use of leading commas, see https://oreil. ly/mFZKh.

6 You can also use ORDINAL(1) to work with 1-based indexing. We look at arrays in more detail
in Chapter 8.
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Chapter 3. Data Types, Functions, and
Operators

In the bike rental queries in the previous chapters, when we divided the trip duration by 60, we were able to do so
because trip duration was a numeric type. Trying to divide the gender by 60 would not have worked because
gender is a string. The functions and operations you have at your disposal might be restricted based on the type of
data to which you are applying them.

BigQuery supports several data types to store numeric, string, time, geographic, structured, and semi-structured
data:

INT64
This is the only integer type. It can represent numbers ranging from approximately 10 to 10'°. For real-
valued numbers, use FLOAT64, and for Booleans, use BOOL.

NUMERIC
NUMERIC offers 38 digits of precision and 9 decimal digits of scale and is suitable for exact calculations, such
as in finance.

STRING
This is a first-class type and represents variable-length sequences of Unicode characters. BYTES are variable-
length sequences of characters (not Unicode).

TIMESTAMP
This represents an absolute point in time.

DATETIME
This represents a calendar date and time. DATE and TIME are also available separately.

GEOGRAPHY
GEOGRAPHY represents points, lines, and polygons on the surface of the Earth.

STRUCT and ARRAY
See the description for each of these in Chapter 2.

Numeric Types and Functions

As just stated, there is only one integer type (INT64) and only one floating-point type (FLOAT64). Both of these
types support the typical arithmetic operations (+, —, /, *—for add, subtract, divide, and multiply, respectively).
Thus, we can find the fraction of bike rentals that are one-way by simply dividing one column by the other:

WITH example AS (
SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways
UNION ALL SELECT 'Sun', 2376, 936

)

SELECT *, (oneways/numrides) AS frac_oneway from example

This yields the following:



Row day numrides oneways frac_oneway
1 Sat 1451 1018 0.7015851137146796
2 Sun 2376 936 0.3939393939393939

Besides the arithmetic operators, bitwise operations (<< and >> for shifting, & and | for bitwise AND and OR, etc.)
are also supported on integer types.

To operate on data types, we can use functions. Functions perform operations on the values that are input to them.
As with other programming languages, functions in SQL encapsulate reusable logic and abstract away the
complexity of their implementation. Table 3-1 presents the various types of functions.

Table 3-1. Types of functions

Type of

function Description Example

Scalar A function that operates on one or more input parameters and ROUND(3.14) returns 3, which is a FLOAT64, and so the ROUND
returns a single value. function can be used wherever a FLOAT64 is allowed.
A scalar function can be used wherever its return data type is SUBSTR(“hello”, 1, 2) returns “he” and is an example of a
allowed. scalar function that takes three input parameters.

Aggregate A function that performs a calculation on a collection of values MAX(tripduration) computes the maximum value within the
and returns a single value. tripduration column.

Aggregate functions are often used with a GROUP BY to perform . aggregate functions include SUM(), COUNT(), AVG(), etc.
a computation over a group of rows.

Analytic  Analytic functions operate on a collection of values but return an  row_number (), rank(), etc. are analytic functions. We look at
output for each value in the collection. these in Chapter 8.
A window frame is used to specify the set of rows to which the
analytic function applies.

Table- A function that returns a result set and can therefore be used in FR ~ You can call UNNEST on an array and then select from it.

valued OM clauses.

User- A function that is not built in, but whose implementation is CREATE TEMP FUNCTION lastElement(arr ANY TYPE) AS (
defined  specified by the user. arr[ORDINAL(ARRAY_LENGTH(arr))]);

User-defined functions can be written in SQL (or JavaScript) and
can themselves return any of the aforementioned types.

Mathematical Functions

Had we wanted to round off the end-result of the query that computed the fraction of bike rentals that were one-
way, we would have used one of the many built-in mathematical functions that work on integer and floating-point

types:

WITH example AS (
SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways
UNION ALL SELECT 'Sun', 2376, 936

)
SELECT *, ROUND(oneways/numrides, 2) AS frac_oneway from example

This returns the following:

Row day numrides oneways frac_oneway
1 Sat 1451 1018 0.7
2 Sun 2376 936 0.39

Standard-Compliant Floating-Point Division

The division operator fails if the denominator is zero or if the result overflows. Rather than protect the division by
checking for zero values beforehand, it is better to use a special function for division whenever the denominator
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could be zero, as is the case in the previous example. A better form of that query would be this:

WITH example AS (
SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways
UNION ALL SELECT 'Sun', 2376, 936
UNION ALL SELECT 'Wed', 0, 0

)
SELECT

*, ROUND(IEEE_Divide(oneways, numrides), 2)
AS frac_oneway from example

The IEEE_D1ivide function follows the standard set by the Institute of Electrical and Electronics Engineers (IEEE)
and returns a special floating-point number called Not-a-Number (NaN) when a division by zero is attempted.

Also try the previous query using the standard division operator and using SAFE_DIVIDE (discussed shortly).!
Recall that, for your copy-pasting convenience, all the queries in this book are available in the book’s GitHub
repository.

SAFE Functions

You can make any scalar function return NULL instead of raising an error by prefixing it with SAFE. For example,
the following query will raise an error because the logarithm of a negative number is undefined:

SELECT LOG(10, -3), LOG(10, 3)

However, by prefixing the LOG with SAFE, like so:

SELECT SAFE.LOG(10, -3), SAFE.LOG(10, 3)

you will get NULL for the result of LOG(10, -3):

Row f0_ f1_
1 null - 2.095903274289385

The SAFE prefix works for mathematical functions, string functions (for example, the SUBSTR function would
normally raise an error if the starting index is negative, but it returns NULL if invoked as SAFE.SUBSTR), and time
functions. It is, however, restricted to scalar functions and will not work for aggregate functions, analytic
functions, or user-defined functions.

Comparisons

Comparisons are carried out using operators. The operators <, <=, >, >=, and != (or <>) are used to obtain the
results of comparison. NULL, followed by NaN, is assumed to be smaller than valid numbers (including -inf) for
the purposes of ordering. However, comparisons with NaN always return false and comparisons with NULL always
return NULL. This can lead to seemingly paradoxical results:

WITH example AS (
SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways
UNION ALL SELECT 'Sun', 2376, 936
UNION ALL SELECT 'Mon', NULL, NULL
UNION ALL SELECT 'Tue', IEEE_Divide(-3,0), 0 -- this is -inf,0
)
SELECT * from example
ORDER BY numrides


https://www.github.com/GoogleCloudPlatform/bigquery-oreilly-book/

This query returns the following:

Row day numrides oneways

1 Mon  null null
2 Tue  -Infinity 0

3 Sat  1451.0 1018
4 Sun  2376.0 936

However, filtering for fewer than 2000 rides with

SELECT * from example
WHERE numrides < 2000

yields only two results, not three:

Row day numrides oneways
1 Sat  1451.0 1018
2 Tue  -Infinity 345

This is because the WHERE clause returns only those rows for which the result is true, and when NULL is compared
to 2000, the result is NULL and not true.

Note that the operators & and | exist in BigQuery but are used only for bitwise operations. The ! symbol, as in !=,
means NOT, but it does not work as a standalone—you cannot say !gender to compute the logical negative of
gender, as you can in other languages. An alternate way to specify not-equals is to write <>, but be consistent on
whether you use != or <>.

Precise Decimal Calculations with NUMERIC

INT64 and FLOAT64 are designed to be flexible and fast, but they are limited by the fact that they are stored in a
base-2 (0s and 1s) form in a 64-bit area of computer memory when being used for calculations. This is a trade-off
well worth making in most applications, but financial and accounting applications often require exact calculations
for numbers represented in decimal (base-10).

The NUMERIC data type in BigQuery provides 38 digits to represent numbers, with 9 of those digits appearing after
the decimal point. It uses 16 bytes for storage and can represent decimal fractions exactly, thus making it suitable
for financial calculations.

For example, imagine that you needed to compute the sum of three payments. You’d want the results to be exact.
When using FLOAT64 values, however, the tiny differences between how the number is represented in memory and
how the number is represented in decimals can add up:

WITH example AS (
SELECT 1.23 AS payment
UNION ALL SELECT 7.89
UNION ALL SELECT 12.43
)
SELECT
SUM(payment) AS total_paid,
AVG(payment) AS average_paid
FROM example

Look at what we get:



Row total_paid average_paid
1 21.549999999999997 7.183333333333334

In financial and accounting applications, these imprecisions can add up and make balancing the books tricky.

Watch what happens when we change the data type of payment to be NUMERIC:

WITH example AS (
SELECT NUMERIC '1.23' AS payment
UNION ALL SELECT NUMERIC '7.89'
UNION ALL SELECT NUMERIC '12.43'

)
SELECT
SUM(payment) AS total_paid,
AVG(payment) AS average_paid
FROM example

The problem goes away. The sum of the payments is now precise (the average cannot be represented precisely
even in NUMERIC because it is a repeating decimal):

Row total_paid average_paid
1 21.55 7.183333333

Note that NUMERIC types need to be directly ingested into BigQuery as strings (NUMERIC '1.23"); otherwise, the
floating-point representation will obviate any of the precision gains to be had.

Working with BOOL

Boolean variables are those that can be either True or False. Because SQL is case insensitive, TRUE, true, and so
on also work.

Logical Operations

Recall from the section on filtering within the WHERE clause that the WHERE clause can include Boolean expressions
that include AND, OR, and NOT, as well as parentheses to control the order of execution. We used this query to
illustrate these options:

SELECT
gender, tripduration
FROM
‘bigquery-public-data’.new_york_citibike.citibike_trips
WHERE (tripduration < 600 AND gender = 'female') OR gender = 'male'

You could use comparison operators with Boolean variables, as in the following:

WITH example AS (
SELECT NULL AS is_vowel, NULL as letter, -1 as position
UNION ALL SELECT true, 'a', 1
UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3
)
SELECT * from example WHERE is_vowel != false

This gives us the following:



Row is_vowel letter position

1 true a 1

However, it is often simpler to use the IS operator when comparing against built-in constants, as shown in this
example:

WITH example AS (
SELECT NULL AS is_vowel, NULL as letter, -1 as position
UNION ALL SELECT true, 'a', 1
UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)
SELECT * from example WHERE is_vowel IS NOT false

This yields the following:

Row is_vowel letter position
1 null null -1
2 true a 1

Note that the two queries yield different results. The comparators (=, !=, <, etc.) return NULL for comparisons
against NULL, whereas the IS operator doesn’t.

TIP

NULLs typically represent missing values or values that were not collected. They have no value and are not zero, empty strings, or blanks. If your
dataset has NULLs, you must tread carefully since comparisons with NULL always return NULL, and so the WHERE clause will filter out NULL values.
Use the IS operator to check where a value is NULL.

It is simpler and more readable to use Boolean variables directly:

WITH example AS (

SELECT NULL AS is_vowel, NULL as letter, -1 as
position

UNION ALL SELECT true, 'a', 1

UNION ALL SELECT false, 'b', 2

UNION ALL SELECT false, 'c', 3

)

SELECT * from example WHERE is_vowel

The result here is like is_vowel IS TRUE:

Row is_vowel letter position

1 true a 1

Of course, such readability depends on naming the Boolean variables well!

Conditional Expressions

It is not just in the WHERE clause that Booleans are useful. It is possible to simplify many queries by using
conditional expressions in the SELECT. For example, suppose that you need to compute the sales price of each item
in a catalog based on the desired markup and tax rate corresponding to the item. If your catalog is missing values
for some of the necessary information, you might want to impute a default markup or default tax rate. You can
achieve this with the IF function:



WITH catalog AS (
SELECT 30.0 AS costPrice, 0.15 AS markup, 0.1 AS taxRate
UNION ALL SELECT NULL, 0.21, 0.15
UNION ALL SELECT 30.0, NULL, 0.09
UNION ALL SELECT 30.0, 0.30, NULL
UNION ALL SELECT 30.0, NULL, NULL
)
SELECT
*, ROUND(
costPrice *
IF(markup IS NULL, 1.05, 1l+markup) *
IF(taxRate IS NULL, 1.10, 1+taxRate)
, 2) AS salesPrice
FROM catalog

This yields a valid salesPrice for all items except those for which we don’t know the cost:

Row  costPrice markup taxRate salesPrice
1 30.0 0.15 0.1 37.95

2 null 0.21 0.15 null

3 30.0 null 0.09 3434

4 30.0 0.3 null 429

5 30.0 null null 34.65

The way the IF function works is that the first parameter is the condition to be evaluated. If the condition is true,
the second parameter is used, or else the third parameter is used. Because this function occurs in the SELECT, it is
carried out row by row.

Cleaner NULL-Handling with COALESCE

What if you want to do the imputation if a single value is missing, but not if more than one value is missing? In
other words, if you have no tax rate, you are willing to impute a 10% tax rate, but not if you also don’t know the
markup on the item.

A convenient way to keep evaluating expressions until we get to a non-NULL value is to use COALESCE:

WITH catalog AS (
SELECT 30.0 AS costPrice, 0.15 AS markup, 0.1 AS taxRate
UNION ALL SELECT NULL, 0.21, 0.15
UNION ALL SELECT 30.0, NULL, 0.09
UNION ALL SELECT 30.0, 0.30, NULL
UNION ALL SELECT 30.0, NULL, NULL
)
SELECT
*, ROUND(COALESCE(
costPrice * (1l+markup) * (l+taxrate),
costPrice * 1.05 * (1l+taxrate),
costPrice * (1+markup) * 1.10,
NULL
),2) AS salesPrice
FROM catalog

This yields the following (only the last row is different from the previous computation):



Row  costPrice markup taxRate salesPrice

1 30.0 0.15 0.1 37.95
2 null 0.21 0.15 null
3 30.0 null 0.09 3434
4 30.0 0.3 null 42.9
5 30.0 null null null

The COALESCE short-circuits the calculation whenever possible—that is, later expressions are not evaluated after a
non-NULL result is obtained. Therefore, the final NULL in the COALESCE is not required, but it makes the intent
clearer.

BigQuery supports the IFNULL function as a simplification of COALESCE when you have only two inputs.
IFNULL(a, b) is the same as COALESCE(a, b) and yields b if a is NULL. In other words, IFNULL(a, b) is the
same as IF(a IS NULL, b, a).

The very first query in this section on conditional expressions could have been simplified as follows:

SELECT
*, ROUND(
costPrice *
(1 + IFNULL(markup, 0.05)) *
(1 + IFNULL(taxrate,0.10))
, 2) AS salesPrice
FROM catalog

Casting and Coercion

Consider this example dataset in which the number of hours worked by an employee is stored as a string in order
to accommodate reasons for a leave of absence (this is a bad schema design, but bear with us):

WITH example AS (
SELECT 'John' as employee, 'Paternity Leave' AS hours_worked
UNION ALL SELECT 'Janaki', '35'
UNION ALL SELECT 'Jian', 'Vacation'
UNION ALL SELECT 'Jose', '40'
)

Now suppose that you want to find the total number of hours worked. This won’t work because the hours_worked
is a string, not a numeric type:

WITH example AS (
SELECT 'John' as employee, 'Paternity Leave' AS hours_worked
UNION ALL SELECT 'Janaki', '35'
UNION ALL SELECT 'Jian', 'Vacation'
UNION ALL SELECT 'Jose', '40'

)
SELECT SUM(hours_worked) from example

We need to explicitly convert the hours_worked to an INT64 before doing any aggregation. Explicit conversion is
called casting, and it requires the explicit use of the CAST() function. If casting fails, BigQuery raises an error. To
have it return NULL instead, use SAFE_CAST. For example, the following raises an error:

SELECT CAST("true" AS bool), CAST("invalid" AS bool)



Now try using SAFE_CAST:

SELECT CAST("true" AS bool), SAFE_CAST("invalid" AS bool)

You should see the following:

Row fo_ f1_

1 true null

Implicit conversion is called coercion, and this happens automatically when a data type is used in a situation for

which another data type is required. For example, when we use an INT64 in a situation when a FLOAT64 is needed,
the integer will be coerced into a floating-point number. The only coercions done by BigQuery are to convert
INT64 to FLOAT64 and NUMERIC, and NUMERIC to FLOAT64. Every other conversion is explicit and requires a CAST.

With the problem of the total number of hours worked, not all of the hours_worked strings can be converted to
integers, so you should use a SAFE_CAST:

WITH example AS (
SELECT 'John' as employee, 'Paternity Leave' AS hours_worked
UNION ALL SELECT '3Janaki', '35'
UNION ALL SELECT 'Jian', 'Vacation'
UNION ALL SELECT 'Jose', '40'
)
SELECT SUM(SAFE_CAST(hours_worked AS INT64)) from example

This yields the following:

Row fo_
1 75

Had it simply been a schema problem and all the rows contained numbers but were stored as strings, you could
have used a simple CAST:

WITH example AS (
SELECT 'John' as employee, '0O' AS hours_worked
UNION ALL SELECT '3Janaki', '35'
UNION ALL SELECT 'Jian', '0'
UNION ALL SELECT 'Jose', '40'
)
SELECT SUM(CAST(hours_worked AS INT64)) from example

Using COUNTIF to Avoid Casting Booleans

Consider this example dataset:

WITH example AS (
SELECT true AS is_vowel, 'a' as letter, 1 as position
UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)

SELECT * from example

Here’s the result of the query:



Row is_vowel letter position

1 true a 1
2 false b 2
3 false c 3

Now suppose that you want to find the total number of vowels. You might be tempted to do something simple,
such as the following:

SELECT SUM(is_vowel) as num_vowels from example

This won’t work, however (try it!), because SUM, AVG, and others are not defined on Booleans. You could cast the
Booleans to an INT64 before doing the aggregation, like so:

WITH example AS (
SELECT true AS is_vowel, 'a' as letter, 1 as position
UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)
SELECT SUM(CAST (is_vowel AS INT64)) as num_vowels from example

This would yield the following:

Row num_vowels
1 1

However, you should try to avoid casting as much as possible. In this case, a cleaner approach is to use the IF
statement on the Booleans:

WITH example AS (
SELECT true AS is_vowel, 'a' as letter, 1 as position
UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)
SELECT SUM(IF(is_vowel, 1, 0)) as num_vowels from example

An even cleaner approach is to use COUNTIF:

WITH example AS (
SELECT true AS is_vowel, 'a' as letter, 1 as position
UNION ALL SELECT false, 'b', 2
UNION ALL SELECT false, 'c', 3

)
SELECT COUNTIF(is_vowel) as num_vowels from example

String Functions

String manipulation is a common requirement for data wrangling, so BigQuery provides a library of built-in string
functions—for example:

WITH example AS (
SELECT * from unnest([
'Seattle', 'New York', 'Singapore'
1) AS city


https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions

)
SELECT

city

, LENGTH(city) AS len

, LOWER(city) AS lower

, STRPOS(city, 'or') AS orpos
FROM example

This example computes the length of the string, makes the string lowercase, and finds the location of a substring in
the “city” column, which gives us the following result:

Row city len lower orpos
1 Seattle 7 seattle 0
2 New York 8 new york 6
3 Singapore 9 singapore 7

The substring “or” occurs in “New York™ and in “Singapore,” but not in “Seattle.”

Two particularly useful functions for string manipulation are SUBSTR and CONCAT. SUBSTR extracts a substring, and
CONCAT concatenates the input values. The following query finds the position of the @ symbol in an email address,
extracts the username, and concatenates the city in which the individual lives:

WITH example AS (
SELECT 'armin@abc.com' AS email, 'Annapolis, MD' as city
UNION ALL SELECT 'boyan@bca.com', 'Boulder, CO'
UNION ALL SELECT 'carrie@cab.com', 'Chicago, IL'

)

SELECT
CONCAT(
SUBSTR(email, 1, STRPOS(email, '@') - 1), -- username
' from ', city) AS callers
FROM example

Here’s what the result looks like:

Row callers

1 armin from Annapolis, MD
2 boyan from Boulder, CO

3 carrie from Chicago, IL
Internationalization

Strings in BigQuery are Unicode, so avoid assumptions that rely on English. For example, the “upper” case is a
no-op in Japanese, and the default UTF-8 encoding that is carried out by the cast as bytes is insufficient for
languages such as Tamil, as demonstrated here:

WITH example AS (
SELECT * from unnest([
'Seattle', 'New York', 'fmusULLy', 'R
1) AS city
)
SELECT
city
, UPPER(city) AS allcaps
, CAST(city AS BYTES) as bytes
FROM example



As you can see, this simply doesn’t work as presumably intended:

Row city allcaps bytes
1 Seattle SEATTLE  U2VhdHRsZQ=—=
2 New York NEW TmV3IFlvems=
YORK
3 Arslyl Amslyf 4K6adK6/4K6Z4K+NAK6VAK6q4K+NAK6q4K+CAK6waK+N
4 RR R 5p2x5Lgs

BigQuery supports three different ways to represent strings—as an array of Unicode characters, as an array of
bytes, and as an array of Unicode code points (INT64):

WITH example AS (
SELECT * from unnest([
'Seattle', 'New York', 'fmsliy', 'HR'
1) AS city
)
SELECT
city
, CHAR_LENGTH(city) as char_len
, TO_CODE_POINTS(city)[ORDINAL(1)] as first_code_point
, ARRAY_LENGTH(TO_CODE_POINTS(city)) as num_code_points
, CAST (city AS BYTES) as bytes
, BYTE_LENGTH(city) as byte_len
FROM example

Note the difference between the results for CHAR_LENGTH and BYTE_LENGTH on the same strings, and how the
number of code points is the same as the number of characters:

Row city char_len first_code_point num_code_points bytes byte_len
1 Seattle 7 83 7 U2VhdHRsZQ== 7
2 New York 8 78 8 TmV3IFlvems= 8
3 &ﬂrE}JasLIIELI'T 11 2970 11 4K 624K 6/4K6Z4K+N4K6VAK6q4K+N4K6q4K+C4K6W4K+N 33
4 RR 2 26481 2 5p2x5Lgs 6

Because of these differences, you need to recognize which columns might contain text in different languages, and
be aware of language differences when using string manipulation functions.

Printing and Parsing

You can simply cast a string as an INT64 or a FLOAT64 in order to parse it, but customizing the string
representation will require the use of FORMAT:

SELECT

CAST(42 AS STRING)
CAST('42' AS INT64)
FORMAT('%03d"', 42)
FORMAT('%5.3f"', 32.457842)
FORMAT('%5.3f"', 32.4)
FORMAT (' **%s**' 'H')
FORMAT('%s-%03d', 'Agent', 7)

Here is the result of that query:

Row fo_ f1_ f2_ f3_ f4_ f5_ f6_
1 42 42 042 32458 32400  RH*F Agent-007



FORMAT works similarly to C’s printf, and it accepts the same format specifiers. A few of the more useful
specifiers are demonstrated in the preceding example. Although FORMAT also accepts dates and timestamps, it is
better to use FORMAT_DATE and FORMAT_TIMESTAMP so that the display formats can be locale-aware.

String Manipulation Functions

Manipulating strings is such a common need in Extract, Transform, and Load (ETL) pipelines that these BigQuery
convenience functions are worth having on speed dial:

SELECT

ENDS_WITH('Hello', 'o') -- true

ENDS_WITH('Hello', 'h') -- false

STARTS_WITH( 'Hello', 'h')
STRPOS('Hello', 'e') -- 2
STRPOS('Hello', 'f') -- @ for not-found
SUBSTR( 'Hello', 2, 4) -- 1-based
CONCAT( 'Hello', 'World')

-- false

The result of this query is as follows:

Row fo_ f1_ f2_ f3_ f4_ f5_ f6_
1 true false false 2 0 ello HelloWorld

Note how SUBSTR() behaves. The first parameter is the starting position (it is 1-based), and the second parameter
is the desired number of characters in the substring.

Transformation Functions

Another set of functions that is worth becoming familiar with are those that allow you to manipulate the string:

SELECT

LPAD('Hello', 10, '*') -- left pad with *
RPAD('Hello', 10, '*') -- right pad
LPAD('Hello', 10) -- left pad with spaces
LTRIM("' Hello ') -- trim whitespace on left
RTRIM(' Hello ') -- trim whitespace on right
TRIM (' Hello ') -- trim whitespace both ends
TRIM ('***Hello***', '*') -- trim * both ends
REVERSE('Hello') -- reverse the string

v e e e e e

Let’s look at the result of this query:

Row fo_ f1_ f2_ f3_ f4_ f5_ f6_ f7_
1 *#***Hello Hello***** Hello Hello Hello Hello Hello olleH

Regular Expressions

Regular expressions provide much more powerful semantics than the convenience functions. For instance, STRPOS
and others can find only specific characters, whereas you can use REGEXP_CONTAINS for more powerful searches.

For example, you could do the following to determine whether a column contains a US zip code (the short form of
which is a five-digit number and the long form of which has an additional four digits separated by either a hyphen
or a space):

SELECT
column


http://www.cplusplus.com/reference/cstdio/printf/

FROM

REGEXP_CONTAINS(column, r'\d{5}(?:[-\s]\d{4})?') has_zipcode
REGEXP_CONTAINS(column, r'A\d{5}(?:[-\s]\d{4})?$"') is_zipcode
REGEXP_EXTRACT(column, r'\d{5}(?:[-\s]\d{4})?') the_zipcode
REGEXP_EXTRACT_ALL(column, r'\d{5}(?:[-\s]\d{4})?') all_zipcodes

REGEXP_REPLACE(column, r'\d{5}(?:[-\s]\d{4})?', '*****') masked

(

SELECT * from unnest([

'12345', '1234', '12345-9876"',
'abc 12345 def', 'abcde-fghi',
'12345 ab 34567', '12345 9876'

1) AS column

)

Here’s what this query yields:

Row

—

AN A W

7

column has_zipcode is_zipcode the_zipcode all_zipcodes masked

12345 true true 12345 12345 Hkkkk

1234 false false null 1234

12345-9876 true true 12345-9876 12345-9876 Hkkkk

abc 12345 def true false 12345 12345 abc ***** def

abcde-fghi false false null abcede-fghi

12345 ab 34567 true false 12345 12345 LR gl GO0
34567

12345 9876 true true 12345 9876 12345 9876 I

There are a few things to note:

The regular expression \d{5} matches any string consisting of five decimal numbers.

The second part of the expression, in parentheses, looks for an optional (note the ? at the end of the
parentheses) group (?:) of four decimal numbers (\d{4}), which is separated from the first five numbers
by either a hyphen or by a space (\s).

The presence of \d, \s, and others in the string could cause problems, so we prefix the string with an r
(for raw), which makes it a string literal.

The second expression illustrates how to find an exact match: simply insist that the string in question must
start (*) and end ($) with the specified string.

To extract the part of the string matched by the regular expression, use REGEXP_EXTRACT. This returns
NULL if the expression is not matched, and only the first match if there are multiple matches.

REGEXP_EXTRACT_ALL returns all the matches. If there is no match, it returns an empty array.

REGEXP_REPLACE replaces every match with the replacement string.

The regular expression support in BigQuery follows that of Google’s open source RE2 library. To see the syntax
accepted by this library, visit https://github.com/google/re2/wiki/Syntax. Regular expressions can be cryptic, but
they are a rich topic that is well worth mastering.?

Summary of String Functions

Because strings are so common in data analysis, it is worth learning the broad contours of the available functions.
You can always refer to the BigQuery documentation for the exact syntax. Table 3-2 separates them into their
respective categories.


https://github.com/google/re2
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Table 3-2. Categories of string functions

Category Functions Notes

Representations CHAR_LENGTH, BYTE_LENGTH, TO_CODE_POINTS, Normalize allows, for example, different Unicode space characters to be
CODE_POINTS_TO_STRING, made equivalent.
SAFE_CONVERT_BYTES_TO_STRING,
TO_HEX, TO_BASE32, TO_BASE64, FROM_HEX, FR
OM_BASE32, FROM_BASE64, NORMALIZE

Printing and FORMAT, REPEAT, SPLIT The syntax of FORMAT is similar to C’s printf: format("%03d", 12)
parsing yields 012. For locale-aware conversions, use FORMAT_DATE, etc.

Convenience ENDS_WITH, LENGTH, STARTS_WITH, STRPOS, SU The LENGTH function is equivalent to CHAR_LENGTH for Strings and to BYTE_

BSTR, CONCAT LENGTH for Bytes.
Transformations |PAD, LOWER, LTRIM, REPLACE, REVERSE, RPAD, The default trim characters are Unicode whitespace, but it is possible to
RTRIM, TRIM, UPPER specify a different set of trim characters.
Regular REGEXP_CONTAINS, See https.//github.com/google/re2/wiki/Syntax for the syntax accepted by
expressions REGEXP_EXTRACT, REGEXP_EXTRACT_ALL, REGE BigQuery.
XP_REPLACE

Working with TIMESTAMP

A timestamp represents an absolute point in time regardless of location. Thus a timestamp of 2017-09-27
12:30:00.45 (Sep 27, 2017, at 12:30 UTC) represents the same time as 2017-09-27 13:30:00.45+1:00 (1:30 p.m. at
a time zone that is an hour behind):

SELECT t1, t2, TIMESTAMP_DIFF(t1, t2, MICROSECOND)
FROM (SELECT
TIMESTAMP "2017-09-27 12:30:00.45" AS ti1,
TIMESTAMP "2017-09-27 13:30:00.45+1" AS t2

)

This returns the following:

Row t1 t2 fo_
1 2017-09-27 12:30:00.450 UTC 2017-09-27 12:30:00.450 UTC 0

Parsing and Formatting Timestamps

BigQuery is somewhat forgiving when it comes to parsing the timestamp. The date and time parts of this string
representation can be separated either by a T or by a space in accordance with ISO 8601. Similarly, the month, day,
hour, and so on might or might not have leading zeros. However, best practice is to use the canonical
representation shown in the previous paragraph. As that string representation would indicate, this timestamp can
represent only four-digit years; years before the common era cannot be represented using TIMESTAMP.

You can use PARSE_TIMESTAMP to parse a string that is not in the canonical format:

SELECT
fmt, input, zone
, PARSE_TIMESTAMP(fmt, input, zone) AS ts

FROM (
SELECT '%Y%m%d-%H%M%S' AS fmt, '20181118-220800' AS input, '+0' as zone
UNION ALL SELECT '%c', 'Sat Nov 24 21:26:00 2018', 'America/Los_Angeles'
UNION ALL SELECT '%x %X', '11/18/18 22:08:00', 'UTC'

)

Here is what this would yield:
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Row fmt input zone ts

1 %Y %m%d%-H%M%S 20181118-220800 +0 2018-11-18 22:08:00 UTC
2 Y%c Sat Nov 24 21:26:00 2018 America/Los_Angeles 2018-11-25 05:26:00 UTC
3 %x %X 11/18/18 22:08:00 UTC 2018-11-18 22:08:00 UTC

The first example uses format specifiers for the year, month, day, and so on to create a timestamp from the
provided string. The second and third examples use preexisting specifiers for commonly encountered date-time
formats.3

Conversely, you can use FORMAT_TIMESTAMP to print out a timestamp in any desired format:

SELECT
ts, fmt
, FORMAT_TIMESTAMP(fmt, ts, '+6') AS ts_output

FROM (
SELECT CURRENT_TIMESTAMP() AS ts, '%Y%m%d-%H%M%S' AS fmt
UNION ALL SELECT CURRENT_TIMESTAMP() AS ts, '%c' AS fmt
UNION ALL SELECT CURRENT_TIMESTAMP() AS ts, '%x %X' AS fmt

)

This results in the following:

Row ts fmt ts_output

1 2018-11-25 05:42:13.939840 UTC %Y %m%d-%H%M%S 20181125-114213

2 2018-11-25 05:42:13.939840 UTC %c Sun Nov 25 11:42:13 2018
3 2018-11-25 05:42:13.939840 UTC %x %X 11/25/18 11:42:13

The preceding example uses the function CURRENT_TIMESTAMP() to retrieve the system time at the time the query
is executed. In both PARSE_TIMESTAMP and FORMAT_TIMESTAMP, the time zone is optional; if omitted, the time
zone is assumed to be UTC.

Extracting Calendar Parts

Given a timestamp, it is possible to extract information about the Gregorian calendar corresponding to the
timestamp. For example, we can extract information about Armistice Day* using this:

SELECT
ts
, FORMAT_TIMESTAMP('%c', ts) AS repr
, EXTRACT(DAYOFWEEK FROM ts) AS dayofweek
, EXTRACT(YEAR FROM ts) AS year
, EXTRACT(WEEK FROM ts) AS weekno
FROM (
SELECT PARSE_TIMESTAMP('%Y%m%d-%H%M%S', '19181111-054500') AS ts

)

Here is the result:

Row ts repr dayofweek year  weekno

1 1918-11-11 05:45:00 UTC Mon Nov 11 05:45:00 1918 2 1918 45

The week is assumed to begin on Sunday, and days prior to the first Sunday of the year are assigned to week 0.
This is not internationally safe. Hence, if you’re in a country (such as Israel) where the week begins on Saturday, it
is possible to specify a different day for the start of the week:



EXTRACT (WEEK( ' SATURDAY') FROM ts)

The number of seconds from the Unix epoch (January 1, 1970) is not available through EXTRACT. Instead, special
functions exist to convert to and from the Unix epoch:

SELECT
UNIX_MILLIS(TIMESTAMP "2018-11-25 22:30:00 UTC")
, UNIX_MILLIS(TIMESTAMP "1918-11-11 22:30:00 UTC") --invalid
, TIMESTAMP_MILLIS(1543185000000)

This yields the following:

Row f0_ f1_ f2_
1 1543185000000 -1613784600000 2018-11-25 22:30:00 UTC

Note that the second one overflows and yields a negative number, but no error is raised.

Arithmetic with Timestamps

It is possible to add or subtract time durations from timestamps. It is also possible to find the time difference
between two timestamps. In all of these functions, you need to specify the units in which the durations are
expressed:

SELECT
EXTRACT(TIME FROM TIMESTAMP_ADD(t1, INTERVAL 1 HOUR)) AS plus_1h
, EXTRACT(TIME FROM TIMESTAMP_SUB(tl, INTERVAL 10 MINUTE)) AS minus_10min
, TIMESTAMP_DIFF(CURRENT_TIMESTAMP(),
TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 1 MINUTE),
SECOND) AS plus_1imin
, TIMESTAMP_DIFF(CURRENT_TIMESTAMP(),
TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 1 MINUTE),
SECOND) AS minus_1imin
FROM (SELECT
TIMESTAMP "2017-09-27 12:30:00.45" AS t1

)

This returns the timestamps an hour from now, 10 minutes ago, and the time difference in seconds corresponding
to one minute from now and one minute earlier:

Row plus_1h minus_10min plus_1min minus_1min
1 13:30:00.450000 12:20:00.450000 60 -60

Date, Time, and DateTime

BigQuery has three other functions for representing time: DATE, TIME, and DATETIME. DATE is useful for when you
are tracking only the day in which something happens, and any more precision is unnecessary. TIME is useful to
represent the time of day that things happen, and to perform mathematical operations with those times. With TIME,
you can answer questions like, “What time will it be eight hours from the starting time?”” DATETIME is a TIMESTAMP
rendered in a specific time zone, so it is useful when you have an unambiguous time zone in which an event
occurred and you don’t need to do time zone conversions.

Counterparts to most of the TIMESTAMP functions are available for DATETIME. Thus, you can call DATETIME_ADD,
DATETIME_SUB, and DATETIME_DIFF, as well as PARSE_DATETIME and FORMAT_DATETIME. You can also EXTRACT
calendar parts from a DATETIME. The two types are quite interoperable—it is possible to extract a DATETIME from a
TIMESTAMP and cast a DATETIME to a TIMESTAMP:



SELECT
EXTRACT(DATETIME FROM CURRENT_TIMESTAMP()) as dt
, CAST(CURRENT_DATETIME() AS TIMESTAMP) as ts

The following shows the result:

Row dt ts
1 2018-11-25T07:03:15.055141 2018-11-25 07:03:15.055141 UTC

Note that the canonical representation of a DATETIME has the letter T separating the date part and the time part,
whereas the representation of a TIMESTAMP uses a space. The TIMESTAMP also explicitly includes the time zone,
whereas the time zone is implicit in the DATETIME. But for the most part, you can use DATETIME and TIMESTAMP
interchangeably in BigQuery.

DATE is just the date part of a DATETIME (or a TIMESTAMP, interpreted in some time zone), and TIME is the time part.
Because many real-world scenarios might happen on a certain date (i.e., at multiple times throughout that day),
many database tables contain just a DATE. So there is some benefit to being able to directly parse and format dates.
On the other hand, there is very little need for the TIME type other than as the “missing” part of a DATETIME.

For the most part, therefore, our advice is to just use TIMESTAMP and DATE. There is, however, one practical
wrinkle to using TIMESTAMP. Timestamps in BigQuery are stored using eight bytes with microsecond resolution.
This means that you can store years 0 through 9999, and any microsecond in between. In some other databases
(e.g., MySQL), TIMESTAMP is stored using four bytes and DATETIME using eight bytes. In those systems, the range
of a TIMESTAMP is within the limits of the Unix epoch time (years 1970 to 2038), which means that you cannot
even store the birthdays of 60-year-old people or the expiry dates of 30-year mortgages. So, whereas a TIMESTAMP
might work in BigQuery, you might not be able to use the same schema in MySQL, and this might make moving
queries and data between BigQuery and MySQL challenging.

Working with GIS Functions

We look at geography functions in much more detail in Chapter 8, which looks at advanced features. In this
section, we provide only a brief introduction.

The GEOGRAPHY type can be used to represent points, lines, and polygons on the surface of the Earth (i.e., there is
no height associated with them). Because the Earth is a lumpy mass, points on its surface can be represented only
on spherical and ellipsoidal approximations of the surface. In BigQuery, the geographic positions of the points and
the vertices of the lines and polygons are represented in the WGS84 ellipsoid. Practically speaking, this is the
same ellipsoid as used by the Global Positioning System (GPS), so you will be able to take the longitude and
latitude positions reported by most sensors and use them directly in BigQuery.

The simplest geography is a point specified by its longitude and latitude. So, for example,

ST_GeogPoint(-122.33, 47.61)

represents a point at 47.61N and 122.33W—Seattle, Washington.

The BigQuery public datasets include a table that contains polygons corresponding to each of the US states and
territories. We can therefore write a query to find out which state the geographic point is in:

SELECT

state_name
FROM ‘“bigquery-public-data’.utility_us.us_states_area
WHERE


https://en.wikipedia.org/wiki/World_Geodetic_System

ST_Contains(
state_geom,
ST_GeogPoint(-122.33, 47.61))

As anticipated, this returns the following:

Row state_name

1 Washington

The query uses the ST_Contains function to determine whether the state’s geometry (stored as the state_geom
column in the BigQuery dataset) contains the point we are interested in. The spatial functions that BigQuery
supports follow the SQL/MM 3 specification and are similar to what the PostGIS library provides for Postgres.

Summary

To summarize what we’ve covered in this chapter, Table 3-3 presents the data types that BigQuery supports.
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Table 3-3. Data types supported by BigQuery

Data
type Sample functions and operators supported Notes

INT6 Arithmetic operations (+, —, /, *, for add, subtract, =~ Approximately 10719 to 10%°.
4 divide, and multiply, respectively).

NUME Arithmetic operations. 38 digits of precision and 9 decimal digits of scale; this is suitable for financial
RIC calculations.
FLOA Arithmetic operations. IEEE-754 behavior if one of the values is NaN or =+ inf.
Te64 Also: IEEE_DIVIDE.
BooL Conditional statements. Is either True and False.
MIN, MAX. SQL is case insensitive, so TRUE, true, and so on also work.

However, SUM, AVG, etc. are not supported (you’d
need to cast the Booleans to INT64 first).

STRI Use special String functions such as CONCAT, LENGT  Strings are Unicode characters and are variable length.
NG H, etc. to operate on strings.

BYTE Variable length characters.

S Many String operations are also defined on BYTES.

TIME CURRENT_TIMESTAMP() represents “now.” Absolute point in time, to microsecond precision, represented in a subset of ISO
STAM You can extract month, year, dayofweek, etc. from  8601. This is the recommended way to store times in BigQuery.

p a timestamp.

Arithmetic on timestamps is supported via special
functions, not through arithmetic operators.

DATE CURRENT_DATE() represents the current date in the ~2018-3-14 (or 2018-03-14) is March 14, 2018, independent of time zone. Because
UTC time zone, whereas CURRENT_DATE("Americ this represents different 24-hour blocks in different time zones, use TIMESTAMP to
a/Los_Angeles") represents the current date in the represent an absolute point in time. You can then construct a DATE from a TIMESTAM
Los Angeles time zone. P relative to a particular time zone.

Like TIMESTAMP, arithmetic on dates is supported
via special functions.

DATE As with DATE. 2018-03-14 3:14:57 or 2018-03-14T03:14:57.000000 is, like DATE, independent of
TIME time zone. Most applications will want to use TIMESTAMP.
TIME As with DATETIME, except that the DATE part is Independent of a specific date or time zone. This ranges from 00:00:00 to
absent. 23:59:59.999999.
GEoG Topological functions on geographies are supported Points, lines, and polygons on the surface of the Earth (i.e., there is no height).
RAPH Via special functions. The representations are in the WGS84 ellipsoid; this is the same ellipsoid as used
v by the Global Positioning System (GPS).
The simplest geography is a point specified by its longitude and latitude.
STRU You can deference the fields by name. A collection of fields in order.
cT The field name is optional; that is, you could have either:
STRUCT<INT64, STRING>
or

STRUCT<1d INT64, name STRING>.

ARRA You can deference the items by offset, aggregate Ordered list of non-null elements; e.g., ARRAY<INT64>. Arrays of arrays are not
Y the items in the array, or unnest them to get the allowed, but you can get around this by creating an array of STRUCT in which the
items one by one. struct itself contains an array; i.e., ARRAY<STRUCT<ARRAY<INT64>>>
(We cover arrays in Chapter 2).

You can use all data types, except for arrays and structs, in ORDER BY and GROUP BY.

1 The standard division operator raises a division-by-zero error. SAFE_DIVIDE returns NULL for the entry when division by zero is attempted.
2 Start with Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).
3 For the full list of specifiers, consult the documentation.

4 According to https://en.wikipedia.org/wiki/Armistice_Day, the agreement was signed at 5:45 a.m. on November 11, 1918. In Winter 1918, unlike
now, France was in the UTC time zone; see https://www.timeanddate.com/time/zone/france/paris.


https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/timestamp_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#timestamp-type
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions
http://shop.oreilly.com/product/9781565922570.do
https://cloud.google.com/bigquery/docs/reference/standard-sql/timestamp_functions#supported_format_elements_for_timestamp
https://en.wikipedia.org/wiki/Armistice_Day
https://www.timeanddate.com/time/zone/france/paris

Chapter 4. Loading Data into
BigQuery

In the previous chapter, we wrote the following query:

SELECT
state_name
FROM “bigquery-public-data .utility_us.us_states_area
WHERE
ST_Contains(
state_geom,
ST_GeogPoint(-122.33, 47.61))

We also learned that the city at the location (-122.33, 47.61) is in the state of
Washington. Where did the data for the state_name and state_geom come from?

Note the FROM clause in the query. The owners of the bigquery-public-data
project had already loaded the state boundary information into a table called
us_states_area in a dataset called utility_us. Because the team shared the
utility_us dataset with all authenticated users of BigQuery (more restrictive
permissions are available), we were able to query the us_states_area table that is
in that dataset.

But how did they get the data into BigQuery in the first place? In this chapter, we
look at various ways to load data into BigQuery, starting with the basics.

The Basics

Data values such as the boundaries of US states change rarely,’ and the changes are
small enough that most applications can afford to ignore them. In data warehousing
lingo, we call this a slowly changing dimension. As of this writing, the last change
of US state boundaries occurred on January 1, 2017, and affected 19 home owners
and one gas station.?

State boundary data is, therefore, the type of data that is often loaded just once.
Analysts query the single table and ignore the fact that the data could change over
time. For example, a retail firm might care only about which state a home is in



currently to ensure that the correct tax rate is applied to purchases from that home.
So when a change does happen, such as through a treaty between states or due to a
change in the path of a river channel, the owners of the dataset might decide to
replace the table with more up-to-date data. The fact that queries could potentially
return slightly different results after an update compared to what was returned
before the update is ignored.

Ignoring the impact of time on the correctness of the data might not always be
possible. If the state boundary data is to be used by a land title firm that needs to
track ownership of land parcels, or if an audit firm needs to validate the state tax
paid on shipments made in different years, it is important that there be a way to
query the state boundaries as they existed in years past. So even though the first part
of this chapter covers how to do a one-time load, carefully consider whether you
would be better off planning on periodically updating the data and allowing users of
the data to know about the version of the data that they are querying.

Loading from a Local Source

The US government issues a “scorecard” for colleges to help consumers compare
the cost and perceived value of higher education. Let’s load this data into BigQuery
as an illustration. The raw data is available on catalog.data.gov. For convenience,
we also have it available as 04 _load/college scorecard.csv.gz in the GitHub
repository for this book. The comma-separated values (CSV) file was downloaded
from data.gov and compressed using the open source software utility gzip.

TIP

Why did we compress the file? The raw, uncompressed file is about 136 MB, whereas the gzipped file is only
18 MB. Because we are about to send the file over the wire to BigQuery, it makes sense to optimize the
bandwidth being transferred. The BigQuery load command can handle gzipped files, but it cannot load parts
of a gzipped file in parallel. Loading would be much faster if we were to hand BigQuery a splittable file,
either an uncompressed CSV file that is already on Cloud Storage (so that the network transfer overhead is
minimized) or data in a format such as Avro for which each block is internally compressed but the file as a
whole can be split across workers.

A splittable file can be loaded by different workers starting at different parts of the file, but this requires that
the workers be able to “seek” to a predictable point in the middle of the file without having to read it from the
beginning. Compressing the entire file using gzip doesn’t allow this, but a block-by-block compression such
as Avro does. Therefore, using a compressed, splittable format such as Avro is an unmitigated good.
However, if you have CSV or JSON files that are splittable only when uncompressed, you should measure
whether the faster network transfer is counterbalanced by the increased load time.
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From Cloud Shell, you can page through the gzipped file using zless:

zless college_scorecard.csv.gz

NOTE

Here are detailed steps:

1. Open Cloud Shell in your browser by visiting Attps://console.cloud.google.com/cloudshell.

2. In the terminal window, type: git clone
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book.

3. Navigate to the folder containing the college scorecard file: cd bigquery-oreilly-
book/04_load.

4. Type the command zless college_scorecard.csv.gz, and then use the space bar to page
through the data. Type the letter q to quit.

The file contains a header line with the names of the columns. Each of the lines
following the header contains one row of data.

To load the data into BigQuery, first create a dataset called ch04 to hold the data:

bg --location=US mk ch04

The bq command-line tool provides a convenient point of entry to interact with the
BigQuery service on Google Cloud Platform (GCP), although everything you do
with bq you also can do using the REST API. And you can accomplish most things
using the GCP Cloud Console. We are asking it here to make (mk) a dataset named
cho4.

Datasets in BigQuery function like top-level folders that are used to organize and
control access to tables, views, and machine learning models. The dataset is created
in the current project,® and it is to this project that storage costs for tables in this
dataset will be billed (queries are charged to the project of the querier).

We also specify that the dataset should be created in the US location (this is the
default, so we could have omitted that). Location choices include multiregional
locations (such as US, EU) and specific regions (e.g., us-east4, europe-west2 and
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australia-southeast1).* Be careful when choosing a region for loading data: as
of this writing, queries cannot join tables held in different regions. In this book, we
will use the US multiregion location so that our queries can join against tables in the
public datasets that are located in the United States.

Then, from the directory containing your clone of the GitHub repository, load the
data in the file as a table in BigQuery:

bg --location=US \
load \
--source_format=CSV --autodetect \
ch04.college_scorecard \
./college_scorecard.csv.gz

In this case, we are asking bq to load the dataset, informing the tool that the source
format is CSV and that we would like the tool to autodetect the schema (i.e., the
data types of individual columns). We then specify that the table to be created is
called college_scorecard in the dataset ch04 and that the data is to be loaded
from college_scorecard.csv.gz in the current directory.

When we did this, though, we ran into an issue:

Could not parse 'NULL' as int for field HBCU (position 26) starting at location
11945910

This caused the load job to fail with the following error:®

CSV table encountered too many errors, giving up. Rows: 591; errors: 1.

The problem is that, based on most of the data in the CSV file, BigQuery’s schema
autodetection expects that the 26th column (whose name is HBCU) should be an
integer, but the 591st row of the file has the text NULL in that field—this usually
signifies that the college in question did not answer the survey question
corresponding to this field.®

There are several ways in which we can fix this problem. For example, we could
edit the data file itself if we knew what the value ought to be. Another fix could be
to specify explicitly the schema for each column and change the column type of the

HBCU column to be a string so that NULL is an acceptable value. Alternatively, we



could ask BigQuery to ignore a few bad records by specifying, for example, - -
max_bad_records=20. Finally, we could instruct the BigQuery load program that

this particular file uses the string NULL to mark nulls (the standard way in CSV is to
use empty fields to represent nulls).

Let’s apply the last method, because it seems to be the most appropriate:”

bg --location=US \
load --null_marker=NULL \
--source_format=CSV --autodetect \
ch04.college_scorecard \
./college_scorecard.csv.gz

You can find the full list of bq load options by typing bq load --help. By
default, bq load will append to a table. Here, you want to replace the existing table,
so you should add - -replace:

bg --location=US \
load --null_marker=NULL --replace \
--source_format=CSV --autodetect \
ch04.college_scorecard \
./college_scorecard.csv.gz

You can also specify - -replace=false to append rows to an existing table.



LOADING OR STREAMING?

Loading data into BigQuery does not incur any charges, although you will be
charged for storage after the data is loaded.8 If you are on flat-rate pricing,
loading data into BigQuery uses computational resources that are separate from
the slots that are paid for by the flat rate. Therefore, if you do not need near-
real-time data in your data warehouse, a frugal way to get data into BigQuery is
to set up a scheduled Cloud Storage transfer (which we cover later in this
chapter). If transformations are needed, you can use Cloud Composer or Cloud
Functions to load data into BigQuery every day.

All that the bqg command does is to invoke a REST API exposed by the
BigQuery service. So you can load the data in many other ways as well. Those
methods invoke the same REST API. Client libraries in a number of languages,
including Java, Python, and Node.js, are available—these provide convenient,
programmatic ways to upload the data. We discuss the use of client libraries in
Chapter 5.

If you do need data in near real time, you should stream data into BigQuery.
Even though streaming incurs charges, you should prefer to use streaming over
frequent loads if you need near-real-time data. It is not a good idea to load data
using a large number of small load jobs frequently (for example, to issue a load
every minute). Tables that are loaded so frequently can end up with significant
fragmentation and high metadata overhead, causing queries over them to be
slow until BigQuery performs an optimization pass at some point in the future.
Streaming, unlike frequent small loads, batches rows on the backend for a
period of time before writing them to storage, thus limiting the fragmentation
and keeping querying performant. Streamed data is available for querying
immediately, whereas loads can take a while to complete. Moreover, if you rely
on frequent small batch loads, any sort of throttling or backups in the systems
that produce these files can result in unexpected delays in data being available.

It is worth noting that you can do one-time loads from the BigQuery web user
interface (UI). Click your project, and you will be presented with a button to create
a dataset (ch04, in our case); click the dataset, and you will be presented with a
button to create a table. You can then follow the prompts to upload the file as a
BigQuery table. As of this writing, however, use of the web UI to load data from a
local file is limited to data whose size is less than 10 MB and 16,000 rows. Hence, it
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would not work for the college scorecard dataset unless we had staged it in Google
Cloud Storage first.

Even if you did not (or cannot) use the web UI to load the data, it is a good idea to
look at the created table using the web Ul to ensure that details about the table as
well as the autodetected schema are correct. It is also possible to edit some details
about the table even after it has been created. For example, it is possible to specify
that the table should automatically expire after a certain number of days, add
columns, or relax a required field to become nullable.

NOTE

You can also set an expiration date using the ALTER TABLE SET OPTIONS statement—for example:

ALTER TABLE ch@4.college_scorecard
SET OPTIONS (
expiration_timestamp=
TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 7 DAY),
description="College Scorecard table that expires
seven days from now"

)

For more details, see https.//cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-
language#alter table set options statement.

Regardless of how the table is loaded, anyone who is allowed to access the dataset
in which the table is located can query it. The default is to make a newly created
dataset visible only to people with project-level view permissions. You can,
however, share the dataset® with specific individuals (identified by their Google
account), a domain (e.g., xyz.com), or a Google group. We discuss using Identity
and Access Management (IAM) to share datasets in Chapter 10. For now, though,
anyone with view access to the project holding the dataset can query it:

SELECT
INSTNM
, ADM_RATE_ALL
, FIRST_GEN
, MD_FAMINC
, MD_EARN_WNE_P10
, SAT_AVG
FROM
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ch0@4.college_scorecard
WHERE
SAFE_CAST(SAT_AVG AS FLOAT64) > 1300
AND SAFE_CAST(ADM_RATE_ALL AS FLOAT64) < 0.2
AND SAFE_CAST(FIRST_GEN AS FLOAT64) > 0.1
ORDER BY
CAST(MD_FAMINC AS FLOAT64) ASC

This query pulls out college name (INSTNM), admission rate, and other information
for colleges whose average SAT score is more than 1300 and whose admission rate
is less than 20%, which is a plausible definition of “elite” colleges. It also filters by
colleges that admit first-generation college goers at a rate greater than 10% and
ranks them in ascending order of median family income, thus finding elite colleges
that admit culturally or economically disadvantaged students. The query also pulls
the median earnings of students 10 years after entry:

Row INSTNM ADM_RATE_ALL FIRST_GEN MD_FAMINC MD_EARN_WNE_P10 SAT_AVG

1 University 0.1692687830816  0.3458005249 31227 64700 1422
of
California—
Berkeley

2 Columbia  0.06825366802669 0.2504905167 31310.5 83300 1496
University
in the City
of New
York

3 University 0.17992627069775 0.3808913934 32613.5 60700 1334
of
California—
Los
Angeles

4 Harvard 0.05404574677902 0.25708061 33066 89700 1506
University

5 Princeton  0.06521516568269 0.2773972603 37036 74700 1493
University

Look, however, at the query itself. Notice how several of the WHERE clauses need a
cast:

SAFE_CAST(ADM_RATE_ALL AS FLOAT64)

Had we not included the cast, we would have received an error:



No matching signature for operator > for argument types: STRING, INT64.

Had we simply cast as a float, it would have failed on a row where the value was a
string (PrivacySuppressed) that cannot be cast as a float:

Bad double value: PrivacySuppressed; while executing the filter ...

This is because the automatic schema detection did not identify the admission rate
column as numeric. Instead, that column is being treated as a string because, in
some of the rows, the value is suppressed for privacy reasons (e.g., if the number of
applications is very small) and replaced by the text PrivacySuppressed. Indeed,
even the median family income is a string (it happens to always be numeric for
colleges that meet the criteria we outlined), and so we need to cast it before
ordering. "0

Specifying a Schema

Inevitably in real-world datasets, we will need to do some cleanup and
transformations before loading the data into BigQuery. Although later in this
chapter we look at building more sophisticated data processing pipelines to do this,
a simple way is to use Unix tools to replace privacy-suppressed data with NULLs:

zless ./college_scorecard.csv.gz | \
sed 's/PrivacySuppressed/NULL/g" | \
gzip > /tmp/college_scorecard.csv.gz

Here, we are using a string editor (sed) to replace all occurrences of

PrivacySuppressed by NULL, compressing the result and writing it to a temporary
folder. Now, instead of loading the original file, we can load the cleaner file.

When presented with the cleaner file, BigQuery correctly identifies many more of
the columns as integers or floats, but not SAT_AVG or ADM_RATE_ALL; those columns
are still autodetected as strings. This is because the algorithm to autodetect the
schema does not look at all the rows in the file; it looks at only a sample of them.
Because a large number of rows have a null SAT_AVG (fewer than 20% of colleges
report SAT scores), the algorithm was unable to infer the type of the field. The safe
choice is to treat any column that the tool is not sure of as a string.



It is therefore best practice to not autodetect the schema of files that you receive in
production—you will be at the mercy of whatever data happens to have been
sampled. For production workloads, insist on the data type for a column by
specifying it at the time of load.

You can use the autodetect feature to avoid starting to write a schema from scratch.
You can display the schema of the table as it currently exists:

bq show --format prettyjson --schema ch@4.college_scorecard

You can also save the schema to a file:

bg show --format prettyjson --schema ch04.college_scorecard > schema.json



AUTOMATING THE CREATION OF SCHEMA

We haven’t covered table metadata yet (we do so in Chapter 8), but you can
automate the creation of the schema by using SQL itself. Here is a query to

obtain the schema of all the tables in the dataset chQ4:

SELECT
table_name
, column_name
, ordinal_position
, i1s_nullable
, data_type
FROM
ch@4.INFORMATION_SCHEMA.COLUMNS

You can then use the TO_JSON_STRING function to create the JSON of the
schema in the necessary format, thus avoiding the need to drop to the command
line:

SELECT
TO_JSON_STRING(
ARRAY_AGG(STRUCT(
IF(is_nullable = 'YES', 'NULLABLE', 'REQUIRED') AS
mode,
column_name AS name,
data_type AS type)
ORDER BY ordinal_position), TRUE) AS schema

FROM
ch04.INFORMATION_SCHEMA.COLUMNS
WHERE
table_name = 'college_scorecard'

This yields a JSON string of the form:

{
"mode": "NULLABLE",
"name": "INSTNM",
"type": "STRING"

},

{

"mode": "NULLABLE",
"name": "ADM_RATE_ALL",
"type": "FLOAT64"
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Now, you can open the schema file in your favorite text editor (if you don’t have a
preference, use the pen icon in Cloud Shell to open up the default editor) and
change the type of the columns you care about. Specifically, change the four
columns in the WHERE clause (SAT_AVG, ADM_RATE_ALL, FIRST_GEN, and
MD_FAMINC) to be FLOAT64:

{
"mode": "NULLABLE",
"name": "FIRST_GEN",
"type": "FLOAT64"

1

In addition, also change (for now) the T4AAPPROVALDATE to be a string, because it is
in a nonstandard date format:'"

{
"mode": "NULLABLE",
"name": "T4APPROVALDATE",
"type": "STRING"

P

With the schema updated, we can load the data with this schema rather than with the
autodetect:

bg --location=US \
load --null_marker=NULL --replace \
--source_format=CSV \
--schema=schema.json --skip_leading_rows=1 \
ch04.college_scorecard \
./college_scorecard.csv.gz

Because we are supplying a schema, we need to instruct BigQuery to ignore the first
row of the CSV file (which contains the header information).

After the table has been loaded, we can repeat the query of the previous section:



SELECT

INSTNM

, ADM_RATE_ALL

, FIRST_GEN

s MD_FAMINC

, MD_EARN_WNE_P10

, SAT_AVG
FROM

ch@4.college_scorecard
WHERE

SAT_AVG > 1300

AND ADM_RATE_ALL < 0.2

AND FIRST_GEN > 0.1
ORDER BY

MD_FAMINC ASC

Notice that, because SAT_AVG, ADM_RATE_ALL, and the others are no longer strings,
our query is much cleaner because we no longer need to cast them to floating-point
numbers. The reason they are no longer strings is that we made a decision on how to
deal with the privacy-suppressed data (treat them as being unavailable) during the
Extract, Transform, and Load (ETL) process.

Copying into a New Table

The table as loaded contains many columns that we do not need. It is possible to
create a cleaner, more purposeful table from the original table by using the CREATE
TABLE statement and populating the new table with only the columns of interest:

CREATE OR REPLACE TABLE ch04.college_scorecard_etl AS
SELECT
INSTNM
, ADM_RATE_ALL
, FIRST_GEN
s MD_FAMINC
, SAT_AVG
, MD_EARN_WNE_P10
FROM ch04.college_scorecard

By using a robust ETL pipeline and making decisions early, downstream queries are
cleaner and more concise. The trade-off is that the ETL process involves extra work
(determining the data types and specifying the schema) and might involve
irrevocable decisions (e.g., there is no way to get back whether a field is unavailable
because it was not collected, because it was suppressed due to privacy reasons, or



because it was deleted). Later in this chapter, we discuss how an ELT pipeline in
SQL can help us delay making irrevocable decisions.

Data Management (DDL and DML)

Why cover data management in a chapter on loading data? Because loading data is
typically only part of the task of managing data. If data is loaded by mistake, you
might need to delete it. Sometimes you need to delete data because of regulations
and compliance.

Even though we normally want you to try all the commands and queries in this book, don’t try the
ones in this section, because you will lose your data!

The easiest way to delete a table (or view) as a whole is from the BigQuery UI. You
can also carry out the delete from the bq command-line tool:

bg rm ch04.college_scorecard
bg rm -r -f cho4

The first line removes a single table, whereas the second one removes recursively (-

r) and without prompting (- f, for force) the dataset ch04 and all of the tables it
contains.

You can also delete a table (or view) by using SQL.:

DROP TABLE IF EXISTS ch0@4.college_scorecard_gcs

It 1s also possible to specify that a table needs to be expired at a certain time in the
future. You can so this with the ALTER TABLE SET OPTIONS statement:

ALTER TABLE ch@4.college_scorecard
SET OPTIONS (
expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(),
INTERVAL 7 DAY),
description="College Scorecard expires seven days from now"

)



The DROP TABLE and ALTER TABLE statements, like the CREATE TABLE statement,
are examples of Data Definition Language (DDL) statements.

It is possible to delete only specific rows from a table—for example:

DELETE FROM ch04.college_scorecard
WHERE SAT_AVG IS NULL

Similarly, it is also possible to INSERT rows into an existing table instead of
replacing the entire table. For example, it is possible to insert more values into the
college_scorecard table using the following:

INSERT ch@4.college_scorecard
(INSTNM
» ADM_RATE_ALL
, FIRST_GEN
,» MD_FAMINC
, SAT_AVG
, MD_EARN_WNE_P10
)
VALUES ('abc', 0.1, 0.3, 12345, 1234, 23456),
('def', 0.2, 0.2, 23451, 1232, 32456)

It is possible to use a subquery to extract values from one table and copy them into
another:

INSERT ch@4.college_scorecard
SELECT *

FROM ch04.college_scorecard_etl
WHERE SAT_AVG IS NULL

The DELETE, INSERT, and MERGE statements are examples of Data Manipulation
Language (DML) statements.



TIP

As of this writing, BigQuery does not support an SQL COPY statement. To copy tables, use bq cp to copy one
table to another:

bg cp ch04.college_scorecard
someds.college_scorecard_copy

You are not billed for running a query, but you will be billed for the storage of the new table. The bq cp
command supports appending (specify -a or - -append_table) and replacement (specify -
noappend_table).

You can also use the idiomatic Standard SQL method of using either CREATE TABLE AS SELECT or INSERT
VALUES, depending on whether the destination already exists. However, bq cp is faster (because it copies
only the table metadata) and doesn’t incur query costs.

Loading Data Efficiently

Although BigQuery can load data from CSV files, CSV files are inefficient and not
very expressive (for example, there is no way to represent arrays and structs in
CSV). If you have a choice, you should choose to export your data in a different
format. What format should you choose?

The most efficient and expressive format is Avro. Avro uses self-describing binary
files that are broken into blocks and can be compressed block by block. Because of
this, it is possible to parallelize the loading of data from Avro files and the export of
data into Avro files. Because the blocks are compressed, the file sizes will also be
smaller than the data size might indicate. In terms of expressiveness, the Avro
format is hierarchical and can represent nested and repeated fields, something that
BigQuery supports but CSV files don’t have an easy way to store. Because Avro
files are self-describing, you never need to specify a schema.

The one drawback to Avro files is that they are not human readable. If readability
and expressiveness are important to you, use newline-delimited JSON files'? to
store your data. JSON supports the ability to store hierarchical data but requires that
binary columns be base-64 encoded. However, JSON files are larger than even the
equivalent CSV files because the name of each field is repeated on every line.

Parquet files are a more recent addition to the set of file formats that BigQuery
supports. The Parquet file format was inspired by Google’s original Dremel
ColumnlO format,' and like Avro, Parquet is binary, block oriented, compact, and
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capable of representing hierarchical data. However, whereas Avro files are stored
row by row, Parquet files are stored column by column. Columnar files are
optimized for reading a subset of the columns; loading data requires reading all
columns, and so columnar formats are somewhat less efficient at the loading of data.
However, the columnar format makes Parquet a better choice than Avro for
federated queries, a topic that we discuss shortly. Optimized Row Columnar (ORC)
files are another open source columnar file format. ORC is similar to Parquet in
performance and efficiency.

Impact of compression and staging via Google Cloud Storage

For formats such as CSV and JSON that do not have internal compression, you
should consider whether you should compress the files using gzip. Compressed files
are faster to transmit and take up less space, but they are slower to load into
BigQuery. The slower your network, the more you should lean toward compressing
the data.

If you are on a slow network or if you have many files or very large files, it is
possible to set up a multithreaded upload of the data using gsutil cp. After the

data is all on Google Cloud Storage, then you can invoke bq load from the Cloud
Storage location:

gsutil -m cp *.csv gs://BUCKET/some/location
bqload .. gs://BUCKET/some/location/*.csv

This experiment captures the various trade-offs involved with compression and with
staging the college scorecard data on Cloud Storage before invoking bq load.
Table 4-1 examines this further. Your results will vary, of course, depending on your
network and the actual data you are loading.'* Therefore, you should carry out a
similar measurement for your loading job and choose the method that provides you
with the best performance on the measures you care about.



Table 4-1. Trade-offs involved with compression and staging the college
scorecard data on Google Cloud Storage before invoking bq load

Compressed Stage on GCS Network time (if Time to load into Total
file GCS? size separate) BigQuery time
Yes No None N/A 105 seconds 105
seconds
No No None N/A 255 seconds 255
seconds
Yes Yes 16 MB 47 sec 42 seconds 89
seconds
No Yes 76 MB 139 sec 28 sec 167 sec

Staging the file on Google Cloud Storage involves paying storage costs at least until
the BigQuery load job finishes. However, storage costs are generally quite low and
so, on this dataset and this network connection (see Table 4-1), the best option is to
stage compressed data in Cloud Storage and load it from there. Even though it is
faster to load uncompressed files into BigQuery, the network time to transfer the
files dwarfs whatever benefits you’d get from a faster load.

As of this writing, the loading of compressed CSV and JSON files is limited to files
less than 4 GB in size because BigQuery has to uncompress the files on the fly on
workers whose memory is finite. If you have larger datasets, split them across
multiple CSV or JSON files. Splitting files yourself can allow for some degree of
parallelism when doing the loads, but depending on how you size the files, this can
lead to suboptimal file sizes in the table until BigQuery decides to optimize the
storage.

Price and quota

BigQuery does not charge for loading data. Ingestion happens on a set of workers
that is distinct from the cluster providing the slots used for querying. Hence, your
queries (even on the same table into which you are ingesting data) are not slowed
down by the fact that data is being ingested.

Data loads are atomic. Queries on a table will either reflect the presence of all the
data that is loaded in through the bq load operation or reflect none of it. You will
not get query results on a partial slice of the data.

The drawback of loading data using a “free” cluster is that load times can become
unpredictable and bottlenecked by preexisting jobs. As of this writing, load jobs are



limited to 1,000 per table and 100,000 per project per day. In the case of CSV and
JSON files, cells and rows are limited to 100 MB, whereas in Avro, blocks are
limited to 16 MB. Files cannot exceed 5 TB in size. If you have a larger dataset,
split it across multiple files, each smaller than 5 TB. However, a single load job can
submit a maximum of 15 TB of data split across a maximum of 10 million files. The
load job must finish executing in less than six hours or it will be cancelled.

Federated Queries and External Data Sources

You can use BigQuery without first loading the data. It is possible to leave the data
in-place, specify the structure of the data, and use BigQuery as just the query
engine. In contrast to the queries thus far for which BigQuery queried its own native
storage, we discuss the use of “federated queries” to query “external data sources”
in this section and explain when you might want to use such queries.

Currently supported external data sources include Google Cloud Storage, Cloud
Bigtable, Cloud SQL, and Google Drive. You will notice that all of these sources
are external to BigQuery but are, nevertheless, within the Google Cloud perimeter.
This is necessary because otherwise the network overhead and security
considerations would make the queries either slow or infeasible.

How to Use Federated Queries

There are three steps to querying data in an external data source:
1. Create a table definition using bq mkdef.
2. Make a table using bq mk, passing in the external table definition.
3. Query the table as normal.

As with querying data in native storage, you can do this either in the web UI or by
using a programmatic interface. To use the web UI, follow the just-listed steps to
create a table, but make sure to specify that you want an external table, not a native
one, as demonstrated in Figure 4-1.


https://cloud.google.com/bigquery/quotas#load_jobs

Dataset name Table type

ch04 Native table

External table

Figure 4-1. You can create an external table from the web UI by following the “Create Table” workflow but
specifying “External table” as the table type

Using the command-line interface, create a table definition using bq mkdef. As
with bq load, you have the option of using - -autodetect:

bg mkdef --source_format=CSV \
--autodetect \
gs://bigquery-oreilly-book/college_scorecard.csv

This prints a table definition file to standard output. The normal course of action is
to redirect this to a file and use that table definition to make a table using bq mk:

bq mkdef --source_format=CSV \
--autodetect \
gs://bigquery-oreilly-book/college_scorecard.csv \
> [tmp/mytable.json

bg mk --external_table_definition=/tmp/mytable.json \
cho4.college_scorecard

With these two steps, you can query the table college_scorecard as in the
previous section, except that the queries will happen on the CSV file stored in
Google Cloud Storage—the data is not ingested into BigQuery’s native storage.

Wildcards

Many big data frameworks such as Apache Spark, Apache Beam, and others shard
their output across hundreds of files with names such as course grades.csv-00095-
of-00313. When loading such files, it would be convenient if we could avoid having
to list each file individually.

Indeed, it is possible to use a wildcard in the path to bq mkdef (and bq load) so
that you can match multiple files:



bg mkdef --source_format=CSV \
--autodetect \
gs://bigquery-oreilly-book/college_* \
> /tmp/mytable.json

This creates a table that refers to all the files matched by the pattern.

Temporary table

It is also possible to condense the three steps (mkdef, mk, and query) by passing in
the table definition parameters along with a query, thus ensuring that the table
definition will be used only for the duration of the query:

LOC="--location US"
INPUT=gs://bigquery-oreilly-book/college_scorecard.csv

SCHEMA=$(gsutil cat SINPUT | head -1 | awk -F, '{ORS=","}{for (i=1; i <= NF; i++){
print $1":STRING"; }}' | sed 's/,$//g'| cut -b 4- )

bg $LOC query \
--external_table_definition=cstable: :${SCHEMA}@CSV=${INPUT} \
"SELECT SUM(IF(SAT_AVG != "NULL", 1, 0))/COUNT(SAT_AVG) FROM cstable'

In the preceding query, the external table definition consists of the temporary table
name (cstable), two colons, the schema string, the (@ symbol, the format (CSV), an
equals sign, and the Google Cloud Storage URL corresponding to the data file(s). If
you already have a table definition file, you can specify it directly:

--external_table_definition=cstable::${DEF}

It 1s possible to specify a JSON schema file as well as to query JSON, Avro, and
other supported formats directly from Cloud Storage, Cloud Bigtable, and other
supported data sources.

While undeniably convenient, federated queries leave much to be desired in terms
of performance. Because CSV files are stored row-wise and the rows themselves are
stored in some arbitrary order, much of the efficiency that we commonly associate
with BigQuery is lost. It is also not possible for BigQuery to estimate how much
data it is going to need to scan before running the query.

Loading and querying Parquet and ORC



As previously mentioned, Parquet and ORC are columnar data formats. Therefore,
federated querying of these formats will provide better query performance than if
the data was stored in row-based formats such as CSV or JSON (queries will still be
slower than BigQuery’s native Capacitor storage, however).

Because Parquet and ORC are self-describing (i.e., the schema is implicit in the files
themselves), it is possible to create table definitions without specifying a schema:

bq mkdef --source_format=PARQUET gs://bucket/dir/files* > table_def.json
bg mk --external_table_definition=table_def.json <dataset>.<table>

As with querying external tables created from CSV files, querying this table works
like querying any other table in BigQuery.

Even though Parquet and ORC files provide better query performance than row-
based file formats, they are still subject to the limitations of external tables.

Loading and querying Hive partitions

Apache Hive allows for reading, writing, and managing an Apache Hadoop—based
data warehouse using a familiar SQL-like query language. Cloud Dataproc, on
Google Cloud, enables Hive software to work on distributed data stored in Hive
partitions on Google Cloud Storage. A common public cloud migration pattern is
for on-premises Hive workloads to be moved to Cloud Dataproc and for newer
workloads to be written using BigQuery’s federated querying capability. This way,
the current Hive workloads work as-is, whereas newer workloads can take
advantage of the serverless, large-scale querying capability provided by BigQuery.

You can load Hive partitions on Google Cloud Storage by specifying a Hive
partitioning mode to bq load:

bg load --source_format=0RC --autodetect \
--hive_partitioning_mode=AUTO <dataset>.<table> <gcs_uri>

The Cloud Storage URI in the case of Hive tables needs to encode the table path
prefix without including any partition keys in the wildcard. Thus, if the partition key
for a Hive table is a field named datestamp, the Cloud Storage URI should be of
the following form:


https://hive.apache.org/

gs://some-bucket/some-dir/some-table/*

This 1s true even if the files themselves all begin with the following:

gs://some-bucket/some-dir/some-table/datestamp=

As of this writing, the AUTO partitioning mode can detect the following types:
STRING, INTEGER, DATE, and TIMESTAMP. It is also possible to request that the
partition keys be detected as strings (this can be helpful in exploratory work):

bg load --source_format=0RC --autodetect \
--hive_partitioning_mode=STRINGS <dataset>.<table> <gcs_uri>

As with CSV files from Google Cloud Storage, federated querying of Hive
partitions requires the creation of a table definition file, and the options closely
mirror that of load:

bq mkdef --source_format=0RC --autodetect \
--hive_partitioning_mode=AUTO <gcs_uri> > table_def.json

After the table definition file is created, querying is the same whether the underlying
external dataset consists of CSV files or Hive partitions.

In addition to ORC, as shown earlier, data in other formats is also supported. For
example, to create a table definition of data stored in newline-delimited JSON, you
can use this:

bg mkdef --source_format=NEWLINE_DELIMITED_JSON --autodetect --
hive_partitioning_mode=STRINGS <gcs_uri> <schema> > table_def.json

Note that in the preceding command, the partition keys are being autodetected, but
not the data types of the partition keys, because we explicitly specify that they ought
to be treated as strings and not the data types of the other columns, since we pass in
an explicit schema.

We started this section by saying that a common use case for querying Hive
partitions is to support cloud migration efforts where significant Hive workloads



already exist but allow future workloads to be implemented using BigQuery.
Although Apache Hive allows full management (reading and writing) of the data,
BigQuery’s external tables are read-only. Moreover, even though BigQuery can
handle the data being modified (e.g., from Hive) while a federated query is running,
it does not currently support concepts such as reading data at a specific point in
time. Because external tables in BigQuery have these limitations, it is better over
time to move the data to BigQuery’s native storage and rewrite the Hive workloads
in BigQuery. When the data is in BigQuery’s native storage, features such as DML,
streaming, clustering, table copies, and more all become possible.

When to Use Federated Queries and External Data Sources

Querying external sources is slower than querying data that is natively in BigQuery,
thus federated queries are typically not recommended in the long term for frequently
accessed data. There are, however, situations for which federated queries can be
advantageous:

e Carrying out exploratory work using federated queries to determine how
best to transform the raw data before loading it into BigQuery. For
example, evidence of actual analysis workloads could dictate the
transformations present in production tables. You might also treat original,
external data sources as staging, and use federated queries to transform the
data and write it to production tables.

o Keeping data in Google Sheets if the spreadsheet will be edited
interactively, and using federated queries exclusively if the results of those
queries need to reflect the live data in that sheet.

e Keeping data in an external data source if ad hoc SQL querying of the data
is relatively infrequent. For example, you might keep the data in Cloud
Bigtable if the predominant use of that data is for low-latency, high-volume
streaming ingest and if most queries on the data can be accomplished using
key prefixes.

For large, relatively stable, well-understood datasets that will be updated
periodically and queried often, BigQuery native storage is a better choice. In the rest
of this section, we look at the implementation details of each of these situations,
beginning with exploratory work using federated queries.

Exploratory work using federated queries



Autodetect is a convenience feature that works by sampling a few (on the order of
hundreds) rows of the input files to determine the type of a column. It is not fool-
proof unless you are using self-describing file formats, such as Avro, Parquet, or
ORC. To ensure that your ETL pipeline works properly, you should verify the value
of every row to ensure that the data type for each column is correct. For example, it
is possible that a column contains integers except for a handful of rows that have
floats. If so, then it’s quite likely that the autodetect will detect the column as being
an integer because the chance of selecting one of the rows containing the floating-
point value is rather low. You won’t learn there is a problem until you issue a query
that does a table scan of this column’s values.

The best practice is to use self-describing file formats, in which case you don’t need
to worry about how BigQuery interprets the data. If you need to use CSV or JSON,
we recommend that you explicitly specify a schema. Although it is possible to
specify the schema in an accompanying JSON file, it is also possible to pass in the

schema on the command line of bq mkdef by creating a string with this format:

FIELD1:DATATYPE1,FIELD2:DATATYPEZ,...

If you are unsure of the quality of your data, you should specify everything as a

STRING. Note that this is the default data type, so the formatting command becomes
just this:

FIELD1,FIELD2,FIELDS3,,...

Why treat everything as a string? Even if you believe that some of the fields are
integers and others are floats, it is best to validate this assumption. Define
everything as a string and learn what transformations you need to carry out as you
query the data and discover errors.

We can extract the column names by using the first line of the CSV file to create a
schema string of the desired format:1°

INPUT=gs://bigquery-oreilly-book/college_scorecard.csv
SCHEMA=$(gsutil cat SINPUT | head -1 | cut -b 4- )

If we are going to specify the schema, we should ask that the first row be skipped
and that the tool allow empty lines in the file. We can do this by piping the table



definition through sed, a line editor:'®

LOC="--location US"
OUTPUT=/tmp/college_scorecard_def.json
bgq $LOC \
mkdef \
--source_format=CSV \
--noautodetect \
SINPUT \
S$SCHEMA \
| sed 's/"skipLeadingRows": 0/"skipLeadingRows": 1/g' \
| sed 's/"allowlaggedRows": false/"allowlaggedRows": true/g' \
> SOUTPUT

We define that we are operating in the US location and that we want to save the
output (the table definition) to the /tmp folder.

At this point, we have a table that we can query. Note two things: this table is
defined on an external data source, so we are able to start querying the data without
the need to wait for the data to be ingested; and all of the columns are strings—we
have not made any irreversible changes to the raw data.

Let’s begin our data exploration by trying to do a cast:

SELECT

MAX(CAST(SAT_AVG AS FLOAT64)) AS MAX_SAT_AVG
FROM

*ch04.college_scorecard_gcs’

The query fails with the following error message:

Bad double value: NULL

This indicates that we need to handle the nonstandard way that missing data 1s
encoded in the file. In most CSV files, missing data is encoded as an empty string,
but in this one, it is encoded as the string NULL.

We could fix this problem by checking before we do the cast:

WITH etl_data AS (
SELECT
SAFE_CAST(SAT_AVG AS FLOAT64) AS SAT_AVG



FROM
“ch04.college_scorecard_gcs’

)
SELECT

MAX(SAT_AVG) AS MAX_SAT_AVG
FROM

etl_data

Notice that we have started a WITH clause containing all the ETL operations that
need to be performed on the dataset. Indeed, as we go through exploring the dataset
and culminate with the query of the previous section, we learn that we need a
reusable function to clean up numeric data:

CREATE TEMP FUNCTION cleanup_numeric(x STRING) AS
(
IF ( x != "NULL' AND x != 'PrivacySuppressed',
CAST(x as FLOAT64),
NULL )
);

WITH etl_data AS (
SELECT

INSTNM

, Cleanup_numeric(ADM_RATE_ALL) AS ADM_RATE_ALL

, Cleanup_numeric(FIRST_GEN) AS FIRST_GEN

, Cleanup_numeric(MD_FAMINC) AS MD_FAMINC

, cleanup_numeric(SAT_AVG) AS SAT_AVG
cleanup_numeric(MD_EARN_WNE_P10) AS MD_EARN_WNE_P10

FROM
‘ch04.college_scorecard_gcs®

)
SELECT

*
FROM

etl_data
WHERE

SAT_AVG > 1300

AND ADM_RATE_ALL < 0.2

AND FIRST_GEN > 0.1
ORDER BY

MD_FAMINC ASC
LIMIT 10

At this point, we can export the cleaned-up data (note the SELECT *) into a new

table (note the CREATE TABLE) for just the columns of interest by running the
following query:



CREATE TEMP FUNCTION cleanup_numeric(x STRING) AS

(
IF ( x != "NULL' AND x != 'PrivacySuppressed',
CAST(x as FLOAT64),
NULL )
)

CREATE TABLE ch04.college_scorecard_etl
OPTIONS(description="Cleaned up college scorecard data") AS

WITH etl_data AS (
SELECT
INSTNM
, Cleanup_numeric(ADM_RATE_ALL) AS ADM_RATE_ALL
, Cleanup_numeric(FIRST_GEN) AS FIRST_GEN
, Cleanup_numeric(MD_FAMINC) AS MD_FAMINC
, Cleanup_numeric(SAT_AVG) AS SAT_AVG
, Cleanup_numeric(MD_EARN_WNE_P10) AS MD_EARN_WNE_P10
FROM
‘ch04.college_scorecard_gcs®

)

SELECT * FROM etl_data

It 1s also possible to script this out by removing the CREATE TABLE statement from
the preceding query, invoking bq query and passing in a - -destination_table.

ELT in SQL for experimentation

In many organizations, there are many more data analysts than there are engineers.
Thus, the needs of the data analysis teams usually greatly outpace what the data
engineers can deliver. In such cases, it can be helpful if data analysts themselves can
create an experimental dataset in BigQuery and get started with analysis tasks.

The organization can then use the evidence of actual analytics workloads to
prioritize what data engineers focus on. For example, as a data engineer, you might
not yet know what fields you need to extract out of a log file. So you might set up
an external data source as an experiment and allow data analysts to query the raw
data on Google Cloud Storage directly.

If the raw log files are in JSON format, with each of the rows having a different
structure because the logs come from different applications, the analysts could
define the entire log message as a single BigQuery string column and use
JSON_EXTRACT and string manipulation functions to pull out the necessary data. At
the end of a month, you could analyze the BigQuery query logs for which fields



they actually did access, and how they did such access, and then build a pipeline to
routinely load those fields into BigQuery.

For example, you can export BigQuery audit logs from Stackdriver in JSON format
with the entire log message in a nested column named
protopayload_auditlog.metadatalson. Here is a query to count log messages
with the root element tableDataRead and use the count to rank datasets in terms of
the number of times each dataset is accessed:

SELECT
REGEXP_EXTRACT(protopayload_auditlog.resourceName,
'Aprojects/[~/]+/datasets/([~/]+)/tables') AS datasetRef,
COUNTIF(JSON_EXTRACT(protopayload_auditlog.metadatalson, "$.tableDataRead")
IS NOT NULL) AS dataReadEvents,
FROM ch04.cloudaudit_googleapis_com_data_access_2019*
WHERE
JSON_EXTRACT (protopayload_auditlog.metadataJson, "$.tableDataRead")
IS NOT NULL
GROUP BY datasetRef
ORDER BY dataReadEvents DESC
LIMIT 5

The method JSON_EXTRACT takes the column name
(protopayload_auditlog.metadatalson) as the first parameter and a
JSONPath'” as the second parameter.

If the original data is in a relational database management system (RDBMYS), it is
possible to export the data periodically as a tab-separated values (TSV) file to
Google Cloud Storage. For example, if you are using MySQL with a database
named somedb, the relevant command would be as follows:

mysql somedb < select_data.sql | \
gsutil cp - gs://BUCKET/data_S$(date -u "+%F-%T").tsv

The select_data.sql would contain a query to pull just the most recent records
(here, those from the previous 10 days):

select * from my_table
where transaction_date >= DATE_SUB(CURDATE(), INTERVAL 10 DAY)



Given these periodically exported files, it is straightforward for an analyst to get
started querying the data using federated queries. After the value of the dataset is
proven, the data can be loaded routinely and/or in real time through a data pipeline.

The reason that this is not always suitable for operationalization is that it doesn’t
handle the case of mutations to the database. If data that is more than 10 days old is
updated, the tab-separated dumps will not be synchronized. Realistically, dumps to
TSV files work only for small datasets (on the order of a few gigabytes) where the
original database fields themselves do not need to be transformed or corrected
before they are used for analytics queries.

If you do want to operationalize synchronization from an operational database to
BigQuery, there are a number of third-party companies that partner with Google,
each with a menu of connectors and transformation options.'® These tools can do
change data capture (CDC) to allow you to stream changes from a database to a
BigQuery table.

External query in Cloud SQL

BigQuery now supports external queries, not just federated queries. Whereas a
federated query allows you to query an external data source using BigQuery, an
external query allows you to run the query in the external database and seamlessly
join the results against data in BigQuery. Currently, MySQL and Postgres databases
in Cloud SQL (the managed relational database service in Google Cloud) are
supported.

There is an initial one-time setup to create a connection resource in BigQuery and
grant users permission to use this connection resource. Once this connection

resource has been set up, it can be used from an EXTERNAL_QUERY as follows:

SELECT * FROM EXTERNAL_QUERY(connection_id, cloud_sql_query);

In this example, connection_1id is the name of the database connection resource
that you created in BigQuery using the web Ul, a REST API, or the command-line
tool.

The performance of the external query depends on the speed of the external
database and, because it involves an intermediate temporary table, will usually be
slower than queries that are purely in Cloud SQL or purely in BigQuery. Still, there
is a tremendous benefit to being able to query data residing in an RDBMS in real



time without having to move data around, thus avoiding unnecessary ETL,
scheduling, and orchestration.

For example, suppose we wish to create a report of gift cards belonging to
customers who have not made any recent purchases. The date of the latest order for
each customer is available in Cloud SQL and updated in real time. The balance
associated with every gift card our store has ever issued, however, is available in
BigQuery. We can join the result of an external query of the orders data in Cloud
SQL with the gift card balance data in BigQuery to create an up-to-date report
without having to move any data around:

SELECT
c.customer_1id
, c.gift_card_balance
, rq.latest_order_date
FROM ch04.gift_cards AS c
LEFT OUTER JOIN EXTERNAL_QUERY(
'connection_1id',
"' 'SELECT customer_id, MAX(order_date) AS latest_order_date
FROM orders
GROUP BY customer_id''') AS rq ON rq.customer_1id = c.customer_1id
WHERE c.gift_card_balance > 100
ORDER BY rq.latest_order_date ASC;

Interactive Exploration and Querying of Data in Google Sheets

Google Sheets is part of G Suite, a set of productivity and collaboration tools from
Google Cloud. It provides the means of creating, viewing, editing, and publishing
spreadsheets. A spreadsheet contains tabular values in individual cells; some of
these values are data and some are the result of computations carried out on the
values of other cells. Google Sheets brings spreadsheets online—multiple people
can collaboratively edit a spreadsheet, and you can access it from a variety of
devices.

Loading Google Sheets data into BigQuery

Google Sheets is an external source, so loading and querying a Google Sheets
spreadsheet is a federated query; it works similarly to querying a CSV file from
Google Cloud Storage. We create a table definition in BigQuery to point to the data
in Google Sheets, and then we can query that table as if it were a native BigQuery
table.



Let’s begin by creating a Google Sheets spreadsheet that we can query. Open a web
browser, and then, in the URL navigation bar, type https://sheets.new --.
Visiting this URL opens a blank spreadsheet.

Type in the following data (or download the corresponding CSV file from GitHub
and do a File > Import of the data into Google Sheets):

Home SAT
Student state score
Aarti KS 1111
Billy LA 1222
Cao MT 1333
Dalia NE 1444

Next, navigate to the BigQuery section of the GCP Cloud Console, create a dataset
(if necessary), and create a table, specifying that the source of the table is on Drive
and its URL, and that it is a Google Sheet. Ask for the schema to be autodetected, as
demonstrated in Figure 4-2.


https://oreil.ly/ckBA5
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Figure 4-2. The “Create table” dialog box allows you to specify that the external data source is Google Sheets

After you do this, you can query the spreadsheet like any other BigQuery table:

SELECT * from advdata.students

Try changing the spreadsheet and verify that the returned results reflect the current

state of the table (the results of federated queries on external datasets are not
cached).

Even though querying a spreadsheet using SQL like this is possible, it is unlikely
that you’d want to do this, because it’s usually more convenient to use the
interactive filtering and sorting options built into Google Sheets. For example, you
can click the Explore button and type in the natural language query “average SAT
score of students in KS,” which returns the results shown in Figure 4-3.



& Answers X

average SAT score of students in KS e

For students!A1:C5 EDIT
[

QUESTION

average SAT score of students in KS ®\

ANSWER

Average of SAT score by Student for Home state
of KS

Student AVERAGE of SAT sco

Aarti 1111
Grand Total 1111
INSERT PIVOT TABLE
Explore

Figure 4-3. Natural language query in Google Sheets

There are several broad use cases for the tie between Google Sheets and BigQuery:



» Populating a spreadsheet with data from BigQuery
e Exploring BigQuery tables using Sheets
e Querying Sheets data using SQL

Let’s look at these three cases.

Populating a Google Sheets spreadsheet with data from BigQuery

The BigQuery data connector in Google Sheets allows you to query BigQuery
tables'® and use the results to populate a spreadsheet. This can be extremely useful
when sharing data with nontechnical users. In most businesses, nearly all office
workers know how to read/interpret spreadsheets. They don’t need to have anything
to do with BigQuery or SQL to be able to use Google Sheets and work with the data
in the sheet.

From Google Sheets, click Data > Data Connectors > BigQuery, select your project,
and write a query to populate the spreadsheet from the BigQuery table of college
scorecard data:

SELECT

*

FROM
ch04.college_scorecard_etl

Exploring BigQuery tables using Sheets

One of the reasons that you might want to populate a Google Sheets spreadsheet
with data from a BigQuery table is that Sheets is a familiar interface for business
users creating charts, formulas, and pivot tables. For example, from the college
scorecard data in Sheets, it is quite straightforward to create a formula to rank
colleges by the increase in median income experienced by their graduates:

1. In a new column, enter the following formula:

=ArrayFormula(IF(ISBLANK(D2:D), 0, F2:F/D2:D))

Note that the spreadsheet has now been populated with the ratio of the
value in the F-column to the value in the D-column—that is, by the
increase in income.



2. From the Data menu, create a filter on the newly created column and turn
off blanks and zeros.

3. Sort the spreadsheet Z to A based on this column.

Selecting the first few rows of the sheet, we can quickly create a chart to showcase
the best colleges in terms of economic improvement of the student body, as
illustrated in Figure 4-4.
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Figure 4-4. Chart that shows colleges that offer the greatest economic improvement to their graduates

In addition to interactively creating the charts you want, you can use the machine
learning features of Google Sheets to further explore your data.

In Google Sheets, click the Explore button and notice the charts that are
automatically created through machine 1earning.20 For example, the automatically
generated insight depicted in Figure 4-5 captures a striking inequality.



MD_FAMINC vs. FIRST_GEN
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For every increase of 0.1 in "FIRST_GEN",
"MD_FAMINC" decreases by about 11400.

Figure 4-5. Google Sheets automatically generates the insight that colleges that serve first-generation college
students also have poorer student bodies, for every 10% increase in first-generation college students, median
family income decreases by $11,400

Figure 4-6 shows a subsequent automatically created chart that puts the SAT_AVG in
context.
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Figure 4-6. Colleges that serve first-generation college students tend to have lower SAT averages

We can even ask for specific charts using natural language. Typing “histogram of
sat_avg where first_gen more than 0.5” in the “Ask a question” box returns the
answer displayed in Figure 4-7.



QUESTION

histogram of sat_avg where first_gen more than
0.5

ANSWER
Distribution of SAT_AVG with FIRST_GEN = 0.5
Histogram -

Distribution of SAT_AVG with FIRST_GEN > 0.5
15
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Count
wh
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Figure 4-7. Getting the charts we want by simply asking for them in Google Sheets

Exploring BigQuery tables as a data sheet in Google Sheets

In the previous section, we loaded the entire BigQuery table into Google Sheets, but
this was possible only because our college scorecard dataset was small enough.
Loading the entire BigQuery table into Google Sheets is obviously not feasible for
larger BigQuery tables.

Google Sheets does allow you to access, analyze, visualize, and share even large
BigQuery datasets as a BigQuery Data Sheet. To try this out, start a new Google
Sheets document and navigate via the menu by clicking Data > Data Connectors >
BigQuery Data Sheet.

Choose your Cloud project (that should be billed), and navigate via the menu to the
table you want to load into the Data Sheet by clicking bigquery-public-data >
usa_names >usa_ 1910 current > Connect. This table contains nearly six million
rows and is too large to load in its entirety. Instead, BigQuery acts as a cloud
backend for the data shown in Sheets.

Unlike when loading the entire table into Sheets (as in the previous section), only
the first 500 rows of a Data Sheet are loaded in the Ul. These 500 rows are best
thought of as a preview of the full dataset. Another difference is in editing: if the
entire table is loaded, Google Sheets holds a copy of the data; thus, you can edit
cells and save the changed spreadsheet. On the other hand, if BigQuery is acting as



a cloud backend, cells are not editable—users can filter and pivot the BigQuery
Data Sheet, but they cannot edit the data. When users do filtering and pivoting,
these actions happen on the entire BigQuery table, not just the preview that is
shown in Sheets.

As an example of the kind of analysis that is possible, let’s create a Pivot table by
clicking the Pivot table button. In the Pivot table editor, choose state as the Rows,
and select year as the Columns. For Values, choose number, and ask Sheets to
summarize by COUNTUNIQUE and show as Default, as shown in Figure 4-8.

Unique names by state and year
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7 CA 517 533 513 517
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Figure 4-8. Creating a Pivot table from a BigQuery Data Sheet

As Figure 4-8 illustrates, we get a table of the number of unique baby names in each
state, broken down by year.
Joining Sheets data with a large dataset in BigQuery

Both BigQuery and Google Sheets are capable of storing and providing access to
tabular data. However, BigQuery is primarily an analytics data warehouse, whereas



Google Sheets is primarily an interactive document. As we saw in the earlier
sections, the familiarity of Sheets and the exploration and charting capabilities
makes loading BigQuery data into Sheets very powerful.

However, there is a practical limitation on the size of BigQuery datasets that you
can load into Sheets. For example, BigQuery holds information on Stack Overflow
questions, answers, and users. Even with BigSheets, these petabyte-scale datasets
are much too large to load directly into Google Sheets. However, it is still possible
to write queries that join a small dataset in Sheets with such large datasets in
BigQuery and proceed from there. Let’s look at an example.

From the previous section, we have a spreadsheet with college scorecard data. Let’s
assume that we don’t already have the data in BigQuery. We could create a table in
BigQuery using the spreadsheet as a source, calling the resulting table

college_scorecard_gs, as depicted in Figure 4-9.

Create table

Source

Create table from: Select Drive URI: File format:

Drive - https://docs.google.com/spreadsheets/d/ToEP|PYB62GGTyxW41S Google Sh... =

Destination
Project name Dataset name Table type

cloud-training-demos - cho4

Table name

college_scorecard_gs

Schema

Auto detect
[+ Schema and input parameters

Schema will be automatically generated.

Figure 4-9. Creating a table in BigQuery using a Google Sheets spreadsheet as a source

Now we can issue a query in BigQuery that joins this relatively small table (7,700
rows) with a massive table consisting of Stack Overflow data (10 million rows) to
find which colleges are most commonly listed in Stack Overflow users’ profiles:



SELECT INSTNM, COUNT(display_name) AS numusers

FROM “bigquery-public-data’.stackoverflow.users, ch04.college_scorecard_gs
WHERE REGEXP_CONTAINS(about_me, INSTNM)

GROUP BY INSTNM

ORDER BY numusers DESC

LIMIT 5

This yields the following:?’

Row INSTNM numusers

1 Institute of 2364
Technology

2 National 332
University

3 Carnegie 169
Mellon
University

4 Stanford 139
University

5 University 131
of
Maryland

The first two entries are suspect,?? but it appears that Carnegie Mellon and Stanford
are well represented on Stack Overflow.

The result of this query is again small enough to load directly into Google Sheets
and perform interactive filtering and charting. Thus the SQL querying capability of
Sheets data from BigQuery is particularly useful to join a small, human-editable
dataset (in Google Sheets) with large enterprise datasets (in BigQuery).

SQL Queries on Data in Cloud Bigtable

Cloud Bigtable is a fully managed NoSQL database service that scales up to
petabytes of data. Cloud Bigtable is meant to be used in situations for which some
combination of low latency (on the order of milliseconds), high throughput
(millions of operations per second), replication for high availability, and seamless
scalability (from gigabytes to petabytes) is desired. Cloud Bigtable, therefore, finds
heavy use in finance (trade reconciliation and analytics, payment fraud detection,
etc.), Internet of Things (IoT) applications (for centralized storage and processing of
real-time sensor data), and advertising (real-time bidding, placement, and behavioral



analysis). Although Cloud Bigtable itself is available only on GCP, it supports the
open source Apache HBase API, enabling easy migration of workloads in a hybrid
cloud environment.

NoSQL Queries based on a row-key prefix

Cloud Bigtable provides high-performance queries that look up rows or sets of rows
that match a specific row-key, a row-key prefix, or a range of prefixes. Even though
Cloud Bigtable requires an instance, consisting of one or more logical clusters, to be
provisioned and available in your project, it uses that cluster only for compute (and
not for storage)—the data itself is stored on Colossus, and the nodes themselves
need only to know about the location of row-ranges on Colossus. Because the data
is not stored on the Cloud Bigtable nodes, it is possible to easily scale the Cloud
Bigtable cluster up and down without expensive data migration.

In financial analysis, a common pattern is to store time-series data in Cloud Bigtable
as it arrives in real- time and support low-latency queries on that data based on the
row-key (e.g., all buy orders, if any, for GOOG stock in the past 10 minutes). This
allows dashboards that require recent data to provide automatic alerts and actions
based on recent activity. Cloud Bigtable also supports being able to quickly obtain a
range of data (e.g., all the buy orders for GOOG stock in any given day), a necessity
for financial analytics and reporting. Prediction algorithms themselves need to be
trained on historical data (e.g., the time-series of ask prices for GOOG over the past
five years), and this is possible because machine learning frameworks like
TensorFlow can read and write directly from and to Cloud Bigtable. These three
workloads (real-time alerting, reporting, and machine learning training) can occur
on the same data, with the cluster potentially being scaled up and down with
workload spikes due to the separation of compute and storage.

All three workloads in the previous paragraph involve obtaining ask prices for
Google stock. Cloud Bigtable will provide efficient retrieval of records if the row-
key with which the time-series data is stored is of the form GOOG#buy#20190119-
090356 .0322234—that is, the security name and the timestamp. Then the queries of
ask prices, whether over the previous 10 minutes or over the past five years, all
involve requesting records that fall within a range of prefixes.

What if, though, we desire to perform ad hoc analytics over all of the Cloud
Bigtable data, and our query is not of a form that will result in retrieving only a
subset of records—what if, in other words, our query does not filter based on the
row-key prefix? Then the NoSQL paradigm of Cloud Bigtable falls down, and it is



better to resort to the ad hoc SQL querying capabilities offered by BigQuery
instead, with the understanding that BigQuery results will be subject to higher
latency.

Ad hoc SQL queries on Cloud Bigtable data

Just as BigQuery can directly query files in certain formats (CSV, Avro, etc.) in
Google Cloud Storage by treating it as an external data source, BigQuery can
directly query data in Cloud Bigtable. Just as with data in Cloud Storage, data in
Cloud Bigtable can be queried using either a permanent table or a temporary table.
A permanent table can be shared by sharing the dataset that it is part of; a temporary
table is valid only for the duration of a query and so cannot be shared.

A table in Cloud Bigtable is mapped to a table in BigQuery. In this section, we use a
time-series of point-of-sale data to illustrate. To follow along, run the script

setup _data.sh in the GitHub repository for this book to create a Cloud Bigtable
instance populated with some example data. Because the setup script creates a
Cloud Bigtable instance with a cluster, remember to delete the instance when you
are done.

We begin by using the BigQuery UI to create an external table in BigQuery to point
to the data in Cloud Bigtable, as shown in Figure 4-10. The location is a string of
the form
https://googleapis.com/bigtable/projects/[PROJECT_ID]/instances/[IN
STANCE_ID]/tables/[TABLE_NAME]. The PROJECT_ID, INSTANCE_ID, and
TABLE_NAME refer to the project, instance, and table in Cloud Bigtable.23


https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/tree/master/04_load/bigtable

Create Table

Source Data e Create from source Create empty table
Repeat job Select Previous Job
Location Google Cloud Bigtable 5 https://googleapis.com/bigtable/projects/cloud-training-d
File format Cloud Bigtable S

Destination Table

Table name chD4 < . logs
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Table type

Column Families

Column Family and Qualifiers Type Encoding Only Read Latest
sales + STRING = TEXT - TRUE =
sales. itemid STRING s TEXT ] TRUE ]
sales. price FLOAT = TEXT = TRUE =
sales. gty INTEGER = TEXT = TRUE =
Add Family Edit as Text

OCptions
Ignore unspecified column families v
Read row key as string v

Figure 4-10. Creating an external table in BigQuery to point to data in Cloud Bigtable. 24

Data in Cloud Bigtable consists of records, each of which has a row-key and data
tied to the row-key that is organized into column families, which are key/value
pairs, where the key is the name of the column family and the value is a set of
related columns.

Cloud Bigtable does not require every record to have every column family and
every column allowed in a column family; in fact, the presence or absence of a
specific column can itself be considered data. Therefore, BigQuery allows you to
create a table that is tied to data in Cloud Bigtable without explicitly specifying any
column names. If you do that, BigQuery exposes the values in a column family as
an array of columns and each column as an array of values written at different
timestamps.

In many cases, the column names are known beforehand, and if that is the case, it is
better to supply the known columns in the table definition. In our case, we know the

schema of each record in the logs-table of Cloud Bigtable:



» A row-key, which is the store ID followed by the timestamp of each
transaction

e A column family named “sales” to capture sales transactions at the
register

e Within the sales column family, we capture:
= The item ID (a string)
= The price at which the item was sold (a floating-point number)
= The number of items bought in this transaction (an integer)

Notice from Figure 4-10 that we have specified all of this information in the
Column Families section of the table definition.

Cloud Bigtable treats all data simply as byte strings, so the schema (string, float,
integer) are meant more for BigQuery so that we can avoid the need to cast the
values each time in our queries. Avoiding the cast is also the reason why we ask for
the row-key to be treated as a string. When the BigQuery table is created, each of
the columns in Cloud Bigtable is mapped to a column in BigQuery of the
appropriate type:

sales.price RECORD NULLABLE Describe this field...
sales.price.cell RECORD NULLABLE Describe this field...
sales.price.cell.timestamp TIMESTAMP NULLABLE Describe this field...
sales.price.cell.value FLOAT NULLABLE Describe this field...

With the BigQuery table in place, it is now possible to issue a good, old-fashioned
SQL query to aggregate the total number of 1temid 12345 that have been sold:

SELECT SUM(sales.qty.cell.value) AS num_sold
FROM ch04.logs
WHERE sales.itemid.cell.value = '12345'

Improving performance

When we issue a federated query on data held in Google Cloud Storage, the work is
carried out by BigQuery workers. On the other hand, when we issue a federated
query on data held in Cloud Bigtable, the work is carried out on the Cloud Bigtable



cluster. The performance of the second query is, therefore, limited by the capacity of
the Cloud Bigtable cluster and the load on it at the time that the query is being
submitted.

As with any analytics query, the overall query speed also depends on the number of
rows that need to be read and the size of the data being read. BigQuery does try to
limit the amount of data that needs to be read by reading only the column families
referenced in the query, and Cloud Bigtable will split the data across nodes to take
advantage of the distribution of row-key prefixes across the full dataset.

NOTE

If you have data that has a high update frequency or you need low-latency point lookups, Cloud Bigtable will
provide the best performance for queries that can filter on a range of row-key prefixes. It can be tempting to
think of BigQuery as providing an end run around Cloud Bigtable performance by supporting ad hoc point
lookups of Cloud Bigtable data that aren’t limited by row-keys. However, this pattern often gives
disappointing performance, and you should benchmark it on your workload before deciding on a production
architecture.

BigQuery stores data in a column-oriented order, which is optimized for table scans, whereas Cloud Bigtable
stores data in a row-major order, which is optimized for small reads and writes. Queries of external data
stored in Cloud Bigtable do not provide the benefits of BigQuery’s internal column-based storage and will be
performant only if they read a subset of rows, not if they do a full table scan. Hence, you should be careful to
ensure that your BigQuery federated queries filter on the Bigtable row-key; otherwise, they will need to read
the entire Cloud Bigtable table every time.

The knob you do have under your control is the number of nodes in your Cloud
Bigtable cluster. If you are going to routinely issue SQL queries against your Cloud
Bigtable data, monitor the Cloud Bigtable CPU usage and increase the number of
Cloud Bigtable nodes if necessary.

As with federated queries over Google Cloud Storage, consider whether it is
advantageous to set up an ELT pipeline when performing analytics over data in
Cloud Bigtable; that is, consider extracting data from Cloud Bigtable using a
federated query and loading it into a BigQuery table for further analysis and
transformations. This approach, illustrated in Figure 4-11, allows you to carry out
your analytics workload in an environment where you are not at the mercy of the
operational load on Cloud Bigtable. Analytics on an internal BigQuery table can be
carried out on thousands of machines rather than a much smaller cluster. The
analytics queries will, therefore, finish more quickly in BigQuery (assuming that
these analytics cannot be achieved using row-key prefixes) than if you use federated



queries on an external table. The drawback is, of course, that the extracted data is
duplicated in both Cloud Bigtable and BigQuery. Still, storage tends to be
inexpensive, and the advantages of scale and speed might be enough compensation.
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Figure 4-11. Use a federated query to export selected tables to a BigQuery internal table and have your
analytics workloads query the internal table

It is possible to schedule such data ingest into internal BigQuery tables to happen
periodically. We look at that in the next section.

TIP

If you started a Cloud Bigtable instance to experiment with, delete it now so as not to run up charges.

Transfers and Exports

So far, we have looked at loading data on a one-off basis and avoiding the
movement of data by using federated queries. In this section, we look at turn-key
services to transfer data into BigQuery from a variety of sources on a periodic basis.

Data Transfer Service

The BigQuery Data Transfer Service allows you to schedule recurring data loads
from a variety of data sources into BigQuery. As with most BigQuery capabilities,
you can access the BigQuery Data Transfer Service using the web Ul or the
command-line tool, or through a REST API. For repeatability, we show you the
command-line tool.



After you configure a data transfer, BigQuery will automatically load data on the
schedule you specify. However, in case there is a problem with the original data,
you can also initiate data backfills to recover from any outages or gaps. This is
called refreshing, and you can initiate it from the web UL

The Data Transfer Service supports loading data from a number of Software as a
Service (SaaS) applications, such as Google Ads, Google Play, Amazon Redshift,
and YouTube, as well as from Google Cloud Storage. We look at how to set up
routine ingest of files that show up in Cloud Storage, noting along the way any
differences with data transfer of a SaaS dataset, using YouTube channel reports as a
running example.

Data locality

As we discussed earlier in the chapter, BigQuery datasets are created in a specific

region (such as asia-northeasti, which is Tokyo) or in a multiregional location
(e.g., EU).?> When you set up a Data Transfer Service to a dataset, it processes and
stages data in the same location as the target BigQuery dataset.

If your Cloud Storage bucket is in the same region as your BigQuery dataset, the
data transfer does not incur charges. Transferring data between regions (e.g., from a
Cloud Storage bucket in one region to a BigQuery dataset in a different region) will
incur network charges, whether the transfer happens via loads, exports, or data
transfers.

BigQuery Data Transfer Service needs to be enabled (you can do this from the
BigQuery web Ul), and you need to have been granted the bigquery.admin role in
order to create transfers and write data to the destination dataset.

Setting up destination table

The data transfer service does not have the ability to create a new table, autodetect
schema, and so on. Instead, you need to provide a template table that has the desired
schema. If you are writing all the data to a column-partitioned table, specify the
partitioning column as a TIMESTAMP or DATE column when you create the
destination table schema. We cover partitions in detail in Chapter 7.

Here, we illustrate the process on the college scorecard dataset. We have it stored in
the US multiregion, so you should create a dataset in the US multiregion if you want
to try out the following steps.

In BigQuery, run the following query:



CREATE OR REPLACE TABLE
ch@4.college_scorecard_dts
AS

SELECT * FROM ch04.college_scorecard_gcs
LIMIT 0O

This is an example of a DDL statement. It will save the result of the SELECT query
(which will have no rows and not incur any charges) as a table named
college_scorecard_dts in the ch04 dataset.



CREATING TABLES IN SQL

DDL statements allow you to create and modify BigQuery tables and views
using standard SQL query syntax. For example, the following query creates a
new table named ch04.college_scorecard_valid_sat and populates it with
rows from ch@4.college scorecard_gcs, where the SAT_AVG column is
valid:

CREATE TABLE
ch04.college_scorecard_valid_sat
AS
SELECT * FROM ch04.college_scorecard_gcs
WHERE LENGTH(SAT_AVG) > 0

The CREATE TABLE DDL statement will return an error if the table already
exists. Other options for the behavior when the table already exists include
CREATE OR REPLACE (to replace the existing table) and CREATE IF NOT
EXISTS (to leave the existing table as is).

Instead of providing a SELECT statement, it is also possible to create an empty
table with some desired schema:

CREATE TABLE ch04.payment_transactions

(
PAYEE STRING OPTIONS(description="Id of payee"),
AMOUNT NUMERIC OPTIONS(description="Amount paid")

)

By running the DDL query from the BigQuery command-line UI or invoking it
using the REST API, it is possible to script out or programmatically create a
table.

Create a transfer job

On the command line, issue the following command to set up a transfer job:

bg mk --transfer_config --data_source=google_cloud_storage \
--target_dataset=ch@4 --display_name ch0@4_college_scorecard \

--params='{"data_path_template":"gs://bigquery-oreilly-book/college_*.csv",



"destination_table_name_template":"college_scorecard_dts", "file_format":"CSV",
"max_bad_records":"10", "skip_leading_rows":"1", "allow_jagged_rows":"true"}'

This command specifies that the data source is to be Google Cloud Storage (if
you’re transferring from YouTube Channel, for example, the data source would be
youtube channel) and that the target dataset is ch@4. The display name is used as a
human-readable name on various user interfaces to refer to the transfer job.

In the case of YouTube, the destination tables are automatically partitioned on the
time of import and named appropriately. However, in the case of Cloud Storage, you
will need to explicitly specify this in the destination table name. For example,
specifying mytable_{run_time|"%Y%m%d"} as the destination table name template
indicates that the table name should start with mytable and have the job runtime
appended using the datetime formatting parameters specified.?® A convenient
shortcut is ytable_{run_date}. This simply uses the date in the format
YYYYMMDD. It is also possible to supply a time offset. For example, to name the
table based on the timestamp 45 minutes after the runtime, we could specify the
following:

{run_time+45m|"%Y%m%d"}_mytable_{run_time|"%H%M%s"}

This yields a table name of the form 20180915_mytable_004500.

The parameters themselves are specific to the data source. In the case of transferring
files from Google Cloud Storage, we should specify the following:

e The input data path, with an optional wildcard.
* The destination table name template.

e The file format. The transfer service from Cloud Storage supports all of the
data formats that the federated querying capability supports (CSV, JSON,
Avro, Parquet, etc.). In the case that the file format is CSV, we can specify
CSV-specific options, such as the number of header lines to skip.

The parameters for the YouTube Channel data transfer include the page_1id (in
YouTube) and table_suffix (in BigQuery).

When you run the bq mk command, as just shown, you will get a URL as part of an
OAuth2 workflow; provide the necessary token by signing in via the browser, and
the transfer job will be created.


https://cloud.google.com/bigquery/docs/youtube-channel-transfer

You can also initiate a Data Transfer Service from the web UI. Initiate a transfer and
choose the data source, as illustrated in Figure 4-12.

Google BigQuery

Query History . =
Source Campaign Manager (formerly DCM) -
Job History
Google Ad Manager (formerly DFP)
Scheduled Queries
ELEL Google Ads (formerly AdWords)
Transfers
Google Cloud Storage
Filter by ID or label Google Play
yangzhan-test - Migration: Redshift

Figure 4-12. You can initiate a data transfer from the web Ul as well

Note that we have not specified a schedule; by default, the job will run every 24
hours, starting “now.” It is possible to edit the schedule of the transfer job from the
BigQuery web UI, as demonstrated in Figure 4-13.

Schedule
On the 2 A
At 04:43 AM

Starting (UTC) s Today

01/28/2019, 04:43 AM
Ending (UTC) s Never

02/27/2019%9, 04:43 AM

Summary 27 of the month at 04:43 UTC

Figure 4-13. Editing the schedule of the transfer job from the web Ul

The price of data transfers varies by the source. As of this writing, data transfers
from YouTube Channel costs $5 per channel per month, whereas data transfers from
Cloud Storage incur no charge. However, because the Data Transfer Service uses
load jobs to load Cloud Storage data into BigQuery, this is subject to the BigQuery
limits on load jobs.


https://cloud.google.com/bigquery/quotas#load_jobs

Scheduled queries

BigQuery supports the scheduling of queries to run on a recurring basis and saving
the results in BigQuery tables. In particular, you can use a federated query to extract
data from an external data source, transform it, and load it into BigQuery. Because
such scheduled queries can include DDL and DML statements, it is possible to build
sophisticated workflows purely in SQL.

You can open the dialog box to set up a scheduled query by clicking the Schedule
Query button in the BigQuery UI, as shown in Figure 4-14.27

New Query

SELECT * from mydatasct.mytablﬂ

m Save Query Save View Format Query Schedule Query Show Options

Figure 4-14. Schedule a query from the BigQuery user interface

Scheduled queries are built on top of the Data Transfer Service, so many of the
features are similar. Thus you can specify the destination table using the same
parameter settings (e.g., run_date and run_time) as for the Data Transfer Service
(see the previous section).

Cross-region dataset copy

BigQuery supports the scheduling of cross-region dataset copies via the Data
Transfer Service. In the Data Transfer Service web Ul, choose Cross Region Copy
as the Source. You will also need to specify as the source dataset the name of the
dataset from which tables are to be copied into the destination dataset, as depicted in
Figure 4-15.

Because the source and destination datasets are both BigQuery datasets, the initiator
needs to have permission to initiate data transfers, list tables in the source dataset,
view the source dataset, and edit the destination dataset.



A cross-region copy can also be initiated from bq mk by specifying
cross_region_copy as the data source.

New Transfer

Source Cross Region Copy =
Display name My Cross Region Copy

Schedule every 24 hours Edit
Destination dataset my_destination =
Source dataset my_source

r Advanced

Figure 4-15. Initiate a scheduled cross-region dataset copy from the Data Transfer Service Ul by specifying that
the source is a cross-region copy

Exporting Stackdriver Logs

Log data from GCP virtual machines (VMs) and services2® can be stored,
monitored, and analyzed using Stackdriver Logging. Stackdriver Logging thus
serves as a unified view of all the activity in your GCP account. It is helpful,
therefore, to export Stackdriver and Firebase logs to BigQuery. You can do this by
using the command-line interface, a REST API, or the web UI, which is shown in
Figure 4-16.

To export all the logs from the BigQuery service, click the Create Export button at
the top of the Stackdriver Logs Viewer and then fill in the following information:

e Select BigQuery and All Logs to view the logs from BigQuery. Do you see
your recent activity?

e Provide a sink name, perhaps bq_logs.

» Specify the sink service: BigQuery, because we want to export to
BigQuery.

e Specify the sink destination: ch04, the dataset to which we want to export.


https://console.cloud.google.com/logs/
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Figure 4-16. To view logs from the BigQuery ingest jobs in the previous section, for example, you would go to

the Stackdriver section of the GCP Cloud Console

Let’s look at the logs generated by running a query. Go to the BigQuery Ul and try

running a query:

SELECT

gender, AVG(tripduration / 60) AS avg_trip_duration

FROM

‘bigquery-public-data’.new_york_citibike.citibike_trips

GROUP BY

gender
HAVING avg_trip_duration > 14
ORDER BY

avg_trip_duration

In the BigQuery UI, if you now do (change the date appropriately)

SELECT protopayload_auditlog.status.message FROM
ch04.cloudaudit_googleapis_com_data_access_20190128

you will find a list of BigQuery log messages, including a message about reading
the results of the preceding query. Depending on your date filter, you should also

see the logs corresponding to earlier operations that you carried out.

Note a few things about the export capability:



e The schema and even the table name were set by Stackdriver. We simply
specified the destination dataset.

e The data was updated in near real time. This is an example of a streaming
buffer—a BigQuery table updated in real time by Stackdriver (although the
typical latency of BigQuery queries implies that the data you see is a few
seconds old).

TIP

To avoid running up charges for this streaming pipeline, go to the Stackdriver section of the console and
delete the sink.

Using Cloud Dataflow to Read/Write from BigQuery

As we’ve discussed, BigQuery supports federated querying from sources such as
Google Sheets. Its Data Transfer Service supports sources such as Google Ads and
YouTube. Products such as Stackdriver Logging and Firestore provide the ability to
export their data to BigQuery.

What if you are using a product such as MySQL that does not provide an export
capability and is not supported by the Data Transfer Service? One option is to use
Cloud Dataflow. Cloud Dataflow is a fully managed service on GCP that simplifies
the execution of data pipelines that are built using the open source Apache Beam
API by handling operational details such as performance, scaling, availability,
security, and compliance, so that users can focus on programming instead of
managing server clusters. You can use Dataflow for transforming and enriching data
both in streaming (real time) mode as well as in batch (historical) mode with the
same reusable code across both streaming and batch pipelines.

Using a Dataflow template to load directly from MySQL

Although you could write your own C