

Praise for Google BigQuery: The Definitive Guide

This book is essential to the rapidly growing list of businesses that are
migrating their existing enterprise data warehouses from legacy
technology stacks to Google Cloud. Lak and Jordan provide a
comprehensive coverage of BigQuery so that you can use it not only as
your Enterprise Data Warehouse, for business analytics— but also use
SQL to query real-time data streams; access BigQuery from managed
Hadoop and Spark clusters; and use machine learning to automatically
categorize and run forecasting and predictions on your data.

—Thomas Kurian, CEO, Google Cloud

Every once in a great while a piece of software or service comes along
that changes everything. BigQuery has changed the way enterprises can
think about their data, all of it. Designed from the beginning to handle
the world’s largest datasets, BigQuery has gone on to be one of the best
platforms for analyzing and learning from data. Announced in June
2016, “Standard SQL” is one of the most clean, complete, powerful,
implementations of SQL ever designed. Powerful features include deeply
nested data, user defined functions in JavaScript and SQL, geospatial
data, integrated machine learning, and URL addressable data sharing,
just to name a few. There is no better place to learn about BigQuery than
from this book by Jordan and Lak, two of the people who know BigQuery
best.

—Lloyd Tabb, Cofounder and CTO, Looker

Even though I’ve been using BigQuery for over seven years, I was
pleased to discover that this book taught me things I never knew about it!
It provides invaluable insights into best practices and techniques, and
explains concepts in an easy to understand fashion. The code examples
are a great way to follow the content in a practical, hands-on manner,
and they kept the book fun and engaging. This book will undoubtedly
become the go-to reference for BigQuery users.

—Graham Polley, Managing Consultant, Servian

BigQuery can handle a lot of data very fast and at a low cost. The
platform is there to help you get all your data in one place for faster
insights. This book is a deep dive into key parts of BigQuery. In this quest
along with two prominent legendary Googlers—Lak Lakshmanan and
Jordan Tigani—you’ll learn the essentials of BigQuery as well as
advanced topics like machine learning. I’m a huge BigQuery advocate.
Having used the tool firsthand, I can say that it will easily make your big
data life a lot easier. This was an amazing read and now the BigQuery
journey starts for you! Jump in!

—Mikhail Berlyant, SVP Technology, Viant Inc.

Google BigQuery: The
Definitive Guide

Data Warehousing, Analytics, and Machine Learning
at Scale

Valliappa Lakshmanan and Jordan Tigani

Google BigQuery: The Definitive Guide
by Valliappa Lakshmanan and Jordan Tigani

Copyright © 2020 Valliappa Lakshmanan and Jordan Tigani. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Nicole Taché

Production Editor: Kristen Brown

Copyeditor: Octal Publishing, LLC

Proofreader: Arthur Johnson

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

October 2019: First Edition

Revision History for the First Edition

2019-10-23: First Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781492044468 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Google
BigQuery: The Definitive Guide, the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-04446-8

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492044468

Preface

Enterprises are becoming increasingly data driven, and a key component of
any enterprise’s data strategy is a data warehouse—a central repository of
integrated data from all across the company. Traditionally, the data
warehouse was used by data analysts to create analytical reports. But now it
is also increasingly used to populate real-time dashboards, to make ad hoc
queries, and to provide decision-making guidance through predictive
analytics. Because of these business requirements for advanced analytics
and a trend toward cost control, agility, and self-service data access, many
organizations are moving to cloud-based data warehouses such as Google
BigQuery.

In this book, we provide a thorough tour of BigQuery, a serverless, highly
scalable, low-cost enterprise data warehouse that is available on Google
Cloud. Because there is no infrastructure to manage, enterprises can focus
on analyzing data to find meaningful insights using familiar SQL.

Our goal with BigQuery has been to build a data platform that provides
leading-edge capabilities, takes advantage of the many great technologies
that are now available in cloud environments, and supports tried-and-true
data technologies that are still relevant today. For example, on the leading
edge, Google’s BigQuery is a serverless compute architecture that
decouples compute and storage. This enables diverse layers of the
architecture to perform and scale independently, and it gives data
developers flexibility in design and deployment. Somewhat uniquely,
BigQuery supports native machine learning and geospatial analysis. With
Cloud Pub/Sub, Cloud Dataflow, Cloud Bigtable, Cloud AI Platform, and
many third-party integrations, BigQuery interoperates with both traditional
and modern systems, at a wide range of desired throughput and latency.
And on the tried-and-true front, BigQuery supports ANSI-standard SQL,
columnar optimization, and federated queries, which are key to the self-
service ad hoc data exploration that many users demand.

Who Is This Book For?
This book is for data analysts, data engineers, and data scientists who want
to use BigQuery to derive insights from large datasets. Data analysts can
interact with BigQuery through SQL and via dashboarding tools like
Looker, Data Studio, and Tableau. Data engineers can integrate BigQuery
with data pipelines written in Python or Java and using frameworks such as
Apache Spark and Apache Beam. Data scientists can build machine
learning models in BigQuery, run TensorFlow models on data in BigQuery,
and delegate distributed, large-scale operations to BigQuery from within a
Jupyter notebook.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or values
determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
mailto:bookquestions@oreilly.com

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Google BigQuery: The Definitive Guide by Valliappa Lakshmanan and
Jordan Tigani (O’Reilly). Copyright 2020 Valliappa Lakshmanan and
Jordan Tigani, 978-1-492-04446-8.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, conferences, and our online learning
platform. O’Reilly’s online learning platform gives you on-demand access
to live training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly and
200+ other publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

mailto:permissions@oreilly.com
http://oreilly.com/
http://www.oreilly.com/

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/google_bigquery_tdg.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Follow the authors on Twitter: https://twitter.com/lak_gcp and
https://twitter.com/jrdntgn

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We (Lak and Jordan) were extremely fortunate in our reviewers—Elliott
Brossard, Evan Jones, Graham Polley, Rebecca Ward, and Tegan Tigani
reviewed every chapter of this book and made numerous suggestions for
improvement. Elliott kept our SQL queries lean and clean. We benefited
from Evan’s experience using BigQuery in Google Finance. Graham
brought a valuable customer perspective to many of our discussions
involving cost and regionalization. Rebecca kept us factual, and Tegan
made sure our language was simple and straightforward. Besides these five,
many Googlers (Chad Jennings, Haris Khan, Misha Brukman, Daniel
Gundrum, Mosha Pashumansky, Amir Hormati, and Mingge Deng)

https://oreil.ly/google_bigquery_tdg
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
https://twitter.com/lak_gcp
https://twitter.com/jrdntgn
http://www.youtube.com/oreillymedia

reviewed parts of the manuscript in their areas of expertise. Any errors that
remain are ours, of course.

Thanks also to our respective families, teammates, and managers (Rochana
Golani and Sudhir Hasbe) for their support. Nicole Taché and Kristen
Brown, our editors at O’Reilly, were a pleasure to work with. The text is
immeasurably better because of the eagle-eyed work of Bob Russell, our
copyeditor. This book was Saptarshi Mukherjee’s idea, and it was he who
pushed the two of us to collaborate on a new BigQuery book. Finally, we
would like to thank BigQuery users (and competitors!) for pushing us to
make BigQuery better, and the BigQuery engineering team for making
magic happen.

We are donating 100% of the royalties from this book to United Way of
King County, where we both live. We strongly encourage you to get
involved with a local charity to give, volunteer, and take action to help
solve your community’s toughest challenges.

https://www.uwkc.org/

Chapter 1. What Is Google
BigQuery?

Data Processing Architectures
Google BigQuery is a serverless, highly scalable data warehouse that comes
with a built-in query engine. The query engine is capable of running SQL
queries on terabytes of data in a matter of seconds, and petabytes in only
minutes. You get this performance without having to manage any
infrastructure and without having to create or rebuild indexes.

BigQuery has legions of fans. Paul Lamere, a Spotify engineer, was thrilled
that he could finally talk about how his team uses BigQuery to quickly
analyze large datasets: “Google’s BigQuery is *da bomb*,” he tweeted in
February 2016. “I can start with 2.2Billion ‘things’ and compute/summarize
down to 20K in < 1 min.” The scale and speed are just two notable features
of BigQuery. What is more transformative is not having to manage
infrastructure because the simplicity inherent in serverless, ad hoc querying
can open up new ways of working.

Companies are increasingly embracing data-driven decision making and
fostering an open culture where the data is not siloed within departments.
BigQuery, by providing the technological means to enact a cultural shift
toward agility and openness, plays a big part in increasing the pace of
innovation. For example, Twitter recently reported in its blog that it was
able to democratize data analysis with BigQuery by providing some of its
most frequently used tables to Twitter employees from a variety of teams
(Engineering, Finance, and Marketing were mentioned).

For Alpega Group, a global logistics software company, the increased
innovation and agility offered by BigQuery were key. The company went
from a situation in which real-time analytics was impossible to being able
to provide fast, customer-facing analytics in near real time. Because Alpega

https://twitter.com/plamere/status/702168809445134336
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/democratizing-data-analysis-with-google-bigquery.html

Group does not need to maintain clusters and infrastructure, its small tech
team is now free to work on software development and data capabilities.
“That was a real eye opener for us,” says the company’s lead architect, Aart
Verbeke. “In a conventional environment we would need to install, set up,
deploy and host every individual building block. Here we simply connect to
a surface and use it as required.”

Imagine that you run a chain of equipment rental stores. You charge
customers based on the length of the rental, so your records include the
following details that will allow you to properly invoice the customer:

1. Where the item was rented

2. When it was rented

3. Where the item was returned

4. When it was returned

Perhaps you record the transaction in a database every time a customer
returns an item.

From this dataset, you would like to find out how many “one-way” rentals
occurred every month in the past 10 years. Perhaps you are thinking of
imposing a surcharge for returning the item at a different store and you
would like to find out what fraction of rentals would be affected. Let’s posit
that wanting to know the answer to such questions is a frequent occurrence
—it is important for you to be able to answer such ad hoc questions because
you tend to make data-driven decisions.

What kind of system architecture could you use? Let’s run through some of
the options.

Relational Database Management System
When recording the transactions, you are probably recording them in a
relational, online transaction processing (OLTP) database such as MySQL
or PostgreSQL. One of the key benefits of such databases is that they

1

https://cloud.google.com/customers/alpega

support querying using Structured Query Language (SQL)—your staff
doesn’t need to use high-level languages like Java or Python to answer
questions that arise. Instead, it is possible to write a query, such as the
following, that can be submitted to the database server:

SELECT

 EXTRACT(YEAR FROM starttime) AS year,

 EXTRACT(MONTH FROM starttime) AS month,

 COUNT(starttime) AS number_one_way

FROM

 mydb.return_transactions

WHERE

 start_station_name != end_station_name

GROUP BY year, month

ORDER BY year ASC, month ASC

Ignore the details of the syntax for now; we cover SQL queries later in this
book. Instead, let’s focus on what this tells us about the benefits and
drawbacks of an OLTP database.

First, notice that SQL goes beyond just being able to get the raw data in
database columns—the preceding query parses the timestamp and extracts
the year and month from it. It also does aggregation (counting the number
of rows), some filtering (finding rentals where the starting and ending
locations are different), grouping (by year and month), and sorting. An
important benefit of SQL is the ability to specify what we want and let the
database software figure out an optimal way to execute the query.

Unfortunately, queries like this one are quite inefficient for an OLTP
database to carry out. OLTP databases are tuned toward data consistency;
the point is that you can read from the database even while data is
simultaneously being written to it. This is achieved through careful locking
to maintain data integrity. For the filtering on station_name to be efficient,
you would need to create an index on the station name column. If the station
name is indexed, then and only then does the database do special things to
the storage to optimize searchability—this is a tradeoff, slowing writing
down a bit to improve the speed of reading. If the station name is not

indexed, filtering on it will be quite slow. Even if the station name is an
index, this particular query will be quite slow because of all the
aggregating, grouping, and ordering. OLTP databases are not built for this
sort of ad hoc query that requires traversal through the entire dataset.

MapReduce Framework
Because OLTP databases are a poor fit for ad hoc queries and queries that
require traversal of the entire dataset, special-purpose analyses that require
such traversal might be coded in high-level languages like Java or Python.
In 2003, Jeff Dean and Sanjay Ghemawat observed that they and their
colleagues at Google were implementing hundreds of these special-purpose
computations to process large amounts of raw data. Reacting to this
complexity, they designed an abstraction that allowed these computations to
be expressed in terms of two steps: a map function that processed a
key/value pair to generate a set of intermediate key/value pairs, and a
reduce function that merged all intermediate values associated with the
same intermediate key. This paradigm, known as MapReduce, became
hugely influential and led to the development of Apache Hadoop.

Although the Hadoop ecosystem began with a library that was primarily
built in Java, custom analysis on Hadoop clusters is now typically carried
out using Apache Spark. Spark programs can be written in Python or Scala,
but among the capabilities of Spark is the ability to execute ad hoc SQL
queries on distributed datasets.

So, to find out the number of one-way rentals, you could set up the
following data pipeline:

1. Periodically export transactions to comma-separated values (CSV)
text files in the Hadoop Distributed File System (HDFS).

2. For ad hoc analysis, write a Spark program that does the following:

a. Loads up the data from the text files into a “DataFrame”

2

3

http://spark.apache.org/

b. Executes an SQL query, similar to the query in the
previous section, except that the table name is replaced by
the name of the DataFrame

c. Exports the result set back to a text file

3. Run the Spark program on a Hadoop cluster.

Although seemingly straightforward, this architecture imposes a couple of
hidden costs. Saving the data in HDFS requires that the cluster be large
enough. One underappreciated fact about the MapReduce architecture is
that it usually requires that the compute nodes access data that is local to
them. The HDFS must, therefore, be sharded across the compute nodes of
the cluster. With both data sizes and analysis needs increasing dramatically
but independently, it is often the case that clusters are underprovisioned or
overprovisioned. Thus, the need to execute Spark programs on a Hadoop
cluster means that your organization will need to become expert in
managing, monitoring, and provisioning Hadoop clusters. This might not be
your core business.

BigQuery: A Serverless, Distributed SQL Engine
What if you could run SQL queries as in a Relational Database
Management System (RDBMS) system, obtain efficient and distributed
traversal through the entire dataset as in MapReduce, and not need to
manage infrastructure? That’s the third option, and it is what makes
BigQuery so magical. BigQuery is serverless, and you can run queries
without the need to manage infrastructure. It enables you to carry out
analyses that process aggregations over the entire dataset in seconds to
minutes.

Don’t take our word for it, though. Try it out now. Navigate to
https://console.cloud.google.com/bigquery (logging into Google Cloud
Platform and selecting your project if necessary), copy and paste the
following query in the window, and then click the “Run query” button:

4

5

https://console.cloud.google.com/bigquery

SELECT

 EXTRACT(YEAR FROM starttime) AS year,

 EXTRACT(MONTH FROM starttime) AS month,

 COUNT(starttime) AS number_one_way

FROM

 `bigquery-public-data.new_york_citibike.citibike_trips`

WHERE

 start_station_name != end_station_name

GROUP BY year, month

ORDER BY year ASC, month ASC

When we ran it, the BigQuery user interface (UI) reported that the query
involved processing 2.51 GB and gave us the result in about 2.7 seconds, as
illustrated in Figure 1-1.

Figure 1-1. Running a query to compute the number of one-way rentals in the BigQuery web UI

The equipment being rented out is bicycles, and so the preceding query
totals up one-way bicycle rentals in New York month by month over the
extent of the dataset. The dataset itself is a public dataset (meaning that
anyone can query the data held in it) released by New York City as part of
its Open City initiative. From this query, we learn that in July 2013, there
were 815,324 one-way Citibike rentals in New York City.

Note a few things about this. One is that you were able to run a query
against a dataset that was already present in BigQuery. All that the owner of
the project hosting the data had to do was to give you “view” access to this
dataset. You didn’t need to start up a cluster or log in to one. Instead, you

6

just submitted a query to the service and received your results. The query
itself was written in SQL:2011, making the syntax familiar to data analysts
everywhere. Although we demonstrated on gigabytes of data, the service
scales well even when it does aggregations on terabytes to petabytes of
data. This scalability is possible because the service distributes the query
processing among thousands of workers almost instantaneously.

Working with BigQuery
BigQuery is a data warehouse, implying a degree of centralization and
ubiquity. The query we demonstrated in the previous section was applied to
a single dataset. However, the benefits of BigQuery become even more
apparent when we do joins of datasets from completely different sources or
when we query against data that is stored outside BigQuery.

Deriving Insights Across Datasets
The bicycle rental data comes from New York City. How about joining it
against weather data from the US National Oceanic and Atmospheric
Administration (NOAA) to learn whether there are fewer bicycle rentals on
rainy days?

-- Are there fewer bicycle rentals on rainy days?

WITH bicycle_rentals AS (

 SELECT

 COUNT(starttime) as num_trips,

 EXTRACT(DATE from starttime) as trip_date

 FROM `bigquery-public-data.new_york_citibike.citibike_trips`

 GROUP BY trip_date

),

rainy_days AS

(

SELECT

 date,

 (MAX(prcp) > 5) AS rainy

FROM (

 SELECT

7

 wx.date AS date,

 IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp

 FROM

 `bigquery-public-data.ghcn_d.ghcnd_2016` AS wx

 WHERE

 wx.id = 'USW00094728'

)

GROUP BY

 date

)

SELECT

 ROUND(AVG(bk.num_trips)) AS num_trips,

 wx.rainy

FROM bicycle_rentals AS bk

JOIN rainy_days AS wx

ON wx.date = bk.trip_date

GROUP BY wx.rainy

Ignore the specific syntax of the query. Just notice that, in the bolded lines,
we are joining the bicycle rental dataset with a weather dataset that comes
from a completely different source. Running the query satisfyingly yields
that, yes, New Yorkers are wimps—they ride the bicycle nearly 20% fewer
times when it rains:

Row num_trips rainy

 1 39107.0 false

 2 32052.0 true

What does being able to share and query across datasets mean in an
enterprise context? Different parts of your company can store their datasets
in BigQuery and quite easily share the data with other parts of the company
and even with partner organizations. The serverless nature of BigQuery
provides the technological means to break down departmental silos and
streamline collaboration.

ETL, EL, and ELT
The traditional way to work with data warehouses is to start with an
Extract, Transform, and Load (ETL) process, wherein raw data is extracted

8

from its source location, transformed, and then loaded into the data
warehouse. Indeed, BigQuery has a native, highly efficient columnar
storage format that makes ETL an attractive methodology. The data
pipeline, typically written in either Apache Beam or Apache Spark, extracts
the necessary bits from the raw data (either streaming data or batch files),
transforms what it has extracted to do any necessary cleanup or
aggregation, and then loads it into BigQuery, as demonstrated in Figure 1-2.

Figure 1-2. The reference architecture for ETL into BigQuery uses Apache Beam pipelines executed
on Cloud Dataflow and can handle both streaming and batch data using the same code

Even though building an ETL pipeline in Apache Beam or Apache Spark
tends to be quite common, it is possible to implement an ETL pipeline
purely within BigQuery. Because BigQuery separates compute and storage,
it is possible to run BigQuery SQL queries against CSV (or JSON or Avro)
files that are stored as-is on Google Cloud Storage; this capability is called
federated querying. You can take advantage of federated queries to extract
the data using SQL queries against data stored in Google Cloud Storage,
transform the data within those SQL queries, and then materialize the
results into a BigQuery native table.

If transformation is not necessary, BigQuery can directly ingest standard
formats like CSV, JSON, or Avro into its native storage—an EL (Extract
and Load) workflow, if you will. The reason to end up with the data loaded
into the data warehouse is that having the data in native storage provides the
most efficient querying performance.

We strongly recommend that you design for an EL workflow if possible,
and drop to an ETL workflow only if transformations are needed. If
possible, do those transformations in SQL, and keep the entire ETL pipeline

9

within BigQuery. If the transforms will be difficult to implement purely in
SQL, or if the pipeline needs to stream data into BigQuery as it arrives,
build an Apache Beam pipeline and have it executed in a serverless fashion
using Cloud Dataflow. Another advantage of implementing ETL pipelines
in Beam/Dataflow is that, because this is programmatic code, such pipelines
integrate better with Continuous Integration (CI) and unit testing systems.

Besides the ETL and EL workflows, BigQuery makes it possible to do an
Extract, Load, and Transform (ELT) workflow. The idea is to extract and
load the raw data as-is and rely on BigQuery views to transform the data on
the fly. An ELT workflow is particularly useful if the schema of the raw
data is in flux. For example, you might still be carrying out exploratory
work to determine whether a particular timestamp needs to be corrected for
the local time zone. The ELT workflow is useful in prototyping and allows
an organization to start deriving insights from the data without having to
make potentially irreversible decisions too early.

The alphabet soup can be confusing, so we’ve prepared a quick summary in
Table 1-1.

Table 1-1. Summary of workflows, sample architectures, and the
scenarios in which they would be used

Workflow Architecture When you’d use it

EL Extract data from files on
Google Cloud Storage.
Load it into BigQuery’s
native storage.
You can trigger this from
Cloud Composer, Cloud
Functions, or scheduled
queries.

Batch load of historical data.
Scheduled periodic loads of log files (e.g., once a
day).

ETL Extract data from Pub/Sub,
Google Cloud Storage, Cloud
Spanner, Cloud SQL, etc.
Transform the data using
Cloud Dataflow.
Have Dataflow pipeline write
to BigQuery

When the raw data needs to be quality controlled,
transformed, or enriched before being loaded into
BigQuery.
When the data loading needs to happen
continuously, i.e., if the use case requires
streaming.
When you want to integrate with continuous
integration/continuous delivery (CI/CD) systems
and perform unit testing on all components.

ELT Extract data from files in
Google Cloud Storage.
Store data in close-to-raw
format in BigQuery.
Transform the data on the fly
using BigQuery views.

Experimental datasets where you are not yet sure
what kinds of transformations are needed to make
the data usable.
Any production dataset where the transformation
can be expressed in SQL.

The workflows in Table 1-1 are in the order that we usually recommend.

Powerful Analytics
The benefits of a warehouse derive from the kinds of analyses that you can
do with the data held within it. The primary way you interact with
BigQuery is via SQL, and because BigQuery is an SQL engine, you can use
a wide variety of Business Intelligence (BI) tools such as Tableau, Looker,
and Google Data Studio to create impactful analyses, visualizations, and
reports on data held in BigQuery. By clicking the “Explore in Data Studio”
button in the BigQuery web UI, for example, we can quickly create a

visualization of how our one-way bike rentals vary by month, as depicted in
Figure 1-3.

BigQuery provides full-featured support for SQL:2011, including support
for arrays and complex joins. The support for arrays in particular makes it
possible to store hierarchical data (such as JSON records) in BigQuery
without the need to flatten the nested and repeated fields. Besides the
support for SQL:2011, BigQuery has a few extensions that make it useful
beyond the core set of data warehouse use cases. One of these extensions is
support for a wide range of spatial functions that enable location-aware
queries, including the ability to join two tables based on distance or overlap
criteria. BigQuery is, therefore, a powerful engine to carry out descriptive
analytics.

Figure 1-3. Visualization in Data Studio of how one-way rentals vary by month; nearly 15% of all
one-way bicycle rentals in New York happen in September

Another BigQuery extension to standard SQL supports creating machine
learning models and carrying out batch predictions. We cover the machine
learning capability of BigQuery in detail in Chapter 9, but the gist is that
you can train a BigQuery model and make predictions without ever having
to export data out of BigQuery. The security and data locality advantages of
being able to do this are enormous. BigQuery is, therefore, a data

10

warehouse that supports not just descriptive analytics but also predictive
analytics.

A warehouse also implies being able to store different types of data. Indeed,
BigQuery can store data of many types: numeric and textual columns, for
sure, but also geospatial data and hierarchical data. Even though you can
store flattened data in BigQuery, you don’t need to—schemas can be rich
and quite sophisticated. The combination of location-aware queries,
hierarchical data, and machine learning make BigQuery a powerful solution
that goes beyond conventional data warehousing and business intelligence.

BigQuery supports the ingest both of batch data and of streaming data. You
can stream data directly into BigQuery via a REST API. Often, users who
want to transform the data—for example, by adding time-windowed
computations—use Apache Beam pipelines executed by the Cloud
Dataflow service. Even as the data is streaming into BigQuery, you can
query it. Having common querying infrastructure for both historical (batch)
data and current (streaming) data is extremely powerful and simplifies
many workflows.

Simplicity of Management
Part of the design consideration behind BigQuery is to encourage users to
focus on insights rather than on infrastructure. When you ingest data into
BigQuery, there is no need to think about different types of storage, or their
relative speed and cost tradeoffs; the storage is fully managed. As of this
writing, the cost of storage automatically drops to lower levels if a table is
not updated for 90 days.

We have already talked about how indexing is not necessary; your SQL
queries can filter on any column in the dataset, and BigQuery will take care
of the necessary query planning and optimization. For the most part, we
recommend that you write queries to be clear and readable and rely on
BigQuery to choose a good optimization strategy. In this book, we talk
about performance tuning, but performance tuning in BigQuery consists
mainly of clear thinking and the appropriate choice of SQL functions. You

11

will not need to do database administration tasks like replication,
defragmentation, or disaster recovery; the BigQuery service takes care of all
that for you.

Queries are automatically scaled to thousands of machines and executed in
parallel. You don’t need to do anything special to enable this massive
parallelization. The machines themselves are transparently provisioned to
handle the different stages of your job; you don’t need to set up those
machines in any way.

Not having to set up infrastructure leads to less hassle in terms of security.
Data in BigQuery is automatically encrypted, both at rest and in transit.
BigQuery takes care of the security considerations behind supporting
multitenant queries and providing isolation between jobs. Your datasets can
be shared using Google Cloud Identity and Access Management (IAM), and
it is possible to organize the datasets (and the tables and views within them)
to meet different security needs, whether you need openness or auditability
or confidentiality.

In other systems, provisioning infrastructure for reliability, elasticity,
security, and performance often takes a lot of time to get right. Given that
these database administration tasks are minimized with BigQuery,
organizations using BigQuery find that it frees their analysts’ time to focus
on deriving insights from their data.

How BigQuery Came About
In late 2010, the site director of the Google Seattle office pulled several
engineers (one of whom is an author of this book) off their projects and
gave them a mission: to build a data marketplace. We tried to craft the best
way to come up with a viable marketplace. The chief issue was data sizes,
because we didn’t want to provide just a download link. A data marketplace
is infeasible if people need to download terabytes of data in order to work
with it. How would you build a data marketplace that didn’t require users to
start by downloading the datasets to their own machines?

Enter a principle popularized by Jim Gray, the database pioneer. When you
have “big data,” Gray said, “you want to move the computation to the data,
rather than move the data to the computation.” Gray elaborates:

The other key issue is that as the datasets get larger, it is no longer
possible to just FTP or grep them. A petabyte of data is very hard to
FTP! So at some point, you need indices and you need parallel data
access, and this is where databases can help you. For data analysis, one
possibility is to move the data to you, but the other possibility is to move
your query to the data. You can either move your questions or the data.
Often it turns out to be more efficient to move the questions than to move
the data.

In the case of the data marketplace that we were building, users would not
need to download the datasets to their own machines if we made it possible
for them to bring their computations to the data. We would not need to
provide a download link, because users could work on their data without the
need to move it around.

We, the Googlers who were tasked with building a data marketplace, made
the decision to defer that project and focus on building a compute engine
and storage system in the cloud. After ensuring that users could do
something with the data, we would go back and add data marketplace
features.

In what language should users write their computation when bringing
computation to the data on the cloud? We chose SQL because of three key
characteristics. First, SQL is a versatile language that allows a large range
of people, not just developers, to ask questions and solve problems with
their data. This ease of use was extremely important to us. Second, SQL is
“relationally complete,” meaning that any computation over the data can be
done using SQL. SQL is not just easy and approachable. It is also very
powerful. Finally, and quite important for a choice of a cloud computation
language, SQL is not “Turing complete” in a key way: it always
terminates. Because it always terminates, it is ok to host SQL
computation without worrying that someone will write an infinite loop and
monopolize all the compute power in a datacenter.

12

13

14

https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)

Next, we had to choose an SQL engine. Google had a number of internal
SQL engines that could operate over data, including some that were very
popular. The most advanced engine was called Dremel; it was used heavily
at Google and could process terabytes’ worth of logs in seconds. Dremel
was quickly winning people over from building custom MapReduce
pipelines to ask questions of their data.

Dremel had been created in 2006 by engineer Andrey Gubarev, who was
tired of waiting for MapReduces to finish. Column stores were becoming
popular in the academic literature, and he quickly came up with a column
storage format (Figure 1-4) that could handle the Protocol Buffers
(Protobufs) that are ubiquitous throughout Google.

Figure 1-4. Column stores can reduce the amount of data being read by queries that process all rows
but not all columns

Although column stores are great in general for analytics, they are
particularly useful for logs analysis at Google because many teams operate
over a type of Protobuf that has hundreds of thousands of columns. If
Andrey had used a typical record-oriented store, users would have needed
to read the files row by row, thus reading in a huge amount of data in the
form of fields that they were going to discard anyway. By storing the data
column by column, Andrey made it so that if a user needed just a few of the
thousands of fields in the log Protobufs, they would need to read only a
small fraction of the overall data size. This was one of the reasons why
Dremel was able to process terabytes’ worth of logs in seconds.

The other reason why Dremel was able to process data so fast was that its
query engine used distributed computing. Dremel scaled to thousands of

workers by structuring the computation as a tree, with the filters happening
at the leaves and aggregation happening toward the root.

By 2010, Google was scanning petabytes of data per day using Dremel, and
many people in the company used it in some form or another. It was the
perfect tool for our nascent data marketplace team to pick up and use.

As the team productized Dremel, added a storage system, made it self-
tuning, and exposed it to external users, the team realized that a cloud
version of Dremel was perhaps even more interesting than their original
mission. The team renamed itself “BigQuery,” following the naming
convention for “Bigtable,” Google’s NoSQL database.

At Google, Dremel is used to query files that sit on Colossus, Google’s file
store for storing data. BigQuery added a storage system that provided a
table abstraction, not just a file abstraction. This storage system was key in
making BigQuery simple to use and always fast, because it allowed key
features like ACID (Atomicity, Consistency, Isolation, Durability)
transactions and automatic optimization, and it meant that users didn’t need
to manage files.

Initially, BigQuery retained its Dremel roots and was focused on scanning
logs. However, as more customers wanted to do data warehousing and more
complex queries, BigQuery added improved support for joins and advanced
SQL features like analytic functions. In 2016, Google launched support for
standard SQL in BigQuery, which allowed users to run queries using
standards-compliant SQL rather than the awkward initial “DremelSQL”
dialect.

BigQuery did not start out as a data warehouse, but it has evolved into one
over the years. There are good things and bad things about this evolution.
On the positive side, BigQuery was designed to solve problems people have
with their data, even if they don’t fit nicely into data warehousing models.
In this way, BigQuery is more than just a data warehouse. On the downside,
however, a few data warehousing features that people expect, like a Data
Definition Language (DDL; e.g., CREATE statements) and a Data
Manipulation Language (DML; e.g., INSERT statements), were missing

until recently. That said, BigQuery has been focusing on a dual path: first,
adding differentiated features that Google is in a unique position to provide;
and second, becoming a great data warehouse in the cloud.

What Makes BigQuery Possible?
From an architectural perspective, BigQuery is fundamentally different
from on-premises data warehouses like Teradata or Vertica as well as from
cloud data warehouses like Redshift and Microsoft Azure Data Warehouse.
BigQuery is the first data warehouse to be a scale-out solution, so the only
limit on speed and scale is the amount of hardware in the datacenter.

This section describes some of the components that go into making
BigQuery successful and unique.

Separation of Compute and Storage
In many data warehouses, compute and storage reside together on the same
physical hardware. This colocation means that in order to add more
storage, you might need to add more compute power as well. Or to add
more compute power, you’d also need to get additional storage capacity.

If everyone’s data needs were similar, this wouldn’t be a problem; there
would be a consistent golden ratio of compute to storage that everyone
would live by. But in practice, one or the other of the factors tends to be a
limitation. Some data warehouses are limited by compute capacity, so they
slow down at peak times. Other data warehouses are limited by storage
capacity, so maintainers need to figure out what data to throw out.

When you separate compute from storage as BigQuery does, it means that
you never need to throw out data, unless you no longer want it. This might
not sound like a big deal, but having access to full-fidelity data is
immensely powerful. You might decide you want to calculate something in
a different way, so you can go back to the raw data to requery it. You would
not be able to do this if you had discarded the source data due to space
constraints. You might decide that you want to dig into why some aggregate

value exhibits strange behavior. You couldn’t do this if you had deleted the
data that contributed to the aggregation.

Scaling compute is equally powerful. BigQuery resources are denominated
in terms of “slots,” which are, roughly speaking, about half of a CPU core
(we cover slots in detail in Chapter 6). BigQuery uses slots as an abstraction
to indicate how many physical compute resources are available. Queries
running too slow? Just add more slots. More people want to create reports?
Add more slots. Want to cut back on your expenses? Decrease your slots.

Because BigQuery is a multitenant system that manages large pools of
hardware resources, it is able to dole out the slots on a per-query or per-user
basis. It is possible to reserve hardware for your project or organization, or
you can run your queries in the shared on-demand pool. By sharing
resources in this way, BigQuery can devote very large amounts of
computing power to your queries. If you need more computing power than
is available in the on-demand pool, you can purchase more via the
BigQuery Reservation API.

Several BigQuery customers have reservations in the tens of thousands of
slots, which means that if they run only one query at a time, those queries
can consume tens of thousands of CPU cores at once. With some reasonable
assumptions about numbers of CPU cycles per processed row, it is pretty
easy to see that these instances can process billions or even trillions of rows
per second.

In BigQuery, there are some customers that have petabytes of data but use a
relatively small amount of it on a daily basis. Other customers store only a
few gigabytes of data but perform complex queries using thousands of
CPUs. There isn’t a one-size-fits-all approach that works for all use cases.
Fortunately, the separation of compute and storage allows BigQuery to
accommodate a wide range of customer needs.

Storage and Networking Infrastructure
BigQuery differs from other cloud data warehouses in that queries are
served primarily from spinning disks in a distributed filesystem. Most

competitor systems need to cache data within compute nodes to get good
performance. BigQuery, on the other hand, relies on two systems unique to
Google, the Colossus File System and Jupiter networking, to ensure that
data can be queried quickly no matter where it physically resides in the
compute cluster.

Google’s Jupiter networking fabric relies on a network configuration where
smaller (and hence cheaper) switches are arranged to provide the capability
for which a much larger logical switch would otherwise be needed. This
topology of switches, along with a centralized software stack and custom
hardware and software, allows one petabit of bisection bandwidth within a
datacenter. That is equivalent to 100,000 servers communicating at 10
Gb/sec, and it means that BigQuery can work without the need to colocate
the compute and storage. If the machines hosting the disks are at the other
end of the datacenter from the machines running the computation, it will
effectively run just as fast as if the two machines were in the same rack.

The fast networking fabric comes in handy in two ways: to read in data
from a disk, and to shuffle between query stages. As discussed earlier, the
separation of compute and storage in BigQuery enables any machine within
the datacenter to ingest data from any storage disk. This requires, however,
that the necessary input data to the queries be read over the network at very
high speeds. The details of shuffle are described in Chapter 6, but it suffices
for now to understand that running complex distributed queries usually
requires moving large amounts of data between machines at intermediate
stages. Without a fast network connecting the machines doing the work,
shuffle would become a bottleneck that slows down the queries
significantly.

The networking infrastructure provides more than just speed: it also allows
for dynamic provisioning of bandwidth. Google datacenters are connected
through a backbone network called B4 that is software-defined to allocate
bandwidth in an elastic manner to different users, and to provide reliable
quality of service for high-priority operations. This is crucial for
implementing high-performing, concurrent queries.

https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloudplatform.googleblog.com/2015/06/A-Look-Inside-Googles-Data-Center-Networks.html
https://www.usenix.org/conference/atc15/technical-session/presentation/mandal

Fast networking isn’t enough, however, if the disk subsystem is slow or
lacks enough scale. To support interactive queries, the data needs to be read
from the disks fast enough so that they can saturate the network bandwidth
available. Google’s distributed filesystem is called Colossus and can
coordinate hundreds of thousands of disks by constantly rebalancing old,
cold data and distributing newly written data evenly across disks. This
means that the effective throughput is tens of terabytes per second. By
combining this effective throughput with efficient data formats and storage,
BigQuery provides the ability to query petabyte-sized tables in minutes.

Managed Storage
BigQuery’s storage system is built on the idea that when you’re dealing
with structured storage, the appropriate abstraction is the table, not the file.
Some other cloud-based and open source data processing systems expose
the concept of the file to users, which puts users on the hook for managing
file sizes and ensuring that the schema remains consistent. Even though
creating files of an appropriate size for a static data store is possible, it is
notoriously difficult to maintain optimal file sizes for data that is changing
over time. Similarly, it is difficult to maintain a consistent schema when you
have a large number of files with self-describing schemas (e.g., Avro or
Parquet)—typically, every software update to systems producing those files
results in changes to the schema. BigQuery ensures that all the data held
within a table has a consistent schema and enforces a proper migration path
for historical data. By abstracting the underlying data formats and file sizes
from the user, BigQuery can provide a seamless experience so that queries
are always fast.

There is another advantage to BigQuery managing its own storage:
BigQuery can continue to become faster in a way that is transparent to the
end user. For example, improvements in storage formats can be applied
automatically to user data. Similarly, improvements in storage infrastructure
become immediately available. Because BigQuery manages all of the
storage, users don’t need to worry about backup or replication. Everything

15

from upgrades and replication to backup and restoration are handled
transparently and automatically by the storage management system.

One key advantage of working with structured storage at the abstraction
level of a table (rather than of a file) and of providing storage management
to these tables transparently to the end user is that tables allow BigQuery to
support database-like features, such as DML. You can run a query that
updates or deletes rows in a table and leave it to BigQuery to determine the
best way to modify the storage to reflect this information. BigQuery
operations are ACID; that is, all queries will commit completely or not at
all. Rest assured that your queries will never see the intermediate state of
another query, and queries started after another query completes will never
see old data. You do have the ability to fine-tune the storage by specifying
directives that control how the data is stored, but these operate at the
abstraction level of tables, not files. For example, it is possible to control
how tables are partitioned and clustered (we cover these features in detail in
Chapter 7) and thereby improve the performance and/or reduce the cost of
queries against those tables.

Managed storage is strongly typed, which means that data is validated at
entry to the system. Because BigQuery manages the storage and allows
users to interact with this storage only via its APIs, it can count on the
underlying data not being modified outside of BigQuery. Thus, BigQuery
can guarantee to not throw a validation error at read time about any of the
data present in its managed storage. This guarantee also implies an
authoritative schema, which is useful when figuring out how to query your
tables. Besides improving query performance, the presence of an
authoritative schema helps when trying to make sense of what data you
have because a BigQuery schema contains not just type information but
also annotations and table descriptions about how the fields can be used.

One downside of managed storage is that it is more difficult to directly
access and process the data using other frameworks. For example, had the
data been available at the abstraction level of files, you might have been
able to directly run a Hadoop job over a BigQuery dataset. BigQuery
addresses this issue by providing a structured parallel API to read the data.

This API lets you read at full speed from Spark or Hadoop jobs, but it also
provides extra features, like projection, filtering, and dynamic rebalancing.

Integration with Google Cloud Platform
Google Cloud follows the design principle called “separation of
responsibility,” wherein a small number of high-quality, highly focused
products integrate tightly with each other. It is, therefore, important to
consider the entire Google Cloud Platform (GCP) when comparing
BigQuery with other database products.

A number of different GCP products extend the usefulness of BigQuery or
make it easier to understand how BigQuery is being used. We talk about
many of these related products in detail in this book, but it is worth being
aware of the general separation of responsibilities:

StackDriver monitoring and audit logs provide ways to understand
BigQuery usage in your organization.

Cloud Dataproc provides the ability to read, process, and write to
BigQuery tables using Apache Spark programs.

Federated queries allow BigQuery to query data held in Google
Cloud Storage, Cloud SQL (a relational database), Bigtable (a
NoSQL database), Spanner (a distributed database), or Google
Drive (which offers spreadsheets).

Google Cloud Data Loss Prevention API helps you to manage
sensitive data and provides the capability to redact or mask
Personally Identifiable Information (PII) from your tables.

Other machine learning APIs extend what it is possible on data
held in BigQuery; for example, the Cloud Natural Language API
can identify people, places, sentiment, and more in free-form text
(such as those of customer reviews) held in some table column.

AutoML Tables and AutoML Text can create high-performing
custom machine learning models from data held in BigQuery

https://cloud.google.com/dlp

tables.

Cloud Catalog provides the ability to discover data held across
your organization.

You can use Cloud Pub/Sub to ingest streaming data and Cloud
Dataflow to transform and load it into BigQuery. You can use
Cloud Dataflow to carry out streaming queries as well. You can, of
course, interactively query the streaming data within BigQuery
itself.

Data Studio provides charts and dashboards driven from data in
BigQuery. Third-party tools such as Tableau and Looker also
support BigQuery as a backend.

Cloud AI Platform provides the ability to train sophisticated
machine learning programs from data held in BigQuery.

Cloud Scheduler and Cloud Functions allow for scheduling or
triggering of BigQuery queries as part of larger workflows.

Cloud Composer allows for orchestration of BigQuery jobs along
with tasks that need to be performed in Cloud Dataflow or other
processing frameworks, whether on Google Cloud or on-premises
in a hybrid cloud setup.

Taken together, BigQuery and the GCP ecosystem have features that span
several other database products from other cloud vendors; you can use them
as an analytics warehouse but also as an ELT system, a data lake (queries
over files), or a source of BI. The rest of this book paints a broad picture of
how you can use BigQuery in all of its aspects.

Security and Compliance
The integration with GCP goes beyond just interoperability with other
products. Cross-cutting features provided by the platform provide consistent
security and compliance.

16

The fastest hardware and most advanced software are of little use if you
can’t trust them with your data. BigQuery’s security model is tightly
integrated with the rest of GCP, so it is possible to take a holistic view of
your data security. BigQuery uses Google’s IAM access-control system to
assign specific permissions to individual users or groups of users. BigQuery
also ties in tightly with Google’s Virtual Private Cloud (VPC) policy
controls, which can protect against users who try to access data from
outside your organization, or who try to export it to third parties. Both IAM
and VPC controls are designed to work across Google Cloud products, so
you don’t need to worry that certain products create a security hole.

BigQuery is available in every region where Google Cloud has a presence,
enabling you to process the data in the location of your choosing. As of this
writing, Google Cloud has more than two dozen datacenters around the
world, and new ones are being opened at a fast rate. If you have business
reasons for keeping data in Australia or Germany, it is possible to do so.
Just create your dataset with the Australian or German region code, and all
of your queries against the data will be done within that region.

Some organizations have even stronger data location requirements that go
beyond where data is stored and processed. Specifically, they want to
ensure that their data cannot be copied or otherwise leave their physical
region. GCP has physical region controls that apply across products; you
can create a “VPC service controls” policy that disallows data movement
outside of a selected region. If you have these controls enabled, users will
not be able to copy data across regions or export to Google Cloud Storage
buckets in another region.

Summary
BigQuery is a highly scalable data warehouse that provides fast SQL
analytics over large datasets in a serverless way. Although users appreciate
the scale and speed of BigQuery, company executives often appreciate the
transformational benefits that come from being able to do ad hoc querying

in a serverless way, opening up data-driven decision making to all parts of
the company.

To ingest data into BigQuery, you can use an EL pipeline (commonly used
for periodic loads of log files), an ETL pipeline (commonly used when data
needs to be enriched or quality controlled), or an ELT pipeline (commonly
used for exploratory work).

BigQuery is designed for data analytics (OLAP) workloads and provides
full-featured support for SQL:2011. BigQuery can achieve its scale and
speed because it is built on innovative engineering ideas such as the use of
columnar storage, support for nested and repeated fields, and separation of
compute and storage, about which Google went on to publish papers.
BigQuery is part of the GCP ecosystem of big data analytics tools and
integrates tightly with both the infrastructure pieces (such as security,
monitoring, and logging) and the data processing and machine learning
pieces (such as streaming, Cloud DLP, and AutoML) of the platform.

1 In reality, you’ll need to start the record keeping at the time customers borrow the equipment,
so that you will know whether customers have absconded with the equipment. However, it’s
rather early in this book to worry about that!

2 In this book, we use “ad hoc” query to refer to a query that is written without any attempt to
prepare the database ahead of time by using features such as indexes.

3 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” OSDI ’04: Sixth Symposium on Operating Systems Design and Implementation,
San Francisco, CA (2004), pp. 137–150. Available at
https://research.google.com/archive/mapreduce-osdi04.pdf.

4 On Google Cloud Platform, Cloud Dataproc (the managed Hadoop offering) addresses this
conundrum in a different way. Because of the high bisectional bandwidth available within
Google datacenters, Cloud Dataproc clusters are able to be job specific—the data is stored on
Google Cloud Storage and read over the wire on demand. This is possible only if bandwidths
are high enough to approximate disk speeds. Don’t try this at home.

5 For your copy and pasting convenience, you can find all of the code and query snippets in this
book (including the query in the example) in the GitHub repository for this book.

6 Not you specifically. This is a public dataset, and the owner of the dataset gave this
permission to all authenticated users. You can be less permissive with your data, sharing the
dataset only with those within your domain or within your team.

https://research.google.com/archive/mapreduce-osdi04.pdf
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/01_intro/queries.txt
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

7 This code can be downloaded from the book’s GitHub repository.

8 Keep in mind that both authors live in Seattle, where it rains 150 days each year.

9 You can find more details on the columnar storage format in “How BigQuery Came About”.

10 For example, to compute conversion metrics based on the distance that a customer would
need to travel to purchase a product.

11 We believe all mentions of price to be correct as of the writing of this book, but please do
refer to the relevant policy and pricing sheets, as these are subject to change.

12 Jim Gray on eScience: A Transformed Scientific Method”, from The Fourth Paradigm: Data-
Intensive Scientific Discovery, ed. Tony Hey, Stewart Tansley, and Kristin Tolle (Microsoft,
2009), xiv. Available at https://oreil.ly/M6zMN.

13 Today, BigQuery does provide the ability to export tables and results to Google Cloud
Storage, so we did end up building the download link after all! But BigQuery is not just a
download link—most uses of BigQuery involve operating on the data in place.

14 SQL does have a RECURSIVE keyword, but like many SQL engines, BigQuery does not
support this. Instead, BigQuery offers better ways to deal with hierarchical data by supporting
arrays and nesting.

15 To read more about Colossus, see http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-
Google-Keynote.pdf and https://www.wired.com/2012/07/google-colossus/.

16 The separation of responsibility here is that Cloud Dataflow is better for ongoing, routine
processing while BigQuery is better for interactive, ad hoc processing. Both Cloud Dataflow
and BigQuery handle batch data as well as streaming data, and it is possible to run SQL queries
within Cloud Dataflow.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://cloud.google.com/bigquery/pricing
https://oreil.ly/M6zMN
http://www.pdsw.org/pdsw-discs17/slides/PDSW-DISCS-Google-Keynote.pdf
https://www.wired.com/2012/07/google-colossus/

Chapter 2. Query Essentials

BigQuery is first and foremost a data warehouse, by which we mean that it
provides persistent storage for structured and semi-structured data (like
JSON objects). The four basic CRUD operations are supported on this
persistent storage:

Create
To insert new records. This is implemented through load operations, by
the SQL INSERT statement, and through a streaming insert API. You can
also use SQL to create database objects like tables, views, and machine
learning models as part of BigQuery’s support of the Data Definition
Language (DDL). We go into examples of each later.

Read
To retrieve records. This is implemented by the SQL SELECT statement
as well as the bulk read API.

Update
To modify existing records. This is implemented by the SQL UPDATE
and MERGE statements, which are part of BigQuery’s support of the Data
Manipulation Language (DML). Note that, as we discussed in
Chapter 1, BigQuery is an analytics tool and is not meant to be used for
frequent updates.

Delete
To remove existing records. This is implemented by SQL DELETE, which
is also a DML operation.

BigQuery is a tool for data analysis, and the majority of queries you can
expect to write will be the aforementioned Read operations. Reading and
analyzing your data is accomplished by the SELECT statement, which is the
focus of this chapter. We cover creating, updating, and deleting data in later
chapters.

Simple Queries
BigQuery supports a dialect of SQL that is compliant with SQL:2011.
When the specification is ambiguous or otherwise lacking, BigQuery
follows the conventions set by existing SQL engines. There are other areas
in which there is no specification at all, such as with machine learning; in
these cases, BigQuery defines its own syntax and semantics.

https://www.iso.org/standard/53681.html

WHAT’S LEGACY SQL?
For a long time, BigQuery supported only a limited subset of SQL with
some Google enhancements. This was because BigQuery was based on
an internal SQL query engine at Google (called Dremel) that was
originally built to process log data held in Protocol Buffers
(Protobufs). Because it was not built as a general-purpose SQL engine,
Dremel could use a dialect of SQL (now referred to as legacy SQL) that
was well suited to Protobufs, which are used to hold hierarchical
structures. For example, the legacy SQL dialect distinguished between
records (the complete hierarchical structure pertaining to a log message)
and rows (slices through the structure). Therefore, COUNT(*) in
Dremel counts the number of non-NULL values in the most repeated
field. Even though such features made certain types of queries much
easier to write, Dremel took some getting used to because it was not
standard SQL.

In this book, we focus exclusively on standard SQL. The BigQuery user
interface (UI) in the Google Cloud Platform (GCP) Cloud Console
defaults to standard SQL, and new features are not being backported to
legacy SQL. However, some tools and user interfaces still default to
legacy SQL. If that is the case for any tool that you are using, preface
the query with #standardsql on the first line, as shown in the
following example:

#standardsql

SELECT DISTINCT gender

FROM `bigquery-public-data`.new_york_citibike.citibike_trips

If the BigQuery service receives a query string whose first line consists
of #standardsql, the query engine will treat what follows as standard
SQL even if the client itself does not know about standard SQL.

1

2

Retrieving Rows by Using SELECT
The SELECT statement allows you to retrieve the values of specified
columns from a table. For example, consider the New York bicycle rentals
dataset—it contains several columns relating to bicycle rentals, including
the trip duration and the gender of the person renting the bicycle. We can
pull out the values of these columns by using the SELECT statement (lines
beginning with double dashes or # are comments):

-- simple select

SELECT

 gender, tripduration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

LIMIT 5

The result looks something like this:

Row gender tripduration

1 male 371

2 male 1330

3 male 830

4 male 555

5 male 328

The result set has two columns (gender and tripduration) in the order
specified in the SELECT. There are five rows in the result set because we
limited it to five in the final line of the query. BigQuery distributes the task
of fetching rows to multiple workers, each of which can read a different
shard (or part) of the dataset, so if you run the previous query, you might
get a different set of five rows.

Note that using a LIMIT constrains only the amount of data displayed to you
and not the amount of data the query engine needs to process. You are
typically charged based on the amount of data processed by your queries,

https://bigquery.cloud.google.com/table/bigquery-public-data:new_york.citibike_trips

and this usually implies that the more columns your query reads, the higher
your cost will be. The number of rows processed will usually be the total
size of the table that you are reading, although there are ways to optimize
this (which we cover in Chapter 7). We examine performance and pricing
considerations in later chapters.

The values are being retrieved from the following:

bigquery-public-data.new_york_citibike.citibike_trips

Here, bigquery-public-data is the project ID, new_york_citibike is
the dataset, and citibike_trips is the table. The project ID indicates
ownership of the persistent storage associated with the dataset and its
tables. The owner of bigquery-public-data is paying the storage costs
associated with the new_york dataset. The cost of the query is paid by the
project within which the query is issued. If you run the preceding query,
you pay the query costs. Datasets provide for Identity and Access
Management (IAM). The person who created the new_york_citibike
dataset in BigQuery made it public, which is why we were able to list the
tables in the dataset and query one of those tables. The citibike_trips
table contains all of the bicycle trips. The project, dataset, and table are
separated by dots. The backtick is needed as an escape character in this case
because the hyphen (-) in the project name (bigquery-public-data)
would otherwise be interpreted as subtraction. Most developers simply
enclose the entire string within backticks, as shown here:

-- simple select

SELECT

 gender, tripduration

FROM

 `bigquery-public-data.new_york_citibike.citibike_trips`

LIMIT 5

Although this is simpler, you lose the ability to use the table name
(citibike_trips) as an alias. So it is worth developing the habit of putting

3

https://bigquery.cloud.google.com/dataset/bigquery-public-data:new_york

the backticks only around the project name and avoiding the use of hyphens
when you create your own datasets and tables.

For a long time, our recommendation was that tables in BigQuery be stored
in denormalized form (i.e., a single table often containing all of the data
you’d need without the need for joining multiple tables). However, with
improvements in the service, this is no longer necessary. It is possible now
to achieve good performance even with a star schema.

Table 2-1 reviews the three key components of the name `bigquery-
public-data`.new_york_citibike.citibike_trips.

Table 2-1. Summary of BigQuery objects and descriptions

BigQuery
object Name Description

Project bigquery-

public-da

ta

Owner of the persistent storage associated with the dataset and its
tables. The project also governs the use of all other GCP products as
well.

Dataset new_york_

citibike

Datasets are top-level containers that are used to organize and
control access to tables and views. A user can own multiple datasets.

Table/View citibike_

trips

A table or view must belong to a dataset, so you need to create at
least one dataset before loading data into BigQuery.

a See https://cloud.google.com/bigquery/docs/datasets-intro.

Distinguishing between each of these three will be critical later when we
discuss geographic location, data access, and sharing of data.

Aliasing Column Names with AS
By default, the names of the columns in the result set match those of the
table from which the data is retrieved. It is possible to alias the column
names by using AS:

-- Aliasing column names

SELECT

a

https://cloud.google.com/bigquery/docs/datasets-intro

 gender, tripduration AS rental_duration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

LIMIT 5

This now yields the following (your results might be a different set of five):

Row gender rental_duration

1 male 432

2 female 1186

3 male 799

4 female 238

5 male 668

Aliasing is useful when you are transforming data. For example, without the
alias, a statement such as

SELECT

 gender, tripduration/60

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

LIMIT 5

would result in an automatically assigned column name for the second
column in the result set:

Row gender f0_

1 male 6.183333333333334

2 male 22.166666666666668

3 male 13.833333333333334

4 male 9.25

5 male 5.466666666666667

You can assign the second column a more descriptive name by adding an
alias to your query:

SELECT

 gender, tripduration/60 AS duration_minutes

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

LIMIT 5

This yields a result similar to the following:

Row gender duration_minutes

1 male 6.183333333333334

2 male 22.166666666666668

3 male 13.833333333333334

4 male 9.25

5 male 5.466666666666667

Filtering with WHERE
To find rentals of less than 10 minutes, we could filter the results returned
by SELECT by using a WHERE clause:

SELECT

 gender, tripduration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE tripduration < 600

LIMIT 5

As expected, the result set now consists only of rows for which the trip
duration is less than 600 seconds:

Row gender tripduration

1 male 178

2 male 518

3 male 376

4 male 326

5 male 516

The WHERE clause can include Boolean expressions. For example, to find
trips rented by females and lasting between 5 and 10 minutes, you could use
this:

SELECT

 gender, tripduration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE tripduration >= 300 AND tripduration < 600 AND gender = 'female'

LIMIT 5

The OR keyword also works, as does NOT. For example, to find nonfemale
riders (i.e., male riders and those whose gender is unknown), the WHERE
clause could be as follows:

WHERE tripduration < 600 AND NOT gender = 'female'

It is also possible to use parentheses to control the order of evaluation. To
find female riders who take short trips as well as all male riders, you could
use this:

WHERE (tripduration < 600 AND gender = 'female') OR gender = 'male'

The WHERE clause operates on the columns in the FROM clause; thus, it is not
possible to reference aliases from the SELECT list in the WHERE clause. In
other words, to retain only trips shorter than 10 minutes, it is not possible to
use the following:

SELECT

 gender, tripduration/60 AS minutes

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE minutes < 10 -- CAN NOT REFERENCE ALIAS IN WHERE

LIMIT 5

Instead, you need to repeat the transformation in the WHERE clause (we
explore better alternatives later):

SELECT

 gender, tripduration / 60 AS minutes

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE (tripduration / 60) < 10

LIMIT 5

SELECT *, EXCEPT, REPLACE
For cost and performance reasons (which we cover in detail in Chapter 7), it
is better to select only the columns that you want. If, however, you do want
to select all of the columns in the table, you can use SELECT *:

SELECT

 *

FROM

 `bigquery-public-data`.new_york_citibike.citibike_stations

WHERE name LIKE '%Riverside%'

The WHERE clause uses the LIKE operator to look for stations that have
Riverside anywhere in their name.

To select all except for a few columns, use SELECT EXCEPT:

SELECT

 * EXCEPT(short_name, last_reported)

FROM

 `bigquery-public-data`.new_york_citibike.citibike_stations

WHERE name LIKE '%Riverside%'

This query returns the same result as the previous one except that two of the
columns (short_name and last_reported) are omitted.

To select all of the columns but replace a column with another, you can use
SELECT REPLACE. For example, you can add 5 to the number of bikes
reported to be available using the following:

SELECT

 * REPLACE(num_bikes_available + 5 AS num_bikes_available)

FROM

 `bigquery-public-data`.new_york_citibike.citibike_stations

Subqueries with WITH
You can reduce the repetitiveness and retain the use of the alias by using a
subquery:

SELECT * FROM (

 SELECT

 gender, tripduration / 60 AS minutes

 FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

)

WHERE minutes < 10

LIMIT 5

The outer SELECT operates on the inner subquery that is enclosed within
parentheses. Because the alias happens in the inner query, the outer query
can use the alias in its WHERE clause.

Queries with parentheses can become quite difficult to read. A better
approach is to use a WITH clause to provide names to what would otherwise
have been subqueries:

WITH all_trips AS (

 SELECT

 gender, tripduration / 60 AS minutes

 FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

)

SELECT * from all_trips

WHERE minutes < 10

LIMIT 5

In BigQuery, the WITH clause behaves like a named subquery and does not
create temporary tables. We will refer to all_trips as a “from_item”—it’s
not a table, but you can select from it.

Sorting with ORDER BY
To control the order of rows in the result set, use ORDER BY:

SELECT

 gender, tripduration/60 AS minutes

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE gender = 'female'

ORDER BY minutes DESC

LIMIT 5

By default, rows in results are not ordered. If an order column is specified,
the default is ascending order. By asking for the rows to be listed in
descending order and limiting to 5, we get the five longest trips by women
in the dataset:

Row gender minutes

1 female 250348.9

2 female 226437.93333333332

3 female 207988.71666666667

4 female 159712.05

5 female 154239.0

Note that we are ordering by minutes, which is an alias—because the ORDER
BY is carried out after the SELECT, it is possible to use aliases in ORDER BY.

Aggregates
In the example in the previous section, when we converted seconds to
minutes by dividing by 60, we operated on every row in the table and
transformed it. It is also possible to apply a function to aggregate all of the
rows so that the result set contains only one row.

Computing Aggregates by Using GROUP BY
To find the average duration of trips by male riders, you could do the
following:

SELECT

 AVG(tripduration / 60) AS avg_trip_duration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE

 gender = 'male'

This yields the following:

Row avg_trip_duration

1 13.415553172043886

This indicates that the average bicycle trip taken by male riders in New
York is about 13.4 minutes. Because the dataset is continuously updated,
though, your result might be different.

How about female riders? Although you could run the previous query
twice, once for male riders and the next for females, it seems wasteful to
traverse through the dataset a second time, changing the WHERE clause.
Instead, you can use a GROUP BY:

SELECT

 gender, AVG(tripduration / 60) AS avg_trip_duration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE

 tripduration is not NULL

GROUP BY

 gender

ORDER BY

 avg_trip_duration

This yields the following result:

Row gender avg_trip_duration

1 male 13.415553172043886

2 female 15.977472148805207

3 unknown 31.4395230232542

The aggregates have now been computed on each group separately. The
SELECT expression can include the thing being grouped by (gender) and
aggregates (AVG). Note that there are actually three genders in the dataset:
male, female, and unknown.

Counting Records by Using COUNT
To see how many rides went into the previous averages, you can simply add
a COUNT():

SELECT

 gender,

 COUNT(*) AS rides,

 AVG(tripduration / 60) AS avg_trip_duration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE

 tripduration IS NOT NULL

GROUP BY

 gender

ORDER BY

 avg_trip_duration

This gives us the result shown here:

Row gender rides avg_trip_duration

1 male 35611787 13.415553172043888

2 female 11376412 15.97747214880521

3 unknown 6120522 31.439523023254207

Filtering Grouped Items by Using HAVING
It is possible to post-filter the grouped operations via the HAVING clause. To
learn which genders take trips that, on average, last longer than 14 minutes,
you can use this:

SELECT

 gender, AVG(tripduration / 60) AS avg_trip_duration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE tripduration IS NOT NULL

GROUP BY

 gender

HAVING avg_trip_duration > 14

ORDER BY

 avg_trip_duration

This yields the following:

Row gender avg_trip_duration

1 female 15.977472148805209

2 unknown 31.439523023254203

Note that, even though it is possible to filter the gender or trip duration with
a WHERE clause, it is not possible to use it to filter by average duration,
because the average duration is computed only after the items have been
grouped (try it!).

Finding Unique Values by Using DISTINCT

What values of gender are present in the dataset? Although you could use
GROUP BY, a simpler way to get a list of distinct values of a column is to use
SELECT DISTINCT:

SELECT DISTINCT

 gender

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

This yields a result set with just four rows:

Row gender

1 male

2 female

3 unknown

4

Four rows? What is the fourth row? Let’s explore:

SELECT

 bikeid,

 tripduration,

 gender

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE gender = ""

LIMIT 100

This yields the result shown here:

Row bikeid tripduration gender

1 null null

2 null null

3 null null

...

In this particular case, a blank gender value seems to indicate missing or
poor-quality data. We discuss missing data (NULL values) and how you can
account for and transform them in Chapter 3, but briefly: if you want to
filter for NULLs in a WHERE clause, use the IS NULL or IS NOT NULL
operators because other comparison operators (=, !=, <, >) applied to a NULL
return NULL and therefore will never match the WHERE condition.

Going back to our original query for DISTINCT genders, it’s important to
note that the DISTINCT modifies the entire SELECT, not just the gender
column. To see what we mean, add a second column to the query’s SELECT
list:

SELECT DISTINCT

 gender,

 usertype

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE gender != ''

This results in six rows; that is, you get a row for every combination of
unique gender and user type (subscriber or customer) that exists in the
dataset:

Row gender usertype

1 male Subscriber

2 unknown Customer

3 female Subscriber

4 female Customer

5 male Customer

6 unknown Subscriber

A Brief Primer on Arrays and Structs
In this section, we provide a brief primer on arrays so that we can illustrate
many of the data types and functions in the next chapter on small,

illustrative datasets. The combination of ARRAY (the square brackets in the
query that follows) and UNNEST gives us a quick way to experiment with
queries, functions, and data types.

For example, if you want to know how the SPLIT function of a string
behaves, simply try it out:

SELECT

 city, SPLIT(city, ' ') AS parts

FROM (

 SELECT * from UNNEST([

 'Seattle WA', 'New York', 'Singapore'

]) AS city

)

Here’s the result of this quick query:

Row city parts

1 Seattle
WA

Seattle

 WA

2 New York New

 York

3 Singapore Singapore

This ability to hardcode an array of values in the SQL query itself allows
you to play with arrays and data types without the need to find an
appropriate dataset or wait for long queries to finish. Even better, this
processes 0 bytes and therefore does not incur BigQuery charges.

Another way to quickly experiment with a set of values employs UNION
ALL to combine single row SELECT statements:

WITH example AS (

 SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways

 UNION ALL SELECT 'Sun', 2376, 936

4

 UNION ALL SELECT 'Mon', 1476, 736

)

SELECT * from example

WHERE numrides < 2000

This yields the two rows in the small inline dataset that have fewer than
2,000 rides:

Row day numrides oneways

1 Sat 1451 1018

2 Mon 1476 736

In the next chapter, we use such inline datasets with hardcoded numbers to
illustrate various aspects of the way different data types and functions
behave.

The purpose of this section is to quickly introduce arrays and structs so that
we can use them in illustrative examples. We review these concepts in
greater detail in Chapter 8, so feel free to quickly skim the remainder of this
section for now.

Creating Arrays by Using ARRAY_AGG
Consider finding the number of trips by gender and year:

SELECT

 gender

 , EXTRACT(YEAR from starttime) AS year --

 , COUNT(*) AS numtrips

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE gender != 'unknown' and starttime IS NOT NULL

GROUP BY gender, year

HAVING year > 2016

This returns the following:

Row gender year numtrips

1 male 2017 9306602

2 male 2018 3955871

3 female 2018 1260893

4 female 2017 3236735

TIP
What’s with the leading commas in the SELECT clause? Standard SQL (at least as of this writing)
does not support a trailing comma, and so moving the comma to the next line allows you to easily
reorder or comment lines and still have a working query:

SELECT

 gender

 , EXTRACT(YEAR from starttime) AS year

 -- comment out this line , COUNT(1) AS numtrips

FROM etc.

Trust us, the leading comma will become second nature after a while and will greatly speed up
your development.

What would be required, though, if we want to get a time-series of the
number of trips associated with each gender over the years—in other words,
the following result?

Row gender numtrips

1 male 9306602

 3955871

2 female 3236735

 1260893

To get this, you would need to create an array of the numbers of trips. You
can represent that array in SQL using the ARRAY type and create such an
array by using ARRAY_AGG:

5

SELECT

 gender

 , ARRAY_AGG(numtrips order by year) AS numtrips

FROM (

 SELECT

 gender

 , EXTRACT(YEAR from starttime) AS year

 , COUNT(1) AS numtrips

 FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

 WHERE gender != 'unknown' and starttime IS NOT NULL

 GROUP BY gender, year

 HAVING year > 2016

)

GROUP BY gender

Normally, when you group by gender, you compute a single scalar value for
the group, such as the AVG(numtrips) to find the average number of trips
across all years. ARRAY_AGG allows you to collect the individual values and
put them into an ordered list, or ARRAY.

The ARRAY type is not limited to the results of queries. Because BigQuery
can ingest hierarchical formats such as JSON, it is possible that the input
data contains JSON arrays—for example:

[

 {

 "gender": "male",

 "numtrips": [

 "9306602",

 "3955871"

]

 },

 {

 "gender": "female",

 "numtrips": [

 "3236735",

 "1260893"

]

 }

]

Creating a table by ingesting such a JSON file will result in a table whose
numtrips column is an ARRAY type. An array is an ordered list of non-NULL
elements; for instance, ARRAY<INT64> is an array of integers.

NOTE
Technically, NULL elements in arrays are permissible as long as you don’t try to save them to a
table. Thus, for example, the following will not work, because you are trying to save the array [1,
NULL, 2] to the temporary table that holds the results:

WITH example AS (

 SELECT true AS is_vowel, 'a' as letter, 1 as position

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT ARRAY_AGG(IF(position = 2, NULL, position)) as

positions from example

However, the following will work because the intermediate array with a NULL element is not
being saved:

WITH example AS (

 SELECT true AS is_vowel, 'a' as letter, 1 as position

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT ARRAY_LENGTH(ARRAY_AGG(IF(position = 2, NULL,

position))) from example

Array of STRUCT
A STRUCT is a group of fields in order. The fields can be named (if omitted,
BigQuery will assign them names), which we recommend for readability:

SELECT

 [

 STRUCT('male' as gender, [9306602, 3955871] as numtrips)

 , STRUCT('female' as gender, [3236735, 1260893] as numtrips)

] AS bikerides

This results in the following:

Row bikerides.gender bikerides.numtrips

1 male 9306602

 3955871

 female 3236735

 1260893

TUPLE
We could have left out the STRUCT keyword and the names of the fields, in
which case we would have ended up with a tuple or anonymous struct.
BigQuery assigns arbitrary names for unnamed columns and struct fields in
the result of a query; thus

SELECT

 [

 ('male', [9306602, 3955871])

 , ('female', [3236735, 1260893])

]

yields this result:

Row f0_._field_1 f0_._field_2

1 male 9306602

 3955871

 female 3236735

 1260893

Obviously, leaving out aliases for the field names makes subsequent queries
unreadable and unmaintainable. Do not do this except for throwaway
experimentation.

Working with Arrays
Given an array, we can find the length of the array and retrieve individual
items:

SELECT

 ARRAY_LENGTH(bikerides) as num_items

 , bikerides[OFFSET(0)].gender as first_gender

FROM

(SELECT

 [

 STRUCT('male' as gender, [9306602, 3955871] as numtrips)

 , STRUCT('female' as gender, [3236735, 1260893] as numtrips)

] AS bikerides)

This yields the following:

Row num_items first_gender

1 2 male

Offsets are numbered starting at zero, which is why OFFSET(0) gives us the
first item in the array.

UNNEST an Array
In the query

SELECT

 [

 STRUCT('male' as gender, [9306602, 3955871] as numtrips)

 , STRUCT('female' as gender, [3236735, 1260893] as numtrips)

]

the SELECT returns exactly one row containing an array, and so both genders
are part of the same row (look at the Row column):

6

Row f0_.gender f0_.numtrips

1 male 9306602

 3955871

 female 3236735

 1260893

UNNEST is a function that returns the elements of an array as rows, so you
can UNNEST the result array to get a row corresponding to each item in the
array:

SELECT * from UNNEST(

 [

 STRUCT('male' as gender, [9306602, 3955871] as numtrips)

 , STRUCT('female' as gender, [3236735, 1260893] as numtrips)

])

This yields the following:

Row gender numtrips

1 male 9306602

 3955871

2 female 3236735

 1260893

Notice that UNNEST is actually a from_item—you can SELECT from it. You
can select just parts of the array as well. For example, we can get only the
numtrips column by using this:

SELECT numtrips from UNNEST(

 [

 STRUCT('male' as gender, [9306602, 3955871] as numtrips)

 , STRUCT('female' as gender, [3236735, 1260893] as numtrips)

])

This gives us the following results:

Row numtrips

1 9306602

 3955871

2 3236735

 1260893

Joining Tables
Data warehouse schemas often rely on a primary “fact” table that contains
events, and satellite “dimension” tables that contain extended, slowly
changing information. For example, a retail schema might have a “Sales”
table as the fact table and then “Products” and “Customers” tables as
dimensions. When using this type of schema, the majority of queries will
require a JOIN operation, such as to return the names of all the products
purchased by a particular customer.

BigQuery supports all of the common join types from relational algebra:
inner joins, outer joins, cross joins, anti-joins, semi-joins, and anti-semi-
joins. Although it can sometimes be faster to avoid a JOIN, BigQuery can
efficiently join tables of almost any size. Chapter 7 discusses more about
how to optimize JOIN performance, but for now, we describe only the basic
JOIN operation.

The JOIN Explained
In Chapter 1, we looked at an example of a JOIN across tables in two
different datasets produced by two different organizations. Let’s revisit that
for a refresher:

WITH bicycle_rentals AS (

 SELECT

 COUNT(starttime) as num_trips,

 EXTRACT(DATE from starttime) as trip_date

 FROM `bigquery-public-data`.new_york_citibike.citibike_trips

 GROUP BY trip_date

),

rainy_days AS

(

SELECT

 date,

 (MAX(prcp) > 5) AS rainy

FROM (

 SELECT

 wx.date AS date,

 IF (wx.element = 'PRCP', wx.value/10, NULL) AS prcp

 FROM

 `bigquery-public-data`.ghcn_d.ghcnd_2016 AS wx

 WHERE

 wx.id = 'USW00094728'

)

GROUP BY

 date

)

SELECT

 ROUND(AVG(bk.num_trips)) AS num_trips,

 wx.rainy

FROM bicycle_rentals AS bk

JOIN rainy_days AS wx

ON wx.date = bk.trip_date

GROUP BY wx.rainy

In Chapter 1, we asked you to ignore the syntax, but let’s parse it now.

The first WITH pulls out the number of trips by day from the
citibike_trips table into a from_item called bicycle_rentals. This is
not a table, but it is something from which we can select. Hence, we will
refer to it as a “from_item.” The second from_item is called rainy_days
and is created from the Global Historical Climate Network (GHCN)
observation in each day. This from_item marks each day as being rainy or
not depending on whether at least five mm of precipitation was observed at
weather station 'USW00094728', which happens to be in New York.

So now we have two from_items. Let’s visualize them separately:

WITH bicycle_rentals AS (

 SELECT

 COUNT(starttime) as num_trips,

 EXTRACT(DATE from starttime) as trip_date

 FROM `bigquery-public-data`.new_york_citibike.citibike_trips

 GROUP BY trip_date

)

SELECT * from bicycle_rentals LIMIT 5

The bicycle_rentals from_item looks like this:

Row num_trips trip_date

1 31287 2013-09-
16

2 22477 2015-12-
30

3 37812 2017-09-
02

4 54230 2017-11-
15

5 25719 2013-11-
07

Similarly, the rainy_days from_item looks like this:

Row date rainy

1 2016-10-11 false

2 2016-12-13 false

3 2016-09-28 false

4 2016-01-25 false

5 2016-05-24 false

We can now join these from_items using the join condition that the
trip_date in one is the same as the date in the second:

SELECT

 bk.trip_date,

 bk.num_trips,

 wx.rainy

FROM bicycle_rentals AS bk

JOIN rainy_days AS wx

ON wx.date = bk.trip_date

LIMIT 5

This creates a table in which columns from the two tables are joined by
date:

Row trip_date num_trips rainy

1 2016-07-
13

55486 false

2 2016-04-
25

42308 false

3 2016-09-
27

61346 true

4 2016-07-
15

48572 false

5 2016-05-
20

52543 false

Given this, finding the average number of trips on rainy and nonrainy dates
is straightforward.

What we have illustrated is called an inner join, and it is the type of JOIN
used if no join type is specified.

Here’s how the JOIN works:

Create two from_items. These can be anything: any two of a table,
a subquery, an array, or a WITH statement from which you can
select.

Identify a join condition. The join condition does not need to be an
equality condition; any Boolean condition that uses the two
from_items will do.

Select the columns that you want. If identically named columns
exist in both from_items, use aliases (bk, wx in the previous
example query) to clearly specify from which from_item the
column needs to come.

If not using an inner join, specify a join type.

The only requirement for carrying out such a join is that all the datasets
used to create the from_items are in the same BigQuery region (all
BigQuery public datasets are in the US region).

INNER JOIN
There are several types of joins. The INNER JOIN (or simply JOIN), to
which the previous example defaulted, creates a common set of rows to
select from:

WITH from_item_a AS (

 SELECT 'Dalles' as city, 'OR' as state

 UNION ALL SELECT 'Tokyo', 'Tokyo'

 UNION ALL SELECT 'Mumbai', 'Maharashtra'

),

from_item_b AS (

 SELECT 'OR' as state, 'USA' as country

 UNION ALL SELECT 'Tokyo', 'Japan'

 UNION ALL SELECT 'Maharashtra', 'India'

)

SELECT from_item_a.*, country

FROM from_item_a

JOIN from_item_b

ON from_item_a.state = from_item_b.state

The first from_item has a list of cities, and the second from_item identifies
the country each of the states belongs to. Joining the two yields a dataset
with three columns:

Row city state country

1 Dalles OR USA

2 Tokyo Tokyo Japan

3 Mumbai Maharashtra India

Again, the join condition does not need to be an equality check. Any
Boolean condition will do, although it’s best to use an equality condition if
possible because BigQuery will return an error if the JOIN cannot be
executed efficiently.

For example, we might have a business rule that shipping from one country
to another involves a surcharge. To get a list of countries for which there
will be a surcharge from a given location, we could have specified this:

SELECT from_item_a.*, country AS surcharge

FROM from_item_a

JOIN from_item_b

ON from_item_a.state != from_item_b.state

We would obtain the following:

Row city state surcharge

1 Dalles OR Japan

2 Dalles OR India

3 Tokyo Tokyo USA

4 Tokyo Tokyo India

5 Mumbai Maharashtra USA

6 Mumbai Maharashtra Japan

Notice that we get a row for each time that the join condition is met.
Because there are two rows for which the state doesn’t match, we get two
rows for each row in the original from_item_a. If the join condition is not
met for some row, that row’s data items will not make it to the output.

CROSS JOIN
The CROSS JOIN, or cartesian product, is a join with no join condition. All
rows from both from_items are joined. This is the join that we would get if
the join condition of an INNER JOIN always evaluated to true.

For example, suppose that you organized a tournament and have a table of
the winners of each event in the tournament, and another table containing
the gifts for each event. You can give each winner the gift corresponding to
their event only by doing an INNER JOIN:

WITH winners AS (

 SELECT 'John' as person, '100m' as event

 UNION ALL SELECT 'Hiroshi', '200m'

 UNION ALL SELECT 'Sita', '400m'

),

gifts AS (

 SELECT 'Google Home' as gift, '100m' as event

 UNION ALL SELECT 'Google Hub', '200m'

 UNION ALL SELECT 'Pixel3', '400m'

)

SELECT winners.*, gifts.gift

FROM winners

JOIN gifts

This would provide the following result:

Row person event gift

1 John 100m Google Home

2 Hiroshi 200m Google Hub

3 Sita 400m Pixel3

On the other hand, if you want to give each gift to each winner (i.e., each
winner gets all three gifts), you could do a CROSS JOIN:

WITH winners AS (

 SELECT 'John' as person, '100m' as event

 UNION ALL SELECT 'Hiroshi', '200m'

 UNION ALL SELECT 'Sita', '400m'

),

gifts AS (

 SELECT 'Google Home' as gift

 UNION ALL SELECT 'Google Hub'

 UNION ALL SELECT 'Pixel3'

)

SELECT person, gift

FROM winners

CROSS JOIN gifts

This yields a row for each potential combination:

Row person gift

1 John Google
Home

2 John Google
Hub

3 John Pixel3

4 Hiroshi Google
Home

5 Hiroshi Google
Hub

6 Hiroshi Pixel3

7 Sita Google
Home

8 Sita Google
Hub

9 Sita Pixel3

Even though we wrote

SELECT from_item_a.*, from_item_b.*

FROM from_item_a

CROSS JOIN from_item_b

we could also have written this:

SELECT from_item_a.*, from_item_b.*

FROM from_item_a, from_item_b

Therefore, a CROSS JOIN is also termed a comma cross join.

OUTER JOIN
Suppose that we have winners in events for which there is no gift, and gifts
for events that didn’t take place in our tournament:

WITH winners AS (

 SELECT 'John' as person, '100m' as event

 UNION ALL SELECT 'Hiroshi', '200m'

 UNION ALL SELECT 'Sita', '400m'

 UNION ALL SELECT 'Kwame', '50m'

),

gifts AS (

 SELECT 'Google Home' as gift, '100m' as event

 UNION ALL SELECT 'Google Hub', '200m'

 UNION ALL SELECT 'Pixel3', '400m'

 UNION ALL SELECT 'Google Mini', '5000m'

)

In an INNER JOIN (on the event column), the winner of the 50-meter dash
doesn’t receive a gift, and the gift for the 5,000-meter event goes
unclaimed. In a CROSS JOIN, as we noted, every winner receives every gift.
OUTER JOINs control what happens if the join condition is not met. Table 2-
2 summarizes the various types of joins and the resulting output.

Table 2-2. Summary of types of joins and their outputs

Syntax What happens Output

SELECT person, gift FROM winners INNER

JOIN gifts ON winners.event = gifts.ev

ent

Only rows that meet the
join condition are
retained

SELECT person, gift FROM winners FULL

OUTER JOIN gifts ON winners.event = gi

fts.event

All rows are retained
even if the join condition
is not met

SELECT person, gift FROM winners LEFT

OUTER JOIN gifts ON winners.event = gi

fts.event

All the winners are
retained, but some gifts
are discarded

SELECT person, gift FROM winners RIGHT

OUTER JOIN gifts ON winners.event = gi

fts.event

All the gifts are retained,
but some winners aren’t

Saving and Sharing
The BigQuery web UI offers the ability to save and share queries. This is
handy for collaboration because you can send colleagues a link to the query
text that enables them to execute the query immediately. Be aware, though,
that if someone has your query, they might not be able to execute it if they
don’t have access to your data. We discuss how to share and limit access to
your datasets in Chapter 10.

Query History and Caching
We should note that BigQuery retains, for audit and caching purposes, a
history of the queries that you submitted to the service (regardless of
whether the queries succeeded), as illustrated in Figure 2-1.

Figure 2-1. The history of queries submitted to the BigQuery service is available via the “Query
history” tab in the web UI

This history includes all queries submitted by you to the service, not just
those submitted via the web UI. Clicking any of the queries provides the
text of the query and the ability to open the query in the editor so that you
can modify and rerun it. In addition, the historical information includes the
amount of data processed by the query and the execution time. As of this
writing, the history is limited to 1,000 queries and six months.

The actual results of the query are stored in a temporary table that expires
after about 24 hours. If you are within that expiry window, you will also be
able to browse the results of the query from the web UI. Your personal
history is available only to you. Administrators of the project to which your
query was billed will also see your query text in the project’s history.

This temporary table is also used as a cache if the exact same query text is
submitted to the service and the query does not involve dynamic elements
such as CURRENT_TIMESTAMP() or RAND(). Cached query results incur no

charges, but note that the algorithm to determine whether a query is a
duplicate simply does a string match—even an extra whitespace can result
in the query being reexecuted.

Saved Queries
You can save any query by loading it into the query editor, clicking the
“Save query” button, and then giving the query a name, as shown in
Figure 2-2. BigQuery then provides a URL to the query text.

Figure 2-2. Save a query by clicking the “Save query” button in the web UI

You can also choose to make the saved query shareable, in which case
anyone who has the URL will be directed to a page with the query text
prepopulated.

When you share a query, all that you share is the text of the query; you do
not share access to any data. Dataset permissions to execute the query must
be provided independently using the IAM controls (we discuss these in
Chapter 10). Also, unlike most BigQuery features, the ability to save and
share queries is available only from the web UI. As of this writing, there is
no REST API or client library available for this.

The list of saved queries is available from the UI. You can turn off link
sharing at any time to make the query text private again, as illustrated in
Figure 2-3.

Figure 2-3. You can turn off link sharing at any time to make the query text private again

Views Versus Shared Queries
One of the advantages of sharing a query link (as opposed to simply
copying the text of the query into an email) is that you can continue to edit
the query so that your collaborators always get the latest version of the
query. This is useful when the envisioned use case is that they might want
to examine the query text, modify it, and then run the query.

The query text does not need to be syntactically correct; you can save and
share incomplete query text or template queries that need to be completed
by the end user. These capabilities are helpful when you’re collaborating
with colleagues.

If you expect the person to whom you are sending the query to subset or
query the results of your query, it is better to save your query as a view and
send your colleague a link to the view. Another advantage of views over
shared queries is that views are placed into datasets and offer fine-grained
IAM controls. Views can also be materialized.

We look at authorized views and at dynamically filtering them based on the
user in Chapter 10.

Summary
In this chapter, you saw how BigQuery supports SQL:2011: selecting
records (SELECT), aliasing column names (AS), filtering (WHERE), using
subqueries (parentheses and WITH), sorting (ORDER), aggregating (GROUP,
AVG, COUNT, MIN, MAX, etc.), filtering grouped items (HAVING), filtering
unique values (DISTINCT), and joining (INNER/CROSS/OUTER JOIN). There
is also support for arrays (ARRAY_AGG, UNNEST) and structs (STRUCT). You
also looked at how to review the history of queries (the text of the query,
not the results) submitted to the service. This history is available, you
learned, to the user who submitted the query, and to project administrators.
And you learned that it is possible to share query text through a link.

1 This is a data format that is very popular within Google because it provides efficient storage
in a programming-language-neutral way. It is now open source; see
https://developers.google.com/protocol-buffers/.

2 For more details on Dremel, see https://ai.google/research/pubs/pub36632.

3 The “person” in this case is one of the members of the Google Cloud Platform public datasets
team. See Google Cloud Public Datasets for what else is available.

4 We believe all mentions of price to be correct as of the writing of this book, but please do
refer to the relevant policy and pricing sheets because these are subject to change.

5 For an entertaining data-driven examination of the correlation between project success and the
use of leading commas, see https://oreil.ly/mFZKh.

6 You can also use ORDINAL(1) to work with 1-based indexing. We look at arrays in more detail
in Chapter 8.

https://developers.google.com/protocol-buffers/
https://ai.google/research/pubs/pub36632
https://cloud.google.com/public-datasets/
https://cloud.google.com/bigquery/pricing
https://oreil.ly/mFZKh

Chapter 3. Data Types, Functions, and
Operators

In the bike rental queries in the previous chapters, when we divided the trip duration by 60, we were able to do so
because trip duration was a numeric type. Trying to divide the gender by 60 would not have worked because
gender is a string. The functions and operations you have at your disposal might be restricted based on the type of
data to which you are applying them.

BigQuery supports several data types to store numeric, string, time, geographic, structured, and semi-structured
data:

INT64

This is the only integer type. It can represent numbers ranging from approximately 10 to 10 . For real-
valued numbers, use FLOAT64, and for Booleans, use BOOL.

NUMERIC

NUMERIC offers 38 digits of precision and 9 decimal digits of scale and is suitable for exact calculations, such
as in finance.

STRING

This is a first-class type and represents variable-length sequences of Unicode characters. BYTES are variable-
length sequences of characters (not Unicode).

TIMESTAMP

This represents an absolute point in time.

DATETIME

This represents a calendar date and time. DATE and TIME are also available separately.

GEOGRAPHY

GEOGRAPHY represents points, lines, and polygons on the surface of the Earth.

STRUCT and ARRAY
See the description for each of these in Chapter 2.

Numeric Types and Functions
As just stated, there is only one integer type (INT64) and only one floating-point type (FLOAT64). Both of these
types support the typical arithmetic operations (+, –, /, *—for add, subtract, divide, and multiply, respectively).
Thus, we can find the fraction of bike rentals that are one-way by simply dividing one column by the other:

WITH example AS (

 SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways

 UNION ALL SELECT 'Sun', 2376, 936

)

SELECT *, (oneways/numrides) AS frac_oneway from example

This yields the following:

–19 19

Row day numrides oneways frac_oneway

1 Sat 1451 1018 0.7015851137146796

2 Sun 2376 936 0.3939393939393939

Besides the arithmetic operators, bitwise operations (<< and >> for shifting, & and | for bitwise AND and OR, etc.)
are also supported on integer types.

To operate on data types, we can use functions. Functions perform operations on the values that are input to them.
As with other programming languages, functions in SQL encapsulate reusable logic and abstract away the
complexity of their implementation. Table 3-1 presents the various types of functions.

Table 3-1. Types of functions

Type of
function Description Example

Scalar A function that operates on one or more input parameters and
returns a single value.
A scalar function can be used wherever its return data type is
allowed.

ROUND(3.14) returns 3, which is a FLOAT64, and so the ROUND
function can be used wherever a FLOAT64 is allowed.
SUBSTR(“hello”, 1, 2) returns “he” and is an example of a
scalar function that takes three input parameters.

Aggregate A function that performs a calculation on a collection of values
and returns a single value.
Aggregate functions are often used with a GROUP BY to perform
a computation over a group of rows.

MAX(tripduration) computes the maximum value within the
tripduration column.
Other aggregate functions include SUM(), COUNT(), AVG(), etc.

Analytic Analytic functions operate on a collection of values but return an
output for each value in the collection.
A window frame is used to specify the set of rows to which the
analytic function applies.

row_number(), rank(), etc. are analytic functions. We look at
these in Chapter 8.

Table-
valued

A function that returns a result set and can therefore be used in FR
OM clauses.

You can call UNNEST on an array and then select from it.

User-
defined

A function that is not built in, but whose implementation is
specified by the user.
User-defined functions can be written in SQL (or JavaScript) and
can themselves return any of the aforementioned types.

CREATE TEMP FUNCTION lastElement(arr ANY TYPE) AS (
 arr[ORDINAL(ARRAY_LENGTH(arr))]);

Mathematical Functions
Had we wanted to round off the end-result of the query that computed the fraction of bike rentals that were one-
way, we would have used one of the many built-in mathematical functions that work on integer and floating-point
types:

WITH example AS (

 SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways

 UNION ALL SELECT 'Sun', 2376, 936

)

SELECT *, ROUND(oneways/numrides, 2) AS frac_oneway from example

This returns the following:

Row day numrides oneways frac_oneway

1 Sat 1451 1018 0.7

2 Sun 2376 936 0.39

Standard-Compliant Floating-Point Division
The division operator fails if the denominator is zero or if the result overflows. Rather than protect the division by
checking for zero values beforehand, it is better to use a special function for division whenever the denominator

https://cloud.google.com/bigquery/docs/reference/standard-sql/mathematical_functions

could be zero, as is the case in the previous example. A better form of that query would be this:

WITH example AS (

 SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways

 UNION ALL SELECT 'Sun', 2376, 936

 UNION ALL SELECT 'Wed', 0, 0

)

SELECT

 *, ROUND(IEEE_Divide(oneways, numrides), 2)

AS frac_oneway from example

The IEEE_Divide function follows the standard set by the Institute of Electrical and Electronics Engineers (IEEE)
and returns a special floating-point number called Not-a-Number (NaN) when a division by zero is attempted.

Also try the previous query using the standard division operator and using SAFE_DIVIDE (discussed shortly).
Recall that, for your copy-pasting convenience, all the queries in this book are available in the book’s GitHub
repository.

SAFE Functions
You can make any scalar function return NULL instead of raising an error by prefixing it with SAFE. For example,
the following query will raise an error because the logarithm of a negative number is undefined:

SELECT LOG(10, -3), LOG(10, 3)

However, by prefixing the LOG with SAFE, like so:

SELECT SAFE.LOG(10, -3), SAFE.LOG(10, 3)

you will get NULL for the result of LOG(10, -3):

Row f0_ f1_

1 null 2.095903274289385

The SAFE prefix works for mathematical functions, string functions (for example, the SUBSTR function would
normally raise an error if the starting index is negative, but it returns NULL if invoked as SAFE.SUBSTR), and time
functions. It is, however, restricted to scalar functions and will not work for aggregate functions, analytic
functions, or user-defined functions.

Comparisons
Comparisons are carried out using operators. The operators <, <=, >, >=, and != (or <>) are used to obtain the
results of comparison. NULL, followed by NaN, is assumed to be smaller than valid numbers (including -inf) for
the purposes of ordering. However, comparisons with NaN always return false and comparisons with NULL always
return NULL. This can lead to seemingly paradoxical results:

WITH example AS (

 SELECT 'Sat' AS day, 1451 AS numrides, 1018 AS oneways

 UNION ALL SELECT 'Sun', 2376, 936

 UNION ALL SELECT 'Mon', NULL, NULL

 UNION ALL SELECT 'Tue', IEEE_Divide(-3,0), 0 -- this is -inf,0

)

SELECT * from example

ORDER BY numrides

1

https://www.github.com/GoogleCloudPlatform/bigquery-oreilly-book/

This query returns the following:

Row day numrides oneways

1 Mon null null

2 Tue -Infinity 0

3 Sat 1451.0 1018

4 Sun 2376.0 936

However, filtering for fewer than 2000 rides with

SELECT * from example

WHERE numrides < 2000

yields only two results, not three:

Row day numrides oneways

1 Sat 1451.0 1018

2 Tue -Infinity 345

This is because the WHERE clause returns only those rows for which the result is true, and when NULL is compared
to 2000, the result is NULL and not true.

Note that the operators & and | exist in BigQuery but are used only for bitwise operations. The ! symbol, as in !=,
means NOT, but it does not work as a standalone—you cannot say !gender to compute the logical negative of
gender, as you can in other languages. An alternate way to specify not-equals is to write <>, but be consistent on
whether you use != or <>.

Precise Decimal Calculations with NUMERIC
INT64 and FLOAT64 are designed to be flexible and fast, but they are limited by the fact that they are stored in a
base-2 (0s and 1s) form in a 64-bit area of computer memory when being used for calculations. This is a trade-off
well worth making in most applications, but financial and accounting applications often require exact calculations
for numbers represented in decimal (base-10).

The NUMERIC data type in BigQuery provides 38 digits to represent numbers, with 9 of those digits appearing after
the decimal point. It uses 16 bytes for storage and can represent decimal fractions exactly, thus making it suitable
for financial calculations.

For example, imagine that you needed to compute the sum of three payments. You’d want the results to be exact.
When using FLOAT64 values, however, the tiny differences between how the number is represented in memory and
how the number is represented in decimals can add up:

WITH example AS (

 SELECT 1.23 AS payment

 UNION ALL SELECT 7.89

 UNION ALL SELECT 12.43

)

SELECT

 SUM(payment) AS total_paid,

 AVG(payment) AS average_paid

FROM example

Look at what we get:

Row total_paid average_paid

1 21.549999999999997 7.183333333333334

In financial and accounting applications, these imprecisions can add up and make balancing the books tricky.

Watch what happens when we change the data type of payment to be NUMERIC:

WITH example AS (

 SELECT NUMERIC '1.23' AS payment

 UNION ALL SELECT NUMERIC '7.89'

 UNION ALL SELECT NUMERIC '12.43'

)

SELECT

 SUM(payment) AS total_paid,

 AVG(payment) AS average_paid

FROM example

The problem goes away. The sum of the payments is now precise (the average cannot be represented precisely
even in NUMERIC because it is a repeating decimal):

Row total_paid average_paid

1 21.55 7.183333333

Note that NUMERIC types need to be directly ingested into BigQuery as strings (NUMERIC '1.23'); otherwise, the
floating-point representation will obviate any of the precision gains to be had.

Working with BOOL
Boolean variables are those that can be either True or False. Because SQL is case insensitive, TRUE, true, and so
on also work.

Logical Operations
Recall from the section on filtering within the WHERE clause that the WHERE clause can include Boolean expressions
that include AND, OR, and NOT, as well as parentheses to control the order of execution. We used this query to
illustrate these options:

SELECT

 gender, tripduration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

WHERE (tripduration < 600 AND gender = 'female') OR gender = 'male'

You could use comparison operators with Boolean variables, as in the following:

WITH example AS (

 SELECT NULL AS is_vowel, NULL as letter, -1 as position

 UNION ALL SELECT true, 'a', 1

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT * from example WHERE is_vowel != false

This gives us the following:

Row is_vowel letter position

1 true a 1

However, it is often simpler to use the IS operator when comparing against built-in constants, as shown in this
example:

WITH example AS (

 SELECT NULL AS is_vowel, NULL as letter, -1 as position

 UNION ALL SELECT true, 'a', 1

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT * from example WHERE is_vowel IS NOT false

This yields the following:

Row is_vowel letter position

1 null null -1

2 true a 1

Note that the two queries yield different results. The comparators (=, !=, <, etc.) return NULL for comparisons
against NULL, whereas the IS operator doesn’t.

TIP
NULLs typically represent missing values or values that were not collected. They have no value and are not zero, empty strings, or blanks. If your
dataset has NULLs, you must tread carefully since comparisons with NULL always return NULL, and so the WHERE clause will filter out NULL values.
Use the IS operator to check where a value is NULL.

It is simpler and more readable to use Boolean variables directly:

WITH example AS (

 SELECT NULL AS is_vowel, NULL as letter, -1 as

position

 UNION ALL SELECT true, 'a', 1

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT * from example WHERE is_vowel

The result here is like is_vowel IS TRUE:

Row is_vowel letter position

1 true a 1

Of course, such readability depends on naming the Boolean variables well!

Conditional Expressions
It is not just in the WHERE clause that Booleans are useful. It is possible to simplify many queries by using
conditional expressions in the SELECT. For example, suppose that you need to compute the sales price of each item
in a catalog based on the desired markup and tax rate corresponding to the item. If your catalog is missing values
for some of the necessary information, you might want to impute a default markup or default tax rate. You can
achieve this with the IF function:

WITH catalog AS (

 SELECT 30.0 AS costPrice, 0.15 AS markup, 0.1 AS taxRate

 UNION ALL SELECT NULL, 0.21, 0.15

 UNION ALL SELECT 30.0, NULL, 0.09

 UNION ALL SELECT 30.0, 0.30, NULL

 UNION ALL SELECT 30.0, NULL, NULL

)

SELECT

 *, ROUND(

 costPrice *

 IF(markup IS NULL, 1.05, 1+markup) *

 IF(taxRate IS NULL, 1.10, 1+taxRate)

 , 2) AS salesPrice

FROM catalog

This yields a valid salesPrice for all items except those for which we don’t know the cost:

Row costPrice markup taxRate salesPrice

1 30.0 0.15 0.1 37.95

2 null 0.21 0.15 null

3 30.0 null 0.09 34.34

4 30.0 0.3 null 42.9

5 30.0 null null 34.65

The way the IF function works is that the first parameter is the condition to be evaluated. If the condition is true,
the second parameter is used, or else the third parameter is used. Because this function occurs in the SELECT, it is
carried out row by row.

Cleaner NULL-Handling with COALESCE
What if you want to do the imputation if a single value is missing, but not if more than one value is missing? In
other words, if you have no tax rate, you are willing to impute a 10% tax rate, but not if you also don’t know the
markup on the item.

A convenient way to keep evaluating expressions until we get to a non-NULL value is to use COALESCE:

WITH catalog AS (

 SELECT 30.0 AS costPrice, 0.15 AS markup, 0.1 AS taxRate

 UNION ALL SELECT NULL, 0.21, 0.15

 UNION ALL SELECT 30.0, NULL, 0.09

 UNION ALL SELECT 30.0, 0.30, NULL

 UNION ALL SELECT 30.0, NULL, NULL

)

SELECT

 *, ROUND(COALESCE(

 costPrice * (1+markup) * (1+taxrate),

 costPrice * 1.05 * (1+taxrate),

 costPrice * (1+markup) * 1.10,

 NULL

),2) AS salesPrice

FROM catalog

This yields the following (only the last row is different from the previous computation):

Row costPrice markup taxRate salesPrice

1 30.0 0.15 0.1 37.95

2 null 0.21 0.15 null

3 30.0 null 0.09 34.34

4 30.0 0.3 null 42.9

5 30.0 null null null

The COALESCE short-circuits the calculation whenever possible—that is, later expressions are not evaluated after a
non-NULL result is obtained. Therefore, the final NULL in the COALESCE is not required, but it makes the intent
clearer.

BigQuery supports the IFNULL function as a simplification of COALESCE when you have only two inputs.
IFNULL(a, b) is the same as COALESCE(a, b) and yields b if a is NULL. In other words, IFNULL(a, b) is the
same as IF(a IS NULL, b, a).

The very first query in this section on conditional expressions could have been simplified as follows:

SELECT

 *, ROUND(

 costPrice *

 (1 + IFNULL(markup, 0.05)) *

 (1 + IFNULL(taxrate,0.10))

 , 2) AS salesPrice

FROM catalog

Casting and Coercion
Consider this example dataset in which the number of hours worked by an employee is stored as a string in order
to accommodate reasons for a leave of absence (this is a bad schema design, but bear with us):

WITH example AS (

 SELECT 'John' as employee, 'Paternity Leave' AS hours_worked

 UNION ALL SELECT 'Janaki', '35'

 UNION ALL SELECT 'Jian', 'Vacation'

 UNION ALL SELECT 'Jose', '40'

)

Now suppose that you want to find the total number of hours worked. This won’t work because the hours_worked
is a string, not a numeric type:

WITH example AS (

 SELECT 'John' as employee, 'Paternity Leave' AS hours_worked

 UNION ALL SELECT 'Janaki', '35'

 UNION ALL SELECT 'Jian', 'Vacation'

 UNION ALL SELECT 'Jose', '40'

)

SELECT SUM(hours_worked) from example

We need to explicitly convert the hours_worked to an INT64 before doing any aggregation. Explicit conversion is
called casting, and it requires the explicit use of the CAST() function. If casting fails, BigQuery raises an error. To
have it return NULL instead, use SAFE_CAST. For example, the following raises an error:

SELECT CAST("true" AS bool), CAST("invalid" AS bool)

Now try using SAFE_CAST:

SELECT CAST("true" AS bool), SAFE_CAST("invalid" AS bool)

You should see the following:

Row f0_ f1_

1 true null

Implicit conversion is called coercion, and this happens automatically when a data type is used in a situation for
which another data type is required. For example, when we use an INT64 in a situation when a FLOAT64 is needed,
the integer will be coerced into a floating-point number. The only coercions done by BigQuery are to convert
INT64 to FLOAT64 and NUMERIC, and NUMERIC to FLOAT64. Every other conversion is explicit and requires a CAST.

With the problem of the total number of hours worked, not all of the hours_worked strings can be converted to
integers, so you should use a SAFE_CAST:

WITH example AS (

 SELECT 'John' as employee, 'Paternity Leave' AS hours_worked

 UNION ALL SELECT 'Janaki', '35'

 UNION ALL SELECT 'Jian', 'Vacation'

 UNION ALL SELECT 'Jose', '40'

)

SELECT SUM(SAFE_CAST(hours_worked AS INT64)) from example

This yields the following:

Row f0_

1 75

Had it simply been a schema problem and all the rows contained numbers but were stored as strings, you could
have used a simple CAST:

WITH example AS (

 SELECT 'John' as employee, '0' AS hours_worked

 UNION ALL SELECT 'Janaki', '35'

 UNION ALL SELECT 'Jian', '0'

 UNION ALL SELECT 'Jose', '40'

)

SELECT SUM(CAST(hours_worked AS INT64)) from example

Using COUNTIF to Avoid Casting Booleans
Consider this example dataset:

WITH example AS (

 SELECT true AS is_vowel, 'a' as letter, 1 as position

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT * from example

Here’s the result of the query:

Row is_vowel letter position

1 true a 1

2 false b 2

3 false c 3

Now suppose that you want to find the total number of vowels. You might be tempted to do something simple,
such as the following:

SELECT SUM(is_vowel) as num_vowels from example

This won’t work, however (try it!), because SUM, AVG, and others are not defined on Booleans. You could cast the
Booleans to an INT64 before doing the aggregation, like so:

WITH example AS (

 SELECT true AS is_vowel, 'a' as letter, 1 as position

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT SUM(CAST (is_vowel AS INT64)) as num_vowels from example

This would yield the following:

Row num_vowels

1 1

However, you should try to avoid casting as much as possible. In this case, a cleaner approach is to use the IF
statement on the Booleans:

WITH example AS (

 SELECT true AS is_vowel, 'a' as letter, 1 as position

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT SUM(IF(is_vowel, 1, 0)) as num_vowels from example

An even cleaner approach is to use COUNTIF:

WITH example AS (

 SELECT true AS is_vowel, 'a' as letter, 1 as position

 UNION ALL SELECT false, 'b', 2

 UNION ALL SELECT false, 'c', 3

)

SELECT COUNTIF(is_vowel) as num_vowels from example

String Functions
String manipulation is a common requirement for data wrangling, so BigQuery provides a library of built-in string
functions—for example:

WITH example AS (

 SELECT * from unnest([

 'Seattle', 'New York', 'Singapore'

]) AS city

https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions

)

SELECT

 city

 , LENGTH(city) AS len

 , LOWER(city) AS lower

 , STRPOS(city, 'or') AS orpos

FROM example

This example computes the length of the string, makes the string lowercase, and finds the location of a substring in
the “city” column, which gives us the following result:

Row city len lower orpos

1 Seattle 7 seattle 0

2 New York 8 new york 6

3 Singapore 9 singapore 7

The substring “or” occurs in “New York” and in “Singapore,” but not in “Seattle.”

Two particularly useful functions for string manipulation are SUBSTR and CONCAT. SUBSTR extracts a substring, and
CONCAT concatenates the input values. The following query finds the position of the @ symbol in an email address,
extracts the username, and concatenates the city in which the individual lives:

WITH example AS (

 SELECT 'armin@abc.com' AS email, 'Annapolis, MD' as city

 UNION ALL SELECT 'boyan@bca.com', 'Boulder, CO'

 UNION ALL SELECT 'carrie@cab.com', 'Chicago, IL'

)

SELECT

 CONCAT(

 SUBSTR(email, 1, STRPOS(email, '@') - 1), -- username

 ' from ', city) AS callers

FROM example

Here’s what the result looks like:

Row callers

1 armin from Annapolis, MD

2 boyan from Boulder, CO

3 carrie from Chicago, IL

Internationalization
Strings in BigQuery are Unicode, so avoid assumptions that rely on English. For example, the “upper” case is a
no-op in Japanese, and the default UTF-8 encoding that is carried out by the cast as bytes is insufficient for
languages such as Tamil, as demonstrated here:

WITH example AS (

 SELECT * from unnest([

 'Seattle', 'New York', 'ச��க���', '東京'

]) AS city

)

SELECT

 city

 , UPPER(city) AS allcaps

 , CAST(city AS BYTES) as bytes

FROM example

As you can see, this simply doesn’t work as presumably intended:

Row city allcaps bytes

1 Seattle SEATTLE U2VhdHRsZQ==

2 New York NEW
YORK

TmV3IFlvcms=

3 ச��க��� ச��க��� 4K6a4K6/4K6Z4K+N4K6V4K6q4K+N4K6q4K+C4K6w4K+N

4 東京 東京 5p2x5Lqs

BigQuery supports three different ways to represent strings—as an array of Unicode characters, as an array of
bytes, and as an array of Unicode code points (INT64):

WITH example AS (

 SELECT * from unnest([

 'Seattle', 'New York', 'ச��க���', '東京'

]) AS city

)

SELECT

 city

 , CHAR_LENGTH(city) as char_len

 , TO_CODE_POINTS(city)[ORDINAL(1)] as first_code_point

 , ARRAY_LENGTH(TO_CODE_POINTS(city)) as num_code_points

 , CAST (city AS BYTES) as bytes

 , BYTE_LENGTH(city) as byte_len

FROM example

Note the difference between the results for CHAR_LENGTH and BYTE_LENGTH on the same strings, and how the
number of code points is the same as the number of characters:

Row city char_len first_code_point num_code_points bytes byte_len

1 Seattle 7 83 7 U2VhdHRsZQ== 7

2 New York 8 78 8 TmV3IFlvcms= 8

3 ச��க��� 11 2970 11 4K6a4K6/4K6Z4K+N4K6V4K6q4K+N4K6q4K+C4K6w4K+N 33

4 東京 2 26481 2 5p2x5Lqs 6

Because of these differences, you need to recognize which columns might contain text in different languages, and
be aware of language differences when using string manipulation functions.

Printing and Parsing
You can simply cast a string as an INT64 or a FLOAT64 in order to parse it, but customizing the string
representation will require the use of FORMAT:

SELECT

 CAST(42 AS STRING)

 , CAST('42' AS INT64)

 , FORMAT('%03d', 42)

 , FORMAT('%5.3f', 32.457842)

 , FORMAT('%5.3f', 32.4)

 , FORMAT('**%s**', 'H')

 , FORMAT('%s-%03d', 'Agent', 7)

Here is the result of that query:

Row f0_ f1_ f2_ f3_ f4_ f5_ f6_

1 42 42 042 32.458 32.400 **H** Agent-007

FORMAT works similarly to C’s printf, and it accepts the same format specifiers. A few of the more useful
specifiers are demonstrated in the preceding example. Although FORMAT also accepts dates and timestamps, it is
better to use FORMAT_DATE and FORMAT_TIMESTAMP so that the display formats can be locale-aware.

String Manipulation Functions
Manipulating strings is such a common need in Extract, Transform, and Load (ETL) pipelines that these BigQuery
convenience functions are worth having on speed dial:

SELECT

 ENDS_WITH('Hello', 'o') -- true

 , ENDS_WITH('Hello', 'h') -- false

 , STARTS_WITH('Hello', 'h') -- false

 , STRPOS('Hello', 'e') -- 2

 , STRPOS('Hello', 'f') -- 0 for not-found

 , SUBSTR('Hello', 2, 4) -- 1-based

 , CONCAT('Hello', 'World')

The result of this query is as follows:

Row f0_ f1_ f2_ f3_ f4_ f5_ f6_

1 true false false 2 0 ello HelloWorld

Note how SUBSTR() behaves. The first parameter is the starting position (it is 1-based), and the second parameter
is the desired number of characters in the substring.

Transformation Functions
Another set of functions that is worth becoming familiar with are those that allow you to manipulate the string:

SELECT

 LPAD('Hello', 10, '*') -- left pad with *

 , RPAD('Hello', 10, '*') -- right pad

 , LPAD('Hello', 10) -- left pad with spaces

 , LTRIM(' Hello ') -- trim whitespace on left

 , RTRIM(' Hello ') -- trim whitespace on right

 , TRIM (' Hello ') -- trim whitespace both ends

 , TRIM ('***Hello***', '*') -- trim * both ends

 , REVERSE('Hello') -- reverse the string

Let’s look at the result of this query:

Row f0_ f1_ f2_ f3_ f4_ f5_ f6_ f7_

1 *****Hello Hello***** Hello Hello Hello Hello Hello olleH

Regular Expressions
Regular expressions provide much more powerful semantics than the convenience functions. For instance, STRPOS
and others can find only specific characters, whereas you can use REGEXP_CONTAINS for more powerful searches.

For example, you could do the following to determine whether a column contains a US zip code (the short form of
which is a five-digit number and the long form of which has an additional four digits separated by either a hyphen
or a space):

SELECT

 column

http://www.cplusplus.com/reference/cstdio/printf/

 , REGEXP_CONTAINS(column, r'\d{5}(?:[-\s]\d{4})?') has_zipcode

 , REGEXP_CONTAINS(column, r'^\d{5}(?:[-\s]\d{4})?$') is_zipcode

 , REGEXP_EXTRACT(column, r'\d{5}(?:[-\s]\d{4})?') the_zipcode

 , REGEXP_EXTRACT_ALL(column, r'\d{5}(?:[-\s]\d{4})?') all_zipcodes

 , REGEXP_REPLACE(column, r'\d{5}(?:[-\s]\d{4})?', '*****') masked

FROM (

 SELECT * from unnest([

 '12345', '1234', '12345-9876',

 'abc 12345 def', 'abcde-fghi',

 '12345 ab 34567', '12345 9876'

]) AS column

)

Here’s what this query yields:

Row column has_zipcode is_zipcode the_zipcode all_zipcodes masked

1 12345 true true 12345 12345 *****

2 1234 false false null 1234

3 12345-9876 true true 12345-9876 12345-9876 *****

4 abc 12345 def true false 12345 12345 abc ***** def

5 abcde-fghi false false null abcde-fghi

6 12345 ab 34567 true false 12345 12345 ***** ab *****

 34567

7 12345 9876 true true 12345 9876 12345 9876 *****

There are a few things to note:

The regular expression \d{5} matches any string consisting of five decimal numbers.

The second part of the expression, in parentheses, looks for an optional (note the ? at the end of the
parentheses) group (?:) of four decimal numbers (\d{4}), which is separated from the first five numbers
by either a hyphen or by a space (\s).

The presence of \d, \s, and others in the string could cause problems, so we prefix the string with an r
(for raw), which makes it a string literal.

The second expression illustrates how to find an exact match: simply insist that the string in question must
start (^) and end ($) with the specified string.

To extract the part of the string matched by the regular expression, use REGEXP_EXTRACT. This returns
NULL if the expression is not matched, and only the first match if there are multiple matches.

REGEXP_EXTRACT_ALL returns all the matches. If there is no match, it returns an empty array.

REGEXP_REPLACE replaces every match with the replacement string.

The regular expression support in BigQuery follows that of Google’s open source RE2 library. To see the syntax
accepted by this library, visit https://github.com/google/re2/wiki/Syntax. Regular expressions can be cryptic, but
they are a rich topic that is well worth mastering.

Summary of String Functions
Because strings are so common in data analysis, it is worth learning the broad contours of the available functions.
You can always refer to the BigQuery documentation for the exact syntax. Table 3-2 separates them into their
respective categories.

2

https://github.com/google/re2
https://github.com/google/re2/wiki/Syntax
https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions

Table 3-2. Categories of string functions

Category Functions Notes

Representations CHAR_LENGTH, BYTE_LENGTH, TO_CODE_POINTS,
CODE_POINTS_TO_STRING,
SAFE_CONVERT_BYTES_TO_STRING,
TO_HEX, TO_BASE32, TO_BASE64, FROM_HEX, FR
OM_BASE32, FROM_BASE64, NORMALIZE

Normalize allows, for example, different Unicode space characters to be
made equivalent.

Printing and
parsing

FORMAT, REPEAT, SPLIT The syntax of FORMAT is similar to C’s printf: format("%03d", 12)
yields 012. For locale-aware conversions, use FORMAT_DATE, etc.

Convenience ENDS_WITH, LENGTH, STARTS_WITH, STRPOS, SU
BSTR, CONCAT

The LENGTH function is equivalent to CHAR_LENGTH for Strings and to BYTE_
LENGTH for Bytes.

Transformations LPAD, LOWER, LTRIM, REPLACE, REVERSE, RPAD,
RTRIM, TRIM, UPPER

The default trim characters are Unicode whitespace, but it is possible to
specify a different set of trim characters.

Regular
expressions

REGEXP_CONTAINS,
REGEXP_EXTRACT, REGEXP_EXTRACT_ALL, REGE
XP_REPLACE

See https://github.com/google/re2/wiki/Syntax for the syntax accepted by
BigQuery.

Working with TIMESTAMP
A timestamp represents an absolute point in time regardless of location. Thus a timestamp of 2017-09-27
12:30:00.45 (Sep 27, 2017, at 12:30 UTC) represents the same time as 2017-09-27 13:30:00.45+1:00 (1:30 p.m. at
a time zone that is an hour behind):

SELECT t1, t2, TIMESTAMP_DIFF(t1, t2, MICROSECOND)

FROM (SELECT

 TIMESTAMP "2017-09-27 12:30:00.45" AS t1,

 TIMESTAMP "2017-09-27 13:30:00.45+1" AS t2

)

This returns the following:

Row t1 t2 f0_

1 2017-09-27 12:30:00.450 UTC 2017-09-27 12:30:00.450 UTC 0

Parsing and Formatting Timestamps
BigQuery is somewhat forgiving when it comes to parsing the timestamp. The date and time parts of this string
representation can be separated either by a T or by a space in accordance with ISO 8601. Similarly, the month, day,
hour, and so on might or might not have leading zeros. However, best practice is to use the canonical
representation shown in the previous paragraph. As that string representation would indicate, this timestamp can
represent only four-digit years; years before the common era cannot be represented using TIMESTAMP.

You can use PARSE_TIMESTAMP to parse a string that is not in the canonical format:

SELECT

 fmt, input, zone

 , PARSE_TIMESTAMP(fmt, input, zone) AS ts

FROM (

 SELECT '%Y%m%d-%H%M%S' AS fmt, '20181118-220800' AS input, '+0' as zone

 UNION ALL SELECT '%c', 'Sat Nov 24 21:26:00 2018', 'America/Los_Angeles'

 UNION ALL SELECT '%x %X', '11/18/18 22:08:00', 'UTC'

)

Here is what this would yield:

https://github.com/google/re2/wiki/Syntax
https://www.iso.org/iso-8601-date-and-time-format.html

Row fmt input zone ts

1 %Y%m%d%-H%M%S 20181118-220800 +0 2018-11-18 22:08:00 UTC

2 %c Sat Nov 24 21:26:00 2018 America/Los_Angeles 2018-11-25 05:26:00 UTC

3 %x %X 11/18/18 22:08:00 UTC 2018-11-18 22:08:00 UTC

The first example uses format specifiers for the year, month, day, and so on to create a timestamp from the
provided string. The second and third examples use preexisting specifiers for commonly encountered date-time
formats.

Conversely, you can use FORMAT_TIMESTAMP to print out a timestamp in any desired format:

SELECT

 ts, fmt

 , FORMAT_TIMESTAMP(fmt, ts, '+6') AS ts_output

FROM (

 SELECT CURRENT_TIMESTAMP() AS ts, '%Y%m%d-%H%M%S' AS fmt

 UNION ALL SELECT CURRENT_TIMESTAMP() AS ts, '%c' AS fmt

 UNION ALL SELECT CURRENT_TIMESTAMP() AS ts, '%x %X' AS fmt

)

This results in the following:

Row ts fmt ts_output

1 2018-11-25 05:42:13.939840 UTC %Y%m%d-%H%M%S 20181125-114213

2 2018-11-25 05:42:13.939840 UTC %c Sun Nov 25 11:42:13 2018

3 2018-11-25 05:42:13.939840 UTC %x %X 11/25/18 11:42:13

The preceding example uses the function CURRENT_TIMESTAMP() to retrieve the system time at the time the query
is executed. In both PARSE_TIMESTAMP and FORMAT_TIMESTAMP, the time zone is optional; if omitted, the time
zone is assumed to be UTC.

Extracting Calendar Parts
Given a timestamp, it is possible to extract information about the Gregorian calendar corresponding to the
timestamp. For example, we can extract information about Armistice Day using this:

SELECT

 ts

 , FORMAT_TIMESTAMP('%c', ts) AS repr

 , EXTRACT(DAYOFWEEK FROM ts) AS dayofweek

 , EXTRACT(YEAR FROM ts) AS year

 , EXTRACT(WEEK FROM ts) AS weekno

FROM (

 SELECT PARSE_TIMESTAMP('%Y%m%d-%H%M%S', '19181111-054500') AS ts

)

Here is the result:

Row ts repr dayofweek year weekno

1 1918-11-11 05:45:00 UTC Mon Nov 11 05:45:00 1918 2 1918 45

The week is assumed to begin on Sunday, and days prior to the first Sunday of the year are assigned to week 0.
This is not internationally safe. Hence, if you’re in a country (such as Israel) where the week begins on Saturday, it
is possible to specify a different day for the start of the week:

3

4

EXTRACT(WEEK('SATURDAY') FROM ts)

The number of seconds from the Unix epoch (January 1, 1970) is not available through EXTRACT. Instead, special
functions exist to convert to and from the Unix epoch:

SELECT

 UNIX_MILLIS(TIMESTAMP "2018-11-25 22:30:00 UTC")

 , UNIX_MILLIS(TIMESTAMP "1918-11-11 22:30:00 UTC") --invalid

 , TIMESTAMP_MILLIS(1543185000000)

This yields the following:

Row f0_ f1_ f2_

1 1543185000000 -1613784600000 2018-11-25 22:30:00 UTC

Note that the second one overflows and yields a negative number, but no error is raised.

Arithmetic with Timestamps
It is possible to add or subtract time durations from timestamps. It is also possible to find the time difference
between two timestamps. In all of these functions, you need to specify the units in which the durations are
expressed:

SELECT

 EXTRACT(TIME FROM TIMESTAMP_ADD(t1, INTERVAL 1 HOUR)) AS plus_1h

 , EXTRACT(TIME FROM TIMESTAMP_SUB(t1, INTERVAL 10 MINUTE)) AS minus_10min

 , TIMESTAMP_DIFF(CURRENT_TIMESTAMP(),

 TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 1 MINUTE),

 SECOND) AS plus_1min

 , TIMESTAMP_DIFF(CURRENT_TIMESTAMP(),

 TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 1 MINUTE),

 SECOND) AS minus_1min

FROM (SELECT

 TIMESTAMP "2017-09-27 12:30:00.45" AS t1

)

This returns the timestamps an hour from now, 10 minutes ago, and the time difference in seconds corresponding
to one minute from now and one minute earlier:

Row plus_1h minus_10min plus_1min minus_1min

1 13:30:00.450000 12:20:00.450000 60 -60

Date, Time, and DateTime
BigQuery has three other functions for representing time: DATE, TIME, and DATETIME. DATE is useful for when you
are tracking only the day in which something happens, and any more precision is unnecessary. TIME is useful to
represent the time of day that things happen, and to perform mathematical operations with those times. With TIME,
you can answer questions like, “What time will it be eight hours from the starting time?” DATETIME is a TIMESTAMP
rendered in a specific time zone, so it is useful when you have an unambiguous time zone in which an event
occurred and you don’t need to do time zone conversions.

Counterparts to most of the TIMESTAMP functions are available for DATETIME. Thus, you can call DATETIME_ADD,
DATETIME_SUB, and DATETIME_DIFF, as well as PARSE_DATETIME and FORMAT_DATETIME. You can also EXTRACT
calendar parts from a DATETIME. The two types are quite interoperable—it is possible to extract a DATETIME from a
TIMESTAMP and cast a DATETIME to a TIMESTAMP:

SELECT

 EXTRACT(DATETIME FROM CURRENT_TIMESTAMP()) as dt

 , CAST(CURRENT_DATETIME() AS TIMESTAMP) as ts

The following shows the result:

Row dt ts

1 2018-11-25T07:03:15.055141 2018-11-25 07:03:15.055141 UTC

Note that the canonical representation of a DATETIME has the letter T separating the date part and the time part,
whereas the representation of a TIMESTAMP uses a space. The TIMESTAMP also explicitly includes the time zone,
whereas the time zone is implicit in the DATETIME. But for the most part, you can use DATETIME and TIMESTAMP
interchangeably in BigQuery.

DATE is just the date part of a DATETIME (or a TIMESTAMP, interpreted in some time zone), and TIME is the time part.
Because many real-world scenarios might happen on a certain date (i.e., at multiple times throughout that day),
many database tables contain just a DATE. So there is some benefit to being able to directly parse and format dates.
On the other hand, there is very little need for the TIME type other than as the “missing” part of a DATETIME.

For the most part, therefore, our advice is to just use TIMESTAMP and DATE. There is, however, one practical
wrinkle to using TIMESTAMP. Timestamps in BigQuery are stored using eight bytes with microsecond resolution.
This means that you can store years 0 through 9999, and any microsecond in between. In some other databases
(e.g., MySQL), TIMESTAMP is stored using four bytes and DATETIME using eight bytes. In those systems, the range
of a TIMESTAMP is within the limits of the Unix epoch time (years 1970 to 2038), which means that you cannot
even store the birthdays of 60-year-old people or the expiry dates of 30-year mortgages. So, whereas a TIMESTAMP
might work in BigQuery, you might not be able to use the same schema in MySQL, and this might make moving
queries and data between BigQuery and MySQL challenging.

Working with GIS Functions
We look at geography functions in much more detail in Chapter 8, which looks at advanced features. In this
section, we provide only a brief introduction.

The GEOGRAPHY type can be used to represent points, lines, and polygons on the surface of the Earth (i.e., there is
no height associated with them). Because the Earth is a lumpy mass, points on its surface can be represented only
on spherical and ellipsoidal approximations of the surface. In BigQuery, the geographic positions of the points and
the vertices of the lines and polygons are represented in the WGS84 ellipsoid. Practically speaking, this is the
same ellipsoid as used by the Global Positioning System (GPS), so you will be able to take the longitude and
latitude positions reported by most sensors and use them directly in BigQuery.

The simplest geography is a point specified by its longitude and latitude. So, for example,

ST_GeogPoint(-122.33, 47.61)

represents a point at 47.61N and 122.33W—Seattle, Washington.

The BigQuery public datasets include a table that contains polygons corresponding to each of the US states and
territories. We can therefore write a query to find out which state the geographic point is in:

SELECT

 state_name

FROM `bigquery-public-data`.utility_us.us_states_area

WHERE

https://en.wikipedia.org/wiki/World_Geodetic_System

 ST_Contains(

 state_geom,

 ST_GeogPoint(-122.33, 47.61))

As anticipated, this returns the following:

Row state_name

1 Washington

The query uses the ST_Contains function to determine whether the state’s geometry (stored as the state_geom
column in the BigQuery dataset) contains the point we are interested in. The spatial functions that BigQuery
supports follow the SQL/MM 3 specification and are similar to what the PostGIS library provides for Postgres.

Summary
To summarize what we’ve covered in this chapter, Table 3-3 presents the data types that BigQuery supports.

https://oreil.ly/9AgOe
https://oreil.ly/x8kNM

Table 3-3. Data types supported by BigQuery

Data
type Sample functions and operators supported Notes

INT6

4

Arithmetic operations (+, –, /, *, for add, subtract,
divide, and multiply, respectively).

Approximately 10 to 10 .

NUME

RIC

Arithmetic operations. 38 digits of precision and 9 decimal digits of scale; this is suitable for financial
calculations.

FLOA

T64

Arithmetic operations.
Also: IEEE_DIVIDE.

IEEE-754 behavior if one of the values is NaN or ± inf.

BOOL Conditional statements.
MIN, MAX.
However, SUM, AVG, etc. are not supported (you’d
need to cast the Booleans to INT64 first).

Is either True and False.
SQL is case insensitive, so TRUE, true, and so on also work.

STRI

NG

Use special String functions such as CONCAT, LENGT
H, etc. to operate on strings.

Strings are Unicode characters and are variable length.

BYTE

S

 Variable length characters.
Many String operations are also defined on BYTES.

TIME

STAM

P

CURRENT_TIMESTAMP() represents “now.”
You can extract month, year, dayofweek, etc. from
a timestamp.
Arithmetic on timestamps is supported via special
functions, not through arithmetic operators.

Absolute point in time, to microsecond precision, represented in a subset of ISO
8601. This is the recommended way to store times in BigQuery.

DATE CURRENT_DATE() represents the current date in the
UTC time zone, whereas CURRENT_DATE("Americ
a/Los_Angeles") represents the current date in the
Los Angeles time zone.
Like TIMESTAMP, arithmetic on dates is supported
via special functions.

2018-3-14 (or 2018-03-14) is March 14, 2018, independent of time zone. Because
this represents different 24-hour blocks in different time zones, use TIMESTAMP to
represent an absolute point in time. You can then construct a DATE from a TIMESTAM
P relative to a particular time zone.

DATE

TIME

As with DATE. 2018-03-14 3:14:57 or 2018-03-14T03:14:57.000000 is, like DATE, independent of
time zone. Most applications will want to use TIMESTAMP.

TIME As with DATETIME, except that the DATE part is
absent.

Independent of a specific date or time zone. This ranges from 00:00:00 to
23:59:59.999999.

GEOG

RAPH

Y

Topological functions on geographies are supported
via special functions.

Points, lines, and polygons on the surface of the Earth (i.e., there is no height).
The representations are in the WGS84 ellipsoid; this is the same ellipsoid as used
by the Global Positioning System (GPS).
The simplest geography is a point specified by its longitude and latitude.

STRU

CT

You can deference the fields by name. A collection of fields in order.
The field name is optional; that is, you could have either:
STRUCT<INT64, STRING>
or
STRUCT<id INT64, name STRING>.

ARRA

Y

You can deference the items by offset, aggregate
the items in the array, or unnest them to get the
items one by one.

Ordered list of non-null elements; e.g., ARRAY<INT64>. Arrays of arrays are not
allowed, but you can get around this by creating an array of STRUCT in which the
struct itself contains an array; i.e., ARRAY<STRUCT<ARRAY<INT64>>>
(We cover arrays in Chapter 2).

You can use all data types, except for arrays and structs, in ORDER BY and GROUP BY.

1 The standard division operator raises a division-by-zero error. SAFE_DIVIDE returns NULL for the entry when division by zero is attempted.

2 Start with Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).

3 For the full list of specifiers, consult the documentation.

4 According to https://en.wikipedia.org/wiki/Armistice_Day, the agreement was signed at 5:45 a.m. on November 11, 1918. In Winter 1918, unlike
now, France was in the UTC time zone; see https://www.timeanddate.com/time/zone/france/paris.

–19 19

https://cloud.google.com/bigquery/docs/reference/standard-sql/string_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/timestamp_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/date_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#timestamp-type
https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions
http://shop.oreilly.com/product/9781565922570.do
https://cloud.google.com/bigquery/docs/reference/standard-sql/timestamp_functions#supported_format_elements_for_timestamp
https://en.wikipedia.org/wiki/Armistice_Day
https://www.timeanddate.com/time/zone/france/paris

Chapter 4. Loading Data into
BigQuery

In the previous chapter, we wrote the following query:

SELECT

 state_name

FROM `bigquery-public-data`.utility_us.us_states_area

WHERE

 ST_Contains(

 state_geom,

 ST_GeogPoint(-122.33, 47.61))

We also learned that the city at the location (-122.33, 47.61) is in the state of
Washington. Where did the data for the state_name and state_geom come from?

Note the FROM clause in the query. The owners of the bigquery-public-data
project had already loaded the state boundary information into a table called
us_states_area in a dataset called utility_us. Because the team shared the
utility_us dataset with all authenticated users of BigQuery (more restrictive
permissions are available), we were able to query the us_states_area table that is
in that dataset.

But how did they get the data into BigQuery in the first place? In this chapter, we
look at various ways to load data into BigQuery, starting with the basics.

The Basics
Data values such as the boundaries of US states change rarely, and the changes are
small enough that most applications can afford to ignore them. In data warehousing
lingo, we call this a slowly changing dimension. As of this writing, the last change
of US state boundaries occurred on January 1, 2017, and affected 19 home owners
and one gas station.

State boundary data is, therefore, the type of data that is often loaded just once.
Analysts query the single table and ignore the fact that the data could change over
time. For example, a retail firm might care only about which state a home is in

1

2

currently to ensure that the correct tax rate is applied to purchases from that home.
So when a change does happen, such as through a treaty between states or due to a
change in the path of a river channel, the owners of the dataset might decide to
replace the table with more up-to-date data. The fact that queries could potentially
return slightly different results after an update compared to what was returned
before the update is ignored.

Ignoring the impact of time on the correctness of the data might not always be
possible. If the state boundary data is to be used by a land title firm that needs to
track ownership of land parcels, or if an audit firm needs to validate the state tax
paid on shipments made in different years, it is important that there be a way to
query the state boundaries as they existed in years past. So even though the first part
of this chapter covers how to do a one-time load, carefully consider whether you
would be better off planning on periodically updating the data and allowing users of
the data to know about the version of the data that they are querying.

Loading from a Local Source
The US government issues a “scorecard” for colleges to help consumers compare
the cost and perceived value of higher education. Let’s load this data into BigQuery
as an illustration. The raw data is available on catalog.data.gov. For convenience,
we also have it available as 04_load/college_scorecard.csv.gz in the GitHub
repository for this book. The comma-separated values (CSV) file was downloaded
from data.gov and compressed using the open source software utility gzip.

TIP
Why did we compress the file? The raw, uncompressed file is about 136 MB, whereas the gzipped file is only
18 MB. Because we are about to send the file over the wire to BigQuery, it makes sense to optimize the
bandwidth being transferred. The BigQuery load command can handle gzipped files, but it cannot load parts
of a gzipped file in parallel. Loading would be much faster if we were to hand BigQuery a splittable file,
either an uncompressed CSV file that is already on Cloud Storage (so that the network transfer overhead is
minimized) or data in a format such as Avro for which each block is internally compressed but the file as a
whole can be split across workers.

A splittable file can be loaded by different workers starting at different parts of the file, but this requires that
the workers be able to “seek” to a predictable point in the middle of the file without having to read it from the
beginning. Compressing the entire file using gzip doesn’t allow this, but a block-by-block compression such
as Avro does. Therefore, using a compressed, splittable format such as Avro is an unmitigated good.
However, if you have CSV or JSON files that are splittable only when uncompressed, you should measure
whether the faster network transfer is counterbalanced by the increased load time.

https://catalog.data.gov/
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/

From Cloud Shell, you can page through the gzipped file using zless:

zless college_scorecard.csv.gz

NOTE
Here are detailed steps:

1. Open Cloud Shell in your browser by visiting https://console.cloud.google.com/cloudshell.

2. In the terminal window, type: git clone
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book.

3. Navigate to the folder containing the college scorecard file: cd bigquery-oreilly-
book/04_load.

4. Type the command zless college_scorecard.csv.gz, and then use the space bar to page
through the data. Type the letter q to quit.

The file contains a header line with the names of the columns. Each of the lines
following the header contains one row of data.

To load the data into BigQuery, first create a dataset called ch04 to hold the data:

bq --location=US mk ch04

The bq command-line tool provides a convenient point of entry to interact with the
BigQuery service on Google Cloud Platform (GCP), although everything you do
with bq you also can do using the REST API. And you can accomplish most things
using the GCP Cloud Console. We are asking it here to make (mk) a dataset named
ch04.

Datasets in BigQuery function like top-level folders that are used to organize and
control access to tables, views, and machine learning models. The dataset is created
in the current project, and it is to this project that storage costs for tables in this
dataset will be billed (queries are charged to the project of the querier).

We also specify that the dataset should be created in the US location (this is the
default, so we could have omitted that). Location choices include multiregional
locations (such as US, EU) and specific regions (e.g., us-east4, europe-west2 and

3

https://console.cloud.google.com/cloudshell

australia-southeast1). Be careful when choosing a region for loading data: as
of this writing, queries cannot join tables held in different regions. In this book, we
will use the US multiregion location so that our queries can join against tables in the
public datasets that are located in the United States.

Then, from the directory containing your clone of the GitHub repository, load the
data in the file as a table in BigQuery:

bq --location=US \

 load \

 --source_format=CSV --autodetect \

 ch04.college_scorecard \

 ./college_scorecard.csv.gz

In this case, we are asking bq to load the dataset, informing the tool that the source
format is CSV and that we would like the tool to autodetect the schema (i.e., the
data types of individual columns). We then specify that the table to be created is
called college_scorecard in the dataset ch04 and that the data is to be loaded
from college_scorecard.csv.gz in the current directory.

When we did this, though, we ran into an issue:

Could not parse 'NULL' as int for field HBCU (position 26) starting at location

11945910

This caused the load job to fail with the following error:

CSV table encountered too many errors, giving up. Rows: 591; errors: 1.

The problem is that, based on most of the data in the CSV file, BigQuery’s schema
autodetection expects that the 26th column (whose name is HBCU) should be an
integer, but the 591st row of the file has the text NULL in that field—this usually
signifies that the college in question did not answer the survey question
corresponding to this field.

There are several ways in which we can fix this problem. For example, we could
edit the data file itself if we knew what the value ought to be. Another fix could be
to specify explicitly the schema for each column and change the column type of the
HBCU column to be a string so that NULL is an acceptable value. Alternatively, we

4

5

6

could ask BigQuery to ignore a few bad records by specifying, for example, --
max_bad_records=20. Finally, we could instruct the BigQuery load program that
this particular file uses the string NULL to mark nulls (the standard way in CSV is to
use empty fields to represent nulls).

Let’s apply the last method, because it seems to be the most appropriate:

bq --location=US \

 load --null_marker=NULL \

 --source_format=CSV --autodetect \

 ch04.college_scorecard \

 ./college_scorecard.csv.gz

You can find the full list of bq load options by typing bq load --help. By
default, bq load will append to a table. Here, you want to replace the existing table,
so you should add --replace:

bq --location=US \

 load --null_marker=NULL --replace \

 --source_format=CSV --autodetect \

 ch04.college_scorecard \

 ./college_scorecard.csv.gz

You can also specify --replace=false to append rows to an existing table.

7

LOADING OR STREAMING?
Loading data into BigQuery does not incur any charges, although you will be
charged for storage after the data is loaded. If you are on flat-rate pricing,
loading data into BigQuery uses computational resources that are separate from
the slots that are paid for by the flat rate. Therefore, if you do not need near-
real-time data in your data warehouse, a frugal way to get data into BigQuery is
to set up a scheduled Cloud Storage transfer (which we cover later in this
chapter). If transformations are needed, you can use Cloud Composer or Cloud
Functions to load data into BigQuery every day.

All that the bq command does is to invoke a REST API exposed by the
BigQuery service. So you can load the data in many other ways as well. Those
methods invoke the same REST API. Client libraries in a number of languages,
including Java, Python, and Node.js, are available—these provide convenient,
programmatic ways to upload the data. We discuss the use of client libraries in
Chapter 5.

If you do need data in near real time, you should stream data into BigQuery.
Even though streaming incurs charges, you should prefer to use streaming over
frequent loads if you need near-real-time data. It is not a good idea to load data
using a large number of small load jobs frequently (for example, to issue a load
every minute). Tables that are loaded so frequently can end up with significant
fragmentation and high metadata overhead, causing queries over them to be
slow until BigQuery performs an optimization pass at some point in the future.
Streaming, unlike frequent small loads, batches rows on the backend for a
period of time before writing them to storage, thus limiting the fragmentation
and keeping querying performant. Streamed data is available for querying
immediately, whereas loads can take a while to complete. Moreover, if you rely
on frequent small batch loads, any sort of throttling or backups in the systems
that produce these files can result in unexpected delays in data being available.

It is worth noting that you can do one-time loads from the BigQuery web user
interface (UI). Click your project, and you will be presented with a button to create
a dataset (ch04, in our case); click the dataset, and you will be presented with a
button to create a table. You can then follow the prompts to upload the file as a
BigQuery table. As of this writing, however, use of the web UI to load data from a
local file is limited to data whose size is less than 10 MB and 16,000 rows. Hence, it

8

https://cloud.google.com/bigquery/streaming-data-into-bigquery

would not work for the college scorecard dataset unless we had staged it in Google
Cloud Storage first.

Even if you did not (or cannot) use the web UI to load the data, it is a good idea to
look at the created table using the web UI to ensure that details about the table as
well as the autodetected schema are correct. It is also possible to edit some details
about the table even after it has been created. For example, it is possible to specify
that the table should automatically expire after a certain number of days, add
columns, or relax a required field to become nullable.

NOTE
You can also set an expiration date using the ALTER TABLE SET OPTIONS statement—for example:

ALTER TABLE ch04.college_scorecard

 SET OPTIONS (

 expiration_timestamp=

 TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 7 DAY),

 description="College Scorecard table that expires

 seven days from now"

)

For more details, see https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-
language#alter_table_set_options_statement.

Regardless of how the table is loaded, anyone who is allowed to access the dataset
in which the table is located can query it. The default is to make a newly created
dataset visible only to people with project-level view permissions. You can,
however, share the dataset with specific individuals (identified by their Google
account), a domain (e.g., xyz.com), or a Google group. We discuss using Identity
and Access Management (IAM) to share datasets in Chapter 10. For now, though,
anyone with view access to the project holding the dataset can query it:

SELECT

 INSTNM

 , ADM_RATE_ALL

 , FIRST_GEN

 , MD_FAMINC

 , MD_EARN_WNE_P10

 , SAT_AVG

FROM

9

https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#alter_table_set_options_statement
http://xyz.com/

 ch04.college_scorecard

WHERE

 SAFE_CAST(SAT_AVG AS FLOAT64) > 1300

 AND SAFE_CAST(ADM_RATE_ALL AS FLOAT64) < 0.2

 AND SAFE_CAST(FIRST_GEN AS FLOAT64) > 0.1

ORDER BY

 CAST(MD_FAMINC AS FLOAT64) ASC

This query pulls out college name (INSTNM), admission rate, and other information
for colleges whose average SAT score is more than 1300 and whose admission rate
is less than 20%, which is a plausible definition of “elite” colleges. It also filters by
colleges that admit first-generation college goers at a rate greater than 10% and
ranks them in ascending order of median family income, thus finding elite colleges
that admit culturally or economically disadvantaged students. The query also pulls
the median earnings of students 10 years after entry:

Row INSTNM ADM_RATE_ALL FIRST_GEN MD_FAMINC MD_EARN_WNE_P10 SAT_AVG

1 University
of
California–
Berkeley

0.1692687830816 0.3458005249 31227 64700 1422

2 Columbia
University
in the City
of New
York

0.06825366802669 0.2504905167 31310.5 83300 1496

3 University
of
California–
Los
Angeles

0.17992627069775 0.3808913934 32613.5 60700 1334

4 Harvard
University

0.05404574677902 0.25708061 33066 89700 1506

5 Princeton
University

0.06521516568269 0.2773972603 37036 74700 1493

Look, however, at the query itself. Notice how several of the WHERE clauses need a
cast:

SAFE_CAST(ADM_RATE_ALL AS FLOAT64)

Had we not included the cast, we would have received an error:

No matching signature for operator > for argument types: STRING, INT64.

Had we simply cast as a float, it would have failed on a row where the value was a
string (PrivacySuppressed) that cannot be cast as a float:

Bad double value: PrivacySuppressed; while executing the filter ...

This is because the automatic schema detection did not identify the admission rate
column as numeric. Instead, that column is being treated as a string because, in
some of the rows, the value is suppressed for privacy reasons (e.g., if the number of
applications is very small) and replaced by the text PrivacySuppressed. Indeed,
even the median family income is a string (it happens to always be numeric for
colleges that meet the criteria we outlined), and so we need to cast it before
ordering.

Specifying a Schema
Inevitably in real-world datasets, we will need to do some cleanup and
transformations before loading the data into BigQuery. Although later in this
chapter we look at building more sophisticated data processing pipelines to do this,
a simple way is to use Unix tools to replace privacy-suppressed data with NULLs:

zless ./college_scorecard.csv.gz | \

 sed 's/PrivacySuppressed/NULL/g' | \

 gzip > /tmp/college_scorecard.csv.gz

Here, we are using a string editor (sed) to replace all occurrences of
PrivacySuppressed by NULL, compressing the result and writing it to a temporary
folder. Now, instead of loading the original file, we can load the cleaner file.

When presented with the cleaner file, BigQuery correctly identifies many more of
the columns as integers or floats, but not SAT_AVG or ADM_RATE_ALL; those columns
are still autodetected as strings. This is because the algorithm to autodetect the
schema does not look at all the rows in the file; it looks at only a sample of them.
Because a large number of rows have a null SAT_AVG (fewer than 20% of colleges
report SAT scores), the algorithm was unable to infer the type of the field. The safe
choice is to treat any column that the tool is not sure of as a string.

10

It is therefore best practice to not autodetect the schema of files that you receive in
production—you will be at the mercy of whatever data happens to have been
sampled. For production workloads, insist on the data type for a column by
specifying it at the time of load.

You can use the autodetect feature to avoid starting to write a schema from scratch.
You can display the schema of the table as it currently exists:

bq show --format prettyjson --schema ch04.college_scorecard

You can also save the schema to a file:

bq show --format prettyjson --schema ch04.college_scorecard > schema.json

AUTOMATING THE CREATION OF SCHEMA
We haven’t covered table metadata yet (we do so in Chapter 8), but you can
automate the creation of the schema by using SQL itself. Here is a query to
obtain the schema of all the tables in the dataset ch04:

SELECT

 table_name

 , column_name

 , ordinal_position

 , is_nullable

 , data_type

FROM

 ch04.INFORMATION_SCHEMA.COLUMNS

You can then use the TO_JSON_STRING function to create the JSON of the
schema in the necessary format, thus avoiding the need to drop to the command
line:

SELECT

 TO_JSON_STRING(

 ARRAY_AGG(STRUCT(

 IF(is_nullable = 'YES', 'NULLABLE', 'REQUIRED') AS

mode,

 column_name AS name,

 data_type AS type)

 ORDER BY ordinal_position), TRUE) AS schema

FROM

 ch04.INFORMATION_SCHEMA.COLUMNS

WHERE

 table_name = 'college_scorecard'

This yields a JSON string of the form:

[

 {

 "mode": "NULLABLE",

 "name": "INSTNM",

 "type": "STRING"

 },

 {

 "mode": "NULLABLE",

 "name": "ADM_RATE_ALL",

 "type": "FLOAT64"

 },

...

Now, you can open the schema file in your favorite text editor (if you don’t have a
preference, use the pen icon in Cloud Shell to open up the default editor) and
change the type of the columns you care about. Specifically, change the four
columns in the WHERE clause (SAT_AVG, ADM_RATE_ALL, FIRST_GEN, and
MD_FAMINC) to be FLOAT64:

{

 "mode": "NULLABLE",

 "name": "FIRST_GEN",

 "type": "FLOAT64"

},

In addition, also change (for now) the T4APPROVALDATE to be a string, because it is
in a nonstandard date format:

{

 "mode": "NULLABLE",

 "name": "T4APPROVALDATE",

 "type": "STRING"

},

With the schema updated, we can load the data with this schema rather than with the
autodetect:

bq --location=US \

 load --null_marker=NULL --replace \

 --source_format=CSV \

 --schema=schema.json --skip_leading_rows=1 \

 ch04.college_scorecard \

 ./college_scorecard.csv.gz

Because we are supplying a schema, we need to instruct BigQuery to ignore the first
row of the CSV file (which contains the header information).

After the table has been loaded, we can repeat the query of the previous section:

11

SELECT

 INSTNM

 , ADM_RATE_ALL

 , FIRST_GEN

 , MD_FAMINC

 , MD_EARN_WNE_P10

 , SAT_AVG

FROM

 ch04.college_scorecard

WHERE

 SAT_AVG > 1300

 AND ADM_RATE_ALL < 0.2

 AND FIRST_GEN > 0.1

ORDER BY

 MD_FAMINC ASC

Notice that, because SAT_AVG, ADM_RATE_ALL, and the others are no longer strings,
our query is much cleaner because we no longer need to cast them to floating-point
numbers. The reason they are no longer strings is that we made a decision on how to
deal with the privacy-suppressed data (treat them as being unavailable) during the
Extract, Transform, and Load (ETL) process.

Copying into a New Table
The table as loaded contains many columns that we do not need. It is possible to
create a cleaner, more purposeful table from the original table by using the CREATE
TABLE statement and populating the new table with only the columns of interest:

CREATE OR REPLACE TABLE ch04.college_scorecard_etl AS

 SELECT

 INSTNM

 , ADM_RATE_ALL

 , FIRST_GEN

 , MD_FAMINC

 , SAT_AVG

 , MD_EARN_WNE_P10

 FROM ch04.college_scorecard

By using a robust ETL pipeline and making decisions early, downstream queries are
cleaner and more concise. The trade-off is that the ETL process involves extra work
(determining the data types and specifying the schema) and might involve
irrevocable decisions (e.g., there is no way to get back whether a field is unavailable
because it was not collected, because it was suppressed due to privacy reasons, or

because it was deleted). Later in this chapter, we discuss how an ELT pipeline in
SQL can help us delay making irrevocable decisions.

Data Management (DDL and DML)
Why cover data management in a chapter on loading data? Because loading data is
typically only part of the task of managing data. If data is loaded by mistake, you
might need to delete it. Sometimes you need to delete data because of regulations
and compliance.

WARNING
Even though we normally want you to try all the commands and queries in this book, don’t try the
ones in this section, because you will lose your data!

The easiest way to delete a table (or view) as a whole is from the BigQuery UI. You
can also carry out the delete from the bq command-line tool:

bq rm ch04.college_scorecard

bq rm -r -f ch04

The first line removes a single table, whereas the second one removes recursively (-
r) and without prompting (-f, for force) the dataset ch04 and all of the tables it
contains.

You can also delete a table (or view) by using SQL:

DROP TABLE IF EXISTS ch04.college_scorecard_gcs

It is also possible to specify that a table needs to be expired at a certain time in the
future. You can so this with the ALTER TABLE SET OPTIONS statement:

ALTER TABLE ch04.college_scorecard

 SET OPTIONS (

 expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(),

 INTERVAL 7 DAY),

 description="College Scorecard expires seven days from now"

)

The DROP TABLE and ALTER TABLE statements, like the CREATE TABLE statement,
are examples of Data Definition Language (DDL) statements.

It is possible to delete only specific rows from a table—for example:

DELETE FROM ch04.college_scorecard

WHERE SAT_AVG IS NULL

Similarly, it is also possible to INSERT rows into an existing table instead of
replacing the entire table. For example, it is possible to insert more values into the
college_scorecard table using the following:

INSERT ch04.college_scorecard

 (INSTNM

 , ADM_RATE_ALL

 , FIRST_GEN

 , MD_FAMINC

 , SAT_AVG

 , MD_EARN_WNE_P10

)

 VALUES ('abc', 0.1, 0.3, 12345, 1234, 23456),

 ('def', 0.2, 0.2, 23451, 1232, 32456)

It is possible to use a subquery to extract values from one table and copy them into
another:

INSERT ch04.college_scorecard

SELECT *

FROM ch04.college_scorecard_etl

WHERE SAT_AVG IS NULL

The DELETE, INSERT, and MERGE statements are examples of Data Manipulation
Language (DML) statements.

TIP
As of this writing, BigQuery does not support an SQL COPY statement. To copy tables, use bq cp to copy one
table to another:

bq cp ch04.college_scorecard

someds.college_scorecard_copy

You are not billed for running a query, but you will be billed for the storage of the new table. The bq cp
command supports appending (specify -a or --append_table) and replacement (specify -
noappend_table).

You can also use the idiomatic Standard SQL method of using either CREATE TABLE AS SELECT or INSERT
VALUES, depending on whether the destination already exists. However, bq cp is faster (because it copies
only the table metadata) and doesn’t incur query costs.

Loading Data Efficiently
Although BigQuery can load data from CSV files, CSV files are inefficient and not
very expressive (for example, there is no way to represent arrays and structs in
CSV). If you have a choice, you should choose to export your data in a different
format. What format should you choose?

The most efficient and expressive format is Avro. Avro uses self-describing binary
files that are broken into blocks and can be compressed block by block. Because of
this, it is possible to parallelize the loading of data from Avro files and the export of
data into Avro files. Because the blocks are compressed, the file sizes will also be
smaller than the data size might indicate. In terms of expressiveness, the Avro
format is hierarchical and can represent nested and repeated fields, something that
BigQuery supports but CSV files don’t have an easy way to store. Because Avro
files are self-describing, you never need to specify a schema.

The one drawback to Avro files is that they are not human readable. If readability
and expressiveness are important to you, use newline-delimited JSON files to
store your data. JSON supports the ability to store hierarchical data but requires that
binary columns be base-64 encoded. However, JSON files are larger than even the
equivalent CSV files because the name of each field is repeated on every line.

Parquet files are a more recent addition to the set of file formats that BigQuery
supports. The Parquet file format was inspired by Google’s original Dremel
ColumnIO format, and like Avro, Parquet is binary, block oriented, compact, and

12

13

https://avro.apache.org/

capable of representing hierarchical data. However, whereas Avro files are stored
row by row, Parquet files are stored column by column. Columnar files are
optimized for reading a subset of the columns; loading data requires reading all
columns, and so columnar formats are somewhat less efficient at the loading of data.
However, the columnar format makes Parquet a better choice than Avro for
federated queries, a topic that we discuss shortly. Optimized Row Columnar (ORC)
files are another open source columnar file format. ORC is similar to Parquet in
performance and efficiency.

Impact of compression and staging via Google Cloud Storage
For formats such as CSV and JSON that do not have internal compression, you
should consider whether you should compress the files using gzip. Compressed files
are faster to transmit and take up less space, but they are slower to load into
BigQuery. The slower your network, the more you should lean toward compressing
the data.

If you are on a slow network or if you have many files or very large files, it is
possible to set up a multithreaded upload of the data using gsutil cp. After the
data is all on Google Cloud Storage, then you can invoke bq load from the Cloud
Storage location:

gsutil -m cp *.csv gs://BUCKET/some/location

bqload … gs://BUCKET/some/location/*.csv

This experiment captures the various trade-offs involved with compression and with
staging the college scorecard data on Cloud Storage before invoking bq load.
Table 4-1 examines this further. Your results will vary, of course, depending on your
network and the actual data you are loading. Therefore, you should carry out a
similar measurement for your loading job and choose the method that provides you
with the best performance on the measures you care about.

14

Table 4-1. Trade-offs involved with compression and staging the college
scorecard data on Google Cloud Storage before invoking bq load

Compressed
file

Stage on
GCS?

GCS
size

Network time (if
separate)

Time to load into
BigQuery

Total
time

Yes No None N/A 105 seconds 105
seconds

No No None N/A 255 seconds 255
seconds

Yes Yes 16 MB 47 sec 42 seconds 89
seconds

No Yes 76 MB 139 sec 28 sec 167 sec

Staging the file on Google Cloud Storage involves paying storage costs at least until
the BigQuery load job finishes. However, storage costs are generally quite low and
so, on this dataset and this network connection (see Table 4-1), the best option is to
stage compressed data in Cloud Storage and load it from there. Even though it is
faster to load uncompressed files into BigQuery, the network time to transfer the
files dwarfs whatever benefits you’d get from a faster load.

As of this writing, the loading of compressed CSV and JSON files is limited to files
less than 4 GB in size because BigQuery has to uncompress the files on the fly on
workers whose memory is finite. If you have larger datasets, split them across
multiple CSV or JSON files. Splitting files yourself can allow for some degree of
parallelism when doing the loads, but depending on how you size the files, this can
lead to suboptimal file sizes in the table until BigQuery decides to optimize the
storage.

Price and quota
BigQuery does not charge for loading data. Ingestion happens on a set of workers
that is distinct from the cluster providing the slots used for querying. Hence, your
queries (even on the same table into which you are ingesting data) are not slowed
down by the fact that data is being ingested.

Data loads are atomic. Queries on a table will either reflect the presence of all the
data that is loaded in through the bq load operation or reflect none of it. You will
not get query results on a partial slice of the data.

The drawback of loading data using a “free” cluster is that load times can become
unpredictable and bottlenecked by preexisting jobs. As of this writing, load jobs are

limited to 1,000 per table and 100,000 per project per day. In the case of CSV and
JSON files, cells and rows are limited to 100 MB, whereas in Avro, blocks are
limited to 16 MB. Files cannot exceed 5 TB in size. If you have a larger dataset,
split it across multiple files, each smaller than 5 TB. However, a single load job can
submit a maximum of 15 TB of data split across a maximum of 10 million files. The
load job must finish executing in less than six hours or it will be cancelled.

Federated Queries and External Data Sources
You can use BigQuery without first loading the data. It is possible to leave the data
in-place, specify the structure of the data, and use BigQuery as just the query
engine. In contrast to the queries thus far for which BigQuery queried its own native
storage, we discuss the use of “federated queries” to query “external data sources”
in this section and explain when you might want to use such queries.

Currently supported external data sources include Google Cloud Storage, Cloud
Bigtable, Cloud SQL, and Google Drive. You will notice that all of these sources
are external to BigQuery but are, nevertheless, within the Google Cloud perimeter.
This is necessary because otherwise the network overhead and security
considerations would make the queries either slow or infeasible.

How to Use Federated Queries
There are three steps to querying data in an external data source:

1. Create a table definition using bq mkdef.

2. Make a table using bq mk, passing in the external table definition.

3. Query the table as normal.

As with querying data in native storage, you can do this either in the web UI or by
using a programmatic interface. To use the web UI, follow the just-listed steps to
create a table, but make sure to specify that you want an external table, not a native
one, as demonstrated in Figure 4-1.

https://cloud.google.com/bigquery/quotas#load_jobs

Figure 4-1. You can create an external table from the web UI by following the “Create Table” workflow but
specifying “External table” as the table type

Using the command-line interface, create a table definition using bq mkdef. As
with bq load, you have the option of using --autodetect:

bq mkdef --source_format=CSV \

 --autodetect \

 gs://bigquery-oreilly-book/college_scorecard.csv

This prints a table definition file to standard output. The normal course of action is
to redirect this to a file and use that table definition to make a table using bq mk:

bq mkdef --source_format=CSV \

 --autodetect \

 gs://bigquery-oreilly-book/college_scorecard.csv \

 > /tmp/mytable.json

bq mk --external_table_definition=/tmp/mytable.json \

 ch04.college_scorecard

With these two steps, you can query the table college_scorecard as in the
previous section, except that the queries will happen on the CSV file stored in
Google Cloud Storage—the data is not ingested into BigQuery’s native storage.

Wildcards
Many big data frameworks such as Apache Spark, Apache Beam, and others shard
their output across hundreds of files with names such as course_grades.csv-00095-
of-00313. When loading such files, it would be convenient if we could avoid having
to list each file individually.

Indeed, it is possible to use a wildcard in the path to bq mkdef (and bq load) so
that you can match multiple files:

bq mkdef --source_format=CSV \

 --autodetect \

 gs://bigquery-oreilly-book/college_* \

 > /tmp/mytable.json

This creates a table that refers to all the files matched by the pattern.

Temporary table

It is also possible to condense the three steps (mkdef, mk, and query) by passing in
the table definition parameters along with a query, thus ensuring that the table
definition will be used only for the duration of the query:

LOC="--location US"

INPUT=gs://bigquery-oreilly-book/college_scorecard.csv

SCHEMA=$(gsutil cat $INPUT | head -1 | awk -F, '{ORS=","}{for (i=1; i <= NF; i++){

print $i":STRING"; }}' | sed 's/,$//g'| cut -b 4-)

bq $LOC query \

 --external_table_definition=cstable::${SCHEMA}@CSV=${INPUT} \

 'SELECT SUM(IF(SAT_AVG != "NULL", 1, 0))/COUNT(SAT_AVG) FROM cstable'

In the preceding query, the external table definition consists of the temporary table
name (cstable), two colons, the schema string, the @ symbol, the format (CSV), an
equals sign, and the Google Cloud Storage URL corresponding to the data file(s). If
you already have a table definition file, you can specify it directly:

--external_table_definition=cstable::${DEF}

It is possible to specify a JSON schema file as well as to query JSON, Avro, and
other supported formats directly from Cloud Storage, Cloud Bigtable, and other
supported data sources.

While undeniably convenient, federated queries leave much to be desired in terms
of performance. Because CSV files are stored row-wise and the rows themselves are
stored in some arbitrary order, much of the efficiency that we commonly associate
with BigQuery is lost. It is also not possible for BigQuery to estimate how much
data it is going to need to scan before running the query.

Loading and querying Parquet and ORC

As previously mentioned, Parquet and ORC are columnar data formats. Therefore,
federated querying of these formats will provide better query performance than if
the data was stored in row-based formats such as CSV or JSON (queries will still be
slower than BigQuery’s native Capacitor storage, however).

Because Parquet and ORC are self-describing (i.e., the schema is implicit in the files
themselves), it is possible to create table definitions without specifying a schema:

bq mkdef --source_format=PARQUET gs://bucket/dir/files* > table_def.json

bq mk --external_table_definition=table_def.json <dataset>.<table>

As with querying external tables created from CSV files, querying this table works
like querying any other table in BigQuery.

Even though Parquet and ORC files provide better query performance than row-
based file formats, they are still subject to the limitations of external tables.

Loading and querying Hive partitions
Apache Hive allows for reading, writing, and managing an Apache Hadoop–based
data warehouse using a familiar SQL-like query language. Cloud Dataproc, on
Google Cloud, enables Hive software to work on distributed data stored in Hive
partitions on Google Cloud Storage. A common public cloud migration pattern is
for on-premises Hive workloads to be moved to Cloud Dataproc and for newer
workloads to be written using BigQuery’s federated querying capability. This way,
the current Hive workloads work as-is, whereas newer workloads can take
advantage of the serverless, large-scale querying capability provided by BigQuery.

You can load Hive partitions on Google Cloud Storage by specifying a Hive
partitioning mode to bq load:

bq load --source_format=ORC --autodetect \

 --hive_partitioning_mode=AUTO <dataset>.<table> <gcs_uri>

The Cloud Storage URI in the case of Hive tables needs to encode the table path
prefix without including any partition keys in the wildcard. Thus, if the partition key
for a Hive table is a field named datestamp, the Cloud Storage URI should be of
the following form:

https://hive.apache.org/

gs://some-bucket/some-dir/some-table/*

This is true even if the files themselves all begin with the following:

gs://some-bucket/some-dir/some-table/datestamp=

As of this writing, the AUTO partitioning mode can detect the following types:
STRING, INTEGER, DATE, and TIMESTAMP. It is also possible to request that the
partition keys be detected as strings (this can be helpful in exploratory work):

bq load --source_format=ORC --autodetect \

 --hive_partitioning_mode=STRINGS <dataset>.<table> <gcs_uri>

As with CSV files from Google Cloud Storage, federated querying of Hive
partitions requires the creation of a table definition file, and the options closely
mirror that of load:

bq mkdef --source_format=ORC --autodetect \

 --hive_partitioning_mode=AUTO <gcs_uri> > table_def.json

After the table definition file is created, querying is the same whether the underlying
external dataset consists of CSV files or Hive partitions.

In addition to ORC, as shown earlier, data in other formats is also supported. For
example, to create a table definition of data stored in newline-delimited JSON, you
can use this:

bq mkdef --source_format=NEWLINE_DELIMITED_JSON --autodetect --

hive_partitioning_mode=STRINGS <gcs_uri> <schema> > table_def.json

Note that in the preceding command, the partition keys are being autodetected, but
not the data types of the partition keys, because we explicitly specify that they ought
to be treated as strings and not the data types of the other columns, since we pass in
an explicit schema.

We started this section by saying that a common use case for querying Hive
partitions is to support cloud migration efforts where significant Hive workloads

already exist but allow future workloads to be implemented using BigQuery.
Although Apache Hive allows full management (reading and writing) of the data,
BigQuery’s external tables are read-only. Moreover, even though BigQuery can
handle the data being modified (e.g., from Hive) while a federated query is running,
it does not currently support concepts such as reading data at a specific point in
time. Because external tables in BigQuery have these limitations, it is better over
time to move the data to BigQuery’s native storage and rewrite the Hive workloads
in BigQuery. When the data is in BigQuery’s native storage, features such as DML,
streaming, clustering, table copies, and more all become possible.

When to Use Federated Queries and External Data Sources
Querying external sources is slower than querying data that is natively in BigQuery,
thus federated queries are typically not recommended in the long term for frequently
accessed data. There are, however, situations for which federated queries can be
advantageous:

Carrying out exploratory work using federated queries to determine how
best to transform the raw data before loading it into BigQuery. For
example, evidence of actual analysis workloads could dictate the
transformations present in production tables. You might also treat original,
external data sources as staging, and use federated queries to transform the
data and write it to production tables.

Keeping data in Google Sheets if the spreadsheet will be edited
interactively, and using federated queries exclusively if the results of those
queries need to reflect the live data in that sheet.

Keeping data in an external data source if ad hoc SQL querying of the data
is relatively infrequent. For example, you might keep the data in Cloud
Bigtable if the predominant use of that data is for low-latency, high-volume
streaming ingest and if most queries on the data can be accomplished using
key prefixes.

For large, relatively stable, well-understood datasets that will be updated
periodically and queried often, BigQuery native storage is a better choice. In the rest
of this section, we look at the implementation details of each of these situations,
beginning with exploratory work using federated queries.

Exploratory work using federated queries

Autodetect is a convenience feature that works by sampling a few (on the order of
hundreds) rows of the input files to determine the type of a column. It is not fool-
proof unless you are using self-describing file formats, such as Avro, Parquet, or
ORC. To ensure that your ETL pipeline works properly, you should verify the value
of every row to ensure that the data type for each column is correct. For example, it
is possible that a column contains integers except for a handful of rows that have
floats. If so, then it’s quite likely that the autodetect will detect the column as being
an integer because the chance of selecting one of the rows containing the floating-
point value is rather low. You won’t learn there is a problem until you issue a query
that does a table scan of this column’s values.

The best practice is to use self-describing file formats, in which case you don’t need
to worry about how BigQuery interprets the data. If you need to use CSV or JSON,
we recommend that you explicitly specify a schema. Although it is possible to
specify the schema in an accompanying JSON file, it is also possible to pass in the
schema on the command line of bq mkdef by creating a string with this format:

FIELD1:DATATYPE1,FIELD2:DATATYPE2,...

If you are unsure of the quality of your data, you should specify everything as a
STRING. Note that this is the default data type, so the formatting command becomes
just this:

FIELD1,FIELD2,FIELD3,,...

Why treat everything as a string? Even if you believe that some of the fields are
integers and others are floats, it is best to validate this assumption. Define
everything as a string and learn what transformations you need to carry out as you
query the data and discover errors.

We can extract the column names by using the first line of the CSV file to create a
schema string of the desired format:

INPUT=gs://bigquery-oreilly-book/college_scorecard.csv

SCHEMA=$(gsutil cat $INPUT | head -1 | cut -b 4-)

If we are going to specify the schema, we should ask that the first row be skipped
and that the tool allow empty lines in the file. We can do this by piping the table

15

definition through sed, a line editor:

LOC="--location US"

OUTPUT=/tmp/college_scorecard_def.json

bq $LOC \

 mkdef \

 --source_format=CSV \

 --noautodetect \

 $INPUT \

 $SCHEMA \

 | sed 's/"skipLeadingRows": 0/"skipLeadingRows": 1/g' \

 | sed 's/"allowJaggedRows": false/"allowJaggedRows": true/g' \

 > $OUTPUT

We define that we are operating in the US location and that we want to save the
output (the table definition) to the /tmp folder.

At this point, we have a table that we can query. Note two things: this table is
defined on an external data source, so we are able to start querying the data without
the need to wait for the data to be ingested; and all of the columns are strings—we
have not made any irreversible changes to the raw data.

Let’s begin our data exploration by trying to do a cast:

SELECT

 MAX(CAST(SAT_AVG AS FLOAT64)) AS MAX_SAT_AVG

FROM

 `ch04.college_scorecard_gcs`

The query fails with the following error message:

Bad double value: NULL

This indicates that we need to handle the nonstandard way that missing data is
encoded in the file. In most CSV files, missing data is encoded as an empty string,
but in this one, it is encoded as the string NULL.

We could fix this problem by checking before we do the cast:

WITH etl_data AS (

 SELECT

 SAFE_CAST(SAT_AVG AS FLOAT64) AS SAT_AVG

16

 FROM

 `ch04.college_scorecard_gcs`

)

SELECT

 MAX(SAT_AVG) AS MAX_SAT_AVG

FROM

 etl_data

Notice that we have started a WITH clause containing all the ETL operations that
need to be performed on the dataset. Indeed, as we go through exploring the dataset
and culminate with the query of the previous section, we learn that we need a
reusable function to clean up numeric data:

CREATE TEMP FUNCTION cleanup_numeric(x STRING) AS

(

 IF (x != 'NULL' AND x != 'PrivacySuppressed',

 CAST(x as FLOAT64),

 NULL)

);

WITH etl_data AS (

 SELECT

 INSTNM

 , cleanup_numeric(ADM_RATE_ALL) AS ADM_RATE_ALL

 , cleanup_numeric(FIRST_GEN) AS FIRST_GEN

 , cleanup_numeric(MD_FAMINC) AS MD_FAMINC

 , cleanup_numeric(SAT_AVG) AS SAT_AVG

 , cleanup_numeric(MD_EARN_WNE_P10) AS MD_EARN_WNE_P10

 FROM

 `ch04.college_scorecard_gcs`

)

SELECT

 *

FROM

 etl_data

WHERE

 SAT_AVG > 1300

 AND ADM_RATE_ALL < 0.2

 AND FIRST_GEN > 0.1

ORDER BY

 MD_FAMINC ASC

LIMIT 10

At this point, we can export the cleaned-up data (note the SELECT *) into a new
table (note the CREATE TABLE) for just the columns of interest by running the
following query:

CREATE TEMP FUNCTION cleanup_numeric(x STRING) AS

(

 IF (x != 'NULL' AND x != 'PrivacySuppressed',

 CAST(x as FLOAT64),

 NULL)

);

CREATE TABLE ch04.college_scorecard_etl

OPTIONS(description="Cleaned up college scorecard data") AS

WITH etl_data AS (

 SELECT

 INSTNM

 , cleanup_numeric(ADM_RATE_ALL) AS ADM_RATE_ALL

 , cleanup_numeric(FIRST_GEN) AS FIRST_GEN

 , cleanup_numeric(MD_FAMINC) AS MD_FAMINC

 , cleanup_numeric(SAT_AVG) AS SAT_AVG

 , cleanup_numeric(MD_EARN_WNE_P10) AS MD_EARN_WNE_P10

 FROM

 `ch04.college_scorecard_gcs`

)

SELECT * FROM etl_data

It is also possible to script this out by removing the CREATE TABLE statement from
the preceding query, invoking bq query and passing in a --destination_table.

ELT in SQL for experimentation
In many organizations, there are many more data analysts than there are engineers.
Thus, the needs of the data analysis teams usually greatly outpace what the data
engineers can deliver. In such cases, it can be helpful if data analysts themselves can
create an experimental dataset in BigQuery and get started with analysis tasks.

The organization can then use the evidence of actual analytics workloads to
prioritize what data engineers focus on. For example, as a data engineer, you might
not yet know what fields you need to extract out of a log file. So you might set up
an external data source as an experiment and allow data analysts to query the raw
data on Google Cloud Storage directly.

If the raw log files are in JSON format, with each of the rows having a different
structure because the logs come from different applications, the analysts could
define the entire log message as a single BigQuery string column and use
JSON_EXTRACT and string manipulation functions to pull out the necessary data. At
the end of a month, you could analyze the BigQuery query logs for which fields

they actually did access, and how they did such access, and then build a pipeline to
routinely load those fields into BigQuery.

For example, you can export BigQuery audit logs from Stackdriver in JSON format
with the entire log message in a nested column named
protopayload_auditlog.metadataJson. Here is a query to count log messages
with the root element tableDataRead and use the count to rank datasets in terms of
the number of times each dataset is accessed:

SELECT

 REGEXP_EXTRACT(protopayload_auditlog.resourceName,

'^projects/[^/]+/datasets/([^/]+)/tables') AS datasetRef,

 COUNTIF(JSON_EXTRACT(protopayload_auditlog.metadataJson, "$.tableDataRead")

 IS NOT NULL) AS dataReadEvents,

FROM ch04.cloudaudit_googleapis_com_data_access_2019*

WHERE

 JSON_EXTRACT(protopayload_auditlog.metadataJson, "$.tableDataRead")

 IS NOT NULL

GROUP BY datasetRef

ORDER BY dataReadEvents DESC

LIMIT 5

The method JSON_EXTRACT takes the column name
(protopayload_auditlog.metadataJson) as the first parameter and a
JSONPath as the second parameter.

If the original data is in a relational database management system (RDBMS), it is
possible to export the data periodically as a tab-separated values (TSV) file to
Google Cloud Storage. For example, if you are using MySQL with a database
named somedb, the relevant command would be as follows:

mysql somedb < select_data.sql | \

 gsutil cp - gs://BUCKET/data_$(date -u "+%F-%T").tsv

The select_data.sql would contain a query to pull just the most recent records
(here, those from the previous 10 days):

select * from my_table

where transaction_date >= DATE_SUB(CURDATE(), INTERVAL 10 DAY)

17

Given these periodically exported files, it is straightforward for an analyst to get
started querying the data using federated queries. After the value of the dataset is
proven, the data can be loaded routinely and/or in real time through a data pipeline.

The reason that this is not always suitable for operationalization is that it doesn’t
handle the case of mutations to the database. If data that is more than 10 days old is
updated, the tab-separated dumps will not be synchronized. Realistically, dumps to
TSV files work only for small datasets (on the order of a few gigabytes) where the
original database fields themselves do not need to be transformed or corrected
before they are used for analytics queries.

If you do want to operationalize synchronization from an operational database to
BigQuery, there are a number of third-party companies that partner with Google,
each with a menu of connectors and transformation options. These tools can do
change data capture (CDC) to allow you to stream changes from a database to a
BigQuery table.

External query in Cloud SQL
BigQuery now supports external queries, not just federated queries. Whereas a
federated query allows you to query an external data source using BigQuery, an
external query allows you to run the query in the external database and seamlessly
join the results against data in BigQuery. Currently, MySQL and Postgres databases
in Cloud SQL (the managed relational database service in Google Cloud) are
supported.

There is an initial one-time setup to create a connection resource in BigQuery and
grant users permission to use this connection resource. Once this connection
resource has been set up, it can be used from an EXTERNAL_QUERY as follows:

SELECT * FROM EXTERNAL_QUERY(connection_id, cloud_sql_query);

In this example, connection_id is the name of the database connection resource
that you created in BigQuery using the web UI, a REST API, or the command-line
tool.

The performance of the external query depends on the speed of the external
database and, because it involves an intermediate temporary table, will usually be
slower than queries that are purely in Cloud SQL or purely in BigQuery. Still, there
is a tremendous benefit to being able to query data residing in an RDBMS in real

18

time without having to move data around, thus avoiding unnecessary ETL,
scheduling, and orchestration.

For example, suppose we wish to create a report of gift cards belonging to
customers who have not made any recent purchases. The date of the latest order for
each customer is available in Cloud SQL and updated in real time. The balance
associated with every gift card our store has ever issued, however, is available in
BigQuery. We can join the result of an external query of the orders data in Cloud
SQL with the gift card balance data in BigQuery to create an up-to-date report
without having to move any data around:

SELECT

 c.customer_id

 , c.gift_card_balance

 , rq.latest_order_date

FROM ch04.gift_cards AS c

LEFT OUTER JOIN EXTERNAL_QUERY(

 'connection_id',

 '''SELECT customer_id, MAX(order_date) AS latest_order_date

 FROM orders

 GROUP BY customer_id''') AS rq ON rq.customer_id = c.customer_id

WHERE c.gift_card_balance > 100

ORDER BY rq.latest_order_date ASC;

Interactive Exploration and Querying of Data in Google Sheets
Google Sheets is part of G Suite, a set of productivity and collaboration tools from
Google Cloud. It provides the means of creating, viewing, editing, and publishing
spreadsheets. A spreadsheet contains tabular values in individual cells; some of
these values are data and some are the result of computations carried out on the
values of other cells. Google Sheets brings spreadsheets online—multiple people
can collaboratively edit a spreadsheet, and you can access it from a variety of
devices.

Loading Google Sheets data into BigQuery
Google Sheets is an external source, so loading and querying a Google Sheets
spreadsheet is a federated query; it works similarly to querying a CSV file from
Google Cloud Storage. We create a table definition in BigQuery to point to the data
in Google Sheets, and then we can query that table as if it were a native BigQuery
table.

Let’s begin by creating a Google Sheets spreadsheet that we can query. Open a web
browser, and then, in the URL navigation bar, type https://sheets.new --.
Visiting this URL opens a blank spreadsheet.

Type in the following data (or download the corresponding CSV file from GitHub
and do a File > Import of the data into Google Sheets):

Student
Home
state

SAT
score

Aarti KS 1111

Billy LA 1222

Cao MT 1333

Dalia NE 1444

Next, navigate to the BigQuery section of the GCP Cloud Console, create a dataset
(if necessary), and create a table, specifying that the source of the table is on Drive
and its URL, and that it is a Google Sheet. Ask for the schema to be autodetected, as
demonstrated in Figure 4-2.

https://oreil.ly/ckBA5

Figure 4-2. The “Create table” dialog box allows you to specify that the external data source is Google Sheets

After you do this, you can query the spreadsheet like any other BigQuery table:

SELECT * from advdata.students

Try changing the spreadsheet and verify that the returned results reflect the current
state of the table (the results of federated queries on external datasets are not
cached).

Even though querying a spreadsheet using SQL like this is possible, it is unlikely
that you’d want to do this, because it’s usually more convenient to use the
interactive filtering and sorting options built into Google Sheets. For example, you
can click the Explore button and type in the natural language query “average SAT
score of students in KS,” which returns the results shown in Figure 4-3.

Figure 4-3. Natural language query in Google Sheets

There are several broad use cases for the tie between Google Sheets and BigQuery:

Populating a spreadsheet with data from BigQuery

Exploring BigQuery tables using Sheets

Querying Sheets data using SQL

Let’s look at these three cases.

Populating a Google Sheets spreadsheet with data from BigQuery
The BigQuery data connector in Google Sheets allows you to query BigQuery
tables and use the results to populate a spreadsheet. This can be extremely useful
when sharing data with nontechnical users. In most businesses, nearly all office
workers know how to read/interpret spreadsheets. They don’t need to have anything
to do with BigQuery or SQL to be able to use Google Sheets and work with the data
in the sheet.

From Google Sheets, click Data > Data Connectors > BigQuery, select your project,
and write a query to populate the spreadsheet from the BigQuery table of college
scorecard data:

SELECT

 *

FROM

 ch04.college_scorecard_etl

Exploring BigQuery tables using Sheets
One of the reasons that you might want to populate a Google Sheets spreadsheet
with data from a BigQuery table is that Sheets is a familiar interface for business
users creating charts, formulas, and pivot tables. For example, from the college
scorecard data in Sheets, it is quite straightforward to create a formula to rank
colleges by the increase in median income experienced by their graduates:

1. In a new column, enter the following formula:

=ArrayFormula(IF(ISBLANK(D2:D), 0, F2:F/D2:D))

Note that the spreadsheet has now been populated with the ratio of the
value in the F-column to the value in the D-column—that is, by the
increase in income.

19

2. From the Data menu, create a filter on the newly created column and turn
off blanks and zeros.

3. Sort the spreadsheet Z to A based on this column.

Selecting the first few rows of the sheet, we can quickly create a chart to showcase
the best colleges in terms of economic improvement of the student body, as
illustrated in Figure 4-4.

Figure 4-4. Chart that shows colleges that offer the greatest economic improvement to their graduates

In addition to interactively creating the charts you want, you can use the machine
learning features of Google Sheets to further explore your data.

In Google Sheets, click the Explore button and notice the charts that are
automatically created through machine learning. For example, the automatically
generated insight depicted in Figure 4-5 captures a striking inequality.

20

Figure 4-5. Google Sheets automatically generates the insight that colleges that serve first-generation college
students also have poorer student bodies; for every 10% increase in first-generation college students, median

family income decreases by $11,400

Figure 4-6 shows a subsequent automatically created chart that puts the SAT_AVG in
context.

Figure 4-6. Colleges that serve first-generation college students tend to have lower SAT averages

We can even ask for specific charts using natural language. Typing “histogram of
sat_avg where first_gen more than 0.5” in the “Ask a question” box returns the
answer displayed in Figure 4-7.

Figure 4-7. Getting the charts we want by simply asking for them in Google Sheets

Exploring BigQuery tables as a data sheet in Google Sheets
In the previous section, we loaded the entire BigQuery table into Google Sheets, but
this was possible only because our college scorecard dataset was small enough.
Loading the entire BigQuery table into Google Sheets is obviously not feasible for
larger BigQuery tables.

Google Sheets does allow you to access, analyze, visualize, and share even large
BigQuery datasets as a BigQuery Data Sheet. To try this out, start a new Google
Sheets document and navigate via the menu by clicking Data > Data Connectors >
BigQuery Data Sheet.

Choose your Cloud project (that should be billed), and navigate via the menu to the
table you want to load into the Data Sheet by clicking bigquery-public-data >
usa_names > usa_1910_current > Connect. This table contains nearly six million
rows and is too large to load in its entirety. Instead, BigQuery acts as a cloud
backend for the data shown in Sheets.

Unlike when loading the entire table into Sheets (as in the previous section), only
the first 500 rows of a Data Sheet are loaded in the UI. These 500 rows are best
thought of as a preview of the full dataset. Another difference is in editing: if the
entire table is loaded, Google Sheets holds a copy of the data; thus, you can edit
cells and save the changed spreadsheet. On the other hand, if BigQuery is acting as

a cloud backend, cells are not editable—users can filter and pivot the BigQuery
Data Sheet, but they cannot edit the data. When users do filtering and pivoting,
these actions happen on the entire BigQuery table, not just the preview that is
shown in Sheets.

As an example of the kind of analysis that is possible, let’s create a Pivot table by
clicking the Pivot table button. In the Pivot table editor, choose state as the Rows,
and select year as the Columns. For Values, choose number, and ask Sheets to
summarize by COUNTUNIQUE and show as Default, as shown in Figure 4-8.

Figure 4-8. Creating a Pivot table from a BigQuery Data Sheet

As Figure 4-8 illustrates, we get a table of the number of unique baby names in each
state, broken down by year.

Joining Sheets data with a large dataset in BigQuery
Both BigQuery and Google Sheets are capable of storing and providing access to
tabular data. However, BigQuery is primarily an analytics data warehouse, whereas

Google Sheets is primarily an interactive document. As we saw in the earlier
sections, the familiarity of Sheets and the exploration and charting capabilities
makes loading BigQuery data into Sheets very powerful.

However, there is a practical limitation on the size of BigQuery datasets that you
can load into Sheets. For example, BigQuery holds information on Stack Overflow
questions, answers, and users. Even with BigSheets, these petabyte-scale datasets
are much too large to load directly into Google Sheets. However, it is still possible
to write queries that join a small dataset in Sheets with such large datasets in
BigQuery and proceed from there. Let’s look at an example.

From the previous section, we have a spreadsheet with college scorecard data. Let’s
assume that we don’t already have the data in BigQuery. We could create a table in
BigQuery using the spreadsheet as a source, calling the resulting table
college_scorecard_gs, as depicted in Figure 4-9.

Figure 4-9. Creating a table in BigQuery using a Google Sheets spreadsheet as a source

Now we can issue a query in BigQuery that joins this relatively small table (7,700
rows) with a massive table consisting of Stack Overflow data (10 million rows) to
find which colleges are most commonly listed in Stack Overflow users’ profiles:

SELECT INSTNM, COUNT(display_name) AS numusers

FROM `bigquery-public-data`.stackoverflow.users, ch04.college_scorecard_gs

WHERE REGEXP_CONTAINS(about_me, INSTNM)

GROUP BY INSTNM

ORDER BY numusers DESC

LIMIT 5

This yields the following:

Row INSTNM numusers

1 Institute of
Technology

2364

2 National
University

332

3 Carnegie
Mellon
University

169

4 Stanford
University

139

5 University
of
Maryland

131

The first two entries are suspect, but it appears that Carnegie Mellon and Stanford
are well represented on Stack Overflow.

The result of this query is again small enough to load directly into Google Sheets
and perform interactive filtering and charting. Thus the SQL querying capability of
Sheets data from BigQuery is particularly useful to join a small, human-editable
dataset (in Google Sheets) with large enterprise datasets (in BigQuery).

SQL Queries on Data in Cloud Bigtable
Cloud Bigtable is a fully managed NoSQL database service that scales up to
petabytes of data. Cloud Bigtable is meant to be used in situations for which some
combination of low latency (on the order of milliseconds), high throughput
(millions of operations per second), replication for high availability, and seamless
scalability (from gigabytes to petabytes) is desired. Cloud Bigtable, therefore, finds
heavy use in finance (trade reconciliation and analytics, payment fraud detection,
etc.), Internet of Things (IoT) applications (for centralized storage and processing of
real-time sensor data), and advertising (real-time bidding, placement, and behavioral

21

22

analysis). Although Cloud Bigtable itself is available only on GCP, it supports the
open source Apache HBase API, enabling easy migration of workloads in a hybrid
cloud environment.

NoSQL Queries based on a row-key prefix
Cloud Bigtable provides high-performance queries that look up rows or sets of rows
that match a specific row-key, a row-key prefix, or a range of prefixes. Even though
Cloud Bigtable requires an instance, consisting of one or more logical clusters, to be
provisioned and available in your project, it uses that cluster only for compute (and
not for storage)—the data itself is stored on Colossus, and the nodes themselves
need only to know about the location of row-ranges on Colossus. Because the data
is not stored on the Cloud Bigtable nodes, it is possible to easily scale the Cloud
Bigtable cluster up and down without expensive data migration.

In financial analysis, a common pattern is to store time-series data in Cloud Bigtable
as it arrives in real- time and support low-latency queries on that data based on the
row-key (e.g., all buy orders, if any, for GOOG stock in the past 10 minutes). This
allows dashboards that require recent data to provide automatic alerts and actions
based on recent activity. Cloud Bigtable also supports being able to quickly obtain a
range of data (e.g., all the buy orders for GOOG stock in any given day), a necessity
for financial analytics and reporting. Prediction algorithms themselves need to be
trained on historical data (e.g., the time-series of ask prices for GOOG over the past
five years), and this is possible because machine learning frameworks like
TensorFlow can read and write directly from and to Cloud Bigtable. These three
workloads (real-time alerting, reporting, and machine learning training) can occur
on the same data, with the cluster potentially being scaled up and down with
workload spikes due to the separation of compute and storage.

All three workloads in the previous paragraph involve obtaining ask prices for
Google stock. Cloud Bigtable will provide efficient retrieval of records if the row-
key with which the time-series data is stored is of the form GOOG#buy#20190119-
090356.0322234—that is, the security name and the timestamp. Then the queries of
ask prices, whether over the previous 10 minutes or over the past five years, all
involve requesting records that fall within a range of prefixes.

What if, though, we desire to perform ad hoc analytics over all of the Cloud
Bigtable data, and our query is not of a form that will result in retrieving only a
subset of records—what if, in other words, our query does not filter based on the
row-key prefix? Then the NoSQL paradigm of Cloud Bigtable falls down, and it is

better to resort to the ad hoc SQL querying capabilities offered by BigQuery
instead, with the understanding that BigQuery results will be subject to higher
latency.

Ad hoc SQL queries on Cloud Bigtable data
Just as BigQuery can directly query files in certain formats (CSV, Avro, etc.) in
Google Cloud Storage by treating it as an external data source, BigQuery can
directly query data in Cloud Bigtable. Just as with data in Cloud Storage, data in
Cloud Bigtable can be queried using either a permanent table or a temporary table.
A permanent table can be shared by sharing the dataset that it is part of; a temporary
table is valid only for the duration of a query and so cannot be shared.

A table in Cloud Bigtable is mapped to a table in BigQuery. In this section, we use a
time-series of point-of-sale data to illustrate. To follow along, run the script
setup_data.sh in the GitHub repository for this book to create a Cloud Bigtable
instance populated with some example data. Because the setup script creates a
Cloud Bigtable instance with a cluster, remember to delete the instance when you
are done.

We begin by using the BigQuery UI to create an external table in BigQuery to point
to the data in Cloud Bigtable, as shown in Figure 4-10. The location is a string of
the form
https://googleapis.com/bigtable/projects/[PROJECT_ID]/instances/[IN

STANCE_ID]/tables/[TABLE_NAME]. The PROJECT_ID, INSTANCE_ID, and
TABLE_NAME refer to the project, instance, and table in Cloud Bigtable.23

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/tree/master/04_load/bigtable

Figure 4-10. Creating an external table in BigQuery to point to data in Cloud Bigtable.

Data in Cloud Bigtable consists of records, each of which has a row-key and data
tied to the row-key that is organized into column families, which are key/value
pairs, where the key is the name of the column family and the value is a set of
related columns.

Cloud Bigtable does not require every record to have every column family and
every column allowed in a column family; in fact, the presence or absence of a
specific column can itself be considered data. Therefore, BigQuery allows you to
create a table that is tied to data in Cloud Bigtable without explicitly specifying any
column names. If you do that, BigQuery exposes the values in a column family as
an array of columns and each column as an array of values written at different
timestamps.

In many cases, the column names are known beforehand, and if that is the case, it is
better to supply the known columns in the table definition. In our case, we know the
schema of each record in the logs-table of Cloud Bigtable:

24

A row-key, which is the store ID followed by the timestamp of each
transaction

A column family named “sales” to capture sales transactions at the
register

Within the sales column family, we capture:

The item ID (a string)

The price at which the item was sold (a floating-point number)

The number of items bought in this transaction (an integer)

Notice from Figure 4-10 that we have specified all of this information in the
Column Families section of the table definition.

Cloud Bigtable treats all data simply as byte strings, so the schema (string, float,
integer) are meant more for BigQuery so that we can avoid the need to cast the
values each time in our queries. Avoiding the cast is also the reason why we ask for
the row-key to be treated as a string. When the BigQuery table is created, each of
the columns in Cloud Bigtable is mapped to a column in BigQuery of the
appropriate type:

sales.price RECORD NULLABLE Describe this field...

sales.price.cell RECORD NULLABLE Describe this field...

sales.price.cell.timestamp TIMESTAMP NULLABLE Describe this field...

sales.price.cell.value FLOAT NULLABLE Describe this field...

With the BigQuery table in place, it is now possible to issue a good, old-fashioned
SQL query to aggregate the total number of itemid 12345 that have been sold:

SELECT SUM(sales.qty.cell.value) AS num_sold

FROM ch04.logs

WHERE sales.itemid.cell.value = '12345'

Improving performance
When we issue a federated query on data held in Google Cloud Storage, the work is
carried out by BigQuery workers. On the other hand, when we issue a federated
query on data held in Cloud Bigtable, the work is carried out on the Cloud Bigtable

cluster. The performance of the second query is, therefore, limited by the capacity of
the Cloud Bigtable cluster and the load on it at the time that the query is being
submitted.

As with any analytics query, the overall query speed also depends on the number of
rows that need to be read and the size of the data being read. BigQuery does try to
limit the amount of data that needs to be read by reading only the column families
referenced in the query, and Cloud Bigtable will split the data across nodes to take
advantage of the distribution of row-key prefixes across the full dataset.

NOTE
If you have data that has a high update frequency or you need low-latency point lookups, Cloud Bigtable will
provide the best performance for queries that can filter on a range of row-key prefixes. It can be tempting to
think of BigQuery as providing an end run around Cloud Bigtable performance by supporting ad hoc point
lookups of Cloud Bigtable data that aren’t limited by row-keys. However, this pattern often gives
disappointing performance, and you should benchmark it on your workload before deciding on a production
architecture.

BigQuery stores data in a column-oriented order, which is optimized for table scans, whereas Cloud Bigtable
stores data in a row-major order, which is optimized for small reads and writes. Queries of external data
stored in Cloud Bigtable do not provide the benefits of BigQuery’s internal column-based storage and will be
performant only if they read a subset of rows, not if they do a full table scan. Hence, you should be careful to
ensure that your BigQuery federated queries filter on the Bigtable row-key; otherwise, they will need to read
the entire Cloud Bigtable table every time.

The knob you do have under your control is the number of nodes in your Cloud
Bigtable cluster. If you are going to routinely issue SQL queries against your Cloud
Bigtable data, monitor the Cloud Bigtable CPU usage and increase the number of
Cloud Bigtable nodes if necessary.

As with federated queries over Google Cloud Storage, consider whether it is
advantageous to set up an ELT pipeline when performing analytics over data in
Cloud Bigtable; that is, consider extracting data from Cloud Bigtable using a
federated query and loading it into a BigQuery table for further analysis and
transformations. This approach, illustrated in Figure 4-11, allows you to carry out
your analytics workload in an environment where you are not at the mercy of the
operational load on Cloud Bigtable. Analytics on an internal BigQuery table can be
carried out on thousands of machines rather than a much smaller cluster. The
analytics queries will, therefore, finish more quickly in BigQuery (assuming that
these analytics cannot be achieved using row-key prefixes) than if you use federated

queries on an external table. The drawback is, of course, that the extracted data is
duplicated in both Cloud Bigtable and BigQuery. Still, storage tends to be
inexpensive, and the advantages of scale and speed might be enough compensation.

Figure 4-11. Use a federated query to export selected tables to a BigQuery internal table and have your
analytics workloads query the internal table

It is possible to schedule such data ingest into internal BigQuery tables to happen
periodically. We look at that in the next section.

TIP
If you started a Cloud Bigtable instance to experiment with, delete it now so as not to run up charges.

Transfers and Exports
So far, we have looked at loading data on a one-off basis and avoiding the
movement of data by using federated queries. In this section, we look at turn-key
services to transfer data into BigQuery from a variety of sources on a periodic basis.

Data Transfer Service
The BigQuery Data Transfer Service allows you to schedule recurring data loads
from a variety of data sources into BigQuery. As with most BigQuery capabilities,
you can access the BigQuery Data Transfer Service using the web UI or the
command-line tool, or through a REST API. For repeatability, we show you the
command-line tool.

After you configure a data transfer, BigQuery will automatically load data on the
schedule you specify. However, in case there is a problem with the original data,
you can also initiate data backfills to recover from any outages or gaps. This is
called refreshing, and you can initiate it from the web UI.

The Data Transfer Service supports loading data from a number of Software as a
Service (SaaS) applications, such as Google Ads, Google Play, Amazon Redshift,
and YouTube, as well as from Google Cloud Storage. We look at how to set up
routine ingest of files that show up in Cloud Storage, noting along the way any
differences with data transfer of a SaaS dataset, using YouTube channel reports as a
running example.

Data locality
As we discussed earlier in the chapter, BigQuery datasets are created in a specific
region (such as asia-northeast1, which is Tokyo) or in a multiregional location
(e.g., EU). When you set up a Data Transfer Service to a dataset, it processes and
stages data in the same location as the target BigQuery dataset.

If your Cloud Storage bucket is in the same region as your BigQuery dataset, the
data transfer does not incur charges. Transferring data between regions (e.g., from a
Cloud Storage bucket in one region to a BigQuery dataset in a different region) will
incur network charges, whether the transfer happens via loads, exports, or data
transfers.

BigQuery Data Transfer Service needs to be enabled (you can do this from the
BigQuery web UI), and you need to have been granted the bigquery.admin role in
order to create transfers and write data to the destination dataset.

Setting up destination table
The data transfer service does not have the ability to create a new table, autodetect
schema, and so on. Instead, you need to provide a template table that has the desired
schema. If you are writing all the data to a column-partitioned table, specify the
partitioning column as a TIMESTAMP or DATE column when you create the
destination table schema. We cover partitions in detail in Chapter 7.

Here, we illustrate the process on the college scorecard dataset. We have it stored in
the US multiregion, so you should create a dataset in the US multiregion if you want
to try out the following steps.

In BigQuery, run the following query:

25

CREATE OR REPLACE TABLE

ch04.college_scorecard_dts

AS

SELECT * FROM ch04.college_scorecard_gcs

LIMIT 0

This is an example of a DDL statement. It will save the result of the SELECT query
(which will have no rows and not incur any charges) as a table named
college_scorecard_dts in the ch04 dataset.

CREATING TABLES IN SQL
DDL statements allow you to create and modify BigQuery tables and views
using standard SQL query syntax. For example, the following query creates a
new table named ch04.college_scorecard_valid_sat and populates it with
rows from ch04.college_scorecard_gcs, where the SAT_AVG column is
valid:

CREATE TABLE

 ch04.college_scorecard_valid_sat

 AS

 SELECT * FROM ch04.college_scorecard_gcs

 WHERE LENGTH(SAT_AVG) > 0

The CREATE TABLE DDL statement will return an error if the table already
exists. Other options for the behavior when the table already exists include
CREATE OR REPLACE (to replace the existing table) and CREATE IF NOT
EXISTS (to leave the existing table as is).

Instead of providing a SELECT statement, it is also possible to create an empty
table with some desired schema:

CREATE TABLE ch04.payment_transactions

(

 PAYEE STRING OPTIONS(description="Id of payee"),

 AMOUNT NUMERIC OPTIONS(description="Amount paid")

)

By running the DDL query from the BigQuery command-line UI or invoking it
using the REST API, it is possible to script out or programmatically create a
table.

Create a transfer job
On the command line, issue the following command to set up a transfer job:

bq mk --transfer_config --data_source=google_cloud_storage \

 --target_dataset=ch04 --display_name ch04_college_scorecard \

 --params='{"data_path_template":"gs://bigquery-oreilly-book/college_*.csv",

"destination_table_name_template":"college_scorecard_dts", "file_format":"CSV",

"max_bad_records":"10", "skip_leading_rows":"1", "allow_jagged_rows":"true"}'

This command specifies that the data source is to be Google Cloud Storage (if
you’re transferring from YouTube Channel, for example, the data source would be
youtube_channel) and that the target dataset is ch04. The display name is used as a
human-readable name on various user interfaces to refer to the transfer job.

In the case of YouTube, the destination tables are automatically partitioned on the
time of import and named appropriately. However, in the case of Cloud Storage, you
will need to explicitly specify this in the destination table name. For example,
specifying mytable_{run_time|"%Y%m%d"} as the destination table name template
indicates that the table name should start with mytable and have the job runtime
appended using the datetime formatting parameters specified. A convenient
shortcut is ytable_{run_date}. This simply uses the date in the format
YYYYMMDD. It is also possible to supply a time offset. For example, to name the
table based on the timestamp 45 minutes after the runtime, we could specify the
following:

{run_time+45m|"%Y%m%d"}_mytable_{run_time|"%H%M%s"}

This yields a table name of the form 20180915_mytable_004500.

The parameters themselves are specific to the data source. In the case of transferring
files from Google Cloud Storage, we should specify the following:

The input data path, with an optional wildcard.

The destination table name template.

The file format. The transfer service from Cloud Storage supports all of the
data formats that the federated querying capability supports (CSV, JSON,
Avro, Parquet, etc.). In the case that the file format is CSV, we can specify
CSV-specific options, such as the number of header lines to skip.

The parameters for the YouTube Channel data transfer include the page_id (in
YouTube) and table_suffix (in BigQuery).

When you run the bq mk command, as just shown, you will get a URL as part of an
OAuth2 workflow; provide the necessary token by signing in via the browser, and
the transfer job will be created.

26

https://cloud.google.com/bigquery/docs/youtube-channel-transfer

You can also initiate a Data Transfer Service from the web UI. Initiate a transfer and
choose the data source, as illustrated in Figure 4-12.

Figure 4-12. You can initiate a data transfer from the web UI as well

Note that we have not specified a schedule; by default, the job will run every 24
hours, starting “now.” It is possible to edit the schedule of the transfer job from the
BigQuery web UI, as demonstrated in Figure 4-13.

Figure 4-13. Editing the schedule of the transfer job from the web UI

The price of data transfers varies by the source. As of this writing, data transfers
from YouTube Channel costs $5 per channel per month, whereas data transfers from
Cloud Storage incur no charge. However, because the Data Transfer Service uses
load jobs to load Cloud Storage data into BigQuery, this is subject to the BigQuery
limits on load jobs.

https://cloud.google.com/bigquery/quotas#load_jobs

Scheduled queries
BigQuery supports the scheduling of queries to run on a recurring basis and saving
the results in BigQuery tables. In particular, you can use a federated query to extract
data from an external data source, transform it, and load it into BigQuery. Because
such scheduled queries can include DDL and DML statements, it is possible to build
sophisticated workflows purely in SQL.

You can open the dialog box to set up a scheduled query by clicking the Schedule
Query button in the BigQuery UI, as shown in Figure 4-14.

Figure 4-14. Schedule a query from the BigQuery user interface

Scheduled queries are built on top of the Data Transfer Service, so many of the
features are similar. Thus you can specify the destination table using the same
parameter settings (e.g., run_date and run_time) as for the Data Transfer Service
(see the previous section).

Cross-region dataset copy
BigQuery supports the scheduling of cross-region dataset copies via the Data
Transfer Service. In the Data Transfer Service web UI, choose Cross Region Copy
as the Source. You will also need to specify as the source dataset the name of the
dataset from which tables are to be copied into the destination dataset, as depicted in
Figure 4-15.

Because the source and destination datasets are both BigQuery datasets, the initiator
needs to have permission to initiate data transfers, list tables in the source dataset,
view the source dataset, and edit the destination dataset.

27

A cross-region copy can also be initiated from bq mk by specifying
cross_region_copy as the data source.

Figure 4-15. Initiate a scheduled cross-region dataset copy from the Data Transfer Service UI by specifying that
the source is a cross-region copy

Exporting Stackdriver Logs
Log data from GCP virtual machines (VMs) and services can be stored,
monitored, and analyzed using Stackdriver Logging. Stackdriver Logging thus
serves as a unified view of all the activity in your GCP account. It is helpful,
therefore, to export Stackdriver and Firebase logs to BigQuery. You can do this by
using the command-line interface, a REST API, or the web UI, which is shown in
Figure 4-16.

To export all the logs from the BigQuery service, click the Create Export button at
the top of the Stackdriver Logs Viewer and then fill in the following information:

Select BigQuery and All Logs to view the logs from BigQuery. Do you see
your recent activity?

Provide a sink name, perhaps bq_logs.

Specify the sink service: BigQuery, because we want to export to
BigQuery.

Specify the sink destination: ch04, the dataset to which we want to export.

28

https://console.cloud.google.com/logs/

Figure 4-16. To view logs from the BigQuery ingest jobs in the previous section, for example, you would go to
the Stackdriver section of the GCP Cloud Console

Let’s look at the logs generated by running a query. Go to the BigQuery UI and try
running a query:

SELECT

 gender, AVG(tripduration / 60) AS avg_trip_duration

FROM

 `bigquery-public-data`.new_york_citibike.citibike_trips

GROUP BY

 gender

HAVING avg_trip_duration > 14

ORDER BY

 avg_trip_duration

In the BigQuery UI, if you now do (change the date appropriately)

SELECT protopayload_auditlog.status.message FROM

ch04.cloudaudit_googleapis_com_data_access_20190128

you will find a list of BigQuery log messages, including a message about reading
the results of the preceding query. Depending on your date filter, you should also
see the logs corresponding to earlier operations that you carried out.

Note a few things about the export capability:

The schema and even the table name were set by Stackdriver. We simply
specified the destination dataset.

The data was updated in near real time. This is an example of a streaming
buffer—a BigQuery table updated in real time by Stackdriver (although the
typical latency of BigQuery queries implies that the data you see is a few
seconds old).

TIP
To avoid running up charges for this streaming pipeline, go to the Stackdriver section of the console and
delete the sink.

Using Cloud Dataflow to Read/Write from BigQuery
As we’ve discussed, BigQuery supports federated querying from sources such as
Google Sheets. Its Data Transfer Service supports sources such as Google Ads and
YouTube. Products such as Stackdriver Logging and Firestore provide the ability to
export their data to BigQuery.

What if you are using a product such as MySQL that does not provide an export
capability and is not supported by the Data Transfer Service? One option is to use
Cloud Dataflow. Cloud Dataflow is a fully managed service on GCP that simplifies
the execution of data pipelines that are built using the open source Apache Beam
API by handling operational details such as performance, scaling, availability,
security, and compliance, so that users can focus on programming instead of
managing server clusters. You can use Dataflow for transforming and enriching data
both in streaming (real time) mode as well as in batch (historical) mode with the
same reusable code across both streaming and batch pipelines.

Using a Dataflow template to load directly from MySQL
Although you could write your own Cloud Dataflow pipelines (we do that in
“Writing a Dataflow job”), Dataflow template pipelines are available on GitHub for
many common needs. Looking at the list of available templates, it appears that the
Jdbc to BigQuery template might fit our requirements and allow us to transfer data
from our MySQL database to BigQuery.

Open the GCP Cloud Console and navigate to the Cloud Dataflow section. Next,
select “Create job from template,” choose “Jdbc to BigQuery,” and then fill out the

https://github.com/GoogleCloudPlatform/DataflowTemplates

resulting form with information about the source database table in MySQL and the
destination table in BigQuery, as illustrated in Figure 4-17.

Figure 4-17. Creating a Dataflow job from a template to transfer data from MySQL to BigQuery

When you click the “Run job” button, a Dataflow job is launched. It will execute
the JDBC query you specified and write the resulting rows to BigQuery.

Writing a Dataflow job
If you have a format for which there is no federated querying, no Data Transfer
Service, no export capability, and no prebuilt Dataflow template, you can write your
own Dataflow pipeline to load the data into BigQuery.

Even though both federated querying and a Data Transfer Service exist for CSV
files on Google Cloud Storage, we will use CSV files to demonstrate what this
looks like. The code is written to the Apache Beam API and can be written in
Python, Java, or Go. Here, we use Python.

The crux of the code is to extract the input data, transform it by extracting and
cleaning up the desired fields, and load it into BigQuery:

INPATTERNS = 'gs://bigquery-oreilly-book/college_*.csv'

RUNNER = 'DataflowRunner'

with beam.Pipeline(RUNNER, options = opts) as p:

 (p

 | 'read' >> beam.io.ReadFromText(INPATTERNS, skip_header_lines=1)

 | 'parse_csv' >> beam.FlatMap(parse_csv)

 | 'pull_fields' >> beam.FlatMap(pull_fields)

 | 'write_bq' >> beam.io.gcp.bigquery.WriteToBigQuery(bqtable, bqdataset,

schema=get_output_schema())

)

In this code, we create a Beam pipeline, specifying that it will be executed by Cloud
Dataflow. Other options for the RUNNER include DirectRunner (executed on the local
machine) and SparkRunner (executed by Apache Spark on a Hadoop cluster, such
as Cloud Dataproc on GCP).

The first step of the pipeline is to read all of the files that match the specified input
patterns. These files can be on local disk or on Google Cloud Storage. The data
from the text files is streamed line by line to the next step of the pipeline, where the
parse_csv method is applied to each line:

def parse_csv(line):

 try:

 values = line.split(',')

 rowdict = {}

 for colname, value in zip(COLNAMES, values):

 rowdict[colname] = value

 yield rowdict

 except:

 logging.warn('Ignoring line ...')

The parse_csv method splits the line based on commas and converts the values
into a dictionary, where the key is the name of the column and the value is the value
of the cell.

This dictionary is next sent to the method pull_fields, which will extract the data
of interest (the INSTNM column and a few numeric fields) and transform it:

def pull_fields(rowdict):

 result = {}

 # required string fields

 for col in 'INSTNM'.split(','):

 if col in rowdict:

 result[col] = rowdict[col]

 else:

 logging.info('Ignoring line missing {}', col)

 return

 # float fields

 for col in \

 'ADM_RATE_ALL,FIRST_GEN,MD_FAMINC,SAT_AVG,MD_EARN_WNE_P10'.split(','):

 try:

 result[col] = (float) (rowdict[col])

 except:

 result[col] = None

 yield result

These dictionaries with the extracted fields are streamed into BigQuery row by row.
The BigQuery sink (beam.io.gcp.bigquery.WriteToBigQuery) requires the
name of the table, the name of the dataset, and an output schema of the following
form:

INSTNM:string,ADM_RATE_ALL:FLOAT64,FIRST_GEN:FLOAT64,...

The BigQuery table is created if needed, and rows are appended. Other options exist
as well, for example, to truncate the table (i.e., to replace it).

Running the Python program will launch a Dataflow job that will read the CSV
file, parse it line by line, pull necessary fields, and write the transformed data to
BigQuery.

29

Even though we demonstrated the Dataflow program on a batch pipeline (i.e., the
input is not unbounded), essentially you can use the same pipeline to parse,
transform, and write out records received in a streaming mode (e.g., from Cloud
Pub/Sub), as will be the case in many logging and IoT applications. The Dataflow
approach thus provides a way to transform data on the fly and load it into BigQuery.

Note that Dataflow uses streaming inserts to load the data into BigQuery, whether
you are operating in batch mode or in streaming mode. Streaming inserts offer the
advantage that the data shows up in a timely manner, into a streaming buffer, and
can be queried even as the data is being written. The disadvantage is that, unlike
BigQuery load jobs, streaming inserts are not free. Recall that loading data into
BigQuery might be free, but because of performance reasons, there are limits on
how many load jobs you can do. Streaming inserts provide a way to avoid the limits
and quotas placed on load jobs without sacrificing query performance.

Using the Streaming API directly
We presented Apache Beam on Cloud Dataflow as a way to extract, transform, and
load data in BigQuery in streaming mode, but it is not the only data processing
framework that is capable of writing to BigQuery. If your team is more familiar
with Apache Spark, writing the ETL pipeline in Spark and executing it on a Hadoop
cluster (such as Cloud Dataproc on GCP) is a viable alternative to Dataflow. This is
because client libraries exist for a variety of different languages, and BigQuery
supports a streaming API.

We cover the client library and streaming in greater detail in Chapter 5, but here is a
snippet that illustrates how to load data using the Streaming API in Python after you
have a client:

create an array of tuples and insert as data becomes available

rows_to_insert = [

 (u'U. Puerto Rico', 0.18,0.46,23000,1134,32000),

 (u'Guam U.', 0.43,0.21,28000,1234,33000)

]

errors = client.insert_rows(table, rows_to_insert) # API request

As new data becomes available, the insert_rows() method on the BigQuery client
is invoked. This method in turn invokes the REST API’s tabledata.insertAll
method. The data is held in a streaming buffer by BigQuery and is available
immediately for querying, although it can take up to 90 minutes for the data to
become available for exporting.

Moving On-Premises Data
In Chapter 1, we discussed that one of the key factors that makes BigQuery tick is
the separation of compute and storage across a petabit-per-second bandwidth
network. BigQuery works best on datasets that are within the datacenter and behind
the Google Cloud firewall—if BigQuery had to read its data from across the public
internet or a slower network connection, it would not be as performant. Therefore,
for BigQuery to work well, it is essential that the data be in the cloud.

BigQuery is a highly scalable analytics platform and is the recommended place to
store structured data except that meant for real-time, transactional use. So if
BigQuery is the place to store all structured data that will be used for data analytics,
how do you move your on-premises data into BigQuery?

Data Migration Methods
If you have a good network with fast interconnect speeds to Google Cloud, you
could use bq load to load the data into BigQuery. As discussed in this chapter, it is
preferable that the data being loaded is already present on Google Cloud Storage.
You can use the command-line tool gsutil to copy the data from on-premises to
Cloud Storage.

When copying many files, especially large files, to Google Cloud Storage, use the -
m option to enable multithreading. Multithreading will allow the gsutil tool to
copy files in parallel:

gsutil -m cp /some/dir/myfiles*.csv gs://bucket/some/dir

Because it is likely that data continues to be collected, moving data is often not a
one-time process but an ongoing one. One approach to handling this is to launch a
Cloud Function to automatically invoke bq load whenever a file shows up on
Cloud Storage. As the frequency of file arrival increases (and as those files grow
smaller), you are better off using Cloud Pub/Sub rather than Cloud Storage to
store the incoming data as messages that will be processed by a Cloud Dataflow
pipeline and streamed directly into BigQuery.

These three approaches—gsutil, Cloud Functions, and Cloud Dataflow—are
shown in the first three rows of Table 4-2 and work when the network connection is
quite good.

30
31

Table 4-2. The recommended migration method for different situations

What you want to migrate Recommended migration method

Relatively small files gsutil cp -m
bq load

Loading occasional (e.g., once per day) files into
BigQuery when they are available

gsutil cp
Cloud Function invokes bq load

Loading streaming messages into BigQuery Post data to Cloud Pub/Sub and then use Cloud
Dataflow to stream into BigQuery
Typically, you have to implement the pipeline in
Python, Java, Go, etc.
Alternately, use the Streaming API from the client
library. This will be covered in more detail in
Chapter 5.

Hive partitions Migrate Hive workload to Cloud Dataproc
Query Hive partitions as external table

Petabytes of data or poor network Transfer appliance
bq load

Region to region or from other clouds Cloud Storage Transfer Service

Load from a MySQL dump Open source Dataflow templates that can be
configured and run

Transfer from Google Cloud Storage, Google
Ads, Google Play, Amazon Redshift, etc. to
BigQuery

BigQuery Data Transfer Service
Set this up in BigQuery. All of the Data Transfer
Service functions work similarly.

Stackdriver Logging, Firestore, etc. These tools provide capability to export to BigQuery.
Set this up in the other tool (Stackdriver, Firestore,
etc.).

Although data migration using gsutil to stage the data on Cloud Storage and then
invoking bq load might be easy to do if you have only a few small datasets, it is
more difficult if you have many datasets or if your datasets are large. As data size
increases, the incidence of errors also increases. Therefore, migrating large datasets
requires paying attention to details—for example, check-summing data at capture
and ingest, working with firewalls so that they don’t block transfers or drop packets,
avoiding exfiltration of sensitive data, and ensuring that your data is encrypted and
protected against loss during and after migration.

Another issue with the gsutil method is that it is quite likely that your business
will not be able to dedicate bandwidth for data transfers because such dedicated
bandwidth is often too expensive and will disrupt routine operations that convey
data over the corporate network.

For cases in which it is not possible to copy data to Google Cloud because of data
size or network limitations, consider using the Transfer Appliance. This is a
rackable, high-capacity storage server that is shipped to you, and then you fill it up
and ship it back to Google Cloud or one of its authorized partners. The Transfer
Appliance is best used for lots of data (hundreds of terabytes to petabytes) for which
your network situation won’t meet transfer demands.

If your data is held not on-premises but in another public cloud (such as in an
Amazon Web Services Simple Storage Service bucket), you can use the Cloud
Storage Transfer Service to migrate the data. Common use cases include running an
application on Amazon Web Services but analyzing its log data in BigQuery. The
Cloud Storage Transfer Service is also a great way to transfer large amounts of data
between regions at Google.

The BigQuery Data Transfer Service automates loading data into BigQuery from
Google properties like YouTube, Google Ads, and more. Other tools such as
Stackdriver Logging and Firestore provide the capability to export to BigQuery.

Although you can carry out data migration yourself, it is unlikely to be something
that your IT department has much experience with given that migration is often just
a one-time task. It might be advantageous to use a GCP authorized partner to
carry out the data migration.

Summary
The bq command-line tool provides a single point of entry to interact with the
BigQuery service on GCP. After your data is on Google Cloud Storage, you can do
a one-time load of the data using the bq load utility. It supports schema
autodetection, but it can also use a specific schema that you supply. Depending on
whether your load job is CPU-bound or I/O-bound, it might be advantageous to
either compress the data or leave it uncompressed.

It is possible to leave the data in place, specify the structure of the data, and use
BigQuery as just the query engine. These are called external datasets, and queries
over external datasets are called federated queries. Use federated queries for
exploratory work, or where the primary use of the data is in the external format
(e.g., low-latency queries in Cloud Bigtable or interactive work in Sheets).
EXTERNAL_QUERY provides the ability to do real-time joins against MySQL and
Postgres databases without any data movement. For large, relatively stable, well-
understood datasets that will be updated periodically and queried often, BigQuery

32

native storage is a better choice. Federated queries are also useful in an Extract,
Load, and Transform (ELT) workflow for which the data is not yet well understood.

It is possible to set up a scheduled transfer of data from a variety of platforms into
BigQuery. Other tools also support mechanisms to export their data into BigQuery.
For routine loading of data, consider using Cloud Functions; for ongoing, streaming
loads, use Cloud Dataflow. It is also possible to schedule queries (including
federated queries) to run periodically and have these queries load data into tables.

1 Six to eight changes every decade—see https://oreil.ly/Merow.

2 See https://abc7ny.com/news/border-of-north-and-south-carolina-shifted-on-january-1st/1678605/ and
https://www.nytimes.com/2014/08/24/opinion/sunday/how-the-carolinas-fixed-their-blurred-lines.html.

3 This is set through a drop-down box in the GCP Cloud Console, or when you last did a gcloud init.
Typically, a project corresponds to a workload or to a small team.

4 For an updated list, see https://cloud.google.com/bigquery/docs/locations.

5 The autodetect algorithm continues to handle more and more corner cases, and so this might not happen
for you. In general, though, schema autodetection will never be perfect. Regardless of the details of what
aspect of the schema is not correctly captured, our larger point is this: use the autodetected schema as a
starting point and build on top of it, as we do in this section.

6 It is possible for an integer column to be nullable, but the file is encoding NULL values in a nonstandard
way. BigQuery is interpreting the text NULL as a string, which is why the load fails.

7 The NULL string in the file represents a lack of data for that field, and this is what a NULL value in our
BigQuery table should mean as well.

8 As we’ve noted in earlier chapters, we believe all mentions of price to be correct as of the writing of this
book, but please do refer to the relevant policy and pricing sheets
(https://cloud.google.com/bigquery/pricing), as these are subject to change.

9 As of this writing, this capability does not exist in the “new” UI; you must access it through the bq
command-line tool.

10 Strings are sorted lexically. If stored as a string, “100” would be less than “20” for the same reason that
“abc” comes before “de” when the two strings are sorted. When sorted numerically, 20 is less than 100, as
you would expect.

11 The file contains D/M/YYYY, whereas the standard format for a date is YYYY-MM-DD (which matches
ISO 8601). Although autodetect can look at multiple rows and infer whether 12/11/1965 is the 12th of
November or the 11th of December, we don’t want the schema-based BigQuery load making any such
assumptions. The transformation pipeline that we build later in this chapter converts the dates into the
standard format. For now, let’s just treat it as a string.

12 Newline-delimited JSON often goes by the name of jsonl, or “JSON lines format.”

13 See https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html. In
Chapter 6, we discuss Capacitor, BigQuery’s backend storage format, which is the successor to
ColumnIO.

14 Try it out by running the load_*.sh scripts in the 04_load of the GitHub repository for this book.

https://oreil.ly/Merow
https://abc7ny.com/news/border-of-north-and-south-carolina-shifted-on-january-1st/1678605/
https://www.nytimes.com/2014/08/24/opinion/sunday/how-the-carolinas-fixed-their-blurred-lines.html
https://cloud.google.com/bigquery/docs/locations
https://cloud.google.com/bigquery/pricing
https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet.html
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

15 This particular file includes a “byte order marker” (\u0eff) as its first character, so we remove the first
few bytes using cut: cut -b 4-.

16 The complete script is called load_external_gcs.sh and is located in the GitHub repository for this book.

17 For the grammar of a JSONPath, see https://restfulapi.net/json-jsonpath/.

18 These partners include Alooma, Informatica, and Talend. For a full, and current, list of BigQuery
partners, visit https://cloud.google.com/bigquery/partners/.

19 As of this writing, there are size restrictions on the BigQuery table.

20 Due to continuing changes and improvements in the products, the graphs you see might be different.

21 This query will be slow because we are doing a regular expression match and doing so 77 billion times.

22 Most likely, the rows include data from multiple colleges, such as National University of Singapore,
National University of Ireland, Massachusetts Institute of Technology, Georgia Institute of Technology,
and so on.

23 If you followed along by running the setup_data.sh file in the GitHub repository, the project_id will be
your unique project ID, the instance_id will be bqbook-instance, and the table_name will be logs-
table.

24 As of this writing, this capability is available only in the “old” UI at https://bigquery.cloud.google.com/
and not in the “new” UI that is part of the GCP Cloud Console
(https://console.cloud.google.com/bigquery).

25 See https://cloud.google.com/bigquery/docs/locations for BigQuery dataset locations and
https://cloud.google.com/storage/docs/bucket-locations for Cloud Storage locations.

26 For a list of available formatting options, see the BigQuery docs for formatting datetime columns.

27 As of this writing, this is available only in the “classic UI.”

28 Also from VMs and services running in Amazon Web Services.

29 See 04_load/dataflow.ipynb in the book’s GitHub repository.

30 We cover how to do so programmatically in Chapter 5.

31 A message bus service—see https://cloud.google.com/pubsub/.

32 See https://cloud.google.com/bigquery/providers/. As this book was being written, GCP announced its
intent to acquire Alooma, a provider of cloud migration services—see
https://cloud.google.com/blog/topics/inside-google-cloud/google-announces-intent-to-acquire-alooma-to-
simplify-cloud-migration.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://restfulapi.net/json-jsonpath/
https://cloud.google.com/bigquery/partners/
https://bigquery.cloud.google.com/
https://console.cloud.google.com/bigquery
https://cloud.google.com/bigquery/docs/locations
https://cloud.google.com/storage/docs/bucket-locations
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#supported-format-elements-for-datetime
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://cloud.google.com/pubsub/
https://cloud.google.com/bigquery/providers/
https://cloud.google.com/blog/topics/inside-google-cloud/google-announces-intent-to-acquire-alooma-to-simplify-cloud-migration

Chapter 5. Developing with
BigQuery

So far, we have mostly used the BigQuery web user interface (UI) and the
bq command-line tool to interact with BigQuery. In this chapter, we look at
ways to programmatically interact with the service. This can be useful to
script out or automate tasks that involve BigQuery. Programmatic access to
BigQuery is also essential when developing applications, dashboards,
scientific graphics, and machine learning models for which BigQuery is
only one of the tools being used.

We begin by looking at BigQuery client libraries that allow you to
programmatically query and manipulate BigQuery tables and resources.
Although you can programmatically access BigQuery using these low-level
APIs, you want to be aware of customizations and higher-level abstractions
available for particular environments (Jupyter notebooks and shell scripts).
These customizations, which we cover in the second half of this chapter, are
easier to use, handle error conditions appropriately, and cut out a lot of
boilerplate code.

Developing Programmatically
The recommended approach for accessing BigQuery programmatically is to
use the Google Cloud Client Library in your preferred programming
language. The REST API is helpful in understanding what happens under
the hood when you send a request to the BigQuery service, but the
BigQuery client library is more practical. So feel free to skim the section on
the REST API.

Accessing BigQuery via the REST API

You can send a query to the BigQuery service by making a direct HTTP
request to the server because BigQuery, like all Google Cloud services,
exposes a traditional JSON/REST interface. JSON/REST is an architectural
style of designing distributed services for which each request is stateless
(i.e., the server does not maintain session state or context; instead, each
request contains all the necessary information) and both request and
response objects are in a self-describing text format called JSON. Because
HTTP is a stateless protocol, REST services are particularly well suited to
serving over the web. JSON maps directly to in-memory objects in
languages like JavaScript and Python.

REST APIs provide the illusion that the objects referred to by the API are
static files in a collection, and they provide Create, Read, Update, Delete
(CRUD) operations that map to HTTP verbs. For example, to create a table
in BigQuery you use POST, to inspect the table you use GET, to update it
you use PATCH, and to delete it you use DELETE. There are some
methods, like Query, that don’t map exactly to CRUD operations, so these
are often referred to as Remote Procedure Call (RPC)–style methods.

All BigQuery URIs begin with the prefix
https://www.googleapis.com/bigquery/v2. Notice that it uses HTTPS
rather than HTTP, thus stipulating that requests should be encrypted on the
wire. The v2 part of the URI is the version number. Although some Google
APIs revise their version number frequently, BigQuery has adamantly stuck
with v2 for several years and is likely to do so for the foreseeable future.

Dataset manipulation
The REST interface involves issuing HTTP requests to specific URLs. The
combination of the HTTP request method (GET, POST, PUT, PATCH, or
DELETE) and a URL specifies the operation to be performed. For example,
to delete a dataset, the client would issue an HTTP DELETE request to the
URL (inserting the ID of the dataset and the project in which it is held):

 .../projects/<PROJECT>/datasets/<DATASET>

1

https://cloud.google.com/bigquery/docs/reference/rest/v2/

Here, the “...” refers to https://www.googleapis.com/bigquery/v2.
All BigQuery REST URLs are relative to this path.

NOTE
When you type in a URL in a web browser’s navigation toolbar, the browser issues an HTTP GET
to that URL. To issue an HTTP DELETE, you need a client that gives you the option of specifying
the HTTP method to invoke. One such client tool is curl; we look at how to use this shortly.

We know that we need to send a DELETE request to that URL because the
BigQuery REST API documentation specifies the HTTP request details, as
 illustrated in Figure 5-1.

Figure 5-1. The BigQuery REST API specifies that issuing an HTTP DELETE request to the URL
/projects/<PROJECT>/datasets/<DATASET> will result in the dataset being deleted if it is empty

https://cloud.google.com/bigquery/docs/reference/rest/v2/

Table manipulation
Deleting a table similarly involves issuing an HTTP DELETE to the URL:

.../projects/<PROJECT>/datasets/<DATASET>/tables/<TABLE>

Note that both of these requests employ the HTTP DELETE method, and it
is the URL path that differentiates them. Of course, not everyone who visits
the URL will be able to delete the dataset or table. The request will succeed
only if the request includes an access token, and if the access token
(covered shortly) represents appropriate authorization in the BigQuery or
Cloud Platform scopes.

As an example of a different HTTP method type, it is possible to list all the
tables in a dataset by issuing an HTTP GET, as follows:

.../projects/<PROJECT>/datasets/<DATASET>/tables

Listing the tables in a dataset requires only a read-only scope—full access
to BigQuery (such as to delete tables) is not necessary, although, of course,
the greater authority (e.g., BigQuery scope) also provides the lesser
permissions.

We can try this using a Unix shell:

#!/bin/bash

PROJECT=$(gcloud config get-value project)

access_token=$(gcloud auth application-default print-access-token)

curl -H "Authorization: Bearer $access_token" \

 -H "Content-Type: application/json" \

 -X GET

"https://www.googleapis.com/bigquery/v2/projects/$PROJECT/datasets/ch04/tables

"

The access token is a way to get application-default credentials. These are
temporary credentials that are issued by virtue of being logged into the
Google Cloud Software Development Kit (SDK). The access token is

2

3

placed into the header of the HTTP request, and because we want to list the
tables in the dataset ch04, we issue a GET request to the URL using the
curl command:

.../projects/$PROJECT/datasets/ch04/tables

USING SQL INSTEAD OF A CLIENT API
This chapter shows how to access BigQuery programmatically through
a client API. However, consider whether you are better off using SQL
queries to retrieve this information. For example, you can create and
delete tables via CREATE TABLE and DROP TABLE statements,
respectively. Using SQL might allow you to stay within the tool you
regularly use to explore and analyze data, without having to integrate a
programming or scripting tool into your workflow.

You can list the tables in the dataset used in Chapter 4 in SQL by
querying an INFORMATION_SCHEMA view:

SELECT

 table_name, creation_time

FROM

 ch04.INFORMATION_SCHEMA.TABLES

We examine the use of INFORMATION_SCHEMA and SQL alternatives to
the client API in Chapter 8. However, for now, Table 5-1 presents the
mapping between client API functions and SQL.

Table 5-1. Client API functions and SQL alternatives

Client API capability SQL alternative

Creating tables
(or views: just replace TABLE with
VIEW)

CREATE TABLE
CREATE TABLE IF NOT EXISTS
CREATE OR REPLACE TABLE

Update table (or view) ALTER TABLE SET OPTIONS
ALTER TABLE IF EXISTS SET OPTIONS

Update table data INSERT INTO
DELETE FROM
UPDATE
MERGE

Delete table (or view) DROP TABLE

Dataset metadata Query:
INFORMATION_SCHEMA.SCHEMATA
INFORMATION_SCHEMA.SCHEMATA_OPTIONS

Table (or view) metadata Query:
INFORMATION_SCHEMA.TABLES
INFORMATION_SCHEMA.TABLE_OPTIONS
INFORMATION_SCHEMA.COLUMNS
INFORMATION_SCHEMA.COLUMN_FIELD_PATHS

Jobs metadata Query:
INFORMATION_SCHEMA.JOBS_BY_USER
INFORMATION_SCHEMA.JOBS_BY_PROJECT
INFORMATION_SCHEMA.JOBS_BY_ORGANIZATIO

N

In many situations, using SQL might be a better alternative from a
tooling and familiarity perspective.

Querying
In some cases, issuing an HTTP GET request to a BigQuery URL is not
enough. More information is required from the client. In such cases, the
API requires that the client issue an HTTP POST and send along a JSON
request in the body of the request.

For example, to run a BigQuery SQL query and obtain the results, issue an
HTTP POST request to

.../projects/<PROJECT>/queries

and send in a JSON of the following form:

{

 "useLegacySql": false,

 "query": \"${QUERY_TEXT}\"

}

Here, QUERY_TEXT is a variable that holds the query to be performed:

read -d '' QUERY_TEXT << EOF

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM \`bigquery-public-data\`.london_bicycles.cycle_hire

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 5

EOF

We are using the heredoc syntax in Bash to specify that the string EOF
marks the point at which our query begins and ends.

The curl request now is a POST that includes the request as its data:

curl -H "Authorization: Bearer $access_token" \

 -H "Content-Type: application/json" \

 -X POST \

 -d "$request" \

 "https://www.googleapis.com/bigquery/v2/projects/$PROJECT/queries"

4

http://tldp.org/LDP/abs/html/here-docs.html

Here, $request is a variable that holds the JSON payload (including the
query text).

The response is a JSON message that contains the schema of the result set
and five rows, each of which is an array of values. Here’s the schema in this
case:

"schema": {

 "fields": [

 {

 "name": "start_station_name",

 "type": "STRING",

 "mode": "NULLABLE"

 },

 {

 "name": "duration",

 "type": "FLOAT",

 "mode": "NULLABLE"

 },

 {

 "name": "num_trips",

 "type": "INTEGER",

 "mode": "NULLABLE"

 }

]

 },

Following is the first row:

{

 "f": [

 {

 "v": "Belgrove Street , King's Cross"

 },

 {

 "v": "1011.0766960393793"

 },

 {

 "v": "234458"

 }

]

},

The f stands for fields, and the v for values. Each row is an array of fields,
and each field has a value. This means that the highest number of trips was
at the station on Belgrove Street, where the average duration of trips was
1,011 sec and the total number of trips was 234,458.

Limitations
In the case we’ve just considered, the query happens to finish within the
default timeout period (it’s possible to specify a longer timeout), but what if
the query takes longer? Let’s simulate this by artificially lowering the
timeout and disabling the cache:

{

 "useLegacySql": false,

 "timeoutMs": 0,

 "useQueryCache": false,

 "query": \"${QUERY_TEXT}\"

}

Now the response no longer contains the rows of the result set. Instead, we
get a promissory note in the form of a jobId:

{

 "kind": "bigquery#queryResponse",

 "jobReference": {

 "projectId": "cloud-training-demos",

 "jobId": "job_gv0Kq8nWzXIkuBwoxsKMcTJIVbX4",

 "location": "EU"

 },

 "jobComplete": false

}

We are now expected to get the status of the jobId using the REST API by
sending a GET request, as shown here:

.../projects/<PROJECT>/jobs/<JOBID>

5

This continues until the response has jobComplete set to true. At that point,
we can obtain the query results by sending a GET request, as follows:

.../projects/<PROJECT>/queries/<JOBID>

Sometimes the query results are too large to be sent in a single HTTP
response. Instead, the results are provided to us in chunks. Recall, however,
that REST is a stateless protocol and the server does not maintain session
context. Therefore, the results are actually stored in a temporary table that is
maintained for 24 hours. The client can page through this temporary table
of results using a page token that serves as a bookmark for each call to get
query results.

In addition to all this complexity, add in the possibility of network failure
and the necessity of retries, and it becomes clear that the REST API is quite
difficult to program against. Therefore, even though the REST API is
accessible from any language that is capable of making calls to web
services, we typically recommend using a higher-level API.

Google Cloud Client Library
The Google Cloud Client Library for BigQuery is the recommended option
for accessing BigQuery programmatically. As of this writing, a client
library is available for seven programming languages: Go, Java, Node.js,
Python, Ruby, PHP, and C++. Each client library provides a good developer
experience by following the convention and typical programming style of
the programming language.

You can install the BigQuery client library using pip (or easy_install):

pip install google-cloud-bigquery

To use the library, first instantiate a client (this takes care of the
authentication that was accomplished by using an access token when
directly invoking the REST API):

https://cloud.google.com/docs/authentication/production

from google.cloud import bigquery

bq = bigquery.Client(project=PROJECT)

The project passed into the Client is the globally unique name of the
project that will be billed for operations carried out using the bq object.

TIP
You can find a Python notebook with all of the code in this section at
https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book/blob/master/05_devel/bigquery_cloud_client.ipynb. Use the notebook as a source of Python
snippets to try out in your favorite Python environment.

The API documentation for the BigQuery client library is available at
https://googleapis.github.io/google-cloud-python/latest/bigquery/reference.html. Because it is
impossible to cover the full API, we strongly suggest that you have the documentation open in a
browser tab as you read through the following section. As you read the Python snippets, see how
you could discover the Python methods to invoke.

Dataset manipulation
To view information about a dataset using the BigQuery client library, use
the get_dataset method:

dsinfo = bq.get_dataset('bigquery-public-data.london_bicycles')

If the project name is omitted, the project passed into the Client at the time
of construction is assumed; let’s take a look:

dsinfo = bq.get_dataset('ch04')

This returns an object with information about the dataset we created in the
previous chapter.

Dataset information

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/05_devel/bigquery_cloud_client.ipynb
https://googleapis.github.io/google-cloud-python/latest/bigquery/reference.html

Given the dsinfo object, it is possible to extract different attributes of the
dataset. For example,

print(dsinfo.dataset_id)

print(dsinfo.created)

on the ch04 object yields

ch04

2019-01-26 00:41:01.350000+00:00

whereas

print('{} created on {} in {}'.format(

 dsinfo.dataset_id, dsinfo.created, dsinfo.location))

for the bigquery-public-data.london_bicycles dataset yields the
following:

london_bicycles created on 2017-05-25 13:26:18.055000+00:00 in EU

It is also possible to examine the access controls on the dataset using the
dsinfo object. For example, we could find which roles are granted READER
access to the london_bicycles dataset using this:

for access in dsinfo.access_entries:

 if access.role == 'READER':

 print(access)

This yields the following:

<AccessEntry: role=READER, specialGroup=allAuthenticatedUsers>

<AccessEntry: role=READER, domain=google.com>

<AccessEntry: role=READER, specialGroup=projectReaders>

It is because all authenticated users are granted access to the dataset (see the
first line in the preceding example) that we have been able to query the
dataset in previous chapters.

Creating a dataset

To create a dataset named ch05 if it doesn’t already exist, use this:

dataset_id = "{}.ch05".format(PROJECT)

ds = bq.create_dataset(dataset_id, exists_ok=True)

By default, the dataset is created in the US. To create the dataset in another
location—for example, the EU—create a local Dataset object (we’re
calling it dsinfo), set its location attribute, and then invoke
create_dataset on the client object using this Dataset (instead of the
dataset_id, as in the previous code snippet):

dataset_id = "{}.ch05eu".format(PROJECT)

dsinfo = bigquery.Dataset(dataset_id)

dsinfo.location = 'EU'

ds = bq.create_dataset(dsinfo, exists_ok=True)

Deleting a dataset

To delete a dataset named ch05 in the project passed into the Client, do the
following:

bq.delete_dataset('ch05', not_found_ok=True)

To delete a dataset in a different project, qualify the dataset name by the
project name:

bq.delete_dataset('{}.ch05'.format(PROJECT), not_found_ok=True)

Modifying attributes of a dataset

To modify information about a dataset, modify the dsinfo object locally by
setting the description attribute and then invoke update_dataset on the
client object to update the BigQuery service:

dsinfo = bq.get_dataset("ch05")

print(dsinfo.description)

dsinfo.description = "Chapter 5 of BigQuery: The Definitive Guide"

dsinfo = bq.update_dataset(dsinfo, ['description'])

print(dsinfo.description)

The first print in the preceding snippet prints out None because the dataset
ch05 was created without any description. After the update_dataset call,
the dataset in BigQuery sports a new description:

None

Chapter 5 of BigQuery: The Definitive Guide

Changing tags, access controls, and so on of a dataset works similarly. For
example, to give one of our colleagues access to the ch05 dataset, we could
do the following:

dsinfo = bq.get_dataset("ch05")

entry = bigquery.AccessEntry(

 role="READER",

 entity_type="userByEmail",

 entity_id="xyz@google.com",

)

if entry not in dsinfo.access_entries:

 entries = list(dsinfo.access_entries)

 entries.append(entry)

 dsinfo.access_entries = entries

 dsinfo = bq.update_dataset(dsinfo, ["access_entries"]) # API request

else:

 print('{} already has access'.format(entry.entity_id))

print(dsinfo.access_entries)

In this code, we create an entry for a user, and if the user doesn’t already
have some sort of access to the dataset, we get the current set of access
entries, append the new entry, and update the dataset with the new list.

Table management

To list the tables in a dataset, invoke the list_tables method on the client
object:

tables = bq.list_tables("bigquery-public-data.london_bicycles")

for table in tables:

 print(table.table_id)

The result is the two tables in the london_bicycles dataset:

cycle_hire

cycle_stations

Obtaining table properties

In the previous code snippet, we got the table_id from the table object.
Besides the table_id, other attributes of the table are available: the number
of rows, the descriptions, tags, the schema, and more.

TIP
The number of rows in the table is part of the table metadata and can be obtained from the table
object itself. Unlike a full-fledged query with a COUNT(*), getting the number of rows in this
manner does not incur BigQuery charges:

table = bq.get_table(

 "bigquery-public-data.london_bicycles.cycle_stations")

print('{} rows in {}'.format(table.num_rows,

table.table_id))

This yields the following:

787 rows in cycle_stations

For example, we can search the schema for columns whose name contains a
specific substring (count) using the table object:

table = bq.get_table(

 "bigquery-public-data.london_bicycles.cycle_stations")

for field in table.schema:

 if 'count' in field.name:

 print(field)

Here’s the result:

SchemaField('bikes_count', 'INTEGER', 'NULLABLE', '', ())

SchemaField('docks_count', 'INTEGER', 'NULLABLE', '', ())

Of course, rather than hand-roll this sort of search, it would be better to use
INFORMATION_SCHEMA (covered in Chapter 8) or Data Catalog.

Deleting a table

Deleting a table is similar to deleting a dataset, and if desired, you can
ignore the error thrown if the table doesn’t exist:

bq.delete_table('ch05.temp_table', not_found_ok=True)

RESTORING DELETED TABLES
Use BigQuery’s “time travel” capability to restore deleted tables. For up
to two days, you can restore a table if you accidentally delete it. For
example, to restore the version of the table as it existed at a certain time
within the past seven days, you can make a copy of it by specifying the
timestamp:

bq --location=US cp ch05.temp_table@1418864998000

ch05.temp_table2

Here, 1418864998000 is the timestamp (the number of seconds since
epoch).

Note, however, that the snapshots are lost if a table bearing the same ID
in the dataset was created after the deletion time or if the encapsulating
dataset was also deleted. This has implications on your workflow—you
can save yourself a lot of grief if you minimize the chance of creating
tables with the same name from different software applications. For
example, you could use organizational boundaries (e.g., “accounting”)
or the names of applications and workloads (e.g., “shipping”) when
naming datasets. You might also avoid creating tables from your
applications; instead, create them externally before your applications
start.

Creating an empty table

Creating an empty table is similar to creating a dataset, and if desired, you
can ignore the exception thrown if the dataset already exists:

table_id = '{}.ch05.temp_table'.format(PROJECT)

table = bq.create_table(table_id, exists_ok=True)

Updating a table’s schema

Of course, you don’t usually want to create empty tables. You want to
create an empty table with a schema and insert some rows into it. Because
the schema is part of the attributes of the table, you can update the schema
of the empty table similarly to the way you updated the access controls of
the dataset. You get the table, modify the table object locally, and then
update the table using the modified object to specify what aspects of the
table object are being updated:

schema = [

 bigquery.SchemaField("chapter", "INTEGER", mode="REQUIRED"),

 bigquery.SchemaField("title", "STRING", mode="REQUIRED"),

]

table_id = '{}.ch05.temp_table'.format(PROJECT)

table = bq.get_table(table_id)

print(table.etag)

table.schema = schema

table = bq.update_table(table, ["schema"])

print(table.schema)

print(table.etag)

To prevent race conditions, BigQuery tags the table with each update. So
when you get the table information using get_table, the table object
includes an etag. When you upload a modified schema using
update_table, this update succeeds only if your etag matches that of the
server. The returned table object has the new etag. You can turn off this
behavior and force an update by setting table.etag to None.

When a table is empty, you can change the schema to anything you want.
But when there is data in the table, any schema changes must be compatible
with the existing data in the table. You can add new fields (as long as they
are NULLABLE), and you can relax constraints from REQUIRED to NULLABLE.

After this code is run, we can check in the BigQuery web UI that the newly
created table has the correct schema, as depicted in Figure 5-2.

Figure 5-2. Schema of the newly created table

Inserting rows into a table

After you have a table with a schema, you can insert rows into the table
using the client. The rows consist of Python tuples in the same order as
defined in the schema:

rows = [

 (1, u'What is BigQuery?'),

 (2, u'Query essentials'),

]

errors = bq.insert_rows(table, rows)

The errors list will be empty if all rows were successfully inserted. If,
however, you had passed in a noninteger value for the chapter field

rows = [

 ('3', u'Operating on data types'),

 ('wont work', u'This will fail'),

 ('4', u'Loading data into BigQuery'),

]

errors = bq.insert_rows(table, rows)

print(errors)

you will get an error whose reason is invalid on index=1 (the second
row; this is 0-based), location=chapter:

{'index': 1, 'errors': [{'reason': 'invalid', 'debugInfo': '', 'message':

'Cannot

convert value to integer (bad value):wont work', 'location': 'chapter'}]}

Because BigQuery treats each user request as atomic, none of the three
rows will be inserted. On the other rows, you will get an error whose
reason is stopped:

{'index': 0, 'errors': [{'reason': 'stopped', 'debugInfo': '', 'message': '',

'location': ''}]}

In the BigQuery web UI, shown in Figure 5-3, the table details show that
the inserted rows are in the streaming buffer, but the two inserted rows are
not reflected in the table’s number of rows.

Figure 5-3. Newly inserted rows are in the streaming buffer and are not yet reflected in the number of
rows shown in the “Table info” section

NOTE
Because inserting rows into the table is a streaming operation, the table metadata is not updated
immediately—for example:

rows = [

 (1, u'What is BigQuery?'),

 (2, u'Query essentials'),

]

print(table.table_id, table.num_rows)

errors = bq.insert_rows(table, rows)

print(errors)

table = bq.get_table(table_id)

print(table.table_id, table.num_rows) # DELAYED

The table.num_rows in this code snippet will not show the updated row count. Moreover,
streaming inserts, unlike load jobs, are not free.

Queries on the table will reflect the two rows in the streaming buffer:

SELECT DISTINCT(chapter) FROM ch05.temp_table

This shows that there are two chapters in the table:

Row chapter

1 2

2 1

Creating an empty table with schema

Instead of creating a table and then updating this schema, a better idea is to
provide the schema at the time of table creation:

schema = [

 bigquery.SchemaField("chapter", "INTEGER", mode="REQUIRED"),

 bigquery.SchemaField("title", "STRING", mode="REQUIRED"),

]

table_id = '{}.ch05.temp_table2'.format(PROJECT)

table = bigquery.Table(table_id, schema)

table = bq.create_table(table, exists_ok=True)

print('{} created on {}'.format(table.table_id, table.created))

print(table.schema)

The created table contains the desired schema:

temp_table2 created on 2019-03-03 19:30:18.324000+00:00

[SchemaField('chapter', 'INTEGER', 'REQUIRED', None, ()), SchemaField('title',

'STRING', 'REQUIRED', None, ())]

The table created is empty, and so we’d use this technique if we are going
to do a streaming insert of rows into the table. What if, though, you already
have the data in a file and you want simply to create a table and initialize it
with data from that file? In that case, load jobs are much more convenient.
Unlike streaming inserts, loads do not incur BigQuery charges.

The BigQuery Python client supports three methods of loading data: from a
pandas DataFrame, from a URI, or from a local file. Let’s look at these
next.

Loading a pandas DataFrame

pandas is an open source library that provides data structures and data
analysis tools for the Python programming language. The BigQuery Python
library supports directly loading data from an in-memory pandas
DataFrame. Because pandas DataFrames can be constructed from in-
memory data structures and provide a wide variety of transformations,
using pandas provides the most convenient way to load data from Python
applications. For example, to create a DataFrame from an array of tuples,
you can do the following:

import pandas as pd

 data = [

 (1, u'What is BigQuery?'),

 (2, u'Query essentials'),

https://pandas.pydata.org/

]

df = pd.DataFrame(data, columns=['chapter', 'title'])

After you have created the DataFrame, you can load the data within it into a
BigQuery table using the following:

table_id = '{}.ch05.temp_table3'.format(PROJECT)

job = bq.load_table_from_dataframe(df, table_id)

job.result() # blocks and waits

print("Loaded {} rows into {}".format(job.output_rows,

 tblref.table_id))

Because load jobs can potentially be long running, the load_table_
function returns a job object that you can use either to poll, using the
job.done() method, or to block and wait, using job.result().

If the table already exists, the load job will append to the existing table as
long as the data you are loading matches the existing schema. If the table
doesn’t exist, a new table is created with schema that is inferred from the
pandas DataFrame. You can change this behavior by specifying a load
configuration:

from google.cloud.bigquery.job \

 import LoadJobConfig, WriteDisposition, CreateDisposition

load_config = LoadJobConfig(

 create_disposition=CreateDisposition.CREATE_IF_NEEDED,

 write_disposition=WriteDisposition.WRITE_TRUNCATE)

job = bq.load_table_from_dataframe(df, table_id,

 job_config=load_config)

The combination of CreateDisposition and WriteDisposition controls
the behavior of the load operation, as is shown in Table 5-2.

6

7

Table 5-2. Impact of CreateDisposition and WriteDisposition on the
behavior of the load operation

CreateDispo

sition

WriteDispo

sition Behavior

CREATE_NEVE

R

WRITE_APPE

ND

Appends to existing table.

 WRITE_EMPT

Y

Appends to table, but only if it is currently empty. Otherwise, a
duplicate error is thrown.

 WRITE_TRUN

CATE

Clears out any existing rows in the table, i.e., overwrites the
data in the table.

CREATE_IF_N

EEDED

WRITE_APPE

ND

Creates new table based on schema of the input if necessary.
Appends to existing or newly created table.
This is the default behavior if job_config is not passed in.

 WRITE_EMPT

Y

Creates new table based on schema of the input if necessary.
Requires that the table, if it already exists, be empty. Otherwise,
a duplicate error is thrown.

 WRITE_TRUN

CATE

Creates new table based on schema of the input if necessary.
Clears out any existing rows in the table, i.e., overwrites the
data in the table.

Loading from a URI

It is possible to load a BigQuery table directly from a file whose Google
Cloud URI is known. In addition to Cloud Datastore backups and HTTP
URLs referring to Cloud Bigtable, Google Cloud Storage wildcard patterns
are also supported. We can, therefore, load the college scorecard comma-
separated values (CSV) file that we used in the previous chapter by using
the following:

job_config = bigquery.LoadJobConfig()

job_config.autodetect = True

job_config.source_format = bigquery.SourceFormat.CSV

job_config.null_marker = 'NULL'

uri = "gs://bigquery-oreilly-book/college_scorecard.csv"

table_id = '{}.ch05.college_scorecard_gcs'.format(PROJECT)

job = bq.load_table_from_uri(uri, table_id, job_config=job_config)

8

You can set all of the options that we considered in Chapter 4 (on loading
data) by using the JobConfig flags. Here, we are using autodetect,
specifying that the file format is CSV and that the file uses a nonstandard
null marker before loading the file from the URI specified.

Even though you can block for the job to finish as you did in the previous
section, you can also poll the job every 0.1 seconds and get the table details
only after the load job is done:

while not job.done():

 print('.', end='', flush=True)

 time.sleep(0.1)

print('Done')

table = bq.get_table(tblref)

print("Loaded {} rows into {}.".format(table.num_rows, table.table_id))

After a few dots to represent the wait state, you get back the number of
rows loaded (7,175).

Loading from a local file

To load from a local file, create a file object and use
load_table_from_file:

with gzip.open('../04_load/college_scorecard.csv.gz') as fp:

 job = bq.load_table_from_file(fp, tblref, job_config=job_config)

In other respects, this is similar to loading from a URI.

Copying a table

You can copy a table from one dataset to another by using the copy_table
method:

source_tbl = 'bigquery-public-data.london_bicycles.cycle_stations'

dest_tbl = '{}.ch05eu.cycle_stations_copy'.format(PROJECT)

job = bq.copy_table(source_tbl, dest_tbl, location='EU')

job.result() # blocks and waits

dest_table = bq.get_table(dest_tbl)

print(dest_table.num_rows)

Note that we are copying the London cycle_stations data to a dataset
(ch05eu) that we created in the EU. Note also that we are making sure to
copy tables only within the same region.

Extracting data from a table

We can export data from a table to a file in Google Cloud Storage using the
extract_table method:

source_tbl = 'bigquery-public-data.london_bicycles.cycle_stations'

dest_uri = 'gs://{}/tmp/exported/cycle_stations'.format(BUCKET)

config = bigquery.job.ExtractJobConfig(

 destination_format =

 bigquery.job.DestinationFormat.NEWLINE_DELIMITED_JSON)

job = bq.extract_table(source_tbl, dest_uri,

 location='EU', job_config=config)

job.result() # blocks and waits

If the table is sufficiently large, the output will be sharded into multiple
files. As of this writing, extraction formats that are supported include CSV,
Avro, and newline-delimited JSON. As with copying tables, make sure to
export to a bucket in the same location as the dataset. Of course, after you
export a table, Google Cloud Storage charges will begin to accrue for the
output files.

Browsing the rows of a table

In the BigQuery web UI, you have the ability to preview a table without
incurring querying charges. The same capability is available via the REST
API as tabledata.list, and consequently through the Python API.

To list an arbitrary five rows from the cycle_stations table, you could
do the following:

table_id = 'bigquery-public-data.london_bicycles.cycle_stations'

9

10

table = bq.get_table(table_id)

rows = bq.list_rows(table,

 start_index=0,

 max_results=5)

Omitting the start_index and max_results allows you to get all of the
rows in the table:

rows = bq.list_rows(table)

Of course, the table needs to be small enough to fit into memory. If that is
not the case, you can paginate through the entire table, processing the table
in chunks:

page_size = 10000

row_iter = bq.list_rows(table,

 page_size=page_size)

for page in row_iter.pages:

 rows = list(page)

 # do something with rows ...

 print(len(rows))

Instead of getting all of the fields, you can select the id field and any
columns whose name includes the substring count by doing the following:

fields = [field for field in table.schema

 if 'count' in field.name or field.name == 'id']

rows = bq.list_rows(table,

 start_index=300,

 max_results=5,

 selected_fields=fields)

You can then format the resulting rows to have a fixed width of 10
characters using the following:

fmt = '{!s:<10} ' * len(rows.schema)

print(fmt.format(*[field.name for field in rows.schema]))

for row in rows:

 print(fmt.format(*row))

This produces the following result:

id bikes_count docks_count

658 20 30

797 20 30

238 21 32

578 22 32

477 26 36

Querying
The major benefit of using the Google Cloud Client Library comes when
querying. Much of the complexity regarding pagination, retries, and so on is
handled transparently.

The first step, of course, is to create a string containing the SQL to be
executed by BigQuery:

query = """

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 10

"""

This query finds the 10 busiest stations in London, as measured by the total
number of trips initiated at those stations, and reports each station name, the
average duration of trips initiated at this station, and the total number of
such trips.

Dry run

Before actually executing the query, it is possible to do a dry run to obtain
an estimate of how much data will be processed by the query:

config = bigquery.QueryJobConfig()

config.dry_run = True

job = bq.query(query, location='EU', job_config=config)

print("This query will process {} bytes."

 .format(job.total_bytes_processed))

When we ran the preceding code, it returned the following:

This query will process 903989528 bytes.

Your result might be somewhat different given that this table is refreshed

with

new data as it is made available.

TIP
The dry run does not incur charges. Use dry runs to check that query syntax is correct both during
development and in your testing harness. For example, you can use dry runs to identify undeclared
parameters and to validate the schema of the query result without actually running it. If you are
building an application that sends queries to BigQuery, you can use the dry run feature to provide
billing caps. We look at performance and cost optimization in more detail in Chapter 7.

Sometimes it is impossible to compute the bytes processed ahead of time
without actually running the query. In such cases, the dry run returns either
zero or an upper-bound estimate. This happens in two situations: when
querying a federated table (for which the data is stored outside BigQuery;
see Chapter 4) and when querying a clustered table (see Chapter 7). In the
case of federated tables, the dry run will report 0 bytes, and in the case of
clustered tables, BigQuery will attempt to calculate the worst-case scenario
and report that number. In either case, though, when actually performing the
query, you’ll be billed only for the data that actually needs to be read.

Executing the query

11

To execute the query, simply start to iterate over the job object. The job will
be launched, and pages of results will be retrieved as you iterate over the
job using the for loop:

job = bq.query(query, location='EU')

fmt = '{!s:<40} {:>10d} {:>10d}'

for row in job:

 fields = (row['start_station_name'],

 (int)(0.5 + row['duration']),

 row['num_trips'])

 print(fmt.format(*fields))

Given a row, it is possible to obtain the value for any of the columns in the
result set using the aliased name of the column in the SELECT (look at how
the column num_trips appears in the result set).

The formatted result of the query is as follows:

Belgrove Street, King's Cross 1011 234458

Hyde Park Corner, Hyde Park 2783 215629

Waterloo Station 3, Waterloo 866 201630

Black Lion Gate, Kensington Gardens 3588 161952

Albert Gate, Hyde Park 2359 155647

Waterloo Station 1, Waterloo 992 145910

Wormwood Street, Liverpool Street 976 119447

Hop Exchange, The Borough 1218 115135

Wellington Arch, Hyde Park 2276 110260

Triangle Car Park, Hyde Park 2233 108347

Creating a pandas DataFrame

Earlier in this section, we saw how to load a BigQuery table from a pandas
DataFrame. It is also possible to execute a query and get the results back as
a pandas DataFrame, thus using BigQuery as a highly distributed and
scalable intermediate step in a data science workflow:

query = """

SELECT

 start_station_name

_ _

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY start_station_name

"""

df = bq.query(query, location='EU').to_dataframe()

print(df.describe())

This code uses the pandas describe() functionality to print out the
distribution of the numeric columns in the result set:

 duration num_trips

count 880.000000 880.000000

mean 1348.351153 27692.273864

std 434.057829 23733.621289

min 0.000000 1.000000

25% 1078.684974 13033.500000

50% 1255.889223 23658.500000

75% 1520.504055 35450.500000

max 4836.380090 234458.000000

Thus there are 880 stations in total, with an average of 27,692 trips starting
at each station, although there is a station with only one trip and a station
with 234,458 trips. The median station has supported 23,658 rides, and the
majority of stations have had between 13,033 and 35,450 rides.

Parameterized queries

The queries do not need to be static strings. Instead, you can parameterize
them, so that the query parameters are specified at the time the query job is
created. Here is an example of a query that finds the total number of trips
that were longer than a specific duration. The actual threshold,
min_duration, will be specified at the time the query is run:

query2 = """

SELECT

 start_station_name

 , COUNT(duration) as num_trips

FROM `bigquery-public-data`.london_bicycles.cycle_hire

WHERE duration >= @min_duration

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 10

"""

The @ symbol identifies min_duration as a parameter to the query. A query
can have any number of such named parameters.

TIP
Creating a query by doing string formatting is an extremely bad practice. String manipulation such
as the following can make your data warehouse subject to SQL injection attacks:

query2 = """

SELECT

 start_station_name

 , COUNT(duration) as num_trips

FROM `bigquery-public-data`.london_bicycles.cycle_hire

WHERE duration >= {}

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 10

""".format(min_duration)

We strongly suggest that you use parameterized queries, especially when constructing queries that
include user input.

When executing a query that has named parameters, you need to supply a
job_config with those parameters:

config = bigquery.QueryJobConfig()

config.query_parameters = [

 bigquery.ScalarQueryParameter('min_duration', "INT64", 600)

]

job = bq.query(query2, location='EU', job_config=config)

Here, we are specifying that we want to retrieve the number of trips over
600 seconds in duration.

As before, iterating over the job will allow you to retrieve the rows, and
each row functions like a dictionary of column names to values:

fmt = '{!s:<40} {:>10d}'

for row in job:

 fields = (row['start_station_name'],

 row['num_trips'])

 print(fmt.format(*fields))

Running this code yields the following:

Hyde Park Corner, Hyde Park 203592

Belgrove Street, King's Cross 168110

Waterloo Station 3, Waterloo 148809

Albert Gate, Hyde Park 145794

Black Lion Gate, Kensington Gardens 137930

Waterloo Station 1, Waterloo 106092

Wellington Arch, Hyde Park 102770

Triangle Car Park, Hyde Park 99368

Wormwood Street, Liverpool Street 82483

Palace Gate, Kensington Gardens 80342

In this section, we covered how to programmatically invoke BigQuery
operations, whether they involve table or dataset manipulation, querying
data, or streaming inserts. The programmatic APIs, especially the Google
Cloud Client Library, are what you would use whenever you are building
applications that need to access BigQuery.

However, in some specific instances, there are higher-level abstractions
available. We cover these in the next section.

Accessing BigQuery from Data Science
Tools
Notebooks have revolutionized the way that data science is carried out.
They are an instance of literate programming, a programming paradigm
introduced by the computer science legend Donald Knuth, wherein

computer code is intermixed with headings, text, plots, and so on. Because
of this, the notebook serves simultaneously as an executable program and as
an interactive report.

Jupyter is the most popular of the notebook frameworks and works in a
variety of languages, including Python. In Jupyter, the notebook is a web-
based interactive document in which you can type and execute code. The
output of the code is embedded directly in the document.

Notebooks on Google Cloud Platform
To create a notebook on Google Cloud Platform (GCP), launch a Deep
Learning Virtual Machine and get the URL to Jupyter. You can do this from
the AI Factory section of the GCP Cloud Console, or you can automate it
by using the gcloud command-line tool:

#!/bin/bash

IMAGE=--image-family=tf-latest-cpu

INSTANCE_NAME=dlvm

MAIL=google-cloud-customer@gmail.com # CHANGE THIS

echo "Launching $INSTANCE_NAME"

gcloud compute instances create ${INSTANCE_NAME} \

 --machine-type=n1-standard-2 \

 --scopes=https://www.googleapis.com/auth/cloud-

platform,https://www.googleapis.com/auth/userinfo.email \

 ${IMAGE} \

 --image-project=deeplearning-platform-release \

 --boot-disk-device-name=${INSTANCE_NAME} \

 --metadata="proxy-user-mail=${MAIL}"

echo "Looking for Jupyter URL on $INSTANCE_NAME"

while true; do

 proxy=$(gcloud compute instances describe ${INSTANCE_NAME} 2> /dev/null |

grep

dot-datalab-vm)

 if [-z "$proxy"]

 then

 echo -n "."

 sleep 1

12

 else

 echo "done!"

 echo "$proxy"

 break

 fi

done

Access the URL (or from the Notebooks section of the GCP Cloud Console,
click the Open JupyterLab link), and you will be in Jupyter. Click the button
to create a Python 3 notebook, and you will be able to try out the snippets of
code.

The Cloud AI Factory Notebook already has the Google Cloud Client
Library for BigQuery installed, but if you are in some other Jupyter
environment, you can install the library and load the necessary extensions
by running the following code in a code cell:

!pip install google-cloud-bigquery

%load_ext google.cloud.bigquery

In a Jupyter Notebook, any line preceded by an exclamation point (!) is run
using the command-line shell, whereas any line preceded by a percent sign
(%) invokes an extension, also called a magic. So in the preceding code
snippet, the pip install is carried out on the command line, whereas the
extension named load_ext is used to load the BigQuery Magics.

You can clone the repository corresponding to this book by clicking the Git
icon (highlighted in Figure 5-4) and cloning
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book, as
demonstrated in Figure 5-4.

Browse to and open the 05_devel/magics.ipynb notebook to try out the code
in this section of the book. Change the PROJECT variable in the notebook to
reflect your project. Then, on the menu at the top, select Run > Run All
Cells.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

Figure 5-4. Click the the Git icon (where the arrow is pointing) to clone a repository

Jupyter Magics
The BigQuery extensions for Jupyter make running queries within a
notebook quite easy. For example, to run a query, you simply need to
specify %%bigquery at the top of the cell:

%%bigquery --project $PROJECT

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 5

Running a cell with this code executes the query and displays a nicely
formatted table with the five desired rows, as shown in Figure 5-5.

Figure 5-5. The result of a query, nicely formatted, is embedded into the document

Running a parameterized query

To run a parameterized query, specify --params in the magic, as depicted in
Figure 5-6. The parameters themselves are a Python variable that is
typically defined elsewhere in the notebook.

Figure 5-6. How to run a parameterized query in a notebook

In the preceding example, the number of stations is a parameter that is
specified as a Python variable and used in the SQL query to limit the
number of rows in the result.

Saving query results to pandas
Saving the results of a query to pandas involves specifying the name of the
variable (e.g., df) by which the pandas DataFrame will be referenced:

%%bigquery df --project $PROJECT

 SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

 FROM `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY start_station_name

 ORDER BY num_trips DESC

You can use the variable df like any other pandas DataFrame. For example,
we could ask for statistics of the numeric columns in df by using:

df.describe()

We can also use the plotting commands available in pandas to draw a
scatter plot of the average duration of trips and the number of trips across
all the stations, as presented in Figure 5-7.

Figure 5-7. Plotting a pandas DataFrame obtained by using a BigQuery query

Working with BigQuery, pandas, and Jupyter
We have introduced linkages between the Google Cloud Client Library for
BigQuery and pandas in several sections of this book. Because pandas is the
de facto standard for data analysis in Python, it might be helpful to bring
together all of these capabilities and use them to illustrate a typical data
science workflow.

Imagine that we are receiving anecdotes from our customer support team
about bad bicycles at some stations. We’d like to send a crew out to spot-
check a number of problematic stations. How do we choose which stations
to spot-check? We could rely on stations from which we have received
customer complaints, but we will tend to receive more complaints from
busy stations simply because they have lots more customers.

We believe that if someone rents a bicycle for less than 10 minutes and
returns the bicycle to the same station they rented it from, it is likely that
the bicycle has a problem. Let’s call this a bad trip (from the customer’s
viewpoint, it is). We could have our crew do a spot check of stations where
bad trips have occurred more frequently.

To find the fraction of bad trips, we can query BigQuery using Jupyter
Magics and save the result into a pandas DataFrame called badtrips using
the following:

%%bigquery badtrips --project $PROJECT

WITH all_bad_trips AS (

SELECT

 start_station_name

 , COUNTIF(duration < 600 AND start_station_name = end_station_name) AS

bad_trips

 , COUNT(*) as num_trips

FROM `bigquery-public-data`.london_bicycles.cycle_hire

WHERE EXTRACT(YEAR FROM start_date) = 2015

GROUP BY start_station_name

HAVING num_trips > 10

)

SELECT *, bad_trips / num_trips AS fraction_bad FROM all_bad_trips

ORDER BY fraction_bad DESC

The WITH expression counts the number of trips whose duration is less than
600 seconds and for which the starting and ending stations are the same. By
grouping this by start_station_name, we get the total number of trips
and bad trips at each station. The outer query computes the desired fraction
and associates it with the station. This yields the following result (only the
first few rows are shown):

start_station_name bad_trips num_trips fraction_bad

Contact Centre, Southbury House 20 48 0.416667

Monier Road, Newham 1 25 0.040000

Aberfeldy Street, Poplar 35 955 0.036649

Ormonde Gate, Chelsea 315 8932 0.035266

Thornfield House, Poplar 28 947 0.029567

...

It is clear that the station at the top of the table is quite odd. Just 48 trips
originated from the Southbury House station, and 20 of those are bad!
Nevertheless, we can confirm this by using pandas to look at the statistics
of the DataFrame:

badtrips.describe()

This returns the following:

 bad_trips num_trips fraction_bad

count 823.000000 823.000000 823.000000

mean 75.074119 11869.755772 0.007636

std 70.512207 9906.268656 0.014739

min 0.000000 11.000000 0.000000

25% 41.000000 5903.000000 0.005002

50% 62.000000 9998.000000 0.006368

75% 91.500000 14852.500000 0.008383

max 967.000000 95740.000000 0.416667

Examining the results, we notice that fraction_bad ranges from 0 to 0.417
(look at the min and max), but it is not clear how relevant this ratio is
because the stations also vary quite dramatically. For example, the number
of trips ranges from 11 to 95,740.

We can look at a scatter plot to see if there is any clear trend:

badtrips.plot.scatter('num_trips', 'fraction_bad');

Figure 5-8 displays the result.

Figure 5-8. In this plot, it seems that higher values of fraction_bad are associated with stations
with low num_trips

It appears from the graph that higher values of fraction_bad are
associated with stations with low num_trips, but the trend is not clear
because of the outlier 0.4 value. Let’s zoom in a bit and add a line of best fit
using the seaborn plotting package:

import seaborn as sns

ax = sns.regplot(badtrips['num_trips'],badtrips['fraction_bad']);

ax.set_ylim(0, 0.05);

As Figure 5-9 shows, this yields a clear depiction of the trend between the
fraction of bad trips and how busy the station is.

Figure 5-9. It is clear that higher values of fraction_bad are associated with stations with low
num_trips

Because higher values of fraction_bad are associated with stations with
low num_trips, we should not have our crew simply visit stations with
high values of fraction_bad. So, how should we choose a set of stations
on which to conduct a spot check?

One approach could be to pick the five worst of the really busy stations,
five of the next most busy, and so forth. We can do this by creating four
different bands from the quantile of the stations by num_trips and then
finding the five worst stations within each band. That’s what this pandas
snippet does:

stations_to_examine = []

for band in range(1,5):

 min_trips = badtrips['num_trips'].quantile(0.2*(band))

 max_trips = badtrips['num_trips'].quantile(0.2*(band+1))

 query = 'num_trips >= {} and num_trips < {}'.format(

 min_trips, max_trips)

 print(query) # band

 stations = badtrips.query(query)

 stations = stations.sort_values(

 by=['fraction_bad'], ascending=False)[:5]

 print(stations) # 5 worst

 stations_to_examine.append(stations)

 print()

The first band consists of the 20th to 40th percentile of stations by
busyness:

num_trips >= 4826.4 and num_trips < 8511.8

 start_station_name bad_trips num_trips fraction_bad

6 River Street, Clerkenwell 221 8279 0.026694

9 Courland Grove, Wandsworth Road 105 5369 0.019557

10 Stanley Grove, Battersea 92 4882 0.018845

12 Southern Grove, Bow 112 6152 0.018205

18 Richmond Way, Shepherd's Bush 126 8149 0.015462

The last band consists of the 80th to 100th percentile of stations by
busyness:

num_trips >= 16509.2 and num_trips < 95740.0

 start_station_name bad_trips num_trips fraction_bad

25 Queen's Gate, Kensington Gardens 396 27457 0.014423

74 Speakers' Corner 2, Hyde Park 468 41107 0.011385

76 Cumberland Gate, Hyde Park 303 26981 0.011230

77 Albert Gate, Hyde Park 729 66547 0.010955

82 Triangle Car Park, Hyde Park 454 41675 0.010894

Notice that in the first band, it takes a fraction_bad of 0.015 to make the
list, while in the last band, a fraction_bad of 0.01 is sufficient. The
smallness of these numbers might make you complacent, but this is a 50%
difference.

We can then use pandas to concatenate the various bands and the BigQuery
API to write these stations back to BigQuery:

stations_to_examine = pd.concat(stations_to_examine)

bq = bigquery.Client(project=PROJECT)

tblref = TableReference.from_string(

 '{}.ch05eu.bad_bikes'.format(PROJECT))

{} _ ())

job = bq.load_table_from_dataframe(stations_to_examine, tblref)

job.result() # blocks and waits

We now have the stations to examine in a persistent storage, but we still
need to get the data out to our crew. The best format for this is a map, and
we can create it in Python if we know the latitude and longitude of our
stations. We do, of course—the location of the stations is in the
cycle_stations table:

%%bigquery stations_to_examine --project $PROJECT

SELECT

 start_station_name AS station_name

 , num_trips

 , fraction_bad

 , latitude

 , longitude

FROM ch05eu.bad_bikes AS bad

JOIN `bigquery-public-data`.london_bicycles.cycle_stations AS s

ON bad.start_station_name = s.name

And here is the result (not all rows are shown):

station_name

num_trip

s fraction_bad latitude longitude

Ormonde Gate, Chelsea 8932 0.035266 51.487964 -0.161765

Stanley Grove, Battersea 4882 0.018845 51.470475 -0.152130

Courland Grove, Wandsworth
Road

5369 0.019557 51.472918 -0.132103

Southern Grove, Bow 6152 0.018205 51.523538 -0.030556

...

With the location information in hand, we can plot a map using the folium
package:

import folium

map_pts = folium.Map(location=[51.5, -0.15], zoom_start=12)

for idx, row in stations_to_examine.iterrows():

13

 folium.Marker(location=[row['latitude'], row['longitude']],

 popup=row['station_name']).add_to(map_pts)

This produces the beautiful interactive map shown in Figure 5-10, which
our crew can use to check on the stations that we’ve identified.

Figure 5-10. An interactive map of the stations that need to be checked

We were able to seamlessly integrate BigQuery, pandas, and Jupyter to
accomplish a data analysis task. We used BigQuery to compute
aggregations over millions of bicycle rides, pandas to carry out statistical
tasks, and Python packages such as folium to visualize the results
interactively.

Working with BigQuery from R
Python is one of the most popular languages for data science, but it shares
that perch with R, a long-standing programming language and software
environment for statistics and graphics.

To use BigQuery from R, install the library bigrquery from CRAN:

install.packages("bigrquery", dependencies=TRUE)

Here’s a simple example of querying the bicycle dataset from R:

billing <- 'cloud-training-demos' # your project name

sql <- "

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

 FROM `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY start_station_name

 ORDER BY num_trips DESC

 LIMIT 5

"

tbl <- bq_project_query(billing, sql)

bq_table_download(tbl, max_results=100)

grid.tbl(tbl)

You use bq_project_query to create a BigQuery query, and you execute it
by using bq_table_download.

You can also use R from a Jupyter notebook. The conda environment for
Jupyter has an R extension that you can load by running the following:

!conda install rpy2

%load_ext rpy2.ipython

To carry out a linear regression to predict the number of docks at a station
based on its location, you can first populate an R DataFrame from
BigQuery:

%%bigquery docks --project $PROJECT

SELECT

 docks_count, latitude, longitude

FROM `bigquery-public-data`.london_bicycles.cycle_stations

WHERE bikes_count > 0

14

Then Jupyter Magics for R can be performed just like the Jupyter Magics
for Python. Thus, you can use the R magic to perform linear modeling (lm)
on the docks DataFrame:

%%R -i docks

mod <- lm(docks ~ latitude + longitude)

summary(mod)

Cloud Dataflow
We introduced Cloud Dataflow in Chapter 4 as a way to load data into
BigQuery from MySQL. Cloud Dataflow is a managed service for
executing pipelines written using Apache Beam. Dataflow is quite useful in
data science because it provides a way to carry out transformations that
would be difficult to perform in SQL. As of this writing, Beam pipelines
can be written in Python, Java, and Go, with Java the most mature.

As an example of where this could be useful, consider the distribution of
the length of bicycle rentals from an individual bicycle station shown in
Figure 5-11.

Figure 5-11. Distribution of the duration of bicycle rides from a single station

As Figure 5-11 demonstrates, because the bar at x = 1000 has y = 1500,
there were approximately 1,500 rides that were around 1,000 seconds in
duration.

Although the specific durations are available in the BigQuery table, it can
be helpful to fit these values to a theoretical distribution so that we can
carry out simulations and study the effect of pricing and availability
changes more readily. In Python, given an array of duration values, it is
quite straightforward to compute the parameters of a Gamma distribution
fit using the scipy package:

from scipy import stats

ag,bg,cg = stats.gamma.fit(df['duration'])

Imagine that you want to go through all of the stations and compute the
parameters of the Gamma distribution fit to the duration of rentals from
each of those stations. Because this is not convenient in SQL but can easily
be done in Python, we can write a Dataflow job to compute the Gamma fits

https://en.wikipedia.org/wiki/Gamma_distribution

in a distributed manner—that is, to parallelize the computation of Gamma
fits on a cluster of machines.

The pipeline starts with a query to pull the durations for each station,
sends the resulting rows to the method compute_fit, and then writes the
resulting rows to BigQuery, to the table station_stats:

 opts = beam.pipeline.PipelineOptions(flags = [], **options)

 RUNNER = 'DataflowRunner'

 query = """

 SELECT start_station_id, ARRAY_AGG(duration) AS duration_array

 FROM `bigquery-public-data.london_bicycles.cycle_hire`

 GROUP BY start_station_id

 """

 with beam.Pipeline(RUNNER, options = opts) as p:

 (p

 | 'read_bq' >> beam.io.Read(beam.io.BigQuerySource(query=query))

 | 'compute_fit' >> beam.Map(compute_fit)

 | 'write_bq' >> beam.io.gcp.bigquery.WriteToBigQuery(

 'ch05eu.station_stats',

schema='station_id:string,ag:FLOAT64,bg:FLOAT64,cg:FLOAT64')

)

The compute_fit method is a Python function that takes in a dictionary
corresponding to the input BigQuery row and returns a dictionary
corresponding to the desired output row:

def compute_fit(row):

 from scipy import stats

 result = {}

 result['station_id'] = row['start_station_id']

 durations = row['duration_array']

 ag, bg, cg = stats.gamma.fit(durations)

 result['ag'] = ag

 result['bg'] = bg

 result['cg'] = cg

 return result

The fit values are then written to a destination table.

15

16

After launching the Dataflow job, we can monitor it via the GCP Cloud
Console, shown in Figure 5-12, and see the job autoscaling to process the
stations in parallel.

Figure 5-12. The Dataflow job is parallelized and run on a cluster whose size is autoscaled based on
the rate of progress in each step

When the Dataflow job finishes, we can query the table and obtain statistics
of the stations and plot the parameters of the Gamma distribution (see the
notebook on GitHub for the graphs).

JDBC/ODBC drivers
Because BigQuery is a warehouse for structured data, it can be convenient
if database-agnostic APIs like Java Database Connectivity (JDBC) and
Open Database Connectivity (ODBC) can be employed by a Java or .NET
application to communicate with a BigQuery database driver. This is not
recommended for new applications—use the client library instead. If,

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/05_devel/statfit.ipynb

however, you have a legacy application that communicates with a database
today and needs to be converted with minimal code changes to
communicate with BigQuery, the use of a JDBC/ODBC driver might be
warranted.

WARNING
We strongly recommend the use of the client libraries (in the language of your choice)
over the use of JDBC/ODBC drivers because the functionality exposed by the
JDBC/ODBC driver is a subset of the full capabilities of BigQuery. Among the features
missing are support for large-scale ingestion (i.e., many of the loading techniques
described in the previous chapter), large-scale export (meaning data movement will be
slow), and nested/repeated fields (preventing the use of many of the performance
optimizations that we cover in Chapter 7). Designing new systems based on
JDBC/ODBC drivers tends to lead to painful technical debt.

A Google partner does provide ODBC and JDBC drivers capable of
executing BigQuery Standard SQL queries. To install the Java drivers, for
example, you would download a ZIP file, unzip it, and place all of the Java
Archive (JAR) files in the ZIP folder in the classpath of your Java
application. Using the driver in a Java application typically involves
modifying a configuration file that specifies the connection information.
There are several options to configure the authentication and create a
connection string that can be used within your Java application.

Incorporating BigQuery Data into Google Slides (in G
Suite)
It is possible to use Google Apps Script to manage BigQuery projects,
upload data, and execute queries. This is useful if you want to automate the
population of Google Docs, Google Sheets, or Google Slides with
BigQuery data.

As an example, let’s look at creating a pair of slides with analysis of the
London bicycles data. Begin by going to https://script.google.com/create to
create a new script. Then, on the Resources menu, choose Advanced

17

https://developers.google.com/apps-script/advanced/bigquery
https://script.google.com/create

Google Services and flip on the bit for the BigQuery API (name the project
if prompted).

The full Apps Script for this example is in the GitHub repository for this
book, so copy the script and paste it into the text editor. Then, at the top of
the script, change the PROJECT_ID, choose the function
createBigQueryPresentation, and then click the run button, as
illustrated in Figure 5-13.

Figure 5-13. Use Google Apps Script to create a presentation from data in BigQuery

The resulting spreadsheet and slide deck will show up in Google Drive (you
can also find their URLs by clicking View > Logs). The slide deck will look
similar to that shown in Figure 5-14.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/05_devel/bq_to_slides.gs

Figure 5-14. Slide deck created by the Google Apps Script

The function createBigQueryPresentation carried out the following
code:

function createBigQueryPresentation() {

 var spreadsheet = runQuery();

 Logger.log('Results spreadsheet created: %s', spreadsheet.getUrl());

 var chart = createColumnChart(spreadsheet); // UPDATED

 var deck = createSlidePresentation(spreadsheet, chart); // NEW

 Logger.log('Results slide deck created: %s', deck.getUrl()); // NEW

}

Essentially, it calls three functions:

runQuery to run a query and store the results in a Google Sheets
spreadsheet

createColumnChart to create a chart from the data in the
spreadsheet

createSlidePresentation to create the output Google Slides
slide deck

The runQuery() method uses the Apps Scripts client library to invoke
BigQuery and page through the results:

var queryResults = BigQuery.Jobs.query(request, PROJECT_ID);

var rows = queryResults.rows;

 while (queryResults.pageToken) {

 queryResults = BigQuery.Jobs.getQueryResults(PROJECT_ID, jobId, {

 pageToken: queryResults.pageToken

 });

 rows = rows.concat(queryResults.rows);

 }

Then it creates a spreadsheet and adds these rows to the sheet. The other
two functions employ Apps Scripts code to draw graphs, create a slide
deck, and add both types of data to the slide deck.

Bash Scripting with BigQuery
The bq command-line tool that is provided as part of the Google Cloud
Software Development Kit (SDK) provides a convenient way to invoke
BigQuery operations from the command line. The SDK is installed by
default on Google Cloud virtual machines (VMs) and clusters. You can also
download and install the SDK in your on-premises development and
production environments.

You can use the bq tool to interact with the BigQuery service when writing
Bash scripts or by calling out to the shell from many programming
languages without the need to depend on the client library. Common uses of

https://cloud.google.com/sdk/

bq include creating and verifying the existence of datasets and tables,
executing queries, loading data into tables, populating tables and views, and
verifying the status of jobs. Let’s look at each of these.

Creating Datasets and Tables
To create a dataset, use bq mk and specify the location of the dataset (e.g.,
US or EU). It is also possible to specify nondefault values for such things as
the table expiration time. It is a best practice to provide a description for the
dataset:

bq mk --location=US \

 --default_table_expiration 3600 \

 --description "Chapter 5 of BigQuery Book." \

 ch05

Checking whether a dataset exists

The bq mk in the preceding example fails if the dataset already exists. To
create the dataset only if the dataset doesn’t already exist, you need to list
existing datasets using bq ls and check whether that list contains a dataset
with the name you’re looking for:

#!/bin/bash

 bq_safe_mk() {

 dataset=$1

 exists=$(bq ls --dataset | grep -w $dataset)

 if [-n "$exists"]; then

 echo "Not creating $dataset since it already exists"

 else

 echo "Creating $dataset"

 bq mk $dataset

 fi

}

this is how you call the function

bq_safe_mk ch05

Creating a dataset in a different project

18

The dataset ch05 is created in the default project (specified when you
logged into the VM or when you ran gcloud auth using the Google Cloud
SDK). To create a dataset in a different project, qualify the dataset name
with the name of the project in which the dataset should be created:

bq mk --location=US \

 --default_table_expiration 3600 \

 --description "Chapter 5 of BigQuery Book." \

 projectname:ch05

Creating a table

Creating a table is similar to creating a dataset except that you must add --
table to the bq mk command. The following creates a table named
ch05.rentals_last_hour that expires in 3,600 seconds and that has two
columns named rental_id (a string) and duration (a float):

bq mk --table \

 --expiration 3600 \

 --description "One hour of data" \

 --label persistence:volatile \

 ch05.rentals_last_hour rental_id:STRING,duration:FLOAT

You can use the label to tag tables with characteristics; Data Catalog
supports the ability to search for tables that have a specific label—here,
persistence is the key and volatile is the label.

Complex schema
For more complex schemas that cannot easily be expressed by a comma-
separated string, specify a JSON file, as explained in Chapter 4:

bq mk --table \

 --expiration 3600 \

 --description "One hour of data" \

 --label persistence:volatile \

 ch05.rentals_last_hour schema.json

Copying datasets
The most efficient way to copy datasets is through the command-line tool.
For example, this copies a table from the ch04 dataset to the ch05 dataset:

bq cp ch04.old_table ch05.new_table

TIP
Copying tables can take a while, but your script might not be able to proceed until the job is
complete. An easy way to wait for a job to complete is to use bq wait:

bq wait --fail_on_error job_id

This preceding code waits forever until the job completes, whereas the following waits a
maximum of 600 seconds:

bq wait --fail_on_error job_id 600

If there is only one running job, you can omit the job_id.

Loading and inserting data

We covered loading data into a destination table using bq load rather
exhaustively in Chapter 4. For a refresher, see that chapter.

To insert rows into a table, write the rows as newline-delimited JSON and
use bq insert:

bq insert ch05.rentals_last_hour data.json

In this example, the file data.json contains entries corresponding to the
schema of the table being inserted into the following:

{"rental_id":"345ce4", "duration":240}

Extracting data
You can extract from a BigQuery table to one or more files on Cloud
Storage by using bq extract:

bq extract --format=json ch05.bad_bikes gs://bad_bikes.json

Executing Queries
To execute a query, use bq query and specify the query:

bq query \

 --use_legacy_sql=false \

 'SELECT MAX(duration) FROM \

 `bigquery-public-data`.london_bicycles.cycle_hire'

You also can provide the query string via the standard input:

echo "SELECT MAX(duration) FROM \

`bigquery-public-data`.london_bicycles.cycle_hire" \

| bq query --use_legacy_sql=false

Providing the query in a single string and escaping quotes and so on can
become quite cumbersome. For readability, use the ability of Bash to read a
multiline string into a variable:

#!/bin/bash

read -d '' QUERY_TEXT << EOF

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM \`bigquery-public-data\`.london_bicycles.cycle_hire

GROUP BY start_station_name

19

ORDER BY num_trips DESC

LIMIT 5

EOF

bq query --project_id=some_project --use_legacy_sql=false $QUERY_TEXT

In this code, we are reading into the variable QUERY_TEXT a multiline string
that will be terminated by the word EOF. We can then pass that variable into
bq query.

The preceding code is also an illustration of explicitly specifying the project
that is to be billed for the query.

Remember to use --use_legacy_sql=false, because the default dialect
used by bq is not the Standard SQL that we cover in this book!

SETTING FLAGS IN .BIGQUERYRC
If you tend to use the bq command-line tool interactively, it can be
helpful to place common flags such as --location in
$BIGQUERYRC/.bigqueryrc or in $HOME/.bigqueryrc if the
environment variable $BIGQUERYRC is not defined. Here is an example
of a .bigqueryrc file:

--location=EU

--project_id=some_project

[mk]

--expiration=3600

[query]

--use_legacy_sql=false

In this resource file, all BigQuery commands will be invoked with --
location=EU and billed to some_project, whereas all bq mk will be
invoked with --expiration=3600, and all bq query will be invoked
with --use_legacy_sql=false. Explicitly specifying an --
expiration on the command line will override the value from the
resource file.

If you do have a BigQuery resource file, be aware that any scripts you
write or invoke will work differently on machines where you have this
resource file installed (typically development machines) versus
machines where you don’t have the resource file (typically production
machines). This can lead to a great deal of confusion. In our experience,
any gains in productivity caused by having the resource file are
cancelled out by the increased debugging challenge when using the
scripts on different machines. Your mileage may vary.

Previewing data

To preview a table, use bq head. Unlike a query of SELECT * followed by
LIMIT, this is deterministic and doesn’t incur BigQuery charges.

To view the first 10 rows, you can do the following:

bq head -n 10 ch05.bad_bikes

To view the next 10 rows, do this:

bq head -s 10 -n 10 ch05.bad_bikes

Note that the table is not actually ordered, and so you should treat this as a
way to read an arbitrary set of rows.

Creating views

You can create views and materialized views from queries using bq mk. For
example, this creates a view named rental_duration in the dataset ch05:

#!/bin/bash

read -d '' QUERY_TEXT << EOF

SELECT

 start_station_name

 , duration/60 AS duration_minutes

FROM \`bigquery-public-data\`.london_bicycles.cycle_hire

EOF

bq mk --view=$QUERY_TEXT ch05.rental_duration

Views in BigQuery can be queried just like tables, but they act like
subqueries—querying a view will bring the full text of the view into the
calling query. Materialized views save the query results of the view into a
table that is then queried. BigQuery takes care of ensuring that the
materialized view is up to date. We cover views and materialized views in
more detail in Chapter 10. To create a materialized view, replace --view in
the preceding snippet with --materialized_view.

BigQuery Objects

We looked at bq ls --dataset as a way to list the datasets in a project.
As Table 5-3 demonstrates, there are other things you can list as well.

Table 5-3. Commands and subsequent lists

Command What it lists

bq ls ch05 Tables in the dataset ch05

bq ls -p All projects

bq ls -j some_project All the jobs in the specified project

bq ls --dataset All the datasets in the default project

bq ls --dataset some_project All the datasets in the specified project

bq ls --models Machine learning models

bq ls --transfer_run \
 --filter='states:PENDING' \
 --run_attempt='LATEST' \
 projects/p/locations/l

\
 /transferConfigs/c

Transfer runs filtered to show only pending ones

bq ls --reservation_grant \
 --project_id=some_proj \
 --location='us'

Reservation grants for slots in the specified
project

Showing details
Table 5-4 illustrates how you can look at the details of a BigQuery object
using bq show.

Table 5-4. BigQuery commands and details shown

Command Details of this object are shown

bq show ch05 The dataset ch05

bq show -j some_job_id The specified job

bq show --schema ch05.bad_bikes The schema of the table ch05.bad_b
ikes

bq show --view ch05.some_view
bq show --materialized_view ch05.some_view

The specified view

bq show --model ch05.some_model The specified model

bq show --transfer_run \
 projects/p/locations/l/transferConfigs/c/r

uns/r

The transfer run

In particular, note that you can list jobs using bq ls and verify the status of
jobs using bq show.

Updating
You can update the details of already created tables, datasets, and so on
using bq update:

bq update --description "Bikes that need repair" ch05.bad_bikes

You can use bq update to update the query corresponding to a view or
materialized view,

bq update \

 --view "SELECT ..."\

 ch05.rental_duration

and even the size of a reservation (we will look at slots and reservations in
Chapter 6):

bq update --reservation --location=US \

 --project_id=some_project \

 --reservation_size=2000000000

Summary
In this chapter, we looked at three different forms of BigQuery client
libraries:

A REST API that can be accessed from programs written in any
language that can communicate with a web server

A Google API client that uses autogenerated language bindings in
many programming languages

A custom-built BigQuery client library that provides a convenient
way to access BigQuery from a number of popular programming
languages

Of these, the recommended approach is to use the BigQuery client library,
provided one is available for your language of choice. If a BigQuery client
library doesn’t exist, use the Google API client. Only if you are working in
an environment in which even the API client is not available should you
interact with the REST API directly.

There are a couple of higher-level abstractions available that make
programming against BigQuery easy in two commonly used environments:
Jupyter notebooks and shell scripts. We delved into the support for
BigQuery from Jupyter and pandas and illustrated how the combination of
these tools provides a powerful and extensible environment for
sophisticated data science workflows. We also touched on integration with
R and with G Suite and covered many of the capabilities of the bq
command-line tool. Finally, we covered Bash scripting with BigQuery.

1 Other APIs, especially non-REST APIs such as gRPC ones, will have a different API prefix.

2 Specifically, https://www.googleapis.com/auth/bigquery or
https://www.googleapis.com/auth/cloud-platform have to be allowed.

3 This is the file 05_devel/rest_list.sh in the GitHub repository for this book. You can run it
anywhere that you have the Cloud SDK and curl installed (such as in Cloud Shell). Because
we have not created it in this chapter yet, I’m using the dataset (ch04) that we loaded in the
previous chapter.

4 See 05_devel/rest_query.sh in the GitHub repository for this book.

5 See 04_devel/rest_query_async.sh in the GitHub repository for this book.

6 This requires the pyarrow library. If you don’t have it already, install it by using pip install
pyarrow.

7 Because pandas, by default, alphabetizes the column names, your BigQuery table will have a
schema that is alphabetized and not in the order in which the column names appear in the
tuples.

8 For the full set of support URIs, see
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.sourceUris.

9 To create a bucket in the EU region, use: gsutil mb -l EU gs://some-bucket-name.

10 Which five rows we get will be arbitrary because BigQuery does not guarantee ordering. The
purpose of providing the start_index is so that we can get the “next page” of five rows by
supplying start_index=5.

11 This is the same API used by the BigQuery web UI to show you the estimate.

12 This is the script 05_devel/launch_notebook.sh in the GitHub repository for this book.

13 This is the point of data warehousing: to bring enterprise data together into a centralized
repository so that any enterprise data that an analyst might possibly need is only a join away.

14 As of this writing, the PyTorch image for the Notebook Instance on GCP is built using conda.

15 These queries are billed as part of the Dataflow job.

16 See 05_devel/statfit.ipynb in the GitHub repository for this book.

17 See https://cloud.google.com/bigquery/partners/simba-drivers/ and
https://www.simba.com/drivers/bigquery-odbc-jdbc/.

18 This is, of course, subject to race conditions if someone else created the dataset between your
check and actual creation.

19 See 05_devel/bq_query.sh in the GitHub repository for this book.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.sourceUris
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-boo
https://cloud.google.com/bigquery/partners/simba-drivers/
https://www.simba.com/drivers/bigquery-odbc-jdbc/
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

Chapter 6. Architecture of
BigQuery

BigQuery aspires to scale to your datasets and run as fast as your business
requires. The experience should seem like magic. The problem with things
that appear to be “magic” is that when you encounter a problem, you don’t
know how to even begin fixing it.

This chapter delves into the inner workings of BigQuery. We cover its high-
level architecture and the Dremel query engine and provide details on the
storage metadata. We cover the details on how BigQuery handles security,
availability, and disaster recovery in Chapter 10. At best, this chapter might
just satisfy your curiosity. However, in case something doesn’t behave the
way you expect it to, this chapter can help you to understand more about
what is actually going on and how you can fix or work around the problem.

High-Level Architecture
BigQuery is a large-scale distributed system with hundreds of thousands of
execution tasks in dozens of interrelated microservices in several
availability zones across every Google Cloud region. This section presents a
simplified view of how the high-level pieces fit together. Describing all of
the components in detail might require its own book, and we’d lose most of
our readers by the time we got past the storage transcoder, and the rest
would drop out long before we got to the stubby proxy (yes, that’s a real
thing, and no, it isn’t as weird as it sounds).

Life of a Query Request
To understand how BigQuery is put together, let’s step through what
happens when you send a query request. We won’t go into actual query

execution yet; we save that for a later section. Instead, we’ll just walk
through the high-level components. Figure 6-1 shows the simplified control
flow when running a query. We discuss the detailed responsibilities of each
block on the diagram later in the chapter.

Figure 6-1. The simplified path that a query request takes through the BigQuery system

To begin, let’s see what happens when you run the simplest of SQL queries:
SELECT 17. This query doesn’t even need to read any data; it just returns a
single value.

Step 1: HTTP POST
The client sends an HTTP POST request to the BigQuery endpoint. Usually
that request is wrapped up in a library or in a Java Database Connectivity
(JDBC) driver, but at the basic level, anyone can run a query using curl or
any other tool that lets you send raw HTTP requests (see Chapter 5).

Here is what the query request looks like on the wire:

POST /bigquery/v2/projects/bigquery-e2e/jobs HTTP/1.1

User-Agent: curl/7.30.0

Host: www.googleapis.com

Accept: */*

Authorization: Bearer <redacted>

Content-Type: application/json

Content-Length: 126

{'configuration': {'query': {'query': 'SELECT 17'}}}

There are a few important parts here: the first is the HTTP verb, which in
this case is POST, because we’re going to be modifying state by creating a
query job. The second is the Authorization token. This is an OAuth2
token that identifies you. The last part is the JSON payload, which indicates
that we’re running a query, and the query text is SELECT 17. As you might
imagine, there are lots of other options that you can send; check out the
BigQuery API documentation to find out more.

Figure 6-2 shows a more detailed version of the path that this request takes
through the system; the next few sections explore what each stage in the
request does and why it is necessary.

Figure 6-2. The detailed path a query request takes to start a query

Step 2: Routing
The HTTP POST request is routed through the magic of the internet to the
REST endpoint http://www.googleapis.com/bigquery/v2/projects/bigquery-
e2e/jobs. This address is served by a Google Front-End (GFE) server, the
same type of server that services Google Search and other Google products.
In this case, the GFE needs to find the BigQuery backend that can service
your request.

BigQuery is a global service. How does it know which region to route the
request to? There are a number of hints that determine where to send the
request. Part of the URL indicates which cloud project is responsible for
paying for the request. Some cloud projects are set up with restrictions on

1

https://cloud.google.com/bigquery/docs/reference/rest/
http://www.googleapis.com/bigquery/v2/projects/bigquery-e2e/jobs

where they are allowed to run queries. If your organization has configured
your project to run only in Australia, your query will be routed to Australia.
Some other projects are tied to a flat-rate reservation. If you have a
reservation in a particular location, the request will be sent there.

If you don’t have a reservation and you haven’t specified which region to
run in as part of the job name, the router must parse the query to determine
what datasets are involved. Datasets are tied to locations, so BigQuery
looks up the region of the dataset in order to route to that region. If you are
extremely performance conscious or you want to control the location of the
output results, you can specify the region to which you want to route the
query as part of the query request by filling in the job reference field.

In our query example, however, we didn’t provide the router any help at all,
and there were no datasets involved. In this case, the router falls back to
sending the request to the US.

The router transforms the JSON HTTP request to Protocol Buffers
(Protobufs), which is the platform- and language-neutral serialization
format used for communication between virtually all Google services.

Step 3: Job Server
The BigQuery Job Server is responsible for keeping track of the state of a
request. Because the network connection between the client and BigQuery
server is considered fallible and some queries can take minutes or even
hours to run, the Job Server is designed to operate asynchronously.

The Job Server performs authorization to ensure that the caller is allowed to
run a query that is billed to the enclosing project of the job. This is
important to prevent someone from being able to run up a bill on your
account. Authorization of the actual tables is deferred until the query starts.

The Job Server is in charge of dispatching the request to the correct query
server. Each project generally has a primary and a secondary availability
zone. If the primary zone is not available, queries are routed to the
secondary.

https://developers.google.com/protocol-buffers/

PROJECT AND DATA REBALANCING
In BigQuery, any two tables in the same region can be joined together
as long as the user has access to both tables. This provides a challenge
for the backend, because if the two tables aren’t located in the same
physical location, running the query will be slow and costly (to Google,
not the user) because it will need to move a lot of data over the network.

In the background, BigQuery continually solves a complex optimization
problem: how to make sure that all tables that are joined together end
up close to one another. Moreover, it also must understand the capacity
of various compute and storage clusters, network topology, availability
zones, and where the data currently exists.

If the background rebalancer decides that a project needs to move, it
will start replicating the data to another availability zone or even
another region (in the event the data is stored in a multiregional location
—if you’re storing data in a single-region location, it will never get
moved anywhere else). In this way, data is always joinable, and clusters
with finite capacity do not run out of room despite large increases in
usage.

When backup or failover processes happen infrequently, they often don’t
work as expected when they’re actually needed. A solution is to trigger
such failover processes routinely, so that they can be counted on to be
reliable. BigQuery triggers a drain, or failover, of a compute cluster on the
order of once per week, in one region or another. Drains can happen for a
number of different reasons, like a network switch failure, degradation of a
dependent service, or unusually high queue length.

When a query computation cluster (i.e., zone) is drained, all projects that
use it transition to their secondary clusters. Replication state is carefully
tracked, so any newly loaded or rebalanced data that has not yet arrived in
the secondary cluster will be read from any other location in which it can be
found. In the rare event that no live copies of the data can be found,
BigQuery will report an error rather than query over missing data.

Step 4: Query engine
Query execution is described in a later section, so we just go over the high-
level parts here. Queries are routed to a Query Master, which is responsible
for overall query execution. The Query Master contacts the metadata server
to establish where the physical data resides and how it is partitioned.
Partition pruning happens at this stage, so if the query doesn’t read all of the
partitions, only the metadata of the active partitions will be returned.

After the query server knows how much data is involved in the query and
has a chance to put together a preliminary query plan, the Query Master
requests slots from the scheduler. A slot is a thread of execution on a query
worker shard; it generally represents half of a CPU core and about 1 GB of
RAM. This amount is somewhat fuzzy, because slots can grow or shrink if
they need more or fewer resources and as computers in a Google datacenter
are upgraded.

The scheduler decides how to farm out work among the query shards. A
request for slots returns the addresses of the shards that will run the query.
The Query Master then sends the query request to each of the Dremel
shards in parallel. See “Query Execution” for more details on how query
execution works.

Step 5: Returning the query results
After the query worker shards finish executing the query, the results are
split into two parts. The first page or so of results is stored in Spanner, a
distributed relational database, along with the query metadata. The Spanner
data is located in the same region in which the query is running. The
remaining data is written to Colossus, Google’s distributed filesystem.
Queries that have small results do not need to touch the disk at all, so their
results can be returned very quickly.

The BigQuery API is designed to be reconnectable. That is, it is designed to
be able to run synchronously in the best case, but if it times out, the calling
client should be able to reconnect. To make this possible, before timing out,
the Job Server will return a job ID to the client, and the client can look up

2

https://ai.google/research/pubs/pub39966

that job to get the results. The BigQuery clients bq.py (the cloud client
libraries) and the Open Database Connectivity (ODBC)/JDBC drivers
encapsulate this protocol, so end users can reliably get query results.

BigQuery results are stored for 24 hours; they are functionally equivalent to
a table and can be queried as if they were a table. Results are limited to 10
GB for normal SELECT queries. If you want to write more data than this,
you can use CREATE TABLE AS SELECT or INSERT statements, which have
no size limits.

BigQuery Upgrades
BigQuery can do in-place upgrades without any downtime. In fact,
upgrades happen all the time, usually at least once per week. Upgrades are
usually rolled out slowly over several days, starting with a single zone in a
single region on the first day and then increasing in reach each subsequent
day. The goal is to be able to catch any problems with as small of a “blast
radius” as possible.

BigQuery can even update without failing queries. To start an upgrade, a
portion of the shards are drained of work (i.e., they stop accepting new
work). These shards are then upgraded in place. Shards are designed to be
highly failure tolerant and generally cause no more than a small hiccup in
the runtime of queries that they are running. As Query Masters complete
their queries, they can also be upgraded. Because the failure of a Query
Master can cause queries to restart, they take a long time to drain.

Job Servers can be updated fairly easily because they maintain their state in
Spanner; when they restart, they can pick up where they left off. Finally,
routers have very little state, so they can be updated almost at will.
Schedulers have a single master per Dremel cluster, so to update them, their
standbys are first updated, and then they go into failover mode.

Query Engine (Dremel)

Dremel was created in 2006 by an engineer who built a query engine
because he grew tired of waiting for his MapReduce jobs to finish. Dremel
became very popular in Google; at one point, 80% of Google employees
were active users of Dremel, directly or indirectly.

The initial topology of Dremel was tree structured. Queries would enter at
the root, branch out, and be sent to the leaves, which each operated on part
of the query. Results and aggregations flowed back up the tree to the root.
Even though Dremel no longer uses a fixed-tree structure, Dremel clusters
are still often referred to as “trees.”

This query can be simply computed via an execution tree:

SELECT

 COUNT(*)

 , start_station_name

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY 2

ORDER BY 1 DESC

LIMIT 10

The query does a simple scan and aggregate. The scan can be done at the
leaves, the aggregation can be done higher up the tree, and the final
combination at the root. If you didn’t follow that, don’t worry; we describe
in detail how this actually works.

In 2010, Dremel architecture changed to build execution plans dynamically
rather than have a single static topology. Although a tree works great for
certain types of queries, namely scan-filter-aggregate queries like the one
just shown, it does poorly on more complicated queries. If your query needs
to do a JOIN operation or has nested subqueries, it will need multiple passes
through the tree. Moreover, each pass through the tree operates over
differently sized data and thus will need to scale differently.

For an example of a query that cannot be processed by a simple static tree,
look at the following:

SELECT

 COUNT(*)

 , starts.start_station_id as point_a

 , ends.start_station_id as point_b

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire starts,

 `bigquery-public-data`.london_bicycles.cycle_hire ends

WHERE

 starts.start_station_id = ends.end_station_id

 AND ends.start_station_id = starts.end_station_id

 AND starts.start_station_id <> ends.start_station_id

 AND starts.start_date = ends.start_date

GROUP BY 2, 3

ORDER BY 1 DESC

LIMIT 10

This query finds the London bike share stations that have the most trips
going back and forth between them during a single day. Because this query
does a join, it requires additional layers in the execution tree.

The current Dremel architecture, called Dremel X (because this is the 10th
version), builds a dynamic query plan that can be any number of levels and
can even change the plan while the query is running. Figure 6-3 shows the
simplified control flow of a query in Dremel X. Note that although
execution might still look like a tree, because of the shuffle step between
each query stage, any number of levels can be added.

Figure 6-3. Dremel X data flow for a query with two execution stages and one output stage

Dremel Architecture
The query engine has three parts: the Query Master, the Scheduler, and the
Worker Shard. The Query Master is responsible for query planning
(determining what work to do), the Scheduler is responsible for assigning
slots (identifying who is available to do the work), and the Worker Shards
are responsible for executing the query (doing the work). This section goes
into each of these three components in more detail.

Query Master
The Query Master is responsible for running the query. The first thing that
it does is parse the query in order to extract two pieces of information: the
tables involved in the query and the filters applied to each table. The Query
Master then looks up the table metadata from the metadata server, which
returns the file locations for the tables.

The filters are needed in order to do partition pruning. In BigQuery, if you
partition a table by a column and then filter by that column, you can avoid
scanning any data outside the filter. The other data is “pruned” away. To
prune the partitions, all of the filters are passed to the metadata server when
doing the request; the partition filters can be pushed all the way down to the
underlying metadata database so that it returns only file locations for the
partitions that match the filter.

One of the files returned by the metadata server is special: it is the meta-
file. This meta-file shows locations of files within the table and how they
map to field values. To extract this information, the Query Master runs
another Dremel query against just the meta-file.

After the Query Master looks up the file information, it knows how much
work is involved in running the query. This is important, because to
schedule the query, the scheduler needs to know how many slots it needs to
schedule.

Before the Query Master can schedule the query, however, it still needs to
do one important thing: create a query plan. Query plans are dynamic in
BigQuery, but the query starts with an initial plan that describes how the

query can run; plans generally start simple and become more complex as
needed. The query plan divides the query into stages, with each stage
performing a set of operations. If you look at the execution details in the
BigQuery web user interface (UI), shown in Figure 6-4, you can see an
example query plan.

Figure 6-4. The query plan in the BigQuery web UI

After creating an initial query plan, the Query Master contacts the
Scheduler to find some slots in which to run the query. The Scheduler
allocates Worker Shards and returns their addresses to the Query Master.
The Query Master then sends units of work (generally one file at a time) to
the shards. Execution is done in parallel to the limit of slots returned by the
Scheduler. If there aren’t enough slots available, the Query Master will wait
until some of the Worker Shards finish their current work and then ask the
Scheduler for more. The Scheduler can increase or decrease the slots
allocated to the query at any time.

After the Worker Shards begin to complete, the Query Master will go back
to the Scheduler and ask for slots to run the second and subsequent stages
of the query. When the final stage is done, the Query Master returns to the
Job Server.

Scheduler
The BigQuery Scheduler is responsible for assigning slots to queries. A slot
is a unit of work that generally corresponds to the processing of a single file
(read stages) or shuffle sink for later stages. A shuffle sink is a temporary
storage location for intermediate query results. A slot is a thread of
execution on the Worker Shards. Many slots can be run in a single Worker
Shard task.

A single query can use as few as one slot or millions of slots, depending on
the amount of data it needs to process and how the data is laid out
physically. A query that processes a petabyte of data might use 10 million
total slots. Obviously, not all 10 million slots can be run at once, so the
Scheduler will assign as many slots as is feasible, and the remaining slots
will still be pending. If you look at the execution graph from a large query
(Figure 6-5), you can see the pending slots are activated over time. The
number of input units is the number of schedulable slots. The number of
slots in use is the height of the “active” portion of the graph.

Figure 6-5. Slot scheduling graph in a BigQuery query

The Scheduler is the arbiter of who is allotted resources. As of this writing,
an on-demand BigQuery user can use up to 2,000 slots just by running a
query. However, these resources are not guaranteed; if not enough slots are
available to give everyone who needs slots up to their 2,000 maximum, the
Scheduler will reduce all on-demand users’ slot allocation proportionally.
Suppose that the on-demand pool is 100,000 slots and all slots are already

being used by 50 different users. If a new user wants to run a query that
needs 2,000 slots, the slot allocation for each of the existing users will be
reduced by 39 slots (2,000/51) so that the new user can have the same 1,961
slots as everyone else.

The Scheduler is “fair” among users of the same priority, and among
queries from the same project. If I run a query that uses 2,000 slots, and
then run a second query while the first one is running, the first query will
lose half of its slots, and each of my queries will continue with 1,000 slots.
If the project’s slots are reduced to 1,900 because of overall load on the
system, each of those queries will then be allotted 950 slots instead.

The Scheduler can cancel running slots at any time to make way for a user
with higher priority or to ensure fairness. Each unit of work in BigQuery is
atomic and idempotent, so it can start, get killed, and run again. This
property also helps when Worker Shards crash; if the Worker Shard doesn’t
respond fast enough, the work that is being done is simply rescheduled
somewhere else, and the query proceeds normally, but perhaps it takes an
extra few hundred milliseconds to complete. If, for some reason, more than
one Worker Shard finishes the same work, the results from the shard that
finishes second are discarded.

Some users of BigQuery purchase “reserved” slots. This means that they
have right of first refusal for those slots. Those users are guaranteed to have
that many slots whenever they need them. They pay a flat fee for access to
those slots, and they can run as many (or as few) queries as they want using
those slots. If they run queries that use more slots than are available in the
reservation, portions of those queries are queued until resources become
available.

A flat-rate user can divide their project into suballocations and assign
projects to each of those suballocations. For instance, if you purchase 5,000
slots, you might decide to allocate project A to a suballocation for “BI,”
whereas you might assign project B to a suballocation for “ETL.” Note that
BI and ETL don’t mean anything to BigQuery; they’re merely designations
that indicate to people at your organization what you use them for. You

might decide to give 4,000 slots to BI because you want BI to handle lots of
concurrent querying, and then give the remaining 1,000 slots to ETL. When
all of the slots are in use, the BI users are limited to those 4,000 slots,
whereas the ETL users are limited to 1,000 slots. If the current BI
workloads are using up only 2,000 slots, the ETL users can use up the
remaining 3,000 slots (and vice versa).

Worker Shard
The Worker Shard is responsible, not surprisingly, for actually getting the
work done in a query. A Worker Shard is a task running in Borg, Google’s
container management system that allows Dremel to run many thousands of
parallel tasks in containers without having to worry about management of
hardware or infrastructure. The Worker Shard itself is capable of running
multiple tasks in parallel; each of these tasks represents a schedulable unit,
which is the aforementioned slot.

The Worker Shard exposes a Remote Procedure Call (RPC) interface to run
a small portion of one stage of a query. The RPC interface instructs the
Worker Shard as to exactly which part of the query to run and on which
data. If you look at the execution plan in the BigQuery UI (Figure 6-4), you
can see the SQL snippet that is executed on the shard. Most of that snippet
will look like normal SQL, but the source and destination tables might not
look familiar, especially if you look at a stage in the middle of a query.

The sources of a query are either files on Colossus representing the tables
being queried or outputs of previous stages. In general, one input file is
assigned to a single thread of execution (slot), and the Worker Shard does
the portion of the query requested and then writes the result to the
destination location.

The destination location is usually an in-memory filesystem. The exception
is when the query requires writing out a lot of data and this is the final
stage; in such a case, the destination will be Colossus. The in-memory
filesystem provides short-term durable storage between stages of the query
and allows the query to perform a shuffle between stages.

3

Shuffle
Shuffle is an important part of any distributed processing system. In the
case of BigQuery, Shuffle allows data-dependent dataflows between stages
by fanning out the data to a number of sinks. For example, Shuffle might
write everything beginning with “A” to sink 1, and everything beginning
with “B” to sink 2. Then, in the next stage, a single Worker Shard could
read from sink 1 and know that it had access to all of the data that begins
with “A,” whereas a different Worker Shard could read from sink 2 and
know it had access to all of the data that begins with “B.”

The number of shards involved in a stage is largely dependent on the
number of shuffle sinks that were written. So how many shuffle sinks
should you use? This is somewhat of a black-magic step; BigQuery will
dynamically change the number of shuffle sinks during a query depending
on the size and shape of the output, as shown in Figure 6-6. This dynamic
behavior is good for ensuring that queries can make forward progress and
never run out of memory. That said, the better that BigQuery estimates sink
count correctly at the outset, the faster the query will run.

Figure 6-6. Shuffling four shards to five sinks

The in-memory filesystem is limited in size; if a query shuffles too much
data in a single stage, it will begin to spill to disk. The latency of memory is

several orders of magnitude faster than the latency of a disk. Any time the
query needs to write shuffle results to disk, it can degrade performance
pretty severely. You can recognize when a query had a shuffle that spilled to
disk by looking at the query statistics in the query plan after the query
completes, as depicted in Figure 6-7. Note that this is one area where there
is significant development being done, so the penalty for spilling to disk
will diminish over time. You can work around this problem by sharding the
query into two (or more) queries and processing different ranges of the data
in each one and then combining the results.

Figure 6-7. The “Execution details” window showing bytes shuffled and bytes spilled to disk

Query Execution
Now that we’ve introduced the components of the Dremel query engine,
let’s discuss how they coordinate to run a query. We’ll begin with a very
simple query and work our way to more complex ones.

Scan-filter-count query
The simplest useful query is a scan-filter-count query—that is, a query that
reads a table, applies a filter, and then counts the results. Here is an
example:

SELECT COUNT(*) as c

FROM `bigquery-public-data`.new_york_taxi_trips.tlc_yellow_trips_2017

WHERE passenger_count > 5

This query computes the number of Yellow Cab trips in New York City in
2017 for which the passenger count was more than five. When the query

completes, we can click the “Execution details” tab to show the query plan,
as illustrated in Figure 6-8.

Figure 6-8. The query plan for a scan-filter-count query

The execution plan tells us a lot, but we’ll leave that for Chapter 7, in which
we look at execution plans in more detail.

Notice in Figure 6-8 that there are two execution stages: S00 and S01. The
first is input; this is a read phase, which reads from Colossus. The second is
output, which is responsible for combining the final results and returning
them to the user.

The Query Master looks at how much data is involved in the query and
divides it into chunks (generally corresponding to a file). In this case, there
are nine files. The Query Master then asks the scheduler for nine slots.
Because nine slots are available, the scheduler returns information about
nine different Worker Shards. Armed with this information, the Query
Master sends requests to all nine Worker Shards in parallel.

HOW DO WE KNOW HOW MANY SLOTS WERE USED?
When an input stage does a full aggregation (returning only one row),
the number of total output rows in the stage is equal to the number of
inputs to that stage. When the number of inputs is large, it will be larger
than the number of schedulable slots. Therefore, assuming that each
input gets its own slot won’t be accurate (note that row count doesn’t
have any direct correspondence to the number of inputs). But for a
small query like this, there were almost certainly at least nine slots
available, so we can see that the query used nine slots. To confirm this,
you can examine the information from the query statistics via the bq
command-line tool:

bq --format=prettyjson show -j <my_job_id> \

 | grep completedParallelInputs

This results in the following:

"completedParallelInputs": "9",

"completedParallelInputs": "1",

This confirms that the first stage had nine parallel inputs and that the
second had one.

Note that you can also see when more slots would improve performance
because you’ll see a high wait time. If you’re spending time waiting for
slots, more slots will reduce the wait time and make your query run
faster.

After the Worker Shards receive the request, stage 0 begins.

Stage 0

In stage 0, each Worker Shard will need to read a file and retain only cab
rides with more than five passengers. It then just needs to count up how

many taxi rides are left. Because we’re computing the results in parallel,
each shard doesn’t have enough information to compute the total result; it
needs to send its partial result to the next stage.

If we expand the first stage, S00, as shown in Figure 6-9, we can see the
work that was done.

Figure 6-9. Work done in the first stage of a scan-filter-count query

The first two parts make sense; reading passenger count from the table,
applying a filter, and then counting the results. The last part says “write the
results to the stage_00 output.” This is an in-memory location that will be
picked up in subsequent stages. COUNT_STAR() is an internal operator that
counts the number of rows.

After computing these partial results and writing them to the designated
output area, each shard returns to the Query Master.

Post–stage 0

After the first Worker Shard from stage 0 returns to the Query Master, the
Query Master can schedule stage 1. This involves another round trip to the
scheduler to request more slots; in this case, only a single slot is necessary
because it will need only to compute the sum of nine values. The next step
can start before stage 0 completes because it will keep reading from the

output of stage_00 until the file is closed. But in this case, it doesn’t help
much given that stage 1 doesn’t have much work to do.

Stage 1

Stage 1’s job is really simple; read nine inputs and compute the sum, as
depicted in Figure 6-10.

Figure 6-10. Work done in stage 1 of a scan-filter-count query

This is why stage 1 takes only one millisecond to complete. After stage 1
computes those nine values, reading from the in-memory file, it writes the
results to the final output.

After stage 1 completes, the Query Master reads the result from the stage 1
output and returns it to the Job Server. The query has been completed, and
the user is now one step closer to finding out that more than three million
taxi rides carried more than five passengers in 2017.

After the Query Master returns to the Job Server, the Job Server can return
the results to the client. Because the results are small, they are written to
Spanner so that the client can retrieve them at will.

Scan-filter-aggregate query
The next most simple type of query is a scan-filter-aggregate query. This
type of query can be executed in a single pass over the data. To show what

happens at larger scale, we’ll use a new table that contains one billion page-
view logs from Wikipedia. Note that if you run these queries yourself, it
might become expensive, so you probably just want to follow along here in
the book as we show you. Here’s the first query we run:

SELECT title, COUNT(title) as c

FROM `bigquery-samples.wikipedia_benchmark.Wiki1B`

WHERE title LIKE "G%o%o%g%l%e"

GROUP BY title

ORDER BY c DESC

This finds pages that have the letters “G,” “o,” “o,” “g,” “l,” and “e,” in that
order, counts the number of views for each page, and returns them in order
of popularity:

Row title c

1 Google 2904

2 Google_Chrome 1302

3 Google_Wave 623

4 Google_Translate 561

5 Google_AdSense 426

Stage 0

The first stage of this query sends the query to lots of parallel Worker
Shards, each of which reads the title column and filters out things that don’t
match. It then does a partial aggregation. Figure 6-11 shows what the
execution plan looks like.

Figure 6-11. Work done in the first stage of a scan-filter-aggregate query

The READ stage reads the title field (no other fields are needed) and
applies the filter. The AGGREGATE step counts all the records per title
(only the ones that make it through the filter). Note that the count isn’t the
total count: it is just the count of the number of times the title shows up in
the current file being read.

The WRITE stage writes to __stage00_output, like the previous query,
but this time it does something different: it adds a BY HASH directive, which
instructs it to shuffle by the value. Shuffle is used to send the results to
different buckets. These buckets are shared among Worker Shards, so all the
shards that encounter a particular value will send their results to the same
bucket. In this case we’re shuffling by the title field, which means that
every time “Google” shows up, it will go to the same bucket, and when
“Goodnight Seattle” shows up, it will go to a different bucket. This routing
is key to being able to compute the global results at scale.

WHAT’S A HASH?
The term hash comes up a lot when describing how BigQuery works.
Although this term is generally familiar to computer scientists, it isn’t
as common elsewhere. Hashing is a technique that divides an unknown
data distribution into a fixed number of buckets. If you think about
trying to run a parallel distributed system, hashing would come in
handy because it helps you to divide the work among the parallel
Worker Shards. One of the key properties of a hash function is that
things that are equal have the same hash and always end up in the same
bucket.

Suppose that you have the property sales records for all of the houses in
Seattle and you want to find out which houses sold most frequently in
the past decade. This is a lot of work to compute on your own, so let’s
further suppose that you recruit nine of your friends to help you. You
can begin by dividing up the records by year among you and your
friends, each of you reading a year’s worth of data and keeping track of
how often the houses you saw had been sold.

But how do you combine records? Note that you can’t just all share the
most frequently sold houses that you see, because a house that was sold
every year would show up only once for each of you, but it might be the
one you’re looking for. Meanwhile, a house that was sold three times in
one year might never be sold again. Clearly combining is tricky. A hash
function can come to the rescue.

You need to establish a way to divide the houses among yourselves, not
just the source data. So every time the building at 601 N. 34th Street
was sold, the same person looks at it. Then that person can just report
their top sold houses and ignore all of the others.

To solve the distribution problem, we can apply a hash function to the
address. The hash function we’ll use here is a simple one: just add the
digits in the address, and take the final digit. So 931 Crockett Avenue
would add to 13, and taking the final digit, we’d have “3.” 2444 Second

Avenue would add to 14, and taking the final digit, we’d have “4.”
Thus, each of the 10 friends would pick a number from zero to nine,
and they’d be assigned the houses that hash to that number. If we had
another person join us to help out and needed 11 buckets instead of 10,
we could have divided the number by 11 and taken the remainder (this
is effectively what taking the last digit does, with 10 buckets). This
operation is called modulus, which is a fancy name for dividing and
taking the remainder.

Because some queries could have billions or trillions of different values
(and you’ll see this in the next query), instead of creating one bucket per
value, we apply a mathematical hash function to the values (this is what BY
HASH means) and use the output as the bucket name. This means that the
same input value will always get the same output value, which is important
so that we can process the results on a single Worker Shard. It also means
that multiple different input values can be placed into the same bucket,
which reduces the number of unique buckets.

The “rows” column in the query details shown in Figure 6-11 has some
other interesting information. Unlike the previous query, we can’t see how
many slots are being used because each Worker Shard produces more than
one row of output. The number of output rows is one row per each unique
value seen, per Worker Shard. So if each Worker Shard sees 100 distinct
values and there were 200 shards, this number would be 20,000 (100 *
200). In our case, the product of the slots used and values was 28,693.

Stage 1

The next stage reads from the shuffled output of stage 0 and does the final
aggregation. Figure 6-12 presents the relevant part of the query details.

Figure 6-12. Work done in stage 1 of a scan-filter-aggregate query

Because the input data has been shuffled by the thing we are counting, we
can do the final aggregation in parallel. That is, because all of the partial
counts for titles matching “Google” were sent to the same bucket, we can
compute the total count for “Google” by just reading values from the
“Google” bucket. Another Worker Shard can compute the total for
“Google_Chrome” by reading the “Google_Chrome” bucket.

There are 5,115 output rows, which is the number of total rows. We didn’t
apply a limit, so they all must be returned to the user.

Stage 2

Stage 2 is extremely simple: it just reads the 5,115 values and sorts them, as
illustrated in Figure 6-13.

Figure 6-13. Work done in stage 2 of a scan-filter-aggregate query

The sort operation is done on a single Worker Shard unless there are very
large numbers of values, in which case a distributed sort algorithm is used.

Scan-filter-aggregate query with high cardinality

What would happen if you tried to run the same query but didn’t apply a
filter? There are millions of different titles (the cardinality of the title
column is high), so if we choose a number that is too small for the number
of buckets to hash the values into, this could mean that a small number of
Worker Shards would need to do a lot of work, and the query would take a
long time.

Let’s try running the same query again but without filtering by title; we’re
going to return data on all of the Wikipedia pages in descending order of
popularity:

SELECT title, COUNT(title) as c

FROM `bigquery-samples.wikipedia_benchmark.Wiki1B`

GROUP BY title

ORDER BY c DESC

This query takes significantly longer, because it needs to compute a lot
more counts, can’t prefilter any data, and needs to return more than 280
million rows.

There are now 15 stages in the query details (0–9, A–E).

Stage 0

Stage 0 is identical to the previous case, except there is no filter, so it
outputs 1,205,625,714 values. Stages 1 through 8 are new, though. Figure 6-
14 shows what stage 1 looks like.

Figure 6-14. Work done in stage 1 of a scan-filter-aggregate query with high cardinality involves a
repartition

The workers in stage 1 read from an input and then they don’t write
anything. What’s happening is that the hash buckets are becoming too big,
and they’re being split. In essence, it means that BigQuery has picked a

number of hash buckets that are too small, and then it needs to reshuffle the
data into a larger number of buckets. This will allow later stages to avoid
getting bogged down.

Distributed sort

We also see something new in stages B and C (these stages have a letter in
their name because they are inserted into the original query plan after stage
0 due to the reshuffle), as demonstrated in Figure 6-15.

Figure 6-15. Work done in stages B and C of a scan-filter-aggregate query with high cardinality

Remember, this query is going to return 280 million rows in sorted order.
280 million values are too many to sort on a single node.

Imagine someone has pulled out all of the pages of the dictionary, and you
and a group of friends are tasked with reassembling them in sorted order.
One way to do this is to give each person a range of letters to start with.
Maybe you take A through C, and the next person takes D through G, and
so on. Then you each could sift through the pages and pick only the pages
that begin with a letter in your range. After everyone has collected their
pages, you could each sort your small pile and then recombine at the end.
This is one way to do a distributed sort.

The problem, however, is that you might not know the distribution of pages
in advance. If one person got just the letter “X,” they wouldn’t have much
work to do, because there are so few words that begin with that letter.

Stage B is computing the distribution, or split points for performing a
distributed sort. We’re sorting by page views (the computed count value).
Based on the amount of data, a parallelization is picked (e.g., the number of
“friends” who are going to help). In this case, we have 5,384 different
Worker Shards (look on the second row, last column of Figure 6-15).
BigQuery scans through the data and computes a rough approximation of
where 1/5,384th of the data would be and then outputs those values. Stage
C just takes those values and puts them into an array in a single row so that
they can be used later.

Stage D is actually going to split the data; that’s the equivalent of the
friends searching through the pages, looking for things that match the range
they are looking for. We read the split points from stage C, and then the
final tallies from stage 9 (we skipped describing stage 9 because it looks
like stages we’ve seen before). These final tally values are written to 5,384
buckets (note you can’t see this here) that map to a range of the counts, as
illustrated in Figure 6-16.

Figure 6-16. Work done in stage D of a scan-filter-aggregate query with high cardinality

Stage E is the one that finally writes the output. It does the distributed sort
and writes the final results. Because each worker has already gathered the
values that map to a nonoverlapping range, they can just sort the values
locally and then emit them. The final results will be in different files, and

the files will need to be read in a particular order that maps to the sort order
of the overall results, as shown in Figure 6-17.

Figure 6-17. Work done in stage E of a scan-filter-aggregate query with high cardinality

Broadcast JOIN query
So far, the queries we’ve looked at have just operated on a single table. But
what about joins? There are two types of joins in BigQuery; broadcast and
hash. We’ve already seen some use of hashing for aggregation, but let’s
begin with broadcast joins, because they are simpler. Broadcast joins can be
used when one of the tables is small: about 150 MB or less, as of this
writing.

Broadcast joins take the small table and send the entire table to every
worker. If there are 100 workers processing the larger table, the entire small
table is sent to each of those 100 workers. This is a bit of a brute-force way
to do the join, but the advantage is that it can be done with just a single pass
through the large table and doesn’t require a shuffle.

To see how this works, think about how joins operate. They use a key to
match up rows in two or more tables, and they need to look at all of the
matching values on both sides. This means that when key “123” shows up
in the left side of the join, you need to match it with all of the rows
corresponding to “123” on the right side of the join (or, if there are no rows,
you need to know that, too). To do this matching, you need to get the rows
from the left for a particular key in the same place as the rows from the
right matching a key. Broadcast join does this by just sending one of the
tables everywhere, so everything is colocated.

For this example, we use the GitHub sample dataset, which contains
information about all GitHub commits in the history of that service. We use
two tables that we join: the commits table, which contains information
about every commit operation, and the languages table, which has
information about the programming languages that are being used.

The query that we look at will pick out the GitHub contributions of the
book’s authors and rank them by numbers of bytes of code written in the
repository per language. The query is as follows:

WITH

repo_commits AS (

 SELECT repos AS repo_name, author.name AS author

 FROM `bigquery-public-data.github_repos.commits` c, c.repo_name repos

 WHERE author.name IN ("Valliappa Lakshmanan", "Jordan Tigani")

 GROUP BY repos, author),

repo_languages AS (

 SELECT lang.name AS lang, lang.bytes AS lang_bytes, repos.repo_name AS

repo_name

 FROM `bigquery-public-data.github_repos.languages` repos, repos.LANGUAGE AS

lang

)

SELECT lang, author, SUM(lang_bytes) AS total_bytes

FROM repo_languages

JOIN repo_commits USING (repo_name)

GROUP BY lang, author

ORDER BY total_bytes DESC

The result is similar to the following:4

Row lang author total_bytes

1 Jupyter
Notebook

Valliappa
Lakshmanan

78900202

2 Python Valliappa
Lakshmanan

33742613

 ...

8 Jupyter
Notebook

Jordan Tigani 153243

9 Python Jordan Tigani 134409

 ...

This query uses some reasonably advanced query techniques, such as
flattening arrays via CROSS JOIN and WITH statements to make the query
easier to read (see Chapter 8). The key part of the query is this:

SELECT lang, author, SUM(lang_bytes) AS total_bytes

FROM repo_languages

JOIN repo_commits USING (repo_name)

GROUP BY lang, author

ORDER BY total_bytes DESC

This part of the query joins the language table against the commits table on
the repository name field.

If you look at the query plan for this query, it is mostly things we’ve already
seen, with two new types of stages: coalesce and join+. The coalesce stage
is very simple, as is evident in Figure 6-18.

Figure 6-18. Coalesce stage of a broadcast join query

Coalesce is a dynamic stage that is added when BigQuery detects that one
of the tables in a join is going to be small. The reason it is necessary is

because we want to get all of the data for the table into a single node so that
we can broadcast it. But previous stages might have taken a large table and
filtered it down, turning it into a small table (as in the case with our query,
when we filtered by commits by this book’s authors). Coalesce doesn’t
change the number of rows; it just shuffles them into the same location.

The other new stage is the join+, illustrated in Figure 6-19.

Figure 6-19. Join+ stage of a broadcast join query

This stage is called join+ instead of join because it does a JOIN and an
AGGREGATE all in one step. We see two READ statements, one to read for
the left of the join and the other for the right. The left, in this case, is the
languages table. The right is the coalesced broadcast table from the
previous stage. As of this writing, the only way to identify a broadcast join
is from the text “EACH WITH ALL”. This means taking each row of the table
on the left of the join and matching it with “ALL”—that is, the entire table
on the right.

Hash join query
The second type of common join is a hash join. This, in general, is much
more computationally expensive. Hash joins work by hashing both sides of
the join so that rows containing the same keys end up in the same bucket.
This is the same hash process that we saw in the aggregation queries, but
we do it for both tables. Because the hash process routes all equivalent
values to the same bucket, it means that a single worker can pick up each

bucket and have all the information it needs to perform the join of the keys
in the bucket.

To demonstrate the hash join, we use the same query as earlier, but we
comment out the filter expression so that it will join the tables, in their
entirety, against each other. Both tables will be too large to fit into memory,
so we need to use a hash join instead of a broadcast join. Here is the
updated query:

WITH

repo_commits AS (

 SELECT repos AS repo_name, author.name AS author

 FROM `bigquery-public-data.github_repos.commits` c, c.repo_name repos

 -- WHERE author.name IN ("Valliappa Lakshmanan", "Jordan Tigani")

 GROUP BY repos, author),

repo_languages AS (

 SELECT lang.name AS lang, lang.bytes AS lang_bytes, repos.repo_name AS

repo_name

 FROM `bigquery-public-data.github_repos.languages` repos, repos.LANGUAGE AS

lang

)

SELECT lang, author, SUM(lang_bytes) AS total_bytes

FROM repo_languages

JOIN repo_commits USING (repo_name)

GROUP BY lang, author

ORDER BY total_bytes DESC

LIMIT 100

The result is similar to the following:

Row lang author total_bytes

1 C Eric Dumazet 2917514359851

2 C Russell King 2878666474184

3 C Thomas Gleixner 2876903624978

The query plan for this query looks nearly identical to that of the broadcast
join. There is no coalesce stage, and there are a couple more repartitioning
stages while the query engine hones in on the number of buckets that it

needs. There is also a subtle difference in the join+ stage, as shown in
Figure 6-20.

Figure 6-20. Join+ stage of a hash join query

Here we see that we’re doing EACH WITH EACH, instead of EACH WITH ALL.
This means that each row on the left is joined with each matching row on
the right, which requires them to be previously colocated. If we look at the
previous stages, we also see that the inputs were HASH shuffled, as discussed
earlier in the section on scan-filter-aggregate queries.

Storage
One of the secrets to the success of any database management system is
efficient storage. Many of the key features that allow BigQuery to be fast
are derived from how it stores data. From the underlying storage hardware
(using a massive distributed filesystem) to the file format (a custom column
store), BigQuery’s storage stack, which comprises both the metadata and
the storage data, is optimized for speed of analysis.

Storage Data
BigQuery stores exabytes of data, distributed across millions of physical
disks in dozens of regions. The primary goal of the lower layer storage
system is to make all of this distributed data fast to access and ensure that

any two tables can be joined against each other, which means they need to
reside in the same place.

One of the secrets of large-scale analytics is that the biggest gains in
performance can be realized through improvements in the storage system.
This section describes how the BigQuery storage system works and what
makes it fast.

When you load data to BigQuery, it’s written to Capacitor files and stored
on Colossus. Colossus encodes the data using erasure encoding, which
means that it stays durable even if a large number of disks fail or are
destroyed. Writing to a single Colossus cluster is sufficient to make the data
durable to a very large number of 9’s.

However, to ensure the data is both durable and available, the data is
replicated to another availability zone within the same region. In practice,
this means a different building that has a different power system and
networking hardware. The chances of multiple availability zones going
offline at once is very small. But what happens if the entire metro area
region is destroyed—perhaps by a rampaging Godzilla or, less probable
than that, an earthquake or other natural disaster? If you use multiregional
BigQuery locations (such as US or EU), BigQuery stores another copy of
the data in an off-region replica; that way, the data is recoverable in the
event of a major disaster. We discuss availability and disaster recovery in
more detail in Chapter 10.

Physical storage: Colossus
BigQuery stores all of its data on Colossus, which we’ve mentioned is the
distributed storage system used throughout Google. Colossus is an
evolution of Google File System (GFS), which was a pioneering large-scale
distributed storage system developed at Google. Colossus solves a number
of scalability, flexibility, and reliability problems in GFS by creating a more
flexible metadata system and getting rid of single points of failure.

Colossus operates a large number of disks in a large number of servers that
combine to form the filesystem. If you have tens or hundreds of thousands

5

of disks, dozens of those disks are going to fail every day. However, the
goal is to not lose any data, ever (or at least within a few million years). The
way to avoid losing any data when disks die is to write the data multiple
times. When this is done in Colossus, it is called encoding.

The simplest type of encoding is called replicated encoding. In replicated
encoding (see Figure 6-21), you just write more than one copy of the data.
How many copies do you need? That depends on how safe you want to be.
With two copies, you can lose data if the wrong two disks fail. Three copies
are generally considered to be safe, as long as there is a good replacement
policy. The chances of all three disks dying on the same day is something
like once in 100 million years. Distributed storage reliability is determined
by the rate at which things fail and the rate at which broken things are
replaced. It is difficult to control how often things fail; but it is a lot easier
to develop a process to replace things quickly. If you can replace disks
quickly, you will expect to lose particular data once every 10 billion years
or so. Of course, life is more complicated, and there are lots of disks, and
you want to make sure that it is exceedingly rare that you lose data.

Figure 6-21. Replicated encoding, in which chunks of files are stored three times

Replicating files is expensive, however, because you need to store full
copies of the data. To store less data, many distributed filesystems use
something called erasure encoding or Reed-Solomon encoding. Erasure

encoding stores mathematical functions of the data on other disks to trade
off complexity for space, as illustrated in Figure 6-22. Depending on how
you encode the data, you can achieve far better durability than replicated
encoding, but store less than one full additional copy. There is a penalty,
though, which is that if the primary copy isn’t available, you might need to
read a number of additional disks to recover the data.

Figure 6-22. Erasure encoding, in which extra “encoded” data can be used to recover data in the
event of a failure of any of the original chunks of data

BigQuery stores most data with erasure encoding and uses enough recovery
blocks to make it orders of magnitude more durable than three-way
replicated encoding. Replicated encoding is generally faster to read than
erasure encoding. For replicated encoding, if you don’t hear back from the
first replica in a short amount of time, you can send a read request to one of
the other copies. For erasure encoding, if you can’t read from the primary
copy, you can start a recovery read, but that can take several additional
reads. If one of those is slow, you can recover the other chunks, but that
again requires more reads.

Storage encoding has a major impact on BigQuery performance because tail
latency is important. Disks die all the time; chances are, within BigQuery at
any point in time, there are several failed disks, so reading from tables on
them will require recovery reads. Note that there are several mechanisms
that Colossus employs to minimize the slowdowns caused by recovery
reads, such as caching the recovered data. Many BigQuery queries involve
reading from hundreds of thousands of files or more; this means that every
query will hit the long tail of latency from Colossus. It is a good thing that
Colossus is so fast.

Storage format: Capacitor

The format in which data is stored is as important as the way the physical
bytes are stored. BigQuery chose to create its own columnar storage format:
Capacitor.

WHAT IS A COLUMN STORE?
Traditionally, databases have stored data in row-oriented format; that is,
they store one record after another in the file. If you have a number of
records and you want to store them in a file, row-oriented is the most
obvious way to do it. Row-oriented files have some nice properties, in
that if they are fixed length, you can skip ahead by just adding a known
offset. Record-oriented files are also convenient when you’re reading an
entire row at a time.

Figure 6-23 shows a record-oriented store; rows are written to the file
one at a time.

Figure 6-23. A record-oriented store with three columns

However, most queries don’t actually read an entire row at once; they
often read only a few columns per table. If you have a row-oriented file,
you must read the entire row, even if you need only a single column.
Moreover, row-oriented files generally aren’t very compressible; if you
want to reduce the amount of data that you want to read on disk, one
great way to do this is to compress it. Compression works by encoding
repeated data in a smaller way. However, there is usually very little
repeated data across a row. Imagine a table with “Customer Name,”
“Country,” “Phone Number,” and “Customer ID.” A row in this table
will have very little redundant information. A phone number doesn’t
tell you much about a country, and even less about a customer ID.

But what if you turned the problem 90 degrees? Instead of storing a row
at a time, what if you stored a column at a time? A column containing

country names might have only a few distinct values, and most of those
might be the same. Customer IDs might all begin with “0000.” And
phone numbers will have common prefixes.

Figure 6-24 demonstrates a column-oriented store; each column is
written to a different stream in the file.

Figure 6-24. A columnar store with three columns

If you store columns separately, you also gain when you want to read
only a few columns in a query; if there are 100 columns in the table,
and you read only three, you thus need to read only 3% of the data.
Most queries read a small fraction of the columns in the table, so
reading a column at a time can dramatically improve performance.

One of the reasons that column stores didn’t take off before distributed
filesystems is the physical layout on disk. If you’re reading two
columns in a query, you need to iterate through those columns in
sequence. To read in lockstep, you need to instruct the disk to read the
first few rows of column A and then seek to where column B is stored
to read the first few rows there, and then seek back to column A to read
the next few rows. Seeks are expensive, and they thwart the common
read-ahead algorithms used by disk hardware and operating systems.

A distributed filesystem helps a lot here; it generally will read in larger
stripes and also enable you to read from multiple stripes in parallel
because they’re stored on different disks. For example, if you want to
read column A and column G, you can fire off a read for column A,

which will read from one disk, and then column G, which will read
from a different disk, in parallel.

Capacitor is the second generation of format used within BigQuery; the first
was a basic column store. Capacitor built on top of what was learned in the
eight years of running a distributed query engine over exabytes of data. The
format has evolved with the query engine, which helps improve
performance even more—deep knowledge of the format can be embedded
in the query engine, and vice versa. Consequently, Capacitor contains
features and optimizations learned from a decade or so of operating very
large-scale analysis systems at Google.

Parquet and Optimized Row Columnar (ORC) are two popular open source
columnar storage formats; however, BigQuery chose not to use these under
the hood. The reasons are not just the “Not Invented Here” syndrome; when
Capacitor was created, Parquet was in its infancy and ORC had not been
popularized. Moreover, there are a number of optimizations that tie the
Capacitor storage format to BigQuery’s Dremel query engine, and it is
advantageous to be able to iterate quickly on the storage format and add
features quickly.

One of the key features of Capacitor is dictionary encoding. That is, for
fields that have relatively small cardinality (few distinct values), it stores a
dictionary in the file header. For example, suppose that the table contains
songs played by a jukebox; there is a reasonably small number of songs that
can be played. The dictionary might look like the representation shown in
Figure 6-25.

Figure 6-25. Dictionary encoding in Capacitor

Instead of storing the full title, Capacitor can just store the offset into the
dictionary, which is much more compact. It would look like Figure 6-26,
where the first column is the encoded song title, and the second column is
another data field (perhaps the customer who requested that the song be
played).

Figure 6-26. Two columns in Capacitor, the first of which is dictionary encoded

There is another advantage to dictionary encoding that comes when you
filter. Suppose that you were looking for rows in which the song titles
contain the word “Sun.” This is a relatively expensive filter because it needs
to be able to find the value anywhere in the string.

Normally, you’d compare each row of the table looking for values that
matched the predicate. In Capacitor, however, we can just test the predicates
against the dictionary and create a truth table with the results, as depicted in
Figure 6-27.

Figure 6-27. Dictionary encoding makes filters more efficient

Now, the lookup table is an array in which the values indicate whether the
predicate is true. When scanning all of the rows, we can just index into the
lookup table. For instance, if the encoded value was “1,” we would look up
the value at offset 1 in the lookup table and see that the predicate evaluates
to false; on the other hand, “2” evaluates to true, so that’s a row we’d want
to keep.

To further save on space, Capacitor does run-length encoding. That is, if the
value “2” appears five times in a row, rather than storing “2,2,2,2,2”, you
can store “2:5”. For long runs of the same value, this can give significant
compression.

But what if the rows are ordered such that there are no long runs of the
same value multiple times? To solve this, Capacitor employs a clever trick
—it simply reorders the rows to obtain a compact encoding. Rows in
BigQuery are not ordered, and there is no guarantee or even expectation of
which rows come after which other rows. Figure 6-28 illustrates an
example.

Figure 6-28. BigQuery reorders rows to obtain compact run-length encoding

Because computing the best ordering is an NP-hard problem, BigQuery
applies a set of heuristics that gives good compaction but runs in a short
amount of time.

These examples are just two ways that Capacitor helps BigQuery improve
performance.

Metadata
Metadata is data about the data that is stored. This makes it “meta.”
Metadata includes entities like schema, field sizes, statistics, and the
locations of the physical data. Managing metadata effectively is almost as
important as managing the physical data itself. In fact, many of the limits
that BigQuery imposes, like the number of tables that can be referenced in a
query or the number of fields that a table can have, are due to limits in the
metadata system.

BigQuery table metadata has three layers, only two of which are directly
visible to the user. The outer layer is the dataset, which is a collection of
tables, models, routines, and so on with a single set of access control
permissions (more on this in Chapter 10). The next layer is the table, which

6

contains the schema and key statistics. The inner layer is the storage set,
which contains data about how the data is physically stored. Storage sets are
not a user-visible concept, and information about them is hidden from the
user.

Storage sets
A storage set is an atomic unit of data, created in response to a load job,
streaming extraction, or Data Manipulation Language (DML) query.
Storage sets enable updates to BigQuery tables to be ACID compliant; that
is, they are Atomic (they happen all at once or not at all), Consistent (after
they commit, they are available everywhere), Idempotent (you don’t need to
worry about multiple commits if there is an error or a network partition),
and Durable (after it is committed, the commit won’t be lost).

The underlying physical storage for BigQuery is immutable. After a file is
closed, it can never be changed again. Storage sets are likewise immutable;
after they are committed, they are never changed again. Figure 6-29
illustrates what a table with three storage sets would look like.

Figure 6-29. A table with three storage sets

Storage sets generally go through a life cycle during which they first are
created in PENDING state, progress to COMMITTED, and finally move to

GARBAGE. A PENDING storage set has data being actively written to it, and
the data in that storage set is never visible to a user through any mechanism.
After the data has been fully written, it progresses to COMMITTED, which
makes it visible to queries against the table. When a storage set is no longer
needed, it is marked GARBAGE, which means that it can be garbage collected
after the requisite waiting period has elapsed.

Time travel
As of this writing, BigQuery supports time travel for seven days in the past,
which means that you can read the state of the table at any point within that
time window. This can be useful if you accidentally deleted something via
DML or if you want to be able to run a repeatable query over a table that is
changing.

To enable time travel, BigQuery keeps track of the timestamp at which
storage set transitions happen. If you time travel back to before a storage set
was committed, the storage set will be removed from consideration. If a
storage set is marked GARBAGE and you time travel back to when it was
COMMITTED, it will be revived in the context of that query.

Figure 6-30 shows a table with three storage sets, committed at times T1,
T2, and T3, respectively. If you want to read the table at some time between
T2 and T3, you will need only the first two storage sets.

Figure 6-30. A table with three storage sets, committed at times T1, T2, and T3

Storage optimization
When you are writing or updating data over time, storage can often become
fragmented. For example, suppose that you are loading 100 kb of data every
two minutes. Each one of those 100 kb will get a storage set and its own
file. After a month, you’ll have 2 TB of data, which isn’t a whole lot, but
21,000 files and storage sets can become inefficient for querying because
BigQuery will spend a lot of time opening files and reading storage set
metadata.

The storage optimizer helps arrange data into the optimal shape for
querying. It does this by periodically rewriting files. Files can be written
first in a format that is fast to write (write-optimized storage) and later in a
format that is fast to query (read-optimized storage). The storage system
can be said to be generational, meaning that data is written into multiple
generations, each one being older and more optimized.

Figure 6-31 shows a table with the first generation of data being optimized
and rewritten to Generation 1.

Figure 6-31. Generation 0 of data being optimized and rewritten to Generation 1

The optimized storage set (Set 4) contains the exact same data from Sets 1,
2, and 3. When Set 4 commits, it marks the first three storage sets as
garbage but doesn’t remove them immediately. This fact is important for
time travel because users might want to read the table as of a time when
only the earlier storage sets were around; thus, BigQuery needs to keep
track of that metadata.

Partitioning
Partitioning in BigQuery allows you to divide large logical tables into
smaller partitions and query over only the parts that you need. Say, for
example, that you want to query only the data from May 3, 2019; if you
have your table partitioned by date, you can efficiently read just that data
using the partitioned table.

Under the hood, a partition is essentially a lightweight table. Data for one
partition is stored in a physically separate location from other partitions,
and partitions have a full set of metadata. This lets you treat partitions as if
they were tables for a lot of cases. For example, you can call the REST API
endpoint for tables.delete() on a partition to delete it. If you set a

partition expiration duration, it will cause date-based partitions to expire
after a certain period of time, as if they were tables.

Partitions have an advantage over multiple tables in that you can efficiently
query across them. For example, if you query over a date range, you can use
a normal filter over the date field and scan only the data that you need. This
makes it easier to manage than lots of logical tables and allows more
efficient access. Partition filters can generally be pushed down to the
metadata database layer (Spanner) so that it can save on reading
unnecessary metadata, not just unnecessary data.

Partitions are designed for low-cardinality (i.e., low number of distinct
values) fields—generally, less than a few thousand. If you overpartition
your tables, you will create a lot of metadata. Although this doesn’t hurt
cases for which you filter by a small number of partitions, if you ever need
to read the entire table, it will be inefficient because you need to read all of
the metadata. If you need higher cardinality, you should use clustering. One
way of reducing the number of partitions is to create coarser-grained
partitions, such as monthly partitions. You can do this by creating a separate
field that truncates the event date to the month level and partitions by that
field.

To represent partitions in the metadata, BigQuery uses storage sets that are
marked with the partition ID. This makes it easy to filter based on
partitions; to read only the partition matching a certain date, BigQuery can
apply the filter at the metadata layer without even needing to open the
physical data. Storage sets also have field size information, which is how a
dry run can determine how much data would be scanned without actually
running a query.

Figure 6-32 shows our table with three storage sets. Each storage set in this
case represents a different partition.

Figure 6-32. Three storage sets representing three different partitions

Suppose that the partitioning field is eventDate and we were running a
query that included the filter WHERE eventDate >= '20170102'. This
should match only the two storage sets 20170102 and 20170103. There is a
Spanner database index (IDX in Figure 6-32) that helps us find only the
storage sets within that range. This means that we consider the table to
contain only those two storage sets for the purpose of the query, which
means the query will scan less data and usually run faster.

Clustering
Clustering is a feature that stores the data in semisorted format based on a
key that is built up from columns in your data. Data files get
nonoverlapping ranges of the key space. This allows for efficient lookups
and range scans because the query engine needs to open only files that have
the key, and it can do a binary search to find the files at the beginning and
end of the range.

Figure 6-33 shows how you can use clustering.

Figure 6-33. A storage set with clustering based on the customer_id field

The table is clustered by the customer_id field, and the data in the files is
sorted such that files have nonoverlapping ranges for customer_id. File 1
has customer IDs 101 through 200, File 2 has customer IDs 201 through
300, and so on.

Suppose that the query to be executed is SELECT … WHERE customer_id =
275. Because we know the files are in ascending order of customer_id, we
can just look at the file headers and realize that customer_id 275 is in File
2. We can do a binary search to find the starting file, and we don’t need to
look at other files after we have found the correct one, because the entire
range we were looking for is in the same file. Because the table was
clustered, we need to read only a single file instead of all of them.

The data files have headers that contain the min and max values of all of the
field. Virtually all column stores have this feature (including open source
ones like Parquet and ORC). The advantage here is that it allows you to
check whether a value is in the table just by looking at the header.
Moreover, the file headers are cached, so often the exact files needed can be
determined without doing disk I/O at all.

When the data is sorted across files, each file has a narrow range of keys.
For example, File 1 has values aa-ac, File 2 will have values ad-ag, File 3

has values ah-ap, and so on. if you wanted to find value ae, you would
open up the header for File 1, see that the value you were looking for wasn’t
there, and then open File 2, where you would see that the value you were
looking for was completely contained in that range. So you could use that
file and wouldn’t even need to look further. This means that the query
engine needs to scan only one file; this will be faster and less expensive
than scanning all of the files.

Note that the data is not sorted within the file, just across files. Data in
Capacitor files (more on this shortly) is reordered to improve compression
ratios, and sorting the data would make it slower to read. But sorting the
data within the file wouldn’t help much, because you’d end up having to
read the same number of blocks from the disk.

Reclustering

The tricky part of clustering is maintaining the clusters when the data is
changing. For the previous example, what if someone adds two rows with
keys ab and ao? Those would go right in the ranges of File 1 and File 3,
respectively. But files are immutable, and you probably don’t want to create
files with only a single row each. So BigQuery will write these two new
rows in a single file in a new storage set. Now, when the table is being
queried, both storage sets need to be inspected, and you’ll end up having to
do redundant work. If data is being changed over time, you’ll end up with a
lot of storage sets, and they can all have overlapping ranges. At some point,
you’ll essentially need to scan all of the files in order to find a single value.

The solution to this fragmentation is reclustering. Periodically, in the
background, BigQuery will recluster tables. BigQuery maintains a
clustering ratio, which is the fraction of the data that is completely
clustered. If that fraction dips too low, it will rewrite the data in sorted
format. This will be done in a new storage set, to preserve the ability to time
travel back to previous table states. Reclustering happens automatically
without any user intervention, and it happens using “system resources,” not
resources that users must pay for.

Figure 6-34 shows reclustering in action.

Figure 6-34. Reclustering creates a new storage set

There are two storage sets, and each one has an overlapping cluster range;
the first storage set has two files ranging from key value 101 to 300. The
second storage set, which committed at a later time (T2), has a smaller key
range, from 150 to 175, but it overlaps with the files from Storage Set 1.

The reclustering event comes at T3, and it makes a copy of all of the data in
files 1, 2, and 3 and then reclusters the data. It marks the earlier storage sets
garbage as of T3 and commits the new copy at T3. After this completes,
further queries will see the nicely clustered data in Storage Set 3.

PARTITIONING VERSUS CLUSTERING
Partitioning can be thought of as dividing your table into a lot of
subtables based on data in a column. Clustering, on the other hand, is
like sorting your tables on a particular set of columns. The differences
can be subtle, but clustering works better when you have a large
number of distinct values. For example, if you have a million customers
and often do queries that look up a single customer, clustering by
customer ID will make those lookups very fast. If partitioned by
customer_id, lookups would be fast, but the amount of metadata
needed to keep track of all of the partitions would mean that queries
across all users would slow down.

Partitioning is often used in conjunction with clustering; you can
partition by the low-cardinality field (e.g., event date) and cluster by the
high-cardinality one (e.g., customer ID). This lets you operate over a
date-range slice of the table as if it were itself a table, but it also lets
you find records from a particular customer without having to scan all
of the data in the partition.

Performance optimizations with clustered tables

Clustering also enables a number of query optimizations. For example, one
optimization will push constraints across from one side of the join to
another. Suppose that you’re doing a query that looks like this:

SELECT orders.order_id

FROM retail.orders AS orders JOIN retail.customers

ON orders.customer_id = customers.customer_id

WHERE customers.customer_name = 'Jordan Tigani'

This will find all of the orders by a customer named “Jordan Tigani.” Let’s
assume that the orders table is clustered by customer_id. The naive way to
implement this would be to execute the filter of the customer tables and
broadcast the remainder to every shard, and then scan the full orders table

to find orders that had the matching customer ID. However, because the
orders table is clustered by customer_id, we just need to look at the files
that have the matching customer_id, and thus we don’t need to scan the
full table. This reduces cost and improves performance significantly.

Another thing to note is that clustering doesn’t just work when you filter by
the field that is clustered; it also works when you are filtering by fields that
are correlated to the clustered fields. Imagine, for example, that you have
your orders table clustered by order_id, and orders are roughly in
sequential order. If you do a query that filters by a narrow range of
transaction dates, those transaction dates will be in a small number of files;
BigQuery will need to scan only the files with those transaction dates, even
though you’re not filtering by order_id. This optimization doesn’t just
apply to performance; it also will reduce the cost of the query if you’re
operating in on-demand mode. In general, anything that BigQuery can do to
reduce the amount of data that needs to be scanned will reduce cost when
operating over clustered tables.

DML
DML is a set of special SQL statements that let you modify tables (see
Chapter 8). They come in four flavors: INSERT, DELETE, UPDATE, and
MERGE.

INSERT operations, which add rows to a table, are simple because they are
basically the same as loading more data to the table. When an INSERT
operation runs, files representing the new data are written to Colossus, and
a new storage set is added to the metadata. The new storage set has a
commit timestamp with the time the data was ingested.

DELETE operations, which remove rows from a table, are more complicated,
however. BigQuery uses immutable files and metadata (storage sets).
Suppose that you want to delete a single row (DELETE … WHERE
customer_id = 1234), and furthermore, imagine that row existed in file C
in Storage Set 3.

Because files are immutable in BigQuery, to delete a single row, it can’t just
delete the row from the middle of file C. Instead, BigQuery will make a
copy of the file without the row; let’s call this C2. BigQuery will then mark
the old storage set GARBAGE because it isn’t in use any more. The rewritten
file will need a storage set, Storage Set 4. However, that won’t be enough,
because the new storage set will need to contain everything else that was in
Storage Set 3. The new storage set will point at the old files from Storage
Set 3, with the exception of file C, which had the now-deleted row.
Figure 6-35 demonstrates how all of this would transpire.

Figure 6-35. Delete operations involve creating an entire new storage set to point to a combination
of files from the old storage set and new files without the deleted record

If this sounds like a lot of work to delete a single row, you’re absolutely
right. It is for this reason that the best practice is to batch your updates and
apply as many of them as you can at once.

UPDATE is usually implemented as an atomic combination of an INSERT and
a DELETE operation. That is, instead of actually modifying data, you delete
the old records and add new ones. This allows the underlying files to be
immutable and just changes which rows or files are live. MERGE is basically
a very fancy UPDATE statement that lets you do a combination of read,
modify, and write operations at the same time. Therefore, UPDATE and

MERGE operations are very similar to a DELETE operation from an
architecture standpoint; UPDATE will just write in new additional data that
has the new value of the rows that were updated. Likewise, MERGE will write
out more merged data.

Meta-File
One of the ways BigQuery can achieve good performance when doing
partition pruning is via a meta-file. As we discussed earlier in the chapter,
this is a file that contains metadata about all of the data files that make up
the table. It contains minimum and maximum constraints for all fields as
well as the location of each data file. This file is stored in the same format
as the BigQuery data files, which means that it can be queried just like any
other BigQuery file. This is important because it means that in order to
determine which files need to be read, the query engine doesn’t need to look
at all of the file headers. It just reads this one file, and then it can pare down
to the exact files that are actually needed in the query.

Figure 6-36 shows an example of a meta-file.

Figure 6-36. A meta-file that contains metadata about all the data files that make up a table

If we’re querying from the table with the predicate WHERE field1 = 30,
we can first send a query to this file and then send the result back that the
only file we need is file0002. Armed with that information, we don’t need
to open any other files to satisfy the query.

Summary
In this chapter, we delved into the inner workings of BigQuery to demystify
the service and provide the basis to understand what is happening when
your query is being executed.

Starting with high-level architecture, we followed the life of a query from
the time the query is received by the GFE server and routed to the
appropriate BigQuery Job Server and handled by the Dremel query server.
We examined the stages of different types of queries from the simplest
scan-filter-count query to more complex scan-filter-aggregate queries, even
those with high cardinalities that might require repartitions. We also
explored the two ways in which joins are implemented—broadcast joins for
small tables and hash joins for larger ones—and how to recognize from the
query plan which join mechanism is being used.

We also discussed the way data is stored, the advantages of BigQuery’s
columnar format, dictionary encoding, and how the use of storage sets
makes time travel possible. Finally, we looked at how partitioning and
clustering are implemented, and why they improve query performance.

1 Many enterprise customers use direct peering so that the request never goes to the public
internet.

2 See https://cloud.google.com/files/storage_architecture_and_challenges.pdf. Colossus is
available to Google Cloud customers as Google Cloud Storage (see
https://cloud.google.com/storage/).

3 See https://ai.google/research/pubs/pub43438. Borg was the inspiration behind Kubernetes,
which is offered on Google Cloud via Kubernetes Engine (see
https://cloud.google.com/kubernetes-engine/).

https://cloud.google.com/files/storage_architecture_and_challenges.pdf
https://cloud.google.com/storage/
https://ai.google/research/pubs/pub43438
https://cloud.google.com/kubernetes-engine/

4 Jordan: For those who are interested in keeping score but don’t want to run the query, Lak has
a lot more bytes in GitHub than me. Lak: This is due primarily to the flatulent storage format
of Jupyter Notebooks.

5 That is, to a 99.999…% reliability.

6 An NP problem in computer science is a problem for which one can efficiently verify that a
solution is correct, but finding the solution cannot be done efficiently. Computing the best
ordering is an NP problem because you can efficiently determine whether a list is sorted or not
—you need to traverse the list just once—but finding the best ordering belongs to a class of
problems that are called NP-hard. If you discover a fast algorithm to solve any one NP-hard
problem, this means that there will be fast algorithms to solve all NP-hard problems because
they are, in some sense, equivalent. In practice, NP-hard problems are handled through
heuristics because finding the single correct solution would be too inefficient.

Chapter 7. Optimizing Performance
and Cost

Performance tuning of BigQuery is usually carried out because we want to reduce
query execution times or cost, or both. In this chapter, we look at a number of
performance optimizations that might work for your use case.

Principles of Performance
Donald Knuth, the legendary computer scientist, made the famous observation that
premature optimization is the root of all evil. Yet Knuth’s full quote is more balanced:

We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our opportunities in that
critical 3%. A good programmer will not be lulled into complacency by such
reasoning, he will be wise to look carefully at the critical code; but only after that
code has been identified.

Following Knuth, we would like to caution that performance tuning should be carried
out only at the end of the development stage, and only if it is observed that typical
queries take too long. It is far better to have flexible table schema and elegant,
readable, and maintainable queries than to obfuscate your table layouts and queries in
search of a tiny bit of added performance. However, there will be instances for which
you do need to improve the performance of your queries, perhaps because they are
carried out so often that small improvements are meaningful. Another aspect to
consider is that knowledge of performance trade-offs can help you in deciding between
alternative designs.

Key Drivers of Performance
In this chapter, we do two things. In the first part, we show you how to measure the
performance of queries so that you can identify the critical, optimizable parts of your
program. Then we draw on the experience of BigQuery users and our knowledge of
BigQuery’s architecture to identify the types of things that tend to fall into Knuth’s
critical 3%. This way, we can design table schema and queries with an awareness of
where performance bottlenecks are likely to occur, thereby helping us make optimal
choices during the design phase.

1

To optimize the performance of queries in BigQuery, it helps to understand the key
drivers of query speed, which is the focus of the second part of this chapter. The time
taken for a query to complete depends on how much data is read from storage, how that
data is organized, how many stages your query requires, how parallelizable those
stages are, how much data is processed at each stage, and how computationally
expensive each of the stages is.

In general, a simple query that reads three columns will take 50% more time than a
query that reads only two columns, because the three-column query needs to read 50%
more data. A query that requires a group-by will tend to be slower than a query that
doesn’t, because the group-by operation adds an extra stage to the query.

Controlling Cost
The cost of a query depends on your pricing plan. There are two types of BigQuery
pricing plans. The first type is on-demand pricing, in which your employer pays ours
(Google) based on the amount of data processed by your queries. If you are on a flat-
rate plan, your business gets a certain number of slots (e.g., 500 slots), and you can
run as many queries you want without incurring any additional costs.

In an on-demand (per query) pricing plan, the cost of a query is proportional to the
amount of data processed by the query. To reduce cost in an on-demand pricing model,
your queries should process less data. In general, reducing the amount of data scanned
will also improve query speed. The third part of this chapter—optimizing how data is
stored and accessed—should be of help there.

If you are using a flat-rate reservation, the net cost of your query is quite aligned with
the time taken for the query to complete. You can indirectly reduce costs in a flat-rate
model by hogging the slot reservations for less time—that is, by increasing your query
speeds, as discussed in the second part of this chapter.

Estimating per-query cost
If you are on an on-demand pricing plan, you can obtain a cost estimate for a query
before submitting it to the service. The BigQuery web user interface (UI) validates
queries and provides an estimate of the amount of data that will be processed. You can
see the number of bytes the query will process before you run the query by clicking the
Query Validator. If you are using the bq command-line client, specify --dry_run to
take a look at the query plan and the amount of data processed before invoking the
query for real. Dry runs are free. Knowing the amount of data that will be processed by
the query, you can use the Google Cloud Platform (GCP) Pricing Calculator to estimate
the cost of the query in dollars. Tools such as BigQuery Mate and superQuery provide

2

3

4

https://cloud.google.com/products/calculator/
https://oreil.ly/dGMCK
https://web.superquery.io/

a price estimate directly but might not have access to information about negotiated
discounts. As of this writing, the cost is five dollars per terabyte (for US and EU
multiregions) after the free tier usage of one free terabyte per month is exceeded. Note
that BigQuery needs to read only the columns that are referenced in your queries, and
partitioning and clustering can further reduce the amount of data that needs to be
scanned (and hence the cost).

TIP
To experiment with BigQuery, you can use the BigQuery sandbox. This is subject to the same limits as the free
tier (10 GB of active storage and 1 TB of processed query data per month), but you can access it without a credit
card being required.

When invoking a query, you can specify the --maximum_bytes_billed parameter to
put a limit on the amount of data that a query can process. If the bytes scanned in the
query exceeds the maximum bytes that can be billed, the query will fail without
incurring a charge. You can also manage costs by requesting a custom quota from the
GCP Cloud Console for a limit on the amount of query data processed per day. You can
set this limit at a per-project or per-user level.

Finding the most expensive queries
When trying to control costs, it can be helpful to create a short list of queries to focus
on. You can do this by querying the INFORMATION_SCHEMA associated with a project to
find the most expensive queries:

SELECT

 job_id

 , query

 , user_email

 , total_bytes_processed

 , total_slot_ms

FROM `some-project`.INFORMATION_SCHEMA.JOBS_BY_PROJECT

WHERE EXTRACT(YEAR FROM creation_time) = 2019

ORDER BY total_bytes_processed DESC

LIMIT 5

The preceding query lists the five most expensive queries in 2019 in some project
based on total_bytes_processed. If you are on flat-rate pricing, you might choose to
order the queries based on total_slot_ms instead.

5

https://console.cloud.google.com/iam-admin/quotas

Measuring and Troubleshooting
To tune the performance of queries, it is important to ascertain all of the following
aspects of a query so that you know what to focus on:

How much data is read from storage and how that data is organized

How many stages your query requires and how parallelizable those stages are

How much data is processed at each stage and how computationally expensive
each stage is

As you can see, each of these requires one aspect that can be measured (e.g., how much
data is read) and something that needs to be understood (e.g., the performance
implications of how that data is organized).

In this section, we look at how we can measure the performance of a query, peruse
BigQuery logs, and examine query explanations. Having done this, we can use our
understanding of BigQuery architecture (Chapter 6) and performance characteristics
(later sections in this chapter) to potentially improve performance. In the later sections
of this chapter, we present queries and their performance characteristics without
spelling out the measurement steps that might lead you to apply those performance
improvements.

Measuring Query Speed Using REST API
Because BigQuery has a REST API, it is possible to use any web service measurement
tool to measure how long a query takes to execute. If your organization already uses
one of these tools, it is quite straightforward to use them to measure the performance of
a query.

Occasionally, you will need to measure performance of a query from a server where
these rich clients are not installed. On such bare-bones machines, the simplest way to
measure query time is to use the Unix tools time and curl. As explained in Chapter 5,
we can read in the query text and request JSON into Bash variables:

read -d '' QUERY_TEXT << EOF

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM \`bigquery-public-data\`.london_bicycles.cycle_hire

GROUP BY start_station_name

ORDER BY num_trips DESC

6

LIMIT 5

EOF

read -d '' request << EOF

{

 "useLegacySql": false,

 "useQueryCache": false,

 "query": \"${QUERY_TEXT}\"

}

EOF

request=$(echo "$request" | tr '\n' ' ')

One key point to note from the preceding code snippet is that we need to turn the query
cache off so that all the necessary processing is carried out on the server side each time
we invoke the query.

Chapter 5 also discusses how to use the gcloud command-line tool to get the access
token and project ID that we require to invoke the REST API:

access_token=$(gcloud auth application-default print-access-token)

PROJECT=$(gcloud config get-value project)

Finally, we invoke the query repeatedly and compute the total time taken so that we can
compute the average query performance and not be at the mercy of occasional network
hiccups:

NUM_TIMES=10

time for i in $(seq 1 $NUM_TIMES); do

echo -en "\r ... $i / $NUM_NUMTIMES ..."

curl --silent \

 -H "Authorization: Bearer $access_token" \

 -H "Content-Type: application/json" \

 -X POST \

 -d "$request" \

 "https://www.googleapis.com/bigquery/v2/projects/$PROJECT/queries" > /dev/null

done

When we did this, we got the following result:

Real 0m16.875s

User 0m0.265s

Sys 0m0.109s

The total time to run the query 10 times was 16.875 seconds, indicating that the query
took 1.7 seconds on average. Note that this includes the roundtrip time to the server and

time spent fetching results; it is not purely the query processing time.

We can estimate what this roundtrip time is by turning the query cache on:

read -d '' request << EOF

{

 "useLegacySql": false,

 "useQueryCache": true,

 "query": \"${QUERY_TEXT}\"

}

EOF

When we repeat the time query again, we get the following:

Real 0m6.760s

user 0m0.264s

sys 0m0.114s

Because the query is cached, the new numbers are almost all due to network latency.
This indicates that the actual query processing time is (16.875 – 6.760)/10, or about 1
second.

Measuring Query Speed Using BigQuery Workload Tester
Although using a web service measurement tool or Unix low-level tools is possible and
desirable on bare-bones systems, we recommend that you use the BigQuery Workload
Tester for measuring the speed of BigQuery queries in your development environment.
Unlike a vanilla web service measurement tool, the Workload Tester is able to net out
the roundtrip network time (over which you have little control) and report the query
processing time (which is what you want to optimize) without having to repeat the
queries. It can measure the time taken for individual queries and for workloads (queries
that need to be executed serially), and it can invoke the queries in parallel if you want
concurrency testing.

The Workload Tester requires Gradle, an open source build tool. Thus, to install the
Workload Tester, you first need to install Gradle. Cloud Shell provides a quick way to
try out the Workload Tester. On it and other Debian-based Linux systems, you can
install Gradle using the following command:

sudo apt-get -y install gradle

On macOS, you can use this:

https://github.com/GoogleCloudPlatform/pontem/tree/dev/BigQueryWorkloadTester
https://gradle.org/

brew install gradle

For other operating systems, see the Gradle installation instructions.

Then clone the GitHub repository containing the Workload Tester, and build it from
source:

git clone https://github.com/GoogleCloudPlatform/pontem.git

cd pontem/BigQueryWorkloadTester

gradle clean :BigQueryWorkloadTester:build

Let’s measure the speed of a query to find the average duration of bicycle trips in
London. As with our script in the previous section, we could have simply embedded
the query in a Bash variable, but it is helpful to have a record of queries measured, so
we will write the query text to a file:

cat <<EOF| tr '\n' ' ' > queries/busystations.sql

SELECT

 start_station_name

 , AVG(duration) as duration

 , COUNT(duration) as num_trips

FROM \`bigquery-public-data\`.london_bicycles.cycle_hire

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 5

EOF

We then create a configuration file for each workload for which the workload consists
of a set of queries or query files:

cat <<EOF>./config.yaml

concurrencyLevel: 1

isRatioBasedBenchmark: true

benchmarkRatios: [1.0, 2.0]

outputFileFolder: $OUTDIR

workloads:

- name: "Busy stations"

 projectId: $PROJECT

 queryFiles:

 - queries/busystations.sql

 outputFileName: busystations.json

EOF

7

8

https://gradle.org/install/

In this configuration, we set the base concurrency level to 1, meaning that we send only
one query at a time. We do, however, also specify a set of benchmark ratios to measure
query times at concurrency levels between 1.0 and 2.0 times the base concurrency
level (i.e., 1 and 2 concurrent queries). To try concurrency levels of 1, 2, 5, 10, 15, and
20, use the following:

concurrencyLevel: 10

isRatioBasedBenchmark: true

benchmarkRatios: [0.1, 0.25, 0.5, 1.0, 1.5, 2.0]

Then we launch the measurement tool by using this:

gradle clean :BigQueryWorkloadTester:run

The result is a file that contains both the total elapsed time (including roundtrip) and
the actual processing time for each of the queries that were run. In our case, the first
query (with concurrency level of 1) had a query processing time of 1,111 milliseconds
(1.111 seconds), whereas the second and third queries (which ran simultaneously
because of the concurrency level of 2) had processing times of 1.108 seconds and 1.026
seconds. In other words, BigQuery provided nearly the same performance whether it
was handling one query or two.

Troubleshooting Workloads Using Stackdriver
Aside from measuring the speed of individual queries, it can be helpful to gauge the
performance of entire workflows using the BigQuery logs. You can do this from the
GCP web console, in the Stackdriver Logging section. For example, you can look at
warnings (and more severe errors) issued by BigQuery for queries and operations on
the dataset from Chapter 5 by selecting the ch05 dataset and Warning from the drop-
down menus, as shown in Figure 7-1.

Figure 7-1. Use Stackdriver to look at log messages emanating from BigQuery

This ability to view all BigQuery error messages from a project in a centralized
location can be helpful, especially if the queries emanate from scripts and dashboards
that don’t display BigQuery error messages. Indeed, it is possible (provided you have
the necessary permissions) to look at the logs and piece together the set of operations
that are being carried out by a workload to determine whether unnecessary operations
are being performed. For example, look at the subset of the operations on the dataset
ch05eu, shown in Figure 7-2, and read it from the bottom to the top.

Figure 7-2. It is possible to use Stackdriver to piece together the set of operations carried out by a workload

In this case, it appears that a dataset named ch05eu was created, and a table named
cycle_stations_copy was added to it. Then an attempt was made to delete the
ch05eu dataset, but it failed because the dataset was not empty. A new table named
bad_bikes was added. After this, the bad_bikes table was deleted, and the
cycle_stations_copy table was also deleted. Finally, the dataset itself was deleted.

We can examine the details of each of the jobs—for example, let’s look at the first
insert job that created the cycle_stations_copy. The details include the schema of
the created table, as illustrated in Figure 7-3.

Figure 7-3. Examine the details of an insert job to ascertain the schema of the table being created

Given these details and knowledge of the context, it might be the case that the
cycle_stations_copy table did not use any of the fields in bad_bikes. Perhaps the
entire set of operations around bad_bikes was unnecessary and can be removed from
the workflow.

Reading Query Plan Information
In addition to measuring query speed and examining the logs, you can diagnose query
performance by looking at information available about the query plan. The query plan
information lists the stages into which the query is broken down and provides
information about the data processed in each of the execution steps that make up each
stage. The query plan information is available in JSON form from the job information
and visually in the BigQuery web UI.

In BigQuery, the execution graph of an SQL statement is broken up into query stages,
where each stage consists of units of work that are executed in parallel by many
workers. The stages communicate via a distributed shuffle architecture (see Chapter 6),

and so most stages start by reading the output of previous stages and end by writing to
the input of subsequent stages. Keep in mind that it is not necessary for a previous
stage to complete before a subsequent stage starts—stages can start with the data at
hand. So stages do not execute sequentially.

NOTE
You should keep in mind that the query plan is dynamic given that the exact data size and computational cost of
intermediate stages is not known before the stage in question is executed. If the actual size is very different from
the anticipated size, new stages might be introduced so as to repartition the data and improve data distribution
among the workers. Because of the dynamic nature of the query plan, when exploring query performance, look at
the query plan information after the query is complete.

Obtaining query plan information from the job details
The information listed about each stage of a completed query in the job information
includes the timestamps at which the stage was started and finished, the total number of
records read and written, and the number of bytes written across all workers in order to
process this query. For example, try executing the following query:

SELECT

 start_station_name,

 AVG(duration) AS duration,

 COUNT(duration) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY

 start_station_name

ORDER BY

 num_trips DESC

LIMIT

 5

Now you can list the job details by invoking the REST API:

JOBID=8adbf3fd-e310-44bb-9c6e-88254958ccac # CHANGE

access_token=$(gcloud auth application-default print-access-token)

PROJECT=$(gcloud config get-value project)

curl --silent \

 -H "Authorization: Bearer $access_token" \

 -X GET \

 "https://www.googleapis.com/bigquery/v2/projects/$PROJECT/jobs/$JOBID"

9

For example, the data about the first stage includes the following information about the
time spent waiting for data, the ratio of I/O to compute in the query, and data read,
shuffled, and written out:

"waitRatioAvg": 0.058558558558558557,

"readRatioAvg": 0.070270270270270274,

"computeRatioAvg": 0.86036036036036034

...

"shuffleOutputBytes": "356596",

"shuffleOutputBytesSpilled": "0",

"recordsRead": "24369201",

"recordsWritten": "6138",

"parallelInputs": "7",

Because this is primarily an input stage, we care primarily about read and shuffle
performance—because this stage kept the processor busy 86% of the time and no data
needed to be spilled to disk, it appears that bottlenecks (if any) in this query are not
related to I/O. If this query is slow, we’ll need to look elsewhere, perhaps at reasons for
the relatively low number of parallelization (7); in this case, this low count is fine
because the input data of 24 million records is rather small and quite capable of being
processed in seven chunks.

Visualizing the query plan information
Much of the information about the query plan in the job details is represented visually
in the BigQuery web UI. Open the query and click the “Execution details” tab to see a
depiction of the query plan. This includes the overall timing as well as a breakdown of
this timing at the level of the steps that make up each stage of the query.

TIP
As Figure 7-4 shows, the “Execution details” tab provides key information about query performance.

Figure 7-4. Key measures from the query execution details tab; performance optimization will typically focus on
reducing the slot time and/or bytes shuffled

The overall timing depicted in Figure 7-5 indicates seven parallel inputs being active in
the first 0.6 seconds, and then two more units being activated.

Figure 7-5. Timing data from the query plan information

Further details of the stages and steps are provided visually as well, as illustrated in
Figure 7-6.

Figure 7-6. Stages and steps from the query plan information

From Figure 7-6, we see that the query has three stages. The first stage (S00) is the
input stage, the second (S01) consists of sorting, and the third (S02) is the output stage.
The timing of each stage is shown visually as well in Figure 7-6. The ratios that were
available numerically in the JSON response to the job details request are depicted in
the color bars shown in Figure 7-7.

Figure 7-7. Stage timing from the query plan information

The dark colors indicate the average time spent waiting, reading, computing, or
writing. Here, most of the time is spent performing computation, and a little bit of time
is spent waiting. The wait stage is somewhat variable (the intermediate color indicates
the maximum wait, and the difference between the average and the maximum is an
indicator of variability)—here, the maximum wait time is nearly double the average
wait time. Reading, on the other hand, is quite consistent, whereas the writing overhead
is negligible.

Zooming in on the input stage, shown in Figure 7-8, we see that it consists of three
steps: reading two columns (duration and start_station_name, referred to as $1
and $2) from the BigQuery table, aggregating, and writing the output.

10

Figure 7-8. The steps that form the first stage

The aggregation step consists of three operations: grouping by start_station_name
(recall that $2 refers to this input column), finding the average duration ($1) within
each shard, and maintaining the count of non-null durations. The writing stage writes
the groups ($30), average duration ($20), and count of duration ($21) to an
intermediate output, distributing the output by the hash of the station name. In case
more than one worker is needed in the next stage, the hash of the station name controls
which workers process which parts of the stage_00 output.

Looking back again at Figure 7-6, you can see that the first stage is carried out in
parallel over seven workers, while the remaining two stages are carried out on a single
worker. The input stage reads in 24.4 million rows and writes out around 6,140 rows,
which totals 348 KB. These rows are sorted by the second stage, and five rows are
written to the third stage. When we have a stage with only one worker, we should
ensure that the memory load on that worker is well within the bounds of what a single
worker can handle (we cover ways to do so later in this chapter)—348 KB definitely
qualifies, and so this query should not pose any performance issues due to limits on the
resources available to a single worker.

Another option to visualize the BigQuery query plan is to use the BigQuery Visualizer
at https://bqvisualiser.appspot.com/, as shown in Figure 7-9.

https://oreil.ly/Unw_c
https://bqvisualiser.appspot.com/

Figure 7-9. Visualizing a BigQuery job using the BigQuery Visualizer

The visualizer becomes especially useful for complex queries with tens of stages,
which can be difficult to comprehend from just the synopsis available in the BigQuery
web UI.

Increasing Query Speed
As discussed in the previous section, you should carry out the following steps to
measure query speed and identify potential problems:

1. Measure the overall workload time using the BigQuery Workload Tester.

2. Examine the logs to ensure that the workload is not performing any
unexpected operations.

3. Examine the query plan information of the queries that form the workload to
identify bottlenecks or unnecessary stages.

Once you have identified that a problem exists and have determined that there are no
obvious errors in the workflow, it is time to consider how to improve speed on the
critical parts of the workload. In this section, we provide a few possible ways to
improve query speed, including the following:

Minimizing I/O

Caching the results of previous queries

Performing efficient joins

Avoiding overwhelming a worker

Using approximate aggregation functions

Minimizing I/O
As we noted earlier, a query that computes the sum of three columns will be slower
than a query that computes the sum of two columns, but most of the performance
difference will be due to reading more data, not the extra addition. Therefore, a query
that computes the mean of a column will be nearly as fast as a query whose aggregation
method is to compute the variance of the data (even though computing variance
requires BigQuery to keep track of both the sum and the sum of the squares), because
most of the overhead of simple queries is caused by I/O, not by computation.

Be purposeful in SELECT
Because BigQuery uses columnar file formats, the fewer the columns that are read in a
SELECT, the less the amount of data that needs to be read. In particular, doing a SELECT
* reads every column of every row in the table, making it quite slow and expensive.
The exception is when you use a SELECT * in a subquery and then reference only a few
fields in an outer query; the BigQuery optimizer will be smart enough to read only the
columns that are absolutely required.

Explicitly list the columns that you want to see in the final result. For example, it is
much more efficient to find the bike_id responsible for the longest duration trip in the
dataset by doing the following:

SELECT

 bike_id

 , duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

ORDER BY duration DESC

LIMIT 1

A less efficient method is this:

SELECT

 *

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

ORDER BY duration DESC

LIMIT 1

The first query took us 1.8 seconds and cost 372 MB, whereas the second one took us
5.5 seconds (three times slower) and cost 2.59 GB (seven times costlier).

TIP
Unless you are reading from a clustered table, applying a LIMIT clause does not affect the amount of data you are
billed for reading. When reading clustered tables, reductions in the number of bytes scanned will be passed along
to you as savings (although they will be less predictable). To preview a table, use the preview button on the web
UI instead of doing a SELECT * with a LIMIT. The preview does not incur charges, whereas a SELECT * incurs
the same charge as a table scan.

If you require nearly all of the columns in a table, consider using SELECT * EXCEPT so as to avoid reading the
ones you don’t require (see Chapter 2).

Reducing data being read
When tuning a query, it is important to start with the data that is being read and
consider whether it is possible to reduce it. Suppose that you want to find the typical
duration of the most common one-way rentals; you could do the following:

SELECT

 MIN(start_station_name) AS start_station_name

 , MIN(end_station_name) AS end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(duration) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

WHERE

 start_station_id != end_station_id

GROUP BY

 start_station_id, end_station_id

ORDER BY num_trips DESC

LIMIT 10

This takes 14.7 seconds when we run it, and it yields the following:

Row start_station_name end_station_name typical_duration num_trips

1 Black Lion Gate, Kensington
Gardens

Hyde Park Corner, Hyde Park 1,500 12,000

2 Black Lion Gate, Kensington
Gardens

Palace Gate, Kensington
Gardens

780 11,833

3 Hyde Park Corner, Hyde Park Albert Gate, Hyde Park 1,920 11,745

4 Hyde Park Corner, Hyde Park Triangle Car Park, Hyde Park 1,380 10,923

5 Hyde Park Corner, Hyde Park Black Lion Gate, Kensington
Gardens

1,680 10,652

The details of the query indicate that the sorting (for the approximate quantiles for
every station pair) requires a repartition of the outputs of the input stage, but most of
the time is spent during computation, as demonstrated in Figure 7-10.

Figure 7-10. This query requires two repartition stages, but most of the time is spent in computation

Nevertheless, we can reduce the I/O overhead of the query if we do the filtering and
grouping using the station name rather than the station ID, because we will need to read
fewer columns:

SELECT

 start_station_name

 , end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(duration) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

WHERE

 start_station_name != end_station_name

GROUP BY

 start_station_name, end_station_name

ORDER BY num_trips DESC

LIMIT 10

This query avoids the need to read the two ID columns and finishes in 9.6 seconds, a
30% increase in speed. This increase is caused by the downstream effects of reading
less data: the query requires one less repartition, and fewer workers (10, versus 19
earlier) for the sort, as shown in Figure 7-11.

Figure 7-11. By taking advantage of the 1:1 relationship between station_id and station_name, we are able to
read fewer columns, remove one stage, and use fewer workers for the sort

The query result remains the same because there is a 1:1 relationship between the
station name and the station ID.

Reducing the number of expensive computations
Suppose that you want to find the total distance traveled by each bicycle in the dataset.
A naive way to do this would be to find the distance traveled in each trip undertaken by
each bicycle and sum up the distances:

WITH trip_distance AS (

 SELECT

 bike_id

 , ST_Distance(ST_GeogPoint(s.longitude, s.latitude),

 ST_GeogPoint(e.longitude, e.latitude)) AS distance

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire,

 `bigquery-public-data`.london_bicycles.cycle_stations s,

 `bigquery-public-data`.london_bicycles.cycle_stations e

 WHERE

 start_station_id = s.id

 AND end_station_id = e.id

)

SELECT

 bike_id

 , SUM(distance)/1000 AS total_distance

FROM trip_distance

GROUP BY bike_id

ORDER BY total_distance DESC

LIMIT 5

This query takes 7.1 seconds (44 seconds of slot time) and shuffles 1.69 MB. The result
is that some bicycles have been ridden nearly 6,000 kilometers:

Row bike_id total_distance

1 12925 5990.988493972133

2 12757 5919.736998793672

3 12496 5883.1268196056335

4 12841 5870.757769474104

5 13071 5853.763514457338

Computing the distance is a pretty expensive operation, and we can avoid joining the
cycle_stations table against the cycle_hire table if we precompute the distances
between all pairs of stations:

WITH stations AS (

 SELECT

 s.id AS start_id

 , e.id AS end_id

 , ST_Distance(ST_GeogPoint(s.longitude, s.latitude),

 ST_GeogPoint(e.longitude, e.latitude)) AS distance

 FROM

 `bigquery-public-data`.london_bicycles.cycle_stations s,

 `bigquery-public-data`.london_bicycles.cycle_stations e

),

The rest of the query is quite similar, except that the join is against the table of
precomputed distances:

trip_distance AS (

 SELECT

 bike_id

 , distance

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire,

 stations

 WHERE

 start_station_id = start_id

 AND end_station_id = end_id

)

SELECT

 bike_id

 , SUM(distance)/1000 AS total_distance

FROM trip_distance

GROUP BY bike_id

ORDER BY total_distance DESC

LIMIT 5

Now the query takes only 31.5 seconds of slot time (a 30% increase in speed) in spite
of having to shuffle more data (33.44 MB) between nodes.

Caching the Results of Previous Queries
The BigQuery service automatically caches query results in a temporary table. If the
identical query is submitted within approximately 24 hours, the results are served from
this temporary table without any recomputation. Cached results are extremely fast and
do not incur charges.

There are, however, a few caveats to be aware of. Query caching is based on exact
string comparison. So even whitespaces can cause a cache miss. Queries are never
cached if they exhibit nondeterministic behavior (for example, they use
CURRENT_TIMESTAMP or RAND), if the table or view being queried has changed (even if
the columns/rows of interest to the query are unchanged), if the table is associated with
a streaming buffer (even if there are no new rows), if the query uses Data Manipulation
Language (DML) statements, or if it queries external data sources.

NOTE
We recommend against reading directly from the cached temporary tables, because cached tables can expire—if
the results of a query can serve as inputs to other queries, we recommend the use of tables or materialized views,
as discussed in the next section.

Caching intermediate results
It is possible to improve overall performance at the expense of increased I/O by taking
advantage of temporary tables and materialized views. For example, suppose that you

have a number of queries that start out by finding the typical duration of trips between
a pair of stations:

WITH typical_trip AS (

SELECT

 start_station_name

 , end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(duration) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY

 start_station_name, end_station_name

)

The WITH clause (also called a common table expression) improves readability but does
not improve query speed or cost because results are not cached. The same applies to
views and subqueries as well. If you find yourself using a WITH clause, a view, or a
subquery often, one way to potentially improve performance is to store the result in a
table (or materialized view):

CREATE OR REPLACE TABLE ch07eu.typical_trip AS

SELECT

 start_station_name

 , end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(duration) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY

 start_station_name, end_station_name

Let’s use the WITH clause to find days when bicycle trips are much longer than usual:

SELECT

 EXTRACT (DATE FROM start_date) AS trip_date

 , APPROX_QUANTILES(duration / typical_duration, 10)[OFFSET(5)] AS ratio

 , COUNT(*) AS num_trips_on_day

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS hire

JOIN typical_trip AS trip

ON

 hire.start_station_name = trip.start_station_name

 AND hire.end_station_name = trip.end_station_name

 AND num_trips > 10

GROUP BY trip_date

11

HAVING num_trips_on_day > 10

ORDER BY ratio DESC

LIMIT 10

This takes 19.1 seconds and processes 1.68 GB. Now, let’s use the table:

SELECT

 EXTRACT (DATE FROM start_date) AS trip_date

 , APPROX_QUANTILES(duration / typical_duration, 10)[OFFSET(5)] AS ratio

 , COUNT(*) AS num_trips_on_day

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS hire

JOIN ch07eu.typical_trip AS trip

ON

 hire.start_station_name = trip.start_station_name

 AND hire.end_station_name = trip.end_station_name

 AND num_trips > 10

GROUP BY trip_date

HAVING num_trips_on_day > 10

ORDER BY ratio DESC

LIMIT 10

This takes 10.3 seconds (a 50% increase in speed because the computation is avoided)
and processes 1.72 GB (a slight increase in cost because the new table is now being
read). Both queries return the same result, that trips on Christmas take longer than
usual:

Row trip_date ratio num_trips_on_day

1 2016-12-25 1.6 34477

2 2015-12-25 1.5263157894736843 20871

3 2015-08-01 1.25 41200

4 2016-07-30 1.2272727272727273 43524

5 2015-08-02 1.2222222222222223 41243

The table ch07eu.typical_trip is not refreshed when new data is added to the
cycle_hire table. One way to solve this problem of stale data is to use a materialized
view or to schedule queries to update the table periodically. You should measure the
cost of such updates to see whether the improvement in query performance makes up
for the extra cost of keeping the intermediate table up to date.

ARE MATERIALIZED TABLES ALWAYS MORE EFFICIENT?
It is not the case that materialized tables will always reduce computation cost. For
example, suppose that you were to use a WITH clause to abstract away an expensive
regular expression (regex) function, but the main expression always has a
restrictive filter (here, of trips longer than 84,000 seconds):

WITH trip AS (

SELECT

 REGEXP_REPLACE(start_station_name,

 r"^# ([a-zA-Z0-9\s]+$)", "FROM: \\1") AS start_station_name

 , REGEXP_REPLACE(end_station_name,

 r"^# ([a-zA-Z0-9\s]+$)", "TO: \\1") ASend_station_name

 , duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

)

SELECT * FROM trip

WHERE duration > 84000

The BigQuery optimizer that looked at the entire query would be able to limit the
number of times the regex is invoked. However, if the WITH clause trip were to be
materialized into a table, the regex function would need to be called for every row.

Accelerating queries with BI Engine
If there are tables that you access frequently in Business Intelligence (BI) settings, such
as dashboards with aggregations and filters, one way to speed up your queries is to
employ BI Engine. It will automatically store relevant pieces of data in memory (either
actual columns from the table or derived results) and will use a specialized query
processor tuned for working with mostly in-memory data. You can use the BigQuery
Admin Console to reserve the amount of memory (up to a current maximum of 10 GB)
that BigQuery should use for its cache, as depicted in Figure 7-12.

Figure 7-12. Reserve memory for caching table data by setting up a BI Engine reservation

Make sure to reserve this memory in the same region as the dataset you are querying.
Then BigQuery will start to cache tables, parts of tables, and aggregations in memory
and serve results faster.

A primary use case for BI Engine is for tables that are accessed from dashboard tools
such as Google Data Studio. By providing memory allocation for a BI Engine
reservation, you can make dashboards that rely on a BigQuery backend much more
responsive.

Performing Efficient Joins
Joining two tables requires data coordination and is subject to limitations imposed by
the communication bandwidth between slots. If it is possible to avoid a join, or to
reduce the amount of data being joined, do so.

Denormalization
One way to improve the read performance and avoid joins is to give up on storing data
efficiently and instead add redundant copies of data. This is called denormalization.
Thus, instead of storing the bicycle station latitudes and longitudes separately from the
cycle hire information, we could create a denormalized table:

CREATE OR REPLACE TABLE ch07eu.london_bicycles_denorm AS

SELECT

 start_station_id

 , s.latitude AS start_latitude

 , s.longitude AS start_longitude

 , end_station_id

 , e.latitude AS end_latitude

 , e.longitude AS end_longitude

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire as h

JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations as s

ON

 h.start_station_id = s.id

JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations as e

ON

 h.end_station_id = e.id

Then all subsequent queries will not need to carry out the join because the table will
contain the necessary location information for all trips:

Row start_station_id start_latitude start_longitude end_station_id end_latitude end_longitude

1 439 51.5338 -0.118677 680 51.47768469 -0.170329317

2 597 51.473471 -0.20782 622 51.50748124 -0.205535908

3 187 51.49247977 -0.178433004 187 51.49247977 -0.178433004

4 15 51.51772703 -0.127854211 358 51.516226 -0.124826

5 638 51.46663393 -0.169821175 151 51.51213691 -0.201554966

In this case, you are trading off storage and reading more data for the computational
expense of a join. It is quite possible that the cost of reading more data from disk will
outweigh the cost of the join—you should measure whether denormalization brings
performance benefits.

Avoiding self-joins of large tables
Self-joins happen when a table is joined with itself. Although BigQuery supports self-
joins, they can lead to performance degradation if the table being joined with itself is
very large. In many cases, you can avoid the self-join by taking advantage of SQL
features such as aggregation and window functions.

Let’s look at an example. One of the BigQuery public datasets is the dataset of baby
names published by the US Social Security Administration. It is possible to query the
dataset to find the most common male names for the year 2015 in the state of
Massachusetts:

SELECT

 name

 , number AS num_babies

FROM `bigquery-public-data`.usa_names.usa_1910_current

WHERE gender = 'M' AND year = 2015 AND state = 'MA'

ORDER BY num_babies DESC

LIMIT 5

Here’s the result of that query:

Row name num_babies

1 Benjamin 456

2 William 445

3 Noah 403

4 Mason 365

5 James 354

Similarly, the most common female names (gender = 'F') for the year 2015 in
Massachusetts were as follows:

Row name num_babies

1 Olivia 430

2 Emma 402

3 Sophia 373

4 Isabella 350

5 Charlotte 344

What are the most common names assigned to both male and female babies in the
country over all the years in the dataset? A naive way to solve this problem involves
reading the input table twice and doing a self-join:

WITH male_babies AS (

SELECT

 name

 , number AS num_babies

FROM `bigquery-public-data`.usa_names.usa_1910_current

WHERE gender = 'M'

),

female_babies AS (

SELECT

 name

 , number AS num_babies

FROM `bigquery-public-data`.usa_names.usa_1910_current

WHERE gender = 'F'

),

both_genders AS (

SELECT

 name

 , SUM(m.num_babies) + SUM(f.num_babies) AS num_babies

 , SUM(m.num_babies) / (SUM(m.num_babies) + SUM(f.num_babies)) AS frac_male

FROM male_babies AS m

JOIN female_babies AS f

USING (name)

GROUP BY name

)

SELECT * FROM both_genders

WHERE frac_male BETWEEN 0.3 and 0.7

ORDER BY num_babies DESC

LIMIT 5

This took 74 seconds and yielded the following:

Row name num_babies frac_male

1 Jordan 982149616 0.6705115608373867

2 Willie 940460442 0.5722103705452823

3 Lee 820214744 0.689061146650151

4 Jessie 759150003 0.5139710590240227

5 Marion 592706454 0.32969114589732473

To add insult to injury, the answer is also wrong: as much as we like the name Jordan,
the entire US population is only around 330 million, so there cannot have been 982
million babies with that name. The self-join unfortunately joins across state and year
boundaries.

A faster, more elegant (and correct!) solution is to recast the query to read the input
only once and avoid the self-join completely. This took only 2.4 seconds—a 30-times
increase in speed:

WITH all_babies AS (

SELECT

 name

 , SUM(IF(gender = 'M', number, 0)) AS male_babies

 , SUM(IF(gender = 'F', number, 0)) AS female_babies

FROM `bigquery-public-data.usa_names.usa_1910_current`

GROUP BY name

),

both_genders AS (

SELECT

 name

 , (male_babies + female_babies) AS num_babies

 , SAFE_DIVIDE(male_babies, male_babies + female_babies) AS frac_male

FROM all_babies

12

WHERE male_babies > 0 AND female_babies > 0

)

SELECT * FROM both_genders

WHERE frac_male BETWEEN 0.3 and 0.7

ORDER BY num_babies desc

limit 5

Here’s the result, in case you’re curious:

Row name num_babies frac_male

1 Jessie 229263 0.4327213723976394

2 Riley 187762 0.46760792918694943

3 Casey 181176 0.5916456925862145

4 Jackie 161428 0.4624042916966078

5 Johnnie 136208 0.6842549629977681

Reducing the data being joined
It is possible to carry out the previous query with an efficient join as long as we reduce
the amount of data being joined by grouping the data by name and gender early on:

with all_names AS (

 SELECT name, gender, SUM(number) AS num_babies

 FROM `bigquery-public-data`.usa_names.usa_1910_current

 GROUP BY name, gender

),

male_names AS (

 SELECT name, num_babies

 FROM all_names

 WHERE gender = 'M'

),

female_names AS (

 SELECT name, num_babies

 FROM all_names

 WHERE gender = 'F'

),

ratio AS (

 SELECT

 name

 , (f.num_babies + m.num_babies) AS num_babies

 , m.num_babies / (f.num_babies + m.num_babies) AS frac_male

 FROM male_names AS m

 JOIN female_names AS f

 USING (name)

)

SELECT * from ratio

WHERE frac_male BETWEEN 0.3 and 0.7

ORDER BY num_babies DESC

LIMIT 5

The early grouping serves to trim the data early in the query, before the query performs
a JOIN. That way, shuffling and other complex operations execute only on the much
smaller data and remain quite efficient. This query finished in two seconds and
returned the correct result.

Using a window function instead of self-join
Suppose that you want to find the duration between a bike being dropped off and it
being rented again; in other words, the duration that a bicycle stays at the station. This
is an example of a dependent relationship between rows. It might appear that the only
way to solve this is to join the table with itself, matching the end_date of one trip
against the start_date of the next.

You can, however, avoid a self-join by using a window function (we cover window
functions in Chapter 8):

SELECT

 bike_id

 , start_date

 , end_date

 , TIMESTAMP_DIFF(

 start_date,

 LAG(end_date) OVER (PARTITION BY bike_id ORDER BY start_date),

 SECOND) AS time_at_station

FROM `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

Here’s the result of that query:

Row bike_id start_date end_date time_at_station

1 2 2015-01-05 15:59:00 UTC 2015-01-05 16:17:00 UTC null

2 2 2015-01-07 01:31:00 UTC 2015-01-07 01:50:00 UTC 119640

3 2 2015-01-21 07:56:00 UTC 2015-01-21 08:12:00 UTC 1231560

4 2 2015-01-21 16:15:00 UTC 2015-01-21 16:31:00 UTC 28980

5 2 2015-01-21 16:57:00 UTC 2015-01-21 17:23:00 UTC 1560

Notice that the first row has a null for time_at_station because we don’t have a
timestamp for the previous dropoff. After that, the time_at_station tracks the
difference between the previous dropoff and the current pickup.

Using this, we can compute the average time that a bicycle is unused at each station
and rank stations by that measure:

WITH unused AS (

SELECT

 bike_id

 , start_station_name

 , start_date

 , end_date

 , TIMESTAMP_DIFF(start_date, LAG(end_date) OVER (PARTITION BY bike_id ORDER BY

start_date), SECOND) AS time_at_station

FROM `bigquery-public-data`.london_bicycles.cycle_hire

)

SELECT

 start_station_name

 , AVG(time_at_station) AS unused_seconds

FROM unused

GROUP BY start_station_name

ORDER BY unused_seconds ASC

LIMIT 5

From this query, we learn that bicycles turn over the fastest at the following stations:

Row start_station_name unused_seconds

1 LSP1 1500.0

2 Wormwood Street, Liverpool Street 4605.427372968633

3 Hyde Park Corner, Hyde Park 5369.884926322234

4 Speakers’ Corner 1, Hyde Park 6203.571977906734

5 Albert Gate, Hyde Park 6258.720194303267

Joining with precomputed values
Sometimes it can be helpful to precompute functions on smaller tables and then join
with the precomputed values rather than repeat an expensive calculation each time.

For example, suppose that you want to find the pair of stations between which our
customers ride bicycles at the fastest pace. To compute the pace (minutes per
kilometer) at which they ride, we need to divide the duration of the ride by the distance
between stations.

13

We could create a denormalized table with distances between stations and then
compute the average pace:

with denormalized_table AS (

 SELECT

 start_station_name

 , end_station_name

 , ST_DISTANCE(ST_GeogPoint(s1.longitude, s1.latitude),

 ST_GeogPoint(s2.longitude, s2.latitude)) AS distance

 , duration

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS h

 JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations AS s1

 ON h.start_station_id = s1.id

 JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations AS s2

 ON h.end_station_id = s2.id

),

durations AS (

 SELECT

 start_station_name

 , end_station_name

 , MIN(distance) AS distance

 , AVG(duration) AS duration

 , COUNT(*) AS num_rides

 FROM

 denormalized_table

 WHERE

 duration > 0 AND distance > 0

 GROUP BY start_station_name, end_station_name

 HAVING num_rides > 100

)

SELECT

 start_station_name

 , end_station_name

 , distance

 , duration

 , duration/distance AS pace

FROM durations

ORDER BY pace ASC

LIMIT 5

This query invokes the geospatial function ST_DISTANCE once for each row in the
cycle_hire table (24 million times), takes 16.1 seconds, and processes 1.86 GB.

Alternatively, we can use the cycle_stations table to precompute the distance
between every pair of stations (this is a self-join) and then join it with the reduced-size

table of average duration between stations:

with distances AS (

 SELECT

 a.id AS start_station_id

 , a.name AS start_station_name

 , b.id AS end_station_id

 , b.name AS end_station_name

 , ST_DISTANCE(ST_GeogPoint(a.longitude, a.latitude),

 ST_GeogPoint(b.longitude, b.latitude)) AS distance

 FROM

 `bigquery-public-data`.london_bicycles.cycle_stations a

 CROSS JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations b

 WHERE a.id != b.id

),

durations AS (

 SELECT

 start_station_id

 , end_station_id

 , AVG(duration) AS duration

 , COUNT(*) AS num_rides

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 duration > 0

 GROUP BY start_station_id, end_station_id

 HAVING num_rides > 100

)

SELECT

 start_station_name

 , end_station_name

 , distance

 , duration

 , duration/distance AS pace

FROM distances

JOIN durations

USING (start_station_id, end_station_id)

ORDER BY pace ASC

LIMIT 5

The recast query with the more efficient joins takes only 5.4 seconds, an increase in
speed of three times, and processes 554 MB, a reduction in cost of nearly four times.

JOIN versus denormalization
What if we were to store the distance traveled in each trip in a denormalized table?

CREATE OR REPLACE TABLE ch07eu.cycle_hire AS

SELECT

 start_station_name

 , end_station_name

 , ST_DISTANCE(ST_GeogPoint(s1.longitude, s1.latitude),

 ST_GeogPoint(s2.longitude, s2.latitude)) AS distance

 , duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS h

JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations AS s1

ON h.start_station_id = s1.id

JOIN

 `bigquery-public-data`.london_bicycles.cycle_stations AS s2

ON h.end_station_id = s2.id

Querying this table returns results in 8.7 seconds and processes 1.6 GB—in other
words, it’s 60% slower and about three times more expensivethan the previous query.
In this instance, therefore, joining with a smaller table turns out to be more efficient
than querying a larger, denormalized table. However, this is the sort of thing that you
need to measure for your particular use case. You will see later how you can efficiently
store data at differing levels of granularity in a single denormalized table with nested
and repeated fields.

Avoiding Overwhelming a Worker
Some operations (e.g., ordering) need to be carried out on a single worker. Having to
sort too much data can overwhelm a worker’s memory and result in a “resources
exceeded” error. Avoid overwhelming the worker with too much data. As the hardware
in Google datacenters is upgraded, what “too much” means in this context expands
over time. Currently, this is on the order of one gigabyte.

Limiting large sorts
Suppose that you want to go through the bike rentals and number them 1, 2, 3, and so
on, in the order that the rentals ended. We could do that by using the ROW_NUMBER()
function (we cover window functions in Chapter 8):

SELECT

 rental_id

 , ROW_NUMBER() OVER(ORDER BY end_date) AS rental_number

FROM `bigquery-public-data`.london_bicycles.cycle_hire

ORDER BY rental_number ASC

LIMIT 5

Here’s the result:

Row rental_id rental_number

1 40346512 1

2 40346508 2

3 40346519 3

4 40346510 4

5 40346520 5

However, this query takes 29.9 seconds to process just 372 MB because it needs to sort
the entirety of the london_bicycles dataset on a single worker. Had we processed a
larger dataset, it would have overwhelmed that worker.

In such cases, we might want to consider whether it is possible to limit the large sorts
and distribute them. Indeed, it is possible to extract the date from the rentals and then
sort trips within each day:

WITH rentals_on_day AS (

SELECT

 rental_id

 , end_date

 , EXTRACT(DATE FROM end_date) AS rental_date

FROM `bigquery-public-data.london_bicycles.cycle_hire`

)

SELECT

 rental_id

 , rental_date

 , ROW_NUMBER() OVER(PARTITION BY rental_date ORDER BY end_date) AS

rental_number_on_day

FROM rentals_on_day

ORDER BY rental_date ASC, rental_number_on_day ASC

LIMIT 5

This takes 8.9 seconds (an increase in speed of three times) because the sorting can be
done on just a single day of data at a time. It yields the rental number on a day-by-day
basis:

Row rental_id rental_date rental_number_on_day

1 40346512 2015-01-04 1

2 40346508 2015-01-04 2

3 40346519 2015-01-04 3

4 40346510 2015-01-04 4

5 40346520 2015-01-04 5

Data skew
The same problem of overwhelming a worker (in this case, overwhelming the memory
of the worker) can happen during an ARRAY_AGG with GROUP BY if one of the keys is
much more common than the others.

Because there are more than three million GitHub repositories and the commits are
well distributed among them, this query succeeds:

SELECT

 repo_name

 , ARRAY_AGG(STRUCT(author, committer, subject, message, trailer, difference,

encoding) ORDER BY author.date.seconds)

FROM `bigquery-public-data.github_repos.commits`, UNNEST(repo_name) AS repo_name

GROUP BY repo_name

However, most of the people using GitHub live in only a few time zones, so grouping
by the time zone fails—we are asking a single worker to sort a significant fraction of
750 GB:

SELECT

 author.tz_offset, ARRAY_AGG(STRUCT(author, committer, subject, message,

trailer, difference, encoding) ORDER BY author.date.seconds)

FROM `bigquery-public-data.github_repos.commits`

GROUP BY author.tz_offset

One solution is to add a LIMIT to the ORDER BY:

SELECT

 author.tz_offset, ARRAY_AGG(STRUCT(author, committer, subject, message,

trailer, difference, encoding) ORDER BY author.date.seconds LIMIT 1000)

FROM `bigquery-public-data.github_repos.commits`

GROUP BY author.tz_offset

14

If you do require sorting all of the data, use more granular keys (i.e., distribute the
group’s data over more workers) and then aggregate the results corresponding to the
desired key. For example, instead of grouping only by the time zone, it is possible to
group by time zone and repo_name and then aggregate across repositories to get the
actual answer for each time zone:

SELECT

 repo_name, author.tz_offset

 , ARRAY_AGG(STRUCT(author, committer, subject, message, trailer, difference,

encoding) ORDER BY author.date.seconds)

FROM `bigquery-public-data.github_repos.commits`, UNNEST(repo_name) AS repo_name

GROUP BY repo_name, author.tz_offset

Optimizing user-defined functions
Invoking a JavaScript user-defined function (UDF) requires a V8 subprocess to be
launched, and this degrades performance. JavaScript UDFs are computationally
expensive and have access to limited memory, so reducing the amount of data
processed by the UDF can help improve performance.

Although BigQuery supports UDFs in JavaScript, opt to write your UDFs using SQL
wherever possible; SQL is distributed and optimized by BigQuery natively. If you are
writing a UDF in SQL, there is no performance difference between embedding the
SQL function directly in the query or using temporary and permanent functions. The
reason to use an SQL UDF is for reusability, composability, and readability.

Using Approximate Aggregation Functions
BigQuery provides fast, low-memory approximations of aggregate functions. Instead of
using COUNT(DISTINCT …), we can use APPROX_COUNT_DISTINCT on large data
streams when a small statistical uncertainty in the result is tolerable.

Approximate count
For example, you can find the number of unique GitHub repositories by using:

SELECT

 COUNT(DISTINCT repo_name) AS num_repos

FROM `bigquery-public-data`.github_repos.commits, UNNEST(repo_name) AS repo_name

This query takes 7.1 seconds to compute the correct result of 3,348,576. On the other
hand, the following query takes 3.2 seconds (an increase in speed of two times) and
returns an approximate result of 3,400,927, which overestimates the correct answer by
1.5%:

SELECT

 APPROX_COUNT_DISTINCT(repo_name) AS num_repos

FROM `bigquery-public-data`.github_repos.commits, UNNEST(repo_name) AS repo_name

On smaller datasets, however, there might be no advantage. Let’s look at an example
that finds the total number of unique bicycles in the london_bicycles dataset:

SELECT

 COUNT(DISTINCT bike_id) AS num_bikes

FROM `bigquery-public-data`.london_bicycles.cycle_hire

This takes 0.9 seconds and returns the correct result of 13,705. Using the approximate
counterpart takes 1.6 seconds (which is slower than the exact query) and returns an
approximate result of 13,699:

SELECT

 APPROX_COUNT_DISTINCT(bike_id) AS num_bikes

 FROM `bigquery-public-data`.london_bicycles.cycle_hire

TIP
The approximate algorithm is much more efficient than the exact algorithm only on large datasets and is
recommended in use cases for which errors of approximately 1% are tolerable. Before using the approximate
function, always measure on your use case!

Approximate top

Other available approximate functions include APPROX_QUANTILES to compute
percentiles, APPROX_TOP_COUNT to find the top elements, and APPROX_TOP_SUM to
compute top elements based on the sum of an element.

Here’s an example of using APPROX_TOP_COUNT to find the five most frequently rented
bicycles:

SELECT

 APPROX_TOP_COUNT(bike_id, 5) AS num_bikes

FROM `bigquery-public-data`.london_bicycles.cycle_hire

This yields the following:

Row num_bikes.value num_bikes.count

1 12925 2922

 12841 2489

 13071 2474

 12926 2467

 12991 2444

Note that the result is a single row and consists of an array of values so that ordering is
preserved.

TIP
If your queries are taking too long, you can use APPROX_TOP_COUNT to check whether data skew is the reason. If
so, consider the tips earlier in the chapter on dealing with data skew by carrying out the operation at a more
granular level or using LIMIT to reduce the data being processed.

To find the top five stations based on duration of bicycle rentals, you can use
APPROX_TOP_SUM:

SELECT

 APPROX_TOP_SUM(start_station_name, duration, 5) AS num_bikes

FROM `bigquery-public-data`.london_bicycles.cycle_hire

WHERE duration > 0

Here is the result of that query:

Row num_bikes.value num_bikes.sum

1 Hyde Park Corner, Hyde Park 600037440

 Black Lion Gate, Kensington Gardens 581085720

 Albert Gate, Hyde Park 367235700

 Speakers’ Corner 1, Hyde Park 318485820

 Speakers’ Corner 2, Hyde Park 268442640

HLL functions

In addition to the just-described APPROX_* functions (which carry out the entire
approximate aggregation algorithm), BigQuery also supports the HyperLogLog++
(HLL++) algorithm, which allows you to break down the count-distinct problem into
three separate operations:

1. Initialize a set, called an HLL sketch, by adding new elements to it by using
HLL_COUNT.INIT

2. Find the cardinality (count) of an HLL sketch by using HLL_COUNT.EXTRACT

3. Merge two HLL sketches into a single sketch by using
HLL_COUNT.MERGE_PARTIAL

In addition, HLL_COUNT.MERGE combines steps 2 and 3, computing the count from a set
of HLL sketches.

For example, here’s a query that finds the count of distinct stations in the London
bicycles table regardless of whether a trip started or ended at the station:

WITH sketch AS (

SELECT

 HLL_COUNT.INIT(start_station_name) AS hll_start

 , HLL_COUNT.INIT(end_station_name) AS hll_end

FROM `bigquery-public-data`.london_bicycles.cycle_hire

)

SELECT

 HLL_COUNT.MERGE(hll_start) AS distinct_start

 , HLL_COUNT.MERGE(hll_end) AS distinct_end

 , HLL_COUNT.MERGE(hll_both) AS distinct_station

FROM sketch, UNNEST([hll_start, hll_end]) AS hll_both

This returns the following:

Row distinct_start distinct_end distinct_station

1 880 882 882

Of course, you also can achieve this by using APPROX_COUNT_DISTINCT directly:

SELECT

 APPROX_COUNT_DISTINCT(start_station_name) AS distinct_start

 , APPROX_COUNT_DISTINCT(end_station_name) AS distinct_end

 , APPROX_COUNT_DISTINCT(both_stations) AS distinct_station

FROM

https://research.google.com/pubs/pub40671.html

 `bigquery-public-data`.london_bicycles.cycle_hire

 , UNNEST([start_station_name, end_station_name]) AS both_stations

This yields the same result and is much simpler to read and understand. Mostly,
therefore, you would use the APPROX_ variants.

One reason to use the HLL functions might be that you need to employ manual
aggregation or prevent storage of specific columns. Suppose that your data has the
schema user_id, date, product, country, and you need to compute the number
of distinct users. However, the column user_id is personally identifying, and so you
would prefer to not store it indefinitely. In such a case, you can compute a manual
aggregation using HLL_COUNT.INIT, as follows:

INSERT INTO approx_distinct_users_agg AS

SELECT date, product, country, HLL_COUNT.INIT(user_id) AS sketch

GROUP BY date, product, country, sketch

Now you don’t need to store user_id; you only need to store the sketch. Whenever
you need to compute any higher-level aggregation, you can do the following:

SELECT date, HLL_COUNT.MERGE(sketch)

FROM approx_distinct_users_agg

GROUP BY date

Optimizing How Data Is Stored and Accessed
In the previous section, we discussed how to improve query performance, but we
limited ourselves to methods that do not change the layout of the table, where it is
stored, or how it is accessed. In this section, we look at how addressing these factors
can have a dramatic impact on query performance. Obviously, you will want to keep
these tips in mind as you design your tables, because changing the schema of a table
tends to break existing queries.

Minimizing Network Overhead
BigQuery is a regional service that is globally accessible. If you are querying a dataset
that resides in the EU region, for example, the query will run on computational
resources that are located in an EU datacenter. If you store the results of the query into
a destination table, that table must be in a dataset that is also in the EU. You can,

however, invoke the BigQuery REST API (i.e., invoke the query) from anywhere in the
world, even from machines outside of GCP.

When working with other GCP resources such as Google Cloud Storage or Cloud
Pub/Sub, the best performance will be obtained if you also locate them in the same
region as the dataset. Thus, for example, if you are invoking a query from a Compute
Engine instance or a Cloud Dataproc cluster, network overhead will be minimized if
the instance or cluster is also located in the same region as the dataset being queried.

If you’re invoking BigQuery from outside GCP, consider the network topology and try
to minimize the number of hops between the client machine and the GCP datacenter in
which the dataset resides.

Compressed, partial responses
When invoking the REST API directly, you can minimize network overhead by
accepting compressed, partial responses. To accept compressed responses, you can
specify in the HTTP header that you will accept gzip and make sure that the string
“gzip” appears in the name of the user-agent—for example:

Accept-Encoding: gzip

User-Agent: programName (gzip)

Then the responses are compressed using gzip.

By default, responses from BigQuery contain all of the fields promised in the
documentation. However, if we know what part of the response we are interested in, we
can ask BigQuery to send back only that bit of the response, thus lowering the network
overhead. For example, earlier in this chapter, we looked at how to get back the
complete job details using the Jobs API. If you are interested in only a subset of the full
response (for example, only the steps in the query plan), you can specify the field(s) of
interest to limit the size of the response:

JOBSURL="https://www.googleapis.com/bigquery/v2/projects/$PROJECT/jobs"

FIELDS="statistics(query(queryPlan(steps)))"

curl --silent \

 -H "Authorization: Bearer $access_token" \

 -H "Accept-Encoding: gzip" \

 -H "User-Agent: get_job_details (gzip)" \

 -X GET \

 "${JOBSURL}/${JOBID}?fields=${FIELDS}" \

| zcat

15

Note that we are also specifying that we accept gzip encoding.

Batching multiple requests
When using the REST API, it is possible to batch multiple BigQuery API calls by
using the multipart/mixed content type and nesting HTTP requests in each of the
parts. The body of each part specifies the HTTP operation (GET, PUT, etc.), path
portion of the URL, headers, and body. The server’s response is a single HTTP
response with a multipart/mixed content type, with the parts being responses (in
order) to the requests that form the batched request. Even though the responses are in
order, the server might execute the calls in any order. Thus you should treat the batched
request as a parallel execution.

Here’s an example of sending a batched request to get some query plan details of the
last five queries in our project. You first use the BigQuery command-line tool to get the
five most recent successful jobs:

The 5 most recent successful jobs

JOBS=$(bq ls -j -n 50 | grep SUCCESS | head -5 | awk '{print $1}')

The request goes to the batch endpoint for BigQuery:

BATCHURL="https://www.googleapis.com/batch/bigquery/v2"

JOBSPATH="/projects/$PROJECT/jobs"

FIELDS="statistics(query(queryPlan(steps)))"

Using the URL path, you can form the individual requests:

request=""

for JOBID in $JOBS; do

read -d '' part << EOF

--batch_part_starts_here

GET ${JOBSPATH}/${JOBID}?fields=${FIELDS}

EOF

request=$(echo "$request"; echo "$part")

done

Then you can send the request to the batch endpoint as a multipart request:

curl --silent \

16

 -H "Authorization: Bearer $access_token" \

 -H "Content-Type: multipart/mixed; boundary=batch_part_starts_here" \

 -X POST \

 -d "$request" \

 "${BATCHURL}"

Bulk reads using BigQuery Storage API
In Chapter 5, we discussed using the BigQuery REST API and associated client
libraries to list table data and get query results. The REST API provides the data in
record-oriented, paginated views that are more conducive to relatively small result sets.
Yet, with the advent of machine learning and distributed Extract, Transform, and Load
(ETL) tools, external tools now require fast, efficient bulk access to BigQuery’s
managed storage. Such bulk read access is provided by the BigQuery Storage API via
Remote Procedure Call (RPC)–based protocol. With the BigQuery Storage API,
structured data is sent over the wire in a binary serialization format that maps more
closely to the columnar format in which the data is stored. This allows for additional
parallelism among multiple consumers for a set of results.

It is unlikely that you will use the BigQuery Storage API directly if you are an end
user. Instead, you will take advantage of tools such as Cloud Dataflow, Cloud
Dataproc, TensorFlow, AutoML, and others that employ the Storage API to read
directly from BigQuery’s managed storage instead of going through the BigQuery API.
Because the Storage API directly accesses stored data, permission to access the
BigQuery Storage API is distinct from the existing BigQuery API. The BigQuery
Storage API must be enabled independently of enabling BigQuery.

The BigQuery Storage API provides several benefits to tools that read directly from
BigQuery’s managed storage. For example, consumers can read disjoint a set of rows
from a table using multiple streams (enabling distributed reads from different workers
in Cloud Dataproc, for example), dynamically shard these streams (thus reducing tail
latency, which can be a significant problem for MapReduce jobs), select a subset of
columns to read (enabling machine learning frameworks to read only the features used
by the model), filter column values (reducing the data transmitted over the network),
and still ensure snapshot consistency (i.e., read data as of a specific point in time).

In Chapter 5, we looked at using the Jupyter Magics %%bigquery to load the result of
queries into pandas DataFrames. However, those datasets were relatively small—on the
order of a dozen to a few hundred rows. What if you want to load the entire
london_bicycles dataset (24 million rows) into a pandas DataFrame? In that case, it
is possible to specify an option on the Magics to load the data into the pandas
DataFrame using the Storage API rather than the BigQuery API. You will need to first

17

install the Storage API Python client library with Avro and pandas support. You can do
this within Jupyter by using the following:

%pip install google-cloud-bigquery-storage[fastavro,pandas]

Then use the %%bigquery Magics as before, but add the Storage API option:

%%bigquery df --use_bqstorage_api --project $PROJECT

SELECT

 start_station_name

 , end_station_name

 , start_date

 , duration

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that we are taking advantage of the ability of the Storage API to provide direct
access to individual columns; it is not necessary to read the entire BigQuery table into
the pandas DataFrame. If it so happens that the amount of data returned by the query is
comfortably small, the Magics falls back automatically to the BigQuery API.
Therefore, there is no harm in always using this flag in your notebook cells. To turn --
use_bqstorage_api on by default in all the Magics cells within a notebook session,
you can set a context flag:

import google.cloud.bigquery.magics

google.cloud.bigquery.magics.context.use_bqstorage_api = True

Choosing an Efficient Storage Format
Query performance depends on where the table data is stored, and in what format. In
general, the fastest performance is obtained if you store data in such a way that queries
need to do very little seeking or type conversion.

Internal versus external data sources
Even though BigQuery supports querying directly from external sources such as
Google Cloud Storage, Cloud Bigtable, and Google Sheets, the fastest query
performance will be obtained if you use native tables.

We recommend that you use BigQuery as your analytics data warehouse for all your
structured and semi-structured data. Use external data sources for staging (Google
Cloud Storage), real-time ingest (Cloud Pub/Sub, Cloud Bigtable), or transactional

updates (Cloud SQL, Cloud Spanner). Then, as described in Chapter 4, set up a
periodic data pipeline to load the data from these external sources into BigQuery.

If your use case is such that you need to query the data from Google Cloud Storage,
store it in a compressed, columnar format (e.g., Parquet) if you can. Use row-based
formats such as JSON or comma-separated values (CSV) only as a last resort.

Setting up life cycle management on staging buckets
If you are loading data into BigQuery by staging it in Google Cloud Storage first,
consider deleting the Google Cloud Storage data after the data is loaded. If you are
performing ETL on the data to load it into BigQuery (so that the data in BigQuery is
heavily transformed or is only a subset), you might want to retain the raw data in
Google Cloud Storage. In such cases, reduce costs by creating life cycle rules on
buckets, to downgrade the Google Cloud Storage storage class.

To enable life cycle management on a bucket so that data in multiregional or standard
classes older than 30 days is moved to Nearline Storage, and Nearline data older than
90 days is moved to Coldline Storage:

gsutil lifecycle set lifecycle.yaml gs://some_bucket/

In this example, the file lifecycle.yaml contains this content:

{

"lifecycle": {

 "rule": [

 {

 "action": {

 "type": "SetStorageClass",

 "storageClass": "NEARLINE"

 },

 "condition": {

 "age": 30,

 "matchesStorageClass": ["MULTI_REGIONAL", "STANDARD"]

 }

 },

 {

 "action": {

 "type": "SetStorageClass",

 "storageClass": "COLDLINE"

 },

 "condition": {

 "age": 90,

 "matchesStorageClass": ["NEARLINE"]

 }

 }

]}}

You can use life cycle management not just to change an object’s class but also to
delete objects older than a certain threshold.

Storing data as arrays of structs
One of the BigQuery public datasets is a dataset of cyclonic storms (hurricanes,
typhoons, cyclones, etc.) as observed and measured by various meteorological agencies
around the world. Cyclonic storms can last up to a few weeks, and observations are
carried out once every three hours or so. Suppose that you want to query this dataset to
find all of the storms in 2018, the maximum wind speed attained by each storm over its
lifetime, and the time and location of the storm when this maximum wind speed was
reached. This query pulls out the necessary information from the public dataset:

SELECT

 sid, number, basin, name,

 ARRAY_AGG(STRUCT(iso_time, usa_latitude, usa_longitude, usa_wind) ORDER BY

usa_wind DESC LIMIT 1)[OFFSET(0)].*

FROM

 `bigquery-public-data`.noaa_hurricanes.hurricanes

WHERE

 season = '2018'

GROUP BY

 sid, number, basin, name

ORDER BY number ASC

We are extracting the storm ID (sid), the storm number within the season, the basin,
and the name of the storm (if named) and then finding the array of observations made
of this storm, ranking the observations in descending order of wind speed, and taking
the highest wind speed observed for each storm. The storms themselves are ordered by
number. The result consists of 88 rows, and looks something like this:

18

Row sid number basin name iso_time usa_latitude usa_longitude usa_wind

1 2018002N09123 1 WP BOLAVEN 2018-01-
02
18:00:00
UTC

9.7 117.2 29

2 2018003S15053 2 SI AVA 2018-01-
05
06:00:00
UTC

-17.9 50.0 93

3 2018006S13092 3 SI IRVING 2018-01-
07
18:00:00
UTC

-15.8 83.0 89

4 2018010S18123 4 SI JOYCE 2018-01-
11
18:00:00
UTC

-18.7 121.6 54

The query processed 41.7 MB and took 1.4 seconds. The first row is of a storm named
Bolaven that reached a maximum wind speed of 29 kph on January 2, 2018, at 18:00
UTC.

Because observations are carried out by multiple meteorological agencies, it is possible
to standardize this data using nested fields and store the structs in BigQuery, as
follows:

CREATE OR REPLACE TABLE ch07.hurricanes_nested AS

SELECT sid, season, number, basin, name, iso_time, nature, usa_sshs,

 STRUCT(usa_latitude AS latitude, usa_longitude AS longitude, usa_wind AS

wind, usa_pressure AS pressure) AS usa,

 STRUCT(tokyo_latitude AS latitude, tokyo_longitude AS longitude,

 tokyo_wind AS wind, tokyo_pressure AS pressure) AS tokyo,

 ... AS cma,

 ... AS hko,

 ... AS newdelhi,

 ... AS reunion,

 ... bom,

 ... AS wellington,

 ... nadi

FROM `bigquery-public-data`.noaa_hurricanes.hurricanes

Querying this table is similar to querying the original table, except that field names
change a bit (usa.latitude instead of usa_latitude):

19

SELECT

 sid, number, basin, name,

 ARRAY_AGG(STRUCT(iso_time, usa.latitude, usa.longitude, usa.wind) ORDER BY

usa.wind DESC LIMIT 1)[OFFSET(0)].*

FROM

 ch07.hurricanes_nested

WHERE

 season = '2018'

GROUP BY

 sid, number, basin, name

ORDER BY number ASC

The query processes the same amount of data and takes the same time as the original
query on the public dataset. Using nested fields (i.e., structs) does not change the query
speed or cost, although it might make your query more readable.

Because there are multiple observations of the same storm over its life cycle, we can
change the storage to have a single row per storm and store an array of observations for
each storm:

CREATE OR REPLACE TABLE ch07.hurricanes_nested_track AS

SELECT sid, season, number, basin, name,

 ARRAY_AGG(

 STRUCT(

 iso_time,

 nature,

 usa_sshs,

 STRUCT(usa_latitude AS latitude, usa_longitude AS longitude, usa_wind AS

wind, usa_pressure AS pressure) AS usa,

 STRUCT(tokyo_latitude AS latitude, tokyo_longitude AS longitude,

 tokyo_wind AS wind, tokyo_pressure AS pressure) AS tokyo,

 ... AS cma,

 ... AS hko,

 ... AS newdelhi,

 ... AS reunion,

 ... bom,

 ... AS wellington,

 ... nadi

) ORDER BY iso_time ASC) AS obs

FROM `bigquery-public-data`.noaa_hurricanes.hurricanes

GROUP BY sid, season, number, basin, name

Notice that we are now storing sid, season, and so on as scalar columns because they
do not change over the lifetime of the storm. The remaining data that changes for each
observation is stored as an array of structs. Here’s how querying this table now looks:20

SELECT

 number, name, basin,

 (SELECT AS STRUCT iso_time, usa.latitude, usa.longitude, usa.wind

 FROM UNNEST(obs) ORDER BY usa.wind DESC LIMIT 1).*

FROM ch07.hurricanes_nested_track

WHERE season = '2018'

ORDER BY number ASC

The result is the same, but this time the query processes only 14.7 MB (a reduction in
cost of three times) and finishes in one second (a 30% improvement in speed). Why
does this improvement in performance happen? When we store the data as an array, the
number of rows in the table reduces dramatically (from 682,000 to 14,000), because
there is now only one row per storm instead of one row per observation time. Then
when we filter the rows by checking for season, BigQuery is able to discard many
related observations simultaneously, as shown in Figure 7-13.

Figure 7-13. Nested and repeated fields can speed up query performance by allowing BigQuery to discard many
related observations simultaneously

Another benefit is that we no longer need to duplicate rows of data when we have
unequal levels of granularity within the same table. You can store both the granular-
level individual hurricane latitude and longitude data as well as the high-level hurricane
ID, name, and season data in the same table. And because BigQuery stores table data as
highly compressed individual columns, you can query and process the high-level data
without the cost of operating over the rows of granular data—it is now stored as an
array of values per hurricane.

For example, if you simply want to query the number of storms by year, you could
query just the columns you want from the details:

21

WITH hurricane_detail AS (

SELECT sid, season, number, basin, name,

 ARRAY_AGG(

 STRUCT(

 iso_time,

 nature,

 usa_sshs,

 STRUCT(usa_latitude AS latitude, usa_longitude AS longitude, usa_wind AS

wind, usa_pressure AS pressure) AS usa,

 STRUCT(tokyo_latitude AS latitude, tokyo_longitude AS longitude, tokyo_wind

AS wind, tokyo_pressure AS pressure) AS tokyo

) ORDER BY iso_time ASC) AS obs

FROM `bigquery-public-data`.noaa_hurricanes.hurricanes

GROUP BY sid, season, number, basin, name

)

SELECT

 COUNT(sid) AS count_of_storms,

 season

FROM hurricane_detail

GROUP BY season

ORDER BY season DESC

The preceding query processes 27 MB instead of the 56 MB it would have had to
process had we not used nested, repeated fields.

Nested fields by themselves do not improve performance, although they can improve
readability by essentially prejoining other related tables into a single location. Nested,
repeated fields, on the other hand, are extremely advantageous from a performance
standpoint. Consider using nested, repeated fields in your schema, because they have
the potential to provide you a significant boost in speed and lower query costs
whenever you have queries that filter on a column that is not nested or repeated
(season, in our case).

A key drawback to nested, repeated fields is that you cannot easily stream to this table
if the streaming updates involve adding elements to existing arrays—it is no longer as
simple as appending a row to the table: you now need to mutate the existing row. Of
course, because the hurricane data is updated with new observations, this drawback
would be quite significant, and it explains why the public dataset of hurricanes does not
use nested, repeated fields.

On the other hand, the public dataset of GitHub commits (bigquery-public-
data.github_repos.commits) uses a nested, repeated field (repo_name) to store the
list of repositories affected by a commit. This doesn’t change over time. So using a

nested, repeated field for repo_name provides a speedup to queries that filter on any
other field.

PRACTICING WITH ARRAYS
In our experience, nested, repeated fields require a bit of practice and familiarity.
The Google Analytics sample dataset in BigQuery is ideal for this purpose. The
easiest way to identify nested data in a schema is by looking for RECORD in the Type
column, which indicates a STRUCT data type, and by looking for REPEATED in the
Mode column, as you can see here:

Field name Type Mode

visitorId INTEGER NULLABLE

visitStartTime INTEGER NULLABLE

date STRING NULLABLE

totals RECORD NULLABLE

totals. visits INTEGER NULLABLE

totals. hits INTEGER NULLABLE

hits RECORD REPEATED

hits. hitNumber INTEGER NULLABLE

hits. time INTEGER NULLABLE

In this sample schema, TOTALS is a STRUCT (but not repeated), and HITS is a
STRUCT that is REPEATED. This makes sense because Google Analytics tracks
visitor session data at the aggregate level (one session value for totals.hits) and
at the detail level (individual hits.time values for every page and image accessed
on your site). Storing data at this differing level of granularity, without duplicating
visitorId across rows, is possible only with ARRAYs.

After data is stored in a repeated format with arrays, you will need to UNNEST the
data in your queries, as shown here:

SELECT DISTINCT

 visitId

 , totals.pageviews

 , totals.timeOnsite

 , trafficSource.source

 , device.browser

 , device.isMobile

 , h.page.pageTitle

FROM

 `bigquery-public-

data`.google_analytics_sample.ga_sessions_20170801,

 UNNEST(hits) AS h

22

23

WHERE

 totals.timeOnSite IS NOT NULL AND h.page.pageTitle =

'Shopping Cart'

ORDER BY pageviews DESC

LIMIT 10

Unnesting an array breaks it apart from [1,2,3,4,5] into individual rows, like so:

[1,

2

3

4

5]

Now you can run normal SQL operations like a WHERE clause to filter all of the
page hits where the title was Shopping Cart. Try it out!

Storing data as geography types
Within the BigQuery public dataset of utility data is a table of polygon boundaries of
US zip codes (available in bigquery-public-data.utility_us.zipcode_area) and
another table of polygon boundaries of US cities (bigquery-public-
data.utility_us.us_cities_area). The US zip code geometry column
(zipcode_geom) is a string, whereas the city geometry column (city_geom) is a
geography type.

From these two tables, it is possible to get a list of all the zip codes for Santa Fe, New
Mexico:

SELECT name, zipcode

FROM `bigquery-public-data`.utility_us.zipcode_area

JOIN `bigquery-public-data`.utility_us.us_cities_area

ON ST_INTERSECTS(ST_GeogFromText(zipcode_geom), city_geom)

WHERE name LIKE '%Santa Fe%'

The query took 51.9 seconds and processed 305.5 MB to produce the following:

24

25

Row name zipcode

1 Santa Fe, NM 87505

2 Santa Fe, NM 87501

3 Santa Fe, NM 87507

4 Eldorado at Santa Fe, NM 87508

5 Santa Fe, NM 87508

6 Santa Fe, NM 87506

Why did the query take so long? This is not because ST_INTERSECTS is expensive; it is
mainly because the ST_GeogFromText function needs to compute the S2 cells and
build a GEOGRAPHY type corresponding to each zip code.

We can change the zip code table to do this computation beforehand and store the
geometry as a GEOGRAPHY type:

CREATE OR REPLACE TABLE ch07.zipcode_area AS

SELECT

 * REPLACE(ST_GeogFromText(zipcode_geom) AS zipcode_geom)

FROM

 `bigquery-public-data`.utility_us.zipcode_area

TIP
SELECT * REPLACE (see the previous snippet) is a convenient way to replace a column from a SELECT *
statement.

The new dataset is 131.8 MB, which is somewhat larger than the 116.5 MB of the
original table. However, the trade-off is that queries against the table can take
advantage of S2 coverings and become much faster. Thus, the following query finishes
in 5.3 seconds (a speed increase of 10 times) and processes 320.8 MB (a slight increase
in cost if you are using on-demand pricing):

SELECT name, zipcode

FROM ch07.zipcode_area

JOIN `bigquery-public-data`.utility_us.us_cities_area

ON ST_INTERSECTS(zipcode_geom, city_geom)

WHERE name LIKE '%Santa Fe%'

26

The performance advantages of storing geographic data as GEOGRAPHY types instead of
as strings or primitives are very compelling. This is why the utility_us dataset is
deprecated (it’s still publicly accessible so as to not break already written queries). We
recommend that you use the table bigquery-public-data.geo_us_boundaries.us_
zip_codes, which uses GEOGRAPHY types and is kept up to date.

Partitioning Tables to Reduce Scan Size
Imagine that you frequently query the london_bicycles dataset by year:

SELECT

 start_station_name

 , AVG(duration) AS avg_duration

FROM `bigquery-public-data`.london_bicycles.cycle_hire

WHERE EXTRACT(YEAR from start_date) = 2015

GROUP BY start_station_name

ORDER BY avg_duration DESC

LIMIT 5

This takes 2.8 seconds and processes 1 GB to return the stations responsible for the
longest trips in 2015:

Row start_station_name avg_duration

1 Mechanical Workshop Penton 105420.0

2 Contact Centre, Southbury House 5303.75

3 Stewart’s Road, Nine Elms 4836.380090497735

4 Black Lion Gate, Kensington Gardens 4788.747908066496

5 Speakers’ Corner 2, Hyde Park 4610.192911183014

The query, however, must read through the entire table to find rows from 2015. In this
section, we look at various ways to cut down on the size of the data being processed.

Antipattern: Table suffixes and wildcards
If filtering by year is very common, one way to cut down on the data being read is to
store the data in multiple tables, with the name of each table suffixed by the year. This
way, querying the data for 2015 does not require traversing rows corresponding to all
the years but can instead just read the cycle_hire_2015 table.

Let’s go ahead and create such a table using the following:

CREATE OR REPLACE TABLE ch07eu.cycle_hire_2015 AS (

 SELECT * FROM `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE EXTRACT(YEAR from start_date) = 2015

)

Now let’s create it with a year-sharded table. The query finishes in one second (a speed
increase of three times) and needs to process only 345 MB (a cost saving of three
times):

SELECT

 start_station_name

 , AVG(duration) AS avg_duration

 FROM ch07eu.cycle_hire_2015

 GROUP BY start_station_name

 ORDER BY avg_duration DESC

 LIMIT 5

NOTE
Use partitioned tables and template tables (covered next) instead of manually splitting your data across multiple
tables.

It is possible to use wildcards and table suffixes to search for multiple years:

SELECT

 start_station_name

 , AVG(duration) AS avg_duration

FROM `ch07eu.cycle_hire_*`

WHERE _TABLE_SUFFIX BETWEEN '2015' AND '2016'

GROUP BY start_station_name

ORDER BY avg_duration DESC

LIMIT 5

Partitioned tables
Partitioned tables allow you to store all of your related data in a single logical table but
also efficiently query a subset of that data. If, for example, you store the last year’s
worth of data but usually query only the last week, partitioning by time allows you to
run queries that will need to scan only the last seven days’ worth of partitions. This can
save orders of magnitude in query cost, slot utilization, and time.

The year-named tables discussed in the previous section are inefficient: BigQuery
needs to maintain a copy of the schema and metadata for each of the sharded tables and

verify permissions on each of the queried tables. Also, a single query cannot query
more than 1,000 tables, and this might make querying the entire dataset difficult if your
tables are sharded by date rather than by year (1,000 tables is not even three years of
data if the tables are date-sharded). Furthermore, streaming into date-sharded tables can
lead to the need for clock and time zone synchronization among multiple clients. The
recommended best practice, therefore, is to use partitioned tables.

TIP
Partitioning and clustering are the most effective ways to reduce your query cost and improve performance.
When in doubt, you should partition and cluster your tables; this enables a number of performance optimizations
that are not available to unpartitioned or unclustered tables.

A partitioned table is a special table that is divided into partitions, with the partitions
managed by BigQuery. We can create a partitioned version of the London cycle_hire
dataset using the following:

CREATE OR REPLACE TABLE ch07eu.cycle_hire_partitioned

 PARTITION BY DATE(start_date) AS

SELECT * FROM `bigquery-public-data`.london_bicycles.cycle_hire

TIP
You can keep storage costs in check by specifying an expiration time for a partition and asking BigQuery to
ensure that users are always using a partition filter (and not querying the entire table by mistake):

CREATE OR REPLACE TABLE ch07eu.cycle_hire_partitioned

 PARTITION BY DATE(start_date)

 OPTIONS(partition_expiration_days=1000,

 require_partition_filter=true) AS

SELECT * FROM `bigquery-public-

data`.london_bicycles.cycle_hire

If you forget to set this option at the time of creating the table, you can always add it after the fact:

ALTER TABLE ch07eu.cycle_hire_partitioned

SET OPTIONS(require_partition_filter=true)

Then, to find the stations with the longest average rentals in 2015, query the partitioned
table, making sure to use the partition column (start_date) in the filter clause:

SELECT

 start_station_name

 , AVG(duration) AS avg_duration

FROM ch07eu.cycle_hire_partitioned

WHERE start_date BETWEEN '2015-01-01' AND '2015-12-31'

GROUP BY start_station_name

ORDER BY avg_duration DESC

LIMIT 5

The query takes one second and processes only 419.4 MB, a little more than the year-
sharded table (because of the need to read the start_date column), but it is still a
saving over having to read the full dataset. Note, however, that there are disadvantages
to formulating the query as follows:

SELECT

 start_station_name

 , AVG(duration) AS avg_duration

FROM ch07eu.cycle_hire_partitioned

WHERE EXTRACT(YEAR FROM start_date) = 2015

GROUP BY start_station_name

ORDER BY avg_duration DESC

LIMIT 5

This will end up processing 1 GB and will not yield any savings on the amount of data
processed. To obtain the benefits of partitioning, the BigQuery runtime must be able to
statically determine the partition filters.

TIP
It is possible to ask BigQuery to automatically partition the table based on ingestion time rather than a date/time
column. To do so, use _PARTITIONTIME or _PARTITIONDATE as the partitioning column. These are
pseudocolumns that refer to the ingestion time and do not actually exist in your dataset. You can, however, use
these pseudocolumns in your queries to restrict the rows being scanned.

If you are streaming to an ingestion-time-partitioned table, data in the streaming buffer is held in the
__UNPARTITIONED__ partition. To query data in the __UNPARTITIONED__ partition, look for NULL values in the
_PARTITIONTIME pseudocolumn.

Clustering Tables Based on High-Cardinality Keys

Clustering, like partitioning, is a way to instruct BigQuery to store data in a way that
can allow less data to be read at query time. Whereas a partitioned table behaves
similarly to a number of independent tables (one per partition), clustered tables are
stored in a sorted format as a single table. This ordering allows unlimited unique values
to be stored without any performance penalty, and it also means that when a filter is
applied, BigQuery can skip opening any file that doesn’t contain the range of values
being requested.

Clustering can be done on any primitive nonrepeated columns (INT64, BOOL, NUMERIC,
STRING, DATE, GEOGRAPHY, and TIMESTAMP). Usually, you’d cluster on columns that
have a very high number of distinct values, like customerId if you have millions of
customers. If you have columns that aren’t as high in cardinality but are frequently
used together, you can cluster by more than one column at a time. When you cluster by
multiple columns, you can filter by any prefix of the clustering columns and realize the
benefits of clustering.

If most of the queries on our bicycles dataset use start_station_name and
end_station_name, we could optimize the storage to take advantage of this
commonality in our queries by creating the table as follows:

CREATE OR REPLACE TABLE ch07eu.cycle_hire_clustered

 PARTITION BY DATE(start_date)

 CLUSTER BY start_station_name, end_station_name

AS (

 SELECT * FROM `bigquery-public-data`.london_bicycles.cycle_hire

)

Then queries that use the clustering columns in order could experience a significant
benefit—for example:

SELECT

 start_station_name

 , end_station_name

 , AVG(duration) AS duration

FROM ch07eu.cycle_hire_clustered

WHERE

 start_station_name LIKE '%Kennington%'

 AND end_station_name LIKE '%Hyde%'

GROUP BY start_station_name, end_station_name

But in this case, the entire table is only 1.5 GB and fits into a single block, thus there is
no improvement.

To see the benefits of clustering, we must use a larger table. Our colleague Felipe Hoffa
has conveniently created a clustered table of 2.20 TB of Wikipedia views, where the
clustering was as follows:

CLUSTER BY wiki, title

As long as we use wiki (and, optionally, title) in our queries, we will gain the
benefits of clustering. For example, we can search English Wikipedia for the number of
page views in June 2017 for articles whose titles contained the term “Liberia”:

SELECT title, SUM(views) AS views

FROM `fh-bigquery.wikipedia_v3.pageviews_2017`

WHERE DATE(datehour) BETWEEN '2017-06-01' AND '2017-06-30'

AND wiki = 'en'

AND title LIKE '%Liberia%'

GROUP BY title

This query took 4.8 seconds elapsed and processed 38.6 GB. Had the table not been
clustered (only partitioned), the query would have taken 25.9 seconds (five times
slower) and processed 180.2 GB (five times costlier). On the other hand, a query that
doesn’t first filter by wiki will not experience any benefits.

Clustering by the partitioning column
Partitioned tables are partitioned by date (whether it is a column or it is by ingestion
time). If you need hour-level partitioning, one option is to use date-based partitioning
and then cluster by hour along with whatever other attributes are appropriate.

So a common pattern is to cluster by the same column as you partition by. For example,
if you partition by event_time, a timestamp at which your log events occur, this will
let you do very fast and efficient queries over arbitrary time periods that are smaller
than the day boundary used in the partitioning. You could, for instance, query over only
the last 10 minutes of data, and you wouldn’t need to scan anything older than that.

In a partitioned table, each partition consists of a single day of data, and BigQuery
maintains the metadata necessary to ensure that queries, load jobs, and Data Definition
Language (DDL)/DML statements all take advantage and maintain the integrity of the
partitions.

Reclustering

27

In a clustered table, BigQuery sorts the data based on the values in the clustering
columns and organizes them into storage blocks that are optimally sized for efficient
scanning and discarding of unnecessary data. However, unlike with partitioning,
BigQuery does not maintain the sorting of data within clusters as data is streamed to it.
BigQuery will recluster the data periodically in order to maintain efficient data pruning
and scan speed. You can see how efficiently clustered the table is by looking at the
clustering_ratio of the table (1.0 is completely optimal).

Updating a table using DML forces a recluster of the partition being updated. For
example, assume that you periodically receive a table of corrections (which consist of
cycle hires that were somehow missed in the previous updates). Using a MERGE
statement such as the following will cause a recluster of any partitions that are updated:

MERGE ch07eu.cycle_hire_clustered all_hires

USING ch07eu.cycle_hire_corrections some_month

ON all_hires.start_station_name = some_month.start_station_name

WHEN MATCHED

 AND all_hires._PARTITIONTIME = DATE(some_month.start_date) THEN

 INSERT (rental_id, duration, ...)

 VALUES (rental_id, duration, ...)

TIP
If you don’t want to wait until BigQuery gets around to reclustering the table into which you have streamed
updates, you can take advantage of the ability of DML statements to force a recluster. For example, you can apply
a no-op UPDATE to the partitions of interest (perhaps those written in the past 24 hours):

UPDATE ch07eu.cycle_hire_clustered

SET start_station_id = 300

WHERE start_station_id = 300

AND start_date > TIMESTAMP_SUB(CURRENT_TIMESTAMP(),

INTERVAL 1 DAY)

Table 7-1 summarizes the differences between partitioning and clustering and might
help you choose between partitioning a table based on a column and clustering the
table by that column.

Table 7-1. Partitioning versus clustering

 Partitioning Clustering

Distinct
values

Less than 10,000 Unlimited

Data
management

Like a table (can expire, delete,
etc.)

DML only

Dry run cost Precise Upper bound

Final cost Precise Block level (difficult to predict)

Maintenance None (exact partitioning happens
immediately)

Background (impact might be delayed until background
clustering occurs)

Side benefits of clustering

Remember that we mentioned that running SELECT * ... LIMIT 10 in BigQuery is
an antipattern because it ends up billing you for the full scan of the table. For clustered
tables, this is not true. When you’re reading from a clustered table, BigQuery will pass
along any optimizations that can be done to prevent reading data. So if you do SELECT
* ... LIMIT 10 on a clustered table, the execution engine will be able to stop reading
data as soon as 10 rows have been returned. Because of how the query engine employs
a number of parallel workers, any of which could happen to finish first, the amount of
data that is scanned is not deterministic. On the plus side, you will end up with queries
that cost you much less on large tables.

A surprising side effect of the “early stop” cost reduction is that you can get
performance benefits even if you don’t filter on the clustering columns—if you filter by
columns that are correlated to your clustering columns, BigQuery might be able to read
less data!

Suppose that you have a table with two columns: zip_code and state. You cluster
based on zip_code, which means that the data is sorted by zip_code when it is stored
on disk. In the United States, there is a correlation between state and zip_code
because zip code ranges are assigned geographically (00000 in the Northeast and
99999 in the Northwest). If you run a query that filters by state, even though you’re
not filtering by the clustering column, BigQuery skips any data block that doesn’t have
that state, and you’ll end up paying less for the query.

When a table is clustered, it allows BigQuery to apply a number of performance
optimizations that are not possible with nonclustered tables. One of these optimizations
is designed for star schemas, which let you filter based on constraints in a dimension
table. For example, suppose that you have a fact table containing orders, which is

clustered by customer_id, and a dimension table containing customers, and you run
the following query:

SELECT o.*

FROM orders o

JOIN customers c USING (customer_id)

WHERE c.name = "Changying Bao"

Ordinarily, this query would need to scan the full orders table in order to execute the
join. But because the orders table is clustered by the column that is being used for the
join, the righthand side of the join—querying customers and finding the matching
customer IDs—is done first. Then the second part of the query just needs to look up the
clustering column that matches the customer_id. From a bytes-scanned perspective, it
is as if BigQuery ran the following queries in parallel:

// First look up the customer id.

// This scans only the small dimension table

SET id = SELECT customer_id FROM customers

WHERE c.name = "Changying Bao"

// Next look up the customer from the orders table.

// This will filter by the cluster column,

// and so only needs to read a small amount of data.

SELECT * FROM orders WHERE customer_id=$id ;

In short, clustering is highly recommended if you want to reduce query costs and
improve performance.

Time-Insensitive Use Cases
BigQuery is designed to minimize the time taken to derive insights from data.
Consequently, we can carry out ad hoc, interactive analytics on large datasets and
stream in updates to those datasets in near real time. Sometimes, though, you might be
less time sensitive. Perhaps all you need are nightly reports. In such cases, you might
be willing to have your queries be queued up and executed when possible, and this
might be sufficient for the reports to reflect data as of an hour ago.

Batch Queries
You can submit a set of queries, called batch queries, to the service, and they will be
queued on your behalf and started when idle resources are available. At the time they
were introduced, in 2012, batch queries provided a pricing benefit. However, as of this

https://developers.googleblog.com/2012/08/now-in-bigquery-batch-queries-and.html

writing, both interactive and batch queries cost the same. If you use flat-rate pricing,
both batch queries and interactive queries share your allocated slots.

Because batch queries are not less expensive and use the same reservations and slots as
interactive resources, the primary reason that you might want to employ batch queries
is that they don’t count toward your concurrent rate limit and can make scheduling
hundreds of queries easier.

There are a number of rate limits that affect interactive (i.e., nonbatch) queries. For
example, you might be able to have at most 50 queries running concurrently, with
concurrent byte limits and “large query” limits. If those limits are reached, the query
will fail immediately. This is because BigQuery assumes that an interactive query is
something the user needs to run immediately. When you use batch queries, on the other
hand, if you ever reach a rate limit, the queries will be queued and retried later. There
are still similar rate limits, but they operate separately from interactive rate limits, so
your batch queries won’t affect your interactive ones.

One example might be that you have periodic queries that you run daily or hourly to
build dashboards. Maybe you have 500 queries that you want to run. If you try to run
them all at once as interactive, some will fail because of concurrent rate limits.
Additionally, you don’t necessarily want these queries to interfere with other queries
you are running manually from the BigQuery web UI. So you can run the dashboard
queries at batch priority, and the other queries will run normally as interactive.

To use batch queries, provide the --batch flag to the bq command-line tool or
specify the job priority in the console or REST API to be BATCH, not INTERACTIVE. If
BigQuery hasn’t started the query within 24 hours, BigQuery changes the job priority
to interactive. However, the typical wait time before a query starts is on the order of
minutes, unless you are submitting more queries than your quota of concurrent
requests. Then queries will be run after earlier ones complete.

File Loads
If you care about minimizing the “time to insight” or wish to have the simplest possible
data pipeline, we strongly encourage you to use streaming inserts into BigQuery via
Cloud Pub/Sub and Cloud Dataflow. This architecture provides ingest speeds on the
order of 100,000 rows per second, even on small Cloud Dataflow clusters. You can
horizontally scale the Dataflow cluster by adding more machines and achieve several
million rows per second of ingest performance without having to tweak any knobs.

Streaming ingests incur charges, whereas load jobs are free. In some scenarios, you
might be willing to trade off a few minutes’ latency for reduced ingestion costs. In that

28

29

case, consider using file loads instead of streaming inserts. You can do that from
Apache Beam’s BigQueryIO using the following:

BigQueryIO.writeTableRows()

 .to("project-id:dataset-id.table-id")

 .withCreateDisposition(

 BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED)

 .withMethod(Method.FILE_LOADS)

 .withTriggeringFrequency(Duration.standardSeconds(600))

 .withNumFileShards(10)

 .withSchema(new TableSchema()...)

 .withoutValidation())

The previous code snippet writes to BigQuery every 10 minutes using file loads, thus
avoiding the streaming ingestion charge. File loads can scale to 300,000 rows per
second on medium-sized Dataflow clusters. However, you should be aware that
computing and finalizing windows does take time, and so there will be a latency on the
order of a few minutes. Because of per-table and per-project load quotas, and because
failures and retries count against quota, we recommend that you do file loads no more
frequently than every five minutes.

Summary
In this chapter, we looked at ways to control costs, by using the dry_run feature and by
setting up limits on the number of bytes billed. Then we examined ways to measure
query speed using the REST API or a custom measurement tool.

We also covered several methods for increasing query speed. To minimize the I/O
overhead, we recommended ways to reduce the data being read. We also looked at
different entities that could be cached, from previous query results to intermediate
results and entire tables in memory. We also looked at ways to do joins efficiently, by
avoiding self-joins, reducing the data being joined, and taking advantage of
precomputed values. By limiting large sorts, safeguarding against data skew, and
optimizing user-defined functions, we can minimize the chances of slots getting
overwhelmed. Finally, we recommended the use of approximate aggregation functions,
including count and top functions.

Finally, we looked at ways of optimizing data storage and speeding up data access. We
suggested that our applications be refactored to accept compressed, partial responses,
send requests in batches, and perform bulk reads using the Storage API. We discovered
that storing data as arrays of structs and as geography types brings performance

advantages. We also looked at different ways of reducing the size of data being
scanned, namely through partitioning and clustering.

Checklist
We’d like to end this chapter the way we began, by recommending that, although these
performance improvements can be significant, you should verify that they apply to
your workflow. Follow this checklist if your query is running slow:

If you observe that: Possible solutions

Self-join is being used Use aggregate functions to avoid self-joins of large tables
Use window (analytic) functions to compute self-dependent
relationships

DML is being used Batch your DML (INSERT, UPDATE, DELETE) statements

Join is slow Reduce data being joined
Perhaps denormalize the data
Use nested, repeated fields instead

Queries are being invoked
repeatedly

Take advantage of query caching
Materialize previous results to tables

Workers are overwhelmed Limit large sorts in window functions
Check for data skew
Optimize user-defined functions

Count, top, distinct are being used Consider using approximate functions

I/O stage is slow Minimize network overhead
Perhaps use a join to reduce table size
Choose efficient storage format
Partition tables
Cluster tables

1 This quote is from his 1974 article “Structured Programming with go to Statements.” You can download a
PDF of the article from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6084.

2 The difference can be difficult to measure precisely because BigQuery is a service, and network overhead to
reach the service and the load on the service tends to vary. You might need to run the query many times to get
a good estimate of the speed.

3 A slot is a unit of computational capacity required to execute SQL queries. BigQuery automatically
calculates how many slots are required by each query. See Chapter 6 for more details.

4 Nonparallelizable operations might not add to the cost, because the remaining slots can presumably address
other workloads.

5 See https://cloud.google.com/bigquery/docs/sandbox for further details.

6 See 07_perf/time_query.sh in the GitHub repository for this book.

7 See 07_perf/install_workload_tester.sh in the GitHub repository for this book.

8 See 07_perf/time_bqwt.sh in the GitHub repository for this book.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.6084
https://cloud.google.com/bigquery/docs/sandbox
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

9 This is 07_perf/get_job_details.sh in the GitHub repository for this book. You can get the required job ID
from the “Query history” in the BigQuery web UI. If your query was run outside the US and EU, you also
need to specify the job location in a job resource object (sorry!). You can also get the job details by using bq
ls -j.

10 If you are reading this in a format that renders the diagram in grayscale, please try out the query and look at
the query details in the BigQuery web UI.

11 You will need to measure this, of course. In some cases, the extra overhead involved in reading the table of
intermediate results will make this more expensive than simply recomputing the results of a WITH clause.

12 You can verify that this is the key reason for the incorrect value for num_babies by adding state and year to
the USING clause (and making sure to add the two fields to the first two selects). Then the number of babies is
in the correct ballpark (e.g., 2,018,162 for Jessie, whereas the correct answer is 229,263). The answer is still
incorrect because rows with NULLs for these fields are ignored by the join (NULL is never equal to anything
else).

13 In bicycling and running, pace is the inverse of speed.

14 This is a current limitation of the BigQuery dynamic execution runtime; it might be eased in the future.

15 This is 07_perf/get_job_details_compressed.sh in the GitHub repository for this book.

16 This is 07_perf/get_recent_jobs.sh in the GitHub repository for this book.

17 You can if you want to, however; see https://cloud.google.com/bigquery/docs/reference/storage/samples. The
endpoint for the BigQuery Storage API is different from that of the BigQuery REST API—it’s
bigquerystorage.googleapis.com.

18 For more details, see https://cloud.google.com/storage/docs/managing-
lifecycles#change_an_objects_storage_class.

19 You can find all queries in this section in 07_perf/hurricanes.sql in the GitHub repository for this book.

20 Chapter 2 covers SQL syntax for working with arrays.

21 Because the hurricanes dataset is continually refreshed, the row numbers might be larger when you are
reading this.

22 The dataset is bigquery-public-data.google_analytics_sample.ga_sessions_20170801.

23 This is in 07_perf/google_analytics.sql in the GitHub repository for this book.

24 This is actually a deprecated dataset for reasons that will become apparent in this section. The more up-to-
date data is bigquery-public-data.geo_us_boundaries.us_zip_codes—that dataset does use geography
types.

25 Chapter 4 covers geographic types and GIS functions.

26 See https://oreil.ly/PkIsx.

27 Try it using fh-bigquery.wikipedia_v2.pageviews_2017.

28 This is the default, but you can request these quotas to be increased. See
https://cloud.google.com/bigquery/quotas.

29 Because streaming ingests are charged for, you might have to ask for a quota increase. Check the default
quotas at https://cloud.google.com/bigquery/quotas#streaming_inserts and request additional streaming quota
from the GCP console.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://cloud.google.com/bigquery/docs/reference/storage/samples
https://cloud.google.com/storage/docs/managing-lifecycles#change_an_objects_storage_class
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://oreil.ly/PkIsx
https://cloud.google.com/bigquery/quotas
https://cloud.google.com/bigquery/quotas#streaming_inserts

Chapter 8. Advanced Queries

In Chapters 2 and 3, we covered the essentials of the Standard SQL queries and
data types supported in BigQuery. A parser and analyzer for the dialect of
Standard SQL supported by BigQuery has been open sourced as ZetaSQL. The
ZetaSQL parser and analyzer is used to provide consistent behavior, type
checking, implicit casting, name resolution, and more across all the Google
Cloud Platform (GCP) products that support SQL (e.g., Cloud Spanner and
Cloud Dataflow). However, these query engines might not support all of the
features in the ZetaSQL language. For example, BigQuery does not, as of this
writing, support multistatement transactions. As of this writing, Cloud Dataflow
does not support geographic queries, but if it ever does, the GIS SQL queries
and geography types in Cloud Dataflow will be similar to those of BigQuery.

In this chapter, we look at features, data types, and functions of ZetaSQL
supported by BigQuery that go beyond the Standard SQL or that might be
unfamiliar to many data analysts. We begin by discussing the syntax of features
like parameterized queries and user-defined functions that support reusability.
Then we delve into the SQL syntax involving arrays, windows, table metadata,
and data definition and manipulation. We cover how scripting and stored
procedures are supported in BigQuery, and we end the chapter by covering
Geographic Information Systems, statistical, and encryption functions.

Reusable Queries
BigQuery supports a number of features that allow queries and parts of a query
to be reused. We can parameterize queries and extract commonly used code into
functions, subqueries, or WITH clauses. Let’s look at each of these in turn.

Parameterized Queries
Parameterized queries allow us to define a query in terms of parameters that are
specified at the time of execution. This can allow the same query to be used in

https://github.com/google/zetasql

different contexts while avoiding the need to use string formatting to create the
runtime query.

As of this writing, invoking parameterized queries is not supported by the
BigQuery web user interface (UI). In Chapter 4, we looked at running
parameterized queries using the REST API and from a Jupyter Magics. To mix
things up, in this chapter we demonstrate parameterized queries using the
Python Cloud Client API.

Named parameters
Getting back to our London bike rental queries, suppose that we often want to
look for the number of rentals from individual stations whose duration was
within a specific range, but the station and duration thresholds tend to vary. We
can define a parameterized query to provide this functionality, with the station
name and duration threshold as parameters to the query:

query = """

 SELECT

 start_station_name

 , AVG(duration) as avg_duration

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 start_station_name LIKE CONCAT('%', @STATION, '%')

 AND duration BETWEEN @MIN_DURATION AND @MAX_DURATION

 GROUP BY start_station_name

"""

The query has named parameters marked by an @ symbol, but note the way that
the parameter is used within LIKE. Had we simply written '%@STATION%',
BigQuery would have treated the @ symbol literally because of the enclosing
single quotes. Hence, the parameter is formed using @ and then concatenated
with strings containing the wildcard % symbol.

At execution time, the named parameters are replaced by query parameters,
each of which is defined in terms of its name, its SQL data type, and its runtime
value (this is Python, given that we are using the Python Cloud Client API for
BigQuery):

1

2

query_params = [

 bigquery.ScalarQueryParameter(

 "STATION", "STRING", station_name),

 bigquery.ScalarQueryParameter(

 "MIN_DURATION", "FLOAT64", min_duration),

 bigquery.ScalarQueryParameter(

 "MAX_DURATION", "FLOAT64", max_duration),

]

To execute the query, we create a query job, pass in the query parameters, run
the query, and parse the results as normal:

job_config = bigquery.QueryJobConfig()

job_config.query_parameters = query_params

query_job = client.query(

 query,

 location="EU",

 job_config=job_config,

)

for row in query_job:

 print("{}: \t{}".format(

 row.start_station_name, row.avg_duration))

The preceding code can be wrapped in a Python function that accepts the
parameters as inputs:

def print_query_results(client,

 station_name,

 min_duration=0,

 max_duration=84000):

The function can now be invoked multiple times with different parameters:

client = bigquery.Client()

print_query_results(client, 'Kennington', 300)

print_query_results(client, 'Hyde Park', 600, 6000)

This renders the following:

Kennington between 300 and 84000

Kennington Oval, Oval: 1269.0798128928543

Doddington Grove, Kennington: 1243.7377963737788

Kennington Road Post Office, Oval: 1360.2854550952536

Kennington Lane Rail Bridge, Vauxhall: 991.4344845855808

Cleaver Street, Kennington: 1075.6050140700947

Kennington Cross, Kennington: 996.2538654101008

Kennington Road, Vauxhall: 1228.6673653660118

Cotton Garden Estate, Kennington: 996.7003600110778

Kennington Lane Tesco, Vauxhall: 929.6523615439942

Kennington Station, Kennington: 1238.4088412072647

Hyde Park between 600 and 6000

Bayswater Road, Hyde Park: 1614.2670577732417

Wellington Arch, Hyde Park: 1828.9651324965134

Hyde Park Corner, Hyde Park: 2120.4145144213744

Cumberland Gate, Hyde Park: 1899.3282223532708

Speakers' Corner 1, Hyde Park: 2070.2458069837776

Triangle Car Park, Hyde Park: 1815.661582196573

Albert Gate, Hyde Pafrk: 1897.9349474341027

Knightsbridge, Hyde Park: 1963.0815096317635

Serpentine Car Park, Hyde Park: 1688.0595490490423

Park Lane, Hyde Park: 2055.451932776309

Speakers' Corner 2, Hyde Park: 2093.6202531645563

In many SQL engines, parameterized queries (or prepared statements) are
precompiled and can offer improved performance. In BigQuery, this is not the
case. As the previous code snippet indicates, the query and the job
configuration containing the query parameters are both passed into the
BigQuery service at the same time (in the client.query call). The
performance of a parameterized query will, therefore, be quite similar to that of
a static one in which the parameter values are hardcoded.

There are, however, benefits to using parameters in BigQuery. One of those
benefits is security and prevention against SQL injection attacks. If you
generate a query and filter by a user-specified value, you need to make sure the
user-specified value doesn’t have any special characters. It can be very difficult
to ensure that generated queries are “safe” when they include user-specified
identifiers. An easy way to safeguard the queries is to use parameters; this
makes certain that no matter the values provided in the parameter, no SQL
injection attacks can occur.

Named timestamp parameters
In the previous query, the query parameters were strings and floats. Timestamps
work the same way, as long as we make sure to pass in the corresponding
Python (or Go or whichever client language we are using) data type. In the case
of Python, we’d use datetime.datetime. Thus, to find the average duration of
trips within an hour centered around a specific time, you would first import the
necessary Python libraries:

from google.cloud import bigquery

from datetime import datetime

from datetime import timedelta

import pytz

Next, compute the parameter values:

def print_query_results(client, mid_time):

 start_time = mid_time - timedelta(minutes=30)

 end_time = mid_time + timedelta(minutes=30)

Then set up the query in terms of these parameters:

query = """

 SELECT

 AVG(duration) as avg_duration

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 start_date BETWEEN @START_TIME AND @END_TIME

"""

query_params = [

 bigquery.ScalarQueryParameter(

 "START_TIME", "TIMESTAMP", start_time),

 bigquery.ScalarQueryParameter(

 "END_TIME", "TIMESTAMP", end_time),

]

job_config = bigquery.QueryJobConfig()

job_config.query_parameters = query_params

query_job = client.query(

 query,

 location="EU",

 job_config=job_config,

)

for row in query_job:

 print(row.avg_duration)

print("______________________")

You can invoke the function by passing in a datetime object corresponding to
Christmas Day 2015:

client = bigquery.Client()

print_query_results(client,

 datetime(2015, 12, 25, 15, 0, tzinfo=pytz.UTC))

This informs us that the average duration of trips started between 2:30 p.m. and
3:30 p.m. on Christmas 2015 was 3658.5000000000005 seconds.

TIP
Any scheduled query, when invoked, automatically receives two parameters: @run_time, which is a
TIMESTAMP; and @run_date, which is a DATE. So any scheduled query can be parameterized by these
two parameters.

Positional parameters
Even though it is possible to use positional parameters in BigQuery, we
strongly encourage the use of named parameters in queries because they
enhance readability, both of the queries and of the invoking code. To use
positional parameters, specify the parameters using ? and make sure to pass the
parameters in order:

def print_query_results(client, params):

 query = """

 SELECT

 start_station_name

 , AVG(duration) as avg_duration

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 start_station_name LIKE CONCAT('%', ?, '%')

 AND duration BETWEEN ? AND ?

3

4

 GROUP BY start_station_name

 """

 query_params = [

 bigquery.ScalarQueryParameter(

 None, "STRING", params[0]),

 bigquery.ScalarQueryParameter(

 None, "FLOAT64", params[1]),

 bigquery.ScalarQueryParameter(

 None, "FLOAT64", params[2]),

]

Array and struct parameters
The examples so far have used scalar query parameters. BigQuery also
supports array parameters. Imagine that we have a UI that shows the number
of trips from stations, which the user can select interactively—this would
require the set of station IDs selected by the user to be provided to the query as
an array.

You can find the number of trips emanating from each of the stations listed in
an array parameter @STATIONS by using the array functions IN and UNNEST:

query = """

 SELECT

 start_station_id

 , COUNT(*) as num_trips

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 start_station_id IN UNNEST(@STATIONS)

 AND duration BETWEEN @MIN_DURATION AND @MAX_DURATION

 GROUP BY start_station_id

"""

query_params = [

 bigquery.ArrayQueryParameter(

 'STATIONS', "INT64", ids),

 bigquery.ScalarQueryParameter(

 'MIN_DURATION', "FLOAT64", min_duration),

 bigquery.ScalarQueryParameter(

 'MAX_DURATION', "FLOAT64", max_duration),

]

Now pass in a Python array of IDs as the stations parameter:

5

print_query_results(client, [270, 235, 62, 149], 300, 600)

This yields the number of trips for each of the IDs passed in:

270: 26400

149: 4143

235: 8337

62: 5954

It is possible to pass in a struct to a query by constructing a struct parameter as
follows:

bigquery.StructQueryParameter(

 "bicycle_trip",

 bigquery.ScalarQueryParameter("start_station_id", "INT64", 62),

 bigquery.ScalarQueryParameter("end_station_id", "INT64", 421),

)

Note that you cannot parameterize table or column names or other parts of the
query itself. If you run a parameterized query with --dry_run and do not pass
in the required parameters, the response includes the inferred type of all
parameters.

SQL User-Defined Functions
In addition to reusing entire queries by parameterizing them, it is possible to
foster more granular reuse. For example, we can reuse a set of operations within
an SQL query by refactoring those operations into a user-defined function
(UDF).

Suppose that you want to find the number of overnight rentals by day of the
week (an overnight rental is one in which the starting timestamp and ending
timestamp fall on different days). Such a query will require frequent date
manipulation; it can be convenient to define these common manipulations as
temporary SQL UDFs:

CREATE TEMPORARY FUNCTION dayOfWeek(x TIMESTAMP) AS

(

 ['Sun','Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']

 [ORDINAL(EXTRACT(DAYOFWEEK from x))]

);

CREATE TEMPORARY FUNCTION getDate(x TIMESTAMP) AS

(

 EXTRACT(DATE FROM x)

);

After you have defined these functions, you can take advantage of them by
using the WITH clause to find overnight trips:

WITH overnight_trips AS (

 SELECT

 duration

 , dayOfWeek(start_date) AS start_day

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 getDate(start_date) != getDate(end_date)

)

To find the number of overnight rentals by day of the week, you can group the
result of the preceding common table expression by day of week:

SELECT

 start_day

 , COUNT(*) AS num_overnight_rentals

 , AVG(duration)/3600 AS avg_duration_hours

FROM

 overnight_trips

GROUP BY

 start_day

ORDER BY num_overnight_rentals DESC

The result indicates that the highest number of overnight rentals happen on
Saturday and Friday, and the fewest overnight rentals happen early in the
workweek:

Row start_day num_overnight_rentals avg_duration_hours

1 Sat 28095 9.13462063237824

2 Fri 23746 8.772040203262295

3 Thu 18153 9.792348372169885

4 Sun 16648 13.834484622777499

5 Wed 15571 10.848297047930972

6 Mon 12507 10.729399536259686

7 Tue 12461 9.430337319102266

Persistent UDFs
Because the functions in the previous sections were defined as temporary
functions, we can use them only within the same BigQuery query. To reuse
them in other queries, you’d need to copy and paste the definitions. Naturally,
this is quite error prone.

If you have a function that you want to reuse across queries, it is preferable to
save the function in a dataset and then refer to it from any number of queries
(you need to create a dataset named ch08eu in the EU region before trying out
this query):

CREATE OR REPLACE FUNCTION ch08eu.dayOfWeek(x TIMESTAMP) AS

(

 ['Sun','Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']

 [ORDINAL(EXTRACT(DAYOFWEEK from x))]

);

Just as with tables, choose between CREATE FUNCTION, CREATE OR REPLACE
FUNCTION, or CREATE FUNCTION IF NOT EXISTS depending on how you want
the save operation of the function to behave if the function already exists: fail,
replace the existing function, or be a no-op, respectively. As with tables, you
can DROP FUNCTION to remove a function from a dataset. And as with tables,
this capability can be accessed from not just from SQL but also from the REST
API, the bq command-line tool, or various client libraries.

After a function has been saved in a dataset, you can use it in a query by
making sure to reference the project and dataset in which the function can be

6

found (as with table names in queries, the default is to use the currently active
project):

WITH overnight_trips AS (

 SELECT

 duration

 , ch08eu.dayOfWeek(start_date) AS start_day

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 ...

You can view the function definition from the BigQuery web UI, as shown in
Figure 8-1.

Figure 8-1. Click a persistent function in the BigQuery web UI to view/edit its definition

The permissions for accessing UDFs are stored on the dataset level, similar to
tables, and behave similarly. For example, the bigquery.routines.list
permission allows holders to list the functions in a dataset, and the
bigquery.routines.[create/get/update/delete] permission allows them
to create, invoke, update, or delete the function.

Public UDFs
In particular, it is possible to define useful UDFs in a dataset that is shared with
allAuthenticatedUsers to essentially extend the capability of BigQuery. For
example, although BigQuery has an AVG function, it doesn’t have a built-in
MEDIAN function. Our colleagues Elliott Brossard and Felipe Hoffa defined an
SQL UDF to compute the median, taking care to correctly handle computing
the median of both odd-length and even-length arrays:7

CREATE OR REPLACE FUNCTION fhoffa.x.median (arr ANY TYPE) AS ((

 SELECT IF (MOD(ARRAY_LENGTH(arr), 2) = 0,

 (arr[OFFSET(DIV(ARRAY_LENGTH(arr), 2) - 1)] +

 arr[OFFSET(DIV(ARRAY_LENGTH(arr), 2))]) / 2,

 arr[OFFSET(DIV(ARRAY_LENGTH(arr), 2))]

)

 FROM (SELECT ARRAY_AGG(x ORDER BY x) AS arr FROM UNNEST(arr) AS x)

));

Because the dataset x in the fhoffa project is public, you can find the stations
with the longest median duration of trips:

SELECT

 start_station_name

 , COUNT(*) AS num_trips

 , fhoffa.x.median(ARRAY_AGG(tripduration)) AS typical_duration

FROM `bigquery-public-data`.new_york_citibike.citibike_trips

GROUP BY start_station_name

HAVING num_trips > 1000

ORDER BY typical_duration DESC

LIMIT 5

Let’s take a look at the result:

Row start_station_name num_trips typical_duration

1 Mobile 01 1039 1697.0

2 Soissons Landing 18484 1525.0

3 Yankee Ferry Terminal 18013 1496.0

4 Central Park North & Adam Clayton
Powell Blvd

54465 1419.0

5 Broadway & Moylan Pl 6121 1413.0

Why did we use New York and not London to illustrate the use of the median
function? All the datasets in a query must be in the same location; because
fhoffa.x is in the United States, we need to pick a US bikeshare dataset. The
London database would not have worked.

A collection of such community-developed, open source UDFs is available at
https://github.com/GoogleCloudPlatform/bigquery-utils and synced to the

https://github.com/GoogleCloudPlatform/bigquery-utils

public dataset bqutil.fn. Elliott and Felipe’s median function is part of this
repository and dataset, so this also works (try it):

SELECT

 start_station_name

 , COUNT(*) AS num_trips

 , bqutil.fn.median(ARRAY_AGG(tripduration)) AS typical_duration

FROM `bigquery-public-data`.new_york_citibike.citibike_trips

GROUP BY start_station_name

HAVING num_trips > 1000

ORDER BY typical_duration DESC

LIMIT 5

Even if you don’t have a use case for public UDFs, you can foster reuse by
placing useful UDFs within a dataset that is shared within your company.

Reusing Parts of Queries
Suppose that you want to find days with the highest number of unusually long
roundtrip rentals. We could define “unusually long” as rides of more than twice
the average duration such trips take. The query then requires three steps:

1. Find roundtrip rentals.

2. Compute the average duration of roundtrip rentals at each London
bicycle station.

3. Find days with rides longer than twice the average duration.

Correlated subquery
We can write the necessary query “inside-out,” as follows:

SELECT

 start_date,

 COUNT(*) AS num_long_trips

FROM -- "first from"

 (SELECT

 start_station_name

 , duration

 , EXTRACT(DATE from start_date) AS start_date

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 start_station_name = end_station_name) AS roundtrips

WHERE -- "outer where"

 duration > 2*(

 SELECT

 AVG(duration) as avg_duration

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 WHERE

 start_station_name = end_station_name

 AND roundtrips.start_station_name = start_station_name

)

GROUP BY start_date

ORDER BY num_long_trips DESC

LIMIT 5

The first FROM clause consists of a subquery that pulls the necessary columns
from the London bicycles dataset and extracts the date from the timestamp
field. The outer WHERE clause consists of a check against twice the average
duration where the average duration itself is computed using a subquery.

The second subquery is an example of a correlated subquery—a subquery that
uses values (in this case, start_station_name, duration, and
end_station_name) from the outer query. Here, the second subquery needs to
compute the average duration of trips that start and end at this station.

WITH clause

The WITH clause makes it possible to reuse table expressions and make queries
more readable. You can rewrite the query in the previous section using two
WITH clauses:

WITH roundtrips AS (

SELECT

 start_station_name

 , duration

 , EXTRACT(DATE from start_date) AS start_date

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

WHERE

 start_station_name = end_station_name

),

station_avg AS (

SELECT

 start_station_name

 , AVG(duration) as avg_duration

FROM

 roundtrips

 GROUP BY start_station_name

)

These two, in turn, simplify the third computation:

SELECT

 start_date,

 COUNT(*) AS num_long_trips

FROM

 roundtrips

JOIN station_avg USING(start_station_name)

WHERE duration > 2*avg_duration

GROUP BY start_date

ORDER BY num_long_trips DESC

LIMIT 5

Note how roundtrips is reused in the station_avg WITH clause as well as in
the main query. We would like to caution you, however, that reusing WITH
clauses is limited to readability—the actual data is not necessarily cached or
reused. Indeed, examining the query execution plan, you can see that both stage
0 and stage 4 begin with a READ from the bigquery-public-data dataset and
that in the first case, only three columns are needed, whereas in the second case,
four columns are needed, as depicted in Figure 8-2.

The result includes two Christmas Days:

Row start_date num_long_trips a)

1 2016-12-25 740 b)

2 2016-05-08 714 c)

3 2017-04-09 667 d)

4 2015-08-01 663 e)

5 2015-12-25 660 f)

A WITH clause allows reuse only within a query. To reuse the result set in
multiple queries, we can use an intermediate table or create a materialized view.

This has the potential to trade off an additional storage cost for faster and less-
expensive computation, but this is something that you should measure—many
times. The WITH clause will be faster especially if the intermediate table is
larger than the original. For more details on this, see Chapter 7.

Figure 8-2. The query execution plan shows that the data is read twice

Defining constants

It is possible to use a WITH clause to hold constants and provide a single place
where they can be changed. For example, we could look for stations that have
the greatest number of trips longer than a certain duration by using the
following:

WITH params AS (

 SELECT 600 AS DURATION_THRESH

)

SELECT

 start_station_name

 , COUNT(duration) as num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 , params

WHERE duration >= DURATION_THRESH

GROUP BY start_station_name

ORDER BY num_trips DESC

LIMIT 5

By defining the duration threshold as part of the WITH clause, we are able to
provide a convenient place to capture all the “magic” numbers used in the query
and give them readable names. Note that the FROM clause in the preceding query
includes parameters so that the constant DURATION_THRESH can be used in the
query.

Another way to express constants is to use scripting syntax and declare them as
variables. We cover this later in this chapter.

Advanced SQL
In this section, we look at SQL syntax that tends to vary quite a bit between
different SQL engines (see “Ambiguities in Standard SQL”) but is nevertheless
worth having in our toolkit. Arrays and window functions can greatly enhance
query performance. Table metadata allows for reflection and some neat
solutions to common problems. Data Definition Language and Data
Manipulation Language allow many database maintenance operations to be
carried out in SQL itself, thus allowing us to use the same development, review,
test, or Continuous Integration/Continuous Deployment (CI/CD) frameworks
that we use for our SQL queries for database maintenance.

8

AMBIGUITIES IN STANDARD SQL
The topics covered in this chapter tend to be areas not covered or left vague
in Standard SQL. Take arrays, for example. PostgreSQL supports array
syntax of the following form:

SELECT pay_by_quarter[3] FROM sal_emp;

Whereas BigQuery in this case would require us to clarify our intention
with UNNEST by specifying the following:

SELECT pay_by_quarter[ORDINAL(3)] FROM sal_emp, UNNEST(pay_by_quarter)

The PostgreSQL approach looks cleaner, but ambiguity crops up in more
complex cases. For example, suppose that SELECT author, book.title
FROM ds.all_books worked in BigQuery to do a correlated cross-join of
nested, repeated fields, so that this above query would return author:
STRING, book.title: STRING, one for each row. This seems awfully
convenient, but when we have multiple nested, repeated fields, we’d have a
problem. For example, assuming that each chapter has a title, what’s the
query engine to do with the following:

SELECT author, book.title, book.chapter.title

FROM ds.all_books

The user might want book.chapter.title to be an array, or they might
want it all fully flattened. Maintaining a restriction that there is no
expression other than a JOIN that changes the number of rows in the output
and requiring a comma-join with UNNEST to access arrays removes this sort
of ambiguity.

Working with Arrays

Arrays in BigQuery are ordered lists containing values of the same data type.
You will find arrays being used whenever there is a need for ordering, or storing
repeated values in a single row, or both.

TIP
Storing data as arrays can reduce storage overhead and, depending on cardinality, greatly speed up
queries that do not require the repeated fields. Because of this, you should make it a point to understand
and become familiar with arrays.

Using arrays to preserve ordering
As an example of the need to preserve ordering, consider that we need to carry
out quite a bit of analysis on the 100 most frequently rented bicycles:

SELECT

 bike_id,

 COUNT(*) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY

 bike_id

ORDER BY

 num_trips DESC

LIMIT

 100

The query returns 100 rows; here are the first three of them:

Row bike_id num_trips

1 12925 2922

2 12841 2871

3 13071 2860

We could save these 100 rows to a table for later analysis from other queries or
from outside BigQuery, but rows read from the table are not guaranteed to be
ordered. What if downstream analysis requires the data in order? One solution
is to use a materialized view. Another solution is to store the result into a single

9

row by aggregating the result into an array and moving the ORDER BY and
LIMIT into the ARRAY_AGG:

WITH numtrips AS (

 SELECT

 bike_id AS id,

 COUNT(*) AS num_trips

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY

 bike_id

)

SELECT

 ARRAY_AGG(STRUCT(id,num_trips)

 ORDER BY num_trips DESC LIMIT 100)

 AS bike

FROM

 numtrips

This returns a single row, as shown here:

Row bike.id bike.num_trips

1 12925 2922

 12841 2871

 13071 2860

If you save this to a table, the list of most rented bicycles is stored in order and
will be returned in order when read from downstream applications. Of course,
this now puts the burden on the downstream analyst to be comfortable with
arrays and unnesting.

As this example illustrates, you can maintain a one-to-one relationship between
columns by creating an array of structs. Think of an array of structs, then, as a
minitable that is stored in a single row. BigQuery does not support arrays of
arrays, but you can create arrays of structs, each of which can contain arrays.

Using arrays to store repeated fields
Another reason to use arrays is if you need to store repeated fields even if you
don’t care about ordering. For example, there is a BigQuery dataset that

contains US tax filings by charities. The vast majority of charities file taxes
only once each year, but sometimes organizations file multiple returns in the
same year. It can be helpful to store these filings by an organization in a single
row:

SELECT

 ein

 , ARRAY_AGG(STRUCT(elf, tax_pd, subseccd)) AS filing

FROM `bigquery-public-data`.irs_990.irs_990_2015

WHERE ein BETWEEN '390' AND '399'

GROUP BY ein

LIMIT 3

This returns the following:

Row ein filing.elf filing.tax_pd filing.subseccd

1 390123480 E 201412 8

 E 201312 8

2 390233059 E 201412 12

3 390201015 E 201412 8

Note that the first organization happens to have filed two returns in 2015 (for
years 2014 and 2013), whereas the others filed only once.

ARRAYS ENFORCE DATA INTEGRITY
Changing the schema of the table to use arrays provides a way to enforce
best practice and avoid wrong logic in queries. The original schema where
each filing is on a separate row can lead to logical errors when the analyst
forgets that organizations do sometimes file multiple returns in the same
year. For example, suppose that you want to find charities that do not file
electronically (elf would be 'E' in that case), in which case it can be
tempting to simply do this:

SELECT

 ein

FROM `bigquery-public-data`.irs_990.irs_990_2015

WHERE elf != 'E'

However, because some charities file multiple times, it is possible that they
file some of these returns electronically and the others non-electronically.
This is, indeed, the case, as you can verify by using the following:

SELECT

 ein

 , COUNTIF(elf = 'E', 1, 0) AS num_elf

 , COUNTIF(elf = 'E', 0, 1) AS num_not_elf

FROM `bigquery-public-data`.irs_990.irs_990_2015

GROUP BY ein

HAVING num_elf > 0 AND num_not_elf > 0

ORDER BY num_elf DESC

LIMIT 3

This query shows that there are several charities that filed both
electronically and nonelectronically:

ow ein num_elf num_not_elf

1 271157077 3 1

2 030555726 3 1

3 363977636 3 3

Had the schema of the table stored the filing as an array, it would be much
more difficult for analysts to make this mistake—the analyst looking for
charities that do not file electronically would have known that the filing is
an array and so would have done this:

SELECT

 ein

FROM

 [TABLENAME]

WHERE

 'E' NOT IN (SELECT elf FROM UNNEST(filing))

LIMIT 5

NOTE
Because the table does not store the filings as an array, try out the query by first
converting it to the desired schema using a WITH clause and using filings as the
table name in the main query:

WITH filings AS (

SELECT

 ein

 , ARRAY_AGG(STRUCT(elf, tax_pd, subseccd)) AS filing

FROM `bigquery-public-data`.irs_990.irs_990_2015

GROUP BY ein

)

The UNNEST function flattens the array and must be in a FROM clause. Note
the use of the correlated subquery to pull out the elf field from the filing
array of structs and the use of IN to check whether a value is in the array.

Another way to check whether 'E' exists in the array of structs is to use
EXISTS:

SELECT

 ein

FROM

 [TABLENAME]

WHERE

 EXISTS (SELECT elf FROM UNNEST(filing) WHERE elf != 'E')

LIMIT 5

NOTE
You can verify that the results obtained this way ('520910763', '237048405',
'410519270', '592515700', and '420655796') are correct by using:

SELECT

 ein

 , SUM(IF(elf = 'E', 1, 0)) AS num_elf

 , SUM(IF(elf = 'E', 0, 1)) AS num_not_elf

FROM `bigquery-public-data`.irs_990.irs_990_2015

WHERE ein in UNNEST(

 ['520910763', '237048405', '410519270', '592515700',

 '420655796'])

GROUP BY ein

ORDER BY num_elf DESC

As expected, num_elf is zero for all of these ein.

Using arrays for generating data
Another reason to use arrays is if you need to generate data. Suppose that you
need to have your lawn mowed in the summer every 10 days and that you have
three minions who will do the job for you. You want to assign the minions to
take turns doing the job.

You can begin by generating the list of summer days:

SELECT

 GENERATE_DATE_ARRAY('2019-06-23', '2019-08-22', INTERVAL 10 DAY) AS summer

Here is the result for this query:

Row summer

1 2019-06-23

 2019-07-03

 2019-07-13

 2019-07-23

 2019-08-02

 2019-08-12

 2019-08-22

This is all in the same row. To create a multirow table with each day on its own
row, you use UNNEST (carefully note the way we use the table days and the
array summer in the FROM clause—UNNEST in BigQuery can be used only with a
FROM clause):

WITH days AS (

 SELECT

 GENERATE_DATE_ARRAY('2019-06-23', '2019-08-22', INTERVAL 10 DAY) AS summer

)

SELECT summer_day

FROM days, UNNEST(summer) AS summer_day

This yields the summer days, one in each row:

Row summer_day

1 2019-06-23

2 2019-07-03

3 2019-07-13

4 2019-07-23

5 2019-08-02

6 2019-08-12

7 2019-08-22

NOTE
The comma in the preceding query does a correlated CROSS JOIN and therefore excludes rows that
have empty or NULL arrays. To include them, replace the comma with a LEFT JOIN:

FROM days LEFT JOIN UNNEST(summer) AS summer_day

We can hardcode the list of minions, as shown here:

SELECT ['Lak', 'Jordan', 'Graham'] AS minions

However, we need to assign the minions to each of the summer days in turn. To
do that, we can generate a dayno array and use the modulo (or remainder) as
the offset into the minions array:

WITH days AS (

 SELECT

 GENERATE_DATE_ARRAY('2019-06-23', '2019-08-22',

 INTERVAL 10 DAY) AS summer,

 ['Lak', 'Jordan', 'Graham'] AS minions

)

SELECT

 summer[ORDINAL(dayno)] AS summer_day

 , minions[OFFSET(MOD(dayno,

 ARRAY_LENGTH(minions)))]

 AS minion

FROM

 days, UNNEST(GENERATE_ARRAY(1,ARRAY_LENGTH(summer),1)) dayno

ORDER BY summer_day ASC

The query yields the summer days and who’s assigned to mow the lawn each
day:

10

Row summer_day minion

1 2019-06-23 Jordan

2 2019-07-03 Graham

3 2019-07-13 Lak

4 2019-07-23 Jordan

5 2019-08-02 Graham

6 2019-08-12 Lak

7 2019-08-22 Jordan

Note that the indexing uses ORDINAL to configure a 1-based index and OFFSET
to index the array with a 0-based value. We also used ARRAY_LENGTH to get the
length of the summer array.

Array functions

If you have two arrays, you can concatenate them using ARRAY_CONCAT:

SELECT

 ARRAY_CONCAT(

 GENERATE_DATE_ARRAY('2019-03-23', '2019-06-22', INTERVAL 20 DAY)

 , GENERATE_DATE_ARRAY('2019-08-23', '2019-11-22', INTERVAL 20 DAY)

) AS shoulder_season

For debugging purposes, it can be helpful to print out an array of strings as a
STRING. You do that using ARRAY_TO_STRING:

SELECT

ARRAY_TO_STRING(['A', 'B', NULL, 'D'], '*', 'na') AS arr

This returns the following:

Row arr

1 A*B*na*D

The second parameter to ARRAY_TO_STRING is the separator, and the third string
is how NULL elements are recorded (by default, they are skipped).

For debugging purposes, it can be helpful to print out an array as a string.
Although ARRAY_TO_STRING works with arrays of STRING,
TO_JSON_STRING works with arrays of any type. For example, to get a
readable print out of an array of dates, you can do this:

SELECT

TO_JSON_STRING(

GENERATE_DATE_ARRAY('2019-06-23', '2019-08-22',

 INTERVAL 10 DAY)) AS json

This prints out the array, converting the dates to JSON format:

Row json

1 ["2019-06-23”,"2019-07-03”,"2019-07-13”,"2019-07-23”,
“2019-08-02”,"2019-08-12”,"2019-08-22"]

The JSON format of the resulting output is more obvious if the array is of
structs:

SELECT

TO_JSON_STRING([

 STRUCT(1 AS a, 'bbb' AS b),

 STRUCT(2 AS a, 'ccc' AS b)

]) AS json

Following is the result:

Row json

1 [{"a”:1,"b”:"bbb"},{"a”:2,"b”:"ccc"}]

Table 8-1 presents a summary of array functions, assuming that minions is an
array of strings.

Table 8-1. Summary of array functions

Function What it does Example usage

GENERATE_ARRA

Y
GENER ATE_DATE

_ ARRAY

Creates array SELECT
GENERATE_ARRAY(10, 20, 3)

OFFSET
ORDINAL

Accesses array elements SELECT minions[OFFSET(0)] FROM ...
SELECT minions[ORDINAL(1)] FROM

...

ARRAY_LENGTH Returns length of array SELECT ARRAY_LENGTH(minions)

UNNEST Flattens an array; this needs to be in
a FROM clause

WITH workers AS (
 SELECT ['Lak', 'Jordan', 'Graha

m']
 AS minions
)
SELECT m
FROM workers, UNNEST(minions) AS m

IN Checks whether a value is present
in an array

WITH workers AS (
 SELECT ['Lak', 'Jordan', 'Graha

m']
 AS minions
)
SELECT 'Lak' IN UNNEST(minions)
FROM workers

EXISTS Checks whether an array is non-
empty

WITH workers AS (
 SELECT ['Lak', 'Jordan', 'Graha

m'] AS minions
 UNION ALL SELECT [] AS minions
)

SELECT
 EXISTS (SELECT * FROM
 UNNEST(minions))
FROM workers

Function What it does Example usage

ARRAY_AGG Aggregates grouped items into an
array

SELECT
 ein
 , ARRAY_AGG(elf) AS elf
FROM `bigquery-public-data`.irs_99

0.irs_990_2015
GROUP BY ein
LIMIT 3

ARRAY_CONCAT Concatenates two arrays of the
same type

SELECT
 ARRAY_CONCAT(['A', 'B', 'C'],
 ['D', 'E', 'F'])

ARRAY_TO_STRI

NG
TO_JSON_STRIN

G

Converts arrays to a string format SELECT TO_JSON_STRING([
 STRUCT(1 AS a, 'bbb' AS b),
 STRUCT(2 AS a, 'ccc' AS b)
])

Window Functions
An analytic window function (sometimes abbreviated as analytic function and
other times as window function) computes aggregate analytics (such as SUM,
COUNT, etc.) over a group of rows (called the window). There are three types of
analytic functions: aggregate analytic functions, navigation functions, and
numbering functions.

Aggregate analytic functions
Aggregate functions operate on the entire table and return a single aggregate
value. For example, this query returns the longest trip duration and two other
aggregate statistics over the full london_bicycles dataset:

SELECT

 MAX(duration) AS longest_duration

 , COUNT(*) AS num_trips

 , AVG(duration) AS average_duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

The result is a single row:

Row longest_duration num_trips average_duration

1 2674020 24369201 1332.2942381245884

On the other hand, an aggregate analytic function returns an aggregate statistic
for each row, where the aggregate is computed on rows “around” the row for
which the result is being computed. For example, the following query computes
moving average of duration of the 100 trips leading up to this one:

SELECT

 AVG(duration)

 OVER(ORDER BY start_date ASC

 ROWS BETWEEN 100 PRECEDING AND 1 PRECEDING)

 AS average_duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

Unlike the aggregate function AVG(duration), the average is not computed
over the full table because we have defined a window using the OVER clause.
The window itself consists of the 100 rows before this one, for which the order
is specified by the start_date column. This query yields an
average_duration for each row, with the first row having null because there
is no preceding row to put into the window:

Row average_duration

1 null

2 360.0

3 510.0

4 380.0

5 390.0

Had we desired to compute the average length of the 50 trips before to 50 trips
after, we would have specified the following:

ROWS BETWEEN 50 PRECEDING AND 50 FOLLOWING

To compute the average of rows from the start of the dataset to the current row
(inclusive), here’s what we would have specified:

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

If we leave out the FOLLOWING, the bound defaults to the current row, so that
ROWS 50 PRECEDING is the same as ROWS BETWEEN 50 PRECEDING AND
CURRENT ROW.

What if you want the average duration of the previous 100 trips, but you want
to restrict the window to trips that start from the same station as this row? In
that case, you add a PARTITION BY to the OVER() clause:

SELECT

 AVG(duration)

 OVER(PARTITION BY start_station_id

 ORDER BY start_date ASC

 ROWS BETWEEN 100 PRECEDING AND 1 PRECEDING)

 AS average_duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

If you want to compute the moving average over the past hour, you use RANGE
and specify an integer offset from the quantity you are ordering by:

SELECT

 AVG(duration)

 OVER(PARTITION BY start_station_id

 ORDER BY UNIX_SECONDS(start_date) ASC

 RANGE BETWEEN 3600 PRECEDING AND CURRENT ROW)

 AS average_duration

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

Note that you are now ordering by UNIX_SECONDS(start_date) and not just
start_date so that we can look for rows whose UNIX_SECONDS(start_date)
lies between 3,600 seconds ago and the present.

Navigation functions
The aggregate analytic functions compute an aggregate statistic over all of the
rows in the window. Thus, AVG(duration) computes the average duration in
the window and MAX(duration) computes the maximum duration in the
window. But what if you want a single value denoted by the location of the
row? Navigation functions are useful in that context.

For example, suppose that you want to find the “next” rental of a bike. In the
OVER() clause, you would need to partition by bike_id, order by start_date,
and window between the current row and the one following it. Over that
window, you’d use LAST_VALUE to find the start_date of the last row in the
window, because that would correspond to the next time the bike is rented:

SELECT

 start_date

 , end_date

 , LAST_VALUE(start_date)

 OVER(PARTITION BY bike_id

 ORDER BY start_date ASC

 ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING)

 AS next_rental_start

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

This query yields the following:

Row start_date end_date next_rental_start

1 2015-01-06 20:01:00
UTC

2015-01-06 20:13:00
UTC

2015-01-07 08:03:00
UTC

2 2015-01-07 08:03:00
UTC

2015-01-07 08:22:00
UTC

2015-01-07 10:06:00
UTC

3 2015-01-07 10:06:00
UTC

2015-01-07 10:14:00
UTC

2015-01-07 13:03:00
UTC

4 2015-01-07 13:03:00
UTC

2015-01-07 13:09:00
UTC

2015-01-07 14:46:00
UTC

5 2015-01-07 14:46:00
UTC

2015-01-07 15:00:00
UTC

2015-01-07 17:35:00
UTC

We can avoid explicitly specifying the window frame by using the LEAD
function instead:

SELECT

 start_date

 , end_date

 , LEAD(start_date, 1)

 OVER(PARTITION BY bike_id

 ORDER BY start_date ASC)

 AS next_rental_start

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

The second parameter to the LEAD function is the number of rows to lag by. The
default is 1, so we could have omitted it here.

The counterparts to LAST_VALUE and LEAD are FIRST_VALUE and LAG. As a
generalization, we can use the NTH_VALUE function to get the value at any
position in the window.

Numbering functions
Numbering functions provide the position of the current row in the window if
the rows in the window were to be ordered in some way. For example, you can
find the five longest trips that started at each of the stations in the
london_bicycles dataset by creating windows that are partitioned by
start_station_id, ordering the windows by duration, and then computing the
rank of each trip:

SELECT

 start_station_id

 , duration

 , RANK()

 OVER(PARTITION BY start_station_id ORDER BY duration DESC)

 AS nth_longest

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

RANK is an analytic window function. Using it as we did in the preceding query
yields the rank of each trip among all the trips that started at the same station:

Row start_station_id duration nth_longest

1 13 1448640 1

2 13 346080 2

3 13 225420 3

4 13 165000 4

5 13 92700 5

By placing the preceding SELECT into a WITH clause, grouping by
start_station_id, and using ARRAY_AGG, you can get the three longest trips
at each station:

WITH longest_trips AS (

 SELECT

 start_station_id

 , duration

 , RANK()

 OVER(PARTITION BY start_station_id ORDER BY duration DESC)

 AS nth_longest

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

)

SELECT

 start_station_id

 , ARRAY_AGG(duration ORDER BY nth_longest LIMIT 3) AS durations

FROM

 longest_trips

GROUP BY start_station_id

LIMIT 5

Here’s the result:

Row start_station_id durations

1 10 243300

 101700

 93840

2 17 737280

 247920

 197460

3 34 1017180

 588900

 560700

4 43 244740

 193980

 176580

5 60 1303260

 596520

 319140

Besides RANK(), BigQuery also supports DENSE_RANK() and ROW_NUMBER().
The difference between the three is how they deal with ties. The following
quick example illustrates this:

WITH example AS (

 SELECT 'A' AS name, 32 AS age

 UNION ALL SELECT 'B', 32

 UNION ALL SELECT 'C', 33

 UNION ALL SELECT 'D', 33

 UNION ALL SELECT 'E', 34

)

SELECT

 name

 , age

 , RANK() OVER(ORDER BY age) AS rank

 , DENSE_RANK() OVER(ORDER BY age) AS dense_rank

 , ROW_NUMBER() OVER(ORDER BY age) AS row_number

FROM example

The result shows that RANK() skips numbers if there is a tie, DENSE_RANK()
assigns a rank at least once, and ROW_NUMBER() assigns each row a unique
number:

Row name age rank dense_rank row_number

1 A 32 1 1 1

2 B 32 1 1 2

3 C 33 3 2 3

4 D 33 3 2 4

5 E 34 5 3 5

Table Metadata
So far, we have looked at how to query the data within a table. However, there
is information about the data called metadata. This might include information
such as what columns are present, when the table was created, who owns the
table, who can access it, and so on. In this section, we look at how to access
such table metadata.

Building queries dynamically
Recall that, earlier in this chapter, we suggested that a better way to organize
the IRS filing data to reduce logic errors would be to store the filings made in a
year as an array:

SELECT

 ein

 , ARRAY_AGG(STRUCT(elf, tax_pd, subseccd)) AS filing

FROM `bigquery-public-data`.irs_990.irs_990_2015

GROUP BY ein

Our example showed just three of the columns—elf, tax_pd, and subseccd—
because it would have been too painful to type out all the column names. One
way to generate the required statement with all the columns in the table is to use
INFORMATION_SCHEMA. This is a special table that is part of all datasets and
contains metadata about all the tables in that dataset.

https://cloud.google.com/bigquery/docs/information-schema-tables

To retrieve the column names in the irs_990_2015 table in the irs_990
dataset, you could do this:

SELECT column_name

FROM `bigquery-public-data`.irs_990.INFORMATION_SCHEMA.COLUMNS

WHERE table_name = 'irs_990_2015'

This returns a result set with 246 columns, the first few of which we show here:

Row column_name

1 ein

2 elf

3 tax_pd

4 subseccd

5 s501c3or4947a1cd

From here, we can use CONCAT to generate the necessary query text:

WITH columns AS (

 SELECT column_name

 FROM `bigquery-public-data`.irs_990.INFORMATION_SCHEMA.COLUMNS

 WHERE table_name = 'irs_990_2015' AND column_name != 'ein'

)

SELECT CONCAT(

 'SELECT ein, ARRAY_AGG(STRUCT(',

 ARRAY_TO_STRING(ARRAY(SELECT column_name FROM columns), ',\n '),

 '\n) FROM `bigquery-public-data`.irs_990.irs_990_2015\n',

 'GROUP BY ein')

This returns the query to be run:

SELECT ein, ARRAY_AGG(STRUCT(ein,

 elf,

 tax_pd,

 subseccd,

 ...

 othrinc509,

 totsupp509

) FROM `bigquery-public-data`.irs_990.irs_990_2015

GROUP BY ein

Later in this section, we look at scripting. As of this writing, Although dynamic
SQL is on the road map, it hasn’t yet been implemented in BigQuery. If
dynamic SQL capability exists in BigQuery at the time you are reading this,
you can go beyond simply printing out the text of the query—you can even
execute it!

Labels and tags
Information schemas, covered in the previous section, provide information
about tables related to the column names and data types, creation time, and
more of the tables. Labels are used to add custom metadata to resources
(datasets, tables, views, etc.), such as which application created them (e.g.,
component:salesportal), which team owns them (e.g., team:emeasales),
which environment they are used in (e.g., environment:production), and
what stage of the life cycle they are in (e.g., state:validated). Each label is a
key/value pair (e.g., environment is a key, and its value could be one of
development, staging, test, or production). A label whose value is empty
is called a tag, but you can work with it similarly.

The keys and values are totally arbitrary as far as BigQuery is concerned; it is
up to your data governance team to define the keys and values that will be
present on tables in your organization. The purpose of assigning labels to
resources is so that you can search for resources by label in order to apply
policies consistently across all resources with the same label.

For example, let’s add a label to the ch08eu dataset using the bq command-line
tool (it’s also possible to do so using the GCP console, through ALTER TABLE
SET OPTIONS, and through the various client libraries):

bq update --set_label costcenter:abc342 ch08eu

You can change the value by calling --set_label again with the updated
value:

bq update --set_label costcenter:def456 ch08eu

It is also possible to assign a label to a query itself:

bq query --label costcenter:def456 --nouse_legacy_sql 'SELECT ...'

NOTE
Do not include sensitive or confidential data in labels—the labels themselves might be visible to roles
that do not have access to the resources being labeled.

After you have labeled your datasets or tables, it is possible to search from them
by label. For example, you can do the following (you can search using the
REST API or the various client libraries):

bq ls --filter 'labels.costcenter:def456'

This returns the following:

 datasetId

 ch08eu

Time travel
For up to seven days, you can query the historical state of a table. For example,
to query a table as it existed six hours ago, you can use SYSTEM_TIME:

SELECT

 *

FROM `bigquery-public-data`.london_bicycles.cycle_stations

FOR SYSTEM_TIME AS OF

 TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 6 HOUR)

Note that you cannot reference a single table at more than a single point in time.
If you need to find differences between different time-versions of a table, copy
over one of the versions (using Data Definition Language; see the next section)
into a new table and then do the join.

TIP
Use the time travel functionality if you need to run a repeatable query over a table that is fed data via a
stream.

Data Definition Language and Data Manipulation Language
Data Definition Language (DDL) statements are SQL statements for creating,
altering, and deleting tables and views. The Data Manipulation Language
(DML) enables you to update, insert, and delete data from tables.

DDL
We have already looked at creating a table or view from a query statement. For
example, to create a table consisting only of stations that have “Hyde” in their
name, you could run this query:

CREATE OR REPLACE TABLE ch08eu.hydepark_stations AS

SELECT

 * EXCEPT(longitude, latitude)

 , ST_GeogPoint(longitude, latitude) AS location

FROM `bigquery-public-data`.london_bicycles.cycle_stations

WHERE name LIKE '%Hyde%'

Options list

Chapter 7 looks at adding partitioning and clustering specifications at table
creation time. At creation time, we can also use the options list to set an
expiration timestamp, labels, and so on:

CREATE OR REPLACE TABLE ch08eu.hydepark_stations

OPTIONS(

 expiration_timestamp=TIMESTAMP "2020-01-01 00:00:00 UTC",

 description="Stations with Hyde Park in the name",

 labels=[("cost_center", "abc123")]

) AS

SELECT

 * EXCEPT(longitude, latitude)

 , ST_GeogPoint(longitude, latitude) AS location

FROM `bigquery-public-data.london_bicycles.cycle_stations`

WHERE name LIKE '%Hyde%'

Empty table

To create an empty table, specify the column names and their types:

CREATE OR REPLACE TABLE ch08eu.hydepark_rides

(

 start_time TIMESTAMP,

 duration INT64,

 start_station_id INT64,

 start_station_name STRING,

 end_station_id INT64,

 end_station_name STRING

)

PARTITION BY DATE(start_time)

CLUSTER BY start_station_id

Changing options

You can change some of these options after the table is created—for example:

ALTER TABLE ch08eu.hydepark_rides

SET OPTIONS(

 expiration_timestamp=TIMESTAMP "2021-01-01 00:00:00 UTC",

 require_partition_filter=True,

 labels=[("cost_center", "def456")]

)

DML
BigQuery is primarily a data warehouse into which you will typically load or
stream data and not modify it. However, BigQuery does provide the ability to
modify data: DML lets you insert, update, delete, and merge data into tables.

TIP
BigQuery is an analytical database, not an online transaction processing (OLTP) database. As such, it is
not designed for very-high-frequency DML updates. If you find that you have a lot of data that you
want to update, consider performing the updates in batches. One approach is to create a staging table
with the updates that you want to apply, and then you can run a single UPDATE or MERGE statement to
perform all of those changes in a single operation.

Insert SELECT

This query extracts data from the cycle_hires table and inserts it into our
hydepark_rides table (which, in the previous section, we created as a
partitioned table):

INSERT ch08eu.hydepark_rides

SELECT

 start_date AS start_time

 , duration

 , start_station_id

 , start_station_name

 , end_station_id

 , end_station_name

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

WHERE

 start_station_name LIKE '%Hyde%'

This statement adds 1.01 million rows to the table that we can query, as
follows:

WITH rides_in_year AS (

SELECT

 EXTRACT(MONTH from start_time) AS month

 , duration

FROM ch08eu.hydepark_rides

WHERE

 DATE(start_time) BETWEEN '2016-01-01' AND '2016-12-31'

 AND start_station_id = 300

 AND end_station_id = 303

)

SELECT

 month

 , AVG(duration)/60 as avg_duration_minutes

FROM rides_in_year

GROUP BY month

ORDER BY avg_duration_minutes DESC

LIMIT 5

In this query, note the presence of the partitioning column start_time and the
clustering column start_station_id in the WHERE clause. The partitioning

column is required because we altered the table to enforce
require_partition_filter=True, and we gain query efficiency because the
table was created with CLUSTER BY start_station_id. This query processed
12 MB of data (as opposed to 740 MB if we had queried a nonclustered table).
The use of a partitioned table, therefore, reduces query costs whether we have a
reservation or are paying on-demand.

Insert VALUES

It is possible to INSERT a couple of rides after the table has been loaded:

INSERT ch08eu.hydepark_rides (

 start_time

 , duration

 , start_station_id

 , start_station_name

 , end_station_id

 , end_station_name

)

VALUES

('2016-02-18 17:21:00 UTC', 720, 300,

'Serpentine Car Park, Hyde Park', 303, 'Albert Gate, Hyde Park'),

('2016-02-18 16:30:00 UTC', 1320, 300,

'Serpentine Car Park, Hyde Park', 303, 'Albert Gate, Hyde Park')

Even though it is optional, best practice is to specify the column names in the
INSERT, as we have done in the preceding example.

NOTE
If you didn’t care about readability, you could write the insert statement this way:

INSERT ch08eu.hydepark_rides

VALUES

('2016-02-18 17:21:00 UTC', 720, 300,

'Serpentine Car Park, Hyde Park', 303, 'Albert Gate, Hyde Park'),

('2016-02-18 16:30:00 UTC', 1320, 300,

'Serpentine Car Park, Hyde Park', 303, 'Albert Gate, Hyde Park')

Insert VALUES with subquery SELECT

Doing an insert the way we just did is dangerous because of the likelihood that
we get the name of the stations wrong (is it 'Albert Gate, Hyde Park' or
'Hyde Park: Albert Gate'?). Far safer is to use a subselect query on the
stations table instead of hardcoding the string:

...

VALUES

 ('2016-02-18 17:21:00 UTC', 720,

 300, (SELECT name FROM `bigquery-public-data`.london_bicycles.cycle_stations

WHERE id = 300),

 303, (SELECT name FROM `bigquery-public-data`.london_bicycles.cycle_stations

WHERE id = 303)),

...

It is not possible to use a table name in an SQL function, so you cannot reduce
the repetition by moving the subselect into a function:

CREATE TEMPORARY FUNCTION stationName(stationId INT64) AS(

 (SELECT name FROM

 `bigquery-public-data`.london_bicycles.cycle_stations

 WHERE id = stationId)

);

As of this writing, stored procedures are not supported in BigQuery, but it is on
the road map. By the time you are reading this, you might be able to define a
stored procedure and invoke it from the INSERT.

Deleting rows

If we discover a bug in our Extract, Transform, and Load (ETL) pipeline that
was introduced in December 2016, causing the pipeline to mistakenly load
zero-duration rides into the table, we can delete those rows by using DML:

DELETE ch08eu.hydepark_rides

WHERE

 start_time > '2016-12-01' AND

 (duration IS NULL OR duration = 0)

Beyond errors like these, where we erroneously inserted rows, there are other
reasons that we might need to delete rows from our data warehouse. For
example, the “right to be forgotten” rule requires companies to delete all user
information in some circumstances. That is possible using the DELETE
statement:

DELETE ch08eu.hydepark_rides

WHERE

 userId = 3452123

Rather than doing this query one update at a time, it is better to batch these
updates into a MERGE statement (which we look at shortly).

Updating row values

Suppose that that the durations in our table from one of the stations came in as
minutes, but we failed to convert the values into seconds before saving them.
We can update the table to fix the issue:

UPDATE ch08eu.hydepark_rides

SET duration = duration * 60

WHERE

 start_time > '2016-12-01' AND

 start_station_id = 303

If one of the columns is an array, and a new entry needs to be added to the
array, you can do so with an update as well. Assuming that stations have a
maintenance column, you can obtain the existing maintenance schedule and
add a new event to it:

UPDATE ch08eu.stations_table

SET maintenance = ARRAY_CONCAT(maintenance,

 ARRAY_STRUCT<time TIMESTAMP, employeeID STRING>[

 (CURRENT_TIME(), emp303)

])

)

WHERE id = 303

11

12

When using DML statements, consider whether there is a better way to
accomplish the necessary task. For example, if the use case is to update the
maintenance events every time the station undergoes maintenance, it would be
preferable to write the events to a separate table and perhaps join it with the
stations table when needed in a query.

MERGE statement

A MERGE statement is an atomic combination of INSERT, UPDATE, and DELETE
operations that runs (and succeeds or fails) as a single statement. Records from
the source table (could be a subquery) are inserted into the target table, and for
every row, a set of operations is carried out. It is possible to define a different
set of operations in three scenarios: when the rows are MATCHED, NOT MATCHED
BY TARGET, or NOT MATCHED BY SOURCE.

For example, the following query merges records from the public dataset of
london_bicycles to the table in our ch08eu dataset and carries out different
operations in different scenarios:

MERGE ch08eu.hydepark_stations T

USING

 (SELECT *

 FROM `bigquery-public-data`.london_bicycles.cycle_stations

 WHERE name LIKE '%Hyde%') S

ON T.id = S.id

WHEN MATCHED THEN

 UPDATE

 SET bikes_count = S.bikes_count

WHEN NOT MATCHED BY TARGET THEN

 INSERT(id, installed, locked, name, bikes_count)

 VALUES(id, installed, locked,name, bikes_count)

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

This query merges rows from the subquery on the public dataset table (the
source table) into ch08eu.hydepark_stations (the destination table) with
records joined by the id column. When a row matches, the bikes_count in the
destination table is set to the value of bikes_count in the source table (other
columns are left as-is). If the ID is present in the source but not in the
destination, a row is inserted into the table. If the ID is present in the destination

but is no longer in the source, the row in the target is deleted. This merge
statement happens atomically.

Beyond SQL
So far in this book, we have covered SQL queries. Even though SQL is quite
powerful, there are operations that are simpler to do in a proper procedural
language. For this purpose, you can use JavaScript UDFs.

Many database systems support a method of stringing together SQL statements
in some sort of procedural language. Even though you could orchestrate sets of
SQL statements using the BigQuery client libraries, it can sometimes be more
convenient to have the entire set of operations carried out on the server, thus
simplifying failure handling, rollback, and data transfer. This is what scripting
and stored procedures provide.

JavaScript UDFs
If possible, it is often preferable to write UDFs in SQL. BigQuery can optimize
SQL, distribute it, and run it efficiently. This is not the case for UDFs in
JavaScript; there are restrictions on the size of JavaScript code, the size of
outputs, and the number of JavaScript functions in a query. JavaScript UDFs
are more general purpose than SQL UDFs, but be aware that they have
additional overhead because they are executed using the V8 engine in a
sandboxed process.

That said, there are situations for which we need to carry out complex
calculations that are difficult to write in SQL. In such cases, JavaScript
UDFs, even with all these restrictions, provide a convenient alternative. For
example, perhaps your pricing function is quite complicated, but you have the
code for computePrice() already implemented in JavaScript to support a
website. You can define that function and save it in your dataset (temporary
JavaScript functions are also supported):

CREATE OR REPLACE FUNCTION ch08eu.computePrice(dur INT64)

RETURNS INT64

LANGUAGE js AS """

13

 function factorial(n) {

 return (n > 1) ? n * factorial(n - 1) : 1;

 }

 var nhours = 1 + Math.floor(dur/3600.0);

 var f = factorial(nhours);

 var discount = 0.8/(1+Math.pow(Math.E, -f));

 return 3 + Math.floor(dur * (1-discount) * 0.0023)

""";

SELECT

 duration, ch08eu.computePrice(duration) AS price

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

LIMIT 5

Note the key differences between a JavaScript UDF and an SQL UDF: you
specify that the language is js and enclose the entire function within triple
quotes. The function body can include other JavaScript functions (for example,
ours includes the implementation of the factorial function). Here’s the result of
this query:

Row duration price

1 3180 6

2 7380 6

3 2040 4

4 2280 5

5 2340 5

It might be the case that there is an existing library function in JavaScript that
you want to reuse. You can invoke a function in an external JavaScript package
as long as you make sure to download it and store it in Google Cloud Storage.
If, for example, the preceding factorial function is defined in a file named
mathfn.js, you can store it in Google Cloud Storage and refer to it in the
OPTIONS of the function:

CREATE TEMPORARY FUNCTION computePrice(dur INT64)

RETURNS INT64

LANGUAGE js AS """

 var nhours = 1 + Math.floor(dur/3600.0);

 var f = factorial(nhours);

 var discount = 0.8/(1+Math.pow(Math.E, -f));

 return 3 + Math.floor(dur * (1-discount) * 0.0023)

"""

OPTIONS (

 library=["gs://somebucket/path/to/mathfn.js",

 "gs://somebucket/path/to/someother.js"]

);

JavaScript UDFs run on a single worker and are limited to what can be carried
out on that single worker. As of this writing, asynchronous JavaScript
functions are not supported.

Scripting
We can write a BigQuery script consisting of multiple statements and send it to
BigQuery in one request. The script can save results into variables and use
loops to execute the same query multiple times.

A sequence of statements
One of the simplest reasons to write a script is to run a set of queries, one after
the other. Let’s say that you want to create an intermediate table, join against it,
and then drop the table. You can accomplish this with scripting by simply
writing the statements one after the other:

CREATE OR REPLACE TABLE ch08eu.typical_trip AS

 SELECT

 start_station_name

 , end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(*) AS num_trips

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY

 start_station_name, end_station_name

;

CREATE OR REPLACE TABLE ch08eu.unusual_days AS

 SELECT

 EXTRACT (DATE FROM start_date) AS trip_date

 , APPROX_QUANTILES(duration / typical_duration, 10)[OFFSET(5)] AS ratio

 , COUNT(*) AS num_trips_on_day

 FROM

14

15

 `bigquery-public-data`.london_bicycles.cycle_hire AS hire

 , ch08eu.typical_trip AS trip

 WHERE

 hire.start_station_name = trip.start_station_name

 AND hire.end_station_name = trip.end_station_name

 AND num_trips > 10

 GROUP BY trip_date

 HAVING num_trips_on_day > 10

 ORDER BY ratio DESC

;

DROP TABLE ch08eu.typical_trip;

Perhaps the only unusual thing about the script is that we are being careful to
put a semicolon after every individual statement. You can submit this script as a
single request.

TIP
Many use cases that seem to require a script can be solved by using WITH clauses, joins, correlated
subqueries, or GROUP BY. Before you decide to write a script, carefully consider whether you can solve
the problem by using a single query. The single query will probably be more efficient.

For example, the previous script can be quite easily accomplished using a WITH clause. The WITH clause
is faster as well. Even seemingly more complex use cases can be accomplished with a single query. For
example, suppose that you have a query to find the number of rentals of over 30 minutes for each
bike_id in the london_bicycles dataset. If you want to repeat this analysis for thresholds of 60, 120,
…, 300 minutes, it might seem that you need a loop to execute this statement multiple times. However,
you can get the result with a single query by joining against an array of thresholds and grouping the
result by both bike_id and threshold.

Don’t go overboard with scripts.

Temporary tables
Instead of creating a table and dropping it, you can simplify the previous script
by using a temporary table:

CREATE TEMPORARY TABLE typical_trip AS

 SELECT

 start_station_name

 , end_station_name

16

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(*) AS num_trips

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY

 start_station_name, end_station_name

;

CREATE OR REPLACE TABLE ch08eu.unusual_days AS

 SELECT

 EXTRACT (DATE FROM start_date) AS trip_date

 , APPROX_QUANTILES(duration / typical_duration, 10)[OFFSET(5)] AS ratio

 , COUNT(*) AS num_trips_on_day

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS hire

 , typical_trip AS trip

 WHERE

 hire.start_station_name = trip.start_station_name

 AND hire.end_station_name = trip.end_station_name

 AND num_trips > 10

 GROUP BY trip_date

 HAVING num_trips_on_day > 10

 ORDER BY ratio DESC

;

Temporary tables exist for the lifetime of a script and are automatically cleaned
up when the script completes. Note also that, unlike permanent tables,
temporary tables are not associated with a dataset.

Anatomy of a simple script
To look at a more full-fledged example of a script, let’s write a script to find the
return stations for the longest duration rentals from stations in Hyde Park. Most
scripts begin with a declaration part in which we define the variables that are
used in the script:

-- Variables

DECLARE PATTERN STRING DEFAULT '%Hyde%';

DECLARE stations ARRAY<STRING>;

DECLARE MIN_TRIPS_THRESH INT64 DEFAULT 100;

Here, we have declared the pattern we will be searching for, and an array to
hold the stations that match this pattern. The third variable is a threshold that
we will use later in the script. Note the data types of the variables. The pattern

17

is a string and the threshold is an integer. By giving them default values, we
allow for the ability to use them as named constants in the script.

Variables can be any type supported by BigQuery. For example, the stations
variable is an array of strings, which is one way to store the result of a query
(we could have also used a temporary table):

SET stations = (

 SELECT

 ARRAY_AGG(name)

 FROM

 `bigquery-public-data`.london_bicycles.cycle_stations

 WHERE

 name LIKE PATTERN

);

Note that the variable stations is being SET in the preceding code (to an
array), and the variable PATTERN is being used. Because stations is an array,
the SELECT calls ARRAY_AGG to aggregate the name column across all the rows.
Using the stations array in the rest of the script will be like using any array
(use UNNEST, etc.).

You can now find the end station for the longest duration rentals:

SELECT

 start_station_name

 , end_station_name

 , AVG(duration) AS avg_duration

 , COUNT(duration) AS num_trips

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 , UNNEST(stations) AS station

WHERE

 start_station_name = station

GROUP BY start_station_name, end_station_name

HAVING num_trips > MIN_TRIPS_THRESH

ORDER BY avg_duration DESC

LIMIT 5

The average over a small number of trips will be heavily influenced by outliers.
Because of that, look for trips that have been made enough times in the dataset

that the average will be acceptable. The HAVING clause in this query filters on
station pairs with at least 100 trips:

Row start_station_name end_station_name avg_duration num_trips

1 Hyde Park Corner,
Hyde Park

Abbey Orchard Street,
Westminster

10718.507462686563 268

2 Wellington Arch,
Hyde Park

Imperial College,
Knightsbridge

10062.04724409449 127

3 Hyde Park Corner,
Hyde Park

Westminster University,
Marylebone

9726.05042016807 119

4 Park Lane, Hyde Park Westbourne Grove,
Bayswater

9712.5 104

5 Albert Gate, Hyde
Park

Paddington Green Police
Station, Paddington

9182.72727272727 132

Looping

Scripting also supports control flows through IF conditions and a variety of
looping primitives. The threshold of 100 was chosen quite arbitrarily. What
happens if you change it? It can be convenient to try a whole bunch of
thresholds and examine the results, so you can change the MIN_TRIPS_THRESH
in a loop and put the SELECT statement within that loop:

WHILE MIN_TRIPS_THRESH < 1000 DO

 SELECT … ;

 SET MIN_TRIPS_THRESH = MIN_TRIPS_THRESH * 2;

END WHILE

Now when you run the script, you see three sets of results, the last of which is
as follows:

18

Row start_station_name end_station_name avg_duration num_trips

1 Bayswater Road, Hyde
Park

Bayswater Road, Hyde
Park

4289.155172413791 3480

2 Hyde Park Corner,
Hyde Park

Wellington Arch, Hyde
Park

3817.0747740345105 2434

3 Knightsbridge, Hyde
Park

Hyde Park Corner,
Hyde Park

3582.595834591005 3313

4 Park Lane, Hyde Park Park Lane, Hyde Park 3524.174474450833 12701

5 Hyde Park Corner,
Hyde Park

Knightsbridge, Hyde
Park

3479.189736664417 1481

More primitive loop constructs are also supported. For example, the WHILE loop
in the previous example could be implemented as follows:

LOOP

 IF MIN_TRIPS_THRESH >= 1000 THEN

 BREAK;

 END IF;

 SELECT MIN_TRIPS_THRESH;

 SET MIN_TRIPS_THRESH = MIN_TRIPS_THRESH * 2;

END LOOP;

Note the use of LOOP—it works similarly to a WHILE loop with an always-true
condition. You can break out of a loop by using BREAK, as shown in the
preceding example, and skip the rest of the iteration using CONTINUE.

Stored procedures
After you have written a script, you can save it into a dataset, similar to the way
you save UDFs. Such a saved script is called a stored procedure. Here’s an
example of defining a procedure:

CREATE OR REPLACE PROCEDURE ch08eu.sp_unusual_trips()

BEGIN

-- Script starts here

CREATE TEMPORARY TABLE typical_trip AS

 SELECT

19

20

 start_station_name

 , end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(*) AS num_trips

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY

 start_station_name, end_station_name

;

CREATE OR REPLACE TABLE ch08eu.unusual_days AS

 SELECT

 EXTRACT (DATE FROM start_date) AS trip_date

 , APPROX_QUANTILES(duration / typical_duration, 10)[OFFSET(5)] AS ratio

 , COUNT(*) AS num_trips_on_day

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS hire

 , typical_trip AS trip

 WHERE

 hire.start_station_name = trip.start_station_name

 AND hire.end_station_name = trip.end_station_name

 AND num_trips > 10

 GROUP BY trip_date

 HAVING num_trips_on_day > 10

 ORDER BY ratio DESC

;

-- Script ends here

END;

After you’ve defined it, you can invoke a stored procedure as follows (note the
parentheses):

CALL ch08eu.sp_unusual_trips();

Parameters to stored procedures
Stored procedures are akin to UDFs in that they can take input parameters and
return output parameters. For example, let’s modify the script to be
parameterized by the MIN_TRIPS_THRESH and return the result instead of
storing into a table:

CREATE OR REPLACE PROCEDURE ch08eu.sp_most_unusual(

 IN MIN_TRIPS_THRESH INT64,

21

22

 OUT result ARRAY<STRUCT<trip_date DATE, ratio FLOAT64, num_trips_on_day

INT64>>)

BEGIN

 CREATE TEMPORARY TABLE typical_trip AS

 SELECT

 start_station_name

 , end_station_name

 , APPROX_QUANTILES(duration, 10)[OFFSET(5)] AS typical_duration

 , COUNT(*) AS num_trips

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY

 start_station_name, end_station_name

;

SET result = (

 WITH unusual_trips AS (

 SELECT

 EXTRACT (DATE FROM start_date) AS trip_date

 , APPROX_QUANTILES(duration / typical_duration, 10)[OFFSET(5)] AS ratio

 , COUNT(*) AS num_trips_on_day

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire AS hire

 , typical_trip AS trip

 WHERE

 hire.start_station_name = trip.start_station_name

 AND hire.end_station_name = trip.end_station_name

 AND num_trips > MIN_TRIPS_THRESH

 GROUP BY trip_date

 HAVING num_trips_on_day > MIN_TRIPS_THRESH

)

 SELECT

 ARRAY_AGG(STRUCT(trip_date, ratio, num_trips_on_day)

 ORDER BY ratio DESC LIMIT 3)

 FROM unusual_trips

);

END;

When calling the procedure, pass in the required parameters, declaring any
variables as needed:

DECLARE y ARRAY<STRUCT<trip_date DATE, ratio FLOAT64, num_trips_on_day INT64>>;

CALL ch08eu.sp_most_unusual(10, y);

SELECT y;

The following shows the result:

Row y.trip_date y.ratio y.num_trips_on_day

1 2016-12-25 1.6111111111111112 34477

 2015-12-25 1.5161290322580645 20871

 2015-08-01 1.25 41200

Advanced Functions
In this section, we cover some advanced functions that are part of the BigQuery
toolkit: functions for analysis with geographic types, for statistics, and for
hashing and unique number generation. We examine machine learning in the
next chapter.

BigQuery Geographic Information Systems
How many of the tables in your data warehouse have location information in
them? Perhaps you record the latitude and longitude of your vehicles or
packages over time, or perhaps you have the addresses of your customers and
suppliers. Maybe you recorded customer transactions, and you could join it
against another table that has store locations.

Not only is location information very common, but many business decisions
also revolve around location. Identifying which neighborhoods and cities to
focus on with a promotional offer is a common analysis task in marketing
departments. Logistics and just-in-time manufacturing companies need to track
the location of millions of small packages in their supply chain. Therefore,
geospatial analysis is quite common in data analytics. Our colleague Chad
Jennings ran a search over GitHub recently and found that 9% of all .sql files
there carry out spatial queries, using a very conservative way to estimate what
constitutes a spatial query. BigQuery makes analyzing and visualizing
geospatial data very easy and highly performant.

Traditionally, systems that allowed for analyzing geographic data were rather
unique and were termed Geographic Information Systems (GIS). Now, of
course, a general-purpose analytics tool like BigQuery supports the types of

23

analysis that required those custom tools. So the geospatial capabilities are also
often referred to as GIS features.

Geographic types
GIS functions operate on geographic types. BigQuery supports points, lines,
and polygons on the Earth’s surface on the WGS84 reference ellipsoid. For
example, we can create a geographic type given the longitude and latitude of
some London bicycle stations using ST_GeogPoint (note that longitude
comes first):

SELECT

 name

 , ST_GeogPoint(longitude, latitude) AS location

FROM

 `bigquery-public-data`.london_bicycles.cycle_stations

WHERE

 id BETWEEN 300 and 305

In the result set, the location column is a Point type, and in the text depiction, it
is shown in Well Known Text (WKT), a standard format for representing
geographies as strings:

Row name location

1 Marylebone Lane, Marylebone POINT(-0.148105415 51.51475963)

2 Serpentine Car Park, Hyde Park POINT(-0.17306032 51.505014)

3 Albert Gate, Hyde Park POINT(-0.158456089 51.50295379)

4 Kennington Lane Tesco, Vauxhall POINT(-0.115853961 51.48677988)

5 Putney Pier, Wandsworth POINT(-0.216573 51.466907)

When loading geospatial data from other systems, you’ll find that the
geographic data tends to come in either as WKT or as GeoJSON, another
standard string format for representing geographies. If your exporting system
provides a choice, choose GeoJSON over WKT because there is no ambiguity
in GeoJSON as to whether the polygon of interest is the “interior” one or the
“exterior” one (they both have the same coordinates) or whether the edges
need to be tessellated. If the geospatial data is in some other format, such as

24

25
26

https://www.opengeospatial.org/standards/wkt-crs

Shapefiles, use the open source tool ogr2ogr to convert the data into GeoJSON
before loading into BigQuery.

TIP
As discussed in Chapter 7, GIS queries in BigQuery are much more efficient if geographic data is
stored as geography types rather than as primitives (e.g., longitude and latitude) or as strings.

If you have a dataset in which the data is held as primitives or strings, convert them into geographic
types in your Extract, Load, and Transform (ELT) or ETL pipeline:

CREATE OR REPLACE TABLE ch08eu.cycle_stations AS

SELECT

 *, ST_GeogPoint(longitude, latitude) AS location

FROM

 `bigquery-public-

data`.london_bicycles.cycle_stations

To convert strings in the WKT or GeoJSON format to geographic types, use the function
ST_GeogFromText or ST_GeogFromGeoJSON, respectively.

To convert geographies to strings in the WKT or GeoJSON format, use the
function ST_AsText or ST_AsGeoJSON, respectively:

SELECT

 name

 , ST_AsGeoJSON(location) AS location_string

FROM

 ch08eu.cycle_stations

WHERE

 id BETWEEN 300 and 305

This yields the following:

27

Row name location_string

1 Marylebone Lane,
Marylebone

{ “type”: “Point”, “coordinates”: [-0.148105415,
51.51475963] }

2 Serpentine Car Park, Hyde
Park

{ “type”: “Point”, “coordinates”: [-0.17306032,
51.505014] }

3 Albert Gate, Hyde Park { “type”: “Point”, “coordinates”: [-0.158456089,
51.50295379] }

4 Kennington Lane Tesco,
Vauxhall

{ “type”: “Point”, “coordinates”: [-0.115853961,
51.48677988] }

5 Putney Pier, Wandsworth { “type”: “Point”, “coordinates”: [-0.216573,
51.466907] }

Creating Polygons
Suppose that you have a trip from station 300 to station 305, then to station 302,
and finally back to station 300. You can use ST_MakeLine and
ST_MakePolygon to represent one trip segment or the entire round trip,
respectively:

WITH stations AS (

SELECT

 (SELECT location FROM ch08eu.cycle_stations WHERE id = 300)

 AS loc300,

 (SELECT location FROM ch08eu.cycle_stations WHERE id = 302)

 AS loc302,

 (SELECT location FROM ch08eu.cycle_stations WHERE id = 305)

 AS loc305

)

SELECT

 ST_MakeLine(loc300, loc305) AS seg1

 , ST_MakePolygon(ST_MakeLine(

 [loc300, loc305, loc302])) AS poly

FROM

 stations

Here is the result:

Row seg1 poly

1 LINESTRING(-0.17306032
51.505014, -0.115853961
51.48677988)

POLYGON((-0.216573 51.466907, -0.115853961
51.48677988, -0.17306032 51.505014, -0.216573
51.466907))

Note from the way the polygon is constructed that a line can have multiple
segments—a polygon is closed, whereas a line can be open.

GEOGRAPHIC DATA IN MACHINE LEARNING
Most machine learning frameworks that operate on structured data can deal
only with numeric or categorical variables. Using state or country names
might not provide the granularity you need, and so you might want to use
the precise location. Do not convert geographic locations to WKT or
GeoJSON for the purpose of providing the geographic location as a
categorical input: it is preferable to use a geohash instead, because the
character representation in the hash conveys geographic proximity.

As an example, let’s look at how the first few letters of the geohash of the
center point of nearby zip codes is the same across the state of Alaska:

SELECT

 state_code

 , zip_code

 , ST_GeoHash(internal_point, 2) AS ziphash_2

 , ST_GeoHash(internal_point, 5) AS ziphash_5

 , ST_GeoHash(internal_point, 10) AS ziphash_10

FROM

 `bigquery-public-

data`.geo_us_boundaries.us_zip_codes

WHERE

 state_code = 'AK'

ORDER BY ziphash_10 ASC

LIMIT 5

This returns the following:

Row state_code zip_code ziphash_2 ziphash_5 ziphash_10

1 AK 99546 b1 b14qu b14queqr8k

2 AK 99547 b1 b1k15 b1k158vcqn

3 AK 99638 b1 b1rug b1rugtepv7

4 AK 99685 b3 b39d7 b39d7x4cgz

5 AK 99692 b3 b39dd b39dd3d7xf

Both 99546 (Adak) and 99638 (Nikolski) are in the Aleutian Islands chain,
and this spatial proximity is captured by the fact that the first two letters of
the geohash are the same (b1). Even more proximate are the fourth and fifth

zip codes in the example result set: 99692 (Dutch Harbor) is essentially
surrounded by 99685 (Unalaska), and the spatial proximity is captured by
the fact that the first four letters of the geohash are the same (b39d) for the
two zip codes. Note that the spatial proximity in both these instances is not
captured by the numeric values of the zip codes.

Thus a good way to incorporate a geographic point in BigQuery into
machine learning models is to provide the first few characters of the point’s
geohash. How many characters you choose to use reflects the resolution at
which you want to represent the location. Do this at multiresolution; that is,
provide the first character, the first two characters, and the first three
characters as three separate categorical inputs to the model.

GIS predicate functions
BigQuery supports a number of spatial predicate functions. You can use these
functions in WHERE clauses and in JOINs. For example, you can look for the zip
codes best served by the New York Citibike system by looking for the number
of stations within one kilometer (1,000 meters) of each zip code:

SELECT

 z.zip_code

 , COUNT(*) AS num_stations

FROM

 `bigquery-public-data`.new_york.citibike_stations AS s,

 `bigquery-public-data`.geo_us_boundaries.us_zip_codes AS z

WHERE

 ST_DWithin(

 z.zcta_geom,

 ST_GeogPoint(s.longitude, s.latitude),

 1000) -- 1km

GROUP BY z.zip_code

ORDER BY num_stations DESC

LIMIT 5

The key function being used is ST_DWithin (or distance within). This what the
result looks like:

https://www.unitedstateszipcodes.org/99685

Row zip_code num_stations

1 11201 116

2 11217 112

3 10003 112

4 11238 103

5 10011 95

Similarly, we can check whether geometries intersect, contain, or are covered
by another geometry using ST_Intersects, ST_Contains, or ST_CoveredBy.
There are other spatial predicate functions as well.

GIS Measures

One of the most useful GIS functions is ST_Distance, with which you can
compute the distance between two geographies. For example, to compute the
distance between Seattle and Miami, you can do the following:

WITH seattle AS (

 SELECT ANY_VALUE(internal_point) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Seattle' and state_code = 'WA'

),

miami AS (

 SELECT ANY_VALUE(internal_point) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Miami city' and state_code = 'FL'

)

SELECT

 ST_Distance(seattle.loc, miami.loc)/1000 AS dist

FROM seattle, miami

The result, when we ran it, was 4,364 kilometers. Your result might be slightly
different because of the use of ANY_VALUE to select any of the zip codes in the
two cities.

https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_functions

TIP
To adhere to the privacy policies in place at your organization, you will often need to coarsen, or lower,
the resolution of location data. ST_SnapToGrid allows you to round off locations. For example,
ST_SnapToGrid(pt, 0.01) rounds off the latitude and longitude of pt to the second decimal place.
This function also works for polygons and lines and does the right things (for example, clips off line
segments that do not make sense once the vertices are rounded off).

Geometry transformations and aggregations
BigQuery also provides a variety of functions to compute the union,
intersection, and more of geography types.

The query in the previous section picked any zip code in the city and used only
the center of the polygon. A much better way is to combine all of the zip code
polygons for each city into a single geometry using ST_UNION and compute the
distance between these two geometries:

WITH seattle AS (

 SELECT ST_UNION(ARRAY_AGG(zcta_geom)) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Seattle' and state_code = 'WA'

),

miami AS (

 SELECT ST_UNION(ARRAY_AGG(zcta_geom)) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Miami city' and state_code = 'FL'

)

SELECT

 ST_Distance(seattle.loc, miami.loc)/1000 AS dist

FROM seattle, miami

The result is 4,356 kilometers, and this time, the result is deterministic: it is the
distance from the most southeast corner of Seattle to the most northwest corner
of Miami.

Computing the union of an aggregate is a common enough need that BigQuery
provides a shortcut function ST_UNION_AGG that you could have used:

WITH seattle AS (

 SELECT ST_UNION_AGG(zcta_geom) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Seattle' and state_code = 'WA'

)

To compute the centroid of an aggregate of geometries, use ST_CENTROID_AGG.
Thus, this would be distance between the geometric city centers of Seattle and
Miami:

WITH seattle AS (

 SELECT ST_CENTROID_AGG(zcta_geom) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Seattle' and state_code = 'WA'

),

miami AS (

 SELECT ST_CENTROID_AGG(zcta_geom) as loc

 FROM `bigquery-public-data`.geo_us_boundaries.us_zip_codes

 WHERE city = 'Miami city' and state_code = 'FL'

)

SELECT

 ST_Distance(seattle.loc, miami.loc)/1000 AS dist

FROM seattle, miami

This returns 4,363 kilometers.

To visualize geospatial data, use BigQuery Geo Viz or a Jupyter Notebook
(discussed in Chapter 5).

Useful Statistical Functions
BigQuery supports the computation of statistics over petabyte-scale datasets.
We can compute the mean, standard deviation, and percentiles over a column as
well as the Pearson correlation between a pair of columns.

Statistics
For example, here is a query to find bulk statistics on the duration column over
the london_bicycles dataset:

SELECT

 MIN(duration) AS min_dur

 , MAX(duration) AS max_dur

 , COUNT(duration) AS num_dur

 , AVG(duration) AS avg_dur

 , SUM(duration) AS total_dur

 , STDDEV(duration) AS stddev_dur

 , VARIANCE(duration) AS variance_dur

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

The result is as follows:

Row min_dur max_dur num_dur avg_dur total_dur stddev_dur variance_dur

1 -3540 2674020 24369201 1332.29 32466946080 9827.99 9.66E7

Of course, the minimum (–3,540?) and maximum (2,674,020 seconds = 31
days!) durations almost definitely represent invalid observations. As such, the
mean duration is not to be trusted, because it includes these outlier values.

Quantiles
A safer central tendency to use on columns with significant outliers is the
median. You can get that in BigQuery using APPROX_QUANTILES. You can
specify the number of quantiles, so let’s use 3:

SELECT

 APPROX_QUANTILES(duration, 3)

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

This returns the following:

Row f0_

1 -3540

 600

 1080

 2674020

Why are there four numbers? Because we asked for three bins, and we need
four boundaries to get three bins: (–3540, 600), (600, 1,080), and (1,080,
2,674,020). So –3,540 is the minimum duration and 2,674,020 is the maximum
duration. One-third of the data is at or below 600 seconds. The top third of
rentals are 1,080 seconds or longer. The middle third is between 600 and 1,080
seconds.

To find the median, or midpoint of the distribution, we can ask for exactly two
bins:

SELECT

 APPROX_QUANTILES(duration, 2)

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

Here’s what this query returns:

Row f0_

1 -3540

 840

 2674020

From this table, the median is approximately 840 seconds. Of course, we can
do a finer-grained quantization and pick, say, the 95th percentile of durations:

SELECT

 APPROX_QUANTILES(duration, 100)[OFFSET(95)]

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

This is what the query returns:

Row f0_

1 3000

Based on that query, 95% of rentals last less than 3,000 seconds.

28
29

Correlation
Is there a correlation between stations that are close to the London city center
and the duration of trips at those stations? To answer this question, let’s create a
column that captures the distance of a station from the city center and another
that capture the median duration of rentals, and then compute the correlation:

WITH distances AS (

 SELECT

 id

 , ST_Distance(location, ST_GeogPoint(-0.12574, 51.50853)) AS distance

 FROM

 ch08eu.cycle_stations

),

durations AS (

 SELECT

 start_station_id AS id

 , APPROX_QUANTILES(duration, 2)[OFFSET(1)] AS median_duration

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY start_station_id

)

SELECT CORR(distance, median_duration) AS pearson

FROM distances

JOIN durations

USING(id)

The result, 0.14, indicates that there is pretty much no correlation between
distance from the city center and rental duration. A correlation coefficient of 1.0
indicates strong proportionality, and –1.0 an inverse relationship. Two variables
that are linearly independent of each other will have a correlation coefficient of
zero.

Hash Algorithms
A common requirement in many analysis tasks is to devise a short string that
will uniquely represent a row. For example, you might need to quickly identify
duplicate rows without going to the expense of comparing each and every
column. There are two ways to do this: one is to compute a fingerprint of a
row’s values, and the other is to assign a universally unique identifier (UUID)
to a row at the time of creation. Although there is no guarantee that the same

fingerprint will not arise for two completely separate sets of values, the
probability is very small. Similarly, there is no guarantee that the same UUID
will not be generated by some other system somewhere else. Nevertheless, the
likelihood of this happening is very small.

So even though you would not use fingerprinting or UUID for cryptography or
money management, you could use it to safeguard against counting the same
bicycle ride twice. There is a small theoretical probability that some customer
gets a free ride, but no customer will be double-charged. Of course, if you do
have cryptographic needs, BigQuery has support for popular encryption
algorithms (MD5 and SHA).

Fingerprint function
To compute the fingerprint, BigQuery uses the FARM fingerprint algorithm, an
open source hash-computation algorithm with implementations in multiple
programming languages (so that, if necessary, you can compute the same
fingerprint in other systems off the same data). The function takes a STRING as
input and returns an INT64.

We know that a bicycle rental can be uniquely identified by the bike_id, start
time of the rental, and the station it was rented from. Instead of comparing all
three values each time we want to check whether two rows correspond to the
same rental, we can simply compare the two rows’ fingerprints (provided we
have already computed them, of course). Thus, to compute the fingerprint of a
cycle hire, we can do this:

WITH identifier AS (

 SELECT

 CONCAT(

 CAST(bike_id AS STRING), '***',

 CAST(start_date AS STRING), '***',

 CAST(start_station_id AS STRING)

) AS rowid

 FROM `bigquery-public-data.london_bicycles.cycle_hire`

 LIMIT 10

)

SELECT

 rowid, FARM_FINGERPRINT(rowid) AS fingerprint

FROM identifier

30

https://github.com/google/farmhash

This returns the following:

Row rowid fingerprint

1 8168***2016-09-15 10:09:00+00***176 6524654244988303787

2 7218***2016-06-08 18:49:00+00***114 -4994312061947208007

3 3648***2015-07-23 13:21:00+00***304 3924490378672877823

4 9403***2017-03-14 18:43:00+00***574 -1509385442790305242

5 10704***2016-08-16 20:58:00+00***223 -8271736518219415928

6 6048***2017-03-31 08:25:00+00***632 6083880842645302266

7 14039***2017-03-06 19:29:00+00***529 -5809138520111495006

8 7956***2015-07-27 09:55:00+00***14 -4999466933100478693

9 5744***2015-01-27 09:40:00+00***341 -8567341349676429749

10 13088***2016-08-06 22:50:00+00***29 6415473001431984902

REPEATABLE SAMPLING FOR MACHINE LEARNING
One common use of the fingerprint algorithm is to create a repeatable hash
of rows in a dataset for machine learning. This can be used to split a dataset
into test and train. For example, if you want to split rentals by stations and
days, you could compute the hash of those two fields and use them to split
the dataset:

WITH datasets AS (

 SELECT

 CONCAT(

 CAST(start_station_id AS STRING),

 CAST(EXTRACT(DATE FROM start_date) AS STRING))

AS key,

 *

 FROM `bigquery-public-

data.london_bicycles.cycle_hire`

 LIMIT 100

)

SELECT

 IF(MOD(ABS(FARM_FINGERPRINT(key)), 10) < 8, 'train', 'test') AS ds,

 * EXCEPT(key)

FROM datasets

LIMIT 10

Here’s what this returns (there are more columns, but only a few are shown;
note, though, that the first column identifies rows as either train or test):

Row ds rental_id duration bike_id end_station_id end_station_name

1 train 63022577 600 8930 55 Finsbury Circus,
Liverpool Street

2 test 41340757 540 9260 58 New Inn Yard,
Shoreditch

3 train 47466877 2040 11137 210 Hinde Street,
Marylebone

4 test 53171329 5760 7033 733 Park Lane, Mayfair

5 train 42268703 900 7005 248 Triangle Car Park,
Hyde Park

MD5 and SHA
BigQuery also supports popular hashing algorithms. These are one-way hashes
and can be useful for tokenizing Personally Identifiable Information (PII),
although it should be noted that some hash algorithms are more secure than
others, and you should make an informed choice about which algorithm to use
for your data (we cover encryption in Chapter 10):

SELECT

 name

 , MD5(name) AS md5_

 , SHA256(name) AS sha256_

 , SHA512(name) AS sha512_

FROM UNNEST(['Joe Customer', 'Jane Employee']) AS name

This returns the following:

Row name md5_ sha256_ sha512_

1 Joe
Customer

9JFfot7XXNa9
IFXrZYpkIQ==

lTPGdZjjJNgvrYfvHRP2HX
ofhTntHalPMAn5tdA4AY8=

ysAXoRHTb+ENWL9jB2pCD1
arBasmuush7KJVa3sKWMbz1v
zyUKHUS5CDl9jBNR3yxBDwRFL
SQbHwPLklBuLptQ==

2 Jane
Employee

g6HbGfBF02V
JLdJoXs8tXQ==

wXJxfwK/hP4dgjQuz
IcPOLVZEryACurXmL7qM
cnC3tE=

N9tGIXX6AibvHpDNaZciAMHSYK
/9/nA9886fVkcPwykL0NRIpiIM
7zE25yUZy6RSEPvKM
+sdM+lcsgG82qtj2Q==

UUID
To generate a universally unique string consisting of 32 hexadecimal digits that
is unlikely to be generated for the same purpose on another system, use UUID:

SELECT GENERATE_UUID() AS uuid;

When we ran it, we got the following (you will get a different string, of course):

Row uuid

1 5ae248e9-5872-410f-862f-8a27bb527b53

Random number generator
BigQuery also provides a random number generator, which can be useful if
your analysis requires shuffling or adding noise to variables. To generate a
uniformly distributed random number in the range 0 to 1, use:

SELECT RAND()

Summary
In this chapter, we looked at ways to foster reuse of SQL. Queries can be
parameterized either with named parameters or with positional parameters, and
those parameters can be passed in at execution time. It is possible to extract
commonly used SQL code into functions that can be either temporary (available
only to the current query) or persisted in a dataset and used by anyone with read
access to the dataset. Other ways to improve reuse and readability are to use the
WITH clause and correlated subqueries.

We also delved deeper into arrays, discussing situations in which they can be
used: to preserve ordering, to store repeated fields, or to generate data. We also
discussed window functions that are computed on a subset of a table either for
computing moving averages, for navigation (“next three rows”), and for
numbering (to find the first, last, etc.).

We covered examples of using table metadata to build queries dynamically and
extensively covered the use of DDL and DML. We also discussed BigQuery
support for scripting, whether it is for simply executing a sequence of
statements or for more complex needs such as looping.

Finally, we discussed BigQuery GIS, how to create geography types, and how
to calculate GIS predicates and transform existing geographies through the use
of ST_Union, and more. Finally, we ended with illustrations of statistical
functions and hash algorithms.

1 As explained in Chapter 5, creating a query by doing string formatting can make your data
warehouse subject to SQL injection attacks.

2 See 08_advqueries/param_named.py in the GitHub repository for this book.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

3 The reason positional parameters are supported is that Open Database Connectivity and Java
Database Connectivity drivers expect that query engines denote parameters with a question mark.

4 See 08_advqueries/param_positional.py in the GitHub repository for this book.

5 See 08_advqueries/param_array.py in the GitHub repository for this book.

6 A no-op, short for “no operation,” is a statement that does nothing. See
https://en.wikipedia.org/wiki/NOP_(code).

7 An array with an odd number of elements has a single element in the middle and equal numbers of
elements on either side. If the array has an even number of elements, however, there are two
elements in the middle, and the median is defined as the average of these two middle elements.

8 In this context, reflection refers to the ability of an SQL query to modify its own structure and
behavior at runtime based on the schema of a table.

9 Actually, a result of 100 rows of a two-column table is small enough that it fits into a single shard
and would likely be returned in order, but the general principle that you cannot rely on the order of
rows read to be valid.

10 This is a correlated cross join: the UNNEST operator references the column of ARRAYs from each row
in the source table, which appears previously in the FROM clause. For each row in the source table,
UNNEST flattens the ARRAY from that row into a set of rows containing the ARRAY elements, and then
the CROSS JOIN joins this new set of rows with the single row from the source table. Because these
cross joins in UNNEST are correlated to just the elements in the array, the performance impact is
minimal.

11 Because there is no userId column in our table, this query won’t work.

12 Because our current stations_table does not have this column, the query won’t work.

13 We said difficult. We did not say impossible. Please don’t send us your SQL implementation of this
function.

14 For more advice on using JavaScript UDFs, see
https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions#best-
practices-for-javascript-udfs.

15 For the complete script, see https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book/blob/master/08_advqueries/script_seq.sql.

16 For the complete script, see https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book/blob/master/08_advqueries/script_seq.sql.

17 The full script is available at https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book/blob/master/08_advqueries/script_temptbl.sql.

18 The full script is available at https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book/blob/master/08_advqueries/script_loop.sql.

19 The BREAK and CONTINUE keywords behave similarly to how they work in C-based languages (such
as Python, C#, or Java). The Matlab documentation has good explanations for BREAK and CONTINUE.

20 See 08_advqueries/stored_procedure_def.sql in the GitHub repository for this book.

21 Parameters can function as both inputs and outputs; these are marked INOUT.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://en.wikipedia.org/wiki/NOP_(code)
https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions#best-practices-for-javascript-udfs
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/08_advqueries/script_seq.sql
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/08_advqueries/script_seq.sql
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/08_advqueries/script_temptbl.sql
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/08_advqueries/script_loop.sql
https://www.mathworks.com/help/matlab/ref/break.html
https://www.mathworks.com/help/matlab/ref/continue.html
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book

22 See 08_advqueries/stored_procedure_inout.sql in the GitHub repository for this book.

23 There is a public dataset in BigQuery of all the files in GitHub.

24 Because the Earth is not a perfect sphere but a lumpy mass, there are many possible
approximations of the shape of the Earth, and different ellipsoidal approximations tend to be more
accurate in different parts of the world. The Global Positioning System (GPS) uses WGS84; thus,
nearly all the location coordinates you are likely to encounter will be with respect to WGS84.

25 When parsing WKT, there is ambiguity over which polygon is meant. By default, BigQuery
assumes that the smaller polygon is the one that is intended. The ST_GeogFromText supports a
parameter called oriented, which, if set to TRUE, will assume that the polygon of interest is being
traversed counterclockwise.

26 Tessellation refers to making sure that the polygons completely fill the plane with no overlaps and
no gaps—all the polygons associated with the districts in a state must completely fill the state, for
example. This is not a problem in GeoJSON, because the district edges will already be on a plane,
but for WKT, BigQuery must tessellate the provided coordinates, and so points might be moved by
up to 10 meters.

27 For details, see https://oreil.ly/jZVpC.

28 Note that the median we got is the approximate quantile. The expected error is ±1%.

29 The 95th and 99th percentiles are often used to model “worst case” scenarios.

30 And the computational costs you save by not having to compare each and every field or to build a
truly unique and globally consistent infrastructure (like Cloud Spanner!) outweigh the cost of that
occasional free bicycle ride.

https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://oreil.ly/jZVpC

Chapter 9. Machine Learning in
BigQuery

Artificial intelligence (AI) is the domain of computer science focused on building
computational systems that are capable of acting autonomously. Over the years, many
different subfields have arisen in AI, but an approach that has proven successful in recent
years has been the idea of using large datasets to train general-purpose models (such as
decision trees and neural networks) that can solve complex problems with great accuracy.

Teaching a computer based on examples is called supervised machine learning, and it can
be carried out in BigQuery with the data remaining in place. In this chapter, we look at
how to solve a wide variety of machine learning problems using BigQuery ML. Even
though machine learning can be carried out in BigQuery, being able to use powerful,
industry-standard machine learning frameworks such as TensorFlow on the data in
BigQuery can give us access to a much wider variety of machine learning models and
components. Hence, in this chapter we also look at the connections that exist between
BigQuery and full-fledged machine learning frameworks.

What Is Machine Learning?
If we have collected historical data (and what is a data warehouse for, if not precisely
this?), and the historical data contains the correct answers (called the “label”), we can
train machine learning models on this data to predict the outcome for cases where the
label is not yet known. For example, if we have a historical dataset of actual sales figures,
we can train machine learning models to predict sales in the future. As with data
analytics, machine learning in BigQuery is also carried out in SQL.

Formulating a Machine Learning Problem
For example, suppose that your business operates several hundred movie theaters all over
the country, and you want to predict how many movie tickets will sell for a particular
showtime at a particular theater—this sort of prediction is useful if you are trying to
determine how to schedule movies. If you have data about the movies that have been run
in the past, our machine learning problem might be formulated as follows: use data about
the movies in our historical dataset to learn the number of tickets sold for each showtime
in each theater. Then apply that machine learning model to a candidate movie to
determine how much demand there will be for this movie at a specific showtime.

The attributes of the movie that you will use as inputs to the machine learning model are
called the features of the model. The label is what you want to learn how to predict, and
in this case, the label is the number of tickets sold. Following are some examples of
features that you might want to include in your model:

Motion picture content rating (for example, PG-13 means that parental
guidance is recommended for children younger than 13)

Is the showtime on a workday or on a weekend/holiday?

At what time of day is the show (afternoon, evening, or night)?

Movie genre (comedy, thriller, etc.)

How long ago was the movie released (in days)?

Average critics’ rating of the movie (scale of 1 to 10)

Total box office receipts for the previous movie by this director, if applicable

Total box office receipts for the previous movie by the lead actor, if applicable

Theater location

Theater type (e.g., multiplex, drive-in, mall, etc.)

Note that the title of the movie, as is, is not a good input to the machine learning model.
Though Tinker Tailor Soldier Spy, a 2011 movie, might be part of our training dataset, we
will typically not be interested in predicting the performance of that exact movie (for one,
it has already run in our theater). Instead, our interest will be in predicting the
performance of, say, Deep Water Horizon, another thriller with similar critical reviews
that was released in 2016.

Hence, the machine learning model needs to be based on features of the movie (things
that describe the movie), not things that uniquely identify it. This way, our model might
guess that Deep Water Horizon, if run at similar timings to Tinker Tailor Soldier Spy, will
perform similarly because the movies are in the same genre, and because the critics’
rating of the movies are similar.

The first four features (rating, type of showtime, showtime, genre) are categorical
features, by which we mean that they take one of a finite number of possible values. In
BigQuery, any feature that is a string is considered a categorical feature. If the database
representation of categorical features happens to be some other type (for example, the
showtime might be a number such as 1430 or a timestamp), you should cast it as a string
in your query. The next four features (time since release, critics’ ratings, box office
receipts for director and lead actor) are numeric features, by which we mean that they are

1

2

numbers with meaningful magnitudes. The last two features (theater type and location)
will need to be represented in special ways; we discuss choices later in this chapter.

The label, or the correct answer for the prediction problem, is given by the number of
tickets sold historically. During the training of the machine learning model, BigQuery is
shown the input features and corresponding labels and creates the model that captures
this information (see Figure 9-1). Then, during prediction, the trained machine learning
model can be applied on a new set of input features to gain an estimate of how many
tickets we can expect to sell if we schedule the movie at a specific time and location.

Figure 9-1. During training, the model is shown features and their corresponding labels. Then the trained model can
be used for prediction. Given a set of features, the model predicts a value for the label.

Types of Machine Learning Problems
We tend to use different machine learning models and techniques depending on the
nature of the input features and the labels. In this subsection, we’ll provide brief
definitions of the types of problems. We cover the solutions to these problems in greater
detail in the rest of this chapter.

Regression
In the example in the previous section, we wanted to predict the number of tickets that
would be sold for a particular showing of a movie. In that case, the label is a number, and
so the type of machine learning problem it represents is called regression.

Classification
If the label is a categorical variable, the type of machine learning problem is called
classification. The output of a classification model is the probability that a row belongs to
a label value. For example, if you were to train a machine learning model to predict
whether a show will sell out, you would be using a classification model, and the output of
the model would be the probability that a show sells out.

Many classification problems have two classes: the show sells out or it doesn’t, a
customer buys the item or they don’t, the flight is late or it isn’t. These are called binary
classification problems. In such cases, the label column should be True or False, or it
should be 1 or 0. The prediction from the model will be the probability that the label is
True. We typically threshold the probability at 0.5 to determine the most likely class.

A classification problem can have multiple classes. For example, revisiting our bike
rental scenario, you might want to predict the station at which a bicycle will be returned,
and because there are hundreds of possible values for this categorical label, this is a
multiclass classification problem. The output of such a machine learning model will be a
set of probabilities, one for each station in the network, and the sum of these probabilities
will be 1.0. In a multiclass problem, we typically care about the top three or top five
predictions, not about the actual value of the probability.

Recommender
The special case of multiclass classification for which the task is to recommend the
“next” product based on ratings or past purchases is called a recommender system.
Although a recommendation problem could be solved in the standard way that all
multiclass classification problems are, special machine learning model types have been
built for these problems, and it is preferable to use these more specific model types.
Recommender systems are also the preferable way to address customer targeting
problems—to find customers who will like a product or promotional offer.

Clustering
If we don’t have a label at all, we cannot do supervised learning. We could find natural
groupings within the data; this type of ML problem is called clustering. We might
employ clustering of customer features to perform customer segmentation, for example.
Otherwise, we can use the Cloud Data Labeling Service to annotate our training dataset
with human labelers as a precursor to carrying out supervised learning.

Unstructured data
In the discussion so far, we have assumed that our data consists of structured or semi-
structured data. If some of the input features are unstructured (e.g., images or natural
language text), consider using a preexisting model such as Cloud Vision API or Cloud
Natural Language to process the unstructured data in question, and use the output of
these APIs as numeric or categorical inputs to the machine learning model. For example,
you could use the Natural Language API to identify key entities in customer emails or the
sentiment of customer reviews, and use the entities as categorical variables and the
sentiment as a numeric feature.

You also might be able to turn unstructured data into structured data through string
functions or machine learning APIs. Splitting a text field into individual words and
treating the presence/absence of individual words as features is a common technique,
often called bag of words. In the movie title example, if you had a movie called The Spy
Who Loved Me, you might have two features, has_spy and has_love, as True, and all
other features would be false (you’d probably drop “the,” “Who,” and “Me” as being too
common to be helpful in prediction). Or you might use the number of words in the title
(maybe wordy titles are more likely to be indie films and more likely to appeal to
different audiences).

If the label itself is unstructured (e.g., you want the model to craft the ideal response to
customer questions based on a dataset of historical responses), this is a natural language
generation problem—it’s outside the scope of what BigQuery can handle.

Summary of model types
Table 9-1 summarizes the machine learning problem types. We discuss the BigQuery
model types in the following sections.

Table 9-1. Machine learning model types and how to implement them in BigQuery

Problem
characteristic

Machine
learning
problem type BigQuery model_type

Labels unavailable and
data cannot be labeled

Clustering kmeans

Label is a number Regression linear_reg
dnn_regressor
boosted_tree_regressor

Recommend products to
users

Recommender matrix_factorization

Recommend users for
product

Customer targeting matrix_factorization

Label is 1/0, True/False
(or two categories)

Binary
classification

logistic_reg
dnn_classifier
boosted_tree_classifier

Label is in a fixed set of
strings

Multiclass
classification

logistic_reg
dnn_classifier
boosted_tree_classifier

Input feature is
unstructured

Image
classification
Text classification
Sentiment analysis
Entity extraction

Use output of Cloud Vision API or Cloud Natural Language API
as input to any of the standard BigQuery models above

Label is unstructured Question
answering
Text
summarization
Image captioning

Use Cloud AutoML products

Building a Regression Model
As an example of building a regression model, let’s use the london_bicycles dataset.
Let’s assume that we have two types of bicycles: hardy commuter bikes, and fast but
fragile road bikes. If a bicycle rental is likely to be for a long duration, we need to have
road bikes in stock, but if the rental is likely to be for a short duration, we need to have
commuter bikes in stock. Therefore, to build a system to properly stock bicycles, we need
to predict the duration of bicycle rentals.

Choose the Label
The first step of solving a machine learning problem is to formulate it—to identify
features of our model and the label. Because the goal of our first model is to predict the

duration of a rental based on our historical dataset of cycle rentals, the label is the
duration of the rental.

However, is this the correct objective for the problem? Should we be predicting the
duration of each rental, or should we be predicting the total duration of all rentals at a
station over, for instance, an hour? If the latter is the better formulation, the label should
be the sum of all the rentals in a specific hour. Talking to our business, though, we learn
that a station with 1,000 rentals of 20 minutes each should get commuter bikes, whereas a
station that has 100 rentals of 200 minutes each should get road bikes. So predicting the
total duration will not help the business make the right decision; predicting the duration
of each rental will help them.

Another option is to predict the likelihood of rentals that last less than 30 minutes. In that
case, the label is True/False depending on whether the duration was long (more than 30
minutes) or short (less than 30 minutes). This might help the business even more because
the probability might indicate the relative proportion of commuter bikes to road bikes to
have on hand at each station.

It is quite common to have to make a choice between multiple objectives. In some cases,
we could create a weighted combination of these objectives as the label and train a single
model. In other cases, you might find it helpful to train multiple models, one for each
objective, and use different models in different scenarios. In yet other situations, the best
approach might be to present to the end user the results of all the models and have the
end user choose. It all depends on your business case.

In this use case, let’s decide that we need to build two models: one in which we predict
the duration of a rental, and the other in which we predict the probability that the rental
will be longer than 30 minutes. Then we have the end user make their decision based on
the two predictions.

Exploring the Dataset to Find Features
If we believe that the duration will vary based on the station at which the bicycle is being
rented, the day of the week, and the time of day, those could be our input features. Before
we go ahead and create a model with these three features, though, it’s a good idea to
verify that these factors do influence the label.

Coming up with features for a machine learning model is called feature engineering.
Feature engineering is often the most important part of building accurate machine
learning models, and it can be much more impactful than deciding which algorithm to
use or tuning hyperparameters. Good feature engineering requires deep understanding of
the data and the domain. It is often a process of hypothesis testing; you have an idea for a

feature, you check to see whether it works (has mutual information with the label), and
then you add it to the model. If it doesn’t work, you try the next idea.

Impact of station
To check whether the duration of a rental varies by station, you can visualize the result of
the following query in Data Studio using the start_station_name as the dimension and
duration as the metric:

SELECT

 start_station_name

 , AVG(duration) AS duration

 FROM `bigquery-public-data`.london_bicycles.cycle_hire

 GROUP BY start_station_name

This yields the result shown in Figure 9-2.

Figure 9-2. It appears that there are a few stations that are associated with long-duration rentals

From Figure 9-2, it is clear that a handful of stations are associated with long-duration
rentals (over 3,000 seconds), but that the majority of stations have durations that lie in a
relatively narrow range. Had all the stations in London been associated with durations
within a narrow range, the station at which the rental commenced would not have been a
good feature. But in this problem, as the graph in Figure 9-2 demonstrates, the
start_station_name does matter.

Note that you cannot use end_station_name as a feature because at the time the bicycle
is being rented, you won’t know to which station the bicycle is going to be returned.
Because we are creating a machine learning model to predict events in the future, you
need to be mindful of not using any columns that will not be known at the time the
prediction is made. This time/causality criterion imposes constraints on what features you
can use.

3

Day of week

For the next candidate features, the process is similar. You can check whether dayofweek
(or, similarly, hourofday) matters:

SELECT

 EXTRACT(dayofweek FROM start_date) AS dayofweek

 , AVG(duration) AS duration

FROM `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY dayofweek

Figure 9-3 shows the visualized result.

Figure 9-3. Longer duration rentals tend to happen on weekends and in the morning and early afternoon

From Figure 9-3, it is clear that the duration varies depending both on the day of the
week and on the hour of the day. It appears that durations are longer on weekends (days 1
and 7) than on weekdays. Similarly, durations are longer early in the morning and in the
midafternoon. Hence, both dayofweek and hourofday are good features.

Number of bicycles
Another potential feature is the number of bikes in the station. Perhaps, we hypothesize,
people keep bicycles longer if there are fewer bicycles on rent at the station from which
they rented. You can verify whether this is the case by using the following:

SELECT

 bikes_count

 , AVG(duration) AS duration

FROM `bigquery-public-data`.london_bicycles.cycle_hire

JOIN `bigquery-public-data`.london_bicycles.cycle_stations

ON cycle_hire.start_station_name = cycle_stations.name

GROUP BY bikes_count

Figure 9-4 presents the result via Data Studio.

Figure 9-4. Relationship between average duration of bicycle rides and the number of bicycles at the station the
bicycle was rented from

In Figure 9-4, notice that the relationship is noisy with no visible trend (compared against
hour-of-day, for example). This indicates that the number of bicycles is not a good
feature. You can confirm this quantitatively by computing the Pearson correlation
coefficient:

SELECT

 CORR(bikes_count, duration) AS corr

FROM `bigquery-public-data`.london_bicycles.cycle_hire

JOIN `bigquery-public-data`.london_bicycles.cycle_stations

ON cycle_hire.start_station_name = cycle_stations.name

The result, –0.0039, indicates that the bikes_count and duration are essentially
independent, because the Pearson coefficient will have an absolute value of 1.0 if they

are linearly dependent, and 0.0 if they are linearly independent.

The Pearson correlation coefficient isn’t a perfect test for whether a feature is useful
because it looks only at linear dependence. Sometimes, a feature might have a nonlinear
dependence with the label. Still, the Pearson coefficient is a good starting point. Machine
learning scientists often use more sophisticated statistical tests like mutual information,
which computes the randomness of the feature with respect to the label.

Creating a Training Dataset
Based on the exploration of the london_bicycles dataset and the relationship of various
columns to the label column, we can prepare the training dataset by pulling out the
selected features and the label:

SELECT

 duration

 , start_station_name

 , CAST(EXTRACT(dayofweek FROM start_date) AS STRING) as dayofweek

 , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Feature columns have to be either numeric (INT64, FLOAT64, etc.) or categorical
(STRING). If the feature is numeric but needs to be treated as categorical, we need to cast
it as a STRING—this explains why we cast the dayofweek and hourofday columns,
which are integers (in the ranges 1 to 7 and 0 to 23, respectively), into strings.

TIP
If preparing the data involves computationally expensive transformations or joins, it might be a good idea to save
the prepared training data as a table so as to not repeat that work during experimentation. If the transformations are
trivial but the query itself is long-winded, it might be convenient to avoid repetitiveness by saving it as a view.

In this case, the query is simple and short, and so (for clarity) we’ll simply repeat the
query in later sections.

Training and Evaluating the Model
To train the machine learning model and save it into the dataset ch09eu, we need to call
CREATE MODEL, which works similarly to CREATE TABLE:

CREATE OR REPLACE MODEL ch09eu.bicycle_model

4

5

OPTIONS(input_label_cols=['duration'], model_type='linear_reg')

AS

SELECT

 duration

 , start_station_name

 , CAST(EXTRACT(dayofweek FROM start_date) AS STRING) as dayofweek

 , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that the label column and model type are specified in OPTIONS. Because the label is
numeric, this is a regression problem. This is why we picked linear_reg as the model
type (we discuss other supported model types later in the chapter). As discussed in the
previous section, the SELECT statement above prepares the training dataset and pulls in
the label and feature columns.

Evaluating the model
This query took 2.5 minutes and was trained in just one iteration, something we can
learn by looking at the “Training” tab in the BigQuery section of the GCP Cloud
Console. The mean absolute error (available from the evaluation tab) is 1,026 seconds, or
about 17 minutes. This means that you should expect to be able to predict the duration
of bicycle rentals with an average error of about 17 minutes.

In addition to looking at the evaluation tab, you can obtain the evaluation results by
running the following SQL query:

SELECT * FROM ML.EVALUATE(MODEL ch09eu.bicycle_model)

Note that the query OPTIONS also identifies the model type. Here, we have picked the
simplest regression model that BigQuery supports. We strongly encourage you to pick
the simplest model and to spend a lot of time considering and bringing in alternate data
choices, because the payoff of a new/improved input feature greatly outweighs the payoff
of a better model. Only when you have reached the limits of your data experimentation
should you try more complex models.

Combining days of the week
There are other ways that you could have chosen to represent the features that you have.
For example, recall that when we explored the relationship between dayofweek and the
duration of rentals, we found that durations were longer on weekends than on weekdays.
Therefore, instead of treating the raw value of dayofweek as a feature, you can employ
this insight by fusing several dayofweek values into the weekday category:

6

7

CREATE OR REPLACE MODEL ch09eu.bicycle_model_weekday

OPTIONS(input_label_cols=['duration'], model_type='linear_reg')

AS

SELECT

 duration

 , start_station_name

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

 'weekday', 'weekend') as dayofweek

 , CAST(EXTRACT(hour FROM start_date) AS STRING) AS hourofday

FROM `bigquery-public-data`.london_bicycles.cycle_hire

This model results in a mean absolute error of 967 seconds, which is less than the 1,026
seconds for the original model. So let’s go with the weekend-weekday model instead.

Bucketizing the hour of day

Again, based on the relationship between hourofday and the duration, you can
experiment with bucketizing the variable into four bins—(–inf,5), [5,10), [10,17), and
[17,inf):

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized

OPTIONS(input_label_cols=['duration'], model_type='linear_reg')

AS

SELECT

 duration

 , start_station_name

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday', 'weekend')

 as dayofweek

 , ML.BUCKETIZE(EXTRACT(hour FROM start_date), [5, 10, 17]) AS hourofday

FROM `bigquery-public-data`.london_bicycles.cycle_hire

ML.BUCKETIZE is an example of a preprocessing function supported by BigQuery—we
are passing in the number to bucketize and the bounds of the bins with –infinity and
+infinity being assumed to be on either extremity. This model results in a mean absolute
error of 901 seconds, which is less than the 967 seconds for the weekday-weekend
model. So let’s choose the bucketized model.

Predicting with the Model
We can try out the prediction by passing in a set of rows for which to predict. For
example, you can obtain the predicted duration of a rental in Hyde Park at 5 p.m. on a
Tuesday by using this code:

8

-- INCORRECT! (see next section)

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,

 (SELECT 'Park Lane , Hyde Park' AS start_station_name

 , 'weekday' AS dayofweek, '17' AS hourofday)

)

This returns a predicted duration of 2,225 seconds, but this is wrong. Do you see the
problem?

The need for TRANSFORM

In the previous prediction query, we had to pass in 'weekday' rather than '3' for
dayofweek because the model was trained with dayofweek being either weekday or
weekend. It is incorrect to pass in the raw data value of '17' for hourofday—we should
be passing in the name of the bin that represents 5 p.m. The prediction code will need to
carry out the same transformations on the raw data that the training code did in order to
get these values correct.

Wouldn’t it be nice if BigQuery could remember the sets of transformations you did at
the time of training and automatically apply them at the time of prediction? It can—that’s
precisely what the TRANSFORM clause does!

You can even move the extraction of hour-of-day and day-of-week into the TRANSFORM
clause so that the client code needs to give us only the timestamp at which the bicycle is
being rented:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

'weekday', 'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

)

OPTIONS(input_label_cols=['duration'], model_type='linear_reg')

AS

SELECT

 duration

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Use the TRANSFORM clause and formulate the machine learning problem in such a way
that anyone requiring prediction needs to provide just the raw data.9

If a TRANSFORM clause is specified, the model is trained on the output of the TRANSFORM
clause. So here, the TRANSFORM clause passes on all of the features and labels from the
original SELECT query, except for the start_date, and then adds a couple of features
(dayofweek and hourofday) extracted from the start_date.

The resulting model requires just the start_station_name and start_date to predict
the duration. The transformations are saved and carried out on the provided raw data to
create input features for the model.

TIP
The advantage of placing all preprocessing functions inside the TRANSFORM clause is that clients of the model do not
need to know what kind of preprocessing has been carried out—BigQuery takes care of automatically applying the
necessary transformations to the raw data during prediction. Best practice, therefore, is to have the SELECT statement
in a training query return just the raw data, and have all transformations done in the TRANSFORM clause.

With the TRANSFORM clause in place, the prediction query becomes:

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,

 (SELECT 'Park Lane , Hyde Park' AS start_station_name

 , CURRENT_TIMESTAMP() AS start_date)

)

The result (yours will vary because presumably the timeofday and dayofweek are
different) is something like the following:

Row predicted_duration start_station_name start_date

1 3498.804224263982 Park Lane, Hyde Park 2019-05-19 04:24:03.376064 UTC

Generating batch predictions
You could also create a table of predictions for every hour at every station, starting at 3
a.m. the next day, using array generation:

DECLARE tomorrow_3am TIMESTAMP;

SET tomorrow_3am = TIMESTAMP_ADD(

 TIMESTAMP(DATE_ADD(CURRENT_DATE(), INTERVAL 1 DAY)),

 INTERVAL 3 HOUR);

WITH generated AS (

 SELECT

 name AS start_station_name

 , GENERATE_TIMESTAMP_ARRAY(

 tomorrow_3am,

 TIMESTAMP_ADD(tomorrow_3am, INTERVAL 24 HOUR),

 INTERVAL 1 HOUR) AS dates

 FROM

 `bigquery-public-data`.london_bicycles.cycle_stations

),

features AS (

 SELECT

 start_station_name

 , start_date

 FROM

 generated

 , UNNEST(dates) AS start_date

)

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_bucketized,

 (SELECT * FROM features)

)

This returns nearly 20,000 predictions, some of which include the following:

6 2707.621807505363 Palace Gate, Kensington Gardens 2019-05-19 15:00:00 UTC

7 2707.621807505363 Palace Gate, Kensington Gardens 2019-05-19 16:00:00 UTC

8 2571.887817969073 Palace Gate, Kensington Gardens 2019-05-19 17:00:00 UTC

9 2571.887817969073 Palace Gate, Kensington Gardens 2019-05-19 18:00:00 UTC

The entire process of machine learning, from creating the training dataset to training and
prediction, has thus been carried out without the need to move the data out of BigQuery.

Examining Model Weights
A linear regression model predicts the output as a weighted sum of its inputs. You can
examine (or export) these weights by using this command:

 SELECT * FROM ML.WEIGHTS(MODEL ch09eu.bicycle_model_bucketized)

Numeric features receive a single weight, whereas categorical features receive a weight
for each possible value. For example, the dayofweek feature has the following weights:

Row processed_input weight category_weights.category category_weights.weight

2 dayofweek null weekday 1709.4363890323655

 weekend 2084.400311228229

This means that if the day is a weekday, the contribution of this feature to the overall
predicted duration is 1,709 seconds (the weights that provide the optimal performance are
not unique, so you might get a different value). The weights of different input features are
not very meaningful—pretty much the only reason you might need to examine the
weights in this manner is if you want to carry out predictions outside of BigQuery.

TIP
Do not use the magnitude or sign of the weights as a handy way to explain what the model is doing. Unless the input
features are linearly independent (in real-world datasets, this is not very likely), the magnitudes and signs of the
weights are not meaningful. For model explainability, consider using the What-If Tool or a model explainability
package like LIME.

Because a linear model is so simple (it’s a weighted average of the inputs), it is possible
to extract the model weights and write out the math to compute the prediction in, for
example, a Python application:

def compute_regression(rowdict,

 numeric_weights, scaling_df, categorical_weights):

 input_values = rowdict

 # numeric inputs

 pred = 0

 for column_name in numeric_weights['input'].unique():

 wt = numeric_weights[numeric_weights['input'] == column_name

]['input_weight'].values[0]

 if column_name != '__INTERCEPT__':

 meanv = (scaling_df[scaling_df['input'] ==

 column_name]['mean'].values[0])

 stddev = (scaling_df[scaling_df['input'] ==

 column_name]['stddev'].values[0])

 scaled_value = (input_values[column_name] - meanv)/stddev

 else:

 scaled_value = 1.0

 contrib = wt * scaled_value

 pred = pred + contrib

 # categorical inputs

 for column_name in categorical_weights['input'].unique():

 category_weights = categorical_weights[categorical_weights['input'] ==

column_name]

 wt = category_weights[category_weights['category_name'] ==

input_values[column_name]]['category_weight'].values[0]

 pred = pred + wt

 return pred

In this code, the numeric_weights are obtained from the query:

https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.html
https://www.oreilly.com/learning/introduction-to-local-interpretable-model-agnostic-explanations-lime
https://towardsdatascience.com/how-to-do-online-prediction-with-bigquery-ml-db2248c0ae5

SELECT

 processed_input AS input,

 model.weight AS input_weight

FROM

 ml.WEIGHTS(MODEL dataset.model) AS model

The scaling DataFrame, scaling_df, is obtained from the query:

SELECT

 input, min, max, mean, stddev

FROM

 ml.FEATURE_INFO(MODEL dataset.model) AS model

The categorical_weights are obtained from the query:

SELECT

 processed_input AS input,

 model.weight AS input_weight,

 category.category AS category_name,

 category.weight AS category_weight

FROM

 ml.WEIGHTS(MODEL dataset.model) AS model,

 UNNEST(category_weights) AS category

If you are doing logistic_reg, the output prediction is the result of a sigmoid function
applied to the weighted average. Therefore, the output prediction can be obtained as
follows:

def compute_classifier(rowdict,

 numeric_weights, scaling_df, categorical_weights):

 pred=compute_regression(rowdict, numeric_weights, scaling_df,

categorical_weights)

 return (1.0/(1 + np.exp(-pred)) if (-500 < pred) else 0)

More-Complex Regression Models
A linear regression model is the simplest form of regression model—each input feature is
assigned a weight, and the output is the sum of the weighted inputs plus a constant called
the intercept. BigQuery supports dnn_regressor and xgboost models as well.

Deep Neural Networks
A Deep Neural Network (DNN) can be thought of as an extension of linear models in
which each node in the first layer consists of a weighted sum of the input features

transformed through a (typically nonlinear) function. The second layer consists of nodes,
each of which is a weighted sum of the outputs of the first layer transformed through a
nonlinear function, and so on, as demonstrated in Figure 9-5.

Figure 9-5. A Deep Neural Network consists of layers of “nodes.” This example shows two layers between the inputs
and outputs and each layer with three nodes, but we can have an arbitrary number of layers and an arbitrary number

of nodes in each layer.

To train a DNN model with 64 nodes in the first layer and 32 nodes in the second layer,
you would do the following:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_dnn

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',

'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

)

OPTIONS(input_label_cols=['duration'],

 model_type='dnn_regressor',

 hidden_units=[64, 32])

AS

SELECT

 duration

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

This model took about 20 minutes to train. It ended with a mean absolute error of 1,016
seconds. This is, of course, worse than the 901 seconds that we achieved with the linear
model. Sadly, this is par for the course—DNNs are notoriously finicky to train.

TIP
We strongly recommend that you begin with linear models, and only after you have finalized the set of features and
transformations should you move on to experiment with more complex models. This is because with the
dnn_regressor you will probably need to experiment with different numbers of layers and nodes (i.e., with
hidden_units) and regularization settings (i.e., with l2_reg) to obtain good performance. Considering how finicky
deep learning networks can be to train, varying feature representations at the same time is a surefire recipe for
confusion.

One way to handle this finickiness is to perform hyperparameter tuning to search for
optimal network parameters—this is supported by a full-fledged machine learning
framework like Cloud AI Platform (CAIP). You might be better off doing this training
there, or using AutoML (we explore both of these options later in this chapter), but for
now let’s try using a smaller network:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_dnn

 TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',

'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

)

OPTIONS(input_label_cols=['duration'],

 model_type='dnn_regressor',

 hidden_units=[10, 5])

AS

SELECT

 duration

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

This yields better performance (981 seconds) but is still not as good as the linear model.
More hyperparameter tuning is needed to get a DNN model that does better than the
linear model we started out with. Also, in general a DNN provides superior performance
only if there are many continuous features.

Gradient-boosted trees

10

Decision trees are a popular technique in machine learning because of their ready
interpretability (they are essentially just combinations of if-then rules). However,
decision trees tend to have poor accuracy because the range of functions they can
approximate is limited and can be prone to overfitting. One way of improving the
performance of decision trees (at the expense of explainability) is to train an ensemble
of decision trees, each of which is a poor predictor but when averaged together yield
good performance. Boosting is a technique that is used to select trees in the ensemble,
and XGBoost is a scalable, distributed way to build boosted decision trees on
extremely large and sparse datasets. XGBoost used to be considered the state-of-the-art
machine learning technique until the advent of deep learning networks circa 2015. It
continues to be popular on structured data problems.

You can train an XGBoost machine learning model in BigQuery by selecting the
boosted_tree_regressor model type:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_xgboost

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

 'weekday', 'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

)

OPTIONS(input_label_cols=['duration'],

 model_type='boosted_tree_regressor',

 max_tree_depth=4)

AS

SELECT

 duration

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

The resulting model on this problem has poorer performance (1,363 seconds) than the
linear model. The importance of the input features can be obtained by using this
command:

SELECT * FROM ML.FEATURE_INFO(MODEL ch09eu.bicycle_model_xgboost)

Human insights and auxiliary data
Besides trying different model architectures and tuning the parameters of these models,
we might consider adding new input features that incorporate human insights or provide
auxiliary data to the machine learning model.

11

12

For example, in the previous model, we used ML.BUCKETIZE to split a continuous
variable (the hour extracted from the timestamp) into four bins. Another extremely useful
function is ML.FEATURE_CROSS, which can combine separate categorical features into an
AND condition (this sort of relationship between features can be difficult for a machine
learning model to learn). In our problem, intuition dictates that the combination of
weekday and morning is a good predictor of bicycle rental duration, much more so than
either weekday by itself or morning by itself. If so, it might be worthwhile to create a
feature cross of the two features instead of treating the day and time separately:

ML.FEATURE_CROSS(STRUCT(

 IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

 'weekday', 'weekend') as dayofweek,

 ML.BUCKETIZE(EXTRACT(HOUR FROM start_date),

 [5, 10, 17]) AS hr

)) AS dayhr

In our models so far, we used start_station_name as an input to the model. This treats
the stations as independent. In Chapter 8, we discussed the benefits of ST_GeoHash as a
way to capture spatial proximity. Let’s, therefore, bring in the auxiliary information about
the stations’ locations and use that as an additional input to the model.

Combining these two ideas, we now have the model training query:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_fc_geo

 TRANSFORM(duration

 , ML.FEATURE_CROSS(STRUCT(

 IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

 'weekday', 'weekend') as dayofweek,

 ML.BUCKETIZE(EXTRACT(HOUR FROM start_date),

 [5, 10, 17]) AS hr

)) AS dayhr

 , ST_GeoHash(ST_GeogPoint(latitude, longitude), 4) AS start_station_loc4

 , ST_GeoHash(ST_GeogPoint(latitude, longitude), 6) AS start_station_loc6

 , ST_GeoHash(ST_GeogPoint(latitude, longitude), 8) AS start_station_loc8

)

OPTIONS(input_label_cols=['duration'], model_type='linear_reg')

AS

SELECT

 duration

 , latitude

 , longitude

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

JOIN `bigquery-public-data`.london_bicycles.cycle_stations

ON cycle_hire.start_station_id = cycle_stations.id

This model results in a mean absolute error of 898 seconds, an improvement over the 901
seconds we saw earlier. However, the improvement is relatively minor. Because of these
diminishing returns, it might be time to move on.

Building a Classification Model
In the previous section, we built machine learning models to predict the duration of a
bicycle rental. However, over the span of one hour, many bicycles will be rented, and
they will be rented for different durations. For example, take the distribution of bicycles
that were rented at Royal Avenue 1, Chelsea, on weekdays in the hour starting at 14:00
(2:00 p.m.):

SELECT

 APPROX_QUANTILES(duration, 10) AS q

FROM `bigquery-public-data`.london_bicycles.cycle_hire

WHERE

 EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6

 AND EXTRACT(hour FROM start_date) = 14

 AND start_station_name = 'Royal Avenue 1, Chelsea'

Here’s the result:

Row q

1 0

 240

 420

 540

 660

 840

 1020

 1260

 1500

 2040

 386460

80% of weekday rentals at this station lasted less than 1,500 seconds. Had this been the
only prediction for you to go by, you would have stocked only commuter bikes at this
station on those days. However, had you known that somewhere between 10% and 20%
of bicycle rentals last longer than 1,800 seconds, you might have decided to stock this

station so that 15% of the bicycles are road bikes. A classification model will allow us to
predict the probability that a rental will last longer than 1,800 seconds.

Training
For simplicity, let’s take the set of features we used in the regression model and train a
model to predict the probability that the rental will be for longer than 30 minutes:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_longrental

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

 'weekday', 'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

)

OPTIONS(input_label_cols=['biketype'], model_type='logistic_reg')

AS

SELECT

 IF(duration > 1800, 'roadbike', 'commuter') AS biketype

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that the model_type now is logistic regression (logistic_reg)—this is the
simplest model type for classification problems. For classification with DNNs or
boosted-regression trees, use dnn_classifier or boosted_tree_classifier,
respectively.

We created the label by thresholding rentals at 1,800 seconds and gave the two categories
the names roadbike and commuter (this is similar to how we created a categorical
variable weekend/weekday from the numeric variable dayofweek). We could also have
used a Boolean value (True/False), but using the actual category name is clearer.

At the end of training, you can see that the error has decreased over seven iterations
through the dataset and has now converged, as depicted in Figure 9-6 (because of random
seeds, your results might be somewhat different).

There are actually two loss curves in Figure 9-6: one on the training data and the other on
the evaluation data (BigQuery automatically split the data for us). Here, the curves are
quite similar. If the evaluation curve were much higher than the loss curve, you’d have
been worried about overfitting. Switching to the table view, you can verify that the two
losses were, indeed, quite similar throughout the training:

Iteration Training Data Loss Evaluation Data Loss Learn Rate Duration (seconds)

6 0.3072 0.3024 3.2000 41.59

5 0.3078 0.3029 6.4000 39.66

4 0.3119 0.3069 3.2000 40.54

3 0.3240 0.3195 1.6000 42.15

2 0.3576 0.3543 0.8000 37.96

1 0.4502 0.4483 0.4000 38.01

0 0.5812 0.5805 0.2000 22.10

Figure 9-6. The loss curve during model training has converged

Evaluation

The loss measure used in classification is cross-entropy, so that’s what the training curves
depicted. You can look at more familiar evaluation metrics such as accuracy in the
evaluation tab of the BigQuery web user interface (UI), as shown in Figure 9-7.

Figure 9-7. The evaluation tab in the BigQuery web UI for a classification model

Prediction
The prediction is similar to the regression case, except that you now get the probability of
each class:

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_longrental,

 (SELECT 'Park Lane , Hyde Park' AS start_station_name

 , TIMESTAMP('2019-05-09 16:16:00 UTC') AS start_date)

)

This yields the following:

Row predicted_biketype
predicted_biketype
_probs.label

predicted_biketype
_probs.prob start_station_name start_date

1 commuter roadbike 0.4419... Park Lane, Hyde Park 2019-05-10
16:16:00
UTC

 commuter 0.5580...

Thus, the probability that a rental at 4 p.m. on a weekday from Hyde Park will require a
road bike is 0.44, or 44%. Ideally, then, you should have 44% of your bicycles at that
station at that time be road bikes.

Choosing the Threshold
In our use case, the actual probability is what is of interest. Often, though, in
classification problems, the desired output is the predicted class, not just the probability.
Thus, the predicted output (see previous section) includes not only the probability but
also the class with the highest probability. In a binary classification problem, this is the
same as thresholding the probability at 0.5 and choosing the “positive” class if the
probability is more than 0.5.

Recall is the percentage of actual true values (true positives / total positives) at a
particular threshold point. If the recall is high, you’ll get almost all of the things you’re
looking for. However, setting a threshold point with a high recall can be dangerous,
because you might get a lot of false positives as well. If the threshold is 0, everything is
chosen, so you get a perfect recall.

The other important metric is precision, which is the percentage of true positives over the
whole dataset. In other words, it is a way of saying, “Given I’ve predicted this to be true,
what is the probability that I’m right?” If you set the threshold to 0, you get the
proportion of true data in the dataset. (In other words, you predict everything to be true,
so if 10% of the values are true, your precision will be 10%. This isn’t a very good
classifier.)

The aggregate metrics in the evaluation tab (e.g., accuracy=0.89) are calculated based
on the 0.5 threshold.

If you wanted to ensure that you have a road bike in stock 50% of the times that one is
required, you would want to have a recall of 0.5 because you’d need to capture half of the
long rides. You can use the slider in the evaluation tab to change the threshold to 0.144,
as shown in Figure 9-8, so that you obtain the desired recall metric. Note that this comes
at the expense of precision; at this threshold, the model will give you a precision of 0.26
—only 26% of the trips that we predict will require road bikes will actually be longer
than 30 minutes.13

Figure 9-8. Change the probability threshold to obtain a desired recall or precision

For binary classification models, the desired threshold can be passed to ML.PREDICT:

SELECT * FROM ML.PREDICT(MODEL ch09eu.bicycle_model_longrental,

 (SELECT 'Park Lane , Hyde Park' AS start_station_name

 , TIMESTAMP('2019-05-09 16:16:00 UTC') AS start_date),

 STRUCT(0.144 AS threshold)

)

Here is the result:

Row predicted_biketype
predicted_biketype_
probs.label

predicted_biketype_
probs.prob start_station_name start_date

1 roadbike roadbike 0.4419... Park Lane, Hyde Park 2019-05-09
16:16:00
UTC

Note that the predicted_biketype now is roadbike, even though the probability
corresponding to roadbike is less than the default threshold of 0.5.

Customizing BigQuery ML
By default, BigQuery ML makes reasonable choices for learning rate, scaling input
features, splitting the data, and so on. The OPTIONS setting when creating a model
provides a number of fine-grained ways to control the model creation. In this section, we
discuss a few of them.

14

15 16

https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-create#model_option_list

Controlling Data Split
By default on moderately sized datasets, BigQuery randomly selects 20% of the data and
keeps it aside for evaluation. The training is carried out on only 80% of the data we
provide. For tiny datasets (those under 500 rows), all of the data is used for training, and
for large datasets (those over 50,000 rows), only 10,000 rows are used for evaluation. We
can control what data is used for evaluation by means of three parameters:
data_split_method, data_split_eval_fraction, and data_split_col, as listed in
Table 9-2.

Table 9-2. Controlling how data is split between training and evaluation

Scenario

data_spl

it_metho

d

data_split_e

val_fraction data_split_col

Default auto_spl

it

0.2 n/a

Train on all the data no_split n/a n/a

Keep aside a randomly selected
10% of data for evaluation

random 0.1 n/a

Specifically identify which
rows are for evaluation

custom n/a colname
Rows with Boolean value of True/NULL for
this column are kept aside for evaluation.

Keep last 10% of rows for
evaluation

seq 0.1
(default is 0.2)

colname
Rows are ordered ASC on this column.

A better measure of how well the model will perform after it’s deployed is to train it on
the first 80% (ordered by time) of bicycle rentals in the dataset and then test it on the
remaining 20%. That is, rather than splitting randomly, you’d train on the older trips
and test on the newer ones:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized_seq

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',

'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

 , start_date—used to split the data

)

OPTIONS(input_label_cols=['duration'], model_type='linear_reg',

 data_split_method='seq',

 data_split_eval_fraction=0.2,

 data_split_col='start_date')

AS

SELECT

17

 duration

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that the SELECT and TRANSFORM clauses both emit the column used to split the data,
and that OPTIONS includes the three parameters that control how the data is split.

The mean absolute error now is 860 seconds, but we cannot compare this number with
the results obtained with the random split—evaluation metrics depend quite heavily on
what data is used for evaluation, and because we are using a different evaluation dataset
now, we cannot compare these results to the ones obtained earlier. Also, our earlier
results were contaminated by leakage—for example, of Christmas days.

Balancing Classes
In our classification problem, less than 12% of rentals last longer than 1,800 seconds.
This is an example of an unbalanced dataset. It can be helpful to weight the rarer class
higher, and we can do that either by passing in an explicit array of class weights or by
asking BigQuery to set the weights of classes based on inverse frequency.

Here’s an example of using this autobalancing method:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_longrental_balanced

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6, 'weekday',

'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

 , start_date

)

OPTIONS(input_label_cols=['biketype'], model_type='logistic_reg',

 data_split_method='seq',

 data_split_eval_fraction=0.2,

 data_split_col='start_date',

 auto_class_weights=True)

AS

SELECT

 IF(duration > 1800, 'roadbike', 'commuter') AS biketype

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

Note that after you balance the weights, the probability that comes from the model is no
longer an estimate of the actual predicted occurrence frequency. This is because the
probability estimate that comes out of logistic regression is based on the frequency of

occurrence in the data seen by the model, and we have artificially boosted the occurrence
of rare events.

Regularization
Recall that in our data exploration, we discovered that except for a handful of stations
which had unusually long durations, most of the stations had nearly identical durations,
and many of these stations had very few rentals. Categorical features with such long-
tailed distributions can cause overfitting. Overfitting is when the model learns noise
(arbitrary variation) in the data, not the signal. In other words, the model can become so
elaborate that it represents the dataset itself, not the underlying qualities of the dataset.

Regularization avoids overfitting because it penalizes complexity, in part by assigning
penalties to large weight values. Large weight values are often a sign of overfitting
because they can turn on suddenly when exactly one datapoint is encountered.

BigQuery ML supports two types of regularization: L1 and L2. L1 regularization tries to
push individual weights to zero and is better for interpretability, whereas L2 tries to keep
all the weights relatively similar and does better at controlling overfitting. You can
control the amount of L1 or L2 regularization when creating the model:

CREATE OR REPLACE MODEL ch09eu.bicycle_model_bucketized_seq_l2

TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

 'weekday', 'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, 10, 17]) AS hourofday

 , start_date—used to split the data

)

OPTIONS(input_label_cols=['duration'], model_type='linear_reg',

 data_split_method='seq',

 data_split_eval_fraction=0.2,

 data_split_col='start_date',

 l2_reg=0.1)

AS

SELECT

 duration

 , start_station_name

 , start_date

FROM `bigquery-public-data`.london_bicycles.cycle_hire

In this case, though, the resulting mean absolute error is 857 seconds, nearly identical to
what was obtained without L2 regularization; this is most likely because we have a large-
enough dataset and a model with few enough parameters to tune that overfitting was not
happening. L2 regularization is generally considered a best practice, particularly if you

18

don’t have a large amount of data or if you are using a more sophisticated model (such as
a DNN) with many more parameters.

k-Means Clustering
The machine learning algorithms that we have considered so far have been supervised
learning methods—we needed to provide BigQuery a label column. BigQuery also
supports unsupervised learning in that you can apply the k-means algorithm to group
your data into clusters based on similarity. The algorithm is called k-means because it
identifies k clusters, each of which is described in terms of the mean of the members of
the cluster. Unlike supervised machine learning, which helps you predict the value of the
label column when given values for the futures, unsupervised learning is descriptive. Use
model_type=kmeans in BigQuery to understand your data in terms of centroids of the k
clusters that have been determined from the data, and to make decisions about the
members of each cluster based on the attributes of its centroid.

What’s Being Clustered?
The first step in using k-means clustering is to determine what is being clustered and why
you are doing it. Because tables in BigQuery tend to be flattened and describe multiple
aspects, it helps to be clear about what each member of the cluster represents.

Suppose that you have data in which each row represents a retail customer transaction.
There are several ways in which you could do the clustering on this table, and which one
you choose depends on what you want to do with the clusters:

You could find natural groups among your customers. This is called customer
segmentation. Data we use to perform the customer segmentation would be
attributes that describe the customer making the transaction—these might
include things like which store they visited, what items they bought, how much
they paid, and so on. The reason to cluster these customers is that you want to
understand what these groups of customers are like (these are called personas)
so that you can design items that appeal to members of one of those groups by
understanding the “centroid customer” of each cluster.

You could find natural groups among the items purchased. These are called
product groups. Data we use to perform the product groups would be attributes
that describe the item(s) being purchased in the transaction—these might include
things like who purchased them, when they were purchased, which store they
were purchased at, and so forth. The reason to cluster these items is that you

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering

want to understand the characteristics of a product group so that you can learn
how to reduce cannibalization or improve cross-selling.

In both of these cases, we are using clustering as a heuristic to help make decisions — it’s
too difficult to design individualized products or understand product interactions, so you
design for groups of customers or groups of items.

Note that for the specific use case of product recommendations (recommending products
to customers or targeting customers for a product), it is better to train a
matrix_factorization model as described later in this chapter. But for other decisions
for which there is no readily available predictive analytics approach, k-means clustering
might give you a way to make a data-driven decision.

Clustering Bicycle Stations
Suppose that you often make decisions about bicycle stations—which stations to stock
with new types of bicycles, which ones to repair, which ones to expand, and so on, and
you want to make these decisions in a data-driven manner. This means that you are going
to cluster bicycle stations, and you could group stations that are similar based on
attributes such as the duration of rentals from the station, the number of trips per day
from the station, the number of bike racks at the station, and the distance of the station
from the city center. Because the first two attributes vary based on whether the day in
question is a weekday or a weekend, let’s compute two values for those.

Because the query is quite long and cumbersome, let’s also save it into a table:

CREATE OR REPLACE TABLE ch09eu.stationstats AS

WITH hires AS (

 SELECT

 h.start_station_name as station_name,

 IF(EXTRACT(DAYOFWEEK FROM h.start_date) BETWEEN 2 and 6,

 "weekday", "weekend") as isweekday,

 h.duration,

 s.bikes_count,

 ST_DISTANCE(ST_GEOGPOINT(s.longitude, s.latitude),

 ST_GEOGPOINT(-0.1, 51.5))/1000 as distance_from_city_center

 FROM `bigquery-public-data.london_bicycles.cycle_hire` as h

 JOIN `bigquery-public-data.london_bicycles.cycle_stations` as s

 ON h.start_station_id = s.id

 WHERE EXTRACT(YEAR from start_date) = 2015

),

stationstats AS (

 SELECT

 station_name,

 AVG(IF(isweekday = 'weekday', duration, NULL)) AS duration_weekdays,

 AVG(IF(isweekday = 'weekend', duration, NULL)) AS duration_weekends,

 COUNT(IF(isweekday = 'weekday', duration, NULL)) AS numtrips_weekdays,

 COUNT(IF(isweekday = 'weekend', duration, NULL)) AS numtrips_weekends,

 MAX(bikes_count) as bikes_count,

 MAX(distance_from_city_center) as distance_from_city_center

 FROM hires

 GROUP BY station_name

)

SELECT *

from stationstats

The resulting table has 802 rows, one for each station operating in 2015, and looks
something like this:

Row station_name
duration_
weekdays

duration_
weekends

numtrips_
weekdays

numtrips_
weekends bikes_count

distance_from_
city_center

1 Borough Road,
Elephant &
Castle

1109.932... 2125.095... 5749 1774 29 0.126...

2 Webber Street,
Southwark

795.439... 938.357... 6517 1619 34 0.164...

3 Great Suffolk
Street, The
Borough

802.530... 1018.310... 8418 2024 18 0.193...

Carrying Out Clustering
As with supervised learning, carrying out clustering simply involves a CREATE MODEL
statement on the table created in the previous section, but taking care to remove the
station_name field because it uniquely identifies each station:

CREATE OR REPLACE MODEL ch09eu.london_station_clusters

OPTIONS(model_type='kmeans',

 num_clusters=4,

 standardize_features = true) AS

SELECT * EXCEPT(station_name)

from ch09eu.stationstats

The model_type is kmeans. If the num_clusters option is omitted, BigQuery will
choose a reasonable value based on the number of rows in the table. The other option,
standardize_features, is necessary for this dataset because the different columns all
have very different ranges. The distance from the city center is on the order of a few
kilometers, whereas the number of trips and duration are on the order of thousands.

Therefore, it is a good idea to have BigQuery scale these values by making them zero-
mean and unit-variance.

Understanding the Clusters
To find which cluster a particular station belongs to, use ML.PREDICT. Here’s a query to
find the cluster of every station that has “Kennington” in its name:

SELECT * except(nearest_centroids_distance)

FROM ML.PREDICT(MODEL ch09eu.london_station_clusters,

(SELECT * FROM ch09eu.stationstats

 WHERE REGEXP_CONTAINS(station_name, 'Kennington')))

This yields the following:

Row
CENTROID_
ID

station_
name

duration_
weekdays

duration_
weekends

numtrips_
weekdays

numtrips_
weekends

bikes_
count

distance_
from_city_
center

1 2 Kennington
Road,
Vauxhall

1209.433... 1720.598... 8135 2975 26 0.891...

2 2 Kennington
Lane Rail
Bridge,
Vauxhall

979.391... 1812.217... 20263 5014 28 2.175...

3 2 Cotton
Garden
Estate,
Kennington

1572.919... 997.949... 5313 1600 14 1.117...

4 3 Kennington
Station,
Kennington

1689.587... 3579.285... 4875 1848 15 1.298...

A few of the Kennington stations are in centroid #2, whereas others are in centroid #3.
To understand these groups, you can examine the centroid attributes:

SELECT *

FROM ML.CENTROIDS(MODEL ch09eu.london_station_clusters)

ORDER BY centroid_id

This returns a table that contains one row for each attribute of the cluster:

19

Row centroid_id feature numerical_value
categorical_value
.category

categorical_value
.value

1 1 distance_from_city_center 2.978...

2 1 bikes_count 10.013...

3 1 numtrips_weekends 8273.849...

You can pivot the table as follows:

CREATE TEMP FUNCTION cvalue(x ANY TYPE, col STRING) AS (

 (SELECT value from unnest(x) WHERE name = col)

);

WITH T AS (

 SELECT

 centroid_id,

 ARRAY_AGG(STRUCT(feature AS name,

 ROUND(numerical_value,1) AS value)

 ORDER BY centroid_id) AS cluster

 FROM ML.CENTROIDS(MODEL ch09eu.london_station_clusters)

 GROUP BY centroid_id

)

SELECT

 CONCAT('Cluster#', CAST(centroid_id AS STRING)) AS centroid,

 cvalue(cluster, 'duration_weekdays') AS duration_weekdays,

 cvalue(cluster, 'duration_weekends') AS duration_weekends,

 cvalue(cluster, 'numtrips_weekdays') AS numtrips_weekdays,

 cvalue(cluster, 'numtrips_weekends') AS numtrips_weekends,

 cvalue(cluster, 'bikes_count') AS bikes_count,

 cvalue(cluster, 'distance_from_city_center') AS distance_from_city_center

FROM T

ORDER BY centroid_id ASC

The pivot gives you the following result:

Row centroid
duration_
weekdays

duration_
weekends

numtrips_
weekdays

numtrips_
weekends bikes_count

distance_from_
city_center

1 Cluster#1 1362.6 1968.4 25427.3 8273.8 10.0 3.0

2 Cluster#2 1193.5 1738.1 8457.4 2584.3 21.0 3.0

3 Cluster#3 1675.0 2460.5 4702.4 2136.8 14.9 6.7

4 Cluster#4 1124.0 1543.1 8519.0 2342.1 5.7 4.1

To visualize this table, in the BigQuery web UI, click “Explore in Data Studio” and then
select “Table with bars.” Make the centroid column the “dimension” and the remaining
columns the metrics. Figure 9-9 shows the result.

Figure 9-9. Cluster attributes

From Figure 9-9, you can see that Cluster #1 consists of extremely busy stations (see the
number of trips) that are close to the city center, Cluster #2 consists of less busy stations
close to the city center, Cluster #3 consists of stations that are far away from the city
center and seem to be used more on weekends on long trips (these are the only stations
with more weekend trips than weekday trips), and Cluster #4 consists of tiny stations (see
bikes_count) in the outer core of the city, probably in residential areas. Based on these
characteristics and some knowledge of London, we can come up with descriptive names
for these clusters. Cluster 1 would probably be “Tourist areas,” Cluster 2 would be
“Business district,” Cluster 3 would be “Day trips,” and Cluster 4 would be “Commuter
stations.”

Data-Driven Decisions
You can now use these clusters to make different decisions. For example, suppose that
you just received funding and can expand the bike racks. In which stations should you
install extra capacity? If you didn’t have the clustering data, you might be tempted to go
with stations with lots of trips and not enough bikes — stations in Cluster #1. But you
have done the clustering and discovered that this group of stations mostly serves tourists.
They don’t vote, so let’s put the extra capacity in Cluster #4 (commuter stations).

To take another example, suppose that you need to experiment with a new type of lock.
In which cluster of stations should you conduct this experiment? The business district
stations seem logical, and sure enough, those are the stations with lots of bikes and that
are busy enough to support an A/B test. If, on the other hand, you want to stock some
stations with road (racing) bikes, which ones should you select? Cluster #3, comprising
stations that serve people who are going on day trips out of the city, seems like a good
choice.

Obviously, you could have made these decisions individually by doing custom data
analysis each time. But clustering the stations, coming up with descriptive names, and
using the names to make decisions is much simpler and more explainable.

Recommender Systems
Collaborative filtering provides a way to generate product recommendations for users, or
user targeting for products. The starting point is a table with three columns: a user ID, an

item ID, and the rating that the user gave the product. This table can be sparse—users
don’t need to rate all products. Based on just the ratings, the technique finds similar users
and similar products and determines the rating that a user would give an unseen product.
Then we can recommend the products with the highest predicted ratings to users, or
target products at users with the highest predicted ratings.

The MovieLens Dataset
To illustrate recommender systems in action, let’s use the MovieLens dataset. This is a
dataset of movie reviews released by GroupLens, a research lab in the Department of
Computer Science and Engineering at the University of Minnesota, through funding from
the US National Science Foundation.

In Cloud Shell, download the data and load it as a BigQuery table using the following:

curl -O 'http://files.grouplens.org/datasets/movielens/ml-20m.zip'

unzip ml-20m.zip

bq --location=EU load --source_format=CSV \

 --autodetect ch09eu.movielens_ratings ml-20m/ratings.csv

bq --location=EU load --source_format=CSV \

 --autodetect ch09eu.movielens_movies_raw ml-20m/movies.csv

The resulting ratings table has the following columns:

Row userId movieId rating timestamp

1 70141 6219 2.0 1070338674

2 70159 2657 2.0 1427155558

Here’s a quick exploratory query:

SELECT

 COUNT(DISTINCT userId) numUsers,

 COUNT(DISTINCT movieId) numMovies,

 COUNT(*) totalRatings

FROM ch09eu.movielens_ratings

This reveals that the dataset consists of more than 138,000 users, nearly 27,000 movies,
and a little more than 20 million ratings, confirming that the data has been loaded
successfully.

Let’s examine the first few movies using the following query:

SELECT *

https://grouplens.org/about/what-is-grouplens/

FROM ch09eu.movielens_movies_raw

WHERE movieId < 5

We can see that the genres column is a formatted string:

Row movieId title genres

1 3 Grumpier Old Men
(1995)

Comedy|Romance

2 4 Waiting to Exhale
(1995)

Comedy|Drama|Romance

3 2 Jumanji (1995) Adventure|Children|Fantasy

We can parse the genres into an array and rewrite the table as follows:

CREATE OR REPLACE TABLE ch09eu.movielens_movies AS

SELECT

* REPLACE(SPLIT(genres, "|") AS genres)

FROM

ch09eu.movielens_movies_raw

Now the table looks as follows:

Row movieId title genres

1 4 Waiting to Exhale (1995) Comedy

 Drama

 Romance

2 3 Grumpier Old Men (1995) Comedy

 Romance

3 2 Jumanji (1995) Adventure

 Children

 Fantasy

With the MovieLens data now loaded, we are ready to do collaborative filtering.

Matrix Factorization
Matrix factorization is a collaborative filtering technique that relies on factorizing the
ratings matrix into two vectors called the user factors and the item factors. The user
factors vector is a low-dimensional representation of a user_col, and the item factors
vector similarly represents an item_col.

You can create the recommender model using the following:

-- not the final model; see movie_recommender_16

CREATE OR REPLACE MODEL ch09eu.movie_recommender

options(model_type='matrix_factorization',

 user_col='userId', item_col='movieId', rating_col='rating')

AS

SELECT

userId, movieId, rating

FROM ch09eu.movielens_ratings

Note that you create a model as usual, except that the model_type is
matrix_factorization and that you need to identify which columns play what roles in
the collaborative filtering setup.

The resulting model took an hour to train, and the training data loss starts out extremely
bad and is driven down to near-zero over the next four iterations:

Iteration
Training Data
Loss

Evaluation
Data Loss

Duration
(seconds)

4 0.5734 172.4057 180.99

3 0.5826 187.2103 1,040.06

2 0.6531 4,758.2944 219.46

1 1.9776 6,297.2573 1,093.76

0 63,287,833,220.5795 168,995,333.0464 1,091.21

However, the evaluation data loss is quite high—much higher than the training data loss.
This indicates that overfitting is happening, and so you need to add some regularization.
Let’s do that next:

-- not final model. See movie_recommender_16

CREATE OR REPLACE MODEL ch09eu.movie_recommender_l2

options(model_type='matrix_factorization',

 user_col='userId', item_col='movieId',

 rating_col='rating', l2_reg=0.2)

AS

SELECT

userId, movieId, rating

FROM ch09eu.movielens_ratings

Now you get faster convergence (three iterations instead of five) and a lot less
overfitting:

20

Iteration Training Data Loss
Evaluation Data
Loss

Duration
(seconds)

2 0.6509 1.4596 198.17

1 1.9829 33,814.3017 1,066.06

0 481,434,346,060.7928 2,156,993,687.7928 1,024.59

By default, BigQuery sets the number of factors to be the log of the number of rows. In
this case, because we have 20 million rows in the table, the number of factors would have
been chosen to be 24. As with the number of clusters in k-means clustering, this is a
reasonable default, but it is often worth experimenting with a number about 50% higher
(36) and a number that is about a third lower (16):

CREATE OR REPLACE MODEL ch09eu.movie_recommender_16

options(model_type='matrix_factorization',

 user_col='userId', item_col='movieId',

 rating_col='rating', l2_reg=0.2, num_factors=16)

AS

SELECT

userId, movieId, rating

FROM ch09eu.movielens_ratings

When we did that, we discovered that the evaluation loss was lower (0.97) with
num_factors=16 than with num_factors=36 (1.67) or num_factors=24 (1.45). We
could continue experimenting, but we are likely to see diminishing returns with further
experimentation. So let’s pick this as the final matrix factorization model and move on.

Making Recommendations
With the trained model, you can now provide recommendations. For example, let’s find
the best comedy movies to recommend to the user whose userId is 903:

SELECT * FROM

ML.PREDICT(MODEL ch09eu.movie_recommender_16, (

 SELECT

 movieId, title, 903 AS userId

 FROM ch09eu.movielens_movies, UNNEST(genres) g

 WHERE g = 'Comedy'

))

ORDER BY predicted_rating DESC

LIMIT 5

2

21

In this query, we are calling ML.PREDICT, passing in the trained recommendation model
and providing a set of movieId and userId on which to carry out the predictions. In this
case, it’s just one userId (903), but all movies whose genre includes Comedy. Here is the
result:

Row predicted_rating movieId title userId

1 4.747231361947591 107434 Diplomatic Immunity (2009–) 903

2 4.372639637398302 62206 Supermarket Woman (Sûpâ no onna) (1996) 903

3 4.325021974040314 122441 Tales That Witness Madness (1973) 903

4 4.296062517241643 120313 Otakus in Love (2004) 903

5 4.277251207896746 130347 Bill Hicks: Sane Man (1989) 903

Filtering out previously rated movies
Of course, this includes movies the user has already seen and rated in the past. Let’s
remove them:

SELECT * FROM

ML.PREDICT(MODEL ch09eu.movie_recommender_16, (

 WITH seen AS (

 SELECT ARRAY_AGG(movieId) AS movies

 FROM ch09eu.movielens_ratings

 WHERE userId = 903

)

 SELECT

 movieId, title, 903 AS userId

 FROM ch09eu.movielens_movies, UNNEST(genres) g, seen

 WHERE g = 'Comedy' AND movieId NOT IN UNNEST(seen.movies)

))

ORDER BY predicted_rating DESC

LIMIT 5

For this user, this happens to yield the same set of movies—the top predicted ratings
didn’t include any of the movies the user has already seen.

Customer targeting
In the previous section, we looked at how to identify the top-rated movies for a specific
user. Sometimes we have a product and need to find the customers who are likely to
appreciate it. Suppose, for example, you want to get more reviews for movieId=96481,
which has only one rating, and you want to send coupons to the 100 users who are likely
to rate it the highest. We can identify those users by using the following:

SELECT * FROM

ML.PREDICT(MODEL ch09eu.movie_recommender_16, (

 WITH allUsers AS (

 SELECT DISTINCT userId

 FROM ch09eu.movielens_ratings

)

 SELECT

 96481 AS movieId,

 (SELECT title FROM ch09eu.movielens_movies WHERE movieId=96481) title,

 userId

 FROM

 allUsers

))

ORDER BY predicted_rating DESC

LIMIT 100

The result gives us 100 users to target, the top 5 of whom we list here:

Row predicted_rating movieId title userId

1 4.8586009640376915 96481 American Mullet
(2001)

54192

2 4.670093338552966 96481 American Mullet
(2001)

84240

3 4.544395037073204 96481 American Mullet
(2001)

109638

4 4.422718574118088 96481 American Mullet
(2001)

26606

5 4.410969328468145 96481 American Mullet
(2001)

138139

Batch predictions for all users and movies
What if you want to carry out predictions for every user and movie combination? Instead
of having to pull distinct users and movies as in the previous query, a convenient function
is provided to carry out batch predictions for all movieId and userId encountered during
training:

SELECT *

FROM ML.RECOMMEND(MODEL ch09eu.movie_recommender_16)

As seen in an earlier section, it is possible to filter out movies that the user has already
seen and rated in the past. The reason previously viewed movies aren’t filtered out by
default is that there are situations (think of restaurant recommendations, for example) for
which it is perfectly expected that we would need to recommend restaurants the user has
liked in the past.

Incorporating User and Movie Information
The matrix factorization approach does not use any information about users or movies
beyond what is available from the ratings matrix. However, we will often have user
information (such as the city they live in, their annual income, their annual expenditure,
etc.), and we will almost always have more information about the products in our catalog.
How do we incorporate this information into our recommendation model?

The answer lies in recognizing that the user factors and product factors that result from
the matrix factorization approach end up being a concise representation of the
information about users and products available from the ratings matrix. We can
concatenate this information with other information we have available and train a
regression model to predict the rating.

Obtaining user and product factors

You can get the user factors or product factors from ML.WEIGHTS. For example, here’s
how to get the product factors for movieId=96481 and user factors for userId=54192:

SELECT

 processed_input

 , feature

 , TO_JSON_STRING(factor_weights)

 , intercept

FROM ML.WEIGHTS(MODEL ch09eu.movie_recommender_16)

WHERE

(processed_input = 'movieId' AND feature = '96481')

OR

(processed_input = 'userId' AND feature = '54192')

The result is as follows:

Row processed_input feature f0_ intercept

1 movieId 96481 [{"factor”:16,"weight”:0.01274324364248563},
{"factor”:15,"weight”:-0.026002830400362179},
{"factor”:14,"weight”:-0.0088894978851240675},
{"factor”:13,"weight”:0.010309411637259363},
{"factor”:12,"weight”:-0.025990228913849212},
{"factor”:11,"weight”:0.0037023423385396021},
{"factor”:10,"weight”:-0.0016743710047063861},
{"factor”:9,"weight”:0.018434530705228803},
{"factor”:8,"weight”:-0.0016500835388799462},
{"factor”:7,"weight”:-0.021652088589080184},
{"factor”:6,"weight”:-0.00097969747732716637},
{"factor”:5,"weight”:-0.056352201014532581},
{"factor”:4,"weight”:-0.025090456181039382},
{"factor”:3,"weight”:0.015317626028966519},
{"factor”:2,"weight”:-0.00046084151232374118},
{"factor”:1,"weight”:-0.0009461271544545048}]

-1.1915305828542884

2 userId 54192 [{"factor”:16,"weight”:-0.66257902781387934},
{"factor”:15,"weight”:-0.089502881890795027},
{"factor”:14,"weight”:-0.14498342867805328},
{"factor”:13,"weight”:0.57708118940369757},
{"factor”:12,"weight”:-0.25409266698347688},
{"factor”:11,"weight”:0.243523510689305},
{"factor”:10,"weight”:0.48314159427498959},
{"factor”:9,"weight”:0.21335694312220596},
{"factor”:8,"weight”:0.34206958377350211},
{"factor”:7,"weight”:-0.076313491055098021},
{"factor”:6,"weight”:0.21214183741037482},
{"factor”:5,"weight”:0.19387028511697624},
{"factor”:4,"weight”:-0.42699681695332414},
{"factor”:3,"weight”:0.046570444717220438},
{"factor”:2,"weight”:0.25934273163373722},
{"factor”:1,"weight”:-0.18839802656522864}]

2.511409230366029

Multiplying these weights and adding the intercept is how you get the predicted rating for
this combination of movieId and userId in the matrix factorization approach.

These weights also serve as a low-dimensional representation of the movie and user
behavior. You can create a regression model to predict the rating given the user factors,
product factors, and any other information that we know about our users and products.

Creating input features
The MovieLens dataset does not have any user information and has very little
information about the movies themselves. To illustrate the concept, therefore, let’s create
some synthetic information about users:

CREATE OR REPLACE TABLE ch09eu.movielens_users AS

SELECT

 userId

 , RAND() * COUNT(rating) AS loyalty

 , CONCAT(SUBSTR(CAST(userId AS STRING), 0, 2)) AS postcode

FROM

 ch09eu.movielens_ratings

GROUP BY userId

Input features about users can be obtained by joining the user table with the machine
learning weights and selecting all of the user information and the user factors from the
weights array:

WITH userFeatures AS (

 SELECT

 u.*,

 (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS user_factors

 FROM

 ch09eu.movielens_users u

 JOIN

 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w

 ON

 processed_input = 'userId' AND feature = CAST(u.userId AS STRING)

)

SELECT * FROM userFeatures

LIMIT 5

This yields user features like these (you will need to remove the userId itself before
feeding it into the regression model):

Row userId loyalty postcode user_factors

1 65536 72.51794801197904 65 0.038901538776462

 0.0019075355240976716

 0.011537776936285278

 -0.0322503841197857

 0.046464397209825425

 -0.015348467879503527

 0.05865111283285229

 0.04859058815259179

 0.017664456774125117

 0.006847553039523945

 0.012585216564478762

 -0.06506297976701378

 -0.005041156227839918

 -0.04187860699038322

 0.006216526560890197

 0.02711744261644579

Similarly, you can get product features for the movies data, except that you need to
decide how to handle the genre because a movie could have more than one. If you decide
to create a separate training row for each genre, you can construct the product features
using the following:

WITH productFeatures AS (

 SELECT

 p.* EXCEPT(genres)

 , g

 , (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS product_factors

 FROM

 ch09eu.movielens_movies p, UNNEST(genres) g

 JOIN

 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w

 ON

 processed_input = 'movieId' AND feature = CAST(p.movieId AS STRING)

)

SELECT * FROM productFeatures

LIMIT 5

This yields rows of the following form:

Row movieId title g product_factors

1 1450 Prisoner of the Mountains
(Kavkazsky plennik) (1996)

War 0.9883690055578206

 1.3052751077485096

 -1.4000285383517228

 1.3901032474256991

 -0.32863748198986686

 -0.7688057246956399

 -1.1853591273232054

 -0.4553668299329251

 -0.14564591302024543

 -0.18609388556738163

 -0.3547198526732644

 0.06067380147330148

 -0.2733324088164271

 1.8302213060412562

 0.4753820155626278

 1.559946725190114

By combining these two WITH clauses and pulling in the rating corresponding to the
movieId-userId combination (if it exists in the ratings table), you can create the training
dataset:

CREATE OR REPLACE TABLE ch09eu.movielens_hybrid_dataset AS

WITH userFeatures AS (

 SELECT

 u.*,

 (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS user_factors

 FROM

 ch09eu.movielens_users u

 JOIN

 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w

 ON

 processed_input = 'userId' AND feature = CAST(u.userId AS STRING)

),

productFeatures AS (

 SELECT

 p.* EXCEPT(genres)

 , g

 , (SELECT ARRAY_AGG(weight) FROM UNNEST(factor_weights)) AS product_factors

 FROM

 ch09eu.movielens_movies p, UNNEST(genres) g

22

 JOIN

 ML.WEIGHTS(MODEL ch09eu.movie_recommender_16) w

 ON

 processed_input = 'movieId' AND feature = CAST(p.movieId AS STRING)

)

SELECT p.* EXCEPT(movieId), u.* EXCEPT(userId), rating

FROM productFeatures p, userFeatures u

JOIN

 ch09eu.movielens_ratings r

ON

 r.movieId = p.movieId AND r.userId = u.userId

One of the rows of this table looks like this:

1

Hunted,
The
(2003) Action 2.6029616190628015 692.7156232519949 70 0.026523240535672774 2.0

 0.33485455845698525 0.0019319939217823622

 0.31628840722516194 -0.0020145595411925534

 -0.3075233831543138 -0.002646563034985453

 -0.4473419662482839 -0.01594551937825673

 -1.0222758233057185 -0.010801066706191506

 -0.42418301494313826 4.772572135005211E-4

 -1.2447809221572947 0.014766024570817101

 -0.20242685993451942 -0.007500869241538576

 1.330350771422776 -0.020383420117709883

 -0.3354935275410769 -0.007863867111381763

 0.32404375319192513 0.019901597021923123

 1.402657314320568 -0.003178194776711233

 0.4728896971092763 0.013146874239054253

 -0.5743444547904143 -0.0017117741950437

 0.35632448579921905 -0.030130776462043048

Essentially, you have a couple of attributes about the movie, the product factors array
corresponding to the movie, a couple of attributes about the user, and the user factors
array corresponding to the user. These form the inputs to the “hybrid” recommendations
model that builds off the matrix factorization model and adds in metadata about users and
movies.

Training hybrid recommendation model
As of this writing, BigQuery ML cannot handle arrays as inputs to a regression model.
Let’s therefore define a function to convert arrays to a struct for which the array elements

are its fields:

CREATE OR REPLACE FUNCTION ch09eu.arr_to_input_3(a ARRAY<FLOAT64>)

RETURNS STRUCT<a1 FLOAT64, a2 FLOAT64, a3 FLOAT64> AS (

STRUCT(

 a[OFFSET(0)]

 , a[OFFSET(1)]

 , a[OFFSET(2)]

));

Now you can do the following:

SELECT

 ch09eu.arr_to_input_3(a).*

FROM

(SELECT [34.23, 43.21, 63.21] AS a)

And here’s your result:

Row a1 a2 a3

1 34.23 43.21 63.21

You can create a similar function named ch09eu.arr_to_input_16_users to convert
the user factor array into named columns, and a similar function for the product factor
arrays. Then you can tie together metadata about users and products with the user
factors and product factors obtained from the matrix factorization approach to create a
regression model to predict the rating:

CREATE OR REPLACE MODEL ch09eu.movielens_recommender_hybrid

OPTIONS(model_type='linear_reg', input_label_cols=['rating'])

AS

SELECT

 * EXCEPT(user_factors, product_factors)

 , ch09eu.arr_to_input_16_users(user_factors).*

 , ch09eu.arr_to_input_16_products(product_factors).*

FROM

 ch09eu.movielens_hybrid_dataset

There is no point in looking at the evaluation metrics of this model, because the user
information we used to create the training dataset was fake (note the RAND() in the
creation of the loyalty column)—we did this exercise to demonstrate how it could be
done. And of course, we could train a dnn_regressor model and optimize the

23

hyperparameters if we want a more sophisticated model. But if we are going to go that
far, it might be better to consider using AutoML tables, which we cover in the next
section.

Custom Machine Learning Models on GCP
Whereas BigQuery ML provides you a choice of models that can be built and iterated
over very quickly, AutoML provides you with a state-of-the-art, high-quality model for
the task, with the trade-off being that the model takes hours or even days to train. Keras
and TensorFlow provide lower-level control of machine learning model architectures and
allow you to design, develop, and deploy custom machine learning models. We
recommend that you begin with BigQuery ML for machine learning on structured or
semi-structured data and, depending on your skill set and the value of the problem being
solved, use AutoML or Keras to fine-tune the machine learning problem.

Hyperparameter Tuning
When you’re carrying out machine learning, there are many parameters that you choose
rather arbitrarily. These include factors such as the learning rate, the level of L2
regularization, the number of layers and nodes in a neural network, the maximum depth
of a boosted tree, and the number of factors of a matrix factorization model. It is often the
case that choosing a different value for these could result in a better model (as measured
by the error on a withheld evaluation dataset). Choosing a good value for these
parameters is called hyperparameter tuning.

Hyperparameter tuning using scripting
Take the k-means clustering model. The evaluation tab in the BigQuery web UI (as well
as SELECT * from ML.EVALUATE) shows the Davies-Bouldin index, which is useful for
determining the optimal number of clusters supported by the data (the lower the number,
the better the clustering).

For example, here’s a script to try varying the number of clusters:

DECLARE NUM_CLUSTERS INT64 DEFAULT 3;

DECLARE MIN_ERROR FLOAT64 DEFAULT 1000.0;

DECLARE BEST_NUM_CLUSTERS INT64 DEFAULT -1;

DECLARE MODEL_NAME STRING;

WHILE NUM_CLUSTERS < 8 DO

 SET MODEL_NAME = CONCAT('ch09eu.london_station_clusters_',

 CAST(NUM_CLUSTERS AS STRING));

24

 CREATE OR REPLACE MODEL MODEL_NAME

 OPTIONS(model_type='kmeans',

 num_clusters=NUM_CLUSTERS,

 standardize_features = true) AS

 SELECT * except(station_name)

 from ch09eu.stationstats;

 SET error = (SELECT davies_bouldin_index FROM ML.EVALUATE(MODEL MODEL_NAME));

 IF error < MIN_ERROR THEN

 SET MIN_ERROR = error;

 SET BEST_NUM_CLUSTERS = NUM_CLUSTERS;

 END IF;

 SET NUM_CLUSTERS = NUM_CLUSTERS + 1;

END WHILE

Hyperparameter tuning in Python
Alternatively, you could do this using Python and its multithreading capability to limit
the number of concurrent queries:

def train_and_evaluate(num_clusters: Range, max_concurrent=3):

 # grid search means to try all possible values in range

 params = []

 for k in num_clusters.values():

 params.append(Params(k))

 # run all the jobs

 print('Grid search of {} possible parameters'.format(len(params)))

 pool = ThreadPool(max_concurrent)

 results = pool.map(lambda p: p.run(), params)

 # sort in ascending order

 return sorted(results, key=lambda p: p._error)

In this code, the run() method of the Params class invokes the appropriate training and
evaluation queries:

class Params:

 def __init__(self, num_clusters):

 self._num_clusters = num_clusters

 self._model_name = (

 'ch09eu.london_station_clusters_{}'.format(num_clusters))

 self._train_query = """

 CREATE OR REPLACE MODEL {}

 OPTIONS(model_type='kmeans',

 num_clusters={},

 standardize_features = true) AS

25

 SELECT * except(station_name)

 from ch09eu.stationstats

 """.format(self._model_name, self._num_clusters)

 self._eval_query = """

 SELECT davies_bouldin_index AS error

 FROM ML.EVALUATE(MODEL {});

 """.format(self._model_name)

 self._error = None

 def run(self):

 bq = bigquery.Client(project=PROJECT)

 job = bq.query(self._train_query, location='EU')

 job.result() # wait for job to finish

 evaldf = bq.query(self._eval_query, location='EU').to_dataframe()

 self._error = evaldf['error'][0]

 return self

When searching in the range [3,9], you find that the number of clusters at which the error
is minimized is 7:

ch09eu.london_station_clusters_7 1.551265 7

ch09eu.london_station_clusters_9 1.571020 9

ch09eu.london_station_clusters_6 1.571398 6

ch09eu.london_station_clusters_4 1.596398 4

ch09eu.london_station_clusters_8 1.621974 8

ch09eu.london_station_clusters_5 1.660766 5

ch09eu.london_station_clusters_3 1.681441 3

Hyperparameter tuning using AI Platform
In both of the hyperparameter tuning methods that we’ve considered so far, we tried out
every possible value of a parameter that fell within a range. As the number of possible
parameters grows, a grid search becomes increasingly wasteful. It is better to use a more
efficient search algorithm, and that’s where Cloud AI Platform’s hyperparameter tuning
can be helpful. You can use the hyperparameter tuning service for any model (not just
TensorFlow). Let’s apply it to tuning the feature engineering and number of nodes of a
DNN model.

First, create a configuration file that specifies the ranges for each of the parameters, the
number of concurrent queries, and the total number of trials:

trainingInput:

 scaleTier: CUSTOM

 masterType: standard # See: https://cloud.google.com/ml-

engine/docs/tensorflow/machine-types

 hyperparameters:

 goal: MINIMIZE

 maxTrials: 50

 maxParallelTrials: 2

26

 hyperparameterMetricTag: mean_absolute_error

 params:

 - parameterName: afternoon_start

 type: INTEGER

 minValue: 9

 maxValue: 12

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: afternoon_end

 type: INTEGER

 minValue: 15

 maxValue: 19

 scaleType: UNIT_LINEAR_SCALE

 - parameterName: num_nodes_0

 type: INTEGER

 minValue: 10

 maxValue: 100

 scaleType: UNIT_LOG_SCALE

 - parameterName: num_nodes_1

 type: INTEGER

 minValue: 3

 maxValue: 10

 scaleType: UNIT_LINEAR_SCALE

Note that we have specified minimum and maximum values for each of the parameters
and the metric (mean absolute error) to be minimized. We are asking for optimization to
happen using just 50 trials, whereas a grid search would have required trying out
4×4×90×7, or more than 10,000 options. So using the AI Platform hyperparameter tuning
service results in a 200-fold savings!

Next, you create a Python program that invokes BigQuery to train and evaluate the model
given a single set of these parameters:

def train_and_evaluate(args):

 model_name = "ch09eu.bicycle_model_dnn_{}_{}_{}_{}".format(

 args.afternoon_start, args.afternoon_end, args.num_nodes_0,

args.num_nodes_1

)

 train_query = """

 CREATE OR REPLACE MODEL {}

 TRANSFORM(* EXCEPT(start_date)

 , IF(EXTRACT(dayofweek FROM start_date) BETWEEN 2 and 6,

'weekday', 'weekend') as dayofweek

 , ML.BUCKETIZE(EXTRACT(HOUR FROM start_date), [5, {}, {}]) AS

hourofday

)

 OPTIONS(input_label_cols=['duration'],

 model_type='dnn_regressor',

 hidden_units=[{}, {}])

 AS

 SELECT

 duration

 , start_station_name

 , start_date

 FROM `bigquery-public-data`.london_bicycles.cycle_hire

 """.format(model_name,

 args.afternoon_start,

 args.afternoon_end,

 args.num_nodes_0,

 args.num_nodes_1)

 logging.info(train_query)

 bq = bigquery.Client(project=args.project,

 location=args.location,

 credentials=get_credentials())

 job = bq.query(train_query)

 job.result() # wait for job to finish

 eval_query = """

 SELECT mean_absolute_error

 FROM ML.EVALUATE(MODEL {})

 """.format(model_name)

 logging.info(eval_info)

 evaldf = bq.query(eval_query).to_dataframe()

 return evaldf['mean_absolute_error'][0]

Note that this code uses a specific value for each of the tunable parameters and returns
the mean absolute error, which is the metric being minimized.

This error value is then written out:

hpt.report_hyperparameter_tuning_metric(

 hyperparameter_metric_tag='mean_absolute_error',

 metric_value=error,

 global_step=1)

The training program is submitted to the AI Platform Training service:

gcloud ai-platform jobs submit training $JOBNAME \

 --runtime-version=1.13 \

 --python-version=3.5 \

 --region=$REGION \

 --module-name=trainer.train_and_eval \

 --package-path=$(pwd)/trainer \

 --job-dir=gs://$BUCKET/hparam/ \

 --config=hyperparam.yaml \

 —\

 --project=$PROJECT --location=EU

The resulting output, shown in the AI Platform console, contains the best parameters.

AutoML

AutoML consists of a family of products that provide a code-free way to automatically
create and deploy state-of-the-art machine learning models. They tend to rely on applying
a variety of feature engineering, hyperparameter tuning, neural architecture search,
transfer learning, and ensembling methods to build models that have comparable quality
to models manually crafted by top machine learning experts.

TIP
Use BigQuery ML to formulate your machine learning problems—to identify the features and labels, to quickly
diagnose whether some new dataset improves accuracy, to detect mistakes in assumptions about time-dependence,
and to determine the best way of representing some piece of domain knowledge. The fast iteration capability that
BigQuery ML provides is invaluable, as is the ability to train models without moving data outside the data
warehouse. After you have identified a feasible machine learning problem, you can use AutoML to get a very
accurate model on the specific training dataset (features and labels). In our experience, AutoML infused with
features that represent the insights of domain experts is hard to beat either in terms of accuracy or in terms of time to
deployment.

AutoML Vision, for example, provides a web-based interface to upload images (or point
to images on Google Cloud Storage), identify their labels, and launch the training of
image classification or object detection models.

Because the data in BigQuery tends to be structured or semi-structured, the AutoML
models that are relevant tend to be AutoML Natural Language (to do tasks such as text
classification and entity detection), AutoML Tables (to do tasks such as regression,
classification, and time-series forecasting on structured data), and AutoML
Recommendations (to build state-of-the-art recommendation models).

To use AutoML Tables (Figure 9-10), simply visit the starting point on the GCP console,
point it at a BigQuery table, select the feature columns and label column, and then click
Train. Although training will take much longer (on the order of 12 to 24 hours), the
resulting accuracy tends to be higher than what you might have achieved on the same
dataset with BigQuery ML.

Figure 9-10. AutoML Tables can start from a BigQuery table, the same training dataset that was built through iterative
exploration and experimentation in BigQuery ML. In our experience, AutoML Tables applied to thoughtfully created

training datasets provides state-of-the-art performance.

Support for TensorFlow
Even though BigQuery ML is scalable and convenient, and AutoML powerful and
accurate, there are times when you might want to build your own custom models using
Keras or TensorFlow. You might also find it advantageous to train models using
TensorFlow and predict using BigQuery, or to train models in BigQuery but deploy into
TensorFlow Serving.

It is possible to access BigQuery directly from TensorFlow code and to export BigQuery
tables to TensorFlow records, transforming the data along the way. There is also
interoperability between BigQuery and TensorFlow models—it is possible to load a
TensorFlow model into BigQuery and to export a BigQuery model in TensorFlow’s
SavedModel format. We cover these capabilities in this section.

TensorFlow’s BigQueryReader
A TensorFlow input pipeline can read from a BigQuery table into keyed TensorFlow
Examples using BigQueryReader. First, create a features dictionary of the columns of
interest:

features = dict(

 start_station_name=tf.FixedLenFeature([1], tf.string),

 duration=tf.FixedLenFeature([1], tf.int32))

Then create a reader specifying the timestamp at which the data is to be read (because the
BigQuery table could be receiving streamed data while we are reading it) and the number
of threads (partitions) in which the table is to be read:

reader = tf.contrib.cloud.BigQueryReader(project_id=PROJECT,

 dataset_id=DATASET,

 table_id=TABLE,

 timestamp_millis=TIME,

 num_partitions=NUM_PARTITIONS,

 features=features)

Finally, populate a queue with the BigQuery Table partitions, and use it to read the
TensorFlow examples:

queue = tf.train.string_input_producer(reader.partitions())

row_id, examples_serialized = reader.read(queue)

examples = tf.parse_example(examples_serialized, features=features)

Although this works, there are several problems with this approach. In machine learning
training, you will need to read batch_size records at once, shuffle the read order across
workers, prefetch records, and so on. Hence, we recommend that you do not follow this
approach.

Using pandas
If the BigQuery table is small enough, read it directly into an in-memory pandas
DataFrame:

query = """

SELECT

 start_station_name

 , duration

FROM `bigquery-public-data`.london_bicycles.cycle_hire

GROUP BY start_station_name

"""

df = bq.query(query, location='EU').to_dataframe()

Use the tf.data API to read from pandas:

tf.estimator.inputs.pandas_input_fn(

 df,

 batch_size=128,

 num_epochs=10,

 shuffle=True,

 num_threads=8,

 target_column='duration'

)

Apache Beam/Cloud Dataflow

If the table is too large to fit into memory, export the BigQuery data into TensorFlow
records on Google Cloud Storage using Cloud Dataflow (see Chapter 5 for more details):

_ = (

 examples

 | 'get_tfrecords' >> beam.Map(lambda x: x['tfrecord'])

 | 'writetfr' >> beam.io.tfrecordio.WriteToTFRecord(

 os.path.join(options['outdir'], 'tfrecord', step)))

Each of the previous examples is created by pulling the necessary records from
BigQuery:

 tfexample = tf.train.Example(

 features=tf.train.Features(

 feature={

 'start_station_name': _bytes_feature(row['start_station_name']),

 'duration': _int64_feature(row['duration']),

 }))

Along the way, if necessary, you can transform the records using tf.transform. Then,
in TensorFlow, you can use the high-throughput methods provided by
tf.data.tfrecorddataset to read in the data.

Exporting to TensorFlow
The TensorFlow ecosystem for serving is very powerful—it is possible to carry out
predictions of TensorFlow models in a web browser using JavaScript and tensorflow.js,
on an embedded device or mobile application using TensorFlow Lite, in Kubernetes
clusters using Kubeflow, as a REST API using AI Platform Predictions, and more.
Therefore, you might find it advantageous to export your BigQuery ML model as a
TensorFlow SavedModel. After the BigQuery ML model has been exported, you can use
it in any of the environments that can serve TensorFlow models.

Predicting with TensorFlow models

If you have trained a model in TensorFlow and exported it as a SavedModel, you can
import the TensorFlow model into BigQuery and use the ML.PREDICT SQL function in
BigQuery to make predictions. This is very useful if you want to make batch predictions
(e.g., to make predictions for all the data collected in the past hour), given that any SQL
query can be scheduled in BigQuery.

Importing the model into BigQuery is simply a matter of specifying a different
model_type and pointing it at the model_path from which the SavedModel was
exported (note the wildcard at the end to pick up the assets, vocabulary, etc.):

https://www.tensorflow.org/tfx/transform/get_started

CREATE OR REPLACE MODEL ch09eu.txtclass_tf

OPTIONS (model_type='tensorflow',

 model_path='gs://bucket/some/dir/1549825580/*')

This creates a model in BigQuery that works like any built-in model, as illustrated in
Figure 9-11. Here, the schema indicates that the required input to the model is called
“input” and is a string.

Figure 9-11. The schema of the imported TensorFlow model

Given this schema, we can now do a prediction:

SELECT

 input,

 (SELECT AS STRUCT(p, ['github', 'nytimes', 'techcrunch'][ORDINAL(s)])

 prediction

FROM

 (SELECT p, ROW_NUMBER() OVER() AS s FROM

 (SELECT * FROM UNNEST(dense_1) AS p))

 ORDER BY p DESC LIMIT 1).*

FROM ML.PREDICT(MODEL advdata.txtclass_tf,

(

SELECT 'Unlikely Partnership in House Gives Lawmakers Hope for Border Deal' AS

input

UNION ALL SELECT "Fitbit\'s newest fitness tracker is just for employees and

health insurance members"

UNION ALL SELECT "Show HN: Hello, a CLI tool for managing social media"

))

This is very powerful because we can now train a machine learning model, save it to
Google Cloud Storage, import it into BigQuery, and carry out periodic predictions
without the need to move the data for predictions out of the data warehouse.

Summary
In this chapter, we did a whirlwind tour of machine learning in BigQuery. We began by
discussing different types of machine learning problems that work on structured and
semi-structured data and how to train and predict machine learning models for all of
those problems in BigQuery.

To train a regression model in BigQuery, we created a training dataset consisting of
features and a label. Next, we were able to create a trained model, evaluate it, and then
use it for predictions. We also iterated through a variety of improvements to the basic
model and discussed how to extract the model weights. Finally, we examined how to
train not just linear models but also DNNs and boosted regression trees.

Training a classification model in BigQuery was similar, except that the evaluation
metrics were more sophisticated—we discussed how to choose the threshold in a binary
classification problem to obtain a desired value of precision or recall.

We also looked at various customizations that might prove important on specific
problems—things like changing the way the data is split between training and evaluation,
balancing classes when one class is rarer than the other, and regularization to limit
overfitting.

We also showed how to find clusters from structured data using the k-means algorithm
and how to visualize the cluster attributes using Data Studio and make data-driven
decisions.

The final type of machine learning model we examined in this chapter was on
recommendation systems. We built a matrix factorization model to solve both product
recommendation and customer targeting problems. We also discussed how to use the user
factors and item factors that result from matrix factorization to train a more sophisticated
model that includes data about users and products beyond their rating behavior.

Finally, we looked at the rest of the GCP ecosystem for custom models—hyperparameter
tuning, AutoML, and TensorFlow. We discussed the interoperability between these
different ways of building machine learning models, and when you would use which.

1 See https://en.wikipedia.org/wiki/Motion_picture_content_rating_system.

2 The individual words of the movie title might be more appropriate, as long as we take care to apply common
Natural Language Processing techniques such as tokenization, stemming, and word embedding. Calculated
features about the title of the movie might also prove useful; for example, the length of the title might have some
predictive power, or whether the title has the word “spy” in it.

3 In the BigQuery web user interface, click Explore in Data Studio.

4 We could have treated these variables as continuous, but we would then be faced with unappealing choices
about how to deal with the fact that dayofweek=7 is closer to dayofweek=1 than to dayofweek=5. For the record,
some of these unappealing choices include: (a) storing the dayofweek twice, one in its current form and the other
as MOD(dayofweek+3,7); and (b) replacing dayofweek by sin(2π * dayofweek / 7.0). They are unappealing
because of how difficult they are to explain to stakeholders. If this is not a concern and you are solving a similar
problem, it is worth experimenting with all three representations to see which one performs best.

5 Create it if necessary; it needs to be in the EU region because the data we are training on is in the EU.

6 This is because BigQuery is able to compute a closed-form solution to this linear regression problem. For more
details, see https://oreil.ly/0svPQ.

7 Other error measures (mean squared error, mean squared log error, median absolute error, etc.) are also
reported. For most regression problems, the mean absolute error strikes a good balance between insensitivity to
outliers and sensitivity to iterative improvements. Use the mean absolute error unless you have a strong reason
not to do so.

8 The interval [a,b) means that a is included and b is not; in other words, this is the interval a ≤ x < b.

9 Indeed, this is the default behavior of BigQuery if the input feature is a TIMESTAMP. Just as the default behavior
of BigQuery to string values is to one-hot encode it, the default behavior of BigQuery when supplied a
TIMESTAMP is to extract pieces such as day-of-week from it. Specifying the transformation ourselves gives us
more granular control.

10 See https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview. Cloud AI Platform
Predictions allows you to submit a machine learning training job where you specify a range of values to search
within.

11 Many decision-tree packages provide a measure of “feature importance,” which loosely means how often a
feature is used in the ensemble of trees. However, if you have two features that are correlated, the importance
will be split between them, and so explainability suffers in real-world datasets.

12 XGBoost stands for eXtreme Gradient Boost, where gradient boosting is the technique proposed in the paper
“Greedy Function Approximation: A Gradient Boosting Machine”, by Jerome H. Friedman.

13 The precision (or true positive rate) is the fraction of times that the model is correct when it predicted the
positive class. In other words, if the model predicted roadbike 100 times, it will be correct 25.7 times. The
recall is the fraction of positive instances that the model predicts correctly—that is, the fraction of times a road
bike is required that the model predicts roadbike. For multiclass problems, the reported precision (or recall)
corresponds to the mean precision when treating each category as a binary classification problem.

14 BigQuery estimates a good value through line search at the start of each iteration through the data.

15 Scale all numeric inputs to have zero mean and unit variance.

16 By default, randomly select 20% of the rows for evaluation.

17 This is better because it is possible that days on which station A is busy are the days on which station B is also
busy. A random split might end up causing leakage of this information if Christmas 2009 at station A is in
training and Christmas 2009 at station B is in evaluation. By controlling the split to happen so that the last few
days of the dataset are not seen in training, we are able to more closely model how we plan to train our model on
historical data and then deploy it.

https://en.wikipedia.org/wiki/Motion_picture_content_rating_system
https://oreil.ly/0svPQ
https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview
https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf

18 For more information about L1 and L2, see www.robotics.stanford.edu/~ang/papers/icml04-l1l2.ps.

19 The k-means algorithm is sensitive to the initial starting point, and because starting points are chosen randomly,
your results might be different.

20 The reason the duration of iterations swings back and forth is because the underlying optimization algorithm
processes users in one iteration and movies in the next, and there are so many more users than movies.

21 This might sound weird. Why a third lower and not half? Essentially, the idea is that, starting from 16, 24 is
50% higher. We want to try a geometric progression of candidate values for num_factors so that we cover the
candidate space quickly. If you are trying more than three possible num_factors, consider trying a sequence of
num_factors, each of which is about sqrt(2) times higher than the previous. For example, you could try 4, 6,
8, 12, 16, 24, 32, 48, 64, and so on.

22 See 09_bqml/hybrid.sql in the GitHub repository for this book.

23 See 09_bqml/arr_to_input16.sql in the GitHub repository for this book.

24 By the time you are reading this, automl might well be one of the supported model types in BigQuery.

25 For the full code, see 09_bqml/hyperparam.ipynb in the GitHub repository for this book.

26 The full code is available at https://github.com/GoogleCloudPlatform/bigquery-oreilly-
book/blob/master/09_bqml/hyperparam.ipynb.

http://www.robotics.stanford.edu/~ang/papers/icml04-l1l2.ps
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book
https://github.com/GoogleCloudPlatform/bigquery-oreilly-book/blob/master/09_bqml/hyperparam.ipynb

Chapter 10. Administering and
Securing BigQuery

One of the reasons to use a fully managed serverless product like BigQuery is to take
advantage of the security infrastructure of public cloud services. In Google Cloud
Platform (GCP), data is encrypted at rest and in transit, and the API-serving
infrastructure is accessible only over encrypted channels. To access BigQuery
resources, users and applications must be authenticated and authorized using Identity
and Access Management. You can perform this administration (of users, tables, jobs,
views, etc.) by using the BigQuery web user interface (UI), using the bq command-
line tool, or using the REST API.

In this chapter, we discuss how BigQuery’s infrastructure is secured, how to
configure Cloud IAM, and a range of administration tools that you use to monitor
jobs and authorize users. We end this chapter with a discussion of BigQuery support
for a variety of tools that you might be able to use to help fulfill your regulatory and
compliance needs based on the strong foundations established by the infrastructure
security measures, Identity and Access Management, and administrative tools. It is
always your responsibility to work with your legal counsel to determine whether
implementing any of these tools and capabilities will satisfy your regulatory or
compliance requirements.

Infrastructure Security
The security infrastructure that BigQuery relies on is end to end—starting with the
people and continuing through the datacenter, server hardware, software stack,
logging, encryption, and intrusion detection, and finally to the cloud platform itself.

Google’s Information Security Team develops security review processes, builds
security infrastructure, and implements Google’s security processes. This team
consists of top security experts and was responsible for discovering and coming up
with fixes for problems including the Heartbleed vulnerability and the SSL 3.0
exploit. Google’s datacenters employ a layered physical security model with custom-
designed safeguards, high-resolution cameras capable of tracking intruders, access
logs, and routine patrols.

https://www.owasp.org/index.php/Heartbleed_Bug
https://www.us-cert.gov/ncas/alerts/TA14-290A

Server security is enhanced by using tens of thousands of identical, custom-built
servers. This homogeneity, along with having built the entire stack including
hardware, networking, and custom Linux software, reduces the security footprint and
promotes agile responses to security threats. The servers themselves include a custom
chip called Titan to provide verification of system firmware and software
components, thus providing a strong, hardware-rooted system identity.

The security of customer information is protected through a variety of controls and
practices. Every layer of the Google application and storage stack authenticates and
verifies the authorization of requests coming from other components. Engineers’
access to production services and production environments is defined and controlled
by a centralized group and role management system. The practices include using a
security protocol that authenticates engineers through the use of short-lived personal
public key certificates, the issuance of which is in turn guarded by two-factor
authentication. Hard disks that are retired from Google’s systems are subjected to a
data destruction process to safeguard customer information before leaving Google’s
premises. The disks are wiped, checked, and tracked by multiple individuals before
being released.

BigQuery, like other Google services, is managed through a secured global API
gateway infrastructure that is accessible only over encrypted Secure Sockets Layer
(SSL)/Transport Layer Security (TLS) channels. Every request must include a time-
limited authentication token generated via human login or private key-based secrets
in order to be serviced. All API requests are logged, and using GCP tools, a project
administrator can read operations and access logs for BigQuery.

Any new data stored in persistent disks is encrypted under the 256-bit Advanced
Encryption Standard (AES-256), and each encryption key is itself encrypted with a
regularly rotated set of master keys. These are the same encryption and key
management policies, cryptographic libraries, and root of trust used by many of
Google’s production services, including Gmail. This sharing of infrastructure extends
to network infrastructure. Google’s global network helps to improve the security of
data in transit by limiting hops across the public internet. By using Cloud
Interconnect and a managed Virtual Private Network (VPN), it is possible to create
encrypted channels between an on-premises private IP environment and Google’s
network.

BigQuery builds on these capabilities. However, it is still your responsibility to
enforce appropriate access to data and analyze request logs. This includes preventing
your end users from sharing critical information outside of your corporate
network/public cloud infrastructure (i.e., data loss prevention) and ensuring that you

keep safe any data that could identify a specific individual—that is, Personally
Identifiable Information (PII). In the rest of this chapter, we discuss the tools that
GCP and BigQuery provide to accomplish these goals.

Identity and Access Management
Cloud Identity and Access Management (IAM) allows users of BigQuery to manage
access control by defining three things: identity, role, and resource. Essentially, we
need to specify who (identity) has what access (role) to what resource.

Identity
The identity specifies who has access. This could be an end user who is identified by
a Google account (such as a @gmail.com account or an @example.com account,
where example.com is a G Suite domain) or an application identified by a service
account. Service accounts are essentially GCP-assigned email addresses and can be
created (for example, using the Cloud Console) to have a subset of the permissions
held by the creator of the service account in that project. Typically, we create them to
embody the (limited) set of permissions required by applications that are run on our
behalf.

Members to whom access is granted can also include virtual groups of Google
accounts such as Google groups, G Suite domains, or Cloud Identity domains. You
should prefer providing access to Google groups over providing access to individuals
because it is easier to add members to and remove members from a Google group
instead of updating multiple Cloud IAM policies to onboard or remove users. Even if
access control is provided to a virtual group, you don’t lose auditability: logging and
auditing will resolve to the actual Google account or service account that is accessing
BigQuery.

It is also possible to provide access to allAuthenticatedUsers (a special identifier
for anyone who is authenticated with a Google account or service account). A
common use is to publish a public dataset—the london_bicycles dataset that we
used throughout this book was published in this manner. You should note that
allAuthenticatedUsers allows any authenticated user, not just users in your
domain, to have access.

Role

1

2

3

The role determines what access is allowed to the identity in question. A role consists
of a set of permissions. It is possible to create a custom role to provide granular
access to a custom list of permissions. However, most commonly, you will use
predefined roles.

Predefined roles

Roles, such as the BigQuery dataViewer role, are predefined and consist of a
combination of permissions that are frequently required. For example, the
dataViewer role provides, among others, the bigquery.datasets.get permission
to get metadata about a dataset, and bigquery.tables.getData to get table data,
but not the bigquery.datasets.delete, which would allow any identity with that
permission to delete the dataset.

As of this writing, there are eight predefined roles, including four roles associated
with access to datasets and associated tables and views. Loosely, in order of
increasing capability, these are:

1. metadataViewer (the fully qualified name is
roles/bigquery.metadataViewer) provides metadata-only access to
datasets, tables, and/or views.

2. dataViewer provides permissions to read data as well as metadata.

3. dataEditor provides the ability to read a dataset and list, create, update,
read, and delete tables in that dataset.

4. dataOwner adds the ability to also delete the dataset.

5. readSessionUser provides access to the BigQuery Storage API sessions
that are billed to a project.

6. jobUser can run jobs (including queries) that are billed to the project.

7. user can run jobs and create datasets whose storage is billed to the project.

8. admin can manage all data within the project and cancel jobs by other users.

Treat these two sets of roles as being independent and orthogonal. Users granted the
bigquery.readSessionUser do not have access to table data—it might be that they
need to read data from datasets belonging to a different project! To read data, you
must also grant them bigquery.tables.getData permissions. Similarly, having the
jobUser role does not grant the ability to create, modify, or delete tables (only to do

a SELECT from them); you need to specifically assign the dataEditor role in
addition to the jobUser role if you want the user to be able to run Data Definition
Language (DDL)/Data Manipulation Language (DML) queries.

It is also quite conceivable that you might want to provide only the dataViewer role
without providing the user role. This will be the situation when you want users to
pay for their own queries (i.e., to create query jobs in their own projects, but be able
to query datasets that belong to you). For the specific capabilities of each role, the
full set of permissions, and which REST API methods require what permissions,
refer to the BigQuery documentation.

Primitive roles
In addition to predefined roles and custom roles, BigQuery supports primitive roles,
which date back to before GCP had support for Cloud IAM. Mostly, you will use the
aforementioned predefined roles, but in some cases, it can be more convenient to
assign users a role in the project (viewer, editor, or owner) and have the permissions
for all BigQuery datasets and jobs in the project be inherited from this project role.

Identities that have viewing rights on the project get dataViewer on all datasets in
the project as well as the ability to create jobs (i.e., run queries) that are billed to the
project. Project editors get the dataEditor role in addition to project viewer
privileges, and project owners get the dataOwner role in addition to project editor
privileges. One exception is that only the user who runs a query has access to the
cached results table (because of the implications of sharing access to the results of
queries that join against datasets to which other project owners might not have
access). To grant or revoke primitive roles for projects, use the GCP console.

The primitive roles that provide reading, writing, or ownership access to datasets
translate neatly to dataViewer, dataEditor, or dataOwner roles, respectively. As
such, they can be granted in all the ways that predefined roles can be granted, but the
simplest way is to click the link to share a dataset from the BigQuery web UI.

Custom roles
If the predefined roles don’t meet your specific needs, consider creating a custom
role, but note that needing to grant multiple roles (such as jobUser as well as
dataViewer) to groups of people is not a good reason to create a custom role.

https://cloud.google.com/bigquery/docs/access-control

TIP
If you need to grant multiple roles to allow a particular task, create a Google group, grant the roles to that
group, and then add users or other groups to that group. You might find it helpful to create Google groups for
different job functions within your organization and give everyone in those groups a set of predefined roles.
For example, all members of your data science team might be given BigQuery dataViewer and jobUser
permissions on data warehousing datasets. This way, if people change jobs, we need to just update their
membership in the appropriate groups instead of updating their access to datasets and projects one dataset or
project at a time.

One reason to create a custom role is to subtract permissions from the predefined
roles. For example, the predefined role dataEditor allows the possessor to create,
modify, and delete tables. Suppose that you want to allow your data suppliers to
create tables but not to modify or delete any existing tables. In that case, you could
create a new role named dataSupplier and provide it with the specific list of
permissions. You would start by creating a YAML file (called, for instance,
dataSupplier.yaml) with the following contents:

title: "Data Supplier"

description: "Can create, but not delete tables"

stage: "ALPHA"

includedPermissions:

- bigquery.datasets.get

- bigquery.tables.list

- bigquery.tables.get

- bigquery.tables.getData

- bigquery.tables.export

- bigquery.datasets.create

- bigquery.tables.create

- bigquery.tables.updateData

Then you would run the following gcloud command to create the custom role:

PROJECT=$(gcloud config get-value project)

gcloud iam roles create dataSupplier --project $PROJECT \

 --file dataSupplier.yaml

You can verify the permissions associated with this role by obtaining its current
definition using:

gcloud iam roles describe dataSupplier --project $PROJECT

This works for predefined roles also.

It’s a good idea when creating a new role to set its stage to be ALPHA and try it out on
a smaller set of users before upgrading the stage to BETA or GA. This way, you can
fine-tune the set of permissions (start with the most restrictive set) before rolling it
out widely.

Resource
Access to resources is managed individually, resource by resource. An identity does
not get the dataViewer role or the bigquery.tables.getData permission on all
resources in BigQuery; rather, the permission is granted on specific datasets or tables.

Because the dataViewer role is provided on tables or datasets, it is not possible for
someone with just the dataViewer role to obtain information about jobs, for
example; jobs are a separate resource and require a different set of permissions. An
identity can, of course, have both the role dataViewer and the role jobUser, which
would give them the ability to create jobs (including running queries) and cancel
self-created jobs in addition to being able to view table data.

As much as possible, avoid permission/role creep; err on the side of providing the
least amount of privileges to identities. This includes restricting both the roles and
the resources on which they are provided. Balance this against the burden of updating
permissions on new resources as they are created. One reasonable compromise is to
set trust boundaries that map projects to your organizational structure and set roles at
the project level—IAM policies can then propagate down from projects to resources
within the project, thus automatically applying to new datasets in the project.

Administering BigQuery
It is possible to administer BigQuery from the BigQuery web UI, using the REST
API, or using the bq command-line tool. In this section, we assume that you have the
admin role in BigQuery, either by virtue of being the BigQuery point person in your
company or by being an admin on the project with the resources (either jobs or
datasets) in question. Let’s look at common tasks that administrators might need to
do, focusing on the bq command line.

Job Management

When a job has been submitted to BigQuery, it goes into three states in succession:
PENDING, meaning that it is scheduled but not yet started; RUNNING, meaning that it
has started; and either SUCCESS or FAILURE depending on the final status.

You can list all jobs created within the project in the past 24 hours by using the
following:

NOW=$(date +%s)

START_TIME=$(echo "($NOW - 24*60*60)*1000" | bc)

bq --location=US ls -j -all --min_creation_time $START_TIME

bq requires a Unix timestamp in milliseconds, so we obtain the min_creation_time
by subtracting one day (24*60*60 seconds) from the current timestamp and
converting it into milliseconds using the command-line calculator tool, bc.

As soon as you know the job ID, it is possible to cancel a running job:

bq --location=US cancel bquxjob_180ae24c_16b04a8d28d

Note that you will sometimes have a fully qualified job ID that will include both the
project name and the location, for example, from logs (or from the BigQuery web
UI). In that case, you can omit the location to the cancel call:

bq cancel someproject:US.bquxjob_180ae24c_16b04a8d28d

Anyone with the jobUser or user role has the ability to run and cancel their own
jobs; they don’t need admin access unless it is to list or cancel jobs started by other
users.

Authorizing Users
We recommend creating Google groups and adding members to Google groups
instead of providing individual users access to BigQuery resources. If you follow this
recommendation, you will be authorizing access to resources only to Google groups,
and you can do this from the Cloud Console. There are several convenient ways to
add and remove multiple users to a Google group. For details, see the G Suite help
page.

4

5

https://support.google.com/a/answer/6191469?hl=en

On a one-off basis, use the Cloud Console IAM page to provide individual users,
service accounts, or Google groups permissions to BigQuery. To share specific
resources, in the BigQuery web UI, select the dataset and then click “Share dataset.”

Restoring Deleted Records and Tables
If a user has messed up the contents of a table by loading in duplicate data or by
deleting necessary records, it is possible to recover as long as it is within seven days.
Deleted tables (as opposed to deleted records within existing tables) can be recovered
for up to two days only.

To recover the state of a table as it existed 24 hours earlier, for example, you can use
SYSTEM_TIME AS OF and the DDL:

CREATE OR REPLACE TABLE ch10eu.restored_cycle_stations AS

SELECT

 *

FROM `bigquery-public-data`.london_bicycles.cycle_stations

FOR SYSTEM_TIME AS OF

 TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 24 HOUR)

For up to two days, you can also recover a deleted table. For example, let’s delete the
table you created a moment ago:

bq rm ch10eu.restored_cycle_stations

Now recover it from a snapshot as of 120 seconds ago:

NOW=$(date +%s)

SNAPSHOT=$(echo "($NOW - 120)*1000" | bc)

bq --location=EU cp \

 ch10eu.restored_cycle_stations@$SNAPSHOT \

 ch10eu.restored_table

6

https://console.cloud.google.com/iam-admin/iam

NOTE
You can recover a deleted table only if another table with the same ID in the dataset has not been created in the
meantime. In particular, this means that you cannot recover a deleted table if it is receiving streamed data and
the create-disposition is to create the table if it doesn’t exist. Chances are that the streaming pipeline would
have created an empty table and started to push rows into it. This is also why you should be careful about
using CREATE OR REPLACE TABLE: it makes the table irrecoverable.

Continuous Integration/Continuous Deployment
It might be important to have SQL queries under version control so as to be able to
obtain the version of a script as of a certain time and track changes in the script over
time. If this is the case, consider using Cloud Source Repositories and Cloud
Functions (or Cloud Run if you have more complex dependencies) to execute the
queries.

Invoking BigQuery from a Cloud Function
In your Cloud Source Repository, create an .sql file containing the BigQuery SQL
query and a Python file implementing the Cloud Function and place both under
version control. The Cloud Function could then use the BigQuery client library to
submit the query to BigQuery and export results to Google Cloud Storage as long as
the query time is less than the timeout of the Cloud Function.

You can create a Cloud Function from the GCP Cloud Console. In the text window,
type this code:

from google.cloud import bigquery

def query_to_gcs():

client = bigquery.Client()

Run query and wait for it to complete

query_job = client.query("""

 ...

 """)

query_job.result()

Extract to GCS, and wait for it to complete

extract_job = client.extract_table(

 query_job.destination, "gs://bucket/file.csv")

extract_job.result()

Now, instead of scheduling the query, you will schedule the Cloud Function using
Cloud Scheduler.

7

8

https://cloud.google.com/scheduler/

TIP
Note that the preceding code is invoking extract_table on the temporary table created as a result of
executing the query. This is a fast way to quickly export the result of a query into a comma-separated values
(CSV) file.

Putting table, view, and function creation under version control
Having version control and repeatability is important not just for queries but also for
tables, views, models, stored procedures, and functions. It is preferable, therefore, to
put all creation code into a script that you can invoke every time you want to re-
create the table, view, model, or function in question.

To create a table from a query result, you can use the BigQuery client library and set
the job destination to be the desired table:

from google.cloud import bigquery

client = bigquery.Client()

sql = """

WITH stations AS (

 SELECT [300, 314, 287] AS closed

)

SELECT

 station_id

 , (SELECT name FROM `bigquery-public-data`.london_bicycles.cycle_stations WHERE

id=station_id) AS name

FROM

 stations, UNNEST(closed) AS station_id

"""

job_config = bigquery.QueryJobConfig()

job_config.destination = (

client.dataset('ch10eu').table('stations_under_construction'))

query_job = client.query(sql, location='EU', job_config=job_config)

query_job.result() # Waits for the query to finish

Here’s the equivalent using the DDL approach:

CREATE OR REPLACE TABLE -- or TABLE/MODEL/FUNCTION

ch10eu.stations_under_construction

(

 station_id INT64 OPTIONS(description = 'Station ID'),

 name string OPTIONS(description = 'Official station name')

)

OPTIONS(

 description = 'Stations in London.',

 labels=[("pii", "none")] -- Must be lowercase.

)

AS

WITH stations AS (

 SELECT [300, 314, 287] AS closed

)

SELECT

 station_id

 , (SELECT name FROM `bigquery-public-data`.london_bicycles.cycle_stations WHERE

id=station_id) AS name

FROM

 stations, UNNEST(closed) AS station_id

Note in this example how the table and column descriptions are stored directly within
the CREATE statements in version control. If you already have existing BigQuery
tables, you can query the list of tables and columns in your metadata and
programmatically create those SQL DDL statements through functions.

NOTE
Be careful about using scheduled Cloud Functions that create or replace tables: if you have a Cloud Function
that schedules and reruns the previous statement to REPLACE the table, any changes to the table (including
updated rows and schema descriptions) will be overwritten.

Cost/Billing Exports
It is possible to export your daily usage of GCP services as well as cost estimates
automatically throughout the day to a BigQuery dataset. Watch out, though: this
billing export will include your usage of BigQuery as well!

To enable billing exports, in the GCP Cloud Console, start at the Billing section,
select your billing account and project, select the BigQuery dataset to which to
export the billing data, and then enable BigQuery export.

The billing data is loaded into BigQuery at regular intervals, so it could be a few
hours before you see anything. The frequency of updates in BigQuery varies
depending on the GCP services you’re using.

As with any BigQuery table, you can examine the schema of the exported billing
data in BigQuery and figure out what queries you can run and what dashboards you
can populate. Here are a few places to get started.

9

https://cloud.google.com/bigquery/docs/information-schema-tables#advanced_example

Costs by month by product
To get the monthly invoice amount by product, use this query:

SELECT

 invoice.month

 , product

 , ROUND(SUM(cost)

 + SUM(IFNULL((SELECT SUM(c.amount) FROM UNNEST(credits) c),

 0))

 , 2) AS monthly_cost

FROM ch10eu.gcp_billing_export_v1_XXXXXX_XXXXXX_XXXXXX

GROUP BY 1, 2

ORDER BY 1 ASC, 2 ASC

The monthly cost is the sum of the costs for that product corrected by the sum of the
credits.

Visualizing the billing report
As illustrated in Figure 10-1, a starter Data Studio dashboard for visualizing the
billing data is available.

For details on how to make a copy and start working in Data Studio, see
https://cloud.google.com/billing/docs/how-to/visualize-data.

https://cloud.google.com/billing/docs/how-to/visualize-data

Figure 10-1. Example Data Studio dashboard of the billing export data in BigQuery

Labels
Although obtaining a cost breakdown by product is useful, what you often want is a
cost breakdown by cost center within your organization. To enable this level of detail
in your billing reports, you need to apply labels (which are key/value pairs) to your
GCP resources. Then each row in the billing export will contain values for two
columns, labels.key and labels.value, that correspond to the label applied to the
GCP resource usage for which you’re being billed.

If the labels are based on team or cost center, the key could be team and the value
could be marketing or research. Labels could also be based on environment (e.g.,
key=environment, value=production, or value=test), application, or component.

You can assign labels to GCP resources like Compute Engine virtual machines
(VMs), Dataproc clusters, or Dataflow jobs. Of course, you can also assign labels to
BigQuery datasets, tables, models, and even query jobs.

Here’s how to apply the label “environment:learning” to the dataset ch10eu:

bq update --set_label environment:learning ch10eu

You can also apply labels to table and views in a similar way, but (as of this writing)
table/view labels do not show up in the billing data:

bq update --set_label environment:learning ch10eu.restored_table

It also possible to assign a label when you submit a job through the command line:

bq query --label environment:learning --nouse_legacy_sql 'SELECT 17'

When submitting through the REST API, populate the labels property for the job
resource.

Then the billing export will reflect query costs, and you can aggregate costs by label
for the purpose of apportioning costs between environments, or cost centers, or any
other label key:

SELECT

 invoice.month

 , label.value

 , ROUND(SUM(cost)

 + SUM(IFNULL((SELECT SUM(c.amount) FROM UNNEST(credits) c),

 0))

 , 2) AS monthly_cost

FROM

 ch10eu.gcp_billing_export_v1_XXXXXX_XXXXXX_XXXXXX

 , UNNEST(labels) AS label

WHERE

 label.key = 'environment'

GROUP BY 1, 2

ORDER BY 1 ASC, 2 ASC

Dashboards, Monitoring, and Audit Logging
A key aspect of security is to be able to verify that the security measures are being
effective. Observability of all the resources deployed is very important.

Cloud Security Command Center
The Cloud Security Command Center (SCC) provides a comprehensive security
management and data-risk platform for GCP. By providing visibility into what assets

you have and what security state they are in, Cloud SCC makes it easier to prevent,
detect, and respond to threats. There are built-in threat detectors that can alert you to
suspicious activity.

You can access Cloud SCC from the GCP Cloud Console Security Command Center
Marketplace page and launch asset discovery. After your projects have been scanned,
you can use the Cloud SCC dashboard to look for common problems like an open
port 22 (for Secure Shell [SSH]). After this, asset discovery runs at least once per
day.

Stackdriver monitoring and audit logging
You can use Stackdriver to monitor BigQuery resources. These include visualizations
of metrics such as overall query times, the number of slots available, and more.
BigQuery also automatically sends audit logs to Stackdriver Logging. Stackdriver
Logging allows users to filter and export messages to other services, including Cloud
Pub/Sub, Cloud Storage, and BigQuery.

In addition to providing long-term log retention functionality, log exports to
BigQuery are recommended as a way to provide the ability to do aggregated analysis
on logs data. Here is a query that estimates costs (before any discounts are applied)
by user identity:

WITH data as

 (

 SELECT

 protopayload_auditlog.authenticationInfo.principalEmail as principalEmail,

 protopayload_auditlog.servicedata_v1_bigquery.jobCompletedEvent AS

jobCompletedEvent

 FROM

 ch10.cloudaudit_googleapis_com_data_access_2019*

)

 SELECT

 principalEmail,

 SUM(jobCompletedEvent.job.jobStatistics.totalBilledBytes)/POWER(2, 40)) AS

Estimated_USD_Cost

 FROM

 data

 WHERE

 jobCompletedEvent.eventName = 'query_job_completed'

 GROUP BY principalEmail

 ORDER BY Estimated_USD_Cost DESC

BigQuery audit logs are reported as the protoPayload.metadata within a LogEntry
message. They are organized into three streams: admin activity, system events, and

https://cloud.google.com/bigquery/docs/reference/auditlogs/

data access. The admin activity includes events such as job insertions and
completions. System events are events such as the TableDeletion event logged when
a table or partition expires and is removed. The data access stream contains
information about new jobs, jobs that changed state, table data changes, and table
data reading.

Availability, Disaster Recovery, and Encryption
BigQuery architecture contributes significantly to its reliability. For instance, the
serverless aspect of the service means that virtually any hardware component can fail
and it will have little to no impact on BigQuery’s ability to run queries. Unlike many
systems that are tied to particular virtual machines (VMs) or nodes, BigQuery runs in
a giant shared pool of servers and can redirect traffic nearly instantaneously from one
location to another.

Zones, Regions, and Multiregions
In GCP, there are three different types of service locations. Zones are compute
clusters, generally located within a single building. Zones have fairly high
availability, but if there is a major hardware failure (there’s a fire, or a transformer
gets fried, for example), the zone can go offline. Sometimes services have problems
within a single zone that aren’t related to hardware. A high rate of requests could
cause some service to crash, and that will cause problems with dependent services.
Resilient services, such as BigQuery, are designed to withstand any zonal problem
seamlessly.

Regions, on the other hand, are metro-wide locations that consist of multiple zones
with uncorrelated failures. Regions tend to be spread across multiple buildings within
a large campus. In general, it is very rare for an entire region to be taken offline.
Natural disasters can, however, cause regions to go offline. Predictable natural
disasters, like hurricanes, can generally be preceded by an ordered shutdown of the
region so that no data is lost. Unpredictable disasters, like earthquakes, could cause
services to lose data in a region as well as prevent the region from starting up again
when the disaster has passed.

Multiregions are the most resilient; they generally imply some flexibility in their
location, being spread over multiple datacenters separated by hundreds of miles. For
example, the EU multiregion consists only of physical datacenters that are part of the
European Union. Which specific datacenters? Is the Frankfurt datacenter in the EU?

How about the Finland one? Some services, like Google Cloud Storage, are explicit
about which regions comprise the multiregions. Others, like BigQuery, give only
vague guidelines to where multiregional data is located in order to preserve
flexibility in both compute and data placement.

BigQuery and Failure Handling
One way of predicting how well a service will handle a particular type of failure is to
note how often the failure happens; if failures happen very infrequently, the service is
usually untested and liable to have bugs or other problems. Services at Google are
designed to be able to handle virtually any type of hardware and even software
failure and keep running. Not only are they designed this way, but they are tested
rigorously to make sure the failure paths are exercised routinely. Let’s discuss some
different types of failures and how BigQuery responds.

Disk failures
Spinning disks have moving parts, and like many things with moving parts, they fail
pretty frequently. Because of the way data is encoded in Colossus (the storage
infrastructure that underlies BigQuery; see Chapter 6) using erasure encoding, lots of
disks can fail without any loss of data. If you have 100,000 disks, you can expect that
dozens will fail every day. If you consider that routine maintenance can cause some
disks to be unavailable, the number is probably in the hundreds. If there is a power
outage, when disks start up again you can lose a lot more. Even with all of these
factors, losing data due to hardware failure in BigQuery would be extremely rare.

When a disk fails, Colossus detects it and replicates the data to another disk. Google
Datacenter Hardware Operations staff will remove the disk and securely destroy it.
Software and services using that disk will not notice any disruption, other than
certain requests perhaps taking a few milliseconds longer to complete.

Machine failures
Despite all attempts to keep servers up and running for long periods of time, they
crash. Operating systems have bugs, cosmic rays corrupt memory, CPUs die, power
supplies fail, software has memory leaks, and lots of other things can go wrong. The
common approach in server software is to add redundancy and hardening to prevent
these types of failures. Expensive servers have backup power supplies and hot-
swappable memory and CPUs, so the server never needs to go down.

10

Google, as a philosophy, takes a different approach. Google datacenters are set up so
that they expect any machine to die at any time. Software must be written in a way
that handles this. In order to allow any machine to die at any time, Google invented a
number of scale-out distributed systems, like MapReduce, Google File System (GFS,
the precursor to Colossus), and Dremel.

BigQuery servers crash all the time. When you have hundreds of thousands or
millions of independent workers running, some of those are going to hit problems.
Virtually any BigQuery server can crash at any time and users will not see more than
a small hiccup in their queries. The cluster management software that runs Google
datacenters, Borg, will restart any tasks that don’t respond to a health check within a
few seconds, sometimes on a different machine. For the most part, even the software
running in the query engine doesn’t notice these problems; it just retries on a
different task and keeps going.

Even larger problems, like rack failures or network switch failures, are handled
transparently. Because of the scale of the datacenter clusters, if a rack or switch fails,
it will affect only a few of the tasks running the service, so the service can route
around the problem. Nobody gets paged, except perhaps the hardware operations
personnel in the datacenter who will need to address the issue directly. But the
service operations (SRE) staff sleep soundly.

Zonal failures
So what happens when there are larger failures in which the built-in self-healing can
no longer automatically handle the problem? To be clear, these failures are pretty
rare. Zones are designed for high resilience to hardware and network failures.
Anything that can cause the zone to go offline, like network switches or transformers,
usually has a redundant backup. But there have been cases in which someone cuts the
wrong fiber cable with a backhoe, or transformers catch fire, and it causes a zone-
wide outage.

Some services, like Google Compute Engine, are, as of this writing, tied to a single
availability zone. If that zone goes down, the VM instances in that zone go down.
BigQuery, on the other hand, is designed to be able to handle almost all zonal
failures. In BigQuery, all Cloud Projects have a primary and a secondary location. If
there is an outage in the primary location, BigQuery will seamlessly fail over to the
secondary location.

There are two types of zonal failures: soft and hard. Soft failures mean that there are
problems in the zone but things are still progressing, perhaps with degraded capacity.

Soft failures are often the result of a software failure, rather than a hardware issue.
Perhaps quota servers are failing, or Bigtable is stuck, or the BigQuery scheduler is
taking too long to schedule. Hard failures mean that the zone is down. Maybe it had a
power failure or some sort of unrecoverable hardware issue.

BigQuery reacts to soft failures by proactively draining the zone. A drain means that
new queries are sent somewhere else, but existing queries are allowed to continue.
New requests are routed to the secondary zone. Queries that are in progress might be
allowed to continue; if, however, the outage is severe enough, they will be restarted
in the new secondary zone.

Soft failures happen fairly frequently. BigQuery operates in dozens of availability
zones around the world, and the odds of some service behaving badly on some zone
somewhere is pretty high. The good news is that this allows BigQuery to exercise
failover code, and users almost never actually notice any hiccup.

Hard failures are much rarer; they generally mean that the entire zone is undergoing
severe problems. In the event of a hardware zonal failure, users might notice
disruption; existing queries will be cancelled and restarted in the new zone, for
example, so they might take up to twice as long to complete. And particularly bad
zonal failures could mean that recent data has not been replicated to the secondary
zone, and will be unavailable until the zone is brought back online. In the event this
happens, queries to the affected tables will fail. BigQuery would rather fail queries
than return inconsistent data.

Regional failures
The next level of failure type is a failure in which an entire region goes offline. This
is much rarer than a zonal outage. Like zones, regions can have soft failures in which
the entire region needs to be neatly shut down. Regions that are in the path of a
hurricane might be shut down cleanly before the hurricane hits. By going into
shutdown before the arrival of the storm, Google can minimize the chance of data
loss when the region is restarted, or in the rare event that the region is damaged. A
power outage shouldn’t cause a region to go down because there are backup systems
in place, but if the power outage lasts too long, the backup systems can run out of
capacity, and so an orderly shutdown of the region would be initiated.

Regions can have hard failures, too, but these are even more rare. Like many “black
swan”–type events, it is difficult to estimate how rare they are in practice. A
catastrophic earthquake could take down a region with little or no warning. Other
extreme weather events or natural disasters could also occur unexpectedly. A hard

11

region failure could cause damage to hardware and could mean that data not
replicated offsite could be lost.

As of this writing, single-region BigQuery locations (asia-east1, or europe-
north1, for example) do not store a physical copy in another site. In general, the
reason is that there might not be a place to store a backup copy in another location
without violating customers’ requirements for their data. For example, Singapore is
an island only about 30 miles across; if a customer requires that their data is not
stored outside of Singapore for regulatory purposes, there isn’t much opportunity to
store the data elsewhere. However, before making any durability assumptions about
your data, you should check the up-to-date documentation provided by Google.

Multiregional BigQuery locations, like the US and the EU, store a backup copy
offsite in another region. In the event of a catastrophic failure of a region, the data
would be safe. However, it might take some time before that backup becomes
available.

Durability, Backups, and Disaster Recovery
To summarize the replication story for BigQuery:

Multiregional data is replicated to at least two regions (single-region data is
only in one).

All data is replicated to two availability zones.

Within an availability zone, data is encoded using erasure encoding.

The offsite backups are also protected by a secondary mechanism to prevent
accidental deletion; they use a feature of disk firmware that prevents deletion until a
certain period of time has passed. This means that if there were a code bug in
BigQuery that overzealously deleted data, low-level firmware systems on the disk
would prevent the data from being physically deleted immediately.

If data is accidentally deleted by a customer, BigQuery’s time-travel feature can
come in handy. Users can query the table as of a time before the data was deleted,
using the SYSTEM_TIME AS OF syntax (see Chapter 8). Moreover, you can copy the
table as of a particular time by using tablename@timestamp in the copy job.

This technique of copying the old snapshot of the data is useful if you need to
undelete a table. To undelete, you should copy the old table name as of a timestamp
that the table existed to a new destination table. Note that if you delete a table and

then re-create one with the same name, it will become unrecoverable, so you should
be careful. As of this writing, time travel for deleted tables is available for only 48
hours after the table was deleted, which is shorter than the normal seven-day time
travel period.

Privacy and Encryption
Google takes security and privacy very seriously. All data in BigQuery is encrypted
at rest and encrypted when it is transferred over the network. Encryption on disk is
done transparently through Colossus file encryption. Streaming data is encrypted in
Bigtable or in log files. Metadata is encrypted in Spanner. Network traffic is
encrypted transparently through the use of Google’s internal Remote Procedure Call
(RPC) protocols. Someone with physical disk access or with a network tap wouldn’t
be able to access data in the clear.

Access transparency
Google takes a number of steps to safeguard access to the data. To ensure the safety
and reliable running of the system, only a small number of on-call engineers can get
access to user data. The Access Transparency program in GCP means that whenever
someone at Google accesses your data, you are notified through audit log records. It
is generally as simple as that; if someone reads your data, you can find out about it.

Virtual Private Cloud Service Controls
Virtual Private Cloud Service Controls (VPC-SC) is a mouthful to pronounce, but it
is a mechanism that gives you fine-grained control over how services can be
accessed and where data can flow within GCP. For example, you can limit BigQuery
access to a narrow range of IP addresses from your company’s network. Or you can
ensure control over how data flows between services by preventing data export from
BigQuery to Google Cloud Storage. Alternatively, you might allow export to Google
Cloud Storage, but only to Cloud Storage buckets that are owned by your
organization.

VPC-SC is not merely a BigQuery feature; it is a feature that works across a number
of GCP products. This lets you create one overall policy describing data exfiltration
and movement policies. You might decide that you don’t want people to access
BigQuery at all (that seems like a shame, though). For more information on VPC,
check out the Google Cloud Documentation.

Customer-Managed Encryption Keys

https://cloud.google.com/vpc/docs/

All data is encrypted at rest in BigQuery, but what if you want to make sure that your
data is encrypted with your own keys? In these cases, you can use Customer-
Managed Encryption Keys (CMEK) in BigQuery. You can manage your keys in
Cloud KMS, GCP’s central key management service. You can then designate datasets
or tables that you want to be encrypted using those keys.

BigQuery uses multiple layers of key wrapping; that is, the master keys aren’t
exposed outside of KMS. Every CMEK-protected table has a wrapped key as part of
the table metadata. When BigQuery accesses the table, it sends a request to Cloud
KMS to unwrap the key. The unwrapped table key is then used to unwrap separate
keys for each file. There are a number of advantages to this key-wrapping protocol
that reduce the risk should an unwrapped key be leaked. If you have an unwrapped
file key, you can’t read any other files. If you have an unwrapped table key, you can
only unwrap file keys after you pass access control checks. And Cloud KMS never
discloses the master key. If you delete the key from KMS, the other keys can never
be unwrapped (so be careful with your keys!).

Regulatory Compliance
Most organizations are subject to government regulations of one form or another, and
your organization probably defines compliance requirements for software and
analysis teams so as to follow those regulations and stay on the right side of the law.
In this section, we look at BigQuery features that can help you provide support for
such regulatory compliance. But remember: it is always your responsibility to work
with your legal counsel to determine whether implementing any of these tools and
capabilities will satisfy your regulatory or compliance requirements.

Data Locality
Many governments around the world regulate where data can be stored, and
BigQuery enforces that queries on any dataset are run only in a datacenter where that
dataset is available. Hence, controlling data locality is done at the time a dataset is
created. For example, here’s how to create a dataset in the asia-east2 region
(located in Hong Kong):

bq --location=asia-east2 mk --dataset ch10hk

Two types of locations are supported by BigQuery: regional and multiregional. The
Hong Kong region is an example of a regional location and represents a specific
geographic place. The other type of location is a multiregional location (like the US
or the EU) that contains two or more regional locations. For an up-to-date list of
supported locations, refer to the BigQuery documentation.

As explained in Chapter 6, BigQuery determines the location to run a job based on
the project defaults, reservations, and datasets referenced in the request. It is also
possible to explicitly specify the location in which to run a job, whether the job is
submitted through the BigQuery web UI (set Processing Location in Query Settings),
the REST API (specify the location property in the jobReference section), or the
bq command-line tool (specify --location). If a query cannot be run in the location
specified (such as if the location is specified as US but the data is in the EU),
BigQuery returns an error.

Moving data directly between regions is not currently possible other than with the
BigQuery Data Transfer Service, but there is one exception: you can move data from
a US multiregional Cloud Storage bucket to a BigQuery dataset in any region or
multiregional location. If you are loading data into BigQuery from a regional Cloud
Storage bucket, the bucket must be colocated with the BigQuery dataset (for
example, both need to be in asia-east2) unless the bucket in question is in the US
multiregion.

If you cannot use the BigQuery Data Transfer Service, moving BigQuery data
between locations will involve a few hops: export the data from BigQuery to Google
Cloud Storage in the same region, transfer the data to Cloud Storage in the target
region, and load it into a BigQuery dataset. Note that you will incur extra storage
costs for the time period that you have data in Cloud Storage, and network egress
charges for transferring data between regions in Cloud Storage.

Restricting Access to Subsets of Data
To restrict access to an entire dataset, you can use IAM. But in many cases, tables
might contain sensitive data and what you want is to restrict access to parts of a table.
You can do that with authorized views or dynamic filters, or through fine-grained
access control.

Authorized views
An authorized view allows you to use an SQL query to restrict the columns or rows
that the users are able to query. For example, suppose that you have a set of users

12

https://cloud.google.com/bigquery/docs/locations

who are allowed to view only a specific subset of columns and rows from our
london_bicycles dataset. You could do this by sharing with them, not the original
dataset, but the dataset ch10eu, which contains this view:

CREATE OR REPLACE VIEW ch10eu.authorized_view_300 AS

SELECT

 * EXCEPT (bike_id, end_station_priority_id)

FROM

 [PROJECTID].ch07eu.cycle_hire_clustered

WHERE

 start_station_id = 300 OR end_station_id = 300

Now users granted access to this view will not be able to access the bike_id column
or information from any stations other than the one whose ID is 300. Grant users
access to this view by sharing the dataset that it is part of. From the BigQuery web
UI, select the target dataset (ch10eu) and click Share Dataset, and then share it with
the desired user or Google group. To try it out, share this dataset with a second
Google Account you have access to with the BigQuery User role, as demonstrated
in Figure 10-2.

Figure 10-2. Providing access to the dataset (ch10eu) containing the authorized view

However, the authorized view itself needs to be able to access the original dataset.
You can do that by selecting the source dataset (ch07eu) in the BigQuery web UI,
clicking Share Dataset, and then, in the Dataset permissions panel, choosing the
authorized view to allow, as shown in Figure 10-3.

Figure 10-3. Providing the authorized view in ch10eu access to the source dataset in ch07eu

Now when you visit the following URL (replace [PROJECT] by your project name):

https://console.cloud.google.com/bigquery?p=[PROJECT]&d=ch10eu&page=dataset

in a window where you are logged in as the other Google account, you will be able to
view the dataset ch10eu, but not the dataset ch07eu. You will also be able to query
the view:

SELECT AVG(duration)

FROM [PROJECT].ch10eu.authorized_view_300

Note that this average duration will be over trips that started or ended at station ID
300 because of the way that the view is constructed.

NOTE
Authorized views are simple only as long as you don’t have layered views (views calling views calling
views...). When you have layered views, the SQL effectively contains references to many tables, and those
tables will often reside in different datasets. This can become challenging to administer because the Access
Control Lists (ACLs) now need to be chained across all the views/datasets.

Dynamic filtering based on user
In the previous section, we built a view that filters the full dataset to show a subset of
columns and rows to anyone who has access to that view. But what if you want to
filter the rows in the table based on who the logged-in user is? To accomplish that,
use the built-in function SESSION_USER, as shown in the example that follows.

To illustrate, suppose that you want to create a view to flag the top 10 transactions
over $1,000,000 for manual review, but you want to restrict it to the transactions
from the same company as the viewer:

CREATE OR REPLACE VIEW ecommerce.vw_large_transactions

OPTIONS(

 description="large transactions for review",

 labels=[('org_unit','loss_prevention')],

 expiration_timestamp=TIMESTAMP_ADD(CURRENT_TIMESTAMP(), INTERVAL 90 DAY)

)

AS

SELECT

 visitorId,

 REGEXP_EXTRACT(SESSION_USER(), r'@(.+)') AS user_domain,

 REGEXP_EXTRACT(visitorEmailAddress, r'@(.+)') AS customer_domain,

 date,

 totals.transactions,

 totals.transactionRevenue,

 totals.totalTransactionRevenue,

 totals.timeOnScreen

FROM `bigquery-public-data`.google_analytics_sample.ga_sessions_20170801

WHERE

 (totals.totalTransactionRevenue / 1000000) > 1000

 AND REGEXP_EXTRACT(visitorEmailAddress, r'@(.+)') =

 REGEXP_EXTRACT(SESSION_USER(), r'@(.+)')

ORDER BY totals.totalTransactionRevenue DESC

LIMIT 10

13

Notice that the view filters the transactions to reflect only transactions from the same
domain as the viewer, so that someone from @example.com can review large
transactions from @example.com but not those from @acme.com.

Removing All Transactions Related to a Single Individual
Suppose that you are storing user transaction data in BigQuery and receive a request
to remove all records of transactions by userId=xyz from the data warehouse. There
are two ways you might be able to accomplish this (always check with your legal
counsel whether this method is sufficient in your jurisdiction if the removal is
pursuant to a legal requirement): using DML, and using crypto-shredding.

DML

You can use DML to DELETE the rows in each table that contain user data:

DELETE someds.user_transactions

WHERE

 userId = 'xyz'

Make sure to also delete the rows in any and all of your backups and temporary
tables. The deleted rows are recoverable for up to seven days, so if there is a time
limit within which the erasure must be carried out, make sure to start at least seven
days earlier. As discussed in Chapter 8, it is more efficient to batch up these sorts of
deletes and remove records for a group of users using a MERGE.

Crypto-shredding
The second way to carry out erasure of records is to plan for it by assigning a unique
encryption key to each userId and encrypting all sensitive data corresponding to a
user with that encryption key. This has the advantage of maintaining user privacy as
well. To remove the records for a user, you can simply delete the encryption key.
This approach has the advantage that it immediately makes the user records unusable
(as long as the deleted key is not recoverable) in all the tables in your data
warehouse, including backups and temporary tables.

As an illustration, assume that each bike in the london_bicycles dataset is a
“person” for whom we want to remove all data. In particular, we do not want to
expose the stations that the bike is traveling between at any point in time.

The first step is to create a table of a keyset for each distinct bike_id in the dataset:

CREATE OR REPLACE TABLE ch10eu.encrypted_bike_keys AS

WITH bikes AS (

 SELECT

 DISTINCT bike_id

 FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

)

SELECT

 bike_id, KEYS.NEW_KEYSET('AEAD_AES_GCM_256') AS keyset

FROM

 bikes

Now the encrypted_bike_keys table looks as follows, with a keyset for each
distinct bike_id in the original dataset:

Row bike_id keyset

1 3792 CJ/erfEIEmQKWAowdHlwZS5nb29 nbGVhcGlzLmNvbS9nb29nbGUuY3J5cHRvLnRpbmsuQ
WVzR2NtS2V5EiIaIB0bdZJ8s faEzaN8RyShvuCZL5r0OXf7EztsBLB9V1tM
GAEQARif3q3xCCAB

2 5331 CKSmz/ILEmQKWAowdHlwZS5nb29nbGVhcGlzLmNvbS9nb29nbGUuY3J5cHRvLnRpbmsu
QWVzR2NtS2V5EiIaIKtZqxsil9t41Sv6lTK AWEi/wxLS0cizdbCDWVPpcI8
JGAEQARikps/yCyAB

We can use this keyset to encrypt any individual’s data in the cycle_hire data (in
our case, let’s assume that data includes the stations the bike is traveling between as
well as the specific timestamps). First, we create a pair of helper functions to encrypt
the individual’s data because some of the sensitive columns are integers and other
columns are strings:

CREATE TEMPORARY FUNCTION encrypt_int(keyset BYTES, data INT64, trip_start

TIMESTAMP) AS (

 AEAD.ENCRYPT(keyset, CAST(data AS STRING), CAST(trip_start AS STRING))

);

CREATE TEMPORARY FUNCTION encrypt_str(keyset BYTES, data STRING, trip_start

TIMESTAMP) AS (

 AEAD.ENCRYPT(keyset, data, CAST(trip_start AS STRING))

);

Then we can join against the encrypted keys using the bike_id to get the encryption
keyset to use for each row and invoke the encryption helper functions:

CREATE OR REPLACE TABLE ch10eu.encrypted_cycle_hire AS

SELECT

 cycle_hire.* EXCEPT(start_station_id, end_station_id,

 start_station_name, end_station_name)

 , encrypt_int(keyset, start_station_id, start_date) AS start_station_id

 , encrypt_int(keyset, end_station_id, start_date) AS end_station_id

 , encrypt_str(keyset, start_station_name, start_date) AS start_station_name

 , encrypt_str(keyset, end_station_name, start_date) AS end_station_name

FROM

 `bigquery-public-data`.london_bicycles.cycle_hire

JOIN

 ch10eu.encrypted_bike_keys

USING (bike_id)

This table was built by encrypting each column of sensitive data (here,
start_station_id, end_station_id, start_station_name, and
end_station_name) by a keyset unique to the bike_id (recall that the bike_id is
the “person” whose privacy we are preserving). The third argument to the ENCRYPT
function is “extra” data that can be used to ensure that decryption is allowed only in
context. Here, we are using the start_date as the context. Had we not done this, it
would have been possible for someone who is provided access to the table to swap in
a different row corresponding to this bike and get the plain text of the bike’s location.
Now, because the context (start_date) is different, this sort of attack by an insider
will not be possible.

To query the encrypted table, you need to decrypt the data before querying. For
example, to find stations with the longest duration rentals, you would need to do the
following:

CREATE TEMPORARY FUNCTION

 decrypt(keyset BYTES, encrypted BYTES, trip_start TIMESTAMP) AS (

 AEAD.DECRYPT_STRING(keyset, encrypted, CAST(trip_start AS STRING))

);

WITH duration_by_station AS (

 SELECT

 duration

 , decrypt(keyset, start_station_name, start_date) AS start_station_name

 FROM

 ch10eu.encrypted_cycle_hire

 JOIN

 ch10eu.encrypted_bike_keys

 USING (bike_id)

)

SELECT

 start_station_name

14

 , AVG(duration) AS duration

FROM

 duration_by_station

GROUP BY

 start_station_name

ORDER BY duration DESC

LIMIT 5

Here is the result, as expected:

Row start_station_name duration

1 Stewart’s Road, Nine Elms 4836.380090497737

2 Contact Centre, Southbury House 4364.000000000001

3 Speakers’ Corner 2, Hyde Park 4006.0086554245627

4 Speakers’ Corner 1, Hyde Park 3710.4661268713203

5 Black Lion Gate, Kensington
Gardens

3588.0120035566083

Note that we cannot simply group by the encrypted value: because the encryption is
nondeterministic (i.e., involves salting), there are many more encrypted station
names than there were in the original table:

SELECT COUNT (DISTINCT start_station_name)

FROM ch10eu.encrypted_cycle_hire

This returns 24369201, whereas

SELECT COUNT (DISTINCT start_station_name)

FROM `bigquery-public-data`.london_bicycles.cycle_hire

returns just 880.

The query to compute the stations with the longest rentals is much slower (more than
two times slower) than if we did not need to do decryption. The trade-off is that, if
necessary, we can simply drop the keyset corresponding to a bike_id in order to
forget it:

DELETE ch10eu.encrypted_bike_keys

WHERE bike_id = 300

When you need to delete all data relating to an individual, the method you use—
DML or crypto-shredding—should be based on whether you want your technical
overhead to be in the form of maintenance or in the form of computational
complexity, respectively.

Data Loss Prevention
In many cases, you might not even know where sensitive data exists. It can therefore
be helpful to scan BigQuery tables looking for known patterns such as credit card
numbers, company confidential project codes, and medical information. The result of
a scan can be used as a first step to ensure that such sensitive data is properly secured
and managed, thus reducing the risk of exposing sensitive details. It can also be
important to carry out such scans periodically to keep up with growth in data and
changes in use.

You can use the Cloud Data Loss Prevention (Cloud DLP) to scan your BigQuery
tables and to protect your sensitive data. Cloud DLP is a fully managed service that
uses more than 90 built-in information type detectors to identify patterns, formats,
and checksums. It also provides the ability to define custom information type
detectors using dictionaries, regular expressions, and contextual elements. Cloud
DLP includes a set of tools to de-identify your data, including masking, tokenization,
pseudonymization, date shifting, and more, all without replicating customer data.
Besides its use in BigQuery, Cloud DLP can also be used within streams of data and
files in Google Cloud Storage, and within images. Finally, it can be used to analyze
structured data to help understand the risk of reidentification, including
computation of metrics like k-anonymity.

To scan a BigQuery table, select it in the Cloud Console and then choose Export >
Scan with DLP, configuring it to look for specific forms of data, as depicted in
Figure 10-4.

15

16

https://en.wikipedia.org/wiki/K-anonymity

Figure 10-4. Scanning a BigQuery table using Cloud DLP

To redact or otherwise de-identify sensitive data that the Cloud DLP scan found,
protect the data with Cloud KMS keys, which we discuss in the next section.

CMEK
BigQuery employs envelope encryption to encrypt table data without any additional
actions on your part. In envelope encryption, the data in a BigQuery table is first
encrypted using a data encryption key (DEK), and then the DEKs are encrypted by a
key encryption key. For each GCP customer, any nonshared resources are split into
data chunks and encrypted with keys separate from keys used for other customers.
These DEKs are even separate from those that protect other pieces of the same data
owned by that same customer. Key encryption keys are then used to encrypt the data
encryption keys that Google uses to encrypt your data. These key encryption keys
(KEKs) are managed centrally in the Google Key Management Service (KMS), as
shown in Figure 10-5.

Figure 10-5. Envelope encryption with DEKs and KEKs; the KEKs are managed centrally in a KMS, which
rotates keys through the use of a key ring

Encryption helps to ensure that if the data accidentally falls into an attacker’s hands,
they cannot access the data without also having access to the encryption keys. Even
if an attacker obtains the storage devices containing your data, they won’t be able to
understand or decrypt it. Encryption also acts as a “chokepoint”—centrally managed
encryption keys create a single place where access to data is enforced and can be
audited. Finally, encryption contributes to the privacy of customer data; it allows
systems to manipulate data—for backup, for example—and engineers to support the
infrastructure without providing access to content.

If regulations require that you control the keys used to encrypt your data, you may
find CMEK a useful tool. Recall that key encryption is used to encrypt the DEKs,
which are used to encrypt the data chunks, and that the key encryption keys are
stored and managed centrally. You’ll typically want to do the same if you are
managing key encryption yourself; you’ll run the KMS in a central project and use
those keys to encrypt table data in all your organization’s projects.

In Cloud KMS, a key belongs to a key ring, which resides in a particular location. In
the central project where you are running Cloud KMS, create a key ring and a key,
specifying a rotation period of the keys:

gcloud kms keyrings create acmecorp --location US

gcloud kms keys create xyz --location US \

 --keyring acmecorp --purpose encryption \

 --rotation-period 30d \

 --next-rotation-time 2019-07-01T12:00:00Z

The key ring should be created in a location that matches the location of your
BigQuery datasets. For example, a dataset in region US should be protected with a
key ring from region US, and a dataset in asia-northeast1 should be protected with
a key ring from asia-northeast1.

The Cloud KMS keys are used as key encryption keys in BigQuery, in that they
encrypt the DEKs that encrypt your data. So, having created the key, you need to
allow the BigQuery service account in every project (not the KMS project) to use the
key to encrypt and decrypt data:

SVC=$(bq show --encryption_service_account)

gcloud kms keys add-iam-policy-binding \

 --project=[KMS_PROJECT_ID] \

 --member serviceAccount:$SVC

 --role roles/cloudkms.cryptoKeyEncrypterDecrypter \

 --location=US \

 --keyring=acmecorp \

 xyz

When creating tables, specify the key to be used:

bq mk … --destination_kms_key \

projects/[PROJECT_ID]/locations/US/keyRings/acmecorp/cryptoKeys/xyz \

mydataset.transactions

Beyond this configuration of tables at creation time, no special arrangements are
required to query a table protected by Cloud KMS. BigQuery stores the name of the
key used to encrypt the table content and will use that key when a table protected by
Cloud KMS is queried. All existing tools, the BigQuery web UI, and the bq
command-line interface run the same way as with default-encrypted tables, as long as
BigQuery has access to the Cloud KMS key used to encrypt the table content.

Data Exfiltration Protection
Virtual Private Cloud (VPC) Service Controls allow users to define a security
perimeter around Google Cloud Platform resources such as Cloud Storage buckets
and BigQuery datasets, to help mitigate data exfiltration risks by constraining data to
stay within the VPC perimeter. Combined with Private Google Access, it is possible
to set up a hybrid cloud environment of cloud and on-premises deployments to help
keep sensitive data private.

VPC Service controls provide an additional, context-based perimeter security beyond
the identity-based access control offered by Cloud IAM. Using VPC Service
Controls, you can mitigate security risks associated with access from unauthorized
networks using stolen credentials, data exfiltration by disgruntled insiders, and
inadvertent exposure of private data due to misconfigured IAM policies. It is possible

to use VPC Service Controls to prevent reading data from or copying data to a
resource outside the perimeter using tools such as gsutil and bq.

To set up VPC Service Controls, go to the VPC Service Controls section of the GCP
console and add a new perimeter. You can then specify the projects and services
within those projects that are allowed to communicate with each other within the
perimeter. For example, suppose you choose only Project A and two services:
BigQuery and Cloud Storage. Then it will be possible to load data from GCS into
BigQuery and export data from BigQuery to GCS but only to buckets owned by the
same project. It will not be possible to load data into BigQuery from buckets owned
by other projects or export data from BigQuery into buckets owned by other projects.
The same goes for copying data between buckets or querying datasets that are part of
other projects. You can, of course, have two projects within the perimeter to allow
interproject communication (but only between those two projects).

Summary
In this chapter, we described the infrastructure security that underlies BigQuery and
discussed how users and applications can be authenticated and authorized using
IAM. We then discussed a variety of tools that can help you fulfil your regulatory
and compliance needs. We’d like to reiterate, however, that it is always your
responsibility to work with your legal counsel to determine whether implementing
any of these tools and capabilities will satisfy your regulatory or compliance
requirements.

Thank you for sticking with us through a wide-ranging tour of BigQuery. We began
with an introduction to the service in Chapter 1, delved into the SQL syntax in
Chapter 2, described data types in Chapter 3, covered ingest in Chapter 4, and
examined the development environment in Chapter 5. We started to go beyond the
basics in Chapter 6 with a description of BigQuery’s architecture. In Chapter 7, we
covered a variety of performance tips, and in Chapter 8, we poked around in some of
the nooks and crannies of BigQuery capabilities. Chapter 9 was devoted to machine
learning in BigQuery, and in this chapter we focused on security. Because BigQuery
is a serverless SQL enterprise data warehouse that was designed to be knob free, we
were able to use this book to focus on analyzing data to find meaningful insights. We
hope that you will enjoy working with BigQuery and be exceedingly successful with
it!

1 For information, see https://console.cloud.google.com/apis/credentials/serviceaccountkey and
https://cloud.google.com/iam/docs/creating-managing-service-accounts#creating_a_service_account.

2 These are essentially like G Suite domains, but they don’t have access to G Suite applications. To manage
users who don’t need G Suite or premium features like mobile device management, you can create free
Cloud Identity accounts for them—see https://support.google.com/cloudidentity/answer/7319251.

3 Note that allUsers, although allowed by GCP, doesn’t have any effect in BigQuery because all BigQuery
users must be authenticated.

4 Cancelled jobs are still charged.

5 Recall that BigQuery data is stored in a specific region or multiregion. Queries will need to run where the
data is located, and the job metadata is also stored regionally.

6 Create the output dataset ch10eu in the EU location first.

7 Also, the encompassing dataset should not have been deleted or re-created. See
https://cloud.google.com/bigquery/docs/managing-tables#undeletetable.

8 Cloud Functions have a configurable timeout, but the maximum value as of this writing is nine minutes.

9 Create a dataset if necessary.

10 Of course, extenuating circumstances, code bugs, natural disasters, and so on could cause data loss. But as
designed, the probability of data loss is very low. If you had 1 PB of data stored and every day 1,000 disks
in a single zone crashed, after a million years, there would be less than 0.01% chance that you’d lose data.

11 These are unexpected and very rare events of large magnitude and consequence; the name refers to a
theory put forward by Nassim Nicholas Taleb in his book, The Black Swan: The Impact of the Highly
Improbable (Random House).

12 As of this writing, data stored in the EU multiregion is not stored in Zurich or London.

13 The referenced dataset is public but, for PII reasons, doesn’t include visitor email addresses. So the query
won’t work as-is. However, it is illustrative.

14 For example, suppose that a programmer uses an authorized application that displays a bike’s location at
the current time. If they also had the ability to modify the application, they would be able to swap the bike’s
encrypted current location by the encrypted location at an earlier time and get the application to map it.
This way, they would get the bike’s location history without ever knowing the encryption keys. If we use
start_date as an additional field, however, this sort of attack is not possible, because the earlier location
was encrypted with additional data consisting of the start_date of the trip being encrypted and it is not
possible to decrypt it with the latest date. Any metadata that provides this sort of context can be used as
extra data to the AEAD encryption function.

15 See https://cloud.google.com/dlp/docs/. As of this writing, Cloud DLP was a global service. If you have
data location requirements, check whether this is still the case.

16 See https://en.wikipedia.org/wiki/Data_re-identification. This is the risk that anonymized data can be
matched with auxiliary data to reidentify the individual with whom the data is associated.

https://console.cloud.google.com/apis/credentials/serviceaccountkey
https://cloud.google.com/iam/docs/creating-managing-service-accounts#creating_a_service_account
https://support.google.com/cloudidentity/answer/7319251
https://cloud.google.com/bigquery/docs/managing-tables#undeletetable
https://cloud.google.com/dlp/docs/
https://en.wikipedia.org/wiki/Data_re-identification

Index

Symbols

! (exclamation mark), lines in Jupyter Notebook preceded by, Notebooks on
Google Cloud Platform

! (logical negation) operator, Comparisons

!= (not-equals) comparison operator, Comparisons

(pound sign), comments beginning with, Retrieving Rows by Using
SELECT

$ (dollar sign), end of string matching in regular expressions, Regular
Expressions

% (percent sign)

enclosing named parameters, Named parameters

lines in Jupyter Notebook preceded by, Notebooks on Google Cloud
Platform

%%bigquery Magics (see Jupyter)

& (bitwise AND) operator, Numeric Types and Functions, Comparisons

() (parentheses)

controlling order of evaluation, Filtering with WHERE

enclosing subqueries, Subqueries with WITH

grouping in regular expressions, Regular Expressions

, (comma)

comma cross join, CROSS JOIN

in correlated CROSS JOIN, Using arrays for generating data

leading commas in SELECT clause, Creating Arrays by Using
ARRAY_AGG

- (hyphen), escaping in dataset name, Retrieving Rows by Using SELECT

-- (double dash), comments beginning with, Retrieving Rows by Using
SELECT

; (semicolon) separating statements in a script, A sequence of statements

<, <=, >, >=, and != (or <>) comparison operators, Comparisons

using with Boolean variables, Logical Operations

<< (bitwise) operator, Numeric Types and Functions

<> (not-equals) comparison operator, Comparisons

>> (bitwise) operator, Numeric Types and Functions

? (question mark), in positional parameters, Positional parameters

?: (capture group) in regular expressions, Regular Expressions

@ (at symbol), marking named parameters, Named parameters

@run_date parameter, Named timestamp parameters

@run_time parameter, Named timestamp parameters

[] (square brackets), array operator, A Brief Primer on Arrays and Structs

\d matching digits in regular expressions, Regular Expressions

\s matching spaces in regular expressions, Regular Expressions

`` (backticks), escape character in dataset name, Retrieving Rows by Using
SELECT

| (bitwise OR) operator, Numeric Types and Functions, Comparisons

ʌ (caret), beginning of string matching in regular expressions, Regular
Expressions

A

access control

BigQuery's use of Google's IAM system, Security and Compliance

Identity and Access Management (IAM), Identity and Access
Management-Resource

on dataset, examining using dsinfo object, Dataset information

access tokens, Table manipulation

Access Transparency program, Access transparency

ACID operations with BigQuery, Managed Storage

admin role, Predefined roles

administering BigQuery, Administering and Securing BigQuery,
Administering BigQuery-Stackdriver monitoring and audit logging

authorizing users, Authorizing Users

availability, disaster recovery, and encryption, Availability, Disaster
Recovery, and Encryption-Customer-Managed Encryption Keys

continuous integration/continuous deployment, Continuous
Integration/Continuous Deployment-Cost/Billing Exports

cost/billing exports, Cost/Billing Exports-Dashboards, Monitoring, and
Audit Logging

dashboards, monitoring, and audit logging, Dashboards, Monitoring,
and Audit Logging-Stackdriver monitoring and audit logging

job management, Job Management

regulatory compliance, Regulatory Compliance-Data Exfiltration
Protection

restoring deleted records and tables, Restoring Deleted Records and
Tables

Advanced Encryption Standard (AES-256), Infrastructure Security

advanced queries (see queries)

aggregates, Aggregates-A Brief Primer on Arrays and Structs

AGGREGATE in join+ stage of broadcast JOIN query, Broadcast
JOIN query

AGGREGATE step in scan-filter-aggregate query, Stage 0

array, Creating Arrays by Using ARRAY_AGG

(see also ARRAY_AGG function)

computing using GROUP BY, Computing Aggregates by Using
GROUP BY

counting records using COUNT function, Counting Records by Using
COUNT

filtering grouped items using HAVING, Filtering Grouped Items by
Using HAVING

finding unique values using DISTINCT, Finding Unique Values by
Using DISTINCT

aggregation functions, Numeric Types and Functions

approximate, Using Approximate Aggregation Functions-Optimizing
How Data Is Stored and Accessed

(see also APPROX_* functions; HLL functions)

not defined on Booleans, Using COUNTIF to Avoid Casting Booleans

aggregations

aggregating analytic functions, Aggregate analytic functions-
Aggregate analytic functions

centroid of an aggregate of geometries, Geometry transformations and
aggregations

manual, using HLL function, HLL functions

AI (artificial intelligence)

AI Factory section of GCP Cloud Console, Notebooks on Google
Cloud Platform

AI Platform, Hyperparameter tuning using AI Platform

(see also Cloud AI Platform)

Cloud AI Platform, training ML programs from data in BigQuery,
Integration with Google Cloud Platform

aliasing

retaining use of an alias with subqueries, Subqueries with WITH

using aliases in ORDER BY, Sorting with ORDER BY

using AS to alias column names, Aliasing Column Names with AS

allAuthenticatedUsers, access for, Identity

Alpega Group, use of BigQuery, Data Processing Architectures

ALTER TABLE SET OPTIONS statement, Data Management (DDL and
DML), Labels and tags, Changing options

analytic functions, Numeric Types and Functions, Window Functions

(see also window functions)

analytic window functions, Window Functions

(see also window functions)

analytics

creating pivot table from BigQuery Data Sheet, Exploring BigQuery
tables as a data sheet in Google Sheets

moving the computation to the data, How BigQuery Came About

powerful, performing with BigQuery, Powerful Analytics

AND condition, combining categorical features into, Human insights and
auxiliary data

AND keyword, Filtering with WHERE

ANY_VALUE, GIS Measures

Apache Beam, Writing a Dataflow job, Using the Streaming API directly,
Cloud Dataflow

exporting BigQuery data into TensorFlow records on GCS, Apache
Beam/Cloud Dataflow

Apache Hive, loading and querying Hive partitions, Loading and querying
Hive partitions

Apache Spark, MapReduce Framework

API gateway infrastructure, secured global, Infrastructure Security

APIs

BigQuery API for data using other frameworks, Managed Storage

(see also REST APIs)

application-default credentials, Table manipulation

APPROX_* functions

APPROX_COUNT_DISTINCT, Using Approximate Aggregation
Functions, HLL functions

APPROX_QUANTILES, Approximate top, Quantiles

APPROX_TOP_COUNT, Approximate top

APPROX_TOP_SUM, Approximate top

Apps Scripts client library, Incorporating BigQuery Data into Google Slides
(in G Suite)

architecture of BigQuery, Architecture of BigQuery-Summary

Dremel query engine, Query Engine (Dremel)-Hash join query

query execution, Query Execution-Hash join query

Query Masters, Query Master

scheduler, Scheduler

shuffle, Shuffle

worker shards, Worker Shard

high-level, High-Level Architecture-BigQuery Upgrades

life of a query request, Life of a Query Request-Step 5: Returning
the query results

upgrades to BigQuery components, BigQuery Upgrades

storage, Storage-Meta-File

metadata, Metadata-Meta-File

physical storage in Colossus, Physical storage: Colossus-Physical
storage: Colossus

storage format, Capacitor, Storage format: Capacitor-Storage
format: Capacitor

upgrades, BigQuery Upgrades

arithmetic operations

supported by INT64 and FLOAT64 types, Numeric Types and
Functions

with timestamps, Arithmetic with Timestamps

ARRAY type, Creating Arrays by Using ARRAY_AGG, Data Types,
Functions, and Operators, Summary

JSON arrays, Creating Arrays by Using ARRAY_AGG

arrays, A Brief Primer on Arrays and Structs-Joining Tables

adding entry using DML UPDATE, Updating row values

ambiguities in Standard SQL, Advanced SQL

ARRAY of STRUCT, Array of STRUCT

ARRAY of tuples or anonymous struct, TUPLE

array parameters, Array and struct parameters

BigQuery support for, Powerful Analytics

converting to structs for hybrid recommendation model, Training
hybrid recommendation model

creating using ARRAY type and ARRAY_AGG function, Creating
Arrays by Using ARRAY_AGG

experimenting with, A Brief Primer on Arrays and Structs

finding length of and retrieving individual items, Working with Arrays

in a script, Anatomy of a simple script

NULL elements in, Creating Arrays by Using ARRAY_AGG

storing data as arrays of structs, Storing data as arrays of structs-
Storing data as arrays of structs

string representations, Internationalization

unnesting, UNNEST an Array

working with, in advanced SQL, Working with Arrays-Window
Functions

array functions, Array functions-Array functions

using arrays in generating data, Using arrays for generating data

using arrays to preserve ordering, Using arrays to preserve
ordering

using arrays to store repeated fields, Using arrays to store
repeated fields

ARRAY_AGG function, Creating Arrays by Using ARRAY_AGG,
Numbering functions

using with GROUP BY, Data skew

ARRAY_CONCAT function, Array functions

ARRAY_LENGTH function, Working with Arrays, Using arrays for
generating data

ARRAY_TO_STRING function, Array functions

artificial intelligence (see AI; machine learning)

AS statement, aliasing column names with, Aliasing Column Names with
AS-Filtering with WHERE

audit logging, Stackdriver monitoring and audit logging

authorization tokens, Step 1: HTTP POST

authorized views, Authorized views

authorizing users, Authorizing Users

AUTO partitioning mode, Loading and querying Hive partitions

AutoML, Bulk reads using BigQuery Storage API

custom machine learning models, AutoML-Support for TensorFlow

models, Custom Machine Learning Models on GCP

auxiliary data for regression model, Human insights and auxiliary data

availability, Availability, Disaster Recovery, and Encryption-Regional
failures

BigQuery and failure handling, BigQuery and Failure Handling-
Regional failures

availability zones, Storage Data

averages, computing, Named timestamp parameters, Aggregate analytic
functions

AVG function, Computing Aggregates by Using GROUP BY, Creating
Arrays by Using ARRAY_AGG, Aggregate analytic functions

decimal calculations and, Precise Decimal Calculations with
NUMERIC

Avro files, ETL, EL, and ELT

benefits and drawback of, Loading Data Efficiently

extraction format for table data using Google Cloud Client Library,
Extracting data from a table

B

backups, Durability, Backups, and Disaster Recovery

bag of words, Unstructured data

balancing classes in machine learning, Balancing Classes

bandwidth, dynamic provisioning with BigQuery networking infrastructure,
Storage and Networking Infrastructure

bash

getting access tokens for BigQuery REST API URL via, Table
manipulation

heredoc syntax specifying EOF to begin/end query, Querying

scripting with BigQuery, Bash Scripting with BigQuery-Summary

BigQuery objects, BigQuery Objects

creating datasets and tables, Creating Datasets and Tables-
Executing Queries

executing queries, Executing Queries-BigQuery Objects

reading multiline string into a variable, Executing Queries

batch data, ingest of, support by BigQuery, Powerful Analytics

BATCH job priority, Batch Queries

batch queries, Batch Queries

Beam (see Apache Beam)

BI Engine, accelerating queries with, Accelerating queries with BI Engine

BigQuery

about, Data Processing Architectures

features making it successful and unique, What Makes BigQuery
Possible?-Security and Compliance

integration with Google Cloud Platform, Integration with Google
Cloud Platform

managed storage, Managed Storage

security and compliance, Security and Compliance

separation of compute and storage, Separation of Compute and
Storage

storage and networking infrastructure, Storage and Networking
Infrastructure

model types in, Summary of model types

origins of, How BigQuery Came About-How BigQuery Came About

serverless, distributed SQL engine, BigQuery: A Serverless,
Distributed SQL Engine

working with, Working with BigQuery-Simplicity of Management

deriving insights across datasets, Deriving Insights Across
Datasets

ETL, EL, and ELT, ETL, EL, and ELT

powerful analytics, Powerful Analytics

simplicity of management, Simplicity of Management

bigquery library from CRAN, Working with BigQuery from R

BigQuery Mate, Estimating per-query cost

.bigqueryrc file, Executing Queries

BigQueryReader, TensorFlow’s BigQueryReader

binary classification problems, Classification, Summary of model types

probability threshold, Choosing the Threshold

bitwise operations (<< and >>), Numeric Types and Functions

BOOL type, Data Types, Functions, and Operators, Summary

Boolean expressions

in join conditions, INNER JOIN

in WHERE clause, Filtering with WHERE, Logical Operations

Booleans, Working with BOOL-String Functions

casting and coercion, Casting and Coercion

cleaner NULL-handling with COALESCE, Cleaner NULL-Handling
with COALESCE

using COUNTIF to avoid casting, Using COUNTIF to Avoid Casting
Booleans

using in conditional expressions in SELECT, Conditional Expressions

boosted decision trees, Gradient-boosted trees

boosted_tree_classifier model type, Training

boosted_tree_regressor model type, Gradient-boosted trees

Borg container management system, Worker Shard

bq command-line tool, Loading from a Local Source, Bash Scripting with
BigQuery

adding a label to a dataset, Labels and tags

--batch flag, Batch Queries

bq extract command, Extracting data

bq load command, Loading and inserting data

invoking from GCS locations, Impact of compression and staging
via Google Cloud Storage

invoking on data on Cloud Storage, Data Migration Methods

options, finding full list of, Loading from a Local Source

bq query command, Executing Queries

bq wait, Copying datasets

checking if a dataset exists with bq ls, Checking whether a dataset
exists

copying datasets using bq cp, Copying datasets

copying tables using bq cp, Data Management (DDL and DML)

creating a dataset in a different project with bq mk, Creating a dataset
in a different project

creating a table with bq mk --table, Creating a table

creating a transfer job, Create a transfer job

creating datasets using bq mk and specifying the location, Creating
Datasets and Tables

creating table definition using bq mkdef, How to Use Federated
Queries

deleting a table or view as a whole, Data Management (DDL and
DML)

--dry_run option, Estimating per-query cost

examining information from query statistics, Scan-filter-count query

initiating cross-region dataset copy via bq mk, Cross-region dataset
copy

listing BigQuery objects with bq ls, BigQuery Objects

making external table definition with bq mk, How to Use Federated
Queries

previewing a table using bq head, Previewing data

showing details of BigQuery objects with bq show, Showing details

specifying Hive partition mode to bq load, Loading and querying Hive
partitions

SQL dialect used by, Executing Queries

updating details of tables, datasets, and other objects with bq update,
Updating

using wildcards in file path for bq mkdef and bq load, Wildcards

BREAK statement, Looping

broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN query

coalesce stage, Broadcast JOIN query

join+ stage, Broadcast JOIN query

broadcast joins, Broadcast JOIN query

bucketizing variables, Human insights and auxiliary data

for regression model, Bucketizing the hour of day

bulk reads, using BigQuery Storage API, Bulk reads using BigQuery
Storage API

business intelligence (BI) tools, using on data held in BigQuery, Powerful
Analytics

BY HASH directive, Stage 0

BYTES type, Data Types, Functions, and Operators, Summary

BYTE_LENGTH function, Internationalization

C

caching

increasing query speed by caching results, Caching the Results of
Previous Queries-Accelerating queries with BI Engine

accelerating queries with BI Engine, Accelerating queries with BI
Engine

caching intermediate results, Caching intermediate results

query history and, Query History and Caching

calendar, extracting parts from timestamps, Extracting Calendar Parts

cannibalization, What’s Being Clustered?

Capacitor, Storage Data, Storage format: Capacitor-Storage format:
Capacitor

cardinality, Storage format: Capacitor

low, in partitions, Partitioning

partitioning and clustering by, Reclustering

casting

cast as bytes, Internationalization

DATETIME to TIMESTAMP, Date, Time, and DateTime

of Booleans, using COUNTIF to avoid, Using COUNTIF to Avoid
Casting Booleans

of strings to FLOAT64, Loading from a Local Source

requiring explicit use of CAST function, Casting and Coercion

string as INT64 or FLOAT64 to parse it, using CAST function,
Printing and Parsing

categorical_weights, Examining Model Weights

centroid of an aggregate of geometries, Geometry transformations and
aggregations

charts, Saving query results to pandas

(see also visualizations)

automatic, creating in Google Sheets using machine learning,
Exploring BigQuery tables using Sheets

CHAR_LENGTH function, Internationalization

classification, Classification

building a classification model, Building a Classification Model-
Choosing the Threshold

choosing the threshold, Choosing the Threshold

evaluating the model, Evaluation

predicting with the model, Prediction

training the model, Training

client API functions and SQL alternatives, Table manipulation

client libraries, Summary

allowing programmatic queries and manipulation of BigQuery
resources, Developing with BigQuery

cloud client libraries for BigQuery, Step 5: Returning the query results

for BigQuery REST API, Loading from a Local Source

Google Cloud Client Library, Google Cloud Client Library

versus JDBC/ODBC drivers, JDBC/ODBC drivers

Cloud AI Platform (CAIP), Deep Neural Networks

hyperparameter tuning in, Hyperparameter tuning using AI Platform

Cloud Bigtable, SQL Queries on Data in Cloud Bigtable-Improving
performance

NoSQL queries on data based on row-key prefix, NoSQL Queries
based on a row-key prefix

SQL queries on data in, Ad hoc SQL queries on Cloud Bigtable data-
Improving performance

improving performance, Improving performance

Cloud Catalog, Integration with Google Cloud Platform

Cloud Client API (Python), Parameterized Queries

Cloud Composer, Integration with Google Cloud Platform, Loading from a
Local Source

Cloud Console

AI Factory section, Notebooks on Google Cloud Platform

Cloud Dataflow template, creating to load data from MySQL, Using a
Dataflow template to load directly from MySQL

monitoring Dataflow job from, Cloud Dataflow

Notebooks section, Open JupyterLab link, Notebooks on Google
Cloud Platform

requesting custom quota from, Estimating per-query cost

Cloud Data Labeling Service, Clustering

Cloud Dataflow, Bulk reads using BigQuery Storage API

accessing BigQuery from, Cloud Dataflow-Cloud Dataflow

exporting BigQuery data into TensorFlow records on GCS, Apache
Beam/Cloud Dataflow

using for streaming inserts into BigQuery, File Loads

using to read/write from BigQuery, Using Cloud Dataflow to
Read/Write from BigQuery-Using the Streaming API directly

using Dataflow template to load directly from MySQL, Using a
Dataflow template to load directly from MySQL

using streaming API directly, Using the Streaming API directly

writing a Dataflow job, Writing a Dataflow job

Cloud Dataproc, Integration with Google Cloud Platform, Bulk reads using
BigQuery Storage API

Cloud Functions, Integration with Google Cloud Platform, Loading from a
Local Source

Cloud Natural Language, Unstructured data

Cloud Pub/Sub, Minimizing Network Overhead

using for streaming inserts into BigQuery, File Loads

Cloud Scheduler, Integration with Google Cloud Platform

Cloud Shell

default text editor, Specifying a Schema

downloading MovieLens dataset and loading it as BigQuery table, The
MovieLens Dataset

paging through gzipped file using zless, Loading from a Local Source

Cloud Vision API, Unstructured data

clustering, Clustering

clustering column in a query, Insert SELECT

clustering tables based on high-cardinality keys, Clustering Tables
Based on High-Cardinality Keys-Side benefits of clustering

clustering by partitioning column, Clustering by the partitioning
column

reclustering, Reclustering

side benefits of clustering, Side benefits of clustering

partitioning versus, Reclustering, Reclustering

performance optimizations with clustered tables, Performance
optimizations with clustered tables

reclustering, Reclustering

clustering (in machine learning), Clustering

k-means algorithm, k-Means Clustering-Data-Driven Decisions

carrying out clustering, Carrying Out Clustering

clustering bicycle stations, Clustering Bicycle Stations

determining what's being clustered, What’s Being Clustered?

making data-driven decisions, Data-Driven Decisions

understanding the clusters, Understanding the Clusters

optimal number of clusters supported by data, Hyperparameter tuning
using scripting

clustering ratio, Reclustering

COALESCE function, using to evaluate expressions until non-NULL value
is obtained, Cleaner NULL-Handling with COALESCE

coalesce stage, Broadcast JOIN query

coercion, Casting and Coercion

Coldline Storage, Setting up life cycle management on staging buckets

Colossus File System, Storage and Networking Infrastructure, Step 5:
Returning the query results, Storage Data

physical storage for BigQuery, Physical storage: Colossus

sources of a query on, Worker Shard

column stores, How BigQuery Came About

column-oriented stores, Storage format: Capacitor, Clustering

columnar files, Loading Data Efficiently

columnar storage formats

Capacitor, Storage format: Capacitor-Storage format: Capacitor

Parquet and Optimized Row Columnar (ORC), Storage format:
Capacitor

comma cross joins, CROSS JOIN

comments, lines beginning with -- or #, Retrieving Rows by Using
SELECT

committed state (storage sets), Storage sets

community-developed, open source UDFs, Public UDFs

comparisons

carried out using <, <=, >, >=, and != (or <>) comparison operators,
Comparisons

comparison operators applied to NULL, Finding Unique Values by
Using DISTINCT

using comparison operators with Boolean variables, Logical
Operations

compliance, Security and Compliance

(see also regulatory compliance)

compression of files, Loading from a Local Source

impact of, in loading data into BigQuery, Impact of compression and
staging via Google Cloud Storage

computation, moving to the data, How BigQuery Came About

compute

scaling compute in BigQuery, Separation of Compute and Storage

separation from storage in BigQuery, ETL, EL, and ELT, Separation of
Compute and Storage

compute_fit method, Cloud Dataflow

CONCAT function, String Functions, String Manipulation Functions,
Building queries dynamically

concatenation of arrays, Array functions

conda environment for Jupyter, Working with BigQuery from R

conditional expressions, Conditional Expressions

constants, defining, Defining constants

container management system (Borg), Worker Shard

CONTINUE statement, Looping

continuous integration/continuous deployment (CI/CD), Continuous
Integration/Continuous Deployment-Cost/Billing Exports

correlated CROSS JOINs, Using arrays for generating data

correlated subqueries, Correlated subquery

for cases seeming to require a script, A sequence of statements

correlation coefficients, Correlation

correlation, functions for, Correlation

costs

controlling, Controlling Cost-Finding the most expensive queries

estimating per-query cost, Estimating per-query cost

finding most expensive queries, Finding the most expensive
queries

cost/billing exports, Cost/Billing Exports-Dashboards, Monitoring, and
Audit Logging

cost by month by product, Costs by month by product

labels, using, Labels

data loaded into BigQuery, Loading from a Local Source

staging files on Google Cloud Storage, Impact of compression and
staging via Google Cloud Storage

COUNT function, counting records with, Counting Records by Using
COUNT

COUNTIF function, using to avoid casting Booleans, Using COUNTIF to
Avoid Casting Booleans

COUNT_STAR operator, Stage 0

CRAN, bigquery library from, Working with BigQuery from R

CREATE FUNCTION IF NOT EXISTS, Persistent UDFs

CREATE FUNCTION statements, Persistent UDFs

CREATE IF NOT EXISTS statement, Setting up destination table

CREATE MODEL statement, Training and Evaluating the Model

CREATE OR REPLACE FUNCTION, Persistent UDFs

CREATE OR REPLACE PROCEDURE statement, Stored procedures

CREATE OR REPLACE TABLE statement, Setting up destination table

creating an empty table, Empty table

making tables irrecoverable, Restoring Deleted Records and Tables

OPTIONS list, using, Options list

CREATE TABLE AS SELECT statement, Data Management (DDL and
DML), Step 5: Returning the query results

CREATE TABLE statement, Copying into a New Table, Setting up
destination table

CreateDisposition and WriteDisposition, controlling load of pandas
DataFrame, Loading a pandas DataFrame

CROSS JOIN statement, CROSS JOIN, Using arrays for generating data

cross-entropy loss measure in classification, Evaluation

cross-region dataset copies, Cross-region dataset copy

cross-selling of product groups, improving, What’s Being Clustered?

CRUD operations

on REST API, mapped to HTTP verbs, Accessing BigQuery via the
REST API

supported on persistent storage, Query Essentials

crypto-shredding, Crypto-shredding

cryptography

BigQuery support for MD5 and SHA hashing algorithms, MD5 and
SHA

services provided for BigQuery by Google, Infrastructure Security

CSV files, ETL, EL, and ELT, Loading from a Local Source

compressed, loading into BigQuery, Impact of compression and
staging via Google Cloud Storage

drawbacks of, for loading data into BigQuery, Loading Data
Efficiently

extraction format for table data using Google Cloud Client Library,
Extracting data from a table

loading into BigQuery, Loading from a Local Source

querying external tables created from, Temporary table

using Cloud Dataflow to read and write to BigQuery, Writing a
Dataflow job

curl utility

issuing GET request to BigQuery REST API URL, Table manipulation

sending raw HTTP requests via, Step 1: HTTP POST

using in measuring query time, Measuring Query Speed Using REST
API

CURRENT_TIMESTAMP function, Query History and Caching, Parsing
and Formatting Timestamps

custom roles, Custom roles

customer information, security of, Infrastructure Security

customer segmentation, What’s Being Clustered?

customer targeting, Summary of model types, What’s Being Clustered?,
Customer targeting

Customer-Managed Encryption Keys (CMEK), Customer-Managed
Encryption Keys, CMEK

D

dashboards, tables accessed from, using BI Engine with, Accelerating
queries with BI Engine

data

correctness of, impact of time on, The Basics

loading, Loading Data into BigQuery

(see also loading data into BigQuery)

moving on-premises data, Moving On-Premises Data-Data Migration
Methods

slowly changing dimension, The Basics

Data Catalog, searching for tables with specific label, Creating a table

Data Definition Language (DDL), DDL-DML

changing options after table creation, Changing options

creating empty tables, Empty table

options list, Options list

statements, Data Management (DDL and DML)

CREATE OR REPLACE TABLE, Setting up destination table

support by BigQuery, How BigQuery Came About

data exfiltration protection, Data Exfiltration Protection

data locality, Data Locality

data loss prevention, Data Loss Prevention-Data Loss Prevention

data management (DDL and DML), Data Management (DDL and DML)-
Data Management (DDL and DML)

Data Manipulation Language (DML), DML, Caching the Results of
Previous Queries, DML-MERGE statement

BigQuery and very-high-frequency DML updates, DML

deleting rows with DELETE WHERE, Deleting rows

INSERT SELECT, Insert SELECT

INSERT VALUES, Insert VALUES

INSERT VALUES with subquery SELECT, Insert VALUES with
subquery SELECT

MERGE statement, MERGE statement

removing all transactions related to a single individual, DML

statements, Data Management (DDL and DML)

statements forcing a recluster, Reclustering

support by BigQuery, How BigQuery Came About

updating row values, Updating row values

data marketplace, How BigQuery Came About

data processing architectures, Data Processing Architectures-BigQuery: A
Serverless, Distributed SQL Engine

MapReduce framework, MapReduce Framework

relational database management system, Relational Database
Management System

data science tools, accessing BigQuery from, Accessing BigQuery from
Data Science Tools-Incorporating BigQuery Data into Google Slides (in G
Suite)

Cloud Dataflow, Cloud Dataflow-Cloud Dataflow

incorporating BigQuery data into Google Slides, Incorporating
BigQuery Data into Google Slides (in G Suite)-Incorporating
BigQuery Data into Google Slides (in G Suite)

JDBC/ODBC drivers, JDBC/ODBC drivers

notebooks on Google Cloud Platform, Notebooks on Google Cloud
Platform-Working with BigQuery, pandas, and Jupyter

working with BigQuery from R, Working with BigQuery from R-
Cloud Dataflow

working with BigQuery, pandas, and Jupyter, Working with BigQuery,
pandas, and Jupyter-Working with BigQuery, pandas, and Jupyter

Data Sheets (BigQuery), Exploring BigQuery tables as a data sheet in
Google Sheets

data skew, Data skew

data split, controlling in BigQuery ML, Controlling Data Split

Data Studio, Integration with Google Cloud Platform

billing dashboard example, Visualizing the billing report

exploring visualizations in, Powerful Analytics

visualizing cluster attributes, Understanding the Clusters

Data Transfer Service (BigQuery), Data Transfer Service-Cross-region
dataset copy, Data Migration Methods

creating a transfer job, Create a transfer job

cross-region dataset copy, Cross-region dataset copy

data locality, Data locality

scheduled queries, Scheduled queries

setting up destination table, Setting up destination table

data types, Data Types, Functions, and Operators-Summary

Booleans, working with, Working with BOOL-String Functions

casting and coercion, Casting and Coercion

cleaner NULL-handling with COALESCE, Cleaner NULL-
Handling with COALESCE

in conditional expressions, Conditional Expressions

logical operations, Logical Operations

using COUNTIF to avoid casting Booleans, Using COUNTIF to
Avoid Casting Booleans

geographic, Geographic types

Geography functions, Working with GIS Functions

numeric types and functions, Numeric Types and Functions-Precise
Decimal Calculations with NUMERIC

comparisons, Comparisons

mathematical functions, Mathematical Functions

precise decimal calculations with NUMERIC, Precise Decimal
Calculations with NUMERIC

SAFE functions, SAFE Functions

standard-compliant floating-point division, Standard-Compliant
Floating-Point Division

strings and string functions, String Functions-Working with
TIMESTAMP

internationalization of strings, Internationalization

printing and parsing strings, Printing and Parsing

regular expressions, Regular Expressions

string manipulation functions, String Manipulation Functions

summary of string functions, Summary of String Functions

transformation functions, Transformation Functions

strongly typed managed storage with BigQuery, Managed Storage

supported by BigQuery, Data Types, Functions, and Operators

TIMESTAMP, working with, Working with TIMESTAMP-Date, Time,
and DateTime

arithmetic with timestamps, Arithmetic with Timestamps

DATE, TIME, and DATETIME, Date, Time, and DateTime

extracting calendar parts, Extracting Calendar Parts

parsing and formatting timestamps, Parsing and Formatting
Timestamps

data warehouses

architectural differences of BigQuery on on-premises and cloud data
warehouses, What Makes BigQuery Possible?

BigQuery's evolution into, How BigQuery Came About

data-driven decisions, making with k-means clustering, Data-Driven
Decisions

dataEditor role, Predefined roles

DataFrames (see pandas)

dataOwner role, Predefined roles

datasets, Metadata

access to, on BigQuery, Loading from a Local Source

checking if a dataset exists with bq ls, Checking whether a dataset
exists

copying using bq cp, Copying datasets

creating in a different project, Creating a dataset in a different project

creating to load into BigQuery, Loading from a Local Source

creating using bq mk, Creating Datasets and Tables

creating using Google Cloud Client Library, Creating a dataset

cross-region dataset copy via Data Transfer Service, Cross-region
dataset copy

deleting a dataset using Google Cloud Client Library, Deleting a
dataset

deriving insights across, Deriving Insights Across Datasets

determining those involved in query requests, Step 2: Routing

information on, using Google Cloud Client Library, Dataset
information

joining Google Sheets data with dataset in BigQuery, Joining Sheets
data with a large dataset in BigQuery

manipulation through HTTP request to BigQuery REST API URL,
Dataset manipulation

manipulation via Google Cloud Client library for BigQuery, Dataset
manipulation

modifying attributes using Google Cloud Client Library, Modifying
attributes of a dataset

names of, Retrieving Rows by Using SELECT

names, key components of, Retrieving Rows by Using SELECT

permissions to access, Predefined roles

primitive roles providing access to, Primitive roles

providing for Identity and Access Management (IAM), Retrieving
Rows by Using SELECT

training dataset for regression model, creating, Creating a Training
Dataset

dataViewer role, Predefined roles, Resource

DATE type, Date, Time, and DateTime, Summary

detection by AUTO partitioning mode, Loading and querying Hive
partitions

dates and time, working with timestamps, Working with TIMESTAMP-
Date, Time, and DateTime

DATETIME type, Data Types, Functions, and Operators, Date, Time, and
DateTime, Summary

Davies-Bouldin index, Hyperparameter tuning using scripting

decision trees, Gradient-boosted trees

Deep Learning Virtual Machine, Notebooks on Google Cloud Platform

deep neural networks, Deep Neural Networks-Deep Neural Networks

classification with, dnn_classifier model, Training

training a model, Deep Neural Networks

using a smaller network, Deep Neural Networks

DELETE statement, Data Management (DDL and DML), DML, DML

deleting rows in DML, Deleting rows

deletions

deleting a dataset using Google Cloud Client Library, Deleting a
dataset

deleting a table or view from BigQuery, Data Management (DDL and
DML)

deleting a table or view from BigQuery using SQL, Data Management
(DDL and DML)

deleting a table using Google Cloud Client Library, Deleting a table

deleting partitions, Partitioning

HTTP DELETE request to BigQuery REST API URL, Dataset
manipulation

restoring deleted records and tables, Restoring Deleted Records and
Tables

denormalization, Denormalization, Joining with precomputed values

JOIN versus, JOIN versus denormalization

DENSE_RANK function, Numbering functions

descriptive analytics, powerful, performing with BigQuery, Powerful
Analytics

developing with BigQuery, Developing with BigQuery-Summary

accessing BigQuery from data science tools, Accessing BigQuery from
Data Science Tools-Incorporating BigQuery Data into Google Slides
(in G Suite)

JDBC/ODBC drivers, JDBC/ODBC drivers

working with BigQuery from R, Working with BigQuery from R-
Cloud Dataflow

working with BigQuery, pandas, and Jupyter, Working with
BigQuery, pandas, and Jupyter-Working with BigQuery, pandas,
and Jupyter

bash scripting with BigQuery, Bash Scripting with BigQuery-
Summary

developing programmatically, Developing Programmatically-
Parameterized queries

accessing BigQuery via REST API, Accessing BigQuery via the
REST API-Limitations

using Google Cloud Client Library, Google Cloud Client Library-
Parameterized queries

dictionary encoding, Storage format: Capacitor

disaster recovery, Durability, Backups, and Disaster Recovery

disks

failures of, Disk failures

failures of, avoiding loss of data, Physical storage: Colossus

query shuffling and spilling to disk, Shuffle

DISTINCT, finding unique values with, Finding Unique Values by Using
DISTINCT

division

/ operator, Numeric Types and Functions

standard-compliant floating-point division, Standard-Compliant
Floating-Point Division

DNN (see deep neural networks)

dnn_classifier model type, Training

dnn_regressor model, Deep Neural Networks, Training hybrid
recommendation model

difficulties of, Deep Neural Networks

draining the zone, Zonal failures

drains or failovers of compute clusters, Step 3: Job Server

Dremel (SQL engine), How BigQuery Came About, Step 4: Query engine

cloud version of, How BigQuery Came About

SQL dialect used by, Simple Queries

Dremel query engine, Query Engine (Dremel)-Hash join query

architecture, Dremel Architecture-Query Execution

Query Masters, Query Master

scheduler, Scheduler

shuffle, Shuffle

current architecture, Dremel X, Query Engine (Dremel)

initial architecture, Query Engine (Dremel)

query execution, Query Execution-Hash join query

broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN
query

hash join query, Hash join query-Hash join query

scan-filter-aggregate query, Scan-filter-aggregate query-Stage 2

scan-filter-count query, Scan-filter-count query-Stage 1

DROP FUNCTION statement, Persistent UDFs

DROP TABLE statement, Data Management (DDL and DML)

--dry_run option, running parameterized queries with, Array and struct
parameters

dry runs for queries, Dry run

dsinfo object, Dataset information

modifying, Modifying attributes of a dataset

durability, Durability, Backups, and Disaster Recovery

dynamic SQL queries, Building queries dynamically

E

EL (extract and load), ETL, EL, and ELT

ELT (extract, load, and transform), ETL, EL, and ELT

empty tables, Empty table

encoding (storage), Physical storage: Colossus

dictionary encoding, Storage format: Capacitor

erasure encoding, Physical storage: Colossus

replicated encoding, Physical storage: Colossus

run-length encoding, Storage format: Capacitor

encryption, Simplicity of Management, Privacy and Encryption-Customer-
Managed Encryption Keys

Customer Managed Encryption Keys (CMEK), CMEK

Customer-Managed Encryption Keys (CMEK), Customer-Managed
Encryption Keys

encrypting all sensitive data corresponding to a user, Crypto-shredding

ENDS_WITH function, String Manipulation Functions

entity extraction, Summary of model types

envelope encryption, CMEK

equality, not-equals, using != or <> operator, Comparisons

erasure encoding, Storage Data, Physical storage: Colossus

errors, inserting rows into a table, Inserting rows into a table

etags, Updating a table’s schema

ETL (extract, transform, and load)

manipulating strings in ETL pipelines, String Manipulation Functions

using BigQuery, ETL, EL, and ELT

using robust ETL pipeline and making decisions early, Copying into a
New Table

evaluating machine learning models

controlling data split with training, Controlling Data Split

evaluation tab of web UI for classification model, Evaluation

loss curve for classification model, Training

matrix factorization model, Matrix Factorization

regression model, Evaluating the model

EXCEPT, using with SELECT, SELECT *, EXCEPT, REPLACE

execution plans (see query plans)

execution stages (queries), Scan-filter-count query

EXISTS operator, Using arrays to store repeated fields

expensive computations, reducing number of, Reducing the number of
expensive computations

experimenting with BigQuery, using sandbox, Estimating per-query cost

expiration

cached tables expiring, Caching the Results of Previous Queries

changing for a table after creating it, Changing options

for partitions, Partitioned tables

specifying for partitions, Partitioning, Partitioned tables

specifying for tables, Loading from a Local Source, Data Management
(DDL and DML), Creating Datasets and Tables, Creating a table,
Options list

system event logged when table or partition expires, Stackdriver
monitoring and audit logging

temporary tables holding query results, Query History and Caching

explicit conversion, Casting and Coercion

(see also casting)

exports of data from BigQuery

exporting Stackdriver logs, Exporting Stackdriver Logs-Exporting
Stackdriver Logs

extracting data from a table and exporting it to GCS, Extracting data
from a table

extensions to SQL in BigQuery supporting data analytics, Powerful
Analytics

extensions, invoking in Jupyter Notebook, Notebooks on Google Cloud
Platform

external data sources

how to use federated queries on, How to Use Federated Queries-
Loading and querying Hive partitions

interactive querying of data in Google Sheets, Interactive Exploration
and Querying of Data in Google Sheets-Joining Sheets data with a
large dataset in BigQuery

recommendations for use, Internal versus external data sources

SQL queries on data in Cloud Bigtable, SQL Queries on Data in Cloud
Bigtable-Improving performance

supported by BigQuery, Federated Queries and External Data Sources

when to use with federated queries, When to Use Federated Queries
and External Data Sources-Interactive Exploration and Querying of
Data in Google Sheets

F

failover processes, Step 3: Job Server

failure handling, BigQuery and Failure Handling-Regional failures

disk failures, Disk failures

machine failures, Machine failures

regional failures, Regional failures

zonal failures, Zonal failures

FARM fingerprint algorithm, Fingerprint function

feature engineering, Exploring the Dataset to Find Features

features (in machine learning), Formulating a Machine Learning Problem

combining categorical features into AND comdition, Human insights
and auxiliary data

creating input features for hybrid recommendation model, Creating
input features-Creating input features

dayofweek feature in linear regression model, weights, Examining
Model Weights

finding in dataset for regression model, Exploring the Dataset to Find
Features-Number of bicycles

day of week, Day of week

impact of station, Impact of station

number of bicycles, Number of bicycles

for classification model, Training

regression model features, other ways to represent, Combining days of
the week

standardize_features option in k-means clustering, Carrying Out
Clustering

federated queries, ETL, EL, and ELT, Integration with Google Cloud
Platform

and external data sources, Federated Queries and External Data
Sources-Improving performance

how to use federated queries, How to Use Federated Queries-
Loading and querying Hive partitions

interactive explorations and querying of data in Google Sheets,
Interactive Exploration and Querying of Data in Google Sheets-
Joining Sheets data with a large dataset in BigQuery

SQL queries on data in Cloud Bigtable, SQL Queries on Data in
Cloud Bigtable-Improving performance

when to use, When to Use Federated Queries and External Data
Sources-Interactive Exploration and Querying of Data in Google
Sheets

file compression, Loading from a Local Source

file loads, File Loads

fingerprint function, Fingerprint function

FIRST_VALUE function, Navigation functions

FLOAT64 type, Data Types, Functions, and Operators, Summary

coercion of INT64 or NUMERIC to, Casting and Coercion

decimal calculations and, Precise Decimal Calculations with
NUMERIC

floating-point numbers, standard-compliant floating-point division,
Standard-Compliant Floating-Point Division

folium package, plotting a map with, Working with BigQuery, pandas, and
Jupyter

FORMAT function, Printing and Parsing

FORMAT_DATE function, Printing and Parsing

FORMAT_TIMESTAMP function, Printing and Parsing, Parsing and
Formatting Timestamps

FROM clause

correlated subqueries in, Correlated subquery

dataset named in, Loading Data into BigQuery

in SELECT statement, WHERE clause and, Filtering with WHERE

including parameters so constant can be used in a query, Defining
constants

UNNEST function in, Using arrays to store repeated fields

from_items, The JOIN Explained

functions, Numeric Types and Functions

advanced, Advanced Functions-Summary

BigQuery Geographic Information Systems, BigQuery
Geographic Information Systems-Geometry transformations and
aggregations

hash algorithms, Hash Algorithms-Summary

statistical functions, Useful Statistical Functions-Correlation

mathematical, Mathematical Functions

SAFE, SAFE Functions

standard-compliant floating-point division, Standard-Compliant
Floating-Point Division

types of, summary, Numeric Types and Functions

G

G Suite, Interactive Exploration and Querying of Data in Google Sheets,
Incorporating BigQuery Data into Google Slides (in G Suite)

(see also Google Slides)

Gamma distribution fit, computing parameters of, Cloud Dataflow

GARBAGE, marking old storage sets as, Storage sets, DML

gcloud command-line tool, Notebooks on Google Cloud Platform

gcloud auth command, Creating a dataset in a different project

GCP (see Google Cloud Platform)

GCP Cloud Console (see Cloud Console)

GCS (see Google Cloud Storage)

generational (storage system), Storage optimization

Geo Viz (BigQuery), Geometry transformations and aggregations

Geographic Information Systems (GIS), BigQuery Geographic Information
Systems-Geometry transformations and aggregations

function performing GIS measures, GIS Measures

functions for creating polygons, Creating Polygons

functions performing geometry transformations and aggregations,
Geometry transformations and aggregations

GIS functions operating on geographic types, Geographic types

predicate functions, GIS predicate functions

ST_GeoHash function, Human insights and auxiliary data

geographic types, Geographic types

GEOGRAPHY type, Data Types, Functions, and Operators, Working with
GIS Functions, Summary

storing data as, Storing data as geography types-Storing data as
geography types

geohash, Creating Polygons

GeoJSON geospatial data, Geographic types

converting geographies to/from strings in, Geographic types

GET requests (HTTP), Table manipulation

GitHub repository for this book, Table manipulation

Google Apps Script in, Incorporating BigQuery Data into Google
Slides (in G Suite)

Global Positioning System (GPS), Working with GIS Functions

Google Apps Script, Incorporating BigQuery Data into Google Slides (in G
Suite)

Google BigQuery (see BigQuery)

Google Cloud Client Library, Developing Programmatically, Google Cloud
Client Library-Parameterized queries, Notebooks on Google Cloud
Platform

browsing rows of a table, Browsing the rows of a table

copying a table, Copying a table

creating a dataset, Creating a dataset

creating an empty table, Creating an empty table

creating an empty table with schema, Creating an empty table with
schema

dataset information from dsinfo object, Dataset information

dataset manipulation, Dataset manipulation

deleting a dataset, Deleting a dataset

deleting a table, Deleting a table

extracting data from a table, Extracting data from a table

inserting rows into a table, Inserting rows into a table

installing BigQuery client library, Google Cloud Client Library

instantiating a Client, Google Cloud Client Library

loading a BigQuery table directly from Google Cloud URI, Loading
from a URI

loading a BigQuery table from a local file, Loading from a local file

loading a pandas DataFrame, Loading a pandas DataFrame

modifying attributes of a dataset, Modifying attributes of a dataset

querying with, Querying-Parameterized queries

creating a pandas DataFrame, Creating a pandas DataFrame

dry run before executing the query, Dry run

executing the query, Executing the query

table management with, Table management

updating a table's schema, Updating a table’s schema

Google Cloud Data Loss Prevention API, Integration with Google Cloud
Platform

Google Cloud Identity and Access Management (see Identity and Access
Management)

Google Cloud Platform (GCP)

BigQuery interacting with, using bq tool, Loading from a Local Source

custom machine learning models in, Custom Machine Learning
Models on GCP-Predicting with TensorFlow models

Google Cloud Storage or Cloud Pub/Sub, Minimizing Network
Overhead

integration of BigQuery with, Integration with Google Cloud Platform

notebooks on, Notebooks on Google Cloud Platform-Working with
BigQuery, pandas, and Jupyter

Jupyter Magics, Jupyter Magics

running a parameterized query, Running a parameterized query

saving query results to pandas, Saving query results to pandas

Pricing Calculator, Estimating per-query cost

security features provided by, Administering and Securing BigQuery

Google Cloud Software Development Kit (SDK), Table manipulation, Bash
Scripting with BigQuery

Google Cloud Storage (GCS), MapReduce Framework, Minimizing
Network Overhead

exporting BigQuery data to TensorFlow records on, Apache
Beam/Cloud Dataflow

exporting data from a table to file in GCS, Extracting data from a table

federated queries extracting data from, ETL, EL, and ELT

loading Hive partitions on, Loading and querying Hive partitions

loading on-premises data into, Data Migration Methods

staging files before loading into BigQuery, Impact of compression and
staging via Google Cloud Storage

transferring data from, Create a transfer job

Google File System (GFS), Physical storage: Colossus

Google Front-End (GFE) servers, Step 2: Routing

Google Sheets, When to Use Federated Queries and External Data Sources,
Interactive Exploration and Querying of Data in Google Sheets

joining Sheets data with large dataset in BigQuery, Joining Sheets data
with a large dataset in BigQuery

loading data into BigQuery and querying it, Loading Google Sheets
data into BigQuery

populating a spreadsheet with data from BigQuery, Populating a
Google Sheets spreadsheet with data from BigQuery

exploring BigQuery tables as data sheet, Exploring BigQuery
tables as a data sheet in Google Sheets

exploring BigQuery tables using Sheets, Exploring BigQuery
tables using Sheets

storing BigQuery query results in spreadsheet, Incorporating BigQuery
Data into Google Slides (in G Suite)

Google Slides, incorporating BigQuery data into, Incorporating BigQuery
Data into Google Slides (in G Suite)-Incorporating BigQuery Data into
Google Slides (in G Suite)

gradient-boosted trees, Gradient-boosted trees

Gradle build tool, installing, Measuring Query Speed Using BigQuery
Workload Tester

Gray, Jim, How BigQuery Came About

GROUP BY

computing aggregates with, Computing Aggregates by Using GROUP
BY

using instead of scripts, A sequence of statements

using with ARRAY_AGG function, Data skew

gsutil cp command, Impact of compression and staging via Google Cloud
Storage, Data Migration Methods

gzip file compression, Loading from a Local Source

H

Hadoop, MapReduce Framework

hash algorithms, Hash Algorithms-Summary

fingerprint function, Fingerprint function

generating UUIDs, UUID

MD5 and SHA, MD5 and SHA

random number generator, Random number generator

hash join query, Hash join query-Hash join query

hash joins, Hash join query

hashes

about, Stage 0

BY HASH directive in scan-filter-aggregate query, Stage 0

HAVING clause, Anatomy of a simple script

filtering grouped items with, Filtering Grouped Items by Using
HAVING

Heartbleed vulnerability, Infrastructure Security

heredoc syntax in Bash, Querying

hidden_units, Deep Neural Networks

history of queries, Query History and Caching

Hive partitions, loading and querying, Loading and querying Hive partitions

HLL functions, HLL functions

HLL_COUNT.EXTRACT, HLL functions

HLL_COUNT.INIT, HLL functions, HLL functions

HLL_COUNT.MERGE, HLL functions

HLL_COUNT.MERGE_PARTIAL, HLL functions

HTTP requests

batching requests ot BigQuery REST API, Batching multiple requests

BigQuery REST API documentation specifying details of, Dataset
manipulation

DELETE request to BigQuery REST API URL, Dataset manipulation,
Table manipulation

GET request to BigQuery REST API URL, Table manipulation

GET, POST, PUT, PATCH, and DELETE methods, Dataset
manipulation

getting status of jobId using REST API with GET request, Limitations

POST request for a query, Step 1: HTTP POST

POST request to BigQuery REST API URL with JSON request
embedded, Querying

to BigQuery REST API, Accessing BigQuery via the REST API

HTTPS, Accessing BigQuery via the REST API

human insights in regression model, Human insights and auxiliary data

HyperLogLog++ (HLL++) algorithm, HLL functions

hyperparameter tuning, Hyperparameter Tuning-Hyperparameter tuning
using AI Platform

for deep neural networks, Deep Neural Networks

using AI Platform, Hyperparameter tuning using AI Platform

using Python, Hyperparameter tuning in Python

using scripting, Hyperparameter tuning using scripting

I

I/O, minimizing for queries, Minimizing I/O-Reducing the number of
expensive computations

Identity and Access Management (IAM), Simplicity of Management,
Administering and Securing BigQuery, Identity and Access Management-
Resource

provided by datasets, Retrieving Rows by Using SELECT

resources, Resource

roles, Role-Custom roles

custom, Custom roles

predefined, Predefined roles

primitive, Primitive roles

IEEE_Divide function, Standard-Compliant Floating-Point Division

IF conditions, Looping

IF function, Conditional Expressions

IF statement, using on Booleans, Using COUNTIF to Avoid Casting
Booleans

IFNULL function, Cleaner NULL-Handling with COALESCE

image captioning, Summary of model types

image classification, Summary of model types

implicit conversion, Casting and Coercion

(see also coercion)

in-memory filesystem, Worker Shard

(see also Colossus File System)

increasing query speed, Increasing Query Speed-Optimizing How Data Is
Stored and Accessed

caching results of previous queries, Caching the Results of Previous
Queries-Accelerating queries with BI Engine

accelerating queries with BI Engine, Accelerating queries with BI
Engine

minimizing I/O, Minimizing I/O-Reducing the number of expensive
computations

being purposeful in SELECT, Be purposeful in SELECT

reducing data being read, Reducing data being read

reducing number of expensive computations, Reducing the
number of expensive computations

performing efficient joins, Performing Efficient Joins-JOIN versus
denormalization

avoiding self-joins of large tables, Avoiding self-joins of large
tables

denormalization, Denormalization

JOIN versus denormalization, JOIN versus denormalization

joining with precomputed values, Joining with precomputed
values

reducing data being joined, Reducing the data being joined

using window function instead of self-join, Using a window
function instead of self-join

using approximate aggregation functions, Using Approximate
Aggregation Functions-Optimizing How Data Is Stored and Accessed

indexes (array), Using arrays for generating data

indexing, not needed in BigQuery, Simplicity of Management

infinite loops, avoiding with SQL, How BigQuery Came About

INFORMATION_SCHEMA view, Table manipulation, Obtaining table
properties, Building queries dynamically

associated with a project, finding most expensive queries, Finding the
most expensive queries

infrastructure provisioning, not needed with BigQuery, Simplicity of
Management

INNER JOIN statement, INNER JOIN, CROSS JOIN

INNER JOIN EACH WITH ALL, Broadcast JOIN query

INNER JOIN EACH WITH EACH, Hash join query

summary of, OUTER JOIN

INSERT SELECT statement, Insert SELECT

INSERT statement, Data Management (DDL and DML), Step 5: Returning
the query results, DML

INSERT VALUES statement, Data Management (DDL and DML), Insert
VALUES

with SELECT subquery, Insert VALUES with subquery SELECT

Institute of Electrical and Electronics Engineers (IEEE), Standard-
Compliant Floating-Point Division

INT64 type, Data Types, Functions, and Operators, Summary

converting (coercing) to FLOAT64 or NUMERIC, Casting and
Coercion

decimal calculations and, Precise Decimal Calculations with
NUMERIC

returned by fingerprint function, Fingerprint function

INTEGER type, detection by AUTO partitioning mode, Loading and
querying Hive partitions

internationalization of strings, Internationalization

intersection of geography types, Geometry transformations and
aggregations

IS NOT NULL operator, Finding Unique Values by Using DISTINCT

IS NULL operator, Finding Unique Values by Using DISTINCT

IS operator

using in comparing against built-in constants, Logical Operations

using to check where value is NULL, Logical Operations

isolation between jobs, Simplicity of Management

J

Java Database Connectivity (JDBC), JDBC/ODBC drivers

JavaScript

tensorflow.js, Exporting to TensorFlow

user-defined functions, Optimizing user-defined functions, JavaScript
UDFs-JavaScript UDFs

JDBC/ODBC drivers, JDBC/ODBC drivers, Step 5: Returning the query
results

job management, Job Management

job priority, BATCH, Batch Queries

job servers, Step 3: Job Server

upgrades to, BigQuery Upgrades

JobConfig flags, Loading from a URI

jobIds, Limitations, Step 5: Returning the query results

jobUser role, Predefined roles, Resource

job_config, Parameterized queries

join+ stage

of broadcast JOIN treaty, Broadcast JOIN query

of hash join query, Hash join query

joins, Joining Tables-Saving and Sharing

broadcast and hash, Broadcast JOIN query

broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN query

complex, support by BigQuery, Powerful Analytics

CROSS JOIN, CROSS JOIN

for cases seeming to require a script, A sequence of statements

hash join query, Hash join query-Hash join query

INNER JOIN, INNER JOIN

JOIN statement, The JOIN Explained

GIS predicate functions in, GIS predicate functions

how it works, The JOIN Explained

joining user table and machine learning weights, Creating input
features

OUTER JOIN, OUTER JOIN

performing efficient joins, Performing Efficient Joins-JOIN versus
denormalization

avoiding self-joins of large tables, Avoiding self-joins of large
tables

denormalization, Denormalization

JOIN versus denormalization, JOIN versus denormalization

reducing data being joined, Reducing the data being joined

using precomputed values, Joining with precomputed values

using window function instead of self-join, Using a window
function instead of self-join

queries doing JOIN operations, Query Engine (Dremel)

summary of types of joins and their output, OUTER JOIN

JSON, ETL, EL, and ELT

arrays, Creating Arrays by Using ARRAY_AGG

compressed files, loading into BigQuery, Impact of compression and
staging via Google Cloud Storage

converting arrays to JSON strings, Array functions

creating JSON strings for dataset schema, Specifying a Schema

creating table definition of data stored in newline-delimited JSON for
Hive partition, Loading and querying Hive partitions

GeoJSON, Geographic types

converting geographies to/from strings in, Geographic types

JSON request in body of HTTP POST sent to BigQuery REST API
URL, Querying

JSON/REST interface, Accessing BigQuery via the REST API

loading files into BigQuery, Loading from a Local Source

newline-delimited files, extract format using Google Cloud Client
Library, Extracting data from a table

response from HTTP POST request to BigQuery REST API URL,
Querying

transformation of JSON HTTP request to Protobufs, Step 2: Routing

writing rows to insert into tables as newline-delimited JSON, Loading
and inserting data

Jupiter Networking, Storage and Networking Infrastructure

Jupyter

creating Python 3 notebook, Notebooks on Google Cloud Platform

Magics (BigQuery extensions), Jupyter Magics

running a parameterized query, Running a parameterized query

using with BigQuery Storage API, Bulk reads using BigQuery
Storage API

using R from Jupyter notebook, Working with BigQuery from R

Jupyter Magics for R, Working with BigQuery from R

working with BigQuery and pandas, Working with BigQuery, pandas,
and Jupyter-Working with BigQuery, pandas, and Jupyter

Jupyter Notebooks, Geometry transformations and aggregations

lines preceded by ! or %, Notebooks on Google Cloud Platform

lines preceded by !, running using command-line shell, Notebooks on
Google Cloud Platform

K

k-means clustering, k-Means Clustering-Data-Driven Decisions

carrying out clustering, Carrying Out Clustering

clustering bicycle stations, Clustering Bicycle Stations

determining what's being clustered, What’s Being Clustered?

making data driven decisions with, Data-Driven Decisions

understanding the clusters, Understanding the Clusters

kmeans model type, k-Means Clustering

Knuth, Donald, Accessing BigQuery from Data Science Tools, Principles of
Performance

L

L1 and L2 regularization, Regularization

labels, Labels and tags

applying to GCP resources for cost breakdown, Labels

empty (tags), Labels and tags

in machine learning, Formulating a Machine Learning Problem,
Clustering

choosing for regression model, Choose the Label

for classification model, Training

labels for regression model, Training and Evaluating the Model

searching for datasets or tables by, Labels and tags

LAG function, Navigation functions

LAST_VALUE function, Navigation functions

layers in deep neural networks, Deep Neural Networks

LEAD function, Navigation functions

LEFT JOIN statement, Using arrays for generating data

LENGTH function, String Functions

life cycle management on staging buckets, Setting up life cycle
management on staging buckets

LIKE operator, SELECT *, EXCEPT, REPLACE

named parameters used within, Named parameters

LIME (model explainability package), Examining Model Weights

LIMIT clause, Approximate top

adding to GROUP BY, Data skew

using with SELECT, Retrieving Rows by Using SELECT

using with SELECT *, Be purposeful in SELECT

linear regression models

examining model weights, Examining Model Weights-More-Complex
Regression Models

linear_reg model type, Training and Evaluating the Model

lines, Geographic types

literate programming, Accessing BigQuery from Data Science Tools

loading data into BigQuery, Loading Data into BigQuery-Summary

copying into a new table, Copying into a New Table

data management (DDL and DML), Data Management (DDL and
DML)-Data Management (DDL and DML)

efficiently, Loading Data Efficiently-Price and quota

impact of compression and staging via GCS, Impact of
compression and staging via Google Cloud Storage

federated queries and external data sources, Federated Queries and
External Data Sources-Improving performance

how to use federated queries, Federated Queries and External
Data Sources-Loading and querying Hive partitions

interactive explorations and querying of data in Google Sheets,
Interactive Exploration and Querying of Data in Google Sheets-
Joining Sheets data with a large dataset in BigQuery

SQL queries on data in Cloud Bigtable, SQL Queries on Data in
Cloud Bigtable-Improving performance

when to use, When to Use Federated Queries and External Data
Sources-Interactive Exploration and Querying of Data in Google
Sheets

loading data into destination table using bq load, Loading and inserting
data

from a local source, Loading from a Local Source-Loading from a
Local Source

moving on-premises data, Moving On-Premises Data-Data Migration
Methods

specifying a schema, Specifying a Schema-Specifying a Schema

transfers and exports, Transfers and Exports-Using the Streaming API
directly

BigQuery Data Transfer Service, Data Transfer Service-Cross-
region dataset copy

exporting Stackdriver logs, Exporting Stackdriver Logs

using Cloud Dataflow to read/write from BigQuery, Using Cloud
Dataflow to Read/Write from BigQuery-Using the Streaming API
directly

using Google Cloud Client Library

loading a pandas DataFrame, Loading a pandas DataFrame

loading from a Google Cloud URI, Loading from a URI

loading from a local file, Loading from a local file

localities for data, Data locality

localities for datasets, Creating a dataset, Creating Datasets and Tables

locations

choices for datasets created for BigQuery, Loading from a Local
Source

geographic

adhering to privacy policies with, GIS Measures

machine learning and, Creating Polygons

location-aware queries, Powerful Analytics

LOG function, prefixing with SAFE, SAFE Functions

logical operations, Boolean AND, OR, and NOT, Logical Operations

logistic regression, Examining Model Weights

logistic_reg model type, Training

logs, ELT in SQL for experimentation

(see also Stackdriver)

exporting Stackdriver logs, Exporting Stackdriver Logs-Exporting
Stackdriver Logs

longitude and latitude, Geographic types

LOOP statement, Looping

looping, Looping

LOWER function, String Functions

LPAD function, Transformation Functions

LTRIM function, Transformation Functions

M

machine failures, Machine failures

machine learning, Machine Learning in BigQuery

AutoML Tables and AutoML Text, creating models from data in
BigQuery tables, Integration with Google Cloud Platform

building a classification model, Building a Classification Model-
Choosing the Threshold

choosing the threshold, Choosing the Threshold

evaluating the model, Evaluation

prediction with the model, Prediction

training the model, Training

building a regression model, Building a Regression Model-Human
insights and auxiliary data

choosing the label, Choose the Label

creating a training dataset, Creating a Training Dataset

examining model weights, Examining Model Weights-More-
Complex Regression Models

exploring the dataset to find features, Exploring the Dataset to
Find Features-Number of bicycles

more complex regression models, More-Complex Regression
Models-Human insights and auxiliary data

predicting with the model, Predicting with the Model-Generating
batch predictions

training and evaluating the model, Training and Evaluating the
Model-Bucketizing the hour of day

creating learning models and carrying out batch predictions with
BigQuery, Powerful Analytics

custom models in GCP, Custom Machine Learning Models on GCP-
Predicting with TensorFlow models

AutoML, AutoML

hyperparameter tuning, Hyperparameter Tuning-Hyperparameter
tuning using AI Platform

support for TensorFlow, Support for TensorFlow-Predicting with
TensorFlow models

customizing BigQuery ML, Customizing BigQuery ML-
Regularization

balancing classes, Balancing Classes

controlling data split, Controlling Data Split

regularization, Regularization

formulating a problem, Formulating a Machine Learning Problem-
Types of Machine Learning Problems

geographic locations in, Creating Polygons

Google Cloud Platform APIs integrated with BigQuery, Integration
with Google Cloud Platform

in Google Sheets, automatic chart creation, Exploring BigQuery tables
using Sheets

k-means clustering, k-Means Clustering-Data-Driven Decisions

carrying out clustering, Carrying Out Clustering

clustering bicycle stations, Clustering Bicycle Stations

determining what's being clustered, What’s Being Clustered?

making data-driven decisions, Data-Driven Decisions

understanding the clusters, Understanding the Clusters

recommender systems, Recommender Systems-Training hybrid
recommendation model

incorporating user and movie information, Incorporating User and
Movie Information-Training hybrid recommendation model

making recommendations, Making Recommendations-Batch
predictions for all users and movies

matrix factorization, Matrix Factorization-Matrix Factorization

MovieLens dataset, using, The MovieLens Dataset

supervised, Machine Learning in BigQuery

types of problems, Types of Machine Learning Problems-Building a
Regression Model

classification, Classification

clustering, Clustering

recommender systems, Recommender

regression, Regression

summary of model types, Summary of model types

unstructured data, Unstructured data

using BigQuery, AutoML

magic numbers, Defining constants

Magics, invoking in Jupyter Notebook, Notebooks on Google Cloud
Platform

magnitude or sign of model weights, Examining Model Weights

managed storage, Managed Storage

management, simplicity of, using BigQuery, Simplicity of Management

MapReduce framework, MapReduce Framework

maps, interactive, creating with folium, Working with BigQuery, pandas,
and Jupyter

MATCHED, NOT MATCHED BY SOURCETARGET, NOT MATCHED
BY, MERGE statement

materialized views

creating from queries using bq mk, Creating views

storing query results in, Caching intermediate results

mathematical functions, Mathematical Functions

SAFE prefix, SAFE Functions

matrix factorization, Matrix Factorization-Matrix Factorization

matrix_factorization model, What’s Being Clustered?, Matrix Factorization

MAX function, Navigation functions

--maximum_bytes_billed option, Estimating per-query cost

MD5 hashing algorithm, MD5 and SHA

measuring and troubleshooting queries, Measuring and Troubleshooting-
Visualizing the query plan information

measuring query speed using BigQuery Workload Tester, Measuring
Query Speed Using BigQuery Workload Tester-Measuring Query
Speed Using BigQuery Workload Tester

measuring query speed using REST API, Measuring Query Speed
Using REST API

reading query plan information, Reading Query Plan Information-
Visualizing the query plan information

troubleshooting workloads using Stackdriver, Troubleshooting
Workloads Using Stackdriver-Troubleshooting Workloads Using
Stackdriver

MEDIAN function, user-defined, Public UDFs

memory

overwhelming memory of a worker, Data skew

reserving for caching tables by setting up BI Engine reservations,
Accelerating queries with BI Engine

MERGE statement, Data Management (DDL and DML), DML,
Reclustering, Deleting rows, MERGE statement

metadata, Metadata-Meta-File

clustering, Clustering

performance optimizations with clustered tables, Performance
optimizations with clustered tables

reclustering, Reclustering

DML (Data Manipulation Language), DML

meta-file, Query Master, Meta-File

metadataViewer role, Predefined roles

partitioning, Partitioning

performance optimizations with clustered tables, Performance
optimizations with clustered tables

storage optimization, Storage optimization

storage sets, Storage sets

table, Table Metadata-Time travel

labels and tags, Labels and tags

time travel, Time travel

using to build queries dynamically, Building queries dynamically

time travel, Time travel

migration of data, moving on-premises data to Google Cloud Storage, Data
Migration Methods

ML.BUCKETIZE function, Bucketizing the hour of day

ML.EVALUATE function, Evaluating the model

ML.FEATURE_CROSS function, Human insights and auxiliary data

ML.FEATURE_INFO function, Gradient-boosted trees

ML.PREDICT function, Predicting with the Model, Prediction

finding clusters with, Understanding the Clusters

making recommendations in recommender system, Making
Recommendations

passing desired threshold to, for binary classification models,
Choosing the Threshold

ML.RECOMMEND function, Batch predictions for all users and movies

ML.WEIGHTS function, Examining Model Weights, Obtaining user and
product factors

models (machine learning)

building a classification model, Building a Classification Model-
Choosing the Threshold

features, Formulating a Machine Learning Problem

more complex regression models, More-Complex Regression Models-
Human insights and auxiliary data

overfitting, Regularization

summary of model types, Summary of model types

monitoring resources using Stackdriver, Stackdriver monitoring and audit
logging

multiclass classification problems, Classification, Summary of model types

multipart/mixed content type, Batching multiple requests

multiregions, Zones, Regions, and Multiregions, Regional failures

multitenant queries, Simplicity of Management

MySQL, Relational Database Management System

using Cloud Dataflow template to load directly from MySQL, Using a
Dataflow template to load directly from MySQL

N

named parameters, Named parameters

named timestamp parameters, Named timestamp parameters

NaN (Not-a-Number), Standard-Compliant Floating-Point Division

Natural Language API, Unstructured data

navigation functions, Navigation functions

Nearline Storage, Setting up life cycle management on staging buckets

nested fields, Storing data as arrays of structs

nested, repeated fields, Storing data as arrays of structs

networking

BigQuery's reliance of Jupiter Networking, Storage and Networking
Infrastructure

minimizing network overhead, Minimizing Network Overhead-
Choosing an Efficient Storage Format

accepting compressed, partial responses, Compressed, partial
responses

bulk reads using BigQuery Storage API, Bulk reads using
BigQuery Storage API

security of Google's global network, Infrastructure Security

nodes in deep neural networks, Deep Neural Networks

nondeterministic behavior, queries exhibiting, Caching the Results of
Previous Queries

NoSQL

Cloud Bigtable NoSQL database service, SQL Queries on Data in
Cloud Bigtable

queries on data in Cloud Bigtable, NoSQL Queries based on a row-key
prefix

NOT keyword, Filtering with WHERE

NOT MATCHED BY TARGET or NOT MATCHED BY SOURCE,
MERGE statement

Not-a-Number (see NaN)

notebooks, Accessing BigQuery from Data Science Tools

on Google Cloud Platform, Notebooks on Google Cloud Platform-
Working with BigQuery, pandas, and Jupyter

Jupyter Magics, Jupyter Magics

running a parameterized query, Running a parameterized query

saving query results to pandas, Saving query results to pandas

using R from Jupyter notebook, Working with BigQuery from R

NP-hard problems, Storage format: Capacitor

NTH_VALUE function, Navigation functions

NULL values

cleaner handling with COALESCE, Cleaner NULL-Handling with
COALESCE

CROSS JOIN excluding rows with empty or NULL arrays, Using
arrays for generating data

filtering for in WHERE clause, Finding Unique Values by Using
DISTINCT

in comparisons, Comparisons, Logical Operations

in dataset CSV filed loaded into BigQuery, Loading from a Local
Source

making scalar functions return, SAFE Functions

NULL elements in arrays, Creating Arrays by Using ARRAY_AGG

replacing privacy-suppressed values with, Specifying a Schema

returning NULL from casting, not an error, Casting and Coercion

numbering functions, Numbering functions

NUMERIC type, Data Types, Functions, and Operators, Summary

coercions, Casting and Coercion

precise decimal calculations with, Precise Decimal Calculations with
NUMERIC

numeric types

and functions used with, Numeric Types and Functions-Precise
Decimal Calculations with NUMERIC

comparisons, Comparisons

mathematical functions, Mathematical Functions

precise decimal calculations with NUMERIC, Precise Decimal
Calculations with NUMERIC

SAFE functions, SAFE Functions

standard-compliant floating-point division, Standard-Compliant
Floating-Point Division

types of functions, summary, Numeric Types and Functions

numeric_weights, Examining Model Weights

num_clusters option, Carrying Out Clustering

num_factors option, Matrix Factorization

O

OAuth2 tokens, Step 1: HTTP POST

objects (BigQuery)

listing with bq ls and appropriate options, BigQuery Objects

showing details with bq show, Showing details

updating details with bq update, Updating

OFFSET function, Using arrays for generating data

retrieving first array item, Working with Arrays

ogr2ogr tool, converting Shapefiles to GeoJSON, Geographic types

on-demand pricing, Controlling Cost

online transaction processing (OLTP) databases, relational, Relational
Database Management System

benefits and drawbacks, Relational Database Management System

Open Database Connectivity (ODBC), JDBC/ODBC drivers

operators

<, <=, >, >=, and != (or <>) comparison operators, Comparisons

optimization, Optimizing Performance and Cost

(see also performance and cost, optimizing)

premature, Principles of Performance

Optimized Row Columnar (ORC) files, Loading Data Efficiently, Storage
format: Capacitor

loading and querying, Loading and querying Parquet and ORC

OPTIONS list

changing options after table creation, Changing options

customizing when creating machine learning models, Customizing
BigQuery ML-Regularization

label column and model type for regression model, Training and
Evaluating the Model

using at table creation, Options list

OR keyword, Filtering with WHERE

ORDER BY

adding a LIMIT to, Data skew

using to control row order in result set, Sorting with ORDER BY

ordering, preserving using arrays, Using arrays to preserve ordering

ORDINAL indexing of arrays, Using arrays for generating data

OUTER JOIN statement, summary of, OUTER JOIN

OVER clause, Aggregate analytic functions, Navigation functions

adding PARTITION BY to, Aggregate analytic functions

overfitting, Training

avoiding by using regularization, Regularization

decision trees and, Gradient-boosted trees

defined, Regularization

reducing in matrix factorization model, Matrix Factorization

P

pandas

creating a DataFrame to hold query results, Creating a pandas
DataFrame

loading a DataFrame into BigQuery table, Loading a pandas
DataFrame

reading BigQuery table into in-memory DataFrame, Using pandas

saving query results from Jupyter notebook on GCP to pandas
DataFrame, Saving query results to pandas

working with BigQuery and Jupyter, Working with BigQuery, pandas,
and Jupyter-Working with BigQuery, pandas, and Jupyter

parallelization of query execution in BigQuery, Simplicity of Management

parameterized queries, Parameterized queries, Parameterized Queries-Array
and struct parameters

array and struct parameters, Array and struct parameters

named parameters, Named parameters

named timestamp parameters, Named timestamp parameters

parameters added to scheduled queries when invoked, Named
timestamp parameters

positional parameters, Positional parameters

running from Jupyter notebook on GCP, Running a parameterized
query

Parquet files, Storage format: Capacitor

benefits and drawbacks of, Loading Data Efficiently

loading and querying, Loading and querying Parquet and ORC

PARSE_TIMESTAMP function, Parsing and Formatting Timestamps

parsing strings, Printing and Parsing

PARTITION BY, Aggregate analytic functions

partitioning, Partitioning

clustering by the partitioning column, Clustering by the partitioning
column

clustering versus, Reclustering, Reclustering

partitioning column in a query, Insert SELECT

partitioning tables to reduce scan size, Partitioning Tables to Reduce
Scan Size-Partitioned tables

antipattern, table suffixes and wildcards, Antipattern: Table
suffixes and wildcards

partition filters, BigQuery runtime statically determining,
Partitioned tables

partitioned tables, Partitioned tables-Partitioned tables

partitioning mode, specifying for bq load, Loading and querying Hive
partitions

partitions, Partitioning

expiration time for, Partitioned tables

partition ID, storage sets marked with, Partitioning

PATTERN variable, Anatomy of a simple script

Pearson correlation coefficient, Number of bicycles

Pending state, Storage sets

per-query costs, Controlling Cost

estimating, Estimating per-query cost

performance and cost, optimizing, Optimizing Performance and Cost-
Checklist

checklist for performance improvements, Checklist

controlling cost, Controlling Cost-Finding the most expensive queries

increasing query speed, Increasing Query Speed-Optimizing How Data
Is Stored and Accessed

avoiding overwhelming a worker, Avoiding Overwhelming a
Worker-Optimizing user-defined functions

caching results of previous queries, Caching the Results of
Previous Queries-Accelerating queries with BI Engine

minimizing I/O, Minimizing I/O-Reducing the number of
expensive computations

performing efficient joins, Performing Efficient Joins-JOIN
versus denormalization

key drivers of performance, Key Drivers of Performance

measuring and troubleshooting query performance, Measuring and
Troubleshooting-Visualizing the query plan information

measuring speed using BigQuery Workload Tester, Measuring
Query Speed Using BigQuery Workload Tester-Measuring Query
Speed Using BigQuery Workload Tester

measuring speed using REST API, Measuring Query Speed Using
REST API

reading query plan information, Reading Query Plan Information-
Visualizing the query plan information

troubleshooting workloads using Stackdriver, Troubleshooting
Workloads Using Stackdriver-Troubleshooting Workloads Using
Stackdriver

optimizing how data is stored and accessed, Optimizing How Data Is
Stored and Accessed-Side benefits of clustering

choosing efficient storage format, Choosing an Efficient Storage
Format-Storing data as geography types

clustering tables based on high-cardinality keys, Clustering Tables
Based on High-Cardinality Keys

minimizing network overhead, Minimizing Network Overhead-
Choosing an Efficient Storage Format

partitioning tables to reduce scan size, Partitioning Tables to
Reduce Scan Size-Partitioned tables

time-insensitive use cases, Time-Insensitive Use Cases-File Loads

batch queries, Batch Queries

file loads, File Loads

permissions, Security and Compliance

(see also Identity and Access Management)

for access to user-defined functions, Persistent UDFs

persistent user-defined functions, Persistent UDFs

personas, What’s Being Clustered?

points, Geographic types

incorporating geographic point in BigQuery into machine learning,
Creating Polygons

polygons, Geographic types

creating, Creating Polygons

positional parameters, Positional parameters

POST requests (HTTP), Querying, Step 1: HTTP POST

PostgreSQL, Relational Database Management System

arrays in, Advanced SQL

precision, Choosing the Threshold

predicate functions (GIS), GIS predicate functions

predictions, Powerful Analytics

(see also machine learning)

making in recommender system, Making Recommendations

batch predictions for all users and movies, Batch predictions for
all users and movies

predicting with classification model, Prediction

predicting with regression model, Predicting with the Model-
Generating batch predictions

generating batch predictions, Generating batch predictions

TRANSFORM clause in prediction query, The need for
TRANSFORM

predicting with TensorFlow models, Predicting with TensorFlow
models

preprocessing functions

ML.BUCKETIZE, Bucketizing the hour of day

putting all in TRANSFORM clause for prediction query, The need for
TRANSFORM

Pricing Calculator (GCP), Estimating per-query cost

pricing plans, Controlling Cost

primitive roles, Primitive roles

primitives, geographic data in, Geographic types

printing strings, Printing and Parsing

privacy and encryption, Privacy and Encryption-Customer-Managed
Encryption Keys

Customer-Managed Encryption Keys, Customer-Managed Encryption
Keys

Virtual Private Cloud Service Controls, Virtual Private Cloud Service
Controls

probability threshold, choosing for classification model, Choosing the
Threshold

product features, getting for movies data, Creating input features

product groups, What’s Being Clustered?

product recommendations, What’s Being Clustered?

programmatic development

accessing BigQuery via Google Cloud Client Library, Google Cloud
Client Library-Parameterized queries

browsing rows of a table, Browsing the rows of a table

copying a table, Copying a table

creating a dataset, Creating a dataset

creating an empty table with schema, Creating an empty table
with schema

creating empty table, Creating an empty table

dataset information, Dataset information

dataset manipulation, Dataset manipulation

deleting a dataset, Deleting a dataset

deleting a table, Deleting a table

extracting data from a table, Extracting data from a table

inserting rows into a table, Inserting rows into a table

loading a pandas DataFrame, Loading a pandas DataFrame

loading from a Google Cloud URI, Loading from a URI

loading from a local file, Loading from a local file

modifying attributes of a dataset, Modifying attributes of a dataset

obtaining table properties, Obtaining table properties

querying, Querying-Parameterized queries

table management, Table management

updating a table's schema, Updating a table’s schema

accessing BigQuery via REST API, Developing Programmatically-
Limitations

dataset manipulation, Dataset manipulation

queries, limitations of, Limitations

querying, Querying

table manipulation, Table manipulation

using SQL instead of, Table manipulation

programming languages

Google Cloud Client Library, Google Cloud Client Library

protobufs and, Simple Queries

Python, pandas library, Loading a pandas DataFrame

R language, Working with BigQuery from R

project ID, Retrieving Rows by Using SELECT

projects

allocation among reserved slots, Scheduler

in dataset names, Retrieving Rows by Using SELECT

rebalancing of project and data, Step 3: Job Server

protocol buffers (protobufs), How BigQuery Came About, Step 2: Routing

public user-defined functions, Public UDFs

community-developed, open source UDFs, Public UDFs

Python

BigQuery client, three ways of loading data, Creating an empty table
with schema

Cloud Client API, Parameterized Queries

code for Google Cloud Client Library for BigQuery, Google Cloud
Client Library

hyperparameter tuning in, Hyperparameter tuning in Python

Q

quantiles, Quantiles

queries, Query Essentials-Summary, Query Engine (Dremel)

(see also Dremel query engine)

advanced, Advanced Queries-Summary

advanced SQL, Advanced SQL-MERGE statement

reusable queries, Reusable Queries-Defining constants

using advanced functions, Advanced Functions-Summary

using operations in languages other than SQL, Beyond SQL-
Advanced Functions

aggregates, Aggregates-A Brief Primer on Arrays and Structs

computing using GROUP BY, Computing Aggregates by Using
GROUP BY

counting records using COUNT, Counting Records by Using
COUNT

filtering grouped items using HAVING, Filtering Grouped Items
by Using HAVING

finding unique values using DISTINCT, Finding Unique Values
by Using DISTINCT

batch, Batch Queries

executing using bq query and specifying the query, Executing Queries

setting flags in .bigqueryrc, Executing Queries

execution by Dremel, Query Execution-Hash join query

broadcast JOIN query, Broadcast JOIN query-Broadcast JOIN
query

hash join query, Hash join query-Hash join query

scan-filter-aggregate query, Scan-filter-aggregate query-Stage 2

scan-filter-aggregate query with high cardinality, Scan-filter-
aggregate query with high cardinality-Broadcast JOIN query

scan-filter-count query, Scan-filter-count query-Stage 1

joining tables, Joining Tables-Saving and Sharing

CROSS JOIN, CROSS JOIN

INNER JOIN, INNER JOIN

JOIN statement, The JOIN Explained

OUTER JOIN, OUTER JOIN

life of a query request, Life of a Query Request-Step 5: Returning the
query results

HTTP POST request, Step 1: HTTP POST

job server, Step 3: Job Server

query engine, Step 4: Query engine

returning query results, Step 5: Returning the query results

routing to REST endpoint, Step 2: Routing

performance, key drivers of, Key Drivers of Performance

primer on arrays and structs, A Brief Primer on Arrays and Structs-
Joining Tables

ARRAY of STRUCT, Array of STRUCT

creating ARRAYs using ARRAY_AGG, Creating Arrays by
Using ARRAY_AGG

tuples, TUPLE

working with arrays, Working with Arrays

querying BigQuery using Jupyter Magics and saving results to pandas
DataFrame, Working with BigQuery, pandas, and Jupyter

querying with Google Cloud Client Library, Querying-Parameterized
queries

creating a pandas DataFrame, Creating a pandas DataFrame

dry run before executing the query, Dry run

executing the query, Executing the query

parameterized queries, Parameterized queries

running from Jupyter notebook on GCP

saving results to pandas, Saving query results to pandas

running within notebooks, Jupyter Magics

saving and sharing, Saving and Sharing-Summary

query history and caching, Query History and Caching

saved queries, Saved Queries

views versus shared queries, Views Versus Shared Queries

scheduling in BigQuery, Scheduled queries

simple, Simple Queries-Sorting with ORDER BY

aliasing column names with AS, Aliasing Column Names with
AS-Filtering with WHERE

filtering SELECT results with WHERE, Filtering with WHERE

retrieving rows using SELECT, Retrieving Rows by Using
SELECT-Retrieving Rows by Using SELECT

SELECT*, EXCEPT, REPLACE, SELECT *, EXCEPT,
REPLACE

sorting with ORDER BY, Sorting with ORDER BY

subqueries using WITH, Subqueries with WITH

query engine, distributed (Dremel), Query Engine (Dremel)-Hash join
query

Query Masters, Step 4: Query engine, Query Master

upgrades of, BigQuery Upgrades

query plans, Query Master

for scan-filter-aggregate query, Stage 0

for scan-filter-count query, Scan-filter-count query

reading information in, Reading Query Plan Information-Visualizing
the query plan information

obtaining query plan information from job details, Obtaining
query plan information from the job details

visualizing query plan information, Visualizing the query plan
information-Visualizing the query plan information

QUERY_TEXT variable, Querying, Executing Queries

question answering, Summary of model types

R

r (raw) prefix for string literals, Regular Expressions

R language, working with BigQuery from, Working with BigQuery from R-
Cloud Dataflow

race conditions, preventing in table schema updates, Updating a table’s
schema

RAND function, Query History and Caching, Random number generator

random number generator, Random number generator

RANGE, Aggregate analytic functions

RANK function, Numbering functions

difference from DENSE_RANK and ROW_NUMBER in handling
ties, Numbering functions

readSessionUser role, Predefined roles

recall, Choosing the Threshold

reclustering, Reclustering

recommender systems, Recommender, Summary of model types,
Recommender Systems-Training hybrid recommendation model

incorporating user and movie information, Incorporating User and
Movie Information-Training hybrid recommendation model

creating input features, Creating input features-Creating input
features

obtaining user and product factors, Obtaining user and product
factors

training hybrid recommendation model, Training hybrid
recommendation model

making recommendations, Making Recommendations-Batch
predictions for all users and movies

batch predictions for all users and movies, Batch predictions for
all users and movies

customer targeting, Customer targeting

matrix factorization of ratings matrix, Matrix Factorization-Matrix
Factorization

MovieLens dataset, using, The MovieLens Dataset

record-oriented stores, How BigQuery Came About, Storage format:
Capacitor

Reed-Solomon encoding, Physical storage: Colossus

(see also erasure encoding)

REGEXP_CONTAINS function, Regular Expressions

REGEXP_EXTRACT function, Regular Expressions

REGEXP_EXTRACT_ALL function, Regular Expressions

REGEXP_REPLACE function, Regular Expressions

regions, Zones, Regions, and Multiregions

regional failures, Regional failures

routing query requests to, Step 2: Routing

regression, Regression, Summary of model types

building a regression model, Building a Regression Model-More-
Complex Regression Models

choosing the label, Choose the Label

examining model weights, Examining Model Weights-More-
Complex Regression Models

exploring the dataset to find features, Exploring the Dataset to
Find Features-Number of bicycles

predicting ratings, Obtaining user and product factors

predicting with the model, Predicting with the Model-Generating
batch predictions

training and evaluating the model, Training and Evaluating the
Model-Bucketizing the hour of day

more complex regression models, More-Complex Regression Models-
Human insights and auxiliary data

deep neural networks, Deep Neural Networks-Deep Neural
Networks

gradient-boosted trees, Gradient-boosted trees

human insights and auxiliary data, Human insights and auxiliary
data

regular expressions

using on strings, Regular Expressions

using WITH clause to abstract away expensive regex function,
Caching intermediate results

regularization in BigQuery ML, Regularization

regulatory compliance, Regulatory Compliance-Data Exfiltration Protection

data exfiltration protection, Data Exfiltration Protection

data locality, Data Locality

data loss prevention, Data Loss Prevention-Data Loss Prevention

GCP features providing compliance for BigQuery, Security and
Compliance

removing all transactions related to a single individual, Removing All
Transactions Related to a Single Individual-Crypto-shredding

restricting access to subsets of data, Restricting Access to Subsets of
Data-Dynamic filtering based on user

relational database management systems, Relational Database Management
System

remote procedure call (RPC) interface exposed by worker shards, Worker
Shard

repeated fields, Storing data as arrays of structs

nested, repeated fields, Storing data as arrays of structs

using arrays to store, Using arrays to store repeated fields

REPLACE, using with SELECT, SELECT *, EXCEPT, REPLACE

replicated encoding, Physical storage: Colossus

reservations, Step 2: Routing

flat-rate, Controlling Cost

reserved slots, Scheduler

updating size with bq update, Updating

resources

access to, management by IAM, Resource

labels for, Labels

REST APIs

accessing BigQuery via, Accessing BigQuery via the REST API-
Limitations

dataset manipulation with HTTP request, Dataset manipulation

queries, limitations of, Limitations

querying, Querying

table manipulation with HTTP requests, Table manipulation

using SQL instead of, Table manipulation

batching multiple BigQuery requests, Batching multiple requests

bq command invoking API exposed by BigQuery, Loading from a
Local Source

measuring query speed using BigQuery REST API, Measuring Query
Speed Using REST API

streaming data directly into BigQuery via, Powerful Analytics

restoring deleted records and tables, Restoring Deleted Records and Tables

restoring deleted tables, Deleting a table

restricting access to subsets of data, Restricting Access to Subsets of Data-
Dynamic filtering based on user

authorized views, Authorized views

dynamic filtering based on user, Dynamic filtering based on user

reusable queries, Reusable Queries-Defining constants

parameterized queries, Parameterized Queries-Array and struct
parameters

array and struct parameters, Array and struct parameters

named parameters, Named parameters

reusing parts of queries, Reusing Parts of Queries-Defining constants

correlated subquery, Correlated subquery

defining constants, Defining constants

WITH clause, WITH clause

SQL user-defined functions, SQL User-Defined Functions-Public
UDFs

public UDFs, Public UDFs

user-defined functions

persistent UDFs, Persistent UDFs

REVERSE function, Transformation Functions

roles, Role-Custom roles

custom, Custom roles

predefined, Predefined roles

primitive, Primitive roles

ROUND function, Mathematical Functions

ROW_NUMBER function, Limiting large sorts, Numbering functions

RPAD function, Transformation Functions

RTRIM function, Transformation Functions

run-length encoding, Storage format: Capacitor

S

SAFE functions, SAFE Functions

SAFE_CAST, Casting and Coercion

sandbox, using to experiment with BigQuery, Estimating per-query cost

saving queries, Saved Queries

making saved queries shareable, Saved Queries

scalar functions, Numeric Types and Functions

prefixing with SAFE to return NULL, SAFE Functions

scalar query parameters, Array and struct parameters

scan-filter-aggregate query example, Scan-filter-aggregate query-Stage 2

stage 0, Stage 0

stage 1, Stage 1

stage 2, Stage 2

scan-filter-aggregate query with high cardinality, Scan-filter-aggregate
query with high cardinality-Broadcast JOIN query

scan-filter-count query example, Scan-filter-count query-Stage 1

post-stage 0, Post–stage 0

stage 0, Stage 0

stage 1, Stage 1

scatter plots, drawing in pandas from saved query results, Saving query
results to pandas, Working with BigQuery, pandas, and Jupyter

scheduler, Query Master

assigning slots to queries, Scheduler

scheduling of queries, Scheduled queries

schemas

authoritative schema for managed storage, Managed Storage

changing to use arrays, Using arrays to store repeated fields

complex, using JSON file for, Complex schema

creating empty table with schema, Creating an empty table with
schema

examining details of insert job to ascertain the schema,
Troubleshooting Workloads Using Stackdriver

for dataset tables loaded into BigQuery, Loading from a Local Source

in external table definitions for CSV and JSON files, Temporary table

information, Building queries dynamically

not specifying for Parquet and ORC files, Loading and querying
Parquet and ORC

schema of imported TensorFlow model, Predicting with TensorFlow
models

specifying for dataset loaded into BigQuery, Specifying a Schema-
Specifying a Schema

star schemas applied to clustered tables, Side benefits of clustering

updating table schema using Google Cloud Client Library, Updating a
table’s schema

scipy package (Python), Cloud Dataflow

scripting, Scripting-Advanced Functions

anatomy of a simple script, Anatomy of a simple script

loops, Looping

saving scripts in stored procedures, Stored procedures

sequence of statements, A sequence of statements

using for hyperparameter tuning, Hyperparameter tuning using
scripting

using WITH clauses, joins, correlated subqueries, or GROUP BY
instead of, A sequence of statements

security

BigQuery features supporting, Simplicity of Management

Cloud Security Command Center, Cloud Security Command Center

GCP features providing security for BigQuery, Security and
Compliance

infrastructure provided by public cloud services, Administering and
Securing BigQuery

infrastructure security for BigQuery, Infrastructure Security-
Infrastructure Security

managing access control for BigQuery using IAM, Administering and
Securing BigQuery

managing access control for BigQuery with IAM, Identity and Access
Management-Resource

privacy and encryption, Privacy and Encryption-Customer-Managed
Encryption Keys

verifying effectiveness of, Dashboards, Monitoring, and Audit
Logging

SELECT * ... LIMIT 10, Side benefits of clustering

SELECT * EXCEPT statement, Be purposeful in SELECT

SELECT * LIMIT statement, Be purposeful in SELECT

SELECT * REPLACE statement, Storing data as geography types

SELECT * statement, selecting all columns in a table, SELECT *,
EXCEPT, REPLACE

SELECT statement, Query Essentials

being purposeful in, Be purposeful in SELECT

combining with UNION ALL, A Brief Primer on Arrays and Structs

conditional expressions using Booleans, Conditional Expressions

filtering with WHERE clause, Filtering with WHERE

from UNNEST, UNNEST an Array

in CREATE OR REPLACE MODEL, data split in, Controlling Data
Split

in WITH clause, Numbering functions

INSERT VALUES with SELECT subquery, Insert VALUES with
subquery SELECT

leading commas in SELECT clause, Creating Arrays by Using
ARRAY_AGG

limits on results for SELECT queries, Step 5: Returning the query
results

preparing training dataset, Training and Evaluating the Model

reducing data being read, Reducing data being read

retrieving rows with, Retrieving Rows by Using SELECT-Retrieving
Rows by Using SELECT

SELECT DISTINCT, Finding Unique Values by Using DISTINCT

withing a loop, Looping

self-joins

of large tables, avoiding, Avoiding self-joins of large tables-Reducing
the data being joined

using window function instead of, Using a window function instead of
self-join

sentiment analysis, Summary of model types

serverless (BigQuery), BigQuery: A Serverless, Distributed SQL Engine

SESSION_USER function, Dynamic filtering based on user

SHA hashing algorithms, MD5 and SHA

Shapefiles, geospatial data in, Geographic types

shards

in BigQuery upgrades, BigQuery Upgrades

scheduler farming out work to query shards, Step 4: Query engine

sharding a query to two or more shards to prevent spilling to disk,
Shuffle

shuffling to sinks, Shuffle

worker shard allocation by scheduler, Query Master

sharing queries

making saved queries shareable, Saved Queries

turning off link sharing to make queries unshareable, Saved Queries

views versus shared queries, Views Versus Shared Queries

shuffle sinks, Scheduler, Shuffle

shuffles, Storage and Networking Infrastructure

in BigQuery queries, Shuffle

slots in BigQuery, Separation of Compute and Storage, Step 4: Query
engine, Worker Shard

assignment by scheduler to queries, Scheduler

determining how many slots were used by a query, Scan-filter-count
query

purchase of reserved slots, Scheduler

returned by scheduler, Query Master

slowly-changing dimensions, The Basics

Software as a Service (SaaS) applications, loading data into BigQuery, Data
Transfer Service

sorting

clustering data, Clustering

distributed sort in scan-filter-aggregate query with high cardinality,
Distributed sort

limiting large sorts, Limiting large sorts

Spanner, Step 5: Returning the query results

database index (IDX), helping find storage sets within a range,
Partitioning

Spark, MapReduce Framework

writing ETL pipeline and executing it on Hadoop cluster, Using the
Streaming API directly

SPLIT function, A Brief Primer on Arrays and Structs

split points for distributed sort, Distributed sort

splittable files, Loading from a Local Source

Spotify, use of BigQuery, Data Processing Architectures

SQL (Structured Query Language), Relational Database Management
System

advanced, Advanced SQL

arrays, working with, Working with Arrays-Window Functions

Data Definition Language and Data Manipulation Language, Data
Definition Language and Data Manipulation Language-MERGE
statement

table metadata, using, Table Metadata-Time travel

ambiguities of Standard SQL, Advanced SQL

BigQuery's full-featured support for SQL:2011, Powerful Analytics

BigQuery, serverless distributed SQL engine, BigQuery: A Serverless,
Distributed SQL Engine

creating string containing SQL to be executed by BigQuery, Querying

creating tables in, Setting up destination table

deleting a table or view from BigQuery, Data Management (DDL and
DML)

dialect used in bq command-line tool, Executing Queries

DML (Data Manipulation Language), DML

execution by worker shard, Worker Shard

for computation of data in the cloud, reasons for choosing, How
BigQuery Came About

legacy SQL used by Dremel, Simple Queries

queries on data in Cloud Bigtable, SQL Queries on Data in Cloud
Bigtable-Improving performance

queries on distributed datasets, Hadoop runningSpark, MapReduce
Framework

SQL/MM 3 specification for spatial functions, Working with GIS
Functions

SQL:2011, BigQuery: A Serverless, Distributed SQL Engine

standard SQL used by BigQuery, Simple Queries

support for standard SQL in BigQuery, launch of, How BigQuery
Came About

user-defined functions, SQL User-Defined Functions-Public UDFs

using instead of client API to access BigQuery programmatically,
Table manipulation

using to automate schema creation, Specifying a Schema

SQL injection attacks, Parameterized queries

using parameterized queries to prevent, Named parameters

SSL 3.0 exploit, Infrastructure Security

SSL/TLS channels, access to API gateway infrastructure, Infrastructure
Security

Stackdriver, Integration with Google Cloud Platform

exporting logs, Exporting Stackdriver Logs-Exporting Stackdriver
Logs

monitoring and audit logging, Stackdriver monitoring and audit
logging

using to troubleshoot workloads, Troubleshooting Workloads Using
Stackdriver-Troubleshooting Workloads Using Stackdriver

standardize_features option, Carrying Out Clustering

star schemas, Side benefits of clustering

STARTS_WITH function, String Manipulation Functions

statistical functions, Useful Statistical Functions-Correlation

for correlation, Correlation

for quantiles, Quantiles

storage, Storage-Meta-File

BigQuery storage system providing table and file abstractions, How
BigQuery Came About

choosing efficient storage format, Choosing an Efficient Storage
Format-Storing data as geography types

internal vs. external data sources, Internal versus external data
sources

setting up life cycle management on staging buckets, Setting up
life cycle management on staging buckets

storing data as arrays of structs, Storing data as arrays of structs-
Storing data as arrays of structs

storing data as geography types, Storing data as geography types-
Storing data as geography types

managed, in BigQuery, Managed Storage

metadata, Metadata-Meta-File

clustering, Clustering

DML (Data Manipulation Language), DML

meta-file, Meta-File

partitioning, Partitioning

storage optimization, Storage optimization

storage sets, Storage sets

time travel, Time travel

of intermediate query results, Scheduler

physical storage in Colossus, Physical storage: Colossus-Physical
storage: Colossus

separation from compute in BigQuery, ETL, EL, and ELT, Separation
of Compute and Storage

storage format, Capacitor, Storage format: Capacitor-Storage format:
Capacitor

storing data as arrays, Working with Arrays

Storage API (BigQuery), bulk reads using, Bulk reads using BigQuery
Storage API

storage encoding (see encoding)

storage sets, Storage sets

new, created by reclustering, Reclustering

optimized, Storage optimization

representing partitions in metadata, Partitioning

with clustering, Clustering

stored procedures, Insert VALUES with subquery SELECT

saved scripts in, Stored procedures

streaming data

Cloud Dataflow using streaming inserts to load data into BigQuery,
Writing a Dataflow job

ingest of, support by BigQuery, Powerful Analytics

into BigQuery, Loading from a Local Source

newly inserted rows in streaming table, Inserting rows into a table

streaming inserts into BigQuery via Cloud Pub/Sub and Cloud
Dataflow, File Loads

to ingestion-timed partitioned table, Partitioned tables

using BigQuery streaming API directly, Using the Streaming API
directly

using time travel to run repeatable query over table fed via stream,
Time travel

string functions, String Functions-Working with TIMESTAMP

internationalization of strings, Internationalization

printing and parsing strings, Printing and Parsing

SAFE prefix, SAFE Functions

string manipulation functions, String Manipulation Functions

summary of, Summary of String Functions

transformation functions, Transformation Functions

STRING type, Data Types, Functions, and Operators, Summary

converting arrays to strings to, Array functions

detected by AUTO partitioning mode, Loading and querying Hive
partitions

in fingerprint function, Fingerprint function

strings

arrays of, Array functions

casting to FLOAT64, Loading from a Local Source

creating query doing string formatting, security risks of, Parameterized
queries

explicitly converting to INT64, Casting and Coercion

geographic data in, Geographic types

in schema autodetection by BigQuery, Specifying a Schema

NUMERIC types ingested into BigQuery as strings, Precise Decimal
Calculations with NUMERIC

query provided in, Executing Queries

representing as array of Unicode characters, array of bytes, or array of
Unicode code points, Internationalization

SPLIT function, A Brief Primer on Arrays and Structs

STRPOS function, String Functions, String Manipulation Functions

STRUCT keyword

ARRAY of STRUCT, Array of STRUCT

ending up with tuple or anonymous struct instead of, TUPLE

STRUCT type, Data Types, Functions, and Operators, Summary

structures

storing data as arrays of structs, Storing data as arrays of structs-
Storing data as arrays of structs

struct parameters, Array and struct parameters

ST_AsGeoJSON function, Geographic types

ST_AsText function, Geographic types

ST_CENTROID_AGG function, Geometry transformations and
aggregations

ST_Contains function, Working with GIS Functions, GIS predicate
functions

ST_CoveredBy function, GIS predicate functions

ST_Distance function, GIS Measures

ST_DWithin function, GIS predicate functions

ST_GeogFromGeoJSON function, Geographic types

ST_GeogFromText function, Geographic types

ST_GeogPoint function, Geographic types

ST_GeoHash function, Creating Polygons, Human insights and auxiliary
data

ST_Intersects function, GIS predicate functions

ST_MakeLine function, Creating Polygons

ST_MakePolygon function, Creating Polygons

ST_SnapToGrid function, GIS Measures

ST_UNION function, Geometry transformations and aggregations

subqueries, Query Engine (Dremel)

correlated, Correlated subquery

for cases seeming to require a script, A sequence of statements

with WITH clause, Subqueries with WITH

SUBSTR function, String Functions, String Manipulation Functions

prefixing with SAFE, SAFE Functions

suffixes (table), Antipattern: Table suffixes and wildcards

SUM function, using NUMERIC type, Precise Decimal Calculations with
NUMERIC

superQuery, Estimating per-query cost

supervised machine learning, Machine Learning in BigQuery

SYSTEM_TIME AS OF, Restoring Deleted Records and Tables

T

table-valued functions, Numeric Types and Functions

tables, Metadata

avoiding creation of tables with same name, Deleting a table

browsing rows using Google Cloud Client Library, Browsing the rows
of a table

clustered, performance optimizations with, Performance optimizations
with clustered tables

copying between datasets using bq cp, Copying datasets

copying between datasets using Google Cloud Client Library, Copying
a table

creating empty table using Google Cloud Client Library, Creating an
empty table

creating empty table with schema, using Google Cloud Client Library,
Creating an empty table with schema

creating in SQL, Setting up destination table

creating staging table for updates to apply, DML

creating with bq mk --table, Creating a table

creating with complex schema, Complex schema

deleting a table using Google Cloud Client Library, Deleting a table

extracting data from using bq extract, Extracting data

extracting data from, using Google Cloud Client Library, Extracting
data from a table

inserting rows into with bq insert, Loading and inserting data

inserting rows using Google Cloud Client Library, Inserting rows into
a table

joining, Joining Tables-Saving and Sharing

project and data rebalancing, Step 3: Job Server

management using Google Cloud Client Library, Table management

manipulating through HTTP requests to BigQuery REST API, Table
manipulation

metadata, Table Metadata-Time travel

obtaining properties using Google Cloud Client Library, Obtaining
table properties

query results functionally equivalent to, Step 5: Returning the query
results

recovering deleted tables, Restoring Deleted Records and Tables

structured storage at table level, Managed Storage

table/view in dataset names, Retrieving Rows by Using SELECT

updating schema using Google Cloud Client Library, Updating a
table’s schema

tagging

BigQuery tagging a table with each update, Updating a table’s schema

tags and labels, Labels and tags

using label to tag tables with characteristics, Creating a table

temporary tables

for scripts, Temporary tables

reading directly from, avoiding, Caching the Results of Previous
Queries

using for federated queries of external data sources, Temporary table

TensorFlow, Bulk reads using BigQuery Storage API, Machine Learning in
BigQuery, Support for TensorFlow-Predicting with TensorFlow models

BigQueryReader, TensorFlow’s BigQueryReader

exporting BigQuery model as SavedModel, Exporting to TensorFlow

exporting BigQuery table into TensorFlow records on GCS using
Apache Beam/Cloud Dataflow, Apache Beam/Cloud Dataflow

predicting with TensorFlow models, Predicting with TensorFlow
models

using pandas, Using pandas

text classification, Summary of model types

text editors, Specifying a Schema

text summarization, Summary of model types

text, Well Known Text (WKT) format for geographic strings, Geographic
types

threshold (probability), choosing for classification model, Choosing the
Threshold

time functions prefixed with SAFE, SAFE Functions

time travel

querying historical state of a table, Time travel

using to restore deleted tables, Deleting a table, Time travel

TIME type, Date, Time, and DateTime, Summary

time utility, Measuring Query Speed Using REST API

time zones, Parsing and Formatting Timestamps, Date, Time, and DateTime

time-insensitive use cases, Time-Insensitive Use Cases-File Loads

batch queries, Batch Queries

file loads, File Loads

TIMESTAMP type, Data Types, Functions, and Operators, Working with
TIMESTAMP-Date, Time, and DateTime, Summary

arithmetic with, Arithmetic with Timestamps

DATE, TIME, and DATETIME, Date, Time, and DateTime

detection by AUTO partitioning mode, Loading and querying Hive
partitions

extracting calendar parts, Extracting Calendar Parts

parsing and formatting, Parsing and Formatting Timestamps

timestamps

named timestamp parameters, Named timestamp parameters

Unix timestamp in milliseconds, Job Management

using to restore table version from past time within seven days,
Deleting a table

TIMESTAMP_MILLIS function, Extracting Calendar Parts

Titan chip, Infrastructure Security

tools for direct reads from BigQuery Storage API, Bulk reads using
BigQuery Storage API

TO_JSON_STRING function, Specifying a Schema, Array functions

training datasets, creating for regression model, Creating a Training Dataset

training models

classification model, Training

data split with evaluation, controlling, Controlling Data Split

deep neural network model, Deep Neural Networks

hybrid recommendation model, Training hybrid recommendation
model

linear regression model, Training and Evaluating the Model

matrix factorization model, Matrix Factorization

Transfer Appliance, Data Migration Methods

transfers of data into BigQuery, Transfers and Exports-Cross-region dataset
copy

Data Transfer Service, Data Transfer Service-Cross-region dataset
copy

creating a transfer job, Create a transfer job

cross-region dataset copy, Cross-region dataset copy

data locality, Data locality

scheduled queries, Scheduled queries

setting up destination table, Setting up destination table

transformations

TRANSFORM clause in CREATE OR REPLACE MODEL, data split
in, Controlling Data Split

TRANSFORM clause, using for regression model, The need for
TRANSFORM-Generating batch predictions

transforming TensorFlow records with tf.transform, Apache
Beam/Cloud Dataflow

TRIM function, Transformation Functions

tuples, TUPLE

Twitter, use of BigQuery, Data Processing Architectures

U

UDFs (see user-defined functions)

undoing deletions of records and tables, Restoring Deleted Records and
Tables

Unicode strings in BigQuery, Internationalization

UNION ALL, using with SELECT, A Brief Primer on Arrays and Structs

union of geography types, Geometry transformations and aggregations

Unix epoch, number of seconds from, Extracting Calendar Parts

Unix shell, using bash to get access tokens, Table manipulation

UNIX_MILLIS function, Extracting Calendar Parts

UNIX_SECONDS, Aggregate analytic functions

UNNEST function, A Brief Primer on Arrays and Structs, UNNEST an
Array, Storing data as arrays of structs

flattening arrays, in FROM clause, Using arrays to store repeated
fields

unstructured data, Unstructured data, Summary of model types

converting to structured data, Unstructured data

UPDATE statement, DML

adding entry to an array, Updating row values

applying no-op UPDATE to a partition, Reclustering

updating row values, Updating row values

updates, BigQuery not designed for very-high-frequency DML updates,
DML

upgrades to BigQuery, BigQuery Upgrades

URIs

BigQuery, Accessing BigQuery via the REST API

loading BigQuery table directly from Google Cloud URI, Loading
from a URI

URLs

BigQuery REST URLs, Dataset manipulation

HTTP DELETE request to BigQuery REST API URL, Table
manipulation

user role, Predefined roles

user-defined functions, Numeric Types and Functions

JavaScript, JavaScript UDFs-JavaScript UDFs

optimizing, Optimizing user-defined functions

SQL, SQL User-Defined Functions-Public UDFs

persistent UDFs, Persistent UDFs

public UDFs, Public UDFs

users

authorizing, Authorizing Users

dynamic filtering based on, Dynamic filtering based on user

UTF-8 encoding, Internationalization

UUIDs (universally unique identifiers), UUID

V

variables

declaring constants as, Defining constants

declaring for stored procedures, Parameters to stored procedures

versions (BigQuery), Accessing BigQuery via the REST API

views

authorized, Authorized views

creating from queries using bq mk, Creating views

versus shared queries, Views Versus Shared Queries

updating query corresponding to, using bq update, Updating

Virtual Private Cloud Service Controls (VPC-SC), Security and
Compliance, Virtual Private Cloud Service Controls

visualizations

drawing scatter plot in pandas from saved query results, Saving query
results to pandas, Working with BigQuery, pandas, and Jupyter

of geospatial data, Geometry transformations and aggregations

plotting interactive map using Python folium package, Working with
BigQuery, pandas, and Jupyter

visualizing query plan information, Visualizing the query plan
information-Visualizing the query plan information

visualizing the billing report, Visualizing the billing report

W

web UI (BigQuery)

newly inserted rows in streaming table, Inserting rows into a table

one-time data loads from, Loading from a Local Source

saving and sharing queries from, Saved Queries

transfers of data into BigQuery, Data locality

viewing persistent user-defined function, Persistent UDFs

weights

examining for linear regression model, Examining Model Weights-
More-Complex Regression Models

joining with user table in recommender system, Creating input features

user and product factors for recommender system, Obtaining user and
product factors

Well Known Text (WKT), Geographic types

converting geographies to/from strings in, Geographic types

WGS84 ellipsoid, Working with GIS Functions, Geographic types

What-If tool, Examining Model Weights

WHERE clause

Boolean expressions in, Logical Operations

casting in, Loading from a Local Source

comparisons and NULL values, Comparisons

correlated subqueries in, Correlated subquery

filtering for NULL values in, Finding Unique Values by Using
DISTINCT

filtering results returned by SELECT, Filtering with WHERE

GIS predicate functions in, GIS predicate functions

LIKE operator, SELECT *, EXCEPT, REPLACE

partitioning and clustering tables in, Insert SELECT

using GROUP BY instead of, Computing Aggregates by Using
GROUP BY

WHILE loop, Looping

wildcards

using for file paths with bq mkdef and bq load, Wildcards

using to search tables, Antipattern: Table suffixes and wildcards

window functions, Window Functions-Table Metadata

aggregating analytic functions, Aggregate analytic functions

navigation functions, Navigation functions

numbering functions, Numbering functions

using instead of self-join, Using a window function instead of self-join

WITH clause

for cases seeming to require a script, A sequence of statements

frequent use of, caching query results instead of, Caching intermediate
results

holding constants, Defining constants

reusing parts if queries in, WITH clause

SELECT statement in, Numbering functions

using for subqueries, Subqueries with WITH

using to abstract away expensive regex function, Caching intermediate
results

using user-defined functions in, SQL User-Defined Functions

worker shards

allocation by scheduler, Query Master

avoiding overwhelming a worker, Avoiding Overwhelming a Worker-
Optimizing user-defined functions

data skew, Data skew

limiting large sorts, Limiting large sorts

optimizing user-defined functions, Optimizing user-defined
functions

functions of, Worker Shard

JavaScript UDFs limited to single worker, JavaScript UDFs

Workload Tester, using to measure query speed, Measuring Query Speed
Using BigQuery Workload Tester-Measuring Query Speed Using BigQuery
Workload Tester

workloads, troubleshooting using Stackdriver, Troubleshooting Workloads
Using Stackdriver-Troubleshooting Workloads Using Stackdriver

X

XGBoost machine learning model, Gradient-boosted trees

Y

YouTube Channel, transferring data from, Create a transfer job

Z

zless, Loading from a Local Source

zones, Zones, Regions, and Multiregions

zonal failures, Zonal failures

About the Authors
Valliappa (Lak) Lakshmanan is Global Head for Data Analytics and AI
Solutions on Google Cloud. His team builds software solutions for business
problems using BigQuery and other Google Cloud data analytics and
machine learning products. He is also the author of Data Science on the
Google Cloud Platform, published by O’Reilly.

Jordan Tigani is Director of Product Management for BigQuery. He was
one of the founding engineers on BigQuery and helped grow it to be one of
the most successful products in Google Cloud. He wrote the first book on
BigQuery and has also spoken widely on the subject. Jordan has 20 years of
software development experience, ranging from Microsoft Research to
machine learning startups.

Colophon
The animal on the cover of Google BigQuery: The Definitive Guide is a
Masai ostrich (Struthio camelus massaicus), a subspecies of the common
ostrich—the largest bird in the world. They can be found grazing along the
open plains and grassy savannas of Eastern Africa.

The Masai ostrich measures between 7–9 feet tall, and although it has a
wingspan of 6.5 feet, it cannot fly. Ostriches are well adapted to their
flightlessness: though the filaments of their feathers grow in separately, and
can’t be hooked together to create airfoils (as happens in flighted birds),
ostrich wings remain useful in providing lift and stabilization when they
make evasive maneuvers around predators. The ostrich has long, powerful
legs that can propel it to maximum speeds of 45 miles per hour, making it
the fastest bird on land as well as the fastest two-legged animal.

The males are characterized by black plumage—with some white around
the wings and tail—that contrast with their reddish neck and legs (which get
brighter during mating). Females, on the other hand, are mostly brown and
grey. And while most birds have four toes, the Masai ostrich only has two,
one of which almost resembles a hoof. They travel in nomadic herds of up
to 50 birds that can often include other grazing animals, such as antelopes
or zebras.

There is popular belief that when in danger, the ostrich will bury its head in
sand as a defense mechanism. This myth is thought to have originated from
the writings of Pliny the Elder, who may have actually been observing them
ingesting sand and pebbles (which help them to digest their food since they
have no teeth). Another theory is that he may have seen them rotating their
eggs during incubation, which they keep buried in the sand. In any case,
when threatened, the Masai ostrich will either run away or lower its body
toward the ground. In extreme situations they will fight back, and have even
been capable of killing lions.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Jose Marzan, based on a black and white
engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Who Is This Book For?
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. What Is Google BigQuery?
	Data Processing Architectures
	Relational Database Management System
	MapReduce Framework
	BigQuery: A Serverless, Distributed SQL Engine

	Working with BigQuery
	Deriving Insights Across Datasets
	ETL, EL, and ELT
	Powerful Analytics
	Simplicity of Management

	How BigQuery Came About
	What Makes BigQuery Possible?
	Separation of Compute and Storage
	Storage and Networking Infrastructure
	Managed Storage
	Integration with Google Cloud Platform
	Security and Compliance

	Summary

	2. Query Essentials
	Simple Queries
	Retrieving Rows by Using SELECT
	Aliasing Column Names with AS
	Filtering with WHERE
	SELECT *, EXCEPT, REPLACE
	Subqueries with WITH
	Sorting with ORDER BY

	Aggregates
	Computing Aggregates by Using GROUP BY
	Counting Records by Using COUNT
	Filtering Grouped Items by Using HAVING
	Finding Unique Values by Using DISTINCT

	A Brief Primer on Arrays and Structs
	Creating Arrays by Using ARRAY_AGG
	Array of STRUCT
	TUPLE
	Working with Arrays
	UNNEST an Array

	Joining Tables
	The JOIN Explained
	INNER JOIN
	CROSS JOIN
	OUTER JOIN

	Saving and Sharing
	Query History and Caching
	Saved Queries
	Views Versus Shared Queries

	Summary

	3. Data Types, Functions, and Operators
	Numeric Types and Functions
	Mathematical Functions
	Standard-Compliant Floating-Point Division
	SAFE Functions
	Comparisons
	Precise Decimal Calculations with NUMERIC

	Working with BOOL
	Logical Operations
	Conditional Expressions
	Cleaner NULL-Handling with COALESCE
	Casting and Coercion
	Using COUNTIF to Avoid Casting Booleans

	String Functions
	Internationalization
	Printing and Parsing
	String Manipulation Functions
	Transformation Functions
	Regular Expressions
	Summary of String Functions

	Working with TIMESTAMP
	Parsing and Formatting Timestamps
	Extracting Calendar Parts
	Arithmetic with Timestamps
	Date, Time, and DateTime

	Working with GIS Functions
	Summary

	4. Loading Data into BigQuery
	The Basics
	Loading from a Local Source
	Specifying a Schema
	Copying into a New Table
	Data Management (DDL and DML)
	Loading Data Efficiently

	Federated Queries and External Data Sources
	How to Use Federated Queries
	When to Use Federated Queries and External Data Sources
	Interactive Exploration and Querying of Data in Google Sheets
	SQL Queries on Data in Cloud Bigtable

	Transfers and Exports
	Data Transfer Service
	Exporting Stackdriver Logs
	Using Cloud Dataflow to Read/Write from BigQuery

	Moving On-Premises Data
	Data Migration Methods

	Summary

	5. Developing with BigQuery
	Developing Programmatically
	Accessing BigQuery via the REST API
	Google Cloud Client Library

	Accessing BigQuery from Data Science Tools
	Notebooks on Google Cloud Platform
	Working with BigQuery, pandas, and Jupyter
	Working with BigQuery from R
	Cloud Dataflow
	JDBC/ODBC drivers
	Incorporating BigQuery Data into Google Slides (in G Suite)

	Bash Scripting with BigQuery
	Creating Datasets and Tables
	Executing Queries
	BigQuery Objects

	Summary

	6. Architecture of BigQuery
	High-Level Architecture
	Life of a Query Request
	BigQuery Upgrades

	Query Engine (Dremel)
	Dremel Architecture
	Query Execution

	Storage
	Storage Data
	Metadata

	Summary

	7. Optimizing Performance and Cost
	Principles of Performance
	Key Drivers of Performance
	Controlling Cost

	Measuring and Troubleshooting
	Measuring Query Speed Using REST API
	Measuring Query Speed Using BigQuery Workload Tester
	Troubleshooting Workloads Using Stackdriver
	Reading Query Plan Information

	Increasing Query Speed
	Minimizing I/O
	Caching the Results of Previous Queries
	Performing Efficient Joins
	Avoiding Overwhelming a Worker
	Using Approximate Aggregation Functions

	Optimizing How Data Is Stored and Accessed
	Minimizing Network Overhead
	Choosing an Efficient Storage Format
	Partitioning Tables to Reduce Scan Size
	Clustering Tables Based on High-Cardinality Keys

	Time-Insensitive Use Cases
	Batch Queries
	File Loads

	Summary
	Checklist

	8. Advanced Queries
	Reusable Queries
	Parameterized Queries
	SQL User-Defined Functions
	Reusing Parts of Queries

	Advanced SQL
	Working with Arrays
	Window Functions
	Table Metadata
	Data Definition Language and Data Manipulation Language

	Beyond SQL
	JavaScript UDFs
	Scripting

	Advanced Functions
	BigQuery Geographic Information Systems
	Useful Statistical Functions
	Hash Algorithms

	Summary

	9. Machine Learning in BigQuery
	What Is Machine Learning?
	Formulating a Machine Learning Problem
	Types of Machine Learning Problems

	Building a Regression Model
	Choose the Label
	Exploring the Dataset to Find Features
	Creating a Training Dataset
	Training and Evaluating the Model
	Predicting with the Model
	Examining Model Weights
	More-Complex Regression Models

	Building a Classification Model
	Training
	Evaluation
	Prediction
	Choosing the Threshold

	Customizing BigQuery ML
	Controlling Data Split
	Balancing Classes
	Regularization

	k-Means Clustering
	What’s Being Clustered?
	Clustering Bicycle Stations
	Carrying Out Clustering
	Understanding the Clusters
	Data-Driven Decisions

	Recommender Systems
	The MovieLens Dataset
	Matrix Factorization
	Making Recommendations
	Incorporating User and Movie Information

	Custom Machine Learning Models on GCP
	Hyperparameter Tuning
	AutoML
	Support for TensorFlow

	Summary

	10. Administering and Securing BigQuery
	Infrastructure Security
	Identity and Access Management
	Identity
	Role
	Resource

	Administering BigQuery
	Job Management
	Authorizing Users
	Restoring Deleted Records and Tables
	Continuous Integration/Continuous Deployment
	Cost/Billing Exports
	Dashboards, Monitoring, and Audit Logging

	Availability, Disaster Recovery, and Encryption
	Zones, Regions, and Multiregions
	BigQuery and Failure Handling
	Durability, Backups, and Disaster Recovery
	Privacy and Encryption

	Regulatory Compliance
	Data Locality
	Restricting Access to Subsets of Data
	Removing All Transactions Related to a Single Individual
	Data Loss Prevention
	CMEK
	Data Exfiltration Protection

	Summary

	Index

