DR. ALVIN'S PUBLICATIONS

WHICH MACHINE LEARNING MODEL TO CHOOSE?

DR. ALVIN ANG

1 | P A G E

CONTENTS

Ι.	There are TOO MANY Models			
Α.	. Confusing Models3			
В.	Simplified Model4			
<i>II.</i>	Considerations51.Business Objectives: Explainability vs Complexity52.Business Constraints: Inference Time / Training Time / Cost53.Dataset Size (number of Rows) and Dimensionality (number of Columns)54.Model's Performance5			
<i>III</i> .	Consideration 1: Business Objectives (Explainability vs Complexity)6			
Α.	Are we trying to do a Regression / Classification / Clustering Prediction?7			
IV.	Consideration 2: Business Constraints (Inference Time / Training Time / Cost)8			
Α.	. Are we trying to do a Regression / Classification (Supervised)?8			
В.	Are we trying to do a Clustering (Unsupervised)?9			
C.	Training Time vs Inference Time9			
V. Consideration 3: Dataset Size (number of Rows) and Dimensionality (number of Columns)				
Α.	. 5V's of Big Data10			
В.	Big Data Belongs to the Big Boys11			
C.	My Personal Definition of Big Data121.Exceeding the 1 million ROWS of data in ONE Excel Spreadsheet122.Exceeding the 16,000 COLUMNS of data in ONE Excel Spreadsheet123.Possibly exceeding 20MB file size of ONE CSV12			
D.	. What to do with "Huge" Number of Rows?13			
E.				
Consideration 4: Model's Performance14				
Con	What to do with "Huge" Number of Columns?			
Con Con	What to do with "Huge" Number of Columns?			
Con Con Refe	What to do with "Huge" Number of Columns?			

2 | P A G E

I. THERE ARE TOO MANY MODELS...

3 | P A G E

B. SIMPLIFIED MODEL

4 | P A G E

II. CONSIDERATIONS

Kaggle only cares about PERFORMANCE of the model... but in REAL LIFE, there are MANY OTHER FACTORS!

In my opinion, in terms of PRIORITY:

- 1. BUSINESS OBJECTIVES: EXPLAINABILITY VS COMPLEXITY
- 2. BUSINESS CONSTRAINTS: INFERENCE TIME / TRAINING TIME / COST

3. DATASET SIZE (NUMBER OF ROWS) AND DIMENSIONALITY (NUMBER OF COLUMNS)

4. MODEL'S PERFORMANCE

5 | P A G E

III. CONSIDERATION 1: BUSINESS OBJECTIVES (EXPLAINABILITY VS COMPLEXITY)

https://dr-alvin-ang.medium.com/list/the-data-science-team-29e63bae3aec

- What is the Business Objective? What are we trying to do?
- The Business Sponsor is supposed to have years of domain knowledge.
- Before selecting a ML model, we need to fully understand HIS business objectives first.
- ML Models can be Complex.
- The more Complex a model is, the harder to Explain its results.

6 | P A G E

A. ARE WE TRYING TO DO A REGRESSION / CLASSIFICATION / CLUSTERING PREDICTION?

7 | P A G E

IV. CONSIDERATION 2: BUSINESS CONSTRAINTS (INFERENCE TIME / TRAINING TIME / COST)

Supervised Learning	Slow but Accurate	Fast & Easy to Explain	Fast but Hard to Explain
Regression	Random Forest Neural Network Gradient Boosting Tree (similar to Random Forest but easier to overfit)	Decision Tree Linear Regression	nil
Classification	Random Forest Neural Network Gradient Boosting Tree (similar to Random Forest but easier to overfit) Non-Linear SVM	Decision Tree Logistics Regression	Linear SVM Naïve Bayes

A. ARE WE TRYING TO DO A REGRESSION / CLASSIFICATION (SUPERVISED)?

8 | P A G E

Unsupervised Learning	Hierarchical Clustering	Non - Hierarchical Clustering
Clustering	Hierarchical Clustering	DBScan K Means Gaussian Mixture Model

B. ARE WE TRYING TO DO A CLUSTERING (UNSUPERVISED)?

C. TRAINING TIME VS INFERENCE TIME

- Training Time
 - How long does it take to train your model?
 - The longer it takes, the more expensive the project budget.
 - What's the project budget?
- Inference Time
 - A self driving car needs to make decision in real time.
 - It can't take too long to decide to turn left or right.
 - How much time are we given to infer from the data?

9 | P A G E

V. CONSIDERATION 3: DATASET SIZE (NUMBER OF ROWS) AND DIMENSIONALITY (NUMBER OF COLUMNS)

A. 5V'S OF BIG DATA

- How big is our dataset?
- How big is big? How small is small?
- There's no specific size / amount that can quantify "BIG DATA" (even though there's the 5Vs to describe it as shown below)

10 | P A G E

B. BIG DATA BELONGS TO THE BIG BOYS

- I can't tell if my Data is big or small... so how?
- It goes back to our FIRST PRIORITY: Consideration 1: Business Objectives (Explainability vs Complexity) (ctrl + click) because normally,
 - Big Data belongs to the "Big Boys" (MNCs) who have the "Big Budget" to do "Big Data Analytics".... And like wise... "Bigger Vision" with "Bigger Timeframes"
 - Small Data belongs to the "Small Boys" (SMEs) who have "Small Budgets" and can only perform "Small Analytics".... "Smaller Objectives" with "Smaller Timeframes"...
- Are you doing a "Big Project" or "Small Project"?

C. MY PERSONAL DEFINITION OF BIG DATA

• According to my humble personal experience, my definition of "BIG DATA" is quantified as follows:

1. EXCEEDING THE 1 MILLION ROWS OF DATA IN ONE EXCEL SPREADSHEET.

- Why?
- Because you can't plot graphs from TWO spreadsheets (when 1 million rows spills over to the next spreadsheet).... So you can't get any descriptive statistics / inference done.

2. EXCEEDING THE 16,000 COLUMNS OF DATA IN ONE EXCEL SPREADSHEET.

- Why?
- Too many Features which boggles the mind.... And likewise, spilling over to the next spreadsheet which hints you that there's too many variables you are considering
- 3. POSSIBLY EXCEEDING 20MB FILE SIZE OF ONE CSV.
 - Why?
 - Because just double clicking it to open it in Excel can take forever... and moving the cursor around hangs your computer (on a basic 8 GB Ram laptop).

D. WHAT TO DO WITH "HUGE" NUMBER OF ROWS?

- Is your Project Budget (and likewise Timeframe) Big or Small?
- If Small Budget with Tight Timelines....
 - Refer to "Are we trying to do a Regression / Classification (Supervised)?" (ctrl + clickl)
 - Use only Supervised Learning methods (because its faster)... and choose only the "Fast and Easy" to explain methods...
 - But if your Data comes unlabelled... well... good luck! (the road ahead is going to be tough....HAHAHA...)... you have to use Unsupervised Methods....which might take long time and/or unsatisfactory results....
- If Big Budget with Longer Timelines....
 - Use Neural Networks.

E. WHAT TO DO WITH "HUGE" NUMBER OF COLUMNS?

- You need to perform Principal Component Analysis (PCA) for Dimension Reduction
- <u>https://www.alvinang.sg/s/Principal-Component-Analysis-PCA-with-PySpark-by-Dr-Alvin-Ang.pdf</u>

CONSIDERATION 4: MODEL'S PERFORMANCE

- These are the typical metrics people use to evaluate ML models:
 - o Accuracy
 - o F1 Score
 - o ROC / AUC curve
 - o PR Curve
 - All of which are found here: <u>https://www.alvinang.sg/s/Performance-Metrics-for-Machine-Learning-Models-by-Dr-Alvin-Ang.pdf</u>
- The most popular one being ROC / AUC curve.

14 | P A G E

CONCLUSION

- There's no BEST model... it depends on the situation.
- People normally fixate on their favourite model... the one that they are most familiar with.
- As long as it gives them good results for their past projects, the model can be re-applied.
- The basic considerations are:
 - o Business Objectives: Explainability vs Complexity
 - o Business Constraints: Inference Time / Training Time / Cost
 - o Dataset Size (number of Rows) and Dimensionality (number of Columns)
 - o Model's Performance

15 | P A G E

REFERENCES

 $\underline{https://towardsdatascience.com/considerations-when-choosing-a-machine-learning-model-aa31f52c27f3}$

https://towardsdatascience.com/which-machine-learning-model-to-use-db5fdf37f3dd

16 | P A G E

ABOUT DR. ALVIN ANG

Dr. Alvin Ang earned his Ph.D., Masters and Bachelor degrees from NTU, Singapore. He is a scientist, entrepreneur, as well as a personal/business advisor. More about him at <u>www.AlvinAng.sg</u>.

17 | P A G E