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Foreword

The current period of progress in artificial in-
telligence was triggered when Krizhevsky et al.
[2012] showed that an ararararararararararartititititititititititififififififififififificialcialcialcialcialcialcialcialcialcialcial neuneuneuneuneuneuneuneuneuneuneuralralralralralralralralralralral netnetnetnetnetnetnetnetnetnetnetworkworkworkworkworkworkworkworkworkworkwork
with a simple structure, which had been known
for more than twenty years [LeCun et al., 1989],
could beat complex state-of-the-art image recog-
nition methods by a huge margin, simply by
being a hundred times larger, and trained on a
data set similarly scaled up.

This breakthrough was made possible thanks
to GraphGraphGraphGraphGraphGraphGraphGraphGraphGraphGraphiiiiiiiiiiicalcalcalcalcalcalcalcalcalcalcal ProProProProProProProProProProProcesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging UnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnits (GPUGPUGPUGPUGPUGPUGPUGPUGPUGPUGPUs), mass-
market highly parallel computing devices de-
veloped for real-time image synthesis and repur-
posed for artificial neural networks.

Since then, under the umbrella term of “deepdeepdeepdeepdeepdeepdeepdeepdeepdeepdeep
learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging,” innovations in the structures of these
networks, the strategies to train them, and ded-
icated hardware have allowed for an exponen-
tial increase in both their size and the quantity
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of training data they take advantage of [Sevilla
et al., 2022]. This has resulted in a wave of suc-
cessful applications across technical domains,
from computer vision and robotics, to speech,
and natural language processing.

Although the bulk of deep learning is not par-
ticularly difficult to understand, it combines di-
verse components, which makes it complicated
to learn. It involves multiple branches of mathe-
matics such as calculus, probabilities, optimiza-
tion, linear algebra, and signal processing, and it
is also deeply anchored in computer science, pro-
gramming, algorithmic, and high-performance
computing. Instead of going into detail and try-
ing to be exhaustive, this little book is limited to
the necessary background and technical tools to
understand a few important models.

If you did not get this book from its official URL

https://fleuret.org/public/lbdl.pdf

please do so, so that I can estimate the number
of readers.

François Fleuret,
May 21, 2023
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Part I

Foundations
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Chapter 1

Machine Learning

DeepDeepDeepDeepDeepDeepDeepDeepDeepDeepDeep learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging belongs historically to the larger
field of statistical machine learning, as it funda-
mentally concerns methods able to learn repre-
sentations from data. The techniques involved
come originally from ararararararararararartititititititititititififififififififififificialcialcialcialcialcialcialcialcialcialcial neuneuneuneuneuneuneuneuneuneuneuralralralralralralralralralralral netnetnetnetnetnetnetnetnetnetnetworksworksworksworksworksworksworksworksworksworksworks,
and the “deep” qualifier highlights that models
are long compositions of mappings, now known
to achieve greater performance.

The modularity of deep models, their versatility,
and scaling qualities, have resulted in a plethora
of specific mathematical methods and software
development tools that have established deep
learning as a separate and vast technical field.
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1.1 Learning from data

The simplest use case for a model trained from
data is when a signal x is accessible, for instance,
the picture of a license plate, from which one
wants to predict a quantity y, such as the string
of characters written on the plate.

In many real-world situations where x is a high-
dimension signal captured in an uncontrolled
environment, it is too complicated to come up
with an analytical recipe that relates x and y.

What one can do is to collect a large traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging
setsetsetsetsetsetsetsetsetsetset 𝒟 of pairs (xn,yn), and devise a paraparaparaparaparaparaparaparaparaparaparametmetmetmetmetmetmetmetmetmetmetricricricricricricricricricricric
modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel f , a piece of computer code that incorpo-
rates traintraintraintraintraintraintraintraintraintraintrainableableableableableableableableableableable papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters w that modulate its
behavior, and such that, with the proper values
w∗, it is a good predictor. “Good” here means
that if an x is given to this piece of code, the
value ŷ= f(x;w∗) it computes is a good esti-
mate of the y that would have been associated
to x in the training set had it been there.

This notion of goodness is usually formalized
with a losslosslosslosslosslosslosslosslosslosslossℒ (w) which is small when f(·;w) is
good on𝒟 . Then, traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging the model consists of
computing a value w∗ that minimizesℒ (w∗).

Most of the content of this book is about the defi-
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nition of f which, in realistic scenarios, is a com-
plex combination of pre-defined sub-modules.

The trainable parameters that compose w are
often referred to as weightsweightsweightsweightsweightsweightsweightsweightsweightsweightsweights, by analogy with
the synaptic weights of biological neural net-
works. In addition to these parameters, models
usually depend on metametametametametametametametametametameta-papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters which are
set according to domain prior knowledge, best
practices, or resource constraints. Theymay also
be optimized in some way, but with techniques
different from those used to optimize w.
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1.2 Basis function regression

We can illustrate the training of a model in a sim-
ple case where xn and yn are two real numbers,
the loss is the meanmeanmeanmeanmeanmeanmeanmeanmeanmeanmean squaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquared erererererererererererrorrorrorrorrorrorrorrorrorrorror

ℒ (w)=
1

N

N∑
n=1

(yn−f(xn;w))2 , (1.1)

and f(·;w) is a linear combination of a pre-
defined basis of functions f1,...,fK , with w=
(w1,...,wK):

f(x;w)=

K∑
k=1

wkfk(x).

Since f(xn;w) is linear with respect to the wks
andℒ (w) is quadratic with respect to f(xn;w),

Figure 1.1: Given a basis of functions (blue curves)
and a training set (black dots), we can compute an
optimal linear combination of the former (red curve)
to approximate the latter for the mean squared error.
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the loss ℒ (w) is quadratic with respect to the
wks, and findingw∗ that minimizes it boils down
to solving a linear system. See Figure 1.1 for an
example with Gaussian kernels as fk.
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1.3 Under and overfitting

A key element is the interplay between the cacacacacacacacacacaca-
pacpacpacpacpacpacpacpacpacpacpacityityityityityityityityityityity of the model, that is its flexibility and
ability to fit diverse data, and the amount and
quality of the training data. When the capacity
is insufficient, the model cannot fit the data and
the error during training is high. This is referred
to as unununununununununununderderderderderderderderderderder-fitfitfitfitfitfitfitfitfitfitfittingtingtingtingtingtingtingtingtingtingting.

On the contrary, when the amount of data is
insufficient, as illustrated with an example in
Figure 1.2, the performance during training can
be excellent, but unrelated to the actual fit to
the data structure, as in that case the model will
often learn random noise present in the signal.

Figure 1.2: If the amount of training data is small com-
pared to the capacity of the model, the performance
during training reflects poorly the actual fit to the un-
derlying data structure, and consequently the useful-
ness for prediction.
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This is overoveroveroveroveroveroveroveroveroveroverfitfitfitfitfitfitfitfitfitfitfittingtingtingtingtingtingtingtingtingtingting.

So, a large part of the art of applied machine
learning is to design models that are not too
flexible yet still able to fit the data. This is done
by crafting the right inininininininininininducducducducducducducducducducductivetivetivetivetivetivetivetivetivetivetive biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias in a model,
which means that its structure corresponds to
the underlying structure of the data at hand.

Even though this classical perspective is relevant
for reasonably-sized deepmodels, things get con-
fusing with large ones that have a very large
number of trainable parameters and extreme ca-
pacity yet still perform well for prediction. We
will come back to this in § 3.5.
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1.4 Categories of models

We can organize the use of machine learning
models into three broad categories:

• ReReReReReReReReReReRegresgresgresgresgresgresgresgresgresgresgressionsionsionsionsionsionsionsionsionsionsion consists of predicting a
continuous-valued vector y ∈RK , for instance,
a geometrical position of an object, given an
input signal X . This is a multi-dimensional
generalization of the setup we saw in § 1.2. The
training set is composed of pairs of an input
signal and a groundgroundgroundgroundgroundgroundgroundgroundgroundgroundground truthtruthtruthtruthtruthtruthtruthtruthtruthtruthtruth value.

• ClasClasClasClasClasClasClasClasClasClasClassisisisisisisisisisisififififififififififificacacacacacacacacacacationtiontiontiontiontiontiontiontiontiontion aims at predicting a value from
a finite set {1,...,C}, for instance, the label Y of
an image X . As for regression, the training set
is composed of pairs of input signal, and groundgroundgroundgroundgroundgroundgroundgroundgroundgroundground
truthtruthtruthtruthtruthtruthtruthtruthtruthtruthtruth quantity, here a label from that set. The
standard way of tackling this is to predict one
score per potential class, such that the correct
class has the maximum score.

• DenDenDenDenDenDenDenDenDenDenDensitysitysitysitysitysitysitysitysitysitysitymodmodmodmodmodmodmodmodmodmodmodelelelelelelelelelelelinginginginginginginginginginging has as its objective tomodel
the probability density function of the data µX
itself, for instance, images. In that case, the train-
ing set is composed of values xn without associ-
ated quantities to predict, and the trained model
should allow either the evaluation of the prob-
ability density function, or sampling from the
distribution, or both.
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Both regression and classification are generally
referred to as sususususususususususuperperperperperperperperperperpervisedvisedvisedvisedvisedvisedvisedvisedvisedvisedvised learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging since the value
to be predicted, which is required as a target dur-
ing training, has to be provided, for instance, by
human experts. On the contrary, density mod-
eling is usually seen as unununununununununununsususususususususususuperperperperperperperperperperpervisedvisedvisedvisedvisedvisedvisedvisedvisedvisedvised learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging
since it is sufficient to take existing data, with-
out the need for producing an associated ground-
truth.

These three categories are not disjoint; for in-
stance, classification can be cast as class-score
regression, or discrete sequence density model-
ing as iterated classification. Furthermore, they
do not cover all cases. One may want to predict
compounded quantities, or multiple classes, or
model a density conditional on a signal.
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Chapter 2

Efficient computation

From an implementation standpoint, deep learn-
ing is about executing heavy computations with
large amounts of data. TheGraphGraphGraphGraphGraphGraphGraphGraphGraphGraphGraphiiiiiiiiiiicalcalcalcalcalcalcalcalcalcalcal ProProProProProProProProProProProcesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging
UnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnits (GPUsGPUsGPUsGPUsGPUsGPUsGPUsGPUsGPUsGPUsGPUs) have been instrumental in the suc-
cess of the field by allowing such computations
to be run on affordable hardware.

The importance of their use, and the resulting
technical constraints on the computations that
can be done efficiently, force the research in the
field to constantly balance mathematical sound-
ness and implementability of novel methods.
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2.1 GPUs, TPUs, and batches

Graphical Processing Units were originally de-
signed for real-time image synthesis, which re-
quires highly parallel architectures that happen
to be fitting for deep models. As their usage
for AI has increased, GPUs have been equipped
with dedicated sub-components referred to as
tententententententententententensorsorsorsorsorsorsorsorsorsorsor corescorescorescorescorescorescorescorescorescorescores, and deep-learning specialized chips
such as Google’s TenTenTenTenTenTenTenTenTenTenTensorsorsorsorsorsorsorsorsorsorsor ProProProProProProProProProProProcesscesscesscesscesscesscesscesscesscesscessingingingingingingingingingingingUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnitsUnits (TPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUsTPUs)
have been produced.

A GPU possesses several thousands of parallel
units, and its own fast memory. The limiting fac-
tor is usually not the number of computing units
but the readreadreadreadreadreadreadreadreadreadread-writewritewritewritewritewritewritewritewritewritewrite opopopopopopopopopopoperererererererererereraaaaaaaaaaationstionstionstionstionstionstionstionstionstionstions tototototototototototo memmemmemmemmemmemmemmemmemmemmemoryoryoryoryoryoryoryoryoryoryory. The
slowest link is between the CPU memory and
the GPU memory and consequently one should
avoid copying data across devices. Moreover
the structure of the GPU itself involves multiple
levels of cachecachecachecachecachecachecachecachecachecachecache memmemmemmemmemmemmemmemmemmemmemoryoryoryoryoryoryoryoryoryoryory, which are smaller but
faster, and computation should be organized to
avoid copies between these different caches.

This is achieved in particular by organizing the
computation in batchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatches ofofofofofofofofofofof samsamsamsamsamsamsamsamsamsamsamplesplesplesplesplesplesplesplesplesplesples that can fit
entirely in the GPU memory and are processed
in parallel. When an operator combines a sample
and model parameters, both have to be moved
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to the cache memory near the actual computing
units. Proceeding by batches allows for copying
themodel parameters only once, instead of doing
it for every sample. In practice, a GPU processes
a batch that fits in memory almost as quickly as
a single sample.

A standard GPU has a theoretical peakpeakpeakpeakpeakpeakpeakpeakpeakpeakpeak perperperperperperperperperperperforforforforforforforforforforfor-
mancemancemancemancemancemancemancemancemancemancemance of 1013-1014 floating point operations
(FLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPsFLOPs) per second, and its memory typically
ranges from 8 to 80 gigabytes. The standard
FP32FP32FP32FP32FP32FP32FP32FP32FP32FP32FP32 encoding of float numbers is on 32 bits, but
empirical results show that using encoding on
16 bits, or even less for some operands, does not
degrade performance.

We come back in § 3.6 to the very large size of
deep architectures.
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2.2 Tensors

GPUs and deepdeepdeepdeepdeepdeepdeepdeepdeepdeepdeep learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging frameframeframeframeframeframeframeframeframeframeframeworksworksworksworksworksworksworksworksworksworksworks such as Py-
Torch or JAX manipulate the quantities to be
processed by organizing them as tententententententententententensorssorssorssorssorssorssorssorssorssorssors, which
are series of scalars arranged along several dis-
crete axes. They are elements of RN1×···×ND

that generalize the notion of vector and matrix.

Tensors are used to represent both the signals to
process, the traintraintraintraintraintraintraintraintraintraintrainableableableableableableableableableableable papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters of the models,
and the intermediate quantities they compute.
The latters are called acacacacacacacacacacactititititititititititivavavavavavavavavavavationstionstionstionstionstionstionstionstionstionstions, in reference to
neuronal activations.

For instance, a time series is naturally encoded
as a T×D tensor, or, for historical reasons, as a
D×T tensor, where T is its duration and D is
the dimension of the feature representation at
every time step, often referred to as the number
of chanchanchanchanchanchanchanchanchanchanchannelsnelsnelsnelsnelsnelsnelsnelsnelsnelsnels. Similarly a 2d-structured signal can
be represented as aD×H×W tensor, whereH
andW are its width and height. An RGB image
would correspond to D=3, but the number of
channels can grow up to several thousands in
large models.

Addingmore dimensions allows for the represen-
tation of series of objects. Fifty RGB images of
resolution 32×24 can, for instance, be encoded
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as a 50×3×24×32 tensor.

Deep learning libraries all provide a large num-
ber of operations that encompass standard linear
algebra, complex reshaping and extraction, and
deep-learning specific operations, some of which
we will see in Chapter 4. The implementation of
tensors separates the shape representation from
the storage layout of the coefficients in mem-
ory, which allows many reshaping, transposing,
and extraction operations to be done without
coefficient copying, hence extremely rapidly.

In practice, virtually any computation can be
decomposed into elementary tensor operations,
which avoids non-parallel loops at the language
level and poor memory management.

Besides being convenient tools, tensors are
instrumental in achieving computational effi-
ciency. All the people involved in designing the
complex object that is an operational deepmodel,
from the researchers and software developers de-
signing the model, the libraries, and the drivers,
to the engineers designing the computers and the
computing chips themselves, know that the data
will be manipulated as tensors. The resulting
constraints on locality and block decomposabil-
ity allow all the actors in this chain to optimize
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their designs.
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Chapter 3

Training

As introduced in § 1.1, training a model con-
sists of minimizing a lossℒ (w) which reflects
the performance of the predictor f(·;w) on a
traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging setsetsetsetsetsetsetsetsetsetset 𝒟 . Since the models are usually
extremely complex, and their performance is di-
rectly related to how well the loss is minimized,
this minimization is a key challenge, which in-
volves both computational and mathematical dif-
ficulties.
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3.1 Losses

The example of the meanmeanmeanmeanmeanmeanmeanmeanmeanmeanmean squaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquaredsquared erererererererererererrorrorrorrorrorrorrorrorrorrorror of Equa-
tion 1.1 is a standard loss for predicting a con-
tinuous value.

For classification, the usual strategy is that the
output of the model is a vector with one com-
ponent f(x;w)y per class y, interpreted as the
logarithm of a non-normalized probability, or
logitlogitlogitlogitlogitlogitlogitlogitlogitlogitlogit. WithX the input signal and Y the class to
predict, we can then compute from f an estimate
of the posposposposposposposposposposposteteteteteteteteteteteriorriorriorriorriorriorriorriorriorriorrior probprobprobprobprobprobprobprobprobprobprobaaaaaaaaaaabilbilbilbilbilbilbilbilbilbilbiliiiiiiiiiiitiestiestiestiestiestiestiestiestiestiesties:

P̂ (Y = y |X =x)=
expf(x;w)y∑
zexpf(x;w)z

.

This expression is generally referred to as the
softsoftsoftsoftsoftsoftsoftsoftsoftsoftsoftmaxmaxmaxmaxmaxmaxmaxmaxmaxmaxmax, or more adequately, the sofsofsofsofsofsofsofsofsofsofsoftttttttttttargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmax, of
the logits.

To be consistent with this interpretation the
model should be trained to maximize the proba-
bility of the true classes, hence to minimize the
crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-enenenenenenenenenenentropytropytropytropytropytropytropytropytropytropytropy, expressed as

ℒce(w)=
1

N

N∑
n=1

−log
expf(xn;w)yn∑
zexpf(xn;w)z︸ ︷︷ ︸

Lce(f(xn;w),yn)

.
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For density modeling, the standard loss is the
likelihood of the data. If f(x;w) is to be inter-
preted as a normalized log-probability or density,
the loss is the opposite of the sum of its value
over training samples.

In certain setups, even though the value to be
predicted is continuous, the supervision takes
the form of ranking constraints. The typical do-
main where this is the case is metmetmetmetmetmetmetmetmetmetmetricricricricricricricricricricric learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging,
where the objective is to learn a measure of dis-
tance between samples such that two samples
from the same semantic class, e.g., two pictures
of the same person, are closer to each other than
to a sample from another class, e.g., any picture
of someone else.

The standard approach for such cases is to min-
imize a conconconconconconconconconconcontrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastive losslosslosslosslosslosslosslosslosslossloss, in that case, for in-
stance, the sum over triplets (xa,xb,xc), such
that ya= yb ̸= yc, of

max(0,1−f(xa,xc;w)+f(xa,xb;w)).

This quantity will be strictly positive unless
f(xa,xc;w)≥ 1+f(xa,xb;w).

It is also possible to add terms to the loss that
depend on the trainable parameters of the model
themselves to favor certain configurations.

28 155



The weightweightweightweightweightweightweightweightweightweightweight dededededededededededecaycaycaycaycaycaycaycaycaycaycay regularization, for instance,
consists of adding to the loss a term proportional
to the sum of the squared parameters. It can be
interpreted as having a Gaussian Bayesian prior
on the parameters, which favors smaller values
and reduces the influence of the data. This de-
grades performance on the training set, but re-
duces the gap between the performance in train-
ing and that on new, unseen data.

Usually, the loss to minimize is not the actual
quantity one wants to optimize ultimately, but a
proxy for which finding the best model parame-
ters is easier. For instance, cross-entropy is the
standard loss for classification, even though the
actual performance measure is a classification
error rate, because the latter has no informative
gradient, a key requirement as we will see in
§ 3.3.
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3.2 Autoregressive models

Many spectacular applications in computer vi-
sion and natural language processing have been
tackled by modeling the distribution of a high-
dimension discrete vector with the chain rule:

P (X1=x1,X2=x2,...,XT =xT )=

P (X1=x1)

×P (X2=x2 |X1=x1)

...

×P (XT =xT |X1=x1,...,XT−1=xT−1).

Although it is valid for any type of random quan-
tity, this decomposition finds its most efficient
use when the signal of interest can be encoded
into a sequence of discrete tototototototototototokenskenskenskenskenskenskenskenskenskenskens from a finite
vovovovovovovovovovovocabcabcabcabcabcabcabcabcabcabcabuuuuuuuuuuularylarylarylarylarylarylarylarylarylarylary {1,...K}.

With the convention that the additional token ∅
stands for an “unknown” quantity, we can rep-
resent the event {X1=x1,...,Xt=xt} as the
vector (x1,...,xt,∅,...,∅).

Then, given a model

f(x1,...,xt−1,∅,...,∅;w)=
logP̂ (Xt |X1=x1,...,Xt−1=xt−1),
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the chain rule states that one can sample a full se-
quence of length T by sampling the xts one after
another, each according to the predicted poste-
rior distribution, given the x1,...,xt−1 already
sampled. This is an auauauauauauauauauauautoretoretoretoretoretoretoretoretoretoretoregresgresgresgresgresgresgresgresgresgresgressivesivesivesivesivesivesivesivesivesivesive generative
model.

Training such a model could be achieved naively
byminimizing the sum across training sequences
x and time steps t of

Lce

(
f(x1,...,xt−1,∅,...,∅;w),xt

)
,

however such an approach is inefficient, as most
computations done for t< t′ have to be repeated
for t′.

The standard strategy to address this issue is to
design a model that predicts the distributions
of all the xt of the sequence at once, but with a
structure such that the prediction of xt’s logits
depends only on the input values x1,...,xt−1.
Such a model is called causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal, since it corre-
sponds in the case of temporal series to not let-
ting the future influence the past, as illustrated
in Figure 3.1. As we will see in § 7.1, it can be
trained with the cross-entropy summed over all
the time steps for every sequence processed.

One important technical detail is that when
dealing with language, the representation as to-
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cst x1 x2 ... xT−1 xT

y1 y2 y3 ... yT yT+1

f

Figure 3.1: An autoregressive model f , is causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal if a
time step xt of the input sequence can only modulate
a predicted ys = P̂ (Xs |Xt<s) for s> t.

kens can be done in multiple ways, from the
finest granularity of individual symbols to entire
words. The conversion to and from the token
representation is done by a separate algorithm
called a tototototototototototokkkkkkkkkkkenizerenizerenizerenizerenizerenizerenizerenizerenizerenizerenizer.

A standard method is the ByteByteByteByteByteByteByteByteByteByteByte PairPairPairPairPairPairPairPairPairPairPair EnEnEnEnEnEnEnEnEnEnEncodcodcodcodcodcodcodcodcodcodcodinginginginginginginginginginging
(BPEBPEBPEBPEBPEBPEBPEBPEBPEBPEBPE) [Sennrich et al., 2015] that constructs to-
kens by hierarchically merging groups of char-
acters, trying to get tokens that represent frag-
ments of words of various lengths but of similar
frequencies, allocating tokens to long frequent
fragments, as well as to rare individual symbols.
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3.3 Gradient descent

Except in specific cases like the linear regression
we saw in § 1.2, the optimal parameters w∗ do
not have a closed-form expression. In the general
case, the tool of choice to minimize a function
is gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent. It consists of initializing the
parameters with a random w0, and then improv-
ing this estimate by iterating gragragragragragragragragragragradididididididididididiententententententententententent stepsstepsstepsstepsstepsstepsstepsstepsstepsstepssteps, each
consisting of computing the gradient of the loss
with respect to the parameters, and subtracting
a fraction of it:

wn+1=wn−η∇ℒ |w(wn). (3.1)

This procedure corresponds to moving the cur-
rent estimate a bit in the direction corresponding
locally to the maximum decrease of ℒ (w), as
illustrated in Figure 3.2.

The meta-parameter η is referred to as the learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearn-
inginginginginginginginginginging rateraterateraterateraterateraterateraterate. It is a positive value that modulates how
quickly the minimization is done, and must be
chosen carefully. If it is too small, the optimiza-
tion will be slow at best, and may be trapped in
a lololololololololololocalcalcalcalcalcalcalcalcalcalcal minminminminminminminminminminminiiiiiiiiiiimummummummummummummummummummummum early. If it is too large, the opti-
mization may bounce around a good minimum
and never descend into it. As we will see in § 3.5,
it can depend on the iteration number n.
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w

w

ℒ (w)

Figure 3.2: At every pointw, the gradient∇ℒ |w(w) is
in the direction that maximizes the increase ofℒ , or-
thogonal to the level curves (top). The gradient descent
minimizes ℒ (w) iteratively by subtracting a fraction
of the gradient at every step, resulting in a trajectory
that follows the steepest descent (bottom).
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As with many algorithms, intuition tends to
break down in very high dimensions, and al-
though it may seem that this procedure would
be easily trapped in a local minimum, in reality,
due to the number of parameters, the design of
the models, and the stochasticity of the data, its
efficiency is far greater than one might expect.

All the losses used in practice can be expressed
as an average of a per sample, or per small group
of samples, loss

ℒ (w)=
1

N

N∑
n=1

𝓁n(w),

where
𝓁n(w)=L(f(xn;w),yn)

for some L, and the gradient is then

∇ℒ |w(w)=
1

N

N∑
n=1

∇𝓁n|w(w). (3.2)

The resulting gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent would compute
exactly the sum in 3.2, which is usually computa-
tionally heavy, and then update the parameters
according to 3.1. However, under reasonable as-
sumptions of exchangeability, for instance, if the
samples have been properly shuffled, any partial
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sum of 3.2 is an unbiased estimator of the full
sum, albeit noisy. So, updating the parameters
from partial sums corresponds to doing more
gradient steps for the same computational bud-
get, with noisier estimates of the gradient. Due
to the redundancy in the data, this happens to
be a far more efficient strategy.

We saw in § 2.1 that processing a batch of sam-
ples small enough to fit in the computing de-
vice’s memory is generally as fast as processing
a single one. Hence, the standard approach is to
split the full set 𝒟 into batchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatchesbatches, and to update
the parameters from the estimate of the gradient
computed from each. This is referred to as mini-
batch stochastic gradient descent, or stochasstochasstochasstochasstochasstochasstochasstochasstochasstochasstochastictictictictictictictictictictic
gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent (SGDSGDSGDSGDSGDSGDSGDSGDSGDSGDSGD) for short.

It is important to note that this process is ex-
tremely gradual, and that the number of mini-
batches and gradient steps are typically of the
order of several millions.

Plenty of variations of this standard strategy
have been proposed. The most popular one is
AdamAdamAdamAdamAdamAdamAdamAdamAdamAdamAdam [Kingma and Ba, 2014], which keeps run-
ning estimates of the mean and variance of each
component of the gradient, and normalizes them
automatically, avoiding scaling issues and differ-
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ent training speeds in different parts of a model.
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3.4 Backpropagation

Using gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent requires a tech-
nical means to compute ∇𝓁|w(w) where
𝓁=L(f(x;w);y). Given that f and L are both
compositions of standard tensor operations, as
for any mathematical expression, the chain rule
allows us to get an expression of it.

For the sake of making notation lighter–which,
unfortunately, will be needed in what follows–
we do not specify at which point gradients are
computed, since the context makes it clear.

x(d−1) x(d)
fd(·;wd)

∇𝓁|x(d−1) ∇𝓁|x(d)

×Jfd|x

∇𝓁|wd

×Jfd|w

Figure 3.3: Given a model f = fD◦···◦f1, the forward
pass (top) consists of computing the outputs x(d) of
the mappings fd in order. The backward pass (bottom)
computes the gradients of the loss with respect to the
activation x(d) and the parameters wd backward by
multiplying them by the Jacobians.
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Forward and backward passes

Consider the simple case of a composition of
mappings

f = f1◦f2◦···◦fD.

The output of f(x;w) can be computed by start-
ing with x(0)=x and applying iteratively

x(d)= fd(x
(d−1);wd),

with x(D) as the final value.

The individual scalar values of these interme-
diate results x(d) are traditionally called acacacacacacacacacacactititititititititititi-
vavavavavavavavavavavationstionstionstionstionstionstionstionstionstionstions in reference to neuron activations, the
valueD is the depthdepthdepthdepthdepthdepthdepthdepthdepthdepthdepth of the model, the individual
mappings fd are referred to as laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, as we will
see is § 4.1, and their sequential evaluation is the
forforforforforforforforforforforwardwardwardwardwardwardwardwardwardwardward passpasspasspasspasspasspasspasspasspasspass (see Figure 3.3, top).

Conversely, the gradient ∇𝓁|x(d−1) of the loss
with respect to the output x(d−1) of fd−1 is the
product of the gradient ∇𝓁|x(d) with respect
to the output of fd multiplied by the Jacobian
Jfd−1|x of fd−1 with respect to its first variable
x. Thus, the gradients with respect to the out-
puts of all the fds can be computed recursively
backward, starting with∇𝓁|x(D) =∇L|x.
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And the gradient that we are interested in for
training, that is ∇𝓁|wd

, is the gradient with re-
spect to the output of fd multiplied by the Jaco-
bian Jfd|w of fd with respect to the parameters.

This iterative computation of the gradients with
respect to the intermediate activations, com-
bined with that of the gradients with respect
to the layers’ parameters, is the backbackbackbackbackbackbackbackbackbackbackwardwardwardwardwardwardwardwardwardwardward passpasspasspasspasspasspasspasspasspasspass
(see Figure 3.3, bottom). The combination of
this computation with the procedure of gradient
descent is called backbackbackbackbackbackbackbackbackbackbackpropproppropproppropproppropproppropproppropaaaaaaaaaaagagagagagagagagagagagationtiontiontiontiontiontiontiontiontiontion.

In practice, the implementation details of the
forward and backward passes are hidden from
programmers. Deep learning frameworks are
able to automatically construct the sequence of
operations to compute gradients. A particularly
convenient algorithm is AuAuAuAuAuAuAuAuAuAuAutototototototototototogradgradgradgradgradgradgradgradgradgradgrad [Baydin et al.,
2015], which tracks tensor operations and builds,
on the fly, the combination of operators for gra-
dients. Thanks to this, a piece of imperative
programming that manipulates tensors can auto-
matically compute the gradient of any quantity
with respect to any other.
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Resource usage

Regarding the comcomcomcomcomcomcomcomcomcomcompupupupupupupupupupuputatatatatatatatatatatationaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional costcostcostcostcostcostcostcostcostcostcost, as we will
see, the bulk of the computation goes into linear
operations that require one matrix product for
the forward pass and two for the products by
the Jacobians for the backward pass, making the
latter roughly twice as costly as the former.

The memmemmemmemmemmemmemmemmemmemmemoryoryoryoryoryoryoryoryoryoryory rererererererererererequirequirequirequirequirequirequirequirequirequirequirementmentmentmentmentmentmentmentmentmentment during inference is
roughly equal to that of the most demanding
individual layer. For training, however, the back-
ward pass requires keeping the activations com-
puted during the forward pass to compute the
Jacobians, which results in a memory usage that
grows proportionally to the model’s depth. Tech-
niques exist to trade the memory usage for com-
putation by either relying on rerererererererererereversibleversibleversibleversibleversibleversibleversibleversibleversibleversibleversible laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers
[Gomez et al., 2017], or using checkcheckcheckcheckcheckcheckcheckcheckcheckcheckcheckpointpointpointpointpointpointpointpointpointpointpointinginginginginginginginginginging,
which consists of storing activations for some
layers only and recomputing the others on the fly
with partial forward passes during the backward
pass [Chen et al., 2016].

Vanishing gradient

A key historical issue when training a large net-
work is that when the gradient propagates back-
wards through an operator, it may be rescaled
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by a multiplicative factor, and consequently de-
crease or increase exponentially when it tra-
verses many layer. When it decreases exponen-
tially, this is called the vanvanvanvanvanvanvanvanvanvanvanishishishishishishishishishishishinginginginginginginginginginging gragragragragragragragragragragradididididididididididiententententententententententent, and
it may make the training impossible, or, in its
milder form, cause different parts of the model
to be updated at different speeds, degrading their
co-adaptation [Glorot and Bengio, 2010].

As we will see in Chapter 4, multiple techniques
have been developed to prevent this from hap-
pening, reflecting a change in perspective that
was crucial to the success of deep-learning: in-
stead of trying to improve generic optimization
methods, the effort shifted to engineering the
models themselves to make them optimizable.
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3.5 Training protocols

Training a deep network requires defining a pro-
tocol to make the most of computation and data,
and ensure that performance will be good on
new data.

As we saw in § 1.3, the performance on the train-
ing samples may be misleading, so in the sim-
plest setup one needs at least two sets of samples:
one is a traintraintraintraintraintraintraintraintraintraintraininginginginginginginginginginging setsetsetsetsetsetsetsetsetsetset, used to optimize the model
parameters, and the other is a testtesttesttesttesttesttesttesttesttesttest setsetsetsetsetsetsetsetsetsetset, to estimate
the performance of the trained model.

Additionally, there are usually metametametametametametametametametametameta-papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters
to adapt, in particular, those related to the model
architecture, the learning rate, and the regular-
ization terms in the loss. In that case, one needs
a valvalvalvalvalvalvalvalvalvalvaliiiiiiiiiiidadadadadadadadadadadationtiontiontiontiontiontiontiontiontiontion setsetsetsetsetsetsetsetsetsetset that is disjoint from both the
training set and the test set to assess the best
configuration.

The full training is usually decomposed into
epochsepochsepochsepochsepochsepochsepochsepochsepochsepochsepochs, each of them corresponding to going
through all the training examples once. The
usual dynamic of the losses is that the train loss
decreases as long as the optimization runs while
the validation loss may reach a minimum after
a certain number of epochs and then start to
increase, reflecting an overoveroveroveroveroveroveroveroveroveroverfitfitfitfitfitfitfitfitfitfitfittingtingtingtingtingtingtingtingtingtingting regime, as in-
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Loss

Number of epochs

Overfitting

Train

Validation

Figure 3.4: As training progresses, a model’s perfor-
mance is usually monitored through losses. The train
loss is the one driving the optimization process and
goes down, while the validation loss is estimated on
an other set of examples to assess the overfitting of
the model. This phenomenon appears when the model
starts to take into account random structures specific
to the training set at hands, resulting in the validation
loss starting to increase.

troduced in § 1.3 and illustrated on Figure 3.4.

Paradoxically, although they should suffer from
severe overfitting due to their capacity, large
models usually continue to improve as training
progresses. This may be due to the inininininininininininducducducducducducducducducducductivetivetivetivetivetivetivetivetivetivetive
biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias of the model becoming the main driver of
optimization when performance is near perfect
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on the training set [Belkin et al., 2018].

An important design choice is the learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging rateraterateraterateraterateraterateraterate
schedschedschedschedschedschedschedschedschedschedscheduleuleuleuleuleuleuleuleuleuleule during training. The general policy is
that the learning rate should be initially large to
avoid having the optimization being trapped in
a bad local minimum early, and that it should get
smaller so that the optimized parameter values
do not bounce around, and reach a good mini-
mum in a narrow valley of the loss landscape.

The training of extremely large models may take
months on thousands of powerful GPUs and
have a financial cost of several million dollars. At
this scale, the training may involve many man-
ual interventions informed, in particular, by the
dynamics of the loss evolution.
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3.6 The benefits of scale

There is an accumulation of empirical results
showing that performance, for instance, esti-
mated through the loss on test data, improves
with the amount of data according to remarkable
scalscalscalscalscalscalscalscalscalscalscalinginginginginginginginginginging lawslawslawslawslawslawslawslawslawslawslaws, as long as the model size increases
correspondingly [Kaplan et al., 2020], see Figure
3.5.

Benefiting from these scaling laws in the multi-
billion samples regime is possible in part thanks
to the structural plasticity of models, which al-
lows them to be scaled up arbitrarily, as we will
see, by increasing the number of layers or fea-
ture dimensions. But it is also made possible
by the distributed nature of the computation
implemented by these models and by stochasstochasstochasstochasstochasstochasstochasstochasstochasstochasstochas-
tictictictictictictictictictictic gragragragragragragragragragragradididididididididididiententententententententententent dededededededededededescentscentscentscentscentscentscentscentscentscentscent, which requires only a tiny
fraction of the data at a time and can operate
with data sets whose size is orders of magnitude
greater than that of the computing device’s mem-
ory. This has resulted in an exponential growth
of the models, as illustrated in Figure 3.6.

Typical vision models have 10–100million traintraintraintraintraintraintraintraintraintraintrain-
ableableableableableableableableableableable papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeterstersterstersterstersterstersterstersters and require 1018–1019 FLOPs
for training [He et al., 2015; Sevilla et al., 2022].
Language models have from 100 million to hun-
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Figure 3.5: Test loss of a languagemodel vs. the amount
of computation in petaflop/s-day, the data set size in
number of tokens, that is fragments of words, and the
model size in number of parameters [Kaplan et al.,
2020].
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Dataset Year Nb. of images Size
ImageNet 2012 1.2M 150Gb
Cityscape 2016 25K 60Gb
LAION-5B 2022 5.8B 240Tb

Dataset Year Nb. of books Size
WMT-18-de-en 2018 14M 8Gb
The Pile 2020 1.6B 825Gb
OSCAR 2020 12B 6Tb

Table 3.1: Some examples of publicly available datasets.
The equivalent number of books is an indicative esti-
mate for 250 pages of 2000 characters per book.

dreds of billions of trainable parameters and re-
quire 1020–1023 FLOPs for training [Devlin et al.,
2018; Brown et al., 2020; Chowdhery et al., 2022;
Sevilla et al., 2022]. The latter require machines
with multiple high-end GPUs.

Training these large models is impossible with
datasets of moderate size with a detailed ground-
truth expensive to produce. Instead, it is done
with datasets automatically produced by combin-
ing data available on the internet with minimal
curation, if any. These sets may combine multi-
ple modalities, such as text and images from web
pages, or sound and images from videos, which
can be used for large-scale supervised training.

The most impressive current successes of arti-
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Figure 3.6: Training costs in number of FLOP of some
landmark models [Sevilla et al., 2023]. The colors in-
dicate the domains of application: Computer Vision
(blue), Natural Language Processing (red), or other
(black). The dashed lines correspond to the energy con-
sumption using A100s SXM in 16 bits precision.
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ficial intelligence rely on very large language
models, which we will see in § 5.3 and § 7.1,
trained on extremely large text datasets, see Ta-
ble 3.1.
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Part II

Deep models
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Chapter 4

Model components

A deep model is nothing more than a complex
tensorial computation that can be decomposed
ultimately into standard mathematical opera-
tions from linear algebra and analysis. Over the
years, the field has developed a large collection
of high-level modules that have a clear semantic,
and complex models combining these modules,
which have proven to be effective in specific ap-
plication domains.

Empirical evidence and theoretical results show
that greater performance is achievedwith deeper
architectures, that is, long compositions of map-
pings. As we saw in section § 3.4, training such
a model is challenging due to the vanvanvanvanvanvanvanvanvanvanvanishishishishishishishishishishishinginginginginginginginginginging gragragragragragragragragragragra-
dididididididididididiententententententententententent, and multiple important technical contri-
butions have mitigated this problem.
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4.1 The notion of layer

We call laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers standard complex compounded
tensor operations that have been designed and
empirically identified as being generic and effi-
cient. They often incorporate trainable param-
eters and correspond to a convenient level of
granularity for designing and describing large
deep models. The term is inherited from sim-
ple multi-layer neural networks, even though
modern models may take the form of a complex
graph of such modules, incorporating multiple
parallel pathways.

×K

X

f

g n=4

Y

32×32

4×4

In the following pages, I try to stick to the con-
vention for model depiction illustrated above:

• operators / layers are depicted as boxes,

• darker coloring indicates that they embed
trainable parameters,

• non-default valued meta-parameters are
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added in blue on their right,

• a dashed outer frame with a multiplicative
factor indicates that a group of layers is repli-
cated in series, each with its own set of trainable
parameters if any, and

• the dimension of their output is specified on
the right when it differs from their input.

Additionally, layers that have a complex internal
structure are depicted with a greater height.
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4.2 Linear layers

LinLinLinLinLinLinLinLinLinLinLinearearearearearearearearearearear laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers are the most important modules
in terms of computation and number of parame-
ters. They benefit from decades of research and
engineering in algorithmic and chip design for
matrix operations.

fully-connected layers

The most basic one is the fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully-conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer,
parameterized by w=(W,b), where W is a
D′×Dweightweightweightweightweightweightweightweightweightweightweightmamamamamamamamamamamatrixtrixtrixtrixtrixtrixtrixtrixtrixtrixtrix, and b is a biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias vecvecvecvecvecvecvecvecvecvecvectortortortortortortortortortortor of di-
mensionD′. It implements a matrix/vector prod-
uct generalized to arbitrary tensor shapes. Given
an input X of dimension D1×···×DK×D, it
computes an output Y of dimension D1×···×
DK×D′ with

∀d1,...,dK ,
Y [d1,...,dK ] =WX[d1,...,dK ]+b.

While at first sight such an affine operation
seems limited to geometric transformations such
as rotations or symmetries, it can implement far
more than that. In particular, projections for di-
mension reduction or signal filtering, but also,
from the perspective of the dot product being a
measure of similarity, a matrix-vector product

55 155



can be interpreted as computingmatching scores
between a query, as encoded by the vector, and
keys, as encoded by the matrix rows.

As we saw in § 3.3, the gradient descent starts
with the papapapapapapapapapaparamramramramramramramramramramrameeeeeeeeeeeters’ters’ters’ters’ters’ters’ters’ters’ters’ters’ters’ ranranranranranranranranranranrandomdomdomdomdomdomdomdomdomdomdom iniiniiniiniiniiniiniiniiniiniinitialtialtialtialtialtialtialtialtialtialtializaizaizaizaizaizaizaizaizaizaizationtiontiontiontiontiontiontiontiontiontion. If
this is done too naively, as seen in § 3.4, the
network may suffer from exploding or vanishing
activations and gradients [Glorot and Bengio,
2010]. Deep learning frameworks implement
initialization methods that modulate the random
parameters’ scales according to the tensor shape
to prevent pathological behaviors of the signal
during the forward and backward passes.

Convolutional layers

A linear layer can take as input an arbitrarily-
shaped tensor by reshaping it into a vector, as
long as it has the correct number of coefficients.
However, such a layer is poorly adapted to deal-
ing with large tensors, since the number of pa-
rameters and number of operations are propor-
tional to the product of the input and output
dimensions. For instance, to process an RGB
image of size 256×256 as input and compute a
result of the same size, it would require approxi-
mately 4×1010 parameters and multiplications.
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Figure 4.1: A 1d convolution (left) takes as input
a D×T tensor X , applies the same affine mapping
ϕ(·;w) to every sub-tensor of shapeD×K , and stores
the resulting D′×1 tensors into Y . A 1d transposed
convolution (right) takes as input a D×T tensor, ap-
plies the same affine mapping ψ(·;w) to every sub-
tensor of shape D×1, and sums the shifted resulting
D′×K tensors. Both can process inputs of different
size.
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2d transposed
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Figure 4.2: A 2d convolution (left) takes as input a
D×H×W tensor X , applies the same affine map-
ping ϕ(·;w) to every sub-tensor of shape D×K×L,
and stores the resulting D′×1×1 tensors into Y . A
2d transposed convolution (right) takes as input a
D×H×W tensor, applies the same affine mapping
ψ(·;w) to every D×1×1 sub-tensor, and sums the
shifted resulting D′×K×L tensors into Y .

Besides these practical issues, most of the high-
dimension signals are strongly structured. For
instance, images exhibit short-term correlations
and statistical stationarity to translation, scaling,
and certain symmetries. This is not reflected
in the inininininininininininducducducducducducducducducducductivetivetivetivetivetivetivetivetivetivetive biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias of a fully-connected layer,
which completely ignores the signal structure.

To leverage these regularities, the tool of choice
is conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, which are also affine, but
process time-series or 2d signals locally, with the
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Figure 4.3: Beside its kernel size and number of input
/ output channels, a convolution admits three meta-
parameter: the stride s (left) modulates the step size
when going though the input tensor, the padding p
(top right) specifies how many zeros entries are added
around the input tensor before processing it, and the
dilation d (bottom right) parameterizes the index count
between coefficients of the filter.
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same operator everywhere.

A 1d1d1d1d1d1d1d1d1d1d1d conconconconconconconconconconconvovovovovovovovovovovolululululululululululutiontiontiontiontiontiontiontiontiontiontion is mainly defined by three
meta-parameters: its kerkerkerkerkerkerkerkerkerkerkernelnelnelnelnelnelnelnelnelnelnel sizesizesizesizesizesizesizesizesizesizesizeK , its number
of input channels D, its number of output chan-
nelsD′, and by the trainable parameters w of an
affine mapping ϕ(·;w) :RD×K →RD′×1.

It can process any tensor X of size D×T with
T ≥K , and applies ϕ(·;w) to every sub-tensor
D×K of X , storing the results in a tensor Y of
size D′×(T−K+1), as pictured in Figure 4.1
(left).

A 2d2d2d2d2d2d2d2d2d2d2d conconconconconconconconconconconvovovovovovovovovovovolululululululululululutiontiontiontiontiontiontiontiontiontiontion is similar but has aK×L ker-
nel and takes as input a D×H×W tensor, see
Figure 4.2 (left).

Both operators have for trainable parameters
those of ϕ that can be envisioned as D′ filfilfilfilfilfilfilfilfilfilfilterstersterstersterstersterstersterstersters
of size D×K or D×K×L respectively, and a
biasbiasbiasbiasbiasbiasbiasbiasbiasbiasbias vecvecvecvecvecvecvecvecvecvecvectortortortortortortortortortortor of dimension D′.

They also admit three additional meta-
parameters, illustrated on Figure 4.3:

• The paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding specifies how many zero coeffi-
cients should be added around the input tensor
before processing it, particularly to maintain the
tensor size when the kernel size is greater than
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one. Its default value is 0.

• The stridestridestridestridestridestridestridestridestridestridestride specifies the step used when going
through the input, allowing one to reduce the
output size geometrically by using large steps.
Its default value is 1.

• The dididididididididididilalalalalalalalalalalationtiontiontiontiontiontiontiontiontiontion specifies the index count between
the filter coefficients of the local affine opera-
tor. Its default value is 1, and greater values
correspond to inserting zeros between the coef-
ficients, which increases the filter / kernel size
while keeping the number of trainable parame-
ters unchanged.

Except for the number of channels, a convolu-
tion’s output is usually strictly smaller than its
input by roughly the size of the kernel, or even
by a scaling factor if the stride is greater than
one.

Given an activation computed by a convolutional
layer, or the vector of values for all the channels
at a certain location, the portion of the input
signal that it depends on is called its rererererererererererecepcepcepcepcepcepcepcepcepcepceptivetivetivetivetivetivetivetivetivetivetive
fieldfieldfieldfieldfieldfieldfieldfieldfieldfieldfield (see Figure 4.4). One of the H×W sub-
tensors corresponding to a single channel of a
D×H×W activation tensor is referred to as an
acacacacacacacacacacactititititititititititivavavavavavavavavavavationtiontiontiontiontiontiontiontiontiontion mapmapmapmapmapmapmapmapmapmapmap.
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Figure 4.4: Given an activation in a series of convolu-
tion layers, here in red, its rererererererererererecepcepcepcepcepcepcepcepcepcepceptivetivetivetivetivetivetivetivetivetivetive fieldfieldfieldfieldfieldfieldfieldfieldfieldfieldfield is the area in
the input signal, in blue, that modulates its value. Each
intermediate convolutional layer increases the width
and height of that area by roughly those of the kernel.

Convolutions are used to recombine informa-
tion, generally to reduce the spatial size of the
representation, trading it for a greater number
of channels, which translates into a richer local
representation. They can implement differential
operators such as edge-detectors, or template
matching mechanisms. A succession of such lay-
ers can also be envisioned as a compositional and
hierarchical representation [Zeiler and Fergus,
2014], or as a diffusion process in which infor-
mation can be transported by half the kernel size
when passing through a layer.
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A converse operation is the transtranstranstranstranstranstranstranstranstranstransposedposedposedposedposedposedposedposedposedposedposed conconconconconconconconconconconvovovovovovovovovovovolululululululululululu-
tiontiontiontiontiontiontiontiontiontiontion that also consists of a localized affine op-
erator, defined by similar meta and trainable
parameters as the convolution, but which ap-
plies, for instance, in the 1d case, an affine map-
ping ψ(·;w) :RD×1→RD′×K , to every D×1
sub-tensor of the input, and sums the shifted
D′×K resulting tensors to compute its output.
Such an operator increases the size of the signal
and can be understood intuitively as a synthe-
sis process (see Figure 4.1, right and Figure 4.2,
right).

A series of convolutional layers is the usual archi-
tecture to map a large-dimension signal, such as
an image or a sound sample, to a low-dimension
tensor. That can be, for instance, to get class
scores for classification or a compressed repre-
sentation. Transposed convolution layers are
used the opposite way to build a large-dimension
signal from a compressed representation, either
to assess that the compressed representation con-
tains enough information to build back the signal
or for synthesis, as it is easier to learn a density
model over a low-dimension representation. We
will come back to this in § 5.2.
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4.3 Activation functions

If a network were combining only linear com-
ponents, it would itself be a linear operator,
so it is essential to have nonnonnonnonnonnonnonnonnonnonnon-linlinlinlinlinlinlinlinlinlinlinearearearearearearearearearearear opopopopopopopopopopoperererererererererereraaaaaaaaaaationstionstionstionstionstionstionstionstionstionstions.
They are implemented in particular with acacacacacacacacacacactititititititititititivavavavavavavavavavava-
tiontiontiontiontiontiontiontiontiontiontion funcfuncfuncfuncfuncfuncfuncfuncfuncfuncfunctionstionstionstionstionstionstionstionstionstionstions, which are layers that transforms
each component of the input tensor individually
through a mapping, resulting in a tensor of the
same shape.

There are many different activation functions,
but the most used is the RecRecRecRecRecRecRecRecRecRecRectititititititititititifiedfiedfiedfiedfiedfiedfiedfiedfiedfiedfied LinLinLinLinLinLinLinLinLinLinLinearearearearearearearearearearear UnitUnitUnitUnitUnitUnitUnitUnitUnitUnitUnit
(ReLUReLUReLUReLUReLUReLUReLUReLUReLUReLUReLU, [Glorot et al., 2011]), which sets nega-
tive values to zero and keeps positive values un-
changed (see Figure 4.5, top right):

relu(x)=

{
0 if x< 0,

x otherwise.

Given that the core training strategy of deep-
learning relies on the gradient, it may seem prob-
lematic to have a mapping that is not differen-
tiable at zero and constant on half the real line.
However, the main property gradient descent
requires is that the gradient is informative on
average. Parameter initialization and data nor-
malization make half of the activations positive
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Tanh ReLU

Leaky ReLU GELU

Figure 4.5: Activation functions.

when the training starts, ensuring that this is the
case.

Before the generalization of ReLU, the standard
activation function was TanhTanhTanhTanhTanhTanhTanhTanhTanhTanhTanh (see Figure 4.5, top
left) which saturates exponentially fast on both
the negative and the positive sides, aggravating
the vanishing gradient.

Other popular activation functions follow the
same idea of keeping positive values unchanged
and squashing the negative values. LeakyLeakyLeakyLeakyLeakyLeakyLeakyLeakyLeakyLeakyLeaky ReLUReLUReLUReLUReLUReLUReLUReLUReLUReLUReLU
[Maas et al., 2013] applies a small positive multi-
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plying factor to the negative values (see Figure
4.5, bottom left):

leakyrelu(x)=

{
ax if x< 0,

x otherwise.

And GELUGELUGELUGELUGELUGELUGELUGELUGELUGELUGELU [Hendrycks and Gimpel, 2016] is de-
fined with the cumulative distribution function
of the Gaussian distribution, that is

gelu(x)=xP (Z ≤x),

where Z ∼𝒩 (0,1). It roughly behaves like a
smooth ReLU (see Figure 4.5, bottom right).

The choice of an activation function, in partic-
ular among the variants of ReLU, is generally
driven by empirical performance.
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4.4 Pooling

A classical strategy to reduce the signal size is to
use a poolpoolpoolpoolpoolpoolpoolpoolpoolpoolpoolinginginginginginginginginginging operation that combines multiple
activations into one that ideally summarizes the
information. Themost standard operation of this
class is the maxmaxmaxmaxmaxmaxmaxmaxmaxmaxmax poolpoolpoolpoolpoolpoolpoolpoolpoolpoolpoolinginginginginginginginginginging layer, which, similarly
to convolution, can operate in 1d and 2d, and is
defined by a kerkerkerkerkerkerkerkerkerkerkernelnelnelnelnelnelnelnelnelnelnel sizesizesizesizesizesizesizesizesizesizesize.

This layer computes the maximum activation
per channel, over non-overlapping sub-tensors
of spatial size equal to the kernel size. These val-
ues are stored in a result tensor with the same
number of channels as the input, and whose spa-
tial size is divided by the kernel size. As with
the convolution, this operator has three meta-
parameters: paddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpaddingpadding, stridestridestridestridestridestridestridestridestridestridestride, and dididididididididididilalalalalalalalalalalationtiontiontiontiontiontiontiontiontiontion, with
the stride being equal to the kernel size by de-
fault.

The max operation can be intuitively interpreted
as a logical disjunction, or, when it follows a
series of conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer that compute lo-
cal scores for the presence of parts, as a way
of encoding that at least one instance of a part
is present. It loses precise location, making it
invariant to local deformations.

A standard alternative is the avavavavavavavavavavaverererererererererererageageageageageageageageageageage poolpoolpoolpoolpoolpoolpoolpoolpoolpoolpoolinginginginginginginginginginging
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Figure 4.6: A 1d max pooling takes as input a D×
T tensor X , computes the max over non-overlapping
1×L sub-tensors and stores the values in a resulting
D×(T/L) tensor Y .
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layer that computes the average instead of the
maximum over the sub-tensors. This is a linear
operation, whereas max pooling is not.
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4.5 Dropout

Some layers have been designed to explicitly
facilitate training or improve the quality of the
learned representations.

One of the main contributions of that sort was
dropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropout [Srivastava et al., 2014]. Such a layer
has no trainable parameters, but one meta-
parameter, p, and takes as input a tensor of arbi-
trary shape.

It is usually switched off during testing, in which
case its output is equal to its input. When it is
active, it has a probability p to set to zero each
activation of the input tensor independently, and
it re-scales all the activations by a factor of 1

1−p
to maintain the expected value unchanged (see
Figure 4.7).

The motivation behind dropout is to favor
meaningful individual activation and discourage
group representation. Since the probability that
a group of k activations remains intact through
a dropout layer is (1−p)k , joint representations
become unreliable, which makes the training
procedure avoid them. It can also be seen as
a noise injection that makes the training more
robust.
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Figure 4.7: Dropout can process a tensor of arbitrary
shape. During training (left), it sets activations at ran-
dom to zero with probability p and applies a multiply-
ing factor to keep the expected values unchanged. Dur-
ing test (right), it keeps all the activations unchanged.

When dealing with images and 2d tensors, the
short-term correlation of the signals and the re-
sulting redundancy negates the effect of dropout,
since activations set to zero can be inferred from
their neighbors. Hence, dropout for 2d tensors
sets entire channels to zero instead of individual
activations.

Although dropout is generally used to improve
training and is inactive during inference, it can
be used in certain setups as a randomization
strategy, for instance, to estimate empirically
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confidence scores [Gal and Ghahramani, 2015].
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4.6 Normalizing layers

An important class of operators to facilitate the
training of deep architectures are the nornornornornornornornornornornormalmalmalmalmalmalmalmalmalmalmaliziziziziziziziziziziz-
inginginginginginginginginginging laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, which force the empirical mean and
variance of groups of activations.

The main layer in that family is batchbatchbatchbatchbatchbatchbatchbatchbatchbatchbatch nornornornornornornornornornornormalmalmalmalmalmalmalmalmalmalmal-
izaizaizaizaizaizaizaizaizaizaizationtiontiontiontiontiontiontiontiontiontion [Ioffe and Szegedy, 2015] which is the
only standard layer to process batches instead
of individual samples. It is parameterized by a
meta-parameter D and two series of trainable
scalar parameters β1,...,βD and γ1,...,γD .

Given a batch of B samples x1,...,xB of dimen-
sion D, it first computes for each of the D com-
ponents an empirical mean m̂d and variance v̂d
across the batch:

m̂d=
1

B

B∑
b=1

xb,d

v̂d=
1

B

B∑
b=1

(xb,d−m̂d)
2 ,

from which it computes for every component
xb,d a normalized value zb,d, with empirical
mean 0 and variance 1, and from it the final
result value yb,d with mean βd and standard de-
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Figure 4.8: Batch normalization normalizes across the
sample index dimension B and all spatial dimensions
if any, so B,H,W for a B×D×H×W batch tensor,
and scales/shifts according toD, which is implemented
as a component-wise product by γ and a sum with β
of the corresponding sub-tensors (left). Layer normal-
ization normalizes across D and spatial dimensions,
and scales/shifts according to the same (right).
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viation γd

zb,d=
xb,d−m̂d√
v̂d+ϵ

yb,d= γdzb,d+βd.

Because this normalization is defined across a
batch, it is done only during training. During
testing, the layer transforms individual samples
according to the m̂ds and v̂ds estimated with a
moving average over the full training set, which
boils down to a fix affine transformation per com-
ponent.

The motivation behind batch normalization was
to avoid that a change in scaling in an early layer
of the network during training impacts all the
layers that follow, which then have to adapt their
trainable parameters accordingly. Although the
actual mode of action may be more complicated
than this initial motivation, this layer consider-
ably facilitates the training of deep models.

In the case of 2d tensors, to follow the prin-
ciple of convolutional layers of processing all
locations similarly, the normalization is done
per-channel across all 2d positions, and β and
γ remain vectors of dimension D so that the
scaling/shift does not depend on the 2d posi-
tion. Hence, if the tensor to process is of shape
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B×D×H×W , the layer computes (m̂d,v̂d), for
d=1,...,D from the corresponding B×H×W
slice, normalizes it accordingly, and finally scales
and shifts its components with the trainable pa-
rameters βd and γd.

So, given a B×D tensor, batch normalization
normalizes it across B and scales/shifts it ac-
cording to D, which can be implemented as a
component-wise product by γ and a sum with
β. Given a B×D×H×W it normalizes across
B,H,W and scales/shifts according to D (see
Figure 4.8, left).

This can be generalized depending on these di-
mensions. For instance, layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer nornornornornornornornornornornormalmalmalmalmalmalmalmalmalmalmalizaizaizaizaizaizaizaizaizaizaizationtiontiontiontiontiontiontiontiontiontion [Ba
et al., 2016], computes moments and normalizes
across all components of individual samples, and
scales and shifts components individually (see
Figure 4.8, right). So, given a B×D tensor, it
normalizes across D and scales/shifts also ac-
cording to D. Given a B×D×H×W tensor, it
normalizes it across D,H,W and scales/shifts
according to the same.

Contrary to batch normalization, since it pro-
cesses samples individually, it behaves the same
during training and testing.
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4.7 Skip connections

Another technique that mitigates the vanishing
gradient and allows the training of deep archi-
tectures are skipskipskipskipskipskipskipskipskipskipskip conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions [Long et al., 2014;
Ronneberger et al., 2015]. They are not layers
per se, but an architectural design in which out-
puts of some layers are transported as-is to other
layers further in the model, bypassing process-
ing in-between. This unmodified signal can be
concatenated or added to the input to the layer
the connection branches into (see Figure 4.9). A
particular type of skip connections is the residresidresidresidresidresidresidresidresidresidresid-
ualualualualualualualualualualual conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectiontiontiontiontiontiontiontiontiontiontion which combines the signal with
a sum, and usually skips only a few layers (see
Figure 4.9, right).

The most desirable property of this design is to
ensure that, even in the case of gradient-killing
processing at a certain stage, the gradient will
still propagate through the skip connections.
Residual connections, in particular, allow for the
building of deep models with up to several hun-
dred layers, and key models, such as the residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual
netnetnetnetnetnetnetnetnetnetnetworksworksworksworksworksworksworksworksworksworksworks [He et al., 2015] in computer vision,
see § 5.2, and the TransTransTransTransTransTransTransTransTransTransTransformformformformformformformformformformformersersersersersersersersersersers [Vaswani et al.,
2017] in natural language processing, see § 5.3,
are entirely composed of blocks of layers with
residual connections.
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Figure 4.9: Skip connections, highlighted in red on this
figure, transport the signal unchanged across multiple
layers. Some architectures (center) that downscale and
re-upscale the representation size to operate at multiple
scales, have skip connections to feed outputs from the
early parts of the network to later layers operating at
the same scales [Long et al., 2014; Ronneberger et al.,
2015]. The residual connections (right) are a special
type of skip connections that sum the original signal
to the transformed one, and are usually short-term,
bypassing at max a handful of layers [He et al., 2015].
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Their role can also be to facilitate multi-scale rea-
soning in models that reduce the signal size be-
fore re-expanding it, by connecting layers with
compatible sizes. In the case of residual con-
nections, they may also facilitate learning by
simplifying the task to finding a differential im-
provement instead of a full update.
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4.8 Attention layers

In many applications, there is a need for an oper-
ation that is able to combine local information at
locations far apart in a tensor. For instance, this
could be distant details for coherent and realistic
imimimimimimimimimimimageageageageageageageageageageage synsynsynsynsynsynsynsynsynsynsynthethethethethethethethethethethesississississississississississis, or words at different positions
in a paragraph to make a grammatical or seman-
tic decision in natnatnatnatnatnatnatnatnatnatnatuuuuuuuuuuuralralralralralralralralralralral lanlanlanlanlanlanlanlanlanlanlanguageguageguageguageguageguageguageguageguageguageguage proproproproproproproproproproprocesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging.

fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully-conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers cannot process large-
dimension signals, nor signals of variable size,
and conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers are not able to prop-
agate information quickly. Strategies that ag-
gregate the results of convolutions, for instance,
by averaging them over large spatial areas, suf-
fer from mixing multiple signals into a limited
number of dimensions.

AtAtAtAtAtAtAtAtAtAtAttentententententententententententiontiontiontiontiontiontiontiontiontiontion laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers specifically address this prob-
lem by computing an attention score for each
component of the resulting tensor to each com-
ponent of the input tensor, without locality con-
straints, and averaging features across the full
tensor accordingly [Vaswani et al., 2017].

Even though they are substantially more com-
plicated than other layers, they have become a
standard element in many recent models. They
are, in particular, the key building block of TransTransTransTransTransTransTransTransTransTransTrans-
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Figure 4.10: The attention operator can be inter-
preted as matching every query Qq with all the
keysK1,...,KNKV to get normalized attention scores
Aq,1,...,Aq,NKV (left, and Equation 4.1), and then av-
eraging the values V1,...,VNKV with these scores to
compute the resulting Yq (right, and Equation 4.2).

formformformformformformformformformformformersersersersersersersersersersers, the dominant architecture for LargeLargeLargeLargeLargeLargeLargeLargeLargeLargeLarge
LanLanLanLanLanLanLanLanLanLanLanguageguageguageguageguageguageguageguageguageguageguage ModModModModModModModModModModModelselselselselselselselselselsels. See § 5.3 and § 7.1.

Attention operator

Given

• a tensor Q of queriesqueriesqueriesqueriesqueriesqueriesqueriesqueriesqueriesqueriesqueries of size NQ×DQK,
• a tensorK of keyskeyskeyskeyskeyskeyskeyskeyskeyskeyskeys of size NKV×DQK, and
• a tensor V of valvalvalvalvalvalvalvalvalvalvaluesuesuesuesuesuesuesuesuesuesues of size NKV×DV,

the atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion opopopopopopopopopopoperererererererererereraaaaaaaaaaatortortortortortortortortortortor computes a tensor

Y =att(K,Q,V )

of dimensionNQ×DV. To do so, it first computes
for every query index q and every key index k an
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attention scoreAq,k as the sofsofsofsofsofsofsofsofsofsofsoftttttttttttargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmaxargmax of the dot
products between the query Qq and the keys:

Aq,k =
exp

(
1√
DQKQ

⊤
q Kk

)
∑

lexp
(

1√
DQKQ

⊤
q Kl

) , (4.1)

where the scaling factor 1√
DQK keeps the range

of values roughly unchanged even for largeDQK.

Then a retrieved value is computed for each
query by averaging the values according to the
attention scores:

Yq =
∑
k

Aq,kVk. (4.2)

So if a query Qn matches one keyKm far more
than all the others, the corresponding attention
scoreAn,m will be close to one, and the retrieved
value Yn will be the value Vm associated to that
key. But, if it matches several keys equally, then
Yn will be the average of the associated values.

This can be implemented as

att(Q,K,V )= softargmax

(
QK⊤
√
DQK

)
︸ ︷︷ ︸

A

V.

This operator is usually extended in two ways,
as depicted in Figure 4.11. First, the attention
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Figure 4.11: The attention operator Y =att(Q,K,V )
computes first an attention matrix A as the per-query
softargmax of QK⊤, which may be masked by a con-
stant matrixM before the normalization. This atten-
tion matrix goes through a dropout layer before being
multiplied by V to get the resulting Y . This operator
can be made causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal by takingM full of 1s below the
diagonal and zero above.
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matrix can be masked by multiplying it before
the softargmax normalization by a Boolean ma-
trixM . This allows, for instance, to make the
operator causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal by takingM full of 1s below the
diagonal and zero above, preventing Yq from de-
pending on keys and values of indices k greater
than q. Second, the attention matrix is processed
by a dropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropoutdropout layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer (see § 4.5) before being multi-
plied by V , providing the usual benefits during
training.

Multi-head Attention Layer

This parameterless attention operator is the key
element in the MultiMultiMultiMultiMultiMultiMultiMultiMultiMultiMulti-HeadHeadHeadHeadHeadHeadHeadHeadHeadHeadHead AtAtAtAtAtAtAtAtAtAtAttentententententententententententiontiontiontiontiontiontiontiontiontiontion layer de-
picted in Figure 4.12. This layer has for meta-
parameters a numberH of heads, and the shapes
of three series of H trainable weight matrices

• W Q of size H×D×DQK,
• W K of size H×D×DQK, and
• W V of size H×D×DV,

to compute respectively the queries, the keys,
and the values from the input, and a final weight
matrix W O of size HDV×D to aggregate the
per-head results.

It takes as input three sequences
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Figure 4.12: The Multi-head Attention layer applies
for each of its h=1,...,H heads a parametrized lin-
ear transformation to individual elements of the input
sequences XQ,XK,XV to get sequences Q,K,V that
are processed by the attention operator to compute Yh.
These H sequences are concatenated along features,
and individual elements are passed through one last
linear operator to get the final result sequence Y .
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• XQ of size NQ×D,
• XK of size NKV×D, and
• XV of size NKV×D,

from which it computes, for h=1,...,H

Yh=att
(
XQW Q

h ,X
KW K

h ,X
VW V

h

)
.

These sequences Y1,...,YH are concatenated
along the feature dimension and each individual
element of the resulting sequence is multiplied
byW O to get the final result

Y =(Y1 | ··· |YH)W O.

As we will see in § 5.3 and in Figure 5.6, this
layer is used to build two model sub-structures:
selfselfselfselfselfselfselfselfselfselfself-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks, in which the three input
sequences XQ, XK, and XV are the same, and
crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks, where XK and XV are
the same.

It is noteworthy that the attention operator, and
consequently the multi-head attention layer, is
invariant to a permutation of the keys and values,
and equivariant to a permutation of the queries,
as it would permute the resulting tensor simi-
larly.
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4.9 Token embedding

In many situations, we need to convert discrete
tokens into vectors. This can be donewith an ememememememememememem-
bedbedbedbedbedbedbedbedbedbedbeddingdingdingdingdingdingdingdingdingdingding layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer, which consists of a lookup table
that directly maps integers to vectors.

Such a layer is defined by two meta-parameters:
the number N of possible token values, and the
dimensionD of the output vectors, and one train-
able N×D weight matrixM .

Given as input an integer tensor X of dimen-
sion D1×···×DK and values in {0,...,N−1}
such a layer returns a real-valued tensor Y of
dimension D1×···×DK×D with

∀d1,...,dK ,
Y [d1,...,dK ] =M [X[d1,...,dK ]].
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4.10 Positional encoding

While the processing of a fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully-conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer
is specific to both the positions of the features
in the input tensor and to the position of the
resulting activation in the output tensor, conconconconconconconconconconconvovovovovovovovovovovo-
lululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers and multi-head attention layers
are oblivious to the absolute position in the ten-
sor. This is key to their strong invariance and
inductive bias, which is beneficial for dealing
with a stationary signal.

However, this can be an issue in certain situ-
ations where proper processing has to access
the absolute positioning. This is the case, for
instance, for image synthesis, where the statis-
tics of a scene are not totally stationary, or in
natural language processing, where the relative
positions of words strongly modulate the mean-
ing of a sentence.

The standard way of coping with this problem
is to add or concatenate a popopopopopopopopopoposisisisisisisisisisisitionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional enenenenenenenenenenencodcodcodcodcodcodcodcodcodcodcodinginginginginginginginginginging,
which is a feature vector that depends on the lo-
cation, to the feature representation at every po-
sition. This positional encoding can be learned as
other layer parameters, or defined analytically.

For instance, in the original TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer model,
for a series of vectors of dimension D, Vaswani
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et al. [2017] add an encoding of the sequence
index as a series of sines and cosines at various
frequencies:

pos-enc[t,d] = sin
(

t
T d/D

)
if d∈ 2N

cos
(

t
T (d−1)/D

)
otherwise,

with T =104.
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Chapter 5

Architectures

The field of deep learning has developed over
the years for each application domain multiple
deep architectures that exhibit good trade-offs
with respect to multiple criteria of interest: e.g.
ease of training, accuracy of prediction, memory
footprint, computational cost, scalability.
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5.1 Multi-Layer Perceptrons

The simplest deep architecture is the MultiMultiMultiMultiMultiMultiMultiMultiMultiMultiMulti-
LayerLayerLayerLayerLayerLayerLayerLayerLayerLayerLayer PerPerPerPerPerPerPerPerPerPerPercepcepcepcepcepcepcepcepcepcepceptrontrontrontrontrontrontrontrontrontrontron (MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP), which takes the form
of a succession of fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully-conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers sepa-
rated by acacacacacacacacacacactititititititititititivavavavavavavavavavavationtiontiontiontiontiontiontiontiontiontion funcfuncfuncfuncfuncfuncfuncfuncfuncfuncfunctionstionstionstionstionstionstionstionstionstionstions. See an example
in Figure 5.1. For historical reasons, in such a
model, the number of hidhidhidhidhidhidhidhidhidhidhiddendendendendendendendendendenden laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers refers to the
number of linear layers, excluding the last one.

A key theoretical result is the uniuniuniuniuniuniuniuniuniuniuniververververververververververversalsalsalsalsalsalsalsalsalsalsal apapapapapapapapapapapproxproxproxproxproxproxproxproxproxproxprox-
iiiiiiiiiiimamamamamamamamamamamationtiontiontiontiontiontiontiontiontiontion thethethethethethethethethethetheoooooooooooremremremremremremremremremremrem [Cybenko, 1989] which states
that, if the activation function σ is not polyno-

X

fully-conn

relu

fully-conn

relu

fully-conn

Y

50

25

10

2

Hidden
layers

Figure 5.1: This multi-layer perceptron takes as input
a one dimension tensor of size 50, is composed of three
fully-connected layers with outputs of dimensions re-
spectively 25, 10, and 2, the two first followed by ReLU
layers.
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mial, any continuous function f can be approxi-
mated arbitrarily well uniformly on a compact
by a model of the form l2◦σ◦l1 where l1 and l2
are affine. Such a model is a MLP with a single
hidden layer, and this result implies that it can
approximate anything of practical value. How-
ever, this approximation holds if the dimension
of the first linear layer’s output can be arbitrarily
large.

In spite of their simplicity, MLPs remain an im-
portant tool when the dimension of the signal
to be processed is not too large.
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5.2 Convolutional networks

The standard architecture for proproproproproproproproproproprocesscesscesscesscesscesscesscesscesscesscessinginginginginginginginginginging imimimimimimimimimimimagesagesagesagesagesagesagesagesagesagesages
is a conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional netnetnetnetnetnetnetnetnetnetnetworkworkworkworkworkworkworkworkworkworkwork, or conconconconconconconconconconconvnetvnetvnetvnetvnetvnetvnetvnetvnetvnetvnet, that
combines multiple conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, either
to reduce the signal size before it can be pro-
cessed by fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully-conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, or to output a
2d signal also of large size.

LeNet-like

The original LeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNet model for image classifica-
tion [LeCun et al., 1998] combines a series of
2d conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers and max pooling layers
that play the role of feature extractor, with a
series of fullyfullyfullyfullyfullyfullyfullyfullyfullyfullyfully-conconconconconconconconconconconnectednectednectednectednectednectednectednectednectednectednected laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers which act like a
MLP and perform the classification per se. See
Figure 5.2 for an example.

This architecture was the blueprint for many
models that share its structure and are simply
larger, such as AlexNet [Krizhevsky et al., 2012]
or the VGG family [Simonyan and Zisserman,
2014].

Residual networks

Standard convolutional neural networks that fol-
low the architecture of the LeNet family are not
easily extended to deep architectures and suffer
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Figure 5.2: Example of a small LeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNetLeNet-like network for
classifying 28×28 grayscale images of handwritten
digits [LeCun et al., 1998]. Its first half is convolutional,
and alternates convolutional layers per se and max
pooling layers, reducing the signal dimension for 28×
28 scalars to 256. Its second half processes this 256
dimension feature vector through a one hidden layer
perceptron to compute 10 logit scores corresponding to
the ten possible digits.
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Figure 5.3: A residual block.

from the vanishing gradient problem. The residresidresidresidresidresidresidresidresidresidresid-
ualualualualualualualualualualual netnetnetnetnetnetnetnetnetnetnetworksworksworksworksworksworksworksworksworksworksworks, or ResNetsResNetsResNetsResNetsResNetsResNetsResNetsResNetsResNetsResNetsResNets, proposed by He et al.
[2015] explicitly address the issue of the van-
ishing gradient with residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions (see
§ 4.7), that allow hundreds of layers. They have
become standard architectures for computer vi-
sion applications, and exist in multiple versions
depending on the number of layers. We are go-
ing to look in detail at the architecture of the
ResNetResNetResNetResNetResNetResNetResNetResNetResNetResNetResNet-5050505050505050505050 for classification.
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Figure 5.4: A downscaling residual block. It admits a
meta-parameter S, the stride of the first convolution
layer, which modulates the reduction of the tensor size.

As other ResNets, it is composed of a series of
residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual blocksblocksblocksblocksblocksblocksblocksblocksblocksblocksblocks, each combining several conconconconconconconconconconconvovovovovovovovovovovo-
lululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, batch norm layers, and ReLU lay-
ers, wrapped in a residual connection. Such a
block is pictured in Figure 5.3.

A key requirement for high performance with
real images is to propagate a signal with a large
number of channels, to allow for a rich repre-
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Figure 5.5: Structure of the ResNet-50 [He et al., 2015].
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sentation. However, the parameter count of a
convolutional layer, and its computational cost,
are quadratic with the number of channels. This
residual block mitigates this problem by first re-
ducing the number of channels with a 1×1 con-
volution, then operating spatially with a 3×3
convolution on this reduced number of chan-
nels, and then upscaling the number of channels,
again with a 1×1 convolution.

The network reduces the dimensionality of the
signal to finally compute the logits for the clas-
sification. This is done thanks to an architec-
ture composed of several sections, each starting
with a downdowndowndowndowndowndowndowndowndowndownscalscalscalscalscalscalscalscalscalscalscalinginginginginginginginginginging residresidresidresidresidresidresidresidresidresidresidualualualualualualualualualualual blockblockblockblockblockblockblockblockblockblockblock that halves
the height and width of the signal, and doubles
the number of channels, followed by a series
of residual blocks. Such a downscaling resid-
ual block has a structure similar to a standard
residual block, except that it requires a residual
connection that changes the tensor shape. This
is achieved with a 1×1 convolution with a stride
of two (see Figure 5.4).

The overall structure of the ResNet-50 is pre-
sented in Figure 5.5. It starts with a 7×7 convo-
lutional layer that converts the three-channel in-
put image to a 64-channel image of half the size,
followed by four sections of residual blocks. Sur-
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prisingly, in the first section, there is no down-
scaling, only an increase of the number of chan-
nels by a factor of 4. The output of the last resid-
ual block is 2048×7×7, which is converted to a
vector of dimension 2048 by an average pooling
of kernel size 7×7, and then processed through
a fully-connected layer to get the final logits,
here for 1000 classes.
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5.3 Attention models

As stated in § 4.8, many applications, in partic-
ular from natural language processing, greatly
benefit from models that include attention mech-
anisms. The architecture of choice for such tasks,
which has been instrumental in recent advances
in deep learning, is the TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer proposed
by Vaswani et al. [2017].

Transformer

The original Transformer, pictured in Figure 5.7,
was designed for sequence-to-sequence trans-
lation. It combines an encoder that processes
the input sequence to get a refined representa-
tion, and an autoregressive decoder that gener-
ates each token of the result sequence, given the
encoder’s representation of the input sequence
and the output tokens generated so far. As the
residual convolutional networks of § 5.2, both
the encoder and the decoder of the Transformer
are sequences of compounded blocks built with
residual connections.

The selfselfselfselfselfselfselfselfselfselfself-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock, pictured on the left of
Figure 5.6, combines a MultiMultiMultiMultiMultiMultiMultiMultiMultiMultiMulti-HeadHeadHeadHeadHeadHeadHeadHeadHeadHeadHead AtAtAtAtAtAtAtAtAtAtAttentententententententententententiontiontiontiontiontiontiontiontiontiontion
layer, see § 4.8, that recombines information
globally, allowing any position to collect infor-
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Figure 5.6: SelfSelfSelfSelfSelfSelfSelfSelfSelfSelfSelf-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock (left) and crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-atatatatatatatatatatattententententententententententen-
tiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock (right). These specific structures proposed by
Radford et al. [2018] differ slightly from the original
architecture of Vaswani et al. [2017], in particular by
having the layer normalization first in the residual
blocks.

mation from any other positions, with a one-
hidden-layer MLPMLPMLPMLPMLPMLPMLPMLPMLPMLPMLP that updates representations
at every position separately.

The crosscrosscrosscrosscrosscrosscrosscrosscrosscrosscross-atatatatatatatatatatattentententententententententententiontiontiontiontiontiontiontiontiontiontion blockblockblockblockblockblockblockblockblockblockblock, pictured on the right
of Figure 5.6, is similar except that it takes as
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Figure 5.7: Original encoder-decoder TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer
modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel for sequence-to-sequence translation [Vaswani
et al., 2017].
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input two sequences, one to compute the queries
and one to compute the keys and values.

The encoder of the Transformer (see Figure
5.7, bottom), recodes the input sequence of dis-
crete tokensX1,...XT with an ememememememememememembedbedbedbedbedbedbedbedbedbedbeddingdingdingdingdingdingdingdingdingdingding layerlayerlayerlayerlayerlayerlayerlayerlayerlayerlayer,
see § 4.9, and adds a popopopopopopopopopoposisisisisisisisisisisitionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional enenenenenenenenenenencodcodcodcodcodcodcodcodcodcodcodinginginginginginginginginginging, see
§ 4.10, before processing it with several self-
attention blocks to generate a refined represen-
tation Z1,...,ZT .

The decoder (see Figure 5.7, top), takes as in-
put the sequence Y1,...,YS−1 of result tokens
produced so far, similarly recodes them through
an embedding layer, adds a positional encoding,
and processes it through alternating causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal self-
attention blocks and cross-attention blocks to
produce the logits predicting the next tokens.
These cross-attention blocks compute their keys
and values from the encoder’s result represen-
tation Z1,...,ZT , which allows the resulting se-
quence to be a function of the original sequence
X1,...,XT .

As we saw in § 3.2, being causalcausalcausalcausalcausalcausalcausalcausalcausalcausalcausal means that for
a given s the logits for P̂ (Ys |Yt<s) it computes
depend only on the tokens Yt,t < s in the in-
put sequence (see Figure 3.1). This ensures that,
given a full input sequence, the output at every
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Figure 5.8: GPT model [Radford et al., 2018].

position is the output that would have been ob-
tained if the input had only been available until
just before that position.

Generative Pre-trained Transformer

The Generative Pre-trained Transformer (GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT)
[Radford et al., 2018, 2019], pictured in Figure 5.8
is a pure autoregressive model that consists of a
succession of causal self-attention blocks, hence
a causal version of the original Transformer en-
coder. This class of models scales extremely well,
up to hundreds of billions of trainable parame-
ters [Brown et al., 2020].
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Vision Transformer

Transformers have been put to use for image
classification with the ViViViViViViViViViViVisionsionsionsionsionsionsionsionsionsionsion TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer (ViTViTViTViTViTViTViTViTViTViTViT)
model [Dosovitskiy et al., 2020], see Figure 5.9.

It splits the three-channel input image intoM
patches of resolution P×P , which are then flat-
tened to create a sequence of vectorsX1,...,XM

of shapeM×3P 2. This sequence is multiplied
by a trainable matrix W E of shape 3P 2×D to
map it to a M×D sequence, to which is con-
catenated one trainable vector E0. The resulting
(M+1)×D sequence E0,...,EM is then pro-
cessed through multiple self-attention blocks.
See § 5.3 and Figure 5.6.

The first element Z0 in the resultant sequence,
which corresponds to E0 and is not associated
which any part of the image, is finally processed
by a two-hidden-layer MLP to get the final C
logits. Such a token, added for a readout of a
class prediction, was introduced by Devlin et al.
[2018] in the BERT model and is referred to as a
CLSCLSCLSCLSCLSCLSCLSCLSCLSCLSCLS tototototototototototokenkenkenkenkenkenkenkenkenkenken.
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Part III

Applications
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Chapter 6

Prediction

A first category of applications, such as face
recognition, sentiment analysis, object detection,
or speech recognition, requires predicting an un-
known value from an available signal.
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6.1 Image denoising

A direct application of deep models to image
processing is to recover from degradation by
utilizing the redundancy in the statistical struc-
ture of images. The petals of a sunflower on a
grayscale picture can be colored with high confi-
dence, and the texture of a geometric shape such
as a table on a low-light grainy picture can be
corrected by averaging it over a large area likely
to be uniform.

A dededededededededededenoisnoisnoisnoisnoisnoisnoisnoisnoisnoisnoisinginginginginginginginginginging auauauauauauauauauauautoentoentoentoentoentoentoentoentoentoentoencodercodercodercodercodercodercodercodercodercodercoder is a model that takes
as input a degraded signal X̃ and computes an
estimate of the original one X .

Such amodel is trained by collecting a large num-
ber of clean samples paired with their degraded
inputs. The latter can be captured in degraded
conditions, such as low-light or inadequate fo-
cus, or generated algorithmically, for instance,
by converting the clean sample to grayscale, re-
ducing its size, or compressing it aggressively
with a lossy compression method.

The standard training procedure for denoising
autoencoders uses the MSE loss, in which case
the model aims at computing E(X | X̃). This
quantity may be problematic whenX is not com-
pletely determined by X̃ , in which case some
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parts of the generated signal may be an unreal-
istic, blurry average.
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6.2 Image classification

ImImImImImImImImImImImageageageageageageageageageageage clasclasclasclasclasclasclasclasclasclasclassisisisisisisisisisisififififififififififificacacacacacacacacacacationtiontiontiontiontiontiontiontiontiontion is the simplest strategy for
extracting semantics from an image and consists
of predicting a class from a finite, predefined
number of classes, given an input image.

The standard models for this task are convolu-
tional networks, such as ResNets, see § 5.2, and
attention-based models such as ViT, see § 5.3.
Those models generate a vector of logits with as
many dimensions as there are classes.

The training procedure simply minimizes the
cross-entropy loss, see § 3.1. Usually, perfor-
mance can be improved with datadatadatadatadatadatadatadatadatadatadata augaugaugaugaugaugaugaugaugaugaugmenmenmenmenmenmenmenmenmenmenmentatatatatatatatatatata-
tiontiontiontiontiontiontiontiontiontiontion, which consists of modifying the training
samples with hand-designed random transfor-
mations that do not change the semantic content
of the image, such as cropping, scaling, mirror-
ing, or color changes.
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6.3 Object detection

Amore complex task for image understanding is
obobobobobobobobobobobjectjectjectjectjectjectjectjectjectjectject dededededededededededetectectectectectectectectectectectiontiontiontiontiontiontiontiontiontiontion, in which the objective is, given
an input image, to predict the classes and posi-
tions of objects of interest.

An object position is formalized as the four coor-
dinates (x1,y1,x2,y2) of a rectangular bounding
box, and the ground truth associated with each
training image is a list of such bounding boxes,
each labeled with the class of the object in it.

The standard approach to solve this task, for in-
stance, by the SinSinSinSinSinSinSinSinSinSinSingleglegleglegleglegleglegleglegle ShotShotShotShotShotShotShotShotShotShotShot DeDeDeDeDeDeDeDeDeDeDetectectectectectectectectectectectortortortortortortortortortortor (SSDSSDSSDSSDSSDSSDSSDSSDSSDSSDSSD) [Liu
et al., 2015]), is to use a convolutional neural
network that produces a sequence of image
representations Zs of size Ds×Hs×Ws, s=
1,...,S, with decreasing spatial resolution Hs×
Ws down to 1×1 for s=S (see Figure 6.1). Each
of those tensors covers the input image in full,
so the h,w indices correspond to a partitioning
of the image lattice into regular squares that
gets coarser when s increases. As seen in § 4.2,
and illustrated in Figure 4.4, due to the succes-
sion of conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, a feature vector
(Zs[0,h,w],...,Zs[Ds−1,h,w]) is a descriptor
of an area of the image, called its rererererererererererecepcepcepcepcepcepcepcepcepcepceptivetivetivetivetivetivetivetivetivetivetive fieldfieldfieldfieldfieldfieldfieldfieldfieldfieldfield,
that is larger than this square but centered on
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X

Z1

Z2
ZS−1 ZS

...

...

Figure 6.1: A convolutional object detector processes the
input image to generate a sequence of representations
of decreasing resolutions. It computes for every h,w, at
every scale s, a pre-defined number of bounding boxes
whose centers are in the image area corresponding to
that cell, and whose size are such that they fit in its
receptive field. Each prediction takes the form of the
estimates (x̂1,x̂2,ŷ1,ŷ2), represented by the red boxes
above, and a vector of C+1 logits for the C classes of
interest, and an additional “no object” class.
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Figure 6.2: Examples of object detection with the Single-
Shot Detector [Liu et al., 2015].
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it. This results in a non-ambiguous matching of
any bounding box (x1,x2,y1,y2) to a s,h,w, de-
termined respectively bymax(x2−x1,y2−y1),
y1+y2

2 , and x1+x2
2 .

Detection is achieved by adding S convolutional
layers, each processing a Zs and computing for
every tensor indices h,w the coordinates of a
bounding box, and the associated logits. If there
are C object classes, there are C+1 logits, the
additional one standing for “no object.” Hence,
each additional convolution layer has 4+C+1
output channels. The SSD algorithm in particu-
lar generates several bounding boxes per s,h,w,
each dedicated to a hard-coded range of aspect
ratios.

Training sets for object detection are costly to
create, since the labeling with bounding boxes
requires a slow human intervention. To mitigate
this issue, the standard approach is to start with
a convolutional model that has been preprepreprepreprepreprepreprepre-trainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrained
on a large classification data set such as VGG-16
for the original SSD, and to replace its final fully-
connected layers with additional convolutional
ones. Surprisingly, models trained for classifica-
tion only have learned feature representations
that can be repurposed for object detection, even
though that task involves the regression of geo-
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metric quantities.

During training, every ground truth bounding
box is associated with its s,h,w, and induces a
loss term composed of a cross-entropy loss for
the logits, and a regression loss such as MSE
for the bounding box coordinates. Every other
s,h,w free of bounding-box match induces a
cross-entropy only penalty to predict the class
“no object”.
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6.4 Semantic segmentation

The finest-grain prediction task for image under-
standing is sesesesesesesesesesesemanmanmanmanmanmanmanmanmanmanmantictictictictictictictictictictic segsegsegsegsegsegsegsegsegsegsegmenmenmenmenmenmenmenmenmenmenmentatatatatatatatatatatationtiontiontiontiontiontiontiontiontiontion, which con-
sists of predicting, for every pixel, the class of the
object to which it belongs. This can be achieved
with a standard convolutional neural network
that outputs a convolutional map with as many
channels as classes, carrying the estimated logits
for every pixel.

While a standard residual network, for instance,
can generate a dense output of the same reso-
lution as its input, as for object detection, this
task requires operating at multiple scales. This
is necessary so that any object, or sufficiently
informative sub-part, regardless of its size, is
captured somewhere in the model by the feature
representation at a single tensor position. Hence,
standard architectures for that task downscale
the image with a series of conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers
to increase the receptive field of the activations,
and re-upscale it with a series of transtranstranstranstranstranstranstranstranstranstransposedposedposedposedposedposedposedposedposedposedposed conconconconconconconconconconcon-
vovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, or other upscaling methods
such as bilinear interpolation, to make the pre-
diction at high resolution.

However, a strict downscaling-upscaling archi-
tecture does not allow for operating at a fine
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Figure 6.3: Semantic segmentation results with the
Pyramid Scene Parsing Network [Zhao et al., 2016].

grain when making the final prediction, since all
the signal has been transmitted through a low-
resolution representation at some point. Models
that apply such downscaling-upscaling serially
mitigate these issues with skipskipskipskipskipskipskipskipskipskipskip conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions from
layers at a certain resolution, before downscal-
ing, to layers at the same resolution, after upscal-
ing [Long et al., 2014; Ronneberger et al., 2015].
Models that do it in parallel, after a convolutional
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backbone, concatenate the resulting multi-scale
representation after upscaling, before making
the final per-pixel prediction [Zhao et al., 2016].

Training is achieved with a standard cross-
entropy summed over all the pixels. As for object
detection, training can start from a netnetnetnetnetnetnetnetnetnetnetworkworkworkworkworkworkworkworkworkworkwork preprepreprepreprepreprepreprepre-
trainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrainedtrained on a large-scale image classification data
set to compensate for the limited availability of
segmentation ground truth.
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6.5 Speech recognition

SpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeechSpeech recogrecogrecogrecogrecogrecogrecogrecogrecogrecogrecognininininininininininitiontiontiontiontiontiontiontiontiontiontion consists of converting a
sound sample into a sequence of words. There
have been plenty of approaches to this problem
historically, but a conceptually simple and recent
one proposed by Radford et al. [2022] consists of
casting it as a sequence-to-sequence translation
and then solving it with a standard attention-
based TransTransTransTransTransTransTransTransTransTransTransformerformerformerformerformerformerformerformerformerformerformer, as described in § 5.3.

Their model first converts the sound signal into a
spectrogram, which is a one-dimensional series
T×D, that encodes at every time step a vector of
energies in D frequency bands. The associated
text is encoded with the BPEBPEBPEBPEBPEBPEBPEBPEBPEBPEBPE tototototototototototokkkkkkkkkkkenizerenizerenizerenizerenizerenizerenizerenizerenizerenizerenizer, see § 3.2.

The spectrogram is processed through a few
1d conconconconconconconconconconconvovovovovovovovovovovolululululululululululutionaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional laylaylaylaylaylaylaylaylaylaylayersersersersersersersersersersers, and the resulting rep-
resentation is fed into the encoder of the Trans-
former. The decoder directly generates a discrete
sequence of tokens, that correspond to one of the
possible tasks considered during training. Multi-
ple objectives are considered for training: tran-
scription of English or non-English text, transla-
tion from any language to English, or detection
of non-speech sequences, such as background
music or ambient noise.

This approach allows leveraging extremely large
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data sets that combine multiple types of sound
sources with diverse ground truth.

It is noteworthy that even though the ultimate
goal of this approach is to produce a transla-
tion as deterministic as possible given the input
signal, it is formally the sampling of a text dis-
tribution conditioned on a sound sample, hence
a synthesis process. The decoder is in fact ex-
tremely similar to the generative model of § 7.1.
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6.6 Text-image representations

A powerful approach to image understanding
consists of learning consistent image and text
representations.

The Contrastive Language-Image Pre-training
(CLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIPCLIP) proposed by Radford et al. [2021] com-
bines an image encoder f , which is a ViTViTViTViTViTViTViTViTViTViTViT, and a
text encoder g, which is a GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT. See § 5.3 for both.
To repurpose a GPT as a text encoder, instead
of a standard autoregressive model, they add to
the input sequence an “end of sentence” token,
and use the representation of this token in the
last layer as the embedding. Both embeddings
have the same dimension, which, depending on
the configuration, is between 512 and 1024.

Those two models are trained from scratch using
a data set of 400 million image-text pairs (ik,tk)
collected from the internet. The training proce-
dure follows the standard mini-batch stochastic
gradient descent approach but relies on a conconconconconconconconconconcon-
trastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastivetrastive losslosslosslosslosslosslosslosslosslossloss. The embeddings are computed for
every image and every text of the N pairs in
the mini-batch, and a cosine similarity measure
is computed not only between text and image
embeddings from each pair, but also across pairs,
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resulting in an N×N matrix of similarity score

lm,n= f(im)⊤g(tn), m=1,...,N,n=1,...,N.

The model is trained with cross entropy so that,
∀n the values l1,n,...,lN,n interpreted as logit
scores predict n, and similarly for ln,1,...,ln,N .
This means that ∀n,m, s.t. n ̸=m the similarity
ln,n is unambiguously greater than both ln,m and
lm,n.

When it has been trained, this model can be used
to do zerozerozerozerozerozerozerozerozerozerozero-shotshotshotshotshotshotshotshotshotshotshot preprepreprepreprepreprepreprepredicdicdicdicdicdicdicdicdicdicdictiontiontiontiontiontiontiontiontiontiontion, that is, classifying a
signal in the absence of training examples by
defining a series of candidate classes with text
descriptions, and computing the similarity of the
embedding of an image with the embedding of
each of those descriptions (see Figure 6.4).

Additionally, since the textual descriptions are of-
ten detailed, such a model has to capture a richer
representation of images and pick up cues over-
looked by classifier networks. This translates to
excellent performance on challenging datasets
such as ImageNet Adversarial [Hendrycks et al.,
2019] whichwas specifically designed to degrade
or erase cues on which standard predictors rely.
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Figure 6.4: The CLIP text-image embedding [Radford
et al., 2021] allows to do zero-shot prediction by pre-
dicting what class description embedding is the most
consistent with the image embedding.
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Chapter 7

Synthesis

A second category of applications distinct from
prediction is synthesis. It consists of fitting a
density model to training samples and providing
means to sample from this model.
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7.1 Text generation

The standard approach to texttexttexttexttexttexttexttexttexttexttext synsynsynsynsynsynsynsynsynsynsynthethethethethethethethethethethesississississississississississis is to use
an attention-based, auauauauauauauauauauautoretoretoretoretoretoretoretoretoretoretoregresgresgresgresgresgresgresgresgresgresgressivesivesivesivesivesivesivesivesivesivesive modelmodelmodelmodelmodelmodelmodelmodelmodelmodelmodel. The
most successful in this domain is the GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT [Rad-
ford et al., 2018], which we described in § 5.3.

The encoding into tokens and the decoding is
done with the BPEBPEBPEBPEBPEBPEBPEBPEBPEBPEBPE tototototototototototokkkkkkkkkkkenizerenizerenizerenizerenizerenizerenizerenizerenizerenizerenizer, see § 3.2.

When it has been trained on very large datasets,
a LargeLargeLargeLargeLargeLargeLargeLargeLargeLargeLarge LanLanLanLanLanLanLanLanLanLanLanguageguageguageguageguageguageguageguageguageguageguage ModelModelModelModelModelModelModelModelModelModelModel (LLMLLMLLMLLMLLMLLMLLMLLMLLMLLMLLM) exhibits ex-
tremely powerful properties. Besides the syntac-
tic and grammatical structure of the language, it
has to integrate very diverse knowledge, e.g. to
predict the word following “The capital of Japan
is”, “if water is heated to 100 Celsius degrees it
turns into”, or “because her puppy was sick, Jane
was”.

This results in particular in the ability to solve
zerozerozerozerozerozerozerozerozerozerozero-shotshotshotshotshotshotshotshotshotshotshot preprepreprepreprepreprepreprepredicdicdicdicdicdicdicdicdicdicdictiontiontiontiontiontiontiontiontiontiontion, where no training example
is available and the objective is defined in nat-
ural language, e.g. “In the following sentences,
indicate which ones are aggressive.” More sur-
prisingly, when such amodel is put in a statistical
context by a “prompt” carefully crafted, it can
exhibit abilities for question answering, problem
solving, and chain-of-thought that appear eerily
close to high-level reasoning [Chowdhery et al.,
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2022; Bubeck et al., 2023].

Due to these remarkable capabilities, these mod-
els are sometimes referred to as founfounfounfounfounfounfounfounfounfounfoundadadadadadadadadadadationtiontiontiontiontiontiontiontiontiontion modmodmodmodmodmodmodmodmodmodmod-
elselselselselselselselselselsels [Bommasani et al., 2021].
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7.2 Image generation

Multiple deep methods have been developed to
model and sample from a high-dimensional den-
sity. A powerful approach for imimimimimimimimimimimageageageageageageageageageageage synsynsynsynsynsynsynsynsynsynsynthethethethethethethethethethethesississississississississississis
relies on inverting a difdifdifdifdifdifdifdifdifdifdiffufufufufufufufufufufusionsionsionsionsionsionsionsionsionsionsion proproproproproproproproproproprocesscesscesscesscesscesscesscesscesscesscess.

The principle consists of defining analytically
a process that gradually degrades any sample,
and consequently transforms the complex and
unknown density of the data into a simple and
well-known density such as a normal, and train-
ing a deep architecture to invert this degradation
process [Ho et al., 2020].

In practice, given a fixed T , the diffusion process
defines a probabilities over series of T+1 im-
ages as follows: samples x0 uniformly in the data
set, and then go on sampling xt+1∼ p(xt+1 |xt)
where the conditional distribution p is defined
analytically, and such that it gradually erases
the structure that was in x0. The setup should
be such that the distribution p(xT ) of xT has a
simple, known form, so in particular does not de-
pend on the complicated data distribution p(x0),
and can be sampled.

For instance, Ho et al. [2020] normalize the data
to have a mean of 0 and a variance of 1, and their
diffusion process consists of adding a bit of white
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xT

x0

Figure 7.1: Image synthesis with denoising diffusion
[Ho et al., 2020]. Each sample starts as a white noise
xT (top), and is gradually de-noised by sampling iter-
atively xt−1 |xt ∼𝒩 (xt+f(xt,t;w),σt).
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noise and re-normalizing the variance to 1. This
process exponentially reduces the importance of
x0, and xt’s density can rapidly be approximated
with a normal.

The denoiser f is a deep architecture that
should model and allow sampling from,
f(xt−1,xt,t;w)≃ p(xt−1 |xt). It can be shown,
thanks to a varivarivarivarivarivarivarivarivarivarivariaaaaaaaaaaationaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional boundboundboundboundboundboundboundboundboundboundbound, that if this
one-step reverse process is accurate enough,
sampling xT ∼ p(xT ) and denoising T steps
with f results in a x0 that follows p(x0).

Training f can be achieved by generating a large
number of sequences x(n)0 ,...,x

(n)
T , picking a tn

in each, and maximizing∑
n

logf(x
(n)
tn−1,x

(n)
tn ,tn;w).

Given their diffusion process, Ho et al. [2020]
have a denoising of the form

xt−1 |xt∼𝒩 (xt+f(xt,t;w);σt), (7.1)

where σt is defined analytically.

In practice, such a model initially hallucinates
structures by pure luck in the random noise, and
then gradually build more elements that emerge

130 155



from the noise by reinforcing the most likely
continuation of the image obtained thus far.

This approach can be extended to text-
conditioned synthesis, to generate images
that match a description. For instance, Nichol
et al. [2021] add to the mean of the denoising
distribution of Equation 7.1 a bias that goes in
the direction of increasing the CLIP matching
score (see § 6.6) between the produced image
and the conditioning text description.
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The missing bits

For the sake of concision, this volume skipsmany
important topics, in particular:

Recurrent Neural Networks

Before attention models showed greater perfor-
mance, ReReReReReReReReReReRecurcurcurcurcurcurcurcurcurcurcurrentrentrentrentrentrentrentrentrentrentrent NeuNeuNeuNeuNeuNeuNeuNeuNeuNeuNeuralralralralralralralralralralral NetNetNetNetNetNetNetNetNetNetNetworksworksworksworksworksworksworksworksworksworksworks (RNNRNNRNNRNNRNNRNNRNNRNNRNNRNNRNN) were
the standard approach for dealing with temporal
sequences such as text or sound samples. These
architectures possess an internal hidhidhidhidhidhidhidhidhidhidhiddendendendendendendendendendenden statestatestatestatestatestatestatestatestatestatestate
that gets updated every time a component of
the sequence is processed. Their main compo-
nents are layers such as LSTM [Hochreiter and
Schmidhuber, 1997] or GRU [Cho et al., 2014].

Training a recurrent architecture amounts to
unfolding it in time, which results in a long
composition of operators. This has historically
prompted the design of key techniques now used
for deep architectures such as recrecrecrecrecrecrecrecrecrecrectititititititititititifiersfiersfiersfiersfiersfiersfiersfiersfiersfiersfiers and gat-
ing, a form of skipskipskipskipskipskipskipskipskipskipskip conconconconconconconconconconconnecnecnecnecnecnecnecnecnecnecnectionstionstionstionstionstionstionstionstionstionstions which are mod-
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ulated dynamically.

Autoencoder

An auauauauauauauauauauautoentoentoentoentoentoentoentoentoentoentoencodercodercodercodercodercodercodercodercodercodercoder is a model that maps an input
signal, possibly of high dimension, to a low-
dimension latent representation, and then maps
it back to the original signal, ensuring that infor-
mation has been preserved. We saw it in § 6.1
for denoising, but it can also be used to auto-
matically discover a meaningful low-dimension
parameterization of the data manifold.

The VariVariVariVariVariVariVariVariVariVariVariaaaaaaaaaaationaltionaltionaltionaltionaltionaltionaltionaltionaltionaltional AuAuAuAuAuAuAuAuAuAuAutoentoentoentoentoentoentoentoentoentoentoencodercodercodercodercodercodercodercodercodercodercoder (VAEVAEVAEVAEVAEVAEVAEVAEVAEVAEVAE) proposed by
Kingma andWelling [2013] is a generative model
with a similar structure. It imposes, through the
loss, a pre-defined distribution to the latent rep-
resentation, so that, after training, it allows for
the generation of new samples by sampling the
latent representation according to this imposed
distribution and then mapping back through the
decoder.

Generative Adversarial Networks

Another approach to density modeling is the
GenGenGenGenGenGenGenGenGenGenGenerererererererererereraaaaaaaaaaativetivetivetivetivetivetivetivetivetivetive AdAdAdAdAdAdAdAdAdAdAdververververververververververversarsarsarsarsarsarsarsarsarsarsarialialialialialialialialialialial NetNetNetNetNetNetNetNetNetNetNetworksworksworksworksworksworksworksworksworksworksworks (GANGANGANGANGANGANGANGANGANGANGAN) intro-
duced by Goodfellow et al. [2014]. This method
combines a gengengengengengengengengengengenerererererererererereraaaaaaaaaaatortortortortortortortortortortor, which takes a random in-
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put following a fixed distribution as input and
produces a structured signal such as an image,
and a disdisdisdisdisdisdisdisdisdisdiscrimcrimcrimcrimcrimcrimcrimcrimcrimcrimcrimiiiiiiiiiiinananananananananananatortortortortortortortortortortor, which takes as input a sam-
ple and predicts whether it comes from the train-
ing set or if it was generated by the generator.

Training optimizes the discriminator to mini-
mize a standard cross-entropy loss, and the gen-
erator to maximize the discriminator’s loss. It
can be shown that at equilibrium the gener-
ator produces samples indistinguishable from
real data. In practice, when the gradient flows
through the discriminator to the generator, it
informs the latter about the cues that the dis-
criminator uses that should be addressed.

Reinforcement Learning

Many problems require a model to estimate
an accumulated long-term reward given action
choices and an observable state, and what ac-
tions to choose to maximize that reward. ReReReReReReReReReReReininininininininininin-
forceforceforceforceforceforceforceforceforceforceforcementmentmentmentmentmentmentmentmentmentment LearnLearnLearnLearnLearnLearnLearnLearnLearnLearnLearninginginginginginginginginginging (RLRLRLRLRLRLRLRLRLRLRL) is the standard frame-
work to formalize such problems, and strategy
games or robotic control, for instance, can be
formulated within it. Deep models, particularly
convolutional neural networks, have demon-
strated excellent performance for this class of
tasks [Mnih et al., 2015].
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Fine-tuning

As we saw in § 6.3 for object detection, or in § 6.4
for semantic segmentation, finefinefinefinefinefinefinefinefinefinefine-tuntuntuntuntuntuntuntuntuntuntuninginginginginginginginginginging deep ar-
chitectures is an efficient strategy to deal with
small training sets. Furthermore, due to the dra-
matic increase in the size of architectures, partic-
ularly that of LargeLargeLargeLargeLargeLargeLargeLargeLargeLargeLarge LanLanLanLanLanLanLanLanLanLanLanguageguageguageguageguageguageguageguageguageguageguageModModModModModModModModModModModelselselselselselselselselselsels, training a
single model can cost several millions of dollars,
and fine-tuning is a crucial, and often the only
way, to achieve high performance on a specific
task.

Graph Neural Networks

Many applications require processing signals
which are not organized regularly on a grid. For
instance, molecules, proteins, 3D meshes, or ge-
ographic locations are more naturally structured
as graphs. Standard convolutional networks or
even attention models are poorly adapted to pro-
cess such data, and the tool of choice for such a
task is GraphGraphGraphGraphGraphGraphGraphGraphGraphGraphGraph NeuNeuNeuNeuNeuNeuNeuNeuNeuNeuNeuralralralralralralralralralralral NetNetNetNetNetNetNetNetNetNetNetworksworksworksworksworksworksworksworksworksworksworks (GNNGNNGNNGNNGNNGNNGNNGNNGNNGNNGNN, [Scarselli
et al., 2009]).

These models are composed of layers that com-
pute activations at each vertex by combining
linearly the activations located at its immediate
neighboring vertices. This operation is very sim-
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ilar to a standard convolution, except that the
data structure does not reflect any geometrical
information associated with the feature vectors
they carry.

Self-supervised training

As stated in § 7.1, even though they are trained
only to predict the next word, LargeLargeLargeLargeLargeLargeLargeLargeLargeLargeLarge LanLanLanLanLanLanLanLanLanLanLanguageguageguageguageguageguageguageguageguageguageguage
ModModModModModModModModModModModelselselselselselselselselselsels trained on large unlabeled data sets such
as GPTGPTGPTGPTGPTGPTGPTGPTGPTGPTGPT (see § 5.3) are able to solve various tasks
such as identifying the grammatical role of a
word, answering questions, or even translating
from one language to another [Radford et al.,
2019].

Such models constitute one category of a larger
class of methods that fall under the name of selfselfselfselfselfselfselfselfselfselfself-
sususususususususususuperperperperperperperperperperpervisedvisedvisedvisedvisedvisedvisedvisedvisedvisedvised learnlearnlearnlearnlearnlearnlearnlearnlearnlearnlearninginginginginginginginginginging, and try to take advantage
of unlabeled data sets [Balestriero et al., 2023].
The key principle of these methods is to define a
task that does not require labels but necessitates
feature representations which are useful for the
real task of interest, for which a small labeled
data set exists. In computer vision, for instance,
a standard approach consists of optimizing im-
age features so that they are invariant to data
transformations that do not change the semantic
content of the image, while being statistically
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uncorrelated [Zbontar et al., 2021].
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Afterword

Recent developments in Artificial Intelligence
have been incredibly exciting, and it is difficult
to comment on them without being overly dra-
matic. There are few doubts that these technolo-
gies will cause fundamental changes in how we
work, how we interact with knowledge and in-
formation, and that they will force us to rethink
concepts as fundamental as intelligence, under-
standing, and sentience.

In spite of its weaknesses, particularly its sheer
brutality and its computational cost, deep learn-
ing is likely to remain an important component
of AI systems for the foreseeable future and, as
such, a key element of this new era.
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