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As you probably already

Know, array indexes start
at 0 in almost all major
programming languages.

int nlL]l = 125, 50, 75, 100%}:
printf("%d", n[0]); // Output: 25
printf("%sd", n[1l]); // Output: 50
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But do you actually
know the reason why
it works like that?
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When an array is used
as a value, it evaluates
to a pointer to the first
element of the array...
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That means the 1st item
Is accessed by retrieving
the pointer's value.

The 2nd item is accessed
by using the pointer, plus
one more memory slot.

The 3rd item is accessed
by using the pointer, plus
two more memory slots.
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This additional memory
slot used to access the
items is called offset.

*n *n+1) *(n+2) *(n+3)

29 °0 /3 100
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In general, we can say
that the elements are
located at *(n + offset).

If the index started at 1,
the compilerd have to
use *(n + index - 1) to
access the elements.
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But if the index starts at
0, it matches the offset.

The compiler can then
access the elements by
using *(n + index) and
avoid the additional -1.
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