it

-0 O

SWIPE >>>

@ITCHALLENGES



As you probably already

Know, array indexes start
at 0 in almost all major
programming languages.

int nlL]l = 125, 50, 75, 100%}:
printf("%d", n[0]); // Output: 25
printf("%sd", n[1l]); // Output: 50

@ITCHALLENGES

SWIPE >>>



But do you actually
know the reason why
it works like that?

@ITCHALLENGES



When an array is used
as a value, it evaluates
to a pointer to the first
element of the array...

SWIPE >>>

@ITCHALLENGES



683

| 7813

} 7815
7816

@ITCHALLENGES



i)

That means the 1st item
Is accessed by retrieving
the pointer's value.

The 2nd item is accessed
by using the pointer, plus
one more memory slot.

The 3rd item is accessed
by using the pointer, plus
two more memory slots.

@ITCHALLENGES




This additional memory
slot used to access the
items is called offset.

*n *n+1) *(n+2) *(n+3)

29 °0 /3 100

SWIPE>>>

@ITCHALLENGES



In general, we can say
that the elements are
located at *(n + offset).

If the index started at 1,
the compilerd have to
use *(n + index - 1) to
access the elements.

@ITCHALLENGES

SWIPE >>>



But if the index starts at
0, it matches the offset.

The compiler can then
access the elements by
using *(n + index) and
avoid the additional -1.

@ITCHALLENGES



